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ABSTRACT

Zhenyu Guo (Doctor of Philosophy in Petroleum Engineering)

History Matching, Prediction and Production Optimization with a Physics-Based Data-

Driven Model

Directed by Albert C. Reynolds

186 pp., Chapter 6: Conclusions

(681 words)

Assisted history matching and life-cycle production optimization are the two key

components of closed-loop reservoir management, which are traditionally performed based

on a multitude of runs of full-scale reservoir simulation models which incur high computa-

tional costs for large-scale problems. To reduce the computational cost spent on full-scale

simulation runs when performing history matching and production optimization, we focus

on developing a new data-driven model, Interwell Numerical Simulation Model with Front

Tracking (INSIM-FT). INSIM-FT can be built without any prior knowledge of geological

information of the target reservoir. Although the INSIM-FT model is developed from pro-

duction data and requires no prior knowledge of rock property fields, it incorporates far

more fundamental physics than that of the popular Capacitance-Resistance Model (CRM).

INSIM-FT also represents a substantial improvement on an interwell numerical simulation

model (INSIM) developed by Zhao et al. (2016). Specifically, we introduce a theoretically

correct procedure to compute water saturation in INSIM-FT that generally gives more ro-

bust and accurate solutions than are obtained with INSIM where saturations are computed

with an ad hoc method. In addition, unlike INSIM, INSIM-FT incorporates the parameters

defining power-law relative permeability curves as additional history-matching parameters
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so that prior knowledge of relative permeabilities is no longer required as is the case with IN-

SIM. Also, we introduce imaginary wells and their associated interwell connections (stream

tubes) to enable more potential flow paths in the INSIM-FT model than are used in INSIM.

These additional flow paths enable INSIM-FT to honor more correctly the physics than is

done with the original INSIM model. With these modifications, one expects that INSIM-FT

will be more robust than INSIM, and via computational examples, we show that this is the

case.

After developing INSIM-FT for a two-dimensional reservoir model, we extend INSIM-

FT to full three-dimensional multi-layered reservoirs, where it is necessary to consider grav-

itational effects. The extended model, which is referred to as INSIM-FT-3D, can be used for

history matching, prediction and production optimization for a three-dimensional reservoir

under waterflooding. Compared to the original INSIM-FT model, INSIM-FT-3D replaces

the original Riemann solver in INSIM-FT by a new Riemann solver based on a convex-hull

method that enables the solution of the Buckley-Leverett problem with gravity, where a frac-

tional flow function may have more than one inflection point. Secondly, unlike the original

INSIM-FT model, which assumes all wells are vertical, the INSIM-FT-3D model allows for

the inclusion of wells with arbitrary trajectories with multiple perforations. Third, INSIM-

FT-3D applies Mitchell’s best-candidate algorithm to automatically generate the imaginary

wells that are evenly distributed in the reservoir given a set of prefixed actual well nodes

and fourth INSIM-FT-3D utilizes our own modification of Delaunay triangulation to build

the 3D connection map necessary to use the general INSIM-FT-3D formulation.

The ensemble-smoother with multiple data assimilation (ES-MDA) is used for history

matching with INSIM-FT or INSIM-FT-3D. The history matching parameters for INSIM-

FT and INSIM-FT-3D are similar and include the connection-based parameters and the

parameters that define power-law permeabilities. In addition to the common parameters

included with the two methods, the parameters that define the well indices for the wells with

multiple perforations are included in the INSIM-FT-3D model. For production optimization

with INSIM-FT and INSIM-FT-3D, ensemble-based optimization (EnOpt) is used. Because
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initially the developed data-driven models only allow rate controls, pressure controls cannot

be used for production optimization. We provide a procedure to estimate the values of well

indices via the history matching process if bottom-hole pressure (BHP) data are available.

Then, BHP can be specified at each control step in the INSIM-FT(-3D) model to allow

optimization of the life-cycle net present value (NPV) of production, where the producer’s

BHPs at control steps are included in the optimization variables.

Computational results show that, history matching and production optimization per-

formed with INSIM-FT two- and three-dimensional models are far more computationally

efficient than are those performed with full-scale reservoir simulation models but still give

a characterization of a reservoir under waterflooding, future predictions and estimates of

the optimal NPV of production, that are similar to those obtained using computationally

expensive full-scale reservoir simulation models.
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CHAPTER 1

INTRODUCTION

Closed-loop reservoir management is a general decision-making framework which com-

bines the procedures of assisted history matching and production optimization. Its ultimate

objective is to reduce the reservoir uncertainty, predict the reservoir future performance and

maximize the economic return. The entire procedure of closed-loop management involves

alternating data assimilation (history matching) steps with life-cycle production optimiza-

tion based on the most recently updated reservoir model(s), to plan the optimal production

strategy for the future. Since closed-loop reservoir management usually requires a multitude

number of forward runs, keeping the computational cost of the forward model as low as

possible is desirable.

As one essential part of closed-loop reservoir management, assisted history matching

is an inverse problem which aims to find the model parameters (reservoir variables) that can

honor historical dynamic data while maintaining geological plausibility. Due to uncertainties

in the model parameters and noise in the observations of dynamic data, it has become

popular to generate an ensemble of history-matched models for the purpose of assessing the

uncertainty in reservoir properties and future reservoir performance predictions. Assisted

history matching with uncertainty quantification is usually performed by using conventional

full-scale simulators. Depending on the scale of the reservoir simulation model, a single

forward simulation run may take the order of one hour to one or more days to complete.

Assisted history matching with uncertainty quantification can take several hundred forward

simulation runs, which is computationally expensive.

Life-cycle production optimization is also a vital part of closed-loop reservoir man-

agement. In life-cycle production optimization, given a reservoir model (or models) obtained
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from history matching, one applies an optimization algorithm to estimate the well controls

at all control steps (time intervals) which maximize some cost or objective function such

as net-present-value (NPV) or total oil production. Traditionally, production optimization

is performed by using full-scale grid-based simulators to predict the new value of the cost

function at each time the optimization variables (well controls in this work) are updated dur-

ing the iterative optimization process. Depending on the optimization method utilized, the

number of forward simulation runs required to achieve the optimal well controls may range

from the order of one hundred to a few thousand. Similar to assisted history matching, this

process is computationally expensive for large-scale reservoir simulation models.

Due to the high computational cost for closed-loop reservoir management that involves

the procedures of assisted history matching and life-cycle production optimization with full-

scale reservoir simulation models, other methods to undertake the same tasks but with far

less computational costs are badly needed. One possibility is to use a data-driven model,

which can be treated as a computationally efficient surrogate model to replace the traditional

full-scale reservoir simulation model.

In this research, we develop and utilize a physics-based data-driven model as a com-

putationally efficient surrogate model to perform history matching and production optimiza-

tion.

1.1 Literature Review on History Matching

The first focus of this research is to reduce the computational cost of assisted history

matching by using a data-driven model. Assisted history matching is a complicated ill-

conditioned inverse problem, to which an infinite number of solutions may exist that all

match the observations, when the number of observed data is far less than the number of

uncertain history-matched parameters to be tuned. Based on the Bayesian point of view,

these solutions are represented by a set of reservoir models that follow a posterior distribution

conditioned to the observed data. Many papers (Oliver et al., 1996; Reynolds et al., 1999;

Nævdal et al., 2002; Gu and Oliver, 2007; Li and Reynolds, 2009; Chen and Oliver, 2012;
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Emerick and Reynolds, 2012, 2013a,b; Le et al., 2016) have focused on obtaining at least an

approximation of the correct sampling from the posterior distribution, which can properly

reflect the uncertainty in the model space and the uncertainty in future predicted reservoir

performance. To achieve this goal, a set of history matched models instead of a single model

should be obtained to approximate the posterior sampling. This process requires a large

number of full-scale forward simulation runs and incurs a heavy computational cost if the

simulation model is large scale.

In general, the history matching problem can be considered as an optimization prob-

lem where the objective function usually consists of model mismatch and data mismatch

terms. One or multiple history-matched models can be found by applying different types

of optimization algorithms such as gradient-based optimization algorithms (Li et al., 2003;

Reynolds et al., 2004; Gao and Reynolds, 2006; Kahrobaei et al., 2013), model-based derivative-

free optimization algorithms (Zhao et al., 2013), direct pattern search derivative-free opti-

mization algorithms (Gao et al., 2016), stochastic derivative-free optimization algorithms

(Gao et al., 2004), and their hybrid counterparts. Starting from an initial guess of the reser-

voir model, the optimization procedure iteratively updates the model until a local or a global

minimum of objective function is found. Multiple history-matched models can be found by

starting from different initial guesses.

When an adjoint-based gradient is available, the gradient-based optimization algo-

rithms (Li et al., 2003; Reynolds et al., 2004; Gao and Reynolds, 2006; Kahrobaei et al.,

2013) perform better than other optimization algorithms that do not use the adjoint gradi-

ent. One of the popular gradient-based optimization methods used for history matching is the

Gauss-Newton method, where the Hessian matrix of the objective function can be evaluated

analytically using the first-order derivatives of data (or the sensitivity matrix). Alterna-

tively, one may apply a quasi-Newton method such as limited-memory Broyden-Fletcher-

Goldfarb-Shanno (LBFGS) (Liu and Nocedal, 1989). As benchmarked by Gao et al. (2016),

Gauss-Newton methods perform better than quasi-Newton methods for history matching or

least-square problems.
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Unfortunately, the adjoint information is not generally available with commercial

reservoir simulators, which restricts the application of adjoint-based history-matching meth-

ods. To take advantage of a gradient-based optimizer, we can approximate the gradient of

the objective function that is to be minimized or maximized in different ways. One possi-

bility is to use the finite difference based on a one-sided perturbation of each variable (Nash

and Sofer, 1996). Unlike the adjoint-based methods which compute the gradient based on

a single forward reservoir simulation plus a single “backward in time equivalent reservoir

simulation run” to solve the adjoint system, evaluating the gradient by the finite-difference

scheme requires np+1 simulation runs where np is the number of history matching parame-

ters, thus, finite-difference approximation of the gradient becomes computationally infeasible

when the number of reservoir parameters is large. An alternative method is to construct

a quadratic interpolation model by multivariate perturbation (Powell, 2004), but this is

also computationally infeasible for large-scale problems. With the numerically estimated

derivative information, gradient-based optimization methods can also be applied to perform

assisted history matching.

On the other hand, ensemble-based methods, which only implicitly estimate the

sensitivity matrix, are widely used to solve history matching problems. A well-known

ensemble-based history matching method is the ensemble Kalman Filter (EnKF) introduced

by Evensen (1994), which has been extensively applied in many different areas. Since the first

application of EnKF to reservoir history matching(Nævdal et al., 2002), the investigations

of EnKF for the oil industry history-matching problems have been increasing significantly.

However, EnKF has a major shortcoming which can introduce inconsistencies between the

updated reservoir model parameters and updated state variables (primary variables solved

for by the simulator) because it is used to update model parameters and sates simultane-

ously. To overcome this disadvantage of EnKF and improve its history matching quality,

Emerick and Reynolds (2012, 2013a,b) developed an iterative version of ensemble smoother

(ES) (van Leeuwen and Evensen, 1996). The Emerick-Reynolds algorithm is referred to as

ensemble smoother with multiple data assimilation (ES-MDA). ES-MDA generally has bet-
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ter accuracy than EnKF with comparable computational cost. Further studies of ES-MDA

have been extended into history matching the production data of highly-channelized non-

Gaussian reservoirs (Le et al., 2016). In this research, ES-MDA is used to perform history

matching based on running a data-driven model as the forward model.

1.2 Literature Review on Production Optimization

The second focus of this research is to reduce the computational cost for production

optimization related to repeatedly running full-scale reservoir simulations, since most works

on life-cycle production optimization (Sarma et al., 2005; van Essen et al., 2006; Kraaije-

vanger et al., 2007; Jansen et al., 2009; Chen et al., 2009; van Essen et al., 2009a; Chen, 2011;

van Essen et al., 2011; Chen et al., 2012; Fonseca et al., 2013; Oliveira and Reynolds, 2014;

Chen and Reynolds, 2016; Liu and Reynolds, 2016b,a; Chen et al., 2017; Chen and Reynolds,

2018) are based on using a full-scale finite-volume or finite difference reservoir simulator as

the forward model to predict the performance of the true reservoir for a given set of controls.

The well controls can be specified as either well flow rates or flowing bottom-hole pressures

during the production optimization period. In practice, considering the difficulty and cost of

operations, the length of each control step used in life-cycle production optimization typically

is equal to one to six months.

Evidence shows that gradient-based methods with the analytical gradient computed

by the adjoint method are very computationally efficient for large-scale production opti-

mization problems (Zakirov et al., 1996; Brouwer and Jansen, 2004; Jansen et al., 2005;

de Montleau et al., 2006; van Essen et al., 2009b; Chen, 2011; Chen et al., 2012; Yan and

Reynolds, 2014). However, the adjoint method is not typically embedded in commercial

reservoir simulators used in the oil industry. The addition of the adjoint method to commer-

cial simulator requires modification of the source code of the reservoir simulator and would

be a challenging task.

The unavailability of the adjoint method motivated the development of ensemble-

based methods for closed-loop reservoir management. Compared to adjoint-based methods,
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ensemble-based methods treat the forward model as a black box and hence are more flexible

to use, without the need to access the source code of the forward model. The basic idea

of the ensemble-based method is to approximate the gradient of the objective function for

production optimization with respect to the control variables from a ensemble of perturbed

well controls. Unlike the finite-difference method (Yan and Reynolds, 2014), ensemble-based

method does not require one perturbation and forward model run for each and every control

variable, which significantly reduces the computational cost on gradient estimate compared

to computation of the gradient using finite-difference approximation.

Ensemble-based optimization (EnOpt) (Chen and Oliver, 2009) is a well known

ensemble-based method for production optimization. In Chen and Oliver (2009), EnOpt

was tested for a large-scale SPE benchmark case, the Brugge synthetic field, which was the

largest and most complex test case on production optimization at that time.

Do and Reynolds (2013) put forward a slight modification to the EnOpt algorithm

developed by Chen and Oliver (2009). Do and Reynolds (2013) theoretically show that

for production optimization based on a single realization (reservoir model), the stochastic

gradient computed by three algorithms have the same expected value and provide a first-

order approximation of the preconditioning covariance matrix times the true gradient. The

three procedures include the stochastic Gaussian search direction, the simplex method and

the modified EnOpt proposed in Do and Reynolds (2013). In order to introduce more

temporal smoothness of control variables and prevent the abrupt change of well controls in

time series, the gradient approximated by the ensemble is often pre-multiplied by the same

preconditioning covariance matrix.

Robust life-cycle production optimization (van Essen et al., 2009b; Chen and Oliver,

2009; Fonseca et al., 2015, 2016) pertains to the case where the reservoir model is uncer-

tain with the uncertainty represented by a suite (ensemble) of reservoir models. The usual

objective for robust production optimization is to maximize the expectation of NPV, which

is represented by the average NPV over all the reservoir models. Compared to production

optimization based on a single model, robust optimization requires a greater number of sim-
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ulation runs to finish the optimization procedure. However, by considering the geological

uncertainties of one reservoir, robust production optimization allows one to characterize the

uncertainty in the optimized NPV which is estimated as the expected NPV. EnOpt (Chen

and Oliver, 2009) is the first standard algorithm designed for robust production optimization.

As an improvement of the EnOpt gradient when the geological uncertainty is significant, the

stochastic simplex approximate gradient (StoSAG) is proposed by Fonseca et al. (2016). In

Fonseca et al. (2016), it is shown that StoSAG gives a theoretically more accurate approxi-

mation of the true gradient than is obtained with EnOpt, when the geological uncertainty is

significant. Case studies show that StoSAG generally provide a significantly higher value of

expected NPV for robust optimization than is generated with standard EnOpt procedure.

In this research, whether we perform robust optimization or assume the reservoir

model is known is immaterial to the methodology presented in our research, so we use only

a single history-matched data-driven model for life-cycle production optimization with the

modified EnOpt algorithm introduced by Do and Reynolds (2013).

1.3 Literature Review on Surrogate Model

With the increasing need to reduce the computational cost related to running a full-

scale reservoir simulation model to perform closed-loop reservoir management, different sur-

rogate models have been developed as the replacement models to speed up the forward runs.

Another reason why the surrogate model is useful is that sometimes there is insufficient data

to build a reservoir model or building such a model cannot be economically justified. In such

case, we have to use an alternative modeling procedure to generate a surrogate model which

does not require as much information as needed for generating a reservoir simulation model.

A common surrogate model widely used is based on proper orthogonal decomposition

(POD) (Markovinovic et al., 2002; van Doren et al., 2006; Cardoso and Durlofsky, 2010;

Gildin et al., 2013; He and Durlofsky, 2014). Essentially, POD projects the system, or states

of the system, into a lower dimensional space spanned by a relatively small basis (princi-

pal components). History matching and production optimization can then be performed by
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adjusting the coefficients in a linear combination of the basis vectors. These reduced-order

models are then considered as proxy models for full-scale reservoir simulators, and signifi-

cantly enhance the computational efficiency by reducing the computational time spent on

forward simulation runs. However, the development of these reduced-order proxy models

requires comprehensive geological modeling as the full order reservoir simulation model has

to be run at least one time to construct the reduced-order model.

On the other hand, data-driven models, which require no knowledge of detailed geo-

logical information, can serve as the proxy simulation model for predictions where a specific

data-driven model is obtained by determining its parameters by history matching production

data. The development of one data-driven model requires a relatively small investment of

time compared to that required to develop and history match a full-scale simulation model.

The efforts in building comprehensive reservoir models and the expensive computational cost

to run full-scale simulators can be avoided if data-driven models are used for assisted his-

tory matching. In the early stage, some correlation-based data-driven models (Heffer et al.,

1997; Refunjol, 1996; Jansen and Kelkar, 1997) were developed to distinguish the interwell

geomechanics and flow trends based on the Spearman correlation coefficients, which infer

geological features based on a simple statistical analysis without consideration of reservoir

properties. The application of these models has been somewhat limited because the statisti-

cal results can be easily influenced by data noise. Also, due to the nature of correlation-based

methods, the future reservoir performance is not quantitatively predictable. Model-based

data-driven models overcome the aforementioned shortcomings of correlation-based models.

Because input model parameters of the model-based data-driven models obtained by history

matching better reflect the geological features of a reservoir better than those obtained by

correlation-based data-driven models, one expects they can provide far more accurate predic-

tions of future reservoir performance than can be obtained with correlation-based data-driven

models.

Perhaps the most widely used data-driven model is referred to as the capacitance resis-

tance model (CRM) (Yousef et al., 2006); the name arises from the analogy of flow in porous
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media to the flow of an electric charge in a resistor-capacitor circuit, where the compressibil-

ity and transmissibility, respectively, are analogous to capacitance and resistance. Inspired

by the work of Albertoni and Lake (2003), the CRM estimates the interwell connectivity by

a series of allocation factors. These allocation factors approximately equal the percentage

of the total water injection rate at each injection well that flows to each producer connected

to that injection well. In CRM, each water injector is connected to every producing well.

Gentil (2005) extended the model of Albertoni and Lake (2003) by providing a more physical

explanation of the allocation factor and putting forth an empirical power-law model to esti-

mate oil cut. By introducing a model parameter called the time constant in CRM, Yousef

et al. (2006) overcame the limitation of the Albertoni and Lake (2003) model which ignored

reservoir compressibility. CRM can efficiently estimate and match the total production rate

data by knowing the injection rate information and, if available, the bottom-hole pressure

(BHP) data at producers. Recent work on CRM has focused on extending its applicability to

multi-phase flow and more complex field situations. Lake et al. (2007) applied the empirical

power-law model (Gentil, 2005) in CRM to estimate the oil-phase rate and perform history

matching and life-cycle production optimization. Since then, more empirical fractional flow

models for miscible and immiscible flows (Sayarpour, 2008; Weber, 2009; Nguyen, 2012; Cao

et al., 2015) were developed for use with CRM in order to estimate and history match the

rates of different phases.

One defect of CRM is that it assumes a constant productivity index for each producer

during the entire production history, which is not strictly physically correct in a multi-

phase flow system. For example, in water-flooding, as water is constantly injected into

a reservoir, the productivity indices of different producers must change with time since

saturation profiles at producers change with time. Recent work on CRM (Cao, 2014; Cao

et al., 2014, 2015) mitigate this problem by only matching a certain period of production

data, during which the productivity indices approximately remain constant. However, the

partial match of historical data evidently degrades the accuracy of predications generated

with CRM. More importantly, the allocation factors, which are the most important model
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parameters in CRM, are assumed to be constant during the entire production life. This

assumption is tenuous because allocation factors change with flow pattern and injection

rates (Thiele and Batycky, 2006). Also, the fractional flow models integrated with CRM

originate from empirical formulations, which provide only an approximation of the correct

physics.

Lerlertpakdee et al. (2014) proposed a flow-network model, which represents reser-

voir flow by a coupled-network model in which each pair of wells is connected with a one-

dimensional (1D) finite-difference reservoir-simulation model. Two sets of model param-

eters, absolute permeability and pore volume, are defined at each gridblock in each 1D

flow-network. The coupled system is solved for pressures and saturations semi-implicitly,

effectively by a set of one-dimensional reservoir simulation runs. To do production opti-

mization, a robust training scheme was developed to simultaneously history match several

sets of simulated data obtained by running a full-scale simulator with different sets of well

controls, which were expected to cover the range of control variables that are expected to

be encountered during the iterations of a life-cycle production-optimization algorithm. Sub-

sequently the trained flow-network model is applied to production optimization. Compared

with CRM, the Lerlertpakdee et al. (2014) model uses the true relative permeability curves,

which is physically correct but requires a priori knowledge of the relative permeability curves.

The discretization of 1D interwell connections makes the flow-network model act as a sim-

plified grid-based full-scale simulator, yet may result in a large number of model parameters

for a large-scale reservoir with a large number of wells.

Another data-driven model, interwell simulation model (INSIM), was developed by

Zhao et al. (2015) to history match reservoir performance in a water-flooding reservoir.

Somewhat similar to the model of Lerlertpakdee et al. (2014), INSIM approximates a reser-

voir by a set of one-dimensional interwell connective units. INSIM solves for water satura-

tion along each connective unit based on the Buckley-Leverett equation, which is somewhat

similar to how streamline/streamtube simulator solves water saturation along each stream-

line/streamtube, but streamlines/streamtubes are defined a priori in INSIM. However, in-
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stead of discretizing the 1D interwell connections by a series of finite-difference gridblocks as

in (Lerlertpakdee et al., 2014), INSIM only defines a pair of parameters for each connection,

which significantly reduces the number of model parameters. Unlike CRM which uses em-

pirical equations to fit the oil cut, INSIM uses the true fractional flow curve as function of

water saturation so that the oil cut (or oil-phase) can be estimated during a forward INSIM

run. Nevertheless, the ad hoc computation of water saturation along each connection used

in INSIM restrains its robustness. For difficult problems, e.g. the flow in a predefined in-

terwell connection changes its direction or the water fronts from two injectors pass through

an intermediate well node to arrive at another well node, INSIM can result in unreliable

estimates of the water and oil phase rates.

In addition to a data-driven model, machine learning techniques, can be transported

into petroleum industry to speed up the process of history matching and production op-

timization (Guo et al., 2017a,b). Although machine learning includes a set of different

branches, non-linear regression may be the machine learning technique that is potentially

most useful in history matching and production optimization, as this method enables us

to build a response surface proxy model as a computationally efficient forward model that

can be used to replace a full-scale reservoir simulation model. A response surface proxy

is a parameterized mathematical formulation that approximates the input/output relation

of one target function (He et al., 2015). For instance, the reservoir simulator that maps a

series of model parameters to a series of reservoir flow responses can be approximated by

a set of response surface proxies. Naively, polynomial regression is a candidate for build-

ing a response surface proxy of a reservoir simulation model, although it is not suitable for

highly non-linear input/output relations. Other methods to build response surface proxy

models that have been investigated to assist in solving history matching problems include

Kriging (Landa and Güyagüler, 2003) and spline interpolation (Castellini et al., 2010). Both

of these methods have the problem that universally exists for all interpolation methods, i.e.

data overfitting if the training outputs are corrupted with noise. For reservoir simulation

problems, the training data come from the simulated flow responses, which are mingled with
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numerical noise from inexact solutions of both linear and nonlinear solvers. In the machine

learning area, many of the regression methods are good enough to alleviate data over-fitting

but also give reasonably small predictive bias. One such machine learning method that has

been widely used is called support vector regression (SVR) (Smola and Vapnik, 1997).

In this research, our focus is to develop a physics-based data-driven model to efficiently

perform history matching and production optimization.

1.4 Research Objectives

The accomplishment of this research are as follows:

1. Develop a new physics-based data-driven model, which is referred to as interwell nu-

merical simulation model with front tracking (INSIM-FT) for history matching, future

performance prediction and reservoir characterization of waterflooding performance.

2. Present a new modification of INSIM-FT that makes it possible to use bottom-hole

pressures as well controls (design variables) when optimizing the life-cycle NPV of

production; investigate whether a history-matched INSIM-FT model can find a solution

of the well control problem for waterflooding optimization that produces an optimal

NPV estimate that is a reasonable approximation of the optimal NPV generated by

using a detailed reservoir simulation model for production optimization.

3. Extend the INSIM-FT model to allow for three-dimensional multi-layer reservoirs with

gravitational effects and allow wells with arbitrary trajectories and multiple perfora-

tions. This model is referred to as INSIM-FT-3D

4. Explore the applicability of INSIM-FT-3D for production optimization including a

complex field-scale synthetic application.

1.5 Dissertation Outline

The dissertation contains six chapters that proceed as follows:
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In Chapter 2, we present the formulation of the INSIM-FT data-driven model for

two-dimensional reservoirs. Then, the novel features of INSIM-FT compared to the

original INSIM, are introduced. These features or modifications include the addition

of imaginary wells, enforcement of a total rate constraint and a more robust way of

computing interwell connectivity. Next, the objective function and constraints for

history matching with INSIM-FT are introduced.

In Chapter 3, we first introduce the waterflooding optimization problem and its asso-

ciated objective function; then we introduce the extension of INSIM-FT that allows

bottom-hole pressures to be used as well controls; next the optimization and valida-

tion procedure are explained and applied. Following that, some examples are tested to

demonstrate the superiority of INSIM-FT over INSIM and CRM.

In Chapter 4, first we introduce the pressure equation for INSIM-FT-3D for wells with

a single perforation; secondly, the pressure equation is extended to consider wells with

more than one perforation; thirdly, we give the saturation equation for INSIM-FT-

3D and introduce a convex-hull method to solve the saturation equation; fourthly,

Mitchell’s best-candidate algorithm is introduced to generate imaginary wells; fifthly,

we show how to use Delaunay triangulation to generate a connection map for history

matching with INSIM-FT-3D; and finally three synthetic examples including a field-

scale synthetic reservoir model and one field example are presented.

In Chapter 5, the methodology for production optimization with INSIM-FT-3D is

introduced. Then, two examples including a field-scale Brugge reservoir are presented

to show that INSIM-FT-3D is applicable for optimizing a waterflood.

We summarize the main conclusions of this research in Chapter 6.

Five appendices are included which give more mathematical details of the techniques

developed and/or used. Appendix A gives a rigorous derivation of the equations that

comprise the INSIM-FT model with the details of the front-tracking procedure used

to compute the water saturation within INSIM-FT given in Appendix B. Appendix C
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gives the derivation of CRM formulation that we use in our in house CRM software.

Appendix D introduces the Graham’s scan algorithm that can compute the convex

hull of a set of points. We use this algorithm to solve the one-dimensional Buckley-

Leverett problem with gravitational effects, where the fractional flow curve may have

more than one inflection point. Appendix E describes the Mitchell’s best-candidate

algorithm that we use to generate the imaginary wells for three-dimensional reservoirs

using INSIM-FT-3D.
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CHAPTER 2

INSIM-FT MODEL FOR HISTORY-MATCHING, PREDICTION AND

CHARACTERIZATION OF WATERFLOODING PERFORMANCE

In this chapter, we develop and employ a new data-driven model for assisted history

matching production data from a reservoir under waterflood and apply the history-matched

model to predict future reservoir performance. The new model is referred to as INSIM-

FT, which is an acronym for Interwell Numerical Simulation Model with Front Tracking.

INSIM-FT represents a substantial improvement on an interwell numerical simulation model

(INSIM) developed by Zhao et al. (2016). INSIM-FT, as well as its INSIM predecessor, is

based on the same underlying material balance as the IMPES reservoir simulation model

with the following differences: (1) Unlike IMPES, no gridblocks are used in INSIM-FT, and

only nodes and connections between nodes are used. (2) In INSIM-FT, individual gridblock

parameters and properties such as petrophysical and fluid properties and gridblock dimen-

sions are not used. Instead, INSIM-FT uses only two sets of parameters for each connection,

the volume and transmissibility of each interwell region along a connection between a pair of

node neighbors. (3) Although the same saturation equation used in IMPES is used in INSIM-

FT, in INSIM-FT, a front tracking (FT) procedure is used to compute the water saturation

on a finer scale than is represented by distances between pairs of nodes. This FT proce-

dure enables the computation of flow when water from two different injection wells (node)

arrive at the same node. (4)to run INSIM-FT as a forward model, one would have to know

proper values of the interwell volumes and transmissibilities. As the values of these param-

eters cannot be directly computed from common reservoir simulation input, feasible values

of these inter-nodal transmissibilities and volumes must be estimated by history-matching

production data before INSIM-FT can be used for reservoir characterization, future reservoir
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performance prediction, or as a forward model to estimate the well controls that maximize

the net present value of production over the remaining reservoir life.

The predecessor of INSIM-FT, INSIM has been shown to work well for many exam-

ples. However, its original formulation contains three defects, namely, (i) unlike CRM and

the new INSIM-FT formulation presented here, INSIM requires a priori knowledge of the

relative permeability curves so that the phase rates at producing wells can be computed

during an INSIM run; (ii) INSIM generally uses a single connection between an injector and

neighboring producers which may not always provide a sufficient number of flow paths to

obtain sufficient accuracy in history-matching and prediction; (although the authors of Zhao

et al. (2016) were aware of the potential benefits of adding additional connections, they did

not carefully pursue this modification) and (iii), most importantly, there is a fundamental

theoretical issue with INSIM, namely that the method it employs to calculate water sat-

uration is theoretically flawed for complex cases where the saturation distribution along a

connection between wells cannot be computed from the standard Riemann solution; in such

situations, the INSIM procedure for calculating water saturation is ad hoc. In particular,

the INSIM method for calculating water saturation is theoretically incorrect whenever a pro-

ducer is converted to a water injection well and would also be incorrect if, as in INSIM-FT,

we use imaginary wells to provide more flow paths for injected water, i.e., adding more flow

paths in INSIM would invoke the incorrect ad hoc procedure for computing saturation more

often. The new data-driven model considered here uses a theoretically correct front-tracking

procedure to calculate water saturation, hence the name INSIM-FT.

In this chapter, we introduce a theoretically correct procedure to compute water sat-

uration in the INSIM-FT model. Also, new features are introduced to remedy the other two

potential deficiencies of INSIM: (1) the parameters defining power law relative permeability

curves are included as additional history-matching parameters so that prior knowledge of

relative permeabilities is no longer required and (2) we add imaginary wells and their asso-

ciated interwell connections (stream tubes) to enable more potential flow paths. Intuitively,

one expects that INSIM-FT will be more robust than INSIM because of these modifications.
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Table 2.1: Overall comparison among CRM, INSIM and INSIM-FT.

CRM INSIM INSIM-FT
Requires relative permeabilities known No Yes No
Provides accurate saturations No No Yes
Add imaginary wells/additional flow paths No No Yes
Adherence to correct physics of flow No Partially Largely
Approximates reservoir connectivity Yes Yes Yes

We note, however, even if there exist cases where INSIM-FT does not significantly improve

the quality of the history-match or future reservoir performance predictions obtained from

INSIM, INSIM-FT would still be preferable to INSIM because its procedure for computing

water saturation is theoretically sound whereas the saturation calculation procedure used in

INSIM becomes ad hoc under the circumstances noted above. An overall comparison of the

assumptions and abilities of INSIM-FT, INSIM and CRM is shown in Table 2.1. This table

also applies when the interior point optimizer used in the original INSIM code is replaced

by ES-MDA to obtain a more robust implementation referred to as “INSIM (ES-MDA).”

To compare the performance of INSIM-FT with INSIM and CRM, we consider two

synthetic examples in this chapter. To test the ability of the methods to estimate reservoir

connectivity and monitor waterfloods, we compare results generated with the methods with

those obtained with FrontSim (Schlumberger, 2013b). We also test a field example using

INSIM-FT to illustrate the practical applicability of the method.

2.1 Methodology

Like INSIM (Zhao et al., 2015, 2016), INSIM-FT is an interwell numerical simulation

model which characterizes the reservoir as a set of 1D connective flow volumes (streamtubes)

as shown in Fig. 2.1. In Fig. 2.1, each red circle represents the static bulk volume controlled

by the well at its center and this volume does not change with time. However, due to the

rock compressibility, the associated pore volume, which is denoted by Vp,i, is a function of

the average pressure in this volume and thus can change with time. Similarly, the dark gray

regions in Fig. 1 represent the static constant bulk volumes between well nodes. The pore

volume associated with the bulk volume between well i and well j is denoted by Vp,i,j and in
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the INSIM and INSIM-FT models, we assume that any change in this volume from its initial

value is entirely due to rock compressibility effects. The transmissibility of connection (i, j)

is denoted by Ti,j. The set of Vp,i,j’s and Ti,j’s that characterize these interwell pore volumes

are model parameters in INSIM and INSIM-FT. INSIM involves no other parameters but

INSIM-FT also includes in its parameter set some of the parameters that define power-law

relative permeability curves.
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Figure 2.1: Connective units between wells of INSIM.

For completeness, in Appendix A, we provide a complete derivation of INSIM-FT,

which partially but not entirely follows the work of Zhao et al. (2015). Oil field units are

used throughout this Chapter. In INSIM and INSIM-FT, pressure equations are solved

implicitly as in implicit-pressure-explicit-saturation (IMPES) to obtain the pressures at the

well nodes. INSIM-FT replaces the INSIM procedure for calculating water saturation, which

is not theoretically sound under all conditions, by a theoretically rigorous front-tracking

procedure in order to calculate the saturation distribution along the interwell connection.

The front tracking procedure used is presented in detail in Appendix B.

