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ABSTRACT

Yuhao Chen (Master of Science in Engineering in Petroleum Engineering)

Life-Cycle Production Optimization of Steam Assisted Gravity Drainage with 

Gaussian Process Regression Proxy Model

Directed by Mustafa Onur

78 pp., Chapter 6: Conclusions

(450 words)

Conventional numerical optimization methods (such as adjoint, SPSA, StoSAG, ge-

netic, etc.) are well established. However, their applicability for solving complex reservoir

simulation problems such as the steam assisted gravity drainage (SAGD) process, which

involves multiphase thermal flow including convection, conduction, and heat losses to the

cap rock and base formation, considered here is limited due to the fundamental challenge of

the high computational cost of accurate, high-fidelity reservoir simulators. Instead of using

the high-fidelity model, an accurate proxy model which can be used for computationally

efficient optimization is preferable. In fact, recent research works conducted at The Univer-

sity of Tulsa Petroleum Reservoir Exploitation Projects (TUPREP) show that using machine

learning(ML)-based proxy models, such as the one based on support-vector regression (SVR)

are quite promising for efficiently solving the life-cycle optimization, history matching, and

uncertainty performance prediction problems for complex reservoir systems and processes.

The objective of this research work is to investigate the efficient estimation of the opti-

mal well-control (or operating) parameters for the life-cycle production optimization problem

of SAGD Process by ML-based proxy models. The scope of the research involves a ML-based

method to form proxy. This is Gaussian Process Regression (GPR). The cost function to be

optimized is the net present value (NPV). The control parameters for the problem of interest
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are injection rate and temperature at the horizontal injector, and the bottom-hole pressure

at the horizontal producer, given some constraints for these well-controls. Given simulation

results, a GPR based proxy is built, and then the optimal control parameters are found by

maximizing the NPV based on the proxy as a forward model. The performance of the proxy

model is then compared with that of the popular stochastic simplex approximate gradient

method (StoSAG).

In this study, we discuss various flow and transport mechanisms that have influence

on production from heavy-oil reservoirs by a SAGD process. Then, we present the NPV cost

function of interest to be maximized by optimizing the well-control parameters. We present

the mathematical details of the GPR method to maximize the NPV cost function. We

perform a sensitivity study to understand the effect of various control parameters of interest

on production by a SAGD process. For the sensitivity study and generating training sets to

be used for a proxy, we use a commercial simulator; Computer Modelling Group’s (CMG)

STARS thermal simulator. Lastly, we present our results on optimization of production

by using a GPR proxy model. Note that a GPR model is a non-parametric kernel-based

probabilistic model. The results show that GPR has poor prediction performance when the

training set is small, due to the characteristic of the evidence maximization process. However,

performance improves quickly when more samples are included in the training process.
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CHAPTER 1

INTRODUCTION

There are large deposits of heavy-oil including bitumen resources in the world, which

make up about 70% of the total oil resources. Heavy-oil is classified as any oil having an

API gravity between 10◦ and 20◦ and viscosity greater than 100 and up to 1 × 106 cp. All

methods to produce heavy-oil involve some form of thermal process that aims to reduce oil

viscosity by introducing heat to the reservoir. Steam assisted gravity drainage (SAGD) is an

effective thermal recovery method for heavy oil and bitumen extraction. Generally, a pair of

horizontal wells is used in a SAGD process. In a typical SAGD approach, initially, there is

a preheating period, in which steam is circulated in both wells to mobilize oil around wells

through heat conduction. After the preheating period, steam is injected into a horizontal

well located directly above a horizontal producer helping to displace heated oil. As steam

enters the reservoir, it heats the reservoir fluids and surrounding rock. Hot oil and condensed

water drain through the force of gravity to a production well at the bottom of the formation.

SAGD maximizes the role of gravity forces during steam flooding of heavy oils.

1.1 Literature Review

Heavy oil is a complex amalgam with compounds of high molecular weight. For

millions of years, hydrocarbon deposits have been degraded by algae to form heavy oil,

which has resulted in the loss of their lighter hydrocarbon fractions - the heavier fractions

remaining. Heavy oil is the liquid petroleum with API gravity between 10◦ and 20◦ and by

definition, typically, heavy oil has a viscosity of 100 cp or greater [31]. Heavy oil usually

contains significantly higher levels of asphaltenes. Extra heavy oil is commonly referred to

as a heavy oil with viscosity, which is a characteristic of defining the flow, exceeding 10,000
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cp. Heavy oil ranges from the oil itself to the asphalt - or tar sands “overweight oil" -

actually embedded in the sand. The tar sands are less than 75 meters deep and are mined as

"solid" rather than in liquid form. More than 90% of the heavy oil and bitumen (oil sands)

in the world are deposited in Canada and Venezuela. As Canada’s conventional crude oil

resources continue to decrease, further development of heavy oil and oil sand in-situ recovery

technologies is critical to meeting Canada’s current and future energy needs [33]. The scale

of the heavy oil resources is huge and the technology has made great progress. One method

is to mine the shallow Athabasca deposit, which has become the main source of Canadian

oil. Other new tar sands mining projects are underway. Although mining overcomes the

problem of delivering oil to oil wells, it requires large amounts of solids and sludge to treat.

Therefore using mining method on the shallowest deposits is economical. However, the

main part of Canadian oil sands resources is too deep to be obtained through mining. The

challenges to efficiently produce heavy oil is given in the following: 1) to find and define

suitable reservoirs; 2) to create conditions for oil to flow at economic rates; 3) to drain the

reservoir systematically to obtain high recoveries. There are several ways to achieve these

challenges: 1) Cold production using vertical wells and horizontal wells; 2) Stimulation by

wellbore heating; 3) Cyclic steaming using conventional wells; 3) Steam Assisted Gravity

Drainage (SAGD); 4) Steam and Gas Push (SAGP); 5) Cyclic Steaming with horizontal

wells; 6) Vapour Extraction (Vapex).

As the availability of conventional crude oil has declined, it developed several ways to

improve the recovery of the reservoir, which called enhanced oil recovery (EOR). The most

important way that can be used on heavy oil reservoir is thermal recovery, which contains

steam stimulation, steam flooding, hot water flooding, and in-situ combustion.

Shell discovered the steam stimulation process in Venezuela accidentally, when it

produced heavy crude oil from steam flooding in the Mene Grande field near the eastern

shore of Lake Maracaibo. During steam stimulation, steam is injected into the reservoir for

several weeks at a rate of approximately 1000 bbl/day. The well is refluxed and subsequently

pumped. If in a suitable application, the production of oil is rapid and the process is effective

2



in the early cycles. It can also be used to produce very viscous oils for oil sands if the

steam pressure is high enough to destroy the reservoir and thus allow for injection. For this

operation, the steam pressure is required to be about 1 psi per foot depth to overcome the

in-situ rock stress to cause fracturing. The main disadvantage of the cyclic steam stimulation

process is that it typically only allows about 15% of the oil to be recovered before the oil-

steam ratio becomes too low.

In steam flooding, steam is forced continuously into specific injection wells and oil

have driven to separate production wells. The area around the injection well is heated to the

saturation temperature of the steam and these areas extend towards the production well.

Steam flooding process needs a lot more steam than steam stimulation. It is often economical

to switch the steam flooding after initial operation of the field by steam stimulation. The

oil recovery rate of steam flooding can reach 50% or even higher.

Hot water flooding is usually less effective than steam flooding since the temperature

of the hot water flooding is lower than steam flooding. In-situ combustion is the method

injecting air or oxygen to the combustion zone through a well drilled from the surface. In

this case, it is much cheaper to generate steam than other methods. In-situ combustion

tends to be less stable than steam processes. It is common that premature arrival of the

combustion front at the production wells [6].

1.1.1 The Definition of SAGD

In the late 1970s, Butler et al. introduced the definition of the Steam Assisted Gravity

Drainage (SAGD) process. A cross-section of the SAGD process is displayed in Figure 1.1.

