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ABSTRACT

Yong Zhao (Doctor of Philosophy in Petroleum Engineering)

Ensemble Kalman Filter Method for Gaussian and Non-Gaussian Priors

Directed by Albert C. Reynolds

291 pp. Chapter 9

(347 words)

The objective of this work is to find an efficient and robust way to implement

the ensemble Kalman filter (EnKF) to assimilate production and seismic data for

both Gaussian and truncated pluri-Gaussian geological models.

Truncated pluri-Gaussian models have proven to be useful for generating re-

alistic geological models of facies distributions. In this work, we will specifically test

a new idea for modeling of a channelized reservoir (fluvial system with two facies,

channel facies and non-channel facies). EnKF is used to adjust the facies distribution

(e.g. channel and non-channel facies) as well as the porosity and permeability of each

facies to match production data and seismic data. For two and three-dimensional

pluri-Gaussian models, we present a new procedure to ensure that facies observations

at wells are honored at each data assimilation step.

As the erroneous saturation distribution obtained with EnKF may result from

nonlinearity or the failure of the assumption that the ensemble of predictions is

approximately Gaussian, we investigate the application of a global and local normal

score transform to transform water saturation to a Gaussian variables before applying

the EnKF analysis step. We also apply an iterative EnKF scheme to obtain more

plausible saturations distributions. To improve water cut data matches, we consider

matching breakthrough times directly before matching watercut data.
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The integration of seismic data poses problems because of the large number

of data that are assimilated. With a global assimilation procedure based on subspace

projection, filter divergence becomes severe. On the other hand, our implementation

of a local updating method to reduce filter divergence results in an unrealistic rough

facies map. We introduce a projection method to obtain a more realistic map of the

facies distribution, which retains the inherent smoothness of the underlying geological

model.

The characterization of measurement error is important if one uses a Bayesian

approach to condition reservoir models to dynamic data. We use Savitzky-Golay

smoother and wavelet smoother to estimate the measurement error in the production

data, and use a modified EM (Expectation-Maximization) algorithm combined with

a quadratic fitting to estimate the measurement error in the 4-D seismic data.
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CHAPTER 1

INTRODUCTION

Assisted or automatic history matching methods in a Bayesian setting re-

quire a sound geological model with clear definition of a prior probability density

function (PDF), a reasonable estimation of measurement error and an efficient algo-

rithm to modify geological models so that they match the data. This study will use

a truncated pluri-Gaussian geological model to model facies distribution as well as

Gaussian random fields to model porosity and permeability distributions. The en-

semble Kalman filter (EnKF) and an iterative scheme (EnRML) are used to condition

the models to both production data and seismic data. Savitzky-Golay smoothing, the

wavelet transform and the EM algorithm are used to estimate measurement errors

in production and seismic data.

Geologists are often able to provide a training image of the reservoir facies

distributions. Conditioning these to production data by history matching is difficult

because the sharp change in rock properties across facies boundaries causes a discon-

tinuity in the derivative of production data to grid block properties (sensitivities).

This discontinuity in derivatives can be avoided by computing the exact location

of facies boundaries within a simulator grid block ([84]) or by introducing artificial

smooth changes in facies properties across facies boundaries ([71, 53]), but these pro-

cedures are generally not feasible for complex three-dimensional geological models.

In this study, we use a pluri-Gaussian geological model to describe the facies distri-

bution, and use EnKF to assimilate production and seismic data. We also consider

the case of Gaussian priors. We present new computationally efficient procedures for

integrating both production data and seismic data into facies maps to obtain a more
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accurate reservoir description and evaluation of uncertainties and to provide better

guidance for reservoir development and production optimization.

EnKF is an efficient data assimilation scheme. After data assimilation at

a time step, EnKF continues with prediction by restarting the simulator with the

analyzed ensemble and does not require simulating from time zero with the updated

model. This assumes that the updated state vector (including primary variables

from the simulator) is identical with those we obtain if we simulate from time zero

with updated model parameters. This makes the method very efficient, but this

property can only be formally established when the dynamical equations are linear,

modeling errors are negligible and there is a linear relation between data and the

state vector [77]. However, the reservoir simulator equations are non-linear, which

means primary reservoir simulator variables in the updated state vector may be non-

physical. This error is most obvious in phase saturations, which accumulates over

assimilation time steps and affects the material balances and predictions of future

performance. In pluri-Gaussian cases, we have found that high water saturation

regions are not consistent with the channel facies region because of an inconsistent

adjustment between model parameter and saturations during analysis. Because of

the non-linearity of the system, the saturations in the updated ensemble can become

non-Gaussian. For example, in the water flooding case, the histogram of water

saturation near the water front may have a high value mode and a low value mode,

so the Gaussian assumption is not valid.

Assimilating seismic data or inverted seismic data with EnKF is a special

problem because EnKF has limited freedom (typically 100) to match a large number

of data (in every gridblock), and technically, inverting a large matrix (Nd×Nd, where

Nd is the number of data) is not feasible. In this study, we will apply and compare

two approaches to this problem, i.e. global analysis and local analysis of seismic

data.
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1.1 Objectives

The objective of this work is to find an efficient and robust way to imple-

ment the ensemble Kalman filter (EnKF) to assimilate production and seismic data

for both Gaussian and truncated pluri-Gaussian geological models. For the pluri-

Gaussian geological model, both the facies distributions as well as the porosity and

permeability of each facies are model parameters, and within the Bayesian frame-

work we use, are treated as random variables. Although a channelized reservoir

(fluvial system with channel facies and non-channel facies) can only be described

very roughly with a pluri-Gaussian model, the model is sufficiently reasonable to

investigate whether EnKF can correctly characterize the connectivity between in-

jection and production wells. We consider different ways to improve the updates of

saturations. In particular, we apply a normal score transform to make the trans-

formed saturations follow Gaussian distribution [8, 35], and consider an iterative

scheme to alleviate non-linearity effects [49, 34]. We include methods to estimate

the covariance matrix of the measurement error for different types of production data

and inverted seismic data.

1.2 Literature Review and Discussion

1.2.1 Ensemble Kalman Filter and Pluri-Gaussian Geological Models

The ensemble Kalman filter provides an efficient method to assimilate the

dynamic data into reservoir models and its application to reservoir history matching

problems is an intense focus of several research groups. The theory and algorithms

for implementing various procedures for implementing EnKF have been presented

in many publications by Evensen [22, 23, 24, 27] and other researchers working in

atmospheric physics and the most important results can be found the recent book of

Evensen [26]. The pioneering work of Loc’h and Galli [55] on pluri-Gaussian provides

a way to model the geological facies of a reservoir. Although, pluri-Gaussian models
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are able to generate a wide range of geological descriptions [5], our objective here

is to be able to integrate production data and seismic data with geological facies

models, particularly those for fluvial systems, to obtain a more accurate map of the

most productive facies for reservoir management.

The application of the ensemble Kalman filter (EnKF) [22] to forecast the

state of a system has been widely explored in the ocean dynamics and atmospheric

physics literatures; see [23], [40] [59, 24, 41] and the exhaustive citation list of Evensen

[27]. Since its introduction into the petroleum engineering literature [62] for sequen-

tial or real-time automatic history matching, it has been applied to a number of

synthetic problems for estimation or stochastic simulation of reservoir model para-

meters and reservoir simulator primary variables [61, 33, 31, 56, 75, 78, 79, 68, 81, 77]

as well as to field cases [39, 28, 10].

In these three field cases, EnKF provided a better match of data than was

obtained from a traditional history matching approach. Nonetheless, the EnKF

method can encounter problems in matching water cut data [28], and it has been

shown that for toy multi-modal problems, the method does not sample correctly and

that the estimated mean may lie in a set which has zero probability [80]. For such

problems and for highly nonlinear problems, there is evidence that an improved data

match, an improved sampling of the conditional pdf and an improved estimate of

future production can be obtaining by applying an iterative EnKF method [68, 49].

The iterative methods of these last two papers, however, require an adjoint method to

compute the gradient of a least-squares objective function of data mismatch terms.

For the truncated pluri-Gaussian model considered here, however, the derivative

of this objective function does not exist along truncation lines or curves because

as a point (pair of Gaussian random variables for a simulation gridblock) moves

across a truncation line, the facies occupying the gridblock changes so that there is

a discontinuous change in the objective function. This discontinuity in the gradient
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can be avoided if the problem is sufficiently simple so that the location of facies

boundaries within a reservoir simulator gridblock can be computed [83] or, for the

more complicated cases considered here, by using a transition region to introduce

artificial smooth changes in facies properties across facies boundaries [71, 54]. For

two dimensional two phases problem, Liu and Oliver [54] successfully implemented

pluri-Gaussian models in dynamic data assimilation using both the ensemble Kalman

filter (EnKF) and a gradient based method. In the pluri-Gaussian model, three

intersecting lines were used to define the truncations for three facies. Gaussian

random fields were adjusted to match the dynamic data assuming the porosity and

permeability of each facies are known. In the EnKF method, the hard data (observed

facies at well locations) were appended as the observed data in each data assimilation

step to guarantee the hard data are always satisfied. In gradient based method

similar to Schaff et al. [71], Liu and Oliver [53] added a transition zone to the

truncation map to make it possible to calculate the sensitivity of facies with respect

to Gaussian random fields. In their implementation, the gradients were calculated

using the adjoint method [50, 52], and the objective function is optimized using the

LBFGS method [82]. However, for the two-dimensional two-phase flow problems

considered, Liu and Oliver [54] found that EnKF was not only more efficient than

the gradient based approach but also gave better data matches.

Before assimilating dynamic data using EnKF, we need to be able to generate

initial ensemble of Gaussian random fields that honor the hard data (observed facies

at well locations). Unfortunately, the distribution of Gaussian random field values

at well locations is non-Gaussian. In this work, the pairs of data at well locations are

randomly drawn from data banks of corresponding facies, which is generated from

a set of unconditional realizations of Gaussian random fields, and the values at un-

sampled locations are generated from a sequential Gaussian simulation algorithm.

