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ABSTRACT

Yu Zhao (Doctor of Philosophy in Petroleum Engineering)

Parameterization and Data Assimilation for Complex Geological Reservoirs

Directed by Albert C. Reynolds

230 pp., Chapter 6: Conclusions

(661 words)

Over the past decade, it is popular to view the assisted history matching (AHM)

problem in a traditional Bayesian framework where we commonly assume a multi-Gaussian

description of the prior probability density function (PDF) of model parameters. However,

this assumption is often insufficient to capture the complexity of realistic geological structures

(e.g., fluvial channels and complex facies distributions) that crucially impact subsurface flow

responses. For such complex geological systems, the prior and posterior distributions are

poorly described by explicit PDFs which makes it challenging to solve the inverse problem

in history matching and obtain posterior models that preserve the geological realism. In this

work, we investigate the use of parameterization methods with an ensemble-based algorithm

for assisted history matching of complex geological reservoirs (specifically, the channelized

reservoirs with multiple facies) where the prior PDF violates the multi-Gaussian assumption.

We develop an integrated history matching workflow by combining parameterization

methods and the ensemble smoother with multiple data assimilation (ES-MDA) algorithm.

After every iteration step, an improved post-processing technique is used to map updated

continuous variables to discrete facies indicators by considering the prior facies proportions.

On the parameterization side, we propose a new implementation method of cosine

discrete transform (DCT), i.e., common basis DCT, for parameterization of discrete facies

type indicators and model reduction. With the common basis DCT, we construct a set of
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common basis functions that describe the geological similarities among different models and

show that common basis DCT outperforms traditional implementations of DCT in terms

of the quality of data match and the preservation of geological continuity. Different from

the global features obtained by common basis DCT, we introduce the non-negative matrix

factorization (NMF) to extract local features of model parameters by imposing the non-

negativity constraints on the components in the basis and coefficient matrices. With NMF, a

posterior reservoir model can be generated as a positive linear combination of updated basis

vectors. Based on the results from synthetic examples, NMF is also capable of resolving

geologic details and preserving the spatial continuity of channelized facies, and is slightly

superior to common basis DCT. Motivated by recent progress in tensor decomposition (TD)

and non-negative tensor decomposition (NTD), we also investigate the parameterization of

facies fields using TD and NTD. Based on results from various cases, TD and NTD perform

similarly and the data match results obtained with these methods are better than those

obtained by NMF. Although the uncertainty characterization of facies distributions is slightly

better with NTD, the computing time of NTD can be as 10 times longer as that of TD. From

probability maps of channel facies, it is shown that more channel gridblocks in the true model

are correctly resolved by NTD than TD, but the proportion of missed channel gridblocks

is also slightly higher when we implement NTD. In order to determine the truncation level

for TD and NTD, we develop a scheme to obtain ranks of different modes by balancing

the normalized model mismatch and model reduction ratio. The truncated TD and NTD

methods are tested on variations of a 3D example and compared comprehensively with TD

and NTD without truncation in terms of history data match, uncertainty characterization

of channel distributions and computational cost.

To completely preserve the spatial continuity of channel facies distribution represented

by object-based modeling, we also propose a workflow to adjust by history matching the

parameters used to generate a realization of channelized system by object-based modeling

in Petrel. Although this seems like an obvious approach, the results of a sensitivity analysis

show that extremely small changes in some of the parameters used in object-based modeling
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with Petrel lead to an extremely large change in the facies distribution, i.e., the object-

based realization is not a continuous or stable function of the parameters. Due to the

internal randomness associated with Petrel modeling process, it is difficult to obtain desirable

approximation of gradient by the data assimilation algorithm. Thus, the proposed workflow

for history matching of object-based models was not successful.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

In the reservoir engineering community, inverse problems arise when the observed

data, dobs, are used to calibrate the model parameters, m, for the purpose of accurate

prediction of reservoir performance (Oliver et al., 2008). This process is usually referred to

as assisted history matching (AHM) which is one crucial stage in the closed-loop reservoir

management (Jansen et al., 2005, 2009) (see Fig. 1.1). Over the past decade, the main focus

of this area has shifted from finding an individual model that best matches the data to a

set of models that are consistent with the observed data. This allows the quantification of

uncertainty in the posterior models and production prediction in order to handle the risks

in decision making and reservoir management.

Figure 1.1: Closed-loop reservoir management

For uncertainty quantification, it is convenient to view the inverse problems in a

traditional Bayesian framework (Tarantola, 2005; Oliver et al., 2008) where the posterior
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probability density function (PDF) of the model parameters, f(m|dobs), can be written as

f(m|dobs) =
f(dobs|m)f(m)

f(dobs)
= aL(m|dobs)f(m), (1.1)

where m is the Nm-dimensional vector of model parameters, dobs is the Nd-dimensional

vector of observed data, f(m) is the prior PDF of model parameters and f(dobs) is the PDF

of observed data. Most importantly, f(dobs|m) is the conditional PDF of dobs given m,

which corresponds to the likelihood function of model parameters, L(m|dobs), once dobs is

given. a is the normalizing constant.

If we assume a multi-Gaussian description of the prior PDF of parameters, then f(m)

is given by

f(m) =
1

(2π)Nm/2
√

detCM

exp

[
−1

2
(m−mprior)

TC−1M (m−mprior)

]
, (1.2)

where CM is the Nm × Nm prior covariance matrix of model parameters and mprior is the

prior mean of model parameters. Similarly, with the assumption of Gaussian-distributed

measurement errors, we can obtain a Gaussian likelihood function as

L(m|dobs) =
1

(2π)Nd/2
√

detCD

exp

[
−1

2
(dobs − g(m))TC−1D (dobs − g(m))

]
, (1.3)

where CD is the Nd×Nd covariance matrix of measurement errors and g(m) denotes the vec-

tor of predicted data obtained by running reservoir simulation given the model parameters,

m.

By substituting Eqs. 1.2 and 1.3 to Eq. 1.1, we can rewrite the Bayesian posterior

PDF, f(m|dobs), as

f(m|dobs) = a exp {−O(m)} , (1.4)

where a is the normalizing constant and O(m) is called the objective function defined by

O(m) = Om(m) +Od(m), (1.5)
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with the model mismatch term given by

Om(m) =
1

2
(m−mprior)

TC−1M (m−mprior), (1.6)

and the data mismatch term given by

Od(m) =
1

2
(dobs − g(m))TC−1D (dobs − g(m)). (1.7)

In the linear case where the predicted data, d = g(m), is a linear function of model pa-

rameters, it is straightforward to obtain an explicit posterior PDF, f(m|dobs), which is also

Gaussian; see Oliver et al. (2008). However, the linear assumption is not valid for practical

history matching problems.

With the above equations, the history matching problem can be transformed from

maximizing the posterior PDF, f(m|dobs), into minimizing the objective function, O(m). In

other words, the aim of history matching is to find models which honor the heterogeneity of

the prior models (low value of the model mismatch term, Om(m)) and match the observed

data (low value of the model mismatch term, Od(m)). Since mprior usually corresponds to

a smooth model, a high value of Om(m) often indicates that we obtain very rough posterior

models where there are large number of gridblocks containing unrealistically low (under-

shooting) or high (overshooting) values of petrophysical properties. On the other hand, if

an estimate m gives a high value of Od(m), it means that we obtain a poor data match.

Therefore, we focus on minimizing the value of O(m) through history matching in order to

yield models that give high posterior probability, f(m|dobs).

It is also noteworthy that the number of model parameters is much larger than the

number of independent observed data which makes the inverse problem ill-conditioned. So

the model mismatch term can be regarded as a regularization term which not only reduces

the condition number but constrains the posterior models to honor the prior geological

knowledge of the reservoir.

Assuming a multi-Gaussian prior PDF is often insufficient to capture the complex-
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ity of realistic geological structures that crucially impact subsurface flow responses (Journel

and Zhang, 2006; Kerrou et al., 2008). In reality, most spatial phenomena present strong

non-rectilinear shapes and connectivity, e.g., fluvial channels and complex litho-facies dis-

tributions. For such complex geological systems, the prior and posterior distributions are

poorly described by explicit PDFs which makes it very challenging to solve the inverse prob-

lem of characterizing the posterior PDF of Eq. 1.1 and obtain posterior models that preserve

the geological realism. This research deals with several technical issues related to the inverse

modeling and assisted history matching of complex geological reservoirs (specifically, the

multi-facies channelized reservoirs) where f(m) violates the multi-Gaussian assumption.

1.2 Literature Review on Geological Modeling Techniques

Modeling subsurface heterogeneity, i.e., constructing f(m), is one crucial step for the

exploitation of subsurface resources. For more than half a century, there has been signifi-

cant development progress of subsurface modeling based on geostatistics, and a large suite

of tools is available for generating realistic geological models. Traditionally, the subsurface

heterogeneity has been mostly modeled using the variogram-based approaches (Goovaerts,

1997; Deutsch and Journel, 1998) which follow the multi-Gaussian spatial framework. Al-

though they are still very popular techniques to model geological heterogeneity (Falivene

et al., 2006; Lee et al., 2007; Refsgaard et al., 2014), they cannot describe curvilinear fea-

tures, such as fluvial channels (Strebelle, 2002) and more complex structures. The truncated

pluri-Gaussian simulation (TPS) method (Emery, 2007; Armstrong et al., 2011) addresses

this issue by modeling two (or more) random Gaussian fields with underlying variograms.

The categorical field is obtained by applying the predefined truncation rules to the multi-

Gaussian fields. This method is capable of generating complex facies distributions but one

problem is that it is not easy to determine the spatial relations between various facies and

the truncation rules a priori. Moreover, the approach has not proved successful for chan-

nelized systems (Zhao et al., 2008). On the basis of TPS, Sebacher et al. (2017) developed

the adaptive pluri-Gaussian simulation (APS) method by incorporating facies probability
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fields and assigning a particular truncation map to each grid. Their results show that the

APS method is able to retain more variability in the initial ensemble compared to the tradi-

tional TPS method but the critical facies probability fields must be provided by professional

experts beforehand.

In the last 20 years, a new class of approaches based on multi-point statistics (MPS)

has emerged and gained popularity in the community (Guardiano and Srivastava, 1993;

Strebelle, 2002; Caers and Zhang, 2004; Mariethoz and Caers, 2014). It extracts multiple-

point patterns from a training image (TI) which contains conceptual geological knowledge

(Journel and Zhang, 2006) and store the number of occurrences of each pattern in a search

tree. During the simulation, the search tree is used to estimate conditional probabilities and

generate spatial continuity model with the patterns that are compatible with available data.

The first successful simulation algorithm based on this idea is SNESIM (Strebelle, 2002)

and several improved methods have been developed later on to be more efficient and better

at reproducing patterns in the training image (Hu and Chugunova, 2008; Tahmasebi et al.,

2012; Straubhaar et al., 2013; Strebelle and Cavelius, 2014). Training image based methods

can be applied to all kinds of geological environments and it is straightforward to account for

hard and soft data (Journel, 2002; Liu et al., 2004; Remy et al., 2009). Although obtaining

a suitable training image still remains a challenging task, this type of approach is suggested

to be viable for modeling complex geological structures (Linde et al., 2015).

The object-based methods (Deutsch and Wang, 1996; Nordahl and Ringrose, 2008;

Ramanathan et al., 2010) provide another way to describe the complex geological features.

This type of method consists of pre-defining a set of geologic bodies or objects (e.g., fluvial

channels) with orientation, amplitude, width, thickness, presence of levee and so on. The

nature of the relationship between objects can also be specified to assemble individual parts

together and place them in a domain according to prescribed constraints (e.g., facies pro-

portions) in order to create complete geological structures. One advantage of this approach

is that it can handle different geological environments and generate highly realistic repre-

sentations of subsurface heterogeneity in an efficient way. Among several of the most-used
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geological modeling techniques (i.e., two-point statistics, multi-point statistics, object-based,

surface-based and process-based) illustrated in Fig. 1.2, the object-based method is thought

to achieve a good balance between numerical efficiency, geological realism and conditioning

capabilities (Bertoncello, 2011). However, there are usually a large number of parameters

that need to be determined and the methods sometimes have difficulty in conditioning to

hard data (e.g., well measurements). Currently, a common application for object-based

methods is to generate training images for multiple-point statistics.

Figure 1.2: Geological modeling techniques (Bertoncello, 2011)

The current trend to generate complex geological models, i.e., multi-facies channelized

reservoirs in this work, is to employ MPS algorithm associated with reliable training images

or to use object-based methods directly. With these more advanced techniques, large-scale

geologic structures, such as a braided fluvial system, can be created efficiently and then

the petrophysical properties (e.g., porosity, permeability, net-to-gross ratio, etc.) within

distinct facies are simulated by two-point spatial statistics given corresponding variograms

or covariance functions. Although there are other geological modeling methods reported by

papers in hydrogeology, such as process-based modeling (Koltermann and Gorelick, 1992;

Paola, 2000; Nicholas et al., 2013) which solves partial differential equations that describe

geologic processes, these techniques are not considered here but a discussion can be found

in a recent review paper of Linde et al. (2015).
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1.3 Literature Review on Model Parameterization

After producing geologically realistic subsurface models using the approaches de-

scribed in the previous section, we usually need to parameterize the model in order to solve

the inverse problems. Given the original modelm (vector of model parameters) of dimension

Nm, the goal of parameterization is to find an appropriate model vector m̂ of dimension Nm̂

with Nm̂ < Nm that describes the most salient features of the original model. Within the

multi-Gaussian framework, parameterization can be achieved using schemes such as pilot

points (RamaRao et al., 1995), self-sequential calibration (Gómez-Hernández et al., 1997)

and gradual deformation (Hu, 2000). With the TPS or APS method (Liu and Oliver, 2004;

Sebacher et al., 2017), the geologic facies distribution can be mapped to Gaussian random

variables given threshold maps. This type of parameterization is straightforward but the

truncation rules or facies probability maps need to be provided by professional experts a

priori. A more useful class of approaches relies on feature extraction and model reduction

techniques. As a linear version of Karhunen-Loeve transform (KLT), the principal com-

ponent analysis (PCA) has been used broadly to achieve model reduction by applying the

singular value decomposition (SVD) or truncated SVD (TSVD) algorithm to the covariance

matrix of the Gaussian random fields (Gavalas et al., 1976). However, when it comes to

the complex geological structures characterized by advanced spatial statistics, PCA tends to

distort the PDF of prior models so that the critical geological features cannot be preserved

in the posterior realizations. To overcome this issue, Sarma et al. (2007, 2008) proposed a

procedure to reproduce complex geology by preserving the high-order statistics of random

fields using kernel PCA (KPCA). With the “kernel trick”, the method is more flexible to do

the transform in a feature space but the corresponding back-transformation to the original

physical space (termed “pre-image” problem) is not guaranteed to have a unique solution.

Recently, Vo and Durlofsky (2014, 2015) developed an optimization-based PCA (OPCA)

parameterization for complex geological models. To be specific, an optimization problem

involving regularization terms and bound constraints is solved with the standard PCA al-

gorithm to yield a low-dimensional representation of the non-Gaussian features. They also
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applied a similar idea to the kernel based PCA and proposed the regularized KPCA (R-

KPCA) (Vo and Durlofsky, 2016). By combining the PCA and truncated-pluri-Gaussian,

Chen et al. (2016) came up with the Pluri-PCA method for multi-facies systems and the

results showed potential for large-scale history matching applications.

Inspired by the advances in sparse coding and compressed sensing theory, Kha-

ninezhad et al. (2012a,b) used the K-SVD algorithm (Aharon et al., 2006) to construct

sparse geologic dictionaries from the prior ensemble, and they found that the basis elements

obtained with the K-SVD always capture the dominant large-scale features. On the other

hand, when using the SVD-based (PCA-based) algorithms mentioned above, only the lead-

ing basis elements retain the principal geological features while the non-leading bases only

contain trivial details which can be regarded as high frequency noise. With a field case

Khaninezhad and Jafarpour (2015) further demonstrated the superior capability of K-SVD

over SVD-based algorithms in parameterizing the complex geological structures. However,

both traditional SVD-based methods and K-SVD algorithm require vectorization of multi-

dimensional models.

Tensor (i.e., multidimensional array) factorization methods (De Lathauwer et al.,

2000a,b; Kolda and Bader, 2009) are the natural extension of the matrix factorization for

decomposition of high-dimensional data sets, that extract various low-dimensional features

hidden in different dimensions of the data tensor. Afra and Gildin (2013, 2016) introduced a

tensor-based technique with higher order singular value decomposition (HOSVD) for parame-

terizing the permeability fields of channelized reservoirs. On the basis of their work, Sebacher

and Hanea (2018) proposed implementation of the normal score transform for parameter-

ization of facies fields and then applied HOSVD to the tensor defined by the parameter

fields.

Jafarpour and McLaughlin (2007, 2009b) first introduced the discrete cosine transform

(DCT) to parameterize non-Gaussian variables. This type of method has been widely used

for many applications like pattern recognition and image compression (Rao and Yip, 1990;

Gonzalez and Woods, 2002). Compared to the SVD-based methods, the DCT is more
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computationally efficient and has comparable accuracy in the aspects of feature extraction

and energy compression. By retaining a small number of low-frequency basis vectors which

correspond to large DCT coefficients, key characteristics of the original model are preserved

and the dimensionality of the model vector is significantly reduced as well. However, one

major drawback of the traditional DCT algorithm is that it is only implemented for single

model without considering the mutual geological patterns throughout a set of realizations.

Similar to the predefined cosine bases used in the DCT, the parameterization approaches that

involve Fourier bases or wavelets, e.g., discrete wavelet transform (DWT) (Sahni and Horne,

2005; Jafarpour, 2011; Gentilhomme et al., 2015), are also developed to extract localized

features of the geological model. One important property of wavelets is its space-frequency

localization since the spatial resolution of wavelet bases are different at different frequencies.

Thus, the geological features at different scales can be effectively represented using wavelets.

One unique set of parameterization approaches is based on the level set functions.

Moreno and Aanonsen (2007) first introduced the level set method originally proposed by

Osher and Sethian (1988) to model the boundaries of categorical facies. By using the level

set function, the facies distribution can be parameterized as the signed distance to a given

surface (Chang et al., 2010; Chang and Zhang, 2014; Ping and Zhang, 2014).

In very recent years, the great success of deep learning (DL) in different areas (e.g.,

computer vision, natural language processing, etc.) has inspired applications to the solution

of inverse problems in the geosciences. Several researchers have attempted to parameterize

the complex geological models using advanced deep learning techniques, such as the au-

toencoder and its variants (Canchumuni et al., 2017, 2018) and the generative adversarial

network (GAN) (Chan and Elsheikh, 2017, 2018). Because the DL techniques usually involve

a large number of hyperparameters, the number of training samples is correspondingly very

high (i.e., > 10, 000) which makes the training process computationally demanding.

1.4 Literature Review on History Matching Complex Geological Models

Over the past decades, great progress has also been made on the data assimilation

9



and assisted history matching methods for solving the inverse problem (Eq. 1.1) in order to

obtain the posterior subsurface models that not only honor the observed data but preserve

the complex geological realism at the same time.

In the Bayesian inverse framework, the sampling methods aim at approximating

f(m|dobs) by drawing random samples from this distribution. The Markov chain Monte

Carlo (MCMC) methods, such as Metropolis sampler (Metropolis et al., 1953; Hastings,

1970) or Gibbs sampler (Geman and Geman, 1984), can be used to sample from the posterior

distribution rigorously. However, a very long Markov chain is usually required for conver-

gence so the direct application of the MCMC to practical problems has not been feasible until

very recently due to the work of Sousa and Reynolds (2019) who replaced the reservoir sim-

ulator by a support vector regression proxy model when evaluating the Metropolis-Hastings

acceptance probability. Alternatively, Kitanidis (1995) and Oliver et al. (1996) introduced

the randomized maximize likelihood (RML) method to generate approximate conditional re-

alizations. RML has been successfully applied to reservoir history matching problems (Gao

et al., 2006; Tavakoli and Reynolds, 2011). A limitation of the RML method is that the effi-

cient calculation of gradients requires the adjoint method, which is not commonly available

in most commercial reservoir simulators. Moreover, although RML does generate samples

around modes of the posterior PDF, it only provides an approximate characterization of this

PDF.

Due to the lack of an adjoint module in commercial simulators, the ensemble-based

stochastic methods, such as ensemble Kalman filter (EnKF) (Evensen, 1994) and ensemble

smoother (ES) (van Leeuwen and Evensen, 1996) have become very attractive and popular

in the field of reservoir history matching in the last decade. The EnKF updates the model

parameters and state variables (e.g., pressure, saturations) by assimilating the observed

data sequentially in time. It does not require an adjoint gradient and often performs well

in practical applications (Bianco et al., 2007; Evensen et al., 2007; Aanonsen et al., 2009)

provided the initial ensemble is chosen with some care. However, the simultaneous updating

of reservoir state variables and parameters with EnKF is theoretically valid only if the
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updated states are statistically consistent with updated model parameters. There exists

cases where the strong nonlinearity introduces inconsistencies between updated states and

parameters that causes EnKF to perform poorly (Thulin et al., 2007; Wang et al., 2010).

Unlike the EnKF, the ES method assimilates all data simultaneously and updates only the

reservoir model parameters to avoid the inconsistency problem. However, it is reported

that the ES often results in a worse data match than is obtained with EnKF (Emerick and

Reynolds, 2013b). In order to further improve the performance of EnKF and ES, several

iterative ensemble-based methods have been proposed (Gu and Oliver, 2007; Li and Reynolds,

2009; Chen and Oliver, 2013; Emerick and Reynolds, 2013a; Luo et al., 2015). Chen and

Oliver (2013) developed the LM-ensemble randomized maximum likelihood (LM-EnRML)

based on the Levenberg-Marquardt (LM) algorithm. They avoided the explict computation

of the sensitivity matrix and used the LM damping parameter, λ, to improve the numerical

stability. But according to Le et al. (2015a), the performance of LM-EnRML can be sensitive

to the choice of λ and a poor initial choice of λ may give rise to a poor history match in

some cases. Another popular iterative algorithm is the ensemble smoother with multiple

data assimilation (ES-MDA) developed by Emerick and Reynolds (2012, 2013a). Motivated

by the analogy between ES and one Gauss-Newton iteration (Reynolds et al., 2006), the ES-

MDA assimilates the same set of observed data multiple times with an inflated covariance

matrix of the measurement errors so that it avoids the statistical inconsistency between

parameters and states, and appears to outperform both the ES and the EnKF (Emerick and

Reynolds, 2013b).

Due to complex geological deposition process, there are always distinct rock bodies

or facies distributed in the fluvial or channelized reservoirs while the rock properties usually

change abruptly from one facies to another. For such a highly non-Gaussian multi-facies

problem, it is well recognized that the direct applications of the ensemble-based methods

often result in a degraded performance where the posterior models are not able to preserve the

plausible geological and geostatistical features of the categorical facies if one uses gridblock

porosities and permeabilities as the model parameters. This is because the ensemble-based
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methods only work exactly correctly for linear Gaussian problems as the ensemble size goes

to infinity (Thulin and Nævdal, 2006), and they are suitable for the estimation of continuous

(in particular, multi-Gaussian) properties rather than the discrete variables (e.g., facies type

indicator). A common problem-solving strategy is: (1) convert the discrete variables to

continuous parameters with previously illustrated parameterization approaches, (2) apply

an ensemble-based method to update the parameters by assimilating the observed data,

(3) perform back-transformation to the original physical space. There is a large amount

of published papers regarding the combination of various parameterization approaches and

the ensemble-based methods, such as TPS with EnKF (Liu and Oliver, 2005a,b; Agbalaka

and Oliver, 2008), PCA-based methods with EnKF or variants of ES (Sarma and Chen,

2009, 2013; Chen et al., 2014; Emerick, 2017), DCT or DWT with EnKF (Jafarpour and

McLaughlin, 2007, 2009b), level set method with EnKF (Chang et al., 2010; Chang and

Zhang, 2014) and DL methods with ES-MDA (Canchumuni et al., 2017, 2018).

In most cases, the back-transformation usually gives a continuous field rather than a

discrete distribution of facies, and the spatial continuity of geological structures (e.g., sand

channels) may not be maintained. Thus, either the truncation operation (Vo and Durlofsky,

2014, 2015) or the spatial clustering techniques (e.g., neighborhood expectation maximization

(Han et al., 2011; Le et al., 2015b)) have been employed to rebuild the facies boundaries

and enhance the connectivity of geological structures. But these post-processing techniques

cannot guarantee the posterior models preserve the geological realism shown in the prior

ensemble. Some researchers have developed methods to integrate the geological simulation

techniques (e.g., MPS or object-based method) into the history matching process. Caers and

Hoffman (2006) proposed the probability perturbation method (PPM) which takes a linear

combination of two probability fields to obtain a single probability field that is then used as

soft data to guide MPS simulations. In the process of perturbing the pre-posterior probability

and generating new realizations, the lack of feedback information from the flow data leads

to very low computational efficiency of the PPM approach. Based on this observation,

Jafapour and Khodabakhsi (2011) developed the probability conditioning method (PCM)
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which calculates the log-permeability ensemble mean after each update step in order to

generate a facies probability map. The probability map is used as soft data in the MPS

algorithm for the subsequent conditional resampling. The similar idea has been adapted

in other researches to ensure the posterior models are consistent with the prior geologic

information presented in the training image (Tavakoli et al., 2014; Le et al., 2015b; Sebacher

et al., 2016). Elsheikh et al. (2013, 2015) investigated an efficient sampling algorithm known

as nested sampling (NS) for channelized reservoirs. They showed that the estimated Bayesian

evidence by the NS algorithm can be used for prior model selection. Tavakoli et al. (2014,

2015) combined the model classification with multidimensional scaling (MDS) and the EnKF

to rapidly update models of a channelized reservoir. For this class of methods, the variability

of ensemble members can be maintained when assimilating a large number of observed data

without suffering the ensemble collapse problem. However, the objective function usually

oscillates after the resampling procedure and the computational cost would be an issue for

application to large-scale real field cases.

1.5 Research Objectives and Dissertation Outline

1.5.1 Research Objectives

The main objectives of this research are as follows:

1. Develop parameterization approaches that can be reliably used for categorical variables

(i.e., facies type), so that the number of model parameters is reduced but the non-

Gaussian geological and geostatistical features are preserved.

2. Develop efficient and robust ensemble-based history matching workflow for complex

geological systems (i.e., multi-facies channelized reservoirs) for simultaneous calibration

of the non-Gaussian facies and the petrophysical properties by assimilating various

types of data.

3. Combine ensemble-based method with object-based geological modeling technique for

assisted history matching of data from complex geological systems.
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1.5.2 Dissertation Outline

This dissertation includes five chapters. In Chapter 2, we present an improved dis-

crete cosine transform method, named common basis DCT, and compare it with traditional

DCT parameterizations. In Chapter 3, we introduce a new parameterization approach based

on non-negative matrix factorization (NMF) and develop an ensemble-based history match-

ing workflow for simultaneous calibration of the facies distributions and the petrophysical

properties within each facies. The performance of NMF is compared with other popular

methods when applied to synthetic 2D and 3D reservoir problems. In Chapter 4, we thor-

oughly investigate the properties of tensor and non-negative tensor decomposition for facies

parameterization, and extend their applications to the history matching of complex 3D cases.

In Chapter 5, we combine the ensemble-based data assimilation algorithm with object-based

modeling technique for history matching of complex geological reservoirs. Chapter 6 presents

our conclusions and summarizes the research outcome of this work. Appendices regarding

data assimilation algorithm and tensor decomposition are given at the end of this disserta-

tion.
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CHAPTER 2

ASSISTED HISTORY MATCHING OF CHANNELIZED RESERVOIRS

USING ES-MDA WITH COMMON BASIS DCT

Given the complexity of channelized reservoir system, it is desirable to compactly

represent key geological structures from a prior ensemble of representative and plausible

reservoir models. In this chapter, we first introduce a parameterization algorithm referred

to as common basis DCT. By selecting a set of common basis functions which are the same

for all ensemble members, it is shown that the common basis DCT is able to capture the

geological similarities among different ensemble models and describe the complex geological

connectivity of a channelized system. Through assimilating the observed data and updating

the DCT coefficients using the ES-MDA algorithm, the facies field of each realization is

calibrated with the updated coefficients and the common basis set. Instead of using a

resampling procedure to preserve the spatial continuity of geological structures, an improved

post-processing technique based on a regularization framework is then employed at the end

of each iteration in order to retain the discrete nature of the facies field and obtain the

corresponding reservoir properties fields.

This chapter is organized as follows: we first briefly review the DCT technique and

show the implementation details of common basis DCT in next section. Then the outline of

the ES-MDA algorithm with common basis DCT is presented followed by the description of

the post-processing procedure. In the subsequent sections, the computational results of two

synthetic examples are shown and discussed.

2.1 Discrete Cosine Transform (DCT)

The discrete cosine transform (DCT) is a Fourier-based transform which has been
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widely used for many applications like pattern recognition and image compression (Rao and

Yip, 1990; Gonzalez and Woods, 2002), or dimensionality reduction in optimization and

history matching (Jafarpour and McLaughlin, 2009a,b; Bhark et al., 2010). With DCT, the

number of model parameters of a history matching problem can be considerably reduced

by only retaining the low frequency components of reservoir properties which are sensitive

to production data. The most common forward DCT of a 2D input field u (m,n) can be

written as (Rao and Yip, 1990):

v (µ, ω) =
α (µ)α (ω)√

NxNy

Nx−1∑
m=0

Ny−1∑
n=0

u (m,n) cos

[
π(2m+ 1)µ

2Nx

]
cos

[
π(2n+ 1)ω

2Ny

]

α(j) =


1√
2

j = 0

1 otherwise

, (2.1)

where µ = 0, . . . , Nx − 1 and ω = 0, . . . , Ny − 1.

Similarly, the inverse 2D DCT is given by (Rao and Yip, 1990):

u (m,n) =
2√
NxNy

Nx−1∑
µ=0

Ny−1∑
ω=0

α (µ)α (ω)v (µ, ω) cos

[
π(2m+ 1)µ

2Nx

]
cos

[
π(2n+ 1)ω

2Ny

]

α(j) =


1√
2

j = 0

1 otherwise

,

(2.2)

where m = 0, . . . , Nx − 1 and n = 0, . . . , Ny − 1.

Actually, the implementation of DCT can be represented in a vector form. After com-

puting the coefficient matrix v (µ, ω) using Eq. 2.1, we can rewrite it as a NxNy-dimensional

vector v = [v1, v2, · · · , vNxNy]
T. In order to obtain the corresponding basis function matrix

Φ ∈ RNxNy×NxNy , Eq. 2.2 can be expressed in another way as follows:

u = Φv =
[
φ1,φ2, · · · ,φN , · · · ,φNxNy

] [
v1, v2, · · · , vN , · · · , vNxNy

]T
, (2.3)
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where u is a NxNy-dimensional vector and φj is the jth column of the NxNy ×NxNy basis

matrix Φ. In Eq. 2.3, the subscript N denotes the coefficient index from which it is straight-

forward to compute the corresponding row/column index, µ and ω, respectively. Therefore,

the basis function (vector) φN which is a NxNy-dimensional column vector, corresponding

to the coefficient vN is given by

φN =
2α (µ)α (ω)√

NxNy


cos
[
π(2×0+1)µ

2Nx

]
cos
[
π(2×0+1)ω

2Ny

]
...

cos
[
π(2×(Nx−1)+1)µ

2Nx

]
cos
[
π(2×(Ny−1)+1)ω

2Ny

]

NxNy×1

,

for µ = 0, . . . , Nx − 1 and ω = 0, . . . , Ny − 1,

(2.4)

where N = ωNx + µ+ 1.

2.1.1 Complete DCT

For the jth realization of a Nm-dimensional property vector mj (e.g., facies field), we

can perfectly reconstruct it by multiplying the Nm×Nm basis matrix, Φ = [φ1,φ2, · · · ,φNm ],

with the corresponding Nm-dimensional coefficient vector, v = [v1, v2, · · · , vNm ]T based on

Eqs. 2.1 to 2.4, as follows

mj =
Nm∑
i=1

vj,iφi = Φvj, for j = 1, · · · , Ne, (2.5)

where j denotes the index of the realization, vj,i denotes the ith component of vj, and

Ne is the size of the ensemble. Because the DCT basis functions, Φ, are prespecified and

data-independent, they only need to be computed and saved once.