We define total mobility by

λt(Sw) =
kro(Sw)

µo
+
krw(Sw)

µw
, (2.1)

where µm, m = o, w denote the oil and water viscosities in cp and krm, m = o, w represent

the oil and water relative permeabilities. The transmissibility at well connection (i, j) is

defined as

Ti,j = 1.127× 10−3ki,jAi,jλt(Sw,i,j)

Li,j
, (2.2)
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where the water saturation of connection (i, j), Sw,i,j, is decided by upstream weighting, i.e.

if pi > pj, then Sw,i,j = Sw,i with Sw,i being the water saturation at well node i; otherwise

Sw,i,j = Sw,j with Sw,j being the water saturation at well node j; Ai,j is the average cross-

sectional area in ft2 of the flow connective unit between well i and well j; Li,j is the distance

from well i to well j in ft; ki,j in md is the absolute permeability in the associated volume.

The total compressibility at control volume i at time tn is defined by

cnt,i = Sno,ico + Snw,icw + cr, (2.3)

where we assume throughout that the rock compressibility (cr) and fluid compressibilities

(cm, m = o, w) in psi−1 are known constants; So,i and Sw,i are defined as the oil and water

saturations on Vp,i where Vp,i is the pore volume corresponding to the volume associated

with node i (see Fig. 2.1). From the IMPES formulation, the discrete form of the pressure

equation for INSIM-FT, which is derived from a material balance on the control volume of

well i, is given by

nc,i∑
j=1

T n−1
i,j (pnj − pni ) + qnt,i =

1

5.615

cn−1
t,i V n−1

p,i

∆tn
(pni − pn−1

i ), (2.4)

where nc,i represents the number of wells that are connected to well i; pressures are in

psi; the subscript n denotes the time step; qnt,i in RB/day is the total rate of well i at tn,

where a positive value denotes injection and negative value denotes production, and the

transmissibilities, (T n−1
i,j ’s) in Eq. 2.4 are defined as

T n−1
i,j = 1.127× 10−3ki,jAi,j

λt(S
n−1
w,i,j)

Li,j
= T 0

i,j

λt(S
n−1
w,i,j)

λt(S0
w,i,j)

. (2.5)

Throughout λt(S
0
w,i,j) is specified as the total mobility at the initial water saturation, S0

w,i,j,

and Sn−1
w,i,j is equal to the saturation at the upstream well node between the connection (i, j)

at time level n−1, i.e. Sn−1
w,i,j = Sn−1

w,i if pn−1
i > pn−1

j ; otherwise Sn−1
w,i,j = Sn−1

w,j . In the examples,
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we assume that the initial saturation is equal to the irreducible water saturation, Siw, and

that the relative permeabilities curves are obtained by normalizing effective permeabilities

by the oil relative permeability at irreducible water saturations so that kro(Siw) = 1. It

follows that

λt(S
0
w,i,j) =

1

µo
. (2.6)

In the INSIM and INSIM-FT formulations, V n−1
p,i in Eq. 2.4 is assumed to satisfy the relation

V n−1
p,i = 0.5

nc,i∑
j=1

V n−1
p,i,j . (2.7)

where V n−1
p,i,j is approximated by the first-order Taylor series expansion given by

V n−1
p,i,j = V 0

p,i,j(1 + cr(p
n−1
i,j − p0)), (2.8)

where p0 is the initial reservoir pressure, and

pn−1
i,j = 0.5(pn−1

i + pn−1
j ). (2.9)

With the assumption of Eq. 2.7, it follows that Eq. 2.4 involves only two types of parameters

Ti,j and Vp,i,j, which vary with time, with Ti,j and Vp,i,j, respectively, given by Eqs. 2.5 and 2.8.

INSIM assumes that relative permeabilities, viscosities, compressibilities and initial pressure

are all known so that the only unknown parameters are the T 0
i,j’s and V 0

p,i,j’s. (INSIM-FT adds

parameters defining power-law relative permeability functions as parameters.) According to

Eq. 2.4, there is one pressure equation per well node. By solving the linear system of pressure

equations, the pressure of each well control-volume at time tn is obtained and the total liquid

flow rate in RB/day along the connective volume (i, j) can be computed by

qnt,i,j = T n−1
i,j (pnj − pni ), (2.10)
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where a positive value of qt,i,j means well j (or node j) is upstream of well i (or node i)

and a negative value means well i (or node i) is upstream of well j (or node j). For the

calculation of water saturation, we assume incompressible flow, so the partial differential

equation governing the saturation distribution for linear flow through one of the connective

volumes between a pair of nodes is in the form of Buckley-Leverett equation given by

∂Sw(x, t)

∂t
+

5.615qt,i,j(t)

φi,jAi,j

∂fw(x, t)

∂x
= 0 for 0 ≤ x ≤ Li,j, tn−1 ≤ t ≤ tn; (2.11)

where qt,i,j(t) is assumed equal to qnt,i,j from tn−1 to tn; fw is the water fractional flow;

φi,j is the average porosity of the connective volume between wells i and j, and the x

direction, which varies from connection volume to connection volume, is in the direction of

the line segment that connects well i to j. In this chapter, we neglect both gravitational and

capillarity effects so that fw, as a function of water saturation, is given by

fw(Sw) =
1

1 + kro(Sw)·µw
krw(Sw)·µo

. (2.12)

Using

φi,jAi,j =
Vp,i,j
Li,j

, (2.13)

Eq. 2.11 can be rewritten as

∂Sw(x, t)

∂t
+

5.615qt,i,jLi,j
V n
p,i,j

∂fw(x, t)

∂x
= 0 for 0 ≤ x ≤ Li,j, tn−1 ≤ t ≤ tn. (2.14)

Eq. 2.14 is solved semi-analytically from tn−1 to tn using the front tracking procedure of

Appendix B assuming that qt,i,j(t) = qnt,i,j for tn−1 ≤ t ≤ tn. The initial condition for

Eq. 2.14 is the saturation distribution for 0 ≤ x ≤ Li,j at tn−1 along the well connection

(i, j) which is given by

Sw(x, tn−1) = Sn−1
w (x), for 0 ≤ x ≤ Li,j. (2.15)
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The boundary condition for Eq. 2.14 is the water saturation, Suw,i,j, at time tn−1, at the

upstream node (either x = 0 or x = Li,j) for flow between well i and j and this upstream

saturation is assumed to be constant from tn−1 to tn. If the upstream node is a water injector,

then Suw,i,j = 1− Sor, where Sor is the residual oil saturation, and fw(Suw,i,j) = 1 all times.

The saturation equation in Eq. 2.14 applies to each connected well pair. The compu-

tation of the saturation profile at tn along each connection by solving Eq. 2.14 is independent

of the solutions along the other connections. However, when injected water from different

injectors flows into a common node, the saturations flow out of the common node can only be

resolved using the front tracking solution of Appendix B. After the saturation computation,

the saturation profile of each connection at time level n has the form of

Sw(x, tn) = Snw(x), for 0 ≤ x ≤ Li,j (2.16)

along each pair of connected nodes.

2.1.1 Relative Permeability Functions

In INSIM-FT, we use power-law relative permeability functions but estimate major

parameters in these functions as part of the ES-MDA history-matching procedure (Emerick

and Reynolds, 2012, 2013a,b), whereas in INSIM the relative permeabilities are assumed

known a priori. Moreover, INSIM-FT allows one to use a different set of relative permeability

curves along each connection although our experience with this application is limited and

our brief experiments with those features suggest it is not necessary or useful for history

matching. In all cases, the relative permeability curves are given by Corey-type relations.

Specifically,

krw(Swn) = a · Snwwn (2.17)

and

kro(Swn) = Snown, (2.18)
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where

Swn =
Sw − Siw

1− Siw − Sor
. (2.19)

In our applications, we assume that Siw and Sor are known accurately for simplicity,

and a, nw and no are included as parameters to be estimated by history matching. The fluid

viscosities, compressibilities and initial conditions are assumed known and fixed.

2.1.2 Front Tracking

The problem defined by Eq. 2.14 is, in general, a Cauchy problem which usually

has a non-uniform initial condition, and reduces to the standard Buckley-Leverett problem

(Riemann problem) only if the water saturation at the boundary condition is Suw,i,j = 1−Sor

at all times and the initial condition is uniformly the irreducible water saturation along

an interwell connection. The difference and connection between a Cauchy problem and a

Riemann problem can be seen in Appendix B. Specifically, in the application of INSIM-FT,

the standard Buckley-Leverett solution applies whenever we need to solve the saturation

profile along a single connection between an injector and a downstream well (a producer or

an imaginary well). However, the standard Buckley-Leverett solution is the solution of a

Riemann problem and when well A is connected to multiple upstream wells and at least one

downstream well, well B, the saturation between well A and well B, which still must satisfy

Eq. 2.14, can no longer be represented as a Riemann problem because the saturation at well

A is continually changing with time after water breakthrough at well A. INSIM uses an ad

hoc procedure to compute water saturation when then standard Buckley-Leverett solution

does not apply. In our work, we provide a general procedure for computing saturations via

the implementation of a front tracking method conceptually similar to the one proposed by

Holden et al. (1988) to solve the Cauchy problem. This method divides the Cauchy problem

into a set of Riemann problems, which have analytical solutions. To avoid computing curved

shock paths and simplify the problem, the rarefaction waves of the analytical solutions of

Riemann problems are approximated by a set of small shocks. By connecting all the solutions

of sub-Riemann problems, we obtain the global well-posed solution for Eq. 2.14. This method
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has the advantage of being unconditionally stable and introduces little numerical dispersion.

A complete derivation of the procedure is given in Appendix B.

2.1.3 Water Saturation and Oil Production Rate at Well Nodes

The front tracking algorithm gives the saturation profile along any pair of well con-

nections. However, when flow into (or out of) the well node occurs along multiple paths

that are directly connected to the well node, we need a way to compute the node saturation.

Specifically, if one well, Wi (a producer or an imaginary well introduced later), is directly

connected to multiple wells, the water fractional flow of Wi is computed as the ratio of the

sum of the inflow water rates to the sum of the inflow total rate, i.e.,

fnw,i =

Nc,i∑
j=1

qnt,i,jf
n
w,i,j

qnt,i,j
, (2.20)

where Nc,i is the number of wells that are connected to Wi and are also upstream of Wi;

fnw,i,j is the water fractional flow measured at the downstream node i along connection (i, j)

at time level n. It is important to note that, the water fractional flows measured at node i

for different connections (i, j), j = 1, Nc,i, are typically different, since the water saturation

computed at the downstream end of each connection varies from connection to connection.

The saturation at Wi is obtained by inverting the fractional flow function, i.e.,

Snw,i = f−1
w (fnw,i). (2.21)

Accordingly, if Wi (or simply i) is a producing well, the oil production rate at Wi is estimated

as

qno,i =

Nc,i∑
j=1

qnt,i,j · (1− fnw,i,j). (2.22)

2.1.4 Demonstration Case

Here, we provide an example to demonstrate that the original INSIM algorithm does

not always provide an accurate saturation distribution when the Buckley-Leverett solution
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does not apply along all connections at all times. The example is a simple four-node, three-

connection reservoir with four wells. The geometry of the reservoir is shown is Fig. 2.2.

Note that there are four well nodes and three connected well pairs. Although the example

In Fig. 2.2 seems quite simple, this example was chosen because it is representative of part

of the more complete connection map that we use for cases with far more wells as will be

clear when we discuss Example 1. The reservoir has homogenous absolute permeability and

porosity fields. The three connections have the same average cross-sectional areas of 1,000

ft2. Other properties are defined in Table 2.2. Note that to let the reservoir rock and fluid

nearly incompressible, we set the rock and fluid compressibilites to very small values, i.e., in

an order of magnitude of −10 psi−1. The two injectors, W1 and W2, both inject water at the

same constant rate of 100 RB/D. W3 is a dummy well that does not inject or produce and

W4 is producing at a constant rate equal to 200 RB/D. We run the example with Eclipse

(Schlumberger, 2013a), INSIM-FT and INSIM and observe the water cut at W4. For this

example, we assume that the correct relative permeability curves are known a priori.

This is an example where the water fronts from two injectors meet at a node, i.e., the

water fronts from W1 and W2 meet at W3. In this situation, the analytical solution of the

Buckley-Leverett equation does not give the correct saturation distribution between W3 and

W4 after water breakthrough at W3, thus, we expect that INSIM cannot give the correct

saturation profile between W3 and W4. As shown in Fig. 2.3, the water-cut obtained with

INSIM-FT is in good agreement with that obtained with Eclipse, however, INSIM cannot

predict the correct breakthrough time and water cut for W4, i.e., INSIM-FT provides a more

accurate saturation prediction than does INSIM.

2.2 INSIM-FT versus INSIM

In addition to a more reliable procedure for calculating saturation at nodes than

is available in the original INSIM model, and adding terms defining power law relative

permeability curves as parameters, INSIM-FT includes three other features that make it more

robust and flexible than INSIM. These enhancements are discussed in the three subsections
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Table 2.2: Property of the three-connection reservoir.

Property Values
Absolute permeability, md 1,000
Porosity 0.2
Oil compressibility, psi−1 3.4× 10−10

Water compressibility, psi−1 3.4× 10−10

Rock compressibility, psi−1 4.3× 10−10

Water viscosity, cp 1
Oil viscosity, cp 20
Initial reservoir pressure, psi 3,675

500 ft

W1 W3 W2

W4

1000 ft

Figure 2.2: The geometry for a three-connection reservoir.
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Figure 2.3: Water cut in W4. The black line denotes the results obtained from INSIM, the
blue line denotes the results obtained from INSIM-FT and the red dashed line denotes the
results obtained from ECLIPSE.

below.

2.2.1 Imaginary Wells

In INSIM, all nodes represented the locations of actual wells and the only connec-

tions were between existing well pairs. In INSIM-FT, it is possible to add imaginary wells

and associated connections in order to increase the possible flow paths along which injected
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fluid can travel. INSIM-FT approximates a reservoir by a set of 1D connective units along

which conservation equations are solved, which is similar to streamtube or streamline simula-

tors. Thus, increasing the number of connections by adding imaginary well nodes effectively

increases the number of streamtubes or streamlines along which fluid can be transported.

Another benefit of adding imaginary wells is that this avoids the direct connection

between two producers or two injectors as done in Zhao et al. (2015). In INSIM, the flow

pattern is always 1D and the flow direction between a connected well pair is from the well

node with high pressure to the well node with low pressure, no matter the well type. Thus,

if there is a direct connection of two injection wells, one of the injectors must serve as a

sink, which is not consistent with the physics. Similarly, if two producers are connected, one

of the producers most serve as a source whereas both producers should be sinks. Adding

at least one imaginary well between each producer pair and each injector pair avoids the

aforementioned issue. It is important to note the total flow rate at any imaginary well is

zero, i.e., no fluid is produced or injected via an imaginary well.

It may be worthwhile to note that the aforementioned problem of one-directional flow

between a pair of producers or a pair of injectors could seemingly be eliminated by deleting

all direct connections between producer pairs and injector pairs but such a modification

potentially eliminates the flow path or stream tube that enables the production of oil (or

displacement of oil) from the interwell volume directly between the producer pair (injector

pair). Thus we do not generally recommend the elimination of such connections.

The basic guidelines for adding imaginary wells are as follows: (1) At least one imagi-

nary well must be added along a direct connection (stream tube) between two producers (or

two injectors) as otherwise there is no way to accurately model the physics of flow between

the two wells. For example, without adding an imaginary well between two producers, one

producer must be upstream of the other and flow in the interwell region would flow from the

upstream well to the downstream well whereas, in reality, part of the fluid between the two

producers would flow to each producer. (2) There should be a sufficient number of imaginary

wells added so that there are at least two distinct flow paths between each injector-producer
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pair. These guidelines have proved satisfactory for the examples presented in this chapter

including the field example as well as other synthetic examples we have tried. However, there

is no guarantee that examples will not arise where the user may need to increase flow paths

between injectors and producers to obtain an acceptable history match.

2.2.2 Total Rate Constraint on a Well’s Control Volume

Another feature introduced in INSIM-FT is a rate constraint that states that the

sum of the liquid rates flowing into the volume controlled by each producer is equal to the

specified total rate of production from that producer. In the case where a well’s control

volume is very large, it may be possible for fluid to flow through the well’s control volume

without being produced by the well and in this case the rate constraint does not represent

the true physics. Although our INSIM-FT code allows the user to choose whether or not

to impose the rate constraint, all examples presented here impose this constraint because,

via computational experiments not shown, we found that when the rate constraint is added

to the optimization problem, we generally obtain better history matches than are obtained

without the constraints.

If well i is a producer, the rate constraint becomes

qnt,i =

Nc,i∑
j=1

qnt,i,j, (2.23)

where qnt,i,j is computed from Eq. 2.10 and qnt,i is the total liquid production rate specified

at well i from tn−1 to tn. Eq. 2.23 by itself is applied at each producing well. Nc,i in the

summation in Eq. 2.23 is over only connections that have a positive value of qt,i,j which is the

case if and only if the producing well i is downstream of well j, i.e., flow is from node j into

the control volume of well i. By enforcing Eq. 2.23 as a constraint when history matching,

the outward flow rate from control volume i is approximately equal to
∑Nc,i

j=1 q
n
t,i,j−qnt,i, which

is approximately zero. The details of how to enforce Eq. 2.23 will be discussed later.
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2.2.3 Interwell Connectivity

For waterflood management, it is important to quantify which wells are “fed” by

which injectors and one of the common ways to determine this is through the interwell

connectivity. Interwell connectivity is defined in the capacitance resistance model (CRM) as

an allocation factor fi,j, which represents the percentage of the total water injection rate at

each injection well i that flows towards producer j. Note that the subscripts i, j in CRM have

different meanings than in INSIM-FT. These allocation factors are used to reflect large-scale

geological characteristics. Unlike CRM, INSIM (Zhao et al., 2016) considers the allocation

factor as a time-dependent variable so that the allocation factor for each injector-producer

pair may vary from time step to time step in INSIM. Different from INSIM-FT, INSIM does

not have imaginary wells in the connection map and there is only one streamtube between

an injector and producer pair. For both INSIM and INSIM-FT, within the time interval

[tn−1, tn], the allocation factor fi,j(t) for the connection between injector j and producer i is

assumed to constant and equal to fni,j with fni,j given by

fni,j =
qnt,i,j
qnt,j

, (2.24)

where qnt,i,j is the total flow rate from j towards i and qnt,j is the total injection rate of j

at nth time step. It is important to note that fni,j represents an allocation factor, not the

water fractional flow which is represented by fw,i,j. For the purpose of comparison, in order

to obtain a single-value presentation of the allocation factor for each injector-producer pair,

the allocation factors in INSIM over all the INSIM steps are averaged by

f i,j =

∑nt
n=1(fni,jq

n
t,j)

qnt,j
. (2.25)

In INSIM-FT, we provide a procedure to compute representative terms similar to the average

allocation factors in INSIM that can reflect reservoir connectivity between injector-producer

pairs. Specifically, we provide the means to compute the interwell total flow rate from an
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injector that flows to a connected producer over the time interval [tn−1, tn]. The average

total flow rate between an injector-producer pair can then be computed by averaging the

total interwell flow rates calculated at the INSIM-FT time steps over the production history.

When computing the connectivity, unlike INSIM, which only considers the flow due to the

direct connection between an injector and producer, INSIM-FT also considers the flow from

an injector that passes through intermediate nodes represented by imaginary wells to a

producer.

To illustrate how to compute this “pass-through flow rate,” we assume that the water

from an injector will at most pass through one imaginary well before arriving at a producer.

Consider the situation shown in Fig. 2.4, where injected water from I2 must either directly

pass through the interwell volume directly connecting the injector-producer pair, I2 and P1

or pass through either node Im1 or Im2, or more correctly, through the volumes associated

with these imaginary wells before reaching P1. We let qt,P1,I2 represents the total flow rate

along the direct path connecting node I2 to P1, let qt,Im1,Ij for j = 1, 2 be the total flow rate

between injector Ij and imaginary well Im1 and let qt,P1,Im1,I2 be the total flow rate from I2

to P1 that passes through the volume associated with imaginary node Im1. Finally, we let

qt,P1,Im1 be the total flow rate through the interwell volume directly connecting Im1 and P1.

Then the flow rate from I2 that passes through Im1 and finally arrives P1 is approximated

by

qt,P1,Im1,I2 = qP1,Im1 ·
qt,Im1,I2∑2
i=1 qt,Im1,Ii

. (2.26)

The pass-through flow rate from I2 to P1 through the volume associated with imaginary well

Im2 is denoted by qt,P1,Im2,I2 . Then, the total interwell flow rate between I2 and P1, which

is denoted by q̂t,P1,I2 and is given by

q̂t,P1,I2 = qt,P1,I2 +
2∑
j=1

qt,P1,Imj ,I2 , (2.27)

where q̂ is used to indicate that this rate includes the pass-through rates plus the rate along
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the direct connection between I2 and Pj.

𝑃2

𝑃1𝐼1

𝐼2

Flow Direction

𝐼𝑚1

𝐼𝑚2

Figure 2.4: To compute the flow rate from I2 passing through intermediate imaginary wells
to P1.

After the total interwell flow rate is obtained at every INSIM-FT time level, the av-

erage total interwell flow rate over the entire production history is used to represent the

interwell connectivity. In the examples presented below, in order to validate the preceding

procedure for determining how the water injection rate of a particular injection well is al-

located among producers, we compare the connectivity obtained from INSIM-FT with that

calculated from the true reservoir model with the FrontSim reservoir simulator of Schlum-

berger (Schlumberger, 2013b). FrontSim can calculate and output liquid flow rates between

an injector-producer pair at every FrontSim simulation time level. By averaging these flow

rates over the production history, we obtain the interwell connectivity in the same format as

in INSIM-FT. Since FrontSim is run based on the same true geological model as Eclipse 100

which is used to generate the production data, the connectivity calculated with FrontSim

reflects the connectivity of the true model. We also compare connectivity results obtained

with FrontSim with those obtained with CRM and INSIM, where the allocation factors from

CRM and INSIM are converted to the same format as used by FrontSim. Letting qt,i,j be

the connectivity used by INSIM-FT or FrontSim, we convert f i,j in Eq. 2.25 to qt,i,j by

qt,i,j = qt,jf i,j, (2.28)
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where qt,j is the average total injection rate over the historical period. fi,j for CRM can be

converted in a similar way.

2.3 History Matching

2.3.1 Parameters

In the original INSIM, we assume relative permeability curves are known, whereas

in INSIM-FT, we assume relative permeabilities are of the form given by Eq. 2.17 and

2.18, where the exponents no and nw and the coefficient a are unknown parameters to be

determined by history matching. INSIM-FT includes the option of estimating one global

set of relative permeabilities or estimating a different set along each interwell connection.

The common parameters of INSIM and INSIM-FT are transmissibilities and pore volumes

of connections at time zero. For i = 1, 2, . . . , Nw−1, j = i + 1, i + 2, . . . , Nw, T 0
i,j represents

the transmissibility of connection (i, j) at time zero and V 0
p,i,j represents the pore volume

of connection (i, j) at time zero. Nw is the number of wells which includes all the actual

wells and imaginary wells. In practice, not every two wells are connected to each other and

a connection map describing how wells are connected to each other will be given a priori

for a reservoir before history matching. However, as discussed previously, we do not allow

a direct connection between two injectors or between two producers in order to prevent a

producer from becoming a source or an injector from becoming a sink. If well i and j are

not connected in the connection map, then T 0
i,j and V 0

p,i,j will not be included as parameters

for history matching. To satisfy the volume balance of the reservoir, the pore volumes of

each connection at time zero must sum to the initial total pore volume of a reservoir, i.e.,

Nw−1∑
i=1

Nw∑
j=i+1

V 0
p,i,j = V 0

p,tot, (2.29)

where V 0
p,tot is the total pore volume of a reservoir at time zero and the two summations are

over all the connected well pairs (i, j) in a predefined connection map. As an extension to

INSIM, INSIM-FT has the option of whether to include V 0
p,tot as a parameter to be estimated

32



by history matching.

INSIM and INSIM-FT are both rate-control-based data-driven models, which means

injection rates and total production rates must be specified at each time step. In INSIM and

INSIM-FT, the observed oil production rates are the data that are history matched. Letting

the vector dobs be the vector of all observed oil production rates, the objective function that

we minimize in INSIM and INSIM-FT to obtain a history match is given by

O(m) =
1

2
(g(m)− dobs)

TC−1
D (g(m)− dobs), (2.30)

where CD is the covariance matrix of measurement error, which is diagonal in all examples

and dobs is the vector of the observed oil production rates. In INSIM, m is the parameter

vector that only includes T 0
i,j and V 0

p,i,j for all the connected well pairs, whereas in INSIM-FT

a, no, nw (see Eqs. 2.17-2.19) and possibly V 0
p,tot are also included in the set of history-matched

parameters. In our applications of INSIM-FT, the first two examples assume V 0
p,tot is known

but the field example uses V 0
p,tot as a parameter. The constraints of the optimization problem

for INSIM-FT are given by



T 0
i,j ≥ 0, for all connected well pairs (i, j),

0 ≤ V 0
p,i,j ≤ V 0

p,tot, for all connected well pairs (i, j),

Nc,i∑
j=1

qnt,i,j(m) = qnt,i, for i = 1, 2, . . . , Npro,

Nw−1∑
i=1

Nw∑
j=i+1

V 0
p,i,j = V 0

p,tot, where summations are over connected pairs (i, j),

0 ≤ a(i,j) ≤ 1, for all connected well pairs (i, j),

1 ≤ no,(i,j) ≤ 6, for all connected well pairs (i, j),

1 ≤ nw,(i,j) ≤ 6, for all connected well pairs (i, j),

V 0
p,tot,low ≤ V 0

p,tot ≤ V 0
p,tot,up, if V 0

p,tot is included as parameter,

(2.31a)

(2.31b)

(2.31c)

(2.31d)

(2.31e)

(2.31f)

(2.31g)

(2.31h)
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where Npro is the number of producers in the reservoir and V 0
p,tot,low and V 0

p,tot,up, respectively,

are the lower bound and upper bound for V 0
p,tot which must be specified a priori.

In INSIM, the constraints for the history matching optimization problem (Eq. 2.30)

only involve Eqs. 2.31a, b and d. Zhao et al. (2016) used an interior-point optimization

algorithm in the Matlab optimization toolbox to solve this constrained optimization prob-

lem. However, the optimization tool from Matlab estimates the components of the gradient

by finite-difference approximations, which can introduce errors as well as computational

complexity if the number of parameters exceeds a few hundred. Here, we use the ensemble

smoother with multiple data assimilation (ES-MDA) (Emerick and Reynolds, 2012, 2013a,b)

for history matching with INSIM-FT. ES-MDA requires the generation of an ensemble of Ne

initial models (realizations of m), mk, k = 1, 2, . . . , Ne, and these models actually provide

a rank-deficient approximation of a prior covariance matrix which provides regularization

during the history-matching process. ES-MDA effectively represents one iteration of the

Gauss-Newton method with a matrix of average sensitivity coefficients for the case where

the objective to be minimized is given by the O(m) of Eq. 2.30 plus a regularization term

(Reynolds et al., 2006).

In Eq. 2.31, Eqs. 2.31a,b,e-h only involve simple bound constraints; Eq. 2.31d is a

linear equality constraint and Eq. 2.31c is a nonlinear equality constraint. First, we con-

sider how to deal with the bound constraints and linear equality constraint. During the

history matching procedure using ES-MDA, after each data assimilation step, the ensemble

of reservoir models (mk, k = 1, 2, . . . , Ne) is updated using a update equation (Emerick

and Reynolds, 2012, 2013a,b), which does not ensure that updated mk satisfy the bound

constraints or the linear equality constraint. Here, we propose to enforce the two types

of constraints after each data assimilation step. For each updated reservoir model in the

ensemble, the simple bound constraints are enforced by truncation, i.e., when an updated

history-matching variable is greater than its upper bound, we set the variable equal to its

upper bound, and whenever a variable is less than its lower bound, we set that the variable

equal to its lower bound. The constraint of Eq. 2.31d should be enforced after Eq. 2.31c
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is enforced, where Eq. 2.31c is enforced by history-matching ES-MDA update which will

be discussed later. For one reservoir model mk in the ensemble, we let V 0
p,i,j obtained by

enforcing Eq. 2.31c at each ES-MDA step be denoted by V 0,a,k
p,i,j , then we enforce Eq. 2.31d

by replacing V 0,a,k
p,i,j with V 0,a+,k

p,i,j , which is defined as

V 0,a+,k
p,i,j = V 0,a,k

p,tot

V 0,a,k
p,i,j∑Nw−1

i=1

∑Nw
j=i+1 V

0,a,k
p,i,j

, (2.32)

where V 0,a,k
p,tot represents the ES-MDA updated V 0

p,tot for kth ensemble member. So, Eq. 2.32

ensures that
Nw−1∑
i=1

Nw∑
j=i+1

V 0,a+,k
p,i,j = V 0,a,k

p,tot ,

for this specific realization of mk. The procedure of Eq. 2.32 is repeated for all the other

reservoir models at each ES-MDA step to ensure that Eq. 2.31d is satisfied for each ensemble

member. Next, in order to deal with the nonlinear constraint of Eq. 2.31c, dobs in Eq. 2.30

is expanded to include the specified total production rate as the observed data in addition

to the observed oil production rate where the predicted total production rate at well i at

tn is given by Eq. 2.23, for i = 1, 2, . . . , Npro. CD in Eq. 2.30 is also expanded to include

the variance of the measurement error of the specified total rates, which must be specified

a priori.
∑Nc,i

j=1 q
n
t,i,j(m) is history matched to qnt,i. Notice that by doing the match of total

production rate,
∑Nc,i

j=1 q
n
t,i,j(m) is not guaranteed exactly equal to qnt,i for each of the history

matched reservoir models, because the history matching procedure cannot give the exact

match; however, this match ensures that most inflow rate are produced from the producer.

For all examples presented later, we obtain acceptable matches and predictions even though

Eq. 2.31c is not exactly satisfied.

2.4 Application of INSIM-FT

To illustrate the accuracy of INSIM-FT, we consider three examples, the first example

pertains to a homogeneous reservoir with a sealing fault, which was initially used by Cao et al.

(2014) to show that CRM can identify the existence of fault. This example is included to
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demonstrate that, similar to CRM, INSIM-FT can identify large-scale reservoir connectivity

features such as a sealing fault. One can always raise the issue that our implementation of

CRM is imperfect, but as in Cao et al. (2014, 2015), we use a in-house CRM implementation

(Sayarpour, 2008). Our implementation of CRM is discussed in detail in Appendix C. In the

second example, we consider a channelized reservoir and again show INSIM-FT outperforms

CRM. The third example is a true field example where bottom water drive is the primary

recovery mechanism. As there are no water injection well for this example, CRM is not

directly applicable.

In order to obtain a quantitative measurement of the quality of our history matching

results and future predictions for the methods considered, we define the normalized data

mismatch for matching and predictions. The normalized data mismatch for a given model

m is defined by

ONd(m) =
1

Nd

(g(m)− dobs)
TC−1

D (g(m)− dobs), (2.33)

where for the data mismatch in the historical period, Nd is the number of observed oil

production rates measured during the historical period, dobs and C−1
D , respectively, are the

corresponding vector of observed data and the covariance matrix for measurement error;

for the data mismatch in the prediction period, Nd, dobs and C−1
D in Eq. 2.33 are defined

similarly for the prediction period. For history matching with INSIM and INSIM-FT, the

average value of normalized data mismatches is computed over all the posterior realizations

of the models.

2.4.1 Example 1: Homogeneous Reservoir with a Sealing Fault

We consider a reservoir with a sealing fault as shown in Fig. 2.5. Except for the fault,

the reservoir has a homogeneous permeability field of 200 md and the porosity field is also

uniform with φ=0.2. The reservoir has five injectors and four producers in a five-spot pattern.

The completely sealing fault, shown in white as inactive gridblocks, divides this reservoir

into two non-communicating regions. The performance of our in-house CRM and INSIM-FT

software with/without adding imaginary wells are compared. To verify our implementation
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of CRM, the same reservoir properties used by Cao et al. (2014) are input. The reservoir

properties specified in Table 2.3 are the same properties used by Cao et al. (2014). The

Eclipse reservoir simulation model representing the true model is based on a 33×33×1 grid

with grid dimensions being ∆x = ∆y = 77.5 ft and ∆z = 193.75 ft. In the Eclipse reservoir

simulation model, the five injectors are operated at a sequence of specified rates which change

with time and four producers are produced at a constant bottom-hole pressures of 250 psi.

The true data for history matching with INSIM-FT or CRM are obtained by running Eclipse

100 for 3,000 days with the true reservoir simulation model where the varying injection rates

and constant producing BHP are specified as well operating conditions. CRM requires the

injection rates to be specified as injection well operating conditions and only the total liquid

well production rates are history matched. Then, the observed oil production rates for each

well are fitted using an empirical equation. For history matching with CRM, the observed

total liquid production rates and oil production rates, are obtained by adding uncorrelated

Gaussian noise to the true data where the standard deviation of each measurement error is

set equal to 2% of its true value. For history matching with INSIM-FT, the true total liquid

production rates are specified as well operating conditions at each INSIM-FT time step and

the observed data, the oil production rates, are the same ones as used in history matching

with CRM. Note that, in INSIM-FT, since the sum of the total inflow rate into the control

volume of one producer is required to be matched to the specified total production rate of

that producer, we must also specify the standard deviation of the measurement error of each

specified total production rate, which is specified as 2% of the specified total rate. Here,

the data from the first 2,250 days of the Eclipse run are used for history matching and the

remaining 750 days for future predictions.

The CRM-generated history match and future predictions of the total production

are shown in Fig. 2.6. In this and similar figures presented later, the vertical line separates

the historical and future-prediction time periods. The result of Fig. 2.6 is consistent with

that from Cao et al. (2014), which suggests that our implementation of CRM is correct. It

should be noted that in CRM, the oil-cut is fit by linear regression after history matching the
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Table 2.3: Property of the fault-segmented reservoir

Property Values
Oil compressibility, psi−1 3× 10−5

Water compressibility, psi−1 1× 10−6

Rock compressibility, psi−1 1× 10−6

Water viscosity, cp 1
Oil viscosity, cp 1
Initial reservoir pressure, psi 1,250

Figure 2.5: Fault geology.

total production rate and then the oil rate is calculated by multiplying the total production

rate by the oil-cut, see Eq. C-25 in Appendix C; while in INSIM-FT, the oil production

rate is directly computed and history-matched. Despite the empirical nature of the CRM

calculation of the oil rate, Fig. 2.7 shows that the oil rate computed with CRM is in good

agreement with the historical oil rate data and gives essentially a perfect prediction.

