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ABSTRACT

Mohammad Zafari (Master of Science in Petroleum Engineering)

Assessing the Uncertainty in Reservoir Description and Performance Predictions With

the Ensemble Kalman Filter

Directed by Dr. Albert C. Reynolds

92 pp. Chapter 6

(297 words)

Recently, the ensemble Kalman filter (EnKF) has gained popularity in atmospheric

science for the assimilation of data and the assessment of uncertainty in forecasts for com-

plex, large-scale problems. A handful of papers have discussed reservoir characterization

applications of the EnKF, which can easily and quickly be coupled with any reservoir

simulator. Neither adjoint code nor specific knowledge of simulator numerics is required

for implementation of the EnKF. Moreover, data are assimilated (matched) as they be-

come available; a suite of plausible reservoir models (the set of ensembles) is continuously

updated to honor data without rematching data assimilated previously. Because of these

features, the method is far more efficient for history matching dynamic data than au-

tomatic history matching algorithms based on optimization algorithms. Moreover, the

suite of ensembles provides a way to evaluate the uncertainty in reservoir description

and performance predictions. Here we establish a firm theoretical relation between ran-

domized maximum likelihood and the ensemble Kalman filter. We show that EnKF is

similar to doing one Gauss-Newton iteration for matching data at one time using an av-

erage sensitivity matrix where the average sensitivity matrix is constructed from the set

of predicted data generated from the set of ensembles obtained from the previous time at

which different data were assimilated. Starting from another viewpoint, we show that if

predicted data are included in the random state vector along with model parameters, then
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the EnKF update equation can be obtained from a single Gauss-Newton iteration based

on an average sensitivity matrix. We also show that the mean of the set of ensembles is

equivalent to the cokriging estimate. We present examples where its performance in terms

of characterizing uncertainty is not completely satisfactory, as well as examples where the

performance of EnKF provide a reliable characterization of uncertainty.
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CHAPTER 1

INTRODUCTION

Our main interest is in characterizing the uncertainty in reservoir description and

reservoir performance prediction as the first step towards the optimization of reservoir

management. To do so, we wish to generate a suite of plausible reservoir models (re-

alizations) that are consistent with all information and data. If the set of models are

obtained by correctly sampling the pdf, then the set of models give a characterization of

the uncertainty in the reservoir model. By predicting future reservoir performance with

each of the realizations, and calculating statistics on the set of outcomes, one can evaluate

the uncertainty in reservoir performance predictions.

Uncertainty can only be formally characterized using the mathematics of proba-

bility and statistics. For data integration problems of interest in reservoir modelling and

characterization, Bayesian statistics provides a convenient framework for characterizing

and evaluating uncertainty and a convenient framework for assimilating data as they be-

come available. In particular, starting with a given probability density function (pdf) for

a random vector, the Bayes theorem can be applied to derive the pdf conditional to the

observed data, i.e., to update the pdf. This updated pdf may be thought of as the new

prior pdf, which itself can then be updated as data become available at some later time.

The application of Bayes theorem to write a theoretical expression for updating a pdf by

assimilating data is general; it is not necessary to assume the prior or any of the pdf’s are

Gaussian or assume a linear relation between data and the model.

1.1 Literature Review

Even though Bayes theorem can be applied to write a theoretical expression for the

pdf of interest, sampling the pdf is much more difficult for reservoir problems that contain

1



thousands or several tens of thousands of model parameters. For such problems, we believe

that theoretically rigorous methods of sampling such as the Markov chain Monte Carlo

method (MCMC) or rejection algorithm are not computationally feasible [3, 22], although

there exist references that suggest otherwise [2]. On attempt to define an algorithm that

is somehow similar to MCMC, a method now commonly known as randomized maximum

likelihood (RML) was introduced by [27]. A precursor of this method was given in [7] and

the theoretical bases for the case where data are linearly related to the model was given

by [26]. The method we refer to as RML was also suggested independently by [19].

RML is also firmly embedded in the Bayesian framework, and its application is

aimed at generating a correct sampling of a pdf conditional to observed data. Although

the prior pdf is arbitrary, to render RML computationally attractive, one normally as-

sumes the “prior” pdf for the model may be reasonably approximated by a multivariate

Gaussian distribution at least for the purpose of conditioning an unconditional realization

of the prior model to observed data. As commonly applied [17, 21, 35, 8], RML generates

a realization of a pdf that is conditional to all observed data by minimizing an appropriate

objective function. However, if the total data set is partitioned into sub data sets where

measurement errors for each data subset are uncorrelated with measurement errors for

all other data subsets, then it is possible to condition a realization from the prior model

to each data subset sequentially provided that after each data set is integrated, the prior

covariance and mean are updated to the posterior covariance and mean. One can show

that this Bayesian updating procedure, where uses only means and covariances, is rigor-

ously valid only when the relation between data and model is linear [30]. Moreover, for

large scale problems, standard formulas for updating the covariance matrix are imprac-

tical, and in fact, storage of this covariance matrix may not be practical. Nevertheless,

this sequential conditioning of a model to data is very much in the spirit of the ensemble

Kalman filter (EnKF).

Although RML can only be proven to sample correctly in the linear case, i.e.,

when data is linearly related to the model, several computational experiments suggest

that the method does an adequate job of sampling in the nonlinear case [28, 22, 12].

2



When RML is implemented using the limited memory Broyden-Fletcher-Goldfarb-Shanno

(LBFGS) [25, 35] algorithm for optimization with the gradient of the objective function

computed with the implementation of the adjoint method [6, 5] given by [21], large scale

history matching problems are feasible. However, our experience is that each realization

(approximate sample of the pdf) generated by RML usually requires computational time

that is equivalent to at least 50 to 100 forward reservoir simulation runs.

Very recently, some research groups have begun extensive work on using the en-

semble Kalman filter to assimilate data and characterize the predicted performance. The

ensemble Kalman filter (EnKF) was originally introduced by [9] as a sequential data

assimilation algorithm. The sequential algorithm consists of two major steps, first, a

forecast step which is equivalent to running the simulation to predict data at the next

assimilation time step, second, an analysis and updating step which includes the implicit

calculation of the Kalman gain matrix and updating the model parameters so that they

are consistent with data. EnKF is a Monte Carlo approach, where an ensemble of reser-

voir models is used to construct the error statistics of model parameters and predicted

data. The ensemble of states are effectively a set of unconditional realizations for the next

assimilation time step with predictions of data. Model parameters and “state” variables

generated from the ensemble members used to estimate covariance matrices for the pur-

pose of assimilating data at the next assimilation time step. Later, [4] showed that in the

implementation of the analysis scheme in the EnKF, the observations must be treated

as random variables. This can be done by adding noise with the correct statistics to the

observations. However, [32] has shown that the addition of noise to the observations in an

ensemble data assimilation system reduces the accuracy of the analysis error covariance

estimate by increasing the sampling error, and increases the probability that the analysis

error covariance will be underestimated by the ensemble.

In [18] a variant of the ensemble Kalman filter was introduced, where in their new

approach a double ensemble is used and the gain of each ensemble is used to update the

other ensemble in the analysis step. They argued that the systematic underestimation

of covariances are much less likely to happen in the new method. However, [20] has

3



shown that EnKF leads to systematically underestimated variances for small ensemble

sizes regardless of whether the ensemble is updated with a gain calculated from that same

ensemble or not. Where the variances are underestimated, the filter assumes the relative

accuracy of the prior information compared to the accuracy of the data is greater than

it is, and consequently the updated model parameters are insufficiently corrected toward

the truth. Therefore, algorithm modifications are necessary to ensure that covariances

are not systematically underestimated [16, 1]. In petroleum engineering field [24, 23] were

the first to apply the EnKF method to reservoir characterization and history matching.

Recently, [15, 12] applied it to the well known PUNQ-S3 problem data set.

1.2 Objectives and Research Scope

The advantage of the EnKF is that no sensitivity calculations are required, i.e.,

the work of developing adjoint code for a specific simulator is avoided and the EnKF

method can be easily coupled with any reservoir simulator. Furthermore, dynamic data

is assimilated continuously in time and covariance matrices are updated at each data

assimilation time step. Another key advantage is that new production data or seismic

data can be assimilated as they become available; there is no need to rerun the simulator

from time zero and match the old data and no iteration is done; the idea is the old data

is automatically honored because it was incorporated as covariances were updated.

In this work, we attempt to theoretically compare the EnKF update equations

with the RML method. In particular, when data are linearly related to the model, we

show that both methods give a correct sampling of the pdf conditional to all data up to

the final assimilation time. Moreover, it shows that EnKF really uses predicted data to

construct crude approximations to derivatives that would be used if the Gauss-Newton

method were used to minimize the objective function when applying RML to generate a

realization of the same pdf. Based on this analogy, we provide an alternate derivation

and interpretation of the computational equations for EnKF. Our results suggest that

EnKF implicitly assumes that the autocovariance of predicted data, the model and their

cross-covariances can be approximated by Gaussian distributions for the purpose of data

4



assimilation. We also show that the mean of the set of ensembles is equivalent to the

cokriging estimate.

In our implementation of RML, the random vector that is updated includes the

model parameters, primary variables and predicted data. Where history matching or

assimilating production data, predicted data refer to quantities such as wellbore pres-

sure, producing gas-oil ratio (GOR), producing water-oil ratio (WOR) or phase rates.

The model parameters refer to quantities such as gridblock permeabilities and porosities

and primary variables refer to variables predicted by reservoir simulation, e.g., gridblock

pressures and saturations. As EnKF updates not only model parameters but primary

variables at a data assimilation step, it is possible to obtain physically unreasonable val-

ues of pressures and saturations that must be modified to physically reasonable values.

In our history matching application, we simply truncate any such value back to a pre-

scribed upper or lower bound for the variable. Intuitively, one might expect that this

problem could be eliminated by rerunning the simulation time step, but our theoretical

results show that this will lead to an incorrect stochastic sampling procedure. Many of

the results presented here have been presented publicly in [34, 33].

5



CHAPTER 2

THEORETICAL FRAMEWORK

2.1 Randomized Maximum Likelihood Method

2.1.1 The RML Algorithm

Assuming a prior multivariate Gaussian pdf for the model m, that the vector of

data measurement errors is Gaussian with mean zero and covariance matrix CD, the

posterior pdf conditional to an Nd-dimensional column vector of observed data, dobs is

given by

f(m|dobs) = c exp[−O(m)], (2.1)

where c is the normalizing constant, and O(m) is given by

O(m) =
1

2
(m−mprior)

T C−1
M (m−mprior)

+
1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs). (2.2)

Throughout, Nm denotes the dimension of the model space so m is an Nm-dimensional

column vector. (Unless noted otherwise, all vectors introduced are column vectors.)

Let the Nm-dimensional random vector ZM be normal with mean equal to the

Nm-dimensional zero vector and covariance given by INm , the Nm ×Nm identity matrix.

Let LM be the lower triangular matrix such that

CM = LMLT
M , (2.3)

is the Cholesky decomposition of the prior covariance matrix CM , then it is easy to show

6



that the random vector

muc = mprior + LMZM , (2.4)

is Gaussian with mean mprior and covariance matrix given by CM , i.e., Eq. 2.4 provides a

way to sample the prior multivariate Gaussian distribution. The Nd-dimensional random

vector ZD represents the multinormal random vector with zero mean and covariance given

by the Nd ×Nd identity matrix INd
. If LD is the lower triangular matrix such that

CD = LDLT
D, (2.5)

is the Cholesky decomposition of the covariance matrix CD, then

duc = dobs + LDZD, (2.6)

is a multi-normal random vector with expectation given by dobs and covariance matrix

CD.