Given a reservoir property field shown in Fig. 2.1(a), we can obtain the DCT co-

efficient distribution (see Fig. 2.1(b)) by implementing the forward DCT to the original

model. Through retaining all the DCT coefficients and corresponding basis functions, we

are able to completely reconstruct the original reservoir property field with Eq. 2.5. Thus,

this implementation of DCT is referred to as the “complete DCT” in this dissertation.
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(a) Original field (b) DCT coefficients

Figure 2.1: Complete DCT

2.1.2 Truncated Basis DCT

It can be seen from Fig. 2.1(b) that most of the large DCT coefficients (red pixels) are

concentrated around the left corner of the coefficient field. These large coefficients correspond

to low frequency basis functions which describe the main features of the original field. Based

on this property, it is possible to truncate the DCT coefficient field and only retain a small

number of large DCT coefficients in order to reduce the number of parameters without

losing the most critical features of the original field. Following the common practice in the

literature, we can retain the DCT coefficients distributed in a triangular or rectangular area

of the field (see Fig. 2.2) in order to “compactly” describe the most important characteristics

ofmj. Note that the DCT coefficients in the deep blue area of Fig. 2.2 and the corresponding

high frequency basis functions are simply abandoned during the truncation process.

As a result of model reduction, it is inevitable that some detailed information about

the original field is lost where the detail lost depends on the number of truncated basis

functions. For the jth ensemble member, we can have the approximate field, m̂truncated
j ,

given by

m̂truncated
j =

Nc∑
i=1

vj,iφc,i = Φcvj, for j = 1, · · · , Ne, (2.6)

where Φc denotes the Nm×Nc matrix with columns composed of the reduced (truncated) set

of basis functions which is identical for every ensemble member since the truncated area is
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predefined and remains the same for each realization, and Nc denotes the number of retained

DCT coefficients. In Eq. 2.6, φc,i denotes the ith basis vector of the truncated basis set and

vj,i is the ith component of the coefficient vector, vj. We refer to this implementation as the

“truncated basis DCT” in this dissertation.

(a) Triangular area (b) Rectangular area

Figure 2.2: Truncated basis DCT

2.1.3 Particular Basis DCT

The limitation of the truncated basis DCT is that the linear combination of retained

DCT coefficients and corresponding basis functions in the predefined area may not be optimal

for every realization. To better reflect the key features of every original model, we can

construct a particular set of basis functions for each realization by retaining the Nc largest

(in magnitude) DCT coefficients and their corresponding basis fuctions. This gives the

approximate field, m̂particular
j , as

m̂particular
j =

Nc∑
i=1

vj,iφj,i = Φjvj, for j = 1, · · · , Ne, (2.7)

where the particular set of basis function, Φj, is different for every prior realization and

needs to be saved separately. Therefore, this implementation is referred to as the “particular

basis DCT” in this dissertation.

2.2 Common Basis DCT
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In this work, from the Ne different combinations (each combination includes one ba-

sis matrix Φj ∈ RNm×Nc and one coefficient vector vj ∈ RNc×1), we select Nc specific basis

functions to construct a Nm ×Nc common basis set, Φ̄, which is identical and fixed for the

whole ensemble during the history matching process. The corresponding implementation is

referred to as the “common basis DCT”, and this common basis set eliminates the need to

save the particular set of basis functions for each realization specifically. To obtain the set of

common basis functions Φ̄, we first retain the Nc largest coefficients for each ensemble mem-

ber using Eq. 2.7. Consequently, each model can be estimated with Nc DCT coefficients and

their corresponding basis functions. It needs to be noted that the Nc retained coefficients

vary between different realizations which means the whole ensemble has Ne different com-

binations of retained coefficients and corresponding basis functions. Then, we loop through

the total Ne sets of coefficients (each set has Nc coefficients sorted in descending order) to

select the Nc largest coefficients. To be specific, we go through the first largest coefficient of

each realization and retain the current coefficient as long as it is different from any previously

retained ones. The second largest coefficient of every realization will be checked subsequently

and we repeat the same process sequentially until the retained number Nc is reached, and

the Φ̄ consists of Nc basis functions corresponding to the retained coefficients. The flowchart

for the construction of common basis set Φ̄ is illustrated in Fig. 2.3.
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Figure 2.3: Flowchart for the construction of common basis set

Since the common basis set usually differs from the particular basis set for each

ensemble member, it is necessary to recalculate the expansion coefficients of each model

with respect to the common set of basis functions. This corresponds to finding v̂j such that

m̂common
j = Φ̄v̂j, for j = 1, · · · , Ne, (2.8)

where the coefficient vector, v̂j, is obtained by solving the least squares problem defined

below

v̂j = argmin
v

∥∥mj − Φ̄v
∥∥2
2
, for j = 1, · · · , Ne, (2.9)

where mj is the original Nm-dimensional model vector. These v̂j’s are then the model
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parameters which will be updated by assimilating observed data during history matching.

2.2.1 Reconstruction Experiment

To compare the feature extraction capacity of different implementations of DCT, we

design an experiment to reconstruct true facies fields, mtrue ∈ RNm×1, from different initial

models using truncated, particular and common basis DCT, respectively, as follows:

v̂ = argmin
v
‖mtrue −Φv‖22 (2.10)

and

m̂true = Φv̂, (2.11)

where m̂true is the Nm-dimensional approximation of the true model; v̂ is the Nc-dimensional

coefficient vector; Φ ∈ RNm×Nc denotes the set of DCT basis functions so it can be Φc (see

Eq. 2.6) for truncated basis DCT, Φj (see Eq. 2.7) for particular basis DCT and Φ̄ (see

Eq. 2.8) for common basis DCT, respectively. Each initial model is also a facies field and the

retained coefficients, v̂, are calculated by solving a least squares problem defined in Eq. 2.10

after the basis matrix, Φ, is obtained by different implementations of DCT.

To be specific, Φc is selected in a predefined rectangular or triangular area given the

retained number Nc, and the choice of the initial models does not affect the truncated set

of basis functions. For the particular basis DCT, the Φj is model-dependent so we retain

different particular basis functions with different initial models. For the common basis DCT,

the common basis set, Φ̄, are constructed from a training ensemble consisting of 100 facies

models (see Fig. 2.3) and it is identical for different initial models. Note that the true models

which are being reconstructed are not included in the ensemble.

Figures 2.4 and 2.5 present the results of this reconstruction experiment, where the

first column shows the true facies fields (three models in total) which are being reconstructed,

the second column shows the initial facies models and the columns (c) to (e) are the recon-

structed facies fields using truncated, particular and common basis DCT given the retained
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number of basis functions, Nc. We set the retained number, Nc, to be 200 (see results in

Fig. 2.4) and 400 (see results in Fig. 2.5), respectively, in order to investigate the influence of

Nc on the model approximation. Through visual comparison, the true facies fields are shown

to be better reconstructed with the common set of basis functions, Φ̄. The probable reason

is that the common basis set can describe the geological similarity throughout the whole en-

semble by taking the features of different models into account. It is shown that the complex

channel patterns in the three true facies fields can be clearly captured by using the common

basis DCT even with Nc = 200. However, we cannot reproduce all the continuous geological

structures using the particular basis DCT with the same retained number because the basis

functions selected based on one particular model may have poor generalization capability to

reconstruct other models. Although the reconstructed fields obtained by the truncated basis

DCT appear to be better than those obtained by the particular basis DCT, some of them

still display apparent discontinuity around the sinuous parts of the channels (see column

(c) in Fig. 2.4). The advantage of the common basis DCT can be further demonstrated

by the model mismatch (‖mtrue −Φv̂‖22) shown in Table 2.1, but it should be noted that

the metric is only applicable for the synthetic models used in this work. For the same true

facies field, various initial models lead to different reconstructed fields when we implement

the particular basis DCT. For instance, the model mismatch obtained by using initial model

3 to reconstruct true field 2 is much larger than those obtained with the other two initial

models. On the other hand, since the choice of the initial models does not affect the retained

basis functions in the truncated and common basis DCT, we can observe identical model

mismatch for different initial models.
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Table 2.1: Model mismatch

Truncated basis DCT Particular basis DCT Common basis DCT

Nc = 200 Nc = 400 Nc = 200 Nc = 400 Nc = 200 Nc = 400

True 1

Initial 1 1105.3 601.8 1536.6 998.6 767.3 547.6

Initial 2 1105.3 601.8 1489.9 1176.5 767.3 547.6

Initial 3 1105.3 601.8 1444.0 1190.2 767.3 547.6

True 2

Initial 1 1206.3 631.9 1451.6 1176.5 823.7 590.5

Initial 2 1206.3 631.9 1892.2 7744.0 823.7 590.5

Initial 3 1206.3 631.9 3329.3 2683.2 823.7 590.5

True 3

Initial 1 1348.8 784.9 1436.4 1218.1 846.8 610.1

Initial 2 1348.8 784.9 1232.0 948.6 846.8 610.1

Initial 3 1348.8 784.9 1332.2 894.0 846.8 610.1
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(a) True (b) Initial (c) Truncated basis (d) Particular basis (e) Common basis

Figure 2.4: Comparison of reconstruction performance between three DCT implementations
when Nc = 200
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(a) True (b) Initial (c) Truncated basis (d) Particular basis (e) Common basis

Figure 2.5: Comparison of reconstruction performance between three DCT implementations
when Nc = 400
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2.3 History Matching Workflow

2.3.1 Ensemble Smoother with Multiple Data Assimilation (ES-MDA)

Motivated by the analogy between the ES method (van Leeuwen and Evensen, 1996)

and one single iteration of Gauss-Newton correction (Reynolds et al., 2006), the ensemble

smoother with multiple data assimilation (ES-MDA) was first proposed by Emerick and

Reynolds (2013a), and it was used for assimilating seismic and production data to estimate

the permeability field of a reservoir. Later Emerick and Reynolds (2013b) showed that the

ES-MDA gives better performance for matching observed data and reducing uncertainty in

model description compared to the ES and EnKF methods. The history matching workflow

by using the original ES-MDA algorithm to update the DCT coefficients is as follows

(1) Choose the number of data assimilation steps, Na, and the corresponding inflation coef-

ficients, α`, for ` = 1, · · · , Na, such that
∑Na

`=1
1
α`

= 1.

(2) Initialize reservoir model m1
j and coefficient vector v1j , for j = 1, · · · , Ne.

(3) For ` = 1 to Na,

• Run all the ensemble members from time zero until the end of the history matching

period in order to obtain the predicted data as

d`j = g
(
m`

j

)
, for j = 1, · · · , Ne, (2.12)

where g (·) denotes the nonlinear forward model, i.e., d`j is the Nd-dimensional

vector of predicted data obtained by running the Eclipse reservoir simulator with

the model parameters given by the vector m`
j from time zero.

• Perturb the vector of the observed data by

d`uc,j = dobs +
√
α`C

1/2
D zd,j, for j = 1, · · · , Ne, (2.13)
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where CD is a Nd × Nd covariance matrix containing measurement errors of the

observed data and zd,j ∼ N (0, INd
).

• Update the DCT coefficients using

v̂`+1
j = v`j +C`

VD(C`
DD + α`CD)−1(d`uc,j − d`j), for j = 1, · · · , Ne, (2.14)

where we denote v`j as the jth vector of DCT coefficients corresponding to the

truncated, particular or common basis functions; Nc as the number of retained

coefficients; C`
VD is the Nc × Nd cross-covariance matrix between the DCT coeffi-

cients and the predicted data and C`
DD is the Nd × Nd auto-covariance matrix of

the predicted data. Similar to the EnKF and ES methods, the covariance matri-

ces C`
VD and C`

DD are estimated using the ensemble of reservoir models and their

corresponding predicted data by

C`
VD =

1

Ne − 1

Ne∑
j=1

(
v`j − v̄`

) (
d`j − d̄`

)T
, (2.15)

C`
DD =

1

Ne − 1

Ne∑
j=1

(
d`j − d̄`

) (
d`j − d̄`

)T
, (2.16)

where v̄` and d̄` denote the ensemble mean of the DCT coefficients and the predicted

data, respectively.

• Update the facies field by

m̂`+1
j = Φv̂`+1

j , for j = 1, · · · , Ne, (2.17)

where Φ denotes the set of basis functions so it can be Φc (see Eq. 2.6) for truncated

basis DCT, Φj (see Eq. 2.7) for particular basis DCT and Φ̄ (see Eq. 2.8) for

common basis DCT, respectively. It is noteworthy that after the update step,

m̂`+1
j only contains continuous values rather than discrete facies type indicators,
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thus a post-processing procedure is added to do the discrete mapping.

• Obtain the discrete facies field by

m`+1
j = post-processing

(
m̂`+1

j

)
, for j = 1, · · · , Ne, (2.18)

where post-processing (·) denotes a procedure based on a regularization framework

which is discussed in next section to map most of the continuous values in m̂`+1
j

to discrete facies indicators in m`+1
j based on which we can obtain the reservoir

properties fields for simulation.

• Recalculate the DCT coefficients by

v`+1
j = argmin

v

∥∥m`+1
j −Φv

∥∥2
2
, for j = 1, · · · , Ne, (2.19)

where Φ denotes the set of basis functions so it can be Φc (see Eq. 2.6) for truncated

basis DCT, Φj (see Eq. 2.7) for particular basis DCT and Φ̄ (see Eq. 2.8) for

common basis DCT, respectively. Since the DCT coefficients updated by history

matching (i.e., v̂`+1
j in Eq. 2.17) are not consistent with the facies field after the

post-processing procedure (i.e., m`+1
j in Eq. 2.18), thus we need to solve the least

squares problem of Eq. 2.19 in order to recalculate the coefficients for next data

assimilation step.

End (For)

2.3.2 Post-Processing Based on Regularization Framework

The adopted post-processing procedure in this work is based on the regularization

framework proposed by Vo and Durlofsky (2014, 2015) which is designed to enhance the con-

nectivity of key geological features by introducing regularization. For a three-facies reservoir

system, the facies are designated by 0, 1 and 2 (shale, levee and sand, respectively). Vo and

Durlofsky (2015) derived a series of analytical equations to obtain the facies type indicator

29



of a gridblock, xi, from its continuous value ai. It needs to be noted that this algorithm is

implemented in a gridblock-by-gridblock manner, so ai represents a component of the con-

tinuous facies field, m̂`+1
j , obtained by Eq. 2.17. To obtain the value of facies indicator, x∗i ,

in each gridblock, the following function is minimized:

f(xi) = (ai − xi)2 + γ1R
i
1 (xi) + γ2R

i
2 (xi) , xi ∈

[
xl, xu

]
, (2.20)

where x∗i denotes the value of xi which minimizes f(xi), R
i
1 (xi) and Ri

2 (xi) denote the

regularization terms, γ1 and γ2 are the regularization weights, and
[
xl, xu

]
represent the

lower and upper bounds of xi which actually depend on the value of ai.

According to the solutions presented in the original paper (Vo and Durlofsky, 2015),

two cases need to be considered depending on the value of ai:

Case 1. If ai ≤ 1, the bound constraints are xl = 0 and xu = 1, and the regularization

terms are defined by Ri
1 = xi(1 − xi/2) and Ri

2 = −x2i /2, with weights γ11 and γ12. The

objective function in this case is

f(xi) = (ai − xi)2 + γ11xi

(
1− 1

2
xi

)
+ γ12

(
−1

2
x2i

)
=

(
1− γ11 + γ12

2

)
x2i − 2

(
ai −

γ11
2

)
xi + a2i , xi ∈ [0, 1] ,

(2.21)

where γ11, γ12 ≥ 0, and γ11+γ12
2

< 1. The solution for this case follows

(1) If ai ≤ γ11/2, then x∗i = 0 (facies0, shale);

(2) If γ11/2 < ai < 1− γ12/2, then x∗i = (ai − γ11/2)/(1− (γ11 + γ12)/2);

(3) If ai ≥ 1− γ12/2, then x∗i = 1 (facies1, levee).

Case 2. If ai > 1, the bound constraints are xl = 1 and xu = 2, and the regularization

terms are defined by Ri
1 = (xi − 1)(1− (xi − 1)/2) and Ri

2 = −(xi − 1)2/2, with weights γ21
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and γ22. The objective function in this case is

f(xi) = (ai − xi)2 + γ21(xi − 1)

[
1− 1

2
(xi − 1)

]
+ γ22

[
−1

2
(xi − 1)2

]
=

(
1− γ21 + γ22

2

)
x2i − 2

(
ai −

2γ21 + γ22
2

)
xi + a2i −

3γ21 + γ22
2

, xi ∈ [1, 2] ,

(2.22)

where γ21, γ22 ≥ 0, and γ21+γ22
2

< 1. The solution for this case follows

(1) If 1 < ai ≤ 1 + γ21/2, then x∗i = 1 (facies1, levee);

(2) If 1 + γ21/2 < ai < 2− γ22/2, then x∗i = (ai − (2γ21 + γ22)/2)/(1− (γ21 + γ22)/2);

(3) If ai ≥ 2− γ22/2, then x∗i = 2 (facies2, sand).

For situations (1) and (3) in the two cases, it’s straightforward to obtain the reservoir

property fields by assigning the permeability or porosity value to every gridblock according

to its facies type indicator, x∗i . However, for situation (2), x∗i is still a continuous value. In

order to assign the permeability or porosity to the gridblock, a simple weighted interpolation

is performed between the property values of different facies. For instance, if γ11/2 < ai <

1 − γ12/2 in Case 1, then x∗i = (ai − γ11/2)/(1 − (γ11 + γ12)/2) and ln(k)i = (1 − x∗i ) ×

ln(k)facies0 + (x∗i − 0)× ln(k)facies1.

In the original papers by Vo and Durlofsky (2014, 2015), the authors proved that

the objective function of the optimization problem is quadratic and convex when the four

regularization weights satisfy the following constraints:

γ11, γ12 ≥ 0 and γ11 + γ12 < 2,

γ21, γ22 ≥ 0 and γ21 + γ22 < 2.

(2.23)

However, it’s not trivial to set proper values to the four regularization weights (γ11,

γ12, γ21 and γ22). Here we propose a scheme to calculate the four regularization weights

based on the average facies fractions of the prior ensemble. Basically, the four regularization
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parameters in Eq. 2.23 correspond to different facies and constrain their fractions. In order to

keep the estimated facies proportions (FP) as close as possible to those of the prior ensemble,

the following equations are solved to obtain the values of four regularization parameters.

γ11
γ12

=
FP(shale)

FP(levee)
, γ11 + γ12 = β, (2.24)

γ21
γ22

=
FP(levee)

FP(sand)
, γ21 + γ22 = β, (2.25)

where FP(shale), FP(levee) and FP(sand) denote the average facies proportions of the prior

ensemble, and the value β of the summations of two parameters (γ11 + γ12, γ21 + γ22) aims

to balance the impacts of the regularization terms and the quadratic mismatch part in the

optimization function, f(xi). Based on our experimental results, the summation of β = 1.5

is a reasonable value to retain the average facies proportions shown in the prior ensemble

but it may vary from application to application. With this post-processing technique, we

are able to enhance the spatial connectivity of channel facies and keep the facies proportions

within an acceptable range.

2.4 Computational Results and Discussion

In this section, we test the proposed assisted history matching workflow on two syn-

thetic reservoir examples. The first example is a 2D three-facies channelized reservoir with

a relatively high number of channels. In this example, we first show the history matching

results with the implementation of common basis DCT then compare its parameterization

performance with truncated basis DCT and complete DCT. The second example is a 3D

three-facies five-layer channelized reservoir where sinuous channels have various distribu-

tions in both horizontal and vertical directions, and the five layers are divided into two

geological zones with different channel patterns.

2.4.1 Example 1: 2D Three-Facies Reservoir Model

The first example considers a 2D three-facies (shale, levee and sand) fluvial channel-
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ized reservoir in a horizontal domain. The model contains 100× 100 gridblocks and the size

of each gridblock is 100ft× 100ft× 50ft. The facies distribution of the true model and prior

ensemble members are generated by using the MPS simulation algorithm. All the models

are subject to the geostatistics inferred from a training image shown in Fig. 2.6 and honor

the hard data of observed facies at the well locations. Note that the petrophysical prop-

erties (i.e., permeability and porosity) within each facies are assumed to be homogeneous

and known a priori as our objective is to investigate whether we can maintain the geological

structures of the facies field when history data matched. The basic properties of facies are

summarized in Table 2.2.

Figure 2.6: Training image (Example 1)

Table 2.2: Properties of facies

Facies type Indicator Color φ k, mD ln(k)

Shale 0 Blue 0.1 5 1.609

Levee 1 Green 0.2 500 6.215

Sand 2 Red 0.3 1500 7.313

There are four injection wells and nine production wells which are deployed in a

five-spot pattern in the reservoir. All producers and injectors, respectively, operate under

constant bottom hole pressure (BHP) of 3000 psi and 5500 psi. The initial reservoir pressure

and water saturation are uniform and set equal to 5000 psi and 0.2, respectively. The history

matching period is 10 years (3600 days) and all wells start operating from time zero which
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is the beginning of the simulation. In this work, the subsurface flow responses are obtained

by running the Eclipse reservoir simulator. The dynamic data to be assimilated in this

example are collected every 30 days during the history matching period, so we have a total

data collection times of Nt = 3600/30 = 120. The production data include water injection

rate (qinj) of the injectors and oil production rate (qo) and water production rate (qw) of the

producers. Thus, the vector of observed data is constructed as

dobs =
[
qTinj, q

T
o , q

T
w,d

T
hard

]T
Nd×1

, (2.26)

where qinj denotes the water injection rate of all injection wells collected in the history

matching period, and similarly for qo and qw. The vector of hard data, dhard, is used

to constrain the facies type at well locations during the history matching process. This

mitigates the need for using geological simulation techniques to honor the hard data in a

resampling procedure. The observed data are obtained by adding random Gaussian noise to

the simulation results of the true model. The covariance matrix of the observed data, CD in

Eq. 2.14, is given by

CD =


σ2
d1

. . .

σ2
dNd


Nd×Nd

, (2.27)

where the standard deviation of measurement error, σ, is 3% of the true data for the injection

and production rates and is set to 0.01 for the facies observation at well locations. The facies

field of the true model as well as the well locations are shown in Fig. 2.7. After the history

matching period, the updated posterior models are used to predict the future reservoir

performance for another 5 years (1800 days).
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Figure 2.7: True model (Example 1)

In this example, we generated 400 prior realizations (ensemble size Ne = 400) by using

the MPS algorithm. Since we deal with complex channelized reservoirs, a larger ensemble

is necessary to obtain desired data match results. In Fig. 2.8, we show the ensemble mean

and standard deviation (STD) of the ln-permeability (ln(k)) field based on 400 ensemble

members, and also show three unconditional realizations of facies field. As can be inferred

from Figs. 2.8(a) and 2.8(b), although all ensemble members honor the sand facies as hard

data at the well locations, there is still a large variability among realizations when it comes

to the orientation and location of high-permeability channels. In addition, since the ln-

permeability values of the sand and levee facies are close, the problems involving more than

two facies are much more challenging as the history matching algorithm is not only required

to preserve the connectivity of the channel facies but also to distinguish facies from each

other.
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(a) Prior mean (ln(k)) (b) Prior STD (ln(k))

(c) Prior model #1 (facies) (d) Prior model #2 (facies) (e) Prior model #3 (facies)

Figure 2.8: Mean and STD of the prior ensemble and three prior realizations (Example 1)

Figure 2.9 presents the production data obtained by running the prior ensemble from

time zero to the end of the forecast period. The red dots denote the observed data and the

red curve is obtained from the true model. The light blue curves represent the production

data of every prior model and the dark blue curve corresponds to the prior ensemble mean.

In this reservoir example, we observe water breakthrough at all production wells during the

history matching period. Since the initial realizations differ greatly from each other in terms

of channel locations, the prior uncertainty of production data is very high. For the water

production rate (qw) of P1, P6 and P9, most of the prior members have much earlier water

breakthrough than that of the true model and the final water flow rates deviate significantly

from the observed data.
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(a) P1 water production rate (b) P6 water production rate (c) P9 water production rate

(d) P1 oil production rate (e) P6 oil production rate (f) P9 oil production rate

(g) I1 water injection rate (h) I3 water injection rate (i) I4 water injection rate

Figure 2.9: Prior production data (Example 1). True (red curves), observed data (red dots),
simulated data of realizations (light blue curves), and ensemble mean (dark blue
curves). History: 0 < t ≤ 3600 days, forecast: t > 3600 days.

As stated before, for this example we parameterize the realizations by using common

basis DCT and implement the ES-MDA algorithm with an ensemble of 400 realizations due

to the large amount of production data and relatively high number of complex channels.

We first apply the DCT to each of the prior realizations in order to obtain the particular

DCT coefficients corresponding to the basis functions. The number of DCT coefficients and
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basis functions for each realization is equal to the number of uncertain model parameters of

the reservoir, which is 100 × 100 = 10000 in this example. For this example, the retained

number of DCT coefficients and their corresponding basis functions is set to be Nc = 200.

In fact, there are no rigorous rules to determine the value of Nc, but 2% to 5% of the total

gridblock number is an empirically reasonable value ofNc and large enough to handle complex

channelized reservoir system according to our experience. Therefore, the parameters to be

calibrated through the history matching process become the DCT coefficients corresponding

to the particular set of basis function for each model (see Eq. 2.7). This is the implementation

of particular basis DCT.

As discussed previously, with the concept of common basis DCT, we select a set of

common basis functions which correspond to the largest coefficients throughout the whole

ensemble in order to be able to reflect the similarity of geological features between different

realizations. After a set of common basis functions has been picked from all basis functions

of the prior ensemble, the DCT coefficients for each realization with respect to the set

of common basis functions are recomputed in order to satisfy the requirement shown in

Eq. 2.9. That is to say, we have same common basis functions for all realizations and the

DCT coefficients or weights (v̂j in Eq. 2.8) are the parameters for every realization to be

updated by assimilating the production data.

The inflation factors are determined a priori by setting the values in a descending order

and at early iterations, much larger damping factors are used to ensure that the first several

update steps will not be too large. We should probably note that in order to improve the ro-

bustness of the original ES-MDA, Le et al. (2015a) proposed an adaptive ES-MDA algorithm

in which the inflation factor are chosen for the next data assimilation step automatically and

adaptively as the history match proceeds. In this example, we performed the ES-MDA algo-

rithm to calibrate the DCT coefficients by assimilating the observed data for 8 times (Na = 8)

with the inflation coefficients αi specified as {400.0, 200.0, 100.0, 30.0, 15.0, 8.0, 4.0, 2.0}.

After updating the DCT coefficients, we can reconstruct the facies field by using Eq. 2.17.

Note that the reconstructed facies field only contains continuous values instead of discrete
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facies indicators, so the post-processing procedure is employed subsequently to remap the

continuous values in order to obtain the updated facies field which better reflects the geo-

logical realism of the reservoir. Since the permeability and porosity within each facies are

assumed to be homogeneous and hold fixed, therefore it’s easy to obtain the updated per-

meability and porosity field for the next simulation. Figure 2.10 shows that the mean of

ensemble members has captured the main geological features of the true model (Fig. 2.7)

and preserved the continuity of most channels. Besides that, the isolation of I1 and P4 from

other wells is also clearly described in the posterior ensemble. The STD of ln-permeability

field in Fig. 2.10 indicates that the proposed workflow has significantly reduced the geolog-

ical uncertainty associated with the prior models, and most of the remaining variability is

around the boundaries of channels far from the wells.

(a) Posterior mean (facies) (b) Posterior mean (ln(k)) (c) Posterior STD (ln(k))

Figure 2.10: Mean and STD of the posterior ensemble (Example 1)

Figure 2.11 shows the production data obtained with the posterior ensemble. Com-

pared to the prior results (see Fig. 2.9), we obtain very good history data matches and a low

level of uncertainty with the posterior ensemble. The forecast production data of the true

model (red curve) also lie within the band formed by the results of the posterior realizations,

and only the water production rate of P1 deviates slightly from the ensemble average (dark

blue curve) by the end of the predication period.
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(a) P1 water production rate (b) P6 water production rate (c) P9 water production rate

(d) P1 oil production rate (e) P6 oil production rate (f) P9 oil production rate

(g) I1 water injection rate (h) I3 water injection rate (i) I4 water injection rate

Figure 2.11: Posterior production data (Example 1). True (red curves), observed data (red
dots), simulated data of realizations (light blue curves), and ensemble mean
(dark blue curves). History: 0 < t ≤ 3600 days, forecast: t > 3600 days.

To evaluate the parameterization performance of common basis DCT, we compare it

with the truncated basis and complete DCT for the same history matching problem and the

comparison of results is shown in Fig. 2.12. Different from the implementation of common

basis DCT, we retrain Nc DCT coefficients in the triangular area for the truncated basis DCT

implementation and keep all the DCT coefficients for the complete DCT implementation,
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then employ ES-MDA algorithm to calibrate the specific coefficients for every model by as-

similating the production data. As a common practice in the literature, the truncated basis

DCT and complete DCT are used to parameterize the reservoir property fields (i.e., perme-

ability and porosity fields) instead of the facies field as is done with the common basis DCT.

In the history matching process, the DCT coefficients of permeability and porosity fields are

updated through ES-MDA iterations using Eq. 2.14 separately. After the update, estimated

coefficients of each model are multiplied with the corresponding set of basis functions in

order to obtain the renewed reservoir property fields for next iteration. In Fig. 2.12, the col-

umn (a) is the results obtained by implementing the common basis DCT with the retained

number of 200 (Nc = 200), the column (b) denotes the results of truncated basis DCT with

the same retained number and the column (c) represent the results of complete DCT which

retain all the basis functions (Nc = Nm) in the history matching process. From the first row,

we can clearly see that the estimated ln-permeability field obtained by the truncated basis

DCT cannot well preserve the geological features, such as the continuous channels, of the

reservoir, and the boundaries between different rock facies are also smoothed out to some

extent. Although the updated models obtained by the complete DCT can yield the correct

locations of high-permeability channels, the distinctions between levee and sand facies have

been seriously distorted. The characteristics of geological structures can be confirmed by the

data match results shown in Fig. 2.12. With the truncated basis DCT, the updated models

give a bad data match for water and oil production rates at P6 (see the second column), and

the result of the true model (red curve) is not even within the range formed by the posterior

ensemble (light blue curves). Compared to the results obtained by the truncated basis DCT,

it is shown that the data matches appear to be much better when we use the complete DCT

to preserve more detailed information (see the third column). In addition, this implemen-

tation can provide more variability in the posterior ensemble, but the storage of all DCT

coefficients and computational cost needs to be considered in the practical applications, and

increasing the number of parameters may make the inverse problem more ill-conditioned.
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(a) Common basis DCT (Nc = 200) (b) Truncated basis DCT (Nc = 200) (c) Complete DCT (Nc = Nm)

Figure 2.12: Comparison of results obtained by different parameterization schemes (Example
1): ensemble mean of ln(k) field (1st row), P6 water production rate (2nd row),
P6 oil production rate (3rd row) and I3 water injection rate (4th row).
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2.4.2 Example 2: 3D Three-Facies Reservoir Model

In this example, we consider a five-layer three-facies reservoir model defined on a 3D

50 × 50 × 5 grid system and the gridblock size is 100ft × 100ft × 10ft. The five layers are

divided into two geological zones with different channel patterns. To be specific, layers 1 and

2 belong to Zone 1, and the bottom three layers belong to Zone 2. The facies distributions

of the prior ensemble members and the true model are generated by using the object-based

modeling with the facies at each well location observed and used as hard data. The ln-

permeability and porosity fields are assumed to be homogeneous within each facies. The

properties of each facies are the same as shown in Table 2.2.