(a) CRM:P3 (b) CRM:P4

Figure 2.6: The total production rates obtained from the history matched CRM model. Red
circles: observed total rates; red lines: true total production rates; gray lines: estimated
total rates with the history-matched CRM model.
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(a) CRM:P3 (b) CRM:P4

Figure 2.7: The oil production rates calculated from the history matched CRM model. Red
circles: observed oil rates; red lines: true values of the oil rates; gray lines: estimated oil
production rates by the history-matched CRM model.

INSIM-FT without Adding Imaginary Wells: The simplest possible well connections

for INSIM-FT are shown in Fig. 2.8 for the reservoir of Fig. 2.5. The parameters required to

be estimated include the V 0
p,i,j’s and T 0

i,j’s over all connections and a global set of parameters

defining power-law relative permeabilities with V 0
p,tot known a priori. The ensemble size for

ES-MDA, Ne, is 250. It is assumed that the prior probability density function (PDF) for

each parameter is given by a normal distribution. For each connected well pair (i, j), the

mean value of V 0
p,i,j for this normal distribution is estimated as

V
0

p,i,j =
Li,j∑Nw−1

k=1

∑Nw
l=k+1 Lk,l

V 0
p,tot. (2.34)

Then, each prior ensemble member, V 0,k
p,i,j for k = 1, 2, . . . , Ne is randomly generated by

sampling the Gaussian distribution N (V
0

p,i,j, (0.2V
0

p,i,j)
2). According to Eq. 2.2, for each

connected well pair (i, j),

T 0
i,j = 1.127× 10−3

ki,jV
0
p,i,jλt(S

0
w,i,j)

φ0
i,jL

2
i,j

. (2.35)

Replacing φ0
i,j in Eq. 2.35 by φ0, where φ0 is the true porosity of the uniform porosity field,

and substituting Eq. 2.6 into Eq. 2.35 yields
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T 0
i,j = 1.127× 10−3

ki,jV
0
p,i,j

µoφ0L2
i,j

. (2.36)

Letting T
0

i,j be the mean value of T 0
i,j, T

0

i,j is estimated by replacing ki,j in Eq. 2.36 by k̄ (the

initial guess of the mean value of ki,j) and is given by

T
0

i,j = 1.127× 10−3
k̄V

0

p,i,j

µoφ0L2
i,j

, (2.37)

where we use in Eq. 2.37 k̄ = 500 md, a value that is 150% higher than the true absolute

permeability value of the uniform permeability field which is equal to 200 md; φ0 = 0.2

and µo = 1 cp. For k = 1, 2, . . . , Ne, the prior ensemble member, T 0,k
i,j , is generated by

sampling N (T
0

i,j, (0.2T
0

i,j)
2). The relative permeability model in this example is given by

Eqs. 2.17-2.19 and the true values of the relative permeability parameters are given by

atrue = 0.6, no,true = 1.5, nw,true = 1.5, Siw,true = 0.2, Sor,true = 0.2.

To history match the relative permeabilities, Siw and Sor are assumed to be known and the

other three parameters are estimated with the history-matching procedure. The mean values

of a, no and nw are not equal to their true values, and, more specifically, are given as a =

0.653, no = 1.70, nw = 1.46. The prior PDF’s of the three relative permeability parameters

are specified by N (a, 0.052), N (no, 0.1
2), and N (nw, 0.1

2), where these PDF’s must be also

sampled to obtain the 250 initial realizations of relative permeability parameters. The oil

production rates from multiple prior realizations of the INSIM-FT parameters are shown in

Fig. 2.9. The history-match obtained with ES-MDA using INSIM-FT as the forward model is

shown in Fig. 2.10. As can be seen, the match of oil production rate is not particularly good

and in fact is much worse than the “match” of oil rates obtained with CRM. The prior and

posterior ensemble of the oil-water relative permeability curves are shown in Figs. 2.11 and

2.12a respectively. The posterior oil-water relative permeability curves obtained by history

matching are quite different from the true relative permeabilities. (However, as shown next

40



in 2.12b, much better history matches can be obtained if we introduce imaginary wells to

provide additional connections and flow directions in the INSIM-FT model.)

Figure 2.8: Connection map generated without adding imaginary wells.

(a) INSIM-FT:P3 (b) INSIM-FT:P4

Figure 2.9: The estimated oil production rates obtained from the prior INSIM-FT models.
Red circles: observed oil production rates; red lines: true values of the oil production rates;
gray lines: estimated oil rates obtained by running the prior INSIM-FT models; Example 1
without imaginary wells.

INSIM-FT with Imaginary Wells: Four imaginary wells are now added to this reser-

voir as shown in Fig. 2.13 with the new well connection map built based on interwell dis-

tances (Zhao et al., 2015) shown in Fig. 2.14. Note that the part of the full connection map

of Fig. 2.14 that connects just the four wells I3, Im3, I5 and P4 is equivalent to the structure

of the four well connection map of Fig. 2.2 provided that we equate wells I3, Im3, I5 and

P4, respectively, in Fig. 2.14 to W1, W3, W2 and W4, respectively in Fig. 2.2.
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(a) INSIM-FT:P3 (b) INSIM-FT:P4

Figure 2.10: The oil production rates obtained with the history-matched INSIM-FT models.
Red circles: observed oil rates; red lines: true oil production rates; gray lines: estimated oil
rates with the history-matched INSIM-FT models; Example 1 without imaginary wells.

Figure 2.11: Prior oil-water relative permeability curves, fault. The red solid lines represent
the true relative permeability curves and blue lines represent the prior models of relative
permeabilities; Example 1 without imaginary wells.

The prior ensemble of vectors of model parameters is generated exactly the same way

as for the case without imaginary wells. The oil production rates from multiple realizations of

the vectors of model parameters based on the prior models are shown in Fig. 2.15. Fig. 2.16

shows the results from four methods where the INSIM (ES-MDA) results are generated by

replacing the interior point optimizer used in the original INSIM code by ES-MDA. We made

the change of history-matching algorithms because the finite-difference approximations used

to compute the gradient for the interior-point optimizer sometimes yield a relatively poor

gradient approximation, and because of this, the interior-point optimizer can fail to give a
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(a) no imaginary wells (b) imaginary wells added

Figure 2.12: Posterior oil-water relative permeability curves, fault. The red solid lines rep-
resent the true relative permeability curves and blue lines represent the history-matched
models of relative permeabilities; Example 1 without imaginary wells.

good estimate of a minimizing set of model parameters. Throughout, the INSIM method

obtained by replacing the interior-point optimizer by ES-MDA is referred to as INSIM (ES-

MDA) whereas results labeled INSIM refer to results generated using the original INSIM code

which implements a Matlab interior-point optimizer with all necessary derivatives computed

by finite-difference approximations. It is important to note that imaginary wells are added

only when INSIM-FT is used. The results of Fig. 2.16 illustrate that the history matches

and predictions obtained from INSIM-FT, INSIM(ES-MDA) and CRM are fairly similar,

whereas the INSIM results show poor matches and predictions. Table 2.4, however, provides

a precise quantitative comparison of the history matching results from CRM, INSIM-FT,

INSIM and INSIM (ES-MDA) based on the normalized data match. For this example and

all examples that we have tried, INSIM (ES-MDA) gives a data match which is better than

the one obtained with INSIM. For this example, the INSIM (ES-MDA) gives a substantially

superior history-match than is obtained with INSIM but a worse history-match than is

obtained with INSIM-FT. The results of Table 2.4 indicate that INSIM-FT produces the

best history match and INSIM (ES-MDA) produces a better history match than CRM. The

original INSIM algorithm produces a poor history match. It is important to note that the

application of CRM gives a virtually exact prediction with the prediction error equal to 4.8
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but this result is an abnormality because one should generally expect that the prediction

error will be greater than or equal to the history-match error, a result that occurs with

INSIM, INSIM (ES-MDA) and INSIM-FT as shown in Table 2.4. For further illustration,

we reconsider the same example but use only the first 440 days of data when performing the

history-match and use all of the other data to monitor prediction accuracy; the quantitative

results are shown in Table 2.5. As the results indicate, the prediction error for CRM is no

longer close to zero although it is still less than the prediction error obtained with INSIM-FT.

However, CRM still yields a worse data match than is obtained with INSIM-FT or INSIM

(ES-MDA).

Finally, by adding imaginary wells, we obtain a far more reasonable estimate of rel-

ative permeability curves, comparing the results of Fig. 2.12b where imaginary wells are

added with the INSIM-FT estimates of Fig. 2.12a which uses the connection map of Fig. 2.8

with no imaginary wells added.

Figure 2.13: INSIM-FT well placement with adding imaginary wells; Example 1.

Table 2.4: Comparison of data mismatch for historical period (2250 days) and prediction pe-
riod for CRM, INSIM, INSIM-FT and INSIM (ES-MDA) history-matched models; Example
1.

CRM INSIM INSIM-FT INSIM (ES-MDA)
Historical Period 74.3 752.2 54.5 62.2
Prediction Period 4.8 1202 89.4 85.2

A referee of the journal publication (Guo et al., 2018a) of some of the results of this
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Figure 2.14: INSIM-FT connection map with imaginary wells and connections added; Ex-
ample 1.

(a) INSIM-FT:P3 (b) INSIM-FT:P4

Figure 2.15: The oil production rates obtained from the prior INSIM-FT models. Red
circles: observed oil rates; red lines: true oil rates; gray lines: estimated oil rates with the
prior INSIM-FT models; Example 1 with imaginary wells.

chapter posed a question about the overfitting of data so this topic may be worthy of a brief

discussion. Because adding imaginary wells increases the number of parameters in INSIM-

FT, the concern is that by continuing to add imaginary wells and hence connections and

parameters, we will at some point encounter overfitting of data which corresponds to fitting

noise, and when this happens, future predictions may become unreliable. To begin, we note

that if m is Eq. 2.33 is set equal to the true model and dobs is the random observation vector

then the expected value of ONd(m) is equal to unity; thus, the history-matching errors shown

in Tables 2.4 and 2.5 indicate that we have not overfit the observed data. A theoretical basis

for the expected values of ONd can be found in Tarantola (2005); also see the discussion
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(a) CRM:P3 (b) INSIM:P3 (c) INSIM (ES-MDA):P3

(d) INSIM-FT:P3 (e) CRM:P4 (f) INSIM:P4

(g) INSIM (ES-MDA):P4 (h) INSIM-FT:P4

Figure 2.16: Comparison of oil production rates calculated with the CRM, INSIM, INSIM
(ES-MDA) and INSIM-FT history-matched models where only INSIM-FT uses imaginary
wells; Example 1. Red circles: observed data; red lines: true data of oil production rate;
gray curve: posterior oil production rate.

of the discrepancy principle in Vogel (2002) and Iglesias and Dawson (2013). Nevertheless,

we cannot claim with certainty that if the number of interwell connections, and hence the

number of parameters in INSIM-FT, were increased, the data would not be overfit, i.e.,
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Table 2.5: Comparison of data mismatch for historical period (440 days) and prediction pe-
riod for CRM, INSIM, INSIM-FT and INSIM (ES-MDA) history-matched models; Example
1.

CRM INSIM INSIM-FT INSIM (ES-MDA)
Historical Period 11.6 145.2 4.85 9.6
Prediction Period 237.3 3208.9 295 501

that the normalized objective function evaluated at the history-matched model would not

be reduced below 1. In fact, the possibility of overfitting using ES-MDA with INSIM-FT

may be more likely than with normal ES-MDA applications because there is no spatial

correlation between the prior model parameters in the INSIM-FT and INSIM (ES-MDA)

implementations. However, we should perhaps also note that adding imaginary wells is akin

to adding streamlines and to the best of our knowledge, overfitting issues have not arisen

when using streamline simulators in history matching even though there are parameters

associated with each streamline.

Interwell Connectivity: In all INSIM algorithms, interwell connectivity is represented

by the average interwell total flow rate between injector-producer pairs (see the discussion

centered on Eqs. 2.26 and 2.27). Here, the accuracy of connectivities estimated with the

INSIM, INSIM(ES-MDA), INSIM-FT and CRM algorithms is investigated by comparison

with connectivity generated by running the FrontSim simulator using the true reservoir model

as input. In FrontSim, the interwell total flow rate between a well pair can be output at each

time step of the entire history-matched period. The average total flow rate is calculated as the

average of all these output flow rates over the history-matched period. With CRM, however,

the interwell connectivity is represented by allocation factors which are defined in Yousef

et al. (2006). As INSIM (Zhao et al., 2015) and INSIM(ES-MDA) utilize a connectivity

formulation which is equivalent to the allocation factor in CRM. Thus, to obtain a valid

comparison, the allocation factor between each injector-producer well pair obtained with

CRM, INSIM or INSIM (ES-MDA) is converted to the average interwell total flow rate by

simply multiplying the allocation factor by the average total injection rate of the associated
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injector over the production history.

For comparison, the interwell connectivities obtained from FronSim, CRM, INSIM,

INSIM (ES-MDA) and INSIM-FT, respectively, are shown in Fig. 2.17a, 2.17b, 2.17c, 2.17d

and 2.17e. In these and similar figures, the length of each narrow red triangle represents the

magnitude of the interwell connectivity and the direction points to the producer associated

with the injector-producer well pair. The number alongside each red triangle indicates the

value of the average total interwell flow rate (over the history-matching period) between the

injector-producer pair in units of RB/day. For brevity, the values of interwell flow rate are

shown in the figure only for the connections with a large interwell flow rate. As shown in

2.17b, the existence of the fault is reflected by the fact that the interwell flow rate translated

from the CRM allocation factor is small (on the order of 10 RB/day or less) between every

injector-producer pair that is separated by the fault, i.e, lie on different sides of the fault.

However, unlike the CRM result of Fig. 2.17b, the FrontSim result of Fig. 2.17a indicates that

there is no flow between (I2, P1) and (I3, P3). In fact, the FrontSim streamline field, which

is not shown here, indicates that there is no streamline from I3 to P3, or from I2 to P1. Thus,

the CRM result showing a large flow rate from I3 to P3 and I2 to P1 seems to be incorrect.

The INSIM results are unreasonable in the sense that there is a considerable amount of

flow between injector-producer pairs that cross the sealing fault; for example, the average

flow rate between injector I5 and P4 from the INSIM results is 265.6 STB/D as opposed

to the correct value of zero which follows from the fact that the I5 and P4 are on opposite

sides of the fault. Note the INSIM (ES-MDA) results are consistent with the presence of

the fault, and, for this example are of the same accuracy as those obtained with INSIM-FT.

The connectivity estimates obtained with CRM are clearly inferior to those obtained from

INSIM-FT and INSIM (ES-MDA) based on the comparison with the FrontSim results.

2.4.2 Example 2: Channelized Reservoir

In this example, history matching is performed with INSIM-FT, INSIM, INSIM(ES-

MDA) and CRM for a channelized reservoir. The log-permeability field is generated based
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(a) FrontSim (b) CRM

(c) INSIM (d) INSIM (ES-MDA)

(e) INSIM-FT

Figure 2.17: Interwell connectivity obtained from FrontSim, CRM, INSIM, INSIM (ES-
MDA) and INSIM-FT for the fault case. The length of a narrow red triangular denotes the
magnitude of total interwell flow rate between an injector-producer pair and the direction of
the triangular indicates which producer belongs to this injector-producer well pair.

on a 25×25×1 geological grid which is shown in Fig. 2.18. The red/yellow regions represent

high permeability channels. However, the reservoir simulation model is based on the refined

grid obtained by subdividing each geological grid block into a 3×3×1 sub-grid with each of
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the 9 subgrid blocks having the same value of permeability as the host coarse grid cell. Thus

the reservoir simulation model, which represents the true reservoir is based on a 225×225×1

grid where the size of each of these gridblock is 90 ft by 90 ft by 10 ft where 10 ft is the

thickness of the gridblock. The reservoir has a homogeneous porosity field with φ = 0.2.

Other reservoir properties are shown in Table 2.6. The well locations shown in Fig. 2.18

indicate that we have introduced twelve imaginary wells in order to increase the pathways

along which water can flow from injectors to producers. The resulting connection map for

INSIM-FT with imaginary wells is shown in Fig 2.19. We use 800 days of production data

for history matching and then predict reservoir performance for an additional 200 days. The

true total production rates and oil production rates are obtained by running the 225×225×1

Eclipse model with the well operating schedule defined in Table 2.7. For history matching

with CRM, the total production rates are the observed data to be history matched and the

oil production rates are predicted with the history matched CRM model. The corresponding

observed total and oil production rates for matching with CRM are obtained by adding

uncorrelated Gaussian noise with standard deviation equal to 2% of the true data. However,

for history matching with INSIM-FT, the true total production rates are specified as well

controls and the observed oil production rates (the same data used for matching with CRM)

are history matched. In order to match the sum of the inflow rate into the control volume

of one producer to the total production rate of that producer with ES-MDA, the standard

deviation of the measurement error of each specified total production rate is set to 2% of the

specified rate.

Table 2.6: Property of the channelized reservoir

Property Name Values
Porosity 0.2
Oil compressibility, psi−1 3.4× 10−5

Water compressibility, psi−1 3.4× 10−5

Rock compressibility, psi−1 4.3× 10−5

Water viscosity, cp 1
Oil viscosity, cp 20
Initial reservoir pressure, psi 3,675
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Figure 2.18: Log permeability field, channelized reservoir.

Figure 2.19: Connection Map, channelized reservoir.

For ES-MDA, the initial ensemble of model parameters includes initial guesses for

transmissibilities and pore volumes at time zero defined on connections and parameters

defining power-law relative permeabilities. V 0
p,tot is known a priori in this example. The

ensemble size, Ne is equal to 300. For all the connected well pair (i, j), the kth prior

realization of V k,0
p,i,j is generated by sampling the normal distribution N (V

0

p,i,j, (0.2V p,i,j)
2)
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with V
0

p,i,j given by Eq. 2.34. Similarly, for k = 1, 2, . . . , Ne, the prior T k,0i,j is sampled from

the normal distribution N (T
0

i,j, (0.2T
0

i,j)
2) with T

0

i,j defined in Eq. 2.37, where k̄ = 1000

md is a random guess of the average absolute permeability of the entire reservoir; µo = 20

cp and φ0 = 0.2 are true values. Here, we use the same true relative permeability curves

as in the first example, but the three relative permeability parameters are distributed as

a ∼ N (a, 0.052), nw ∼ N (nw, 0.1
2) and no ∼ N (no, 0.1

2) with the mean values given by

a = 0.75, nw = 1.3, no = 1.7. Again, the values of Siw and Sor are assumed to be known.

We assume a single global set of relative permeabilities which are shared by all volume

connections.

In this example, an initial ensemble of 300 realizations of the INSIM-FT model pa-

rameters is generated by sampling the aforementioned Gaussian distributions. The prior and

history-matched realizations of relative permeabilities are shown in Figs. 2.20a and 2.20b,

respectively. The oil production rates calculated with INSIM-FT using the multiple prior

realizations of model parameters are shown in Fig. 2.21. Fig. 2.22 compares oil production

rates calculated with the CRM, INSIM, INSIM(ES-MDA) and INSIM-FT history-matched

models for four wells, namely P1 to P4. In this case, the INSIM and INSIM(ES-MDA) al-

gorithms give a good history match of oil rate data at wells P1, but the relatively poor data

match and predictions obtained for wells P3 and P4 are more representative of the overall

INSIM and INSIM(ES-MDA) results as indicated by the computational results shown in Ta-

ble 2.8. In Table 2.8, we see that for this example, the INSIM (ES-MDA) data matches are

significantly worse than those obtained with INSIM-FT. In fact, unlike the Example 1 results,

in this example, the INSIM (ES-MDA) history match is even inferior to the one obtained

with CRM. Table 2.9 presents results with the same example but with the history-matching

period shortened to 400 days. It is important to note that the results of Tables 2.8 and 2.9

indicate that the performance of the original INSIM algorithm was negatively affected not

only by the use of an interior point optimizer but also by the less reliable incorporation of

the physics of flow and transport than is incorporated in INSIM-FT. As in Example 1, (Ta-

bles 2.4 and 2.5), INSIM-FT gives a better data match than the other methods. In Example
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(a) Prior (b) Posterior

Figure 2.20: Oil-water relative permeability curves obtained with INSIM-FT, channelized
reservoir. The red solid lines represent the true relative permeability curves and blue lines
represent the estimated relative permeabilities.

2, the prediction errors obtained using INSIM-FT for history-matching are significantly less

than those generated with the CRM history-matched model.

Table 2.7: Well operating schedule for the Eclipse simulation model.

Well Name Well Control Values
I1-I4 Rate Control, RB/day 1,000
P1 BHP Control, psi 500
P2-P4 BHP Control, psi 2,000
P5 BHP Control, psi 1,000
P6 BHP Control, psi 2,500
P7 BHP Control, psi 1,000
P8 BHP Control, psi 2,000
P9 BHP Control, psi 1,000

Fig. 2.23a-2.23d, respectively, show the interwell connectivities obtained from FrontSim,

CRM, INSIM and INSIM-FT respectively. Compared with the connectivity generated with

CRM (Fig. 2.23b) and INSIM (Fig. 2.23c), the connectivity calculated from the INSIM-FT

history-matched results in Fig. 2.23d is in better agreement with the FrontSim connectivity

(Fig. 2.23a). Except for injector I4, the INSIM-FT results (Fig. 2.23d) agree well with the

connectivity map generated with FrontSim based on the true Eclipse reservoir simulation

model. For this example the connectivity results from INSIM match those from FrontSim

better than those obtained from INSIM (ES-MDA) and because of this the INSIM (ES-MDA)
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Figure 2.21: Prior oil production rate; Example 2, channelized reservoir. Red circles: ob-
served data; red lines: true data of oil production rate; gray lines: prior responses; vertical
black dashed lines: a separator for matching and prediction.

connectivity results are not shown.

2.4.3 Example 3: Field Example

This example pertains to a real reservoir with strong bottom water drive. The reser-

voir has 13 producing wells and no injection wells. For the purposes of history matching, we

assume the aquifer is at constant pressure and represent the aquifer by a single node with

the pressure at this node fixed equal to the constant pressure (p0) of the aquifer, which is

Table 2.8: Comparison of data mismatch for historical period (800 days) and prediction
period among CRM, INSIM, INSIM-FT and INSIM (ES-MDA); Example 2, channelized
reservoir.

CRM INSIM INSIM-FT INSIM (ES-MDA)
Historical Period 23.28 313 10.11 62.1
Prediction Period 115.87 914 37.14 185
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(a) CRM: P1 (b) INSIM: P1 (c) INSIM(ES-MDA): P1 (d) INSIM-FT: P1

(e) CRM: P2 (f) INSIM: P2 (g) INSIM(ES-MDA): P2 (h) INSIM-FT: P2

(i) CRM: P3 (j) INSIM: P3 (k) INSIM(ES-MDA): P3 (l) INSIM-FT: P3

(m) CRM: P4 (n) INSIM: P4 (o) INSIM(ES-MDA): P4 (p) INSIM-FT: P4

Figure 2.22: Comparison of oil production rates calculated with the CRM, INSIM,
INSIM(ES-MDA) and INSIM-FT history-matched models for four wells; Example 2, chan-
nelized reservoir. Red circles: observed data; red lines: true data of oil production rate; gray
curve: posterior oil production rate.

a procedure suggested by Zhao et al. (2016) for the original INSIM model. The value of p0

is set equal to the value of the initial reservoir pressure at datum and does not change with

time. The reservoir connection map is shown in Fig. 2.24. Note that there are 26 imaginary
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Table 2.9: Comparison of data mismatch for historical period (400 days) and prediction
period among CRM, INSIM, INSIM-FT and INSIM (ES-MDA) ; Example 2, channelized
reservoir.

CRM INSIM INSIM-FT INSIM (ES-MDA)
Historical Period 13.8 264.9 7.6 70.5
Prediction Period 137.4 2008.4 71.7 98.4

(a) FrontSim (b) CRM

(c) INSIM (d) INSIM-FT

Figure 2.23: Interwell connectivity obtained from FrontSim, CRM, INSIM and INSIM-FT
for the channelized reservoir. The length of a narrow red triangular denotes the magnitude
of total interwell flow rate between a corresponding injector-producer pair and the direction
of the triangular indicates which producer belongs to this injector-producer well pair.

wells and these imaginary wells as well as the actual wells are all connected to the single

aquifer node. There are no water injection wells in the reservoir, but one might guess that

CRM could be applied to this problem by treating the aquifer node as a water injection

well. However, CRM requires that the total water injection rates are known and we have no

knowledge of the flow rate from the aquifer to the reservoir. Please note that CRM cannot
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be applied in this example since we don’t know the ”injection rate” for the aquifer node.

Figure 2.24: Connection map of the field example.

For our implementation of INSIM-FT, the spatial coordinates of the virtual well are

computed as the average of the corresponding coordinates of the real wells as given by

xv =
1

nw

nw∑
i

xi;

yv =
1

nw

nw∑
i

yi,

(2.38)

where xv and yv, respectively, represent the x and y coordinates of the virtual well node and

nw is the number of real wells. If well i is connected to this virtual node, the connection

length is given by

Li,v =
√

(xv − xi)2 + (yv − yi)2, (2.39)

where xi and yi, respectively, represent x and y coordinates of well i. The virtual aquifer

well node functions the same way as an injection well node. Parameters of the connections

between the virtual well node and the real or imaginary wells are added to the set of parame-

ters to be estimated by history matching. By tuning the pore volumes and transmissibilities

of these connections, the water breakthrough time at a producing well can be adjusted and is

not determined by the distance between the well in the basic connection map to the virtual
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Figure 2.25: Prior oil production rates of the field example. Red circles: observed oil pro-
duction rates; gray lines: prior responses of the oil production rates obtained from the prior
INSIM-FT models; vertical black dashed lines: separator for matching and predictions.

well node which represents the aquifer. When history matching the field data, we assume

that all connections share a global set of relative permeabilities and based on available data,

the true values of parameters of the power law relative permeability curves are estimated

as atrue = 0.14, nw,true = 3.0, no,true = 4.0, Siw,true = 0.15 and Sor,true = 0.33. In history

matching, the values of Siw and Sor are fixed at the estimated true values and the other

three relative permeability parameters are included in the set of model parameters used

for history matching. In generating initial realizations of these parameters, it is assumed

that they follow the normal distributions given by a ∼ N (ā, 0.052), nw ∼ N (n̄w, 0.2
2) and

no ∼ N (n̄o, 0.2
2), where the mean values, are different than the estimated true values to test

the robustness of INSIM-FT and are given by ā = 0.16, n̄w = 2.5 and n̄o = 3.3.
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The initial guess of the average reservoir absolute permeability is set equal to 100 md,

which is an estimate given by field engineers. The prior ensemble of transmissibilities and

pore volumes of different connections are generated in the same way as for the two synthetic

examples. It should be noted that the total pore volume of the reservoir at time zero, V 0
p,tot, is

also tuned as a history-matching parameter for this example. The prior value of V 0
p,tot, which

is denoted by V
0

p,tot, is an estimate of the initial total pore volume supplied by the operator.

The prior ensemble of V 0
p,tot is generated from the normal distribution N (V

0

p,tot, (0.2V
0

p,tot)
2).

The lower bound of V 0
p,tot, V

0
p,tot,low, is set to the half of the prior value of V 0

p,tot and the upper

bound of V 0
p,tot, V

0
p,tot,up, is set to the 150% of the prior value of V 0

p,tot. The ensemble size for

ES-MDA is 300. The first 800 days of production data are history-matched and the following

200 days are used for predictions in order to ascertain whether the history-matched INSIM-

FT model is capable of providing reasonable predictions of future reservoir performance. All

the producing wells are operated under the specified total liquid production rates that vary

with time. The observed oil production rates are the observed data to be history matched.

Representative oil production rates obtained from the prior ensemble of realizations of

INSIM-FT models are shown in Fig. 2.25 whereas Figs. 2.26a-2.26d shows both the history-

matching results and subsequent predictions calculated with INSIM-FT using the history-

matched ensemble of models. The prior and posterior relative permeabilities are shown in

Figs. 2.27a and b. The results suggest that the posterior relative permeabilities bound the

true ones and are consistent with the production data. Though not shown here, the history

matched values of V 0
p,tot’s also bound V

0

p,tot with a narrower uncertainty range compared with

that of the prior ensemble of V 0
p,tot’s. Overall, the history matched results are remarkably

good. For comparison purposes, the INSIM (ES-MDA) history matched oil rates at four

wells are also shown in Figs 2.26e-2.26h. A careful examination of the results indicates that

better matches and predictions are obtained with INSIM-FT than with INSIM (ES-MDA);

this point can be seen more clearly by examining the history matching and prediction errors

given in Table 2.10 which shows the history-matching and predictions errors for INSIM-FT

are less than one-half the corresponding errors obtained with INSIM (ES-MDA).
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(a) INSIM-FT:W8 (b) INSIM-FT:W11 (c) INSIM-FT:W12

(d) INSIM-FT:W13 (e) INSIM(ES-MDA):W8 (f) INSIM(ES-MDA):W11

(g) INSIM(ES-MDA):W12 (h) INSIM(ES-MDA):W13

Figure 2.26: History-matched oil production rates of the field example obtained with
INSIM(ES-MDA) and INSIM-FT. Red circles: observed oil rates; gray lines: the oil rates
estimated with the history-matched INSIM-FT or INSIM(ES-MDA) models; vertical black
dashed lines: separator for matching and predictions.

Table 2.10: The comparison of data mismatch for historical period and prediction period
between INSIM (ES-MDA) and INSIM-FT; field example.

INSIM INSIM-FT
Historical Period 115.5 41.2
Prediction Period 213.8 96.6
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(a) Prior (b) Posterior

Figure 2.27: Estimated relative permeabilities obtained with INSIM-FT, field example. The
red lines denote the true relative permeability curves and the blue lines are the estimates of
the relative permeability curves.
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CHAPTER 3

WATERFLOODING OPTIMIZATION WITH THE INSIM-FT

DATA-DRIVEN MODEL

In Chapter 2, we developed a physics-based data-driven model referred to as INSIM-

FT and showed that it can be used for history matching and future reservoir performance

predictions even when no prior geological model is available. The model requires no prior

knowledge of petrophysical properties. In this chapter, we explore the possibility of using

INSIM-FT in place of a reservoir simulation model when estimating the well controls that

optimize water flooding performance where we use the net present value (NPV) of life-cycle

production as our cost (objective) function. The well controls are either the flowing bottom-

hole pressure (BHP) or total liquid rates at injectors and producers on the time intervals

which represent the prescribed control steps. The optimal well controls that maximize NPV

are estimated with an ensemble-based optimization algorithm using the history-matched

INSIM-FT model as the forward model.

To develop the INSIM-FT model from observed production data, the relative per-

meability parameters, as well as the connection-based parameters are estimated using the

ensemble smoother with multiple data assimilation (ES-MDA) (Emerick and Reynolds, 2012,

2013a,b). Here, we show that if bottom-hole pressure data are available, we can estimate

the values of well indices via the history matching process. This procedure to estimate well

indices is critical in order to use the history-matched INSIM-FT model for production opti-

mization for the case where the well controls are bottom-hole pressures and thus is a vital

contribution of the current work.

In each example considered, the production data that we history match is generated

from an Eclipse 100 reservoir simulation model which is used to represent the true reservoir

62



model. To illustrate the potential of using INSIM-FT for life-cycle production optimization,

the optimal well controls obtained by optimization using INSIM-FT as the forward model are

input to the true reservoir model (reservoir simulation model) to compute future production

and the resulting life-cycle NPV of production. Also, we compare the optimal NPV obtained

using INSIM-FT as the forward model with the estimate of the optimal NPV obtained using

the correct full-scale reservoir simulation model when performing waterflooding optimization.

The optimization method applied to maximize NPV is the EnOpt algorithm of Lorentzen

et al. (2006); Chen et al. (2009) based on the very minor modification introduced by Do and

Reynolds (2013).

3.1 Waterflooding Optimization Problem

Waterflooding is an important secondary recovery method which maintains reservoir

pressure and increases oil recovery. Life-cycle waterflooding optimization aims to find well

controls (operating well pressures or rates at specified time intervals (control steps)) that

maximize some cost function, e.g., net-present-value of production or cumulative oil produc-

tion over the productive life of the reservoir. In this work, the cost function is defined as the

net-present-value (NPV) of production which is given by

J(u) =
Nt∑
n=1

{
∆tn

(1 + b)
tn
365

[ P∑
j=1

(ro · qno,j − cw · qnw,j)−
I∑
j=1

(cwi · qnwi,j)
]}

, (3.1)

where ro ($/RB) is the oil revenue; cw ($/RB) is the cost of disposing of produced water;

cwi($/RB) is the water injection cost and b is the annual discount rate. Nt is the total

number of simulation time steps; tn is the nth time level and ∆tn is the length of the nth

time step. P and I, respectively, denote the number of producers and injectors; qno,j (RB/D)

and qnw,j (RB/D) denote the average oil and water production rate at the jth producer at

the nth time step; qnwi,j (RB/D) denotes the average water injection rate at the jth injector

at the nth time step. It is important to note that in Eq. 3.1, cw should not be confused with

water isothermal compressibility.

For the problem considered, we perform production optimization after the reservoir
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has been produced for a sufficiently long time to collect and history-match production data in

order to determine a model using the INSIM-FT methodology and then this model (INSIM-

FT) is used as the forward model when estimating the optimal well controls that maximize

NPV over the remaining life of the reservoir; throughout this chapter, this optimization step

is referred to as life-cycle production optimization. Here, the time-period for production

optimization is divided into Nc consecutive time intervals of equal length, where each time

interval is referred to as a control step. On each control step, one needs to specify the

operating condition for each well, where the operating condition (well control) may be a

bottom-hole pressure (BHP) or a total or phase rate. During a specific control step (time

interval), each well is operated with a constant value of the well control but the value of the

well control may differ from well to well as well as from control step to control step. We let

the vector u denote the vector of all control variables, where, for convenience in presentation,

u is ordered as

u =



u1

u2

.

.

uNw


, (3.2)

where Nw is the number of wells and

u` =



u`1

u`2

.

.

u`Nc


, (3.3)

where u`j denotes the well controls for well ` at the jth control step for j = 1, 2, . . . , Nc and
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` = 1, 2, . . . , Nw. The dimension of u is denoted by Nu and given by

Nu = Nc ·Nw.

