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ABSTRACT

Zhe Liu (Doctor of Philosophy in Petroleum Engineering)

Robust Life-Cycle Production Optimization with State Constraints

Directed by Albert C. Reynolds

158 pp., Chapter 5: Conclusions

(1912 words)

In the development of a reservoir, designing a set of optimal well controls (bottom-hole

pressures or rates) for injection and production that maximize a specified cost (objective)

function is critically important because changing the well controls changes the underground

flooding pattern (streamlines) and significantly impacts the cost function. As is done here,

the cost or objective function is typically the net present value (NPV) of production over

the life of the reservoir but can also be the cumulative oil production over the reservoir life.

The design (optimization) variables are either the bottom-hole pressure (BHP) or a rate

(oil, gas, water or total liquid) at each well on a set of specified control steps (time intervals)

which are obtained by partitioning the total time of the reservoir life. The length of control

steps need not be uniform and may vary from well to well. In most examples considered,

we consider the most standard case where injection wells are water injection wells and the

injection rates on the control steps are the control (optimization) variables. One principal

challenge of the well control production optimization problem is how to handle the nonlinear

state constraints efficiently in the optimization process. In fact, despite the hundreds of

papers that exist on well controls optimization, almost none have properly considered well

state constraints where these state constraints may include an upper bound on the wellbore

pressure at a rate-controlled injection well, a bound on the liquid rate, water rate, gas rate,

producing GOR or producing WOR at a BHP-controlled producing well or field constraints

iv



typically imposed by the processing capability of facilities, for example, a bound on the field

liquid rate, field gas rate and field water rate. Most papers on well control optimization

simply impose state constraints using the internal heuristics of the commercial reservoir

simulator used but as shown in this work, this procedure can produce a highly suboptimal

value of the NPV of life-cycle production. One difficulty in dealing with constraints properly

within the framework of mathematical optimization theory using standard techniques such

as sequential quadratic programming (SQP), which is used here, is that we need to be

able to compute gradients of constraint functions efficiently. With a simulator enhanced

with the capability to compute the adjoint solutions needed to compute the gradients of

the constraint functions, this is feasible particularly with deterministic optimization where

optimization is done based on a single model. However, to account for geological uncertainty,

one generally performs robust optimization instead of deterministic optimization. With

robust optimization, one estimates the well controls that maximize the expected value of

the life-cycle NPV of production where the expected value is approximated by its standard

estimator, namely, the average NPV of production where the average is over a set of Ne

realizations of the reservoir model selected to represent the uncertainty in the reservoir

model. With robust optimization, all constraints should be satisfied at every control step

for every realization of the reservoir model, and if this is done in the straightforward way,

then a separate gradient of each constraint function must be computed for each of the Ne

reservoir models which imposes a high computational cost on the gradient-based optimization

process. One can reduce the cost by, for example, lumping all constraints into one but then

one invariably ends up with optimal controls that result in a significant constraint violation

for some realizations of the reservoir model. In this work, we provide a novel, efficient

computational procedure that effectively ensures that all constraints are satisfied for all

reservoir models with at most an extremely small constraint violation but does not require

explicit enforcement of all constraints on all reservoir models and thus significantly enhances

computational efficiency. For the common situation where the commercial reservoir simulator

used does not have the necessary adjoint solution capability, we replace adjoint-gradients
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in SQP by stochastic simplex approximate gradients (StoSAG). This procedure introduces

severe difficulty in enforcing state constraints due to inaccuracies in stochastic gradients of

the constraint functions. Because these gradients define the feasibility region in SQP, if they

are inaccurate, the feasible region estimated using standard StoSAG may not contain any

point close to an optimal point. We develop procedures for damping and smoothing the

stochastic derivatives so that SQP with stochastic gradients can be successfully applied to

solve the robust life-cycle optimal well control problem with state constraints. To the best of

our knowledge, our work represents the first successful solution of this optimization problem

uses stochastic gradients. Finally, it is important to note that within the SQP framework,

constraints are enforced using the filter method.

With robust optimization, there is no control over downside risk. To understand this,

let u∗ be the optimal well controls obtained from robust life-cycle production optimization,

and let mk denote the specific reservoir model that gives the lowest NPV value at u∗ among

all Ne realizations of the reservoir model that are used to characterize geological uncertainty.

Then, even though the average life-cycle NPV at u∗ may be large, if the true reservoir model

is similar to mk, then operating the reservoir at u∗ may yield such a low NPV that devel-

opment of the reservoir is not commercially viable. Thus, even if the optimization of the

average life-cycle NPV of production is the primary goal, reducing the downside risk may

be an extremely important secondary objective of the operator. In addition, optimizing

life-cycle NPV sometimes yield estimates of optimal controls that yield unacceptably low

production rates during the short-term (1-5 years) which is generally unacceptable as opera-

tors have production targets. Thus, maximizing short-term production is another important

secondary or tertiary objective. As the short-term production optimization one might choose

to maximize the expected value of the cumulative oil production over a specified short-term

period, but here, we use as the short-term objective as the maximization of the average

NPV on a specified short-time time interval. Often, but not always, the objectives in multi-

objective optimization problems are in conflict. For example, if operators want to achieve

a short-term NPV greater than a specified value, one may have to accept a lower value of
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average life-cycle NPV than can be obtained by robust optimization of only the NPV over

the reservoir life. When objectives are in conflict, the standard procedure is to construct

a trade-off curve, i.e., a Pareto front, which allows one to select a solution that gives an

acceptable value of all of the objective functions. This can be done using a weighted-sum

method or a normal boundary intersection (NBI) method, but here we develop a modified

lexicographic method to attempt to obtain a set of Pareto optimal solutions. In the examples

considered, the three objectives are (i) maximize average life-cycle NPV. (ii) maximize aver-

age short-term NPV and (iii) maximize the minimum NPV of the set of realizations. In our

examples, objective (i) is always considered to be the primary objective. With bi-objective

optimization, either objective (ii) or (iii) is considered as the secondary objective. With

tri-objective optimization, both (ii) and (iii) are considered as secondary objectives. With

the modified lexicographic method, we first maximize the expectation (average-value) of the

life-cycle NPV by itself to obtain the corresponding optimum vector of well controls, u∗, and

record the short-term NPV and minimum NPV over the set of realization at u∗. Then, we

maximize the live-cycle NPV again but with state constraints added. With tri-objective op-

timization, the state constraints are that the short term NPV be greater than to a constant

times the short term NPV at u∗ and the minimum NPV be greater than a constant times

the minimum NPV evaluated at u∗. Both constants should be greater than unity and by

increasing each constant, we can increase the value of the corresponding secondary objective

function, but possibly at the expense of decreasing the value of life-cycle NPV below the

value obtained at u∗. By changing the constants, we can try to find Pareto optimal points.

Multi-objective optimization is done using stochastic gradients (StoSAG) in the SQP-filter

method. The methodology can also be applied to enforce standard state constraints such

as upper bounds on field production rates. The performances of the standard lexicographic

method and modified lexicographic method are compared on a bi-objective optimization

problems with average short-term and life-cycle NPV as the two objectives and it is found

that the main advantage of the modified lexicographic method has over the the standard lex-

icographic method is that it allows the generation of potential Pareto optimal points which
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are uniformly spaced in the values of the second objective that one wishes to improve by

bi-objective optimization.

If the reservoir simulation used for reservoir management has sufficient adjoint ca-

pability to produce all gradients needed to solve the production optimization problem with

state constraints that is of interest, then it is natural to expect that SQP optimization based

on adjoint gradients will yield the most computationally efficient and robust optimization

procedure. Somewhat surprisingly, we show that one can develop a significantly more com-

putationally efficient procedure by replacing the adjoint-enhanced reservoir simulator by a

proxy model and optimizing the proxy. Our methodology achieves computational efficiency

by generating a set of output values of the cost and constraint functions and their asso-

ciated derivative values by running the numerical model (reservoir simulator) for a broad

set of input design variables (well controls) and then using the set of input/output data

to train a proxy model to replace the numerical model when computing values of cost and

constraint functions and their derivatives during iterations of sequential quadratic program-

ming (SQP). During SQP optimization, the values of cost/constraint functions and their

derivatives are computed from the proxy functions; no reservoir simulation runs are per-

formed. The derivation of the equations for computing the proxy-based model that uses

both function and gradient information is similar to that of least squares support vector re-

gression (LS-SVR). However. this method is referred to as gradient-enhanced support vector

regression (GE-SVR) because, unlike LS-SVR, the method uses derivative information, not

just function values, to train the proxy. Similar to LS-SVR, improved (higher) estimated

optimal NPV values may be obtained by using iterative resampling (IR). With IR, after each

proxy-based optimization, one evaluates the cost and constraint functions and their deriva-

tives at the estimated optimal controls using reservoir simulator output, and then adds this

new input/output information to the training set to update the proxy models for predicting

NPV and constraints. Using the updated proxies, one applies SQP optimization again. IR

continues until the simulator and proxy evaluated at the latest estimate of the optimal well

controls give the same value of NPV within a specified percentage tolerance and the average

viii



constraints evaluated by reservoir simulator at the latest optimal well controls within some

tolerance. Our results indicate that proxy-based optimization with iterative resampling may

require up to an order of magnitude less computational time than is required using the

adjoint-capable reservoir simulator for evaluation of the NPV and constraint functions and

their derivatives at each stage of the SQP algorithm. We also provide some comparison of

the optimization results generated using both function and gradient information to build the

proxy to results obtained when the proxy is trained using only function information, i.e.,

to results generated with an LS—SVR proxy and find that GE-SVR is roughly an order of

magnitude more computationally efficient than LS-SVR but also provides a better approx-

imation of a complex cost function surface so that is possible to locate multiple optima in

cases where LS-SVR fails to identify the multiple optima.
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CHAPTER 1

INTRODUCTION

As a crucial step in the closed-loop reservoir management framework, life-cycle pro-

duction optimization is defined as maximizing/minimizing a predefined objective (cost) func-

tion as a function of the design variables over the remaining life of the reservoir [5, 45, 12].

In cases of interest to us, the objective function is evaluated from the output of a run of

the reservoir simulator that generates the solution of the discretized equations that define

an initial-boundary-value problem for an evolutionary nonlinear system of partial differen-

tial equations. The specific application considered here is the optimal well control problem

where the primary cost function is the average life-cycle net-present-value (NPV) of produc-

tion where the average is over a set of realizations of the reservoir model that characterize the

uncertainty in the reservoir model. This average NPV is sometimes referred to the expected

value of expectation of the NPV because the average NPV is the standard estimator to the

expected NPV. As discussed throughout this chapter, a large number of papers have been

written about the optimal well control problem. What is novel about this work is the devel-

opment of a set of techniques that allow the incorporation of nonlinear state constraints into

the optimal well problem in a robust and computationally efficient way. State constraints

are those that require output from the forward model (in our case, a reservoir simulator) in

order to evaluate the constraint function to determine whether the associated constraint is

satisfied. Typical state constraints are the upper bound on a well’s producing gas-oil ratio

(GOR) (or on the gas rate) or an upper bound on the producing water oil-ratio (WOR)

(or on the water rate). The capability of processing facilities typically mandate nonlinear

state constraints in the form of upper bounds on the field water production rate, the field

water injection water, the field gas production rate or the total field liquid production rate.
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There may also exist an upper bound on the field water (or gas) injection rate. This bound

represents a linear constraint if all injection well controls are water rates (or gas rates) but

is a state constraint if the injection well controls are the bottom hole pressures.

For solution of the constrained robust optimal well control problem introduced above,

we apply sequential quadratic programming (SQP) with constraints enforced using the fil-

ter method. However, methods such as the augmented Lagrangian method [13] could be

used. These two methods require the computation of the NPV and constraint functions.

If the commercial simulator in use for reservoir management is capable of computing the

gradient of the NPV function and the gradient of all constraints with the adjoint procedure,

then common thinking suggests that a gradient-based algorithm such as SQP may well be

the most computationally efficient and reliable procedure for the solution of the constrained

optimal well control problem. However, there is a caveat, namely, when performing robust

optimization, each constraint must be enforced on every reservoir model at every control

step, and the number of adjoint solutions required significantly increases the computational

cost. Lumping of constants can be done along the lines of [75, 47] or constraints can be

averaged as in [61]. However, when constraints are lumped or averaged, then at the esti-

mated optimal well controls, one invariably finds that some constraints are violated for some

reservoir models, and in some cases, significantly violated. In such a situation, the estimated

optimum well controls not be implementable in practice. A major contribution of our work is

the development of a min-max scheme, in which at each iteration of SQP, each constraint at

each control step is enforced on only a single model, the one that gives the maximum viola-

tion of that constraint at that particular control step. Although there is no theoretical proof

that this mix-max scheme ensures that every constraint is satisfied for every reservoir model,

computational results suggest that this is effectively the case, i.e., only negligible constraints

violations occur for any reservoir model when the min-max scheme is utilized in the SQP-

filter optimization process. Returning to our comment that SQP using adjoint gradients,

might be expected to be the most computationally efficient method, we actually find that

we can achieve up to an order of magnitude greater computational efficiency by replacing
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the adjoint-capable simulator with a proxy model which is trained with input-output data

from the simulator where the input consists of input training samples of the vector of well

controls and corresponding output training samples consist of the resulting values of NPV

and constraint functions and their derivatives. By using the so-called gradient-enhanced

support vector regression proxy (GE-SVR), periodically updated by iterative resampling, we

can obtain a solution to the optimal well control problem much faster than is obtained by

using the adjoint-capable reservoir simulator to evaluate the NPV and constraint functions

and their derivatives at each iteration of the SQP algorithm. Optimization of the proxy is

still done using SQP with the filter method employed to satisfy constraints. The develop-

ment of the GE-SVR proxy approach is our second major contribution to the solution of the

constrained optimal well control problem.

We know of no commercial reservoir simulator that had the capability of computing

all the adjoint solutions needed to compute the gradients of all the common state constraint

functions mentioned above. Thus, many recent papers have focused on using stochastic

gradients to solve optimal well control problems [19, 86, 23, 24, 30, 33, 11, 59]. However, to

the best of our knowledge, no paper has applied SQP where the gradients of constraints were

directly used to determine the feasible region in SQP. Many papers incorporate only bound

constraints, often by truncation, when solving the optimal well control problem and ignore

state constraints. One can of course insert the optimal controls obtained from optimization

algorithm directly into the reservoir simulator and use the internal heuristics of the simulator

to change the controls so all constraints are satisfied but such a procedure introduces two

main issues. First, the resulting well control solution is suboptimal which is illustrated

in Chapter 2, and secondly, the modified controls produced by simulator heuristics would

typically be different for each reservoir model, whereas, in robust optimization, the goal is to

obtain a single set of controls applicable to all reservoir models. The third major contribution

of this work is the development of a procedure to compute more reliable stochastic gradients

of constraint functions so that these gradients can define a reasonable feasible region for the

SQP algorithm.
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In the development of a reservoir, operating under the optimal control generated by

optimizing only average life cycle NPV will ignore some other important factors which are

also important for decision making. For example, at the optimal well control vector, the

lowest life-cycle NPV of the values computed from the set of realizations of the reservoir

may be extremely small. In this circumstance, If the true reservoir model is similar to the

worst-case scenario, then operating the reservoir at the optimal controls found by optimizing

only average life-cycle NPV may yield an realized NPV that is so small that the development

of the reservoir is not commercially viable. Thus, even if the optimization of the average

life-cycle NPV is the primary objective, lowering the downside risk may be an extremely

important secondary objective for operators to consider. In addition, at some scenarios, the

robust production optimization with the life-cycle NPV as the objective function generates

the optimal controls that yield unacceptably low production rates during the short-term

(1-5 years), which is generally impractical as operators have production targets. Thus,

maximizing short-term production is another important objective in the context of reservoir

development. In this work, all these three commonly used conflicting objectives which are

average life-cycle NPV, average short-term NPV and the worst-case NPV are considered.

The fourth major contribution of this work is the development of a modified lexicographic

method for robust multi-objective optimization with nonlinear state constraints using the

modified StoSAG gradient.

1.1 Literature Review on Production Optimization

It is commonly thought that gradient-based optimization algorithms are the most

robust and computationally efficient when the objective (cost) function is differentiable [70,

69, 44, 57] subject to the caveat that a computationally efficient way is available to compute

an accurate gradient, i.e., the adjoint solution is available and carefully implemented [2, 92,

88, 87, 52, 51, 6, 74, 27, 26, 16, 44, 85]. For the nonlinearly constrained optimal well control

problems considered here, if the commercial reservoir simulator that is employed does not

have adjoint capability, a practise developed over the last decades is to a use gradient-based
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algorithms which utilize an approximate gradients [19, 86, 30, 33, 11]. Although derivative

free algorithms [35, 21, 80, 42] could also be used, there are far too computational inefficient

for use in large-scale production optimization problems.

The principle problem of interest here is the minimization (or maximization) of a dif-

ferentiable cost (objective) function subject to bound and nonlinear state constraints where

the forward model that must be run to evaluate the cost function and state constraints is a

numerical model. In our case, the numerical model is a reservoir simulator. Although there

are other problems of interest, the specific application considered here refers to the optimal

well control problem where the cost function is the net-present value of production over the

remaining reservoir life and the design or optimization variables are the controls (bottom-

hole pressure (BHP) or rate) at each well at each specified control step. In the specific

examples considered, the nonlinear state constraints are mainly facility constraints on field

production rates although other nonlinear state constraints can easily be incorporated, and,

in fact, we consider bounds on BHP at rate-controlled water injection wells. In this scenario,

BHP represents a state constraint. As it is important to consider geological uncertainty,

we do robust optimization where the geological uncertainty is represented by an ensemble

of plausible reservoir models. Optimizing the average NPV on a set of realizations of the

reservoir model is referred to as robust optimization. When optimization is based on a single

reservoir model, the process is referred to as deterministic optimization [84, 19, 17, 30]. The

production optimization problem considered is of interest because it represents the second

step of closed-loop reservoir management [45].

As mentioned previously, gradient-based methods are highly efficient for the opti-

mization of a differentiable cost function [2, 92, 87, 52, 51, 48, 70, 44] when the forward

model is a reservoir simulator which has adjoint capability. However, commercial simulators

commonly used by oil and gas producing companies have limited or no adjoint capability

for general optimal control problems with nonlinear state constraints. In fact, generating

extremely accurate approximations of the gradient using the adjoint method can be chal-

lenging [85]. Here, we seek a solution procedure for the nonlinearly-constrained, well-control
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optimization problem when the adjoint solution is not available. For large-scale optimiza-

tion problems, true derivative free methods such as the genetic algorithm [35] and particle

swarm optimization [42] or methods based on quadratic interpolation polynomials [21, 93]

are not computationally feasible so the natural path is to employ algorithms derived on the

assumption of the availability of the gradient of the objective function but replace the gradi-

ent, sensitivity matrix, or individual derivatives involved in the gradient by approximations.

Approximating individual derivatives by finite-difference is tenuous because finding an appro-

priate perturbation size to employ in the finite-difference approximation can be problematic

and even when it is not, generating finite-difference approximations of all individual deriva-

tives involved in the gradient is not computationally feasible for high-dimensional problems

even with methods designed to enhance computational efficiency; see Yan et al. [89] and

the references therein. A superior alternative to using finite-difference approximations of

derivatives is to use a stochastic approximation of this true gradient, that is, apply an al-

gorithm such as the simultaneous-perturbation stochastic approximation (SPSA) algorithm

[79, 46, 86, 50] or ensemble-based optimization [62, 19, 18, 86, 30, 33, 11]. As shown by

Do and Reynolds [24], SPSA and EnOpt are effectively theoretically equivalent and strongly

related to an approximate simplex gradient. Moreover, Fonseca et al [33] show that, based

on theoretical arguments, the stochastic simplex approximate gradient (StoSAG), which was

introduced in Fonseca et al. [30], is expected to give a better approximation of the true

gradient of the objective function for robust optimization if the geological uncertainty is

significant than the approximation obtained with EnOpt [19]. Thus, in the optimization

algorithms employed for the optimal well control problem considered here, we use StoSAG

to approximate the true gradient.

Another plausible approach to generate an approximate solution of optimization prob-

lems where the forward model is a reservoir simulator is to build a proxy model for the

reservoir simulator and to use the proxy model to replace the simulator in the evaluation of

the objective function at each iteration of the optimization algorithm. Guo and Reynolds

[37] built a support vector regression (SVR) proxy model based on reservoir simulation runs
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but they did not consider using gradient information from the underlying reservoir simula-

tor to train the proxy model. Moreover, Guo and Reynolds [37] did not consider nonlinear

state constraints. In this work, we provide the details for the development of a support

vector regression proxy model to replace the reservoir simulator where we use both function

and derivative information to train the proxy and also train proxies to evaluate the state

constraint functions and their derivatives.

Although work on life-cycle production optimization using a quasi-Newton procedure

has been considered [77, 14, 16, 4, 39], virtually all work using stochastic or ensemble-based

derivatives have used a steepest ascent (or descent) algorithm. One exception to this is the

paper of Dehdari and Oliver [23] who proposed an SQP optimization workflow based on an

ensemble-based approach to estimate the gradients. Although, that workflow is designed to

solve robust constrained production optimization problems, they only apply deterministic

production optimization for a single realization of the Brugge case. The control variables

are the total liquid production rates of each ICV (inflow control valve) and the constraints

of their work are total liquid rates, minimum allowable pressures and maximum allowable

water cuts of each well. However, the minimum allowable pressures and maximum allowable

water cuts which are nonlinear state constraints, are enforced heuristically directly by the

numerical simulator which, as we show later, can yield highly suboptimal results. Thus, in

their SQP framework, only linear constraints are considered directly. Note for their problem.

the total liquid production rate of a well a linear constraint because the total liquid rate is a

linear combination of the liquid production rates of the completion intervals of wells, which

are the well controls. They implemented a spatial localization scheme proposed by Chen and

Oliver [20] to improve the quality of the EnOpt gradient. The basic idea of the Chen and

Oliver [20] work is to use a distance-based localization function to retain the cross-covariance

of controls at neighboring wells with the NPV of any specific well while neglecting the weaker

cross-covariance with controls of more distance wells. The distance-based function defined

in their work, is a unit-step function with a critical distance.

Liu et al. [60] compared the performance of the SQP algorithm with the augmented
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Lagrangian algorithm for optimization problems with nonlinear state constraints, using a

reservoir simulator with the capability to compute adjoint gradients. They found that SQP

has better performance in terms of constraint handling and convergence efficiency. How-

ever, we observed in later unpublished work. that the difference in performance of the

two algorithms was largely due the the fact that the augmented Lagrangian algorithm in-

volves heuristic choices of some parameters and adjustment of these parameters, especially

the penalty factor. Once the parameters of the augmented Lagrangian method have been

properly tuned, the SQP and augmented Lagrangian algorithms have a similar performance.

Sarma et al. [76] proposed a technique for implementation of the nonlinear constraints

into the optimization process by converting the inequality constraints into a single equality

constraint and a set of bounds on the slack variable. However, two set of adjoint equations

are solved at each iteration of the optimization algorithm which can be computationally

expensive. Drosos Kourouni [47] applied an SQP framework to solve the deterministic

optimization problem where they used a simulator with adjoint capability to compute the

gradient, i.e., they used the “adjoint gradient.” In all examples they considered, the controls

at producers and injectors are BHP’s, gas is the injected fluid and the only nonlinear state

constraints are bounds on the gas injection rate at each injector and possibly bounds on the

production rate at each producer. They do not consider nonlinear state constraints in the

form of field rates which is the focus of our paper. To achieve computational efficiency, Drosos

Kourouni et al. [47] do not enforce individual constraints but instead lump constraints. For

example if the bound on the gas injection rate at each injector is qmax and qj,n denotes the rate

at the j injector, then the correct constraint specification is qj,n ≤ qmax for j = 1, 2, · · ·Nw

and n = 1, 2, · · ·N where Nw is the number of wells and N is the number of time steps.

However, instead of enforcing these individual constraints, Kourounis et al. enforce only the

single lumped constraint,

max{qj,n | j = 1, 2, · · ·Nw, n = 1, 2, · · ·N} ≤ qmax. (1.1)
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(Because the left side of Eq. 1.1 is non-differentiable, the authors approximate Eq. 1.1 by

a smooth function where the transformed constraint is a nonlinear function of original con-

straints which is already nonlinear.) Within the SQP framework, they use the `1 merit

function to handle constraints. However, they also consider a second procedure, a heuristic

one, in which they only consider bounds on the BHP controls within the SQP framework

and let the simulator impose the rate constraints directly in the forward run of the simula-

tor. In this heuristic approach, if a rate at a specific well at a specific time step exceeds its

maximum, this specific rate is set equal to its maximum for that well at that specific time

step, so the well becomes rate controlled instead of BHP controlled. Generally, they find

that treating all constraints within the SQP formalism tends to give higher values of the cost

function (cumulative oil production) than the heuristic procedure for small problems where

as the opposite is true for large problems.

Unlike Dehdari and Oliver [23], we consider nonlinear state constraints within the

standard SQP framework which avoids the issue of being trapped at a suboptimal result

due to the enforcement of constraints by the reservoir simulator [68]. Moreover, instead of

combining the objective function and constraint function using a single penalty function, the

filter method [29, 67] is implemented to promote global convergence in our work. The filter

method does not require that the user specify any penalty parameters and allows a certain

amount of non-monotonicity because a step and new estimate of the optimization variables

are accepted if the updated variables result in a reduction in either the objective function or

the constraint violation.

Unfortunately, we found that the straightforward implementation of SQP with stochas-

tic gradients with nonlinear state constraints often fails to give stochastic gradients of suffi-

cient accuracy to ensure that SQP converges to a result that is close to optimal. Throughout,

the accuracy of a stochastic gradient refers to how well it approximates the direction of the

true gradient. The failure of SQP for optimization problems with nonlinear state constraints

when using StoSAG to approximate gradients apparently arises because we need an accurate

approximation of both the gradients of the constraints and the gradient of the NPV objec-
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tive function to ensure that there is a feasible solution of the quadratic subproblem [67]. In

particular, the SQP linearization of the constraints using stochastic gradients can generate

a highly inaccurate feasible region unless the stochastic gradients of constraint functions

provide a reasonable approximation of the true gradient. Perhaps, this is one of the reasons

that nonlinear state constraints have generally not been implemented when using stochastic

gradients. In any case, in this work we develop procedures to modify the stochastic gradients

from StoSAG to attain stochastic gradients of sufficient accuracy so that these gradients can

be used with the SQP method to solve the robust life-cycle production optimization problem

with nonlinear state constraints where the filter methods is used to enforce the constraints.

1.2 Literature Review on Multi-Objective Optimization

In a decision making process, we often encounter situations where we have conflicting

goals, criteria or objectives. Mathematically, these problems are described as follows: find a

design vector (vector of optimization variables) which maximizes (or minimizes) each function

in the set of functions which define the conflicting criteria or objectives. As the problem is

untenable in the sense that, in general, it is not possible to find a single design vector which

maximizes all objective functions, the solution to a multi-objective optimization problem is

defined as the Pareto front which represents a trade-off curve, or more generally, a trade-off

hypersurface. Given the Pareto front (surface), the decision maker can choose a point on the

surface based on how large a decrease in each individual objective functions is acceptable in

order to avoid making the values of the primary objective function(s) too small.

Many algorithms have been developed to solve multi-objective optimization problems.

Generally these algorithms can be divided into two categories: derivative-based (or gradient-

based) algorithms and derivative-free algorithms. The popular derivative-free algorithms

include genetic-based multiobjective optimization algorithms such as the strength Pareto

evolutionary algorithm-II (SPEA II) and the non-dominated sorting genetic algorithm-II

(NSGA II) [96]. Reyes-Sierra and Coello [73] provide a review of multiobjective particle

swarm algorithms. The major issue associated with any evolutionary algorithm is that the
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computational cost becomes infeasible when the dimension of the vector of optimization

variables exceeds a hundred or so and evaluation of the objective function at each iteration

requires the run of a complex numerical model, in our case, a reservoir simulator. Thus, for

a large-scale optimal well control problem, where we need to evaluate our objective function

through using output from a reservoir simulation run, evolutionary multi-objective opti-

mization algorithms are computationally infeasible. As opposed to evolutionary algorithms,

gradient-based optimization methods, are computationally efficient for optimization of a dif-

ferentiable objective function. Popular multi-objective optimization methods, such as the

lexicographic method [64], the weighted sum method [34, 91] and the normal boundary in-

tersection (NBI) method [22] can be implemented via the use of the gradient. The weighted

sum method requires users to assign a different weight to each objective function; then all

objective functions are summed with their corresponding weights to obtain an aggregate

function. By maximizing the aggregate function, we can obtain a solution on the Pareto

front. We can obtain different points on the Pareto front by assigning a different set of

weights to each objective function. However, with the weighted sum method, points on the

convex part of the Pareto front cannot be obtained. The NBI method can be viewed as the

weighted sum method with additional constraints. These additional constraints guarantee

that the whole Pareto front can be obtained by using the NBI method. The lexicographic

method requires a user to order the relative importance of each objective function. Then, the

priory objective function is optimized first; afterwards, the second most important objective

function is optimized with an additional constraint which requires that a certain percent-

age (99%, for example) of the optimal value for the most important objective function is

achieved; we repeat this process until the least important objective function is optimized.

One common feature of the weighted sum method, the NBI method and the lexicographic

method is that they all transform the original multiobjective optimization problem to a series

of single objective optimization problems.

In the development and management of a reservoir, many people may be involved

and different people may emphasize different objectives. For instant, reservoir engineers may
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want to design strategies to maximize the estimated ultimate recovery (EUR) or maximize

the life-cycle net present value (NPV) of production, while project managers may put more

emphasis on the minimization of the development risk. From the operator’s point of view,

it may be desirable to maximize NPV or cumulative oil production over a relatively short

time, e.g., the next one, two or a few years. Maximizing the long-term/short-term NPV and

minimizing the risk are three potentially conflicting goals, and multi-objective techniques

can be applied to obtain the optimal solutions as defined by the Pareto front.

Van Essen et al. [83] and Chen et al. [15] found that it is sometimes possible to

improve the short-term NPV significantly by allowing a small decrease in the long-term

NPV. In these papers, the gradient is computed by the adjoint method. A method that

is conceptually considered in both papers proceeds as follows: first life-cycle optimization

is performed and then one tries to increase the associated short-term NPV significantly

without significantly decreasing the optimal life-cycle NPV. An alternate strategy in the

attempt to maximize both long-term and short-term NPV was proposed by Chen et al. [15];

in this procedure, the life-cycle constrained optimization problem is solved first, and then the

short-term NPV is optimized subject to the additional constraint that the long-term NPV is

greater than or equal to the optimal NPV obtained by the life-cycle production optimization.

Chen et al. actually allow a small decrease in the long-term NPV when trying to increase

short-term NPV and the constrained production optimization problem with the long-term

NPV as one of state constraints is solved by the augmented Lagrangian method.

Isebor and Durlofsky [41] generated the Pareto front for maximizing both the expec-

tation of the NPV and the worst plausible NPV (downside risk) by using an implementation

of a hybrid pattern search and particle swarm algorithm. In their paper, they considered a

general field development problem where the well locations, the well controls and the number

of wells are the optimization variables. Because the number of wells is a discrete variable,

gradient-based methods are not directly applicable. Since Isebor and Durlofsky [41] do not

utilize gradient information, in one example, it requires on the order of 800,000 simulation

runs to obtain the Pareto front; thus the procedure would be completely impractical for
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realistic problems.

Liu and Reynolds [54] developed and implemented the weighted sum and normal

boundary intersection (NBI) methods to solve biobjective optimization problem where the

two objectives are to maximize the expected value of the life-cycle NPV and minimize the

standard deviation of the NPV over the ensemble of geological realizations. They observed

that the use of standard deviation as the risk measure is not wise because the reduction

in risk/uncertainty is mainly achieved by reducing the largest possible NPV. Thus, Liu

and Reynolds [55] applied the constrained weighted sum and constrained NBI methods to

maximize the expected value of NPV and reduce the risk by maximizing the worst NPV;

in this work, they also considered the presence of nonlinear field constraints. In the work

of Liu and Reynolds [56], the lexicographic method also was used to maximize expectation

and maximize the NPV of the worst-case scenario (or minimize the standard deviation).

Liu and Reynolds [53] solved the a tri-objective optimization problem with the expected

life-cycle NPV, expected short-term NPV and downside risk as three conflicting objectives.

The derivatives of those three objective functions are computed by the adjoint method and

only bound constraints are considered in that work. For the methods utilized in these

papers of Liu and Reynolds, a gradient-based algorithm with the gradients computed by

the adjoint method is used for the optimization. While gradient-based methods significantly

enhance computational efficiency, adjoint solutions are not generally available in commercial

simulators.

Recently, in the petroleum engineering literature, ensemble-based optimization has

been applied to biobjective optimization [32] [10]. The methods effectively all produce a

stochastic approximation of the gradient or preconditioned gradient of the objective func-

tion. The stochastic gradient does not require a reservoir simulator with adjoint capability

and simply uses the reservoir simulator as a black-box. In Chen [10], the life-cycle NPV

and downside risk are considered as two conflicting constraints where the downside risk is

characterize as conditional value at risk (CVaR) and worst case NPV, respectively. None of

papers cited in this section used stochastic gradients to compute nonlinear state constraints
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within the robust production optimization process.

In this work, we develop a robust multi-objective optimization algorithm based on

the use of StoSAG gradients to help decision makers balance the trade-off between long-

term/short-term interests and downside risk of a reservoir development with geological un-

certainty. The min-max scheme is implemented to ensure that all nonlinear state constraints

are satisfied at each control step at each realization.