There are four injectors and nine producers arranged in a five-spot pattern in the

reservoir. All wells perforate five reservoir layers and the facies observations at the well

locations are given in Table 2.3. The injection wells are constrained to a constant bottom

hole pressure (BHP) of 5500 psi, and the production wells also operate under constant BHP

control of 3000 psi. The reservoir has uniform initial pressure and water saturation equal to

5000 psi and 0.2, respectively. The history matching period is 1500 days and all wells start

operating at the beginning of the simulation. The production data are collected every 30

days during this period and they correspond to water injection rate (qinj) of the injectors and

oil flow rate (qo) and water flow rate (qw) of the producers. In this synthetic example, the

observed data are obtained by adding uncorrelated Gaussian random noise to the simulation

results of the true model with a noise level equal to 3%. Similar to the 2D problem, the form

of the observed data dobs and the covariance matrix of observation error CD are written as

Eqs. 2.26 and 2.27. After the history matching, the updated models are used to predict the

reservoir performance for additional forecast period of 1500 days. The model parameters

which are estimated through the data assimilation process are still the DCT coefficients

corresponding to the set of common basis functions and the facies distribution of the true

model as well as the well locations are shown in Fig. 2.13. It should be noted that the

common basis DCT is applied in a layer-by-layer manner to this example.

43



Table 2.3: Hard data at the well locations (Example 2)

Facies Wells

Zone 1 Sand I2, I3, P1, P2, P3, P5, P7

Zone 2 Sand I1, I4, P2, P4, P5, P6, P7, P8, P9

(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4 (e) Layer 5

Figure 2.13: Facies fields of the true model (Example 2)

From Fig. 2.13, we can see that in the same geological zone, the facies distributions

and orientation of channels appear to be similar throughout different layers. For instance,

the two main channels in layer 2 are actually the bottom parts of the channels in layer 1,

and it is the same case for layers 3 to 5. In Zone 1 (layers 1 and 2), five production wells

(P1, P2, P3, P5 and P7) and two injection wells (I2 and I3) perforate the sand facies of the

two channels. And in Zone 2 (layers 3 to 5), seven production wells (P2, P4 to P9) and

two injection wells (I1 and I4) perforate through several overlapping channels. By stochastic
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object-based modeling, we are able to control the width, thickness and fraction of each facies

to construct the interrelated geological zones.

In this example, we implemented the common basis DCT to do parameterization and

conducted history matching with the ES-MDA algorithm. To investigate the influence of

ensemble size and retained number of basis functions, we designed three cases as described

in Table 2.4. Note that the value of Nc in Table 2.4 denotes the retained number of basis

functions for each layer. Figure 2.14 shows facies fields of three layers of the true model

and three unconditional realizations in the prior ensemble. Although the prior realizations

honor the hard data at the well locations, the sinuosity and distributed patterns of complex

channels in the prior ensemble still differ greatly from those in the true model. Therefore,

it is challenging to obtain an updated model that can accurately represent the actual dis-

tribution of rock facies and achieve a good history data match. Correspondingly, the prior

predicted data are shown in Fig. 2.15 from which we can see that the production data of

prior realizations (light blue curves) cover a wide range, indicating the prior uncertainty is

very large.

Table 2.4: Descriptions of three cases (Example 2)

Case Ne Nc

2.1 200 100

2.2 500 100

2.3 500 200
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(a) True (b) Prior model #1 (c) Prior model #2 (d) Prior model #3

Figure 2.14: Facies fields of the true model and three prior realizations (Example 2): layer
1 (1st row), layer 3 (2nd row) and layer 5 (3rd row).
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(a) P1 water production rate (b) P5 water production rate (c) P8 water production rate

(d) P1 oil production rate (e) P5 oil production rate (f) P8 oil production rate

Figure 2.15: Prior production data (Example 2). True (red curves), observed data (red dots),
simulated data of realizations (light blue curves), and ensemble mean (dark blue
curves). History: 0 < t ≤ 1500 days, forecast: t > 1500 days.

The number of data assimilation step in the ES-MDA algorithm is set to Na = 8 and

the corresponding inflation coefficients, αi, are {400.0, 200.0, 100.0, 30.0, 15.0, 8.0, 4.0, 2.0}.

Figures 2.16 and 2.17 present the ln(k) fields of the true model and two posterior realiza-

tions obtained with different ensemble sizes (Ne) and retained number of DCT basis functions

(Nc). It is shown that the posterior realizations obtained for different values of Ne and Nc

are able to capture the main geological structures of channelized facies in the true model.

The continuity of channels (especially in layer 3) obtained with Ne = 200 is not as good as

those obtained with a larger ensemble (Ne = 500). But, for different values of Ne and Nc

considered, we are unable to resolve the two very thin diagonal channels in layer 3 of the true

reservoir. When the ensemble size is fixed at 500 and we increase the retained number of ba-

sis functions from 100 to 200, more geological details are resolved through history matching

(see the 3rd rows in Figs. 2.16 and 2.17) since more high frequency basis functions are re-
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tained after parameterization. But for layer 5, the narrow channels are somewhat marred in

all cases, and the reason may come from the fact that even though the wells perforate all five

layers, the narrow channels in layer 5 contribute very little to the production data and cannot

be resolved appropriately through the history matching process. Table 2.5 gives the facies

proportions of the true, prior and posterior models. Note that even with the post-processing

procedure after every iteration of ES-MDA, there still remains a small number of gridblocks

with continuous facies type indicators and the fraction of these gridblocks is referred to as

“Unresolved Facies” in the table. Therefore, the facies proportions in the bottom three rows

are actually normalized proportions with respect to the number of gridblocks with discrete

facies type indicators. Compared to the prior values, the average facies proportions of sand

and shale for the posterior ensemble obtained in Case 2.2 (Ne = 500, Nc = 100) and Case 2.3

(Ne = 500, Nc = 200) are shown to be in reasonable range after history matching whereas

less sand facies are resolved and the proportion of shale facies is overestimated in Case 2.1

(Ne = 200, Nc = 100). On the other hand, the levee facies proportion is closest to the true

proportion for the Ne = 200, Nc = 100 case.
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(a) True (b) Ne = 200, Nc = 100 (c) Ne = 500, Nc = 100 (d) Ne = 500, Nc = 200

Figure 2.16: ln(k) fields of the true model and posterior realization #1 (Example 2): layer
1 (1st row), layer 3 (2nd row) and layer 5 (3rd row).
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(a) True (b) Ne = 200, Nc = 100 (c) Ne = 500, Nc = 100 (d) Ne = 500, Nc = 200

Figure 2.17: ln(k) fields of the true model and posterior realization #2 (Example 2): layer
1 (1st row), layer 3 (2nd row) and layer 5 (3rd row).

Table 2.5: Facies proportions (Example 2)

Sand Levee Shale Unresolved Facies

True 0.263 0.084 0.653 /

Prior 0.260 0.076 0.664 /

Posterior (Ne = 200, Nc = 100) 0.201 0.081 0.718 0.163

Posterior (Ne = 500, Nc = 100) 0.250 0.061 0.689 0.124

Posterior (Ne = 500, Nc = 200) 0.243 0.062 0.695 0.127

In Figs. 2.18 and 2.19, we can see the posterior water and oil rates of P1, P5 and

P8 in three cases. The uncertainty associated with the prior ensemble is shown to be re-

duced significantly through history matching. It is clear that more geological variability of
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facies distributions are preserved with a large ensemble of 500 realizations and the posterior

ensemble in Case 2.1 almost collapses to one model when Ne = 200.

(a) P1 (b) P5 (c) P8

Figure 2.18: Posterior water rates (Example 2): Case 2.1, Ne = 200, Nc = 100 (1st row);
Case 2.2, Ne = 500, Nc = 100 (2nd row); Case 2.3, Ne = 500, Nc = 200 (3rd
row). True (red curves), observed data (red dots), simulated data of realizations
(light blue curves), and ensemble mean (dark blue curves). History: 0 < t ≤
1500 days, forecast: t > 1500 days.
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(a) P1 (b) P5 (c) P8

Figure 2.19: Posterior oil rates (Example 2): Case 2.1, Ne = 200, Nc = 100 (1st row); Case
2.2, Ne = 500, Nc = 100 (2nd row); Case 2.3, Ne = 500, Nc = 200 (3rd row).
True (red curves), observed data (red dots), simulated data of realizations (light
blue curves), and ensemble mean (dark blue curves). History: 0 < t ≤ 1500
days, forecast: t > 1500 days.

Figure 2.20 shows the normalized data mismatch of the posterior ensemble in three

cases calculated by

O(d) =
1

Nd

(d− dobs)
TC−1D (d− dobs) , (2.28)

where d and dobs only include production data during the historical period. It can be seen

that the data matches obtained with Ne = 200 and Nc = 100 is the best but the variance
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in the posterior realizations is very small. When we increase the ensemble size to 500, there

is more variability in the posterior ensemble and the data mismatch is slightly larger than

that when Ne = 200. Although more geological details are resolved when Nc = 200, the

continuity of key structures is also marred since more high frequency basis functions are

retained which may lead to a larger data mismatch result in Case 2.3.

Figure 2.20: Normalized data mismatch (Example 2). Median (central red mark), 25th
and 75th percentiles (bottom and top edges of the box), extreme data points
(whiskers), and outliers (“+” symbol).
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CHAPTER 3

SIMULTANEOUS CALIBRATION OF THE DISTRIBUTION OF FACIES

AND PETROPHYSICAL PROPERTIES WITH NON-NEGATIVE MATRIX

FACTORIZATION

As mentioned in the Introduction chapter, the methods based on the principal com-

ponent analysis (PCA) and discrete cosine transform (DCT) methods are very effective in

reducing the number of parameters by retaining the coefficients and corresponding basis

functions which contain most critical information in the models. These methods have two

characteristics: (1) They tend to obtain large-scale not parts-based representations of the

original model and allow the components in the retained bases to be of arbitrary sign; (2)

The bases arise directly from the prior models. On the other hand, the methods that use

Fourier bases or wavelets (e.g., discrete wavelet transform (DWT)) extract localized fea-

tures of the reservoir model but do not incorporate the prior ensemble. Lee and Seung

(1999, 2001) proposed the non-negative matrix factorization (NMF), which includes non-

negativity constraints for the purpose of obtaining localized representation of the original

model by interpretable basis functions (Hoyer, 2004). More importantly, the information of

prior ensemble can be learned and integrated through the NMF. Inspired by their work, here

we investigate the properties of the NMF method and compare its performance with other

parameterization approaches in a Bayesian inversion framework.

In this chapter, we first define the inversion problem based on an ensemble-based data

assimilation algorithm. The NMF parameterization approach is presented and discussed in

the subsequent section. Then, a brief review of the post-processing technique is provided

after which we show the whole history matching workflow. The methodology is tested on

two synthetic reservoirs with complex geometry and we demonstrate the superior features of
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the NMF compared to PCA-based and DCT-based approaches by considering computational

examples.

3.1 Methodology

3.1.1 Data Assimilation Algorithm

To adjust the model parameters to honor historical production data, the ensemble

smoother with multiple data assimilation (ES-MDA) algorithm (Emerick and Reynolds,

2012, 2013a) is employed. In the original ES-MDA, same observed data are assimilated Na

times but with the measurement error covariance matrix CD replaced by α`CD at the `th

assimilation step where the inflation factor α` ≥ 1 and

Na∑
`=1

1

α`
= 1. (3.1)

For the linear Gaussian case, condition in Eq. 3.1 ensures that ES-MDA does the

sampling correctly (Emerick and Reynolds, 2012, 2013a). Since ES-MDA was proposed,

much work on the algorithm has focused on how to choose the inflation factors. Here, we

use the ES-MDA-GEO (Rafiee and Reynolds, 2017) algorithm where the “GEO” refers to

the fact that after the largest inflation factor α1 is chosen, all other factors are calculated by

α`+1 = βα`, for ` = 1, · · · , Na − 1, (3.2)

where the factor β is determined so that Eq. 3.1 is satisfied. As in Rafiee and Reynolds

(2017), the inflation factors meet the discrepancy principle which was first advocated by

Iglesias (2015) to choose inflation factors in an iterative ensemble smoother algorithm. More

details about the ES-MDA-GEO can be found in Appendix A.1. Although the discrepancy

method has a theoretical basis, ES-MDA-GEO only enforces the discrepancy principle at the

first data assimilation step of ES-MDA and hence is partially heuristic. In fact, how best to

choose inflation factors in ES-MDA is an unsolved problem and is not a focus of this work.
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We do, however, ensure we use a consistent procedure for choosing the inflation factors when

we compare history matching results for different parameterizations of the reservoir models.

Here we calibrate the facies and the permeability within each facies simultaneously,

i.e., the vector of model parameters, y, is given by

y = [mT
facies,m

T
perm]T, (3.3)

where mfacies and mperm represent the model parameters associated with the facies field and

the permeability within each facies, respectively. We denote the number of gridblocks in the

reservoir model by Ng and the number of specific facies by Nf . Since the parameterization

is applied to the facies indicator field in this work, mfacies can be replaced by a reduced Nc-

dimensional vector, v, which is obtained with a parameterization approach where Nc � Ng.

Besides that, mperm is a NfNg-dimensional vector containing the ln-permeability (ln(k))

values within facies. Thus, the dimension of y is Ny = Nc +NfNg.

Here we consider three-facies (i.e., Nf = 3) systems where shale, levee and sand are

represented by 0, 1 and 2, respectively. Then mperm is given by

mperm = [mT
sand,m

T
levee,m

T
shale]

T, (3.4)

where msand, mlevee and mshale denote Ng-dimensional vector containing ln(k) values within

sand, levee and shale facies, respectively. Therefore, the vector of model parameters given

in Eq. 3.3 can be rewritten as

y = [vT,mT
sand,m

T
levee,m

T
shale]

T. (3.5)

3.1.2 Non-Negative Matrix Factorization (NMF)

Formulation:

Before presenting the detailed formulation of parameterization approach, we first
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define the Ng ×Nte training ensemble matrix M as

M = [mfacies,1,mfacies,2, · · · ,mfacies,j, · · · ,mfacies,Nte ] , (3.6)

where Nte denotes the training ensemble size and mfacies,j is a Ng-dimensional vector con-

taining the facies type indicator in each gridblock of the jth ensemble member.

Through parameterization, the discrete facies indicators are converted to continuous

variables based on the following matrix factorization framework:

M ≈ M̂ = ΦV , (3.7)

where M̂ ∈ RNg×Nte is the approximate estimation of the ensemble matrix M ∈ RNg×Nte ;

Φ ∈ RNg×Nc and V ∈ RNc×Nte , respectively, represent the basis matrix and coefficient matrix

given respectively by

Φ = [φ1,φ2, · · · ,φk, · · · ,φNc ] , (3.8)

V = [v1,v2, · · · ,vj, · · · ,vNte ] , (3.9)

where φk is a Ng-dimensional basis vector (i.e., φk = [φk,1, φk,2, · · · , φk,Ng ]T) in the kth

column of the basis matrix Φ and vj is a Nc-dimensional coefficient vector of the jth ensemble

member (i.e., vj = [vj,1, vj,2, · · · , vj,Nc ]
T). As a result, each column of the training ensemble

matrix of Eq. 3.6 can be approximated by

mfacies,j ≈ m̂facies,j =
Nc∑
k=1

vj,kφk = Φvj, for j = 1, · · · , Nte. (3.10)

Because the entries in the matrix M are facies type indicators which are all positive,

the distinct requirement of NMF that the components in the resulting Φ and V must be all

positive as well is appropriate. To obtain a factorization which satisfies this constraint, we
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minimize the cost function given by

O(Φ,V ) =
1

2
‖M −ΦV ‖2F , (3.11)

subject to the constraints that

Φ ≥ 0 and V ≥ 0. (3.12)

In Eq. 3.11, the subscript “F” denotes the Frobenius norm, so we have

O(Φ,V ) =
1

2
‖M −ΦV ‖2F =

1

2

Ng∑
i=1

Nte∑
j=1

(Mij − (ΦV )ij)
2 , (3.13)

where Mij and (ΦV )ij denote the components in the ith row and jth column of the ma-

trices M and ΦV , respectively. In fact, (ΦV )ij can be rewritten as
∑Nc

k=1 ΦikVkj then the

derivative of (ΦV )ij with respect to Φik is

∂(ΦV )ij
∂Φik

= Vkj. (3.14)

Therefore, the partial derivative of the cost function shown in Eq. 3.13 with respect to Φik

is given by

∂O(Φ,V )

∂Φik

=
Nte∑
j=1

[Vkj ((ΦV )ij −Mij)]

=
Nte∑
j=1

(ΦV )ijVkj −
Nte∑
j=1

MijVkj

=
(
ΦV V T

)
ik
−
(
MV T

)
ik
.

(3.15)

Similar to Eq. 3.14, the derivative of (ΦV )ij with respect to Vkj is

∂(ΦV )ij
∂Vkj

= Φik. (3.16)

58



Then, the partial derivative of O(Φ,V ) with respect to Vkj is

∂O(Φ,V )

∂Vkj
=

Ng∑
i=1

[Φik ((ΦV )ij −Mij)]

=

Ng∑
i=1

Φik(ΦV )ij −
Ng∑
i=1

ΦikMij

=
(
ΦTΦV

)
kj
−
(
ΦTM

)
kj
.

(3.17)

With the partial derivatives in Eqs. 3.15 and 3.17, a steepest gradient descent method as in

Lee and Seung (2001) is implemented to minimize the cost function as follows:

Φ`+1
ik = Φ`

ik − α`ik
∂O(Φ`,V `)

∂Φ`
ik

= Φ`
ik − α`ik

[(
Φ`V `(V `)

T
)
ik
−
(
M `(V `)

T
)
ik

]
, (3.18)

V `+1
kj = V `

kj − β`kj
∂O(Φ`,V `)

∂V `
kj

= V `
kj − β`kj

[(
(Φ`)

T
Φ`V `

)
kj
−
(

(Φ`)
T
M `

)
kj

]
, (3.19)

where ` denotes the iteration index; α`ik and β`kj are the step size for updating Φ`
ik and V `

kj,

respectively. However, Eqs. 3.18 and 3.19 cannot guarantee the non-negativity of Φ and V

after every iteration. To address this issue, we first rewrite the right-hand side of Eqs. 3.18

and 3.19 as

Φ`+1
ik = Φ`

ik − α`ik
(
Φ`V `(V `)

T
)
ik

+ α`ik

(
M `(V `)

T
)
ik
, (3.20)

V `+1
kj = V `

kj − β`kj
(

(Φ`)
T
Φ`V `

)
kj

+ β`kj

(
(Φ`)

T
M `

)
kj
. (3.21)

Lee and Seung (2001) proposed the multiplicative update rules to calculate the values of α`ik

and β`kj by letting the first two items on the right-hand side of Eqs. 3.20 and 3.21 be zero as

Φ`
ik − α`ik

(
Φ`V `(V `)

T
)
ik

= 0, (3.22)

V `
kj − β`kj

(
(Φ`)

T
Φ`V `

)
kj

= 0. (3.23)
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With the above equations, the values of α`ik and β`kj can be obtained by

α`ik =
Φ`
ik(

Φ`V `(V `)T
)
ik

, (3.24)

β`kj =
V `
kj(

(Φ`)TΦ`V `
)
kj

. (3.25)

Substituting Eqs. 3.24 and 3.25, respectively, into Eqs. 3.18 and 3.19, respectively, yield the

modified updating equations as

Φ`+1
ik = Φ`

ik

(
M `(V `)

T
)
ik(

Φ`V `(V `)T
)
ik

, (3.26)

V `+1
kj = V `

kj

(
(Φ`)

T
M `

)
kj(

(Φ`)TΦ`V `
)
kj

. (3.27)

It is obvious that every update can be guaranteed to be positive using Eqs. 3.26 and 3.27

which are iteratively applied until the difference between ΦV and M reaches the stopping

criteria. In the original paper of Lee and Seung (2001), they proved that the application of

the update rules in Eqs. 3.26 and 3.27 is guaranteed to find at least locally optimal solution of

the problem defined in Eqs. 3.11 and 3.12. The convergence proofs rely upon defining an ap-

propriate auxiliary function similar to that used in the expectation-maximization algorithm

(Dempster et al., 1977).

Properties:

A reconstruction experiment was conducted with a training ensemble of size Nte =

1000 to demonstrate the properties of NMF. Each ensemble member corresponds to the

facies field of a channelized reservoir model containing three distinct facies, i.e., shale (0),

levee (1) and sand (2). The reservoir model is based on a 100 × 100 grid system so that

Ng = 10, 000. It is straightforward to construct a Ng×Nte ensemble matrix M as defined in

Eq. 3.6. Figure 3.1 presents four original facies models where we can observe a high number
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of complex channels distributed in the reservoir. The retained number of NMF basis vectors

is arbitrarily set to be Nc = 200 for model reduction but we provide a heuristic scheme for

estimating Nc later. Through NMF, the original ensemble matrix is approximated by the

product of the basis matrix, Φ ∈ RNg×Nc , and the coefficient matrix, V ∈ RNc×Nte , as shown

in Eq. 3.7. The approximate ensemble matrix, M̂ = ΦV ∈ RNg×Nte , contains reconstructed

facies fields in its columns. Figure 3.2 shows the first 16 bases plotted on the same reservoir

simulation grid used in the plots of Fig. 3.1. On the same scale (i.e., [0, 2]) as the reservoir

models in Fig. 3.1, the dark blue pixels in the basis images are zero or very close to zero; thus,

each basis can be regarded as a local patch of the large-scale geological structures (i.e., sand

channels surrounded by levee facies embedded in the background shale matrix). In addition,

we observe that some basis vectors contain relatively large features which can be treated

as common characteristics presented in various models. Due to the localized properties,

the separate patches are additively assembled together to generate the approximate model.

From Fig. 3.3, it is shown that the salient geological structures (e.g., sinuous sand channels)

are well reproduced in the reconstructed models obtained with the NMF approach. Note

that there are continuous values not discrete facies indicators in the reconstructed models.

Besides, the retained NMF coefficients are all guaranteed to be non-negative according to

the distributions of coefficients in the bottom row of Fig. 3.3.

(a) Model #1 (b) Model #2 (c) Model #3 (d) Model #4

Figure 3.1: Three-facies channelized reservoir models: sand facies (red), levee facies (green)
and shale facies (blue).

In the reconstruction experiment, we retain Nc = 200 basis vectors with 1000 training

models. Through comparing the basis vectors obtained with different retained numbers
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Figure 3.2: First 16 bases obtained by NMF (Nc = 200, Nte = 1000). The scale of basis
images is [0, 2] and dark blue pixels denote zero values.

(Nc = {50, 200, 600}) in Fig. 3.4, we can see that the geological features preserved in the

basis vectors tend to be more localized when Nc = 50 and more relatively large-scale features

appear in the leading basis vectors when Nc = 600. That is probably because when the

number of retained basis vectors is small, we need more localized features to have flexibility

and generalization capability in order to reconstruct different models whereas Nc = 600 is

large enough so more large-scale and small-scale features are included in the basis vectors.

This illustrates that the number of retained basis vectors, Nc, has an impact on the feature

patterns of NMF bases when the training ensemble is fixed. However, a “good” choice of

the retained number is problem-dependent and no clear criteria for selecting Nc has been

presented in the literature. Below, we develop a scheme to determine the value of the retained

number of basis vectors based on the reconstruction performance of NMF.

For use in our method to choose Nc, the model mismatch of the approximate model

is defined as follows

ε =
∥∥∥M − M̂

∥∥∥
F

= ‖M −ΦV ‖F , (3.28)

where M̂ denotes the approximate Ng ×Nte ensemble matrix.

Through more numerical experiments, we find that if the retained number is larger
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(a) Model #1 (b) Model #2 (c) Model #3 (d) Model #4

Figure 3.3: Reconstruction performance of NMF: original models (1st row), reconstructed
models (2nd row) and coefficients distributions (3rd row).

than the training ensemble size, some basis vectors are very similar to specific original models.

Such basis vectors have weak generality and cannot be used to represent models not in the

training set. Moreover, the retained number should satisfy Nc < Nte in order to ensure that

the selected basis vectors are able to describe the common features throughout the whole

ensemble and for computational efficiency. If a set of Nc basis functions can be used to

accurately represent all models in a training set of size Nte, where Nc < Nte, then the bases

can potentially represent any possible model. We define a normalized model mismatch by

ξ =

∥∥∥M − M̂
∥∥∥
F

‖M‖F
, (3.29)

and conduct a sensitivity analysis of ξ with respect to the retained number, Nc, which is in

the range of [10, 1000]. The upper bound of 1000 corresponds to the training ensemble size,
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(a) Nc = 50 (b) Nc = 200 (c) Nc = 600

Figure 3.4: First 16 bases obtained with different retained number (Nte = 1000). The scale
of basis images is [0, 2] and dark blue pixels denote zero values.

Nte, and the step size change in Nc is set equal to 10 for the sake of efficiency in the analysis.

In Fig. 3.5, it is shown that the normalized model mismatch declines rapidly as Nc increases.

To guarantee the quality of reconstruction performance, a reasonable value of ξ is typically

between 0.1 and 0.2, and more NMF basis vectors are retained with a smaller ξ.

For parameterization of the facies field, we apply the NMF approach as we did in

the reconstruction experiment and obtain the coefficient vector. Then, the vector of model

parameters, y, is assembled with the NMF coefficient vector and three ln-permeability fields;

see Eq. 3.5. We also compare the performance of two other parameterization approaches,

i.e., OPCA (Vo and Durlofsky, 2014, 2015) and common basis DCT discussed in Chapter

2 (also see Zhao et al. (2016, 2017)) with the performance of NMF. Note that the three

methods are referred to as “NMF”, “PCA” and “DCT” here.

3.1.3 Post-Processing

As discussed in Chapter 2, when using common basis DCT and NMF, we apply slight

modification of the OPCA post-processing procedure of Vo and Durlofsky (2014, 2015).

Specifically, after the `th iteration of ES-MDA-GEO, the updated facies field, m̂`+1
facies,j, is

computed with v̂`+1
j using Eq. 3.10. However, m̂`+1

facies,j only contains continuous values; thus

a post-processing procedure based on the work of Vo and Durlofsky (2014, 2015) is adapted

to map m̂`+1
facies,j to m`+1

facies,j where most facies type indicators become discrete. Although this
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Figure 3.5: Normalized model mismatch as a function of the retained number of basis func-
tions, Nc, which is in the range of [10, 1000].

procedure is discussed in Chapter 2, we provide the basic details again here to make this

chapter self-contained. The basic idea of this treatment is to minimize the following function

for each gridblock.

f(xi) = (ai − xi)2 + γ1R
i
1 (xi) + γ2R

i
2 (xi) , xi ∈

[
xl, xu

]
, (3.30)

where ai is the ith continuous component in m̂`+1
facies,j and xi is the facies indicator in m`+1

facies,j.

Ri
1 (xi) and Ri

2 (xi) denote the regularization terms, γ1 and γ2 represent the regularization

weights, and xl and xu, respectively denote the lower and upper bound constraints for differ-

ent ai; see Vo and Durlofsky (2014, 2015). In a three-facies reservoir, shale, levee and sand

are represented by 0, 1 and 2, respectively; thus we have (1) xl = 0 and xu = 1 if ai 6 1; (2)

xl = 1 and xu = 2 if ai > 1.

Through solving the minimization problem, we are able to obtain analytical solutions

where four regularization weights (γ11, γ12, γ21 and γ22) are required to map the continuous

value, ai, to the facies indicator, xi (see the conceptual precedure in Fig. 3.6). According to

the original papers, the four regularization weights are determined by numerical experiments

a priori. In the previous work of Zhao et al. (2016, 2017), a different scheme was proposed to

easily estimate the four weights by considering the prior facies proportions and the details

can be referred to Section 2.3.2 of Chapter 2.
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Figure 3.6: Post-processing procedure (Zhao and Forouzanfar, 2017)

After the `th iteration, we can also obtain updated ln-permeability fields (i.e., m`+1
sand,j,

m`+1
levee,j and m`+1

shale,j) and note each field is for the entire set of reservoir gridblocks. If the

facies type of the kth gridblock in m`+1
facies,j (i.e., m`+1

facies,j,k) is sand, then the ln-permeability

value of the kth gridblock in m`+1
j (i.e., m`+1

j,k ) is set equal to the value in the kth gridblock

of m`+1
sand,j (i.e., m`+1

sand,j,k). Otherwise, if m`+1
facies,j,k still has a real value, i.e., not an integer,

then the permeability of the gridblock is obtained by simple interpolation shown below

m`+1
j,k = (1−m`+1

facies,j,k)×m
`+1
shale,j,k

+m`+1
facies,j,k ×m

`+1
levee,j,k, if 0 < m`+1

facies,j,k < 1,

(3.31)

m`+1
j,k = (2−m`+1

facies,j,k)×m
`+1
levee,j,k

+ (m`+1
facies,j,k − 1)×m`+1

sand,j,k, if 1 < m`+1
facies,j,k < 2.

(3.32)

To summarize, the complete history matching workflow is shown in Fig. 3.7. It should

be noted that since we use ES-MDA-GEO and the training ensemble is typically very large

(e.g., Nte = 1000), we arbitrarily select Ne realizations to form the prior ensemble, where

Ne < Nte.

3.2 Computational Results and Discussion

In this section, three parameterization approaches, i.e., OPCA, common basis DCT

and NMF, are integrated into the history matching workflow and tested by two synthetic

examples. The 2D example considers a reservoir with complex patterns of channels and
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Figure 3.7: History matching workflow with NMF parameterization

not very much hard data information. The 3D example involves two geological zones in a

multi-layer reservoir.

3.2.1 Example 1: 2D Three-Facies Channelized Reservoir

In the first example, we consider a three-facies (shale, levee and sand), two-dimensional

fluvial reservoir model which has a 100 × 100 grid system. The size of each gridblock is

100ft× 100ft with a constant thickness of 50 ft. Given the facies type at wells as hard data,

the MPS algorithm (Strebelle, 2002) is used to generate the ensemble of facies field with

the pre-prepared training image (see Fig. 3.8). Due to distinct rock characteristics in the

reservoir, the ln-permeability values follow Gaussian distribution with the mean and stan-

dard deviation specified differently for each facies. In this work the ln-permeability fields

are obtained by the sequential Gaussian simulation technique where an isotropic spherical
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Table 3.1: Properties of facies

Facies Indicator Color φ k, mD ln(k) σ(ln(k))

Sand 2 Red 0.3 2000 7.601 0.3

Levee 1 Green 0.2 200 5.298 0.3

Shale 0 Blue 0.1 20 2.996 0.3

variogram is used with correlation range equal to ten times the width of a gridblock. The

detailed properties of individual facies are given in Table 3.1.

Figure 3.8: Training image (Example 1)

From the training ensemble of 1000 members, we randomly select 200 realizations

to form the prior ensemble for history matching, i.e., Ne = 200. Figure 3.9 shows the ln-

permeability distribution as well as the histogram of ln-permeability values of the true model

and three prior realizations. From the histograms, we can observe that ln-permeability values

present a tri-modal distribution as expected. There are four producers (P1 to P4) and one

injector (I1) in the field. The facies type at all five wells is sand, and these observations are

used as hard data to be honored in the posterior realizations. In the true model, producers

P1 and P2 are directly connected to the water injector I1 by two sand channels. P3 and I1

are connected by a loop consisting of two branch channels and the injected water has two

different ways to reach P3, whereas P4 lies in the corner of the reservoir and is not connected

to the injector directly.
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(a) True (b) Prior model #1 (c) Prior model #2 (d) Prior model #3

Figure 3.9: True model and prior realizations (Example 1): ln(k) field (top row) and his-
togram (bottom row).

In this synthetic example, the initial reservoir pressure is 5000 psi and the water

saturation is 0.2 before production. The water injection well is operated at constant bottom

hole pressure (BHP) of 5500 psi and the production wells are operated at 2000 psi. The

history matching period is 5 years (1800 days), followed by a 3-year (1080 days) forecast

period. In this work, the subsurface flow responses are obtained by running the Eclipse

reservoir simulator. The historical data consist of monthly measurements of water injection

rate (qinj) for the injector, and oil and water flow rate (qo and qw) for the producers. Therefore,

the observed data vector is given by

dobs =
[
qTinj, q

T
o , q

T
w,d

T
hard

]T
Nd×1

, (3.33)

where dhard denotes the hard data vector and is used to constrain the facies type at all wells.

In order to generate the observed data, we perturbed the true data with Gaussian random

noise and the standard deviation of measurement error is 3% for dynamic rates and 0.01 for

facies type indicator at well locations.

That there is significant variability in the initial ensemble can be confirmed by the
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prior production data shown in Fig. 3.10 where red curves denote the results of the true

model; red dots represent the observations; light blue curves are obtained by running the

prior realizations and dark blue curves represent the prior ensemble averages. Based on the

results of Fig. 3.10, we can see that the prior uncertainty is very high. Note that for producer

P4, the production data after water breakthrough are not included in the historical period.