There is a pair of horizontal wells drilled into the reservoir. Steam is injected into the

formation through the top well, which is the injection well. The production well typically is

placed 5 to 10 m below and parallel to the injection well, and the production well usually is

located several meters above the base of pay. A steam chamber grows around and above the

injection well. At the edge of the steam chamber, heated bitumen and steam condensate flow

to the production well under the influence of gravity. Generally, the lengths of the injection
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well and the production well are between 500 and 1000 m (Figure 1.2).

At the beginning of the SAGD process, a pre-heating period is needed, which may

take several weeks to months. One method of pre-heating is injecting the high-temperature

steam into both horizontal wells and the steam can be circulated back through the annulus

of the two wells. Because of the high-temperature steam, the bitumen around the wells is

heated up and may become mobile oil. Generally, a hydraulic connection can be generated

between two wells. Once the connection is created, the top horizontal well becomes the

injector and the bottom one becomes the producer. Because of the effect of gravity, the

injected high-temperature steam rises up, touches the cold reservoir rocks and bitumen at

the boundary of the steam chamber, the steam trans its heat to the surrounding reservoir

rocks and bitumen, and the steam becomes condensed water. Since the bitumen becomes

mobile oil, the viscosity of the bitumen is also decreased [4]. Because of the gravity force,

the mobile oil and the condensed water drain down to the bottom of the steam chamber

where we produce oil from the producer. As the oil flows away and is produced, the steam

chamber expands in both upwards and sideways direction. The growth rate precedes rather

irregular but fairly fast way until it is limited by the top of the reservoir. The upwardly

moving interface tends to be in the form of steam fingers in which the oil flows between them

in a rather unstable manner. Instead, the side and down interfaces move in a very stable

manner; it is stabilized by gravity.

The nature of this process is that the cold oil is heated and replaced by a steam

system and maintains the temperature of the oil as it flows to the lower production well.

The next step in this process when the chamber has reached the top of the reservoir and is

expending the sideways beneath the overburden, which is shown in Figure 1.3 [7].

Generally, there are three ways of looking at SAGD. In the early development of

SAGD, it is focused on the flow that heated oil around the steam chamber and the theories

about developing the expected drainage rates calculation. These theories show that the oil

adjacent to the chamber is heated by conduction and discharged downward; the viscous

resistance of the oil is balanced by gravity force. Based on these theories, oil rates can be
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predicted successfully. The second view of SAGD looks on the steam chamber as a large

condenser. The steam condenses in the presence of a large heat transfer zone, which is

produced as the oil flows to the production well. A large number of reservoirs are heated

and as the heated oil slides down, a cooler reservoir is uncovered. In a mature SAGD process,

the surface of the room above the production well maybe as much as 10 hectares. When the

oil is discharged, the steam fills the pores and maintains the reservoir pressure and drive.

SAGD produces a higher recovery than cyclic steam stimulation. The last view of SAGD

is that horizontal wells allow for economical production without the need for steam coning.

Even if steam is injected above the production well, the steam chamber can be pumped to

the production well for about 1 meter without significant steam generation [3]. Compared

to traditional California-style steam drives, SAGD has the distinct advantage of achieving

high recovery without the need for taper and 4 hectares (10 acres) mode spacing. Therefore,

for comparable recoveries, a well spacing of the order of 0.16 hectares (5/8 acre) is required.

However, coning of steam is still a problem since reservoir contact is not as good as that

provided by horizontal wells [5].

Figure 1.1: Cross-section of the Steam Assisted Gravity Drainage (SAGD) process [21].
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Figure 1.2: The Steam Assisted Gravity Drainage (SAGD) process [13].

Figure 1.3: Cross-sectional diagram showing the steam-assisted gravity drainage process with
the chamber in contact with the overburden. In a commercial project, the lateral spreading
of the steam chamber becomes limited when it joins similar chambers on either side. After
this, the rate gradually declines as the head available to create drainage decreases [7].

From Figure 1.1 and Figure 1.3, we see that the higher speed of growing the steam

chamber, the faster the heavy crude oil produced. To have a high speed growing steam

chamber, it is desirable to prevent the direct steam generation and to combine the steam
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in the chamber so that when the steam latent heat chamber condenses at the edge of the

chamber, and the latent heat of steam can be transferred to the asphalt surrounding the

chamber [35]. The key point is to maintain a liquid pool around the producer, in this case,

injected steam is produced from the production well [20]. From Figure 1.1, we can say that

the heated mobile oil and condensate water flow to the bottom of the steam chamber along

the edge of the chamber. The oil and the water generate a liquid pool, and then they are

produced to the surface (see Figure 1.4). When the oil production rates go too high, the

liquid pool cannot be generated, the injected steam will be produced through the production

well directly, without touching the cold rocks and the bitumen. This can reduce the energy

efficiency of the SAGD process. On the other hand, when the oil production rates go too

low, the liquid pool level may even above the injection well, the area where the hot steam

contact with the cold rocks and bitumen is decreased, in that case, the steam chamber grow

up rate is also decreased.

Figure 1.4: Water saturation after SAGD process 862 days. The bottom of the steam
chamber, there is a high water saturation place, which is the liquid pool.
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1.1.2 SAGD Optimization

Life-cycle production is a subsequent step of assisted history matching in reservoir

management [25]. Life cycle production optimization is an optimal well control problem with

the goal of determining the conditions for maximizing NPV or cumulative oil production over

the assumed reservoir life. [8].

In Figure 1.5, the top part of the figure represents the physical system, the output of

this physical system is also the responses from the reservoir simulator. With different geology,

fluid properties, many system models can be generated. However, in this research, only one

reservoir model which may be considered as a model determined after history matching of

the historical production data [27].

Figure 1.5: Key elements of the closed-loop reservoir management process [27].

During SAGD process a lot of high-temperature steam needs to be injected. This
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requires a lot of energy. To find out an economic way to enhance oil recovery, the best way

is to manage the heat efficiency, i.e., recover more oil with less steam injection. Egermann et

al. developed a general methodology based on numerical investigations to obtain and main-

tain an optimized development of the steam chamber in SAGD process during the whole

production life-cycle for better oil recovery and heat management [15]. In this method, the

optimization of the steam chamber development is obtained by adjusting the steam injection

rate which can also be affected by the fluid and geology in the reservoir. To keep the steam

chamber as large as possible by monitoring productivity during the SAGD process, but away

from the production well to prevent the steam breakthrough. The oil production rate can

be adjusted by the temperature difference between the injected steam and the production

fluid, which is called subcool temperature. The most expensive part in SAGD process is

the generation of the high-temperature steam. The thermal efficiency is measured by the

cumulative steam-oil ratio (cSOR). The higher the cSOR, the higher the steam usage. The

lower the cSOR, the lower the steam used per unit volume of produced bitumen, which im-

plies a more economic process [22]. Kisman et al. [29] evaluated SAGD process performance

and determine the sensitivity of the performance of the base case to selected parameters

to see whether have a significant impact on performance. Their results showed that car-

bonate flow barriers, wettability change in the steam zone and the choice of three-phase

relative permeability show only a small effect on performance. Permeability, oil viscosity,

thermal conductivity, steam gas ratio and volatility, oil relative permeability endpoint value

and wettability change in the temperature transition region has a moderate effect on overall

performance. The operation pressure in the steam zone has a large effect on the calendar

day oil rate (CDOR), and the lower the pressure, the poor the performance. Ito and Suzuki

[26] show that optimum subcool temperature is between 30 to 40 ◦C, which is lower than

the steam saturation temperature. Queipo et al. [37] present a technique to use a surrogate

model based on Neural Networks, Design and Analysis of Computer Experiments (DACE)

modeling and adaptive sampling to optimize SAGD process. They figure out that the neural

network-based efficient global optimization (NEGO) algorithm can be used effectively and
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improve oil recovery efficiently. On the other hand, this optimization method is useful in

the optimization of the objective functions, including performing computationally expensive

mathematical models (reservoir numerical simulators), which is found not only in oil recov-

ery processes but also in another petroleum engineering. Edmunds and Chhina [14] used

a reservoir simulator to find out the optimum economical SAGD process. They show that

SAGD economies are more sensitive to resource quality than other operating parameters.