The only assumption is that the wells are far enough apart so that the Gaussian
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random field values are uncorrelated with each other.

In this study, we specifically designed a truncation with two intersecting el-

lipses, which can generate channel facies and non-channel facies. Although the re-

sults obtained do not look like realistic channels, the procedure gives us a way to

investigate whether we can characterize the connectivity of a channelized reservoir.

1.2.2 Matching Both Production Data and Seismic Data

As the size of the ensemble approaches infinity, the ensemble Kalman filter

provides a correct sample of the conditional pdf if the prior state vector (reservoir

model parameters plus simulation primary variables) is Gaussian and the relation

between the state vector and predicted data is linear [27]. In the examples consid-

ered here, predicted production data will be generated with a reservoir simulator. For

such problems, the saturation distribution in a reservoir simulation gridblock through

which a front is moving is non-Gaussian. Moreover, when saturations are updated at

an analysis step of EnKF, it is not uncommon to find analyzed (updated) saturations

to be nonphysical, for example, greater than one or less than zero. In such cases,

it is common to simply truncate these values to physically plausible values before

predicting forward to the next data assimilation time with the simulator. For prob-

lems where variables are non-Gaussian, Bertino et al. [8] suggested replacing those

variables with transformed variables obtained by applying a normal score transform

before assimilating data. When the normal score transform is applied to predicted

saturation values before data assimilation, one can ensure that the analyzed values

will be within the specified physical limits. However, for a simple one-dimensional

waterflooding problem, Gu and Oliver [35] obtained nonphysical oscillations in the

saturation profile. We have experimented with a different construction of the normal

score transform than the one used by Gu and Oliver [35], but the modification yields

no improvement, and introduces an additional problem.
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When assimilating production and seismic data to generate facies maps, the

reservoir model variables are the pair of Gaussian random variables at each gridblock

and, for some examples in this work, the porosity and permeability of each facies.

Hard data, however, may include the observation of a particular facies at a well block.

As the facies type is not one of the model variables, a method must be introduced

to ensure that the values of the two Gaussian random fields at a well gridblock are

consistent with observed facies at each data assimilation step. If, when assimilating

production data with the EnKF analysis step, well observations of facies are not

honored, Liu and Oliver [54] use EnKF with iteration to ensure observed facies data

are honored. Here, we use a different approach, which avoids multiple iterations to

honor well observations of facies. If the normal EnKF update violates the observed

facies, we compute feasible values of the well block Gaussian random values that are

“close” to the updated values and also are consistent with the observations of facies.

Then we select pairs of these values of the Gaussian random variables, incorporate

them as hard data into the data vector and redo the EnKF analysis step.

The assimilation of seismic data or inverted seismic data with EnKF poses

special problems because the number of data is large, for example, one may have val-

ues of acoustic impedance and Poisson’s ratio at every reservoir simulation gridblock.

Because EnKF is typically applied with an ensemble size on the order of 100 and

each updated (analyzed) model must be a linear combination of the initial ensemble

of models [27], there are not sufficient degrees of freedom to match all seismic data.

The degrees of freedom may decrease when data are assimilated due to a loss of

rank in the updated covariance matrix when the covariance matrix for measurement

error that appears in the Kalman gain is approximated using a finite sample [43, 25].

Moreover, even if a full rank version of the measurement error covariance matrix is

used, the matrix that must be inverted in the data assimilation step is Nd×Nd where

Nd is the number of data to be assimilated at a particular step. When assimilating
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seismic data, Nd is often so large that it is not feasible to solve an Nd × Nd matrix

problem. One approach to deal with this difficulty is to apply a subspace EnKF

inversion scheme [43, 25]. However, this approach may require a very large ensemble

size to obtain reasonable results as shown by Skjervheim et al. [75] as well as by

results presented later in this study. If the ensemble is not large, after assimilation

of seismic data, all ensemble members may be very similar which suggests that un-

certainty has been significantly underestimated. Another way to reduce the problem

of insufficient degrees of freedom and avoid inverting a large matrix is to use local

updating [59, 24, 64, 75]. As discussed later, in local updating, model parameters at

a gridblock are updated using only data at nearby gridblocks. When Skjervheim et

al. [75] used this approach to update values of gridblock permeabilities, porosities

and clay ratios, they found that one could obtain non-smooth property fields. In

this work, we introduce a projection method with local updating that eliminates the

inherent lack of smoothness that can occur when using local updating. For the facies

models considered in this study, this loss of smoothness is severely exacerbated.

As mentioned previously, for highly nonlinear or non-Gaussian problems,

EnKF may not give a reasonable sample of the conditional pdf’s we wish to sample,

but results may be improved via iteration [68, 49]. The iteration methods in these

papers require adjoint code for computing gradients of the sum of squared production

data mismatch terms, and for the truncated Gaussian model, this gradient is discon-

tinuous. Gu and Oliver [34] have presented an iterative method motivated by the

maximum likelihood ensemble filter of Zupanski [86] which uses an approximation to

an average sensitivity matrix. The method of Zupanski and Gu and Oliver both use

a Taylor series approximation to find an “average” sensitivity matrix and thus avoid

the direct approximation of gradients. Although they applied the method to only

one true reservoir flow problem (a linear one-dimensional waterflooding problem)

we show that a modification of their algorithm can sometimes improve results when
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assimilating production data.

1.2.3 Measurement Error Estimation

In order to characterize reservoir description, make performance predictions,

track the movement of injected fluids, characterize the uncertainty in reservoir de-

scriptions and performance predictions and optimize production, it is desirable to

integrate all available data including static data (core, well logs) and dynamic pro-

duction data (wellbore pressure, WOR, GOR or phase production rates) and seismic

data. A popular approach to characterize uncertainty involves generating multiple

reservoir models (realizations) using randomized maximum likelihood (RML) [63],

[45], [69], and ensemble Kalman filter (EnKF) [22], [62], [60], [24]. An individual re-

alization is constructed by minimizing an objective function (constructed by Baysian

inversion theory), which is composed of a prior model mismatch term and a data

mismatch term. The data mismatch term typically involves dynamic production

and/or seismic data. The relative weights of different types of data in the objec-

tive function are determined by the covariance matrix of the measurement error.

The balance among different types of data affects the suite of realizations obtained,

so having a reasonable estimate of the measurement error is important. It is also

true for ensemble Kalman filter method (EnKF), which assimilate data sequentially

in time, because it is also based on Bayesian inversion theory. Estimation of the

measurement error is required for both of these methods.

We wish to estimate the measurement error directly from the observed (mea-

sured) data which are the sum of the true data plus error. Our ability to do so

rests on the underlying assumption that the measurement error for a particular data

type (e.g. wellbore pressure versus time measured with a pressure gauge) has much

higher frequency than the true underlying signal. Thus, we can smooth the data to

estimate the true signal. Subtracting the estimated true signal from the measured
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data gives an estimate of the measurement error. Note this estimated measurement

error can include components of processing errors, e.g., in 4D seismic data, provided

the processing errors are of much higher frequency than the underlying true signal.

Throughout, our focus is on the estimation of measurement error in 4D acoustic im-

pedance change and Poisson’s ratio change data, which are derived from time-lapse

seismic surveys, and production WOR and GOR data.

Aanonsen et al. [1] applied a moving average with equal weights to estimate

measurement error in both production and seismic data with some success. The

moving average method can introduce bias in the estimation when the underlying

true signal is not a linear function of time or space. The bias becomes worse when

the true signal contains discontinuities, because the simple moving average smoothes

out discontinuities and thus some of the true signal is contained in the estimated

measurement error. Intuitively, to accurately estimate measurement error in this

case, it is necessary to find these discontinuities or group the data into regions to

exclude the discontinuities and implement smoothing algorithm within each region.

For 1-D measurement of production data, i.e., WOR, GOR, pressure etc.,

a Savitzki-Golay smoothing method and a wavelet transform method are used for

smoothing. We will show that if outliers and discontinuities exist in the measure-

ments, the smoothing can cause overestimation of measurement errors. We can not

separate them correctly unless we recognize and remove their effects. We combined

mid-point smoothing, the second derivative, and wavelet smoothing to remove out-

liers and identify discontinuities. Finally, Savitzky-Golay smoothing and wavelet

transform smoothing were applied to corrected measurements free of outliers and

discontinuities.

For 4-D seismic data, the identification of discontinuities is also important to

avoid overestimation of measurement error by smoothing across these discontinuities.