(a) I1 water injection

(b) P1 water production (c) P2 water production (d) P3 water production (e) P4 water production

(f) P1 oil production (g) P2 oil production (h) P3 oil production (i) P4 oil production

Figure 3.10: Production data of prior ensemble (Example 1). True (red curves), observed
data (red dots), simulated data of realizations (light blue curves), and ensemble
mean (dark blue curves). History: 0 < t ≤ 1800 days, forecast: t > 1800 days.

In the parameterization of this example, the retained number with the “NMF” ap-

proach is set to be Nc = 650 using the determination scheme introduced in Section 3.1.2 with

ξ = 0.15; see Eq. 3.29. For the sake of fair comparison, the retained number of coefficients is

also set to 650 when we implement the “PCA” and “DCT” parameterizations. The vectors

of model parameters, y, of different parameterization approaches are assembled according
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to Eq. 3.5. The iteration number of ES-MDA-GEO algorithm, Na, is set to 8 with all of

the inflation factors calculated by the geometric method proposed by Rafiee and Reynolds

(2017) as α` = {1000.0, 401.04, 160.83, 64.50, 25.87, 10.37, 4.16, 1.67}. Due to the large

variation in the predicted rates from prior realizations, the inflation factors of the first several

iterations are relatively large in order to ensure small updates of the model parameters.

Figures 3.11 and 3.12 show the ln-permeability field and histogram corresponding to

the true model and three posterior realizations obtained with the three parameterization

approaches. We can observe that the large-scale geological structures, e.g., the connections

between P1, P2 and I1, are well preserved in all posterior realizations. With the “NMF”

approach, the most problematic channel loop connecting P3 and I1 is almost resolved al-

though the spatial continuity of sand channels is damaged in some areas. When we use the

“PCA”, the reconstructed channel loop is not complete and P4 is incorrectly connected to

the loop rather than isolated in the reservoir corner as in the true model. On the other hand,

the channel loop structure obtained with the “DCT” method presents smoother boundaries

between different facies but suffers poor continuity at some parts. For each method, there is

little variation between realizations in the posterior facies distribution. From the histograms,

we note there is some smearing of the ln-permeability fields between adjacent facies. Com-

pared with the other two parameterization methods, the proportion of each facies and the

standard deviation of ln-permeability values obtained with the “NMF” approach show better

approximations to those in the true model.

Figures 3.13 and 3.14 show the posterior production data after history matching. For

wells P1 and P2, the history match and forecast results obtained with “NMF” and “PCA” are

good. Because of the channel loop structure, the water production rate of P3 obtained with

the true model presents a rapid increase around 2000 days. Since the corresponding period is

not part of the historical period, the predictions for P3 are not as satisfactory as those for P1

and P2. The predicted future performance of P4 is also poor with all three parameterization

approaches, which is probably due to the fact that no data after breakthrough is available.

Figure 3.15(a) shows the box plots of the root mean square error (RMSE) obtained
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(a) True (b) Realization #1 (c) Realization #2 (d) Realization #3

Figure 3.11: ln(k) field of the true model and posterior realizations (Example 1): NMF (1st
row), PCA (2nd row) and DCT (3rd row).

with three parameterization approaches. The RMSE values are computed by

RMSE =

√
1

Nm

‖m−mtrue‖22 , (3.34)

where m and mtrue are the ln-permeability fields of the whole reservoir model. It can be

seen that the posterior realizations obtained with the “PCA” give the largest RMSE values

mainly because the channel loop structure is poorly resolved whereas the “NMF” gives the

smallest root mean square errors. In addition, Fig. 3.15(b) presents the box plots of the

normalized objective function regarding the posterior data mismatch calculated by

O(d) =
1

Nd

(d− dobs)
TC−1D (d− dobs) , (3.35)
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(a) True (b) Realization #1 (c) Realization #2 (d) Realization #3

Figure 3.12: Histogram of the true model and posterior realizations (Example 1): NMF (1st
row), PCA (2nd row) and DCT (3rd row).

where d and dobs only include production data during the historical period. Here, d is

the predicted data vector which is different for each posterior realization. Since the spatial

continuity of the channel loop structure is not well preserved, the data mismatch obtained

with the “DCT” is the largest among three methods. For the “NMF”, a normalized data

match close to unity is obtained for almost all posterior realizations whereas the “PCA” and

“DCT” give normalized data matches on the order of 500 or greater for about 25 percent

of the posterior realizations. Overall, Fig. 3.15 clearly shows that the best approximations

of the true model and the best data matches are generally achieved using the “NMF” even

though the oil rates of well P4 are poorly matched.

3.2.2 Example 2: 3D Three-Facies Channelized Reservoir

The 3D reservoir model in the second example consists of five layers and each layer
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(a) P1 (b) P2 (c) P3 (d) P4

Figure 3.13: Posterior water production rates (Example 1): NMF (1st row), PCA (2nd row)
and DCT (3rd row). True (red curves), observed data (red dots), simulated
data of realizations (light blue curves), and ensemble mean (dark blue curves).
History: 0 < t ≤ 1800 days, forecast: t > 1800 days.

has a 50 × 50 grid system with size given by 100ft × 100ft × 50ft. Due to the lack of 3D

channelized training image, the object-based modeling technique is employed to generate

the facies distributions given the hard data (observed facies type at wells) in Table 3.2. The

prior realization of the permeability field of each facies is still obtained by the sequential

Gaussian simulation technique with the same properties specified in Table 3.2. From the

true permeability field shown in Fig. 3.16, we can see that the top two layers of the reservoir

belong to a same geological zone which differs from the one that consists of the other three

layers, and the channelized facies presents distinct geometrical patterns across two zones.

The locations of the four injectors and nine producers are shown in Fig. 3.16, all the

wells are vertical and perforate all five layers. The water injectors are operated at constant

BHP of 5500 psi and the producers are operated at 3000 psi. As for Example 1, we set the
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(a) P1 (b) P2 (c) P3 (d) P4

Figure 3.14: Posterior oil production rates (Example 1): NMF (1st row), PCA (2nd row)
and DCT (3rd row). True (red curves), observed data (red dots), simulated
data of realizations (light blue curves), and ensemble mean (dark blue curves).
History: 0 < t ≤ 1800 days, forecast: t > 1800 days.

initial reservoir pressure and water saturation to 5000 psi and 0.2, respectively. The historical

period is 300 days and the total production period is equal to 600 days. The production

data consist of water injection rate (qinj) for the injectors, and oil and water flow rate (qo

and qw) for the producers. The noise level (standard deviation of measurement error) is 3%

of the true data for dynamic rates and 0.01 for facies type indicator at well locations.

Table 3.2: Observed facies type at wells (Example 2)

Facies Wells

Zone 1 Sand I2, I3, P1, P2, P3, P5, P7

Zone 2 Sand I1, I4, P2, P4, P5, P6, P7, P8, P9

In this example, the training ensemble consists of 1000 models and the proposed
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(a) RMSE of ln(k) fields (b) Posterior normalized data mismatch

Figure 3.15: Performance comparison of three parameterization approaches (Example 1).
Median (central red mark), 25th and 75th percentiles (bottom and top edges
of the box), extreme data points (whiskers), and outliers (“+” symbol).

history matching workflow is tested on two ensembles of different size (Ne = 200 and Ne =

500). According to the Eq. 3.29 with ξ = 0.15, the retained number of basis vectors for

each facies field is set to be Nc = 500 when we implement the “NMF”, “PCA” and “DCT”

parameterization approaches. Figure 3.17 presents the permeability in three layers of the

true model and three prior realizations. The production data generated from the 200 prior

realizations are shown in Fig. 3.18 where the curves and dots have the same meanings as in

Example 1. Since the wells are in the sand channels and perforate all five layers, we observe

very early water breakthrough and a quick oil rate drop at the producers.

In the history matching, the iteration number of ES-MDA-GEO is Na = 6 and the

inflation factors are α` = {1000.0, 267.29, 71.44, 19.09, 5.11, 1.36} which are obtained

by the geometric method. From the results in Figs. 3.19, 3.20 and 3.22, we can compare

three layers of posterior realizations obtained with different parameterization approaches

when Ne = 200. It can be seen that the realizations calibrated with different approaches

are all able to resolve reasonably well large-scale geological structures in layers 1 and 3 (see

Figs. 3.19 and 3.20). However, the “NMF” method shows superior capacity of resolving

detailed features such as the thin channels in the bottom layer (see Fig. 3.22). When a

larger ensemble (Ne = 500) is employed, more geological variability is preserved in the
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(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4 (e) Layer 5

Figure 3.16: ln(k) field of the true model (Example 2)

posterior realizations obtained with three parameterization approaches (see Figs. 3.21 and

3.23). Again, the geological details in the bottom layer are better resolved with the “NMF”

and “PCA” methods while the continuity of channels is poorly preserved by the “DCT”

method.

In Figs. 3.24 to 3.27, the match results of well production data obtained with the

“NMF” and “PCA” methods are generally good and there remains more variability in the

posterior realizations when Ne = 500. However, for the “DCT” method, we have poor data

matches at well P3 when Ne = 500.
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(a) True (b) Prior model #1 (c) Prior model #2 (d) Prior model #3

Figure 3.17: ln(k) field of the true model and prior realizations (Example 2): layer 1 (1st
row), layer 3 (2nd row) and layer 5 (3rd row).
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(a) I1 water injection (b) I2 water injection (c) I3 water injection (d) I4 water injection

(e) P2 water production (f) P3 water production (g) P7 water production (h) P9 water production

(i) P2 oil production (j) P3 oil production (k) P7 oil production (l) P9 oil production

Figure 3.18: Production data of prior ensemble (Example 2). True (red curves), observed
data (red dots), simulated data of realizations (light blue curves), and ensemble
mean (dark blue curves). History: 0 < t ≤ 300 days, forecast: t > 300 days.
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(a) True (b) Posterior model #1 (c) Posterior model #2 (d) Posterior model #3

Figure 3.19: ln(k) layer 1 of the true model and posterior realizations (Example 2, Ne = 200):
NMF (1st row), PCA (2nd row) and DCT (3rd row).
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(a) True (b) Posterior model #1 (c) Posterior model #2 (d) Posterior model #3

Figure 3.20: ln(k) layer 3 of the true model and posterior realizations (Example 2, Ne = 200):
NMF (1st row), PCA (2nd row) and DCT (3rd row).
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(a) True (b) Posterior model #1 (c) Posterior model #2 (d) Posterior model #3

Figure 3.21: ln(k) layer 3 of the true model and posterior realizations (Example 2, Ne = 500):
NMF (1st row), PCA (2nd row) and DCT (3rd row).

82



(a) True (b) Posterior model #1 (c) Posterior model #2 (d) Posterior model #3

Figure 3.22: ln(k) layer 5 of the true model and posterior realizations (Example 2, Ne = 200):
NMF (1st row), PCA (2nd row) and DCT (3rd row).
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(a) True (b) Posterior model #1 (c) Posterior model #2 (d) Posterior model #3

Figure 3.23: ln(k) layer 5 of the true model and posterior realizations (Example 2, Ne = 500):
NMF (1st row), PCA (2nd row) and DCT (3rd row).
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(a) P2 (b) P3 (c) P7 (d) P9

Figure 3.24: Posterior water production rates (Example 2, Ne = 200): NMF (1st row), PCA
(2nd row) and DCT (3rd row). True (red curves), observed data (red dots),
simulated data of realizations (light blue curves), and ensemble mean (dark blue
curves). History: 0 < t ≤ 300 days, forecast: t > 300 days.
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(a) P2 (b) P3 (c) P7 (d) P9

Figure 3.25: Posterior water production rates (Example 2, Ne = 500): NMF (1st row), PCA
(2nd row) and DCT (3rd row). True (red curves), observed data (red dots),
simulated data of realizations (light blue curves), and ensemble mean (dark blue
curves). History: 0 < t ≤ 300 days, forecast: t > 300 days.
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(a) P2 (b) P3 (c) P7 (d) P9

Figure 3.26: Posterior oil production rates (Example 2, Ne = 200): NMF (1st row), PCA
(2nd row) and DCT (3rd row). True (red curves), observed data (red dots),
simulated data of realizations (light blue curves), and ensemble mean (dark blue
curves). History: 0 < t ≤ 300 days, forecast: t > 300 days.
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(a) P2 (b) P3 (c) P7 (d) P9

Figure 3.27: Posterior oil production rates (Example 2, Ne = 500): NMF (1st row), PCA
(2nd row) and DCT (3rd row). True (red curves), observed data (red dots),
simulated data of realizations (light blue curves), and ensemble mean (dark blue
curves). History: 0 < t ≤ 300 days, forecast: t > 300 days.
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CHAPTER 4

PARAMETERIZATION BASED ON TENSOR AND NON-NEGATIVE

TENSOR DECOMPOSITION FOR ASSISTED HISTORY MATCHING OF

CHANNELIZED RESERVOIRS WITH MULTIPLE FACIES

It is important to note that all the approaches described in the previous chapters con-

sider the geological features as a whole and do not handle different dimensions separately.

Typically, current parameterization approaches deal with a matrix constructed by vectorizing

or flattening the property fields (e.g., permeability or facies fields) of the multi-dimensional

reservoir where flattening refers to representing the model parameters as a one-dimensional

vector. However, the geologic deposition process usually leads to dominant spatial struc-

tures in one particular direction over the others. For instance, large-scale fluvial or braided

channels may meander horizontally in a very complicated way but appear to be less com-

plex in the vertical direction. Thus, it is rational to treat different dimensions separately

and retain more features in the dimension of relatively larger variability. Fortunately, with

recent progress in tensor factorization/decomposition (TD) methods (De Lathauwer et al.,

2000a,b; Kolda and Bader, 2009), we are able to build a multi-dimensional array, a tensor,

which naturally allows the extension of the matrix factorization to tensor factorization that

enables the decomposition of high-dimensional data set to extract various low-dimensional

features hidden in different dimensions of the data tensor.

In the reservoir community, Afra and Gildin (2013, 2016) first introduced a tensor-

based technique with higher-order singular value decomposition (HOSVD) for parameterizing

the permeability fields of channelized reservoirs. On the basis of their work, Sebacher and

Hanea (2018) proposed to implement the normal score transform for parameterization of

facies fields first then apply the HOSVD to the tensor defined by the parameter fields.
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However, all these researchers only dealt with small simple 2D cases. In this chapter, the

features of the tensor-based parameterization methods are demonstrated by more complex

3D examples. Moreover, our work is highly motivated by the increasing popularity of the non-

negative tensor decomposition (NTD) in recent years. Although there are many successful

applications of NTD in other fields (Shashua and Hazan, 2005; Cichocki et al., 2009; Xu

and Yin, 2013; Vesselinov et al., 2019), no relevant work has been done to use NTD for

parameterization and history matching. Therefore, we aim to not only further investigate

the properties of the TD and NTD methods but also compare the performance between TD,

NTD and other parameterization approaches.

The remainder of this chapter is organized as follows: we first present and inves-

tigate the basic concepts, formulations and properties of TD and NTD methods with a

reconstruction experiment followed by a discussion of truncation scheme for TD and NTD.

Then, the ensemble-based method for calibrating the model parameters is briefly described.

The computational results of 2D and 3D synthetic examples are shown in the next section

to demonstrate the performance of the proposed history matching workflow using TD and

NTD methods for complex channelized reservoirs.

4.1 Methodology

4.1.1 Notations and Basic Concepts of Tensors

As the natural generalization of vector and matrix, a tensor is actually a multi-

dimensional array and the order of tensor denotes the number of dimensions which are also

known as modes. Therefore, an Nth-order tensor A ∈ RI1×I2×···×IN is an N -dimensional

array where the elements of A are ai1i2···in···iN for in = 1, 2, · · · , In and n = 1, 2, · · · , N .

An Nth-order tensor A is called a rank-one tensor if it can be written as the outer

product of N vectors, i.e.,

A = u(1) ⊗ u(2) ⊗ · · · ⊗ u(N), (4.1)

where the symbol “⊗” represents the vector outer product (see definition in Appendix B.1).
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This means that each element of the tensor is the product of the corresponding vector

elements as

ai1i2···in···iN = u
(1)
i1
u
(2)
i2
· · ·u(n)in

· · ·u(N)
iN
, for in = 1, 2, · · · , In and n = 1, 2, · · · , N. (4.2)

For a training ensemble of Nte reservoir models each of which is defined on a two-

dimensionalNx×Ny grid system, we can easily construct a third-order tensor, A ∈ RNx×Ny×Nte ,

by stacking all models together instead of converting each 2D model to a 1D vector. Simi-

larly, it is straightforward to have a fourth-order tensor, A ∈ RNx×Ny×Nz×Nte , for 3D reservoir

models each of which is defined on a three-dimensional Nx ×Ny ×Nz grid system.

4.1.2 Formulations of TD

In the literature, there are two popular tensor decomposition methods that have

been widely used: Canonical Polyadic (CP) decomposition (CANDECOMP/PARAFAC)

(Hitchcock, 1927; Harshman, 1970; Carroll and Chang, 1970; Kiers, 2000) and Tucker de-

composition (Tucker, 1963, 1964; Levin, 1965; Tucker, 1966).

With the CP method, a tensor is approximated by decomposing it into a linear com-

bination of rank-one tensors. For the third-order tensor described above, A ∈ RNx×Ny×Nte ,

using the CP method yields

A ≈ Â =
R∑
r=1

λru
(1)
r ⊗ u(2)

r ⊗ u(3)
r , (4.3)

where R denotes the rank which is defined as the smallest number of rank-one tensors that

generate A as their sum (Kruskal, 1977) and we have vectors u
(1)
r ∈ RNx , u

(2)
r ∈ RNy

and u
(3)
r ∈ RNte for r = 1, · · · , R. It is noteworthy that there is no straight algorithm to

determine the rank of a specific given tensor which is actually a NP-hard problem (H̊astad,

1990). Based on the approximation of Eq. 4.3, each element in A ∈ RNx×Ny×Nte can be
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estimated as

aijk ≈
R∑
r=1

λru
(1)
ri u

(2)
rj u

(3)
rk , for i = 1, · · · , Nx, j = 1, · · · , Ny, k = 1, · · · , Nte, (4.4)

where u
(`)
rm denotes the mth element of the vector u

(`)
r for ` = 1, 2, 3.

Different from the CP method, the Tucker method decomposes a tensor into a core

tensor multiplied by factor matrices of different modes and we focus on this approach in

our work because of its superior characteristics (Kolda and Bader, 2009). Therefore, for a

third-order tensor, A ∈ RNx×Ny×Nte , we have

A ≈ Â = B ×1 U
(1) ×2 U

(2) ×3 U
(3), (4.5)

where B ∈ RR1×R2×R3 denotes the core tensor; factor matrices U (1) ∈ RNx×R1 , U (2) ∈ RNy×R2

and U (3) ∈ RNte×R3 represent the feature changes in the x direction, the y direction and

the dimension of the ensemble, respectively. R1, R2 and R3 are the 1-mode, 2-mode and

3-mode rank of A, respectively. In other words, R1, R2 and R3 are the column rank of factor

matrix U (1), U (2) and U (3), respectively. The n-mode rank should not be confused with the

idea of rank in Eq. 4.3 and the terminology “rank” refers to the n-mode rank in this work.

In Eq. 4.5, the notation, ×n, represents the n-mode multiplication between a tensor and a

matrix where the calculation details are given in Appendix B.2. Note that if we retain all

information for each mode, then R1 = Nx, R2 = Ny and R3 = Nte. Figure 4.1 schematically

depicts the tensor decomposition of Eq. 4.5.

Based on the original work of Tucker (Tucker, 1966) and subsequent contributions

of De Lathauwer et al. (2000a), the Tucker decomposition can be computed by using the

higher-order singular value decomposition (HOSVD) which is a generalization of standard

matrix singular value decomposition (SVD). Later, De Lathauwer et al. (2000b) proposed

the higher-order orthogonal iteration (HOOI) algorithm (see Appendix B.3) in order to

improve the calculations of factor matrices but HOOI is more computationally expensive

92



Figure 4.1: Third-order tensor construction and decomposition for an ensemble consisting of
Nte reservoir models and each model is defined on a 2D Nx ×Ny grid system.

than HOSVD (Cichocki et al., 2009). In this work, the tensor decomposition is implemented

using the Tucker method with a Matlab package called “Tensorlab 3.0” (Vervliet et al.,

2016a,b) where the HOSVD algorithm is available.

In fact, for a training ensemble of Nte reservoir models defined on a 2D Nx×Ny grid

system, we can construct two types of tensors and have the following two implementation

schemes of tensor decomposition:

• Third-order tensor, A ∈ RNx×Ny×Nte , can be decomposed into

A ≈ Â = B ×1 U
(1) ×2 U

(2) ×3 U
(3), (4.6)

where there are one core tensor B ∈ RR1×R2×R3 , and three factor matrices U (1) ∈

RNx×R1 , U (2) ∈ RNy×R2 and U (3) ∈ RNte×R3 .

• Second-order tensor, A ∈ RNg×Nte with Ng = Nx ×Ny, can be decomposed into

A ≈ Â = B ×1 U
(1) ×2 U

(2), (4.7)

where there are one core tensor B ∈ RR1×R2 , and two factor matrices U (1) ∈ RNg×R1

and U (2) ∈ RNte×R2 .

Similarly, for a training ensemble of Nte reservoir models defined on a 3D Nx×Ny×Nz
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grid system, we can construct three types of tensors and have three ways to implement the

tensor decomposition as shown below.

• Fourth-order tensor, A ∈ RNx×Ny×Nz×Nte , can be decomposed into

A ≈ Â = B ×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4), (4.8)

where there are one core tensor B ∈ RR1×R2×R3×R4 , and four factor matrices U (1) ∈

RNx×R1 , U (2) ∈ RNy×R2 , U (3) ∈ RNz×R3 and U (4) ∈ RNte×R4 .

• Third-order tensor, A ∈ RNl×Nz×Nte with Nl = Nx ×Ny, can be decomposed into

A ≈ Â = B ×1 U
(1) ×2 U

(2) ×3 U
(3), (4.9)

where there are one core tensor B ∈ RR1×R2×R3 , and three factor matrices U (1) ∈

RNl×R1 , U (2) ∈ RNz×R2 and U (3) ∈ RNte×R3 . Note that there are two other variations

of the third-order tensor as A ∈ RNl×Nx×Nte with Nl = Ny × Nz and A ∈ RNl×Ny×Nte

with Nl = Nx ×Nz, but those variations are not considered in this work.

• Second-order tensor, A ∈ RNg×Nte with Ng = Nx ×Ny ×Nz, can be decomposed into

A ≈ Â = B ×1 U
(1) ×2 U

(2), (4.10)

where there are one core tensor B ∈ RR1×R2 , and two factor matrices U (1) ∈ RNg×R1

and U (2) ∈ RNte×R2 .

In this dissertation, the tensor construction and corresponding decomposition given by

Eq. 4.8 is referred to as the “four-mode” implementation scheme. The tensor decomposition

described in Eqs. 4.6 and 4.9 is called the “three-mode” implementation scheme. Similarly,

Eqs. 4.7 and 4.10 define the “two-mode” implementation scheme.

One essential step before application of tensor decomposition for parameterization in

history matching is to determine basis functions and calculate coefficients for each realization
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in an initial ensemble of unconditional realizations of the reservoir model parameters. We

take a training ensemble of Nte reservoir models defined on a 3D Nx ×Ny ×Nz grid system

as an example. If the two-mode implementation scheme is used, we first flatten every 3D

reservoir model into a 1D vector and construct a second-order tensor, A ∈ RNg×Nte , as

A = [m1,m2, · · · ,mj, · · · ,mNte ] , (4.11)

where Ng = Nx × Ny × Nz denotes the total number of grids and mj is a Ng-dimensional

vector containing model parameters (e.g., facies type indicator, permeability, porosity, etc.)

of each gridblock of the jth ensemble member. Note in this instance, the tensor A is an

Ng ×Nte matrix.

By using tensor decomposition, the original tensor can be decomposed into one

second-order core tensor and two factor matrices as shown in Eq. 4.10. Multiplying the

core tensor, B ∈ RR1×R2 , with the second factor matrix, U (2) ∈ RNte×R2 , yields

A ≈ Â = B ×1 U
(1) ×2 U

(2) = C ×1 U
(1), (4.12)

where C = B ×2 U
(2) ∈ RR1×Nte is the coefficient tensor which is actually a 2D matrix and

its columns consist of coefficients for different realizations; the factor matrix, U (1) ∈ RNg×R1 ,

contains basis vectors in its columns. Appendix B.2 provides the procedure for computing

tensor products like B ×2 U
(2). Therefore, each model in the original tensor, A, can be

approximated by a linear combination of basis vectors with corresponding coefficients (see

Fig. 4.2).

If we use matrix symbols, Φ and V , respectively to replace U (1) and C, respectively,

and introduce conventional matrix multiplication, Eq. 4.12 can be rewritten as

A ≈ Â = ΦV , (4.13)

where Â ∈ RNg×Nte is the approximate tensor, Φ ∈ RNg×Nc is the basis matrix, V ∈ RNc×Nte
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Figure 4.2: Decomposition of the second-order tensor, A ∈ RNg×Nte with Ng = Nx×Ny×Nz.
The jth model, A:j, is estimated by a linear combination of basis vectors in U (1)

with the corresponding coefficients in the jth column of tensor C.

is the coefficient matrix and Nc = R1 denotes the retained number of basis functions; in

particular, Φ = U (1) and V = C are given respectively by

Φ = [φ1,φ2, · · · ,φk, · · · ,φNc ] , (4.14)

V = [v1,v2, · · · ,vj, · · · ,vNte ] , (4.15)

where φk is a Ng-dimensional basis vector (i.e., φk = [φk,1, φk,2, · · · , φk,Ng ]T) in the kth

column of the basis matrix Φ and vj is a Nc-dimensional coefficient vector for reconstructing

the jth ensemble member; i.e., vj = [vj,1, vj,2, · · · , vj,Nc ]
T. As shown in Fig. 4.2, each column

of the ensemble tensor shown in Eq. 4.11 can be approximated by

mj ≈ m̂j =
Nc∑
k=1

vj,kφk = Φvj, for j = 1, · · · , Nte. (4.16)

Instead of vectorizing the 3D model in the two-mode scheme, we can also construct a

fourth-order tensor, A ∈ RNx×Ny×Nz×Nte , for the same ensemble of 3D reservoir models. This

tensor can be thought as a series of cubes (see Fig. 4.3) and each cube represents one 3D
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reservoir model whose dimension is Nx×Ny×Nz. Through tensor decomposition, the tensor

can be decomposed into one fourth-order core tensor and four factor matrices as shown in

Eq. 4.8. The product of the core tensor, B ∈ RR1×R2×R3×R4 , with the last factor matrix,

U (4) ∈ RNte×R4 , gives

A ≈ Â = B ×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4)

= C ×1 U
(1) ×2 U

(2) ×3 U
(3),

(4.17)

where C = B ×4 U
(4) ∈ RR1×R2×R3×Nte is the coefficient tensor and its cubes contain coeffi-

cients for different realizations. Thus, the pth cube (model) of tensor A (i.e., A:::p) can be

approximated by

A:::p ≈ Â:::p =

R1∑
i=1

R2∑
j=1

R3∑
k=1

CijkpΦijk

=

R1∑
i=1

R2∑
j=1

R3∑
k=1

Cijkpu(1)
i ⊗ u

(2)
j ⊗ u

(3)
k , for p = 1, · · · , Nte.

(4.18)

where Φijk denotes the basis cube whose dimension is Nx × Ny × Nz and Cijkp is the cor-

responding coefficient for pth model; u
(1)
i ∈ RNx×1, u

(2)
j ∈ RNy×1 and u

(3)
k ∈ RNz×1 denote

the ith, jth and kth column vector of U (1), U (2) and U (3), respectively. The decomposition

process is more clearly illustrated in Fig. 4.3.

For the other TD implementation schemes, the derivation process is similar. The

basis functions are fixed during the history matching process and the coefficients of each

ensemble member are calibrated as model parameters by assimilating observed data.

4.1.3 Formulations of NTD

On the basis of conventional tensor decomposition, the non-negativity constraints can

be imposed in the non-negative tensor decomposition (NTD) so that the components in the

resulting core tensor and factor matrices are non-negative. In order to satisfy this constraint

for an Nth-order tensor A ∈ RI1×I2×···×IN , we need to solve an optimization problem in order
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Figure 4.3: Decomposition of the fourth-order tensor, A ∈ RNx×Ny×Nz×Nte . The pth model,
A:::p, is estimated by a linear combination of basis cubes obtained by the outer
products of column vectors from factor matrices (i.e., U (1), U (2) and U (3)), with
the corresponding coefficients in the pth cube of tensor C.

to minimize the least squares objective function given by

O(Â) = ||A − Â||2F = ||A − B ×1 U
(1) ×2 U

(2) · · · ×N U (N)||2F, (4.19)

where the subscript “F” denotes the Frobenius norm. With the multiplicative update rules

proposed by Lee and Seung (2001) who developed the non-negative matrix factorization

(NMF) approach, we can update the nth factor matrix, U (n), by

U
(n)
`+1 = U

(n)
` ~

A`(n)(B`(n))
T

U
(n)
` B`(n)(B`(n))

T
, (4.20)

where ` is the iteration index, the symbol “~” denotes the Hadamard product (see Ap-

pendix B.4) and U
(n)
` has the dimension of In × Rn where Rn is the rank of the nth mode

and if all information is retained, we have the full rank, i.e., Rn = In. A`(n) is the n-mode

matricization of the Tucker model calculated by

A`(n) = U
(n)
` B

`
(n), (4.21)
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where B`(n) is computed in the following way:

B`(n) = B` ×1 U
(1)
` · · · ×n−1 U

(n−1)
` ×n+1 U

(n+1)
` · · · ×N U (N)

` . (4.22)

The other factor matrices can be easily updated in the same way by unfolding the

Tucker model into associated modes. After all the factor matrices, U (n), for n = 1, · · · , N ,

are updated, the core tensor is updated as

B`+1 = B` ~
A×1 (U

(1)
`+1)

T
· · · ×N (U

(N)
`+1 )

T

B` ×1 (U
(1)
`+1)

T
U

(1)
`+1 · · · ×N (U

(N)
`+1 )

T
U

(N)
`+1

. (4.23)

With Eqs. 4.20 and 4.23, the updates of factor matrices and core tensor are guaranteed

to be positive and the updating procedure is iteratively conducted until the discrepancy

between A and Â reaches the stopping criteria. The complete derivations can be found in

Kim and Choi (2007) and Lee and Seung (2001) where it is proved that the application

of multiplicative update rules is guaranteed to find at least a locally optimal solution of

the problem defined in Eq. 4.19. Note that although the update rules are similar, the NMF

approach factorizes the ensemble matrix into the basis matrix and coefficient matrix directly,

which yields different basis functions compared to those obtained by the NTD method. Since

there is no HOSVD algorithm (De Lathauwer et al., 2000a) for NTD in Tensorlab 3.0, we

employ a Python package called “TensorLy” (Kossaifi et al., 2019) to implement NTD using

the HOOI algorithm (De Lathauwer et al., 2000b) in this work; see Appendix B.3.

4.1.4 Reconstruction Experiment

In order to assess and illustrate the parameterization performance of the TD and

NTD methods, a reconstruction experiment was conducted with a training ensemble of 200

models (Nte = 200). Each ensemble member is a 2D channelized reservoir containing three

distinct facies (see Table 4.1). The reservoir model is based on a 50× 50 grid system so that

Nx = 50, Ny = 50 and Ng = 2500. The facies models are generated by using the multi-point

statistics (MPS) algorithm and four different models are presented in Fig. 4.4 where the
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black dots show the locations of five wells. The two wells in the top left and bottom right

corners of the reservoir are in the levee facies while the other three wells are drilled in the

sand channels. We assume that the facies type at these wells are observed in advance and

used as hard data in the reservoir modeling process.

Table 4.1: Facies

Facies Indicator Color

Sand 2 Red

Levee 1 Green

Shale 0 Blue

(a) Model #1 (b) Model #2 (c) Model #3 (d) Model #4

Figure 4.4: Original facies models. Black dots represent the well locations and the facies
type observations are used as hard data in the model generation process.