1.3 Literature Review on Proxy-based Optimization

Depending on the scale of a problem, a single forward reservoir simulation run may

take a few minutes to a dozen or more hours to finish. Therefore solving the optimization

problem based on a full-physics reservoir simulator is a computationally demanding process,

where the optimization algorithm may require hundreds to thousands of forward runs espe-

cially when nonlinear state constraints are involved [53]. In recent studies, many researchers

proposed the use of lower fidelity and fast proxy models to replace the high fidelity and full-

physics reservoir simulator. Significant computational resources can be saved if appropriate

proxy models are selected to replace the reservoir simulator in the production optimization

process. The most popular low-fidelity models in the production optimization community

can generally be classified into three types: reduced-order models, physics-based data-driven

models and learning-based data-driven models.

The basic idea of the reduced-order model is to generate low-order models using

snapshots from a forward reservoir simulation runs. The reduced-order model can be used in

place of a reservoir simulator in optimization algorithms to significantly reduce the computa-

tional time required to estimate an optimal solution. van Doren et al. [82] proposed proper

orthogonal decomposition (POD) to reduce the order of the reservoir simulation problem;

also see [8]. He and Durlofsky [40] enhanced the performance of the reduced-order model

by introducing information from the Jacobian matrix. Although incorporating Jacobian in-

formation in the reduced-order model can improve its accuracy, the development of these

reduced-order models requires a simulator which allows the user to access the necessary
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Jacobian information which is generally not available from commercial reservoir simulator.

Moreover, for a complex multi-phase flow model e.g., a compositional model, the reappear-

ance and disappearance of phases may lead to many switches of the primary variables, which

can lead to failure of the reduced-order model.

Typically, a physics-based data-driven model is formulated to preserve some of the

reservoir physics which are related directly to the physics of flow and transport. The param-

eters involved in such models are obtained directly by history matching so the development

of the model does not require a detailed geological model or access to the high fidelity

reservoir simulator. One issue associated with this feature of data-driven models is the re-

quirement that a large number of production data are available. Thus, for a green field, it

may not be feasible to use the data-driven model for production optimization. Moreover,

extending the physical-based data-driven model to problem with complex physics, e.g., a

thermal three-phase compositional model, is a difficult process. Physics-based data driven

models include [90], INSIM [94] and INSIM-FT [37, 39]. These specific models only apply

for the two-dimensional two-phase flow of water and oil. The INSIM-FT has been extended

to three-dimensional flow with gravitational effects included by Guo and Reynolds [38], but

still only applies for water-oil systems.

Recently, machine learning-based proxy models have been applied to solve the pro-

duction optimization problem [49, 9, 37]. Nonlinear regression enables us to build a proxy

model as a computationally efficient forward model to replace a full-scale reservoir simulation

model. The training data for a machine learning-based proxy utilizes data generated from

the full-physics, full-scale reservoir model. Thus, compared to the physic-based data-driven

models discussed above, the machine learning-based proxy is easy to extend to any type of

flow and transport scenario for which a simulator is available to generate training output

from training input. Moreover, with properly selected feature space and training points, the

machine learning-based proxy model can be implemented to optimize well controls even for

a green field.

A linear regression proxy model, which is the simplest commonly used machine learn-
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ing algorithm, generates an approximate model which is a linear combination of explic-

itly defined vectors in feature space (e.g., polynomials, sine and cosine functions) with

corresponding coefficients. These methods have the same issue that commonly exists for

interpolation-based methods, i.e., the issue of data overfitting especially if the training out-

puts are significantly corrupted with noise. As we train our proxy to reservoir simulator

output, not measurements, overfitting should not be a significant issue for a life-cycle pro-

duction optimization problem.

In this work, our focus in the improvement of the least-squares support vector re-

gression (LS-SVR) proxy model. The basic idea of LS-SVR is to transform the input data

from the original space into a higher dimensional feature space, where the output data has

a linear relationship with the transformed variables in feature space. The parameters defin-

ing the linear relationship between the output and the feature space variables are obtained

by solving an optimization problem that minimizes a weighted sum of the LS-SVR model

complexity and the deviation of the predicted response from the “true” response. However,

the transformation into the feature space is usually not performed in an explicit way due to

computational infeasibility [81]. Instead, a kernel function that satisfies Mercer’s condition

[66] is introduced to convert the optimization problem from a primal space into a dual space,

which makes the problem solvable. Guo and Reynolds [37] were the first to apply the LS-SVR

with iterative sampling to solve robust production optimization problems. Since, the LS-

SVR provides an accurate approximation near training points, iterative sampling generates

an LS-SVR proxy model that is highly accurate in the neighborhood of the optimal controls.

Iterative sampling involves a sequence of applications of the optimization algorithm. In each

optimization step, the reservoir simulator is replaced by a proxy which is used to generate

the value of the cost/constraint functions and their derivatives at each iteration of the opti-

mization algorithm. Upon convergence, the optimal well controls and corresponding values

of cost/constraint functions and their derivatives, which must be obtained by a single run

of the reservoir simulator, represent a new training sample which is added to the previous

training set. Using the new training set, a updated proxy is generated and used to do a new
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optimization run. The process of proxy updating and optimization is repeated until the re-

sults stabilize, which means that the reservoir simulator and the proxy produce virtually the

same value of the objective function at the estimated optimal values of the design variables,

e.g., the well controls. The basic idea of iterative sampling is to improve the reliability of

the proxy near the optimal solution as the sequence of optimizations improve the estimate

of the optimum.

In this work, we develop a least-squares gradient-enhanced support vector (GE-SVR)

proxy that is trained to match both derivative and function data output from a reservoir

simulator with adjoint capability. Unlike standard gradient-based optimization algorithms,

which only incorporate gradient information from at most two previous iteration steps (e.g.

BFGS and LBFGS), GE-SVR can utilize the gradient information at all training points

and reuse this training information when starting from different initial guesses to try to

find multiple local optimums for multi-modal functions. Moreover, once the initial proxy is

obtained, evaluation of the proxy is far more computationally efficient than evaluating the

response using a complex forward model, i.e., the reservoir simulator. Because of the previous

two statements, the GE-SVR workflow with iterative sampling is expected to provide a

robust and more computationally efficient algorithm than results when each iteration of the

optimization algorithm requires running the reservoir simulator to evaluate outputs and their

gradients with the adjoint gradient.

1.4 Dissertation Outline

This dissertation contains five chapters that proceed as follows:

In Chapter 2, we first define the objective function and state constraints in the

petroleum engineering context. Then, two numerical schemes to improve the quality of

the stochastic gradient are motivated and discussed and verified by numerical experiments.

The formulation of the SQP-filter algorithm that we use is introduced in the next section.

Next, we introduce a min-max scheme for enforcing nonlinear state constraints, which is more

computationally efficient than explicitly including all constraints for all reservoir models di-
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rectly in the definition of the optimization problem. Two numerical examples are designed

to illustrate the robustness and efficiency of our SQP-filter framework and superiority of the

improved StoSAG gradient over the standard StoSAG gradient.

In Chapter 3, we introduce the lexicographic method as a standard framework to

solve the multi-objective optimization problem. Then, we introduce our modified lexico-

graphic method to solve the constrained multi-objective optimization problem. In this chap-

ter, stochastic gradients are used in the SQP filter method with a min-max scheme which

reduces the computational effort necessary to enforce state constraints on every reservoir

model at every control step. The Brugge case is tested with our constrained multi-objective

optimization framework and for this example, we solve both bi-objective and tri-objective

optimization problems.

In Chapter 4, we first discuss the least squares support vector regression (LS-SVR)

proxy model. Then, we introduce the formulation and implementation of the gradient-

enhanced support vector regression (GE-SVR) proxy model, which, unlike the LS-SVR proxy,

is trained to match both function and derivative information output from a reservoir simula-

tor with adjoint capability. Thereafter, the iterative sampling scheme are discussed. Finally,

computational results for three examples are presented and discussed.

We summarize the main conclusion of this research in Chapter 5. In Chapter 5,

conclusions are presented on a chapter by chapter basis.
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CHAPTER 2

AN SQP FILTER ALGORITHM WITH A MODIFIED STOCHASTIC

GRADIENT FOR ROBUST LIFE-CYCLE OPTIMIZATION PROBLEMS

WITH NONLINEAR STATE CONSTRAINTS

2.1 Introduction

Solving a large-scale optimization problem with nonlinear state constraints is chal-

lenging when adjoint gradients are not available for computing the derivatives needed in the

basic optimization algorithm employed. Here, we present a methodology for the solution of

an optimization problem with nonlinear and linear constraints where the true gradients that

cannot be computed analytically are approximated by ensemble-based stochastic gradients

based on an improved stochastic simplex approximate gradient (StoSAG). Our discussion is

focused on the application of our procedure to waterflooding optimization where the opti-

mization variables are the well controls (pressures or rates) at specified time intervals (control

steps) and the cost function is the average life-cycle net present value (NPV) of production

where the average is over an ensemble of realizations of the reservoir model that characterize

the geological uncertainty in the reservoir model. The optimization algorithm used for solv-

ing the constrained optimization problem is sequential quadratic programming (SQP) with

constraints enforced using the filter method. We introduce modifications to StoSAG that

improve its fidelity, i.e., the improvements give a more accurate approximation to the true

gradient (assumed here to equal the gradient computed with the adjoint method) than the

approximation obtained using the original StoSAG algorithm. The modification to StoSAG

vastly improve the performance of the optimization algorithm; in fact, we show that if the

basic StoSAG is applied without the improvements, then SQP may yield a highly suboptimal
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result for optimization problems with nonlinear state constraints. For robust optimization,

each constraint should be satisfied for every reservoir model which is highly computationally

intensive. However, we demonstrate that the computationally viable alternative of letting

the reservoir simulation enforce the nonlinear state constraints using its internal heuristics

yields significantly inferior results. Thus, we develop an alternative procedure for handling

nonlinear state constraints, which avoids explicit enforcement of nonlinear constraints for

each reservoir model yet yields results where, at convergence any constraint violation for any

model is extremely small.

2.2 Methodology

2.2.1 Optimization Problem

The production optimization problem considered here refers to the estimation of the

optimal wells controls on predefined control steps that minimize the negative net present

value (NPV) of life-cycle production subject to bound constraints and to operational con-

straints which represent nonlinear state constraints. Note that minimizing the negative NPV

is equivalent to maximizing the NPV.

We let u be the Nu-dimensional column vector which contains all production and in-

jection well controls. Notationally, u = [u1, ..., uNu ]T = [u1,1, u2,1...uNc,1, ..., uNc,Nwell ]T where

ui,j denotes the control at well j at the ith control step, Nc is the number of control steps

and Nwell is the total number of wells with their controls subject to optimization. Examples

of well controls are the specified water injection rate of injectors, liquid or oil production

rate of producers, or the bottom hole pressure of any type of well. Throughout, m denotes

the vector of reservoir parameters, e.g., permeabilities, porosity and net-to-gross of each grid

block, depths of fluid contacts or parameters in power-law relative permeability functions of

a reservoir simulation model.

For a three-phase flow reservoir under waterflooding, the negative of the NPV func-
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tional for any reservoir model m and any control vector u can be defined by

J(u,m) = −
Nt∑
n=1

{
∆tn

(1 + b)
tn
365

[
P∑
j=1

(
ro · q̄no,j(u,m) + rg · q̄ng,j(u,m)− rw · q̄nw,j(u,m)

)]}

−
Nt∑
n=1

{
∆tn

(1 + b)
tn
365

[
I∑

j=1

(
rwi · q̄nwi,j(u,m)

)]}
. (2.1)

Note we minimize the negative NPV which is equivalent to maximizing the NPV. The time

at the end of the nth simulation time step is denoted by tn; ∆tn is the size of nth time

step; and Nt is the total number of time steps. P and I respectively denote the number of

production and injection wells; q̄no,j (STB/D), q̄nw,j (STB/D) and q̄ng,j (Mcf/D), respectively,

denote the average oil, water and gas production rate of the jth well over the nth time

step, whereas q̄nwi,j (STB/D) is the average water injection rate at the jth injection well over

the nth time step; ro ($/STB) denotes the oil price; rg ($/Mcf) denotes the gas price; rw

($/STB) is the disposal cost of produced water; rwi ($/STB) is the water injection cost and

b is the annual discount rate.

Normally, we wish to consider geological uncertainty, and then we minimize the aver-

age negative NPV of an ensemble of samples of a stochastic reservoir model, i.e., we consider

robust optimization. For robust optimization, the objective function that is minimized is

given by

J̄(u) ≡ 1

N e

Ne∑
k=1

J(u,mk) ≈ E [J(u,m)] , (2.2)

where E denotes the expected value. Here, Ne represents the number of reservoir models

used to characterize geological uncertainty, and the different reservoir models (set of vectors

of model parameters) are given by mj, j = 1, 2, . . . , Ne. Note that one evaluation of J̄(u)

requires Ne reservoir simulation runs; thus, each evaluation of the objective function for

robust optimization is computationally expensive if Ne is large. While various procedures

[78, 63, 58, 59] have been proposed to select a subset of the Ne models for optimization in

order to improve computational efficiency, such options are not explored here.

21



For robust optimization, the generic nonlinear constrained optimization problem is

defined as

minimize
u∈RNu

J̄(u), (2.3a)

subject to ulow
i ≤ ui ≤ uup

i , i = 1, 2, . . . , Nu, (2.3b)

ci(u,mj) > 0 , i = 1, 2, . . . , Nic j = 1, 2, . . . , Ne. (2.3c)

For the specific computational examples presented here, we consider the most common

well control case where the injection wells operate under rate control and the producers

operate under pressure control. In this case, natural state constraints are facility-imposed

upper bounds on the field liquid rate (FLR), the field gas rate (FGR), the field water rate

(FWR) and bounds on the pressure at each rate-controlled water injector well. By the

same techniques developed here, one could impose bounds on the producing water oil ratio

and gas-oil ratio either on a well by well basis or on a field basis. We also consider linear

bound constraints on the pressure of BHP-controlled producer wells. We do not include

equality constraints in the description of the general constrained optimization problem simply

because dealing with equality constraints requires no nontrivial modification of the SQP

algorithm. For problems of interest to us, we commonly only have inequality constraints

with the exception of the requirement of voidage replacement which is an equality constraint.

It is of course possible to also have nonlinear constraints that do not involve the state of

the system but those are much easier to enforce, as well as much less common, and are not

considered here. Throughout, uup
i and ulow

i denote the upper bound and lower bound of

the ith control variable, ci(u) denotes the ith inequality constraint and Nic is the number

of nonlinear inequality constraints for one realization of reservoir model. It is important

to note that ci(u) may be either a linear constraint or a nonlinear state constraint. In our

implementation, each bound constraint on a control variable can either be converted to two

linear inequality constraints of the form ci(u) > 0 or simply enforced by truncation.
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2.2.2 Stochastic Gradient, StoSAG

In order to solve the constrained robust optimization problem defined in Eq. 2.3, the

SQP-filter algorithm is implemented where the gradients necessary to implement SGP are

stochastic gradients given by StoSAG [33]. As we will see obtaining a sufficiently accurate

gradient is necessary to obtain an estimated optimum that is close to a true optimum. To

mitigate the convergence difficulty encountered when using SQP with stochastic gradients

generated with standard StoSAG to solve the optimal control problem with nonlinear state

constraints, we introduce two modifications that improve the accuracy of the stochastic gra-

dient. To introduce the first modification, we first note that the NPV of life-cycle production

optimization is a linear combination of the phase rates at all control steps. Thus, the gradient

of the NPV functional with respect to the controls is a linear combination of the gradients

of the individual flow rates at each control step. The derivatives involved in any one of these

gradients represent the derivative of a flow rate at a particular control step with respect to

all control variables. However, the derivative of a flow rate at control step i with respect to

a control variable at a later control step theoretically and physically must be zero. Thus,

after computing the stochastic gradient of a flow rate at a particular control step, we set

the derivatives of the rate with respect to control variables pertaining to later control steps

equal to zero. This modification of the StoSAG gradient is referred to as truncation. The

second improvement to the StoSAG gradient, which is referred to as temporal damping, is

motivated by our intuition, supported by observations, that the derivative of a phase rate

at a specific well at control step i with respect to the control at control step i− j usually is

smaller than its derivative with respect to the control at control step i− k if 0 ≤ j < k. As

the magnitude of stochastic gradient does not generally follow this expected behavior, it is

desirable to apply a damping factor to improve the fidelity of the stochastic gradient. Here,

we derive a semi-theoretical procedure to modify the stochastic derivatives by damping to

obtain modified derivatives which more closely follow the expected behavior of derivatives.

The theoretical derivation, however, is based on single-phase flow and, in this sense, is a

heuristic rather than a theoretical result. However, we illustrate that truncation and tempo-
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ral damping yield more accurate stochastic gradients of the phase rates involved in the state

constraints than those computed with StoSAG and the improved accuracy significantly im-

proves the performance of SQP for solving the constrained optimization problems of interest

here.

Throughout, the Nu dimensional column vector u` is the estimate of the vector of

optimal controls at the `th iteration of the steepest descent optimization algorithm where

the gradient in the algorithm is replaced by the stochastic simplex gradient discussed later.

In the first part of this section the stochastic gradient with respect to u is denoted by ∇u,sto.

However, after the procedure is clear, we simply use ∇ to denote the stochastic gradient

with respect to u. First note that from Eq. 2.2, the stochastic gradient with respect to u of

the average NPV at u` is given by

∇u,stoJ̄(u`) =
1

N e

Ne∑
k=1

∇u,stoJ(u`,mk) =
1

N e

Ne∑
k=1

∇u,stoJ
`
k (2.4)

where the last equality simply introduces the notation J `k = J(u`,mk). Thus, to compute

the stochastic gradient ∇u,stoJ̄(u`), we simply compute the stochastic gradients of the J `k’s

and average them.

With StoSAG, stochastic perturbations of u` are obtained as

û`i,k ∼ N(u`, CU) (2.5)

for i = 1, 2, · · ·Np, k = 1, 2, · · ·Ne, where Np denotes the number of perturbations, Ne is

the number of models used to represent geological uncertainty and CU is an assumed prior

matrix for the controls introduced to promote the temporal smoothness of controls and their

perturbations at each individual well as discussed at the end of this subsection. Note that

û`i,k represents the ith perturbation of u` associated with the kth geological realization. If

Ne is on the order 10 to 15 or greater, we typically only use one to three perturbations per

model [33] whereas, if Ne = 1 (geological uncertainty not considered), we generally choose
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the value of Np between 10 and 20.

The Nu ×Np matrix used to compute ∇u,stoJ
`
k is denoted by ∆U `

k and is defined as

∆U `
k = [û`1,k − u` û`2,k − u` · · · û`Np,k − u

`], (2.6)

for k = 1, 2, ..Ne , where Np and Ne respectively denote the number of perturbations and

number of realizations in the ensemble. Note for each mk, a different set of perturbations

is used. It is possible to use a different number of perturbations for each mk but we do not

pursue that scenario here. For each reservoir model mk, the perturbation of u` to û`i,k results

in a change in J `k = J(u`,mk) given by

δJ `i,k = J(û`i,k,mk)− J `k. (2.7)

For each k, k = 1, 2, · · ·Ne, the Np dimensional column vector, ∆J `k , is then given by the

Np dimensional column vector defined by

∆J `k = [δJ `1,k δJ `2,k · · · δJ `Np,k]
T . (2.8)

As derived in [33], the basic formulation of the StoSAG approximation of the gradient of

J `k = J(u`,mk) is given by

∇u,stoJ
`
k = (∆U `

k)
+∆J `k, (2.9)

where the superscript + on a matrix denotes the Moore-Penrose pseudo-inverse [36]. From

Eq. 2.4, it follows that the stochastic gradient of J̄ ` = J̄(u`) is given by

∇u,stoJ̄
` =

1

N e

Ne∑
k=1

((∆U `
k)

+∆J `k), (2.10)

Note ∇u,stoJ̄
` is the approximation of ∇uJ̄

` used in a gradient-based algorithm. As shown

in [33], the expectation of ∇u,stoJ̄
` is equal to the true gradient ∇J̄(u`) plus a bias term

which is O(maxi,k{‖ û`i,k − u` ‖}). Also note that Np ×Ne forward simulations are required
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to estimate the stochastic gradient of J̄ ` with the StoSAG method. For robust optimization,

we do three perturbations per model in our computational examples.

The Nu×Nu matrix CU introduced in Eq. 2.5 is a preconditioning covariance matrix

which is generally designed to generate control variables with temporal smoothness [19, 50].

As CU enhances the temporal smoothness of controls on a well by well basis, CU is chosen to

be a block diagonal matrix [33] consisting of Nw matrices where Nw is the number of wells.

The matrix that appears as the k diagonal block of CU is denoted by Ck
U and its dimension

is Nk
c × Nk

c where Nk
c is the number of controls, or control steps, applied at well k. In the

example presented here, the correlation length of control steps does not vary from well to

well. The entries of the Ck
U ’s can be generated from any covariance function. In the examples

presented here, we use a spherical covariance function so the entry in the ith row and jth

column of Ck
U is given by

Ck
u(i, j) =

δ
2
uk

(1− 3|i−j|
2Lk

+ 3|i−j|3
2L3

k
) , |i− j| < Lk

0 , |i− j| > Lk.
, (2.11)

where Lk is the correlation length for controls at well k and δuk effectively defines the per-

turbation size used to compute the stochastic gradient. In the examples, we use the same

correlation length at each well. It is also assumed that the same number of controls steps are

used at each well although it is not necessary to do so [68]. The perturbation size, δuk , could

also be varied from control step to control step and from iteration to iteration of the opti-

mization algorithm based on the magnitude of individual controls. However, in the example

problems, the perturbation size is constant. Typically, we set δuk equal to 0.001 of the range

of control variables. It is important to note that because Eq. 2.9 approximate the gradient

directly instead of CU times the gradient, sampling perturbations from Eq. 2.5 results in

smooth correlated perturbations but does not guarantee the final controls are smooth.

2.2.3 Improving the Stochastic Gradient

From this point on all gradients that appear in equations are stochastic gradients
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with respect to u so the notation ∇u,sto is simply replaced by ∇. The ideas for improving

the quality of approximation of the gradient given by StoSAG are based on computing ∆J `k

for each J `k as the appropriate linear combination of the stochastic gradients of all the rates

that appear in the definition of J `k = J(u`,mk) and in the state constraints. These stochastic

gradients of rates with respect to u are also used to generate the gradients needed to enforce

the state constraints. From Eq. 2.1, we see that the ∇u,stoJ
`
k term on the right side of Eq. 2.9

can be written as

∇J `k = −
Nt∑
n=1

{
∆tn

(1 + b)
tn
365

[
P∑
j=1

(
ro∇q̄no,j(u`,mk) + rg∇q̄ng,j(u`,mk)− rw∇q̄nw,j(u`,mk)

)]}

−
Nt∑
n=1

{
∆tn

(1 + b)
tn
365

[
I∑

j=1

(
rwi∇q̄nwi,j(u

`,mk)
)]}

, (2.12)

for k = 1, 2, · · ·Ne. Thus, to compute the StoSAG approximation of the gradient, we simply

need to apply repeatedly the formula for StoSAG to compute the gradient of each individual

rate term. For example, the stochastic simplex gradient of the average oil rate at production

well j evaluated at model mk at the n control step with respect to all the control variables

is denoted by ∇q̄no,j(u`,mk) and can be computed by

∇q̄no,j(u`,mk) = [(∆U `
k)

+](∆Qn
o,j)

`
k, (2.13)

for k = 1, 2, · · ·Ne, j = 1, 2, · · ·P and n = 1, 2, · · ·Nt. The matrix of perturbations, ∆U `
k,

is defined in Eq. 2.6 and the matrix of resulting changes in q̄no,j for reservoir model mk is

denoted by (∆Qn
o,j)

`
k and defined by

(∆Qn
o,j)

`
k = [q̄no,j(û

`
1,k,mk)− q̄no,j(u`,mk), q̄no,j(û

`
2,k,mk)− q̄no,j(u`,mk) , · · · , (2.14)

q̄no,j(û
`
Np,k,mk)− q̄no,j(u`,mk)].

for k = 1, 2, · · ·Ne, j = 1, 2, · · ·P and n = 1, 2, · · ·Nt. The obvious analogues of Eq. 2.13

can be used to compute the stochastic gradients, ∇q̄no,j(u`,mk), ∇q̄ng,j(u`,mk), ∇q̄nw,j(u`,mk)
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for j = 1, 2, · · ·P and ∇q̄wi,(u`,mk) for j = 1, 2, · · · I whenever water injection wells are not

rate controlled. However, if the water injection rates are the control variables, the gradients

∇q̄wi,(u`,mk) can be computed analytically. Using the stochastic gradients of these rates

in Eq. 2.12, one can calculate the stochastic gradients ∇J `k for k = 1, 2, · · ·Ne, and, using

these last results from Eq. 2.12 in Eq. 2.4 gives the stochastic gradient ∇J̄(u`). Equally

importantly, the gradients of rates can be used to compute the gradient of nonlinear state

constraints that involve rates. As to compute the gradient of bottom hole pressure (BHP)

with respect to water production rates for the rate-controlled water injection well, we switch

the (∆Qn
o,j)

`
k to (∆P n

j )`k where (∆P n
j )`k is defined by

(∆P n
w,j)

`
k = [p̄nw,j(û

`
1,k,mk)− p̄nw,j(u`,mk), p̄nw,j(û

`
2,k,mk)− p̄nw,j(u`,mk) , · · · , (2.15)

p̄nw,j(û
`
Np,k,mk)− p̄nw,j(u`,mk)].

for k = 1, 2, · · ·Ne, j = 1, 2, · · · I and n = 1, 2, · · ·Nt. Therefore, the stochastic simplex

gradient of the BHP at a rate-controlled injection well j evaluated at model mk at the n

control step with respect to all the control variables is denoted by ∇p̄nw,j(u`,mk) and can be

computed by

∇p̄no,j(u`,mk) = [(∆U `
k)

+](∆P n
o,j)

`
k, (2.16)

for k = 1, 2, · · ·Ne, j = 1, 2, · · · I and n = 1, 2, · · ·Nt.

In computing these stochastic gradients for the two examples considered later in

this chapter, three perturbations are used for each model mk in the standard procedure for

computing the stochastic simplex gradient; see [24], [33]. However, as discussed previously,

we show that it is possible to generate a better quality stochastic gradient that improves the

performance of SQP for nonlinear state constrained optimal well control problems by first

modifying the stochastic gradients of the rate terms before using them to compute the ∇J `k.

Based on the physics/mathematics of the problem, the average well rates over a

reservoir simulator time step from tn−1 to tn will not change if any control on a future

control interval, Im = (tc,m−1, tc,m], is perturbed, i.e. if u`m is any specific control defined
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on the control step Im = (tc,m−1, tc,m] where tc,m−1 > tn, then the correct derivative of all

average rates defined on (tn−1, tn] with respect to u`m must be equal to zero. However, the

StoSAG formula of Eq. 2.13 typically yields a nonzero value of such a derivative. Thus, to

improve the accuracy of the stochastic derivatives, we simply truncate these values to zero.

Below, we show how this affects the StoSAG derivatives by comparing StoSAG derivatives

to those computed from the adjoint method. The adjoint gradient is treated as a benchmark

because of its relatively high accuracy.

Next, we compare the accuracy of the standard StoSAG and our modifications of

StoSAG with the gradient computed using the adjoint method. The basic reservoir model

used in this comparison is the model considered in the first optimization example considered

latter. For this reservoir model, there are 9 wells drilled in the reservoir and each well has 22

control steps, so the total number of control variables is 9 × 22 = 198. All production well

controls are BHPs and all water injectors operate under injection rate controls. Fig. 2.1a

compares standard StoSAG (light blue) derivatives of the average oil rate of well P1 at the

11th control step with respect to all the control variables with those derivatives computed by

the adjoint method and with those computed by both truncation and damping (StoSAGtd)

where discussion of the damping mechanism is postponed until later. Here, the StoSAG

gradient is generated with 20 perturbations using a perturbation size δu in Eq. 2.11 equal

0.001 of the range of well control interval (lower bound to upper bound) and the control

correlation length is 5 control steps. The range for each water injection control is [0, 500], so

the perturbation size of 0.5 (STB/d) is used to compute stochastic derivatives with respect

to injection rate controls. Bounds on pressure at producers are given by [1000, 4600], so

perturbation size of 3.6 psi is used to compute derivatives with respect to pressure. Each

integer value on the x-axis of Fig. 2.1a corresponds to the well control of a certain well at

a certain time step. The thin vertical gray lines in Fig. 2.1a, as well as in similar figures

presented later, separate the controls on a well by well basis. For example, the first 22

values, which are to the left of the first vertical gray line, pertain to the derivative of the

oil rate of well P1 at the 11th control step with respect to all controls of producer P1. The
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(a) Adjoint and stochastic derivatives of qo at P1
at 11th control step with respect to all controls.

(b) Adjoint and stochastic derivatives of qo at P1
at 11th control step with respect to its own
controls.

Figure 2.1: Comparison of adjoint and stochastic gradients of qo of well P1 at 11th control
step

derivatives corresponding to each gradient are from the scaled gradient where the scaled

gradient of qo at the 11th control step is defined by ∇uqo/||abs(∇uqo)||∞. Thus, in absolute

value, the maximum value of the derivatives included in each of those three gradients is equal

to 1. This means the gradient comparison is really a comparison of directions rather than

magnitudes which is appropriate because as long as we obtain a good search direction, a

step in that direction is controlled by the step size. The derivatives of the oil rate of well P1

at 11th control interval with respect to its own controls obtained from the adjoint gradient,

the StoSAG gradient and StoSAG gradient with truncation (StoSAGt) are compared in

Fig. 2.1b. (Results with both truncation and damping are not shown in this figure.) By

only observing the gradient of oil rate of P1 at the 11th control step with respect to its

own controls in Fig. 2.1, we can clearly see that after the 11th control step, all values of

the adjoint gradient are zero. However, the StoSAG gradient produces nonzero values for

the gradient components which are corrected to zero by truncation. However, the truncated

StoSAG gradient does not give an accurate approximation of the derivative of P1’s control

at 11th control with respect to its controls at earlier time steps. Thus, truncation by itself

(black curve) is not enough to give a good search direction but truncation plus damping

(StoSAGtd) gives a direction in reasonable agreement with the adjoint gradient.
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Our second idea for improving the quality of the gradient is referred to as temporal-

damping. Temporal damping is motivated by our observations on how the magnitudes of the

derivatives of the flow rate at a particular time at any well with respect to control variables

depend on the control step on which the control variables apply. Roughly speaking, the

magnitude of derivative of the average rate of well w on the nth control step with respect

to the control of the same well at control step j decreases as n − j increases. To make

this as clear as possible, we consider the case where we are interested in the gradient of the

average oil rate for control step n at well j with respect to all the controls of well j, i.e., the

gradient of q̄no,j with respect to the controls at well j, where, here and only here, we let ûjk,

k = 1, 2, · · · , Nc, be the controls of well j for the Nc control steps. Then the objective is

to estimate ∂q̄no,j/∂û
j
k , k = 1, 2, · · · , n by damping, where ∂q̄no,j/∂û

j
k for k = n + 1, · · · , Nc

are automatically set equal to zero by truncation. Our observation is that the “baseline”

gradient computed from the adjoint method typically tends to the following relationship:

∣∣∣∂q̄no,j
∂ûjn

∣∣∣ > ∣∣∣ ∂q̄no,j
∂ûjn−1

∣∣∣ > · · · > ∣∣∣∂q̄no,j)
∂ûjn

∣∣∣. (2.17)

Eq. 2.17 applies at any well for any average rate on a control step. Thus, the general

result is that the magnitude of the derivatives of an average flow rate (oil, water or gas)

at a specific control step with respect to its own controls reach the maximum value at the

specific control step and decrease in magnitude as the “times” of control steps track back

in time from the specific control step. Next, we present the motivation of our temporal

damping scheme. The motivation is theoretically-based but is derived only for single-phase

flow for a single vertical well produced at a sequence of constant rates. Thus, there is no

theoretical guarantee that it applies to multiphase flow problems even though our example

computations suggest that it roughly applies for multiphase flow problems. In fact, though

we believe damping can significantly improve the quality of the gradient, it is likely that

there exist better damping procedures than the one presented here. In fact, part of the

motivation for presenting the scheme is to encourage other researchers to investigate ways
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to improve the quality of stochastic gradients.