An expectation-maximization (EM) algorithm [37, 13, 67, 66, 57, 58, 47] will be
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applied to statistically separate measurements by assuming they are sampled from

a Gaussian mixture model. However, this algorithm is traditionally used to group

measurements by measured values, and we need to assume the number of groups

are known. We will introduce a spatial constraint (consistent with Besag [9]) and

design a grouping quality coefficient so that the EM algorithm can group seismic

data. The idea of using a spatial constraint is that two data should be in the same

group if the data are close in value and the distance between the locations of the

measurements is relatively small for spatially measured data. The grouping quality

coefficients designed in this study is used to find the approximate number of groups,

which is an very important issue because we normally do not know how to partition

the data into groups to avoid smoothing across discontinuities.
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CHAPTER 2

GAUSSIAN AND PLURI-GAUSSIAN GEOLOGICAL MODELS

Geological models are used to represent heterogeneous property fields. Real-

izations from a stochastic geologic model (conditioned to hard data) represent the

uncertainty in reservoir description prior to dynamic data assimilation. An initial

ensemble of these realizations is the starting point of any sequential data assimilation

method such as the ensemble Kalman Filter (EnKF), which is the focus of this re-

search. In this chapter, the two types of geological models used in this study will be

introduced: 1) a Gaussian geological model is most commonly used in history match-

ing study, in which porosity and permeability fields are modeled as Gaussian random

fields (GRFs) with specified variograms; 2) a pluri-Gaussian geological model, which

uses two Gaussian random fields (GRFs) and a truncation scheme to generate facies

distributions. Unlike the Gaussian geological models which incorporate a gradual

spatial change, a pluri-Gaussian geological model can characterize reservoirs with

clear boundaries between different rock types. In this study, two ellipses are used

for truncation to model a two facies system consisting of a channel facies and a

non-channel facies, and three truncation lines are used to model three facies in the

reservoir. However, the general procedure presented can be applied to model a large

number of facies. As examples, we consider a two-dimensional channelized reservoir

and a three-layer three facies case. For each case, the production data are assimi-

lated using EnKF to condition the initial set of realizations to production data. The

PUNQS3 example is used as an synthetic case for a prior Gaussian geological model.
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2.1 Gaussian Geological Model

In the Gaussian geological model considered here, porosity and log-permeability

fields are modeled as Gaussian random fields. The true porosity and log-permeability

fields are assumed to be a realization of random vectors that follow a Gaussian distrib-

ution, i.e., Φ = [φ1, φ2, · · · , φN ]T for porosity field, and ln kh = [ln kh,1, ln kh,2, · · · , ln kh,N ]T

for horizontal log-permeability field, and ln kz = [ln kz,1, ln kz,2, · · · , ln kz,N ]T for ver-

tical log-permeability field, where the subscript i refers to the ith reservoir simulation

gridblock. These random variables are spatially correlated, and their probability den-

sity function of M = (ΦT , ln kh
T , ln kz

T )T are defined as Gaussian with prior mean

vector M = (Φ
T
, ln Kh

T
, ln Kz

T
)T and prior covariance matrix CM . Both M and CM

are given as prior information describing the geology of the reservoir. Normally, CM

is constructed from variograms and cross-variograms for the porosity field and the

two log-permeability fields. In this study, a variogram is defined using the following

information [14]: (1) variances of each model type, i.e., porosity, ln kx and ln kz; (2)

horizontal correlation direction; (3) long and short correlation distance (horizontal

ranges); (4) vertical correlation range; and (5) type of the spatial variogram func-

tion. The most common types of variogram are exponential, spherical and Gaussian

[14]. The definitions of these three variograms are normally the same except for the

variances so that the cross-variograms between different model types, i.e. porosity,

ln kx and ln kz, can be constructed using the correlation coefficients. Therefore, with

the three predefined variograms, the covariance of any two random variables in M

are related to their spatial distances and correlation coefficient between porosity and

log-permeability.

Fig. 2.1 are the spatial correlation coefficients (covariances divided by vari-

ances) for these three types of variograms as a function of normalized spatial distance

(distance divided by correlation range). We can see that the correlation drops rapidly

for the exponential variogram, and it drops slowly for a Gaussian variogram.
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Figure 2.1: Three types of spatial of correlation coefficients.

PUNQS3 is a reservoir model with 5 layers, but these layers are uncorrelated

and have different correlation directions and ranges. We assume each field in each

layer follows spherical variogram. In this case, the uncertain model parameters in-

clude porosity (Φ) and log-permeability in horizontal and vertical directions (ln kh

and ln kz). In the next section, a Gaussian type of variogram will be used in a pluri-

Gaussian model to generate facies distribution because, among the three choices, it

gives the smoothest Gaussian random fields and the smoothest facies boundaries.

2.1.1 PUNQS3 Geological Model

The PUNQS3 reservoir was constructed based on a real field operated by Elf

Exploration & Production. The detailed information of this reservoir can be found

in references [7], [29], and [30]. Fig. 2.2(a) shows the reservoir is of dome-like shape,

and bounded by a fault located at the east and south side of the reservoir. This

figure also shows the initial saturation distribution. At the north and west sides,

there is a strong acting aquifer shown in blue. A small gas cap is located at the

top structure of the reservoir shown in red. Six wells are drilled in the oil column

around the gas cap. The size of the reservoir grid is 19× 28× 5 with horizontal grid

size of 590.55 ft× 590.55 ft. The vertical grid sizes vary between 2.5 feet to 30 feet

for different gridblocks, and are around 15 ft for most gridblocks. Fig. 2.2(b), 2.2(c)

and 2.2(d) are porosity and log-permeabilities distributions in the five layers. In
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Figure 2.2: True model of PUNQS3: geometry, porosity, ln kh, ln kz.

each layer, the six circular symbols indicate locations of the six wells. Solid symbols

indicate not perforated, and open circles indicate perforated. As the figures show,

no wells are perforated in the first two layers, and all are perforated in the fourth

layer. Only producer 5 and producer 11 are perforated in the third layer, and only

producer 1 and producer 4 are perforated in the fifth layer. The truth model is a

realization of prior geological model described in Table. 2.1, which is also used to

generate initial realizations for ensemble Kalman Filter (EnKF). The range is in the

number of gridblocks, and correlation angle is in degree of long correlation angle

counterclock wise from x-direction. In this study, hard data are not used. Fig. 2.3

shows the relative permeability curves.
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(b) Gas-Oil

Figure 2.3: PUNQS3 relative permeability curves.

Layers Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Mean Φ 0.143 0.099 0.143 0.117 0.143
STD Φ 0.101 0.029 0.101 0.056 0.101
Mean ln kh 4.54 3.91 4.54 4.37 4.54
STD ln kh 2.49 0.93 2.49 1.35 2.49
Mean ln kz 3.55 2.76 3.55 3.04 3.55
STD ln kz 2.49 0.93 2.49 1.35 2.49
Long Range (GDBK) 19.44 4.167 33.33 8.33 20.83
Short Range (GDBK) 5.56 4.167 8.33 4.167 6.94
Corr. Angle (DEG) 60.0 60.0 45.00 -60.0 30.0
Φ, ln kh Corr. 0.8 0.8 0.8 0.8 0.8
Φ, ln kz Corr. 0.8 0.8 0.8 0.8 0.8

Table 2.1: PUNQS3 geological model

2.1.2 PUNQS3 Production History and Data

The production history of the 6 wells are identical, and are all bound on oil

rate constraints (targets) as is shown in Fig. 2.4. Some observed data are available

in the first 2936 days, and predictions to 6023 days are made after data assimilation.

As a synthetic example, the observed data are generated by simulating the truth

model and then adding noise. Figs. 2.5, 2.6 and 2.7 respectively show the producing

bottomhole pressure, GOR and watercut respectively, in which the black lines are

true predictions from simulator, and red symbols are observed data with noise. The

standard deviation of measurement error is 50 psi in pressure data, and 5 percent of
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Figure 2.4: Production history of PUNQS3, for each well.
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(b) Producer 4
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(c) Producer 5
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(d) Producer 11
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(e) Producer 12
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(f) Producer 15

Figure 2.5: Predictions and measurements of bottomhole pressure from the truth
model (PUNQS3).

the truth in GOR and water cut data.

Acoustic impedance is implicitly a function of rock property, pressure and

phase saturations. With the calculated pressures and saturations from the simulator,

the acoustic impedance value for each gridblock is generated using the method used

by Dong and Oliver [18], which is based on the rock physics by Gassmann [32] and

Han [36]. In this model, acoustic impedance of a grid block is computed from Eq. 2.1.

Z = ρVp =

√
ρ(K +

4

3
G) =

√
ρK +

4

3
ρ2V 2

s , (2.1)

17



0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0
0 . 0

0 . 4

0 . 8

1 . 2

1 . 6

2 . 0

 

 

GO
R

T i m e  ( D a y )

 P r o d - 1  G O R

(a) Producer 1
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(b) Producer 4
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(c) Producer 5
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(d) Producer 11
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(e) Producer 12
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(f) Producer 15

Figure 2.6: Predictions and measurements of producing GOR from the truth model
(PUNQS3).
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Figure 2.7: Predictions and measurements of water cut from the truth model
(PUNQS3).
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where Z is the acoustic impedance of a certain grid-block, Vp and Vs are P-wave and

S-wave velocity respectively. K and G are bulk modulus and shear modulus of the

rock. Therefore, expressions for K, ρ and Vs are needed to calculate the acoustic

impedance of each grid-block.

K = Kgrain
Kframe + β

Kgrain + β
, (2.2)

β =
Kfluid(Kgrain −Kframe)

φ(Kgrain −Kfluid)
, (2.3)

where φ is the porosity, and Kgrain, Kframe and Kfluid represent the bulk modulus of

the rock grain, dry frame and fluid in the rock, respectively. These three moduli can

be written as

Kfluid =

(
Sw

Kw

+
So

Ko

+
Sg

Kg

)−1

, (2.4)

Kgrain =
1

2

[
γKc + (1− γ)Ks +

KsKc

Ksγ + Kc(1− γ)

]
, (2.5)

Kframe = 10log(Kgrain)−4.25φ, (2.6)

where Sw, So and Sg represent the saturation of the three phases, and Kw, Ko and

Kg represent the bulk modulus of water, oil and gas. Ks and Kc represent the bulk

modulus of sand and clay, and γ is the shaliness of the rock. The saturations are

obtained dynamically from simulations. For the other terms, in this example, we

use the values used by Dong and Oliver [17]: Kw = 2.39 × 109(Pa ·N/m2), Ko =

6.71× 108(Pa ·N/m2), Kg = 3.94× 107(Pa ·N/m2), Ks = 3.80× 1010(Pa ·N/m2),

Kc = 2.12× 1010(Pa ·N/m2), and γ = 0.2.