For the purpose of comparison, we also tested the NMF method and compared the

results with those obtained with the TD and NTD. In this experiment, the total retained

number of basis functions is arbitrarily set to be Nc = 100 which means the dimensionality

of each facies model is reduced from 2500 to 100. To achieve this goal, we designed nine

implementation schemes of parameterization with the TD, NTD and NMF methods; see

the detailed descriptions in Table 4.2. We do not compress the dimension of ensemble in

this experiment which leads to Nc = R1 for the two-mode implementation schemes and

Nc = R1 × R2 for the three-mode implementation schemes. The retained number of basis

functions for different dimensions shown in Table 4.2 are determined heuristically but a

truncation scheme for TD and NTD is presented in next section. The last column in Table 4.2

gives the computing time, tpara, used to complete the parameterization. Note that tpara only
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represents the cost of computing the core tensor and factor matrices from the original tensor.

The CPU in the computer is Intel(R) Xeon(R) E5-1620 v2 (10M Cache, 3.70 GHz) with 16.0

GB RAM. It is shown that in this experiment the computing time of NTD is about 10 times

than that of TD when the implementation scheme is the same and also indicates that the

two-mode scheme takes more time than the multi-mode schemes to complete decomposition.

Table 4.2: Parameterization schemes (Nte = 200)

Method Ensemble tensor Scheme Retained number Name tpara

TD

A ∈ RNg×Nte 2-mode R1 = 100, R2 = Nte TD, 100 0.32s

A ∈ RNx×Ny×Nte 3-mode R1 = 10, R2 = 10, R3 = Nte TD, 10× 10 0.16s

A ∈ RNx×Ny×Nte 3-mode R1 = 20, R2 = 5, R3 = Nte TD, 20× 5 0.21s

A ∈ RNx×Ny×Nte 3-mode R1 = 5, R2 = 20, R3 = Nte TD, 5× 20 0.21s

NTD

A ∈ RNg×Nte 2-mode R1 = 100, R2 = Nte NTD, 100 2.06s

A ∈ RNx×Ny×Nte 3-mode R1 = 10, R2 = 10, R3 = Nte NTD, 10× 10 1.79s

A ∈ RNx×Ny×Nte 3-mode R1 = 20, R2 = 5, R3 = Nte NTD, 20× 5 1.92s

A ∈ RNx×Ny×Nte 3-mode R1 = 5, R2 = 20, R3 = Nte NTD, 5× 20 1.88s

NMF A ∈ RNg×Nte / Nc = 100 NMF, 100 1.22s

With the training ensemble, we can construct a second-order tensor, A ∈ RNg×Nte

with Ng = Nx×Ny, for two-mode TD and NTD, and a third-order tensor, A ∈ RNx×Ny×Nte ,

for three-mode TD and NTD. By using Eqs. 4.6 and 4.7, the original tensors are decomposed

into core tensors and factor matrices, and the products of core tensors and factor matrices

lead to reconstructed models. Note that there are continuous values not discrete facies

indicators in the reconstructed models. Figure. 4.5 and Figure. 4.6 each show a different

true facies model and the corresponding reconstructed models obtained by applying nine

parameterization schemes to the training ensemble. From the results, it is shown that the

“TD, 100”, “NTD, 100” and “NMF, 100” methods are able to yield well-reproduced models

where the large-scale channels are almost reproduced completely. When the three-mode

schemes are adopted, the TD and NTD methods extract the geological features in the x

and y directions separately. For instance, the orientation of fluvial channels in the second
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true model (see Fig. 4.6) is basically along the x direction. Thus, the reproduced structures

obtained with the “TD, 20 × 5” and “NTD, 20 × 5” schemes where more features in the x

direction are retained display enhanced spatial continuity in the x direction compared to the

“5× 20” results. This observation shows the flexibility of the tensor-based parameterization

approaches and this characteristic is supposed to be useful when it comes to the geological

systems of strong spatial orientation.

(a) True (b) NMF, 100

(c) TD, 100 (d) TD, 10× 10 (e) TD, 20× 5 (f) TD, 5× 20

(g) NTD, 100 (h) NTD, 10× 10 (i) NTD, 20× 5 (j) NTD, 5× 20

Figure 4.5: Comparison of reconstructed facies model #1

From the retained basis functions displayed in Figs. 4.7 and 4.8, the behaviors of

different tensor-based parameterizations are illustrated more clearly in these figures. Among

the total 100 retained basis functions, we selected two bases (i.e., the first and the last one)

for visualization. With the TD method, the retained leading bases (e.g., basis #1) presents

large-scale structures but the features become more trivial in the non-leading bases (e.g.,
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(a) True (b) NMF, 100

(c) TD, 100 (d) TD, 10× 10 (e) TD, 20× 5 (f) TD, 5× 20

(g) NTD, 100 (h) NTD, 10× 10 (i) NTD, 20× 5 (j) NTD, 5× 20

Figure 4.6: Comparison of reconstructed facies model #2

basis #100). Moreover, it can be seen that when different model dimensions are handled

individually by the three-mode implementation scheme, the retained bases show dominant

features in the direction where more features are retained. On the contrary, in the basis

images obtained by the NTD method (see Fig. 4.8), the dark blue pixels are approximately

zero and all the retained bases appear to extract localized features of similar size. Intuitively,

one might expect localized basis functions to be superior to global ones for constructing a

good approximation of any model.

To quantitatively evaluate the reconstruction performance of different parameteriza-

tions, the reconstructed model mismatch is calculated by

O(Â) =
∥∥∥A− Â∥∥∥

F
, (4.24)
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(a) TD, 100 (b) TD, 10× 10 (c) TD, 20× 5 (d) TD, 5× 20

Figure 4.7: Basis functions retained by the TD method: basis #1 (top row) and basis #100
(bottom row).

(a) NTD, 100 (b) NTD, 10× 10 (c) NTD, 20× 5 (d) NTD, 5× 20

Figure 4.8: Basis functions retained by the NTD method: basis #1 (top row) and basis #100
(bottom row).

where the subscript “F” denotes the Frobenius norm. For the ensemble of 2D reservoir

models, the tensor is constructed to be A ∈ RNg×Nte and A ∈ RNx×Ny×Nte with two-mode

104



and three-mode scheme, respectively. In Fig. 4.9, the “TD, 100” parameterization is shown

to give the smallest model mismatch, and the “NTD, 100” and “NMF, 100” also yield good

results. With the same implementation scheme, we found that the TD method usually

obtains better reconstructed models than the NTD method.

Figure 4.9: Model mismatch for reconstruction results. Median (central red mark), 25th
and 75th percentiles (bottom and top edges of the box), extreme data points
(whiskers), and outliers (“+” symbol).

Based on the presented results and discussion, it appears that the two-mode imple-

mentation scheme may be the best option when the retained number of basis functions is

the same. But one must keep in mind that the three-mode TD and NTD takes less compu-

tational time to complete than the two-mode TD and NTD (see the computational cost in

Table 4.2). Moreover, at this point, we have arbitrarily chosen the ranks in the three-mode

implementations. In addition, if the computational cost of the two-mode and three-mode

implementations is forced to be identical, we are able to retain more basis functions with

the three-mode implementation scheme and may obtain better reconstructed models than

those obtained with the two-mode scheme. One should also note that the computational

cost of computing the basis elements is on the order of a few seconds which is negligible

compared to the cost of running the reservoir simulation a few hundred times to perform

history matching where each run of the simulation takes on the order of one minute for the

two-dimensional problem and on the order of two minutes for the more complicated problem
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considered later.

4.1.5 Truncation Scheme

As stated previously, for a training ensemble of Nte reservoir models defined on a

3D Nx × Ny × Nz grid system, it is straightforward to construct a fourth-order tensor,

A ∈ RNx×Ny×Nz×Nte . If we retain all information for each mode, a full tensor decomposition

can be obtained using HOSVD algorithm:

A ≈ Â = B ×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4), (4.25)

where B ∈ RR1×R2×R3×R4 is the core tensor; U (1) ∈ RNx×R1 , U (2) ∈ RNy×R2 , U (3) ∈ RNz×R3

and U (4) ∈ RNte×R4 are the factor matrices, and since all features are retained, R1 = Nx,

R2 = Ny, R3 = Nz and R4 = Nte.

If we take the 1st mode (x dimension) as an example, the Frobenius norms of the

“slices” along the 1st mode of the core tensor B can be calculated by

λ
(1)
j = ‖Bj:::‖F , for j = 1, · · · , Nx, (4.26)

where Bj::: denotes the jth “slice” along the 1st mode which is replaced by B:j::, B::j: and

B:::j for the 2nd, 3rd and 4th modes, respectively.

As a generalization of standard SVD of matrix where the singular values decreases

on the diagonal, the λ
(1)
j presents a decreasing order with respect to the Frobenius norm as

λ(1)max = λ
(1)
1 ≥ λ

(1)
2 ≥ · · · ≥ λ

(1)
Nx

= λ
(1)
min ≥ 0. (4.27)

Therefore, we can determine the rank of the 1st mode, R1, by choosing the smallest

positive integer, R1, that satisfies

R1∑
j=1

λ
(1)
j ≥ ζ

Nx∑
j=1

λ
(1)
j , (4.28)
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where ζ is a real number not greater than one, and the choice of ζ determines the truncation

level of features in the 1st mode. It is obvious that more features are retained with larger

ζ. Through the same procedure, we can obtain R2, R3 and R4 for the other modes of the

fourth-order tensor.

The approximation quality of the original tensor, A, can be quantified by the nor-

malized model mismatch defined by

ξ =

∥∥∥A− Â∥∥∥
F

‖A‖F
, (4.29)

where the subscript “F” denotes the Frobenius norm and Â is the approximate tensor ob-

tained by HOSVD (see Eq. 4.25) given the ranks of different modes, i.e., R1, R2, R3 and R4.

Since ζ is commonly smaller than one, the tensor is compressed and we can calculate the

model reduction ratio by

η =
size(B)

size(A)
, (4.30)

where size(A) = Nx ×Ny ×Nz ×Nte and size(B) = R1 ×R2 ×R3 ×R4.

In order to balance the approximation quality and model reduction ratio, the value

of ζ is set to 0.9 by default in this work and the normalized model mismatch, ξ, is calculated

to check if it is greater than 0.2. If so, we increase the value of ζ until ξ is smaller than

0.2. For the same ensemble of 3D reservoir models, we can also construct a third-order

tensor A ∈ RNl×Nz×Nte with Nl = Nx × Ny or a second-order tensor A ∈ RNg×Nte with

Ng = Nx ×Ny ×Nz, and use the same procedure to determine the ranks of different modes

when implementing the tensor decomposition.

The proposed truncation scheme is tested with the training ensemble of 200 models

(Nx = 50, Ny = 50, Nte = 200) used in the previous reconstruction experiment (see Section

4.1.4). A third-order tensor, A ∈ RNx×Ny×Nte , is constructed and the truncation scheme

is applied with three different values of ζ (0.85, 0.9 and 0.95). The obtained ranks of

three modes, normalized model mismatch ξ, model reduction ratio η and computing time
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of parameterization tpara are given in the top three rows of Table 4.3. It is clear that as

ζ increases, the model mismatch decreases and the model reduction ratio increases. For

the reconstruction experiment presented previously where we determined R1, R2 and R3

in a heuristic way, the corresponding ξ, η and tpara are shown in the bottom three rows of

Table 4.3 for comparison. We can see that although the dimensionality of tensor is reduced

significantly (η = 0.04), the model mismatch is larger than 0.2 which is not desirable.

Therefore, the developed truncation scheme provides an efficient way to determine proper

ranks of different modes given a specific tensor. Although the results of Table 4.3 suggest

we can apply truncated TD and NTD, we will postpone the application of the truncated

scheme in the history matching workflow until we consider more realistic three-dimensional

problems with heterogeneous permeability fields.

Table 4.3: Application of truncation scheme

Method ζ ξ η R1 R2 R3 tpara

TD

0.95 0.08 0.51 42 40 152 1.21s

0.9 0.12 0.26 35 31 122 0.22s

0.85 0.15 0.13 28 24 98 0.16s

TD

/ 0.21 0.04 10 10 200 0.06s

/ 0.23 0.04 20 5 200 0.11s

/ 0.35 0.04 5 20 200 0.05s

4.1.6 Data Assimilation and Post-Processing

In this work, we calibrate the facies and the petrophysical properties (i.e., perme-

ability) within facies simultaneously so that the vector of model parameters, y, is given

by

y = [mT
facies,m

T
perm]T, (4.31)

where mfacies and mperm represents the model parameters associated with the facies field
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and the permeability within each facies, respectively. Specifically, we define

mfacies = vfacies, (4.32)

where vfacies denotes the coefficient vector of facies field obtained by TD and NTD. If the

permeability within facies is homogeneous, we define

mperm = [ksand, klevee, kshale]
T, (4.33)

where ksand, klevee and kshale denote the natural logarithm of the permeability (ln(k)) within

sand, levee and shale facies, respectively. On the other hand, if the permeability within

facies is heterogeneous, we define

mperm = [vTsand,v
T
levee,v

T
shale]

T, (4.34)

where vsand, vlevee and vshale are the parameterized coefficient vectors corresponding to the

ln(k) field of each facies, i.e., msand, mlevee and mshale, respectively. Note that in this work

we apply the two-mode implementation scheme of TD and NTD to the ln(k) fields of facies

with Nc = Nte. The specific expression of y is given at the beginning of computational

examples.

In order to honor historical production data by adjusting the model parameters,

the ensemble smoother with multiple data assimilation (ES-MDA) algorithm (Emerick and

Reynolds, 2012, 2013a) is employed. In the original ES-MDA, same set of observed data

are assimilated Na times but with the measurement error covariance matrix CD replaced by

α`CD at the `th assimilation step where the inflation factor α` ≥ 1 and

Na∑
`=1

1

α`
= 1. (4.35)

For the linear Gaussian case, the constraint in Eq. 4.35 ensures that ES-MDA does
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the sampling correctly (Emerick and Reynolds, 2012, 2013a). As in previous chapter, we

employ the ES-MDA-GEO (Rafiee and Reynolds, 2017) where the “GEO” refers to the fact

that after the largest inflation factor α1 is chosen, all other factors are calculated by

α`+1 = βα`, for ` = 1, · · · , Na − 1, (4.36)

where the factor β is solved in the domain of (0, 1) by

1− βNa

1− β
= α1, (4.37)

so that Eq. 4.35 is satisfied. As in Rafiee and Reynolds (2017), the inflation factor, α, is

chosen based on the discrepancy principle which was first advocated by Iglesias (2015) to

determine inflation factors in an iterative ensemble smoother algorithm. However, here we

also require that α1 ≤ 1000. A brief derivation of update equations in the ES-MDA-GEO is

given in Appendix A.1.

It should be noted that after one iteration of ES-MDA-GEO, the updated facies fields

usually contain continuous values rather than categorical type indicators. Therefore, a post-

processing procedure is adapted to implement the discrete mapping and the corresponding

details can be found in Section 2.3.2 of Chapter 2 and Section 3.1.3 of Chapter 3. Based on

our proposed methodology, the complete history matching workflow is shown in Fig. 4.10.

Note that since we use an iterative ensemble smoother algorithm and the training ensemble

for parameterization is typically very large (e.g., Nte = 1000), we randomly select Ne real-

izations (i.e., Ne < Nte) as the prior ensemble for history matching in order to reduce the

computational cost.

4.2 Computational Results and Discussion

Two synthetic examples are designed and tested in this section in order to assess the

performance of the history matching workflow combining the TD and NTD parameterization

methods with ensemble-based data assimilation algorithm. As we have established in Chap-
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Figure 4.10: History matching workflow

ter 3 that parameterization with the non-negative matrix factorization (NMF) outperforms

parameterization with the discrete cosine transform (DCT) and with the principal compo-

nent analysis (PCA), we compare results obtained with the TD and NTD only with those

obtained with the NMF here. The first example considers a 2D three-facies channelized

reservoir and primarily aims to compare different implementation schemes of TD and NTD

with NMF. In the second example, we consider a 3D reservoir example which has ten layers

and two vertically distinct geological zones with complex distributed fluvial channels. Three

different cases are designed for the purposes of comparing the performance of TD, NTD and

NMF, and more importantly, testing the truncation scheme for TD and NTD proposed in

Section 4.1.5.

4.2.1 Example 1: 2D Three-Facies Channelized Reservoir

In the first example, we consider a three-facies (shale, levee and sand), two-dimensional
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fluvial reservoir model which is defined on a 100× 100 grid system. The size of each grid is

100ft × 100ft with a constant thickness of 50 ft. Given the observed facies type at wells as

hard data, the MPS algorithm (Strebelle, 2002) is used to generate the ensemble of the facies

field with the pre-prepared training image (see Fig. 4.11). As is commonly done, we assume

that the natural logarithm of the permeability (i.e., ln(k)) follows Gaussian distribution with

the mean and standard deviation specified separately for each facies. In this work, the prior

ln(k) fields are obtained by the sequential Gaussian simulation technique where an isotropic

spherical variogram is used with correlation range equal to ten times the width of a grid.

The detailed properties of facies are given in Table 4.4.

As stated in Section 4.1.6, since the permeability within facies is heterogeneous, the

vector of model parameters in this example is written as

y = [vTfacies,v
T
sand,v

T
levee,v

T
shale]

T, (4.38)

where vfacies denotes the coefficient vector of facies field obtained by parameterization; vsand,

vlevee and vshale are the parameterized coefficient vectors corresponding to the ln(k) field of

each facies, respectively.

Figure 4.11: Training image (Example 1)

The primary objective of the first example is to compare and investigate the perfor-

mance of different implementation schemes (i.e., two-mode, three-mode, etc.) of TD and
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Table 4.4: Properties of facies

Facies Indicator Color k, mD ln(k) σ(ln(k))

Sand 2 Red 2000 7.601 0.3

Levee 1 Green 200 5.298 0.3

Shale 0 Blue 20 2.996 0.3

NTD parameterization methods. Thus, for the 2D reservoir model where Nx = Ny = 100

and Ng = 10, 000, we generated four training ensembles for facies, ksand, klevee and kshale,

respectively, and each ensemble consists of 1000 models (Nte = 1000). For the TD param-

eterization method, four implementation schemes and corresponding computing time are

summarized in Table 4.5 and we also include the NMF method for the sake of comparison.

Table 4.5: Parameterization schemes (Example 1, Nte = 1000)

Method Ensemble tensor Scheme Retained number Name tpara

TD

A ∈ RNg×Nte 2-mode R1 = 400, R2 = Nte TD, 400 8.59s

A ∈ RNx×Ny×Nte 3-mode R1 = 20, R2 = 20, R3 = Nte TD, 20× 20 6.71s

A ∈ RNx×Ny×Nte 3-mode R1 = 40, R2 = 10, R3 = Nte TD, 40× 10 7.81s

A ∈ RNx×Ny×Nte 3-mode R1 = 10, R2 = 40, R3 = Nte TD, 10× 40 6.95s

NMF A ∈ RNg×Nte / Nc = 400 NMF, 400 43.89s

In this example the truncation scheme is not employed and we only focus on extract-

ing features along the spatial directions so the dimension of ensemble is not compressed when

implementing TD. Therefore, for each realization in the training ensemble, the total number

of coefficients corresponding to the retained basis functions obtained by the above param-

eterization methods is the same as Nc = 400 which means we obtained a model reduction

from 10,000 parameters to 400 parameters.

In history matching, we randomly selected 200 realizations from the training data

set as the prior ensemble, i.e., Ne = 200. Figure 4.12 shows the ln(k) field as well as

the corresponding histogram of the true model and three prior realizations. Through the

histograms, we can observe that the ln(k) values present a tri-modal distribution as expected.
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There are four producers (P1 to P4) and one injector (I1) deployed in a five-spot pattern in

the reservoir. The facies type at all five wells is observed to be sand, and these observations

are used as hard data in the initial geological modeling and subsequent history matching

process. In the true model, producers P1 and P2 are directly connected to the water injector

I1 by two sand channels. On the other hand, P3 and I1 are connected by a loop structure

consisting of two branch channels so the injected water has two different paths to reach P3,

whereas P4 lies in the corner of the reservoir and is not connected to the injector directly.

(a) True (b) Prior model #1 (c) Prior model #2 (d) Prior model #3

Figure 4.12: True model and prior realizations (Example 1, Ne = 200): ln(k) field (top row)
and histogram (bottom row).

The initial reservoir pressure is 5000 psi and the water saturation is 0.2 before pro-

duction. The water injection well is operated at a constant bottom hole pressure (BHP) of

5500 psi and the production wells are operated at a BHP of 2000 psi. The history matching

period is 5 years (1800 days), followed by a 3-year (1080 days) forecast period. The subsur-

face flow responses are obtained by running the Eclipse reservoir simulator. The historical

data consist of monthly measurements of water injection rate (qinj) at the injector, and oil

and water flow rate (qo and qw) at the producers. With available hard data information and
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facies proportions of the prior ensemble, we can construct the observed data vector as

dobs =
[
qTinj, q

T
o , q

T
w,d

T
hard,d

T
fp

]T
Nd×1

, (4.39)

where dhard denotes the vector of hard data which is honored to constrain the facies type at

wells and dfp contains average facies proportions calculated from the prior ensemble. Typi-

cally, the observed data are generated by perturbing the synthetic true data with Gaussian

random noise. In this example, the standard deviation of measurement error is set equal to

3% of the noise-free true data for dynamic production rates, 0.01 for hard data at wells and

5% of the prior mean for facies proportions.

That there is significant variability in the initial ensemble can be illustrated by the

prior production data shown in Fig. 4.13. In this and similar figures, the red dots are the

observed data collected during the historical period and the red curve is the noise-free true

data of the entire production period. Each light blue curve represents the predicted data

obtained by running the reservoir simulation with one specific realization while the dark blue

curve depicts the average results of the whole ensemble.

(a) P1 (b) P2 (c) P3 (c) P4

Figure 4.13: Prior production rates (Example 1, Ne = 200): water rate (top row) and oil rate
(bottom row). True (red curves), observed data (red dots), simulated data of
realizations (light blue curves), and ensemble mean (dark blue curves). History:
0 < t ≤ 1800 days, forecast: t > 1800 days.
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The number of data assimilation steps of the ES-MDA-GEO algorithm, Na, is set

to 8 with the inflation factors calculated by the geometric method proposed by Rafiee and

Reynolds (2017) as α` = {1000.0, 401.4, 160.8, 64.5, 25.9, 10.4, 4.2, 1.7}. In Fig. 4.14,

we compare the ln(k) fields of the true model and posterior realizations obtained with the

four implementation schemes of TD and the NMF method. It is shown that some large-scale

geological structures, such as the channels connecting P1, P2 and I1, are approximately

reproduced in all posterior realizations. With the “TD, 400” and “NMF, 400”, the most

challenging channel loop connecting P3 and I1 is almost resolved although the structural

continuity is marred in some areas. However, it is more difficult to recognize the clear

shape of the channel loop in the posterior realizations obtained with the “TD, 20 × 20”

implementation scheme. Since the spatial orientation of the fluvial channels in the reservoir

is generally in the x direction, more retained features in that direction using the “TD, 40×10”

implementation scheme therefore yields better preserved large-scale structures along the x

direction while there occurs undesirable small channel loops along the y direction in the

realizations updated with the “TD, 10× 40” implementation scheme.

From the posterior production data shown in Figs. 4.15 and 4.16, it can be seen that

for wells P1 and P2, the history data matches and production forecast are best using the

“TD, 400”, “TD, 10×40” and “NMF, 400” methods. Because of the channel loop structure,

the water production rate of P3 obtained with the true model presents a rapid increase

around 2000 days. Since the corresponding period is not part of the well production history,

the predictions for P3 are not as good as those for P1 and P2. For well P4, the history data

are reasonably matched with different parameterization methods but it is difficult to obtain

accurate production forecast since the well did not experience water breakthrough during

the historical period.

Figure 4.17 presents the box plots of the normalized data mismatch defined by

O(d) =
1

Nd

(d− dobs)
TC−1D (d− dobs) , (4.40)
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(a) True (b) Posterior model #1 (c) Posterior model #2 (d) Posterior model #3

Figure 4.14: ln(k) field of the true model and posterior realizations (Example 1, Ne = 200):
TD, 400 (1st row); TD, 20× 20 (2nd row); TD, 40× 10 (3rd row); TD, 10× 40
(4th row); NMF, 400 (5th row).
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(a) P1 (b) P2 (c) P3 (d) P4

Figure 4.15: Posterior water rates (Example 1, Ne = 200): TD, 400 (1st row); TD, 20× 20
(2nd row); TD, 40× 10 (3rd row); TD, 10× 40 (4th row); NMF, 400 (5th row).
True (red curves), observed data (red dots), simulated data of realizations (light
blue curves), and ensemble mean (dark blue curves). History: 0 < t ≤ 1800
days, forecast: t > 1800 days.

where d and dobs only include production data during the historical period. Here, d is the

predicted data vector which is different for each posterior realization. We can see that the
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(a) P1 (b) P2 (c) P3 (d) P4

Figure 4.16: Posterior oil rates (Example 1, Ne = 200): TD, 400 (1st row); TD, 20×20 (2nd
row); TD, 40×10 (3rd row); TD, 10×40 (4th row); NMF, 400 (5th row). True
(red curves), observed data (red dots), simulated data of realizations (light blue
curves), and ensemble mean (dark blue curves). History: 0 < t ≤ 1800 days,
forecast: t > 1800 days.

data matches obtained with the “TD, 400” and “TD, 10 × 40” are better than the results

obtained with the other implementation schemes of TD. However, we do not achieve really
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good data matches since the average normalized objective function is not close to 1 for any

case. This reflects the difficulty of history matching data from reservoirs with multiple facies

and complex oriented geological features. Table 4.6 shows the total computing time, ttotal,

used to complete each case and Nw denotes the number of wells in the reservoir.

Figure 4.17: Normalized data mismatch (Example 1, Ne = 200). Median (central red mark),
25th and 75th percentiles (bottom and top edges of the box), extreme data
points (whiskers), and outliers (“+” symbol).

Table 4.6: Computational cost (Example 1)

Method Ne Na Nw ttotal

TD, 400 200 8 5 2h 15m 20s

TD, 20× 20 200 8 5 2h 21m 16s

TD, 40× 10 200 8 5 2h 27m 56s

TD, 10× 40 200 8 5 2h 35m 16s

NMF, 400 200 8 5 2h 22m 37s

4.2.2 Example 2: 3D Three-Facies Channelized Reservoir

In Example 2, we consider a 3D three-facies channelized reservoir which consists of

ten layers in the vertical direction and each layer has a 50 × 50 grid system. The size of

each grid is 100ft × 100ft × 50ft. There are 4 water injection wells and 9 production wells

deployed in a five-spot pattern in the reservoir where the ten layers are fully penetrated by

these vertical wells and are fully perforated.
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The facies distributions of the synthetic true model and prior realizations are gener-

ated using the object-based modeling tool available in Petrel given the hard data information

(see Table 4.7) and parameter settings (see Table 4.8). Note that the symbol “/” in Table 4.8

indicates the dimensionless parameters and the width and thickness of the levee are set as a

fraction of the channel width and thickness, respectively.

Table 4.7: Hard data information at wells (Example 2)

Zone Facies Wells

1 Sand I1, I4, P2, P4, P5, P6, P7, P8, P9

2 Sand I2, I3, P2, P4, P6, P8

Table 4.8: Parameter settings for object-based modeling (Example 2)

Parameter Notation Unit Distribution Mean (µ) STD (σ)

orientation θ degrees Gaussian 90 45

amplitude a ft Gaussian 500 100

wavelength λ ft Gaussian 3000 500

sinuosity s / Gaussian 0.2 0.05

width of sand channel wsand ft Gaussian 600 50

thickness of sand channel hsand ft Gaussian 50 5

width of levee wlevee / Gaussian 0.35 0.05

thickness of levee hlevee / Gaussian 0.7 0.05

From the facies fields of the true model with well locations shown in Fig. 4.18, we

can see that the ten layers are grouped into two distinct geological zones. To be specific,

layer 1 and 6 are the top and bottom layer of the top zone, and layer 7 and 10 are the top

and bottom layer of the bottom zone. The geological objects in the reservoir are described

in Table 4.9. Since different sets of hard data are honored in the process of object-based

modeling, the spatial patterns of channelized facies vary significantly between two zones

while the geological structures are quite similar throughout different layers within the same

zone except the channels become thinner as depth increases. Therefore, maintaining the
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distinct geological features of two zones and resolving the detailed structures at the same

time pose additional challenges to the history matching work.

(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.18: Facies fields of the true model (Example 2)

Table 4.9: Geological objects in three-facies channelized reservoir (Example 2)

Object Facies Reservoir quality Perm & Poro

Channel Sand Good High

Levee Levee Moderate Moderate

Floodplain Shale Poor Low

In this example, we designed and tested three different cases (see the descriptions

in Table 4.10) in order to further assess the proposed history matching workflow with more

complex 3D reservoir models. Note that there are only 4 injectors and 5 producers out of the

original 13 wells in Case 2.3 and we also change the well name of producers correspondingly.

The water injectors and producers operate under constant BHP of 4000 psi and 2500 psi,

respectively. The initial reservoir pressure and water saturation, respectively, are set to

5000 psi and 0.2 for every grid in the model. The porosity is assumed to be known and set

to 0.2 for all facies. The period of collecting historical data is 300 days which is followed

by an additional 300-day forecast period in order to evaluate the predictive ability of the

updated models. The observed data include measurements at 30-day intervals of the water

injection rate (qinj) at the injectors, and oil and water production rate (qo and qw) at the

producers. Since the hard data information and prior facies proportions are both available

in this example, the observed data vector is given by Eq. 4.39 and the measurement noise
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levels of various types of data are also identical to those specified in Example 1. The ES-

MDA-GEO algorithm is used to assimilate the observed data and the iteration number,

Na, is set to 8 with the inflation factors obtained through the geometric scheme as α` =

{1000.0, 401.4, 160.8, 64.5, 25.9, 10.4, 4.2, 1.7}. It is noteworthy that in Case 2.2 and

Case 2.3, we used the truncation scheme (see Section 4.1.5) to obtain ranks of different

modes when implementing the truncated TD and NTD, while the ranks are still determined

heuristically in Case 2.1 for the purpose of fair comparison between TD, NTD and NMF.

Table 4.10: Descriptions of four cases (Example 2)

Case Permeability Wells Ne Method Scheme

2.1 Homogeneous 4 Inj., 9 Prod. 200 TD, NTD, NMF 2-mode

2.2 Heterogeneous 4 Inj., 9 Prod. 200, 500 TD, NTD 2-mode, 4-mode

2.3 Heterogeneous 4 Inj., 5 Prod. 500 TD, NTD 2-mode, 4-mode

Case 2.1: Homogeneous Permeability, 13 Wells:

In the first case, we consider calibrating both the facies distributions and the perme-

ability values simultaneously. Although the permeability within facies is homogeneous, the

true values are unknown and we assume the ln(k) value of each facies throughout the whole

ensemble follow Gaussian distributions with the mean values and standard deviations given

in Table 4.4. Thus, the vector of model parameters is given by

y = [vTfacies, ksand, klevee, kshale]
T, (4.41)

where ksand, klevee and kshale denote the natural logarithm of the permeability within sand,

levee and shale facies, respectively. In order to demonstrate the properties of TD and NTD

methods, the vector of coefficients, vfacies, is obtained by applying three different approaches

(i.e., TD, NTD and NMF) to the same training ensemble (Nte = 1000) with an identical

retained number of basis functions, Nc = 1000, for each realization. Note that we used the

two-mode implementation scheme of TD and NTD methods in this case by vectorizing the
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3D reservoir model first. Table 4.11 provides the details of three parameterization schemes

and it is shown that the computing time of NTD is approximately 10 times than that of TD.

Table 4.11: Parameterization schemes (Case 2.1, Nte = 1000)

Method Ensemble tensor Scheme Retained number Name tpara

TD A ∈ RNg×Nte 2-mode R1 = 1000, R2 = Nte TD, 1000 32.72s

NTD A ∈ RNg×Nte 2-mode R1 = 1000, R2 = Nte NTD, 1000 373.36s

NMF A ∈ RNg×Nte / Nc = 1000 NMF, 1000 181.57s

The size of history matching ensemble is 200 (Ne = 200) and the prior geological

uncertainties not only come from the facies distributions but also from the permeability

variation within individual facies. The true model and two prior realizations are shown in

Fig. 4.19.