Here, we assume that these variables are constrained by simple bounds, so that the water-

flooding optimization problem is expressed as

maximize
u∈RNu

J(u), (3.4)

subject to

u`,low
k ≤ u`k ≤ u`,up

k , (3.5)

where u`,low
k and u`,up

k are the lower and upper bounds of kth control variable for well `. To

attempt to achieve better scaling, these control variables are normalized so they are replaced

by

x`k =
u`k − u

`,low
k

u`,up
k − u`,low

k

. (3.6)

Note that for the normalized variables, the lower and upper bounds, respectively, are 0 and

1, for k = 1, 2, . . . , Nc and ` = 1, 2, . . . , Nw.

3.2 Average History-Matched INSIM-FT Model

In Chapter 2, the ensemble smoother with multiple data assimilation (ES-MDA)

(Emerick and Reynolds, 2012, 2013a,b) was adopted to history match the production history

of a reservoir to obtain an ensemble of posterior models. If we assume all the well connections

share the same set of relative permeability functions, the vector containing all the model

parameters is given by

m = [T 0
i,j’s, V

0
p,i,j’s, a, nw, no]. (3.7)

In history matching with INSIM-FT, the total liquid production rate as a function of

time at producing wells and the total water injection rate at injection wells as a function of
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time are specified in order to define the source/sink terms in Eq. A-18 and water saturation

are solved along the connections using front tracking (Holden et al., 1988; Lie and Juanes,

2005; Guo et al., 2017c). After history matching, we use the INSIM-FT model based on the

average of the posterior realizations of m to perform life-cycle production optimization. The

average model, mavg, is defined as

mavg =
1

Ne

Ne∑
l=1

ml, (3.8)

where the subscript i denotes the ith posterior model and Ne is the total number of posterior

models obtained with INSIM-FT.

3.3 Estimation of Optimal Well Controls

Normally, for well-control production optimization, well controls can be either bottom-

hole pressure or rate. However, because INSIM-FT assumes the total injection or production

rate is specified at each well, to use pressures as control variables requires us to replace the

source/sink term in Eq. A-18 with one involving pressure. Specifically, we replace qnt,i in

Eq. A-18 with the right-hand side of the following equation:

qnt,i = −WIiλ
n−1
t,i (pni − pnwf,i) (3.9)

to obtain

cn−1
t,i V n−1

p,i

∆tn

(
pni − pn−1

i

)
=

nc,i∑
j=1

T n−1
i,j (pnj − pni )−WIiλ

n−1
t,i (pni − pnwf,i), (3.10)

where the bottom-hole pressure pwf,i can now be specified as the well control for well i at

each time level. Unfortunately, we cannot use Peacemans equation (Peaceman, 1978, 1983)

to calculate the well indices because there are no permeabilities or gridblock dimensions ex-

plicitly involved in the INSIM-FT model. Thus, we develop below a procedure for estimating

the well indices, WI’s in Eq. 3.10 in order to perform production optimization. In Eq. 3.9, qnt,i

is the total rate that was specified during the history-matching process. Assuming wellbore
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Table 3.1: Mean values and standard deviations of well indices for Example 1.

P1 P2 P3 P4
Mean, 103 md ·ft 3.42 1.36 3.67 1.30
Standard Deviation, 103 md ·ft 0.239 0.176 0.198 0.130

pressure measurements are available, we can solve Eq. 3.9 directly for WI’s using the pni val-

ues calculated with the history-matched model, the measured pnwf,i values and the λt,i values

computed from the saturations obtained from the history match run. The primary difficulty

with this procedure is that due to the approximate nature of INSIM-FT, a WIi calculated

from Eq. 3.9 varies slightly with n (Guo et al., 2018b), whereas, well indices are by definition

independent of time. For example, for the first example we test later, the mean values and

standard deviations of well indices for P1 to P4 obtained from the history-match run by

Eq. 3.9 are shown in Table 3.1, where the standard deviations are fairly small compared to

the mean values. Therefore, instead of solving Eq. 3.9, for the ith well index, we use an

average over time, i.e., we compute the ith well index as

WIi =
1

nt

nt∑
k=1

−qkt,i
(pki − pkwf,i)λkt,i

, (3.11)

where nt is the number of INSIMS-FT steps in the history-matching period.

When we perform history matching with ES-MDA, we obtain multiple models, i.e.,

multiple realizations of the parameters defining an INSIM-FT model. As our objective here

is simply to demonstrate that the INSIM-FT model can be used to solve the optimal well

control problem, we first evaluate Eq. 3.11 based on running INSIM-FT with mavg defined in

Eq. 3.8, then we perform long-term production optimization (water flooding optimization)

based on mavg. With the WIi’s computed from Eq. 3.11, we can now use pressure controls.

At each iteration of the optimization algorithm, we obtain a new estimate of all well pressure

controls, i.e., the values of the pwf,i’s used in Eq. 3.10 to run INSIM-FT to calculate pressures,

pni ’s. After solving the INSIM-FT model for pressure and water saturation as presented in

Chapter 2, the total flow rate at injectors and producers can be calculated by
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qnt,i = WIi · λn−1
t,i (Sn−1

w,i ) · (pni − pnwf,i). (3.12)

Then, the oil production rates at time level n is computed by

qno,i = qnt,i · (1− fw(Snw,i)). (3.13)

Because we neglect gravity and capillarity effects, fw is given by

fw(Sw) =

krw(Sw)
µw

krw(Sw)
µw

+ kro(Sw)
µo

, (3.14)

where µw and µo are constant and known, and krw(Sw) and kro(Sw), respectively, are given

by Eqs. 2.17 and 2.18. The water production rate is computed as

qnw,i = qnt,i · fw(Snw,i). (3.15)

Given these rates, the NPV value of production (Eq. 3.1) can be calculated for the current

estimate of the optimal well controls. For the two synthetic examples considered later, we

use rate controls at water injection wells and pressure controls at producing wells.

3.4 Optimization Procedure

3.4.1 Ensemble-Based Optimization (EnOpt).

EnOpt (Chen et al., 2009) based on the implementation of Do and Reynolds (2013)

is used to estimate the optimal controls that maximize the NPV of life-cycle production.

Optimization is done in terms of the normalized control variables defined in Eq. 3.6 and then,

given the value of the normalized control variable x`j, Eq. 3.1 is solved for the corresponding

value of u`j. Throughout, x represents the vector of normalized variables corresponding to

the control variable u defined in Eq. 3.2. With EnOpt, at iteration k of the steepest ascent
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algorithm, the search direction is based on a smoothed stochastic gradient dk of the NPV

objective function J defined in Eq. 3.1. This search direction is normalized by the infinity

norm so the steepest ascent algorithm becomes

xk+1 = xk + αk

[
dk
‖dk‖∞

]
, (3.16)

for k = 0, 1, . . . , until convergence, where αk is the step size and is determined by a line

search with a back tracking strategy. Since in Eq. 3.6, the values of each normalized control

variables must be in the interval [0, 1], the search direction dk is also normalized by its infinity

norm so that, if αk ≤ 1, the maximum change difference in any component of xk+1 − xk is

less than or equal to unity. To compute dk, an ensemble of normalized control variables

needs to be randomly generated. To avoid abrupt changes in a well’s control from one time

step to another, during the generation, we often impose temporal correlation on controls at

each well by introducing a covariance matrix, where C`
x denotes the covariance matrix for

well `. Denoting C`
i,j as the (i, j) entry of C`

x, C
`
i,j is defined here by the spherical covariance

function given by

C`
i,j =


σ2

[
1− 3

2
|i−j|
Ns

+ 1
2

(
|i−j|
Ns

)3
]
|i− j| ≤ Ns

0 |i− j| > Ns

, (3.17)

where i and j, respectively, refer to the ith and jth control step for well `; Ns is the number

of control steps over which we wish the control to be correlated; σ is the standard deviation,

which is set to 0.01 for our application. The overall covariance matrix is the block diagonal

matrix given by

Cx =



C1
x 0 . 0

0 C2
x . 0

. . . .

0 0 . CNw
x


. (3.18)
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By sampling the Gaussian random distribution N (xk, Cx) Np times, we obtain the

smoothed ensemble of normalized well controls, denoted by x̂j, j = 1, 2, . . . , Np. If a sampled

x̂j value is not in [0,1], then we simply implement truncation to enforce bound constraints.

With truncation, whenever a component of x̂j is greater than its upper bound 1, we set that

component equal to 1, and whenever a component is less than its lower bound 0, we set that

component equal to 0. In this work, we apply a slightly modified version of EnOpt (Chen

et al., 2009) (see Do and Reynolds (2013)) to compute

dk =
Cx
Np

Np∑
j=1

(x̂j − xk)[J(x̂j)− J(xk)], (3.19)

where J is the objective function given by Eq. 3.1.

3.4.2 Validation.

A data-driven model does not have the power to exactly reproduce the predictions

of the full-scale reservoir simulator. What we really care about is whether the optimal well

controls obtained by INSIM-FT can also give a significant improvement in the NPV of pro-

duction for the true model. Since all the synthetic observed data are generated by running

an Eclipse 100 truth model and adding noise, the Eclipse simulation model represents the

true model. Intuitively, we have two ways to validate the INSIM-FT production optimiza-

tion results: (1) input the INSIM-FT optimal well controls into the Eclipse schedule and

compute the corresponding NPV; (2) perform production optimization independently on

the true Eclipse model with Eclipse as the forward model to obtain the optimized NPV.

3.4.3 Complete Workflow.

The complete workflow for production optimization step is summarized below.

1. Specify the maximum number of total iterations, Nmaxiter, allowed in steepest ascent

and the maximum number of simulation runs, Nmaxsim, allowed for optimization.
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2. Choose the average history matched INSIM-FT model obtained using ES-MDA for

production optimization. Run INSIM-FT with the total rates specified as the historical

rates for this model and obtain the well indices from Eq. 3.11.

3. Start production optimization and set k = 0, where k is the iteration index for steep-

est ascent (Eq. 3.16). In well production optimization example presented here, well

controls during the optimization period are set to BHP controls for producers and rate

controls for injectors. Use the observed BHP data and total injection and production

rate data at the end of production history to estimate the initial guesses of controls

for all control variables and generate the initial normalized control vector x0.

For k = 0, 1, . . . , Nmaxiter,

4. Generate Np perturbations of the normalized control vector, xk, by sampling from the

Gaussian distribution N (xk, Cx); the perturbations are given by

x̂j = xk + C1/2
x Zj, j = 1, 2, . . . , Np,

where

Zj ∼ N (0, I).

If a component of x̂j is outside the interval of [0,1], apply truncation to ensure all

components of x̂j satisfy the bound constraints.

5. Run INSIM-FT for each set of well controls, ûj = x̂j
[
uup − ulow

]
+ulow, j = 1, 2, . . . , Np

to obtain corresponding NPV values.

6. Compute the EnOpt gradient given by Eq. 3.19.

7. Do line search with a back tracking to obtain the updated control vector xk+1. The

initial stepsize is set to 0.1. If the line search can not find a control vector which

increases the value of NPV in the maximum allowable number of stepsize cuts, then
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we set xk+1 to the set of controls obtained during the line search that gives the highest

NPV. In the examples we consider, the maximum number of stepsize cuts is set to 5.

8. If the number of maximum simulation runs Nmaxsim or maximum iteration Nmaxiter are

reached, or both of the following conditions are satisfied,

|J(xk+1)− J(xk)|
max[J(xk), 1.0]

≤ εJ , (3.20)

‖xk+1 − xk‖
max[‖xk‖2, 1.0]

≤ εx, (3.21)

then terminate iteration. In the examples, we use εJ = 10−4 and εx = 10−3 .

End For

9. Record the values of u for xk that gives the highest NPV as the optimal well controls.

3.5 Examples

We use the Eclipse 100 simulator to validate our INSIM-FT production optimization

algorithm. The three examples that are tested for history matching with INSIM-FT in

Chapter 2 now are used to test the performance of production optimization with INSIM-FT.

Specifically, EnOpt is performed with INSIM-FT using the average of the history-matched

models in INSIM-FT to obtain the optimal well controls for water injectors and producers.

3.5.1 A Homogeneous Reservoir with a Sealing Fault

The reservoir with a sealing fault is shown in Fig. 2.5 in Chapter 2. The Eclipse

true model is based on a 33 × 33 × 1 grid with grid dimensions being ∆x = ∆y = 100 ft

and ∆z = 50 ft and the fault is represented by the white inactive cells. The reservoir has

a homogeneous permeability field of 500 mD and porosity field of 0.2 with nine total wells,

five water injectors and four producing wells. A continuous zigzag sealing fault divides this

reservoir into two parts. During the historical period when production data are obtained, 5

72



injectors are all operated at a constant rate of 1,000 RB/day and 4 producers are all operated

at a constant bottom-hole pressure of 2,000 psia. The other reservoir properties are specified

in Table 2.3. The true data, including the total production rate and oil production rate, are

obtained by running Eclipse 100 for 1,000 days with the true grid-based parameters specified.

The observed oil production rates are obtained by adding uncorrelated Gaussian noise to

the true oil production rates obtained from Eclipse where the standard deviation of each

measurement error is set equal to 2% of the true data.

History matching. Since INSIM-FT for history matching is run based on rate controls, to

history match the observed data, the true water injection rate and the true total production

rate are specified in INSIM-FT and the observed oil production rate data from Eclipse are

history matched to obtain the vector of model parameter, m defined in Eq. 3.7, for INSIM-

FT. The connection map is shown in Fig. 2.14. Im1-Im4 are four imaginary wells added to

increase more flow channels between injectors and producers; see Chapter 2. Here, all the

connections share the same set of relative permeability curves (see Eqs. 2.17-2.19).

History matching is performed using ES-MDA starting with 100 sets of prior model

parameters (transmissibilities, pore volumes and relative permeability parameters). The

history matching period lasts for 1,000 days and the detailed procedure is shown in Chapter

2.

Production Optimization. Production optimization which aims to maximize the objec-

tive function defined in Eq. 3.1, is performed following the 1,000 days of historical production

based on a total reservoir life of 2,000 days, i.e, the optimization time interval is equal to

1,000 days.

The well indices for pressure control are computed by Eq. 3.11 from a single forward

run of INSIM-FT with mavg. The control variables of injectors are injection rates at reservoir

conditions with an upper bound of 3,000 RB/day and a lower bound of 0 RB/day; the control

variables of producers are bottom-hole pressure with an upper bound of 3,000 psia and a

lower bound of 200 psia. The 1,000 days optimization period is divided into 10 control steps

and hence each control step lasts 100 days and therefore the control vector u has 9×10 = 90
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elements. The initial guesses for well controls are given by the well controls at the end of

matching period, which are 1,000 RB/day for injection rates of all water injectors and 2,000

psia for the BHP of all producers.

An optimal control strategy is obtained by maximizing the NPV as described in

Eq. 3.1, with ro = 80 USD/RB, cw = 5 USD/RB, cwi = 2 USD/RB. The discount rate

b = 0.1. For EnOpt, the ensemble size for gradient estimation is Np = 10. The maximum

number of stepsize cuts for line search with backtracking is 5; the initial search step for

steepest ascent is 0.1; the time-correlation length is 300 days; the maximum number of

allowable simulation runs Nmaxsim is equal to 1,000; the maximum number of optimization

iterations, Nmaxiter, is equal to 60.

To validate the optimization results obtained using the average of the INSIM-FT

history-matched models, we perform independent production optimization with Eclipse 100

by using EnOpt with the same initial optimization settings as is used in optimization with

INSIM-FT. The reservoir simulation model used in Eclipse to perform production optimiza-

tion is the true model. The comparison of NPV versus the number of reservoir simulation

runs when optimizing with INSIM-FT and optimizing with Eclipse are shown in Fig. 3.1.

For this particular example, the total computational time for production optimization with

Eclipse is one hour and five minutes but for INSIM-FT is only one minute. Within the same

number of iterations, INSIM-FT achieves about a 45 million USD higher NPV value than the

NPV obtained with the initial control settings, while Eclipse with independent optimization

increases the initial NPV by 25 million USD. Due to the model difference between Eclipse

and INSIM-FT, the estimated well controls differ and the difference in NPV is not surprising.

Figs. 3.2 and 3.3 show the comparisons of optimal well controls for INSIM-FT and Eclipse.

In Figs. 3.2 and 3.3 and similar figures presented later, each colored rectangle represents

the value of the optimal well control at a given control step and a given well. As shown in

Fig. 3.2, the optimal injection rates generated from INSIM-FT and Eclipse are qualitatively

similar.

A better way to validate the optimized results obtained with INSIM-FT is to apply
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the optimal well controls from INSIM-FT directly in the true Eclipse 100 to compute the true

production and NPV that will be obtained using the optimal well controls generated based

on optimization with INSIM-FT used as the forward model. The NPV value obtained by

this procedure is referred to as Eclipse V1 in Table 3.2 and Eclipse V2 refers to optimization

results obtained using Eclipse directly with the true reservoir model. In Table 3.2, we

show both the NPV values based on the initial guess as well as the maximum NPVs of

production by three procedures. In Table 3.2, it is interesting to note that using the optimal

well controls estimated with the INSIM-FT model in Eclipse gives a value of NPV equal

to 274.5 million USD which is only 2.4% less than the NPV generated by optimizing well

controls based on the true Eclipse reservoir simulation model, even though the optimal NPV

estimated using INSIM-FT is ten percent higher than the two values of NPV generated with

Eclipse. Fig. 3.4 shows that by applying the optimal well controls from INSIM-FT in the true

reservoir model, a considerable amount of additional oil is produced, but the cumulative oil

production from Eclipse is less than that predicted by INSIM-FT. However, the cumulative

oil production obtained by independent optimization of the Eclipse model and by applying

the optimal well controls from INSIM-FT in Eclipse are in very good agreement. In Fig. 3.5,

we compare the oil saturation distributions obtained at the end of the production life by

using the optimal well controls generated with Eclipse and INSIM-FT in the true reservoir

simulation model. Even though the optimal well controls generated with INSIM-FT and

Eclipse are very different, the oil saturation distributions are quite similar. This is not

surprising as production optimization problems with a large number of control variables

often have multiple solutions.

Since one single run may not fully demonstrate that the results are reliable, we rerun

the example with INSIM-FT and Eclipse with different guesses of the well controls. The

results are shown in Table 3.3. We see from Table 3.3, even with two very different initial

conditions for optimization, the NPVs predicted by inputting the optimal well controls ob-

tained with INSIM-FT into the true model are still quite similar to those obtained by direct

optimization with the true model.
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Figure 3.1: NPV versus simulation runs, fault case. Red stars denote the independent
optimization with Eclipse; blue + denote the optimization with INSIM-FT.

(a) Optimal well controls for injectors with
INSIM-FT model

(b) Optimal well controls for injectors with
Eclipse simulation model

Figure 3.2: Estimated optimal water injection rate for injectors at different control steps.

3.5.2 Channelized Reservoir

In this example, production optimization is performed for the same channelized reser-

voir as shown in Chapter 2. The reservoir simulation model, which represents the true reser-

voir is based on a 225 by 225 by 1 grid where the size of each of these gridblock is 90 ft

by 90 ft by 10 ft where 10 ft is the thickness of the gridblock. The reservoir has a homoge-

neous porosity field with φ = 0.2. The log permeability field and well locations are shown in
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(a) Optimal well controls for producers obtained
with INSIM-FT model

(b) Optimal well controls for producers with Eclipse
simulation model

Figure 3.3: Estimated optimal BHP for producers at different control steps.

Table 3.2: NPV comparison between INSIM-FT and Eclipse validations. INSIM-FT initial
and optimal, respectively, represent the NPVs generated with INSIM-FT using the initial
and optimal INSIM-FT well controls. Eclipse V1 inital and optimal, respectively, represent
the results obtained by running Eclipse with the same initial and optimal well controls from
INSIM-FT; Eclipse V2 initial denotes the NPV generated using the initial well controls used
for INSIM-FT in the true Eclipse simulation model. Eclipse V2 optimal denotes the results
by doing optimization directly on the reservoir simulation model (the truth).

INSIM-FT Eclipse V1 Eclipse V2

Initial Optimal Initial Optimal Initial Optimal
NPV, million USD 254.81 300.64 254.70 274.5 254.70 281.1

Table 3.3: Optimal NPVs obtained with INSIM-FT and Eclipse with two different initial
conditions of well controls. INSIM-FT represents the optimal NPV generated with INSIM-
FT; Eclipse V1 represents the NPV obtained by running Eclipse with the optimal well
controls from INSIM-FT; Eclipse V2 denotes the NPV by optimizing directly on the reservoir
simulation model (the truth), faulted reservoir.

Injection Rate Producer BHP INSIM-FT Eclipse V1 Eclipse V2

Case 1 900 RB/day 1,040 psi 302×106 USD 268 ×106 USD 278×106 USD
Case 2 2,100 RB/day 1,800 psi 300×106 USD 264×106 USD 276×106 USD

Fig. 2.18. The yellow to red areas represent high permeability channels and dark blue areas

represent low permeability zones. As discussed in Chapter 2, to increase the resolution of

INSIM-FT, we use an additional 12 imaginary wells, which simply represent nodes (control

volumes) through which fluid can flow to a production well. The total set of connections is
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Figure 3.4: Cumulative oil production versus time, Example 1. Green curve represents cumu-
lative oil production obtained from the initial guess of optimal well controls using INSIM-FT
as the forward model; red curve represents the cumulative oil production from Eclipse with
the initial guess of optimal well controls; black pluses denote the results calculated with the
optimized INSIM-FT control using the INSIM-FT forward model; blue circles denote the
results from Eclipse true model using the optimal controls estimated with INSIM-FT; pink
circles denote the results from independent optimization by Eclipse.

(a) INSIM-FT (b) Eclipse

Figure 3.5: Oil saturation distributions obtained at the end of production life by applying
the optimal well controls from INSIM-FT and Eclipse into the true faulted reservoir model.

shown in Fig 2.19, where a node labeled IMj does not contain an actual well. The reservoir

has 1,000 days of production history for history matching and the subsequent 1,000 days

are used for life-cycle production optimization. The well operating conditions for historical
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period are specified in Table 3.4 and other reservoir properties are shown in Table 2.6. Again

the true oil production rate is obtained by running Eclipse 100 for 1,000 days and the ob-

served oil production rate is generated by adding uncorrelated Gaussian random noise with

standard deviation equal to 2% of the true data.

Table 3.4: The well operating conditions for historical period, channelized reservoir

Producer Name Control Type Target Value

I1 Rate, RB/day 1,000
I2 Rate, RB/day 1,000
I3 Rate, RB/day 1,000
I4 Rate, RB/day 1,000
P1 BHP, psia 500
P2 BHP, psia 2,000
P3 BHP, psia 2,000
P4 BHP, psia 2,000
P5 BHP, psia 1,000
P6 BHP, psia 2,500
P7 BHP, psia 1,000
P8 BHP, psia 2,000
P9 BHP, psia 1,000

History matching. History matching is performed using ES-MDA (Emerick and Reynolds,

2012, 2013a,b) using 8 data assimilation steps with equal inflation factors with INSIM-FT

and with 100 realizations of the INSIM-FT vector of model parameters. The details can be

seen in Chapter 2.

Production optimization. The production optimization performed with INSIM-FT is

based on the average posterior model defined in Eq. 3.8. The objective function for this

maximization problem is given by Eq. 3.1 with bound constraints to the control variables.

The control variables for injectors are injection rates under reservoir conditions with an upper

bound of 2,000 RB/day and a lower bound of 0 RB/day; the control variables of producers

are bottom-hole pressures with an upper bound of 3,000 psi and a lower bound of 100 psi.

The optimization period is divided into 10 control steps and each step lasts 100 days. Since

there are 9 producers and 4 injectors, the control vector u has 13× 10 = 130 elements. The

initial guesses for well controls are the well controls specified at the end of the production
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history. The EnOpt settings as the same as for the fault case: the number of perturbation

for gradient estimation (see Eq. 3.19) is Np = 10; the maximum number of stepsize cuts is

5; the initial stepsize for each steepest ascent direction is 0.1; the time-correlation length is

300 days; the maximum number of allowable simulation runs is 1,000; the maximum number

of optimization iterations is 60.

As in the first example, we compare the optimization results generated with INSIM-

FT to those obtained by optimization using the true Eclipse reservoir simulation model. For

both optimizations, we use the same initial estimate of the optimal well controls. Fig. 3.6

shows the NPV versus the number of forward reservoir simulation runs during optimization

with the INSIM-FT forward model and with Eclipse 100. The computational time required

by direct optimization with Eclipse is 23.5 hours whereas INSIM-FT only requires 5 minutes

to complete the optimization run. In contrast to the result for the fault case, the optimiza-

tion performed with Eclipse yields a NPV value 5% higher than the NPV generated with

INSIM-FT. Due to model difference between Eclipse and INSIM-FT, the difference in NPV

is understandable. The comparison of optimal well controls for injectors is shown in Fig. 3.7

and for producers is shown in Fig. 3.8. Due to the model differences, the controls are quite

different.

We also compute the NPV by applying the optimal well controls from INSIM-FT

directly in the true reservoir simulation model to compute the corresponding true NPV,

which is referred to as Eclipse V1 optimal in Table 3.5. Eclipse V2 refers to the optimal

NPV obtained by optimization directly with the true Eclipse model. In Table 3.5, we show

both the NPV values based on the initial well controls as well as the maximum NPV of

production obtained with three procedures. From the Eclipse V1 results of Table 3.5, we

see that by inputting the optimal well controls estimated with the INSIM-FT model into

Eclipse, we obtain a NPV value of 234.04 million dollar which is quite close to the NPV of

241.28 million dollar generated by optimization with the true Eclipse reservoir simulation

model. To further validate the optimization performance of INSIM-FT, optimization is done

with two different initial conditions and the results are shown in Table 3.6. In general,
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the optimal controls from INSIM-FT yield an estimate of optimal NPV that is very similar

to the NPV generated by optimization directly with the “true” reservoir simulation model.

Fig. 3.9 shows that by applying the optimal well controls from INSIM-FT in the true reservoir

simulation model, we obtained a cumulative oil production profile, which is in good agreement

to the one obtained by production optimization directly with the true Eclipse reservoir

simulation model. Compared with the two Eclipse-generated results, INSIM-FT predicts

less oil production using the optimal INSIM-FT well controls.

Fig. 3.10 compares the oil saturation distributions obtained at the end of the opti-

mization period with optimal controls generated with INSIM-FT and those generated with

Eclipse. As shown in Fig. 3.10, the oil saturation distributions for the two alternative meth-

ods look qualitatively similar even though the well controls obtained with the two models

are quite different.

Figure 3.6: NPV versus simulation runs, channelized reservoir. Red stars denote the inde-
pendent optimization with Eclipse; blue + denote the optimization with INSIM-FT.

3.5.3 Field Example with Aquifer

As shown in Chapter 2, the reservoir for this field example has 13 producing wells and

no injection wells. The pressure is maintained by a constant-pressure aquifer. Based on the
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(a) Optimal well controls for injectors with INSIM-
FT model

(b) Optimal well controls for injectors with Eclipse
simulation model

Figure 3.7: Estimated optimal water injection rate for injectors.

(a) Optimal well controls for producers with
INSIM-FT model

(b) Optimal well controls for producers with Eclipse
simulation model

Figure 3.8: Estimated optimal BHP for producers at different control steps.

Table 3.5: NPV comparison between INSIM-FT and Eclipse validations. INSIM-FT initial
and optimal, respectively, represent the NPVs generated with INSIM-FT using the initial
and optimal INSIM-FT well controls. Eclipse V1 inital and optimal, respectively, represent
the results obtained by running Eclipse with the same initial and optimal well controls from
INSIM-FT; Eclipse V2 initial denotes the NPV generated using the initial well controls used
for INSIM-FT in the true Eclipse simulation model. Eclipse V2 optimal denotes the results
by doing optimization directly on the reservoir simulation model (the truth).

INSIM-FT Eclipse V1 Eclipse V2

Initial Optimal Initial Optimal Initial Optimal
NPV, million USD 197.07 227.99 198.80 234.04 198.80 241.28
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Figure 3.9: Cumulative oil production versus time, Example 2. Green curve represents cumu-
lative oil production obtained from the initial guess of optimal well controls using INSIM-FT
as the forward model; red curve represents the cumulative oil production from Eclipse with
the initial guess of optimal well controls; black pluses denote the results calculated with the
optimized INSIM-FT control using the INSIM-FT forward model; blue circles denote the
results from Eclipse true model using the optimal controls estimated with INSIM-FT; pink
circles denote the results from independent optimization by Eclipse.

(a) INSIM-FT (b) Eclipse

Figure 3.10: Oil saturation distributions obtained at the end of production life by applying
the optimal well controls of INSIM-FT and Eclipse, channelized reservoir.

well locations, the connection map is built as shown in Fig. 2.24. Between each connected pair

of producers, an imaginary well is placed at the middle point of the connection to form two

connections and each imaginary well is also connected to the virtual node representing the
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Table 3.6: Optimal NPVs obtained with INSIM-FT and Eclipse with two different initial
conditions of well controls. INSIM-FT represents the optimal NPV generated with INSIM-
FT; Eclipse V1 represent the NPV obtained by running Eclipse with the optimal well controls
from INSIM-FT; Eclipse V2 denotes the NPV by optimizing directly on the reservoir simu-
lation model (the truth), channelized reservoir.

Injection Rate Producer BHP INSIM-FT Eclipse V1 Eclipse V2

Case 1 600 RB/day 1,040 psi 235×106 USD 240 ×106 USD 247×106 USD
Case 2 1,400 RB/day 1,800 psi 220×106 USD 229×106 USD 235×106 USD

aquifer. The 2,050 days’ producing period is history matched and production optimization is

done for the next 2,010 days. Due to the lack of historical BHP information, we have no way

to use BHP control for optimization. Therefore, the well controls for production optimization

are the total production rate with initial controls being the controls at the end of the historical

period. The total production rates have an upper bound of 1.2 times the maximum rate

and a lower bound of 0.1 times the minimum rate obtained during production history. The

optimization time interval contains nine control steps with the length of every control step

equal to 238 days. The correlation length for temporal smoothness is 714 days. The control

variables are total production rates of producing wells. The number of perturbations used

for gradient estimation is 10; the maximum number of stepsize cuts is 5; the initial stepsize

for each steepest ascent direction is 0.1; the maximum number of allowable simulation runs,

Nmaxsim, is 1,000; the maximum number of optimization iterations, Nmaxiter, is 60. The

steepest ascent algorithm terminates if both Eqs. 3.20 and 3.21 are satisfied or if Nmaxim or

Nmaxiter is reached. In this example, it takes less than 5 minutes to finish the production

optimization with INSIM-FT as the forward model.

The initial well controls are shown in Fig. 3.11 and the optimal producing rates

obtained from production optimization with INSIM-FT as the forward model are shown in

Fig. 3.12. The NPV versus simulation runs is shown in Fig. 3.13. During the optimization

run, the NPV increases from 557 million USD to 782 million USD in 700 INSIM-FT runs.
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Figure 3.11: Initial guess of optimal total liquid production rate.

Figure 3.12: Optimal liquid production rate obtained with INSIM-FT.
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Figure 3.13: NPV versus INSIM-FT simulation runs.
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CHAPTER 4

INSIM-FT IN THREE-DIMENSIONS WITH GRAVITY

In Chapter 2, we developed a simple data-driven model, INSIM-FT for reservoir

flow and transport as a replacement for a reservoir simulator. However, INSIM-FT only

considers two-dimensional flow in a reservoir only allows vertical wells. In this chapter,

we develop a new data-driven model that extends the interwell numerical simulation model

with front-tracking (INSIM-FT) from single-layer reservoirs to full three-dimensional (3D)

multi-layer reservoirs. The new model, which is referred to as INSIM-FT-3D, can be used

for history matching and reservoir performance predictions for a three-dimensional reservoir

under waterflooding. The novelty of the new approach includes four points. First, INSIM-

FT-3D replaces the original Riemann solver in INSIM-FT by a new Riemann solver based on

a convex-hull method that enables the solution of the Buckley-Leverett problem with gravity,

where a fractional flow function may have more than one inflection point. Second, unlike

the original INSIM-FT model, which assumes all wells are vertical, the INSIM-FT-3D model

allows for the inclusion of wells with arbitrary trajectories with multiple perforations. To do

so, INSIM-FT-3D includes the well index of well performations (perforated zones) as history-

matching parameters. Third, INSIM-FT-3D applies Mitchell’s best-candidate algorithm to

automatically generate the imaginary wells that are evenly distributed in the reservoir given

a set of prefixed actual well nodes and fourth INSIM-FT-3D utilizes our own modification

of Delaunay triangulation to build the 3D connection map necessary to use the general

INSIM-FT-3D formulation.

History matching of the INSIM-FT-3D model parameters is performed using the

ensemble-smoother with multiple data assimilations. The model parameters for history

matching include the connection-based parameters, the parameters defining the power-law

87



relative permeabilities and the parameters defining the well indices for the perforated zones

of a well with multiple perforated well segments.

The semi-analytical saturation solution from INSIM-FT-3D is validated by comparing

the INSIM-FT-3D results with those obtained with an Eclipse reservoir simulation model

on a fine grid where the observed data history-matched with INSIM-FT-3D were generated

from Eclipse using the “true” reservoir simulation model. INSIM-FT-3D is applied for history

matching and prediction for a multi-layer synthetic reservoir with a complex channel system,

a real field example and a large-scale synthetic field example.

4.1 Methodology

INSIM-FT introduced in Chapter 2 is an two-dimensional (2D) numerical simulation

model for a two-phase water oil system which characterizes a reservoir as a set of one di-

mensional (1D) connective flow volumes, which are similar to stream tubes. A schematic

representation of a simple case is shown in Fig. 4.1, where each red circle represents the static

bulk volume controlled by the well at its center and the dark gray areas represent the static

constant bulk volumes of the connective flow units between pairs of well nodes. Vp,i,j and

Ti,j, respectively, represent the pore volume and transmissibility between connection (i, j).

These set of Ti,j’s and the set of Vp,i,j’s are parameters for history matching with INSIM-FT.

In addition, relative permeability curves are included as model parameters in the INSIM-FT

model.