According to Han [36], the shear wave velocity can be written as a linear

function of porosity and shaliness,

Vs = A−Bφ− Cγ, (2.7)

19



P r o 1

P r o 4

P r o 5

P r o 1 1

P r o 1 2

P o r 1 5 P r o 1

P r o 4

P r o 5

P r o 1 1

P r o 1 2

P o r 1 5

P r o 5

P r o 1 1
p r o 1

P r o 3

P r o 1 2

P r o 1 5

P r o 1

P r o 4

P r o 5

P r o 1 1

P r o 1 2

P o r 1 5

P r o 5

P r o 1 1
P r o 1 5P r o 1

P r o 4

P r o 1 2

5 1 0 1 5
5

1 0
1 5
2 0
2 5Y

5 1 0 1 5
5

1 0
1 5
2 0
2 5

  

 

5 1 0 1 5
5

1 0
1 5
2 0
2 5

 

 

 

5 1 0 1 5
5

1 0
1 5
2 0
2 5

 

 

 

X5 1 0 1 5
5

1 0
1 5
2 0
2 5

 

 

 

3 . 2 0 E 3
3 . 2 8 E 3
3 . 3 5 E 3
3 . 4 3 E 3
3 . 5 0 E 3

(a) Pressure (t = 0)

P r o 1

P r o 4

P r o 5

P r o 1 1

P r o 1 2

P o r 1 5 P r o 1

P r o 4

P r o 5

P r o 1 1

P r o 1 2

P o r 1 5

P r o 5

P r o 1 1
p r o 1

P r o 3

P r o 1 2

P r o 1 5

P r o 1

P r o 4

P r o 5

P r o 1 1

P r o 1 2

P o r 1 5

P r o 5

P r o 1 1
P r o 1 5P r o 1

P r o 4

P r o 1 2

5 1 0 1 5
5

1 0
1 5
2 0
2 5Y

5 1 0 1 5
5

1 0
1 5
2 0
2 5

  

 

5 1 0 1 5
5

1 0
1 5
2 0
2 5

 

 

 

5 1 0 1 5
5

1 0
1 5
2 0
2 5

 

 

 

X5 1 0 1 5
5

1 0
1 5
2 0
2 5

 

 

 

0 . 2 0
0 . 4 0
0 . 6 0
0 . 8 0
1 . 0 0

(b) Sw (t = 0)
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(c) Sg (t = 0)

Figure 2.8: Pressure, water and gas saturation at time 0 (PUNQS3).
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(b) Sw (t = 2008)

P r o 1

P r o 4

P r o 5

P r o 1 1

P r o 1 2

P o r 1 5 P r o 1

P r o 4

P r o 5

P r o 1 1

P r o 1 2

P o r 1 5

P r o 5

P r o 1 1
p r o 1

P r o 3

P r o 1 2

P r o 1 5

P r o 1

P r o 4

P r o 5

P r o 1 1

P r o 1 2

P o r 1 5

P r o 5

P r o 1 1
P r o 1 5P r o 1

P r o 4

P r o 1 2

5 1 0 1 5
5

1 0
1 5
2 0
2 5Y

5 1 0 1 5
5

1 0
1 5
2 0
2 5

  

 

5 1 0 1 5
5

1 0
1 5
2 0
2 5

 

 

 

5 1 0 1 5
5

1 0
1 5
2 0
2 5

 

 

 

X5 1 0 1 5
5

1 0
1 5
2 0
2 5

 

 

 

0
0 . 2 0
0 . 4 0
0 . 6 0
0 . 8 0

(c) Sg (t = 2008)

Figure 2.9: Pressure, water and gas saturation at 2008 days (PUNQS3).

where A, B and C are constant values, and the unit of Vs is m/s. We use the values

used by Dong and Oliver [17]: A = 3520, B = 4910, C = 1890. The body density ρ

can be written as:

ρ = (ρgSg + ρoSo + ρwSw)φ + (1− φ)ρsolid, (2.8)

where ρw, ρo and ρg represent the density of water, oil and gas, respectively. Also,

ρsolid is the density of the solid rock. The densities of the three phases are related to

the fluid pressure, and can be obtained dynamically from simulators. Here, we set

ρsolid = 2.65× 103kg/m3.

Two seismic surveys are generated: the first one is before production (at
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(b) True (t = 2008)
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(c) Observed (t = 0)
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(d) Observed (t = 2008)

Figure 2.10: True and observed acoustic impedance at time 0 and 2008 days
(PUNQS3).

time zero), and the second one is at 2008 days. Figs. 2.8 and 2.9 show the true

pressure, water and gas saturations at the two seismic surveys from reservoir sim-

ulator. Figs. 2.10(a) and 2.10(b) are the computed true acoustic impedance using

the model described above. The values of acoustic impedance are in field units, with

the conversion to the SI unit as 1 Kg/m2/s = 0.01902 lb/ft2/s. We added some

noise to the true acoustic impedance data to generate the observed data shown in

Figs. 2.10(c) and 2.10(d). The noise is Gaussian with zero mean and standard de-

viation of 1 × 104 lb/ft2/s. The correlation length is 2 gridblocks in the horizontal

direction, and uncorrelated vertically. The type of variogram is spherical. Noise is

generated with sequential Gaussian simulation method (GsCosim, [14]).

The uncertain model parameters for the PUNQS3 example are the three fields
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(porosity and horizontal and vertical log-permeability). Relative permeability, water-

oil and gas-oil contacts, etc., are assumed to be known.

2.2 Pluri-Gaussian Geological Model

Defining a pluri-Gaussian model requires the specification of two Gaussian

random fields Z1 and Z2 on the simulation grids (each grid block has a pair of (z1, z2)

values), and a truncation strategy defined on the (Z1, Z2) domain. It is convenient

to choose the Gaussian random fields to have zero mean and unit variance, but they

can have different correlation ranges and different principal directions or be based

on a different type of variogram. In all examples presented here, the Gaussian ran-

dom fields are based on a variogram of Gaussian type. This is because it generates

the smoothest Gaussian random fields and hence tend to generate smooth bound-

aries between facies. Fig. 2.11 shows an example of two independent realizations of

Gaussian random fields (GRFs), Z1 and Z2, which have the same Gaussian covari-

ance functions, i.e., zero means, unit variances, and an isotropic correlation length of

20 grid-blocks. Sequential Gaussian simulation was used to generate the realizations

of the two Gaussian random fields. In this example, our reservoir model is based on

a 100 × 100 grid system and the two plots in Fig. 2.11 are the generated values for

the pair of (Z1, Z2) on each gridblock. We will use lower case (z1, z2) to represent

realizations of (Z1, Z2).

0 2 0 4 0 6 0 8 0 1 0 00

2 0

4 0

6 0

8 0

1 0 0

X

Y

- 3
- 2
0
2
3

0 2 0 4 0 6 0 8 0 1 0 00

2 0

4 0

6 0

8 0

1 0 0 Z 2

X

Z 1

Figure 2.11: Gaussian random fields, correlation length is 20.
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Figure 2.12: Truncation using 4 lines and facies maps.

The type and correlation range of the two variograms are set as a priori

knowledge, and the two associated Gaussian random fields are defined to have zero

means and unit variances. Because we have knowledge of the range of values that can

be taken on by Z1 and Z2, it easier to define a truncation strategy. The truncation is

defined on a plot of (Z1, Z2) values. The most commonly used truncation scheme is

to divide the whole area into a few rectangular regions using perpendicular lines [48].

Figs. 2.12(a) shows a truncation with 4 lines. The numbers in this figure are codes

for the regions. Each region (code) represents a particular facies, but it is possible

to assign the same facies to two different regions. The truncation map and the

realizations of the two Gaussian random fields (Fig. 2.11) determine which region

(facies) is assigned to each gridblock. The set of colored points in the truncation

map represent the set of all values of (z1, z2) pairs in the realization of the Gaussian

random fields (Fig. 2.11). To obtain the facies in a gridblock, the pair of GRFs

values in the gridblock is placed in the truncation map to find the region into which

it falls, and we then assign the corresponding facies to this gridblock. Fig. 2.12(b)

shows the generated facies; the color of each facies is the same as in the truncation

map (Figs. 2.12(a)). Thus, when a grid block in the facies map is colored red, the

associated point (z1, z2) must fall in region 1, 5, 7 or 8 on the truncation map of
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(a) Truncation lines (b) Truncation ellipses

Figure 2.13: Definition of truncation lines and truncation ellipses.

Fig. 2.12(a). Similarly, if (z1, z2) for gridblock i is such that z1 ≤ 0.7 and z2 ≤ −0.5,

then region 16 is assigned to gridblock i. With the color scheme used in Fig. 2.12,

region 16 is represented by brown in the facies and truncation maps. Note because

the brown region does not share a boundary with the blue or green regions in the

truncation map of Fig. 2.12(a), brown can not have a common boundary with blue

or green in the associated facies map of Fig. 2.12(b). Similarly, the blue facies can

not be in contact with the wine or brown facies and the green facies can not be

in contact with the brown facies. Also note that in the truncation map, regions 1,

5, 7 and 8 all correspond to the same facies and are thus assigned the same color,

i.e., red. Even though there are eight regions, there are only five facies. Also note

that if (z1, z2) for gridblock i is such that z1 > 0.7, then gridblock i will contain

the red facies regardless of the value of z2. Also note that in the truncation map of

Fig. 2.12(a), the red facies, which occupies four regions, is in contact with each of

the other four facies. Hence, in the facies map of Fig. 2.12(b), the red region is in

contact with each of the four other colors.

Although the thresholds conceivably can be adjusted according to the training

image [54], here, the thresholds as well as the variograms of the Gaussian random

fields are assumed known during dynamic data assimilation. In this study, in order

to match dynamic data and seismic data, the facies boundary is moved by adjusting
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the two Gaussian random fields. We will show results for two pluri-Gaussian cases:

1. In case 1, similar to Liu and Oliver [54], three intersecting lines are used to

generate a truncation map for a three facies model. To define a line in the

truncation map, as shown in Fig. 2.13(a), two parameters are needed: (1) the

distance from the line to the origin (r); (2) the angle (α) between the Z1 axis

and a line segment from the origin that is perpendicular to the truncation line;

the angle (α) is measured counterclockwise from the positive Z1 axis to line

segment.