From the first rows in Figs. 4.20 and 4.21, it can seen that the prior water and oil

production rates display large uncertainties. The historical period lasts for 300 days and

the time period, 300 < t < 600 days, is used to test the uncertainty quantification of the

production predictions. It is noteworthy that the two producers, P3 and P7, are in the corners

of the reservoir, and we did not observe water breakthrough at these two wells during the 300-

day historical period, which makes it more difficult to resolve the structural details around

these wells and obtain accurate predictions. Based on the second to fourth rows in Figs. 4.20

and 4.21, it is clearly shown that the prior uncertainties have been significantly reduced

through the history matching process with three parameterization methods. Although NTD

is the only method where the ensemble of predictions bound the results from the truth at

every well, the history matches and predictions obtained from the three parameterization

methods are not radically different. Note that the water production rate at well P3 is very

low and has a negligible influence on the total data mismatch. Figure 4.22 shows, in the box

plot format, a quantitative evaluation of the normalized data mismatch defined by Eq. 4.40.

The results indicate that the best data match is obtained with the NTD method.

In Figs. 4.23 and 4.24, we can see the ln(k) fields of the true model and two posterior
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.19: ln(k) fields of the true model and two prior realizations (Case 2.1, Ne = 200):
true model (1st row), prior model #1 (2nd row) and prior model #2 (3rd row).

realizations updated with each of the three methods (i.e., TD, NTD and NMF). Note that

the updated realizations correspond to the unconditional realizations in Fig. 4.19. Although

the original facies distributions are different in the prior realizations, we see more similar

geological structures in the calibrated models and posterior realizations capture the main

structural features of the truth. One should bear in mind however that the availability of

facies observation at the thirteen wells enhance our ability to produce a good characteriza-

tion of the true model. Since it is difficult to determine the spatial relationships between the

parameterized variables and observed data, we did not employ any distance-based localiza-

tion techniques in this work to mitigate the spurious sampling errors and ensemble collapse.

For this 3D complex reservoir model, reasonable variability can be still maintained with a

relatively small ensemble of 200 realizations although we will see later that increasing the
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(a) P3 (b) P4 (c) P7 (d) P8

Figure 4.20: Prior and posterior water rates (Case 2.1, Ne = 200): prior (1st row); posterior,
TD, 1000 (2nd row); posterior, NTD, 1000 (3rd row); posterior, NMF, 1000 (4th
row). True (red curves), observed data (red dots), simulated data of realizations
(light blue curves), and ensemble mean (dark blue curves). History: 0 < t ≤ 300
days, forecast: t > 300 days.

ensemble size increases the variability (uncertainty) in the posterior models.

It is interesting and straightforward to compare the probability maps of facies in the

posterior ensembles. In Fig. 4.25, the black pixels in the first row correspond to gridblocks

occupied by the channel facies in the true reservoir model and we aim to resolve these points

correctly through the history matching process although to do so would suggest that data is

sufficient to resolve the true model which is never the case. Each colored pixel (black, red

126



(a) P3 (b) P4 (c) P7 (d) P8

Figure 4.21: Prior and posterior oil rates (Case 2.1, Ne = 200): prior (1st row); posterior,
TD, 1000 (2nd row); posterior, NTD, 1000 (3rd row); posterior, NMF, 1000 (4th
row). True (red curves), observed data (red dots), simulated data of realizations
(light blue curves), and ensemble mean (dark blue curves). History: 0 < t ≤ 300
days, forecast: t > 300 days.

or blue) in the figures of the other four rows indicates that every realization of the ensemble

has channel facies at that specific grid, i.e., based on the ensemble of posterior realizations,

the probability of each of these gridblocks being occupied by the channel facies is 1.0 (100%)

so there is no uncertainty in the facies marginal probability distribution at these locations.

Note that there are very few black pixels in the prior probability maps and they only

exist around the wells where we have hard data (see Table 4.7). This observation illustrates
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Figure 4.22: Normalized data mismatch (Case 2.1, Ne = 200). Median (central red mark),
25th and 75th percentiles (bottom and top edges of the box), extreme data
points (whiskers), and outliers (“+” symbol).

the conditioning capability of the object-based modeling technique, and more importantly

shows the large uncertainties in the prior ensemble. In the posterior probability maps ob-

tained with the TD, NTD and NMF methods (see the third to fifth rows in Fig. 4.25), each

red point (a gridblock) means that the true model has the channel facies in this gridblock

and the channel facies is correctly resolved at the corresponding gridblock in all posterior

models. On the other hand, each blue point (a gridblock) indicates that all posterior real-

izations have the channel facies in this gridblock but in the true model this gridblock is not

occupied by the channel facies. Compared to the prior probability maps in the second row,

we can see that there are a large number of correctly resolved gridblocks with channel facies

(red points) in the posterior ensembles obtained with the three methods and the number of

points incorrectly resolved to be the channel facies with 100% probability are very rare. The

results of Fig. 4.25 clearly indicate that NTD is better at correctly resolving the distribution

of the channel facies than the TD and NMF methods.

In order to quantitatively evaluate the quality and spatial continuity of resolved ge-

ological structures, we count the number of gridblocks where the channel facies is correctly

resolved (red gridblocks in Fig. 4.25) and denote this number by Ngood
gc . We also count the

number of gridblocks where the posterior distribution indicates the probability of the chan-
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.23: ln(k) fields of the true model and posterior realization #1 (Case 2.1, Ne = 200):
true model (1st row); TD, 1000 (2nd row); NTD, 1000 (3rd row); NMF, 1000
(4th row).

nel facies is 100% but the corresponding gridblocks in the true model are not occupied by

channel (blue gridblocks in Fig. 4.25) and denote this number by Nbad
gc . We let Nposterior

gc

denote the number of gridblocks that are occupied by channel facies in all 200 posterior

realizations so that

Nposterior
gc = Ngood

gc +Nbad
gc . (4.42)
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.24: ln(k) fields of the true model and posterior realization #2 (Case 2.1, Ne = 200):
true model (1st row); TD, 1000 (2nd row); NTD, 1000 (3rd row); NMF, 1000
(4th row).

Let N true
gc denote the number of gridblocks in the true model that are occupied by

the channel facies. Thus, the true distribution of channel facies is completely resolved if and

only if

N true
gc = Nposterior

gc = Ngood
gc . (4.43)

In addition, Rgood = Ngood
gc /Nposterior

gc denotes the fraction of “resolved gridblocks” that are

resolved correctly to be channel facies and Rbad = Nbad
gc /Nposterior

gc is the fraction of channel

130



(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.25: 100% probability maps of sand channels (Case 2.1, Ne = 200): true (1st row);
prior (2nd row); posterior, TD, 1000 (3rd row); posterior, NTD, 1000 (4th
row); posterior, NMF, 1000 (5th row). In the bottom three rows, all gridblocks
that are not white indicate that all posterior realizations (Ne = 200) have the
channel facies in that gridblock.

131



gridblocks resolved incorrectly.

The resulting statistics based on the 100% probability maps in Fig. 4.25 are given

in Table 4.12. It is shown that 2109 out of the 6104 gridblocks that are occupied by the

channel facies in the true model are identified as such with 100% probability by the pos-

terior probability maps obtained from the posterior realizations generated using the NTD

parameterization. Whereas with the TD and NMF methods, there are only 1295 and 1493

such gridblocks, respectively. Moreover, with the NTD, over 96% of the gridblocks that

are identified as containing the channel with 100% probability are actually occupied by the

channel facies in the true model. This proportion is very close to the 98.2% obtained with

the TD and higher than the 92.3% obtained with the NMF. Therefore, the statistics indicate

that the NTD resolves the true distribution of the channel facies better than the TD and

NMF, and mainly for this reason, we think the NTD is superior to the TD and NMF for

parameterization and uncertainty characterization of the facies distribution.

Table 4.12: Statistical indicators based on 100% probability maps (Case 2.1)

Method N true
gc Nposterior

gc Ngood
gc Nbad

gc Rgood(%) Rbad(%)

TD 6104 1295 1271 24 98.2% 1.8%

NTD 6104 2109 2036 73 96.5% 3.5%

NMF 6104 1493 1378 115 92.3% 7.7%

Besides the correctly resolved facies distributions, good data matches in this case also

require reasonable approximations of petrophysical properties within facies. We can see the

evolution of estimated permeability values during the history matching process with the ES-

MDA-GEO step in Fig. 4.26 where the x axis is the iteration step index and “0” corresponds

to the prior ensemble. In each plot, the black horizontal straight line represents the true

value, the red curves represent the ensemble mean of the calibrated permeability and the

two blue curves are the ensemble mean ±3 ensemble standard deviation respectively, which

gives a characterization of the uncertainty in the estimated variables. Since the wells in this

reservoir are drilled either in sand channels or on shale plains, the permeability values within
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sand and shale facies converge rapidly to the true values with different parameterization

methods. However, the permeability within the levee facies is more difficult to estimate

according to the results in Fig. 4.26. We can see similar computing time of running this case

with three parameterization methods in Table 4.13.

(a) TD, 1000 (b) NTD, 1000 (c) NMF, 1000

Figure 4.26: Evolution of estimated permeability values as a function of the ES-MDA step
(Case 2.1, Ne = 200): ksand (1st row), klevee (2nd row) and kshale (3rd row). True
(black horizontal straight lines), ensemble mean (red curves), and ensemble
mean ±3 ensemble standard deviation (blue curves).

Table 4.13: Computational cost (Case 2.1)

Method Ne Na Nw ttotal

TD, 1000 200 8 13 1h 56m 54s

NTD, 1000 200 8 13 1h 55m 12s

NMF, 1000 200 8 13 1h 50m 12s
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Case 2.2: Heterogeneous Permeability, 13 Wells:

In the second case, the heterogeneous permeability within each facies leads to a more

realistic reservoir example and the ln(k) values follow Gaussian distributions with the mean

and standard deviation specified for each facies (see Table 4.4). The sequential Gaussian

simulation technique is used to generate the ln(k) fields with an isotropic spherical variogram

and the correlation range equals to ten times the width of one grid. Similar to Example 1,

we construct the vector of model parameters as

y = [vTfacies,v
T
sand,v

T
levee,v

T
shale]

T, (4.44)

where vsand, vlevee and vshale are the coefficient vectors obtained by applying the parameter-

ization methods to the training ensemble of whole permeability field of each facies. Conse-

quently, we have four training ensembles, one for facies and one for each of the permeability

fields, ksand, klevee and kshale, respectively. The size of each training ensemble is still 1000

(Nte = 1000) in Case 2.2.

In this case, we implement the truncated TD and NTD methods, and compare their

performance with those of the TD and NTD without truncation in order to investigate

the usefulness of higher-order SVD (HOSVD) for obtaining reduced-order parameterizations

by truncation. Note that the truncation scheme (see Section 4.1.5) is only applied to the

tensor of facies fields. Specifically, for the training ensemble consisting of 1000 facies models

(Nx = 50, Ny = 50, Nz = 10, Nte = 1000), we can construct a fourth-order tensor, A ∈

RNx×Ny×Nz×Nte , and implement the HOSVD algorithm to do the full tensor decomposition.

Then, the truncation scheme is applied with different values of threshold ζ (0.9, 0.95 and

0.99) and the results are given in Table 4.14 including the ranks of four modes, the normalized

model mismatch ξ, the model reduction ratio η and the computing time of parameterization

tpara.

It is shown that although the model mismatch ξ is only 0.05 when ζ = 0.99, we retain

almost all information in different modes. When ζ = 0.9, we reduce the size of original
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Table 4.14: Truncated four-mode TD

Method Tensor Scheme ζ ξ η R1 R2 R3 R4 tpara

TD A ∈ RNx×Ny×Nz×Nte 4-mode

0.9 0.19 0.33 37 36 8 778 28.4s

0.95 0.14 0.59 43 43 9 882 41.0s

0.99 0.05 0.94 49 49 10 975 45.8s

tensor by two-thirds (η = 0.33) and the model mismatch ξ is smaller than 0.2, which seems

to achieve a good balance between the approximation quality and model reduction. Similarly,

we can vectorize the 3D facies fields first and construct a second-order tensor, A ∈ RNg×Nte

with Ng = Nx ×Ny ×Nz. By applying the truncation scheme with HOSVD, we can obtain

the truncated two-mode TD with different values of ζ (0.9, 0.95 and 0.99) and the results

are given in Table 4.15. It is shown that when ζ = 0.9, the number of model parameters

is dramatically reduced (η = 0.02) and the approximation quality of original tensor is also

desirable (ξ = 0.1).

Table 4.15: Truncated two-mode TD

Method Tensor Scheme ζ ξ η R1 R2 tpara

TD A ∈ RNg×Nte 2-mode

0.9 0.1 0.02 778 778 10.62s

0.95 0.07 0.03 882 882 12.48s

0.99 0.03 0.04 975 975 17.25s

Therefore, we implement the truncated two-mode and four-mode TD with the ranks

associated with ζ = 0.9, and the truncated NTD methods have identical ranks of different

modes since there is no available HOSVD algorithm for NTD. The details of truncated

parameterization methods are given in Table 4.16. For the purpose of comparison, we also

design four parameterization schemes of TD and NTD without truncation and the ranks

of different modes are determined heuristically (see Table 4.17). It is shown that when the

ranks of different modes are the same, the computing time of NTD is about 5 times than

that of TD when the four-mode scheme is employed, and it takes about 10 times longer to

complete two-mode NTD than two-mode TD.
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Table 4.16: Truncated TD and NTD (Nte = 1000)

Method Scheme Retained number Name tpara

TD 2-mode R1 = 778, R2 = 778 TD, 778 10.62s

NTD 2-mode R1 = 778, R2 = 778 NTD, 778 158.34s

TD 4-mode R1 = 37, R2 = 36, R3 = 8, R4 = 778 TD, 37× 36× 8× 778 28.43s

NTD 4-mode R1 = 37, R2 = 36, R3 = 8, R4 = 778 NTD, 37× 36× 8× 778 119.51s

Table 4.17: TD and NTD without truncation (Nte = 1000)

Method Scheme Retained number Name tpara

TD 2-mode R1 = 1000, R2 = 1000 TD, 1000 32.72s

NTD 2-mode R1 = 1000, R2 = 1000 NTD, 1000 373.36s

TD 4-mode R1 = 20, R2 = 20, R3 = 5, R4 = 1000 TD, 20× 20× 5× 1000 16.29s

NTD 4-mode R1 = 20, R2 = 20, R3 = 5, R4 = 1000 NTD, 20× 20× 5× 1000 82.54s

In this case, a large ensemble of 500 realizations (Ne = 500) is employed for history

matching. Figure 4.27 clearly shows the underlying complexity associated with facies distri-

butions and heterogeneous permeability in the true model and prior realizations. The high

geological uncertainty associated with the prior ensemble can be further illustrated through

the prior production data shown in Fig. 4.28.

The prior production data and history matches obtained with eight parameterization

schemes (see Tables 4.16 and 4.17) are shown in Figs. 4.29 to 4.32. It is clear that the large

prior uncertainty has been reduced significantly with different parameterization methods.

Through history matching, we are able to obtain good history data matches for all wells

except the water production rate at P3 which did not experience water breakthrough during

the historical period. With same implementation scheme (e.g., “TD, 778” and “NTD, 778”),

the NTD method seems to slightly outperform the TD method in terms of history data match

and production forecast. Besides, the truncated TD and NTD methods perform similarly

compared to the TD and NTD without truncation. Moreover, the data matches obtained

with two-mode TD and NTD methods appear to be slightly better than those obtained with

four-mode TD and NTD methods. Especially for well P3, the history water rates can be
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.27: ln(k) fields of the true model and two prior realizations (Case 2.2, Ne = 500):
true model (1st row), prior model #1 (2nd row) and prior model #2 (3rd row).

reasonably matched with “TD, 1000” and “NTD, 1000”, but there are obviously early water

breakthrough in many posterior realizations obtained with “TD, 20 × 20 × 5 × 1000” and

“NTD, 20× 20× 5× 1000”. However, one should keep in mind that when the total retained

number of basis functions is the same, the computational cost of implementing two-mode

TD and NTD are much higher than those of implementing four-mode TD and NTD.

The ln(k) fields of the true model and two posterior realizations shown in Figs. 4.33

to 4.36 suggest that the major features of the facies distributions of the true model are

resolved reasonably well with different parameterization methods. Although more geological

details in layer 6 can be captured by the two-mode TD and NTD methods, the channel

distributions look more rough than those obtained with the four-mode TD and NTD methods

probably because we retain more high frequency features when implementing the two-mode
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(a) P3 (b) P4 (c) P7 (d) P8

Figure 4.28: Prior production data (Case 2.2, Ne = 500): water rates (1st row) and oil
rates (2nd row). True (red curves), observed data (red dots), simulated data of
realizations (light blue curves), and ensemble mean (dark blue curves). History:
0 < t ≤ 300 days, forecast: t > 300 days.

scheme. Besides, there is not much difference between the posterior realizations calibrated

with the truncated TD and NTD methods with those updated with the TD and NTD

without truncation. Through comparing the two posterior realizations obtained with same

parameterization method, we can see that there still remains geological variability in the

posterior ensembles when Ne = 500.

Figures 4.37 and 4.38 show the 100% and 90% probability maps based on the posterior

realizations obtained with four-mode TD and NTD methods. In the 100% probability maps,

each red point means that the gridblock is occupied by channel facies in the true model and

it is correctly resolved to be channel facies in all posterior models. On the other hand, each

blue point indicates that the gridblock has channel facies in all posterior realizations but in

the true model this gridblock is not occupied by channel facies. The 90% probability map

is defined similarly. With the large ensemble of 500 models, the 100% probability maps of

sand channels obtained with the “TD, 20 × 20 × 5 × 1000” and “TD, 37 × 36 × 8 × 778”

give desirable uncertainty characterization of the posterior facies distributions since only the

gridblocks at or very near the well locations where the facies type is observed are resolved to
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(a) P3 (b) P4 (c) P7 (d) P8

Figure 4.29: Prior and posterior water rates (Case 2.2, Ne = 500): prior (1st row); posterior,
TD, 1000 (2nd row); posterior, TD, 778 (3rd row); posterior, NTD, 1000 (4th
row); posterior, NTD, 778 (5th row). True (red curves), observed data (red
dots), simulated data of realizations (light blue curves), and ensemble mean
(dark blue curves). History: 0 < t ≤ 300 days, forecast: t > 300 days.
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be channel facies through history matching. Although there are more red points in the 100%

probability maps obtained with the “NTD, 20×20×5×1000” and “NTD, 37×36×8×778”,

these gridblocks are correctly resolved to be channel facies and we can see the blue points

are very rare. In the 90% probability maps (see Fig. 4.37), it is shown that the correctly

resolved channel gridblocks (red points) are far more than the gridblocks that are incorrectly

resolved to be channel facies (blue points) based on the posterior realizations obtained with

different parameterization methods.

According to the 100% and 90% probability maps obtained with eight parameteriza-

tion schemes, the statistical indicators are calculated and given in Tables 4.18 and 4.19. It is

shown that we are able to resolve slightly more channel gridblocks correctly with the NTD

method than the TD method. Moreover, compared to the truncated TD and NTD methods,

the posterior realizations obtained with the TD and NTD methods without truncation give

more correctly resolved channel gridblocks.

Table 4.18: Statistical indicators based on 100% and 90% probability maps obtained with
two-mode TD and NTD (Case 2.2)

Method Ne Nw Prob.(%) N true
gc Nposterior

gc Ngood
gc Rgood(%)

TD, 1000 500 13 100% 6104 107 107 100.0%

TD, 1000 500 13 90% 6104 1891 1764 93.3%

TD, 778 500 13 100% 6104 103 103 100.0%

TD, 778 500 13 90% 6104 1623 1554 95.7%

NTD, 1000 500 13 100% 6104 266 264 99.2%

NTD, 1000 500 13 90% 6104 2311 2180 94.3%

NTD, 778 500 13 100% 6104 151 151 100.0%

NTD, 778 500 13 90% 6104 2080 1956 94.1%

Besides the gridblocks that are resolved to be channel facies with 100% or 90% prob-

ability level based on the posterior realizations, we may also consider the gridblocks that are

occupied by channel facies in the true model but are not resolved through history matching.

Figure 4.39 shows the 0% probability maps of sand channels obtained with four-mode TD
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Table 4.19: Statistical indicators based on 100% and 90% probability maps obtained with
four-mode TD and NTD (Case 2.2)

Method Ne Nw Prob.(%) N true
gc Nposterior

gc Ngood
gc Rgood(%)

TD, 20× 20× 5× 1000 500 13 100% 6104 226 226 100.0%

TD, 20× 20× 5× 1000 500 13 90% 6104 2135 2004 93.9%

TD, 37× 36× 8× 778 500 13 100% 6104 114 114 100.0%

TD, 37× 36× 8× 778 500 13 90% 6104 1795 1706 95.1%

NTD, 20× 20× 5× 1000 500 13 100% 6104 616 613 99.5%

NTD, 20× 20× 5× 1000 500 13 90% 6104 2628 2415 91.9%

NTD, 37× 36× 8× 778 500 13 100% 6104 576 572 99.3%

NTD, 37× 36× 8× 778 500 13 90% 6104 2664 2440 91.6%

and NTD methods. In the bottow four rows of Fig. 4.39, each blue point indicates that

although the gridblock has channel facies in the true model, no posterior realization has

channel facies in that particular gridblock, i.e., the posterior probability of that gridblock

being occupied by channel facies is 0. We can see that the blue points in the 0% probability

maps of sand channels obtained with the “TD, 20×20×5×1000” and “TD, 37×36×8×778”

are very rare. On the other hand, there are small number of blue points in the 0% proba-

bility maps obtained with the “NTD, 20 × 20 × 5 × 1000” and “NTD, 37 × 36 × 8 × 778”.

Although more channel gridblocks are not resolved through history matching based on the

10% probability maps of sand channels (see Fig. 4.40), most of the blue points distribute

along the boundaries of channels and are away from the wells, so they are expected to have

less influence on the well production. Moreover, the probability maps obtained by the TD

and NTD methods with or without truncation look very similar.

For the purpose of quantitative evaluation, we count the number of true channel

gridblocks that not effectively resolved (blue points in Figs. 4.39 and 4.40) and denote this

number by Nmissed
gc . Again, let N true

gc denote the number of gridblocks in the true model that

are occupied by the channel facies. Thus, the fraction of channel gridblocks in the true model
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that are not resolved through history matching is defined by

Rmissed = Nmissed
gc /N true

gc . (4.45)

With Eq. 4.45, we calculate the statistical indicators based on the 0% and 10% prob-

ability maps and summarize the results in Tables 4.20 and 4.21. It is shown that the Rmissed

is less than 3% based on the 0% probability maps since there is still geological variability

in the posterior realizations with the large ensemble of 500 models. When it comes to the

10% probability maps, the proportion of true channel gridblocks that are not resolved with

the NTD methods is higher than that with the TD methods when same implementation

scheme is used. However, the unresolved channel gridblocks seem to have small impact on

the quality of history data matches and uncertainty quantification of production predictions

based on the results shown in Figs. 4.30 and 4.32. Compared to the results obtained with

the TD and NTD methods without truncation, the proportion of true channel gridblocks

that are not resolved through history matching is lower when the truncated TD and NTD

methods are employed.

Table 4.20: Statistical indicators based on 0% and 10% probability maps obtained with two-
mode TD and NTD (Case 2.2)

Method Ne Nw Prob.(%) N true
gc Nmissed

gc Rmissed(%)

TD, 1000 500 13 0% 6104 10 0.16%

TD, 1000 500 13 10% 6104 507 8.31%

TD, 778 500 13 0% 6104 1 0.02%

TD, 778 500 13 10% 6104 504 8.26%

NTD, 1000 500 13 0% 6104 2 0.03%

NTD, 1000 500 13 10% 6104 572 9.37%

NTD, 778 500 13 0% 6104 2 0.03%

NTD, 778 500 13 10% 6104 536 8.78%

Figure 4.41 gives the normalized data mismatch calculated by Eq. 4.40. It is shown

that the data match results obtained with the truncated TD and NTD methods are slightly
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Table 4.21: Statistical indicators based on 0% and 10% probability maps obtained with four-
mode TD and NTD (Case 2.2)

Method Ne Nw Prob.(%) N true
gc Nmissed

gc Rmissed(%)

TD, 20× 20× 5× 1000 500 13 0% 6104 22 0.36%

TD, 20× 20× 5× 1000 500 13 10% 6104 756 12.39%

TD, 37× 36× 8× 778 500 13 0% 6104 4 0.07%

TD, 37× 36× 8× 778 500 13 10% 6104 598 9.79%

NTD, 20× 20× 5× 1000 500 13 0% 6104 156 2.56%

NTD, 20× 20× 5× 1000 500 13 10% 6104 1102 18.05%

NTD, 37× 36× 8× 778 500 13 0% 6104 139 2.28%

NTD, 37× 36× 8× 778 500 13 10% 6104 940 15.39%

better than those obtained with the methods without truncation. Although the two-mode

methods seem to yield smaller data mismatch values than those associated with the four-

mode methods, one should note that it takes much more time to compute the two-mode TD

and NTD.

In Case 2.2, we also investigate the effect of ensemble size on the performance of

history matching. To be specific, two ensembles of different size (Ne = 200 and Ne = 500) are

parameterized by the “TD, 1000” and “NTD, 1000” methods, respectively, and calibrated

by assimilating the same set of observed data. Figures 4.42 and 4.43 show the posterior

production data obtained with the “TD, 1000” and “NTD, 1000” when Ne = 200 and Ne =

500. We can see that the posterior ensembles tend to collapse when only 200 realizations are

used for history matching and the corresponding production predictions appear to be more

biased (see column (c) in Fig. 4.42).

Comparing the last two rows of 100% probability maps shown in Fig. 4.44, we see that

when a large ensemble (Ne = 500) is used, only gridblocks at or very near well gridblocks

where the channel facies is observed are occupied by the channel facies in all 500 posterior

realizations, i.e., posterior uncertainty in the distribution of the channel facies appears to be

much greater when Ne = 500 than when Ne = 200 (see statistical indicators in Table 4.22).
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However, the probability maps when Ne = 500 give better characterization of uncertainty

than the Ne = 200 case because the probability of a gridblock being occupied by a particular

facies should be 1.0 (100%) only if the facies is observed there. To clarify this, we show in

Fig. 4.45 the true channel distribution and the 0.9 (90%) and 0.8 (80%) probability maps for

the Ne = 500 case with the “NTD, 1000” method. In the 90% probability map, a gridblock

is colored red if and only if 90% (450) of the posterior realizations have the channel facies in

that gridblock. The 80% probability map is defined similarly. Note that the 90% and 80%

probability maps show more geological continuity and look similar to the true map of the

channel distributions shown in the first row of Fig. 4.45. In addition, the box plot of the

normalized data mismatch corresponding to the Ne = 200 and Ne = 500 cases is shown in

Fig. 4.46. The computing time of running cases is given in Table 4.23.

Table 4.22: Statistical indicators based on 100% probability maps (Case 2.2)

Method Ne N true
gc Nposterior

gc Ngood
gc Nbad

gc Rgood(%) Rbad(%)

TD, 1000 200 6104 1602 1513 89 94.4% 5.6%

TD, 1000 500 6104 128 127 1 99.2% 0.8%

NTD, 1000 200 6104 2244 2069 175 92.2% 7.8%

NTD,1000 500 6104 244 242 2 99.2% 0.8%
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(a) P3 (b) P4 (c) P7 (d) P8

Figure 4.30: Prior and posterior water rates (Case 2.2, Ne = 500): prior (1st row); posterior,
TD, 20× 20× 5× 1000 (2nd row); posterior, TD, 37× 36× 8× 778 (3rd row);
posterior, NTD, 20 × 20 × 5 × 1000 (4th row); posterior, NTD, 37 × 36 × 8 ×
778 (5th row). True (red curves), observed data (red dots), simulated data of
realizations (light blue curves), and ensemble mean (dark blue curves). History:
0 < t ≤ 300 days, forecast: t > 300 days.
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(a) P3 (b) P4 (c) P7 (d) P8

Figure 4.31: Prior and posterior oil rates (Case 2.2, Ne = 500): prior (1st row); posterior,
TD, 1000 (2nd row); posterior, TD, 778 (3rd row); posterior, NTD, 1000 (4th
row); posterior, NTD, 778 (5th row). True (red curves), observed data (red
dots), simulated data of realizations (light blue curves), and ensemble mean
(dark blue curves). History: 0 < t ≤ 300 days, forecast: t > 300 days.
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(a) P3 (b) P4 (c) P7 (d) P8

Figure 4.32: Prior and posterior oil rates (Case 2.2, Ne = 500): prior (1st row); posterior,
TD, 20× 20× 5× 1000 (2nd row); posterior, TD, 37× 36× 8× 778 (3rd row);
posterior, NTD, 20 × 20 × 5 × 1000 (4th row); posterior, NTD, 37 × 36 × 8 ×
778 (5th row). True (red curves), observed data (red dots), simulated data of
realizations (light blue curves), and ensemble mean (dark blue curves). History:
0 < t ≤ 300 days, forecast: t > 300 days.
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.33: ln(k) fields of the true model and posterior realization #1 (Case 2.2, Ne = 500):
true model (1st row); TD, 1000 (2nd row); TD, 778 (3rd row); NTD, 1000 (4th
row); NTD, 778 (5th row).
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.34: ln(k) fields of the true model and posterior realization #2 (Case 2.2, Ne = 500):
true model (1st row); TD, 1000 (2nd row); TD, 778 (3rd row); NTD, 1000 (4th
row); NTD, 778 (5th row).

149



(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.35: ln(k) fields of the true model and posterior realization #1 (Case 2.2, Ne = 500):
true model (1st row); TD, 20× 20× 5× 1000 (2nd row); TD, 37× 36× 8× 778
(3rd row); NTD, 20 × 20 × 5 × 1000 (4th row); NTD, 37 × 36 × 8 × 778 (5th
row).
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.36: ln(k) fields of the true model and posterior realization #2 (Case 2.2, Ne = 500):
true model (1st row); TD, 20× 20× 5× 1000 (2nd row); TD, 37× 36× 8× 778
(3rd row); NTD, 20 × 20 × 5 × 1000 (4th row); NTD, 37 × 36 × 8 × 778 (5th
row).
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.37: 100% probability maps of sand channels (Case 2.2, Ne = 500): true (1st row);
posterior, TD, 20× 20× 5× 1000 (2nd row); posterior, TD, 37× 36× 8× 778
(3rd row); posterior, NTD, 20 × 20 × 5 × 1000 (4th row); posterior, NTD,
37× 36× 8× 778 (5th row).
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.38: 90% probability maps of sand channels (Case 2.2, Ne = 500): true (1st row);
posterior, TD, 20× 20× 5× 1000 (2nd row); posterior, TD, 37× 36× 8× 778
(3rd row); posterior, NTD, 20 × 20 × 5 × 1000 (4th row); posterior, NTD,
37× 36× 8× 778 (5th row).

153



(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.39: 0% probability maps of sand channels (Case 2.2, Ne = 500): true (1st row);
posterior, TD, 20× 20× 5× 1000 (2nd row); posterior, TD, 37× 36× 8× 778
(3rd row); posterior, NTD, 20 × 20 × 5 × 1000 (4th row); posterior, NTD,
37× 36× 8× 778 (5th row).
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.40: 10% probability maps of sand channels (Case 2.2, Ne = 500): true (1st row);
posterior, TD, 20× 20× 5× 1000 (2nd row); posterior, TD, 37× 36× 8× 778
(3rd row); posterior, NTD, 20 × 20 × 5 × 1000 (4th row); posterior, NTD,
37× 36× 8× 778 (5th row).
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Figure 4.41: Normalized data mismatch (Case 2.2, Ne = 500). Median (central red mark),
25th and 75th percentiles (bottom and top edges of the box), extreme data
points (whiskers), and outliers (“+” symbol).