Gates et al. [22] also found that the optimized injection pressure starting with high pres-

sure, then gradually decrease to a lower level. That is because at early times the steam

chamber is not in contact with the overburden and overlying water, the heat from the steam

directly trans into the bitumen. With the high injection pressure before the steam chamber

reaches the top of the rich zone and contacts the overburden, which means high saturation

temperature, which can decrease the bitumen viscosity and increase oil productivity. After

the steam chamber reaches the overburden, the injection pressure is reduced, which means

the saturation temperature is reduced thus reducing the overburden heat loss. As the steam

chamber expands laterally across the area, the injection pressure is further reduced. Bao

et al. [2] also found that SAGD performance is more sensitive to injection pressure. The

higher the injection pressure the earlier steam breakthrough into the overlying water zone.

Optimization through varying the injection pressure and steam trap control leads to the

optimal steam chamber operation strategies, which has similar results as Gates et al. [22].

Shin and Polikar tested the sensitivity of the control parameters which include the

length of preheating time period, injector to producer spacing, operating pressure, maximum

steam injection rates, and reservoir thickness [39]. Yang et al. [41] using experimental de-

sign and Designed Exploration and Controlled Evolution (DECE) optimized SAGD process,

which is faster and more accurate than traditional history matching. They controlled the

steam injected rates and the production rates, their optimized well controls are more energy-

efficient and environmentally friendly since with these well controls less natural gas and clean

water are used. They used Monte Carlo simulation to quantify the uncertainty of the NPV.

They added geological uncertainty to set up robust optimization. They generated more than
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100 realizations and rank the realizations by applying a reliable ranking method. After that,

they picked 9 realizations to reduce the computational cost. Then, they found the optimal

well location and operating strategy and applied optimal well location and operating strat-

egy to 100 realizations. Finally, they performed risk analysis and robustness validation for

the optimal strategy [42]. Nurmammadov [35] used the simultaneous perturbation stochastic

approximation (SPSA) and EnOpt algorithms to optimize the SAGD process. He presented

that cSOR values obtained using the SPSA algorithm lower than EnOpt algorithm. Com-

paring with NPV, the cSOR is not a good choice as the objection function for the production

optimization. When the steamchamber reaches the cap layer, the injection rate decreases at

a later stage. The bottom-hole pressure control of the final production well increases at an

early stage and remains stable for a period of time and then decreases.

Ghasemi et al. [23] found that co-injection liquid solvent with steam is highly efficient

for increasing the oil recovery from the SAGD process. The optimum solvent has a molecular

weight in the range of 100-120g/mol. The optimum solvent amount (C6 Volume Fraction)

is 0.15 when the solvent amount is the only optimization variable. NPV is affected by

both the solvent amount and operating condition. Kaiser et al. [28] presented that the

injector designs can be validated to accommodate uncertainties in reservoir characteristics,

which can optimize SAGD process. A similar optimization can be made for the producer

or a combination of modifications to the two wells, depending on whether the change can

be reliably determined before the well is completed and then refined through operational

experience. Nascimento [32] showed that dynamic flow simulations can be used to test

different operational procedures during the pre-circulation phase. With field data for the

pre-circulation phase, dynamic flow simulations can estimate conductivity and the amount

the injected steam that migrates to the formation. Dynamic flow simulator can also optimize

the steam splitter distribution along with the tubing. For shut-ins, dynamic simulations can

verify how the temperature decreases in the well or near the well-bore, evaluating the oil

viscosity with time.
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1.2 Research Scope

This study focuses on optimizing the Steam Assisted Gravity Drainage (SAGD) pro-

cess by maximizing Net Present Value (NPV) as the objective function by use of Stochastic

Simplex Approximate Gradient (StoSAG) and GPR as a ML-based method. In this research,

the commercial thermal reservoir simulator CMG-STARS is used to simulate the SAGD pro-

cess to generate the training data to be used in ML method, and to compute the sensitivities

to bu used in StoSAG method. The control variables are the steam injection rates and the

bottom-hole pressures (BHP) at the producer and the temperature of injected steam. We

assume that there is only one pair of horizontal wells in this study.

1.3 Thesis Overview

This thesis is composed of four main parts. First, we introduce and discuss the NPV

function to be maximized for life-cycle optimization of SAGD process (Chapter 2). Then,

optimization methods; StoSAG and ML-based GPR method are introduced in Chapter 3.

Following, we provide the methodology used for sampling and training to build ML-based

proxy models of NPV (Chapter 4). Last, we provide applications of life-cycle optimization of

SAGD process by use of the GPR proxy models in comparison with gradient based StoSAG

method (Chapter 5).
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CHAPTER 2

NPV FUNCTION FOR SAGD

In this chapter, the net-present value (NPV) function to be maximized by optimizing

well control variables is introduced. The well control variables and their constraints used in

optimization are given.

2.1 NPV Function

In production optimization problems, net-present value (NPV) is always used as the

objective function. By adjusting the well controls during the production life-cycle of the

reservoir to maximize NPV, the optimized well controls can be found. In this study, given a

history-matched the reservoir model, the NPV for SAGD process is denoted by J(u), defined

by

J(u) =
Nt∑
n=1

∆tn

(1 + b)
tn
365

[
NP∑
j=1

(
ro × qno,j − rw × qnw,j

)
−

NI∑
i=1

(
r̂wi × qnwi,i

)]
(2.1)

where u is the vector of control variables; Nt is the total number of the control steps; ∆tn

is the number of days in the nth control step; tn is the cumulative days up to the nth

control step; b is the discount rate; NP is the total number of the producers; NI is the total

number of the injectors; ro is the price of the produced oil ($/m3); rw is the cost to deal with

the produced water ($/m3); qno,j and qnw,j, respectively, represent the average oil and water

production rates (m3/D) at the jth producer over the nth control step; qnwi,iis the average

cold water equivalent steam injection rates (m3/D) at the ith injector over the nth control

step, and r̂wi represents to the steam injection cost ($/m3). However, the steam injection

cost can be separated into two parts, one for the water injection cost rwi ($/m3) and the

other one for the steam heat up cost rheat ($/(m3 ·◦F)). Then r̂wi can be given as the sum
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of these tow costs as the steam injection cost

r̂wi = rwi + rheat × Tsteam (2.2)

As mentioned before, in this research, only one pair of horizontal wells are considered

for a SAGD process. This means there are only one producer and one injector (see Figure

1.2). In this case, Equation 2.1 can be simplified to

J(u) =
Nt∑
n=1

∆tn

(1 + b)
tn
365

[
(
ro × qno,p − rw × qnw,p

)
− (r̂wi × qnwi,i)] (2.3)

2.2 Control Variables

In this research, the number of the control steps is defined as Nt =36, and the length

of each control step is considered to be a constant and equal to ∆tn =90 days. u is the vector

of well controls which include the steam injection rates, the bottom-hole pressure (BHP) at

the producer, and the temperature of the injected steam. The steam injection rates and the

BHP can be different in each control step, however, the temperature of the injected steam

is constant during the whole life-cycle. In this case, there are 36 steam injection rates, 36

BHPs, and 1 temperature of the injected steam. So the total number of well controls to be

optimized by maximizing J(u) given by Equation 2.3 is Nu =73.

2.3 Constraints

We have to consider constraints for well control variables. These constraints should

depend on reality. We apply constraints to steam injection rates as

0 < qwi,i ≤ 500 m3/d, (2.4)

In addition, we constraints for BHP at the producer such that

600 psi ≤ pwf,p < 2500 psi, (2.5)
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The BHP at the injector should not exceeding 2500 psi, i.e.,

pwf,i < 2500 psi (2.6)

Since the distance between the injector and the producer is usually small, e.g., 5 m, the BHP

at the producer is significantly affected by the BHP at the injector. The temperature of the

injected steam is constrained such that

392◦F ≤ Tsteam ≤ 752◦F. (2.7)
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CHAPTER 3

OPTIMIZATION METHODS

In this chapter, we describe the optimization methods considered in this study. As

we compare the performance of the ML-based GPR proxy model for maximizing NPV with

the gradient based StoSAG method, we first start introducing the StoSAG method, and then

the ML-based GPR proxy method.