The RML method generates a set of (muc, duc) pairs, and for each pair, calculates

an associated “conditional realization” by minimizing

Or(m) =
1

2
(m−muc)

T C−1
M (m−muc)

+
1

2
(g(m)− duc)

T C−1
D (g(m)− duc). (2.7)

Some computational evidence indicates that the resulting set of conditional realizations

represents an approximate sampling of the posterior pdf of Eq. 2.1 [27, 22] and that, in the

context of reservoir modeling and simulation, the set of reservoir performance predictions

generated from the set of conditional realizations can be used to obtain a reasonable

assessment of the uncertainty in performance predictions [29, 28, 12]. As shown in the

next section, RML samples the a posteriori distribution for m correctly if predicted data

g(m) is linearly related to m.

7



2.1.2 RML for the Linear Case

We consider the case where predicted data g(m) is linearly related to the model,

i.e.,

g(m) = g(m0) + G(m−m0) (2.8)

where G = G(m0) is the Nd×Nm sensitivity matrix evaluated at the fixed model m0 and

is independent of m. Previous proofs that RML samples correctly assumed g(m) = Gm,

but for the purpose of comparing RML with EnKF, it is more instructive to consider the

general form of Eq. 2.8. Note that Eq. 2.8 represents the linearization of g(m) about the

model m0 using a first order Taylor series. We will show that when this is true, RML

provides a correct sampling of the posteriori pdf.

When Eq. 2.8 holds, the objective function given by Eq. 2.2 is quadratic. Thus,

for any m̂ the following second order Taylor series is exact:

O(m) = O(m̂) +
(
∇O(m̂)

)T
(m− m̂) +

1

2
(m− m̂)T H(m− m̂). (2.9)

In the preceding equation, H represents the Hessian matrix, which is given by

H = C−1
M + GT C−1

D G. (2.10)

Note that H is real-symmetric, positive-definite and independent of m. Thus, the objec-

tive function of Eq. 2.2 has a unique minimum, the MAP estimate, which can be obtained

by setting ∇O(m) = 0 and solving for m. Letting

r0 = g(m0)− dobs, (2.11)

the MAP estimate, denoted here by m∞ can be written as

m∞ = H−1
(
C−1

M mprior + GT C−1
D

[
Gm0 − r0

])
(2.12)

Since the gradient of O(m) evaluated at the MAP estimate is zero, the exact Taylor series
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expansion of O(m) about m∞ (m̂ = m∞ in Eq. 2.9) gives

O(m) = O(m∞) +
1

2
(m−m∞)T H(m−m∞). (2.13)

Using the last result, we can write the a posteriori pdf as

f(m|dobs) = a exp
[
− 1

2
(m−m∞)T H(m−m∞)

]
, (2.14)

where a is now the normalizing constant. Thus we have provided a very simple proof of

a very known result that the posterior pdf is Gaussian with expectation (mean) m∞ and

covariance H−1.

Next we show that in the linear case, RML samples correctly. Although the results

of [26] show this is true, the proof given here follows one given in [29, 28]. When Eq. 2.8

holds, the conditional model which minimizes the objective function of Eq. 2.7 can be

obtained by setting the gradient of O(m) equal to zero and can be written as

mc = H−1
(
C−1

M muc + GT C−1
D

[
Gm0 − g(m0) + duc

])
. (2.15)

Note the random vector mc represents the one defined by RML, that is, every model

generated with RML is a realization of the random vector mc . Using Eqs 2.4, 2.6 and

2.11 in Eq. 2.15 and rearranging

mc = H−1
(
C−1

M

[
mprior + LMZM

]
+ GT C−1

D

[
Gm0 − g(m0) + dobs + LDZD

])
= H−1

(
C−1

M

[
mprior + LMZM

]
+ GT C−1

D

[
Gm0 − r0 + LDZD

])
. (2.16)

Because mc is a linear combination of the Gaussian random vectors ZM and ZD, mc is

Gaussian. Thus, to show RML samples correctly only requires that we show the expec-

tation of mc is m∞ and its covariance matrix, denoted by Cc, is equal to H−1. Using
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Eq. 2.12 we can rewrite Eq. 2.16 as

mc = m∞ + H−1
(
C−1

M LMZM + GT C−1
D LDZD

)
. (2.17)

Throughout E denotes the expectation operator. Taking the expectation of Eq. 2.17

and recalling that ZD and ZM have zero vectors as expectations gives

E[mc] = m∞. (2.18)

It follows from Eqs. 2.18 and 2.17 that the covariance matrix for mc is

Cc = E
[(

mc −m∞
)(

mc −m∞
)T ]

= E
[
H−1

(
C−1

M LMZM + GT C−1
D LDZD

)(
H−1

(
C−1

M LMZM + GT C−1
D LDZD

))T ]
= H−1E

[(
C−1

M LMZM + GT C−1
D LDZD

)(
ZT

MLT
MC−1

M + ZT
DLT

DC−1
D G

)]
H−1. (2.19)

The Nm-dimensional vectors Y and W defined by

Y = C−1
M LMZM , (2.20)

and

W = GT C−1
D LDZD. (2.21)

have zero means and are independent. Thus, the covariance matrices E[Y W T ] and

E[WY T ] are both equal to the Nm × Nm null matrix. Using this fact, together with

Eqs. 2.3, 2.5, 2.20 and 2.21 and the facts that E[ZDZT
D] = INd

and E[ZMZT
M ] = INm , it

follows from Eq. 2.19 that

Cc = H−1E
[(

C−1
M LMZMZT

MLT
MC−1

M

)
+ Y W T + WY T + GT C−1

D LDZDZT
DLT

DC−1
D G

)]
H−1

= H−1
[(

C−1
M LMLT

MC−1
M

)
+
(
GT C−1

D LDLT
DC−1

D G
)]

H−1 = H−1HH−1 = H−1. (2.22)

Thus for the linear case, we have shown that mc has the same pdf as m, or equivalently,
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for the linear case, RML provides a correct sampling of the posterior pdf.

2.1.3 Assimilation of Data by RML, Linear Case

If data measurement errors are uncorrelated in time and the relationship between

data and the model is linear, one can match data sequentially in time and obtain identical

results to those that would be obtained by matching all observed data simultaneously,

see [30]. Suppose we have two sets of observed data dobs1 and dobs2 . We assume a linear

relationship between data and model parameters. From Eqs. 2.10 to 2.12 for the first set

of data we can write

H1 = C−1
M + GT

1 C−1
D1

G1, (2.23)

r01 = g1(m0)− dobs1 , (2.24)

m∞1 = H−1
1

(
C−1

M mprior + GT
1 C−1

D1

[
G1m0 − r01

])
. (2.25)

For the conditional model after matching the first set of data, Eq. 2.17 gives

mc1 = m∞1 + H−1
1

(
C−1

M LMZM + GT
1 C−1

D1
LD1ZD1

)
. (2.26)

From Eq. 2.22, the covariance of the random vector mc1 is given by

Cc1 = H−1
1 . (2.27)

Thus the pdf after conditioning to dobs1 is

f(m|dobs1) = a exp
[
− 1

2
(m−m∞1)

T H1(m−m∞1)
]
, (2.28)

where a is the normalizing factor. The pdf f(m|dobs1) is the prior model for the second

data assimilation step, where m∞1 is the prior mean and Cc1 is the covariance matrix. By

generating a new set of unconditional realizations from the pdf of Eq. 2.28 we can rewrite
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Eqs. 2.23 through 2.27, respectively for the second data assimilation step as

H2 = C−1
c1

+ GT
2 C−1

D2
G2, (2.29)

r02 = g2(m0)− dobs2 , (2.30)

m∞2 = H−1
2

(
C−1

c1
m∞1 + GT

2 C−1
D2

[
G2m0 − r02

])
, (2.31)

mc2 = m∞2 + H−1
2

(
C−1

c1
LcZc + GT

2 C−1
D2

LD2ZD2

)
, (2.32)

Cc2 = H−1
2 . (2.33)

Now by substituting Eq. 2.25 into Eq. 2.31 and using Eq. 2.27, we have

m∞2 = H−1
2

(
C−1

M mprior + GT
1 C−1

D1

[
G1m0 − r01

]
+ GT

2 C−1
D2

[
G2m0 − r02

])
= H−1

2

(
C−1

M mprior +

[
GT

1 GT
2

]C−1
D1

O

O C−1
D2

 (

G1

G2

m0 −

r01

r02

)
)
.

(2.34)

By substituting Eq. 2.27 into Eq. 2.29 and using Eq. 2.23, we find that

H2 = C−1
M + GT

1 C−1
D1

G1 + GT
2 C−1

D2
G2

= C−1
M +

[
GT

1 GT
2

]C−1
D1

O

O C−1
D2


G1

G2

 (2.35)

We assume the observed data, dobs1 and dobs2 , measurement errors for the two sets are

uncorrelated, therefore the covariance matrix of measurement errors is

CD =

CD1 O

O CD2

 , (2.36)

and we can rewrite Eqs. 2.35 and 2.34, respectively as

H2 = C−1
M + GT C−1

D G = H, (2.37)
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m∞2 = H−1
(
C−1

M mprior + GT C−1
D

[
Gm0 − r0

])
, (2.38)

where Eqs. 2.37 and 2.38 respectively, are equivalent to Eqs. 2.10 and 2.12 obtained by

matching all the data simultaneously. Here, it is important to note that after matching the

first set of data it is not necessary to regenerate a new set of unconditional realizations;

In other word, the mc1 are automatically samples of f(m|dobs1) and are equivalent to

m∞1 + LcZc.

2.1.4 RML for Nonlinear Case

For the nonlinear case, the objective function of Eq. 2.7 can be minimized by the

Gauss-Newton method. The Gauss-Newton method can be written in the form

ml+1
j = muc,j + CMGT

l,j

(
CD + Gl,jCMGT

l,j

)−1(
Gl,j(m

l −muc,j)− g(ml
j) + duc,j

)
, (2.39)

[30], where l is the iteration index and the subscript j represents the index of the real-

ization. If we wish to generate Ne realizations conditional to an observed data vector,

Eq. 2.39 is applied for j = 1, 2 · · ·Ne. Note each realization can be generated indepen-

dently, the Gauss-Newton iteration process for ml+1
j is independent of the iterative process

for ml+1
i for i 6= j. The matrix Gl,j denotes the sensitivity matrix evaluated at the ml

j

and is given by

Gl,j =



[∇g1(m
l
j)]

T

[∇g2(m
l
j)]

T

...

[∇gn(ml
j)]

T



T

, (2.40)

where gi is the ith component of Nd-dimensional column vector of predicted data, d =

g(m), and ∇gi is the gradient of gi with respect to m.

2.2 Ensemble Kalman Filtering Method

2.2.1 EnKF from Gauss-Newton

We wish to write Eq. 2.39 in the form that is similar to the updating equation
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used in the ensemble Kalman filter. For doing this, we suppose that the iterations for all

ensembles are done concurrently and define the average model at iteration l by

m̄l =
1

Ne

Ne∑
j=1

ml
j, (2.41)

where Ne is the number of ensembles.

If we do one iteration of the Gauss-Newton algorithm (l = 0) with the initial guess

m0
j = muc,j which we denote by mp

j , and define mu
j = m1

j as the updated realization, then

Eq. 2.39 reduces to

mu
j = mp

j + CMGT
0,j

(
CD + G0,jCMGT

0,j

)−1(
duc,j − g(mp

j)
)
. (2.42)

As will be shown later, when suitable approximations are introduced, this equation can be

reduced to the ensemble Kalman filter (EnKF) equation for updating the jth ensemble by

assimilating data duc,j for the purpose of sampling the a posteriori pdf for m conditional

to data dobs provided all observed data in dobs corresponds to the same time. This means

that the EnKF updating process is similar to doing one iteration of the Gauss-Newton

method. To apply Eq. 2.42 still requires the sensitivity matrices G0,j.