156



(a) P3 (b) P4 (c) P7 (d) P8

Figure 4.42: Prior and posterior water rates (Case 2.2): prior (1st row); posterior, TD, 1000,
Ne = 500 (2nd row); posterior, TD, 1000, Ne = 200 (3rd row); posterior, NTD,
1000, Ne = 500 (4th row); posterior, NTD, 1000, Ne = 200 (5th row). True
(red curves), observed data (red dots), simulated data of realizations (light blue
curves), and ensemble mean (dark blue curves). History: 0 < t ≤ 300 days,
forecast: t > 300 days.

157



(a) P3 (b) P4 (c) P7 (d) P8

Figure 4.43: Prior and posterior oil rates (Case 2.2): prior (1st row); posterior, TD, 1000,
Ne = 500 (2nd row); posterior, TD, 1000, Ne = 200 (3rd row); posterior, NTD,
1000, Ne = 500 (4th row); posterior, NTD, 1000, Ne = 200 (5th row). True
(red curves), observed data (red dots), simulated data of realizations (light blue
curves), and ensemble mean (dark blue curves). History: 0 < t ≤ 300 days,
forecast: t > 300 days.
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.44: 100% probability maps of sand channels (Case 2.2): true (1st row); posterior,
TD, 1000, Ne = 500 (2nd row); posterior, TD, 1000, Ne = 200 (3rd row);
posterior, NTD, 1000, Ne = 500 (4th row); posterior, NTD, 1000, Ne = 200
(5th row).
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.45: 90% and 80% probability maps of sand channels (Case 2.2, Ne = 500): true
(1st row); posterior, NTD, 1000, 90% prob. (2nd row); posterior, NTD, 1000,
80% prob. (3rd row).
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Figure 4.46: Normalized data mismatch (Case 2.2): “TD” denotes the “TD, 1000” method
and “NTD” denotes the “NTD, 1000” method. Median (central red mark),
25th and 75th percentiles (bottom and top edges of the box), extreme data
points (whiskers), and outliers (“+” symbol).

Table 4.23: Computational cost (Case 2.2)

Method Ne Na Nw ttotal

TD, 1000 200 8 13 3h 18m 37s

TD, 1000 500 8 13 7h 40m 47s

TD, 778 500 8 13 7h 26m 7s

TD, 20× 20× 5× 1000 500 8 13 7h 5m 36s

TD, 37× 36× 8× 778 500 8 13 7h 12m 23s

NTD, 1000 200 8 13 3h 20m 12s

NTD, 1000 500 8 13 7h 35m 24s

NTD, 778 500 8 13 7h 16m 29s

NTD, 20× 20× 5× 1000 500 8 13 7h 3m 21s

NTD, 37× 36× 8× 778 500 8 13 7h 23m 7s
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Case 2.3: Heterogeneous Permeability, 9 Wells:

In previous case, we comprehensively compare the truncated two-mode and four-mode

TD and NTD methods with the TD and NTD without truncation in terms of data match,

uncertainty characterization of channel distributions and computational cost. To further

demonstrate the findings obtained from previous case, we reduce the original number of

wells from 13 to 9 in Case 2.3 and redo the case with the eight parameterization schemes

(see Tables 4.16 and 4.17).

We still calibrate the facies distributions and heterogeneous permeability within facies

simultaneously so the vector of model parameters is defined by

y = [vTfacies,v
T
sand,v

T
levee,v

T
shale]

T, (4.46)

where vfacies, vsand, vlevee and vshale are the coefficient vectors corresponding to the facies

fields and permeability fields of three facies, respectively. Note that the four training ensem-

bles (i.e., one for facies and one for each of the permeability fields, ksand, klevee and kshale,

respectively) used for parameterization are exact the same as those in Case 2.2 and the size

of each training ensemble is still 1000 (Nte = 1000). Besides, all other settings of history

matching are the same as those in Case 2.2

The ensemble used for history matching consists of 500 heterogeneous reservoir models

(Ne = 500) in this case and the true model is the same as the one in Case 2.2. As mentioned

above, we only keep 4 injectors and 5 producers out of the original 13 wells in the reservoir,

which poses additional challenges to the history matching work. From Fig. 4.47, we can

see the locations of 9 wells, and the ln(k) fields of the true model and two prior realizations

present high geological complexity associated with the facies distributions and heterogeneous

permeability.

The large geological uncertainty of the prior ensemble can be illustrated from the

prior production data shown in Fig. 4.48. Figures 4.49 and 4.50 present the posterior oil

production rates obtained with the TD and NTD methods with and without truncation,
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.47: ln(k) fields of the true model and two prior realizations (Case 2.3, Ne = 500):
true model (1st row), prior model #1 (2nd row) and prior model #2 (3rd row).

and it can be seen that the prior uncertainty has been reduced significantly through history

matching. We are able to obtain desirable history data matches and reasonable production

forecasts at most wells except for P4 where the oil rate predictions tend to be biased with

different methods. The truncated TD and NTD perform similarly compared to the methods

without truncation where we determine the ranks of different modes heuristically.

Figures 4.51 and 4.52 show the ln(k) fields of the true model and two posterior

realizations obtained with the four-mode TD and NTD with and without truncation. We

can see the key geological features in the true model are resolved through history matching

but the continuity of thin channels in layer 6 is marred in most posterior realizations except

for the first one obtained with the “TD, 37× 36× 8× 778” method.

We present the 90% and 10% probability maps based on the posterior realizations
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(a) P2 (b) P3 (c) P4 (d) P5

Figure 4.48: Prior production data (Case 2.3, Ne = 500): water rates (1st row) and oil
rates (2nd row). True (red curves), observed data (red dots), simulated data of
realizations (light blue curves), and ensemble mean (dark blue curves). History:
0 < t ≤ 300 days, forecast: t > 300 days.

obtained with four-mode TD and NTD methods with and without truncation in Figs. 4.53

and 4.54. It is shown that the correctly resolved channel gridblocks (red points) are far

more than the gridblocks that are incorrectly resolved to be channel facies (blue points) in

all 90% probability maps. The spatial continuity of channels is slightly enhanced by the

“NTD, 20 × 20 × 5 × 1000” and “NTD, 37 × 36 × 8 × 778” methods but based on the

10% probability maps, the NTD methods also give more blue points which represent the

true channel gridblocks that are not resolved in 90% posterior realizations. Through visual

comparison, the TD and NTD methods with and without truncation perform similarly in

terms of uncertainty characterization of channel distributions. The statistical indicators

calculated based on the 100%, 90%, 10% and 0% probability maps obtained with two-mode

and four-mode TD and NTD methods with and without truncation are given in Tables 4.24

to 4.27.

Figure 4.55 shows the normalized data mismatch of Case 2.3 calculated by Eq. 4.40

and we can see the data match results obtained with the truncated TD and NTD methods

are slightly better than those obtained with the methods without truncation.
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(a) P2 (b) P3 (c) P4 (d) P5

Figure 4.49: Prior and posterior oil rates (Case 2.3, Ne = 500): prior (1st row); posterior,
TD, 1000 (2nd row); posterior, TD, 778 (3rd row); posterior, NTD, 1000 (4th
row); posterior, NTD, 778 (5th row). True (red curves), observed data (red
dots), simulated data of realizations (light blue curves), and ensemble mean
(dark blue curves). History: 0 < t ≤ 300 days, forecast: t > 300 days.
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(a) P2 (b) P3 (c) P4 (d) P5

Figure 4.50: Prior and posterior oil rates (Case 2.3, Ne = 500): prior (1st row); posterior,
TD, 20× 20× 5× 1000 (2nd row); posterior, TD, 37× 36× 8× 778 (3rd row);
posterior, NTD, 20 × 20 × 5 × 1000 (4th row); posterior, NTD, 37 × 36 × 8 ×
778 (5th row). True (red curves), observed data (red dots), simulated data of
realizations (light blue curves), and ensemble mean (dark blue curves). History:
0 < t ≤ 300 days, forecast: t > 300 days.
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.51: ln(k) fields of the true model and posterior realization #1 (Case 2.3, Ne = 500):
true model (1st row); TD, 20× 20× 5× 1000 (2nd row); TD, 37× 36× 8× 778
(3rd row); NTD, 20 × 20 × 5 × 1000 (4th row); NTD, 37 × 36 × 8 × 778 (5th
row).
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.52: ln(k) fields of the true model and posterior realization #2 (Case 2.3, Ne = 500):
true model (1st row); TD, 20× 20× 5× 1000 (2nd row); TD, 37× 36× 8× 778
(3rd row); NTD, 20 × 20 × 5 × 1000 (4th row); NTD, 37 × 36 × 8 × 778 (5th
row).
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.53: 90% probability maps of sand channels (Case 2.3, Ne = 500): true (1st row);
posterior, TD, 20× 20× 5× 1000 (2nd row); posterior, TD, 37× 36× 8× 778
(3rd row); posterior, NTD, 20 × 20 × 5 × 1000 (4th row); posterior, NTD,
37× 36× 8× 778 (5th row).
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Table 4.24: Statistical indicators based on 100% and 90% probability maps obtained with
two-mode TD and NTD (Case 2.3)

Method Ne Nw Prob.(%) N true
gc Nposterior

gc Ngood
gc Rgood(%)

TD, 1000 500 9 100% 6104 101 101 100.0%

TD, 1000 500 9 90% 6104 1546 1442 93.3%

TD, 778 500 9 100% 6104 97 97 100.0%

TD, 778 500 9 90% 6104 1540 1459 94.7%

NTD, 1000 500 9 100% 6104 111 111 100.0%

NTD, 1000 500 9 90% 6104 1553 1443 92.9%

NTD, 778 500 9 100% 6104 199 199 100.0%

NTD, 778 500 9 90% 6104 1771 1631 92.1%

Table 4.25: Statistical indicators based on 100% and 90% probability maps obtained with
four-mode TD and NTD (Case 2.3)

Method Ne Nw Prob.(%) N true
gc Nposterior

gc Ngood
gc Rgood(%)

TD, 20× 20× 5× 1000 500 9 100% 6104 90 90 100.0%

TD, 20× 20× 5× 1000 500 9 90% 6104 1612 1483 91.9%

TD, 37× 36× 8× 778 500 9 100% 6104 87 87 100.0%

TD, 37× 36× 8× 778 500 9 90% 6104 1545 1470 95.1%

NTD, 20× 20× 5× 1000 500 9 100% 6104 382 380 99.5%

NTD, 20× 20× 5× 1000 500 9 90% 6104 2009 1785 88.9%

NTD, 37× 36× 8× 778 500 9 100% 6104 303 301 99.3%

NTD, 37× 36× 8× 778 500 9 90% 6104 1878 1688 89.9%
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(a) Layer 1 (b) Layer 6 (c) Layer 7 (d) Layer 10

Figure 4.54: 10% probability maps of sand channels (Case 2.3, Ne = 500): true (1st row);
posterior, TD, 20× 20× 5× 1000 (2nd row); posterior, TD, 37× 36× 8× 778
(3rd row); posterior, NTD, 20 × 20 × 5 × 1000 (4th row); posterior, NTD,
37× 36× 8× 778 (5th row).
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Table 4.26: Statistical indicators based on 0% and 10% probability maps obtained with two-
mode TD and NTD (Case 2.3)

Method Ne Nw Prob.(%) N true
gc Nmissed

gc Rmissed(%)

TD, 1000 500 9 0% 6104 0 0.00%

TD, 1000 500 9 10% 6104 401 6.57%

TD, 778 500 9 0% 6104 0 0.00%

TD, 778 500 9 10% 6104 362 5.93%

NTD, 1000 500 9 0% 6104 0 0.00%

NTD, 1000 500 9 10% 6104 540 8.85%

NTD, 778 500 9 0% 6104 8 0.13%

NTD, 778 500 9 10% 6104 518 8.49%

Table 4.27: Statistical indicators based on 0% and 10% probability maps obtained with four-
mode TD and NTD (Case 2.3)

Method Ne Nw Prob.(%) N true
gc Nmissed

gc Rmissed(%)

TD, 20× 20× 5× 1000 500 9 0% 6104 12 0.19%

TD, 20× 20× 5× 1000 500 9 10% 6104 686 11.24%

TD, 37× 36× 8× 778 500 9 0% 6104 2 0.03%

TD, 37× 36× 8× 778 500 9 10% 6104 468 7.67%

NTD, 20× 20× 5× 1000 500 9 0% 6104 90 1.47%

NTD, 20× 20× 5× 1000 500 9 10% 6104 1017 16.66%

NTD, 37× 36× 8× 778 500 9 0% 6104 67 1.09%

NTD, 37× 36× 8× 778 500 9 10% 6104 773 12.66%
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Figure 4.55: Normalized data mismatch (Case 2.3, Ne = 500). Median (central red mark),
25th and 75th percentiles (bottom and top edges of the box), extreme data
points (whiskers), and outliers (“+” symbol).
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CHAPTER 5

ASSISTED HISTORY MATCHING OF CHANNELIZED RESERVOIRS

USING THE OBJECT-BASED MODEL IN PETREL

In Chapters 2 to 4, we proposed and investigated three different parameterization

approaches for history matching of complex geological reservoirs. With the help of a post-

processing procedure, large-scale geological structures can be resolved reasonably well in

the posterior realizations but sometimes the spatial continuity of channelized facies is not

completely preserved. To completely preserve the spatial continuity of channel facies dis-

tribution represented by object-based modeling, it seems that one should simply adjust by

history matching the parameters used to generate a realization of a channelized system by

object-based modeling. Although this seems like an obvious approach, it turns out that ex-

tremely small changes in some of the parameters used in object-based modeling with Petrel

lead to an extremely large change in the facies distribution, i.e., the object-based realization

is not a continuous or stable function of the parameters. Thus, what we believed would

be a good approach for history matching of object-based models failed. This is somewhat

surprising because in a far simple setting, Zhang et al. (2002) used parameters that define a

channel structure successfully in history matching. In particular, Zhang et al. (2002) condi-

tioned a stochastic channel embedded in a background facies to observed data at wells. In

their work, the model parameters consist of geometric parameters that describe the shape,

size, location of the channel, as well as the permeability and porosity in the channel and

non-channel facies. This disabling limitation of the work is that it is not clear how to gen-

eralize the stochastic model to a practical case which involves multiple facies and complex

distributions of multiple channels.

Although the multi-point statistics (MPS) is a popular modeling technique used in
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such integrated approach (Caers and Hoffman, 2006; Jafapour and Khodabakhsi, 2011;

Tavakoli et al., 2014; Le et al., 2015b; Sebacher et al., 2016), it still remains challenging

to obtain a suitable and reliable training image for various types of geological environments.

Besides, the MPS is highly demanding on the conditioning capability of soft data. Even

if a probability map is given its maximum allowable weights when input to standard MPS

algorithm to regenerate the channel, one may still obtain a channel structure which is ob-

viously inconsistent with the probability map. Therefore, it seems preferable to employ the

object-based simulation technique which appears to be more straightforward and reliable as

the modeling tool.

The remainder of this chapter is organized as follows: we first briefly review the

parameters for the object-based model in Petrel. In the next section, the ensemble-based

method for calibrating the model parameters is briefly presented. Then, we provide the

sensitivity analysis of the model parameters with different perturbation sizes. The compu-

tational results of three synthetic cases are shown in the subsequent section to demonstrate

the performance of the integrated history matching workflow with object-based modeling

method for complex channelized reservoirs. Since the proposed methodology is only par-

tially successful for specific cases, further discussion is given in the last part to explain the

probable reasons.

5.1 Methodology

5.1.1 Adaptive Channel Model in Petrel

In this chapter, we use the object-based modeling method to generate prior channel-

ized reservoir models for history matching. In the corresponding module of Petrel, three main

types of geologic objects can be characterized and their basic properties are summarized in

Table 5.1.

As the largest structures of directional significance with preservation potential, the

channels usually are characterized by a sinuous geometry and the levees deposit along the
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Table 5.1: Objects in the adaptive channel model of Petrel

Object Facies Reservoir quality Perm & Poro

Channel Sand Good High

Levee Levee Moderate Moderate

Floodplain Shale Poor Low

channel margins. The low permeable background floodplain (usually shale) is viewed as the

matrix within which the channels and levees are embedded. The spatial distribution and

geological properties of channels and levees are described by eight stochastic parameters

(orientation, amplitude, wavelength, sinuosity, width of channel, thickness of channel, width

of levee and thickness of levee) and a particular realization is generated starting from a

random seed in Petrel. There are three basic ways in Petrel to set these parameters in order

to generate desired models:

• Channel layout (shown in Fig. 5.1): orientation θ (unit: degrees), amplitude a (unit:

ft), wavelength λ (unit: ft) and sinuosity s (unit: /). Note that the symbol “/”

indicates that the parameter is dimensionless. The orientation is used to specify the

average azimuth of channels. The amplitude defines the average transversal distance

covered during one wavelength and the wavelength is the average distance between two

consecutive same handed channel turns; see Fig. 5.1. The sinuosity describes the width

uniformity of sand facies along the channel and more detailed explanations about this

concept are given later on.

Figure 5.1: Channel layout schematic: sand facies (yellow) and levee facies (pink).

• Channel cross-section (shown in Fig. 5.2): width wsand (unit: ft) and thickness hsand

(unit: ft) of channel (sand) facies. The cross-section design of an idealized channel

176



model in most commercial software packages is based on width and thickness, following

a perfect symmetrical half lobe. In general, the width and thickness denotes the average

channel width and average channel thickness or depth, respectively.

Figure 5.2: Cross-section schematic of channel: sand facies (yellow).

• Levee cross-section (shown in Fig. 5.3): (relative) width wlevee (unit: /) and (relative)

thickness hlevee (unit: /) of levee facies. Similarly for levees, the shape is also a half lobe

that is located in the upper part surrounding the channel. The levee width denotes

the average levee width on each side of the channel as a fraction of the channel width.

The thickness of levee is also defined as a fraction of channel thickness in Petrel.

Figure 5.3: Cross-section schematic of levee: sand facies (yellow) and levee facies (pink).

It is noteworthy that the eight parameters introduced above could follow any specific

statistical distribution (e.g., deterministic, uniform, triangular, normal or truncated-normal)

with given attributes. For example, one can keep a parameter fixed at a given value by

specifying it with a deterministic input. Once the values of the parameters are set, a sequence

of building blocks are inserted with a channel/levee part following the given parameters,

comprising a distribution function and the random seed which is used to set the starting

point for the channel/levee insertion. If well logs or other hard data information are available

and required to be honored in the geological modeling, the first channel block is positioned

to honor a given well until it reaches facies observation at another well. Thereafter, certain

building blocks are interactively inserted following horizontal and areal search schemes in
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order to match the hard data at all the wells. The same procedure is followed for the levee

facies. After all well data have been honored, the geological objects are distributed either

by random or by following trends, until all the facies volume proportions are satisfied.

In this work, we assume the parameters for object-based modeling are subject to

normal distribution with the mean and standard deviation (STD) given in Table 5.2. Before

discussing data assimilation algorithm, we further investigate the effect of sinuosity and the

random seed on the outcome of object-based modeling. In the adaptive channel model in

Petrel, the sinuosity parameter controls how contorted the resulting channel is. Its value is

restricted to be within 0 and 1, and very high values of this parameter (close to 1) result in

shapes that can be too contorted to represent a real channel while lower values can be used

to produce channels with braided or meandering characteristics. Therefore, the most useful

range is suggested to be [0.1, 0.4]. Here, we generate a series of 2D channelized reservoir

models defined on 50× 50 grid system with three facies (see the facies indicators and color

schemes in Table 5.3) by feeding different sinuosity values into Petrel while keeping the other

parameters and the random seed fixed. Figure 5.4 shows the facies fields obtained with eight

different sinuosity values ranging from 0.05 to 0.4 with all other parameters fixed at their

mean values given in Table 5.2. It can be seen that as the sinuosity increases, the shape

of the channels becomes more nonuniform, and the width of sand/levee facies varies more

obviously along the same channel, especially when the value of sinuosity is greater than 0.3.

But if we set the sinuosity to be smaller than 0.2, it is hard to tell the difference of channels

as sinuosity changes.

We also investigate the effect of the random seed on the resulting facies fields by

varying the random seed r and fixing all other geological parameters at their mean values

given in Table 5.2. The results are shown in Fig. 5.5 and represent the impact of the initial

channel/levee insertion on the final facies distribution. Due to its effect and non-geological

meaning, the random seed is excluded from the model parameters of history matching by

assigning it a constant value in Petrel. This ensures that the change in the predicted data

obtained by varying a parameter will not be simply due to a change in the random seed.

178



Table 5.2: Parameters for object-based modeling

Name Notation Unit Mean (µ) STD (σ)

orientation θ degrees 90 10

amplitude a ft 500 50

wavelength λ ft 3000 300

sinuosity s / 0.3 0.05

width of sand channel wsand ft 600 50

thickness of sand channel hsand ft 25 5

width of levee wlevee / 0.35 0.05

thickness of levee hlevee / 0.7 0.05

Table 5.3: Facies indicators and color schemes

Facies Indicator Color

Shale 0 Blue

Levee 1 Green

Sand 2 Red

(a) s = 0.05 (b) s = 0.1 (c) s = 0.15 (d) s = 0.2

(e) s = 0.25 (f) s = 0.3 (g) s = 0.35 (h) s = 0.4

Figure 5.4: Effect of sinuosity value with all other parameters held fixed at their mean values
given in Table 5.2

Therefore, the vector of parameters for object-based modeling, mobj, can be written as

mobj = [θ, a, λ, s, wsand, hsand, wlevee, hlevee]
T . (5.1)
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It should be mentioned that since we assume homogeneous petrophysical properties

(e.g., permeability) within each facies, the property fields for reservoir simulator are obtained

by assigning specific permeability value to each gridblock according to its facies type. Conse-

quently, the permeability values that are updated through history matching are not needed

in the object-based modeling.

(a) r = 100 (b) r = 200 (c) r = 300 (d) r = 400

Figure 5.5: Effect of random seed value with all other parameters held fixed at their mean
values given in Table 5.2

5.1.2 Data Assimilation Algorithm

To calibrate the spatial channel/levee distribution and petrophysical properties within

facies, the vector of model parameters in history matching, m, is defined as

m = [θ, a, λ, s, wsand, hsand, wlevee, hlevee, ksand, klevee, kshale]
T , (5.2)

where ksand, klevee and kshale denotes the log-permeability values of the sand, levee and shale

facies, respectively. The statistical features of the model parameters are presented in Ta-

ble 5.4.

Regarding the data assimilation method, we still use the ensemble smoother with

multiple data assimilation (ES-MDA) algorithm developed by Emerick and Reynolds (2012,

2013a) and the inflation factors are calculated by the geometric method proposed by Rafiee

and Reynolds (2017). The details of the ES-MDA-GEO algorithm can be found in Ap-

pendix A.1. After each data assimilation step, the parameters updated by ES-MDA-GEO

are provided to the object-based method in Petrel in order to generate a new ensemble of
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Table 5.4: Model parameters in history matching

Name Notation Unit Mean (µ) STD (σ)

orientation θ degrees 90 10

amplitude a ft 500 50

wavelength λ ft 3000 300

sinuosity s / 0.3 0.05

width of sand channel wsand ft 600 50

thickness of sand channel hsand ft 25 5

width of levee wlevee / 0.35 0.05

thickness of levee hlevee / 0.7 0.05

log-permeability of sand ksand mD ln(2000) 0.3

log-permeability of levee klevee mD ln(200) 0.3

log-permeability of shale kshale mD ln(20) 0.3

realizations for next iteration step.

5.2 Sensitivity Analysis

Although ES-MDA does not explicitly estimate and use a gradient, a gradient ap-

proximation is implicitly represented in the dimensionless sensitivity matrix, G`
D (defined

in Eq. A.6); see Reynolds et al. (2006). To do the sensitivity analysis, we first define the

normalized data mismatch by

O(mi) =
1

Nd

‖di(mi)− dbase(mbase)‖2 , (5.3)

where mbase is a Nm-dimensional vector defined in Eq. 5.2 and every parameter in mbase

takes the mean value given in Table 5.4 as its base case. To obtain the perturbed vector of

model parameters, mi, we have

mi = [mbase,1, · · · ,mbase,i + δmi, · · · ,mbase,Nm ] , with δmi = βmbase,i, (5.4)

where mbase,i is the ith parameter in the vector mbase; β denotes the perturbation size which
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is set to be 0.1%, 0.5%, 1% and 5% of the base value in this analysis. Therefore, we can

analyze the sensitivity of production data to the model parameters using the finite difference

approximation as

∂O(mi)

∂mi

=
1
Nd
‖di(mi)− dbase(mbase)‖2

δmi

. (5.5)

In Fig. 5.6, the base model generated with mbase is the three-facies (shale, levee and

sand) channelized reservoir consisting of two layers shown in Fig. 5.6 where this model honors

the hard data information given in Table 5.5.

(a) Layer 1 (b) Layer 2

Figure 5.6: ln(k) fields of the base case

Table 5.5: Hard data at wells

I1 I2 I3 I4 P1 P2 P3 P4 P5 P6 P7 P8 P9

Layer 1 / sand sand / sand sand sand / sand / sand / /

Layer 2 / sand sand / sand sand sand / sand / sand / /

Each layer in the base model is defined on a 50× 50 grid system with gridblock size

of 100ft× 100ft× 20ft. We can see that since the thickness of the channel is set equal to the

mean value of 25 ft which is greater than the height of one reservoir layer, the two layers

actually belong to the same geological system. That is to say, the channels in the second

layer are actually the lower parts of the channels in the top layer. There are four injectors

(I1 to I4) and nine producers (P1 to P9) arranged in a five-spot pattern in the reservoir. All

vertical wells perforate the two layers and operate at a specified flowing bottom hole pressure
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(BHP). To be specific, the injectors and producers, respectively, operate at a constant BHP

of 5500 psi and 3000 psi. The initial pressure of the reservoir is 5000 psi and the initial

water saturation is 0.2. The production period is 600 days and the predicted data consist of

the water injection rate (qinj) at the injectors and the oil and water production rate (qo and

qw) at the producers. The data are collected every 30 days during the production period in

order to form the data vector given by

d =
[
qTinj, q

T
o , q

T
w

]T
Nd×1

, (5.6)

and dbase and di in Eq. 5.5 denote the predicted data corresponding to mbase and mi,

respectively.

Using Eq. 5.4, the perturbation is applied to the parameter directly so this is referred

to as the “no scaling” scheme. However, we can observe that the magnitude of various

parameters differs from each other significantly which can give rise to a poorly scaled problem

and lead to relatively poor estimates of some of the derivatives involved in the gradient. In

an attempt to mitigate this issue, we map all the parameters to the range of [0, 1] and repeat

the same sensitivity analysis in order to compare the performance of the two schemes. For

the ith element of the vector m, mi, it is scaled to the range of [0, 1] by using

m̂i =
mi −mlow

i

mup
i −mlow

i

, (5.7)

where mup
i = µi + 3σi and mlow

i = µi − 3σi, which are calculated based on the mean and

standard deviation given in Table 5.4. Consequently, Eqs. 5.5 and 5.4 can be rewritten as

∂O(m̂i)

∂m̂i

=
1
Nd
‖di(m̂i)− dbase(m̂base)‖2

δm̂i

, (5.8)

m̂i = [m̂base,1, · · · , m̂base,i + δm̂i, · · · , m̂base,Nm ] , with δm̂i = βm̂base,i, (5.9)

where the scaled vectors, m̂i and m̂base, are transformed back to the original physical space
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before used to obtain di and dbase in Eq. 5.8.

The results of sensitivity analysis for different model parameter are shown in Figs. 5.7

and 5.8 where the x-axis represents the perturbation size β and the y-axis denotes the

sensitivity value calculated by Eq. 5.5 or 5.8. Without scaling, we can see that the production

data is extremely sensitive to the sinuosity while the impacts of other important parameters

(e.g., orientation, amplitude, wavelength, width and thickness of sand channel) are almost

insignificant, which is not reasonable from a geological perspective. When we implement

the “[0, 1] scaling” scheme, the large difference between sensitivities to various parameters is

dramatically alleviated. It is shown that the sensitivities to the permeability values of three

facies remain very stable with different perturbation sizes. However, the derivatives with

respect to other parameters vary significantly as the perturbation size changes.

(a) θ (b) a (c) λ

(d) s (e) wsand (f) hsand

(g) ksand (h) klevee (i) kshale

Figure 5.7: Sensitivity analysis for different model parameters without scaling

It is noteworthy that we only perturb one parameter at a time with the values of other
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(a) θ (b) a (c) λ

(d) s (e) wsand (f) hsand

(g) ksand (h) klevee (i) kshale

Figure 5.8: Sensitivity analysis for different model parameters with scaling

parameters held fixed at their base values. The observations from Figs. 5.7 and 5.8 can be

quantitatively demonstrated by the data given in Table 5.6. Therefore, it may be helpful

to employ the “[0, 1] scaling” scheme in order to improve the approximation of gradient in

history matching by mapping different model parameters to the same range.

5.3 Computational Results and Discussion

As stated in the beginning of this chapter, what we thought would be a promising

approach for history matching of object-based models only worked partially well. In fact, we

attempted to history match all eleven parameters shown in Eq. 5.2 at first but the proposed

workflow failed. Then we tried other cases with different combinations of parameters in order

to obtain a understanding of why the method fails. The posterior ensembles of some cases

(e.g., a, λ, s, ksand, klevee, kshale) converge to incorrect solutions with poor history matches,

185



Table 5.6: Results of sensitivity analysis

No scaling [0, 1] scaling

0.1% 0.5% 1% 5% 0.1% 0.5% 1% 5%

θ 6.08 77.86 44.72 15.05 323.65 12798.50 6875.38 1630.23

a 0.30 0.12 0.65 1.35 113.71 60.03 46.04 1400.40

λ 0.05 0.08 0.04 0.11 0.07 114.75 230.86 586.03

s 6869.84 1446.78 4305.71 1222.26 32.17 578.55 403.80 364.01

wsand 0.09 0.34 0.14 1.89 0.07 22.29 50.72 48.83

hsand 0.51 7.01 3.20 3.24 25.37 249.77 172.09 76.39

wlevee 36.24 82.25 197.65 122.25 0.07 5.07 28.75 35.05

hlevee 18.12 37.76 32.18 49.66 0.00 5.07 26.35 9.01

ksand 120.90 122.23 124.77 145.47 217.58 217.41 217.66 220.94

klevee 32.74 32.83 32.94 33.66 58.91 58.96 58.97 59.24

kshale 12.74 12.80 12.86 13.45 22.95 22.96 22.98 23.29

but for other specific combinations of parameters (e.g., a, λ, ksand, klevee, kshale; s, ksand, klevee,

kshale), we can obtain good data matches and the geological structures in the true model are

resolved well through history matching. In the remainder of this section, the results of

one failed case and two successful cases are presented in order to comprehensively illustrate

the performance of the proposed methodology and discuss the probable reason causing the

failure.

The reservoir model in the three synthetic cases is similar to the one in the base case.

A three-facies (shale, levee and sand) two-layer channelized reservoir model is defined on a

50× 50× 2 grid system. The size of each gridblock is 100ft× 100ft with a constant thickness

of 20 ft. There are four injectors (I1 to I4) and nine producers (P1 to P9) deployed in a

five-spot pattern in the reservoir. All wells are controlled by bottom hole pressure (BHP). To

be specific, the injectors and producers, respectively, operate at a constant BHP of 5500 psi

and 3000 psi. The initial pressure of the reservoir is 5000 psi and the initial water saturation

is 0.2 which is equal to irreducible water saturation.

Given the hard data of facies type observation at well locations (see Table 5.5), the

facies distribution of the true model and 400 prior realizations (Ne = 400) are generated
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by feeding the sampled parameters to the object-based modeling module in Petrel. Since

we assume the natural logarithm of permeability (ln(k)) within facies is homogeneous, the

permeability of every gridblock is directly assigned according to its facies type.

It is customary to apply so-called localization schemes to ensemble methods for the

purpose of reducing sampling errors associated with small ensemble. In retrospect, the

distance-based localization appears to be the most adopted scheme for ensemble-based data

assimilation and has been worked successfully in many practical reservoir characterization

problems. However, a prerequisite in using distance-based localization is that both model

parameters and observed data have associated physical locations, which is not satisfied re-

garding the parameters for object-based modeling in this work. As a result of this, one

cannot apply the distance-based localization to this kind of problem. Although several non-

distance-based localization schemes have been proposed recently, here we increase the degree

of freedom in data assimilation by simply using a large prior ensemble of size Ne = 400.