3.1 Gradient Method

The objective of this study is to maximize NPV by optimizing well control variables

discussed in Chapter 2. To maximize NPV, generally, people should find a starting point,

then determine a search direction to reach a maximum point although the maximum point

has a high probability to be a local maximum point. The global maximum point is generally

hard to reach.

In this study, the steepest ascent algorithm is used for optimization. The steepest

ascent algorithm is given by

ul+1 = ul + aldl, (3.1)

for l = 1, 2, ..., until convergence where l is the iteration index. ul is the control vector

which is the well controls at lth iteration, al is the step size obtained via a line search in the

search direction dl at iteration l [17].

3.1.1 StoSAG

Currently, systematic descriptions of the basic Ensemble-Based Optimization (EnOpt)

method is given by Chen (2008) [10] and Chen et al. (2009) [11].

In EnOpt, u is considered to be a random vector with a Gaussian distribution with
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the mean ul and covariance matrix CUl
, which is at iteration l, u ∼ N (ul,CUl

). Throughout,

it is considered that the covariance matrix is fixed, which means that u ∼ N (ul,CU) at

iteration l. Np is the number of independent control perturbations and ûl,j is the generated

Np independent control perturbations (random samples) from the distribution N (ul,CU) at

iteration l. The mean of the sample is denoted by ûl and is given by:

ûl =
1

Np

Np∑
j=1

ûl,j, (3.2)

and at each iteration l,J(ul) is defined by:

J(ul) ≡
1

Np

Np∑
j=1

J(ûl,j). (3.3)

With the basic EnOpt method, the search direction is computed as:

dl,EnOpt =
1

Np − 1

Np∑
j=1

(ûl,j − ûl)(J(ûl,j)− J(ul)). (3.4)

To calculate the search direction by using the EnOpt method, there are two assump-

tions need to be followed [17]. The first one is:

ûl =
1

Np

Np∑
j=1

ûl,j ≈ ul, (3.5)

and the second assumption is:

J(ul) =
1

Np

Np∑
j=1

J(ûl,j) ≈ J(ûl) ≈ J(ul). (3.6)

However, these two approximations are potentially unreliable under some circumstances.

Hence another method to calculate the search direction which does not require to use these

approximations ought to be found [9].

A modified formulation for EnOpt for deterministic optimization was proposed by
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Do and Reynolds (2013) [12, 16]. They modified the control perturbations and the result-

ing objective function anomalies. The resulting objective function anomalies are generated

relative to their current control vector distribution means. The means are given by the con-

trol vector and its corresponding objective function is used for the most recent optimization

iteration. Another modification is proposed by Fonseca et al. (2014, 2015) [19, 18], with

that modification, Fonseca et al. named the modified EnOpt method Stochastic Simplex

Approximate Gradient (StoSAG). The search direction is given by:

dl,StoSAG =
1

Np

Np∑
j=1

(ûl,j − ul)[J(ûl,j)− J(ul)]. (3.7)

where the ûl,j and ul are vectors, however, J(ûl,j) and J(ul) are scalars in Equation 3.7. ûl,j

can be written as:

ûl,j = ul + ∆ul,j, j = 1, 2, ..., Np (3.8)

where

∆ul,j = εj(u
u
j − ulj) (3.9)

In Equation 3.9, εj is the perturbation size, the uuj and ulj are the upper bound and the lower

bound of the control variables, respectively. It is worth nothing that a high-fidelity model

(like CMG-STARS) directly used to perform StoSAG calculations.

3.2 Machine Learning Method

As stated in MathWorksr, “Machine Learning is a data analytics technique that

teaches computers to do what comes naturally to humans and animals; learn from experience.

Machine learning algorithms are computational methods to learn information directly from

data without relaying on a pre-determined equation on a model. The algorithms adaptive

improve their performance as the number of samples available for learning increases.”

Machine learning usually refers to changes in the system that perform tasks related

to artificial intelligence (AI). These tasks involve identification, diagnosis, planning, robot
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control, prediction, and more. These changes may be new systems used to enhance existing

systems or to synthesize systems from scratch. Machine learning can sense and simulate the

actual environment and calculate the appropriate actions by predicting the impact of task

[1].

There are two major types of learning. One is called supervised learning. In super-

vised learning, we get a data set and already know what our correct output should look like

and believe that there is a relationship between input and output. Another one is called

unsupervised learning, unsupervised learning allows us to approach problems with little or

no idea about what the results should look like. The only thing that can do is to derive

structure from data, and it is not necessarily knowing the effect of the variables.

Supervised learning problems can be divided into “classification” and “regression”

problems. In the classification problem, supervised learning is going to predict the result in

discrete output. In other words, it can map input variables to discrete categories. However,

in the regression problem, supervised learning is going to predict the result in continuous

output, which means that it can map input variables to continuous functions. In this thesis,

we consider supervised learning based on regression problem.

3.2.1 GPR Method

Gaussian Processes Regression (GPR) belongs to supervised learning. GPR is a

kernel-based fully Bayesian regression algorithm. Consider a simple 1-D regression problem,

mapping from an input x to an output f (x ). In Figure 3.1, it shows that a number of

sample functions drawn at random from the prior distribution over functions specified by a

particular Gaussian Process which favors smooth functions. Before viewing any data, a prior

belief was used to represent the various functions which are expected to observe. Assume

that the average of the sample functions at each x is zero. Although the specific random

functions are drawn in Figure 3.1(a) do not have a mean of zero, if we can have enough

functions, the mean of f (x ) values for any fixed x would become zero. At any value of x,

we can characterize the variability of the sample function by calculating the variance of the
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points. The shaded region denotes twice the point-wise standard deviation which means that

around 95% of results should lie in this region.

Suppose that the given data set is D = (x1, y1), (x2, y2), by using this data set to

figure out the observation function. The dashed lines in Figure 3.1(b) show that sample

functions which are consistent with data set D and the solid line represents the mean value

of these functions. In Figure 3.1(b), the uncertainty is reduced close to the observed data

sets. After adding more samples as data sets, the mean function can be adjusted to pass

through these data points and the uncertainty would also be reduced.

Figure 3.1: Panel (a) shows four samples drawn from the prior distribution. Panel (b) shows
the situation after two data point have been observed. The mean prediction is shown as the
solid line and four samples from the posterior are shown as dashed lines. In both plots the
shaded region denotes twice the standard deviation at each input value x [38].

As for the Gaussian Process regression (GPR) model, one can think of a Gaussian

process as a distribution of defined functions and reasoning occurs directly in the function

space. Another way to describe a Gaussian process (GP) is a collection of random variables;

any finite number of which have a joint Gaussian distribution. A Gaussian process is com-

pletely specified by its mean function and covariance function. It is defined that the mean

function µ(x) and the covariance function Σ(x, x′) of a real process f (x ).

µ(x) = E[f(x)], (3.10)

Σ(x, x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))], (3.11)
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and the Gaussian process (GP) is given by:

f(x) ∼ N (µ(x),Σ(x, x′)). (3.12)

For notational simplicity, the mean function µ(x) is commonly considered to be zero, but

not necessary. However, it is not a big limitation as the average of the posterior process is

not limited to zero.

The specification of the covariance function implies a distribution over functions.