Instead of computing G0,j for j = 1, 2, · · ·Ne by a method such as the adjoint

method, we approximate all G0,j by the same matrix which is based on an average model.

To do so, we define a mean model by

m̄p =
1

Ne

Ne∑
j=1

mp
j , (2.43)

and let Ḡ denote the sensitivity matrix evaluated at m̄p. Then from Taylor’s series, g(mp
j),

the predicted data corresponding to mp
j is given by

g(mp
j) = g(m̄p) + Ḡ(mp

j − m̄p) + ej for j = 1, 2, · · ·Ne. (2.44)
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We estimate the average truncation error, ē, by

ē =
1

Ne

Ne∑
j=1

ej. (2.45)

We estimate the mean of the predicted data by

ḡp =
1

Ne

Ne∑
j=1

g(mp
j). (2.46)

Summing Eq. 2.44 over j, dividing the result by Ne and using Eqs. 2.45 and 2.44, we

obtain

ḡp = g(m̄p) + ē. (2.47)

Next, we approximate the covariance between m and g(m) by using the approximate

samples of m and g(m), i.e., mp
j and g(mp

j), for j = 1, 2, · · ·Ne. Before doing this, it is

important to note that the underlying objective is to obtain a sampling of the posterior

pdf for m conditional to dobs and yet we are using the mp
j ’s (unconditional realizations from

the prior model) as an approximate sampling at least for the purpose of estimating the

covariance between m and g(m). The standard result for the estimation of this covariance

is

cov(m, g(m)) =
1

Ne − 1

Ne∑
j=1

(
mp

j − m̄p
)(

g(mp
j)− ḡp

)T
. (2.48)

Using Eq. 2.44 in Eq. 2.48 gives

cov(m, g(m)) =
1

Ne − 1

Ne∑
j=1

(
mp

j − m̄p
)(

Ḡ(mp
j − m̄p) + g(m̄p)− ḡp + ej)

T , (2.49)

or using Eq. 2.47 and simplifying,

cov(m, g(m)) =
( 1

Ne − 1

Ne∑
j=1

(
mp

j − m̄p
)(

mp
j − m̄p

)T
ḠT
)

+ Ep, (2.50)
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where

Ep =
1

Ne − 1

Ne∑
j=1

(
mp

j − m̄p
)(

ej − ē
)T

. (2.51)

Because each ej is a quadratic in m and the mp
j ’s may be expected to oscillate about their

mean m̄p, one might conjecture that Ep is sufficiently small so that it can be neglected

but we have not been able to show this is true. If we could assume that m and e are

independent random variables then the expectation of Ep would be a null matrix, but

this assumption is not justified because the ej’s are directly related to the mp
j ’s.

In any case, to obtain the updating formula for EnKF, we assume from this point

on that Ep can be neglected so Eq. 2.50 reduces to

cov(m, g(m)) =
( 1

Ne − 1

Ne∑
j=1

(
mp

j − m̄p
)(

mp
j − m̄p

)T)
ḠT . (2.52)

As Ne →∞, Eq. 2.52 converges to CMḠT so we write as an approximation

cov(m, g(m)) ≈
( 1

Ne − 1

Ne∑
j=1

(
mp

j − m̄p
)(

mp
j − m̄p

)T)
ḠT ≈ CMḠT . (2.53)

Similarly, writing the standard estimator for the autocovariance of g(m) and using Eqs. 2.44

and 2.47, we find that

cov(g(m), g(m)) ≈ 1

Ne − 1

Ne∑
j=1

(
g(mp

j)− ḡp
)(

g(mp
j)− ḡp

)T
=

1

Ne − 1

Ne∑
j=1

(
g(m̄p) + Ḡ(mp

j − m̄p) + ej − ḡp
)(

g(m̄p) + Ḡ(mp
j − m̄p) + ej − ḡp

)T
=

1

Ne − 1

Ne∑
j=1

(
Ḡ(mp

j − m̄p) + ej − ē
)(

Ḡ(mp
j − m̄p) + ej − ē

)T
=

(
1

Ne − 1

Ne∑
j=1

(
Ḡ(mp

j − m̄p)
)(

mp
j − m̄p

)T
ḠT

)
+ Ep

2 , (2.54)
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where

Ep
2 =

1

Ne − 1

Ne∑
j=1

[
Ḡ(mp

j − m̄p)
(
ej − ē

)T
+
(
ej − ē

)(
Ḡ(mp

j − m̄p)
)T

+ (ej − ē)(ej − ē)T

]
. (2.55)

Similar to Ep, to proceed we must assume Ep
2 is negligible even though, at this time, we

can neither prove this not rigorously quantify the effect of doing so. Setting Ep
2 equal to

the null matrix of appropriate size in Eq. 2.54 gives

cov(g(m), g(m)) ≈ Ḡ

(
1

Ne − 1

Ne∑
j=1

(
(mp

j − m̄p)
)(

mp
j − m̄p

)T)
ḠT ≈ ḠCMḠT . (2.56)

If for all j, we replace G0,j by Ḡ in Eq. 2.42 we obtain

mu
j = mp

j + CMḠT
(
CD + ḠCMḠT

)−1(
duc,j − g(mp

j)
)
, (2.57)

Now we can avoid computing Ḡ and also avoid explicit use of CM by simply applying the

approximations we have derived. Specifically, Eqs. 2.54–2.56 yield the approximation

ḠCMḠT ≈ 1

Ne − 1

Ne∑
j=1

(
g(mp

j)− ḡp
)(

g(mp
j)− ḡp

)T
, (2.58)

and Eqs. 2.48–2.52 result in the following approximation:

CMḠT ≈ 1

Ne − 1

Ne∑
j=1

(
mp

j − m̄p
)(

g(mp
j)− ḡp

)T)
. (2.59)

Eqs. 2.56–2.59 provide the ensemble Kalman filter method for updating the ensembles

or realizations mp
j , j = 1, 2, · · ·Ne. Based on our derivation, if the observed data vector

corresponds to a set of measurements at a single time, the EnKF is similar to doing one

iteration of the Gauss-Newton method with a sensitivity coefficient equal to the sensitivity

of data at the average model used to update all ensembles.
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2.2.2 EnKF from RML

We consider both the model m and the predicted data, g(m), as random vectors

and define a random vector, y, as

y =

 m

g(m)

 . (2.60)

All vectors are column vectors with the dimension of m given by Nm and the dimension

of g(m) denoted by Nd. Thus, the dimension of y, denoted by Ny, is given by Ny =

Nm +Nd. In the implementation of EnKF, g(m) denotes data predicted at a specific time

tl corresponding to the vector of observed data we wish to assimilate. If measured data at

all times were assimilated (matched) simultaneously, then the vector dobs would include

all measured data and g(m) would represent the corresponding vector of predicted data.

In reservoir characterization problems of interest to us, m represents reservoir variables

such as gridblock porosities and permeabilities or log-permeabilities and g(m) is obtained

by running a simulator with the model m as input.

A critical step in the EnKF is that the assumption that the pdf for y can be

approximated by the multivariate Gaussian distribution given by

f(y) = a exp
(
− 1

2

(
y − ȳ

)T
C−1

Y

(
y − ȳ

))
, (2.61)

where a is the normalizing constant, ȳ is the mean and CY is the covariance matrix for y

given by

CY =

 CM CM,G

CG,M CG

 . (2.62)

Throughout, CM is the autocovariance matrix for m, CG is the autocovariance matrix for

g(m) and CM,G and CG,M are the cross covariance matrices for m and g(m), i.e.,

CM = E
[(

m− m̄
)(

m− m̄
)T ]

, (2.63)
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CG = E
[(

g(m)− g(m)
)(

g(m)− g(m)
)T ]

, (2.64)

CM,G = E
[(

m− m̄
)(

g(m)− g(m)
)T ]

, (2.65)

If measurement error plus modelling error is a Gaussian random vector with mean given

by the Nd-dimensional zero vector and covariance given by CD, a standard application of

Bayes’ theorem gives that the posterior pdf for y conditional to dobs is given by

f(y|dobs) = a exp
(
− 1

2

(
g(m)− dobs

)T
C−1

D

(
g(m)− dobs

))
exp

(
− 1

2

(
y − ȳ

)T
C−1

Y

(
y − ȳ

))
.

(2.66)

where a is now the normalizing constant for the conditional pdf f(y|dobs). Recall that

g(m) and dobs are Nd-dimensional column vectors. Let INd
denote the Nd × Nd identity

matrix, O denote the Nd ×Nm null matrix and define the Nd ×Ny matrix H by

H =

[
O INd

]
. (2.67)

It follows from Eq. 2.60 that data predicted for a given y is linearly related to y since

predicted data is given by

g(m) = Hy, (2.68)

and Eq. 2.66 can be written as

f(y|dobs) = a exp
(
− 1

2

(
Hy − dobs

)T
C−1

D

(
Hy − dobs

))
exp

(
− 1

2

(
y − ȳ

)T
C−1

Y

(
y − ȳ

))
.

(2.69)

It is well known [26] that the randomized maximum likelihood method, RML, can be

applied to obtain a correct sampling of the posterior pdf, f(y|dobs) given by Eq. 2.69.

To generate one realization using RML, we generate a set of Ne unconditional

realizations of y from the Gaussian pdf of Eq. 2.61. Such an unconditional realization,

yuc,j, can be obtained by generating an Ny-dimensional vector Zj of independent standard
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random normal deviates and calculating

yuc,j = ȳ + LyZj, (2.70)

where

CY = LyL
T
y , (2.71)

is the Cholesky decomposition of CY . For each unconditional realization muc,j, 1 ≤ j ≤

Ne, we generate a set of realization of the data, duc,j by adding noise to the data i.e.,

duc,j = dobs + LDZD,j, (2.72)

where ZD,j is a vector of standard random normal deviates and LDLT
D is the Cholesky

decomposition of the measurement error covariance matrix, CD. For each j, we minimize

Oj(y) =
1

2

(
Hy − duc,j

)T
C−1

D

(
Hy − duc,j

)
+

1

2

(
y − yuc,j

)T
C−1

Y

(
y − yuc,j

)
.

(2.73)

Then it is well known that the set of minima, yu
j , 1 ≤ j ≤ Ne represents a set of samples

from the conditional pdf f(y|dobs). The minimum of Oj(y) can be found by setting its

gradient with respect to y equal to the Ny-dimensional zero vector and solving for y.

Denoting this solution by yu
j , we find that

yu
j = yuc,j + CY HT

(
CD + HCY HT

)−1(
duc,j −Hyuc,j

)
. (2.74)

The preceding equation is effectively the basic equation for generating a suite of realiza-

tions using EnKF except yuc,j is generated as data are assimilated sequentially in time,

the data part of each yuc,j is generated by using prediction from the forward model and

CY is generated by an approximate method.

Gu and Oliver [14] were able to relate the MAP estimate to the ensemble Kalman

filter. Here, we extend their result to show that if data are linearly related to the model,
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the prior model is multivariate Gaussian, and data are uncorrelated in time, then the

generation of ensembles using EnKF is equivalent to sampling with randomized maximum

likelihood [27] as the number of ensembles becomes infinite.