In this chapter, we develop a new data-driven model for 3D reservoirs with gravity

based on the original INSIM-FT model proposed in Chapter 2. The 3D model still uses

a set of 1D well interconnected volumes as shown in Fig. 4.1 but the line connecting a

pair of nodes is not necessarily horizontal and thus, gravity affects the flow through the

pore volume connecting the nodes. The model parameters for INSIM-FT are also used in

INSIM-FT-3D. Like INSIM-FT, INSIM-FT-3D is a rate-control-based model. For history

matching with INSIM-FT-3D, the total rate of injectors and producers must be specified at

each time step and the oil rate is the observed data to be history matched using ES-MDA
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(Emerick and Reynolds, 2012, 2013a,b). In the following context, the key formulations for

the INSIM-FT-3D model are given below where field units are utilized throughout.

𝑖

𝑖

1 2

3
4

(𝑇𝑖,1, 𝑉𝑝,𝑖,1)
(𝑇𝑖,2, 𝑉𝑝,𝑖,2)

(𝑇𝑖,3, 𝑉𝑝,𝑖,3)

𝑉𝑝,𝑖

Figure 4.1: Connective units between wells of INSIM.

4.1.1 Pressure Equation

Following the derivation in Chapter 2, the total mobility for oil and water phase (λt)

at a given water saturation, Sw, is defined by

λt(Sw) = λw(Sw) + λo(Sw), (4.1)

where

λw(Sw) =
krw(Sw)

µw
(4.2)

is water mobility, and

λo(Sw) =
kro(Sw)

µo
(4.3)

is the oil mobility, µm, m = o, w denote the oil and water viscosities in cp which are assumed

to be constant and known and krm, m = o, w represent the oil and water relative permeabil-

ities, respectively. The general power-law relative permeability functions assumed here are

given by Eqs. 2.17 through 2.19.

As for the two-dimensional version of INSIM-FT, we assume that, in Eqs. 2.17 through

2.19, Siw and Sor for INSIM-FT-3D are known accurately but a, nw and no are included as

parameters to be estimated by history matching. The transmissibility for connection (i, j) is
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defined in Eq. 2.2. The total compressibility at control volume i at time tn, ct,i is defined in

Eq. 2.3 as used in INSIM-FT and we assume throughout that the rock compressibility (cr)

and fluid compressibilities (cm, m = o, w) in psi−1 are known constants.

For now, we assume that all the wells only have one perforated well segment in the

reservoir. (Later, we will show how to handle wells with more than one perforated segment.)

We consider gravity effects but assume capillarity effects are negligible. By combining the oil

and water discretized flow equations, following the well-known IMPES formulation (Aziz and

Settari, 1979), the pressure equation for control volume i in INSIM-FT considering gravity

effects is given by

nc,i∑
j=1

T n−1
i,j

(
pnj − pni −

[
(γn−1
o,i,j

λo(S
n−1
w,i,j)

λt(S
n−1
w,i,j)

+ γn−1
w,i,j

λw(Sn−1
w,i,j)

λt(S
n−1
w,i,j)

)(Dj −Di)
])

+ qnt,i

=
1

5.615

cn−1
t,i V n−1

p,i

∆tn
(pni − pn−1

i ), (4.4)

where the superscript n denotes the nth time step; nc,i represents the number of volumes

connected directly to volume i; Di and Dj, respectively, represent the depth of the center

of nodes i and j in ft; qt,i in RB/day is the total rate of the well in volume i, where qt,i

is positive for injection and negative for production; γn−1
m,i,j, m = o, w, denote the average

specific weights of oil and water in psi/ft3 for connection (i, j) at time level n− 1 given by

γn−1
m,i,j = 0.5(γn−1

m,i + γn−1
m,j ), m = o, w, (4.5)

where

γn−1
m,i = γ0

m,i(1 + cm(pn−1
i − p0)), (4.6)

and

γn−1
m,j = γ0

m,j(1 + cm(pn−1
j − p0)), (4.7)

where p0 is the initial reservoir pressure, which is assumed known at datum and varies only

with depth. From Eq. 2.2, T n−1
i,j in Eq. 4.4, is given by
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T n−1
i,j = 1.127× 10−3ki,jAi,j

λt(S
n−1
w,i,j)

Lij
= T 0

i,j

λt(S
n−1
w,i,j)

λt(S0
w,i,j)

, (4.8)

where λ0
t,i,j is specified as the oil mobility at the initial water saturation, which is assumed

to be equal to irreducible water saturation. Following Chapter 2, V n−1
p,i in Eq. 4.4 is required

to satisfy

V n−1
p,i = 0.5

nc,i∑
j=1

V n−1
p,i,j . (4.9)

Note that Eq. 4.9 ensures that if the Vp,i’s sum to the total reservoir pore volume, then

Vp,i,j’s also sum to the total pore volume. V n−1
p,i,j is approximated by the first-order Taylor

series expansion given in Eq. 2.8. Assuming all the connections use the same set of relative

permeabilities, the preceding formulation indicates that the only unknown parameters in

Eq. 4.4 are T 0
i,j’s, V

0
p,i,j’s, a, nw and no.

4.1.2 Wells with Multiple Perforated Segments

Eq. 4.4, which is a material balance equation, assumes that qnt,i is the average liquid

flow rate at the nth time step produced from (or injected into) control volume Vp,i via the

section of a well that is perforated in volume Vp,i. However, this well could also be perforated

in other control volumes and in this case, qnt,i is not the total rate of production (or injection)

of the well. If volume i represents an imaginary well, Eq. 4.4 with a zero rate is also valid

for the control volume controlled by the imaginary well. Here, we extend Eq. 4.4 to the

case where a well, w, has nwwc perforated well segments, each associated with a different

control volume. By considering each perforated well segment as a node in INSIM-FT-3D,

the control volume associated with the node representing the kth perforated segment of well

w is given the index ik and is denoted by Vp,ik , for k = 1, 2, . . . , nwwc, where nwwc is the number

of perforated segments of well w, the pressure governing equation for the control volume Vp,ik

is given by
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nc,ik∑
j=1

T n−1
ik,j

(
pnj − pnik −

[
(γn−1
o,ik,j

λo(S
n−1
w,ik,j

)

λt(S
n−1
w,ik,j

)
+ γn−1

w,ik,j

λw(Sn−1
w,ik,j

)

λt(S
n−1
w,ik,j

)
)(Dj −Dik)

])
+ qnt,ik =

1

5.615

cn−1
t,ik

V n−1
p,ik

∆tn
(pnik − p

n−1
ik

), (4.10)

where nc,ik is the number of volumes connected to volume ik; T
n−1
ik,j

is the transmissibility

between volume ik and j, where j now can be a perforated volume; pnik is the average pressure

for control volume ik at time level n; Sw,ik,j is the upstream water saturation between volume

ik and j; qnt,ik is the total rate in RB/Day that flow in/out the kth control volume, Vp,ik , of

well w with qnt,ik positive for injection and negative for production, and Dik is the depth of

the center of the kth segment of well w. By using an inflow performance relationship, qnt,ik is

qnt,ik = WIwikλt(S
n−1
w,ik

)(pnwf +Hn−1
w,k − p

n
ik

), (4.11)

where WIwik is the well index between the wellbore associated with the kth segment of well w

and the reservoir volume Vp,ik , which is not known accurately and has to be history matched.

Sw,ik is the water saturation of volume ik at time level n− 1; pwf is the bottom-hole pressure

of well w; Hw,k is the well-bore pressure difference between the center of the kth segment of

well w and the bottom-hole datum depth. We assume that the fluid density inside a wellbore

is uniform with depth, and oil and water densities in the wellbore, respectively, are equal to

the oil and water densities at the standard conditions. Then,

Hn−1
w,k =

γo,scq
n−1
o + γw,scq

n−1
w

qn−1
o + qn−1

w

(Dik −Dbh), (4.12)

where the subscript sc refers to the standard conditions of fluids; Dbh is the bottom-hole

datum depth; qo and qw, respectively, represent the total flow rate of oil and the total flow

rate of water at well w. In order to compute pnwf and pnik , k = 1, 2, . . . , nwwc simultaneously, we

use the fact that the total flow rate from the well must be equal to the sum of rates through
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all the perforated segments, i.e.,

qnt,w =

nwwc∑
k=1

qnt,ik , (4.13)

where qnt,w is the specified total rate of well w at time level n. Note that WIwik , k = 1, 2, . . . , nwc

in Eq. 4.11 is not known a priori; therefore, these terms are included as history-matching

parameters when using INSIM-FT-3D as the forward model. The total oil rate for well w at

time level n, qno,w, is computed as

qno,w =

nwwc∑
k=1

[
WIwikλo(S

n−1
w,ik

)(pnwf +Hn−1
w,k − p

n
ik

)
]
, (4.14)

and the water rate qnw,w, is given by

qnw,w =

nwwc∑
k=1

[
WIwikλw(Sn−1

w,ik
)(pnwf +Hn−1

w,k − p
n
ik

)
]
. (4.15)

4.1.3 Saturation Equation

By solving the linear system consisting of the pressure equations given by Eq. 4.4 for

wells penetrating a single layer (and imaginary wells), or Eqs. 4.10 and 4.13 for wells with

completions in multiple control volumes, the pressure of each node at time tn is obtained.

The total liquid flow rate along the connection (i, j) is computed by

qnt,i,j = T n−1
i,j

(
pnj − pni − (γn−1

o,i,j

λo(S
n−1
w,i,j)

λt(S
n−1
w,i,j)

+ γn−1
w,i,j

λw(Sn−1
w,i,j)

λt(S
n−1
w,i,j)

)(Dj −Di)
)
, (4.16)

where a positive value of qt,i,j means node j is upstream of node i and a negative value

means node i is upstream of node j. For the calculation of water saturation, we assume

incompressible flow, so the partial differential equation governing the saturation distribution

for linear flow through one of the connective pore volumes between a pair of nodes is in the
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form of Buckley-Leverett equation given by

∂Sw(x, t)

∂t
+

5.615qt,i,j(t)

φi,jAi,j

∂fw(x, t)

∂x
= 0 for 0 ≤ x ≤ Li,j, tn−1 ≤ t ≤ tn; (4.17)

where qt,i,j(t) is assumed equal to qnt,i,j from tn−1 to tn; fw is the water fractional flow which

includes gravitational effects but the capillarity effect is neglected; φi,j is the average porosity

of the connective volume between wells i and j. The x direction, which varies from connection

volume to connection volume and is in the direction of the line segment between node i and

j: if qt,i,j > 0, the direction is from j to i; otherwise the direction is from i to j. In Eq. 4.17,

φi,jAi,j is not assumed known but can be expressed as

φi,jAi,j =
Vp,i,j
Li,j

. (4.18)

Substituting Eq. 4.18 into Eq. 4.17 and setting qt,i,j(t) = qnt,i,j for tn−1 ≤ t ≤ tn yields

∂Sw(x, t)

∂t
+

5.615qnt,i,jLi,j

V n
p,i,j

∂fw(x, t)

∂x
= 0 for 0 ≤ x ≤ Li,j, tn−1 ≤ t ≤ tn, (4.19)

where Li,j is the known length of the line segment connecting node i to node j and the

V n
p,i,j are related to V 0

p,i,j, which are parameters to be estimated by data assimilation (history

matching). The water fractional flow function, fw, in Eq. 4.17 is given by

fw(Sw) =
1− 1.127× 10−3 ki,jλo(Sw)Ai,j

qnt,i,j
(γn−1
w,i,j − γn−1

o,i,j )
Di−Dj
Li,j

1 + kro(Sw)
µo

µw
krw(Sw)

. (4.20)

Substituting Eq. 2.2 into Eq. 4.20 yields

fw(Sw) =
1− T 0

i,jλo(Sw)

qnt,i,jλt(S
0
w,i,j)

(γn−1
w,i,j − γn−1

o,i,j )(Di −Dj)

1 + kro(Sw)
µo

µw
krw(Sw)

. (4.21)

To run INSIM-FT-3D as a forward model for history matching, we need to specify the
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values of V 0
p,i,j and T 0

i,j for each connection, the global relative permeability functions, and

the well index (WI) for each perforation of the wells with more than one perforated segment.

For each INSIM-FT-3D step, we first solve the pressure equations (Eq. 4.4 for wells with

single perforation and Eqs. 4.10 and 4.11 for wells with multiple perforations) for the pressure

of each node implicitly by considering all the saturation-related terms are calculated with

the saturation values from the previous time step. Then, the total liquid rate along each

connection is computed using Eq. 4.16, and the saturation equation of Eq. 4.19 is analytically

solved to obtain the saturation profile of each connective unit and the saturation value at each

node. The procedure is repeated until we reach the last INSIM-FT-3D step. The method to

analytically solve the saturation equation will be discussed in the next subsection.

4.1.4 Convex-Hull Method

Eq. 4.19 is generally a Cauchy problem for any given initial condition of water sat-

uration. In Chapter 2, we used a front-tracking method to solve the Cauchy problem by

splitting the problem into a sequence of sub-Riemann problems, which can be solved using a

Riemann solver (Juanes and Patzek, 2003). The Riemann solver used in Chapter 2 assumes

that the fractional flow function in Eq. 4.21 has one and only has one inflection point, i.e. is

“S” shaped. However, the fractional flow function given in Eq. 4.21 can have more than one

inflection point if the magnitude of the gravitational part of the fractional flow function is

relatively large compared to the convective part (see Fig. 4.2); for a non S-shaped fractional

flow function, the Riemann solver utilized in Chapter 2 cannot be applied. Thus, in order

to solve the Riemann problems associated with the Cauchy problem in Eq. 4.19, we apply a

more generic solution in INSIM-FT-3D; this solution procedure, which is referred to as the

convex-hull method, can solve the Riemann problem given any shape of a fractional flow

function (Holden et al., 1988). The convex hull of a set of points, X, in a plane or in a space

is the smallest convex set that contains X. When X is a bounded subset of the plane, the

convex hull may be visualized as the shape enclosed by a rubber band stretched around X

(De Berg et al., 2000). Fig. 4.3 shows an example of the convex hull for a set X of points
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Figure 4.2: The fractional flow function with gravity included. The top dashed curve rep-
resents the fractional flow function for a vertical downwards flow; the solid curve represents
the fractional flow function for horizontal flow when gravity has no effect; the bottom dashed
curve represents the fractional flow function for vertical upwards flow.

in a 2D plane, where the upper part of the convex hull (upper hull) is the concave piecewise

function in red and the lower part of the convex hull (lower hull) is the convex piecewise

function in blue. The details for the computation of the convex-hull solution are described

below.

Figure 4.3: The convex hull of the set of points shown.

We consider a canonical Riemann problem (Juanes and Patzek, 2003) that consists
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of finding a (weak) solution to the initial value problem:

∂Sw(x, t)

∂t
+ η

∂fw(x, t)

∂x
= 0,

Sw(x, 0) =

Swl if x < x0

Swr if x > x0

,
(4.22)

where η is a constant and the partial differential equation (PDE) represents a conservation

law. Assuming that Swl 6= Swr, the initial condition (saturation function at time zero) has

a single discontinuity at x0. The solution to the problem is a wave connecting the left (Swl)

and right (Swr) states. To use the convex-hull method to solve the Riemann problem for

any shape of the fractional flow function, the fractional flow function fw(Sw) in Eq. 4.22

must be approximated by a piecewise linear function, fw,pl(Sw) as shown in Fig. 4.4. Related

to Fig. 4.4, Sw,pl,1 < Sw,pl,2 < . . . , < Sw,pl,Npl
are the Sw coordinates of the endpoints that

constitute the piecewise linear approximation of fw on [Sw1, Sw2], where Sw,pl,1 = Sw1 and

Sw,pl,Npl
= Sw2, and fw,pl(Sw,pl,j) = fw(Sw,pl,j), j = 1, 2, . . . , Npl. Though a Riemann problem

can include any two states in the initial condition, for the purpose of illustration, we assume

that Sw1 and Sw2 are the Sw coordinates of two points used to construct the piecewise linear

approximation of the fractional flow curve in fw,pl(Sw) as shown in Fig. 4.4 and represent

two states of a general Riemann problem, where Sw1 = Swl and Sw2 = Swr if Swl < Swr,

and Sw1 = Swr and Sw2 = Swl if Swr < Swl. (If Sw1 and Sw2 are not associated with any

endpoint in fw,pl(Sw), we simply add the two points (Sw1, fw(Sw1)) and (Sw2, fw(Sw2)) into

the point set that comprises the piecewise linear fractional flow function, and then update

fw,pl(Sw) before starting to solve Eq. 4.22.) The red curve above the fractional flow in

Fig. 4.4 represents the upper part of the convex hull relative to the water saturation interval

between Sw1 and Sw2, and the blue curve represents the lower part of the convex hull for the

saturation interval. The method we use to compute the convex hull is given in Appendix D.

The case where Swl > Swr is considered first. Let fw,u(Sw) be the function corre-

sponding to the upper part of the convex hull of fw,pl(Sw) relative to the saturation interval
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between Swl and Swr (see Fig. 4.4), where Swl = Sw2 and Swr = Sw1. We denote the number

of vertices (points) in the upper convex hull by N (N ≥ 2). Note that N will always be equal

to or smaller than number of endpoints, Npl, of the piecewise linear approximation, fw,pl(Sw),

for Swr ≤ Sw ≤ Swl, according to the definition of convex hull. We sort the Sw coordinates

of vertices in the upper convex hull in an increasing order as Sw,j, j = 1, 2, . . . , N ,

Swr = Sw,1 < Sw,2 < . . . , Sw,N = Swl, (4.23)

and denote the point set corresponding to the upper convex hull by {(Sw,j, fw,u(Sw,j)), j =

1, 2, . . . , N}. It is easy to see that fw,u(Sw,j) = fw,pl(Sw,j) for j = 1, 2, . . . , N . Then,

according to Holden et al. (1988), the exact solution of Eq. 4.22 is given by

Sw(x, t) =



Sw,1, if
x− x0

t
≥ η

fw,u(Sw,2)− fw,u(Sw,1)

Sw,2 − Sw,1
,

. . . ,

Sw,j, if η
fw,u(Sw,j)− fw,u(Sw,j−1)

Sw,j − Sw,j−1

≥ x− x0

t
≥ η

fw,u(Sw,j)− fw,u(Sw,j+1)

Sw,j − Sw,j+1

,

. . . ,

Sw,N , if
x− x0

t
≤ η

fw,u(Sw,N)− fw,u(Sw,N−1)

Sw,N − Sw,N−1

,

(4.24)

where j = 2, 3, . . . , N − 1. Eq. 4.24 indicates the solution of Eq. 4.22 for Swl > Swr is a set

of shocks between Swl and Swr, and every two neighboring Sw,j’s, j = 1, 2, . . . , N in Eq. 4.23

are the saturations that define a shock. The equality of Eq. 4.24 holds because the shock

wave (weak solution) contains an interval of water saturations representing a discontinuity
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in the saturation profile. For the shock between the saturation interval of (Sw,j, Sw,j+1),

j = 1, 2, . . . , N − 1, the shock speed, σ, is given by the Rankine-Hugoniot jump condition:

σ = η
fw,u(Sw,j+1)− fw,u(Sw,j)

Sw,j+1 − Sw,j
. (4.25)

For the case where Swl < Swr, we denote the lower part of the convex hull by fw,l

(see Fig. 4.4). Letting N be the number of vertices of this lower convex hull, we sort the x

coordinates of vertices of fw,l(Sw) in an increasing order as Sw,j, j = 1, 2, . . . , N , by

Swl = Sw,1 < Sw,2 < . . . , Sw,N = Swr, (4.26)

then as shown in Holden et al. (1988), the exact solution of Eq. 4.22 is given by

Sw(x, t) =



Sw,1, if
x− x0

t
≤ η

fw,l(Sw,2)− fw,l(Sw,1)

Sw,2 − Sw,1
,

. . . ,

Sw,j, if η
fw,l(Sw,j)− fw,l(Sw,j−1)

Sw,j − Sw,j−1

≤ x− x0

t
≤ η

fw,l(Sw,j)− fw,l(Sw,j+1)

Sw,j − Sw,j+1

,

. . . ,

Sw,N , if
x− x0

t
≥ η

fw,l(Sw,N)− fw,l(Sw,N−1)

Sw,N − Sw,N−1

,

(4.27)

where j = 2, 3, . . . , N − 1. Eq. 4.27 indicates the solution of Eq. 4.22 for Swr > Swl is a set

of shocks between Swl and Swr, and every two neighboring Sw,j’s, j = 1, 2, . . . , N in Eq. 4.26

is a shock. For the shock between (Sw,j, Sw,j+1), j = 1, 2, . . . , N − 1, the shock speed, σ, is
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given by the Rankine-Hugoniot jump condition:

σ = η
fw,l(Sw,j+1)− fw,l(Sw,j)

Sw,j+1 − Sw,j
. (4.28)

Note that the above solution is useful only if we obtain the convex hull of fw relative to any

given interval between Swl and Swr. In our applications, Graham’s scan (De Berg et al.,

2000) is applied to compute the convex hull for a piecewise linear fractional flow function as

shown in Appendix D. By applying the generic solution for the scalar form of the Riemann

problem as described in Eqs. 4.24 and 4.27, Eq. 4.17 with any initial condition of water

saturation can be solved with the same front-tracking method used in Chapter 2 for 2D

INSIM-FT.
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Figure 4.4: A piecewise linear approximation for a fractional flow function. The red curve
and blue curve comprise the convex hull of the fractional flow function relative to a given
saturation interval between Sw1 and Sw2. The red curve is the upper part of the convex hull
and the blue curve is the lower part of the convex hull.

4.1.5 Generate Imaginary Wells Using Mitchell’s Best-Candidate Algorithm

Imaginary wells are introduced in the INSIM-FT model to add more flow paths be-

tween injectors and producers. Although some general instructions on how to place the
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imaginary wells in a reservoir are provided in Chapter 2, e.g., adding imaginary wells be-

tween two adjacent injectors or two producers to prevent the direct connection between two

injectors or producers, our heuristic method of inserting imaginary wells is not easy to apply

to 3D problems which may include wells with arbitrary trajectories. Here, to add imagi-

nary wells, we apply Mitchell’s best candidate algorithm to sequentially place a number of

imaginary well nodes inside a bounded reservoir given a number of fixed actual well nodes,

so that each newly added imaginary well node is farthest away from all existing well nodes,

i.e., farthest away from all the previously placed imaginary wells and fixed actual well nodes.

This procedure tends to give a fairly even distribution of the imaginary wells. Mitchell’s

best-candidate algorithm (Mitchell, 1991) is described in Appendix E. One still has to deter-

mine a priori the number of imaginary well nodes, nI , to be added and this may require some

engineering judgment based on an inspection of the nodes generated. As a rule of thumb,

we set nI to be equal to one to two times the number of actual well nodes.

To illustrate the performance of Mitchell’s best-candidate algorithm, a simple 2D

example is presented next. Later, a 3D example is considered. As shown in Fig. 4.5, the

square 2D reservoir has four horizontal wells and each well has three nodes. The length and

width of this reservoir are one in dimensionless units. We apply Mitchell’s best-candidate

algorithm to add 16 imaginary wells to this reservoir and the results are shown in Fig. 4.6.

Note that all the nodes, including the actual well nodes, are fairly uniformly distributed in

the reservoir. Next, we consider the problem of generating the connection map.

4.1.6 Create a Connection Map Using Delaunay Triangulation with A Modification

Given a set of well nodes, a connection map that connects these nodes with a set of

line segments are required for history matching with INSIM-FT (or INSIM-FT-3D). The set

of line segments function effectively define a set of connecting pairs of wells for streamtube

simulation models and water saturations are solved along each of the 1D connections; see

the discussion of Fig. 2.1.

The original INSIM-FT model utilized a method (Zhao et al., 2015) that connects
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Figure 4.5: A 2D reservoir with four horizontal wells. The black dots represent the different
perforated segments of wells and the red line segments represent the well trajectories.

Figure 4.6: The imaginary well nodes generated with Mitchell’s best candidate. The open
circles represent the imaginary well nodes; red lines represent wells and the solid circles
represent actual well nodes.

wells based on the distances between wells for a single layer reservoir and is not feasible

for generating a connection map for a 3D model. Instead, to create a connection map for

INSIM-FT-3D, Delaunay triangulation (Edelsbrunner et al., 1992) is applied with a small

modification.

In computational geometry, Delaunay triangulation provides a method to triangulate

a set of points in a d-dimensional space (d ≥ 2). For a 2D problem, Delaunay triangulation

of a given set X of points must satisfy the condition that no point in X is in the interior

of the circumcircle of any triangle; this condition is called the “Delaunay condition.” (The
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circumcircle of a triangle is the circle that passes through the three vertices of the triangle.)

There always exists a Delaunay triangulation for any set X of points in two dimensions and

the triangulation is unique as long as no four or more points in X are cocircular (Devadoss

and O’Rourke, 2011), i.e., we cannot find a circle so that four or more points in X lie over

the perimeter of the circle. Delaunay triangulation maximizes the minimum angle of all the

angles of the triangles in the triangulation (Devadoss and O’Rourke, 2011). Compared to

any other triangulation of the points, the smallest angle in Delaunay triangulation is at least

as large as the smallest angle in any other triangulation (Edelsbrunner et al., 1992). One

well-known application of Delaunay triangulation is to generate a high-quality mesh for the

finite element method. By high-quality, we mean that no triangles with extremely small (or

large) angles are included in the triangulation.

The idea of using Delaunay triangulation to generate a connection map where the

connection are the sides of all triangles is that given a set of well nodes in 2D or 3D space,

Delaunay triangulation can always connect these nodes using triangles satisfying the “De-

launay condition,” i.e., the requirement that the circumcircles of all triangles have empty

interiors, i.e., no node lies in the interior of any circumcircle. Compared to other triangu-

lation methods, Delaunay triangulation is more likely to generate the connection map that

precludes connections of two nodes that are far apart, which is one of the rules for connecting

wells in INSIM-FT. The quality of a Delaunay triangulation does depend on the distribution

of the points. If the well nodes tend to be evenly placed, Delaunay triangulation tends to

generate a high-quality connection map where all connections has a roughly the same length.

Thus, placing the imaginary wells (nodes) so that are as uniformly placed as possible using

the aforementioned Mitchell’s best-candidate algorithm helps to create a better connection

map when using Delaunay triangulation.

Delaunay triangulation is a convenient and automatic tool that enables the connec-

tion of nodes of wells when the wells are in an irregular pattern in three dimensions with

well centerlines ranging from vertical to horizontal, and each well trajectory is represented

by several well nodes along the well centerline. Delaunay triangulation eliminates the dif-
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ficult work of manually constructing the connection map. For our applications, Delaunay

triangulation implementation is from Matlab (MathWorks, 2004) software.

Delaunay triangulation for the node set of Fig. 4.6 is shown in Fig. 4.7. In Fig. 4.7,

note that in regions close to the boundary of the reservoir, Delaunay triangulation still

generates some unsatisfactory connections and corresponding triangles with large angles,

e.g., for node pairs between (IM1,IM5), (IM1,IM12), (IM1,W9) and (W9,IM5). The reason

is that at these boundary regions, there are not enough nodes to generate a “good” shape

of the Delaunay triangles. Therefore, we should remove the connections with large angles

in the connection map generated by Delaunay triangulation. For example, the connection

between IM1 and IM5 in Fig. 4.7 will be eliminated by checking the interior angle between

the edge (IM1,W9) and the edge (W9,IM5) of the triangle composed of the node IM1, W9

and IM5; if the angle is very large, e.g. greater than or equal to 120 degree, then IM1, W9

and IM5 are almost collinear and the connection between IM1 and IM5 should be removed,

because IM1 and IM5 is not likely to be directly connected given the existence of W9.

Following this idea, we check each interior angle of each Delaunay triangle and remove the

connection (edge) corresponding to a interior angle that is greater than 120 degree. By

applying this modification after triangulating the well nodes, the new connection map is

shown in Fig. 4.8, where we can see that all the unsatisfactory connections with large angles

are removed; compare the results of Fig. 4.8 with those of Fig. 4.7.

As noted in Chapter 2, when the INSIM-FT methodology is applied, a direct con-

nection between a pair of injectors or producers may produce non-physical results. Here, we

regulate the connection map generated with Delaunay triangulation by removing direct con-

nections between two nodes (well segments), when both nodes are associated with injection

wells or both nodes are associated with production wells. It should be strongly emphasized

that nodes from the same well, cannot be connected to each other.

4.2 Example 1: Toy Problem

We consider a simple incompressible 1D reservoir to validate the analytical water
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Figure 4.7: Delaunay triangulation for the node set of Fig. 4.6.

Figure 4.8: The connection map by applying a modification after Delaunay triangulation.

saturation results obtained from INSIM-FT-3D when gravity is included. We compare results

with and without considering gravitational effects and set two different configurations for

this 1D reservoir. The reservoir has dimensions of 100 ft by 100 ft by 1,000 ft, where the flow

only happens along the z axis in order to include strong gravity effects. The corresponding

Eclipse model has 1,000 gridblocks in the z direction and each gridblock has thickness of

1 ft. One water injector and one producer are placed in this vertical reservoir, where the

injector is placed in the center of the top gridblock and the producer is placed in the center

of the bottom gridblock to consider downward flow with gravity. To consider upward flow

against the gravitational force, we simply switch locations of the two wells so the water

injector is at the bottom and the producer is at the top. Then, we consider flow with gravity
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excluded, i.e., rotate the reservoir so that flow is in the x direction and the gravitational

force does not affect flow. The corresponding Eclipse model has 1,000 gridblocks of one-foot

width in the x direction; the water injector is in the center of the left most gridblock and

the producer is in the center of the right most gridblock. The water density is set to 62.428

lbm/ft3 and oil density 56.94 lbm/ft3. The porosity is 0.2. The compressibility for oil, water

and rock, are set equal to 10−8 psi−1 to virtually eliminate the compressibility effects. The

total water injection rate of the injector and the total production rate of the producer are set

equal to 200 RB/day for all scenarios. The water-cut results obtained from INSIM-FT-3D

and Eclipse for the producer under different scenarios, where flow can be horizontal, vertical

downward or vertical upward, are shown in Fig. 4.9. As seen from Fig. 4.9, the INSIM-FT-3D

water cut results are in very good agreement with the corresponding Eclipse results, which

demonstrates that INSIM-FT-3D can correctly model gravitational effects.

Figure 4.9: Water cut results from INSIM-FT compared with those from Eclipse; black solid
curve represents the downward-flow results from Eclipse; dark green solid curve represents
the horizontal flow results from Eclipse; red solid curve represents the upward flow results
from Eclipse; INSIM-FT-3D results are shown open circles of same color as corresponding
Eclipse results.

4.3 Example 2: Multilayer Channelized Reservoir

This example pertains to a six-layer reservoir which has three-facies, corresponding

to a 3D channelized system, which is shown in Fig. 4.10. The true model is based on a

six-layer CMG (IMEX, 2010) model with each layer having a 50 by 50 grid and the size of
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each gridblock is 200 ft by 200 ft by 10 ft, where 10 ft is the thickness of each gridblock. Four

injectors (I1-I4) and five producers (P1-P5) are placed in this reservoir with the locations

shown in Fig. 4.11. The well trajectories are shown in Fig. 4.12, where the black solid lines

represent the well trajectories of different wells. Note that I1, I2, P3 and P5 are vertical wells;

I4 and P1 are inclined wells, and I3 and P4 are horizontal wells. Except for the horizontal

wells, all the wells penetrate more than one layer of the reservoir. In Fig. 4.12, the red

nodes on any particular black line segment (well trajectory) represent the “perforated” well

segments of the associated well and the open circles represent 27 imaginary wells generated

using the Mitchell’s best-candidate algorithm. Fig. 4.13 shows the connection map generated

using Delaunay triangulation modified by eliminating long connections and removing direct

connections among any pair of injector nodes and any pair of producer nodes. The initial

reservoir pressure is 3,800 psi. Other properties are defined in Table 4.1. As discussed in more

detail later, synthetic production data for history matching with the INSIM-FT-3D model

is obtained by running CMG with the true reservoir model where all injectors operate under

a constant water injection rate of 10,000 RB/day and all producers operate at a constant

BHP of 2,000 psi.

History matching is performed using ES-MDA (Emerick and Reynolds, 2012, 2013a,b)

based on 200 initial sets of INSIM-FT-3D parameters, which in this example include the

T 0
i,j’s, V

0
p,i,j’s for all connections, the well indices between wellbores and the reservoir at each

perforated well segment, and the parameters defining a global set of relative permeabilities

that is shared by all the interwell connections. The true values of parameters defining the

relative permeability functions are given by

atrue = 0.6, no,true = 2, nw,true = 2, Siw,true = 0.1, Sor,true = 0.2.

To history match the relative permeabilities, Siw and Sor are assumed to be known and

a, nw, no are estimated with the history-matching procedure. The mean values of a, no and
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nw are not equal to their true values, and more specifically, are given by

a = 0.55, no = 1.9, nw = 2.1.

The prior probability density functions (PDF’s) of the three relative permeability parameters

are specified by

N (a, 0.052),

N (no, 0.1
2),

(4.29)

and

N (nw, 0.1
2). (4.30)

The prior ensemble for a, nw, no is generated from sampling the normal distributions defined

by Eqs. 4.29 and 4.30. For each connected well pair (i, j), to generate the initial ensemble

of V 0
p,i,j, the mean value of V 0

p,i,j is estimated as

V
0

p,i,j =
Li,j∑Nw−1

k=1

∑Nw
l=k+1 Lk,l

· V 0
p,tot, (4.31)

where V
0

p,i,j represents the mean value of Vp,i,j. Then each prior ensemble member, V 0,k
p,i,j, for

k = 1, 2, . . . , Ne is randomly generated by sampling the Gaussian distributionN (V
0

p,i,j, (0.2V
0

p,i,j)
2).

According to Eq. 2.2, for each connected well pair (i, j),

T 0
i,j = 1.127× 10−3

ki,jV
0
p,i,jλt(S

0
w,i,j)

φ0
i,jL

2
i,j

. (4.32)

Replacing φ0
i,j in Eq. 4.32 by φ0, where φ0 is the estimated average porosity, and applying

λt(S
0
w,i,j) = 1

µo
yields

T 0
i,j = 1.127× 10−3

ki,jV
0
p,i,j

µoφ0L2
i,j

. (4.33)

Letting T
0

i,j be the mean value of T 0
i,j, T

0

i,j is estimated by replacing ki,j in Eq. 4.33 by k̄ (the
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initial guess of the mean value of ki,j) and is given by Eq. 4.34.