According to the superposition theorem for single phase flow, the pressure drop at a

vertical well due to a sequence of constant production rates q1, q2, · · · , qn is given by

pi − pwf(t) = q1pu(t− 0) + (q2 − q1)pu(t− t1) + (q3 − q2)pu(t− t2)+

· · ·+ (qn − qn−1)pu(t− tn−1)

= q1[pu(t− 0)− pu(t− t1)] + q2[pu(t− t1)− pu(t− t2)]+

· · ·+ qn−1[pu(t− tn−2)− pu(t− tn−1)] + qnpu(t− tn−1),

(2.18)

for t > tn−1, where pi is the initial pressure of the reservoir; pu(t) represents the unit-rate

constant-drawdown pressure change at the time t; qn indicates the liquid production rate at

the nth control interval (nth control step). In the following derivation, we define ∆tj = t−tj,

j = 1, · · · , n − 1 and use the fact that pu(t − tj) is equal to pu(∆tj). It is assumed that

vertical flow is negligible so from the viewpoint of a reservoir simulation model, the well is

assumed only penetrating a single gridblock. Let pb(t) represent the average pressure of this

gridblock at any time t ≥ tn. Then, by adding (pb(t)−pi) to both sides of Eq. 2.18, it follows

that

pb(t)− pwf(t) =q1[pu(∆t)− pu(∆t1)] + · · ·+ qj[pu(∆tj−1]− pu(∆tj)]

+ · · ·+ qn−1[pu(∆tn−2)− pu(∆tn−1)] + qnpu(∆tn−1) + [pb(t)− pi].
(2.19)

In oil-field units, Peaceman’s well index [71] in the x− y coordinate system for single-phase

flow is defined as

WI =

√
kxkyh

141.2µ[ln(ro/rw) + s]
, (2.20)

where kx and ky in md are the well’s gridblock permeabilities in the x and y directions,

respectively; h is the reservoir thickness in ft; µ is the liquid viscosity in cp; ro and rw in

ft denote the equivalent radius and wellbore radius, respectively. Although Peaceman’s well

index is derived for single-phase flow, effectively, it is applied to compute the flow rate of

multiphase flow by multiplying by the phase relative permeability, i.e., to compute the flow
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rate of phase ph, the pressure drop is multiplied by a “multiphase flow well index,” which is

defined by

WIph =

√
kxkyh

[141.2 ln(ro/rw) + s]

kr,ph
µph

= WIλph, (2.21)

where kr,ph and λph, respectively, represent the relative permeability and mobility of phase

ph. Note this well index is no longer constant as it changes with saturation. The well index

for computing the total liquid flow rate at time t is denoted by WI`,t and is defined by

WI`,t =

√
kxkyh

[141.2 ln(ro/rw) + s]

(
kr,o
µo

+
kr,w
µw

)
= WIλ`, (2.22)

where λ` denotes the total liquid mobility (oil plus water). The total liquid production rate

at time t based on the multiphase flow well index is given by

q`(t) =

√
kxkyh

1421.2 ln(ro/rw) + s

(kro
µo

+
krw
µw

)
[pb(t)− pwf(t)] = WI`,t[pb(t)− pwf(t)]. (2.23)

Now, we simply assume that Eq. 2.19 approximately applies when the total liquid rate is used

in place of the single-phase flow rate. Under this assumption, using Eq. 2.19 in Peaceman’s

well model, we obtain

q`(t) =WI`,t[pb(t)− pwf(t)] = WI`,t{(q`,1[pu(∆t)− pu(∆t1)] + · · ·+ q`,j(tj)[pu(∆tj−1)− pu(∆tj)]

· · ·+ q`,n−1(pu(∆tn−2)− pu(∆tn−1) + q`,npu(∆tn−1) + (pb(t)− pi)},
(2.24)

where q`,j denotes the average total liquid production rate for the jth control step. Note in

our case, the producers are under BHP control so the well rates of producers vary within

the control interval. However, Eq 2.24 is derived based on the constant production rates

assumption, i.e., assumes that over all control intervals the production rate of the well is

constant. We assume a BHP controlled well with an average production rate q̄i on the ith

control interval would have a similar pressure profile as a constant rate controlled well whose

control rate qi is equal to q̄i. The average rate at ith control step is computed by q̄i = Qi−Qi−1

∆ti
,

where the Qi and Qi−1 denote the cumulative production of a producer at the end of the
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ith and (i-1)th control step, respectively; ∆ti denote the length of the ith control step. In

Eq. 2.24, we approximate q`(t) by the average rate over the control step, i.e., by q`,n ≡ q̄n`

and also replace WI`,t for any t such that tj−1 < t ≤ tj by its average over the control step

from tj−1 to tj, where this average well index is denoted by WI`,j. We let pb,j and pwf,j,

respectively, represent the average pressure of a grid block which contains any specific well

and the bottom hole pressure (BHP) at the jth control step. Modifying Eq. 2.24 using this

notation and then using Eq. 2.23 to replace each average flow rate in the modified version

of Eq. 2.24, it follows that the average liquid flow rate on the control interval (tn−1, tn] can

be approximated by

q̄n` = q`,n =WI`,n{WI`,1(pb,1 − pwf,1)[pu(∆t)− pu(∆t1)] + · · ·

+WI`,j(pb,j − pwf,j)[pu(∆tj−1)− pu(∆tj)] + · · ·

+WI`,n(pb,n − pwf,n)pu(∆tn−1}+WI`,n(pb,t − pi).

(2.25)

Then, by taking the derivative of Eq. 2.25 with respect to any pwf,j, we obtain

∂q`,n
∂pwf,j

= −WI`,nWI`,j[pu(∆tj−1)− pu(∆tj)], (2.26)

for j = 1, 2, · · ·n. Eq. 2.26 for the derivative is relevant for pressure controlled wells and

assumes that the dependence of WI`,n and WI`,j on pwf,j can be neglected. We treat the

value of
∂q`,n
∂pwf,n

as the reference value. As discussed previously, we expect the magnitude of

∂q`,n/∂pwf,j to be the largest when j = n. Thus, the damping factor is defined by

Dn,j =

∂q̄`,n
∂pwf,j

∂q̄`,n
∂pwf,n

=
WI`,j[pu(∆tj−1)− pu(∆tj)]
WI`,n[pu(∆tn−1)− pu(∆tn)]

. (2.27)

Eqs. 2.25 and 2.27 are derived by analogy with single phase flow, but are applied to damp

the derivatives of phase flow rates. To make the damping procedure as clear as possible, we

introduce some concise notation. We let pi,kwf denote the pressure control of well k at control

step i and let the average phase rate of phase ph at a specific producer, producer j at the
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(a) Adjoint and stochastic derivatives of qo at P1 at
11th control step with respect to all controls.

(b) Adjoint and stochastic gradients of qo at P1 at
11th control step with respect to its controls.

Figure 2.2: Comparison of adjoint and stochastic derivatives of qo of well P1 at 11th control
step.

specific control step n be denoted by q̄n,jph with derivatives

∂q̄n,jph

∂p̄i,kwf

, i = 1, 2, · · · , n, k = 1, 2, · · · , Nw, (2.28)

for all n = 1, 2, 3, · · · , Nc; recall that if i > n, the derivative of such phase rate with respect

to well controls will be truncated to zero. After computing the derivatives in Eq 2.28 by

the standard StoSAG procedure they are damped by multiplying by Dn,i for i = 1, 2, · · · , n

regardless of whether k = j or k 6= j.

The derivative obtained with the adjoint gradient, the StoSAGt gradient and the

StoSAG gradient with truncation and temporal damping (StoSAGtd) are compared in Fig. 2.2

where each gradient is normalized by dividing it by its infinity norm. Fig. 2.2a presents the

various derivatives of qo at well P1 at the 11th control step with respect to controls at all wells

at all control steps. Fig. 2.2b presents the various derivatives involved in the gradient of qo at

P1 at 11th control step with respect to only its own control variables. The results of Fig. 2.2

strongly suggest that the direction of StoSAGtd gives a significantly superior approximation of

the direction of the adjoint derivatives than does StoSAGt. Figs 2.3, 2.4 and 2.5, respectively,

compare the adjoint derivatives of the field liquid production rates (FLR), the field water
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(a) Comparison of the derivatives of the FLR at 11th control
step with respect to all controls (Adjoint & StoSAGt &
StoSAGtd).

(b) Comparison of the derivatives of the
FLR at 11th control step with re-
spect to well P1 controls (Adjoint &
StoSAGt & StoSAGtd).

Figure 2.3: Comparison of adjoint and stochastic gradients of FLR at 11th control step with
respect to control.

(a) Comparison of the derivatives of the FWR at 11th control
step with respect to all controls (Adjoint & StoSAGt &
StoSAGtd).

(b) Comparison of the derivatives of the
FWR at 11th control step with re-
spect to well P1 controls (Adjoint &
StoSAGt & StoSAGtd).

Figure 2.4: Comparison of adjoint and stochastic gradients of FWR at 11th control step with
respect to all controls.
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(a) Comparison of the derivatives of the FGR at 11th control step
with respect to all controls (Adjoint & StoSAGt & StoSAGtd).

(b) Comparison of the derivatives of the FGR
at 11th control step with respect to well P1
controls (Adjoint & StoSAGt & StoSAGtd).

Figure 2.5: Comparison of adjoint and stochastic gradients of FGR at 11th control step with
respect to all controls.

(a) Comparison of the derivatives of the FLR at 20th control
step with respect to all controls (Adjoint & StoSAGt &
StoSAGtd).

(b) Comparison of the derivatives of the
FLR at 20th control step with respect
to well P1 controls (Adjoint & StoSAGt

& StoSAGtd).

Figure 2.6: Comparison of adjoint and stochastic gradients of FLR at 20th control step with
respect to all controls.
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(a) Comparison of the derivatives of the FWR at 20th
control step with respect to all controls (Adjoint
& StoSAGt & StoSAGtd).

(b) Comparison of the derivatives of the
FWR at 20th control step with respect
to well P1 controls (Adjoint & StoSAGt

& StoSAGtd).

Figure 2.7: Comparison of adjoint and stochastic gradients of FWR at 20th control step with
respect to all controls.

(a) Comparison of the derivatives of the FGR at 20th control
step with respect to all controls (Adjoint & StoSAGt &
StoSAGtd).

(b) Comparison of the derivatives of the FGR at
20th control step with respect to well P1 con-
trols (Adjoint & StoSAGt & StoSAGtd).

Figure 2.8: Comparison of adjoint and stochastic gradients of FGR at 20th control step with
respect to all controls.
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(a) Comparison of the derivatives of the negative
NPV with respect to all controls (Adjoint &
StoSAG & StoSAGtd).

(b) Comparison of the derivatives of the negative
NPV with respect to all controls (Adjoint &
StoSAGt & StoSAGtd).

Figure 2.9: Comparison of adjoint and stochastic gradients of negative NPV with respect to
all controls.

(a) Comparison of the quality of the gradient of
the oil production rate of the P1 at the 11th
control step.

(b) Comparison of the quality of the gradient of
the negative NPV based on 90 stochastic gra-
dients.

Figure 2.10: Estimation of the quality of gradient; x axis is the angle between the adjoint
and stochastic gradient (◦); y axis represemts the frequency of each stochastic
gradient.
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production rates (FWR) and the field gas production rate (FGR) at control step 11 with

respect to all well controls with the corresponding derivatives generated by StoSAGt and

StoSAGtd. In figs 2.6, 2.7 and 2.8, respectively, we compare the adjoint derivative (red

lines) of the field liquid production rates (FLR) and field water production rates (FWR)

and the field gas production rates (FGR), respectively, at control step 20 with respect to all

well controls with the corresponding derivatives generated by StoSAGt (light blue lines) and

StoSAGtd (black lines). The results indicate the scheme with both truncation and damping,

StoSAGtd, generates the most accurate gradient of the field production rates. Although the

modified StoSAG derivative obtained by truncation and damping gives better estimates of

the adjoint derivative of field rates than are obtained by truncation only, this conclusion only

weakly extends to the derivatives of NPV. Fig. 2.9b indicates that the stochastic gradient of

the negative NPV obtained with both truncation and damping is not much different from

the one obtained by truncation only. Note Fig. 2.9 indicates that both modified stochastic

gradients give a fairly poor estimate of the adjoint gradient of the true negative NPV. At

the end of this subsection, we give a plausible explanation of why our modification of the

gradient does not significantly improve the gradient of NPV but does improve the gradients

of state constraints. It is important to note that obtaining an accurate derivative of phase

rates is critically important for computing the gradients of nonlinear constraints because

these gradients determine the feasible region for constrained minimization of the negative

NPV using the sequntial quadratic programming algorithm. Thus, improving the quality of

the rate derivatives that appear in constraints is critically important.

It is important to emphasize again that a stochastic gradient does not need to give

the correct magnitude of the gradient to be useful in optimization. What is important is

that a stochastic gradient of a function to be minimized provides a downhill direction in

which one can obtain a reasonable decrease in the function to be minimized. Note that a

stochastic gradient provides a downhill direction if the angle between the stochastic gradient

and the true gradient is less than 90◦. (When a stochastic gradient at an iteration of steepest

descent does not give a downhill search direction, it is often possible to generate a downhill
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direction by simply generating new perturbations and recomputing the stochastic gradient.)

In order to evaluate the quality of the gradient, similar to the results of Fig. 2.2, we consider

the gradient of the oil rate of well P1 at the 11th control step. However, here we compute 90

stochastic gradients where each stochastic gradient is computed using 20 perturbations with

perturbation size (δu in Eq. 2.11) equal to 0.001 times the range of the control variables.

Then, we compute the angles between each of the 90 stochastic gradients and the adjoint

gradient where this angle is computed by

θ = arccos
( (∇u,adq

11
o,1 · ∇u,stoq

11
o,1)

||∇u,adq11
o,1||2 · ||∇u,stoq11

o,1||2

)
, (2.29)

where ∇u,adq
11
o,1 and ∇u,stoq

11
o,1, respectively, denote the adjoint gradient and the stochastic

gradient with respect to the complete vector of controls and || · ||2 represents the two-norm

of the gradient. The histogram of the angles in degrees between the stochastic gradient and

the adjoint gradient based on the 90 angles computed from the 90 stochastic gradients is

shown in Fig. 2.10. From the results of Fig. 2.10a, it is clear that the distribution of the

angles based on StoSAGtd shows a distinct shift to the left compared with other stochastic

gradients, i.e., on average, StoSAGtd provides a direction closer to that of the true gradient

than those directions obtained with the other stochastic gradients. Moreover, the angle be-

tween the truncated gradient (StoSAGt) and the adjoint gradient is generally smaller than

the angle between normal StoSAG and the adjoint gradient. Although not shown, the

gradient of injection rates and the gradient of oil and water rates at other producers show

results that are qualitatively similar to the results of Fig. 2.10a. Thus, we conclude that

by combining the zero truncation and temporal damping schemes, we improve the quality of

gradients of the production phase rates. The gradients of rates determine directly the gra-

dients for state constraints on total field rates. Fig. 2.10b compares the quality of the three

stochastic gradients of the negative NPV functional in Eq. 2.12. Again the angle between

the adjoint gradient and the three stochastic gradients are compared based on the same

90 perturbations used to compare the quality of the oil rate in Fig. 2.10a. Again the two
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modified stochastic gradients tend to give a search direction closer to the search direction

represented by the adjoint gradient than does the unmodified StoSAG but the improvement

in direction is far more modest than the improvement in the gradient of the oil rate. If

the angle between stochastic gradient and adjoint gradient is smaller than 90 degrees, the

stochastic gradient provides a downhill direction in the minimization process. The results

of Table 2.1 indicate that StoSAGt and StoSAGtd provide a higher quality gradient of NPV

than the original StoSAG algorithm. However, the quality of StoSAGtd is not superior to

be quality of StoSAGt for computing the gradient of NPV. As the gradient of the nega-

tive NPV is a linear combination of individual rates at individual control steps, one might

expect that quality of the stochastic gradient of negative NPV would directly reflect the

quality of the gradient of a phase rate, e.g., that the histograms of angles of Fig. 2.10b

and Fig. 2.10a would be more similar. However, the difference between the angle of the

stochastic gradient of a specific flow rate at a specific control step and the adjoint gradient

may be different at each control step and for each rate so when we form the negative NPV

by combining all the associated rate gradients, the histogram of angles between the adjoint

gradient and any particular stochastic gradient may be quite different than a histogram of

angles between rate gradients. Moreover, when we form the linear combination of phase

rates of different magnitudes to compute the gradient of NPV, we cannot scale each gradient

by its infinity norm before combining the gradients. Thus, even if the stochastic gradient of

each and every flow rate at each and every control step is the same direction as the corre-

sponding adjoint gradient, unless the magnitude of each stochastic gradient is the same as

its adjoint-gradient counterpart, the linear combination of the stochastic gradients may give

a significantly different search direction than the linear combination of the adjoint-gradient

counterparts. On the other hand, nonlinear state constraints are applied on each control

step and do not involve combining rates at different control steps; thus, the accuracy of the

gradients of constraints on field rates more closely reflects the accuracy of gradients of flow

rates of a single well at single control step.

On the basis of the results of Table 2.1 for our SQP-filter framework, we apply only
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60-70◦ 70-80◦ 80-90◦ >90◦

StoSAG 5 19 42 24

StoSAGt 18 35 25 12

StoSAGtd 14 39 25 12

Table 2.1: Statistical frequency of angles between adjoint gradient and different stochastic
gradients (gradients of NPV)

the gradient-truncation scheme to improve the NPV gradient but use both truncation and

damping when computing the stochastic derivatives of rates that are involved in state con-

straints.

2.2.4 Sequential Quadratic Programming Filter (SQP-filter)

Sequential quadratic programming (SQP) is a optimization algorithm which is de-

signed to solve the general constraints optimization problem. The optimization problem of

interest in this work can be written as

minimize
u∈RNu

J̄(u), (2.30a)

subject to ci(u) ≥ 0, i = 1, 2, · · · , N̂ic. (2.30b)

where the total number of inequality constraints, N̂ic includes enforcing on all realizations

the original inequality constraints plus the original bound constraints which have now been

converted to inequality constraints. Thus, N̂ic = Nic × Ne + Nlc. Recall that Nic is the

total number of nonlinear inequality state constraints which have to be enforced on all

Ne realizations; Nlc denote the number of bound constraints which are converted to linear

inequality constraints when applying the SQP algorithm. Any bound constraints which are

not converted to general inequality constraints are handled by the truncation. More details

on the handling of bound constraints within SQP are discussed later. Throughout, we let λc
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denote the vector of Lagrangian multipliers for inequality constraints i.e.,

λc = [λc,1 λc,2 ... λc,N̂ic
]T , (2.31)

The Lagrangian function of the constrained problem (Eq. 2.30) is given by

L(u, λc) = J̄(u)− λTc c = J̄(u)−
N̂ic∑
i=1

λc,ici, (2.32)

where c = [c1, c2, · · · cTN̂ic
] is the vector of constraint functions. A solution of the problem in

Eq. 2.30 must satisfy the first order optimality conditions referred to as the Karush-Kuhn-

Tucker (KKT) conditions [67], which are given by

∇uL(u, λc) = 0, (2.33a)

ci(u) > 0 , i = 1, 2, . . . , N̂ic, (2.33b)

λc,i > 0 , i = 1, 2, . . . , N̂ic, (2.33c)

λc,ici(u) = 0 , i = 1, 2, . . . , N̂ic. (2.33d)

In the SQP framework, the set of KKT conditions are solved in order to find the

optimal solution of the constrained optimization problem. The basic idea of SQP is to

approximate each KKT condition (Eq. 2.33) with its first order Taylor series expansion and

replace the KKT conditions with linearized approximations. Using the linear approximations

of the KKT conditions at the (`+1)th iteration, the optimality conditions are approximated
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by

∇uL(u`+1, λ`+1
c ) ≈∇uL(u`, λ`c) +∇2

uL(u`, λ`c)δu
` +∇2

u,λcL(u`, λ`c)δλ
`
c = 0, (2.34a)

ci(u
`+1) ≈ci(u`) + δu`

T∇uci(u
`) > 0, i = 1, 2, . . . , N̂ic,

(2.34b)

λc >0. (2.34c)

λc,i[ci(u
`) + δu`

T∇uci(u
`)] = 0 i = 1, 2, . . . , N̂ic,

(2.34d)

where δu` and δλc, respectively, denote the change in u and the change in λc from the `th

to (`+ 1)th iteration step i.e., u`+1 = u` + δu` and λ`+1
c = λ`c + δλc. From Eq. 2.32, it follows

that ∇uL(u`, λ`) is given by

∇uL(u`, λ`c) = ∇uJ̄(u`)− (λ`c)
TA`c = ∇uJ̄

` − (A`c)
Tλ`c. (2.35)

where Ac denotes the Jacobian matrices of the inequality constraints and is given by

Ac = [∇c1, ∇c2, ... ∇cN̂ic
]T . (2.36)

Note that in the following derivation, the gradients of the objective function J̄ with respect to

control variables u at the `th iteration is written as ∇uJ̄
`. Here, Y ` ≡ ∇2

uL(u`, λ`) denotes

the Hessian of the Lagrange function, which usually is expensive to estimate. Therefore,

the BFGS algorithm [1, 67] is implemented to approximate the Hessian of the Lagrange

function. With BFGS, the Hessian matrix Y `+1 is approximated with both the current

gradient information (∇uJ̄
`+1, A`+1

c ) and the previous gradient information (∇uJ̄
`, A`c). The

initial guess of the approximate Hessian matrix, Y 0, is defined as the Nu×Nu identity matrix.

The updating formula of BFGS is given by

Y `+1 = Y ` +
γ`(γ`)T

δu`Tγ`
− Y `δu`δu`

T
(Y `)T

δu`TY `δu`
, (2.37)
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where

γ` = ∇uL(u`+1, λ`+1)−∇uL(u`, λ`+1)

= (∇uJ̄
`+1 −∇uJ̄

`)− (A`+1
c − A`c)Tλ`+1,

(2.38)

By taking the gradient of Eq. 2.35 with respect to λ`c, we find

∇2
u,λcL(u`, λ`c) = −(A`c)

T . (2.39)

By inserting Eqs. 2.35 and 2.39 into Eq. 2.34a, it follows that

∇uJ̄
` − (A`c)

Tλ`c +∇2
uL(u`, λ`c)δu

` − (A`c)
T δλ`c = 0. (2.40)

Introducing the notation, Y ` ≡ ∇2
uL(u`, λ`) into Eq. 2.40 and rearranging the resulting

equation gives

Y `δu` +∇uJ̄
` − (A`c)

T (λ`c + δλ`c) = Y `δu` +∇uJ̄
` − (A`c)

Tλ`+1
c = 0. (2.41)

We can rewrite the linearized KKT conditions of Eq. 2.34 as:

Y `δu` +∇uJ̄
` − (A`c)

Tλ`+1
c = 0, (2.42a)

Acδu
` > −c, (2.42b)

λ`c > 0. (2.42c)

(λ`c,i)(A
`
c,iδu

` + ci) = 0, i = 1, 2, . . . , N̂ic, (2.42d)

where Ac,i = ∇cTi , i = 1, 2, · · · , N̂ic. The above linearized approximate KKT conditions are

the exact KKT conditions of the following quadratic programming (QP) problem, which is

solved at every optimization iteration:
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minimize
δu∈RNu

1

2
δu`

T
Y `δu` + δu`

T∇uJ̄(u`), (2.43a)

subject to: Acδu
` > −c`. (2.43b)

This QP problem can either be solved by active-set or interior point methods [67]. We do

not discuss the details of solving this QP problem, since there are many algorithms and

free-license software available to solve it [67]. To be specific, the Matlab code used to solve

QP problem is quadprog. Therefore, the code to solve the `th QP problem should be :

quadprog(Y `, ∇uJ̄
`, −A`c, c`) . The solution of this QP problem, δu`, is the vector used

to update the vector of control variables, u`, to u`+1 = u` + δu`.

Note that enforcing all constraints for all models is computationally expensive because

we have to approximate the gradient of Nic × Ne state constraints for robust optimization.

To be specific, N̂ic = Nic×Ne +Nlc where Nlc is the the number of bound constraints which

are selected to be handled by SQP algorithm. If all the bound constraints are enforced by

the SQP-filter algorithm as a general inequality constraints then Nlc = 2Nu. If the upper

bound of the i entry of the control vector u are handled by SQP algorithm that upper bound

constraint can be represented as cup,i = uup
i −ui ≥ 0. The lower bound of the ith entry of the

control vector u can be converted to the inequality constraint given by clow,i = ui−ulow
i ≥ 0.

The corresponding gradient of the upper bound constraint of the ith variable can be written

as

∇ucup,i = ∇u(u
up
i − ui) = [0...0 − 1 0....0]T . (2.44)

Note that the gradient vector ∇ucup,i is a Nu × 1 vector, which has all elements equal to

zero except the ith element which is equal to -1. Similarly, the gradient of the lower bound

constraint of the ith control variable is given by

∇uclow,i = ∇u(ui − ulow
i ) = [0...0 1 0....0]T (2.45)
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where the gradient vector ∇uclow,i has all elements equal to zero except the ith element which

is equal to 1. The Jacobian matrices of the inequality constraints Ac should incorporate

the gradient information of bound constraints which are considered as a general inequality

constraints in SQP. For instance, if we consider the upper bound and lower bound of the

ith control variable ui as general inequality constraints for all i, i = 1, 2, · · ·Nu and j,

j = 1, 2, · · ·Ne then the Jacobian matrix of all inequality constraints can be written as

Ac = [∇c1,1, ∇c2,1, · · · ∇cNic,1, · · · ∇c1,j, ∇c2,j, · · · ∇cNic,j, · · · ∇c1,Ne , ∇c2,Ne , · · · ∇cNic,Ne

∇cup,1, ∇clow,1, · · · ∇cup,i, ∇clow,i, · · · ∇cup,Nu , ∇clow,Nu ]T . (2.46)

Unfortunately, the dimension of Ac is N̂ic × Nu where N̂ic = Nic × Ne + 2Nu when all

bound constraints are converted to general inequality constraints. Thus, Ac matrix can be

an extremely large dense matrix if there are even a handful of constraints that need to be

enforced on a large number of control steps for several realizations of the reservoir model.

The second option for handling bound constraints is to simply apply truncation. To

be specific, if the ith entry of the updated control vector at iteration ` is such that u`i is greater

than uup
i , we set u`i = uup

i directly. If ith entry of the updated control vector at iteration

` is such that u`i is less than ulow
i , we set u`i = ulow

i . Compared to the truncation scheme,

handling the bound constraints by converting them to general inequality constraints is more

theoretically sound and reduces the likelihood of being trapped at a local minimum when the

optimal solution is close to its bound constraints. However, converting the bound constraints

to general inequality constraints will increase the number of inequality constraints and lead

the SQP problem to be computationally expensive when the number of control variables Nu

of the production optimization problem is large. Furthermore, for some bound constraints,

there is nothing to gain by converting them to general inequality constraints. For example,

the upper bound on BHP for the BHP controlled producers should be handled by truncation

when the upper bound of the BHP is set equal to or slightly less that the initial reservoir

pressure, since during production optimization if this bound is exceeded the well could not
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produce. Similarly, lower bounds on water injection rates are set as zero and it is physically

impossible for an injection rate to be less than zero at any control step so it makes sense

to enforce a zero lower bound on a well’s water injection rate at a time step equal to zero.

On the other hand, if the lower bound on BHP for one or more producing wells is set

relatively high, then the actual optimal controls at some control steps may be close to the

lower bound. In this scenario, it is appropriate to convert the lower bound constraints on

BHP to inequality constraints and incorporate their gradients directly into the Jacobian of

inequality constraints (see Eq. 2.46) in the application of SQP.

As mentioned previously, to enforce every constraint for every realization of the reser-

voir model at every control step is generally not computationally feasible. Thus, we consider

alternatives that are more computationally efficient. The first option we try is to require

that each constraint only be satisfied on average, i.e., we replace Eq. 2.3c by

c̄i(u) =
1

Ne

Ne∑
j=1

c(u,mj) > 0 i = 1, 2, . . . , Nic. (2.47)

where the bound constraints under this averaging constraints enforcement scenario is handled

by truncation. In this case, in Eqs 2.32 through 2.43 , N̂ic is replace by Nic and c of Eq 2.32

is replaced by

c = [c̄1(u) c̄2(u) ... c̄Nic
(u)]T . (2.48)

In SQP, we implement the filter method to determine whether we accept or reject a

proposed update (δu`) to the estimate of the optimal well controls at the `th iteration step.

The filter method has been applied before for constrained well control in conjunction with

derivative free algorithms [43]. The filter method effectively views constrained optimization

as a bi-objective minimization of the objective function J̄(u) and the constraint violation

θ̄(u). For the general case of Eq, 2.46 where we convert all bound constraints to inequality

constraints and explicitly enforce all constraints for all realizations, the (average) constraint
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violation function is defined by

θ̄(u) =
1

Ne

Ne∑
j=1

[ Nic∑
i=1

c+
i (mj, u)

]
+

Nlc∑
c=1

c+
c (u), (2.49)

where

c+
i (mj, u) = | min

16i6Nic

{ci(mj, u), 0}|. (2.50)

and

c+
c (u) = | min

16i6Nlc

{cc(u), 0}|. (2.51)

Note Nlc denote the number of bound constraints which are converted to the general in-

equality constraints and c+
c (u) are not dependent on the realization of reservoir model mj.

For the case under consideration where we only enforce that the constraints are satisfied on

average and bound constraints are enforced by truncation, i.e., require that Eq. 2.47 holds

Eq. 2.49 is replaced by

θ̄(u) =

Nic∑
i=1

c̄+
i (u), (2.52)

where

c̄+
i (u) = |min{c̄i(u), 0}| for i = 1, 2, · · ·Nic, (2.53)

where c̄i is defined in Eq. 2.47.

Unlike penalty methods, which combine both cost function and constraints into a

single minimization problem, the filter method keeps the constraints and objective function

separate. Let the filter F , be a set of previously generated pairs of (θ̄k, J̄k), say for k =

1, 2, · · ·n`. A proposed new iterate u`+1 is accepted by the filter criteria whenever it satisfies

either

θ̄(u`+1) 6 (1− γθ)θ̄k or J̄(u`+1) 6 J̄k − γJ θ̄(u`+1) , (2.54)

for all (θ̄k, J̄k) ∈ F . Here γθ and γJ are defined parameters with small positive values.

The first inequality in Eq. 2.54 enforces a sufficient reduction in the average value of the

constraint violation θ̄. The dependence on θ̄(u`) is it u`+1 here of is it u` in Eq. 2.53. in the
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Figure 2.11: The acceptance criteria for the filter method, red point correspond to u = u`,
after Nocedal and Wright [67]

second inequality is a technical requirement to enable convergence to be proven [28]. These

inequalities avoid acceptance of an iterate u`+1 if (θ̄(u`+1), J̄(u`+1) is very close to a point

that is already a point in F , i.e., points that fall in the empty envelope (the region between

the dashed line and solid color patches) in Fig. 2.11 are not accepted. More specifically, the

algorithm does not accept iterates that fall on the right hand side of the envelop (dashed

line). After a new pair (θ̄`+1, J̄`+1) ≡ (θ̄(u`+1), J̄(u`+1)) has been accepted, we delete all old

pairs in the filter, (θ̄k, J̄k)’s in F , for which θ̄k > θ̄(u`+1) and J̄k > J̄(u`+1), i.e., delete points

from the filter that are dominated by the point, (θ̄(u`+1), J̄(u`+1)).

Compared with the `1 merit function or other penalty methods, the filter method

is a moderate criteria which allows the acceptance of more proposed updates. As shown in

Fig 2.11, any update whose corresponding objective function and overall constraint violation

is located to the left of dashed curve will be accepted by the filter algorithm as new estimate

of the optimal u. In Fig. 2.11, the red dot represents the current iteration u`. As shown in

Nocedal and Wright [67], the penalty method would only accept u`+1 as the new estimate of

the optimum if the point (θ̄(u`+1, J̄(u`+1)) falls to the left of the red line in Fig. 2.11. Thus,
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it is clear that the filter method makes it easier to accept an updated optimum than does

the penalty method. Thus, the SQP-filter should be more suitable to our situation than a

penalty method since both gradients with respect to the objective function and nonlinear

constraints are approximated via a stochastic gradient approximation scheme, where a high

rejection frequency in proposed updates could lead to the termination of the optimization

algorithm at a highly suboptimal solution.

For the optimization algorithm based the stochastic gradient, instead of updating

on the original well control vector u, the optimization algorithm are required to update on

the normalized well control vector x, since it is hard to compute the stochastic gradient

correctly in magnitude. A [0, 1] scaling is used to normalize the entries of the vector of

well controls, which is a commonly used normalization scheme for production optimization

problem with stochastic gradient [31, 12, 33]. Recall from the definition of u, which is defined

in Section 2.2.1, that u denotes the vector of all Nu controls which includes the controls of

every well at every time step. Let ui be the ith component of u with upper bound uup
i and

lower bound ulow
i , then the scaled version, x, of u is formed by mapping ui to xi given by

xi =
ui − ulow

i

uup
i − ulow

i

. (2.55)

Moreover, the xi also can be scaled back to ui as

ui = xi(u
up
i − ulow

i ) + ulow
i . (2.56)

Note that after the [0, 1] scaling, any entry of well control vector xi which the corresponding

original entry ui is within upper bound uup
i and lower bound ulow

i will be bounded within in

the range of [0, 1]. Therefore, [0, 1] will be the control interval for the normalized control

vector x. In the context of production optimization with stochastic gradient, the update

direction of the normalized control vector should also be normalized to a reasonable range

which ensures the update direction for normalized vector δx neither very big to have that

most entries of vector x be bounded at the bound 1 or 0 nor very small to have negligible
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effect on the objective function. Therefore, update vector of the normalized control vector

at the `th iteration δx` is defined as

δx` = ρ`
δu`

||abs(δu`)||∞
, (2.57)

where δu is the solution of the QP problem defined in Eq. 2.43; ρ` denote the updating step

size of the normalized vector at the ` iteration. After normalizing of δx` as the Eq. 2.57

above, the maximum and minimum entries in δx` should be bounded within the [−ρ`, ρ`].

For instance, if ρ` = 0.2, the maximum allowable update step size at the `th iteration is the

20% of the control interval, since the normalized control vector x is bounded within [0, 1].

The summary of the SQP-filter algorithm follows:

Algorithm 2.1: SQP-filter.

1. Set `=0. Select initial values of the control variables, u0 and normalize it to x0 by Eq. 2.55.

Set the maximum number of iterations, nmaxiter, e.g., nmaxiter = 100. Set the initial Hessian

matrix Y ` to the identity matrix INu . Set values of γθ and γJ in Eq. 2.54, e.g., γθ = 0.01 and

γJ = 0.02. Set the value of the convergence criteria parameter εx, e.g., εx=0.0001. Here we

use normalized search direction δx and initialize δx0 as a random vector to make sure that

||abs(δx0)||∞ > εx. Set the maximum allowable step size ρmax = 0.2 and we also set initial

step size ρ0 = 0.2.