2. Channels in a fluvial system are geometrically characterized by some continu-

ous and relatively narrow bands intersecting each other. We have found that

two long, narrow ellipses can be used as truncations of the two independent

Gaussian random fields to generate a facies map with roughly these features.

To define an ellipse centered at the origin in the truncation map, as shown

in Fig. 2.13(b), three parameters are needed: (1) one half the length of the

long axis (r1); (2) one-half the length of the short axis (r2); (3) the angle (α)

measured counterclockwise from the positive Z1 axis to the long axis of the

ellipse.

A line can divide the plane into two regions. To decide which region a given

pair of Gaussian random field values (z1,z2) falls in, the following function is evalu-

ated:

fL(z1, z2) = cos(α)z1 + sin(α)z2 − r. (2.9)

Note f(z1, z2) = 0 defines a line such as the one shown in Fig. 2.13(a). If f(z1, z2) ≤ 0,

the point (z1, z2) is located on, below, or to the left of the line, and if f(z1, z2) > 0

this point is located above or to the right of the line. An ellipse can also divide the

whole region into two regions. An ellipse, as shown in Fig. 2.13(b), can be defined
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by fE(z1, z2) = 0 where

fE(z1, z2) =
|Z − C1|+ |Z − C2|

2
− r1. (2.10)

In the preceding equation, C1 and C2 are the two focal points of the ellipse, and

|Z − C1| is the distance between the point (z1, z2) and C1, and |Z − C2| is that

between this point and C2. If fE(z1, z2) ≤ 0 the point (z1, z2) falls inside, and if

fE(z1, z2) > 0 it falls outside the ellipse. Here, the distance from C1 (or C2) to the

origin is
√

r2
1 + r2

2 (r1 and r2 are defined in the discussion of Fig. 2.13(b)).

In order to use the truncation map for the purpose of specifying facies, the

regions are coded by the dividers (lines or ellipses) in binary mode. Suppose we have

N dividers where each divider is either a line or an ellipse. A binary array is defined

as B = {b1, b2, · · · , bN}, in which the bi’s can only take one of the two values, 0 or 1.

A specific region can then be coded so that all points in a specific region correspond

to the same value of B. To do this, we consider the value of the N functions defining

the dividers (truncation functions). If N lines are used for truncation, we let fL,i

denote the ith truncation line. Then each specific region j in the truncation map

has all its boundaries (except those at ±∞) defined by truncation lines. Thus, for

each and every (z1, z2) in this specific region, either fL,i(z1, z2) < 0 or fL,i ≥ 0, i.e.,

each fL,i is either negative or nonnegative throughout the region. If fL,i < 0, we set

bi = 0 and if fL,i ≥ 0, we set bi = 1. Having found the value of each bi for region j,

we assign region j the binary code Bj defined by

Bj =
N∑

i=1

bi2
i−1. (2.11)

Note there are only 2N possible values for Bj, namely, {0, 1, 2, · · · , 2N − 1}; thus,

with N dividers we can have no more than 2N regions.

If ellipses, fE,i = 0, i = 1, 2, · · ·N are used to define the truncation map,
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then for region j, we set bi = 0 if for all (z1, z2) in region j, fE,i(z1, z2) > 0 and set

bi = 1, if fE,i(z1, z2) ≤ 0. Once the bi are determined, the binary code for region j

is calculated from Eq. 2.11. With the same logic, given an EnKF updated value of

(z1, z2) at a gridblock, we can calculate the value for the binary code for this (z1, z2)

by determining the value of each truncation equation at this (z1, z2), and based on

this sign, we calculate the value of each bi by the same procedure used above to code

the regions. With these values of the bis, we compute

Bv =
N∑

i=1

bi2
i−1; (2.12)

this value of Bv must be equal to one of the region Bj values. If Bv = B`, then (z1, z2)

falls into region ` on the truncation map and the facies corresponding to region ` is

assigned to the gridblock.

We will show that a truncation with intersecting ellipses gives a rough model

of a channelized reservoir. Then the methods for conditioning initial realizations to

hard data (observed facies at well locations) will be introduced. This is because in

order to assimilate production data using EnKF we need a suite of realizations of

the Gaussian random fields that honor the hard data.

2.2.1 Truncation Scheme One : Intersecting Ellipses

The idea of using ellipses for truncation comes from truncating the Gaussian

random fields using two parallel lines (r = 0.2 for both lines). In this type of

truncation, we can obtain some narrow and continuous bands which roughly represent

channels as shown in Fig. 2.14. The two lines separated the truncation map into three

regions. The region between the two lines (region 3) corresponds to the channel facies

and separate the other two regions in the truncation plot. These two regions are both

set equal to non-channel facies and are shown as white in the facies map, the gray

channel facies in the facies map separates the white facies. We can also use an ellipse
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Figure 2.14: Truncate the Gaussian random fields using two lines.
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Figure 2.15: Truncate the Gaussian random fields using one ellipse.

(r1 = 3.0, r2 = 0.2 and α = 45◦), to approximate the parallel lines. The grid blocks

that have (z1, z2) values inside the ellipse on the truncation map are occupied by the

channel facies. As shown in Fig. 2.15, the facies map is virtually identical to the one

generated from the two parallel lines. Because defining an ellipse need 3 parameters

while defining two parallel lines need 4 parameters with one redundant parameter

(either angle for the two lines), we prefer ellipses to generate truncation for channel

and non-channel facies.

When two ellipses are used, we can generate a more complex facies map.

Figs. 2.16(a) and 2.16(b) show the truncation map and resulting facies map if an

additional ellipse with its longest axis perpendicular to the major axis of the first
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Figure 2.16: Truncate the Gaussian random fields using two ellipses (45◦ and 135◦).
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Figure 2.17: Truncate the Gaussian random fields using two ellipse (0◦ and 90◦).

ellipse is applied to the same Gaussian random fields. Here, α is 45◦ for the first

ellipse, and 135◦ for the second one. Figs. 2.17(a) and 2.17(b) shows another case

where the two ellipses are perpendicular but have a different orientation (0◦ and

90◦ respectively); similar results are obtained. In this case, more channels appear,

but unfortunately, this also yields some “thick blobs” of channel facies such as the

one near the upper center in 2.16(b). We have not yet found a way to overcome this

deficiency. To compare with the cases where major axis of the two truncation ellipses

are perpendicular, Figs. 2.18(a) and 2.18(b) show a case where the angle between

the major axes of the two ellipses is 30 degrees. In this case, more (z1, z2) values fall

inside one or both ellipses so the resulting facies map looks even less like a channel
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Figure 2.18: Truncate the Gaussian random fields using two ellipse (75◦ and 105◦).
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Figure 2.19: Gaussian random fields, correlation length is 40.

system than the results obtained when the two ellipses are perpendicular. We also

found, but their results are not shown here, that if the center of two ellipses are off

the (0,0) point of truncation map, the shape of channels will become less realistic.

Figs. 2.20 and 2.21 show two additional examples, where the Gaussian random fields

have a longer correlation length (40 grid blocks) as shown in Fig. 2.19. These two

examples use two ellipses with different minor radii, i.e., 0.2 in Fig. 2.20(a), and 0.4

in Fig. 2.21(a). Note that for the case with the longer minor radius, most of the

realizations of (z1, z2) fall inside the two ellipses so resulted facies map Fig. 2.21(b)

show that most of the gridblocks are occupied by channel facies.

From these experiments, we note that Gaussian random fields with longer

correlation lengths generate fewer but wider channels. Moreover, increasing the

number of truncating ellipses results in a larger proportion of channel facies, but
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Figure 2.20: Truncate using two ellipses (correlation length is 40, short radius is 0.2,
long radius is 3.0).
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Figure 2.21: Truncate using two ellipses (correlation length is 40, short radius is 0.4,
long radius is 3.0).

the channels contain non-geological “bulges.” Although the channels generated are

not very geologically realistic, we use this model to explore whether we can properly

characterize the connectivity of a channelized reservoir by assimilating production

data with EnKF. To sum up, the short radius of each ellipse must be kept reasonably

small, and we will use narrow and perpendicular ellipses with centers at the origin

as shown in Fig. 2.16(a) to model the fluvial system. In this way, we can move the

channel by adjusting the values of Gaussian random fields to assimilate the measured

data. In this process, the truncations and variograms should be carefully chosen and
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(a) Layer 1 truncation (b) Layer 2 truncation (c) Layer 3 truncation

Figure 2.22: Truncations for the 3 layers, facies specification for the 5 regions varies
from layer to layer.

fixed as geological description of the reservoir during EnKF data assimilation.

2.2.2 Truncation Scheme Two : Intersecting Lines

Three intersecting lines were used by Liu and Oliver [54] to generate facies

distributions for two dimensional system, and the same methods will be used in this

study to construct a 3-layer model. In each layer, we will use three truncation lines

to define facies as shown in Figs. 2.22(a), 2.22(b) and 2.22(c). In this example, for

each layer, the three lines are the same, and have the same distance to the origin:

r = 0.2, but have different angles: α = 30◦, 150◦, 270◦ respectively. From these three

plots we can see that, for each layer, the facies specifications are the same for each

layer except for the 5th region. Because the 5th region is located around the origin,

the probability of generating (z1, z2) values in this region is high, thus varying the

facies specification for this region has considerable impact on the proportion of each

facies in each layer.