T
0

i,j = 1.127× 10−3
k̄V

0

p,i,j

µoφ0L2
i,j

, (4.34)

where k̄ = 500 md; φ0 = 0.2 and µo = 2.2 cp. It is important to note that the mean values

of the permeabilities of the three individual facies are 20 md, 200 md and 2,000 md. For k =

1, 2, . . . , Ne, the prior ensemble member, T 0,k
i,j , is generated by sampling N (T

0

i,j, (0.2T
0

i,j)
2).

In order to generate the initial ensemble of well indices, the mean values of well indices are

calculated from Peaceman’s equation (Peaceman, 1978). For kth perforation of well w, the

mean value of the well index is estimated by

WI
w

ik
=

1

141.2

k̄h

ln(ro/rw) + s
, (4.35)

where h is the thickness of the layer perforated; s is the skin factor and ro is radius estimated

by

ro =

√
V 0
p,ik

πφ0h
, (4.36)

where V 0
p,ik

is the pore volume of control volume ik and is computed by Eq. 4.9. The initial

ensemble of WIwik is generated by sampling N (WI
w

ik
, (0.2WI

w

ik
)2).

The historical period for history matching is 2,100 days and the subsequent 900 days

is used for future performance predictions. The true total liquid rates for injectors and

producers over the 3,000 days’ production history are obtained by running the CMG true

model and are specified in the INSIM-FT-3D model as the well operating conditions. The

oil production rate, which is the observed data that is history matched, are generated by

adding uncorrelated Gaussian random noise to the true data obtained from the CMG run

with the true simulation model, where the standard deviation of the Gaussian noise is 10

RB/day.

The oil production rates for four representative wells from 200 prior realizations of

the INSIM-FT-3D parameters are shown in Fig. 4.14 and the posterior (history-matched)
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results are shown in Fig. 4.15. In Figs. 4.14 and 4.15 and similar figures, the vertical black

line represent a separator between the historical period and the prediction period. As shown

in Fig. 4.15, the history match of the oil rate of well P3 is the worst but the calculated oil

rates from the ensemble of history-matched models bound the oil rate predicted from the true

model during the 900 day “future” prediction period subsequent to the “historical” period.

Moreover, the uncertainty in predictions is much lower than the uncertainty in predictions

made from the ensemble of prior models. The prior and posterior relative permeabilities,

respectively, are shown in Figs. 4.16a and 4.16b. It shows that the history-matched INSIM-

FT-3D models reasonably bound the true relative permeabilities with a narrower uncertainty

range compared with that of the prior models.

(a) layer 1 (b) layer 2 (c) layer 3

(d) layer 4 (e) layer 5 (f) layer 6

Figure 4.10: Horizontal absolute permeability map for a six-layer channelized reservoir. The
dark blue areas indicate the shale zones; the light blue zones represent the levee facies and
the yellow zones represent the channel facies. The color bar represents the scale of absolute
permeability.

4.4 Example 3: Field Case

This example pertains to a reservoir with a strong bottom water drive which was
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Figure 4.11: Well locations for the channelized reservoir.

Figure 4.12: The well trajectories and actual and imaginary well nodes, channelized example.

tested in Chapter 2 to show that INSIM-FT can be applied for history matching field data.

Due to the effects of the aquifer, the assumption of no gravity effects when applying INSIM-

FT is not strictly correct. Here, we redo this example to investigate if a better history match

and prediction can be obtained by applying the new INSIM-FT-3D data-driven model. The

reservoir has 13 producers and no water injector exists; bottom-water drive is the major

drive mechanism. The connection map can be seen in Fig. 2.24 with 26 imaginary wells
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Figure 4.13: The connection map generated by Delaunay triangulation with modification,
channelized example.

Table 4.1: Property of the channelized reservoir.

Property Values
Oil compressibility, psi−1 4× 10−5

Water compressibility, psi−1 3.744× 10−6

Rock compressibility, psi−1 6.103× 10−5

Oil viscosity, cp 2.2
Water viscosity, cp 1

Oil density, lbm/ft3 56.93

Water density,lbm/ft3 62.428

added to introduce more flow paths. In Fig. 2.24, the aquifer is represented by a single

node that is placed in the depth below the datum depth of the water-oil contact. All the

producers are operated under specified total liquid production rates that vary with time.

The other reservoir properties including the generation of the initial ensemble of models

is the same one given in Chapter 2. The ensemble size for ES-MDA is 300. The first

800 days of production data are history-matched and the subsequent 200 days are used for

predictions. The oil rates of four representative wells calculated from the prior ensemble

of INSIM-FT-3D models are shown in Fig. 4.17. The oil rates obtained from the history-

matched INSIM-FT-3D models are compared side-by-side with the results from the history-
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Figure 4.14: The estimated oil production rates obtained from the prior INSIM-FT-3D
models. Red circles denote the observed oil production rates; red curves denote the true
values of the oil production rate generated with CMG; gray curves represent the estimated
oil rates obtained by running the 200 prior INSIM-FT-3D models.

matched INSIM-FT models without considering gravity (using the same connection map

of Fig. 2.24) in Figs. 4.18 and 4.19. We can see that the history-matched INSIM-FT-3D

models generates narrower uncertainty ranges for predicted oil production rates compared

with that from the history-matched INSIM-FT models. For well W11, the INSIM-FT-3D

history-matching models generates slightly better history-matches and predictions than those

obtained with the original INSIM-FT history-matched models. The matching qualities for

relative permeabilities are similar for the two methods and therefore are not shown here.

4.5 Example 4: Brugge Reservoir

The Brugge field is a synthetic reservoir developed by TNO as a benchmark case

to test different methods for closed-loop reservoir management. A single realization of the

Brugge reservoir example is used here to test the performance of INSIM-FT for handling a

field-scale 3D reservoir with multiple wells. The top structure of the reservoir is shown in

113



Figure 4.15: The estimated oil production rates obtained from the history-matched INSIM-
FT-3D models. Red circles denote the observed oil production rates; red curves denote the
true values of the oil production rate generated with CMG; gray lines represent the estimated
oil rates obtained by running the 200 history-matched INSIM-FT-3D models.

(a) Prior relative permeabilities (b) Posterior relative permeabilities

Figure 4.16: The prior and posterior relative permeabilities obtained with INSIM-FT-3D
based on an ensemble size of 200. The blue curves represent the estimated relative perme-
abilities and the red curves represent the true relative permeabilities.
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Figure 4.17: Prior oil production rates of the field example. Red circles are the observed
oil production rates; gray curves represent the prior responses of the oil production rates
obtained from the prior INSIM-FT models.

Fig. 4.20 (Chen, 2017), where 20 vertical production wells and 10 vertical injection wells are

drilled. The true Eclipse model consists of four geological layers and nine reservoir simulation

layers where each simulation layer has a 139 × 48 grid. Basic information on reservoir

properties of the Brugge reservoir model can be found in Peters et al. (2010). All the wells

are perforated in more than one simulation layer and the total number of perforations is 232.

To apply INSIM-FT-3D, 200 imaginary wells are generated using Mitchell’s best-candidate

algorithm as shown in Fig. 4.21 and the resulting connection map generated with Delaunay

triangulation is shown in Fig. 4.22. The production history of the Brugge reservoir is 30

years, but we only use the first ten years’ production data generated with the true Eclipse

model for history matching and prediction. Specifically, the observed data from the first 2,400
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(a) INSIM-FT: W8 (b) INSIM-FT: W11

(c) INSIM-FT-3D: W8 (d) INSIM-FT-3D: W11

Figure 4.18: History-matched oil production rates of the field example. Red circles are the
observed oil rates; gray curves are the oil rates estimated with the history-matched INSIM-
FT or INSIM-FT-3D models. The top two sub-figures are results obtained with INSIM-FT
and the bottom two are obtained with INSIM-FT-3D.

days are for history matching and the following 1,200 days are used for future predictions.

The true total rates for injectors and producers over the first ten years are obtained by

running the Eclipse true model and are specified as the well operating conditions for history

matching and future predictions with INSIM-FT-3D. The observed oil production rate data

that are history matched are generated by adding uncorrelated Gaussian noise to the oil

rates obtained with the true Eclipse model, where the standard deviation of the Gaussian

noise is 5% of the true data. The ensemble size for ES-MDA is 200 and the initial ensemble

is generated in the same way as described in the second example. ES-MDA with eight data

assimilation steps is used to perform history-matching.
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(a) INSIM-FT: W12 (b) INSIM-FT: W13

(c) INSIM-FT-3D: W12 (d) INSIM-FT-3D: W13

Figure 4.19: History-matched oil production rates of the field example. Red circles are the
observed oil rates; gray curves are the oil rates estimated with the history-matched INSIM-
FT or INSIM-FT-3D models. The top two sub figures are results obtained with INSIM-FT
and the bottom two are obtained with INSIM-FT-3D.

The oil production rates calculated with the prior ensemble for 9 representative pro-

ducers are shown in Fig. 4.23. The posterior oil production rates for the same 9 producers

are shown in Fig. 4.24. Overall, the matching and prediction performance of INSIM-FT-3D

is very good; the history-matched models bound the oil rate predicted from the true model

during the prediction period. Fig. 4.25 shows the history-matched field oil production rates

calculated with the 200 posterior INSIM-FT-3D realizations. The true field oil production

rate curve is well bounded by the posterior results in both the history matching period and

future prediction period.

To complete the discussion of the Brugge example, we need to make some critically
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important comments. When history-matching dynamic data with ES-MDA, or any ensemble-

based method, if the initial ensemble gives extremely biased predictions, it may require

some modification in the application of ES-MDA to obtain an acceptable history-match.

One possible fix is to modify the initial set of realizations so that the initial predictions

are less biased. Here, however, a simpler option is applied. Applying the ES-MDA to the

initial ensemble of realizations of the vector of model parameters failed to give an acceptable

match of some wells. Thus, we identify the posterior model that gave the best overall data

match using ES-MDA and define a new prior model of parameters by replacing the original

prior mean by this specific posterior model of the vector of model parameters. Although the

means are changed in the “new” prior, the prior covariance matrix is not changed. Using

these updated normal distributions for the model parameters, a new initial ensemble of

200 models is generated and history matched with ES-MDA. The matches and predictions

shown in Figs. 4.24 and 4.25 pertain to this second history-match. By way of illustration,

Fig. 4.26 compares the history-match and predictions obtained for two production wells,

P2 and P3, from the first and second history-match runs. Apparently, the performance

of history matching and prediction is enhanced after the second round of history match.

It is important to note that in all other examples shown in this work, only one ES-MDA

history-matching run is performed.

One major advantage of the INSIM-FT-3D methodology presented here is that it

does not require a detailed geological model to generate an ensemble of initial models for an

ensemble-based history-matching process. A second major advantage is its computational

efficiency. For the true reservoir model used in this example, a single run to simulate the pro-

duction performance for the entire production history of 3,600 days, requires approximately

1.5 minutes. For the history matching period of the first 2,400 days, a single simulation run

requires approximately one minute. If we applied ES-MDA with eight data assimilation steps

and used an ensemble of 200 full-scale reservoir simulation models models, then it would re-

quire 8 × 200 × 1 = 1, 600 minutes to match the data for the 2,400 day historical period

and then predict the reservoir performances for another 1,200 days. On the other hand, the
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history-matching and predictions with INSIM-FT-3D required 60 minutes of total compu-

tational time. This reported time for INSIM-FT-3D includes both of the history-matching

and prediction runs.

Figure 4.20: Top structure of Brugge field.

Figure 4.21: Well trajectories and actual and imaginary well nodes, Brugge example.
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Figure 4.22: Connection map generated with Delaunay triangulation, Brugge example.
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(a) INSIM-FT: P2 (b) INSIM-FT: P3 (c) INSIM-FT: P5

(d) INSIM-FT: P6 (e) INSIM-FT: P11 (f) INSIM-FT: P13

(g) INSIM-FT: P14 (h) INSIM-FT: P18 (i) INSIM-FT: P20

Figure 4.23: Prior oil production rates of the field example. Red circles are observed oil
rates; gray curves are the oil rates estimated with INSIM-FT-3D models.

121



(a) INSIM-FT: P2 (b) INSIM-FT: P3 (c) INSIM-FT: P5

(d) INSIM-FT: P6 (e) INSIM-FT: P11 (f) INSIM-FT: P13

(g) INSIM-FT: P14 (h) INSIM-FT: P18 (i) INSIM-FT: P20

Figure 4.24: Posterior oil production rates of the Brugge example. Red circles are the
observed oil rates; gray curves are the oil rates estimated with INSIM-FT-3D models.
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Figure 4.25: Posterior field oil production rates of the Brugge example. Red curve represents
the true field oil production rates generated from the true Eclipse model; blue curves repre-
sent the field oil production rates calculated with the INSIM-FT-3D posterior realizations.
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(a) First: P2 (b) First: P3

(c) Second: P2 (d) Second: P3

Figure 4.26: Comparison of history match and predictions for two production wells from
the first and second history-match runs. The top two figures show the results for the first
round of history-match and the bottom two figures show the results for the second round of
history-match.
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CHAPTER 5

PRODUCTION OPTIMIZATION WITH INSIM-FT-3D

In Chapter 4, we developed INSIM-FT-3D as a data-driven model for history match-

ing and reservoir prediction. Compared to INSIM-FT, INSIM-FT-3D considers gravitational

effects and allows wells with arbitrary well trajectories. Furthermore, an automatic workflow

is provided to add imaginary wells and generate the connection map for history matching with

INSIM-FT-3D. In this chapter, we investigate the possibility of using the history-matched

INSIM-FT-3D model as the forward model when estimating the optimal well controls that

maximize the net present value (NPV) for a water flood. The optimal NPV obtained with

INSIM-FT are validated by inputting the optimal controls of INSIM-FT into the true model

represented by a commercial reservoir simulation model. Also, we compare the optimization

performance obtained by running INSIM-FT with the performance obtained by running the

true model. To demonstrate the applicability of INSIM-FT-3D in production optimization

for large-scale three-dimensional problems, two three-dimensional reservoirs are considered.

The first one is a multi-layered channelized reservoir and the second one is the Brugge field

case. Both the examples were used for history matching with INSIM-FT-3D in Chapter 4.

5.1 Formulations

The NPV function for a reservoir under waterflooding is defined in Eq. 3.1 which is

repeated here as the following equation.

J(u) =
Nt∑
n=1

{
∆tn

(1 + b)
tn
365

[ P∑
j=1

(ro · qno,j − cw · qnw,j)−
I∑
j=1

(cwi · qnwi,j)
]}

, (5.1)

where u is vector of control variables for all wells and J(u) represents the NPV value obtained

with the well controls u.
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To apply INSIM-FT-3D for maximizing the NPV function, we assume that the target

reservoir has been produced for a long enough time so that abundant production data can

be collected for characterizing the reservoir by history matching with INSIM-FT-3D. Then,

the history-matched INSIM-FT-3D model is treated as the forward model to optimize the

well controls in the remaining life-time of the reservoir in order to obtain a maximum NPV

value. Note that, we use ES-MDA for history matching and obtain multiple history-matched

INSIM-FT-3D models, i.e., multiple realizations of the parameters defining an INSIM-FT-3D

model. As shown in Chapter 4, the vector of parameters, m, that define a INSIM-FT-3D

model include the transmissibilities, pore volumes, relative permeabilities and well indices

for wells with multi-segments. The history-matched INSIM-FT-3D model with the best data

match is denoted by mbest and mbest will be used as the forward model to perform production

optimization.

The production optimization period is equally divided into Nc consecutive time in-

tervals with each part referred to as a control step. On each control step, a constant well

operating condition, bottom-hole pressure or total flow rate, is specified for each well. The

total set of these rates and pressures represent the well controls. By optimizing the operating

conditions of each control step for each well, one can obtain an optimal NPV value. Deter-

mining the well controls that maximize the NPV of production over the remaining life of the

reservoir is the optimal well control problem. However, the original INSIM-FT-3D model in

Eq. 4.4 does not allow BHPs as well operating conditions. In order to optimize NPV with

INSIM-FT-3D by tuning BHPs, the original INSIM-FT-3D formulation is discussed in the

remainder of this section.

For wells with a single perforation, the pressure equation of the original INSIM-FT-3D

model is given by Eq. 4.4 which is repeated in the following equation.
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nc,i∑
j=1

T n−1
i,j

(
pnj − pni −

[
(γn−1
o,i,j

λo(S
n−1
w,i,j)

λt(S
n−1
w,i,j)

+ γn−1
w,i,j

λw(Sn−1
w,i,j)

λt(S
n−1
w,i,j)

)(Dj −Di)
])

+ qnt,i

=
1

5.615

cn−1
t,i V n−1

p,i

∆tn
(pni − pn−1

i ). (5.2)

To allow pressure control for production optimization, the source/sink term, qnt,i in Eq. 5.2,

is replaced by

qnt,i = −WIiλ
n−1
t,i (pni − pnwf,i). (5.3)

Then, in the production optimization period, the pressure equation for INSIM-FT-3D with

BHP control is given by

nc,i∑
j=1

T n−1
i,j

(
pnj − pni −

[
(γn−1
o,i,j

λo(S
n−1
w,i,j)

λt(S
n−1
w,i,j)

+ γn−1
w,i,j

λw(Sn−1
w,i,j)

λt(S
n−1
w,i,j)

)(Dj −Di)
])

−WIiλ
n−1
t,i (pni − pnwf,i) =

1

5.615

cn−1
t,i V n−1

p,i

∆tn
(pni − pn−1

i ). (5.4)

By applying the modification of Eq. 5.4, BHPs can be specified as well controls in

INSIM-FT-3D for wells with a single perforation. Using the same procedure described in

Chapter 3, the well indices in Eq. 3.9 are determined using the information predicted from

the history-match run corresponding to mbest. Specifically, the well index for well i that only

has one perforation is given by

WIi =
1

nt

nt∑
k=1

−qkt,i
(pki − pkwf,obs,i)λ

k
t,i

, (5.5)

where the superscript k represents the INSIM-FT-3D step; nt is the number of INSIM-FT-

3D steps for the history-matching period; pwf,obs,i is the observed BHP of well i; qt,i is the

specified total well rate of well i; pi is the node pressure of volume i and λt,i is the total

mobility for node i; both pi and λt,i are predicted from the INSIM-FT-3D history-match run
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based on mbest. The water saturation equation for INSIM-FT-3D is defined by Eq. 4.19 for

the connection between (i, j),

∂Sw(x, t)

∂t
+

5.615qnt,i,jLi,j

V n
p,i,j

∂fw(x, t)

∂x
= 0 for 0 ≤ x ≤ Li,j, tn−1 ≤ t ≤ tn. (5.6)

After solving the INSIM-FT-3D model for pressure and water saturation, the total

flow rate at well i with a single perforation that is controlled by BHP can be calculated by

qnt,i = −WIiλ
n−1
t,i (pni − pnwf,i), (5.7)

were a negative value of qnt,i represents well i is a producer and a positive value represents

well i is an injector. If well i is a producer, the oil production rate of well i at time level n

is computed by

qno,i = WIiλ
n−1
t,i (pni − pnwf,i) · (1− fw(Snw,i)), (5.8)

and the water production rate of well i is given by

qnw,i = WIiλ
n−1
t,i (pni − pnwf,i) · fw(Snw,i), (5.9)

where fw(Sw) is the fractional flow function with gravitational effects which is defined in

Eq. 4.21.

For wells with multiple perforations, the original pressure equation for well w is defined

for each perforation-controlled volume ik, for k = 1, 2, . . . nwwc, which is given by combining

Eqs. 4.10 and 4.11,

nc,ik∑
j=1

T n−1
ik,j

(
pnj − pnik −

[
(γn−1
o,ik,j

λo(S
n−1
w,ik,j

)

λt(S
n−1
w,ik,j

)
+ γn−1

w,ik,j

λw(Sn−1
w,ik,j

)

λt(S
n−1
w,ik,j

)
)(Dj −Dik)

])
+ WIwikλt(S

n−1
w,ik

)(pnwf +Hn−1
w,k − p

n
ik

) =
1

5.615

cn−1
t,ik

V n−1
p,ik

∆tn
(pnik − p

n−1
ik

). (5.10)

The fact that the total flow rate from well w must be equal to the sum of rates through all
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the perforated segments yields

qnt,w =

nwwc∑
k=1

WIwikλt(S
n−1
w,ik

)(pnwf +Hn−1
w,k − p

n
ik

), (5.11)

where Hw,k is the well-bore pressure difference between the center of the kth segment of well

w and the bottom-hole datum depth, which is defined by Eq. 4.12. By specifying the total

liquid rate of well w, qt,w, at each INSIM-FT-3D step, the reservoir pressure associated with

each perforation and the BHP of well w are obtained simultaneously by solving Eq. 5.10 and

5.11. Ideally, we could specify the BHP of well w in 5.10 at each INSIM-FT-3D time step

during the optimization period to run the INSIM-FT-3D forward model so that the NPV

value given by Eq. 3.1 can be estimated. However, since the well indices of perforations

for well w, WIwik , are obtained by only matching the historical data of oil production rate,

the well indices are not conditioned to the BHP data of well w. Therefore, the NPV value

estimated with the well indices is not reliable. Here, we provide a procedure to estimate

ŴI
w

ik
’s for production optimization, where ŴI

w

ik
represents the adjusted well index of kth

perforation of well w by incorporating the BHP data.

First, we run the INSIM-FT-3D forward model with mbest and obtain the node pres-

sures (pik), saturations (Sw,ik) and total liquid rates (qt,ik) for each perforation of well w

during the history-matching period. Then, the well indices of well w for optimizing the

production of the remaining life time of the reservoir are estimated by

ŴI
w

ik
=

qnt,ik
λt(S

n−1
w,ik

)(pnwf,obs +Hn−1
w,k − pnik)

, (5.12)

where pwf,obs represents the observed BHPs of well w. One difficulty with this procedure

is that due to the approximate nature of INSIM-FT-3D, a ŴI
w

ik
calculated from Eq. 5.12

varies with time, whereas, well indices are by definition independent of time. Thus instead
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of solving Eq. 5.12, for ŴI
w

ik
, we use an average over time which is given by

ŴI
w

ik
=

1

nt

nt∑
n=1

qnt,ik
λt(S

n−1
w,ik

)(pnwf,obs +Hn−1
w,k − pnik)

, (5.13)

where nt is the number of time steps used for the history-match run with INSIM-FT-3D.

With the well indices given by Eq. 5.13 specified in the production optimization period, we

can now specify BHPs as well controls for optimization. The total liquid rate of well w at

time level n with BHP controls is calculated with Eq. 5.14, which is given by

qnt,w =

nwwc∑
k=1

[
ŴI

w

ik
λt(S

n−1
w,ik

)(pnwf +Hn−1
w,k − p

n
ik

)
]
. (5.14)

If well w represents a production well, the total oil and water rate for well w at time level n

at the optimization period with BHP controls, qno,w and qnw,w, respectively, are given by

qno,w =

nwwc∑
k=1

[
ŴI

w

ik
λo(S

n−1
w,ik

)(pnwf +Hn−1
w,k − p

n
ik

)
]
, (5.15)

and

qnw,w =

nwwc∑
k=1

[
ŴI

w

ik
λw(Sn−1

w,ik
)(pnwf +Hn−1

w,k − p
n
ik

)
]
. (5.16)

With the method to compute the phase rates at INSIM-FT-3D steps for different wells, the

NPV value for a given set of well controls can be estimated by Eq. 5.1.

5.2 Optimization Procedure

The optimization method to maximize the NPV value for waterflooding considered

here is steepest ascent with simplex gradient as implemented by Do and Reynolds (2013). To

optimize with INSIM-FT-3D, the optimization period is divided into a sequence of Nc control

steps. By tuning the well controls specified for each control step, NPV defined in Eq. 5.1

is maximized. Here, we consider injectors controlled by total injection rates and producers

controlled by BHPs. The optimization procedure is similar as that described in the fourth
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section of Chapter 3, expect that Chapter 3 used an EnOpt gradient (Chen et al., 2009)

based on a slight modification by Do and Reynolds (2013) for optimization. Optimization is

done in terms of the normalized control variables defined in Eq. 3.6. Then, for well ` and jth

control step, given the value of the normalized control variable x`j, the corresponding value

of control variable, u`j, is given by

u`j = x`j · (u
`,up
j − u`,lowj ) + u`,lowj , (5.17)

where u`,upj and u`,lowj , respectively, represent the upper and lower bound of jth control

variable for well ` .

With the vector of control variables for all wells, u, the NPV value of Eq. 5.1 can

be estimated with the forward INSIM-FT-3D run based on mbest. Throughout this chapter,

we let x represent the vector of normalized variables corresponding to the control variable u

defined in Eq. 3.2. Here, the NPV value is maximized using steepest ascent algorithm based

on a stochastic gradient. For kth iteration, the algorithm is written as

xk+1 = xk + αk

[
dk
‖dk‖∞

]
, (5.18)

for k = 0, 1, . . . until convergence, where αk is the step size with an initial value of 0.1; dk

is the search direction. Note that in Eq. 5.18, since x is normalized between [0,1], dk is

normalized by its infinity norm, which will ensure the largest change of the control variable

for iteration k will be less than or equal to 0.1. In Chapter 3, we use a smoothed EnOpt

gradient as the search direction based on the implementation of Do and Reynolds (2013)

and the corresponding dk is given by

dk,EnOpt =
Cx
Np

Np∑
j=1

(x̂j − xk)[J(x̂j)− J(xk)], (5.19)

where J(x) represents the NPV corresponding to the normalized well control x; x̂j represents

the perturbed well controls around xk in order to calculate the approximate gradient of NPV
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with respect to xk and Np is the number of perturbed well controls. To compute dk,EnOpt

in Eq. 5.19, x̂j, j = 1, 2, . . . Np are required to be randomly generated by sampling from

the normal distribution of N (xk, Cx), where Cx is the covariance matrix for generating the

ensemble of well controls. To avoid abrupt changes in a well’s control from one time step

to another, Cx is designed to impose temporal correlation on controls at each well which is

defined by

Cx =



C1
x 0 . 0

0 C2
x . 0

. . . .

0 0 . CNw
x


, (5.20)

where Nw is the number of wells and C`
x is a well-control correlation matrix for well `.

The ith row and jth column of C`
x is calculated with a spherical model which is given by

Eq. 3.17. Theoretically, the expectation of 1
NP

∑Np
j=1(x̂j − xk)[J(x̂j)− J(xk)] is proved equal

to Cx · ∇J(uk) (Do and Reynolds, 2013). Therefore, the search direction given by Eq. 5.19

has an expectation value of C2
x · ∇J(uk).

Note that sampling from N (xk, Cx) does not ensure that all the generated well control

variables are in the bound of [0,1]. In case that the sampled x̂j value is not in [0,1], sometimes

we need to implement truncation to enforce the bound constraints; otherwise, nonphysical

well controls may be generated, e.g. negative injection rates. However, if the perturbed well

controls are truncated, the expectation of dk,EnOpt of Eq. 5.19 is no longer equal to C2
x ·∇J(uk)

and may cause the inaccuracy of the estimated gradient. To resolve this issue, we apply

a simplex gradient (Do and Reynolds, 2013) without the requirement that the perturbed

controls must satisfy N (xk, Cx) in order to obtain the correct gradient approximation. To

compute the simplex gradient, Np sets of normalized controls are generated by sampling from

N (xk, Cx) as for EnOpt. Then, we implement truncation to ensure all the generated control

variables are in the bound of [0,1]. Next, we can compute the simplex gradient of NPV based

on each set of perturbed well controls. For jth perturbed well controls, the simplex gradient
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is given by

dk,j =
(
(x̂j − xk)+

)T (
J(x̂j)− J(xk)

)
, (5.21)

where x̂j represents the jth perturbed well controls which have been truncated for control

variables outside the interval of [0,1]; the plus sign represents pseudo inverse, and the search

direction used in steepest ascent of Eq. 5.18 is

dk,simplex = Cx
1

Np

Np∑
j

dk,j. (5.22)

Now, the expectation of dk,simplex can be proved equal to Cx∇J(uk) even if the perturbed

controls are truncated.

Complete Workflow. The complete workflow for production optimization with

INSIM-FT-3D is summarized below.

1. Specify the maximum number of total iterations, Nmaxiter, allowed in steepest ascent

and the maximum number of simulation runs, Nmaxsim, allowed for optimization.

2. Choose the best history-matched INSIM-FT-3D model, mbest obtained using ES-MDA

for production optimization. Compute the well indices for optimization using Eqs. 5.5

and 5.13 for each perforation of producers based on the history-match run according

to mbest.

3. Start production optimization and set k = 0, where k is the iteration index for steepest

ascent (Eq. 5.18). Use the observed BHP data and total injection and production rate

data at the end of production history to estimate the initial guesses of controls for all

control variables and generate the initial normalized control vector x0.

For k = 0, 1, . . . Nmaxiter,

• Generate Np perturbations of the normalized control vector, xk, by sampling from
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the Gaussian distribution N (xk, Cx); the perturbations are given by

x̂j = xk + C1/2
x Zj, j = 1, 2, . . . Np,

where

Zj ∼ N (0, I).

If a component of x̂j is outside the interval of [0,1], apply truncation to ensure all

components of x̂j satisfy the bound constraints.

• Run INSIM-FT-3D for each set of well controls, ûj = x̂j
[
uup − ulow

]
+ ulow, j =

1, 2, . . . Np to obtain corresponding NPV values.

• Compute the simplex gradient given by Eq. 5.22.

• Do linesearch based on the steepest ascent algorithm of Eq. 5.18 to obtain the

updated control vector xk+1 = xk + αk

[
dk
‖dk‖∞

]
. The initial stepsize for αk is set

to 0.1. If the linesearch can not find a control vector which increases the value of

NPV in the maximum allowable number of stepsize cuts, then we set xk+1 to the

set of controls obtained during the line search that gives the highest NPV. In the

examples we consider, the maximum number of stepsize cuts is set to 5.

• If the number of maximum simulation runsNmaxsim or maximum iterationNmaxiter

are reached, or both of the following conditions are satisfied,

|J(xk+1)− J(xk)|
max[J(xk), 1.0]

≤ εJ , (5.23)

‖xk+1 − xk‖
max[‖xk‖2, 1.0]

≤ εx, (5.24)

then terminate iteration. In the examples, we use εJ = 10−4 and εx = 10−3 .

End For

134



4. Record the values of u for xk that gives the highest NPV as the optimal well controls.

5.3 Example 1: Multilayer Channelized Reservoir.

The first example pertains to a channelized reservoir with multi-layers as shown in

Fig 4.10. The true model is represented by a CMG model with six layers. Each layer has a

50 by 50 grid and the size of each gridblock is 200 ft by 200 ft by 10 ft. The reservoir has four

injectors and five producers with the well locations and trajectories shown in Figs. 4.11 and

4.12. More information on this reservoir is presented in the second example of Chapter 4. The

history matching period lasts 1,500 days and the subsequent 1,500 days are for production

optimization based on the best-matched INSIM-FT-3D model. The number of control steps,

Nc, is set equal to 25, with each control step equal to 60 days in duration. The total

number of control variables is 225, which is equal to Nc times the number of wells. During

the optimization period, the well controls of injectors are water-injection-rate controls and

BHP controls are used for producers. The well indices of producers for pressure controls are

computed with Eqs. 5.5 and 5.13 from a single forward prediction run of INSIM-FT-3D with

mbest. The upper and lower bounds, respectively, for all BHP controls are 1,000 and 3,800

psi, where 3,800 is the initial reservoir pressure; injection rate controls are constrained to

be within [0, 15,000] RB/day. The initial guesses of the optimal controls are given by the

controls at the end of history matching period, which are 2,500 psi for BHP of all producers

and 10,000 RB/day for injection rates of all injectors.

The economic factors for optimization, see Eq. 5.1, are given by ro = 50 USD/RB,

cw = 5 USD/RB, cwi = 2 USD/RB and b = 0.1. For optimization with simplex gradient,

the number of perturbed well controls for gradient estimate is 20. The maximum number

of stepsize cuts for line search is 5; the initial search step for steepest ascent is 0.1; the

time-correlation length to enforce the temporal smoothness of well controls is 420 days; the

standard deviation of the spherical model we use to generate Cx defined in 3.17 is set to

0.01; the maximum number of allowable simulation runs is 1,000; the maximum number of

allowed iterations is 60.
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We perform production optimization based on running the history-matched INSIM-

FT-3D model and the true CMG model as the forward model respectively. The NPV values

versus forward runs obtained with the two different procedures are compared in Fig. 5.1.

For this example, the total computational time spent on optimization with INSIM-FT-3D

as the forward model is 10 minutes whereas it takes 11 hours to finish the optimization

procedure using CMG as the forward model. Within the same number of iterations, INSIM-

FT-3D yields an optimal NPV value, which is about 300 million USD more than the initial

NPV estimated with INSIM-FT-3D. Similar NPV gain is achieved by optimization directly

with the CMG true model, although the initial NPV estimated with CMG is 100 million

dollars higher than is estimated with INSIM-FT-3D due to the differences between the two

models. Figs. 5.2 and 5.3 show the comparisons of optimal well controls for INSIM-FT and

CMG. Overall, the optimal well controls obtained with INSIM-FT-3D and CMG are quite

similar for some wells, e.g., P2-P4. Both the results show that, in order to achieve the

best production performance, P2 and P4 are expected to be shut in whereas P3 should be

operated under the minimum allowable BHP.

We also compute the “true” NPV based on the optimal well controls generated with

INSIM-FT-3D by inputting these optimal controls into the true CMG model; see the second

row of Table 5.1. We can see that the NPV value obtained by using the INSIM-FT-3D

optimal controls in the true model is 2,406 million USD, which is quite close to the value

obtained with direct optimization with CMG (2,495 million USD). As shown in Table 5.1,

the optimal NPV values obtained with three different scenarios are quite close to each other,

which validates that our INSIM-FT-3D model can be used for generating a set of reliable

optimal well controls for NPV maximization.

5.4 Example 2: Brugge Reservoir

The Brugge reservoir is a synthetic field designed as a benchmark case for closed-

loop reservoir management Peters et al. (2010). Originally, the geological uncertainty of

this reservoir is represented by 104 Eclipse reservoir simulation models. In Chapter 4, we
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Figure 5.1: NPV versus forward runs, red stars represent CMG results; blue pluses represent
INSIM-FT-3D results.

(a) INSIM-FT-3D (b) CMG

Figure 5.2: Comparison of optimal injection rates obtained with INSIM-FT-3D and CMG.

Table 5.1: Comparison of NPV obtained with different scenarios. INSIM-FT-3D/CMG refers
to the NPV values obtained by inputting the INSIM-FT-3D generated initial and optimal
controls into the CMG true model; Simplex Opt refers to the results obtained by optimizing
well controls directly with CMG.