Assume a number of input points, which play the role of test sets X∗. By using the test sets,

we can generate a random Gaussian vector with the covariance matrix from

f∗ ∼ N (0,Σ(X∗, X∗)). (3.13)

Initially, the simple special case is (xi, fi) | i = 1, ..., n, the joint distribution of the training

outputs is considered to be f, and the test outputs f∗ according to the prior is:

 f

f∗

 ∼ N
0,

 Σ(X,X) Σ(X,X∗)

Σ(X∗, X) Σ(X∗, X∗)


 . (3.14)

Considering the noisy, the observations is given by:

y = f(x) + ε. (3.15)

Assuming additive independent identically distributed Gaussian noise ε with variance σ2,

the prior on the observations becomes:

cov(y) = Σ(X,X) + σ2I. (3.16)

Introducing the noisy observations part (Equation 3.15), the joint distribution of observation
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is given by: y

f∗

 ∼ N
0,

Σ(X,X) + σ2I Σ(X,X∗)

Σ(X∗, X) Σ(X∗, X∗)


 . (3.17)

Based on Equation 3.17, the mean function and the covariance function can be written as:

f∗ | X,y, X∗ ∼ N (̄f∗, cov(f∗)), (3.18)

where

f̄∗ = E[f∗ | X,y, X∗] = Σ(X∗, X)[Σ(X,X) + σ2I]−1y, (3.19)

and

cov(f∗) = Σ(X∗, X∗)− Σ(X∗, X)[Σ(X,X) + σ2I]−1Σ(X,X∗). (3.20)

In covariance matrix, Σ(X,X), each element in the matrix is called covariance func-

tion in the context of Gaussian process. The covariance function is also treated as “Kernel”

function. Kernels are the key component of the Gaussian process, which determines the

shape of prior and posterior of the Gaussian Process. Kernels are behaving like the inner

product in some space. They code the hypothesis of the learning function by defining the

“similarity” of the two data points and combining the assumption that similar data points

should have similar target values. For example, kernel shows the relationship between input

vectors x(i) and x(j). Kernel kij = 1 means that vector x(i) and vector x(j) are at the same

point and kernel kij = 0 means that vector x(i) and vector x(j) are far from each other.

The kernel function used in this research is “Radial Quadratic kernel (RQK).” The

Rational Quadratic kernel can be seen as a scale mixture (an infinite sum) of Radial Basis

Function (RBF) kernels, which is a stationary kernel and is also known as the “squared

exponential” kernel, with different characteristic length-scales. RQK is parameterized by a

length-scale parameter l > 0 and a scale mixture parameter α > 0. The Radial Quadratic

kernel is given by:

k(x(i), x(j)) =

(
1 +

d(x(i), x(j))2

2αl2

)−α
, (3.21)
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where d(x(i), x(j)) is the distance between vector x(i) and vector x(j), which is calculated by

Euclidean distance. The α and l are also called hyper-parameters which can significantly

affect the regression result.

Figure 3.2: (a) Data is generated from a Gaussian Process with hyper-parameter l = 1, as
shown by the + symbols. Using Gaussian Process prediction with these hyper-parameter to
obtain a 95% confidence region for the underlying function f . Panels (b) and (c) show the
hyper-parameters l = 0.3 and l = 3 respectively [38].
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CHAPTER 4

METHODOLOGY FOR SAMPLING AND TRAINING

4.1 Sampling Method-Latin Hypercube Sampling (LHS)

At the beginning of the nonlinear production optimization, the first thing needs to

be done is to find out the initial guess point. In this research, there are totally 73 well

control variables. This means that an initial guess point is a 73 dimensional vector. We

need to generate a number of its random samples for training and choosing initial guesses

for optimization. The question is how to “evenly” generate these samples. In this study, we

use LHS method, which may have better performance than Monte Carlo method [34].

Let S represents to the sample space, input variables X = (X1, ..., XK) and the output

variable Y = f(X). By using the computer program, for any selection of input variables X an

output variable Y is produced by the computer program. Moreover, the computer programs

are sometimes sufficiently complex so that a single set of input variables may require a quite

long time even on the fastest computers in order to produce one output. A single output Y

is usually a graph Y (t) of output as a function of time.

From different methods of selecting the values of input variables, Latin Hypercube

Sampling is used in this research. Latin Square (LHS) is an n × n array filled with n

different symbols, each occurring exactly once in each row and exactly once in each column.

Latin hypercube is the generalization of this concept to an arbitrary number of dimensions,

whereby each sample is the only one in each axis-aligned hyperplane containing it, where

hyperplane means a subspace whose dimension is one less than that of its ambient space.

Latin Hypercube Sampling (LHS) is a method of sampling random numbers that

attempt to distribute samples evenly over the sample space. Ensuring each of the input

variables Xk has all portions of its distribution represented by input values. Dividing the
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range of each Xk into N layers of equal marginal probability 1/N , and sample once from

each layer. Let the sample be Xki, i = 1, ..., N and k = 1, ..., K, where K is the number of

the dimension of the input variables and N is the number of the samples we want to sample

[30].

For example, the input variable is two dimensions, and we are going to generate four

samples, the LHS will generate several different samples as Figure 4.1 and Figure 4.2.

Figure 4.1: Sample 1 of LHS.

Figure 4.2: Sample 2 of LHS.

One of the advantages of LHS is that it does not require more samples for more

control variables, people can get any number of samples with any number of control variables.

Another advantage is that LHS is a sampling method which has memory. When doing LHS,

each selected sample’s location needs to be memorized, in this case, the samples can be taken
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one by one.

It is necessary to note that we have used the codes publicly available in “Python”

when implementing LHS.

4.2 Training Proxy Model Method

To find out the accurate proxy model that can replace computer simulator (CMG),

there are two main steps: First it is to build up a proxy model by using machine-learning

method; secondly it is to retrain this proxy model to improve the accuracy of results produced

by this model.

4.2.1 Build Proxy Model

• First step to build is using LHS method to sample 32 different groups of initial guesses.

• Second step is using these initial guesses to write the well control that can be used by

computer simulator (CMG).

• Thirdly, using the well control to run computer simulator.

• Then output useful results from CMG such as water production rate at the producer,

oil production rate at the producer, water injection rate at the injector, BHP at the

producer.

• Next step is using these results and Equation 2.3 to calculate the NPV.

• Finally, let the well controls be the input variables X and let the calculated NPV be the

output variables Y . Combine these input variables and the output variables together,

which can be considered as the known points. And we can use these points to build

the proxy model.

4.2.2 Retrain Proxy Model

The procedures of how to retrain the proxy model are given in Figure 4.3.
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• Firstly, using LHS to sample 5 initial well control vectors as 5 input variables.

• Second, find the maximum NPV by using finite difference method and this proxy

model. With this maximum NPV, the optimal control variables can be found.

• Next, using the optimal well controls to run production simulator (CMG) and get the

corresponding responses from CMG, which includes water and oil production rates,

water injection rates and the BHP.

• Then calculate the real NPV by using the responses.

• Finally, comparing the real NPV with the NPV given by proxy model, which is given

by:

∆ =
|NPVProxy −NPVCMG|

NPVCMG

(4.1)

If ∆ < 0.03, shows that the result of the proxy model is accurate, this proxy model is

able to replace the production simulator. If not, the proxy model needs to be improved.

To improve the proxy model, we retrain the proxy model from the very beginning step.

Resample 5 initial 
points

Find the optimal 
NPV

Compare responses
Find out the 

property proxy 
modelsimilar

No

Run CMG by 
using optimal CVs

Figure 4.3: The flowchart of the proxy model optimization.

It is necessary to note that we have used the codes publicly available in “Python”

when implementing GPR.
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CHAPTER 5

APPLICATIONS

5.1 Model Description

The model used in this research to simulate a model of SAGD process includes only

one pair of horizontal wells; one injector and one producer. The reservoir model is built

by CMG-STARS, and production optimization has also been tested by CMG-STARS. The

reservoir model simulates a quite small reservoir. The length of the reservoir is 900 m, the

width of the reservoir is 80 m and the height of the reservoir is 38 m. To save the running

simulation time cost during production optimization, a cross-section which is perpendicular

to the pair of horizontal wells is simulated. That is, there is only one gridblock to be

considered along the length direction of the reservoir model. The size of the cross-section

is 51 × 38.That is, there are 51 gridblocks along the width direction of the model and on

the vertical direction are 38 gridblocks. Totally, there are 1938 gridblocks in this reservoir

model. The size of each grid-block is 900 m×1.6 m×1.0 m.