The Gaussian random fields of these three layers follow different variograms,

and are all uncorrelated with each other, and therefore the facies are also uncorre-

lated. We will discuss this issue after presenting a new procedure to condition to

hard data represented by observations of facies at a well.
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2.2.3 Conditioning to Hard Data and Geological Models

With predefined variograms, we use sequential Gaussian simulation to gener-

ate an ensemble of Gaussian random fields. This ensemble can be used to generate

a facies distribution by applying the truncation map as a prior, but should not be

used as an initial ensemble for EnKF if the realizations fail to honor the hard data

(observed facies at well locations). Here, conditioning to hard data is somewhat dif-

ferent from the traditional one in the sense that the observed hard data at wells is

the facies type, not a specific realization of (Z1, Z2). For concreteness, assume that

in the channel example, all wells penetrate the channel facies. If we use two ellipses

to truncate, the values of the Gaussian random fields values at gridblocks containing

wells simply have to fall within one of the two ellipses in the truncation map to honor

the observation of a particular facies at a wells gridblock. This is also true for the

three facies example truncated by three lines.

The pdf of a Gaussian random field conditioned to observed facies at the well

location is not Gaussian. In the sequential Gaussian simulation algorithm, the values

of hard data at the well locations need to be specified. In our case, these values can

vary from realization to realization, and should follow a certain distribution controlled

by the dividers in the truncation map. In this study, the pdf of each hard datum

is approximated by a data bank which consists of a number of samples of Gaussian

random pairs, so that the samples in each data bank can roughly represent the

distribution of the Gaussian random field values at the location and the layer where

the hard data are observed. For example, the 2-D channel example requires five data

banks because 5 wells will be included; the 3-layer three facies example requires 15

data banks because there are 15 hard data observed in 5 wells and in 3 layers. We

use the following three steps to generate these data banks at gridblocks containing

wells where an observation of the facies type is available. This scheme assumes that

the Gaussian random fields values at two distinct well locations are uncorrelated,
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i.e., the distance between wells should be greater than the spatial correlation length

of the Gaussian random fields, and Gaussian random fields should be uncorrelated

in the vertical direction.

1. Generate a set of unconditional realizations of the Gaussian random fields (Z1

and Z2), then separate the Gaussian random field values pairs gridblock by

gridblock with the following process. If (z1, z2) is a pair in any one of the

gridblocks, such that the truncation map indicates that (z1, z2) corresponds to

the facies observed at well j, then we put (z1, z2) into the data bank for hard

data at well j. In this way, each data bank can roughly represent the desired

distribution by rejecting the pairs that do not satisfy the hard data. Through

this process, we require that the number of pairs in each bank to be at least

twenty times the number of realizations that will be used in the initial ensemble

of realizations conditioned to hard data.

2. For each realization, randomly draw a pair of values (z1, z2) for each well grid-

block from the corresponding data bank. Different realizations will have dif-

ferent sampled values.

3. To generate a realization of the Gaussian random fields conditioned to the

hard data, apply sequential Gaussian simulation using the sampled values in

step 2 as the hard data of Gaussian random field values at well gridblocks

and continue until we have generated a complete realization of (Z1, Z2) at all

gridblock locations. This gives one realization of (Z1, Z2) conditioned to hard

data. Repeat the process to generate as many realizations as we wish to have

in the initial ensemble for beginning the assimilation of production data with

EnKF.

Using the two truncation schemes shown above, we will generate two syn-

thetic examples, which should be a realization of the prior model. We will generate
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Figure 2.23: Channel example, true model.

many realizations and pick one as the truth from which we can generate synthetic

production data and seismic data. To get a complete prior, variograms of Gaussian

random fields and hard data need to be specified.

1. 2-D channel model. In this case, Gaussian variograms are used to define

the Gaussian random fields where both variograms are isotropic with ranges

equal to 20 gridblocks. The elliptical truncation map of Fig. 2.16(a) is used.

The grid is 100× 100, with four production wells near the corners, and a water

injector at the center. Table 2.2 shows the gridblock location of wells and the

observed facies (hard data).

Well Name X Y Facies

Prod1 10 10 Channel
Prod2 10 90 Channel
Prod3 90 90 Channel
Prod4 90 10 Channel
Inj1 50 50 Channel

Table 2.2: Channel example hard data.

The dimension of each gridblock is 25 feet in both horizontal directions, and

5 feet in the vertical direction. The porosity and permeability are assumed to

be homogeneous in each facies. For all examples in this study except those in

Chapter 6, porosity and ln kh for each facies are equal to the true values, i.e.,
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(f) Layer 2 true facies
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Figure 2.24: Three facies example, true model.
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Figure 2.25: Relative permeability curves for the two pluri-Gaussian examples.

channel porosity equals to 0.212, non-channel porosity equals to 0.162, channel

permeability equals to 1420.8 md, and non-channel permeability equals to 11.5

md.

2. Three facies three layer model. The variograms used to define the two

Gaussian random fields for the three layers are Gaussian with the parameters

given in Table 2.4. The truncation map shown in Fig. 2.22 is used. The

simulation grid is 50 × 50 × 3, with four production wells near the corners,

and a water injector at the center. All wells are perforated in all three layers.

Table 2.3 shows the location of wells and the observed facies (hard data) for

each layers.

Well Name X Y Layer 1 Layer 2 Layer 3

Prod1 5 5 Facies 1 Facies 2 Facies 3
Prod2 5 45 Facies 3 Facies 1 Facies 2
Prod3 45 45 Facies 3 Facies 1 Facies 2
Prod4 45 5 Facies 2 Facies 3 Facies 1
Inj1 25 25 Facies 2 Facies 2 Facies 3

Table 2.3: Three facies example hard data.

The dimension of each gridblock is 50 feet in both horizontal directions, and

2 feet in the vertical direction. The porosity and permeability are assumed to
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Variogram Layer 1 Layer 2 Layer 3

Long Range 10 10 10
Short Range 5 10 5
Angle to X 120◦ – 30◦

Table 2.4: Three facies example variograms.

be homogeneous in each facies. Except in chapter 6, true values will be used

for the facies porosity and ln kh. The porosity of facies 1, 2 and 3, respectively,

are 0.06, 0.127 and 0.213, and the permeability values of facies 1, 2 and 3,

respectively, are 10.7 md, 99.88 md, 527.95 md. Vertical permeability is always

set equal to 10% of horizontal permeability.

These two examples share the same fluid and rock properties, which are the

same as for the PUNQS3 example except for porosity and permeability and water

relative permeability. Fig. 2.25 shows the relative permeability curves. Fig. 2.23 and

Fig. 2.24 show the true Gaussian random fields and facies distribution for the two

examples.

2.2.4 Production History and Data

The production history and measured data for the channel example are shown

in Fig. 2.26. The four producers have the same rate schedule: a constant liquid rate

production target constraint of 150 STB/day, and the injector operates at a water

injection rate of 600 STB/day with two short periods at a higher rate of 800 STB/day.

The total simulation time considered is 660 days. Measurements are available during

the first 360 days with 108 data, and the prediction for the following 300 days will

be estimated. Figs. 2.26(b), 2.26(c) and 2.26(d) show the predictions from the truth

model (lines) and the measurements (symbols). GOR is not included because the

pressure is always above bubble point so that the GOR is constant and equals to 0.4

Mscf/STB. The standard deviation of measurement error is 10 psi in the pressure
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Figure 2.26: Channel model rate schedule true and measured data.
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Figure 2.27: Three facies model rate schedule true and measured data.
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Figure 2.28: Pressure and water saturation at 300 days (channel example).
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Figure 2.29: True and observed acoustic impedance time 0 (channel example).
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(b) Measured acoustic im-
pedance

Figure 2.30: True and observed acoustic impedance at 300 days (channel example).
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(c) Layer 3 pressure
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(f) Layer 3 Sw

Figure 2.31: Pressure and water saturation at 300 days (three facies example).
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(b) Layer 2 true

P r o d - 1

P r o d - 2 P r o d - 3

P r o d - 4

I n j - 1

1 0 2 0 3 0 4 0 5 0

1 0

2 0

3 0

4 0

5 0

8 . 9 8 E 4
1 . 0 9 E 5
1 . 2 8 E 5
1 . 4 7 E 5
1 . 6 6 E 5Y

X

(c) Layer 3 true
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(d) Layer 1 measured
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(f) Layer 3 measured

Figure 2.32: True and observed acoustic impedance at time 0 (three facies example).
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(b) Layer 2 true
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(c) Layer 3 true
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(f) Layer 3 measured

Figure 2.33: True and observed acoustic impedance at 300 days (three facies exam-
ple).

data, and 5% of the true value in the water cut data. The rate schedule and data

of the three facies example are shown in Fig. 2.27. The schedule is the same as the

channel example except the high injection rate is 1000 STB/day. Measurement error

definition is also the same as for the channel example.

For the two pluri-Gaussian examples, there are two seismic surveys: prior

to production, and at 300 days. Noise is added to the true inverted seismic data.

The noise has the same variance, type of variogram and spatial correlation range

as the PUNQS3 model introduced earlier. Figs. 2.28 shows the pressure and water

saturations for the channel example at the seismic survey of 300 days. The initial

pressure is homogeneous 3500.88 psi, and the initial water saturation is 0.2. The gas

saturation is zero throughout the life of reservoir. Figs. 2.29 and 2.30, respectively,

show the corresponding true and measured acoustic impedances at the two survey

times for the channel example. Figs. 2.31, 2.32 and 2.33, respectively, show the
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pressure and water saturation, true and measured acoustic impedances for the three

facies example. The initial pressure in the top layer is 3500.35 psi.

2.3 Summary

This chapter introduces one Gaussian geological model (PUNQS3 model),

and two pluri-Gaussian geological model (three facies model and channel model).

A new truncation scheme with two perpendicular ellipses is used to generate facies

distribution of a channelized reservoir. The sensitivity of the facies distribution to

the configuration of these two ellipses was also studied. The channel facies is not very

geologically realistic, but gives a reasonable model for studying whether production

and seismic data can resolve the connectivity between wells. For the cases in Chapter

6, the facies porosity and permeability are assumed to be uncertain (follow Gaussian

distribution) and are put into the model part of the state vector of EnKF. For the

cases in Chapter 3, 4 and 5 we use true values of porosity and permeability.
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CHAPTER 3

ENSEMBLE KALMAN FILTER FOR PRODUCTION DATA

The ensemble Kalman filter (EnKF) was introduced by Evensen [22] as a

sequential data assimilation method. This method starts from an initial ensemble

of state vectors, which can represent the prior probability distribution of model

parameters and the initial condition of the reservoir, from which we can predict the

reservoir performance in the future by simulating each ensemble member forward.