Initial, 106 USD Optimal, 106 USD
INSIM-FT-3D 2,060 2,390
INSIM-FT-3D/CMG 2,172 2,406
Simplex Opt 2,172 2,495
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(a) INSIM-FT-3D (b) CMG

Figure 5.3: Comparison of optimal production BHP obtained with INSIM-FT-3D and CMG.

used one realization out of 104 as the true model to generate the production history for

history matching with INSIM-FT-3D, with a history matching period equal to 3,600 days.

Here, the same example is presented to test the performance of INSIM-FT-3D for production

optimization, where optimization is done based on the history-matched INSIM-FT-3D model

that gives the best data-match, mbest. The production optimization period lasts for 3,600

days, which is subsequent to the first 3,600 days of the history matching period. The number

of control steps is 30 with each control step equal to 120 days in length. Considering that

the total number of wells is 30, namely, 10 injectors and 20 producers, the total number of

control variables is 30× 30 = 900. The control variables for injectors are the water injection

rates on control steps and for producers, the optimization variables are the BHPs on control

steps with the well indices of producers computed with Eq. 5.13 based on mbest. The upper

and lower bounds, respectively, for all BHP controls are 2,465 psi and 14.7 psi, respectively,

where 14.7 psi is the lowest BHP used in producers during the history matching period and

2,465 psi is the initial reservoir pressure. The controls of injection rates are constrained to

lie in the interval of [0, 8,000] RB/day. The initial guess of optimal controls are given by

the controls at the end of history matching period, with injection rates of 4,000 RB/day for

all the injectors. The initial guess of producer BHP varies from producer to producer; see

Table 5.2.
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Table 5.2: Initial guesses of optimal controls for producer BHP.

Well Name Initial BHP, psi
P1 720.6593
P2 1694.343
P3 870.0442
P4 789.0767
P5 1061.085
P6 1289.202
P7 910.0908
P8 853.7908
P9 14.7
P10 14.7
P11 1692.818
P12 2465
P13 1689.314
P14 777.9531
P15 2465
P16 945.6213
P17 1198.156
P18 1490.184
P19 1252.633
P20 1646.328

Production optimization is performed with the INSIM-FT-3D history-matched model,

mbest and the Eclipse true model and the comparison of NPV versus forward runs is shown

in Fig. 5.4. It can be seen that, optimization with the two methods both yield an optimal

NPV value around 3,450 million USD. To further validate the results obtained with INSIM-

FT-3D, the optimal well controls is applied in the Eclipse true reservoir simulation model

and the results are shown in Table 5.3. The results show that the optimal NPV obtained by

optimization directly with Eclipse is slightly lower than is obtained by using the optimal well

controls obtained with INSIM-FT-3D in the true model, which means that using simplex

gradient with Eclipse as the forward model resulted in an estimated optimal NPV which is

at least slightly suboptimal. In terms of computational efficiency, INSIM-FT-3D required

44 minutes for the entire optimization procedure whereas optimization with Eclipse requires

10.8 hours in total.

For the purpose of comparison, the optimal well controls generated with the true
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Eclipse model and the INSIM-FT-3D model are shown in Figs. 5.5 and 5.6. The optimal

well controls obtained with the two methods are qualitatively similar for some wells, such

as P1, P9, P14 and P20, whereas are quite different for some wells. There are two possible

reasons for such differences in well controls: (1) the optimization problem has multiple

solutions for this field-scale problem, which all can give similar value of NPV (van Essen

et al., 2011; Chen et al., 2012); (2) INSIM-FT-3D is a simplified proxy which cannot exactly

reproduce the entire physics of the full-scale model.

Fig. 5.7 shows the optimized oil saturation fields in the first layer at the end of the

reservoir life obtained with Eclipse (Fig. 5.7a) compared to those obtained with INSIM-

FT-3D (Fig. 5.7b). The results show that, even though the optimal well controls with two

methods are quite different for some wells, the final oil saturation fields are almost identical.

(a) INSIM-FT-3D (b) Eclipse

Figure 5.4: Comparison of optimal NPV values versus forward runs obtained with INSIM-
FT-3D and Eclipse, Brugge example.

Table 5.3: Comparison of NPV obtained with different scenarios. INSIM-FT-3D/Eclipse
refers to the NPV values obtained by inputting the INSIM-FT-3D generated initial and
optimal controls into the Eclipse true model; Simplex Opt refers to the results obtained by
optimizing well controls directly with Eclipse.

Initial, 106 USD Optimal, 106 USD
INSIM-FT-3D 3,058 3,475
INSIM-FT-3D/Eclipse 3,142 3,532
Simplex Opt 3,142 3,444
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(a) INSIM-FT-3D (b) Eclipse

Figure 5.5: Comparison of optimal injection rates obtained with INSIM-FT-3D and Eclipse,
Brugge example.

(a) INSIM-FT-3D (b) Eclipse

Figure 5.6: Comparison of optimal production BHP obtained with INSIM-FT-3D and
Eclipse, Brugge example.
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(a) Results of Eclipse Controls (b) Results of INSIM-FT-3D Controls

Figure 5.7: Optimized oil saturation field.
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CHAPTER 6

DISCUSSION AND CONCLUSIONS

In this work, we first develop a new data-driven model, the interwell numerical sim-

ulation model with front tracking (INSIM-FT) to history match, predict and optimize a

single-layered reservoir under waterflooding. The new model overcomes the two primary

defects of the original data-driven model, INSIM, which assumes relative permeabilities are

known a priori and also used an ad hoc method for saturation computation. Then we extend

INSIM-FT to allow for three-dimensional flow with gravity effects. The extended 3D model

is referred to as INSIM-FT-3D. We show that history matching and production optimization

can be successfully performed with INSIM-FT-3D.

INSIM-FT removes the deficiencies of INSIM by replacing the saturation calculation

in INSIM by a front-tracking procedure based on the semi-analytical solution of Riemann

and Cauchy problems and incorporating parameters of power-law relative permeabilities as

additional model parameters. Also, unlike INSIM, INSIM-FT adds additional flow paths

(stream tubes) via imaginary wells (additional nodes) to increase fidelity. Adding imaginary

wells, however, requires the development of the new method to determine the interwell

connectivity which is presented in this research. In addition, we show that when the interior-

point optimizer used for history matching in the original INSIM algorithm is replaced by

ES-MDA to obtain an modified procedure referred to as INSIM (ES-MDA), the history

matching errors decrease but are still significantly larger, in most cases, than the errors

obtained from INSIM-FT.

We apply INSIM-FT for two synthetic examples where we use a reservoir simula-

tion model to represent the true reservoir in order to generate production data for history-

matching as well as predictions of future reservoir performance. The computational results
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indicate that INSIM-FT gives better history matches, lower prediction errors and better

estimates of reservoir connectivity than are obtainable with the original INSIM where his-

tory matching is done with a Matlab interior point optimizer or with INSIM (ES-MDA)

which uses ES-MDA for history matching. This is the expected result based on the fact that

INSIM-FT incorporates more of the correct physics of flow than does INSIM. The results

demonstrate that INSIM-FT can detect the presence of a fault whereas INSIM cannot.

We also implement a modern capacitance resistance model (CRM) and compare its

performance with INSIM-FT. Overall, INSIM-FT outperforms CRM in terms of the quality

of the history match and determining reservoir connectivity. For the first example presented

in Chapter 2, however, the prediction error of CRM is almost zero and is much lower than

the history-matching error. This CRM result appears to be an anomaly as we expect the

history-matching error to be smaller than the prediction error which is always the case for

the INSIM, INSIM (ES-MDA) and INSIM-FT results obtained and is also the case for the

CRM results obtained for the second example in Chapter 2.

For production optimization with INSIM-FT, we aim to use the INSIM-FT model

obtained by history-matching as a forward model to estimate the well controls that optimize

the NPV of production for the remaining life of the reservoir. A method for estimating

well indices from the history-matched INSIM-FT model is presented in order to enable

using flowing wellbore pressures as well controls provided that data for the flowing wellbore

pressures are available during the history-matching period. If wellbore pressure data are

not available, only rate controls can be used when optimizing the NPV of production. We

consider the same two synthetic examples for production optimization, which are tested for

history matching with INSIM-FT. It is shown that when the optimal well controls generated

using INSIM-FT as the forward predictive model during production optimization are input

into the true reservoir model (reservoir simulation model), the NPV obtained is in good

agreement with the estimate of NPV obtained from optimization based on the INSIM-FT

model. Even for the very small synthetic examples considered, optimization using INSIM-

FT as the forward model requires more than one order of magnitude less computational
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time than is required when production optimization is done using the reservoir simulation

model as the forward model. The production optimization methodology based on INSIM-FT

was applied successfully to the same field example that is tested for history matching with

INSIM-FT.

We also extend the INSIM-FT model from two dimensions to three dimensions. The

new data-driven model, which is referred to as INSIM-FT-3D, includes gravitational effects.

When gravity is included, the water fractional flow curve may be no longer S-shaped and

generally may have two inflection points. In order to solve the Riemann problem when

the fractional flow function has more than one inflection point, we introduced a convex-

hull method. We develop an automated workflow by using the Mitchell’s best-candidate

algorithm and Delaunay triangulation with a modification in order to generate the imaginary

wells and the connection map for INSIM-FT-3D. By using this workflow, we avoid the

manual construction of the connection map for a large-scale problem with many wells of

arbitrary trajectories. As demonstrated by a synthetic example, INSIM-FT-3D can handle

wells with different orientations and inclinations with multiple perforated well segments. For

the field example considered, the results suggest that including gravity improves the history

match and future reservoir performance predictions. The Brugge example demonstrates the

applicability of INSIM-FT-3D for a field-scale problem with many wells.

We design a workflow to optimize well controls for a waterflooding reservoir based

on using the history-matched INSIM-FT-3D model as the forward model. Two three-

dimensional test cases including a Brugge field-scale reservoir are tested. From the com-

putational results, we show that the NPV calculated with the true reservoir model using

the optimal well controls obtained with INSIM-FT-3D is quite close to the INSIM-FT-3D-

generated optimal NPV. By inputting the optimal well controls generated with INSIM-FT-

3D in the true model, the obtained NPV is comparable with the optimal NPV generated

by optimization directly with the true model. However, the computational cost required to

optimize with INSIM-FT-3D is an order of magnitude less than what is required to optimize

NPV using the true reservoir model and a commercial reservoir simulator as the forward
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model. For the two examples presented, INSIM-FT-3D only takes less than one tenth of the

computational time that is required for optimization with a full-scale reservoir simulation

model.

Based on this work, the following conclusions are warranted.

1. INSIM-FT is more robust and flexible for assisted history matching than the original

INSIM, by providing a more rigorous way for saturation computation, introducing

imaginary wells and adding the option for matching relative permeabilities.

2. INSIM-FT gives a more accurate estimates of injection well allocation than are gener-

ated with CRM and INSIM.

3. INSIM-FT generally provides better history matches and predictions than does CRM.

4. INSIM-FT-3D is viable for 3D reservoirs with gravity effects.

5. In INSIM-FT-3D, the Buckley-Leverett problem with a fractional flow curve having

more than one inflection point can be successfully solved using a convex-hull method.

6. The INSIM-FT-3D model gives a slightly better history match and predictions for a

real field problem than are obtained with the original INSIM-FT model.

7. The optimal well controls obtained from INSIM-FT or INSIM-FT-3D when inputting

into the true model yield an estimated optimal NPV within 5% of the NPV generated

by directly optimizing the well controls using the true reservoir simulation.

8. The forward run of an INSIM-FT or INSIM-FT-3D model requires the computational

cost that is at least an order of magnitude less than what is required by running a

full-scale reservoir simulation model.

6.1 Future Work

The future work to improve the INSIM-FT model is to add the capability to history

match BHP data, which is not yet implemented in our INSIM-FT or INSIM-FT-3D software.
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Some studies have been done to improve the accuracy and resolution of the INSIM-FT model;

however, the history matching quality in terms of matching the BHP data is not significantly

improved. Even though we have not found a good solution to solve the BHP-matching

problem, it is worthwhile to show the studies we have done so far, i.e., to compute the

transmissibility along each connection in a more rigorous way. Currently, the transmissibility

is computed using Eq. A-19, which is repeated in the following equation:

T n−1
i,j = 1.127× 10−3ki,jAi,j

λt(S
n−1
w,i,j)

Li,j
= T 0

i,j

λt(S
n−1
w,i,j)

λt(S0
w,i,j)

, (6.1)

where λt(Sw,i,j) is determined by upstream weighting, i.e., if node i is upstream of node j,

then Sw,i,j = Sw,i; otherwise, Sw,i,j = Sw,j. By neglecting gravity effects, the total flow rate

along connection (i, j) is given by

qnt,i,j = T n−1
i,j (pnj − pni ) = 1.127× 10−3ki,jAi,j

λt(S
n−1
w,i,j)

Li,j(pnj − pni )
. (6.2)

However, from the Darcy law, the total flow rate along connection (i, j) is given by

qt,i,j = −1.127× 10−3ki,jAi,jλt(Sw(x))
dp

dx
. (6.3)

Following the INSIM-FT-3D formulation as Eq. 2.1, we consider the water saturation in

Eq. 6.3 is provided at time level n − 1 and pressure is at time level n, then Eq. 6.3 is

rewritten as

qnt,i,j = −1.127× 10−3ki,jAi,jλt(S
n−1
w (x))

dpn

dx
. (6.4)

By comparing Eq. 6.2 with Eq. 6.3, we can see that Eq. 6.2 gives a good estimate of qnt,i,j

only if λt(S
n−1
w,i,j)

pnj −pni
Li,j

is a good estimate of λt(S
n−1
w (x))dp

n

dx
, which we believe is a very strong

assumption. Next, we will derive a more rigorous method to compute Ti,j rather than using

Eq. 6.1. Rearranging Eq. 6.3 yields
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−
∫ pi

pj

dp = pj − pi =
qt,i,j

1.127× 10−3ki,jAi,j

∫ xi

xj

λ−1
t (Sw(x))dx, (6.5)

Where xi and xj, respectively, represent the location of node i and j. As Eq. 2.1, in Eq. 6.5,

we consider the pressures of node i and j are at level n and the saturation profile of connection

(i, j) is provided at time level n− 1, then Eq. 6.5 is rewritten as

pnj − pni =
qnt,i,j

1.127× 10−3ki,jAi,j

∫ xi

xj

λ−1
t (Sn−1

w (x))dx. (6.6)

Since we use front tracking to solve the saturation profile along connection (i, j), Sn−1
w (x) for

0 < x < Li,j is obtained as a piecewise constant function. By assuming that the piecewise

constant function has ns constant states which are represented by

[Sw,1, Sw,2, . . . Sw,ns ],

and each state has a length of ∆xk, k = 1, 2, . . . ns,
∫ xi
xj
λ−1
t (Sw(x)n−1)dx in Eq. 6.6 can be

calculated as

∫ xi

xj

λ−1
t (Sn−1

w (x))dx =
ns∑
k=1

∆xk
λt(Sw,k)

. (6.7)

Substituting Eq. 6.7 into Eq. 6.6 yields

pnj − pni =
qnt,i,j

1.127× 10−3ki,jAi,j

ns∑
k=1

∆xk
λt(Sw,k)

. (6.8)

By defining

λ
n−1

t =
Li,j∑ns

k=1
∆xk

λt(Sw,k)

,

Eq. 6.8 is simplified as

qnt,i,j =
1.127× 10−3ki,jAi,j

Li,j
λ
n−1

t (pnj − pni ). (6.9)
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By comparing Eq. 6.9 with Eq. 6.2, T n−1
i,j can be computed as

T n−1
i,j =

1.127× 10−3ki,jAi,j
Li,j

λ
n−1

t = T 0
i,j

λ
n−1

t

λt(S0
w,i,j)

, (6.10)

From the above derivations, it is shown that using Eq. 6.10 to compute T n−1
i,j has more

theoretical basis than using Eq. 6.1 under the situation that gravity effects can be neglected.

In our INSIM-FT-3D software, we have added the option to compute T n−1
i,j using Eq. 6.10,

however, the history matching quality using this option for pressure data match is not

significantly improved as compared to that obtained using the original formulation. Part of

the reason might be due to the lack of consideration of gravity effects in the above derivations,

or there is still some other key physics we have not captured in our INSIM-FT-(3D) models

to enable the pressure match.

149



BIBLIOGRAPHY

Albertoni, A. and L. W. Lake, Inferring connectivity only from well-rate fluctuations in water

floods, SPE Reservoir Evaluation & Engineering, 6(1), 6–16, 2003.

Aziz, K. and A. Settari, Petroleum reservoir simulation, Chapman & Hall, 1979.

Brouwer, D. and J. Jansen, Dynamic optimization of water flooding with smart wells using

optimal control theory, SPE Journal, 9, 391–402, 2004.

Cao, F., Development of a two-phase flow coupled capacitance resistance model, Ph.D. thesis,

The University of Texas at Austin, Austin, Texas, 2014.

Cao, F., H. Luo, and L. W. Lake, Development of a fully coupled two-phase flow based capac-

itance resistance model (CRM),, in Proceedings of SPE Improved Oil Recovery Symposium,

Tulsa, Oklahoma, USA, 12-16 April, SPE-169485-MS, 2014.

Cao, F., H. Luo, and L. W. Lake, Oil-rate forecast by inferring fractional-flow models from

field data with koval method combined with the capacitance/resistance model, SPE Reser-

voir Evaluation & Engineering, 18(04), 534–553, 2015.

Cardoso, M. A. and L. J. Durlofsky, Use of reduced-order modeling procedures for production

optimization, SPE Journal, 15(02), 426–435, 2010.

Castellini, A., H. Gross, Y. Zhou, J. He, and W. Chen, An iterative scheme to construct

robust proxy models, in Proceedings of ECMOR XII-12th European Conference on the

Mathematics of Oil Recovery, 2010.

Chen, B., A Stochastic Simplex Approximate Gradient for Production Optimization of WAG

and Continuous Water Flooding, Ph.D. thesis, The University of Tulsa, Tulsa, Oklahoma,

2017.

150



Chen, B., R.-M. Fonseca, O. Leeuwenburgh, and A. C. Reynolds, Minimizing the risk in the

robust life-cycle production optimization using stochastic simplex approximate gradient,

Journal of Petroleum Science and Engineering, 153, 331–344, 2017.

Chen, B. and A. C. Reynolds, Ensemble-based optimization of the water-alternating-gas-

injection process, SPE Journal, 21(03), 786–798, 2016.

Chen, B. and A. C. Reynolds, CO2 water-alternating-gas injection for enhanced oil recovery:

Optimal well controls and half-cycle lengths, Computers & Chemical Engineering, 113, 44

– 56, 2018.

Chen, C., Adjoint-gradient-based production optimization with the augmented Lagrangian

method, Ph.D. thesis, The University of Tulsa, Tulsa, Oklahoma, 2011.

Chen, C., G. Li, and A. C. Reynolds, Robust constrained optimization of short and long-term

NPV for closed-loop reservoir management, SPE Journal, 17(3), 849–864, 2012.

Chen, Y. and D. Oliver, Ensemble-based closed-loop optimization on brugge field,

SPE118926, 2009.

Chen, Y. and D. S. Oliver, Ensemble randomized maximum likelihood method as an iterative

ensemble smoother, Mathematical Geosciences, 44(1), 1–26, 2012.

Chen, Y., D. S. Oliver, and D. Zhang, Efficient ensemble-based closed-loop production opti-

mization, SPE Journal, 14(4), 634–645, 2009.

De Berg, M., M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf, Computational geom-

etry, in Computational Geometry, pp. 1–17, Springer, 2000.

de Montleau, P., A. Cominelli, D. R. K. Neylon, I. Pallister, O. Tesaker, and I. Nygard,

Production optimization under constraints using adjoint gradients, in Proceedings of the

10th European Conference on the Mathematical Oil Recovery - Amsterdam, 4-7 September,

SPE 109805, 2006.

151



Devadoss, S. L. and J. O’Rourke, Discrete and computational geometry, Princeton University

Press, 2011.

Do, S. T. and A. C. Reynolds, Theoretical connections between optimization algorithms

based on an approximate gradient, Computational Geosciences, 17(6), 959–973, 2013.

Dunbar, D. and G. Humphreys, A spatial data structure for fast Poisson-disk sample gener-

ation, ACM Transactions on Graphics (TOG), 25(3), 503–508, 2006.

Edelsbrunner, H., T. S. Tan, and R. Waupotitsch, An O(n2log(n)) time algorithm for the

minmax angle triangulation, SIAM Journal on Scientific and Statistical Computing, 13(4),

994–1008, 1992.

Emerick, A. A. and A. C. Reynolds, History matching time-lapse seismic data using the en-

semble Kalman filter with multiple data assimilations, Computational Geosciences, 16(3),

639–659, 2012.

Emerick, A. A. and A. C. Reynolds, Ensemble smoother with multiple data assimilations,

Computers & Geosciences, 55, 3–15, 2013a.

Emerick, A. A. and A. C. Reynolds, History-matching production and seismic data in a real

field case using the ensemble smoother with multiple data assimilation, in Proceedings of

the SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, 18-20 February,

SPE-163645-MS, 2013b.

Evensen, G., Sequential data assimilation with a nonlinear quasi-geostrophic model using

Monte Carlo methods to forecast error statistics, Journal of Geophysical Research, 99(C5),

10,143–10,162, 1994.

Fonseca, R., O. Leeuwenburgh, P. V. den Hof, and J. D. Jansen, Improving the ensemble op-

timization procedure through covariance matrix adaptation (CMA-EnOpt), in Proceedings

of the SPE Reservoir Simulation Symposium, SPE 163657, 2013.

152



Fonseca, R., O. Leeuwenburgh, E. D. Rossa, P. V. den Hof, and J. D. Jansen, Ensemble-

based multi-objective optimization of on-off control devices under geological uncertainty,

in Proceedings of SPE Reservoir Simulation Symposium, SPE 173268, Montgomery, Texas,

USA, 20-22 February, 2015.

Fonseca, R. M., B. Chen, J. D. Jansen, and A. C. Reynolds, A stochastic simplex approx-

imate gradient (StoSAG) for optimization under uncertainty, International Journal for

Numerical Methods in Engineering, Online First, 2016.

Gao, G., G. Li, and A. C. Reynolds, A stochastic algorithm for automatic history matching,

in Proceedings of the SPE Annual Technical Conference and Exhibition, SPE 90065, 2004.

Gao, G. and A. C. Reynolds, An improved implementation of the LBFGS algorithm for

automatic history matching, SPE Journal, 11(1), 5–17, 2006.

Gao, G., J. C. Vink, C. Chen, F. O. Alpak, and K. Du, A parallelized and hybrid data-

integration algorithm for history matching of geologically complex reservoirs, SPE Journal,

21(06), 2–155, 2016.

Gentil, P., The Use of Multilinear Regression Models in Patterned Waterfloods: Physical

Meaning of the Regression Coefficients, Master’s thesis, University of Texas at Austin,

Austin, Texas, 2005.

Gildin, E., M. Ghasemi, A. Romanovskay, and Y. Efendiev, Nonlinear complexity reduction

for fast simulation of flow in heterogeneous porous media, in Proceedings of SPE Reservoir

Simulation Symposium, The Woodlands, Texas, USA, 18-20 February, SPE-163618-MS,

2013.

Gu, Y. and D. S. Oliver, An iterative ensemble Kalman filter for multiphase fluid flow data

assimilation, SPE Journal, 12(4), 438–446, 2007.

Guo, Z., C. Chen, G. Gao, R. Cao, R. Li, and C. Liu, EUR assessment of unconven-

tional assets using machine learning and distributed computing techniques, in Proceedings

153



of SPE/AAPG/SEG Unconventional Resources Technology Conference, Austin, Texas,

USA, 24-26 July, URTEC-2659996-MS, Unconventional Resources Technology Conference

(URTEC), 2017a.

Guo, Z., C. Chen, G. Gao, and J. Vink, Applying support vector regression to reduce the

effect of numerical noise and enhance the performance of history matching, in Proceedings

of SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 9-11

October, SPE-187430-MS, Society of Petroleum Engineers, 2017b.

Guo, Z., A. C. Reynolds, and H. Zhao, A physics-based data-driven model for history-

matching, prediction and characterization of waterflooding performance, in Proceedings of

the SPE Reservoir Simulation Conference, SPE-182660-MS, 2017c.

Guo, Z., A. C. Reynolds, and H. Zhao, A physics-based data-driven model for history match-

ing, prediction, and characterization of waterflooding performance, SPE Journal, in press

2018a.

Guo, Z., A. C. Reynolds, and H. Zhao, Waterflooding optimization with the INSIM-FT

data-driven model, Computational Geosciences, in press 2018b.

He, J. and L. J. Durlofsky, Reduced-order modeling for compositional simulation by use of

trajectory piecewise linearization, SPE Journal, 19(05), 858–872, 2014.

He, J., J. Xie, X.-H. Wen, and W. Chen, Improved proxy for history matching using proxy-

for-data approach and reduced order modeling, in Proceedings of SPE Western Regional

Meeting, Garden Grove, California, USA, 27-30 April, SPE-174055-MS, 2015.

Heffer, K. J., R. J. Fox, C. A. McGill, and N. Koutsabeloulis, Novel techniques show links be-

tween reservoir flow directionality, earth stress, fault structure and geomechanical changes

in mature waterfloods, SPE Journal, 1997.

Holden, H., L. Holden, and R. Høegh-Krohn, A numerical method for first order nonlinear

154



scalar conservation laws in one-dimension, Computers & Mathematics with Applications,

15(6), 595–602, 1988.

Iglesias, M. A. and C. Dawson, The regularizing Levenberg–Marquardt scheme for history

matching of petroleum reservoirs, Computational geosciences, 17(6), 1033–1053, 2013.

IMEX, User Guide, Computer Modelling Group Ltd., 2010.

Jansen, F. E. and M. G. Kelkar, Non-stationary estimation of reservoir properties using pro-

duction data, in SPE Annual Technical Conference and Exhibition, San Antonio, Texas,

USA, 5-8 October, SPE-38729-MS, 1997.

Jansen, J., D. Brouwer, G. Naevdal, and C. van Kruijsdijk, Closed-loop reservoir manage-

ment, First Break, 23, 43–48, 2005.

Jansen, J. D., S. D. Douma, D. R. Brouwer, P. M. J. V. den Hof, and A. W. Heemink, Closed-

loop reservoir management, in Proceedings of the SPE Reservoir Simulation Symposium,

The Woodlands, Texas, 2–4 February, SPE 119098, 2009.

Juanes, R. and T. W. Patzek, Multiscale numerical modeling of three-phase flow, in Pro-

ceedings of the SPE Annual Technical Conference and Exhibition, SPE-84369-MS, 2003.

Kahrobaei, S., G. Van Essen, J. Van Doren, P. Van den Hof, J. Jansen, et al., Adjoint-based

history matching of structural models using production and time-lapse seismic data, in

SPE Reservoir Simulation Symposium, Society of Petroleum Engineers, 2013.

Kraaijevanger, J. F. B. M., P. J. P. Egberts, J. R. Valstar, and H. W. Buurman, Optimal wa-

terflood design using the adjoint method, in Proceedings of the SPE Reservoir Simulation

Symposium, SPE-105764-MS, 2007.

Lake, L. W., X. Liang, T. F. Edgar, A. Al-Yousef, M. Sayarpour, and D. B. Weber, Opti-

mization of oil production based on a capacitance model of production and injection rates,

in Proceedings of hydrocarbon economics and evaluation symposium, Dallas, Texas, USA,

1-3 April, SPE-107713-MS, 2007.

155



Landa, J. L. and B. Güyagüler, A methodology for history matching and the assessment

of uncertainties associated with flow prediction, in Proceedings of SPE Annual Technical

Conference and Exhibition, Denver, Colorado, USA, 5-8 October, SPE-84465-MS, 2003.

Le, D. H., A. A. Emerick, and A. C. Reynolds, An adaptive ensemble smoother with multiple

data assimilation for assisted history matching, SPE Journal, 21(06), 2,195–2,207, 2016.

Lerlertpakdee, P., B. Jafarpour, and E. Gildin., Efficient production optimization with flow-

network models., SPE Journal, 19, 1083–1095, 2014.

Li, G. and A. C. Reynolds, Iterative ensemble Kalman filters for data assimilation, SPE

Journal, 14(3), 496–505, 2009.

Li, R., A. C. Reynolds, and D. S. Oliver, History matching of three-phase flow production

data, SPE Journal, 8(4), 328–340, 2003.

Lie, K. A. and R. Juanes, A front-tracking method for the simulation of three-phase flow in

porous media, Computational Geosciences, 9(1), 29–59, 2005.

Liu, D. and J. Nocedal, On the limited memory BFGS method for large scale optimization,

Mathematical Programming, 45, 503–528, 1989.

Liu, X. and A. C. Reynolds, Augmented Lagrangian method for maximizing expectation

and minimizing risk for optimal well control problems with nonlinear constraints, SPE

Journal, 21(5), 1830–1842, 2016a.

Liu, X. and A. C. Reynolds, Gradient-based multi-objective optimization with applications

to waterflooding optimization, Computational Geosciences, 20(3), 677–693, 2016b.

Lorentzen, R. J., A. M. Berg, G. Nævdal, and E. H. Vefring, A new approach for dynamic

optimization of waterflooding problems, in Proceedings of the SPE Intelligent Energy Con-

ference and Exhibition, SPE 99690, 2006.

156



Markovinovic, R., E. Geurtsen, T. Heijn, and J. Jansen, Generation of low-order reservoir

models using pod, emperical grammians and subspace identification, in Proceedings of

ECMOR VIII-8th European Conference on the Mathematics of Oil Recovery, 2002.

MathWorks, The language of technical computing., MATLAB, 2004.

Mitchell, D. P., Spectrally optimal sampling for distribution ray tracing, in ACM SIG-

GRAPH Computer Graphics, vol. 25, pp. 157–164, ACM, 1991.

Nævdal, G., T. Mannseth, and E. H. Vefring, Near-well reservoir monitoring through en-

semble Kalman filter, in Proceedings of the SPE/DOE Improved Oil Recovery Symposium,

13–17 April, SPE 75235, 2002.

Nash, S. G. and A. Sofer, Linear and nonlinear programming, Ohio: McGraw-Hill Sci-

ence/Engineering/Math, 1996.

Nguyen, A. P., Capacitance Resistance Modeling for Primary Recovery, Waterflood and

Water-CO2 Flood, Ph.D. thesis, University of Texas at Austin, Austin, Texas, 2012.

Oleinik, O. A., Discontinuous solutions of non-linear differential equations, Uspekhi Matem-

aticheskikh Nauk, 12(3), 3–73, 1957.

Oliveira, D. F. and A. C. Reynolds, An adaptive hierarchical multiscale algorithm for esti-

mation of optimal well controls, SPE Journal, 19(05), 909–930, 2014.

Oliver, D. S., N. He, and A. C. Reynolds, Conditioning permeability fields to pressure data,

in Proceedings of the European Conference for the Mathematics of Oil Recovery, 1996.

Peaceman, D. W., Interpretation of well-block pressures in numerical reservoir simulation

(includes associated paper 6988), Society of Petroleum Engineers Journal, 18(03), 183–

194, 1978.

Peaceman, D. W., Interpretation of well-block pressures in numerical reservoir simulation

with nonsquare grid blocks and anisotropic permeability, Society of Petroleum Engineers

Journal, 23(03), 531–543, 1983.

157



Peters, L., R. Arts, G. Brouwer, C. Geel, S. Cullick, R. Lorentzen, Y. Chen, K. Dunlop,

F. Vossepoel, R. Xu, P. Sarma, A. Alhuthali, and A. Reynolds, Results of the Brugge

benchmark study for flooding optimisation and history matching, SPE Reservoir Evalua-

tion & Engineering, 13(3), 391–405, 2010.

Powell, M. J., Least Frobenius norm updating of quadratic models that satisfy interpolation

conditions, Math programming, 100, 183–215, 2004.

Refunjol, B. T., Reservoir characterization of North Buck Draw field based on tracer response

and production/injection analysis, Master’s thesis, University of Texas at Austin, 1996.

Reynolds, A. C., N. He, and D. S. Oliver, Reducing uncertainty in geostatistical description

with well testing pressure data, in Reservoir Characterization–Recent Advances, (edited

by R. A. Schatzinger and J. F. Jordan), pp. 149–162, American Association of Petroleum

Geologists, 1999.

Reynolds, A. C., R. Li, and D. S. Oliver, Simultaneous estimation of absolute and rela-

tive permeability by automatic history matching of three-phase flow production data, J.

Canadian Pet. Tech., 43(3), 37–46, 2004.

Reynolds, A. C., M. Zafari, and G. Li, Iterative forms of the ensemble Kalman filter, in

Proceedings of 10th European Conference on the Mathematics of Oil Recovery, Amsterdam,

4–7 September, 2006.

Sarma, P., K. Aziz, and L. Durlofsky, Implementation of adjoint solution for optimal control

of smart wells, SPE-92864-ms, 2005.

Sayarpour, M., Development and Application of Capacitance-Resistive Models to Water/C02

Flood, Ph.D. thesis, University of Texas at Austin, Austin, Texas, 2008.

Schlumberger, Eclipse reference manual (2013.1), 2013a.

Schlumberger, Frontsim user guide (2013.1), 2013b.

158



Smola, A. and V. Vapnik, Support vector regression machines, Advances in neural informa-

tion processing systems, 9, 155–161, 1997.

Tarantola, A., Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM,

Philadelphia, USA, 2005.