Next we establish conditions under which the preceding procedure is equivalent

to using RML to sample the pdf f(m|dobs), the conditional pdf for m given dobs. We

consider the case where (i) the prior model for m is Gaussian with mean mprior and

covariance matrix CM and (ii) predicted data is linearly related to the model by

g(m) = g(m0) + G(m−m0). (2.75)

From Eq. 2.75, the expectation of g(m) is given by g(mprior) so

ȳ =

 mprior

g(mprior)

 . (2.76)

and Eq. 2.62 can be rewritten as

CY =

 CM CMGT

GCM GCMGT

 . (2.77)

Letting CM = LMLT
M be the Cholesky decomposition of CM , and defining the block lower

triangular matrix Lc by

Lc =

 LM O

GLM O

 , (2.78)

where the O’s denote null matrices, it follows easily from Eq. 2.77 that LcL
T
c = CY , thus,

Lc = Ly. Using this result and Eq. 2.76 in Eq. 2.70 gives

yuc,j =

 muc,j

g(m)uc,j

 =

 mprior + LMZM,j

g
(
mprior + LMZM,j

)
 , (2.79)

where ZM,j denotes the Nm dimensional vector with entries identical to the corresponding
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components of the first Nm dimensional entries of Zj. The vector consisting of the first

Nm components of yuc,j pertains to the model m and is given by

muc,j = mprior + LMZM,j. (2.80)

which represents a correct sampling of the prior Gaussian distribution for m. From

Eqs. 2.67, 2.77 and 2.74, it is straightforward to show that the model part of yu
j is given

by

mu
j = muc,j + CMGT

(
CD + GCMGT

)−1(
duc,j − g(muc,j)

)
. (2.81)

Eqs. 2.80 and 2.81 imply that the mu
j ’s extracted from the yu

j ’s are equivalent to applying

RML to sample f(m|dobs) when predicted data is linearly related to m and the prior pdf

for m is N(mprior, CM), i.e., a normal distribution with expectation mprior and covariance

CM . When the prior model is N(mprior, CM), f(m|dobs) is given by

f(m|dobs) = a exp
(
− 1

2

(
g(m)− dobs

)T
C−1

D

(
g(m)− dobs

))
exp

(
− 1

2

(
m−mprior

)T
C−1

M

(
m−mprior

))
,

(2.82)

where in the linear case under consideration, g(m) = g(m0) + G(m−m0).

In the case where dobs contains all dynamic data we wish to assimilate, then for

the purposes of uncertainty evaluation in the model and future predictions using the

forward model, our objective is to sample from f(m|dobs). To summarize our results,

we have shown that the set of yu
j ’s (Eq. 2.74) generated by RML always represents a

correct sampling of the pdf of Eq. 2.69 or equivalently Eq. 2.66. When the conditional

pdf f(m|dobs) is given by Eq. 2.82 and data are linearly relted to the model, then the

model part of the yu
j ’s represents a correct sampling of f(m|dobs). If in addition the
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observed data, dobs, can be written as

dobs =



dobs(t1)

dobs(t2)

...

dobs(tn)


, (2.83)

where dobs(t`) represents data measured at time t` and t1 < t2, · · · , < tn, and individual

data are uncorrelated in time, then generating the conditional mean of m (the MAP es-

timate) by minimization is equivalent to generating a sequence of MAP estimates where

at the `th step in the sequence, we minimize an objective function which includes only

the data mismatch between dobs,` and the corresponding predicted data [30]. After each

minimization, the covariance matrix must be updated to the a posteriori covariance ma-

trix, CM,`. The MAP estimate based on assimilating dobs,` and the covariance matrix CM,`

effectively provide the prior Gaussian model for the assimilation of the next set of data,

dobs,`+1. Using these ideas, it can be shown that RML can be used to assimilate data se-

quentially in time and that the conditional realizations obtained at the final time step tn

represents a correct sampling of f(m|dobs) provided again that (i) the prior pdf for m used

to assimilate data at the first time t1 is N(mprior, CM), (ii) g(m) = g(m0)+G(m−m0) and

(iii) data measurement errors are uncorrelated in time and satisfy Gaussian distributions

with zero means. Under these conditions, application of Eq. 2.74 sequentially in time

results in a set of yu
j ’s after assimilation at tn which reprsent a correct sampling of the

pdf in Eq. 2.69 and the model parts of the yu
j ’s represent a correct sampling of f(m|dobs)

where, dobs is given by Eq. 2.83.

From this point on we assume that Eq. 2.74 is applied sequentially in time so

that duc,j represents data at some time t` where our vector of observed data is dobs(t`).

For 1 ≤ j ≤ Ne, we let mp
j denote the model part of the ensemble vector obtained

by assimilating data at t`−1. Letting g(m) now denote predicted data corresponding to
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dobs = dobs(t`), it makes sense to replace yuc,j in Eq. 2.74 by

yp
j =

 mp
j

g(mp
j)

 , (2.84)

so that Eq. 2.74 becomes

yu
j = yp

j + CY HT
(
CD + HCY HT

)−1(
duc,j −Hyp

j

)
, (2.85)

for 1 ≤ j ≤ Ne we also replace ȳ in the prior model by the average of the yp
j ’s. This is the

natural analogue of the procedure we established in the linear case. If we also estimate

the covariance CY by

CY =
1

Ne − 1

Ne∑
j=1

(
yp

j − ȳ)(yp
j − ȳ)T , (2.86)

then Eq. 2.86 is mathematically equivalent to the basic EnKF algorithm for assimilating

data. The approximation of Eq. 2.86 may be rank deficient and so even in the linear case,

we can only show that EnKF is equivalent to RML and hence gives a correct sampling

as Ne → ∞. Similarly, we can approximate the covariance submatrices that appear in

Eq. 2.62 by the following procedure, here we drop the superscript p on the right hand

side of Eq. 2.85 and keep in mind all the matrices on the right hand side belongs to the

prediction period. To simplify the equations, we define the Ny×Ne matrix of all ensembles

Y by

Y =

[
y1 y2 . . . yNe ,

]
(2.87)

and the Ny ×Ne matrix Y , as the matrix with all columns equal to y given by

y =
1

Ne

Ne∑
j=1

yj, (2.88)
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Then, we define the matrix ∆Y as

∆Y = Y − Y

=

[
y1 − y y2 − y . . . yNe − y

]

=

m1 −m . . . mNe −m

d1 − d . . . dNe − d


, (2.89)

where dj is the predicted data for jth ensemble, dj = g(mj), and d is the average of

predicted data.

From Eq. 2.89, we write an approximation of CY as

CY =

 CM CM,G

CG,M CG

 ≈ 1

Ne − 1
(Y − Y )(Y − Y )T

=
1

Ne − 1

Ne∑
j=1

(yj − y)(yj − y)T .

(2.90)

To avoid calculating the Ny × Ne matrix CY , which may be extremely large, we define

the matrix A by A = ∆Y T HT so

AT = H∆Y

=

[
ONd×Nm | INd×Nd

]
∆Y

=

[
d1 − d . . . dNe − d

]
,

(2.91)

represents the rows of ∆Y corresponding to predicted data. Using the approximation of

Eqs. 2.90 and 2.91, we may approximate Eq. 2.85 as

yu
j = yp

j +
1

Ne − 1
∆Y A

(
CD +

AT A

Ne − 1

)−1(
duc,j −Hyp

j

)
, (2.92)
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where

1

Ne − 1
AT A =

1

Ne − 1

[
d1 − d . . . dNe − d

]
(d1 − d)T

...

(dNe − d)T


=

1

Ne − 1

Ne∑
j=1

(dj − d)(dj − d)T ,

(2.93)

and

1

Ne − 1
∆Y A =

1

Ne − 1

[
y1 − y . . . yNe − y

]
(d1 − d)T

...

(dNe − d)T



=
1

Ne − 1

m1 −m . . . mNe −m

d1 − d . . . dNe − d




(d1 − d)T

...

(dNe − d)T


=

 1
Ne−1

∑Ne

j=1(mj −m)(dj − d)T

1
Ne−1

∑Ne

j=1(dj − d)(dj − d)T

 .

(2.94)

Finally, by substituting Eqs. 2.93 and 2.94 into Eq. 2.92,

yu
j = yp

j +

 1
Ne−1

∑Ne

j=1(mj −m)(dj − d)T

1
Ne−1

∑Ne

j=1(dj − d)(dj − d)T


×

([
1

Ne−1

∑Ne

j=1(dj − d)(dj − d)T

]
+ CD

)−1

(duc,j −Hyp
j ). (2.95)

2.3 EnKF from Multiple Linear Regression

2.3.1 Multiple Linear Regression

Multiple linear regression is based on a linear relationship between a main variable

m and a set of auxiliary variables zi. The multiple linear regression estimate, mest, is
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given by

mest = µ +

Nd∑
i=1

ai(zi − ζi), (2.96)

where Nd is the number of auxiliary variables, µ is the mean of the main variable m and

ζi is the mean of the auxiliary variable zi. In vector form,

mest = µ + aT (z − ζ). (2.97)

Note if m is a random vector, a will be the matrix of coefficients, where the jth column

of a represents the weights used to estimate jth entry of the vector m. Now we define the

estimation error as

e = m−mest. (2.98)

The expectation of the estimation error is equal to zero (null vector for the case where

m is a vector). Since the expectation of the estimation error is equal to zero, the mean

square error and the covariance of estimation error are identical. Therefore, to minimize

the mean square error we inscribe the covariance of the estimation error as

cov(e, e) = E
[(

m−mest
)(

m−mest
)T]

= E
[(

m− µ− aT (z − ζ)
)(

m− µ− aT (z − ζ)
)T]

= E
[
(m− µ)(m− µ)T − aT (z − ζ)(m− µ)T

− (m− µ)(z − ζ)T a + aT (z − ζ)(z − ζ)T a
]

= CM − aT CZM − CMZa + aT CZa,

(2.99)

where CM and CZ are the covariance matrices of m and z respectively and CMZ is the

cross-covariance matrix between m and z. Using the fact that the transpose of CZM is

equal to CMZ and taking partial derivatives with respect to ai yields

∇a

(
cov(e, e)

)
= −2CT

MZ + 2CZa. (2.100)
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Therefore the minimum of the mean square error is obtained when

a = C−1
Z CT

MZ . (2.101)

Using a given by Eq. 2.101 in Eq. 2.97 gives the best linear estimate of the model para-

meters. Note Eq. 2.101 is also the well known simple cokriging system of equations; see

[31]. By substituting Eq. 2.101 into Eq. 2.97 we obtain

mest = µ + CMZC−1
Z (z − ζ). (2.102)

Using Eq. 2.101 in Eq. 2.99 to compute the covariance matrix of the estimation error, we

find that

cov(e, e) = CM − CMZC−1
Z CT

MZ − CMZC−1
Z CT

MZ + CMZC−1
Z CZC−1

Z CT
MZ

= CM − CMZC−1
Z CT

MZ .

(2.103)

Now we define the vector ε as the measurement error with mean equal to a null vector

and covariance matrix CD. Suppose we can always write vector of observations, z, as

z = d + ε (2.104)

where d = g(m) is a function of the random vector m. Assuming the measurement errors

are independent of d and m, we can rewrite the covariance matrices as

CZ = cov(d + ε, d + ε) = cov(d, d) + CD = CDD + CD (2.105)

and

CMZ = cov(m, d + ε) = cov(m, d) = CMD, (2.106)

then Eq. 2.102 becomes

mest = µ + CMD

(
CDD + CD

)−1
(d + ε− δ). (2.107)
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where δ is the mean of the random vector d. Note, because the mean of the vector ε

is a null vector, δ is formally equal to ζ. Now for a given set of observations, dobs, as a

realization of the random vector z (or d+ε) and a set of model parameters with mean equal

to mprior and covariance matrix CM , we can write the best linear estimate (Eq. 2.107) of

the model parameters as

mest = mprior + CMD

(
CDD + CD

)−1
(dobs − δ). (2.108)

2.3.2 An Ad hoc Approximate Sampling Method

The estimate calculated from the Eq. 2.108 is a smooth estimate of the model

m. Here, we attempt to sample from the probability distribution of the estimate model

parameters to construct rougher estimate of the model parameters. To attempt to sample

the estimate, we use a method which is very similar to randomized maximum likelihood

method. First, we generate a set of Ne realizations of the model parameters from

mj = mprior + LMZMj
, (2.109)

where LM is a square root of the CM and ZM is a vector of independent normal deviates

with zero mean and unit variance. In practice, if the number of model parameters is large

we usually use a sequential Gaussian simulation program to generate the realizations.