The state vector y is defined to contain uncertain model parameters and primary

variables in the simulation:

y =
[
mT , pT

]T
, (3.1)

where m is a random column vector of model parameters (porosity and log-permeability

fields for PUNQS3 case, facies properties and Gaussian random fields for pluri-

Gaussian cases); p is a column vector of reservoir simulator primary variables such

as pressure, water saturation, gas saturation, Rs and Rv if applicable. Parameters

such as relative permeability, fluid contact depth etc., are assumed to be known in

the experiments considered here and are not included in the state vector.

In EnKF, at each data assimilation step, the prior pdf for the random vector

y is modeled as Gaussian distribution with y ∼ N{ȳ, Cy}, where ȳ is the prior mean

vector and Cy is the prior covariance matrix. The essence of the state vector is that

a realization of y together with known model parameters represents a possible state

of the reservoir at a specific time, and the set of realizations of y can be used to

predict the future performance of the reservoir and characterize its uncertainty. The

initial ensemble is a set of Ne realizations of the model parameters and the initial
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state of the reservoir, which is defined as a matrix

Y0 = [y0,1, y0,2, · · · , y0,Ne ] , (3.2)

where y0,j =
[
mT

0,j, p
T
0,j

]T
, j = 1, 2, · · · , Ne represent Ne realizations of the state

vector generated from its initial probability distribution. Each realization in the

matrix Y0 is constructed to honor the hard data observed at well locations. Starting

from Y0 we can predict reservoir performance at any time in the future, but these

predictions are not conditioned to the dynamic data.

Suppose we have measurements of production data and/or inverted seismic

data at N time steps {ti, i = 1, N}:

{dobs,i, Cd,i, i = 1, 2, · · · , N}, (3.3)

where dobs,i is the observed column data vector at ti, with its dimension represented

by Nd,i × 1 (Nd,i is the number of observed data at time ti). Here we assume the

measurement error vector follows a Gaussian distribution with mean equal to the

Nd,i × 1 zero vector and covariance matrix Cd,i, which is an Nd,i × Nd,i matrix. In

EnKF, an ensemble of noisy measurements is used as conditioning data:

duc,i,j = dobs,i,j + εi,j, j = 1, 2, · · · , Ne. (3.4)

where each εi,j vector is a sample of the measurement error at time ti generated from

the Gaussian distribution N(0, Cd,i).

The predicted state vector at the time we first have measurements (t1) can

be obtained by running Ne simulations starting from Y0, and the ensemble of pre-

dictions are stored as the columns of an Ny ×Ne matrix Y p
1 =

[
yp

1,1, y
p
1,2, · · · , yp

1,Ne

]
,

where Ny is the dimension of y, and the superscript p indicates prediction. In this
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state vector, the predicted vectors of model parameters are identical to the initial

ensemble of model vectors (i.e. mp
1,j = m0,j), and the primary variables are obtained

by running the reservoir simulator from time zero to t1. In the EnKF framework,

the predictions contained in Y p
1 are adjusted (analyzed or updated) to match the

vectors of measurements, the duc,1,j’s. The analyzed state matrix Y a
1 has the same

dimensions as Y p
1 . The realizations in the analyzed state matrix are used to pre-

dict the prior states at the second data assimilation time (t2). The predicted state

matrix is Y p
2 , i.e., the columns of Y p

2 (yp
2,j) are updated (analyzed) by updating yp

2,j

to ya
2,j by matching duc,2,j, j = 1, 2, · · · , Ne. This process is repeated each time we

have measurements until all the data are assimilated, and then we can predict the

future performance of the reservoir which is conditional to all the measurements.

This sequential assimilation scheme is faster than RML method [45, 63, 69], because

predictions do not require running the simulator from time zero after each analysis.

At the nth assimilation time, to evaluate the data mismatch, it is convenient

to also store the predicted data from the ensemble in an Nd,n ×Ne matrix:

Dp
n =

[
dp

n,1, d
p
n,2, · · · , dp

n,Ne

]
, (3.5)

where the jth column (dp
n,j) denotes the data predicted at the time tn from the jth

analyzed ensemble member at the previous data assimilation step, and the corre-

sponding data mismatch can be written as:

δdmis,n,j = duc,n,j − dp
n,j. (3.6)

In the following sections of this chapter, we will show the details of the EnKF

algorithm and its implementation on the three examples described in the last chapter,

i.e. the PUNQS3 model, the three facies model and the channel model. This chapter

will focus on assimilating the production data, and the next chapter will focus on
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assimilating seismic data.

3.1 Ensemble Kalman Filter (EnKF) Algorithm

The ensemble Kalman filter algorithm is used to update (analyze) the pre-

dicted state ensemble Y p
n to match data at the nth assimilation step, so that the

analyzed ensemble of realizations Y a
n approximately represents a sample of the pdf

for yn conditioned to all data up to and including time tn (see [24]). From the defini-

tion in Eqs. 3.5 and 3.6, dp
n,j is the predicted data, and δdmis,n,j is the data mismatch

of the jth ensemble member at time tn. The analysis equation (see [27]) at time tn

for updating the jth ensemble member is given by

ya
n,j = yp

n,j + CY p
n ,Dp

n

[
CDp

n,Dp
n

+ CD,n

]−1
δdmis,n,j

= yp
n,j + Rnδdmis,n,j,

(3.7)

where

Rn = CY p
n ,Dp

n

[
CDp

n,Dp
n

+ CD,n

]−1
, (3.8)

where CY p
n ,Dp

n
is the covariance matrix of the predicted state and predicted data with

dimension equal to Ny×Nd,n, and CDp
n,Dp

n
is the auto-covariance matrix of predicted

data with dimension equal to Nd,n×Nd,n. Eq. 3.7 gives the analyzed state vector for

the jth ensemble member. The matrix Rn is the same for each ensemble member and

is called the Kalman gain. As is shown in the analysis equation, Rn multiplied by the

data mismatch of the jth ensemble member gives the adjustment term. This analysis

equation is similar to performing one Gauss-Newton method using an approximate

of average gradient for minimizing

Oj(yn,j) =
1

2

[
yn,j − yp

n,j

]T
C−1

Y p
n ,Y P

n

[
yn,j − yp

n,j

]
+

1

2
[duc,n,j − dn,j]

T C−1
Dn

[duc,n,j − dn,j] ;

(3.9)
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(see [81]).

In the EnKF algorithm, we do not have to explicitly compute CY p
n ,Dp

n
and

CDp
n,Dp

n
. The covariances are represented by the ensemble and are approximated by

CY p
n ,Dp

n
=

1

Ne − 1

Ne∑
j=1

[
yp

n,j − yp
n

] [
dp

n,j − dp
n

]T

CDp
n,Dp

n
=

1

Ne − 1

Ne∑
j=1

[
dp

n,j − dp
n

] [
dp

n,j − dp
n

]T

,

(3.10)

where yp
n and dp

n are the mean vectors given by

yp
n =

1

Ne

Ne∑
j=1

yp
n,j (3.11)

and

dp
n =

1

Ne

Ne∑
j=1

dp
n,j. (3.12)

Let Y p
n be an Ny × Ne matrix which has all its column equal to yp

n, and Dp
n

be an Nd,n × Ne matrix which has all its column equal to dp
n. We define the error

matrices:

∆Y p
n = Y p

n − Y p
n

∆Dp
n = Dp

n −Dp
n.

(3.13)

Note the covariance matrix approximations of Eq. 3.10 are equivalent to

CY p
n ,Dp

n
=

1

Ne − 1
∆Y p

n (∆Dp
n)T

CDp
n,Dp

n
=

1

Ne − 1
∆Dp

n(∆Dp
n)T .

(3.14)
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Eq. 3.7 can be reformulated using Eqs. 3.13 and 3.14 as

ya
n,j = yp

n,j + ∆Y p
n (∆Dp

n)T
[
∆Dp

n(∆Dp
n)T + (Ne − 1)CD,n

]−1
δdmis,n,j

= yp
n,j + ∆Y p

n Xn,j,

(3.15)

where the vector Xn,j is given by

Xn,j = (∆Dp
n)T

[
∆Dp

n(∆Dp
n)T + (Ne − 1)CD,n

]−1
δdmis,n,j. (3.16)

Eq.3.15 can be rewritten as

ya
n,j = yp

n,j +
Ne∑

j′=1

[
yp

n,j′ − yp
n

]
xn,j,j′ , (3.17)

where, xn,j,j′ is the j′th component of the vector Xn,j. The last equation indicates

that the analyzed ensemble member is a linear combination of the predicted ensemble

members. Therefore, the analysis has Ne degree of freedom to match the measured

data. This might cause problems when we assimilate seismic data because it is

difficult to match Nd data with only Ne degree of freedom where Nd >> Ne. It is

also difficult to store and invert the matrix CDp
n,Dp

n
+ CD,n if the number of data is

large.

For the pluri-Gaussian geological model, the EnKF state vector contains a

pair of (z1, z2) values in each gridblock so that the facies boundaries can be moved

through analysis to match the observed data. The initial ensemble is guaranteed

to honor the hard data as described above. The standard EnKF update, however,

cannot guarantee that an analyzed model still honors the hard data. We use the

adjustment scheme shown in the following subsection to guarantee that the analyzed

model still satisfies the hard data.

3.1.1 Honoring Hard Data When Assimilating Dynamic Data
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Figure 3.1: Example of Gaussian random fields before and after analysis.