2. • IF ||abs(δx`)||∞ < εx OR ` ≥ nmaxiter

– Terminate the algorithm.

• ELSE

– Approximate the gradient of the objective function J̄ with respect to the con-

trol variables, ∇J̄ ` by StoSAGt; compute the Hessian matrix Y ` by the BFGS

algorithm; compute the vector of constraints c` and the gradient of inequality con-

straints with respect to control variables, A`c, by StoSAGtd.

3. Solve the QP problem of Eq. 2.43 for the search direction to obtain δu`. Normalize the

update search direction as δx` = ρ` δu`

||abs(δu`||∞)
.
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4. IF QP solution is infeasible THEN

• Enter restoration phase and return to normal SQP when x`+1 is found whose corre-

sponding QP is feasible. (see [29, 67] for discussion of the restoration phase) After

finding the update, δx`, from the restoration phase, then go back to step 2.

5. ELSE

• Set x`+1 = x` + δx` and scaling x`+1 back to u`+1 by Eq. 2.56. Evaluate the filter pair

(J̄ `+1, θ̄`+1) at u`+1, where θ̄`+1 = θ̄(u`+1), and J̄ `+1 = J̄(u` + 1).

• IF (J̄ `+1, θ̄`+1) is acceptable to the filter i.e., if Eq. 2.54 holds, THEN

– Accept the normalized control vector x`+1 and original control vector u`+1 and add

(J̄ `+1, θ̄`+1) to the filter.

– Remove points dominated by (J̄ `+1, θ̄`+1) from the filter.

– Increase the updating step as ρ`+1 = max(2ρ`, ρmax).

– ` = `+ 1 and go back to step 2.

• ELSE

• set np=0, and ρ`,0 = ρ`.

– REPEAT cut the updating step as ρ`,np = 0.5 ∗ ρ`,np .

– Solve the QP problem for the search direction δu`,np and normalize δx` = xρ`,np δu`

||abs(δu`)||∞ .

– Set x`+1,np = x` + δx`,np and scale x`+1,np back to u`+1,np , Evaluate the filter pair

(J̄ `+1,np , θ̄`+1,np) at u`+1,np .

– IF (J̄ `+1,np , θ̄`+1,np) is acceptable to the filter THEN

∗ Accept x`+1,np and u`+1,np . Add (J̄ `+1,np , θ̄`+1,np) to the filter.

∗ Remove all points dominated by (J̄ `+1,np , θ̄`+1,np) from the filter.

∗ Increase the updating step as ρ`+1 = max(2 ∗ ρ`,np, ρmax).

∗ ` = `+ 1 and go back to step 2.

– ELSE IF np > 3

∗ Accept x`+1,np and u`+1,np i.e., set x`+1 = x`+1,np and u`+1 = u`+1,np .
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∗ Reset the Hessian matrix Y `+1 to the identity matrix INu .

∗ ` = `+ 1 and go back to step 2.

– ELSE

∗ np = np + 1;

– END IF

• END IF

2.2.5 Min-Max Scheme

As another alternative to explicitly enforcing all constraints for every reservoir model

at every time step, we propose here a min-max scheme to implicitly satisfy all constraints

for each realization mj. Instead of constraining only the average values of nonlinear state

constraints Eq. 2.47, or enforcing every constraint for every realization Eq. 2.3, the min-

max algorithm minimizes the maximum violation of each constraint. For the min-max, the

optimization problem of Eqs.( 2.3 is replaced by Eq. 2.58)

minimize
u∈RNu

J̄(u), average NPV (2.58a)

subject to ulow
i ≤ ui ≤ uup

i , i = 1, 2, . . . , Nu, (2.58b)

ci,j(u) > 0 , i = 1, 2, . . . , Nic, (2.58c)

where ci,j denotes value the ith constraint of jth realization, where the ith constraint has

its maximum violation when evaluated at the jth realization. This means that for each i, i

=1,2,. . . Nic, j is chosen such that

j = argmin
16k6Ne

{ci(u,mk)}. (2.59)

By enforcing ci,j > 0 at each iteration of the SQP-filter method, we simply minimize the

maximum constraint violation. The index of j corresponding to each nonlinear constraint
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may dynamically change from iteration to iteration as the optimization proceeds. There is

no guarantee that enforcing each constraint on the model that has the maximum constraint

violation will lead to the satisfaction of all constraints for all reservoir models. However, the

min-max scheme will result in an estimated optimum such that all constraints are satisfied

if the models that give the maximum constraint violations stabilize, i.e., stop changing from

iteration to iteration. In any case, computations indicate that the use of the min-max scheme

in our SQP filter optimization algorithm produces a solution such that the violation of any

constraint for any of the Ne reservoir models is negligible.

When we only enforce that the constraints averaged over the set of reservoir models

are nonnegative, Np × Ne perturbations are used to compute the gradient of the average

value of the nonlinear state constraint, Np perturbations for each reservoir model. For

robust optimization where only a few realizations, say 5-10, are used to represent geological

uncertainty, we generally use three perturbations per reservoir model. However, for the mim-

max scheme where the ci,j of Eq. 2.58c are applied individually rather than averaged, we

found that using only three perturbations per constraint can sometimes lead to inaccuracies

in the stochastic gradients that severely degrade the performance of the SQP-filter algorithm.

Thus, we wish to increase the number of perturbations for realizations for which constraints

are most significantly violated but to avoid computational inefficiency, we wish to minimize

the number of additional perturbations. In order to find a reasonable balance between

the computational cost and the accuracy of the gradients of the constraints in the min-

max scheme, a voting method is proposed to allocate the number of perturbations for each

realization dynamically.

First, we define the total number of extra perturbation to be used for constraint

enforcement with the min-max scheme as Nep. Then the number of perturbations for the

jth realization is defined by:

Np,j = Np + int
(∑Nic

i=1 | min
16k6Ne

(ci(mk, u)δk,j, 0)|

θ̄(u)
Nep

)
. (2.60)
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where δk,j is defined as

δk,j =


1, if j = k

0, otherwise

(2.61)

where int is used to denote the greatest integer function and

θ̄(u) =

Nic∑
i=1

| min
16k6Ne

(ci(mk, u), 0)|. (2.62)

In our procedure, we set Np,j = Np, whenever θ(u) = 0, i.e., when all constraints are satisfied

for every realization. This means that when all constraints are satisfied, we can simply use

the same Np perturbations of the vector of controls used to compute the stochastic gradient

of the average NPV to compute the gradients of the constraints.

2.3 Computational Results

In this section, we present two examples to illustrate the performance of our SQP-

filter optimization workflow using the modified StoSAG gradient for constrained production

optimization. In the first example, we consider optimization for a single reservoir model

(deterministic optimization) so Ne = 1 in Eq. 2.3 and Eq. 2.49. This example is intended

to demonstrate the effectiveness of the modified StoSAG algorithm, and to illustrate that

without modification, using StoSAG to compute all gradients may lead to complete failure of

the SQP-filter algorithm when nonlinear state constraints are included. In the second exam-

ple, the Brugge case, we consider geological uncertainty and compare the performance of the

following three procedures for handling nonlinear state constraints; (1) enforce constraints

only on an average basis, i.e., apply Eq. 2.47; (2) apply the min-max scheme to enforce

constraints; and (3) ignore state constraints when doing optimization and after estimating

the optimal controls, input them in the reservoir simulator and let the simulator apply its

internal heuristics to enforce the constraints.
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2.3.1 Example 1: Single Reservoir Model

In this example, a synthetic 3D, 3-phase reservoir simulation model with an orthogo-

nal Cartesian grid system is built. The reservoir simulation model has a 20× 20× 8 grid so

there are 8 reservoir simulation layers. To test the optimization framework, we only perform

the SQP-filter algorithm on a single geological realization. The permeability distributions

for the layers are shown in Fig. 2.12. We assume this reservoir has a homogeneous poros-

ity field with the porosity value of each reservoir gridblock as 0.2.The first layer is initially

occupied by gas and the 8th layer contains only water. The initial pressure of the reservoir

is 4,400 psi. The irreducible water saturation and residual oil saturation are both equal to

0.2. Nine vertical wells have been drilled and completed to develop this reservoir with the

well locations shown in Fig. 2.12. Producers P2 and P5 are perforated in layers 4-7 and

producers P1, P3, P4 and P6 are perforated in layers 6-7. All the injectors (I1, I2 and I3)

are completed only in layer 8 and inject only water.

The length of each control step is set equal to 180 days. Thus, there are 22 control

steps for each well and the total number of control variables to be estimated is 9× 22 = 198.

For producers, the control variables are their bottom hole pressures (BHPs) at 22 control

steps and the controls of injectors are their water injection rates at control steps. The

lower and upper bounds on BHP for each producer are 3,000 psi and 4,600 psi, respectively.

The lower and upper bounds on water injection rates for each injector are 0 STB/d and

500 STB/d. Since the lower bound on BHP of producers are set relative high in this case,

we expect that at the optimal controls, there are many producers at many control steps

operating close or at the lower bound of the BHP. Therefore, the lower bound constraints

for all producers are converted to general inequality constrains. Other bound constraints,

such as the upper bound of the BHP for the producers and upper and lower bound of

water injection rates for the injectors, are enforced by the truncation scheme. The general

inequality constraints handled by SQP-filter algorithm and the scaling of each type of those

constraints in this problem are summarized as follows:

1. P1-P6: c = pwf−3000
1000

> 0,
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2. I1-I3: c = 4600−pwf

1000
> 0,

3. FLR: c = 12,000−FLR
12,000

> 0,

4. FGR: c = 40,000−FGR
40,000

> 0.

In the preceding two equations, the units of the FLR and FGR, respectively, are STB/day

and Mscf/D. The lower bound of 3, 000 psi on BHP’s at all six producers at all control

steps represent 6 × 22 = 132 linear constraints. Since water injectors are rate controlled,

the upper bounds on the BHP of each of the three injection wells at each of the 22 control

steps represent 3× 22 = 66 nonlinear state constraints. Finally, there are upper bounds on

the field liquid rate (FLR) and field gas rate (FGR) at each of the 22 controls steps so the

constraints on FLR and FGR represent 2× 22 = 44 nonlinear state constraints. Therefore,

the total number of constraints in the this example is (6 + 3 + 2)× 22 = 11× 22 = 242.

Note that instead of scaling all the constraints to [0,1], we select slightly different

scaling factors for the different type of constraints. Specifically, the scaling factors are set as

1000 for both pressure constraints. With this setting, the same pressure violation will give

the same value of a pressure constraint violation; for example, if pwf = 2900 psi at a producer

and pwf = 4700 psi at a injector, we have a 100 psi constraint violation in both cases and

c = −0.1 in both cases. As the controls at producers are BHP’s, the lower bound of 3,000

psi on pwf is a linear constraint whereas the upper bound of 4,600 psi on pwf at injection

wells is a nonlinear state constraint since the injection wells are controlled by water injection

rates. The other two constraints are nonlinear state constraints pertaining to the field liquid

rate (FLR) and the field gas rate (FGR) at every control step. Specifically, we enforce a

maximum field liquid production rate equal to 12,000 STB/day and a maximum field gas

production rate equal to 40,000 Mcf/day. These type of constraints are facility constraints.

Although the constraints should be enforced at each simulation time step, the number of

simulation time steps can change at every simulation run, which would result in a change in

the number of constraints at each iteration of the optimization algorithm. Therefore, in our

problem, we enforce the nonlinear state constraints at every control step instead of at every
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time step.

The number of perturbations used to approximate the stochastic gradient is set equal

to 30. Since we solve a deterministic optimization problem in this example and we don’t

need the min-max scheme as proposed in Section 2.2.5. Therefore, the number of extra

perturbations (Nep) is set as 0 and the total number used to compute the stochastic gradient

of both NPV and state constraint is 30. The perturbation size (δu in Eq. 2.11) is set as

0.1% of the control range of each control variable where the control range is defined as the

difference between the upper bound and lower bound of each unscaled control variable. In

order to impose a small amount of temporal smoothness on the well control perturbations, a

temporal correlation matrix CU is used as discussed previously where the correlation length is

equal to the length of five control steps, i.e., equal to 900 days. More precisely, the correlation

length is L = 5 in the covariance function of Eq. 2.11. For the NPV computations, the oil

price is set to $80/STB, the water disposal cost is $3/STB, and water injection cost is set

to $2/ STB. The gas price is set to a low value of $0.02/ Mcf, which assumes the gas must

essentially be given away which is the case in some fields. The annual discount rate is 0.05.

The initial guess for all BHP controls is equal to 3,500 psi and the initial guess for all water

injection rates is equal to 100 STB/day.

Fig. 2.13 illustrates the optimal controls generated by the SQP-filter method. From

the results, we can observe that most producers tend to restrict their production by main-

taining a relatively high BHP during the first two years of production. After that the optimal

BHP’s of producers are lowered close to, or equal to, the lower bound on pressure of 3, 000 psi

from around 540 days to 2160 days. After producing 2160 days, the BHPs of most producers

at most control steps are close to, or equal to, the lower bound on BHP (3000 psi) which

indicates that the lower bound constraints on BHP (converted to inequality constraints) are

active. The water injection controls are also shown in Fig. 2.13. The results of Fig. 2.14

illustrate that the upper bound of 4,600 psi on pwf (nonlinear state constraint) is active at

injector I2 during the first control step but is not otherwise active. One can also note from

the injection rate controls shown in Fig. 2.13, that most of the cumulative water injected is
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(a) Layer 1 (b) Layer 2-3 (c) Layer 4-5

(d) Layer 6-7 (e) Layer 8

Figure 2.12: Log permeability of fields in all layers.

injected during the first half of the reservoir life. The water and gas production rates of each

well under the optimal controls is shown in Figs. 2.15 and 2.16, respectively.

Fig. 2.17 shows both the field liquid production rate (FLR) and field gas production

rate (FGR) corresponding to the optimal controls. In Fig. 2.17b, we observe that the FGR

is close to its upper bound during the first four control steps, i.e., the state constraints on

FGR are active or nearly active so if BHP’s at producers are lowered this constraint will be

violated. This explains why all producers operate at high pressure at the first few control

steps; see Fig. 2.13. Both Fig. 2.17a and 2.17b illustrate the ability of the SQP-filter to

enforce the nonlinear state constraints. From the beginning to 900 days, the FGR constraint

of 40,000 Mscf/D strongly influences the estimation of optimal controls. Then, from 900 to

2700 days, the upper bound of 12,000 STB/day on FLRs are active or nearly active and affect

the estimation of optimal controls. The active FLR constraints at least partially explains

why from 900 to 2700 days of the production period, all injectors tend to decrease their
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(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

(g) I1 (h) I2 (i) I3

Figure 2.13: The optimal well controls; SQP-filter workflow.

water injection rates to reduce FLRs.

The blue curve in Fig. 2.18, shows how the NPV changes from iteration to iteration of

the SQP-filter algorithm using our modified StoSAG algorithm. The red curve of Fig. 2.18a

shows the corresponding result obtained by direct implementation of the original StoSAG

gradient into the SQP-filter algorithm; note that use of standard StoSAG results in premature

termination of the algorithm at a highly sub-optimal solution. At each step of the SQP-filter,

the QP problem defined in Eq. 2.43 is solved to compute the update direction of δu`. The

feasible region of the QP subproblem is defined by the gradients of all constraints Eq. 2.43b.

Recall that Fig. 2.9 illustrates that the standard StoSAG gradients of state constraints

provide relatively poor approximations of the corresponding gradients computed with the

adjoint method. Since the StoSAG gradients of nonlinear state constraints serve as linear
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(a) I1 (b) I2 (c) I3

Figure 2.14: BHP at injection well at the optimal well controls; SQP-filter workflow.

(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

Figure 2.15: Gas production rates at the optimal controls; SQP-filter workflow.
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(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

Figure 2.16: Water production rates at the optimal controls; SQP-filter workflow.

constraints for the QP problem, if they are of poor quality, it can easily result in a QP problem

that is infeasible. To be specific, because of the poor quality of the standard StoSAG gradient,

the restoration phase (see the 4th step of the SQP-filter algorithm presented previously) can

continuously return a δx which makes the QP problem infeasible. When we repeat the

cycle between step 2 of algorithm and the restoration phase (step 4), the step is repeatedly

cut and the algorithm is terminated because ||abs(δx`)||∞ ≤ εx even through we have not

improved the objective function, and this is what causes the poor performance of Fig. 2.18a

generated using the original StoSAG. However, if the gradients of nonlinear constraints are

improved by truncation and temporal damping (StoSAGtd), the NPV increases albeit with

some oscillations as shown in Fig. 2.18a. The oscillations result from the restoration of

the constraint violations. To mitigate such oscillations, we can set an upper bound on the

infeasibility of the filter. When the upper bound for the infeasibility is considered, a filter

pair (J̄ `+1, θ̄`+1) will be rejected if θ̄`+1 > θmax. Here, we set θmax=2. From Fig 2.18b, we

observe that the SQP-filter with this upper bound on θ̄ only takes 53 iterations to converge,

where the SQP-filter without the bound requires 98 iterations to converge. As we mentioned

previously, the number of perturbations to generate StoSAG gradient is set equal to 20.
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(a) FLR (b) FGR

Figure 2.17: FLR and FGR at the optimal controls; SQP-filter workflow.

(a) Behavior of NPV with and without improved
StoSAG gradient.

(b) Behavior NPV with and without an upper
bound on θ̄;

Figure 2.18: NPV versus number of iterations.

Therefore, roughly (98−53)×20 = 900 simulation runs are saved by setting an upper bound

for θ̄, i.e., by setting an appropriate upper bound for θ̄, the efficiency of the SQP-filter

algorithm can be significantly improved. When the upper bound θmax = 2 is incorporated,

the optimization require a total of 1475 reservoir simulation runs. The final NPV from the

SQP-filter algorithm with an upper bound on feasibility is $9.42× 108 whereas, without the

bound, the NPV is $9.39× 108. Thus, in this case, setting maximum feasibility only slightly

affects the ultimate NPV, but using the bound improves computational efficiency.

To examine the performance of the SQP-filter framework on constraint handling, we

change the maximum allowable FLR from 12,000 STB/day to 10,000 STB/day and keep all
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other constraints the same. The optimal controls obtained with the modified constraints are

shown in Fig. 2.19. Compared with the optimal controls of the previous case (Fig. 2.13), the

BHP controls of producers are generally higher in order to satisfy the stricter constraint on

the FLR. Moreover, we can observe that compared to the original problem with the less strict

constraint on the FLR, the water injection rates of injectors are lower. For completeness,

Fig. 2.20 and Fig. 2.21, respectively, show the gas and water rates at producers at the

optimal controls and Fig. 2.22 shows the FLR and FGR under the new constraints. Note

that except for the first few control steps, the upper bound of 10,000 STB/D on the FLR

has the dominant effect on the results. Specifically, from time zero to 900 days, the FGR

serves as the active constraint whereas, from roughly 900 to 3780 days, the FLR becomes the

active constraint which leads to restrictions on producer BHP’s and water injection rates.

Compared to the results of Fig. 2.17a, the time where the FLR constraint is active or nearly

active is longer in Fig 2.22 because of the lower (stricter) constraint on the FLR.

To investigate the effect of converting bound constraints to general inequality con-

straints, we run the exact same case by SQP-filter without converting the bound constraints

to inequality constraints i.e., the lower bound constraints at BHP of producers are also

handled by the truncation scheme. Table 2.2 summarizes the results of constrained deter-

ministic optimization with different bound constraints handling schemes on the cases with

FLR612,000 and FLR610,000, respectively. The reason why we consider these two cases

is that from Fig. 2.13 the many optimal BHPs at difference control steps of producers with

FLR612,000 tend to operate on the lower bound of BHP (3,000 psi). While in the case with

FLR610,000, the only a few optimal BHPs are operating around the lower bound of BHP. By

comparing the first row and second row in the Table 2.2, we can observe that by converting

lower bound on BHP pressure of producers to general inequality constraints, the SQP-filter

algorithm can yield higher life-cycle NPV and require a fewer number of simulations when

the optimal BHPs are operated close to their lower bounds (Fig. 2.13). However, when the

optimal BHPs are operated far from their lower bounds (Fig. 2.19), we can observe that

there are no significant differences between the converting bound to inequality constraints

66



(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

(g) I7 (h) I8 (i) I9

Figure 2.19: The optimal well controls; SQP-filter workflow. (stricter constraints)
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(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

Figure 2.20: Gas production rates at the optimal controls; SQP-filter workflow. (stricter
constraints)

(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

Figure 2.21: Water production rates at the optimal controls; SQP-filter workflow. (stricter
constraints)
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(a) FLR (b) FGR

Figure 2.22: FLR and FGR at the optimal controls; SQP-filter workflow. (stricter con-
straints)

scheme and the truncation scheme in terms of optimal NPV and the number of simulations.

Scheme Case Settings Optimal NPV,108 USD Num. of Simulations

Convert constraints FLR612,000 9.42 1160

Truncation FLR612,000 9.37 1320

Convert constraints FLR610,000 8.52 955

Truncation FLR610,000 8.50 950

Table 2.2: The summary of constrained deterministic optimization with different bound con-
straints handling schemes on the cases with FLR612,000 and FLR610,000.

2.3.2 Example 2: Brugge Field

In the second example, we apply the SQP-filter with the modified StoSAG gradient

to estimate the well controls that maximize the NPV of life-cycle production. Unlike the

first example, we do robust optimization using ten realizations of the reservoir model to

represent uncertainty. The Brugge field is a synthetic reservoir model designed by TNO

as an SPE comparative study for closed-loop optimization [72]. Although the organizers

created 104 realizations conditioned on well logs, we select only 10 geological realizations

to perform robust constrained optimization. The 10 realizations were selected by first

running the reservoir simulator to compute the NPV of life-cycle production for each of the
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Figure 2.23: Log permeability distribution of selected realizations.
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104 realizations of the Brugge model that were originally provided. Then we ranked the

NPV’s from smallest to largest, NPV1 ≤ NPV2 ≤ · · ·NPV104 and selected the 10 models

that correspond to NPV1+10j for j = 0, 1, · · · 9 to represent geological uncertainty. Fig. 2.23

displays the distributions of horizontal permeability of the realizations 1, 3 and 7. Ten

injectors and 20 producers are drilled near the crest of the reservoir with the location of each

well shown in Fig. 2.24. The control variables for producers are BHPs and for injectors are

water injection rates. The minimum and maximum BHP for producers are set equal to 500

psi and 3,400 psi, respectively. The minimum and maximum water injection rate are 0 STB/d

and 10,000 STB/d. All bound constraints are handled by truncation in this example. Since

the total number well controls in this example is large, it would be very computationally

expensive to handle bound constraints by converting them to general inequality constraints.

The reservoir life is set equal to 22 years and the control interval for each well is one year.

Therefore, the total number of control variables for this problem is 30 × 22 = 660. The

economic parameters for this case are the same as for the previous case except that we have

no gas production. The nonlinear state constraints in this problem are the maximum field

liquid production rate (FLR) and the maximum field water production rate (FWR), where

these constraints, which are applied on each control step, are given by

1. FLR: c = 40,000−FLR
40,000

> 0,

2. FWR: c = 10,000−FWR
10,000

> 0,

where rates are in STB/d. We compare three methods for handling constraints, namely,

the min-max procedure, expectation scheme (enforcing the average of the nonlinear con-

straints to be satisfied) and using heuristic schemes applied internally in a simulator. As

noted previously, at each iterative the nonlinear constraint over all realizations. All bound

constraints are handled by truncation scheme in order to have consist comparison with the

heuristic scheme. In the heuristic scheme, we solve the optimization problem with only

bound constraints with the StoSAG gradient and steepest decent method [33] with bound

constraints are handled by truncation scheme. Then, we input the optimal controls obtained
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Figure 2.24: Top structure of Brugge case.

into the simulator and let the simulator itself enforce the nonlinear constraints on the FLR

and FWR using the key word GCONPROD in Eclipse 100 (Schlumberger Software Ltd.,

Houston, Texas, USA). Although there is many options for the GCONPROD keyword e.g.,

”RATE”, ”WELL” and ”PLUG”, we found only slight differences in the NPV of each real-

ization generated by those different options when we inserted the optimal controls generated

by optimization with only bound constraints into the simulator. Thus, we only show the

results for the option ”RATE” which, among the options, actually gives the highest expected

NPV for this example when state constraints are enforced by the internal reservoir simulator

heuristics.

Figs. 2.25 and 2.26 compare the optimal controls of producers and injectors from

the min-max scheme with the optimal controls obtained when only the expected (average)

value of constraints is enforced. In these and similar figures, the abscissa represents the

control step index and the ordinate indicates the index of producers or injectors. The op-

timal controls generated from the min-max and expected value schemes are quite different.
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(a) Optimal BHPs of producers (min-max) (b) Optimal BHPs of producers (expected)

Figure 2.25: Comparison of the producer optimal controls of expected value and min-max
schemes.

(a) Optimal waters injection rates of injectors (min-
max)

(b) Optimal waters injection rates of injectors (ex-
pected)

Figure 2.26: Comparison of the injector optimal controls of expected value and min-max
schemes.
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(a) Field water production rate under the optimal
controls. (min-max)

(b) Field liquid production rate under the optimal
controls. (min-max)

Figure 2.27: The FWR and FLR at optimal SQP-filter controls with min-max scheme.

(a) Field water production rate under the optimal
controls (expected)

(b) Field liquid production rate under the optimal
controls (expected)

Figure 2.28: The FWR and FLR at optimal SQP-filter controls with expected value scheme.
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Figure 2.29: Optimal CDF of NPV corresponding to expected value scheme and min-max
scheme.

Figs. 2.27 and 2.28 show the field water production rate (FWR) and field liquid production

rate (FLR) under the estimated “optimal” controls generated by the min-max and expected

value schemes respectively. In both of these constraint handling procedure, we use an upper

bound of θ = 1 in the filter method; see the discussion of Fig. 2.18b. The purple line on each

of those four plots represents the expected value (average value) of either FWR or FLR over

the whole ensemble of reservoir models and the gray lines represent the FWR and FLR from

the ten realizations. In the min-max results of Fig. 2.27, all the constraints are satisfied for

every realization at the optimal controls. From 0-1000 days of production, the FLRs of some

realizations become active constraints. From 1000 days to the end of production, the FWRs

of some realizations become active constraints. When the constraints are only enforced on

their average value over all realizations, the results of Fig. 2.28, show that though the av-

erage constraints are not violated, i.e., E[FLR] ≤ 40, 000 STB/d and E[FWR] ≤ 10, 000

STB/d, where E denotes expected or average value, some individual realizations violate the

10,000 STB/d constraint on FWR by almost 50%, at times around 2000 days. For some

realizations, the FLR constraint is violated by around 25%, during, the first couple of control

steps.
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Fig. 2.29 compares the cumulative distribution function (CDF) of the NPV’s of the

individual realizations of the reservoir model at the optimal controls obtained with the min-

max and the expected value schemes. The optimal NPVs of the expected value scheme

are all larger than the NPVs generated by the min-max scheme and the expected NPV

generated by the expected value scheme is larger than min-max scheme by 1.6 × 108 $ as

shown in Table 2.3. This is as expected because the expected value procedure allows some

realizations to severely violate the constraints. However, if the true reservoir corresponds to

a realization where the estimated optimal controls violate the nonlinear state constraints, the

estimated optimal controls would have to be modified as the field constraints are imposed

by the capacity of the facilities and cannot be violated. For such a case, the optimal controls

produced by the expected value scheme become meaningless. On the other hand, the min-

max scheme is a valid scheme to handle nonlinear constraints in robust optimization and

eliminates any nonnegligible constraint violations.

Figs. 2.30 and 2.31 compare the optimal controls generated by nonlinear constrained

robust optimization with the min-max scheme and the bound-constrained robust optimiza-

tion using the standard StoSAG gradient without enforcing the state constraints. Generally,

the producers operate at higher pressures and injectors at higher injection rates when only

bound-constrained optimization is applied. Figs. 2.32 and 2.33, respectively, show the FWR

and FLR of all realizations from bound-constrained optimization compared to the results

obtained by inserting the results obtained from bound-constrained optimization into the sim-

ulator and allowing the simulator to heuristically satisfy the state constraints by modifying

the controls obtained from bound-constrained optimization. In Fig. 2.32, both the FWR

and FLR constraints are severely violated since during the bound constrained optimization

process none of nonlinear state constraints are considered. After applying the nonlinear

state constraints using simulator heuristics in Fig. 2.33, all realizations obey the nonlinear

constraints strictly. However, enforcing constraints heuristically produces final controls that

vary from realization to realization, so there is no way to determine which set of controls

should be provided to the field operator. Fig. 2.34 compares the CDFs of the NPV at the

76



(a) Optimal BHPs of producers (min-max) (b) Optimal BHPs of producers (Bound constraints)

Figure 2.30: Comparison of the producer optimal controls of min-max and bound constrained
optimization without enforcing state constraints.

optimal controls produced with different schemes. The blue line denotes the CDF at the op-

timal control generated by bound-constrained optimization with the StoSAG gradient and

the red line denotes the resulting CDF after the nonlinear constraints are then enforced

heuristically by the simulator. Note that there is a significant decrease in the NPV of each

realization after enforcing the nonlinear constraint heuristically. Compared with the CDF

of NPV generated with the min-max scheme, the CDF of NPV generated by enforcing con-

straints heuristically is much lower. In fact, the expected NPV obtained with the min-max

scheme is higher than the one from the heuristic scheme by 7.5 × 108$ when the nonlinear

constraints are considered.

Scheme Optimal NPV,109 USD Num. of Simulations

Min-max 4.38 4530

Expected 4.54 3200

Heuristic 3.63 2060

Table 2.3: The summary of constrained robust optimization with different schemes; note
nonlinear constraints are not satisfied for all realizations with expected value
enforcement of constraints.
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(a) Optimal injection rates of injectors (min-max) (b) Optimal injection rates of injectors (Bound con-
straints)

Figure 2.31: Comparison of the injector optimal controls of min-max and bound constrained
optimization without enforcing state constraints.

(a) Field water production rate under the optimal
controls.

(b) Field liquid production rate under the optimal
controls.

Figure 2.32: The FWR and FLR at optimal controls of bound-constrained optimization with-
out enforcing state constraints.
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(a) Field water production rate under the optimal
controls.

(b) Field liquid production rate under the optimal
controls.

Figure 2.33: The FWR and FLR at optimal controls of bound-constrained optimization with
nonlinear state constraints enforced by the reservoir simulator heuristically.

Figure 2.34: Comparison CDF of the NPV at the“optimal” controls; blue represents StoSAG
with only bound constraints, red represents the modified results after enforcing
constraints heuristically, yellow is from min-max scheme.
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2.4 Comments

As mentioned in the introduction, Kourounis et al.[47] considered a SQP framework

where all wells were BHP controlled and bounds on rates at each time step were the only

nonlinear state constraints considered. They compared constraint handling within the SQP

formalism and a heuristic method for the state constraints where if a well rate at a specific

time step exceeds its specified maximum value (bound), the BHP control is abandoned and

the simulator specifies the rate equal to its bound for that time step. For larger problems

they concluded that the heuristic method for constraint handling results in a higher value

of the estimated optimal objective function. As it may seem that this result is in conflict

with our conclusion that enforcing constraints heuristically within a forward run of the

simulator may yield highly suboptimal results, additional discussion seems desirable. The

only nonlinear constraints considered by Kourounis et al. in their work are bounds on rates

for BHP controlled injectors and producers. It is entirely possible that setting a rate equal

to its bound at a time step at a well where the rate constraint is violated under BHP control

yields results that are fairly close to optimal whereas if available simulator heuristics are

used to enforced bounds on both control variables and field rates, we may obtain a highly

suboptimal result as we have shown. Thus, then there may be no conflict between our

conclusions and those of Kourounis et al. It is also possible that the Kourounis et al. results

for both SQP constraint handling and heuristic treatment are both suboptimal but we do

not claim this is the case. In addition, there are many differences between the two workflows

besides the procedures for computing gradients. Specifically, Kourounis et al. lump state

constraints, whereas we do not and then they approximate the nonlinear lumped constraints

by an even more nonlinear approximation. Moreover, they use an `1 merit function to treat

state constraints whereas we use a filter method. We think it is possible that the combination

of lumping constraints, transforming the lumped constraints to a more nonlinear constraint

function and using the `1 merit function may not be the best procedure for treating nonlinear

state constraints. Early in our work with SQP, we tried implementing an `1 merit function

and found that except for small problems, the overall SQP algorithm could sometimes be
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trapped at a suboptimal local minimum.
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CHAPTER 3

A MIN-MAX SQP-FILTER METHOD FOR NONLINEAR CONSTRAINED

MULTI-OBJECTIVE ROBUST OPTIMIZATION PROBLEMS WITH

STOSAG

3.1 Introduction

Multiobjective optimization aims to find the best trade-offs between conflicting ob-

jectives. In this Chapter, we investigate a framework to solve the constrained multi-objective

optimization problem when the accurate analytical gradient is unavailable. Comprehensive

work on this problem has been presented for the case when adjoint solutions for computing

the necessary gradients can be computed with the reservoir simulation software in use; see

Liu and Reynolds [53, 55, 56]. The objectives of interest to us are maximizing the life-cycle

NPV, maximizing short term NPV and minimizing risk with geological uncertainty. The

robust multi-objective optimization problem is solved with a modified lexicographic method

proposed here where stochastic gradients are calculated with the modified StoSAG which

was introduced in Chapter 2, and the customized SQP-filter algorithm proposed in Chapter

2 is applied for optimization. We apply this framework developed to solve a multiobjective

optimization problem for the Brugge reservoir with state constraints.