The history matching period is 600 days followed by the prediction period of 300

days. The subsurface flow responses are obtained by running the Eclipse reservoir simulator.

The production data consist of the water injection rate (qinj) at the injectors and the oil and

water production rate (qo and qw) at the producers. The observed data are collected every

30 days during the history matching period in order to form the data vector given by

dobs =
[
qTinj, q

T
o , q

T
w

]T
Nd×1

. (5.10)

In the synthetic cases, the observed data are obtained by adding Gaussian random

noise to the noise-free data predicted by the true model. The covariance matrix of the

observation errors, CD, is given by

CD =


σ2
1

. . .

σ2
Nd


Nd×Nd

, (5.11)
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where the standard deviation of measurement error, σ, is equal to 3% of the true data for

the injection and production rates.

The ES-MDA-GEO algorithm is employed to update the vector of model parameters,

m, by assimilating the observed data. The iteration number, Na, is set to 6 with the

inflation factors, α` = {1000.0, 267.3, 71.4, 19.1, 5.1, 1.4}, calculated by the geometric

method (Rafiee and Reynolds, 2017).

5.3.1 Case 1: a, λ, s, ksand, klevee, kshale

In the first case, we start from a combination of six model parameters including

amplitude (a), wavelength (λ), sinuosity (s) and three permeability values (ksand, klevee and

kshale); thus, the model vector, m, is given by

m = [a, λ, s, ksand, klevee, kshale]
T , (5.12)

where each of the above parameters follows the Gaussian distribution with the mean and

standard deviation given in Table 5.4 throughout the true model and whole prior ensemble.

The other parameters that are essential for the object-based modeling (see Eq. 5.1) but not

included in the model parameters of history matching are fixed equal to the mean values,

which is the same case in the true model.

Figure 5.9 shows the ln(k) fields of the true model and three unconditional real-

izations. The diversity of the prior realizations can be illustrated by the production data

generated with the prior ensemble (see Fig. 5.10). In Fig. 5.10 and similar figures, the red

curves denote the results of the true model; the red dots represent the observed data; the

light blue curves are obtained with prior realizations and the dark blue curves are the en-

semble average of prior production data. We can see that the prior uncertainty is quite high

due to the diverse distributions of channels in the prior ensemble as well as the uncertainty

associated with the petrophysical properties.

For this case, we are not able to resolve the correct geological structures and petro-

physical properties within three facies through history matching (see Fig. 5.11). From
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(a) True (b) Prior model #1 (c) Prior model #2 (d) Prior model #3

Figure 5.9: True model and three prior realizations (Case 1: a, λ, s, ksand, klevee, kshale;
Ne = 400): layer 1 (1st row) and layer 2 (2nd row).

Figs. 5.11 and 5.12, the posterior ensemble is shown to collapse to an incorrect model giving

poor data matches at most wells. The uncertainty in the posterior realizations still remains

at a high level, which is clearly shown in the box plots of normalized data mismatch (see

Fig. 5.13) calculated by

O(d) =
1

Nd

(d− dobs)
TC−1D (d− dobs) , (5.13)

where d and dobs only include the data during the historical period.

The evolution of model parameters during history matching are shown in Fig. 5.14

where the x-axis is the data assimilation step index where “0” corresponds to the prior

ensemble. In Fig. 5.14 and similar figures, a dark horizontal straight line represents the true

value, a red curve through circles is the ensemble mean of the calibrated parameter and

two blue curves through triangles are the ensemble mean ±3 ensemble standard deviation

respectively, which gives a characterization of the uncertainty in the estimated parameters.

It is shown in Fig. 5.14 that the model parameters are poorly estimated for this case.
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(a) I1 water injection (b) I2 water injection (c) I3 water injection (d) I4 water injection

(e) P2 water production (f) P3 water production (g) P4 water production (h) P7 water production

(i) P2 oil production (j) P3 oil production (k) P4 oil production (l) P7 oil production

Figure 5.10: Production data of prior ensemble (Case 1: a, λ, s, ksand, klevee, kshale; Ne = 400).
True (red curves), observed data (red dots), simulated data of realizations (light
blue curves), and ensemble mean (dark blue curves). History: 0 < t ≤ 600 days,
forecast: t > 600 days.

5.3.2 Case 2: a, λ, ksand, klevee, kshale

In the second case, we reduce the number of model parameters by removing the

sinuosity (s) from the combination of parameters in Case 1. The resulting model vector, m,

is given by

m = [a, λ, ksand, klevee, kshale]
T . (5.14)

Same as Case 1, the five parameters in Eq. 5.14 are sampled with the mean and

standard deviation given in Table 5.4 throughout the true model and prior realizations.

Figure 5.15 shows the ln(k) fields of the true model and three unconditional realizations

where there is large variability in the facies distributions. The high uncertainty in the prior
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(a) True (b) Posterior model #1 (c) Posterior model #2 (d) Posterior model #3

Figure 5.11: True model and three posterior realizations (Case 1: a, λ, s, ksand, klevee, kshale;
Ne = 400): layer 1 (1st row) and layer 2 (2nd row).

realizations is illustrated by the prior production data shown in Fig. 5.16.

Figure 5.17 compares the ln(k) fields of the true model with those of three posterior

realizations. We can see that the posterior realizations converge to a model visually identical

to the truth by the end of history matching. Although the spatial distributions of sand

channels are almost the same as the true model, there is slight variability when it comes to

the distribution and permeability value of the levee facies.

Through history matching, the prior uncertainty is significantly reduced and we are

able to obtain good data matches and reasonable production forecast (see Fig. 5.18). The

quantitative data mismatch is calculated by Eq. 5.13 and the changes along with the data

assimilation step are shown in Fig. 5.19.

From Fig. 5.20, we can see that good estimates of the amplitude, wavelength and

the permeability values of three facies are obtained in this case meanwhile the prior uncer-

tainty has been reduced significantly. There still remains small variability in the calibrated

parameters after the last iteration step of data assimilation.

5.3.3 Case 3: s, ksand, klevee, kshale
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(a) I1 water injection (b) I2 water injection (c) I3 water injection (d) I4 water injection

(e) P2 water production (f) P3 water production (g) P4 water production (h) P7 water production

(i) P2 oil production (j) P3 oil production (k) P4 oil production (l) P7 oil production

Figure 5.12: Production data of posterior ensemble (Case 1: a, λ, s, ksand, klevee, kshale;
Ne = 400). True (red curves), observed data (red dots), simulated data of
realizations (light blue curves), and ensemble mean (dark blue curves). History:
0 < t ≤ 600 days, forecast: t > 600 days.

Figure 5.13: Normalized data mismatch (Case 1: a, λ, s, ksand, klevee, kshale; Ne = 400).
Median (central red mark), 25th and 75th percentiles (bottom and top edges
of the box), extreme data points (whiskers), and outliers (“+” symbol).
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(a) Amplitude (b) Wavelength (b) Sinuosity

(c) ksand (d) klevee (e) kshale

Figure 5.14: Evolution of model parameters as a function of the ES-MDA step (Case 1: a, λ,
s, ksand, klevee, kshale; Ne = 400). True (black horizontal straight lines), ensemble
mean (red curves), and ensemble mean ±3 ensemble standard deviation (blue
curves).

(a) True (b) Prior model #1 (c) Prior model #2 (d) Prior model #3

Figure 5.15: True model and three prior realizations (Case 2: a, λ, ksand, klevee, kshale; Ne =
400): layer 1 (1st row) and layer 2 (2nd row).
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(a) I1 water injection (b) I2 water injection (c) I3 water injection (d) I4 water injection

(e) P1 water production (f) P3 water production (g) P4 water production (h) P8 water production

(i) P1 oil production (j) P3 oil production (k) P4 oil production (l) P8 oil production

Figure 5.16: Production data of prior ensemble (Case 2: a, λ, ksand, klevee, kshale; Ne = 400).
True (red curves), observed data (red dots), simulated data of realizations (light
blue curves), and ensemble mean (dark blue curves). History: 0 < t ≤ 600 days,
forecast: t > 600 days.

In the last case, we retain four parameters including the sinuosity (s) and permeability

values of three facies (ksand, klevee, kshale) based on the combination of parameters in Case 1.

The vector of model parameters, m, is then given by

m = [s, ksand, klevee, kshale]
T . (5.15)

Because of different model parameters, the true model and prior realizations (see

Fig. 5.21) differ from those in the previous two cases. Based on the discussion of sinuos-

ity in Section 5.1.1, it seems that the true sinuosity is greater than 0.3 since the channel

around well I3 is much wider than the one beside well I4. In contrast, the sinuosity of three
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(a) True (b) Posterior model #1 (c) Posterior model #2 (d) Posterior model #3

Figure 5.17: True model and three posterior realizations (Case 2: a, λ, ksand, klevee, kshale;
Ne = 400): layer 1 (1st row) and layer 2 (2nd row).

prior realizations is relatively small because the facies distributes more uniformly along the

channels. From Fig. 5.22, the significant uncertainty in the prior production data probably

comes from the sinuous geometry of the geological structures and the intersecting patterns

of adjacent channels.

Similar to Case 2, we are able to yield very good data matches (see Fig. 5.24) but

again the whole ensemble essentially collapses to individual model (see Fig. 5.23) even with

the large ensemble of size Ne = 400. Regarding the uncertainty quantification, the prior

uncertainty has been dramatically reduced (see Fig. 5.25) and the model parameters are

calibrated to the true values with almost no variance left (see Fig. 5.26).

5.3.4 Discussion

Based on the previous sensitivity analysis, the failure of proposed workflow in those

unsatisfactory cases is probably due to the unstable sensitivities of model parameters which

makes it difficult to obtain a good gradient approximation during history matching. To figure

out the reason for the unstable sensitivities, it is essential to fully understand the modeling

process in the object-based method. Figure 5.27 shows an adaptive channel generated by
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(a) I1 water injection (b) I2 water injection (c) I3 water injection (d) I4 water injection

(e) P1 water production (f) P3 water production (g) P4 water production (h) P8 water production

(i) P1 oil production (j) P3 oil production (k) P4 oil production (l) P8 oil production

Figure 5.18: Production data of posterior ensemble (Case 2: a, λ, ksand, klevee, kshale; Ne =
400). True (red curves), observed data (red dots), simulated data of realizations
(light blue curves), and ensemble mean (dark blue curves). History: 0 < t ≤ 600
days, forecast: t > 600 days.

Figure 5.19: Normalized data mismatch (Case 2: a, λ, ksand, klevee, kshale; Ne = 400). Median
(central red mark), 25th and 75th percentiles (bottom and top edges of the box),
extreme data points (whiskers), and outliers (“+” symbol).
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(a) Amplitude (b) Wavelength

(c) ksand (d) klevee (e) kshale

Figure 5.20: Evolution of model parameters as a function of the ES-MDA step (Case 2: a, λ,
ksand, klevee, kshale; Ne = 400). True (black horizontal straight lines), ensemble
mean (red curves), and ensemble mean ±3 ensemble standard deviation (blue
curves).

(a) True (b) Prior model #1 (c) Prior model #2 (d) Prior model #3

Figure 5.21: True model and three prior realizations (Case 3: s, ksand, klevee, kshale; Ne = 400):
layer 1 (1st row) and layer 2 (2nd row).
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(a) I1 water injection (b) I2 water injection (c) I3 water injection (d) I4 water injection

(e) P1 water production (f) P3 water production (g) P4 water production (h) P7 water production

(i) P1 oil production (j) P3 oil production (k) P4 oil production (l) P7 oil production

Figure 5.22: Production data of prior ensemble (Case 3: s, ksand, klevee, kshale; Ne = 400).
True (red curves), observed data (red dots), simulated data of realizations (light
blue curves), and ensemble mean (dark blue curves). History: 0 < t ≤ 600 days,
forecast: t > 600 days.

the object-based modeling in Petrel. In one row of the wells (see Fig. 5.27(a)), alternating

wells contain channel facies (yellow) or levee facies (light blue) in specific upscaled cells as

hard data. In order to honor the hard data information, the first building block containing

channel/levee part is placed to fit a given well. Then, a sequence of building blocks are

inserted continuously following horizontal and areal search schemes in order to match all

the wells. After all well data have been satisfied, the channel or levee facies are added or

removed by random such that the average properties (such as amplitude, wavelength, etc.)

of large-scale geological structures are consistent with the values we provide to the object-

based method in Petrel. During this final stage of modeling, the internal randomness may

lead to unexpected facies generations. As a result, the sensitivities of predicated data to the
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(a) True (b) Posterior model #1 (c) Posterior model #2 (d) Posterior model #3

Figure 5.23: True model and three posterior realizations (Case 3: s, ksand, klevee, kshale; Ne =
400): layer 1 (1st row) and layer 2 (2nd row).

model parameters are not stable and it is hard to approximate the gradient correctly in the

data assimilation process.
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(a) I1 water injection (b) I2 water injection (c) I3 water injection (d) I4 water injection

(e) P1 water production (f) P3 water production (g) P4 water production (h) P7 water production

(i) P1 oil production (j) P3 oil production (k) P4 oil production (l) P7 oil production

Figure 5.24: Production data of posterior ensemble (Case 3: s, ksand, klevee, kshale; Ne = 400).
True (red curves), observed data (red dots), simulated data of realizations (light
blue curves), and ensemble mean (dark blue curves). History: 0 < t ≤ 600 days,
forecast: t > 600 days.

Figure 5.25: Normalized data mismatch (Case 3: s, ksand, klevee, kshale; Ne = 400). Median
(central red mark), 25th and 75th percentiles (bottom and top edges of the
box), extreme data points (whiskers), and outliers (“+” symbol).
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(a) Sinuosity (b) ksand

(c) klevee (d) kshale

Figure 5.26: Evolution of model parameters as a function of the ES-MDA step (Case 3: s,
ksand, klevee, kshale; Ne = 400). True (black horizontal straight lines), ensemble
mean (red curves), and ensemble mean ±3 ensemble standard deviation (blue
curves).

(a) Facies upscaled cells (b) Modeled channel

Figure 5.27: An adaptive channel model honored hard data at wells: sand facies (yellow),
levee facies (green) and wells (blue).
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Assisted History Matching of Channelized Reservoirs Using ES-MDA

with Common Basis DCT

We proposed a new implementation method of the discrete cosine transform (DCT),

i.e., common basis DCT, to parameterize discrete facies type indicators. Different from con-

ventional implementations of DCT such as truncated and particular basis DCT, common

basis DCT is able to capture the geological similarities among different models by con-

structing a set of common basis functions that describe the features throughout the whole

ensemble. The superior properties of common basis DCT was demonstrated by a recon-

struction experiment where the continuity of geological structures is better preserved with

common basis DCT.

A history matching workflow for multi-facies channelized reservoirs was presented

by combining the common basis DCT parameterization and the ensemble smoother with

multiple data assimilation (ES-MDA) algorithm. After every iteration step, an improved

post-processing technique is used to map updated continuous variables to discrete facies

indicators by considering the prior facies proportions.

The proposed workflow was tested on two synthetic examples. One example is a 2D

three-facies reservoir with complex channel distributions and the other example considers a

3D five-layer reservoir with two distinct geological zones. The computational results illustrate

that the common basis DCT outperforms the other DCT implementations in the aspects of

data match and preservation of geological realism. We also investigated the influence of

ensemble size and retained number of DCT basis functions on the performance of history

matching workflow. The results show that the ensemble collapse problem can be mitigated
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when a large ensemble is used.

6.2 Simultaneous Calibration of the Distribution of Facies and Petrophysical

Properties with Non-Negative Matrix Factorization

We introduced the non-negative matrix factorization (NMF) for parameterization of

facies fields and history matching of channelized reservoirs. By applying the multiplicative

update rules, NMF is able to extract local features of model parameters by imposing the non-

negativity constraints on the components in the basis and coefficient matrices. The results

of a reconstruction experiment illustrate that the retained number of basis vectors, Nc, has

critical impact on the approximation performance of NMF and we developed a heuristic

scheme to determine reasonable value of Nc based on requiring that the normalized data

mismatch ξ whose value smaller than 0.2.

An integrated history matching workflow combining NMF, ES-MDA and a post-

processing technique was presented to calibrate the facies distributions and heterogeneous

permeability values within facies simultaneously and was tested on 2D and 3D examples.

The computational results show that the key geological structures of true model are mostly

resolved in the posterior realizations and we can obtain good data matches as well. Through

comparison with common basis DCT and optimization-based principal component analysis

(OPCA), NMF presents superior capability of resolving geologic details and preserving the

spatial continuity of channelized facies. Since NMF basis tends to describe the local features

of the model parameters, a posterior reservoir model can be therefore generated as a positive

linear combination of updated NMF basis vectors.

6.3 Parameterization Based on Tensor and Non-Negative Tensor

Decomposition for Assisted History Matching of Channelized Reservoirs

with Multiple Facies

The recent progress in tensor decomposition (TD) methods allows people to build a

multi-dimensional data set and parameterize different dimensions of reservoir models sep-
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arately and flexibly. Moreover, its variant, non-negative tensor decomposition (NTD), has

gained increasing popularity in various fields but no relevant work has been done to use the

NTD for parameterization and history matching. In Chapter 4, we presented the basic con-

cepts, notations and formulations of tensor decomposition. We also discussed different types

of tensor and corresponding implementation schemes of TD and NTD. A reconstruction ex-

periment was conducted to compare the performance of various implementations of TD and

NTD. An integrated history matching workflow combining TD/NTD, ES-MDA and a post-

processing technique was tested on several cases which consider different implementation

schemes of TD and NTD, ensemble sizes and sets of wells.

Based on results from the reconstruction experiment and example problems, the fol-

lowing conclusions are drawn:

• The two-mode implementation scheme of TD and NTD gives slightly better model

reconstruction quality and data match results than multi-mode schemes, but it takes

about 5 times longer to complete two-mode TD and NTD.

• The components in the core tensor and factor matrices of NTD are non-negative and the

retained basis functions of two-mode NTD are illustrated to extract and describe latent

features hidden in large ensemble, e.g., well locations where facies type observations

are available.

• When the retained number of basis functions is identical, the data match results ob-

tained by TD and NTD are better than those obtained by NMF for the same history

matching problem.

• The probability maps of channel facies based on posterior realizations provide a good

way for uncertainty characterization of facies distributions. In the 100% probability

maps, only gridblocks at or very near well gridblocks where the channel facies is ob-

served are occupied by the channel facies when we increase the ensemble size from

200 to 500. This indicates that the probability maps when Ne = 500 give better

characterization of uncertainty than the Ne = 200 case.
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• Through visualization and statistical indicators calculated based on the 90% and 80%

probability maps, more channel gridblocks in the true model are correctly resolved by

NTD than TD. But according to the 0% and 10% probability maps, the proportion of

missed channel gridblocks is also higher when implementing NTD.

• In various cases, the performance of TD and NTD are similar in the aspect of data

matches and the uncertainty characterization of facies distributions is slightly better

with NTD. However, the computing time of NTD can be as 10 times longer as that of

TD.

• The ranks of different modes in TD and NTD play an important role in the performance

of parameterization. We developed a truncation scheme based on the higher-order

SVD (HOSVD) algorithm to determine ranks of different modes in TD and NTD by

adjusting a threshold, ζ, in order to balance normalized model mismatch ξ and model

reduction ratio η. The usefulness of this truncation scheme was demonstrated by a

comprehensive comparison between the TD and NTD with and without truncation.

6.4 Assisted History Matching of Channelized Reservoirs Using the

Object-Based Model in Petrel

To completely preserve the spatial continuity of channel facies distribution repre-

sented by object-based modeling, we proposed a workflow to adjust by history matching

the parameters used to generate a realization of channelized system by object-based mod-

eling in Petrel. The parameters being calibrated include the orientation (θ), amplitude (a),

wavelength (λ), sinuosity (s), width (wsand) and thickness (hsand) of sand channels as well as

width (wlevee) and thickness (hlevee) of levee facies.

Although this seems like an obvious approach, the results of a sensitivity analysis

show that extremely small changes in some of the parameters (especially the sinuosity s)

used in object-based modeling with Petrel lead to an extremely large change in the facies

distribution, i.e., the object-based realization is not a continuous or stable function of the

205



parameters. Due to the internal randomness associated with Petrel modeling process, it is

difficult to obtain a reasonable implicit approximation of the gradient in the data assimilation

algorithm. Thus, the proposed workflow for history matching of object-based models was

not successful.

6.5 Future Work

There are several problems that are not fully resolved by this work and the following

topics are suggested for future research:

• Intuitively, one might expect localized basis functions to be superior to global ones

for constructing a good approximation of any model. Thus, the properties of localized

features retained by NMF and NTD should be further explored.

• We did not really obtain very good history matches for the cases with tensor and non-

negative tensor decomposition. More work should be done in order to address this

issue including the investigation of truncation level in the SVD used to compute the

matrix inverse involved in the ES-MDA update equation.

• Even with the post-processing technique, there still remains small number of gridblocks

where the facies type indicator is not discrete and the spatial continuity of geological

structures is not guaranteed in the posterior realizations with current workflow. Seis-

mic data should be assimilated as well in order to enhance the preservation of prior

geological realism.

• In this work, we applied the parameterization methods to synthetic models. The

methodologies and history matching workflow should be extended and tested on more

realistic three-dimensional problems.
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APPENDIX A

DATA ASSIMILATION ALGORITHM

A.1 ES-MDA-GEO

For a vector of model parameters, y, with dimension of Ny, the ES-MDA-GEO update

equation at the `th data assimilation step (iteration) is

y`+1
j = y`j + ∆Y `VpΛpΓpU

T
p C

−1/2
D (d`uc,j − d`j), for j = 1, · · · , Ne, (A.1)

where Ne is the ensemble size; d`j is the Nd-dimensional vector of forecast data corresponding

to y`j; d
`
uc,j is the observed data perturbed by random noise sampled from the distribution

N (0, α`CD); and CD is a Nd × Nd covariance matrix of the observed data measurement

errors. For the ensemble of Ne realizations, ∆Y ` is the Ny ×Ne matrix defined as

∆Y ` =
1√

Ne − 1

[
y`1 − ȳ`, · · · ,y`Ne

− ȳ`
]
, (A.2)

where

ȳ` =
1

Ne

Ne∑
j=1

y`j. (A.3)

Similarly, we can also define the Nd ×Ne matrix ∆D` as

∆D` =
1√

Ne − 1

[
d`1 − d̄`, · · · ,d`Ne

− d̄`
]
, (A.4)

where

d̄` =
1

Ne

Ne∑
j=1

d`j. (A.5)
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Then, a dimensionless sensitivity matrix, G`
D, is given by

G`
D = C

−1/2
D ∆D`, (A.6)

where C
−1/2
D is the inverse of the square root of CD. Generally, a truncated singular value de-

composition (TSVD) is used in the update equation for an ensemble-based data assimilation

method as follows

G`
D = UpΛpV

T
p , (A.7)

where p denotes the truncation level and is chosen as the smallest positive integer that

satisfies
p∑
j=1

λj ≥ ζ
N∑
j=1

λj, (A.8)

where ζ = 0.99 in this work; λj is the jth singular value after the SVD of G`
D and the

singular values are ordered as

λmax = λ1 ≥ λ2 ≥ · · · ≥ λN = λmin ≥ 0, (A.9)

where N = min{Nd, Ne}. And Γp in Eq. A.1 is an p×p diagonal matrix with its jth diagonal

entry equals to

γj =
1

λ2j + α`
. (A.10)

The complete derivation procedure and calculation details of the geometric inflation

factors, α`, can be referred to the original paper by Rafiee and Reynolds (2017).
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APPENDIX B

TENSOR AND NON-NEGATIVE TENSOR DECOMPOSITION

B.1 Vector Outer Product

For an Nth-order tensor A ∈ RI1×I2×···×IN , we call it a rank-one tensor if it can be

written as the outer product of N vectors, i.e.,

A = u(1) ⊗ u(2) ⊗ · · · ⊗ u(N), (B.11)

where vectors u(1) ∈ RI1 , · · · , u(n) ∈ RIn , · · · , u(N) ∈ RIN and the symbol “⊗” represents the

vector outer product. The outer product of the first two vectors, u(1) ∈ RI1 and u(2) ∈ RI2 ,

gives a second-order tensor (matrix), B ∈ RI1×I2 , which is given by

B = u(1) ⊗ u(2) = u(1)(u(2))
T
. (B.12)

Then, the outer product of the first three vectors, u(1) ∈ RI1 , u(2) ∈ RI2 and u(3) ∈

RI3 , leads to a three-order tensor, C ∈ RI1×I2×I3 where the i3th “slice” can be obtained by

multiplying the second-order tensor, B, with the i3th element in vector u(3) as follows

C::i3 = u
(3)
i3
B, for i3 = 1, · · · , I3. (B.13)

In a similar way, we can obtain the rank-one tensor A ∈ RI1×I2×···×IN through the

outer product of N vectors. Therefore, each element of the tensor A is the product of the
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corresponding vector elements as

ai1i2···in···iN = u
(1)
i1
u
(2)
i2
· · ·u(n)in

· · ·u(N)
iN
, for in such that 1 ≤ in ≤ In. (B.14)

B.2 Tensor Multiplication

Here we consider only the tensor n-mode product, i.e., we provide the equation for

multiplying a tensor by a matrix (or a vector) in mode n. The n-mode product of a tensor

B ∈ RR1×R2×···×Rn×···×RN with a matrix U (n) ∈ RIn×Rn is defined by

[
B ×n U (n)

]
r1···rn−1inrn+1···rN

=
Rn∑
rn=1

br1···rn−1rnrn+1···rNuinrn , (B.15)

leading to a tensor B×nU (n) ∈ RR1×R2×···×In×···×RN . With the n-mode product, the singular

value decomposition of a matrix A ∈ Rm×n, i.e., A = UΛV T, can be written as A =

Λ×1 U ×2 V in the tensor framework with the following property:

(Λ×1 U)×2 V = (Λ×2 V )×1 U , (B.16)

where U ∈ Rm×m, Λ ∈ Rm×n and V ∈ Rn×n.

B.3 Higher-Order Orthogonal Iteration (HOOI)

In this work, the tensor decomposition (TD) is implemented using the Tucker method

(Tucker, 1966) with a Matlab package called “Tensorlab 3.0” (Vervliet et al., 2016a,b) where

the HOSVD algorithm (De Lathauwer et al., 2000a) is available.

De Lathauwer et al. (2000b) proposed the higher-order orthogonal iteration (HOOI)

algorithm in order to improve the calculations of factor matrices but HOOI is more computa-

tionally expensive than HOSVD (Cichocki et al., 2009). In this appendix, the implementation

of HOOI algorithm is described in details. Moreover, since there is no HOSVD algorithm for

non-negative tensor decomposition (NTD) in Tensorlab 3.0, we employ a Python package

called “TensorLy” (Kossaifi et al., 2019) to implement NTD using the HOOI algorithm in
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this work.

Given anNth-order tensorA ∈ RI1×I2×···×IN , an approximate tensor Â ∈ RI1×I2×···×IN ,

can be obtained by minimizing the least squares objective function as follows

O(Â) = ||A − Â||2F, (B.17)

where the subscript “F” denotes the Frobenius norm. With the Tucker method, the approx-

imate tensor, Â, can be written as

Â = B ×1 U
(1) ×2 U

(2) · · · ×N U (N), (B.18)

where the core tensor B ∈ RR1×R2×···×RN , and the factor matrices U (1) ∈ RI1×R1 , U (2) ∈

RI2×R2 , · · · , U (N) ∈ RIN×RN have orthonormal columns and represent the feature changes

in the 1st, 2nd, · · · , Nth dimension of the tensor, respectively. R1, R2, · · · , RN are the

1-mode, 2-mode, · · · , N -mode rank of A, respectively. In other words, R1, R2, · · · , RN are

the column rank of factor matrix U (1), U (2), · · · , U (N), respectively.

Based on the derivations in the original work (De Lathauwer et al., 2000b), the factor

matrices are determined in the optimization process while the core tensor is obtained by a

theorem giving

B = A×1 (U (1))T ×2 (U (2))T · · · ×N (U (N))T. (B.19)

In De Lathauwer et al. (2000b), the objective function defined in Eq. B.17 can be

rewritten as

O(Â) = ||A − Â||2F = ||A||2F − 2 < A, Â > +||Â||2F, (B.20)

where the inner product, < A, Â >, is obtained with Eqs. B.18 and B.19 as follows

< A, Â > =< A,B ×1 U
(1) ×2 U

(2) · · · ×N U (N) >

=< A×1 (U (1))T ×2 (U (2))T · · · ×N (U (N))T,B >

= ||B||2F.

(B.21)
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Since the factor matrices U (1), U (2), · · · , U (N) have orthonormal columns and they do

not affect the Frobenius norm, we have ||Â||2F = ||B||2F. Substitution of the above expressions

in Eq. B.20 yields

O(Â) = ||A − Â||2F = ||A||2F − 2 < A, Â > +||Â||2F = ||A||2F − 2||B||2F + ||B||2F

= ||A||2F − ||B||2F = ||A||2F − ||A ×1 (U (1))T ×2 (U (2))T · · · ×N (U (N))T||2F.
(B.22)

Therefore, the original minimization problem is equivalent to the maximization of the

function

g(U (1),U (2), · · · ,U (N)) = ||Ũ (n) ×n (U (n))T||2F, (B.23)

where

Ũ (n) = A×1 (U (1))T · · · ×n−1 (U (n−1))T ×n+1 (U (n+1))T · · · ×N (U (N))T. (B.24)

The complete higher-order orthogonal iteration (HOOI) algorithm, for an Nth-order

tensor A ∈ RI1×I2×···×IN , is presented in Algorithm 1.
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Algorithm 1: Higher-Order Orthogonal Iteration (HOOI)

Input: A ∈ RI1×I2×···×IN .

Output: Â ∈ RI1×I2×···×IN which is a rank-(R1, R2, · · · , RN) approximation of A.

Initialization: U
(n)
0 ∈ RIn×Rn for n = 1, · · · , N using HOSVD.

1 for ` = 0, · · · , `max do

2 Ũ (1)
`+1 = A×2 (U

(2)
` )T ×3 (U

(3)
` )T · · · ×N (U

(N)
` )T;

3 Maximize over U
(1)
` ∈ RI1×R1 with constraint (U

(1)
` )TU

(1)
` = I to obtain U

(1)
max:

g(U
(1)
`+1) = ||Ũ (1)

`+1 ×1 (U
(1)
` )T||2F;

4 U
(1)
`+1 = U

(1)
max.

5 for n = 2, · · · , N do

6 Ũ (n)
`+1 = A · · · ×n−1 (U

(n−1)
`+1 )T ×n+1 (U

(n+1)
` )T · · · ;

7 Maximize over U
(n)
` ∈ RIn×Rn with constraint (U

(n)
` )TU

(n)
` = I to obtain U

(n)
max:

g(U
(n)
`+1) = ||Ũ (n)

`+1 ×n (U
(n)
` )T||2F;

8 U
(n)
`+1 = U

(n)
max.

9 end (for)

10 if Converged then

11 Return: U (1),U (2), · · · ,U (N); B = Ũ (N) ×N (U (N))T; Â

12 break;

13 end (for)

B.4 Kronecker, Khatri–Rao, and Hadamard Products

The Kronecker product of matrices A ∈ RI×J and B ∈ RK×L is denoted by A ⊗B.
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The result is a matrix of size (IK)× (JL) and defined by

A⊗B =



a11B a12B · · · a1JB

a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB


=

[
a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 · · · aJ ⊗ bL−1 aJ ⊗ bL

]
.

(B.25)

The Khatri–Rao product is the “matching columnwise” Kronecker product. Given

matrices A ∈ RI×K and B ∈ RJ×K , their Khatri-Rao product is denoted by A � B. The

result is a matrix of size (IJ)×K defined by

A�B =

[
a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
. (B.26)

The Hadamard product is the elementwise matrix product. Given matrices A ∈ RI×J

and B ∈ RI×J , their Hadamard product is denoted by A~B. The result is also of size I×J

and defined by

A ~ B =



a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J
...

...
. . .

...

aI1bI1 aI2bI2 · · · aIJbIJ


. (B.27)
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