Thiele, M. R. and R. P. Batycky, Using streamline-derived injection efficiencies for improved

waterflood management, SPE Reservoir Evaluation & Engineering, 9(02), 187–196, 2006.
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APPENDIX A

DERIVATION OF INSIM-FT

Considering the two-phase flow of oil and water and neglecting gravity and capillarity

effects (Guo et al., 2018a), the material balance equation at the bulk volume controlled by

well i, which is denoted by Vb,i, is given by

1

5.615

∂

∂t

∫
Vb,i

(ρmφSm)dv = 1.127× 10−3

∫
Si

(ρm
k · krm
µm

∂p

∂n
)dS + ρmqm,i, m = o, w, (A-1)

where Si in ft2 denotes the surface area of bulk volume, Vb,i in ft3; φ is the porosity; Sm

is the saturation; and µm is the viscosity in cp of m phase for m = o, w; k is the absolute

permeability in md. Under the subsurface condition, ρm is the fluid density in lbm/RB and

qm,i is the volumetric phase rate in RB/day injected/produced from the control volume i,

for m = o, w, where a positive value of qm,i denotes injection and a negative value denotes

production. Eliminating the integrand at the first term by taking the average property of

this control volume i gives,

∂

∂t

∫
Vb,i

(ρmφSm)dv

=Vb,i
∂

∂t
(ρm,iφiSm,i)

=ρm,iVb,iφi

(
∂Sm,i
∂t

+ Sm,i(cr + cm)
∂pi
∂t

)
=ρm,iVp,i

(
∂Sm,i
∂t

+ Sm,i(cr + cm)
∂pi
∂t

)
,

(A-2)

where Vp,i = Vb,iφi, is the pore volume controlled by well i in ft3; cr is the rock compressibility

in psi−1; cm is the fluid compressibility in psi−1, for m = o, w, where each compressibility is
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assumed to be constant; Sm,i and ρm,i in lbm/RB, respectively, are the average saturation

and fluid density in Vp,i, for m = o, w and φi is the average porosity of control volume i.

From Fig. 2.1, we assume that, each “streamtube” which is connected to well i has half its

volume within the volume controlled by well i. Then, Vp,i is given by

Vp,i = 0.5

nc,i∑
j=1

Vp,i,j, (A-3)

where nc,i is the number of wells connected to well i. The second integrand of Eq. A-1

denotes the mass rate of phase m flowing into the control volume i from all the connected

volumes and thus can be rewritten as the sum of mass rates of all volumes connected to well

i; i.e., ∫
S

(ρm
k · krm
µm

∂p

∂n
)dS =

nc,i∑
j=1

ρm,i,jAi,j
ki,jkrm,i,j
µm

∂p

∂n
|i,j , (A-4)

where Ai,j is the average cross-sectional area of the flow connective unit between well i and

well j in ft2; ki,j is the absolute permeability in the associated volume in md and ρm,i,j

is the phase density within the connective volume in lbm/RB. Approximating the normal

derivative by

∂p

∂n
|i,j =

pj − pi
Li,j

, (A-5)

and substituting Eq. A-5 into Eq. A-4 gives

∫
S

(ρm
k · krm
µm

∂p

∂n
)dS =

nc,i∑
j=1

ρm,i,jAi,j
ki,jkrm,i,j
µm

(pj − pi)
Li,j

. (A-6)

Assuming that ρm for m = o, w in the third term of Eq. A-1 is equal to ρm,i yields

ρmqm,i = ρm,iqm,i. (A-7)

Combining Eqs. A-2, A-6 and A-7 yields
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1

5.615
ρm,iVp,i

(
∂Sm,i
∂t

+ Sm,i(cr + cm)
∂pi
∂t

)
= 1.127× 10−3

nc,i∑
j=1

ρm,i,jAi,j
ki,jkrm(Sw,i,j)

µm

pj − pi
Li,j

+ ρm,iqm,i. (A-8)

For m = o, w, we assume that the effect of fluid compressibility is sufficiently small, so that

we can assume

ρm,i = ρm,i,j, j = 1, 2, . . . , nc,i

is valid. Then we can eliminate the density term in Eq. A-8 to obtain

1

5.615
Vp,i

(
∂Sm,i
∂t

+ Sm,i(cr + cm)
∂pi
∂t

)
= 1.127× 10−3

nc,i∑
j=1

Ai,j
ki,jkrm(Sw,i,j)

µm

pj − pi
Li,j

+ qm,i.

(A-9)

Summing Eq. A-9 for the oil and water phases gives

1

5.615
Vp,i(cr + Sw,icw + So,ico)

∂pi
∂t

= 1.127× 10−3

nc,i∑
j=1

Ai,jki,j

(
kro(Sw,i,j)

µo
+
krw(Sw,i,j)

µw

)
pj − pi
Li,j

+ qo,i + qw,i. (A-10)

The total mobility, total compressibility and total volumetric rate, respectively, are defined

by

λt(Sw) =
kro(Sw)

µo
+
krw(Sw)

µw
, (A-11)

ct,i = So,ico + Sw,icw + cr, (A-12)

and

qt,i = qo,i + qw,i. (A-13)
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Substituting Eqs. A-11-A-13 into Eq. A-10 yields

1

5.615
Vp,ict,i

∂pi
∂t

= 1.127× 10−3

nc,i∑
j=1

Ai,jki,jλt(Sw,i,j)
pj − pi
Li,j

+ qt,i, (A-14)

where λt is evaluated by upstream weighting, i.e. if pj > pi, then Sw,i,j = Sw,j; otherwise,

Sw,i,j = Sw,i, where Sw,i and Sw,j, respectively, are the saturations at the well node i and j.

We define the transmissibility as

Ti,j = 1.127× 10−3ki,jAi,jλt(Sw,i,j)

Li,j
. (A-15)

Substituting Ai,j =
Vp,i,j
φi,jLi,j

into Eq. A-15 yields another form of Ti,j, i.e.,

Ti,j = 1.127× 10−3ki,jVp,i,jλt(Sw,i,j)

φi,jL2
i,j

. (A-16)

Substituting Eq. A-15 into Eq. A-14, we obtain

1

5.615
ct,iVp,i

∂pi
∂t

=

nc,i∑
j=1

Ti,j(pj − pi) + qt,i. (A-17)

Discretizing Eq. A-17 by finite-difference in an implicit-pressure-explicit-saturation (IMPES)

way gives
nc,i∑
j=1

T n−1
i,j (pnj − pni ) + qnt,i =

1

5.615

cn−1
t,i V n−1

p,i

∆tn
(pni − pn−1

i ), (A-18)

where

T n−1
i,j = 1.127× 10−3ki,jAi,j

λt(S
n−1
w,i,j)

Li,j
= T 0

i,j

λt(S
n−1
w,i,j)

λt(S0
w,i,j)

, (A-19)

with λt(S
0
w,i,j) specified as the total mobility at initial water saturation and Sn−1

w,i,j is equal to

the saturation of the upstream well node between the connection (i, j) at time level n − 1.

By assuming that reservoir is water wetting and the initial water saturation is equal to
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irreducible water saturation, Siw, and that kro(Siw) = 1, it follows that

λt(S
0
w,i,j) =

1

µo
.

From Eq. A-3, V n−1
p,i in Eq. A-18 is given by

V n−1
p,i = 0.5

nc,i∑
j=1

V n−1
p,i,j , (A-20)

where V n−1
p,i,j is approximated by the following first-order Taylor series expansion:

V n−1
p,i,j = V 0

p,i,j(1 + cr(p
n−1
i,j − p0)), (A-21)

where p0 is the initial reservoir pressure, and

pn−1
i,j = 0.5(pn−1

i + pn−1
j ).

The expression for cn−1
t,i in Eq. A-18 is evaluated with Eq. A-12, i.e.,

cn−1
t,i = Sn−1

o,i co + Sn−1
w,i cw + cr.
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APPENDIX B

DERIVATION OF FRONT TRACKING METHOD

The Riemann problem (Juanes and Patzek, 2003) consists of finding a (weak) solution

to the initial value problem:

∂Sw
∂t

+ η
∂fw
∂x

= 0,

Sw(x, 0) =

Swl if x < x0

Swr if x > x0

,
(B-1)

where η is a constant and the partial differential equation (PDE) represents a conservation

law. Assuming that Swl 6= Swr, there is a single discontinuity in the initial saturation profile

at x0. The solution to the problem is a wave connecting the left (Swl) and right (Swr)

states. For the problems considered here, we neglect gravity and capillarity, and assume

the fractional flow curve is S shaped with a convex part connected to a concave part. The

characteristic wave may involve three possible wave types, namely, a single rarefaction wave,

a single shock wave, and a composite rarefaction-shock wave (Juanes and Patzek, 2003).

Single Shock. A shock is a discontinuous wave existing in the form of a weak solution. A

single shock might develop when two characteristics intersect and the characteristic speed of

the left state is greater than that of the right state, which is the necessary condition that a

single shock develops. Given two states, Swl and Swr, the trial shock speed σ is determined

by Rankine-Hugoniot condition:

σtrial = η
fw(Swl)− fw(Swr)

Swl − Swr
. (B-2)
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To guarantee the shock wave with speed of σtrial is admissible, Oleinik entropy condition

must be satisfied (Oleinik, 1957) for all Sw between Swl and Swr, i.e., we must have

fw(Sw)− fw(Swl)

Sw − Swl
≥ fw(Swr)− fw(Swl)

Swr − Swl
≥ fw(Swr)− fw(Sw)

Swr − Sw
. (B-3)

For our problems with only one inflection point in fw(Sw), there is an alternative entropy

condition which is weaker than the condition of Eq. B-3 but also is sufficient to ensure that

the solution of Eq. B-1 is a single shock, i.e., if the given Swl and Swr satisfy

f
′

w(Swl) ≥ σtrial ≥ f
′

w(Swr), (B-4)

Then there is a single shock solution of Eq. B-1 which is given by

Sw(x, t) =

 Swl,
x−x0

t
< σtrial

Swr,
x−x0

t
> σtrial

. (B-5)

where x0 is the location of the single discontinuity in the initial condition.

Single Rarefaction. A single rarefaction wave is a smooth function Sw(x, t) that connects

Swl and Swr. It develops when f
′
w increases monotonically from the left state to the right

state, and for an S-shaped fw curve with a single inflection point Sw0, a necessary and

sufficient condition for the saturation to be a rarefaction wave is given by

Swl > Swr ≥ Sw0 or Swl < Swr ≤ Sw0, (B-6)

where Sw0 is the inflection point of fw(Sw). If we know the analytical form of f
′′
w, it is

convenient to replace Eq. B-6 by the simpler condition given by

f
′′

w(Swl) · f
′′

w(Swr) ≥ 0 and f
′

w(Swl) < f
′

w(Swr). (B-7)
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The closed form solution of a single rarefaction is given by

Sw(x, t) =


Swl,

x−x0

t
< ηf

′
w(Swl)

(f
′
w)−1(x−x0

ηt
), ηf

′
w(Swl) <

x−x0

t
< ηf

′
w(Swr)

Swr,
x−x0

t
> ηf

′
w(Swr)

. (B-8)

Composite Rarefaction-Shock. When the left and right states are in different convexity

regions of fw(Sw), the solution can involve one rarefaction wave and one shock. In this

situation, a single shock and a single rarefaction connect at some intermediate point Sw∗

called the post-shock value (Juanes and Patzek, 2003). This is the value of Sw at which

the left characteristic speed (rarefaction wave) equals the speed of the right discontinuity

(shock), i.e.,

σ∗ = ηf
′

w(Sw∗) = η
fw(Sw∗)− fw(Swr)

Sw∗ − Swr
, (B-9)

where σ∗ is the trial shock speed. After obtaining the post-shock value of Sw∗, we check the

Oleinik entropy condition in Eq. B-10 to see if Sw∗ to Swr is an admissible shock. The shock

is admissible if for all Sw between Swr and Sw∗,

fw(Sw)− fw(Sw∗)

Sw − Sw∗
≥ fw(Swr)− fw(Sw∗)

Swr − Sw∗
≥ fw(Swr)− fw(Sw)

Swr − Sw
. (B-10)

If the condition of Eq. B-10 is violated, then the Riemann solution must not be the composite

rarefaction-shock wave. Otherwise, to confirm the solution is the composite wave, we have

to verify there is an admissible rarefaction wave behind the admissible shock, i.e., f
′
(Sw)

is monotonically increasing from Swl to Sw∗. The closed-form of the composite rarefaction-

shock is given by

Sw(x, t) =


Swl,

x−x0

t
< ηf

′
w(Swl)

(f
′
w)−1(x−x0

ηt
), ηf

′
w(Swl) <

x−x0

t
< ηf

′
w(Sw∗)

Swr,
x−x0

t
> ηf

′
w(Sw∗)

. (B-11)
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A simpler way to look at the problem is to recognize that there are only three types of

possible solutions, (i) a single shock wave, (ii) a single rarefaction wave, and (iii) a composite

solution consisting of a shock wave and a rarefaction wave. If we rule out (i) and (ii), the only

possibility is (iii). In general, combining the three solution types, the complete algorithm to

solve the Riemann problem defined in Eq. B-1 is described in the algorithm below, which

represents the solution obtained by the method of characteristics (MOC) (Yuan et al., 2016).

Algorithm 1: Complete Algorithm to Solve Riemann Problems

1. Define left and right states, Swl, Swr.

2. Compute the trial shock speed from Rankine-Hugoniot jump condition: σtrial = η fw(Swl)−fw(Swr)
Swl−Swr

.

3. IF f
′
w(Swl) ≥ σtrial ≥ f

′
w(Swr) THEN

• S: Single Shock with speed σ = σtrial.

ELSE IF f
′
w(Swl) < f

′
w(Swr) and f

′′
w(Swl)f

′′
w(Swr) > 0 THEN

• R: Single rarefaction,

ELSE

• RS: Composite rarefaction-shock.

• Compute the post-shock value Sw∗, by solving f
′
w(Sw∗) = fw(Sw∗)−fw(Swr)

Sw∗−Swr .

END

4. END

If we use the power-law relative permeability curve, the fractional curve has an an-

alytical form and the first and second order derivatives can be obtained easily analytically.

So the criteria to determine the solution types can be computed easily. Eq. B-9 is solved by

the Newton-Raphson method.
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B.1 Front Tracking Algorithm

The Riemann problem (Eq. B-1) is a simple form of a Cauchy problem with the initial

condition given by a step function with a single discontinuity. In the application of the INSIM

model (Zhao et al., 2015), we often encounter the Cauchy problem with nonuniform initial

conditions given by
∂Sw
∂t

+ η
∂fw
∂x

= 0,

Sw(x, 0) = Sw0(x),

(B-12)

where the initial condition is not a piecewise constant function of x. If the function Sw0(x)

is replaced by a combination of an infinite number of constant states, we could divide the

Cauchy problem into an infinite number of local Riemann problems, which can be solved with

the help of Algorithm 1. By connecting solutions of local Riemann problems, theoretically, we

can obtain the exact solution for the problem of Eq. B-12. In practice, the initial condition

should be discretized into a finite number of piecewise constant states where every two

neighboring constant states define a sub-Riemann problem. By connecting the solutions of

all sub-Riemann problems, Eq. B-12 is properly solved. However, if the initial saturation of

Eq. B-12 is the initial condition of a classic Buckley-Leverett problem, the discretization of

the initial condition is no longer needed.

The front tracking method presented here is similar to the one that was originally

proposed by Holden et al. (1988) to generate the approximate solution to the Cauchy problem

of Eq. B-12. In the most general situations, we need to discretize the continuous initial

condition by a piecewise constant function as shown in Fig. B-1: the Cauchy problem can be

decoupled into a set of local Riemann problems. Each Riemann problem shares a common

constant state with its neighbor. We can use the Riemann solver given in Algorithm 1 to

solve these local Riemann problems to obtain the exact MOC solutions. As shown in Fig. B-

2, because the Riemann solutions which involve a rarefaction wave are spreading into a fan

shape in the x-t diagram, the Riemann solutions (including the single shock case) of one

local Riemann problem are also referred to as a Riemann fan (Lie and Juanes, 2005). These

Riemann fans as the solutions of a series of local Riemann problems are well-defined until the
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characteristics of two neighboring Riemann fans intersect each other in the x − t diagram.

The intersection is also referred to as a collision.

x

𝒙𝟏
𝟎

𝒙𝟐
𝟎 𝒙𝟑

𝟎

𝑺𝒘𝟎

Figure B-1: Approximation of the initial condition. Here the initial condition of Sw is a
continuous function of x. We approximate it by a piecewise constant function with four
constant states, which produce three local Riemann problems between each two neighboring
constant states.

t

0

𝚫t

(𝒙𝟏, 𝒕𝟏)

𝒙𝟏
𝟎 𝒙𝟐

𝟎 𝒙𝟑
𝟎𝟎 𝑳𝒙

Figure B-2: Solution waves of three local Riemman problems shown in Fig. B-1. Each
of the dash lines represents a characteristic in the corresponding rarefaction. Each of the
solid lines represents a shock. The solutions of all these three Riemann problems are the
composite rarefaction-shock waves. These three Riemann fans are valid until the shock in
the second Riemann fan intersects with the first characteristic in the third Riemann fan. A
new Riemann problem generates at the intersection point (x1, t1).

The collisions of Riemann fans often yield a curved shock path in the x− t diagram,

where the shock speed is changing as propagation continues. The computation of a curved

shock path is computationally expensive since it is associated with numerical integration.

The common way to avoid the complication of directly computing the curved shock path is

to eliminate the rarefaction waves (Holden et al., 1988). In our application, the continuous
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rarefaction wave in each Riemann fan is approximated with a sequence of small shocks. Each

small shock is regulated to have a shock length smaller than a tolerance δSw to guarantee

numerical accuracy. The shock speed is computed with the Rankine-Hugoniot jump condi-

tion in Eq. B-2, even though the Oleinik entropy condition may be violated. Assuming one

rarefaction wave in a Riemann fan ranges between SwL and SwR, where SwL is in upstream

of SwR, then given δSw, we calculate the largest integer N which satisfies

N ≤ |(SwL − SwR)|
δSw

.

Then, the interval between SwL and SwR is equally divided into N subintervals, which yields

a vector of water saturations,

[Sw0, Sw1, . . . , SwN ],

where Sw0 = SwL and SwN = SwR. In this vector, every pair of two connected saturations

Sw,j and Sw,j+1 represents an approximate shock combining the saturation between Sw,j

and Sw,j+1. By doing this approximation, the solutions to all local Riemann problems are

composed of a set of shocks, which are referred to as shock clusters. To adapt to the

front tracking algorithm, the Riemann solver in Algorithm 1 is revised accordingly to obtain

Algorithm 2.

Algorithm 2: Calculation of Shock Clusters

1. Given left and right states: Swl, Swr, δSw,

2. Compute the trial shock speed from the Rankine-Hugoniot jump condition: σtrial =

η fw(Swl)−fw(Swr)
Swl−Swr

.

3. IF f
′
w(Swl) > σtrial > f

′
w(Swr) THEN

• S: Single Shock with speed σ = σtrial.
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ELSE IF f
′
w(Swl) < f

′
w(Swr) and f

′′
w(Swl)f

′′
w(Swr) > 0 THEN

• Use multiple small shocks to approximate the rarefaction wave that connects Swl

and Swr.

ELSE

• Use multiple shocks to approximate the rarefaction wave that connects Swl and

Sw∗ which follows a real shock which combines the saturation between Sw∗ and

Swr.

• Compute the post-shock value Sw∗, by solving f
′
w(Sw∗) = fw(Sw∗)−fw(Swr)

Sw∗−Swr .

END IF

4. END

Choosing a large value of δSw tends to cause a large material balance error but

requires less computational time to obtain solutions. Based on computational experiments,

in order to balance the error and computational efficiency, we choose δSw = 0.01. After

solving all the local Riemann problems defined for the initial condition and approximating

the rarefaction by small shocks, as shown in Fig. B-3, we obtain a set of shock clusters, which

propagate until the first collision occurs. It is easy to see that collisions always happen at

the boundary between two neighboring shock clusters. By computing all the collision times

between any two neighboring shock clusters, we can find the earliest collision. For example, in

Fig. B-3, there are three shock clusters initially. After computing the collision time between

each two neighboring shock clusters, it is seen that the earliest collision occurs between the

second shock and third shock cluster at (x1, t1). At the particular collision, the new Riemann

problem is given by
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∂Sw
∂t

+ ηf
′

w(Sw)
∂Sw
∂x

= 0, t > t1,

Sw(x, t1) =

 Swl, x < x1

Swr, x > x1
,

(B-13)

where left (Swl) and right states (Swr) are given by the values immediately to the left and

to the right of the colliding shocks.

t

0

𝚫t

(𝒙𝟏, 𝒕𝟏)

(𝒙𝟐, 𝒕𝟐)

𝒙𝟏
𝟎 𝒙𝟐

𝟎 𝒙𝟑
𝟎𝟎 𝑳𝒙

Figure B-3: A case of three shock clusters.

After solving the newly generated Riemann problem with Algorithm 2, the new shock

cluster is inserted at (x1, t1) as represented by the dark green lines in Fig. B-4. Then the next

collision is found and the associated new shock cluster is found and inserted at the collision

point. The entire procedure is repeated until the earliest collision happens outside the time-

space domain, {(x, t) | 0 ≤ x ≤ L, 0 < t < ∆t}, where in our application of INSIM-FT, L is

the connection length of the well pair where we need to solve for the saturation and ∆t is the

time step used in pressure equations. Once the loop terminates, the saturation profile at the

end of the time step, ∆t, can be calculated easily. The saturation profile obtained always

remains piecewise constant, which is an acceptable form of the initial condition required

for front tracking over the next time step. The front tracking algorithm is summarized in

Algorithm 3 below.

Algorithm 3: Front Tracking Algorithm

1. Define the piecewise constant initial function,
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t

0

𝚫t

(𝒙𝟏, 𝒕𝟏)

(𝒙𝟐, 𝒕𝟐)

𝒙𝟏
𝟎 𝒙𝟐

𝟎 𝒙𝟑
𝟎𝟎 𝑳𝒙

Figure B-4: Insert the new shock cluster

S0
w =



S0
w1 0 < x < x0

1

· · ·

S0
wi x0

i−1 < x < x0
i

· · ·

S0
wn x0

n−1 < x < L

.

2. Obtain solutions for all the local Riemann problems with Algorithm 2.

3. Compute the earliest collision.

4. Loop while the collision happens in {(x, t)|(0 < x < L, 0 < t < ∆t)},

• Find the new Riemann solution and insert into the collision point.

• Compute the next collision.

End

5. Compute saturation profile at ∆t and make it the new initial condition for the front

tracking at next time step.
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APPENDIX C

REVIEW OF CRM

C.1 Estimation of Total Production Rate

Considering the reservoir as a single tank with a single producer and a single injector,

the material balance for this tank is given by

1

5.615
Vb
d(φρwSw)

dt
= ρw (i(t)− qw(t)) , (C-1)

and

1

5.615
Vb
d(φρoSo)

dt
= −ρoqo(t), (C-2)

where Vb is the bulk volume of the tank in ft3; So and Sw, respectively, are the average oil

and water saturations in Vb; ρo and ρw in lbm/RB are the oil and water densities evaluated at

the average pressure p (psi) within Vb (ft3). Under the subsurface condition, i(t) represents

the water injection rate of the injector in RB/day; qo represents the oil production rate and

qw represents the water production rate of the producing well in RB/day. All rates i, qo, qw

are nonnegative. Differentiating Eq. C-1 and C-2, respectively, and eliminating ρo and ρw

gives

1

5.615
Vp

(
dSw
dt

+ Sw(cr + cw)
dp

dt

)
= i(t)− qw(t), (C-3)

and

1

5.615
Vp

(
dSo
dt

+ So(cr + co)
dp

dt

)
= −qo(t), (C-4)

where Vp = Vb · φ; the rock and fluid compressibilities, cr, cw and co are in psi−1. Summing
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Eq. C-3 and Eq. C-4 yields,

1

5.615
Vpct

dp

dt
= i(t)− qt(t), (C-5)

where ct is the total compressibility and is given by ct = coSo+cwSw+cr; the total production

rate as a function of time, qt(t), is given by qt(t) = qw(t) + qo(t). In CRM, ct is constant

because co and cw are assumed to be constant and equal to each other. The total production

rate is also written as

qt(t) = Jt(p− pwf ), (C-6)

where Jt is productivity index (PI) in RB/(day · psi). The major versions of CRM (Yousef

et al., 2005; Lake et al., 2007; Sayarpour, 2008; Weber, 2009; Nguyen, 2012; Cao et al., 2015)

assume that PI is constant, i.e., does not vary with time. However, in a two-phase system, the

PI of a producer is related to the saturation profile around the producer, which is generally

changing with time. Thus, the assumption of constant Jt is problematic. Substituting

Eq. C-6 into Eq. C-5 gives

1

5.615
Vpct

d

dt

(
qt(t)

Jt
+ pwf

)
= i(t)− qt(t). (C-7)

The time constant τ is defined by

τ =
ctVp

5.615Jt
. (C-8)

Substituting Eq. C-8 into Eq. C-7 yields

τ
dqt(t)

dt
+ τJt

dpwf
dt

= i(t)− qt(t). (C-9)

The general solution of Eq. C-9 is given by

qt(t) = Ce
−t
τ + e

−t
τ

∫ ξ=t

ξ=tk−1

e
ξ
τ

[
1

τ
i(ξ)− Jt

dpwf
dξ

]
dξ, for tn−1 ≤ t ≤ tn. (C-10)
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By use of the initial condition given by

qt(t
k−1) = qk−1

t , (C-11)

the particular solution is written as

qt(t) = qk−1
t e−( t−t

k−1

τ
) + e−

t
τ

∫ ξ=t

ξ=tk−1

1

τ
e
ξ
τ i(ξ)dξ − e−

t
τ

∫ ξ=t

ξ=tk−1

Jte
ξ
τ
dpwf
dξ

dξ. (C-12)

Assuming that i = ik is constant during the time interval ∆tk = tk−tk−1, and pwf is constant

during the entire production history so
dpwf
dt

= 0 yields the solution,

qkt = qk−1
t e−( ∆tk

τ
) + ik(1− e

−∆tk

τ ). (C-13)

In a multi-well system of CRM, the allocation factor which is denoted by fij, is defined as

the percentage of the injection rate of injector i flowing toward producer j and given as

fij =
qt,i,j(t)

ii(t)
, (C-14)

where qt,i,j in RB/day represents the injection rate of well i flowing toward well j, while in

our INSIM-FT formulation, qt,i,j represents the total flow rate directly from well j to well i.

In CRM, fij is assumed to be constant with time even if all injection rates change, which is

not strictly correct because changing injection rates will change streamlines too. The total

rate flowing into the control volume of producer j at tk is given by

Ninj∑
i=1

iki fij, (C-15)

where Ninj is the number of injection wells. By analogy to Eq. C-7, the material balance
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equation for Vp,i,j is given by

1

5.165
Vp,i,jct

d

dt

(
qpt,i,j(t)

Jt,i,j
+ pwf,j(t)

)
= qt,i,j(t)− qpt,i,j(t), (C-16)

where Vp,i,j is the connection pore volume of (i, j) in ft3; qpt,i,j (RB/day) is the fraction of

qt,j (RB/day), the total liquid production rate of producer j, due to its flow connection to

injector i and the volume expansion of Vp,i,j; pwf,j is the BHP of producer j in psi; Jt,i,j

in RB/(day · psi) is the productivity index of producer j that is only valid for the control

volume Vp,i,j and it follows that

qpt,i,j(t) = Jt,i,j
(
pi,j(t)− pwf,j(t)

)
, (C-17)

where pi,j in psi is the average pressure for Vp,i,j in ft3. By analogy to Eq. C-9, the governing

equation (Yousef et al., 2005) for well pair (i, j)

τij
dqpt,i,j(t)

dt
+ τijJt,i,j

dpwf,j(t)

dt
= ii(t)fij − qpt,i,j(t), (C-18)

where τij is defined as

τij =
ctVp,i,j

5.615Jt,i,j
. (C-19)

In our applications, we consider all producers are operated at constant BHP’s (or operated

at varying total production rates which equivalently yield constant BHP’s of producers),

which yields
dpwf,j
dt

= 0 for j = 1, 2, . . . , Npro, so the solution of Eq. C-18 is given by

qkpt,i,j = qk−1
pt,i,je

−∆tk

τij + iki fij

[
1− e

−∆tk

τij

]
. (C-20)

The total production rate for producer j is simply computed by summing qpt,i,j, for i =
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1, 2, . . . , Ninj, which is given by

qkt,j =

Ninj∑
i=1

qkpt,i,j =

Ninj∑
i=1

qk−1
pt,i,je

−∆tk

τij +

Ninj∑
i=1

[
(1− e

−∆tk

τij )(fiji
k
i )

]
. (C-21)

Eq. C-21 is also known as the injector-producer-based representation of CRM (CRMIP)

(Sayarpour, 2008), which is the version we use to compare with INSIM-FT. By matching

the total production rate using Eq. C-21, optimal τij and fij are obtained.

C.2 Estimation of Oil-Cut and Oil Production Rate with CRM

Different types of empirical models have been used to fit oil-cut. The most widely

one used in a two-phase oil-water system is due to Gentil (2005) and is given by

fo =
1

1 + αW β
, (C-22)

where fo is the estimated oil cut and W is the total volume of water injected into the reservoir

and α and β are parameters to be estimated. In multiwell systems, the total volume of water

injected into the control volume of producer j from time zero to time tk is given by

W k
j =

k∑
n=1

Ninj∑
i=1

fiji
n
i ∆tn. (C-23)

Substituting Eq. C-23 into Eq. C-22 yields

fko,j =
1

1 + αj(
∑k

t=1

∑Ninj

i=1 fiji
t
i)
βj
, (C-24)

where αj and βj are parameters obtained by fitting the oil cut data. This is the oil-cut model

we use in CRM to compare its performance to that of INSIM-FT. Other empirical models

may be better for the examples we present, but the lack of a firm physical foundation for

CRM make the behaviors of these models case-dependent. Finally, the oil production rate
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is estimated by

qko,j = qkt,jf
k
o,j. (C-25)
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APPENDIX D

GRAHAM’S SCAN ALGORITHM

Graham’s scan (De Berg et al., 2000) is an algorithm for finding the convex hull of a set X

of N points in a 2D plane with time complexity of O(nlog(n)). The algorithm is utilized

to find the upper/lower boundary or convex hull of X. The algorithm requires that the

points of X are ordered as P1, P2, . . . , PN , where P1 = (x1, y1) so that x1 ≤ x2 ≤ . . . ≤ xN

(or y1 ≤ y2 ≤ . . . ≤ yN). Starting from a point with the minimum x coordinate (or y

coordinate), the algorithm scans each point from the ordered point set X until the end to

decide whether the scanned point is a valid vertex of the convex hull. Before introducing

the algorithm, we need to define a function to decide if three consecutive points represent a

counter-clockwise turn. Letting the function be ccw, the three given points be P1, P2 and

P3, respectively, and letting the x coordinate and y coordinate, respectively, of a given point

Pi, i = 1, 2, 3, be represented by xi and yi, we define the function ccw by

ccw(P1, P2, P3) = (x2 − x1) · (y3 − y1)− (y2 − y1) · (x3 − x1), (C-26)

where ccw>0 means a counter-clockwise turn; ccw<0 means a clockwise turn and ccw=0

means that the three points are collinear. From a geometrical point of view, if we connect

three points one by one from the point with the smallest x-coordinate to the point with the

largest x-coordinate, a counter-clockwise turn means the slope of the line segment between

the first two points is smaller than that of the last two points; and a clockwise turn means

the slope of the line segment between the first two points is larger than that of the last

two points. With the function ccw determining whether three consecutive points represent
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a counter-clock wise turn or not, we can present Graham’s scan algorithm to determine the

upper part of the convex hull with regard to X as follows.

1. Give a set X of points in a 2D plane, sort the points by the x-coordinate, resulting in

a sequence of points, P1, P2, . . . , PN , where x1 ≤ x2 ≤ . . . ≤ xN .

2. Put the points P1 and P2 (with P1 as the first point) in a list Lupper, which represents

the list of all the vertices of the upper part of the convex hull.

3. Set NL = 2 and NL where the number of points in Lupper.

4. DO i = 3 to N

• Add Pi to the end of Lupper and set NL = NL + 1.

• DO WHILE NL > 2 AND ccw(PNL−2, PNL−1, PNL) ≥ 0 (where PNL−2, PNL−1

and PNL represent the last three points of Lupper.)

– Delete PNL−1 from Lupper and NL = NL − 1.

• END DO

END DO

The algorithm to determine the lower part of the convex hull of X is given by replacing

ccw(PNL−2, PNL−1, PNL) ≥ 0 in the above algorithm by ccw(PNL−2, PNL−1, PNL) ≤ 0. Note

that, to find the upper part of the convex hull, we need to ensure that each three consecutive

connected valid vertices of the lower part of the convex hull represent a clockwise turn (or

are collinear); and vice versa to find the lower part of the convex hull.
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APPENDIX E

MITCHELL’S BEST-CANDIDATE ALGORITHM

Mitchell’s best-candidate algorithm (Mitchell, 1991) is an important algorithm used in the

image processing area, which can sequentially generate samples that are nearly uniformly

distributed in a sample space. The samples generated from Mitchell’s best candidate al-

gorithm are regulated so that the sample points are evenly distributed. The basic idea of

Mitchell’s best candidate algorithm is that, at each iteration, a number of candidate samples

are randomly generated, and the candidate that is farthest from the existing point set is

accepted as the “best candidate” for the current iteration (Dunbar and Humphreys, 2006).

In our applications, the algorithm is utilized to sequentially generate imaginary well nodes

within a bounded reservoir given a number of fixed actual well nodes, which can represent

the perforations of actual wells. To adapt the algorithm to our applications, the original

algorithm is revised to obtain the algorithm given below,

1. Specify the boundary of a reservoir, the number of actual well nodes (Nactual) and the

coordinates of all the actual well nodes.

2. Specify the number of imaginary wells, NI , and the number of candidates, Np, for

placing an imaginary well each iteration.

3. DO i = 1, 2, . . . , NI

• Sample Np candidate points (denoted by C1, C2, . . . , CNP where each point has

three coordinates for 3D reservoir) for a new imaginary well Imi within the

bounded region of the reservoir from an uniform distribution. Note that these

points are sampled as candidates for Imi which is not yet placed.
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• Calculate the distance from each candidate point (Cj, j = 1, 2, . . . , NP ) to each ac-

tual well node and each imaginary well node which have been placed (Im1, Im2, . . . , Imi−1).

Note that for iteration i, i−1 imaginary well nodes have been placed and if i = 1,

no imaginary well nodes have been placed. For Cj, j = 1, 2, . . . , Np, the distances

are denoted by a vector of dj = [dj,1, dj,2, . . . , dj,Nactual+i−1], where Nactual + i − 1

is the sum of actual well nodes and imaginary well nodes that have been placed

up to iteration i.

• For j = 1, 2, . . . , Np, letting min(dj) represent the minimum component of the vec-

tor dj, select the point that maximizes min(dj) over all j as the “best candidate”

and place the point into the reservoir as an new imaginary well node.

END DO

To apply the algorithm, users have to specify the values of NI and Np. In our second example

of Chapter 4, NI is set equal to 27 and Np is set equal to 1,000.
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