3.2 Methodology

3.2.1 Multi-Objective Optimization Problem

Due to the volatility of the oil price, the longer the production life-cycle, the larger

the financial risk. Therefore, to balance the long-term interest and short-term interest, max-

imization of both life-cycle NPV and short-term NPV are important objectives to consider.
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The formulation of the negative life-cycle NPV is defined in Chapter 2; see Eq. 2.1. The

negative short-term NPV for a given vector of well controls, u, and a given reservoir model,

m, is denoted by Js−NPV (u,m) and is defined as

Js−NPV (u,m) = −
Nshort∑
n=1

{
∆tn

(1 + b)
tn
365

[
P∑
j=1

(
ro · q̄no,j(u,m) + rg · q̄ng,j(u,m)− rw · q̄nw,j(u,m)

)]}

−
Nt∑
n=1

{
∆tn

(1 + b)
tn
365

[
I∑

j=1

(
rwi · q̄nwi,j(u,m)

)]}
. (3.1)

Note we minimize the negative short-term NPV which is equivalent to maximize the short-

term NPV. All the variables and parameters in Eq. 3.1 have the same meaning as those

in Eq. 2.1 except, Nshort denotes the number of time steps within the short-term period of

interest. For robust multi-objective optimization, instead of minimizing the negative short-

term NPV of a single reservoir model, we minimize the average negative short-term NPV

where the average is over an ensemble of realizations. Thus, average negative shor-term NPV

is defined as

J̄s−NPV (u) =
1

Ne

Ne∑
k=1

Js−NPV (u,mk) ≈ E [Js−NPV (u,m)] , (3.2)

where E denoted expectation and Ne is the number of realizations of the reservoir modeled

generated to represent the geological uncertainty.

Minimizing the development risk related with geological uncertainty is another com-

mon objective in the development of a reservoir. Commonly used risk measures in the oil and

gas community include standard deviation or variance, the worst-case scenario (minimum

NPV over the set of geological models), safety margin, mean-variance, value at risk (VaR)

and conditional value at risk (CVaR), which is also known as the expected shortfall. Liu and

Reynolds [54] found that standard deviation is not a good measure for risk minimization.

Capolei et al. [7] also pointed out that, except for the worst-case scenario and CVaR, most

of the risk measures are not satisfactory. Therefore, in this work, we consider the negative

value of the worst-case scenario NPV as a measure of risk. The formulation of worst-case
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scenario NPV given by

Jrisk(u) = max{JNPV (u,m1) · · · JNPV (u,mk) · · · JNPV (u,mNe)}, (3.3)

where JNPV (u,mk) denotes the life-cycle NPV of the kth realization under the well control

u. Therefore, Jrisk(u) denotes the minimum value of NPV (maximum of negative NPV) over

all realizations while operating under the control variables u.

The general multiobjective robust optimization problem with state inequality con-

straints and bound constraints is define as

minimize
u∈RNu

{J̄NPV (u), J̄s−NPV (u), Jrisk(u)} (3.4a)

subject to ulow
i ≤ ui ≤ uup

i , i = 1, 2, . . . , Nu, (3.4b)

ci(u,mj) > 0, i = 1, 2, . . . , Nic, j = 1, 2, . . . , Ne, (3.4c)

where J̄NPV denotes the negative average life-cycle NPV over an ensemble of realizations;

J̄s−NPV denotes the average negative short-term average NPV over the ensemble of realiza-

tions on a time period significantly shorter than the reservoir life; Jrisk denotes the risk in

the robust reservoir development to be specific the negative value of the worst-case NPV.

Eq. 3.4c indicates that all state constraints should be satisfied for every realization of the

reservoir model.

3.2.2 Lexicographic method

Based on previous work [53], the lexicographic is one of most efficient way to solve

the multi-objective optimization problem. The basic idea of the lexicographic method for

bi-objective optimization is that we solve two optimization problems. The first problem

solved is always a single objective optimization problem with standard state and bound

constraints. The second optimization problem is also a single objective optimization but in

this case, another state constraint in added in the form of a bound on the value the objective
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function that is not directly optimized in this second step. In the case of maximization of

objective functions, this added state constraint is a lower bound on an objective function.

However, in the case where the optimization is formulated as a minimization problem, e.g.,

minimize a negative NPV, the added state constraint is a upper bound on the minimum of

the objective functions. For a tri-objective optimization, a third optimization is performed

where one of the objectives is optimized with two state constraints in the form of bounds on

the other two objective functions. We first discuss the standard lexicographic method and

then discuss the modified lexicographic method used in our computational examples.

For the standard lexicographic method, the first step is to determine a primary objec-

tive function. In this work, we select the average negative life-cycle NPV, where this average

negative NPV is denoted here by J̄NPV (u), i.e.,the notation J̄(u) in Eq. 2.3 is now replaced

by the notation J̄NPV (u). Then, at the first step of the standard lexicographic method we

solve the single objective life-cycle robust production optimization problem with nonlinear

state and bound constraints specified in Eq. 2.3; the solution of this problem is denoted as

u∗. Then, the value of the negative average life-cycle NPV (J̄NPV (u∗) ) at the vector of

optimal controls, u∗, is recorded. Next, a value of γ1 such that 0 < γ1 ≤ 1 is selected. The

value of γ1 represents the decimal percentage of the increase in the negative life-cycle NPV

(decrease in life-cycle NPV) the operator is willing to sacrifice in upper to improve the value

of a secondary objective function beyond its value at u∗. Then, a secondary objective func-

tion is optimized with an additional state constraint in the form of J̄NPV (u) ≤ γ1J̄NPV (u∗).

In the case where the second optimization problem is to optimize the short-term NPV, the

second optimization problem that is solved is specified as

minimize
u∈RNu

J̄s−NPV (u), (3.5a)

subject to J̄NPV (u) ≤ γ1J̄NPV (u∗) (3.5b)

ulow
i ≤ ui ≤ uup

i , i = 1, 2, · · · , Nu, (3.5c)

ci(u,mj) ≥ 0, i = 1, 2, · · · , Nic, j = 1, 2, · · · , Ne. (3.5d)
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Note if γ1 = 0.99 is selected, then the state constraint on J̄NPV (u) indicates that we

can tolerate at most a one percent increase in average negative life-cycle NPV, which is

equivalent of being willing to tolerate at most a one percent decrease in average life cycle

NPV, in order to decrease the value of negative short-term, or, equivalently, increase average

short-term NPV above its value −J̄s−NPV (u∗). In the tri-objective optimization case, a

third optimization is performed. Let u∗∗ denote the solution of Eq. 3.5 and record the values

of the negative average life-cycle NPV (J̄NPV (u∗∗) ) and negative average short-term NPV

(J̄s−NPV (u∗∗) ) at the new vector of optimal well control variables u∗∗. Next select values

of of γ1 and γ2 such that 0 < γ1 ≤ 1 and 0 < γ2 ≤ 1. Then, formulate a new constrained

production optimization problem as:

minimize
u∈RNu

Jrisk(u), (3.6a)

subject to J̄NPV (u) < γ1J̄NPV (u∗∗) (3.6b)

J̄s−NPV (u) < γ2J̄s−NPV (u∗∗) (3.6c)

ulow
i ≤ ui ≤ uup

i , i = 1, 2, . . . , Nu, (3.6d)

ci(u,mj) ≥ 0, i = 1, 2, · · · , Nic, j = 1, 2, . . . , Ne, (3.6e)

where the primary objective function for this problem is the negative value of the worst-

case NPV and both average life-cycle NPV and short-term NPV are treated as the state

constraints. We can of course, interchange the roles of the short term NPV and risk in the

two preceding optimization problems. Note that above, we allow the possibility of selecting

γ=1 and γ2 = 1 in the preceding bi-objective and tri-objective optimization steps because

when the number of control steps is large, it is possible that after the first and second

optimization steps, there remain sufficient degrees of freedom so that one can optimize a

second, and perhaps even a third objective function without decreasing its previous optimal

value; see Chen et al. [15] and Van Essen et al. [83].

Instead of using the standard lexicographic method, we implement a modified lexico-

graphic method to solve the robust multi-objective optimization problem with the improved
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StoSAG. Like the standard method, two optimization problems are solved for bi-objective

optimization and three optimization problems are required to be solved when there are three

objectives. In each optimization problem, the min-max scheme is applied to enforce stan-

dard state constraints (ones that do not involve a bound on one of the objective functions)

using the filter method. Bound constraints are handled by truncation scheme in our work

on multi-objective optimization. To be specific, if ui, the ith entry in the vector of control

variables, is larger than the upper bound of this control variable, uup
i , at some optimization

step, then we set ui = uup
i . Similarly, if the ith entry of the vector of control variables, ui, is

smaller than its specified lower bound, ulow
i , we set ui = ulow

i . The first step of the modified

lexicographic method is same as the standard lexicographic method which minimizes the

average negative life-cycle NPV, J̄NPV (u), with state and bound constraints to obtain the

estimated optimal well controls, u∗. Then, we record the negative average short-term NPV

(J̄s−NPV (u∗)) and the largest negative NPV among all realizations (Jrisk(u∗)) at the optimal

vector of well controls, u∗. Next values of γ1 and γ2 are selected such that γ1 > 1 and

γ2 > 1 (corresponding to desired decrease in negative short-term NPV and desired decrease

in the negative of the worst-case NPV, respectively). Then γ1J̄s−NPV (u∗) and γ2Jrisk(u∗)

are applied as added state constraints (upper bounds) on J̄s−NPV (u) and Jrisk(u) in a new

optimization problem where we again optimize J̄NPV (u). Specifically, we solve the following

problem:

minimize
u∈RNu

J̄NPV (u) (3.7a)

subject to J̄s−NPV (u) < γ1J̄s−NPV (u∗) (3.7b)

Jrisk(u) < γ2Jrisk(u∗) (3.7c)

ulow
i ≤ ui ≤ uup

i , i = 1, 2, · · · , Nu, (3.7d)

ci(u,mj) ≥ 0, i = 1, 2, · · · , Nic, j = 1, 2, · · · , Ne, (3.7e)

Note that we can actually increase the value of γ1 and γ2 gradually and solve the lexicographic

problem repeatedly to attempt to generate a Pareto front (or surface) for the mulit-objective
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optimization problem. Also note that for bi-objective optimization, one could delete either

Eq. 3.7b or 3.7c from the problem of Eq. 3.7. One could of course also first solve Eq. 3.7 con-

verted to a bi-objective optimization problem and then solve as a third optimization problem,

Eq. 3.7. However, solving a bi-objective problem following by solving a tri-objective prob-

lem is more computationally expensive than skipping the bi-objective problem and simply

solving the tri-objective optimization problem of Eq. 3.7.

To solve the problem in Eq. 3.7, the optimization algorithm needs to handle Nic ×

Ne+2 state constraints, since the all standard state constraints (those involving the ci’s) are

required to be satisfied for each realization. To reduce the number of constraints enforced

in this problem, the min-max scheme proposed in Section 2.2.5 is applied. However, the

min-max scheme is only applied to the standard state constraints, not to the two state

constraints on objective functions, Eqs. 3.8b and 3.8c. The bound constraints are enforced

by truncation. When applying the min-max scheme, the multi-objective robust constrained

production optimization of Eq. 3.7 is redefined as

minimize
u∈RNu

J̄NPV (u) (3.8a)

subject to J̄s−NPV (u) < γ1J̄s−NPV (u∗) (3.8b)

Jrisk(u) < γ2Jrisk(u∗) (3.8c)

ulow
i ≤ ui ≤ uup

i , i = 1, 2, · · · , Nu, (3.8d)

ci,j(u) ≥ 0, i = 1, 2, · · · , Nic, (3.8e)

where ci,j denotes the ith constraint function evaluated at the jth realization, where the

maximum violation of the ith constraint occurs for realization j. This means that for each

i, i =1,2,. . . Nic, j is chosen such that

j = argmin
16k6Ne

{ci(u,mk)}. (3.9)

By enforcing ci,j ≥ 0 at each iteration of the SQP-filter method, we are efficiently minimize
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the maximum constraint violation among all realizations. The index j which corresponds

to each nonlinear constraint may change from iteration to iteration as the optimization

proceeds. By applying the min-max scheme, the number of state constraints to be enforced

in the optimization process is reduced from Nic ×Ne + 2 to Nic + 2.

3.3 Computational Results

In this example, we apply the modified lexicographic method on the Brugge case

to solve an robust multi-objective optimization problem with state constraints. The Brugge

field is a synthetic reservoir model designed by TNO as an SPE comparative study for closed-

loop optimization [72]. Although the organizers created 104 realizations conditioned on well

logs, we select only 10 geological realizations to perform robust constrained optimization.

Details about the Brugge case and how to select the 10 realizations are selected are discussed

in the Chapter 2.

Ten injectors and twenty producers are drilled near the top crest of the reservoir with

the location of each well shown in Fig. 2.24. The control variables for producers are BHPs

and for injectors are water injection rates. The minimum and maximum BHP for producers

are set equal to 500 psi and 3400 psi, respectively. The minimum and maximum water

injection rate are 0 STB/d and 10,000 STB/d. The reservoir life is set equal to 22 years and

the control interval for each well is one year. Therefore, the total number of control variables

for the life-cycle optimization problem is 30 × 22 = 660. The time span to compute the

short-term NPV is set as 5 years which means Nshort = 5. For the NPV computations, the

oil price is set to $50/STB, the water disposal cost is $3/STB, and water injection cost is set

to $2/ STB. The gas price is set to a low value of $0.02/ Mcf, which assumes the gas must

essentially be given away which is the case in some fields. The annual discount rate is 0.05.

The nonlinear state constraints in this problem are the maximum field liquid production

rate (FLR) and the maximum field water production rate (FWR), where the scaled form of

these constraints, which are applied on each control step, are given by

1. FLR: c = 50,000−FLR
50,000

> 0,
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(a) Optimal BHPs from single objective life-cycle opti-
mization.

(b) Optimal BHPs from bi-objective optimization with life-
cycle & short-term NPV as objectives.

Figure 3.1: Comparison of optimal production BHP for single objective optimization (left)
and bi-objective optimization with short-term NPV as the state constraints using
modified lexicographic method (right)

2. FWR: c = 15,000−FWR
15,000

> 0.

As discussed in section 3.2.2, with both the standard and modified lexicographic

methods for multi-objective optimization, the first step involves the minimization of the

average negative life-cycle NPV with only the original state and bound constraints imposed.

For the Brugge example, we then apply the modified lexicographic method to solve a bi-

objective optimization problem with the short-term NPV and life-cycle NPV as the objective

functions. This means we solve Eq. 3.8 with the constraint on Jrisk deleted but the constraint

on short-term NPV is enforced as one of the state constraints. In the biobjective problem, we

set γ1 = 1.23. After the single objective optimization step, where the secondary objectives

are ignored, the optimal u∗ is such that J̄s−NPV (u∗) = −2.44 × 109, so the constraint of

Eq. 3.8b of the problem Eq. 3.8 is J̄s−NPV (u) < γ1J̄s−NPV (u∗) = −3.0×109. Figs. 3.1 and 3.2

compare the optimal controls of producers and injectors from the single objective (minimize

average negative NPV) constrained optimization and the results from solving the bi-objective

optimization. In Figs. 3.1 and 3.2 and similar figures, the abscissa represents the control steps

and the ordinate indicates the index of producers or injectors. From the results of Fig. 3.1 we
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(a) Optimal injection rates from single objective life-cycle
optimization

(b) Optimal injection rates from bi-objective optimization
with life-cycle & short-term NPV as objectives.

Figure 3.2: Comparison of optimal water injection rates for single objective optimization
(left) and bi-objective optimization with short-term NPV as the state constraints
using modified lexicographic method (right)

can observe that compared with optimal BHP from the single objective life-cycle optimization

in Fig. 3.1a, the optimal well BHP of each well at each control step generated from the bi-

objective optimization tends to lower the BHP at the first 5 control steps in Fig. 3.1b since the

time span of the short-term NPV is defined as 5 years. Fig. 3.2 compares the optimal water

injection rates for the single objective and bi-objection optimal results. Fig. 3.2b illustrates

that with bi-objective optimization, more water tends to be injected at wells 1, 7 and 10 in the

first 5 years than is the case with the optimal injection rates obtained with single objective

life-cycle constrained production optimization of Fig. 3.2a. This is not surprising as in

the bi-objective optimization step, one is trying to increase the short-term NPV above the

value obtained from single objective optimization. Using the well controls, u∗, obtained from

single objective optimization. the following values are obtained: J̄NPV (u∗) = −4.86 × 109

(average life-cycle NPV of $4.86 × 109); J̄s−NPV (u∗) = −2.44 × 109 (average short-term

NPV of $2.44 × 109). Using the optimum well controls u∗∗ obtained from the bi-objective

optimization solution gives J̄NPV (u∗∗) = −4.96× 109 and J̄s−NPV (u∗∗) = −3.01× 109.

Figs. 3.3 and 3.4 compare the field water production rates (FWR) and the field liquid

production rate (FLR), respectively, computed from the optimization results of Figs. 3.1 and
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(a) FWR under the optimal controls of single objective op-
timization.

(b) FWR under the optimal controls of bi-objective op-
timization using modified lexicographic method with
life-cycle NPV as primary objective and short-term
NPV as second objective.

Figure 3.3: Comparison of FWR at the optimum of single objective optimization (left) and
at the optimum of bi-objective optimization (right) solved with modified lexico-
graphic method

3.2, respectively . The purple line on each of those four plots represents the expected value

(average value) of either FWR or FLR over the ten selected ensemble of reservoir models

and the gray lines represent the FWR and FLR of the ten realizations. In Fig. 3.3, all field

water production rates constraints are satisfied for every realization at the optimal controls

for both cases. However, we can observe that bi-objective optimization with a constraint

on the short-term negative NPV tends to generate lower average water production rates

than that average FWR generated by the life-cycle optimization from the 1000th day of

production until the end of the reservoir life. Fig 3.4 compares the field liquid production

rates (FLR) under the different optimal controls (life-cycle optimization and bi-objective

optimization). From the results, we can observe that compared with life-cycle optimization

result in Fig. 3.4a, the bi-objective optimization result with short-term NPV as the secondary

objective in Fig. 3.4b tends to yield a higher average FLR at the first 5 control steps. As

we expected, the optimal controls computed by bi-objective optimization tend to increase

FLR in the first five control steps by lowing the BHP illustrated in Fig. 3.1b to maximize

the short-term NPV whose time span is 5 years.
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(a) FWR under the optimal controls of single objective op-
timization.

(b) FLR under the optimal controls of bi-objective op-
timization using modified lexicographic method with
life-cycle NPV as primary objective and short-term
NPV as second objective

Figure 3.4: Comparison of FLR at the optimum of single objective optimization (left) and
at the optimum of bi-objective optimization (right) solved with modified lexico-
graphic method

(a) CDF of the short-term NPV (b) CDF of the life-cycle NPV

Figure 3.5: CDF’s of short-term NPV (left) and life-cycle NPV (right);
blue: results from initial well controls;
red: results from single objective life-cycle optimization;
yellow:: results from modified lexicographic bi-objective optimization with state
constraint on average negative short-term NPV.
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Fig. 3.5 compares the cumulative distribution functions (CDFs) of the short-term

NPV (left plot) and life-cycle NPV (right plot) at the optimal controls obtained with the

single objective life-cycle constrained optimization and the CDF obtained with the subse-

quent bi-objective constrained optimization. The CDF of the NPV with initial controls in

which the BHP for all producers at all control steps is equal to 2,300 psi and water injec-

tion rate for all injectors at all control steps is 1,000 STB/day are represented as blue lines

in both Fig. 3.5a and 3.5b. The robust short-term and life-cycle NPV generated with the

single objective of life-cycle NPV with no constraints on average negative short-term NPV

are shown as as red lines whereas the yellow lines denote the short-term and life-cycle NPV

results corresponding to the bi-objective optimal control results. First, it is obvious from

the results that the initial well controls give highly sub-optimal results. As one might guess,

the bi-objective solution gives a larger short-term NPV for each realization of the reservoir

model than is obtained from the solution of the first life-cycle optimal solution. This is not

surprising because the bi-objective optimization problem includes a state-constraint that ef-

fectively requires that the short-term NPV be 23% greater (γ1 = 1.23 than the short-term

NPV obtained by optimizing average negative life-cycle with no constraint on the value of

short-term NPV. What is surprising is that bi-objective optimization gives a larger NPV

for every realization of the reservoir model than is obtained by optimizing average negative

NPV with no constraint on short-term NPV. This is surprising, as if the two objectives are in

conflict, then one cannot expect to increase short-term NPV by solving the second optimiza-

tion problem. However, it is not possible to conclude that the two objectives are in conflict.

Instead it is likely that using StoSAG to solve the first single objective life-cycle production

optimization problem resulted in a somewhat suboptimal solution of the single-objective op-

timization problem. In the second optimization solution where a constraint on short-term

NPV is imposed, we again optimize life-cycle NPV and thus we are able to increase life-cycle

NPV above its value obtained during the first optimization plot as can be seen by comparing

the red and yellow curves of Fig. 3.5b.

The preceding bi-objective optimization results were obtained with the modified lex-
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(a) Optimal BHPs of bi-objective optimization using stan-
dard lexicographic scheme

(b) Optimal BHPs of bi-objective optimization using mod-
ified lexicographic scheme

Figure 3.6: Comparison of optimal production BHP for short-term and life-cycle NPV bi-
objective optimization with standard lexicographic scheme (left) and modified
lexicographic scheme (right)

(a) Optimal BHPs of bi-objective optimization using stan-
dard lexicographic scheme

(b) Optimal BHPs of bi-objective optimization using mod-
ified lexicographic scheme

Figure 3.7: Comparison of optimal water injection rates for short-term and life-cycle NPV
bi-objective optimization with standard lexicographic scheme (left) and modified
lexicographic scheme (right)
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icographic method. In the following case, we keep all parameters settings of the example

the same and compare the performance of the standard lexicographic and the modified lex-

icographic methods on the bi-objective optimization problem with life-cycle and short-term

NPV as the two objectives. Recall that for the second optimization problem solved with

the standard lexicographic method, we directly minimize the short-term NPV with a con-

straint imposed on the maximum life-cycle NPV obtained during the first step. As the

life-cycle NPV cannot expect to be improved during the optimization of average negative

short-term NPV, during this second optimization solution with the standard lexicographic

method, it is unreasonable to set γ1 > 1. Thus to try to keep J̄NPV (u) as small as possible,

or equivalently, average life-cycle NPV as large as possible, we set γ1 = 1 in Eqs. 3.5b. Thus,

the state constraint for the second optimization problem in the application of the standard

lexicographic is set as J̄NPV (u) ≤ −4.86 × 109 USD. In the modified lexicographic scheme,

which was applied previously (see Figs. 3.1 through 3.5 the primary objective is life-cycle

NPV and short-term NPV is set as one of state constraint. The γ1 for the modified lex-

icographic is set as 1.23. Therefore, the state constraint for the modified lexicographic is

set as J̄s−NPV (u) < −3.0 × 109 USD. Figs. 3.6 and 3.7, respectively, compare the optimal

BHP controls at producers and optimal water injection rates at injectors computed by the

standard lexicographic method (left) and modified lexicographic scheme (right). In Fig.3.6,

the bi-objective optimization results generated with both the standard and modified lexico-

graphic methods tend to lower the BHP at the first 5 control steps. From Fig. 3.7, we also

observe that the optimal injection rates generated by standard and modified lexicographic

methods both tend to inject water at large water injection rates during the first 5 years which

coincides with the time period of the short-term NPV. Fig. 3.8 compares the CDF obtained

for bi-objective optimization with the standard lexicographic method (blue lines) with the

corresponding CDF obtained with the modified lexicographic methods (red lines). The CDFs

of the short-term NPV are plotted on the left and the CDFs of life-cycle NPV are plotted on

the right. Some statistics calculated from these results are summarized in Table 3.1. From

the results of Table 3.1, we can observe that the two lexicographic methods produce very

96



similar results. However, the CDF results of Fig. 3.8a indicate that the standard deviation

of the short-term NPV’s obtained from the modified lexicographic method is much larger

than the corresponding standard deviation computed from the standard lexicographic NPV

results. This disadvantage of the modified lexicographic method is slightly ameliorated by

the fact the modified lexicographic method gives a higher life-cycle NPV for virtually every

realization of the reservoir model than does the standard lexicographic method. Also note

that one can improve the results on the standard deviation by introducing as a third objec-

tive, the minimization of risk, i.e., solve the problem of Eq. 3.8. It is important to note that

the main reason we prefer the modified lexicographic method is that by choosing uniformly

spaced values of γ1 and solving the associated set of bi-objective optimization problems with

the modified lexicographic method, it is easy to find points on the Pareto front such that

the values of the short-term average NPV are uniformly spaced. However, with the standard

lexicographic method, it is challenge to find appropriate values of γ1 to generate uniformly

spaced points on the Pareto front; see Liu and Reynolds [55]. The generation of a Pareto

front is discussed later in this chapter.

J̄NPV J̄s−NPV (USD) Constraint Number of Sim.

Standard lexicographic -4.92×109 -3.08×109 J̄NPV (u) ≤ −4.86× 109 5400

Modified lexicographic -4.96 ×109 -3.01 ×109 J̄s−NPV (u) ≤ −3× 109 5600

Table 3.1: Summary of constrained bi-objective optimization with different lexicographic
schemes.

Figs. 3.9 and 3.10, respectively, compare the optimal controls of producers and injec-

tors generated from single objective life-cycle constrained optimization and tri-objective op-

timization using the modified lexicographic method with both short-term NPV and downside

risk used as additional nonlinear state constraints; see Eq. 3.8c. Recall that at the optimal

solution of the single objective optimization (u∗) negative average life-cycle is given by NPV

J̄NPV (u∗) = −4.86 × 109, negative average short-term NPV is J̄s−NPV (u∗) = −2.44 × 109

and the negative worst-case NPV is J̄risk(u∗) = −4.35×109. Therefore, for tri-objective con-

strained robust optimization, the primary objective is average negative life-cycle NPV with
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(a) CDF of the short-term NPV (b) CDF of the life-cycle NPV

Figure 3.8: CDF’s of short (left) and long (right) terms NPV’s from the two bi-objective
optimization schemes at the estimated optimal controls.
red: standard lexicographic method; short-term NPV as primary objective, life-
cycle NPV as a constraint;
blue: modified lexicographic method; life-cycle NPV as primary objective, short-
term NPV as a constraint.

(a) Optimal BHPs from single objective life-cycle opti-
mization.

(b) Optimal BHPs of producers from tri-objective opti-
mization

Figure 3.9: Comparison of optimal production BHP for single objective optimization (left)
and tri-objective optimization with short-term NPV and minimum risk as the
state constraints (right) using modified lexicographic method
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(a) Optimal waters injection rates of injectors from single
objective life-cycle optimization.

(b) Optimal waters injection rates of injectors from tri-
objective optimization

Figure 3.10: Comparison of optimal water injection rates for single objective optimization
(left) and tri-objective optimization with short-term NPV and minimum risk
as the state constraints (right) using modified lexicographic method

negative short-term average NPV constrained by J̄s−NPV (u) ≤ γ1J̄s−NPV (u∗) = −3.0 × 109

USD ( γ1 = 1.23) and the downside risk constrained by Jrisk(u) ≤ γ2Jrisk(u∗) = −4.6 × 109

USD (γ2 = 1.06). From the results of Fig. 3.9, we can observe that, compared with optimal

BHP’s from single objective life-cycle optimization in Fig. 3.9a, the optimal BHP of each

well at each control step generated from the tri-objective optimization tends to be lower the

BHP during the first 5 control steps in Fig. 3.9b. This result makes sense because the time

span of the short-term NPV is defined as 5 years and short-term NPV is one of objectives

for the tri-objective optimization. Figs. 3.11 and 3.12 compare the field water production

rates (FWR) and the field liquid production rate (FLR) at the single objective constrained

optimization and tri-objective constrained optimization, respectively. The purple line on

each of those four plots represents the expected value (average value) of either FWR or

FLR over the ensemble of ten reservoir models and the ten gray lines represent FWR or

FLR of the ten realizations. From Figs. 3.11 and 3.12 we can observe that the tri-objective

optimization produces results such that all the state constraints are satisfied at each control

step for every realization of the reservoir model. It is always important to note that con-

straints are satisfied since the min-max scheme is used to satisfy constraints within the filter
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(a) FWR under the optimal controls of single objective op-
timization.

(b) FWR under the optimal controls of tri-objective op-
timization using modified lexicographic method with
life-cycle NPV as primary objective, short-term NPV
and minimum risk as the objectives enforced by state
constraints

Figure 3.11: Comparison of FWR at the optimum of single objective optimization (left)
and at the optimum of tri-objective optimization (right) solved with modified
lexicographic method

method. Fig 3.12 compares the field liquid production rates (FLR) obtained for the optimal

controls obtained with single objective robust life-cycle production optimization with those

obtained with tri-objective optimization using the modified lexicographic method. Note that

tri-objective optimization (Fig. 3.12b) tends to generate higher values of the average FLR

and individual FLR’s at the first 5 control steps than does single objective life cycle opti-

mization because with tri-objective optimization we are forcing the average short-term NPV

to be greater than a prescribed lower bound.

Fig. 3.13 compares the cumulative distribution functions (CDFs) of the short-term

NPV on the left and life-cycle NPV on the right at the optimal controls obtained from sin-

gle objective, bi-objective and tri-objective optimization. The bi-objective and tri-objective

results are generated with the modified lexicographic procedure. In one of the bi-objective

optimization problems, the average negative short-term NPV is set as the extra state con-

straint (Eq. 3.8b) and no state constraint on down-side risk is considered. The value of γ1 in

Eq. 3.8b in this bi-objective optimization problem is set as γ1 = 1.23, which is equivalent to
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(a) FLR under the optimal controls of single objective op-
timization.

(b) FLR under the optimal controls of tri-objective op-
timization using modified lexicographic method with
life-cycle NPV as primary objective, short-term NPV
and minimum risk as the objectives enforced by state
constraints

Figure 3.12: Comparison of FLR at the optimum of single objective optimization (left) and
at the optimum of tri-objective optimization (right) solved with modified lexi-
cographic method

J̄s−NPV (u) ≤ γ1J̄s−NPV (u∗) = −3.0 × 109. In the other bi-objective optimization problem,

the negative worst-case NPV is set as the extra state constraint (Eq. 3.8c) to minimize the

downside risk and no state constraint on average negative short-term NPV is considered.

The value of γ2 in Eq. 3.8c in this bi-objective optimization problem is set as γ2 = 1.06,

which is equivalent to Jrisk(u) ≤ γ2Jrisk(u∗) = −4.6 × 109 (Jrisk(u∗) = −4.35 × 109) . In

Fig. 3.13, the blue lines denote the short-term and life-cycle NPV’s evaluated at the optimal

well controls generated with single objective life-cycle production optimization. The red lines

denote the short-term and life-cycle NPV’s computed with the optimal well controls obtained

from bi-objective optimization with the average short and average long term NPV as the

two objectives. The CDF’s shown in yellow are the average short-term and average life-cycle

NPV’s estimated from the bi-objective optimization optimal result in which life-cycle NPV

is set as the primary objective and downside risk is treated as a state constraint. The pur-

ple lines in Fig. 3.13 represent the CDFs of short-term and life-cycle NPV generated from

the tri-objective optimization result with both short-term NPV and downside risk treated
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as state constraints in the modified lexicographic method; see Eq. 3.8. The settings of the

constraints for single, bi-objective and tri-objective optimization with the modified lexico-

graphic method are summarized in Table 3.2. Under the modified lexicographic scheme,

the primary objective function is always life-cycle NPV (J̄NPV ) and the average negative

short-term NPV and negative worst-case NPV are set as extra state constraints which are

denoted as State Constraint 1 and State Constraint 2 in Table 3.2. Moreover, con-

straints values on average negative short-term NPV (State Constraints 1) and negative

worst-case NPV ( State Constraints 2) are also summarized in Table 3.2. Note that only

the state constraints on the second and third objective functions are listed in this table,

i.e., the state constraints enforced on the FWR and FLR are included in Table. 3.2. From

Fig. 3.13, we can observe that the single objective optimization result has the lowest values

of average short-term and average life-cycle NPV among all the optimization results. In

fact, among all CDF’s the lowest minimum NPV and lowest maximum NPV are the lowest

for the CDF generated by minimizing the average negative life-cycle NPV. Comparing the

Fig. 3.13a results for the short-term CDF for bi-objective optimization results where risk is

the second objective (yellow line) with those where short-term NPV is the second objective

(red line), we see that, as expected, the case obtained where short-term NPV is the sec-

ond objective (red line) gives higher short-term NPV than the case is obtained where risk

is the second objective (yellow line) in Fig. 3.13a. However, as also is expected, the case

where the downside risk is the second objective (yellow lines) yields a higher value of the

worst-case NPV than is obtained for the case where short-term NPV is the second objective

(red line) in Fig. 3.13b. This choice of γ1 and γ2 also gives the perhaps unexpected result

that, among the four CDF’s for average short-term NPV and the four CDF’s for average

life-cycle NPV, the CDF’s that gives highest individual NPV values are the two obtained

from tri-objective optimization. Other choices for γ1 and γ2 will be explored later when we

discuss Pareto fronts. Specific values of average life-cycle NPV, average short-term NPV and

worst case NPV computed from single objective, bi-objective and tri-objective optimization

results corresponding to the results of Fig. 3.13 are summarized in Table. 3.3. The number
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(a) CDFs of short-term NPV (b) CDFs of life-cycle NPV

Figure 3.13: CDF’s of short-term NPV (left) and life-cycle NPV (right); blue: estimates
from single objective life-cycle optimization; red: from modified lexicographic
bi-objective optimization with state constraint on negative average (minimum
average) short term NPV; yellow: from modified lexicographic bi-objective
optimization with state constraint on negative worst-case NPV; purple: from
modified lexicographic tri-objective optimization with state constraints on both
negative average (minimum average) short term NPV and negative worst-case
NPV.

of simulation runs (# of Sim.) in this table refers to the total number of simulation runs

required to obtain the results including the 4300 simulation runs required to complete the

single objective optimization of average negative life-cycle NPV.