Then we generate a set of Ne realizations of the observed data as

duc,j = dobs + LDZDj
, (2.110)

where LD is a square root of the CD and ZD is a vector of independent normal deviates

with zero mean and unit variance. Note this algorithm is valid for a Gaussian measurement

error and a Gaussian prior model. To generate realizations of the data part, instead of

sampling the probability distribution of data with mean δ and covariance matrix CDD,

we generate a set of Ne realizations of the data part by running the model mj to sample

dj = g(mj). Therefore, for each realization from Eq. 2.108 we have an updated model
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defined by

mu
j = mj + CMD

(
CDD + CD

)−1
(duc,j − dj). (2.111)

Although Eqs. 2.107 and 2.108 were theoretically derived, Eq. 2.111 is not; it is

an ad hoc result based on the similar intuitive motivation that resulted in the randomized

maximum likelihood (RML) method. A rough intuitive motivation follows. By replacing

mprior by muc,j, we replace the underlying prior pdf by one which now has expection equal

to muc,j. By replacing δ by dj = g(muc,j), we are effectively assuming that the mean of

the set of predicted data generated from a set of models which represents a sampling of

the prior pdf can be estimated by the data predicted using the mean (now assumed to

be muc,j) of the prior distribution. Why noise should be added to dobs seems less clear

except that in RML case for simple cases we can show that it is necessary. Although the

preceding is a less than compelling explanation, we can show that in the case, where the

data is linear related to the model, the random variable mu
j given in Eq. 2.111 has the

correct expectation and covariance.

For a linear problem

d = Gm (2.112)

using the fact that E[ZM ] = 0 and E[ZD] = 0 the expectation of the updated models is

equal to

E[mu] = E
[
mprior + LMZM + CMD

(
CDD + CD

)−1(
dobs + LDZD −G(mprior + LMZM)

)]
= mprior + CMD

(
CDD + CD

)−1
(dobs −Gmprior).

(2.113)

After substitution δ for Gmprior, we obtain

E[mu] = mest. (2.114)

Therefore, the covariance matrix of the updated models, using the fact that for the linear
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problem, CMGT = CMD and GCMGT = CDD, is equal to

E[(mu −mest)(mu −mest)T ] =

E

[(
LMZM + CMD(CDD + CD)−1(LDZD −GLMZM)

)
·
(
LMZM + CMD(CDD + CD)−1(LDZD −GLMZM)

)T
]

= CM − CMD(CDD + CD)−1CT
MD,

(2.115)

where from Eqs. 2.105, 2.105 and 2.106, the covariance matrix of the updated models

is equal to the covariance matrix of the estimation error. Therefore in our sampling

procedure for a linear problem we can preserve the expectation and the covariance of the

original estimate as the best linear estimate.

2.3.3 EnKF motivation

So far we have not discussed the way that we should calculate the matrices CMD

and CDD. By definition

CMD = E[(m− µ)(d− δ)T ], (2.116)

and

CDD = E[(d− δ)(d− δ)T ]. (2.117)

By using the idea of ensemble Kalman filtering we can approximate these matrices by

CMD =
1

Ne − 1

Ne∑
j=1

(mj −m)(dj − d)T , (2.118)

and

CDD =
1

Ne − 1

Ne∑
j=1

(dj − d)(dj − d)T , (2.119)
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where dj = g(mj) and d is given by

d =
1

Ne

Ne∑
j=1

g(mj). (2.120)

Now we can write Eq. 2.111 as an approximation by

mu
j = mj+

( 1

Ne − 1

Ne∑
j=1

(mj−m)(dj−d)T
)( 1

Ne − 1

Ne∑
j=1

(dj−d)(dj−d)T +CD

)−1

(duc,j−dj).

(2.121)

The preceding equation is the update equation of the ensemble Kalman filtering method

for assimilation of observed data at each assimilation time step. Note that beside the

Gaussian assumption for the measurement error we did not make any other important

Gaussian assumption to derive Eq. 2.121. The assumption that the initial samples of the

model parameters were drawn from a multi-Gaussian distribution may not be a crucial

assumption for the case where we assimilate the data sequentially. It means, once we

start to assimilate the data the updated model from the previous data assimilation step

construct the set of initial samples for the next data assimilation step. This idea is well

described in Bayesian framework by [10].

2.4 Updating of Time Dependent Parameters in EnKF

In the presence of time dependent parameters, the state vector for jth ensemble

will be defined by

yj =


mj

pj

dj

 =

[
mT

j pT
j dT

j

]T

, (2.122)

where p is a Np-dimensional column vector and Np is the number of time dependent

parameters for each ensemble. For a black oil reservoir simulator, p may include pres-

sure, saturation and dissolved GOR. Here, we rewrite Eq. 2.85 in terms of matrix of all
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ensembles,

Y =


M

P

D

 , (2.123)

where M is an Nm×Ne matrix with the jth column equal to mj, P is an Np×Ne matrix

with the jth column equal to pj and D is an Nd ×Ne matrix with the jth column equal

to dj, predicted data from the jth ensemble. In terms of matrix of ensembles, we can now

rewrite Eq. 2.85 as

Y u = Y + CY HT (HCY HT + CD)−1(Duc −HY ), (2.124)

where Duc is an Nd × Ne matrix with the jth column equal to duc,j. As in Eq. 2.92, we

approximate Eq. 2.124 as

Y u = Y +
(Y − Y )(Y − Y )T

Ne − 1
HT
[
H

(Y − Y )(Y − Y )T

Ne − 1
HT + CD

]−1

(Duc −HY )

= Y +
(Y − Y )(D −D)T

Ne − 1

[(D −D)(D −D)T

Ne − 1
+ CD

]−1

(Duc −D)

.

(2.125)

It is easy to show that Y (D −D)T is equal to a null matrix because

Y (D −D)T =

[
y y . . . y

]
(d1 − d)T

...

(dNe − d)T


=

Ne∑
j=1

y(dj − d)T

= y
Ne∑
j=1

(dj − d)T = 0.

(2.126)
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Therefore

Y u = Y
(
I +

(D −D)T

Ne − 1

[(D −D)(D −D)T

Ne − 1
+ CD

]−1

(Duc −D)
)

= Y
(
I + δ(D)

) , (2.127)

where δ(D) is defined by

δ(D) =
(D −D)T

Ne − 1

[(D −D)(D −D)T

Ne − 1
+ CD

]−1

(Duc −D) (2.128)

Note that parts of Y , i.e., M , P and D, all get updated using the same coefficient

matrix,
(
I + δ(D)

)
, and Eq. 2.127 indicates the updating coefficient matrix is only a

function of the matrix D.

2.4.1 EnKF Procedure and Implementation

Fig. 2.1 shows the general procedure that one should use for any type of model.

Eq. 2.127 shows the best way to implement the ensemble Kalman filter procedure:

• Generation of matrix D; for each ensemble the forward model will be run and the

jth column of matrix D is equal to the predicted data from the jth ensemble.

• Calculation of vector d, vector of average predicted data; this vector represents the

whole matrix D, because all the columns of matrix D are equal to d.

• Generation of matrix Duc, matrix of perturbed observations;

• Calculation of δ(D) term; for the inversion part we used singular value decomposi-

tion method from the LAPACK routine. (in our implementation, we use significant

singular values up to the point that the summation of the significant singular values

is less than 99.99% of the summation of all singular values.)

• Update the matrix Y ; for this part if the number of model parameters is too large

we can update the model parameters partially, e.g., we can update the porosity

of all gridblocks ,store them on the disk and then update the permeability of all

gridblocks and so on.
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Figure 2.1: Ensemble Kalman filtering flowchart.

2.4.2 Linear Problem

As EnKF updates not only model parameters but primary variables at a data

assimilation step, it is possible to obtain physically unreasonable values of pressures and

saturations that must be modified to physically reasonable values. Intuitively, one might

expect to eliminate this problem by rerunning the reservoir simulation time step. Here,

we consider a simple linear problem to investigate the effect of updating of time dependent

parameters (primary variables in reservoir simulation) by rerunning the forward model in

EnKF. Suppose we have the following relationships between p, d and m,

pk+1 = Fkm
k + Akp

k + αk, (2.129a)
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dk+1 = Gkm
k + Bkp

k + βk, (2.129b)

where Fk, Ak, Gk and Bk are matrices and αk and βk are known vectors. Here, k denotes

the time step, pk+1 and dk+1 are at time tk+1 that we assimilate data. We note that if

dk+1 is a function of mk and pk+1, we can still write Eq. 2.129b as a function of mk and

pk by using a new set of coefficient matrices. We rewrite Eqs. 2.129a and 2.129b, in the

form of a matrix of ensembles as

P k+1 = FkM
k + AkP

k + αkĨ , (2.130a)

Dk+1 = GkM
k + BkP

k + βkĨ , (2.130b)

where Ĩ is a Ne-dimensional row vector where each entry is equal to 1.

Note that Ĩ(D −D)T is equal to a null matrix, i.e.,

Ĩ(D −D) =

[
1 1 . . . 1

]


(d1 − d)T

(d1 − d)T

...

(dNe − d)T


=

Ne∑
j=1

(dj − d) = O. (2.131)

Then from Eq. 2.127, we see that Ĩδ(D) is also a null matrix, i.e.

Ĩδ(D) = O. (2.132)

Now suppose we have data at two time steps, the k+1st and k+2nd time steps, that

we wish to assimilate. After assimilation of data at tk+1, from Eqs. 2.127 and 2.130a, we

see that for the standard EnKF method where we update the time dependent parameters,

we have

P k+1,u = P k+1
(
I + δ(Dk+1)

)
= FkM

k
(
I + δ(Dk+1)

)
+ AkP

k
(
I + δ(Dk+1)

)
+ αkĨ ,

(2.133)
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whereas, for the case that we rerun the time step, we have

P k+1,r = FkM
k
(
I + δ(Dk+1)

)
+ AkP

k + αkĨ . (2.134)

Now we continue assimilation of data for one more time step. After assimilation of second

set of data at time tk+2, the normal EnKF updating gives

P k+2,u = P k+2
(
I + δ(Dk+2)

)
= Fk+1M

k
(
I + δ(Dk+1)

)(
I + δ(Dk+2)

)
+ Ak+1P

k+1,u
(
I + δ(Dk+2)

)
+ αk+1Ĩ

= Fk+1M
k
(
I + δ(Dk+1)

)(
I + δ(Dk+2)

)
+ Ak+1

(
FkM

k
(
I + δ(Dk+1)

)
+ AkP

k
(
I + δ(Dk+1)

)
+ αkĨ

)(
I + δ(Dk+2)

)
+ αk+1Ĩ

(2.135)

For the case that we rerun the time step,

P k+2,r = Fk+1M
k
(
I + δ(Dk+1)

)(
I + δ(Dk+2)

)
+ Ak+1P

k+1,r + αk+1Ĩ

= Fk+1M
k
(
I + δ(Dk+1)

)(
I + δ(Dk+2)

)
+ Ak+1

(
FkM

k
(
I + δ(Dk+1)

)
+ AkP

k + αkĨ
)

+ αk+1Ĩ

(2.136)

Although the δ(Dk+2) in Eqs. 2.135 and 2.136 are not the same, by comparing the right

hand sides of these equations, we can see that in the second term on RHS of Eq. 2.136

the model part has not been updated. If we use the final model parameters obtained

from the case where we reran the data assimilation time step and apply the forward

model (Eqs. 2.130a and 2.130b) forward from “time zero”, the predicted P k+2 will not be

consistent with P k+2,r. Thus, using P k+2,r to predict forward to times greater than time

tk+2 will give P l results inconsistent with the estimate of the model. Therefore, in our

implementation we simply truncate any such value back to a prescribed upper or lower

bound for the variable. For example, water saturation physically can not be less than 0
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or greater than 1. Therefore, in our study every time the updated water saturation of

any gridblock is less than 0 we change the saturation to 0 for that particular gridblock.