The permeability (k) of the model is assumed as random distribution, the lowest

permeability in the reservoir is 0.0213 Darcy, and the highest permeability in the model is

67.2115 Darcy. In real applications, the reservoir model to be used for optimization would be

a history matched model having a permeability distribution satisfying historical production

data. So, we can consider our reservoir model here as a history matched model. The case of

the permeability distribution been used in this research is given in Figure 5.1 and Figure 5.2.

The reservoir model is heterogeneous and anisotropic with respect to k. The permeability

in i and j direction are the same, but the permeability in k direction is equal to 40% of the

permeability in i direction(i direction represents to the length, j direction represents to the

width, and k direction represents to the height of the reservoir).
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Figure 5.1: The permeability distribution in horizontal direction in this reservoir model.

Figure 5.2: The permeability distribution in vertical direction in this reservoir model.

The top depth of the reservoir is 402 m (1318 ft), which may be considered to be
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realistic for the tar sands reservoir in Canada [40]. In this study, the initial reservoir pressure

is assumed as the pressure at the top of the reservoir 1300 psi and the initial reservoir

temperature is assumed to be a constant as 104 ◦F. The injector is drilled in the center of

26 × 30 grid-block and the producer is drilled in the center of 26 × 35 grid- block, which is

3.5 m from the bottom of the reservoir. The injector is 5 m above the producer. Both wells’

diameter is 8.7 inch, and both of them are fully perforated.

One of the most important ways to increase the oil recovery in heavy-oil and bitumen

is to decrease the oil viscosity. In this study, the effect of pressure on oil viscosity is ignored,

the oil viscosity is assumed tobe as the function of temperature. As shown in Figure 5.3, the

initial oil viscosity in the reservoir is higher than 1000 cp, which is very difficult to produce.

In this case, we need to inject high-temperature steam to increase the temperature in the

reservoir. Figure 5.3 shows that when the temperature increases to around 392 ◦F (200 ◦C),

the oil viscosity will be decreased to around 6 cp. In CMG-STARS, we will use the key word

“VISCTABLE” to input the viscosity data, shown in Figure 5.3.

Figure 5.3: Semi-log Plot of Temperature vs Oil Viscosity.

Before any SAGD process, there is a pre-heating time period to be concerned. Ac-

tually, there are two ways to conduct a pre-heating process. A cyclic injection of high-
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temperature steam into both injector and producer is a very common pre-heating method

[36]. On the other hand, lack of steam injectivity is one of the most serious obstacles in

the thermal recovery of tar sands and oil shale deposits. Because the huge hydrocarbon

reservoirs exist in deposits where the oil viscosity and saturation are so high that sufficient

steam injectivity cannot be achieved by current methods. In this case, using electric heating

to heat up the reservoir temperature and increase the mobility of the heavy oil is a good

choice. However, due to the high cost of the electrical heating, this method cannot be viewed

as a replacement for steam injection [24].

In CMG-STARS, using the keyword “UHTR”, we can add this preheating process into

the model, and by using “TMPSET” we can set the highest temperature for the gridblocks

which contain the wells. The pre-heating time period is set to 52 days and the specified

preheating temperature is set to 465 ◦F. However, because of the length of the pre-heating

time period and heat loses, the reservoir temperature around the wells can only reach to

around 392 ◦F. If the length of the pre-heating time period was expended, the temperature

of the gridblocks could reach to 465 ◦F.

The original temperature of the injected steam is 465 ◦F, and the steam quality is 0.9.

It is assumed that the steam quality is kept constant through the whole life-cycle production

optimization. The initial reservoir oil saturation is assumed to be constant in the whole

reservoir, which is 0.7. As mentioned in Chapter 2.2, the total production life is 3240 days,

which is divided into 36 control steps. The control step size is 90 days. Since there are two

wells in this model, there are 73 well control variables need to be adjusted for production

optimization during maximization of NPV function (Equation 2.3). In NPV function the

price of the produced oil ro assume to be 80 $/m3, the cost to deal with the produced water

rw assume to be 1 $/m3, the steam injection cost rwi is assumed to be 5 $/m3, the steam

heat up cost rheat is assumed to be 0.01 $/(m3 ·◦F), and the annual discount rate b is 0.05.

5.2 Results of StoSAG

As we compare the results of using the ML-based GPR proxy model with those of

31



using the gradient-based StoSAG, we first present our results obtained by using StoSAG. The

results of StoSAG can be affected by two parameters; one is the size of perturbation, which

is the percentage of perturbation in the control variables and another is the smoothness of

the control variables as the function of time, which is affected by correlation length. The

higher the value of the correlation length, the smoother the control variables as the function

of time.

To investigate the effect of these parameters on StoSAG performance for SAGD pro-

cess, we consider three cases. We define the perturbation sizes of 0.5% and 0.1%. The

correlation lengths are set as 18 and 36. As for the number of perturbations Np is 20.

The first case is perturbation size 0.1% and the correlation length is 18. The initial

guess for the control variables is the steam injection rates at the injector is 1258 bbl/day

(' 200 m3/day) for the whole life-cycle, the BHP at the producer is 1200 psi for the whole

life-cycle, and the temperature of the injected steam is 392 ◦F. The initial oil saturation in

the reservoir is assumed to be 0.7. The oil saturation distribution in Case 1 after several

control steps are shown in Figs. 5.4 to 5.7.

Figure 5.4: Oil Saturation distribution in the reservoir for Case 1.
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Figure 5.5: Oil Saturation distribution in the reservoir for Case 1 at 1042 days.

Figure 5.6: Oil Saturation distribution in the reservoir for Case 1 at 2032 days.

33



Figure 5.7: Oil Saturation distribution in the reservoir for Case 1 at 3292 days.

Comparisons of the initial values of well controls (BHP at the producer and steam

injection rate) with the values of corresponding optimized well controls by using StoSAG

method with the perturbation size 0.1% and correlation length 18 are shown in Figure 5.8

and Figure 5.9.

Figure 5.8: A comparison of initial and optimized BHP at the producer for Case 1.
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Figure 5.9: A comparison of initial and optimized steam injection rate at the injector for
Case 1.

In the beginning, the optimized BHP decreases for around 200 days and it increases

till 1500 days. The highest BHP achieved by optimization is 1238 psi. After that, the

optimized BHP keeps decreasing to its lower bound of the BHP and is maintained at its

lower bound from 2000 days to the end of the life-cycle. This maybe because there is not

that much oil left in the chamber that can be produced, which is shown in the oil saturation

distribution in Figure 5.6 and Figure 5.7. The steam injection rate gradually increases until

it reaches its highest optimized value of 3100 bbl/day from 1400 days to 1600 days. The

highest injection rates are around 3100 bbl/day (' 490 m3/day), which is very close to its

upper bound. After 1600 days, the steam injection rate decreases to 2600 bbl/day (' 410

m3/day) and is maintained at this rate from 2800 days to 2900 days. Finally, the steam

injection rate decreases to around 2100bbl/day (' 335 m3/day) at the end of the life cycle

(Figure 5.9). The cumulative oil production is shown in Figure 5.10. It can be seen that

the optimization is really necessary to maximize NPV. The cumulative oil production at

the initial values of well controls at the end of life-cycle is 0.86 million bbl, whereas the

cumulative oil production at the optimized values of well the controls is 2.39 million bbl.

The NPV generated by the initial values of well controls is 3.0253 million dollars ($MM),
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whereas the NPV generated by the optimized values of well controls is 13.0993 million dollars

($MM). It is shown from Figure 5.11 that the NPV is converged after 20 iteration runs.

Figure 5.10: A comparison of initial and optimized cumulative oil production from the
producer for Case 1.

Figure 5.11: NPV for Case 1.

In the second case, the perturbation size is 0.1% and the correlation length is 36. The

other conditions are the same as Case 1. The oil saturation distribution after the life-cycle
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is given in Figure 5.12.

Figure 5.12: Oil Saturation distribution in the reservoir for Case 2 at 3292 days.