The solution of a multi-objective optimization result is represented by a Pareto front

[55, 53]. Each point on the Pareto front corresponds to one solution of a multi-objective

optimization and the x coordinate and y coordinates of that point correspond to the values of

distinct objective functions evaluated at that multi-objective optimum, respectively. Here,

we let (x, y) denote the values of the two objective functions involved in the specified bi-

objective optimization problem. Consider two points, A = (x1, y1) and B = (x2, y2). Point

A is said to dominate point B if x1 > x2 and y1 ≥ y2 or if x1 ≥ x2 and y1 > y2 Otherwise B

is not dominated by A. The Pareto front consist of all points that are not dominated by any

other point. For tri-objective optimization, a similar relationship defines the Pareto surface;

see Liu and Reynolds [53]. In this work, we attempt to generate the Pareto front for the
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CDF color Primary Objective State Constraint 1 State Constraint 2

Blue J̄NPV - -

Red J̄NPV J̄s−NPV ≤ −3.0× 109 -

Yellow J̄NPV - Jrisk ≤ −4.6× 109

Purple J̄NPV J̄s−NPV ≤ −3.0× 109 Jrisk ≤ −4.6× 109

Table 3.2: Summary of the settings of constrained single objective, bi-objective and tri-
objective optimization with modified lexicographic method.

Objective functions J̄NPV (USD) Jrisk (USD) J̄s−NPV (USD) # of Sim.

J̄NPV -4.86×109 -4.35×109 -2.44×109 4300

J̄NPV , J̄s−NPV -4.96×109 -4.5×109 -3.01×109 5600

J̄NPV , Jrisk -4.94×109 -4.6×109 -2.6×109 5400

J̄NPV , J̄s−NPV , Jrisk -5.04 ×109 -4.64×109 -3.05×109 6200

Table 3.3: Summary of computational results of constrained single objective, bi-objective
and tri-objective optimization with modified lexicographic method.

bi-objective optimization problem considered by gradually tightening the constraint value

on the second objective function, either short-term NPV or worst-case NPV for the example

under consideration where the modified lexicographic method is applied to to solve each of

the sequence of optimization problems.

For the Brugge example under consideration, Fig. 3.14 represents three attempts to

generate Pareto front or potential points on the Pareto surface. In all cases, the points on

each of the three colored curve are generated by increasing the upper bound on the average

negative short-term NPV. The point labeled 1 is the beginning point for all three curves

and represents the results generated by simply minimizing average negative life-cycle NPV

with no state constraint on average negative short-term NPV or on the negative worst-case

NPV. As before, the optimal vector of controls obtained as the solution of this optimization

problem is denoted by u∗. We first discuss the blue curve of Fig. 3.14 where the points 2, 3, 4
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and 5, respectively, represent bi-objective optimization solutions with the constraint on the

average negative short-term NPV given respectively, by J̄s−NPV ≤ −2.6 × 109 (γ1 = 1.06),

J̄s−NPV ≤ −2.8×109 (γ1 = 1.14), J̄s−NPV ≤ −3.0×109 (γ1 = 1.23), and J̄s−NPV ≤ −3.2×109

(γ1 = 1.31). The first thing we note is that point 1 and the blue optimization solution 2 are

dominated by points 3, 4 and 5 on the blue curve so the only points found that are on the

Pareto front are blue points 3, 4 and 5. If we select the controls associated with blue point 3

as the well controls to be implemented in practice, we generate the highest average life-cycle

NPV (4.97× 109) obtained among the possibilities incorporated in optimal points 1, 2, 3, 4

and 5. However, if instead, we choose to implement the controls associated with blue point

5, we increase average life short-term NPV from the value 2.81×109 corresponding to point 3

to 3.07×109 USD (point 5) but this increase is achieved by inducing a very small decrease in

the average life cycle NPV from 4.97× 109 USD (point 3) to 4.95× 109 USD corresponding

to point 5. The black curve in Fig. 3.14 is generated by tri-objective optimization with

the same four constraint values (γ1 values) used to generate the blue points but with a

constraint also enforced on the worst-case NPV, or, equivalently, on the upper bound of

the maximum negative NPV; see Eq. 3.8c. The specific risk constraint used corresponds

to using γ2 = 1.02 in Eq. 3.8c. Since Jrisk(u∗) = 4.4 × 109 USD, Eq. 3.8c corresponds to

Jrisk ≤ γ2Jrisk(u∗) = −4.5×109 USD or equivalently that the worst-case NPV is greater than

or equal to 4.5 × 109 USD. The red curve is generated by the tri-objective optimization in

the same way as the black curve except in this case the risk constraint is tightened to require

that the worst-case NPV is greater than or equal to 4.6× 109 USD. For the two tri-objective

sets of optimization results, only two points obtained (points 4 and 5) are non-dominated

points, i.e., are on the appropriate Pareto front.

Fig. 3.15 shows the results of attempts to generate a Pareto front by increasing the

upper bound on the negative worst-case NPV where the two objectives are the average

negative life-cycle NPV and the minimum NPV. The point labeled 1 is the beginning point

and represents the result generated by simply minimizing average negative life-cycle NPV

with no state constraints on the risk objective function. Points 2, 3, 4 and 5 on the curve in
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Fig. 3.14, respectively, represent of the bi-objective optimization solutions with the average

life-cycle NPV as the primary objective and a constraint on the worst-case NPV given

respectively, by J̄risk ≤ −4.4 × 109 (γ2 = 1.01), J̄risk ≤ −4.5 × 109 (γ1 = 1.03), J̄risk ≤

−4.6× 109 (γ1 = 1.06), and J̄risk ≤ −4.7× 109 (γ1 = 1.31). We can observe that point 1, 2

and 3 are dominated by points 4 and 5 on the blue curve in Fig. 3.15 so the only points found

that are on the Pareto front are blue points 4 and 5. If we select the controls associated with

blue point 4 the well controls to be implemented in practice, we generate the highest average

life-cycle NPV ($ 4.96×109) obtained among the possibilities incorporated in optimal points

1, 2, 3, 4 and 5. Compared with the optimal result at point 4, if we implement the controls

associated with blue point 5, we could slightly increase the worst-case NPV from 4.6 × 109

USD to 4.61×109 USD at the negligible cost of decreasing the life-cycle NPV from 4.96×109

USD to 4.95×109 USD. Therefore, the average life-cycle NPV and worst-case NPV objectives

conflict with each other at points 4 and 5. In Fig. 3.15, we see a similar performance at

point 1, 2 and 3 as occurred in Fig. 3.14 which is the average life-cycle NPV increase as state

constraint on worst-case NPV become stricter within some range. One plausible explanation

of such results is that, because of the stochastic nature of the approximate gradients used

in the single objective production optimization problem with the SQP-filter algorithm, the

SQP-filter algorithm can be trapped into a local minimum easily even though this local

optimum is not on the Pareto front of the multi-objective optimization problem. When the

life-cycle average NPV is optimized again with a lower bound imposed as a state constraint

on the average short-term NPV and/or the worst-case NPV, the gradients of these state

constraints cause the modified lexicographic to escape the local minimum and and achieve

a higher average life-cycle NPV. Once the lower bound imposed in the the state constraints

become large enough, the two secondary objectives incorporated as state constraints act as

if they are truly in conflict with the primary objective, the maximization of average life-cycle

NPV. When this happens, the average life-cycle NPV obtained during the bi-objective or tri-

objective optimization step is lower that the value obtained by optimizing only the average

life-cycle NPV with no constraints on the other two objective functions and points that are
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Figure 3.14: Pareto fronts of short-term NPV v.s. life-cycle NPV
Blue: short-term NPV constraint varies, no constraint on risk Jrisk.
Black: Jrisk ≤ −4.5× 109, short-term NPV constraint varies.
Red: Jrisk ≤ −4.6× 109, short-term NPV constraint varies.

Pareto optimal can be obtained. Despite the aforementioned atypical behavior, the points

generated in an attempt to find the Pareto front provides choices that enable the operational

engineer to set controls based on his or her short-term and life-cycle production goals and

risk tolerance.
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Figure 3.15: Pareto fronts of minimum NPV v.s. life-cycle minimum NPV constraint varies,
no constraint on short-term NPV.
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CHAPTER 4

ROBUST LIFE-CYCLE PRODUCTION OPTIMIZATION WITH

GRADIENT-ENHANCED SUPPORT VECTOR REGRESSION

4.1 Introduction

In this chapter, we develop and employ a proxy-based optimization workflow to solve

the robust life-cycle production optimization problem with state constraints which is de-

scribed in Chapter 1. The work here considers only a single objective, namely, the min-

imization of the average NPV of life-cycle production where the average is over a set of

realizations of the reservoir model that characterizes the geological uncertainty. However,

as proxies are trained to reproduce the simulator prediction of constraint functions and the

negative NPV as a function of the vector of well controls, u, the results obviously extend

to the bi-objective case where either average negative short-term NPV or the minimization

of downside risk is the second objective, and hence also extend to the tri-objective opti-

mization problem considered previously. It is important to note that instead of training a

proxy to predict the negative NPV function, J̄(u,m), we train a unique proxy for objec-

tive function and each state constraints of each reservoir model mk so that the associated

proxies can predict the value of J(u,mk) and ci(u,mk), i = 1, 2, 3, · · · , Nic for any specified

well control vector u. Our proxy-based optimization methodology achieves computational

efficiency by generating a set of output values of the cost and constraints functions and

their associated gradient values as a function of input values of u by running the reservoir

simulator for a broad set of input variables (u’s) and then, for each and every mk, using

the set of input/output data to train a proxy model to replace computationally expensive

reservoir simulation runs when computing values of the cost and constraint functions and

their derivatives during iterations of a gradient-based optimization algorithm (sequential
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quadratic programming (SQP) with the filter method implemented for constraint handling).

Computational results indicate that calculating values of cost/constraint functions and their

derivatives using the proxy functions at iterations of the SQP method requires an order of

magnitude less computational time than is required using the reservoir simulator model.

Thus, the proxy-based optimization approach can enable the solution of large-scale produc-

tion optimization problems where computational resources are not sufficient to provide a

solution if the simulation model must be used for function and gradient evaluation at each

iteration of the optimization algorithm. The methodology can be applied given any set of

nonlinear state constraints. The proxy model used for optimization is a gradient-enhanced

support vector (GE-SVR) regression model. We provide some comparison of the optimiza-

tion results generated using both function and gradient information to build the proxy to

results obtained when the proxy is trained using only function information, i.e., to results

generated from least square support vector regression (LS—SVR) proxy. When values of

gradients of the cost function (and possibly state constraints) are used to build a proxy, we

refer to the proxy as a GE-SVR proxy even though a least-square procedure is also used to

build the GE-SVR proxy. An iterative sampling scheme is also to improve the accuracy of

proxy model around the optimal solution as the optimization proceeds. The computational

results presented in this chapter illustrate that proxy-based optimization with the iterative

sampling scheme solve the robust production optimization problem with state constraints

efficiently when the reservoir simulator has the adjoint capability needed to generate the

derivative information necessary to generate input-output samples for training the GE-SVR

proxy.

4.2 Methodology

4.2.1 GE-SVR Model

In this section, we introduce the theoretical background of the GE-SVR model. Com-

pared to the LS-SVR model, the GE-SVR enforces first order consistency by matching both
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function value and gradient information at training points where LS-SVR uses only output

function values. Given a number of training input samples, corresponding output response

for the objective function and its gradient where the output responses are generated from

the “true” model (the reservoir simulator in this work), the “GE-SVR” model “learns” how

to map the input vector to output responses and generates a function to predict the output

response of high-fidelity forward model for any given input. To be specific, for the production

optimization problem, the input data is defined as the vector of scaled control variables of

all wells at all control steps, xk. A [0,1] scaling is used to normalize the entries of the vector

of well controls, which is a standard procedure used for LS-SVR [81, 95, 37]. Recall from the

definition of u, which is defined in Section 2.2.1, that u denotes the vector of all Nu controls

which includes the controls of every well at every time step. Let u` be the `th component of

u with upper bound uup
` and lower bound ulow

` , then the scaled version, x, of u is formed by

mapping u` to x` with the mapping given by

xi =
ui − ulow

i

uup
i − ulow

i

. (4.1)

We let uk, k = 1, 2, · · · , Ns be the input samples of the well control vector u and let xk,

k = 1, 2, · · · , Ns be the scaled version of uk obtained from Eq. 4.1. The output response

of the GE-SVR model for the input sample xk = x(uk) is denoted by ŷk, k = 1, 2, ...Ns.

Effectively, we train the GE-SVR model for each type of output, e.g., one proxy for J(u,mk)

and ∇uJ(u,mk), one proxy for each ci(u,mk) and ∇uci(u,mk) for i = 1, 2, · · · , Nic and

k = 1, 2, · · · , Ne, where Nic is the number of inequality constraints and Ne is the number of

realizations considered in order to account for geological uncertainty.

The SVR model maps an Nu-dimensional input vector x (corresponding to u) to the

output response of the model, ŷ, by

ŷ(x) = wT · φ(x) + b, (4.2)

where φ(·) is a nonlinear mapping of the input space to the higher dimensional feature space;
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w is a vector of weights corresponding to the dimension of feature space; b is a scalar, which

represents the bias term. Here ŷ(x) in Eq. 4.2 denotes the SVR proxy used to approximate

y(x) output from reservoir simulator. One of the biggest advantages of the LS-SVR or GE-

SVR model over linear regression or other machine learning methods is that the user does

not need to specify the dimension of the feature space and does not need to explicitly define

the mapping φ into the feature space. The model is built based on a kernel function which

represents an inner product in the feature space. More details about the derivation and

explanation of the LS-SVR for reservoir engineering applications can be found in Guo and

Reynolds [37] and Emilio and Reynolds [25].

The gradient information in the training samples is generated by a reservoir simulator

with the adjoint capability. An in-house 3D three-phase reservoir simulator [60] with adjoint

capability for both history matching and production optimization is used as the true model

to generate model output responses including gradient information. The rth entry of the

gradient of the proxy model with respect to the input control variables is defined as

Dr(x) ≡ ∂ŷ(x)

∂xr
= wT · ∂φ(x)

∂xr
(4.3)

where xr denotes the rth element of input vector x. For k = 1, 2, · · · , Ns, where Ns is the

number of training samples, uk denotes the control vector which is input into the numerical

model (reservoir simulator in this research) to generate the kth training data and xk denotes

the corresponding scaled training input vector. We let yk = y(uk) and Dr(x) ≡ ∂y(x)
∂xr

i.e.,

Dr(x) is the rth component of ∇xy(x) computed from the adjoint solution of the numerical

model (reservoir simulator in this research). Note that the numerical model uses the adjoint

solution to compute ∇uy(u) and then

Dr(x) =
∂y(x)

∂xr
≡ ∂y(x)

∂ur

∂ur
∂xr

=
∂y(x)

∂ur
(uup

r − ulow
r ), (4.4)

see Eq. 4.1. Similar to the LS-SVR procedure [37, 25], to construct the GE-SVR model given

training sample (xk, y(xk),∇xy(xk)), k = 1, 2, · · ·Ns we solve a convex quadratic optimiza-
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tion defined by

minimize
w,b,e

{J(w, b, e) ≡ 1

2
wTw +

1

2
C0

Ns∑
k=1

(ek)
2 +

1

2

Ns∑
k=1

Nu∑
r=1

Cr[êr(x
k)]2}, (4.5a)

subject to ek = yk − wTφ(xk)− b k = 1, 2, . . . , Ns, (4.5b)

êr(x
k) = Dr(x

k)− wT ∂φ(xk)

∂xr
k = 1, 2, . . . , Ns, r = 1, 2, . . . , Nu,

(4.5c)

where the first term in Eq. 4.5a serves as a regulation term to prevent potential overfit-

ting of the GE-SVR model; the second and third terms, respectively, denote the weighted

data mismatch between the function training data and associated derivative training data,

respectively, and the corresponding proxy predicted data. C0 and Cr, r = 1, 2, · · ·Nu are hy-

perparameters which define the weights on function mismatch and the derivative mismatch

in Eq. 4.5a. Finally, ek and êr(x
k) in Eqs. 4.5b and 4.5c, respectively define the response and

gradient mismatches between the training data and the proxy model as equality constraints.

To solve this constrained optimization problem, we let êkr ≡ êr(x
k) and define the

Lagrangian function

L(w, b, e;α, β) =
1

2
wTw +

Ns∑
k=1

[
1

2
C0(ek)

2 + αk(y
k − wTφ(xk)− b− ek)]

+
Ns∑
k=1

Nu∑
r=1

[
1

2
Cr(ê

k
r)

2 + βr,k(Dr(x
k)− wT ∂φ(xk)

∂xr
− êkr)].

where αk and βr,k, k = 1, 2, · · · , Ns and r = 1, 2, · · · , Nu are the Lagrange multipliers

for the constraints given by Eqs. 4.5b and 4.5c; their values are obtained by minimizing

L(w, b, e;α, β). More generally, according to the first order optimality condition [67], the
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solution of the optimization problem should satisfy the following five equations:

∇wL = w −
Ns∑
k=1

αkφ(xk)−
Ns∑
k=1

Nu∑
r=1

βr,k
∂φ(xk)

∂xr
= 0, (4.6a)

∂L

∂b
=

Ns∑
k=1

αk = 0, (4.6b)

∂L

∂ek
= C0ek − αk = 0, (4.6c)

∂L

∂êkr
= Crê

k
r − βr,k = 0, (4.6d)

∂L

∂αk
= yk − wTφ(xk)− b− ek = 0, (4.6e)

∂L

∂βr,k
= Dr(x

k)− wT ∂φ(xk)

∂xr
− êkr = 0. (4.6f)

for k = 1, 2, · · · , Ns and r = 1, 2, · · · , Nu. Rearranging Eq. 4.6 with the indices of summa-

tion k and r, respectively, replaced by j and m in Eq. 4.6b gives

w =
Ns∑
j=1

αjφ(xj) +
Ns∑
j=1

Nu∑
m=1

βm,j
∂φ(xj)

∂xm
, (4.7a)

Ns∑
k=1

αk = 0, (4.7b)

αj = C0ek, (4.7c)

βr,k = Crê
k
r , (4.7d)

wTφ(xk) + b+ ek = yk, (4.7e)

wT
∂φ(xk)

∂xr
+ êkr = Dr(x

k), (4.7f)

where w is a constant vector and Eqs. 4.7(c) through 4.7(f) apply for k = 1, 2, · · ·Ns and

r = 1, 2, · · ·Nu. By substituting Eq. 4.7a into Eq. 4.7e, we have

Ns∑
j=1

αjφ(xj)Tφ(xk) +
Ns∑
j=1

Nu∑
m=1

βm,j
∂φ(xj)

∂xm

T

φ(xk) + b+
αk
C0

= yk, (4.8)

for k = 1, 2, · · · , Ns. Note that for any kernel function K(x, x̂) that satisfies Mercer’s condi-
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tions [66], can be written as the inner product of mapping φ such that

K(x, x̂) = φ(x)Tφ(x̂), (4.9)

for any input vectors x and x̂. The partial derivative of the kernel function is given by

∂K(x, x̂)

∂xm
=
∂φ(x)

∂xm

T

φ(x̂). (4.10)

Therefore, Eq. 4.8 can be written as

Ns∑
j=1

αjK(xj, xk) +
Ns∑
j=1

Nu∑
m=1

βm,j
∂K(xj, xk)

∂xm
+ b+

αk
C0

= yk. (4.11)

By substituting Eqs. 4.7a and 4.7d into Eq. 4.7f, we have

Ns∑
j=1

αjφ(xj)T
∂φ(xk)

∂xr
+

Ns∑
j=1

Nu∑
m=1

βm,j
∂φ(xj)

∂xm

T
∂φ(xk)

∂xr
+
βr,k
Cr

= Dr(x
k), (4.12)

for k = 1, 2, · · · , Ns and m = 1, 2, · · · , Nu. The second order derivative of the Gaussian

kernel is given by

∂K2(x, x̂)

∂xm∂x̂r
=
∂φ(x)

∂xm

T ∂φ(x̂)

∂x̂r
. (4.13)

Therefore, Eq. 4.12 can be written as

Ns∑
j=1

αj
∂K(xj, xk)

∂x̂r
+

Ns∑
j=1

Nu∑
m=1

βm,j
∂K2(xj, xk)

∂xm∂x̂r
+
βr,k
Cr

= Dr(x
k). (4.14)

for k = 1, 2, · · ·Ns and r = 1, 2, · · ·Nu.

Next, some notations are introduced. We define

γ = [γT0 γT1 ...γTNu
]T , (4.15)
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where

γ0 = [α1 α2 ...αNs ]
T , (4.16)

and

γr = [βr,1 βr,2 ...βr,Ns ]
T (4.17)

for r = 1, 2, · · ·Nu. Then the vector of all training output is integrated into an Ns+Ns×Nu =

Ns(Nu + 1) dimensional column vector Y which is defined by

Y = [ [y(x1) · · · y(xNs)]T (D̂1)T ...(D̂Nu)T ]T , (4.18)

where

D̂r = [Dr(x
1) ...Dr(x

Ns)]T , (4.19)

for r = 1, 2, · · ·Nu. With this notation, we can write the complete set of linear equations

specified by Eqs. 4.11 and 4.14 in the following matrix form:

Φ ẽ

ẽT 0


γ
b

 =

Y
0

 . (4.20)

where

ẽ = [

Ns︷︸︸︷
1...1

Ns×Nu︷ ︸︸ ︷
0 0...0 0]T (4.21)

The matrix Φ in Eq. 4.20 is Ng ×Ng where Ng = Ns(Nu + 1) + 1. and is given by

Φ =



H00 H11 ... H1Nu

H11 Q11 ... Q1Nu

... ... ... ...

HNu1 QNu1 ... QNuNu


, (4.22)

Where the submatrices in Eq. 4.22 are defined below. INs denotes the Ns × Ns identity
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matrix; where

H00 = H∗00 +
1

C0

INs , (4.23)

where

H∗00 =


K(x1, x1) ... K(xNs , x1)

... ... ...

K(x1, xNs) ... K(xNs , xNs)

 . (4.24)

H1r =


∂K(x1,x1)

∂xr
... ∂K(xNs ,x1)

∂xr

... ... ...

∂K(x1,xNs )
∂xr

... ∂K(xNs ,xNs )
∂xr

 for r = 1, ..., Nu, (4.25)

Hr1 =


∂K(x1,x1)

∂x̂r
... ∂K(xNs ,x1)

∂x̂r

... ... ...

∂K(x1,xNs )
∂x̂r

... ∂K(xNs ,xNs )
∂x̂r

 for r = 1, ..., Nu. (4.26)

Qm,r =


Q∗m,r + 1

Cr
INu , if r = m

Q∗m,r, otherwise

(4.27)

for r = 1, 2, · · · , Nu and m = 1, 2, · · · , Nu, where

Q∗m,r =


∂K2(x1,x1)
∂xm∂x̂r

... ∂K2(xNs ,x1)
∂xm∂x̂r

... ... ...

∂K2(x1,xNs )
∂xm∂x̂r

... ∂K2(xNs ,xNs )
∂xm∂x̂r

 (4.28)

for r = 1, 2, · · · , Nu and m = 1, 2, · · · , Nu. In this work, we choose the Gaussian kernel as

our kernel function so that

K(x, x̂) = exp(−||x− x̂||
2

2σ2
), (4.29)

and the partial derivative of the Gaussian kernel is given by

∂K(x, x̂)

∂xr
= − 1

σ2
(xr − x̂r)K(x, x̂), (4.30)
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and

∂K(x, x̂)

∂x̂r
=

1

σ2
(xr − x̂r)K(x, x̂). (4.31)

The second order derivative of Gaussian kernel is given by:

∂K2(x, x̂)

∂xm∂x̂r
= − 1

σ4
(xr − x̂r)(xm − x̂m)K(x, x̂). (4.32)

Note that the left hand side of the matrix in the linear system given by Eq. 4.20 only depends

on input data, i,e, the xk, k = 1, 2, . . . Ns and does not depend on the training output function

y(x). Therefore, by simply replacing the right hand side of Eq. 4.20 with the appropriate

training output, one can generate a GE-SVR proxy model for any type of output, i.e. one

GE-SVR proxy for the objective function and its gradient and one for each nonlinear state

constraint and its derivatives. This effectively means that we a GE-SVR model trained to

match/predict the NPV and its gradient and one trained to match/predict each nonlinear

constraint function and its derivatives for each reservoir model m`, ` = 1, 2, · · ·Ne used to

characterize reservoir model uncertainty.

By substituting Eq. 4.7a into Eq. 4.2, the prediction of the GE-SVR model at an

unsampled point, x in the input space can be expressed as

ŷ(x) =
Ns∑
j=1

αjφ(xj)Tφ(x) +
Ns∑
j=1

Nu∑
m=1

βm,j
∂φ(xj)

∂xm

T

φ(x) + b, (4.33)

which from Eqs. 4.9 and 4.10 maybe is equivalent to

ŷ(x) =
Ns∑
j=1

α̂jK(xj, x) +
Ns∑
j=1

Nu∑
r=1

β̂r,j
∂K(xj, x)

∂x̂r
+ b, (4.34)

where (α̂, β̂, b) is the solution of linear system in Eq. 4.20. Similarly, the analytical gradient

predicted by the GE-SVR model at an upsampled point, x in the input space can be expressed

as

∂ŷ(x)

∂xr
=

Ns∑
j=1

αjφ(xj)T
∂φ(x)

∂xr
+

Ns∑
j=1

Nu∑
m=1

βm,j
∂φ(xj)

∂xm

T
∂φ(x)

∂xr
, (4.35)
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which from Eqs. 4.10 and 4.13 maybe is equivalent to

∂ŷ(x)

∂xr
=

Ns∑
j=1

α̂j
∂K(xj, x)

∂x̂r
+

Ns∑
j=1

Nu∑
m=1

β̂m,j
∂2K(xj, x)

∂xm∂x̂r
+ b. (4.36)

4.2.2 Proxy-based Optimization

To construct a proxy model, the initial sampling of the input vector is generated

by Latin hypercube sampling (LHS) [65], which is a common method for the design of ex-

periments. The advantage of LHS is that the Ns sample points are distributed evenly but

randomly in the design space. Guo and Reynolds [37] select Ns=200 samples to train the

LS-SVR model for producing NPV. LS-SVR does not use any output related to deriva-

tive information in training the proxy model. On the other hand, we have often used only

Ns = 5 initial samples to build a GE-SVR proxy model, but this number is increased during

optimization by iterative sampling. Specifically, after training the proxy, the optimization

problem is solved using the GE-SVR model in place of the reservoir simulator when mini-

mizing the average negative life-cycle NPV using sequential quadratic programming (SQP)

algorithm with the filter method incorporated to enforce state constraints [61]. Throughout

the subscript proxy on an objective or constraint violation function means the function is

evaluated at a result obtained from or during the proxy-based optimization process using the

SQP-filter method. The SQP optimization algorithm with a given proxy model is terminated

once

∆J̄ `proxy < εJ , (4.37)

and

θ̄proxy(x`) < εθ, (4.38)

where θ̄ is defined in Eq. 2.49 and

∆J̄ `proxy =
J̄proxy(x`)− J̄proxy(x`−1)

J̄proxy(x`)
. (4.39)

Eq. 4.37 specifies one convergence criterion based on the relative change in the objective
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function from iteration `− 1 to iteration ` during proxy-based optimization with the SQP-

filter method, and Eq. 4.38 specifies a second convergence criterion that must be satisfied

for termination of proxy-based optimization with the current GE-SVR proxy. Clearly, εJ is

the convergence tolerance on the change in the objective function (average negative life-cycle

NPV) during the iterations of the SQP-filter method, and εθ is the convergence tolerance for

the average constraint violation of single realization for the proxy-based SQP-filter method.

In Eqs. 4.38 and 4.39, x` is the estimate of the scaled control vector at the current iterate of

the SQP algorithm, x`−1 is estimated at the previous iteration. One should note of course

that J̄(x`) ≡ J̄(u`), where the relationship between the scaled vector of controls, x, and

unscaled controls, u is given by Eq. 4.1. In our computational examples, we set εJ = 10−5

and εθ = 10−4. We set stricter convergence criteria in the proxy-based SQP-filter algorithm

than what we proposed in Section 2.2.4, since function and gradient evaluations using the

proxy model are much cheaper than using the reservoir simulator and StoSAG to compute the

values of the objective function, state constraints and corresponding gradients as was done

in Chapter 2. Therefore, proxy-based optimization can afford more SQP iterations than

the simulator-based optimization. Furthermore, the stricter convergence criteria can lead

proxy-based optimization to reach better results in terms of a lower values of the objective

functions and a lower value of the average constraint violation.

As mentioned previously, we use iterative sampling to improve the GE-SVR (or LS-

SVR) proxy after each SQP optimization. The basic idea of iterative sampling is as follows:

after proxy-based SQP optimization converges for a given GE-SVR proxy, we insert the opti-

mal design variables into the high-fidelity numerical model (reservoir simulator) and compare

the output from the simulator with the proxy generated response. If the two responses are not

in agreement or the output from the simulator does not satisfy the constraints, the optimal

scaled controls and corresponding reservoir simulator output are added to the training set,

new GE-SVR proxies are generated and proxy-based optimization is repeated with the new

trained GE-SVR proxies. This cycle is repeated until there is reasonable agreement between

the simulator and proxy output responses evaluated at the optimal well controls generated
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from proxy-based SQP optimization and the constraints evaluated from the simulator output

are satisfied. Throughout, the subscript sim on a NPV function or on a constraint violation

function indicates the function is evaluated using output from the reservoir simulator. The

two criteria we have commonly used to test convergence of the iterative sampling procedure

are enumerated immediately below.

1. The maximum allowable relative difference εp between the objective function values

predicted by the proxy model and the reservoir simulator must be in good agreement,

i.e., must satisfy

|J̄sim(u∗)− J̄proxy(x∗)|
|J̄sim(u∗)|

≤ εp. (4.40)

In all examples presented, the default value of εp is set equal to 0.01 which is the default

value used in our in-house software.

2. At the optimum of each SQP proxy-based optimizations within iterative sampling, we

denote the optimal scaled control vector by x∗ with the corresponding vector of unscaled

optimal well controls denoted by u∗. Then the second convergence criterion, which is

on the overall average constraint violation computed from the reservoir simulator is

given by

θ̄sim(u∗) ≤ εc, (4.41)

where θ̄sim is defined by Eq. 2.49. Since θ∗sim is a measure of the scaled constraints,

the magnitude of θ∗sim depends on the scaling factors of the state constraints. If state

constraints in the form of bounds are scaled by dividing each of them by their bound

as is the case for the example in subsection 4.3.3, then θ∗sim should be set equal to 0.01.

If either of two preceding criterion is not satisfied, we add the input/output sample result

generated from the reservoir simulator with the proxy-based optimal controls to the old

training set, generate new GE-SVR proxies and repeat the proxy-based optimization work-

flow again to improve the performance of the updated GE-SVR proxy model. The iterative

sampling scheme is terminated once both of the two preceding criteria are satisfied. The
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Figure 4.1: The workflow of proxy-based optimization with iterative sampling.

general workflow for proxy-based optimization is illustrated in Fig. 4.1 and the complete

algorithm for proxy-based optimization with iterative sampling scheme is given immediately

below.

1. Set the values εJ and εθ as the criteria to stop the proxy-based SQP optimization. Set

εp and εc as the criteria to stop the complete optimization process.

2. Specify the upper bound (uup) and lower bound (ulow) for each component of the vector

of design variables (control vector). Set the number of samples, Ns, to be used as the

number samples in initial training sets.

3. Use LHS to generate Ns samples of the scaled input vector x, which is related to input

vector u by Eq. 4.1. Generate the Ns sets of the output function y(x) (e.g., life-cycle

NPV) and its gradient with respect to x from the numerical model that we wish to re-

place with a proxy model in the optimization process. For the constrained optimization

problem, the values of each nonlinear constraints and corresponding gradient values

also need to be generated and used as training set outputs to generate proxies for the

constraint functions and their derivatives. Set n` = 1 and initialize x∗,0 as a vector

with all elements equal to 0.5. Throughout, x∗,n` denotes the vector of scaled optimal

controls obtained by proxy-based optimization using the n`th GE-SVR proxies.
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4. Train a GE-SVR proxy model to predict (estimate) simulator generated output values

of y(x) and its derivatives corresponding to inputs, and similarly train a proxy for each

state constraint and its gradient.

5. Sample an initial guess as x0,n` = x∗,n`−1 + δ, where δ is a Nu × 1 vector whose

elements are sampled from the normal distribution N(0, σ2
rs) where σrs is such that

0 ≤ σrs ≤ 0.1; see the comment following the description of the algorithm. Apply

truncation to bound x0,n` within the interval [0, 1]. Apply SQP optimization with the

GE-SVR model used to calculate output function and constraint function values and

their derivatives. Let the scaled optimal well controls obtained be denoted by x∗,n` with

corresponding unscaled optimal controls given by u∗,n` ; see Eq. 4.1. In this SQP-filter

proxy-based optimization, the min-max scheme proposed in Section 2.2.5 is applied

to solve the robust optimization problem efficiently where the bound constraints are

handled by truncation (see Section 2.2.4), and the SQP-filter algorithm is terminated

when ∆J̄proxy(x∗,n`) < εJ and θ̄proxy(x∗,n`) < εθ.