38



CHAPTER 3

TOY PROBLEMS

3.1 Toy Problem 1

Here, we apply the EnKF to a simple non-linear problem. For this example, there

is only one model parameter, i.e. m is a real random variable. Consider the following

forward model,

d = g(m, t) = 1− 9

2

(
m− 2π

3

)2

+ (t− 1) sin(m), (3.1)

where m is a scalar model parameter and t is time. To make this model similar to a

problem where our forward model is a reservoir simulator, we define the following recursive

equation for predicting data with the restart option of the simulator,

g(m, t + ∆t) = g(m, t) + sin(m)∆t. (3.2)

We generate true synthetic data using the true model which is mtrue = 1.88358, at five

times t = 1, 2, ..., 5. At each time, there is a single datum. To generate synthetic observed

data, we add normal random noise generated from N(0, 0.01) as measurement error.

We consider a normally distributed prior model, m ∼ N(2.4, 0.1). To assimilate the

data at each time step, we update the time dependent parameters along with the model

parameters during the assimilation of data. Note that in this problem, the data and time

dependent parameter (p in Eq. 2.122) for each data assimilation time step are the same.

Fig. 3.1 shows the prior pdf and the posterior distribution conditioned to 1, 2, 3, 4 and

5 data. The posteriori pdf’s are non-Gaussian and the pdf’s conditional to data at t1, t2

and t3 have two distinct modes. In this case, we start the process with 5001 ensembles,

5000 generated as unconditional realizations from the prior plus one ensemble equal to

the prior mean. Figs. 3.2 through 3.4 show the histogram of the model parameter
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Figure 3.1: Prior pdf and posterior pdf after integrating 1, 2, 3, 4 and 5 data, toy problem
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Figure 3.2: Posterior pdf and ensembles after assimilation of first data, toy problem 1.
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and the posterior pdf after assimilation of the data at t = 1, 3 and 5. Here, we add the

prior mean to the set of ensembles and during data assimilation, update this ensemble by

assimilating dobs (not a duc) to obtain an updated model which we refer to as the central

model. For the linear case, it is easy to show that the central model is the same as the

MAP estimate. In Fig. 3.2, the posterior pdf shows high probability around the model

m = 2.30521 (second root of the quadratic part of the model) because for t = 1 the sine

term in Eq. 3.1 does not have any effect on the predicted data. By assimilating more

data the sine term in the model becomes dominant and m = 2.30521 is no longer a valid

model. Figs. 3.3 and 3.4 show how the posterior pdf moves so that it finally has a single

mode close to the truth. As we can see, the mean model, average of all ensembles, is

always slightly closer to the true model for all data assimilation steps. After assimilation

of the datum corresponding to t = 5, EnKF (see Fig. 3.4) gives a more reliable sampling

of the correct pdf, but still gives a distribution which is too broad. Even as we continue

to assimilate data beyond t = 5, the distribution obtained with EnKF remains broader

than the true distribution. Overall, the results suggest that the standard EnKF method

does not give a reliable estimate of the true pdf in a multi-modal case, i.e., does not give

a proper characterization of the uncertainty in m and even in the single mode case it may

over estimate the uncertainty in m.

Figs. 3.5 and 3.6 show the distribution of the model parameter after matching one

and five data using the RML method. The unconditional realizations (starting ensembles)

in RML method and EnKF are the same. For this non-linear problem RML approximate

the posterior pdf much better than EnKF.

3.2 Toy Problem 2

In the previous problem, as we assimilate more data the posterior pdf moves toward

a conditional pdf with a single mode. We now consider a problem when as more data are

assimilated, the posterior pdf remains multi-modal. For this example the forward model

is given by

d = g(m, t) = 1− 9t

2

(
m− 2π

3

)2

. (3.3)
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Figure 3.3: Posterior pdf and ensembles after assimilation of third data, toy problem 1.
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Figure 3.4: Posterior pdf and ensembles after assimilation of fifth data, toy problem 1.

To make this data prediction similar to a problem where our forward model is a reservoir
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Figure 3.5: Posterior pdf and distribution of conditional realizations (ensembles) after
matching one data by the RML method, toy problem 1.
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Figure 3.6: Posterior pdf and distribution of conditional realizations (ensembles) after
matching five data by RML method, toy problem 1.
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simulator, we rewrite Eq. 3.3 as,

g(m, t + ∆t) = g(m, t)− 9∆t

2

(
m− 2π

3

)2

. (3.4)

We generate true synthetic data using the true model given by mtrue = 1.88358, at five

times t = 1, 2, ..., 5 (Note each datum which can be produced by the true model, can also be

generated by m = 2.30521). At each time, there is a single datum. To generate synthetic

observed data, we add normal random noise generated from N(0, 0.01) as measurement

error. We consider a normally distributed prior model, m ∼ N(2.1, 0.2). To assimilate

the data at each time step, we update the time dependent parameters along with the

model parameters during the assimilation of data. Fig. 3.7 shows the posterior pdf after

matching 5 data at t = 5 and Fig. 3.8 shows the histogram of the model parameter after

assimilation of the data at t = 5. We can see the real posterior pdf is much narrower than

the histogram generated by the ensembles. This example confirms again that EnKF may

provide a relatively poor characterization of uncertainty in the model in a multi-modal

case.
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Figure 3.7: Posterior pdf after assimilation of fifth data, toy problem 2.
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Figure 3.8: Ensembles after assimilation of fifth data, toy problem 2.

Fig. 3.9 and shows the distribution of the model parameter after matching five

data using the RML method. The unconditional realizations (starting ensembles) in

RML method and EnKF are the same. For this non-linear problem RML provides an

almost perfect approximate to the posterior pdf.

3.3 Metric

Fig. 3.10 shows the difference between the average model and the truth after assim-

ilation of each datum. For the first toy problem the difference decreases after each data

assimilation but in the second toy problem, the difference between the average model,

which we usually consider as our estimate from the EnKF method, is not becoming closer

to the truth as more data are assimilated. Fig. 3.11 illustrates the average of the dif-

ference between each ensemble and true model, i.e., the average of |m −mtrue|. We can

see for the second problem the average difference between the ensembles and the true

model decreases as data at t = 4 and t = 5 are assimilated. For toy problem 1, EnKF

clearly provides a better characterization of the conditional pdf for m as more data are
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Figure 3.9: Posterior pdf and distribution of conditional realizations (ensembles) after
matching five data by the RML method, toy problem 2.

assimilated, see Figs. 3.2 through 3.4. This is also true in toy problem 2 although the

improvement is slight and is not apparent from the results we have provided. Now the

question is what metric should be used to quantify the reliability of EnKF in terms of

providing an estimate of the truth. The mean of the ensembles is conventionally used as

an estimate even though we have shown that the mean is not guaranteed to provide a

good estimate. This is consistent with the fact that EnKF gives a slightly better charac-

terization of the relevant pdf as more data is assimilated and suggests that the average

of the difference between each ensemble and the truth is a better indicator of how EnKF

is performing even if the average model is used as the estimate. The results of Fig. 3.10

are based on using the mean model as an estimator of the true model, but similar results

are obtained if the central model is used as the estimator of the truth. Note the central

model becomes more important in the presence of time dependent parameters, i.e. after

assimilation of production data, to predict the performance of the reservoir, the central

model can be run by its updated time dependent parameters.
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Figure 3.10: Difference of the average of ensembles and true model after each data assim-
ilation.
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CHAPTER 4

2D SYNTHETIC PROBLEM

4.1 Production History

The horizontal 2D problem consists of a 20 × 30 grid with ∆x = ∆y = 300 feet

and 600 active gridblocks. There are 6 producing wells. The production consists of 90

days of production from well PRO-1 with all other wells shut in. After this initial 90

day period, well PRO-2 begins production while well PRO-1 continues to produce. This

sequence is continued until we reach a total time of t = 540 days at which well PRO-6

has been producing for exactly 90 days. At each well, the production well is specified

to be qo = 100 STB/day from the time the well is put on production up to 540 days.

After this 540 day period, we change well PRO-1 from a producer to an injector, INJ-1,

and continue to produce from the other wells until 5850 days. At day 5850, we close well

PRO-5 and continue production from the rest of the wells, until 7290 days. From t = 540

to 5850 days, the water injection rate is 1000 STB/day and during this time period, the

wellbore constraint at the five producing wells is qo = 200 STB/day. At t = 5850 days,

the injection rate is increased to 2000 STB/day, well PRO-5 is shut in and the other wells

produce based on a target rate of qo = 300 STB/day.

The true rock property fields were generated using sequential Gaussian co-simulation.

The key geostatistical parameters used to generate the truth are listed in Table. 4.1. The

production data generated consist of (i) flowing bottom hole pressure, producing gas-oil

ratio (GOR) and water cut at producing wells; (ii) bottom hole pressure of the injector.

We generated these true data using the ECLIPSE simulator. To generate the observed

data, dobs, we added Gaussian noise to the true production data. The relative error added

to the true data is 5% for bottom hole pressures, 5% for producing gas-oil ratio and 0.1%

for water cut.
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4.1.1 Generation of Ensembles

A suite of unconditional realizations (ensembles) were generated using joint sequen-

tial multi-Gaussian code developed by Gómez-Hernández et al. [13]. For the ensemble

Kalman filter, 90 unconditional realizations were generated as the initial set of ensembles

based on the true geostatistical parameters given in Table. 4.1. r1 and r2 are the primary

and secondary correlation lengths of the structure in the direction of anisotropy axes, α.

φmean 0.2
[ln k]mean 4.0

σφ 0.05
σln k 2.0
ρφ,ln k 0.8

α 40◦

r1 (ft) 8400
r2 (ft) 1500

Table 4.1: Geostatistical parameters of 2D synthetic problem.

4.2 Metric

Fig. 4.1 shows the difference between the average model and the true model for

the porosity and log-permeability fields. Here we define the function Ψ by

Ψ(m) =
1

Nm

Nm∑
j=1

(
[

1

Ne

Ne∑
i=1

mi
j]−mtrue

j

)2
, (4.1)

where Nm is the number of a particular type of model parameters and 1
Ne

∑Ne

i=1 mi
j equals

the average of all ensembles for the jth grid block. Similar to the second toy problem,

the metric of Eq. 4.1 shows that we are not obtaining more reliable estimate of the model

as more data are assimilated. But when we compare the 2D map of the porosity and

log-permeability field with respect to the truth, Figs. 4.3 through 4.8, we can see that

there is an improvement in estimating the structure of the true model. Therefore we

define a new function Γ by

Γ(m) =
1

Nm

Nm∑
j=1

1

Ne

Ne∑
i=1

(
mi

j −mtrue
j

)2
, (4.2)
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Fig. 4.2 shows the behavior of function Γ for both porosity and log-permeability after each

data assimilation. We can see that in general, this metric suggest that the ensembles are

getting closer to the truth as more data are assimilated. Note that Γ(m) shows a noticeable

increase at the two times (t = 540 and t = 5850 days) where the well producing conditions

were changed sharply.

Figs. 4.9 and 4.10 show the water saturation profile for the true model and average

of all ensembles after assimilation of data at 7290 days. We can see that there is good

agreement between the truth and the average of saturation field. Calculations show that

there is 5% error in the water content of the reservoir after 7290 days. The two black

regions on the average predicted saturation profile belongs to the places where the updated

water saturation is less than irreducible water saturation.
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Figure 4.1: Difference of the average of ensembles and true model after each data assimi-
lation, 2D synthetic problem.