Comparisons of the initial values of well controls (BHP at the producer and steam

injection rate) with the values of corresponding optimized well controls by using StoSAG

method with the perturbation size 0.1% and correlation length 36 are shown in Figure 5.13

and Figure 5.14.

Figure 5.13: A comparison of initial and optimized BHP at the producer for Case 2.
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Figure 5.14: A comparison of initial and optimized steam injection rate at the injector for
Case 2.

For this case, the BHP at the producer reaches its highest value of BHP 1308 psi

immediately. Then, the BHP decreases to around 1004 psi at around 1000 days. The BHP

is then decreases to 600 psi at around 2500 days (see Figure 5.13). The steam injection

rate gradually increases until it reaches its highest value of 2800 bbl/day (' 443 m3/day)

at around 1000 days. After that, the steam injection rate decreases to 2000 bbl/day (' 320

m3/day) till the end of the life cycle (see Figure 5.14). The cumulative oil production is

shown in Figure 5.15. The cumulative oil production at the initial values of well controls

at the end of life-cycle is 0.86 million bbl, whereas the cumulative oil production at the

optimized values of well controls is 2.31 million bbl. The NPV generated by the initial well

controls is 3.0253 million dollars ($MM), while the NPV generated by the optimized values

of well controls is 12.8385 million dollars ($MM). It is shown from Figure 5.15 that the NPV

is converged after 15 iteration runs.
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Figure 5.15: A comparison of initial and optimized cumulative oil production from the
producer for Case 2.

Figure 5.16: NPV for Case 2.

In the last case, the perturbation size is 0.5% and the correlation length is 18. The

other conditions are the same as Case 1. The oil saturation distribution after the life-cycle
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is given in Figure 5.17.

Figure 5.17: Oil Saturation distribution in the reservoir for Case 3 at 3292 days.

Comparisons of the initial values of well controls (BHP at the producer and steam

injection rate) with the values of corresponding optimized well controls by using StoSAG

method with the perturbation size 0.5% and correlation length 18 are shown in Figure 5.18

and Figure 5.19.

Figure 5.18: A comparison of initial and optimized BHP at the producer for Case 3.
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Figure 5.19: A comparison of initial and optimized steam injection rate at the injector for
Case 3.

As can be seen from Figure 5.18, in the beginning, the optimized BHP decreases for

around 300 days, and then it increases from 300 days to 1500 days by reaching its highest

BHP value of 1464 psi. Later, the optimized BHP keeps decreasing to its lower bound of

600 psi at around 2500 days, and then is maintained at this value until the end of this

life-cycle. The steam injection rate gradually increases until it reaches its highest optimized

value of 3145 bbl/day (' 500 m3/day) from 800 days to 2100 days. After 2100 days, the

steam injection rate decreases to 2820 bbl/day (' 449 m3/day) till 2900 days. Finally, the

steam injection rate decreases to around 2200bbl/day (' 350 m3/day) at the end of the

life cycle (see Figure 5.19). The cumulative oil production is shown in Figure 5.20. The

cumulative oil production at the initial values of well controls at the end of life-cycle is

0.86 million bbl, whereas the cumulative oil production at the optimized values of well the

controls is 2.41 million bbl. The NPV generated by the initial values of well controls is 3.0253

million dollars ($MM), whereas the NPV generated by the optimized values of well controls

is 12.7699 million dollars ($MM). It is shown from Figure 5.21 that the NPV is converged

after 10 iteration runs.
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Figure 5.20: A comparison of initial and optimized cumulative oil production from the
producer for Case 3.

Figure 5.21: NPV for Case 3.

Comparing the results of Case 1, Case 2 and Case 3, we find that the optimized well
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control variables in the three cases are quite different, depending on the chosen perturbation

size and correlation length in the StoSAG method.

In Figure 5.22 to Figure 5.27, the red curve represents the well controls and well

responses generated by the perturbation size of 0.1% and correlation length of 18 (Case 1),

the blue curve represents the results for the perturbation size of 0.1% and correlation length

of 36 (Case 2), and the green curve represents the results for the perturbation size of 0.5%

and correlation length of 18 (Case 3). It is clear from the results presented in Figure 5.22

to Figure 5.27 that the different perturbation sizes and different correlation lengths yield

quite different values of optimized well controls. However, inspection of the results of Figure

5.26 and Figure 5.27, we can say that although the oil and water production rates are quite

different depending on the cases, the cumulative oil production for all three cases are similar

and there is not a significant difference in NPV for three cases.

Based on these three cases, it can be concluded that the perturbation sizes and the

correlation lengths do not have significant effect on NPV. In this study, we found that the

Case 1 yields the maximum NPV value, though it is only slightly higher than those for Case

2 and Case 3. The perturbation size set as 0.1% and the correlation length set as 18 in this

study.

Figure 5.22: A comparison of the optimized BHP for three different cases.
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Figure 5.23: A comparison of the optimized steam injection rate for three different cases.

Figure 5.24: A comparison of the oil rate responses for three different cases.
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Figure 5.25: A comparison of the water rate responses for three different cases.

Figure 5.26: A comparison of the cumulative oil production for three different cases.
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Figure 5.27: A comparison of the NPV for three different cases.

5.3 Results of GPR

Before we present our results with the GPR method, it is important to not that a

learning algorithm that fits a training set well does not mean it is a good hypothesis. It could

overfit. This means that the hypothesis can only fit the training set well but the predictions

on the test set would be poor. As mentioned in Chapter 3.2.1, the results of machine learning

regression can be affected by the hyper-parameters in the kernel functions. For this reason,

finding appropriate values of hyper-parameters is very important. To achieve this, we break

down the data set into three sets:

• Training set: 60%

• Cross validation set: 20%

• Test set: 20%

Calculate three separate error values for the three different sets using the following method:
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1. Train the proxy model using the training set.

2. Find the property hyper-parameters with the least error by adjusting the range of the

hyper-parameters using the cross validation set.

3. Estimate the generalization error using the test sets.

The error can be represented by a correlation coefficient. The correlation coefficient

formulas tell us how strong a relationship is between two sets of data. The formula returns

a value somewhere between negative 1 and positive 1. The positive correlation indicates a

positive relationship. Positive 1 indicates that for every positive increase in one variable,

there is a positive increase in a fixed proportion in the other. A correlation of 0 means

that for every increase, there is not a positive or negative increase, the two sets of data is

absolutely no correlation whatsoever. And a negative correlation means there is a correlation

but it is in a negative direction. The correlation of negative 1 means that for every positive

increase in one variable, there is a negative decrease in a fixed proportion in the other.

First, we construct an GPR proxy model by using the initial well controls without

any normalization, however, the correlation coefficient for this proxy model is only 0.5058

(see Figure 5.28). Since there are 36 BHP, 36 steam injection rates, and 1 temperature of

the injected steam as the input well control variables, the ranges of these input variables

are very uneven, which can cause the calculation of the gradient very inefficiently and may

incorrectly. The way to prevent or to improve this situation is to modify the range of the

input variables so that they all have the same range: 0 ≤ x(i) ≤ 1. The technique to help with

this is scaling. Scaling involves dividing the input values by the range (i.e. the maximum

value minus the minimum value) of the input variable, resulting in a new range of just 1.

The formula of scaling is given by:

xscaled =
xinitial −min(xinitial)

max(xinitial)−min(xinitial)
, (5.1)

where min(xinitial) and max(xinitial) are the minimum and maximum values in the initial

input variables, respectively.
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Using the scaled input well control variables, we generated a GPR proxy model for

NPV, the correlation coefficient now increases to 0.7140 (see Figure 5.29). By adjusting the

hyper-parameters in the kernel function, the correlation coefficient can be further improved

to 0.8382 (see Figure 5.30).

Figure 5.28: A cross-plot of NPV GPR proxy vs. NPV-simulation (CMG) based on unscaled
well control variables.

Figure 5.29: A cross-plot of NPV GPR proxy vs. NPV-simulation (CMG) based on scaled
well control variables.
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Figure 5.30: A cross-plot of NPV GPR proxy vs. NPV-simulation (CMG) based on scaled
well control variables and adjusted hyper-parameters.