6. Insert the optimal control variables u∗,n` obtained in step 5 into the reservoir simulator

to compute the objective function J̄sim(u∗,n`) , and overall average constraint violation

θ̄sim(u∗,n`).

7. Compare the proxy-generated objective function value, J̄proxy(x∗,n`), evaluated at the

estimate of the scaled optimal x∗,n` to the corresponding value, J̄sim(u∗,n`), computed

from the reservoir simulator at the optimal u∗,n` corresponding to x∗,n` . and compute

the average constraint violation θ̄sim(u∗,n`) using reservoir simulator output.

• IF |J̄sim(u∗,n`)− J̄proxy(x∗,n`)|/J̄sim(u∗,n`) ≤ εp AND θ̄sim(u∗,n`) ≤ εc

– Terminate the iterative sampling algorithm.

• ELSE

– Add the new optimal values of the design variables and the corresponding

responses obtained from the reservoir simulator into the old training set to
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obtained a new training set. Retrain GE-SVR proxy models for the objective

and state constraints using the updated training sets.

– Set n` = n` + 1 and go back to the step 5.

• END IF

Important comment. When starting with the next iterative sampling step, where we

optimize with a new updated GE-SVR proxy, it is logical to start the SQP-filter for optimiz-

ing the new GE-SVR model using as the initial guess the estimated optimum obtained by

minimizing the previous GE-SVR proxy. With this approach one set σrs = 0 in the normal

distribution of step 5, or more directly, simply sets δ = 0. However, we conducted some

experiments to see if adding a small perturbation to the previous optimum to define the

initial guess would yield a better approximation of the true objective function, avoid getting

trapped at a bound, and generate a local minimum closer to a global optimum. However, we

could not draw any general conclusions from our experiments, some of which are discussed

later. As our intuition about the value of adding a small perturbation persists, the main

reservoir model examples presented are based on using δrs = 0.1. One could of course also

decrease the value of σrs as n` increases. It is important to note, however, that setting the

value of σrs much greater than 0.2 could cause each iterative sampling step to converge to a

different point and might even make it impossible for multiple applications of the iterative

sampling algorithm to find multiple local minimums by starting with a set of different initial

guesses at the first optimization step

4.3 Computational Results

In this section, we illustrate the performance of our proxy-based optimization frame-

work with GE-SVR as the proxy model. Two simple standard optimization test cases are

considered in Example 1. Examples 2 and 3, respectively, consider life-cycle production

optimization with only bound constraints and then with both bound and state constraints.
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4.3.1 Example 1

In the first example, two distinct 2D functions which represent two standard optimiza-

tion test cases are used to illustrate that GE-SVR provides a more accurate approximation

of the true output response surface than does LS-SVR. The first validation function con-

sidered is the 2D Rosenbrock function, which is a commonly used benchmark function to

test the performance of optimization algorithms. The second validation function considered

is a 2D multi-minimal function, which has nine local minimums within the feasible region

defined by the bounds on the two optimization variables. This example is pertinent because

large-scale life-cycle production optimization problems have multiple local minimums (max-

imums). These 2D functions are also useful because the results are easy to visualize and

validate.

Figs. 4.2 and 4.3 compare the true Rosenbrock response surface with the proxy-

generated response surfaces of the LS-SVR and GE-SVR proxy models. For generating the

LSV-proxies, we use σ = 10 and C0 = 1000 and in generating the GE-SVR proxies, we use

σ = 10, C0 = 1000 and Cr = 200 for all r; see Eqs. 4.5 - 4.32. The location of sampling

points obtained from LHS which are used to generate the response surfaces for both the LS-

SVR and GE-SVR proxy models are shown as black dots in these and similar figures. The

shape of response surfaces constructed by different models are represented by contour maps.

From those results, we can observe that, compared with the LS-SVR result, the GE-SVR

model better approximates the shape of the true response surface. In Fig. 4.2, the proxy

models were generated using 16 training samples whereas the proxy models of Fig. 4.3 are

constructed using only 10 sample points to investigate the effect of the number of sampling

points on the accuracy of proxy modeling. For both the 10 and 16 sampling point cases,

the GE-SVR proxy (Fig. 4.3) clearly gives better approximation of the shape of the true

response surface than is obtained with the LS-SVR model.

It is important to note that the objective of using GE-SVR is to obtain with less com-

putational cost estimates of local minimums that are as good or better than those obtained

with LS-SVR. The true Rosenbrock function has only one local minimum which is equal
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(a) True (b) LS-SVR

(c) GE-SVR

Figure 4.2: Response surface of Rosenbrock function with 16 sample points.
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(a) True (b) LS-SVR

(c) GE-SVR

Figure 4.3: Response surfaces of Rosenbrock function with 10 sample points.
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to zero and located at (x1, x2)=(1,1). The proxy-based optimization scheme with iterative

sampling, which is summarized in Fig. 4.1 is applied to find the minimum of the Rosen-

brock function where the first LS-SVR and GE-SVR proxy model are generated using the 10

training points shown as black dots in Figs. 4.4 and 4.5, respectively. These input training

points were generated with LHS. In Figs. 4.4 and 4.5 and similar figures for the second 2D

function considered, red dots denote the locations of estimated minimum points. Each red

dot is labeled with a number which denotes the number of times gradient-based optimization

has been applied to obtain the estimate of the minimum, i.e., the label j denotes the mini-

mum obtained at the jth iterative sampling step by by applying SQP to minimize the proxy

trained with the jth training set within the iterative sampling procedure. For this example,

we set σrs = 0.2 in step 5 of the iterative sampling algorithm. The convergence criterion for

the SQP algorithm is εJ = 10−3 and the iterative sampling algorithm is terminated when

εp = 10−2 (difference between proxy and true model optimum values). No constraints is

considered in this example, therefore, the criteria involving the convergence tolerances εθ

and εc do not apply for this example. Table 4.1 summarizes the proxy-based optimization

results for the Rosenbrock function which has a minimum value of zero at (1, 1). From the

results in the table, we can observe that GE-SVR only takes 6 iterative sampling steps to

reach the minimum while LS-SVR takes 30 iterative sampling steps. Figs. 4.4 and 4.5 also

illustrate the change of the shapes in response surfaces which are approximated by LS-SVR

and GE-SVR, respectively, in the iterative sampling process. As the algorithm is designed

to do, we see that as iterative sampling proceeds, we generate successive proxies that better

approximate the Rosenbrock function in the neighborhood of the true minimum.

Proxy model Optimal value Optimal x Num. resampling steps

LS-SVR 1.63×10−3 (0.982 0.976) 30

GE-SVR 1.14×10−4 (0.99 0.98) 6

Table 4.1: Summary of the results for proxy-based optimization with iterative sampling on
Rosenbrock function using 10 initial training samples
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(a) Iterative sampling step 10 (b) Iterative sampling step 20

(c) Iterative sampling step 30

Figure 4.4: Response surface of Rosenbrock function with iterative sampling scheme approx-
imated by LS-SVR.
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(a) Iterative sampling step 2 (b) Iterative sampling step 4

(c) Iterative sampling step 6

Figure 4.5: Response surface of Rosenbrock function with iterative sampling scheme approx-
imated by GE-SVR.
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(a) True (b) LS-SVR

(c) GE-SVR

Figure 4.6: Response surfaces of multi-minimum function with 12 sample points.
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Location of local minimums Corresponding function value

(-1, 0.75) -2
(-1, -0.25) -2
(-0.34, 1) -1.84

(-0.34, 0.09) -2
(-0.34, -0.91) -2
(0.34, 0.42) -2
(0.33, -0.58) -2

(1, 0.75) -2
(1, -0.25) -2

Table 4.2: Summary of the 9 local minimums of the multi-minimum function within [-1, 1]
× [-1, 1]

Then, the LS-SVR and GE-SVR are tested on a 2D function whose response surface

have multiple local minimums. The equation of this multi-minimum function is defined as

f(x1, x2) = sin(2π(x1 + x2)) + cos(3πx1). (4.42)

Note this function has multiple local minimums within the feasible region which is specified

by −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1, where the locations of the local minimums are given in

Table 4.2. Fig. 4.6 compares the output values of the LS-SVR and GE-SVR proxy models

generated with 12 input samples of (x1, x2) generated with LHS. For generating the LSV-

proxies, we use σ = 10 and C0 = 1000 and in generating the GE-SVR proxies, we use

σ = 10, C0 = 1000 and Cr = 200 for all r; see Eqs. 4.5 - 4.32. From the results of Fig. 4.6,

we can observe that the true function has 9 local minimums but the LS-SVR model only

identifies three of them with inaccurate locations. However, the GE-SVR proxy shows 7 of

the local minimums and also provides a good approximation of the locations of these seven

local minimums on the response surface. This improved accuracy of the GE-SVR model over

LS-SVR should be useful in solving an optimization problem with multiple solutions and we

investigation this aspect next. To do so, we run the iterative sampling algorithm nine times

starting with nine initial guesses uniformly spaced on the domain [−1, 1] × [−1, 1]. In this

experiment, the results obtained with σrs = 0 in step 5 of the iterative sampling algorithm

are compared with those obtained with σrs = 0.1
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(a) LS-SVR as proxy model without perturbation
scheme

(b) LS-SVR as proxy model with perturbation scheme σrs =
0.1

(c) GE-SVR as proxy model without perturba-
tion scheme

(d) GE-SVR as proxy model with perturbation scheme σrs =
0.1

Figure 4.7: Iterative sampling process starting at the point (0, 0.5) with LS-SVR and GE-
SVR as the proxy models and with and without the perturbation scheme.
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Initial Guess LS-SVR Optimums Closest Local Number of Number of

(xini,1, xini,2; yt) (xopt,1, xopt,2; yproxy; yt) Minimums Iterative Equivalent

(xmin,1, xmin,2; yt) Sampling Func. Eval.

(-0.50,-0.50; 0.00 ) ( -1.00, -1.00; -1.00 ; -1.00) (-0.34, -0.91; -2.00 ) 2 14

(-0.50,0.00; 0.00 ) ( -1.00, 1.00; -1.00; -1.00) (-1.00, 0.75; -2.00) 2 14

(-0.50,0.50; 0.00 ) ( 1.00, -1.00; -1.00; -1.00) (1.00, -0.25; -2.00) 2 14

(0.00,-0.50; 1.00 ) ( 1.00, -1.00; -1.00; -1.00) (1.00, -0.25; -2.00) 1 13

(0.00,0.00; 1.00 ) ( -1.00, 1.00; -1.00; -1.00) (-1.00, 0.75; -2.00) 2 14

(0.00,0.50; 1.00 ) ( 1.00, -1.00; -1.00; -1.00) (1.00, -0.25; -2.00) 2 14

(0.50,-0.50; 0.00 ) ( 0.33, -0.58; -2.00; -2.00) (0.33, -0.58; -2.00) 5 18

(0.50,0.00; 0.00 ) ( -1.00, 1.00; -1.00; -1.00) (-1.00, 0.75; -2.00) 2 14

(0.50,0.50; 0.00 ) ( 0.34, 0.42; -2.00 ; -2.00) (0.34, 0.42; -2.00) 6 19

Table 4.3: Nine initial guesses, estimate of optimal point for each initial guess, and the local
minimum of the multi-minimum function that is closest to each optimal point
generated by each application of iterative sampling with no perturbation and
LS-SVR as the proxy model.

In the LS-SVR iterative sampling scheme used by Guo and Reynolds for life-cycle

production [37] and by Sousa and Reynolds for history matching and prediction problems

with uncertainty quantification [25], the optimum (x∗,n`−1) generated from the proxy-based

SQP optimization at the last iterative sampling step as the initial guess (x0,n`−1) of the

proxy-based SQP optimization is used as the initial guess for the SQP optimization with the

updated proxy at the current iterative sampling step. This means that, at the n`th iterative

sampling step, the initial guess in step 5 of the iterative sampling algorithm is x0,n`=x∗,n`−1.

However, as discussed extensively in the comment following the presentation of the detailed

steps of the iterative sampling algorithm of subsection 4.3.3, we include the possibility of

using a perturbation of this initial guess in the iterative sampling process. Specifically, one

may use x0,n`=x∗,n`−1 + δ in step 5 of the iterative sampling algorithm, where δ is sampled

from the normal distribution N(0, σ2
rs). For simplicity, we refer to σrs as the perturbation

size, rather than the standard deviation of the perturbation. Our motivation for introducing

this random perturbation was discussed in the paragraph following the presentation of the
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Initial Guess LS-SVR Optimums Closest Local Number of Number of

(xini,1, xini,2; yt) (xopt,1, xopt,2; yproxy; yt) Minimums Iterative Equivalent

(xmin,1, xmin,2; yt) Sampling Func. Eval.

(-0.50,-0.50; 0.00 ) ( -1.00, -1.00; -1.00; -1.00) ( -0.34, -0.91; -2.00) 2 14

(-0.50,0.00; 0.00 ) ( 0.34, 0.42; -2.00; -2.00) ( 0.34, 0.42; -2.00) 6 18

(-0.50,0.50; 0.00 ) ( 0.33, -0.58; -2.00; -2.00) ( 0.33, -0.58; -2.00) 6 18

(0.00,-0.50; 1.00 ) ( 0.34, 0.42; -2.00; -2.00) ( 0.34, 0.42; -2.00) 6 18

(0.00,0.00; 1.00 ) ( 0.33, -0.58; -2.00; -2.00) ( 0.33, -0.58; -2.00) 6 18

(0.00,0.50; 1.00 ) ( 0.34, 0.42; -2.00; -2.00) (0.34, 0.42; -2.00 ) 6 18

(0.50,-0.50; 0.00 ) ( -1.00, -1.00; -1.00; -1.00) ( -0.34, -0.91; -2.00) 2 14

(0.50,0.00; 0.00 ) ( 1.00, 1.00; -1.00; -1.00) ( 1, 0.75; -2.00) 11 23

(0.50,0.50; 0.00 ) (1.00, -1.00; -1.00; -1.00 ) (1, -0.25; -2.00) 6 18

Table 4.4: Nine initial guesses, estimate of optimal point for each initial guess, and the
local minimum of the multi-minimum function that is closest to each optimal
point generated by each application of iterative sampling with perturbation size
of σrs = 0.1 and LS-SVR as the proxy model.

iterative sampling algorithm.

Next, we test the iterative sampling scheme on the multi-minimum function of Eq. 4.42

using the LS-SVR proxy and the GE-SVR proxy with and without the perturbation scheme,

i.e., with δ fixed equal to zero in step 5 in the algorithm and with δ independently sampled

from N(0, 0.12) every time we enter step 5 of the algorithm so that δ may have a different

value at each iterative sampling step. We apply the complete iterative sampling algorithm

nine times starting with nine initial guesses uniformly distributed on [−1, 1]× [−1, 1]. There

are two objective of the exercise, namely, to compare the relative ability of LS-SVR and

GE-SVR to locate several of the local minimums and to compare the effect of the size of the

perturbation size, σrs, on proxy-based optimization with the iterative sampling scheme. The

results of iterative samplings with the LS-SVR proxy model with no perturbation (δ = 0) and

with a 0.1 perturbation (σrs = 0.1), respectively, are summarized in Table. 4.3 and Table. 4.4,

respectively. Similarly, the results generated with nine separate applications of the iterative

sampling algorithm with the GE-SVR proxy with δ = 0 and with σrs = 0.1, respectively,
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Initial Guess GE-SVR Optimums Closest Local Number of Number of

(xini,1, xini,2; yt) (xopt,1, xopt,2; yproxy; yt) Minimums Iterative Equivalent

(xmin,1, xmin,2; yt) Sampling Func. Eval.

(-0.50,-0.50; -0.59) (-0.34, -0.91; -2.00; -2.00) (-0.34, -0.91; -2.00) 2 28

(-0.50,0.00; 0.00) (-0.34, 0.09; -2.00; -2.00) (-0.34, 0.09; -2.00) 2 28

(-0.50, 0.50; 0.00) (-0.34, 0.09; -2.00; -2.00) (-0.34, 0.09; -2.00) 1 26

(0.00, -0.50; 1.00) (-0.34, 0.09; -2.00; -2.00) (-0.34, 0.09; -2.00) 1 26

(0.00, 0.00; 1.00) (-0.34, 0.09; -2.00; -2.00) (-0.34, 0.09; -2.00) 1 26

(0.00, 0.50; 1.00) (-0.34, 1.00; -1.84; -1.84) (-0.34, 1.00 ; -1.84) 2 28

(0.50 , -0.50; 0.00) (0.33, -0.58; -2.00; -2.00) (0.33, -0.58; -2.00) 2 28

(0.50, 0.00; 0.00) (0.34, 0.42; -2.00; -2.00) (0.34, 0.42; -2.00) 2 28

(0.50, 0.50; 0.00) (0.34, 0.42; -2.00; -2.00) (0.34, 0.42; -2.00) 1 28

Table 4.5: Nine initial guesses, estimate of optimal point for each initial guess, and the local
minimum of the multi-minimum function that is closest to each optimal point
generated by each application of iterative sampling with no perturbation and
GE-SVR as the proxy model.

are summarized in Table 4.5 and Table. 4.6, respectively. The entries in the first column of

Tables 4.3 through 4.6 are identical and represent the nine initial guesses for (x1, x2) together

with the the value of yt, which in every table represents the value of the true multi-minimum

evaluated at the (x1, x2) listed with the yt value in the table. Thus, the third entry in a

three-dimensional vector of values (·, · ; ·) that appear in columns 1 and 3 of the tables

represents the value of the multi-minimum function evaluated at the (x1, x2) values given as

the first two components of the vector. For the case of the four-dimensional vectors of values

that appear in column 2 of Tables 4.3 through 4.6, the value of the multi-minimum function

is the last entry of the vector and the value of the proxy model is the third entry where

both the proxy and the multi-minimum function are evaluated at the (x1, x2) values given

as the first two entries. In the second column, the notation (xopt,1, xopt,2) and the associated

values in the tables are the estimates of the optimal (x1, x2) obtained at convergence of the

iterative sampling algorithm from each corresponding initial guess in column 1. In Column 3

of the four tables under discussion, the third column gives values of (xmin,1, xmin,2; yt) where
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Initial Guess GE-SVR Optimums Closest Local Number of Number of

(xini,1, xini,2; yt) (xopt,1, xopt,2; yproxy; yt) Minimums Iterative Equivalent

(xmin,1, xmin,2; yt) Sampling Func. Eval.

(-0.50,-0.50; -0.59) (-0.34, -0.91; -2.00; -2.00) (-0.34, -0.91; -2.00) 2 28

(-0.50,0.00; 0.00) (-0.34, 0.09; -2.00; -2.00) (-0.34, 0.09; -2.00) 2 28

(-0.50, 0.50; 0.00) (-0.34, 0.09; -2.00; -2.00) (-0.34, 0.09; -2.00) 1 26

(0.00, -0.50; 1.00) (-0.34, 0.09; -2.00; -2.00) (-0.34, 0.09; -2.00) 1 26

(0.00, 0.00; 1.00) (-0.34, 0.09; -2.00; -2.00) (-0.34, 0.09; -2.00) 1 26

(0.00, 0.50; 1.00) (0.34, 0.42; -2.00; -2.00) (0.34, 0.42; -2.00) 3 30

(0.50 , -0.50; 0.00) (0.33, -0.58; -2.00; -2.00) (0.33, -0.58; -2.00) 2 28

(0.50, 0.00; 0.00) (0.34, 0.42; -2.00; -2.00) (0.34, 0.42; -2.00) 2 28

(0.50, 0.50; 0.00) (0.34, 0.42; -2.00; -2.00) (0.34, 0.42; -2.00) 1 28

Table 4.6: Nine initial guesses, estimate of optimal point for each initial guess, and the
local minimum of the multi-minimum function that is closest to each optimal
point generated by each application of iterative sampling with perturbation size
of σrs = 0.1 and GE-SVR as the proxy model.

(xmin,1, xmin,2) is the local minimum of the true multi-minimum function which is closest to

the corresponding (xopt,1, xopt,2) optimal point given in column 2 and yt denotes the value

of the multi-minimum function evaluated at (xmin,1, xmin,2). The values in column 4 of the

tables give the number of iterative sampling steps required to obtain convergence for each of

the initial guesses and the entries of the last column give the number of equivalent function

evaluations. For the GE-SVR results, each gradient evaluation is counted as one equiva-

lent function evaluation. Therefore, generating the one training set for the GE-SVR proxy

which consists of function evaluation and gradient evaluation is equivalent to generating two

training sets for the LS-SVR.

From the results of Table 4.3, we observe that most estimated optimums generated

using the LS-SVR proxies in iterative sampling with no perturbation (δ = 0 in step 5 of

the iterative sampling algorithm) are trapped at one of the corners of the domain, i.e. at

(xopt,1, xopt,2) equal to (-1, -1), (-1, 1), (1, -1) or (1, 1). Although the response surface of

the multi-minimum function shown in Fig. 4.6a does have a minimum close to each of the
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GE-SVR, σrs =0.1 GE-SVR LS-SVR, σrs =0.1 LS-SVR

perturbation no perturbation perturbation no perturbation

Ave. Iter. Samp. Steps 1.66 1.56 5.67 2.67

Ave. Equiv. Func. Eval. 27.33 27.12 17.67 14.67

No. true min. found 4 5 2 2

Table 4.7: Summary the computational efficiency of the iterative sampling algorithm on the
multi-minimum function with GE-SVR/LS-SVR as the proxy model with/without
the perturbation scheme.

corners, none of these minimum are exactly at a corner of the domain, and no minimum close

to one of the corners gives a value of the multi-minimum function that is close to its global

minimum which is equal to −2. As shown in Table 4.3, when no perturbation of the initial

guess in step 5 of the iterative sampling algorithm is used, the nine distinct applications

of iterative sampling algorithm locate only two actual local minimum in the interior of the

domain with a minimum function value equal to -2. From the results of Tables 4.4, we

observe that using the perturbation scheme in step 5 of the iterative sampling algorithm

with σrs = 0.1 and LS-SVR as the proxy model, we are still able to locate only two of the

interior local minimums, even though the algorithm gets trapped at a corner of the domain

less frequently than for the case where no perturbation is applied; see Table 4.3. However,

when perturbations are used, it generally takes a larger number of iterative sampling steps

to reach convergence than are required when no perturbations are done.

Now we turn to the iterative sampling results based on the utilization of GE-SVR

proxies. From Table 4.5, we observe that GE-SVR-based iterative sampling without any per-

turbation (δ = 0 in step 5 of the algorithm) correctly locates 5 of the interior local minimums

out of the 9 that exist by starting from the 9 different evenly distributed initial guesses. The

locations of nine different interior local minimums of the multi-minimum function and cor-

responding function values are summarized in Table.4.2. Moreover, convergence is achieved

with at most two iterative sampling steps. By comparing the results of Tables 4.5 and 4.6,

we can observe that the perturbation scheme locates 4 of the same interior local minimums

138



that were found using no perturbation of the initial guess in step 5 of the iterative sampling

algorithm. However, by comparing the 6th rows of both Tables and Fig. 4.7 which pertain

to the initial guess (x1, x2) = (0.00, 0.50), we can see that the no perturbation scheme can

find the local minimum located at (x1, x2) = (−0.34, 1.00) which corresponds to (xopt,1,xopt,2

; yproxy; yt) = (-0.34, 1.00; -1.84; -1.84), whereas when a perturbation is used, this fifth local

minimum is never located, but instead, for the same initial guess, converges to a local opti-

mum of (xopt,1, xopt,2) = (0.34, 0.41) where the global optimum (−2) of the multi-minimum

function is attained at the cost of one additional iterative sampling step. Whether using

perturbations in step 5 of the iterative sampling scheme with GE-SVR proxies is actually

better suited than using no perturbations to find global optima, whereas no perturbations

are better suited to find local optimal is unknown. Resolving this question would require

an exhaustive study using many optimization test functions and is beyond the scope of this

work. However, for the multi-minimum function considered here, if the objective is to find

as many local minimum as possible when using GE-SVR proxies, it appears to be best to use

no perturbations. Most importantly, when using GE-SVR proxies in the iterative samples

algorithm, more local minimum are found that when using LS-SVR proxies.

Table 4.7 summarizes the computational efficiency of the iterative sampling algorithm

on the multi-minimum function with GE-SVR/LS-SVR as the proxy model with/without the

perturbation scheme. The results of Table 4.7 indicate that incorporating GE-SVR proxies

instead of LS-SVR proxies increases the number of equivalent function runts required to

reach convergence but enables the location of more local minimums than can be found when

LS-SVR proxies are used.

4.3.2 Example 2

In this example, proxy-based optimization with the GE-SVR model is applied to a

synthetic 3D three-phase flow reservoir model. The reservoir model has 20× 20× 8 = 3200

grid blocks with 8 simulation model layers. The geological properties (permeability and

porosity) of the 2nd, 4th and 6th simulation layers, respectively, are same as the 3rd, 5th
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and 7th simulation layers, respectively. Therefore, there are only five geological layers. The

horizontal log-permeability distributions of the five geological layers are shown in Fig. 4.8.

A gas cap is initially present in the 1st geological layer and an aquifer is present in the 5th

geological layer. The initial pressure of the reservoir is 4,400 psi. The irreducible water

saturation and residual oil saturation are both equal to 0.2. The locations of the nine

restricted-entry vertical wells are also shown in Fig. 4.8. Six wells are producing well and

three wells are water injection wells. The three water injection wells are completed only in

the bottom layer (the aquifer). Producers P2 and P5 are completed in geologic layers 3 and

4 (simulator layers, 4-7). The other four producers are completed only in the fourth geologic

layer. For this problem, only one reservoir model is used, i.e., we apply ”deterministic”

rather than robust optimization.

The length of each control step is 180 days and the reservoir life is 22× 180=3960

days. Thus, there are 22 control steps for each well and the total number of control variables

to be optimized is 9 × 22 = 198. For producers, the control variables are their bottom

hole pressure (BHP) and the controls of injectors are their water injection rates. The only

constraints considered in this problem are bound constraints as shown in Table 4.8. Note

that in the statement of our general problem (see Eq. 2.3), bound constraints Eq. 2.3b are

stated individually but, in actuality, they are converted to inequality constraints of the form

of Eq. 2.3c by converting Eq. 2.3b to ui − ulow
i ≥ 0 and uup

i − ui ≥ 0 for i = 1, 2, · · ·Nu.

Then, they are treated in the same way as nonlinear state inequality constraints in the SQP-

filter optimization algorithm. Also note that in Table 4.8, constraints labeled with ≥ type

inequality refer to an lower bound whereas constraints of the form ≤ refer to a upper bound,

e.g., the upper bound on producers is 4,400 psi, i.e., we require pwf ≤ 4400 or equivalently

4.4−(pwf/1000) ≥ 0, where 1,000 psi is the scaling factor. According to Table 4.8, there are 2

linear constraints per well, i.e., 18 linear constraints and these must be applied at each of the

22 control steps, i.e., there are 396 constraints to be applied. For the NPV computations, the

oil price is set equal to $50/STB, the water disposal cost is $3/STB, and the water injection

cost is set equal to $2/STB. The gas price is $0.2/Mcf and the annual discount rate is 0.05.
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(a) Layer 1 (b) Layer 2-3 (c) Layer 4-5

(d) Layer 6-7 (e) Layer 8

Figure 4.8: The Log permeability of each geological layer.

All producers initially operate at 3,500 psi at all control steps and the initial water

injection rate for all injectors at all control steps is equal to 100 STB/day. To validate the

performance of the proxy-based optimization framework and compare the performance of

LS-SVR and GE-SVR proxy models, we consider production optimization with no iterative

sampling scheme. However, this particular example is redone with iterative resampling in

Example 3, where state constraints are also added.

Well Cons. Type Cons. Value Cons. Scale Type of inequality

P1-6 BHP (psi) 3000 1000 ≥

P1-6 BHP (psi) 4400 1000 ≤

I1,I2,I3 rate (STB/d) 0 10 ≥

I1,I2,I3 rate (STB/d) 2000 10 ≤

Table 4.8: The summary of bound constraints.
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(a) C0 = 1, 000, Cr = 200 and σ = 0.2 (b) C0 = 1, 000, Cr = 200 and σ = 2

(c) C0 = 1, 000, Cr = 200 and σ = 10 (d) C0 = 100, 000, Cr = 50, 000 and σ = 10

Figure 4.9: Comparison of Adjoint gradient (red) with proxy predicted gradient (blue) at
the center of control space with different hyperparameters
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The hyperparameters C0 and Cr, r = 1, 2, · · ·Nu, in Eq. 4.5, and σ in Eq. 4.29 must

be chosen appropriately to build an accurate proxy model for proxy-based optimization.

To investigate the effect of hyperparameters on the predictability of the proxy model, for

different values of these parameters, we compare the adjoint gradient of average life-cycle

NPV based on a single realization, with the average life-cycle NPV computed from a proxy

where both gradients are evaluated at the center of control space, i.e., every entry of x, the

vector scaled control variables, is evaluated at 0.5. There are 198 control variables and in

Fig. 4.9, we plot the derivatives of NPV with respect to each of the 198 control variables.

The adjoint gradients are plotted as red lines and proxy estimated derivatives are shown as

blue lines. From Figs. 4.9a, 4.9b and 4.9c, we see that the differences between the adjoint

gradient and gradient of the proxy tend to decrease as the value of σ increases. From

Figs. 4.9c and 4.9d, we can observe that changes in the values of C0 and Cr do not have a

significant effect on the accuracy of the derivatives calculated from the GE-SVR proxy. This

is the accordance with results on LS-SVR presented by Guo and Reynolds [37] and Sousa

and Reynolds [25] who found that, for LS-SVR, the value of C0 does not have much affect

on the results as long as C0 > 200. Note from the results of Fig. 4.9, reasonable agreement

between the adjoint derivatives and the derivatives of the GE-SVR proxy is obtained for the

case where C0 = 1, 000, Cr = 200 and σ = 2, and excellent agreement is obtained between

the two sets of derivative values for the case where C0 = 1, 000, Cr = 200 and σ = 10; see

Fig. 4.9c. To further investigate the effect of the value of σ on the performance of the proxy

model, we conduct sensitivity analysis on the effect of the value of the hyperparameter σ on

the accuracy of the GE-SVR model as a proxy to replace the reservoir simulator, where the

error in the proxy as an approximation is measured by the value of cross validation error.

The total cross validation error is defined by the K-fold cross-validation on the training data

set, where the training data set is randomly partitioned into K equally-sized subsets. Of the

K subsets, a single subset is retained as the validation data for testing the model, and the

remaining K-1 subsets are used as training data. The cross-validation process is repeated

K times (the folds), with each of the K subsets used exactly once as the validation data
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and the total error computed from the K-sets of validation errors is the objective function.

For subset k as the prediction set and the complementary set as the training set, the error

function for kth subset is defined as

Ek(σ) =

Ns,k∑
i=1

(J̄sim(xik)− J̄proxy(xik))
2 + ||∇J̄sim(xik)−∇J̄proxy(xik)||2 (4.43)

where Ns,k is the number of samples in subset k; xik, i = 1, 2, · · ·Ns,k denote the scaled control

vectors that are training input in the subset k. The cross-validation error as a function of

the hyperparameter σ is then defined as

CV (σ) =
K∑
k=1

Ek(σ). (4.44)

In this example, our initial training set for GE-SVR consists of only five input/output sam-

ples, so we perform five-fold cross validation (K = 5) where each subset has only one sample

in it (Ns,k=1). Fig. 4.10 plots the cross validation error of GE-SVR proxy versus correspond-

ing σ values where the values of the other hyperparameters are fixed at the following values;

C0 = 1, 000 and Cr = 200. From the results of Fig. 4.10a and 4.10b, we can see that the

value of the cross validation error decreases rapidly as the value of sigma increases from 0.1

to 5 and when the value of σ is larger than 30, the cross validation error starts to increase

again. In Fig. 4.10b, we get a better view of the behavior of CV (σ) by reducing the range

to 0 < σ < 50. From this last plot, we we can observe that the cross validation error does

not change much when sigma ranges of 5 to 30. Therefore, we set C0 = 1, 000, Cr = 200

and σ = 10 as the fixed values of the hyperparameters for the GE-SVR proxy in all of the

following examples. Similarly, We apply the cross validation process to find appropriate

values of the hyperparameters for the LS-SVR proxy model. Because the LS-SVR proxy is

generated with 25 training samples, each of the five subsets for five-fold cross validation has

five samples in it (Ns,k=5). Fig. 4.11 plots the cross validation error of the LS-SVR proxy

versus σ values where the value of the hyperparameter C0 is fixed at C0 = 1, 000. From
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(a) Cross Validation Error (range 0.1-300) (b) Cross Validation Error (range 0.1-50)

Figure 4.10: The change of 5-fold cross validation error of GE-SVR versus different σ.

the results of Fig. 4.11a and 4.11b, we can see that the value of the cross validation error

decreases rapidly as the value of sigma increases from 0.1 to 5 and when the value of σ is

larger than 20, the cross validation error starts to increase again. From Fig. 4.11b, we we

can observe that the cross validation error of LS-SVR proxy does not change much when

sigma ranges of 5 to 30 when C0 = 1, 000. In the following examples, σ = 10 sad C0 = 1, 000

are used as the values of the hyperparameters when constructing LS-SVR proxy models.

Twenty-five training points are sampled by LHS to generate the training set for

the LS-SVR proxy model so to calculate the training output corresponding to these input

training samples requires 25 forward reservoir simulation runs. On the other hand, GE-SVR

uses a training set consisting of 5 samples and thus requires only 5 forward runs and 5

backward runs (adjoint solutions) to compute NPV and the gradient of NPV with respect

to well controls in order to obtain the training sets. Each trained proxy model replaces the

reservoir simulator when applying the SQP-filter optimization algorithm. Again, the bound

constraints are considered as inequality constraints in the SQP-filter framework; more details

about the SQP-filter algorithm can be found in Chapter 2 of this dissertation and were also

published by Liu and Reynolds [61].