4.3 Data Match and Performance Prediction.

To investigate the EnKF for predicting the future performance of the reservoir,

first we predict the cumulative oil production for the initial ensembles (it is possible that
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Figure 4.2: Average of the differences between each ensemble and true model after each
data assimilation, 2D synthetic problem.
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Figure 4.3: Log-permeability field,
truth, 2D synthetic prob-
lem.

5 1 0 1 5 2 0

5

1 0

1 5

2 0

2 5

3 0 - 3 . 0

0 . 1

3 . 3

6 . 4

9 . 5

Figure 4.4: Average log-permeability af-
ter 540 days data assimila-
tion, 2D synthetic problem.

some of the ensembles are not physically able to produce under the desired conditions for

the 10000 day period considered). Then we assimilate the observed data for 5400 days,

and predict until day 10000. In the next case, we continue the assimilation of data until

7290 days, then predict until day 10000. The reason that we use two different steps to
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Figure 4.5: Average log-permeability af-
ter 5580 days data assimila-
tion, 2D synthetic problem.
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Figure 4.6: Average log-permeability af-
ter 7290 days data assimila-
tion, 2D synthetic problem.
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Figure 4.7: Porosity field, truth, 2D syn-
thetic problem.
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Figure 4.8: Average porosity after 7290
days data assimilation, 2D
synthetic problem.

assimilate the data is to see the effect of data assimilation in the late production history.

After 7290 days all the production wells (well PRO-5 will remain shut in) will produce at

constant bottom hole pressure constraint. The bottom hole pressure constraint for wells

PRO-2, 3, 4, and 6 are 2500, 1000, 1500 and 300 psi respectively. The water injection

rate will remain 2000 STB/day as before.

Figs. 4.11 through 4.13 show the predicted cumulative oil production after 7290

days for three cases (i) set of initial ensembles (ii) after 5400 days of data assimilation

and (iii) after 7290 days of data assimilation (before day 7290 all the wells are producing
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under the constant oil rate constraint therefore the cumulative oil production is a fixed

number for all the ensembles except for some of the unconditional realizations that can

not produce under the constant oil rate constraint). Note that in second and third cases

after assimilation of production data the band of predictions decreases significantly as

compared to the predictions from initial ensembles, which means that the assimilation of

data has greatly reduced the uncertainty in the production forecast. The results from the

third case show that most of the ensembles over predict the cumulative oil production

during the forecasting period. This occurs when the water cut in the wells producing

under the constant bottom hole pressure constraint tends to be lower than the true water

cut.

Fig. 4.14 shows the match of bottom hole pressure for well INJ-1(PRO-1 first 540

days) and prediction of bottom hole pressure until day 10000. Fig. 4.15 illustrate the same

data except we continue assimilation of data for 7290 days then predict until day 10000.

We can see that by assimilating the data between 5400 and 7290 days, the prediction

is improved. In Fig. 4.14, after all the production wells switch to the constant bottom

hole pressure constraint at t = 7290 days the injection pressure for some of the ensembles

starts to increase. This is because at t = 7290 days, for some of the ensembles the

predicted bottom hole pressure in production wells are below the constant bottom hole

pressure constraint. This can be shown in Fig. 4.16 where at the time 7290 days there are

some ensembles where the predicted bottom hole pressure for the well PRO-3 is below the

constraint and ECLIPSE, the simulator that we use for forward model, considers them as

shut in wells. Fig. 4.17 shows the bottom hole pressure of the well PRO-3 after 7290 day

data assimilation. Here all of the ensembles are able to produce under the bottom hole

pressure constraint.

Figs. 4.18 and 4.19 show the match of producing gas oil ratio for the well PRO-3.

Again we can see after assimilation of data between 5400 to 7290 days the ensembles

results in lower uncertainty in performance prediction. However, the predicted data from

the central model does not change much.

In this problem, during the early producing period, water break through does not
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occur in any of the wells. At time 5400 days water break through has occurred only in

well PRO-5. Here, there is an interesting problem, at the time of water break through

in well PRO-5, only one of the ensembles predict a significant water cut, therefore ∆D

is almost a null matrix (all the ensembles predict almost the same value) and based on

Eq. 2.127 there will be no correction to the model parameters. Fig. 4.20 shows the water

cut in well PRO-5, we can see there is almost no improvement in the water cut prediction

before the predicted water cuts become significant in some of the ensembles. Figs. 4.21

and 4.22 illustrate the water cut for well PRO-2 (the second production well in the high

permeable region). Assimilation of more observations between 5400 days and 7290 days

in general improves the predicted water cut from the ensembles but during that period

the predicted water cut from the central model seems to get worse.
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Figure 4.9: Water saturation profile af-
ter 7290 days, truth, 2D syn-
thetic problem.
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Figure 4.11: Cumulative oil production prediction for initial ensembles, 2D synthetic prob-
lem.
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Figure 4.12: Cumulative oil production prediction after 5400 days data assimilation, 2D
synthetic problem.

55



7 5 0 0 8 0 0 0 8 5 0 0 9 0 0 0 9 5 0 0 1 0 0 0 0
2 . 0 x 1 0 6

4 . 0 x 1 0 6

6 . 0 x 1 0 6

8 . 0 x 1 0 6

1 . 0 x 1 0 7

1 . 2 x 1 0 7

1 . 4 x 1 0 7

 T r u e  M o d e l
 C e n t r a l  M o d e l
 E n s e m b l e s

Cum
ula

tive
 Oil

 Pro
duc

tion
, ST

B

T i m e ,  d a y

Figure 4.13: Cumulative oil production prediction after 7290 days data assimilation, 2D
synthetic problem.
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Figure 4.14: Well bottom hole pressure for INJ-1(PRO-1), data assimilation for 5400 days,
prediction to 10000 days, 2D synthetic problem.
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Figure 4.15: Well bottom hole pressure for INJ-1(PRO-1), data assimilation for 7290 days,
prediction to 10000 days, 2D synthetic problem.
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Figure 4.16: Well bottom hole pressure for PRO-3, data assimilation for 5400 days, pre-
diction to 7290 days, 2D synthetic problem.
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Figure 4.17: Well bottom hole pressure for PRO-3, data assimilation for 7290 days, 2D
synthetic problem.

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0
0 . 0
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0
2 . 4
2 . 8
3 . 2
3 . 6
4 . 0
4 . 4

 T r u e  M o d e l
 C e n t r a l  M o d e l
 O b s e r v e d  D a t a
 E n s e m b l e s

WG
OR

, M
SC

F/S
TB

T i m e ,  d a y

Figure 4.18: Production GOR for PRO-3, data assimilation for 5400 days, prediction to
10000 days, 2D synthetic problem.
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Figure 4.19: Production GOR for PRO-3, data assimilation for 7290 days, prediction to
10000 days, 2D synthetic problem.
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Figure 4.20: Water cut for PRO-5, data assimilation for 7290 days, 2D synthetic problem.
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Figure 4.21: Water cut for PRO-2, data assimilation for 5400 days, prediction to 10000
days, 2D synthetic problem.
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Figure 4.22: Water cut for PRO-2, data assimilation for 7290 days, prediction to 10000
days, 2D synthetic problem.
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CHAPTER 5

PUNQ-S3 PROBLEM

5.1 Observed Data for PUNQ-S3

The PUNQ-S3 reservoir represents a synthetic model based on an actual North

Sea reservoir, [11]. The problem was set up as a test case to allow various research groups

to test their ability to characterize the uncertainty in reservoir performance predictions

given some geologic information on the reservoir, hard data at well grid blocks and some

scattered production data from the first eight years of production. Participants were asked

to predict cumulative oil production for 16.5 years of total production and characterize

the uncertainty in this prediction. The original simulation grid for the PUNQ-S3 problem

consists of a 19 × 28 × 5 grid with ∆x = ∆y = 180 meters and 1761 active gridblocks.

The top structure map of the field, as shown in Fig. 5.1, shows that the field is bounded

to the east and south by a fault, and links to the north and west to a fairly strong aquifer.

A small gas cap is located in the center of the dome shaped structure. The field initially

contains 6 production wells located around the gas-oil contact. Positions for 5 extra in-fill

wells (X1-X5) were also defined. We do not consider these wells in this work.

5.1.1 Production Data

The production consists of a first year of extended well testing, followed by a three

year shut-in period, and then 12.5 years of production with 14 days of shutin annually to

collect buildup pressure data. The production rates for each well during the first year for

each of four three-month periods are 629 (STB/day), 1258 (STB/day), 629 (STB/day)

and 314.5 (STB/day) respectively. Subsequently, the production rate at each of the six

wells was set to 943.5 (STB/day) except during shut in periods. However, this rate is a

target rate, and if the bottom hole flowing pressure for a well falls below a limiting bottom
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Figure 5.1: PUNQS3 structure map.

hole pressure of 1764 psi, the well is constrained to produce at a bottomhole pressure of

1764 psi. A complete description of how the truth was generated and how the true

porosity, horizontal permeability and vertical permeability fields were used to generate

the production data are available on the TNO web site (http://www.nitg.tno.nl/punq/).

The true rock property fields were generated using sequential Gaussian co-simulation.

Some of the key geostatistical parameters used to generate the truth are listed in Tables

A-1 and A-2 of [2]. The true fields, or how they were generated, were unknown to the

participants in the original PUNQ-S3 study. The production data generated consist of (i)

6 shut-in bottom hole pressure data in each well after 1, 4, 5, 6, 7 and 8 years production;
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(ii) 8 flowing bottom hole pressure data in each well after 1 day, 3, 6, and 9 months

of production, and immediately before the shut-in period after 5, 6, 7, and 8 years of

production; (iii) 5 gas-oil ratio (GOR) data obtained after 4.5, 5, 5.5, 6.5 and 7.5 years

of production in well PRO1, 4 GOR data after 5, 5.5, 6.5 and 7.5 years of production

in well PRO2, and 4 GOR data after 5, 6, 7, and 8 years production in all other wells;

(iv) 3 water-oil ratio (WOR) data after 7, 7.5, and 8 years of production in well PRO11

that experienced water breakthrough, and 1 WOR data after 8 years of production in all

other wells. There are total of 84 bottom hole pressure data, 25 GOR data and 8 WOR

data. These are the same number of data and collected at the same times under the same

operating conditions as in the original PUNQ-S3 study [11, 2]. The standard deviations

of the noise added to the true data are 1 bar (14.5 psi) for shut-in bottom hole pressures,

3 bars (43.5 psi) for flowing bottom hole pressures, 10% of the true values for GOR data

less than 90 sm3/sm3 (or 505 scf/STB), 25% of the true values for GOR data greater than

90 sm3/sm3 (or 505 scf/STB), and the greater of 25% of the true value or 0.02 for WOR

data.

5.1.2 Hard Data

The observed hard data at well gridblocks, dobs,h, including porosities, log horizon-

tal permeabilities (ln(k)) and log vertical permeabilities (ln(kz)), are shown in Table 5.1.

They were generated by adding Gaussian noises with standard deviation equal to 15% of

their true values. These hard data are used in both the RML method and the ensem-

ble Kalman filter method. We should note that these data are not the same as used in

the PUNQ-S3 study as in their results, the normalized hard data for porosity, horizontal

log-permeability and vertical log-permeability were identical which is unreasonable unless

only porosity is measured and the other hard data are based on a deterministic relation

with porosity.