In the beginning, we tried to use 73 scaled well control variables to train the proxy

model, however, the results from the GPR proxy model shows that the optimized well control

variables are trapped in the boundaries. From Figure 5.31, we can say that the optimized

BHPs are trapped in the lower bound. In Figure 5.32, the steam injection rates are trapped

in the upper bound. This shows that with too much control variables, the optimized result

from GPR model may be trapped in a local maximum.

Following the procedures in Chapter 4.2.1, we built a proxy model by GPR method.

Re-sample 5 new initial well controls, they finally converge to 3 different maximum NPV.

Once GPR proxy model of NPV is built, we preformed optimization of well control variables

to maximize NPV by using the GPR proxy model with five different initial guesses of well

control vectors, sampled from the LHS method. The results obtained for the optimal values

of NPV from CMG-STARS and GPR proxy model with five different initial guesses of well

control vectors are presented in Table 5.1. As can be seem from the results of Table 5.1,

we basically have three different maximum values for the NPV predicted by the GPR proxy

model.
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Figure 5.31: A comparison of the optimized BHP for GPR proxy and StoSAG methods.

Figure 5.32: A comparison of the optimized steam injection rate for GPR proxy and StoSAG
methods.
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Figure 5.33: A comparison of the cumulative oil production for GPR proxy and StoSAG
methods.

Since the number of the control variables is too large, the GPR model can be trapped

in a local maximum. So, the number of control variables is reduced to 9. The method to

decrease the control variables is shown in Figure 5.34 to Figure 5.36. Assuming that the

value of every 9 consecutive variables is the same, which means that the steam injection rates

and the BHP at the producer from 52 days to 862 days, 862 days to 1672 days, 1672 days

to 2482 days and 2482 days to 3292 days are constants, in Figure 5.34, using BHP as the

example. After normalization, the BHP is in the range of 0 to 1. To improve the accuracy of

the proxy model, the method we use in this study is to add the training samples around the

optimal point. In this case, we define a interval which is 0.2 far from the optimized BHP.

By using this method, a trust region can be generated as shown in Figure 5.35 (Black area).

Using the LHS method sample 5 initial guesses in this trust region, and increase the number

of the control variable to 25, which means that the value of every 3 consecutive variables is

the same. Using these initial guesses and follow the retraining procedures (Chapter 4.2.2),

after optimization, the optimized BHP is shown in Figure 5.36.
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Figure 5.34: The initial trained proxy model result (optimized BHP) by 9 control variables.

Figure 5.35: The trust region.
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Figure 5.36: The retrained proxy model result (optimized BHP) by 25 control variables.

Table 5.1: NPV of CMG and GPR proxy model for three optimal control variables

Selected Optimal CV NPV (CMG), $MM NPV (GPR),$MM Difference
Optimal CV1 11.234 11.800 5.04%
Optimal CV2 11.966 11.537 3.59%
Optimal CV3 11.307 11.695 3.43%
Optimal CV4 10.581 11.817 11.68%
Optimal CV5 10.581 11.842 11.92%

From Table 5.1, the difference between the results obtained from the GPR proxy

model and the simulator (CMG) is more than 3%. Following the procedure in Chapter 4.2.2,

we retrain the proxy model. After 2 retraining and optimizing steps, the results given in

Table 5.2 are obtained:

After retraining the proxy model, the maximum NPV increased a little bit compared

with the maximum NPV generated by the initial proxy model. The difference between the

results from the retrained proxy model and the simulator (CMG) is around 1%, in this case,

this GPR proxy model can be considered sufficient to replace the reservoir simulator (CMG).
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Table 5.2: NPV of CMG and GPR proxy model for three optimal control variables after two
iterations

Selected Optimal CV NPV (CMG), $MM NPV (GPR),$MM Difference
Optimal CV1 11.928 12.058 1.09%
Optimal CV2 11.859 11.984 1.05%
Optimal CV3 12.002 12.026 0.20%
Optimal CV4 11.937 12.045 0.90%
Optimal CV5 11.734 12.007 2.33%

From Figure 5.34, it shows similar trends like the optimized BHP controls in Figure

5.22, the BHP increased to the highest point and generally decrease to the lower bound,

which is 600 psi and maintains at the lower bound until the end of the life-cycle. From

Figure 5.35, the optimized steam injection rates are trapped at the upper bound, which is

quite different from the optimized well controls in StoSAG Method.

Figure 5.37: A comparison of the optimized BHP of producer from the initial proxy model
(a) and from the retrained proxy model (b).
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Figure 5.38: A comparison of the optimized steam injection rates from the initial proxy
model (a) and from the retrained proxy model (b).

5.4 Comparison of Results

Comparing the results from StoSAG method and GPR method (Figure 5.39 to Figure

5.41), in Figure 5.41, we can state that, StoSAG method can get higher NPV than the GPR

method. Using StoSAG method, the maximum NPV is 13.099 $MM , which is 8.63% higher

than GPR method, however, StoSAG method needs more than 400 simulator runs, GPR

method only needs 47 simulator runs. In this case, the GPR method can save a lot of

computational cost compare with StoSAG method (Table 5.3).

Table 5.3: NPV from StoSAG and GPR proxy model and the number of simulation runs

Selected Optimal CV NPV, $MM No. Simulation runs

Optimal CV1 12.058 47

Optimal CV3 12.026 47

Optimal CV5 12.007 47

StoSAG CV 13.099 > 400
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Figure 5.39: A comparison of the optimized BHP for StoSAG and GPR proxy model.

Figure 5.40: A comparison of the optimized steam injection rate for StoSAG and GPR proxy
model.
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Figure 5.41: A comparison of the NPV for StoSAG and GPR proxy model.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

From this study, the following conclusions are warranted:

• In this study, for the gradient based StoSAG method, two parameters which include

the perturbation size and the correlation length showed not significant effect on the

maximized NPV, although they can affect the optimized well control variables.

• The optimized well control variables shows the similar results as Gates et al. and Bao

et al. [2, 22]. In the early time, the BHP at the injector and the producer is at a high

level, after the steam chamber reaches the top layer, the BHP generally decreases to a

lower level.

• The GPR method results can be affected by the hyper-parameters in the kernel func-

tion. Compare with using non-scaled well control variables, using scaled well control

variables to train the proxy model can improve the accuracy of the model significantly.

• For the GPR method, too many well control variables can make the optimized result

trapped in local maximums, which may not yield a desired result for NPV. If we

decrease the number of well control variables, the optimized result obtained from the

GPR model can be improved.

• The steam injection rates optimized by GPR method have always been trapped in the

upper bound considered in this study.

• In this study, the maximum NPV generated by gradient-based StoSAG method is

higher than the maximum NPV generated by ML-based GPR method. However, the
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number of simulator runs required by the StoSAG method is ten times that of the

GPR method, which means a high computational cost.

6.2 Recommendations for Future Work

In future, we can use different kinds of machine learning methods to built the proxy

model. For instance, we can use Least-Squares Support Vector Regression (LS-SVR) which

have been found useful for other life-cycle optimization process, e.g., CO2 huff-n-puff and

water flooding. Comparing the results generated by the GPR method can help to find the

more appropriate ML-based method to built a proxy model to be used in the optimization of

SAGD process. We can use different permeability distribution map to assess the uncertainty

in the life-cycle optimization of a SAGD process.
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NOMENCLATURE

Greek Symbols

α Scale mixture parameter

∆ Tolerance of proxy model and CMG

ε Perturbation size

µ Mean function

Σ covariance function

σ Standard deviation

ε Noise

Other Symbols

E Expectation

N Gaussian distribution

∼ Distributed according to

a Step length

b Discount rate

cov() Gaussian process posterior covariance

I Identity matrix

J(u) Objective function
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l Length-scale parameter

Subscripts and Superscripts

i Injector

p Producer

i Samples index

j Perturbation index

k Input variables index

l Iteration index

n Control step index

o Oil

w Water

wf Bottom-hole

wi Cold water equivalent injected steam
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