Fig 4.12 compares the life-cycle NPV results obtained at each iteration of gradient-

based optimization with the corresponding life-cycle NPV values obtained by computing
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(a) Cross Validation Error (range 0.1-300) (b) Cross Validation Error (range 0.1-50)

Figure 4.11: The change of 5-fold cross validation error of LS-SVR versus different σ as the
proxy.

the NPV from the numerical model (reservoir simulator) using the controls obtained at

each iteration of proxy-based SQP optimization. This is done to see how well the proxy

tracks the true model but in practice no reservoir simulation runs during proxy-based SQP

optimization. The difference between the red and blue curves implicitly gives an indication

of how accurately the proxy predicts the NPV computed from the reservoir simulation during

the optimization process. If the difference is large, it indicates the prediction result of the

proxy model deviates from the “true” prediction from the reservoir simulator so the proxy

does not give a good approximation of the true model at the corresponding control vector

obtained at that iteration. By comparing the results of Fig 4.12a and 4.12b, we observe

that the GE-SVR proxy provides a much better approximation of the reservoir simulator

response during the optimization process than does the LS-SVR model even though the

LS-SVR proxy is constructed using five times as many training samples as the GE-SVR

proxy. When the number of iterations is limited to 40, the GE-SVR proxy archives a much

higher NPV than does the LS-SVR model and more importantly, GE-SVR proxy-based

optimization achieves an estimate of life-cycle NPV equal to 5.38×108 USD which is close

to the one computed from the simulator (5.12×108 ISD) by inputting the optimal controls

generated with GE-SVR proxy-based optimization into the reservoir simulating and running
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(a) LS-SVR with 25 samples (b) GE-SVR with 5 samples

Figure 4.12: Life-cycle NPV at each iteration of the gradient-based optimization for proxy-
based optimization workflow with LS-SVR and GE-SVR results compared to
the value of the true simulator prediction.

it to compute life-cycle NPV. As shown later in Example 3, where we complicate the problem

by adding state constraints, the agreement between the GE-SVR proxy predicted gradient

of life-cycle NPV and the one predicted by the simulator can be improved by iterative

resampling. The computational results are summarized in Table 4.9. With the proxy-based

optimization scheme, using GE-SVR as the proxy model, we estimate the optimal NPV is

equal to 5.12×108 USD after 40 iterations, while with the LS-SVR as the proxy model, we

only achieve an NPV equal to 3.73 ×108 USD. Compared to simulator-based optimization

(no proxy used) which takes 21 gradient evaluations and 50 simulation runs, the proxy-based

optimization with the GE-SVR only requires 5 gradient evaluations yet using the reservoir

simulator in optimization directly with no proxy model yields an NPV which is only 0.01×109

USD higher than the one obtained using proxy-based optimization with the GE-SVR proxy

as shown in Table 4.9

In Fig. 4.13, the components of the adjoint gradient computed by the high-fidelity

reservoir simulator and corresponding derivatives generated by the GE-SVR proxy model are

compared at the controls obtained at the first and last iterations of GE-SVR proxy-based

optimization. For the purpose of illustration, all the derivatives shown are scaled by the
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(a) Comparison of GE-SVR (blue) and adjoint gra-
dients (red) at the 1st iteration

(b) Comparison of GE-SVR (blue) and adjoint
gradients (red) at the 40th iteration

Figure 4.13: Comparison approximated scaled gradient of life-cycle NPV by the GE-SVR
model at the 1st and 40th iterations for deterministic production optimization
with bound constraints.

Optimal NPV (USD) Optimal NPV (USD) Number of

Evaluated by Proxy Evaluated by Simulator Simulations

Simulator - 5.13×108 50 runs +21 grad. evaluation

LS-SVR 4.27×108 3.73×108 25 runs

GE-SVR 5.38×108 5.12×108 5 runs +5 grad. evaluations

Table 4.9: Comparison of bound constrained optimization using reservoir simulator-based
optimization with LS-SVR and GE-SVR proxy-based optimization without iter-
ative sampling scheme.

infinity norm of the absolute values of the adjoint gradient so all scaled derivatives have

values between -1 and 1. Recall there are 198 control variables and in Fig. 4.13, we plot

the derivatives of life-cycle NPV with respect to each of the 198 control variables. Note

there is a fairly good agreement between the derivatives of the GE-SVR proxy model and

the derivatives computed from the adjoint solution provided by our reservoir simulator.

However, even at the last iteration of the optimization, for some derivatives, the derivative

values generated from the proxy and simulator are in significant disagreement. Although not

shown here, iterative sampling improves the agreement between the derivatives generated
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from the two models as we will see in the next example.

4.3.3 Example 3

In reality, field production facilities have a limited capacity and thus impose limita-

tions on phase rates which result in nonlinear state constraints. In this example, we solve

the life-cycle production optimization problem with nonlinear state constraints with our

proxy-based optimization framework. We first run a deterministic production optimization

with state constraints in which only one geological realization is considered and compare

the results with simulator-based life-cycle production optimization. Then we run a robust

production optimization problem with state constraints to illustrate the capability of proxy-

based optimization with the GE-SVR model as the proxy. All settings are exactly same as

in example 2 except that the maximum field gas production rate is set as as 25,000 Mcf/day,

the maximum field liquid production rate is set as 6,000 STB/day and the maximum field

water production rate is set as 4,000 STB/day. In order to save computation, all bound

constraints are enforced by the truncation scheme in this example. Recall that the scaled

control vector x is confined within the [0, 1] scale by Eq. 4.1. For the scaled control vector

x, if any entry of x is smaller than 0 during the iteration of the optimization, we set this

the value of this entry as 0. If any entry of x is larger than 1 during the iteration of the

optimization, we set this the value of this entry as 1. All nonlinear state constraints are

summarized in Table 4.10.

To compare the performance of the proxy-based optimization framework with the

simulator-based optimization framework, we apply two different optimization frameworks

in this example. In the first framework, we apply the SQP-filter to solve the constrained

optimization problem using the high-fidelity reservoir simulator (no proxy generated) in

which the gradient information is computed by adjoint method. In the second framework, we

apply the SQP-filter to solve the problem with a trained GE-SVR model. In this deterministic

optimization case, we try to further reduce the number of initial training samples from 5 to

4 to see if the GE-SVR proxy could solve the proxy-based production optimization problem

149



Well Cons. Type Cons. Value Cons. Scale Type of inequality

P1-6 rate 0.001 10 ≥

I1,I2,I3 BHP (psi) 4,600 1,000 ≤

FWR rate (STB/d) 4,000 4,000 ≤

FLR rate (STB/d) 6,000 6,000 ≤

FGR rate (Mcf/d) 25,000 25,000 ≤

Table 4.10: The summary of inequality nonlinear state constraints for the proxy-based pro-
duction optimization problem with life-cycle NPV as the objective function .

with state constraints with small sets of training samples when iterative sampling workflow

is applied; see Fig 4.1.

Fig. 4.14 compares the optimal well controls generated by reservoir simulator based

optimization (blue lines) with those generated with proxy-based optimization (red lines).

Although the estimated optimal controls generated from SQP optimization using the sim-

ulator with adjoint capability and those generated by optimization of the GE-SVR proxy

model tend to be in reasonable qualitative agreement, there definitely exist quantitative

differences; see Fig 4.14 and 4.15. Such quantitative differences are not surprising as the

well control problem generally has multiple solutions [53, 61]. Even through the two sets

of controls have clear differences, the optimal NPV values estimated using the two different

models are very close, 4.37×108 USD for simulator-based optimization versus 4.39×108 USD

for GE-SVR proxy-based optimization with iterative sampling. Fig. 4.16 shows the oil rates

of the producers computed from the proxy-based and simulator-based optimal controls of

Figs. 4.14 and 4.15. Except for the oil rate at well P1 between 1800 and 3,600 days, the

well rates obtained from the two methods are in reasonable agreement. From the results of

Fig. 4.14, we observe that at both wells P2 and P5, the production rates are restricted by

maintaining relatively high BHPs at the beginning of the lifecycle. Recall that, unlike the

other wells, producers P2 and P5 are completed in geologic layer 3, which is relatively close

to the gas cap. Thus, the high BHP’s in wells P2 and P5 at the early control steps restrict
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(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

Figure 4.14: Comparison of the optimal BHPs for producers generated by simulator-based
life-cycle production optimization (blue lines) and proxy-based optimization
(red lines) for a deterministic case with state constraints.

(a) Water Rates I7 (b) Water Rates I8 (c) Water Rates I9

Figure 4.15: Comparison of the optimal water injection rates generated by simulator-based
optimization (blue lines) and proxy-based optimization (red lines) for determin-
istic life-cycle production optimization with state constraints.
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(a) Oil Rates P1 (b) Oil Rates P2 (c) Oil Rates P3

(d) Oil Rates P4 (e) Oil Rates P5 (f) Oil Rates P6

Figure 4.16: Comparison of the oil production rates of each producer under the optimal
controls generated by simulation-based life-cycle production optimization (blue
lines) and proxy-based optimization (red lines) for the deterministic production
optimization with state constraints.
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(a) BHP I1 (b) BHP I2 (c) BHP I3

Figure 4.17: Comparison of the BHP at each injector under the optimal controls generated
by simulation-based optimization (blue lines) the proxy-based optimization (red
lines) for the deterministic production optimization with state constraints.

(a) FLR (b) FWR (c) FGR

Figure 4.18: Comparison of the FLR, FWR and FGR under the optimal controls generated
by simulation-based optimization (blue lines) the proxy-based optimization (red
lines) for the deterministic production optimization with state constraints.

gas production in order to satisfy the constraint on the FGR. Note that water injection wells

are controlled by the water injection rates, thus the upper BHP bounds at the injectors are

nonlinear state constraints for this constrained optimization problem. Fig. 4.17 shows that

all the BHP state constraints of injectors are satisfied.

Fig. 4.18 shows the field liquid production rate (FLR), field water production rate

and field gas production rate (FGR) at each control step obtained for both simulator-based

optimization and GE-SVR proxy-based optimization where for each method, the estimates

of the optimal wells controls are used to compute production rates. From the results of

Fig. 4.18a, we observe that the FLR is close to its upper bound (6,000 STB/day) from day

1500 to the end of the production period. Moreover, the FWR is also close to its upper bound
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(4,000 STB/day) from from day 1500 to the end of production period. From Fig. 4.18c, we

see that the FGR is close to its upper bound of 25,000 Mscf/d from early-times to 1200 days.

The large gas production rate results largely from the gas cap that occupies the top layer.

The high value of BHP controls of producers P2 and P5 (Fig. 4.14) result from the need to

satisfy the FGR constraint. From the beginning of the production to 1200 days, the FGR

in the active constraint. From 1500 days to the end of the production period, both the FLR

and FWR become active constraints. Note that even though the FLR and FWR are fairly

far below their upper bounds for times prior to 1,000 days, the water injection rate controls

are all zero during this time period. If these water injection rates were not kept at zero and

BHP controls were unchanged, the oil rate, and hence the rate of the production of dissolved

gas would increase resulting in a violation of the FGR. In essence, at early times, the gas

cap and aquifer provide the energy needed to produce oil.

To investigate the ability of GE-SVR to accurately predict the output from the reser-

voir simulator near an optimal point generated during iterative sampling, we plot the com-

parison of the adjoint gradients of life-cycle NPV with the proxy-predicted gradients at

different iterative sampling steps in Fig. 4.19 where both simulator and proxy derivatives

are evaluated at the optimal well controls generated by the proxy-based deterministic opti-

mization with the GE-SVR proxy, except that in Fig. 4.19a,derivatives are evaluated at the

initial guess used in the iterative sampling workflow. The derivatives, which are the com-

ponents of the adjoint gradients are shown by red lines and the corresponding derivatives

computed from the GE-SVR proxy are shown as blue lines. From Fig. 4.19a, we can observe

that the initial GE-SVR proxy gives derivatives in reasonably good agreement with those

obtained with the adjoint even though this initial GE-SVR proxy is trained with only five

training samples which are generated by sampling the scaled control variables from LHS and

running the reservoir simulator with the corresponding values of unscaled well controls to

compute corresponding outputs. As the iterative sampling scheme goes on, the results of

Figs. 4.19b, 4.19c and 4.19d show that the differences between gradients of life-cycle NPV

computed from the proxy and the reservoir simulator decrease gradually. At the end of
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(a) Before iterative sampling (b) At 1st iterative sampling step

(c) At 3rd iterative sampling step (d) At 5th iterative sampling step

Figure 4.19: Comparison of adjoint gradient of life-cycle NPV with respect to well controls
(red) with proxy predicted gradient of life-cycle NPV (blue) at different iterative
sampling steps
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iterative sampling, the components of the adjoint gradient of the objective life-cycle NPV

calculated from the reservoir simulator are almost identical to the corresponding values of

derivatives computed from the GE-SVR proxy which means the proxy model is quite accurate

in the region around the optimum obtained at the end of iterative sampling.

Table 4.11 summarizes the performance of the iterative sampling steps of proxy-based

optimization for the deterministic constrained life-cycle production optimization example

under consideration. The state constraints are handled by the min-max scheme defined in

Section 2.2.5. The first column denotes the index of the iterative sampling step. The second

column denotes the angles between the adjoint gradients (∇J̄sim) and the GE-SVR proxy

predicted gradients (∇J̄proxy) which are computed using the estimate of the optimal well

controls obtained at the end of each proxy-based SQP-filter optimization. The formula for

calculating the angles between the two gradients is given in Eq. 2.29. The third column lists

the relative differences in magnitude between ∇J̄sim and ∇J̄proxy as ||∇J̄sim−∇J̄proxy||2||J̄sim||2
. The

fourth and fifth columns of Table 4.11, respectively, represent the corresponding negative

life-cycle NPV at the optimums obtained at each iterative sampling step computed from

the reservoir simulator and GE-SVR proxy, respectively. The sixth column lists the average

constraint violations estimated by the reservoir simulator at the optimums of each iterative

sampling step. From the table, we can observe that both angles and the relative differences

between the ∇J̄sim and ∇J̄proxy decrease as the iterative sampling process goes on and this

result can also be observed in Fig. 4.19. Therefore, we could conclude that the iterative

sampling process can improve the accuracy of the GE-SVR proxy around the optimum.

By observing the values in the fourth column, we can see the changes in the value of J̄sim

decrease as iterative sampling process goes on. By comparing the values at columns 4 and

5, we can see the relative differences between the J̄sim and J̄proxy decrease as the iterative

sampling process goes on and the convergence criterion on

|J̄sim − J̄proxy|
|J̄sim|

≤ εp (4.45)
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is satisfied after only two iterative sampling steps which means this criterion is not the dom-

inant criterion to determine the convergence of the iterative sampling algorithm. The values

of the average constraint violations θ̄sim(u∗,n`) is also decreasing as the number iterative

sampling steps increases and the results indicate that θ̄sim(u∗,n`) is the dominant criterion

to control the convergence of iterative sampling process in this example problem. In this

problem, we can observe that at the optimal controls generated from the iterative sampling

scheme, many state constraints such as FLR, FWR and FGR in Fig. 4.18 are very close to

corresponding constraints. Therefore, enforcing the nonlinear state constraints is a challeng-

ing process and the criterion on the average constraint violation is the dominant one for this

deterministic production optimization problem but we cannot make an general conclusion

from this one particular example. Azad et al. in the TUPREP report 2020 [3] introduces an

additional convergence criterion on the change in the objective function computed from the

simulator output between two successive iterative sampling steps. To be specify, they use

the convergence criterion defined by

|J̄sim(x∗,n`)− J̄sim(x∗,n`)|
|J̄sim(x∗,n`)|

≤ εsim, (4.46)

where J∗,n`
sim denotes the average negative NPV computed using the simulator output gener-

ated using the optimal controls generated by proxy-based optimization with the n`th GE-

SVR proxies, i.e., at the end of the n`th iterative sampling step and J∗,n`−1
sim is defined

similarly. Azad et al.[3] suggest that by setting εsim = 0.01, a proxy-based optimization al-

gorithm can achieve a higher life-cycle NPV for optimization a huff-n-puff process involving

CO2 injection but no nonlinear state constraints are considered in their work. From the

values in the fourth column of Table. 4.11, we see that the criterion of Eq. 4.46 is satisfied

after only two iterative sampling steps. Thus, in this example adding a convergence criterion

based on Eq. 4.46 does not affect the optimal well controls that are obtained. Nevertheless,

the criterion of Eq. 4.46 is a reasonable one to enforce and the option of also using this con-

vergence criterion in addition to the convergence criteria in Eq. 4.40 and 4.40 is embedded
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in our in-house software.

Iterative Angle between
||∇J̄sim−∇J̄proxy||2

||J̄sim||2
J̄sim(u∗,n`) J̄proxy(x∗,n`) θ̄sim(u∗,n`)

sampling step ∇J̄sim & ∇J̄proxy USD USD

0 24.77 0.43 -4.65×108 -4.39×108 0.59

1 10.95 0.24 -4.31×108 -4.27×108 0.23

2 8.65 0.17 -4.35×108 -4.36×108 0.22

3 5.67 0.11 -4.39×108 -4.38×108 0.10

4 5.62 0.10 -4.39×108 -4.40×108 0.05

5 4.37 0.08 -4.39×108 -4.39×108 0.01

Table 4.11: Summary of iterative sampling steps of proxy-based optimization for determin-
istic constrained production optimization

Some results of this deterministic constrained optimization case are summarized in

Table 4.12. From the results, we observe that both simulator-based and proxy-based opti-

mization produce similar values of the optimal NPV with all constraints satisfied. In terms

of the computational cost, simulator-based optimization requires 44 gradient evaluations

and 50 extra forward reservoir simulations (runs where adjoint solutions are not computed).

Note, in this example, the reservoir simulator needa to estimate the gradient of both objec-

tive function (life-cycle NPV) and nonlinear state constraints (e.g., FLR, FWR and FGR)

in the adjoint solution since we need to train GE-SVR proxy models for the objective func-

tion and each of the state constraints and their derivatives. The adjoint solution consists

of a forward reservoir simulation run, which is a regular simulation run, and a backward

simulation run to calculate the gradient. Therefore, in Table 4.12, each “run” is equiva-

lent to regular one forward simulation run and each “grad. eval.” (gradient evaluation)

is equivalent to one forward simulation run and one backward simulation run. The proxy-

based optimization framework only requires 4 gradient evaluations of the initial training

samples and 5 more gradient computations due to the iterative sampling steps. The com-
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putation cost of evaluating the GE-SVR proxy model is not included in Table 4.12 since

its cost is negligible compared to the computational cost of a simulation run. Compared

with simulator-based optimization, proxy-based optimization framework with GE-SVR as

the proxy model saves significant computational time in terms of the number of gradient

evaluations and forward simulations. Assuming that the computational cost of an adjoint

calculation (backward simulation) is equivalent to the cost of a simulation run, the results

indicate that the simulator-based optimization is on the order of one magnitude more costly

than GE-SVR proxy-based optimization on this deterministic production optimization with

state constraints.

Optimization Optimal NPV, USD Optimal NPV, USD Number of

Type (estimated by simulator) (estimated by proxy) Simulations

Simulator-based 4.37×108 - 44 grad. eval.+ 50 runs

Proxy-based 4.39×108 4.39×108 9 grad. eval.

Table 4.12: Comparison of the performance of simulator-based and proxy-based optimiza-
tions on the deterministic production optimization problem with state con-
straints. (Example 3 part I)

In the second part of this example, the proxy-based robust optimization scheme with

the GE-SVR proxy model is applied to solve a constrained robust production optimization

problem with nonlinear state constraints. The settings of this robust optimization case are

exactly same as for the previous deterministic case except there are 10 distinct geological

realizations of the reservoir model used to compute the average life cycle NPV in the robust

case. Figs. 4.20 and 4.21 illustrate the log permeability of each layer of the reservoir of the

realization 1 and realization 2, respectively. By comparing Figs. 4.20 and 4.21, we can see

the each realization are distinct to each other.

Five different control vectors are sampled with LHS and the reservoir simulator is run

for each reservoir model with each sample of the vector of controls to obtain corresponding

output in order to form the initial training set to build the initial proxy model for the iterative
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(a) Layer 1 (b) Layer 2 (c) Layer 3 (d) Layer 4 (e) Layer 5

Figure 4.20: The Log permeability of each geological layer for realization 1 .

(a) Layer 1 (b) Layer 2 (c) Layer 3 (d) Layer 4 (e) Layer 5

Figure 4.21: The Log permeability of each geological layer for realization 2 .

(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

Figure 4.22: The optimal BHP at producers generated from proxy-based constrained robust
production optimization.
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(a) I7 (b) I8 (c) I9

Figure 4.23: The optimal water injection rates for injectors generated form the proxy-based
robust production optimization.

sampling optimization procedure. Thus, since there are 10 geological realizations, 50 forward

and backward simulation runs are required to generate life-cycle NPV and state constraints

values and corresponding gradients. To solve the proxy-based robust production optimization

problem with state constraints, we need to train the GE-SVR proxies for the objective

function and each state constraints for each reservoir model. Therefore, the backward run of

the reservoir simulator is required to calculate the adjoint solutions on the objective function

and each of the state constraints for each reservoir model. Note this means we are effectively

training Nic + 1 GE-SVR proxy models for each reservoir model, where Nic is the number of

state constraints for each reservoir model. Training of the GE-SVR model basically solves

the linear system proposed in Eq. 4.20. As stated in section 4.2.1, the left hand side the

matrix in the linear system given by Eq. 4.20 only depends on input data, i,e, the xk,

k = 1, 2, . . . Ns and does not depend on the training output function y(x). By replacing

the right hand side on the training output function, we can train the objective function

and all state constraints for each reservoir model once with only one inversion of the matrix

involved in the linear system. The min-max scheme (see section 2.2.5) is implemented to

reduced the number of state constraints to be enforced in the proxy-based SQP-filter process

from Nic × Ne to Nic, where Nic denotes the number of state constraints for each reservoir

model and Ne denotes the number of reservoir models. To be specific, with the mix-max

scheme used to handle constraints, for each state constraint, the proxy model needs only
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to be trained on the realization of the reservoir model which has the maximum violation

of that state constraint among all reservoir models. Our results indicate that the proxy-

based optimization utilizes 8 iterative sampling steps to achieve convergence and thus 70

more forward and backward reservoir simulation runs are used to reach the final optimal

solution. Due to the limitation in computational resources, we did not solve this problem

by the simulator-based optimization scheme however, based on the literature [53] solving

the constrained robust production optimization problem with gradient-based algorithm is a

computationally intense process which would require on the order of 1000 or more forward

and backward runs. Therefore, by training a GE-SVR model and using the iterative sampling

scheme, the proxy-based scheme can significantly reduce the computational cost.

Figs. 4.22 and 4.23, respectively, show the optimal BHP’s of producers and injection

rates for water injection wells. . There are some similarities between the optimal controls

generated from deterministic optimization (see Fig. 4.14) and the optimal controls generated

from the robust proxy-based optimization case shown in Fig. 4.22. For example, to restrict

the gas production from the gas cap, producer P5 operates at and high pressure for the first

2 control steps and producer P2 operates a high pressure during controls steps, 1 and 5-8 in

Fig 4.22, while the optimal controls generated by the deterministic optimization restrict BHP

at P2 from the first to seventh control steps and restrict BHP at P5 for the first 4 control

steps. From the results, we see that all producers except P3 operate at the minimum BHP

(3,000 psi) near the end of the life cycle of the reservoir development whereas P3 severely

restricts production at late times by increasing the BHP. Moreover, all injectors tend to

inject water only at the end of production period similar to the deterministic case. Fig. 4.24

illustrates the field liquid production rates (FLR), field water production rates (FWR) and

field gas production rates (FGR) of each realization at the optimal well controls. The field

rates for different realizations are denoted as grey lines and the average field rates over all

realizations are represented as purple lines. In Fig. 4.24a, we observe that for one or more

realizations, the FLR is close to its upper boundary over the entire production life-cycle.

Similarly, for one or more realizations, the FWR in Fig. 4.24b is near its upper bound from
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(a) FLR (b) FWR (c) FGR

Figure 4.24: The FLR, FWR and FGR under the optimal controls generated by the proxy-
based optimization for the robust production optimization with state con-
straints.

1400-3960 days. Moreover, we see that the maximum value of FGR over all realizations is

around its upper limit from the beginning of production to 1600 days. Therefore, we can con-

clude that the proxy-based optimization schemes can handle the nonlinear state constraints

for every realization at every control step when the min-max method for constraints is used

in the SQP-filter algorithm.

Fig. 4.25 illustrates the cumulative distribution function (CDF) for NPV at the initial

well controls (blue line) and at the optimal well controls (red line). The mean value of NPV

of all realizations operating under the initial set of well controls is 2.988 ×108 USD and

the mean value of that NPV operating under the optimal controls is 4.069 ×108 USD, i.e.,

optimization achieves a 36% increase in the mean value of the NPV.
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Figure 4.25: Comparison of CDF of the robust life-cycle NPV generated by operating under
the initial well controls (blue) and optimal well control (red).
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CHAPTER 5

DISCUSSION AND CONCLUSIONS

In this work, we aim to solve the robust production optimization problem with nonlin-

ear state constraints. We first proposed a novel SQP-filter framework based on the stochastic

gradient (StoSAG) for robust optimization with nonlinear state constraints where nonlinear

state constraints are enforced with the filter method. Two schemes are proposed to improve

the accuracy of the derivatives of phase flow rates as approximations of the corresponding

derivatives computed from an adjoint method. As state constraints on field rates and the

NPV functional are simply linear combinations of phase rates at wells, the basic idea is to

improve the quality of the stochastic gradients of the state constraints and NPV with re-

spect to the vector of controls (pressures for production wells, water rates for injection wells)

by improving the accuracy of the derivatives of the phase rates with respect to pressure

controls. The first improvement applies truncation wherein we set stochastic derivatives ob-

tained from the standard StoSAG gradient that physically should be zero equal to zero. The

second method applies a temporal damping of the derivatives computed from the normal

StoSAG algorithm. The damping heuristic is motivated by an analytical derivation based

on single-phase flow. By combing both modifications, we show that the resulting StoSAG

derivative of rates provide a better approximation of the derivative generated with the adjoint

method than does standard StoSAG. Conceptually, every realization of the model should sat-

isfy the constraints but this is very computationally expensive as in this case, constraints

have to be enforced at every control step for every reservoir model and thus, the stochastic

gradients of all constraints need to be computed for every reservoir model . To improve

computational efficiency, we tried three procedures. In the first (expected value scheme), we

apply the constraint only to the average constraint function where the average is over all
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reservoir models. In the second (min-max scheme), at each iteration of SQP, we explicitly

enforce each constraint on the reservoir model that gives the maximum violation of that

constraint. In the third method (heuristic enforcement), we first apply StoSAG with only

bound constraints, and then insert the optimal controls found into the reservoir simulator

and use the internal heuristics of the simulator to modify the control to enforce the state

constraints. Based on the results shown in Chapter 2 of this work, as well as theoretical

discussions, the following conclusions are warranted:

• The modified StoSAG gradients of nonlinear constraints are more accurate than the

standard StoSAG gradients and thus result in a vastly improved solution of the robust,

life-cycle optimal well control problem under nonlinear state constraints than the solu-

tion using gradients from standard StoSAG when the SQP-filter framework is applied

to solve the constrained optimization problem.

• Obtaining accurate gradients of the state constraints for linearization of these con-

straints in SQP is critical for good performance of the algorithm because the linearized

constraints define the feasibility region for the QP subproblem. If the feasibility region

is not defined with sufficient accuracy, the subproblem may not have a feasible solution.

• To obtain sufficiently reliable approximate gradients of nonlinear state constraints,

both truncation, and temporal damping should be used whereas a useful gradient of

the average NPV can be generated by simply performing truncation.

• The computational efficiency of the filter method for enforcing constraints can be

improved by setting an upper bound on infeasibility in order to prevent too large a

step at any iteration of the SQP-filter optimization algorithm.

• When the expected value method is applied to enforce constraints, for some reservoir

models, some state constraints are violated by 25 to 50%.

• Heuristic enforcement of constraints by the reservoir simulator results in a vastly infe-

rior CDF for NPV than is obtained with the min-max scheme.
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• Although, in robust constrained optimization, extra perturbations are introduced for

computing gradients of constraints by the min-max scheme, the min-max scheme can

generate optimal controls under which FLR and FWR constraints are satisfied for

every realization.

In Chapter 3, we extend the SQP-filter framework with the stochastic gradient

(StoSAG) for robust production optimization with nonlinear state constraints to solve the

multi-objective production optimization problem. The life-cycle NPV, short-term NPV and

down-side risk are the three objectives considered in this work. The down-side risk is char-

acterized by the worst-case NPV among all realizations of reservoir models. The robust

multi-objective optimization problem with state constraints is solved with a modified lexi-

cographic method proposed in this work. The first step for both the standard and modified

lexicographic methods requires the solution of the single objective robust production op-

timization problem with state constraints by the SQP-filter method using the improved

StoSAG gradient and the min-max scheme. At the end of this optimization, we record the

average short-term NPV and minimum NPV over the set of realizations at the optimal well

controls u∗. Then, in contrast with the standard lexicographic method which switches the

primary objective and sets as a state constraint a lower bound on the average life-cycle NPV,

the modified lexicographic method maximizes the live-cycle NPV again but with state con-

straints set as a constant greater than 1 times the average short term NPV at u∗ and/or

another constant greater than one times the worst-case NPV evaluated at u∗. By changing

the constants, we can try to find Pareto optimal points. The Brugge case is used to illustrate

the utility of this multi-objective robust production optimization framework. Based on the

computational results, we have the following conclusions:

• The modified lexicographic procedure developed in this work provides an effective

method for bi- and tri-objective robust production optimization with state constraints.

The main advantage that the modified lexicographic method has over the the standard

lexicographic method is that it allows the generation of potential Pareto optimal points
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which are uniformly spaced in the values of the second objective that one wishes to

improve by bi-objective optimization.

• In the modified lexicographic method, the value of the average life-cycle NPV as the

primary objective function obtained by bi- or tri- objective optimization is often higher

than its value obtained by optimizing only average life-cycle NPV (single objective).

• Pareto fronts generated by the modified lexicographic method with the improved

StoSAG are different than expected in the sense that, within a certain range of the

bounds placed on the other objective functions, the average life-cycle NPV increases

as we increase the lower bounds imposed on the short-term NPV and worst-case NPV

incorporated as state constraints. Once these lower bounds become large enough, the

two secondary objectives incorporated as state constraints act as if there are truly in

conflict with the primary objective, the maximization of average life-cycle NPV, we

start to generate points on the Pareto front.

• Despite the aforementioned atypical behavior, the points generated in an attempt to

find the Pareto front provide choices that enable the operational engineer to set controls

based on his or her short-term and life-cycle production goals and risk tolerance.

In Chapter 4, we propose the proxy-based optimization technique to solve life-cycle

production optimization with nonlinear state constraints. Our major contribution here is the

development of a machine learning proxy which is trained to match both function values and

corresponding values of the derivatives of the function which are generated from a reservoir

simulator with full adjoint-solution capability. In this approach, a proxy (GE-SVR) is trained

to match simulator training output for the life-cycle NPV and state constraint functions and

their derivatives. In the case of life-cycle NPV, a separate proxy is trained to match the

simulator values of training output of NPV and associated derivatives for each of the reservoir

models used to characterize geological uncertainty. Since the min-max scheme is applied to

enforce the nonlinear state constraint, each facility state constraint is only imposed on the

reservoir model that gives the maximum violation of that constraint. Thus, the proxy model
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for each constraint function and its derivatives needs to be trained for only one reservoir

model at each iteration of the SQP filter algorithm. Because both function and derivative

information are used to train the proxies, the proxies are referred to as gradient-enhanced

support vector regression (GE-SVR) proxies. The GE-SVR proxies then replace the reservoir

simulator during robust life-cycle production optimization with the SQP-filter method where

the min-max scheme is applied to enforce nonlinear state constraints. In the optimization

process, iterative sampling is applied. For two simple standard optimization test cases and

one synthetic reservoir model we compare the performance of proxy-based optimization with

GE-SVR with the performance of LS-SVR. On the basis of the results of Chapter 4, the

following conclusions are warranted.

• Compared with LS-SVR, which can treat the reservoir simulator as a back-box and

only requires objective and constraint function values from the simulator to generate

training samples, generating training samples for constructing the GE-SVR proxy re-

quires a reservoir simulator which has the adjoint capability necessary to compute the

gradients of the objective and state constraint functions with respect to the vector of

well controls.

• Generating the GE-SVR proxies only requires the inversion of a single matrix once

to train the GE-SVR proxy models for the objective function and all of the state

constraints.

• The proxy-based iterative sampling scheme with GE-SVR as proxy not only can find

more local optimums but also can reach lower optimum values with fewer iterative

sampling steps than the case with the LS-SVR as the proxy.

• Computational results on deterministic optimization with state constraints indicate

that the proxy-based optimization with iterative sampling and GE-SVR proxy models

requires on the order of 5-times fewer equivalent reservoir simulation runs than are

required for the simulator-based optimization with the adjoint solution.
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• The iterative sampling scheme improves the accuracy of the GE-SVR proxy in the

region around the optimal solution and thus leads to an improvement in the estimate

of the optimal solution.

• The min-max implemented here for satisfying state constraints vastly improves com-

putational efficiency compared to enforcing constraints on all individual realizations.
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