5.1.3 Data Assimilation and Production Prediction

For the EnKF method, 90 unconditional realizations of the prior were generated

with sequential Gaussian co-simulation. The prior model is the same generated by [12].
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Well 1 2 3 4 5 6
Layer 1-φ 0.0825 0.2298 0.2412 0.0807 0.0832 0.2535

Layer 1-ln(k) 3.6743 6.5140 6.0850 4.0519 3.5502 5.5903
Layer 1-ln(kz) 2.2059 0.2298 6.1176 3.7693 3.0413 6.1981

Layer 2-φ 0.0631 0.0684 0.0716 0.0867 0.0954 0.1044
Layer 2-ln(k) 3.2129 3.0137 2.5084 2.7883 4.2405 3.8122
Layer 2-ln(kz) 1.2633 0.9875 1.0094 1.8578 3.4015 2.4284

Layer 3-φ 0.1219 0.0995 0.2382 0.2887 0.0799 0.1521
Layer 3-ln(k) 4.6476 3.8683 5.7408 6.2875 4.2277 4.7780
Layer 3-ln(kz) 2.5500 3.3104 5.4433 5.5541 3.2929 4.6214

Layer 4-φ 0.1618 0.1504 0.1660 0.1599 0.1484 0.1994
Layer 4-ln(k) 5.5268 6.5330 4.8816 4.9159 5.6424 6.1363
Layer 4-ln(kz) 4.3646 3.6502 4.1680 3.1715 3.5704 3.8065

Layer 5-φ 0.2383 0.1625 0.0987 0.1271 0.2909 0.2418
Layer 5-ln(k) 5.4004 6.1618 3.0654 4.8846 6.0195 7.3068
Layer 5-ln(kz) 5.6233 5.9546 2.5284 2.9698 5.5591 6.0218

Table 5.1: Observed hard data for PUNQ-S3.

Each of the realizations were truncated using the bounds specified by the minimum and

maximum values and the realization hard data obtained by adding noise to the observed

hard data of Table. 5.1 was also truncated based on these bounds. The truncated hard

data was assimilated using the ensemble Kalman filter and the resulting updated ensem-

bles were then truncated again. The resulting 90 ensembles provide the suite of 90 starting

models for the assimilation of production data, which is done on a step by step basis using

only one forward run of the reservoir simulator for each member of the ensemble. In the

assimilation of production data, no truncation is done and no constraints are imposed.

In the PUNQ-S3 example, at each well, a target oil rate is specified and a minimum

bottomhole pressure is specified as a constraint. If the well can produce at the specified

oil rate without falling below the minimum bottomhole pressure, the well produces at

this rate. Otherwise, the well is produced at a constant bottomhole pressure equal to the

minimum specified. This makes the problem more interesting. From the history matching

viewpoint, we are trying to match observed bottomhole pressure, but when the simula-

tor operates at a fixed bottomhole pressure, the bottomhole pressure ceases to be useful

data because the predicted bottomhole pressure is insensitive to all model parameters. In

the LBFGS algorithm, when this occurs at some iteration, we use the target oil rate as
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pseudo-data as this enhances the rate of convergence and quickly yields a model which can

produce at the specified rate while remaining above the allowable minimum bottomhole

pressure. The difficulty caused by the change in the well’s operating condition causes a

more interesting problem when assimilating data by the ensemble Kalman filter as data

are included in the state vector. If one uses wellbore pressure data in the state vector, but

in the prediction step, the well can not produce at the specified oil rate and stay above

the minimum bottomhole pressure, then the “predicted” bottomhole pressure is set equal

to the specified minimum bottomhole pressure and thus no longer represents a prediction

based on the model generated at the last time at which data was assimilated. Experi-

ments we have done indicates that this tends to significantly diminish the reliability of the

ensemble Kalman filter method. Perhaps because of the problem caused by a minimum

bottomhole pressure constraint, [15] did not use only pressure, water cut and producing

GOR data in their application of the Ensemble Kalman filter to the PUNQ problem, they

also added rate “data” with a small amount of noise. We use a quite different procedure.

We do not use rate data, but instead use only water cut, wellbore pressure and GOR data,

but during the assimilation of production data, we set atmospheric pressure as the min-

imum bottomhole pressure. Effectively, this removes the minimum bottomhole pressure

constraint. Thus, with rare exception, a well can meet the target rate and the wellbore

pressure generated from the simulator does reflect a prediction based on the state vector

at the previous assimilation step. In the final future prediction phase, after assimilation

of data during the first 8 years, we of course use the constraints set by the originators

of the PUNQ-S3 model to predict performance for the remaining 8.5 years so we have

set of reservoir predictions for a 16.5 year producing period. In this problem, included in

the state vector are gridblock pressures, water saturations, gas saturations and dissolved

gas-oil ratios, gridblock porosities, horizontal and vertical log-permeabilities, and data

(bottomhole pressure, GOR and water cut).

Figs. 5.2 and 5.3 show the bottom hole pressure and producing GOR in well PRO1

generated by ECLIPSE for the true model and all 90 ensembles after assimilation of both

hard data and production data. The blue curves represent data from the true model.
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Figure 5.2: Pressure match, well PRO1, EnKF.
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Figure 5.3: GOR match, well PRO1, EnKF.
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Figure 5.4: WOR match, well PRO11 EnKF.

The gray curves show the results from the ensembles during both the data assimilation

period (first 8 years) and the subsequent 8.5 year prediction period. Red curves represent

the average production data from all ensembles. The average bottom hole pressure is in

good agreement with the true data until the late part of the prediction period, when the

average of all ensemble bottomhole pressures falls below the truth. However, the true

bottom hole pressure always is fairly near the center of predictions from the ensembles.

In Fig. 5.3, the average of GOR data from the 90 ensembles is somewhat different from

the truth in the time period following gas breakthrough, but as more data are assimilated,

the average GOR of the ensembles becomes quite close to the truth. Fig. 5.4 shows the

water cut in producing well PRO11. Before water breakthrough occurs for the true model

at this well, some of ensembles predict water breakthrough, but later when the first water

cut data (a low value) is encountered, almost all the ensembles give a close match of that

data, and hence the early peak in the water cut data is diminished towards zero. During

the prediction period the average water cut for the ensembles is very close to the truth.

Fig. 5.5(a) shows the true logarithm of horizontal permeability and Fig. 5.5(b)

shows the average model after assimilation of production data only, where Fig. 5.5(c)

illustrate the central model after assimilation of production data. We can see the central
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Figure 5.5: Comparison between true, mean and central model after assimilation of pro-
duction data.

model and the mean model give reasonable agreement with the true model, although the

central model represents the geological features better than mean model.

To complete this discussion instead of comparing the data predicted from the true
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Figure 5.6: Pressure match,assimilation of production data, well PRO1, EnKF.

model with the average of predicted data from each ensemble, in Figs. 5.6 through 5.8,

we compare the data predicted from the true model with the data predicted from the

central model. Fig. 5.6 shows the bottom hole pressure in well PRO1 for the true model

and all 90 ensembles after assimilation of only production data. Fig. 5.7 illustrate the

GOR data in well PRO4. The blue curves represent data predicted from the true model.

The gray curves show the results from the ensembles during both the data assimilation

period (first 8 years) and the subsequent 8.5 year prediction period. Red curves represent

the predicted production data from the central model. The jumps in the red and gray

curves occur at assimilation times at which we update the solution variables in the state

vector.

5.1.4 Reservoir Performance Predictions

Fig. 5.9(a) shows the cumulative oil production performances predicted with 10 un-

conditional realizations. The blue curve in Fig. 5.9(a) represents the prediction generated

with the true model. The results of Fig. 5.9(a) indicate that the cumulative oil production

predicted with the unconditional realizations are biased; Fig. 5.9(b) show the cumulative

oil productions predicted with 10 conditional realizations obtained by conditioning to
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Figure 5.7: GOR match, assimilation of production data, well PRO4, EnKF.
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Figure 5.8: WOR match, assimilation of production data, well PRO11, EnKF.
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both hard data and production data obtained with the RML method. Fig. 5.9(c) shows

corresponding results generated with the 90 ensembles used in the EnKF method. The

truth (blue curves) lies within the band of predictions generated with both the RML

method and the EnKF method; i.e., both methods give a reasonable characterization

of uncertainty. Note the uncertainty in predicted reservoir performance is quite small,

especially, compared to the uncertainty in predictions generated with unconditional real-

izations. Similar results are observed for the cumulative gas and water production, see

Figs. 5.10(a) through 5.11(c).
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(b) RML

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0
0

1 x 1 0 7

2 x 1 0 7

3 x 1 0 7

 T r u e
 E n s e m b l e s
 C e n t r a l  M o d e l

Cu
m

ul
at

iv
e 

O
il 

Pr
od

uc
tio

n,
 S

TB

T i m e ,  D a y

(c) EnKF

Figure 5.9: Comparison between RML and EnKF in reservoir performance prediction.
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(a) Unconditional
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(b) RML
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(c) EnKF

Figure 5.10: Comparison between RML and EnKF in cumulative gas production predic-
tion.
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(b) RML
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(c) EnKF

Figure 5.11: Comparison between RML and EnKF in cumulative water production pre-
diction.
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CHAPTER 6

DISCUSSIONS AND CONCLUSIONS

Any method used to integrate dynamic data into reservoir description should ex-

hibit several desirable characteristics; the method should be (i) computationally robust

and efficient, (ii) able to give a match of the dynamic data that is consistent with the

noise level in the data, (iii) able to preserve the underlying geology, (iv) able to correctly

characterize the uncertainty in performance predictions, (v) able to characterize the un-

certainty in reservoir description with regard to the distribution of rock properties and

important geologic features such as faults and boundaries between facies, (vi) able to

characterize the uncertainty in the distribution of fluids which is critical for infill drilling

programs and (vii) be available in or easily incorporated into software. Many methods

satisfy well one or more or these characteristics, but do a poor job of satisfying others.

Based on our study, the ensemble Kalman filter (EnKF) satisfies (i) through (vii), but as

this is a relatively new method, it is not known whether this result is general.

Although the ensemble mean is frequently used as estimation of the truth, we

have shown that the deviation of this mean from the truth does not give a reliable metric

for quantifying how well the posterior pdf is characterized by the distribution of the

ensembles.

As noted above, the EnKF algorithm can be quickly coupled with any reservoir

simulator and the ensemble Kalman filter method has the advantage of simplicity in

terms of its implementation, and is more flexible to use and easily adapted to diverse

applications. However, if the number of data to be assimilated at a particular time step

becomes large as in seismic data, the overhead cost of the numerical linear algebra required

in the EnKF method will be significant.

The Gaussian assumption of EnKF is very critical. Even for large number of
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ensembles, in some of the multi-modal problems, EnKF can not sample the posterior pdf

correctly. For the linear case, we showed that EnKF samples correctly from the posterior

pdf as the number of ensembles goes to infinity and is equivalent to randomized maximum

likelihood method. For two toy problems discussed, we found that the central model is not

a good estimate of the true model, but for the 2D synthetic problem the data predicted

from the central model is in a good agreement with the truth and the central model

provide a reasonable approximation of future performance prediction. This id also true

for the well known PUNQ-S3 problem. Although during the late time of data assimilation

the model parameters start to diverge from the truth and many of the ensembles over

predict the ultimate oil recovery, the final prediction performance is still reasonable.

For the linear case, we have shown that rerunning the time step to recompute time

dependent parameters is inappropriate.

Although, we have focused on problems where EnKF encounters some difficulties,

it is likely that modifications will be found to further improve its reliability. Moreover,

the advantage of the method in terms of computational efficiency and simplicity in im-

plementation, suggest that it will become widely used in practice even if it provides a less

than perfect characterization of variability in reservoir variables, fluid distributions and

performance predictions.

Relative to the original motivation for this study, we conclude that, at least for

problems similar to real reservoir problems, the EnKF method gives a reliable assessment

of the uncertainty in reservoir performance predictions.
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