Fig. 3.1 shows an example of the channel model with five wells located in the

channel facies according to the hard data. As we can see, the solid symbols shows

the Gaussian random field values in the predicted model which satisfies hard data,

and the open circles are those in the analyzed model in which three out of five wells

moved out of the channel. There are Na = Nw×Nz pairs of (z1, z2) Gaussian random

field values at the well gridblocks, where Nw is the number of wells, and Nz is number

of vertical layers (in the channel example, Nz = 1). All (z1, z2) values need to honor

the observed facies after analysis.

A subvector of any column vector A = [a1, a2, · · · , aN ]T can be defined with

a given list of entries, i.e., I = {i1, i2, · · · , iM} ({1 ≤ ij ≤ N, j = 1, 2, · · · , M}). The

subvector has M components: Ab = [ai1 , ai2 , · · · , aiM ]T . Suppose yp
b,n,j is a subvector

of yp
n,j, and ya

b,n,j is the subvector of ya
n,j, and they share the same list of entries. The

entry list in these two subvectors could be (1) one component; (2) all components; (3)

the Gaussian random field values at the well locations or (4) the model parameters

and primary variables in a specific grid block. Here, we define another formulation

of the analysis equation. According to Eq. 3.15, the analysis can be applied to part

of the state vector, i.e.

ya
b,n,j = yp

b,n,j +
Ne∑

j′=1

[
yp

b,n,j′ − yp
b,n

]
xn,j,j′ , (3.18)
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where yp
b,n is the subvector of yp

n with the same entry list as yp
b,n,j and ya

b,n,j. The

subvector ya
b,n,j obtained from Eq. 3.18 is the same one obtained from ya

n,j which is

computed from Eq. 3.15 or Eq. 3.7 because the coefficients of the vector Xn,j are used

the same way no matter whether we are updating the whole vector or a subvector.

Define yp
bw,n,j as a vector containing all pairs of predicted Gaussian random

field values at the well gridblocks from the jth realization at the nth data assimilation

step. This column vector has dimension Na. Define ya
bw,n,j as the corresponding vector

of the Gaussian random field values at the well gridblocks obtained with the EnKF

analysis step. Because the initial ensemble honors the hard data, we assume all the

values in yp
bw,n,j honor the observed facies, and we need to find an adjustment to

ya
bw,n,j so that it also honors the hard data.

If the analyzed model obtained with EnKF does not honor one or more of

the hard data (facies observations at wellblocks), we will redo the analysis step

completely but when we redo it, we add some pseudo-data to the analysis equation

so that the analyzed (updated) Gaussian random fields honor the hard data. The

procedure is as follows:

1. The expanded predicted data at the nth data assimilation step for the jth

realization is defined as

d̃p
n,j =

[
(yp

bw,n,j)
T , (dp

n,j)
T
]T

, (3.19)

in which the predicted Gaussian random field values at the well grid blocks

(yp
bw,n,j) are added as the predicted pseudo-data. The deviation of the predicted

data from the mean prediction is defined as

∆D̃p
n = D̃p

n − D̃p
n, (3.20)

where D̃p
n =

[
d̃p

n,1, d̃
p
n,2, · · · , d̃p

n,Ne

]
, and D̃p

n is a matrix with each column equal
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to the mean of the column vectors in D̃p
n.

2. The corresponding data mismatch term for the jth realization is expanded to

δd̃mis,n,j =
[
(cn,j)

T , (δdmis,n,j)
T
]T

, (3.21)

where cn,j is an unknown column vector with the same dimension as yp
bw,n,j and

is related to the mismatch of hard data. As shown later, the cn,j vector will be

determined so that the analyzed model satisfies the hard data.

3. The measurement error matrix is defined as

CD̃,n =

I Θ

Θ CD,n

 , (3.22)

where I is a Na ×Na identity matrix.

The covariance matrices related to the expanded data are given by

CY p
n ,D̃p

n
=

1

Ne − 1
∆Y p

n ∆D̃p
n

T
,

CD̃p
n,D̃p

n
=

1

Ne − 1
∆D̃p

n∆D̃p
n

T
.

(3.23)

The EnKF analysis equation with expanded data is

ỹa
n,j = yp

n,j + ∆Y p
n (∆D̃p

n)T
[
∆D̃p

n(∆D̃p
n)T + (Ne − 1)CD̃,n

]−1

δd̃mis,n,j

= yp
n,j + ∆Y p

n X̃n,j,

(3.24)

where the vector X̃n,j is given by

X̃n,j = (∆D̃p
n)T

[
∆D̃p

n(∆D̃p
n)T + (Ne − 1)CD̃,n

]−1

δd̃mis,n,j. (3.25)
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Letting x̃n,j,j′ denote the j′th component of X̃n,j, Eq. 3.24 can be written as

ỹa
n,j = yp

n,j +
Ne∑

j′=1

[
yp

n,j′ − yp
n

]
x̃n,j,j′ . (3.26)

The EnKF update with pseudo-data for the Gaussian random fields in the well

gridblocks is included in Eq. 3.26 and is written as

ỹa
bw,n,j = yp

bw,n,j +
Ne∑

j′=1

[
yp

bw,n,j′ − yp
bw,n

]
x̃n,j,j′ . (3.27)

We call the analysis step shown in Eqs. 3.24, 3.26 and 3.27 as analysis with adjust-

ment. We follow three steps to perform such an analysis.

Step 1: Normal Analysis. In this step, ya
n,j (and ya

bw,n,j) are obtained

from the standard EnKF analysis without expansion of the data vector. From step

1 to step 3, we consider ensemble members one by one. If the analyzed model of

an ensemble member honors the hard data, we will not perform any of the following

steps. If any hard data are not honored, adjustment is needed. We define yadj
bw,n,j

as the target vector after adjustment. This target vector satisfies the hard data.

Our objective is to find pseudo-data (cn,j) for the Gaussian random fields at well

gridblocks so that the EnKF analysis step will give values of the Gaussian random

fields at well gridblocks sufficiently close to this target vector so that hard data will

be honored. There are Nw × Nz pairs of Gaussian random field values in each of

the three vectors, yp
bw,n,j, ya

bw,n,j and yadj
bw,n,j, where each pair corresponds to values at

well gridblock, where we have an observed facies. Suppose Zp = (zp
1 , z

p
2) is a pair in

yp
bw,n,j, Za = (za

1 , z
a
2) is the corresponding pair in ya

bw,n,j, and Zadj = (zadj
1 , zadj

2 ) is the

corresponding pair in yadj
bw,n,j. We define

Zadj = (1− α)Zp + αZa, (3.28)
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where α is a real number between 0 and 1. Fig. 3.2 shows a example of a pluri-

Gaussian model (for channels). The predicted pair is shown as a black solid circle and

the analyzed pair as a black open circle. Zadj represents the line segment connecting

Zp to Za. We wish to pick a value of α so that Zadj is consistent with the facies

observed at the specific wellblock under consideration. There are generally an infinite

number of α’s that satisfy this criterion. As discussed below, our choice is to pick an

α that gives a Zadj as close as possible to Za subject to the condition that the facies

observation is honored.
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Figure 3.2: Gaussian random fields adjustment of channel case.

For concreteness, we assume that we are using two ellipses to define the trunca-

tion map as in the channel example. Also assume that we are considering a particular

well gridblock where the hard datum corresponds to the observation of the channel

facies. Also assume that the corresponding prediction of the pair of Gaussian random

fields, Zp, is consistent with the hard datum, but the updated pair, Za, is not as

shown in Fig. 3.2 as an example for the channel model. We first calculate the points

where the line segment connecting Zp to Za intersects the truncating ellipses. We

denote these points by αi, i = 1, 2, · · ·L where for the situation depicted in Fig. 3.2,

L=3. Instead of using the largest value of these αis as α in Eq. 3.28, we use a slightly

different value for α to ensure that we will be able to generate pseudo-data for the

pair of Gaussian random fields at well gridblocks so that the EnKF analysis step will

yield an updated state vector consistent with hard data. To do so, we define 2L β
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values as follows: {β1 = 0.9α1, β2 = α1 + 0.1(α2 − α1), β3 = α2 − 0.1(α2 − α1), β4 =

α2 + 0.1(α3 − α2), · · · , β2L−1 = αL − 0.1(αL − αL−1), β2L = αL + 0.1(1− αL)}. The

red symbols in Fig. 3.2 show these βj’s. For each hard data, we set α equal to the

largest βj so that when α = βj is used in Eq. 3.28, Zadj is consistent with the hard

data. Note this choice of βj corresponds to the one that gives the Zadj closest to Za.

This procedure is used to determine all pairs in the target vector yadj
bw,n,j.

Step 2: Solve for the Adjustment. In this step, the cn,j term in the

expanded data mismatch vector of Eq. 3.21 is determined so that the analyzed vector

in Eq. 3.27 will be equal to the target vector found in step 1, i.e. ỹa
bw,n,j = yadj

bw,n,j,

which will ensure that the hard data are honored. Rewrite Eq. 3.27 as

ỹa
bw,n,j = yp

bw,n,j + An,jδd̃mis,n,j, (3.29)

where An,j is an (Na)× (Na + Nd,n) matrix given by

An,j = ∆Y p
bw,n(∆D̃p

n)T
[
∆D̃p

n(∆D̃p
n)T + (Ne − 1)CD̃,n

]−1

,

which can be partitioned as

An,j = [A1n,j, A2n,j] . (3.30)

Here, the sub-matrix A1n,j contains the first Na columns of An,j, and the sub-matrix

A2n,j contains the last Nd,n columns. Using Eq. 3.30, Eq. 3.29 can be rewritten as

ỹa
bw,n,j = yp

bw,n,j + A1n,jcn,j + A2n,jδdmis,n,j, (3.31)

where

δdmis,n,j = duc,n,j − dp
n,j.
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Setting ỹa
bw,n,j = yadj

bw,n,j in Eq. 3.31, we can find cn,j by solving

(A1n,j)cn,j = (yadj
bw,n,j − yp

bw,n,j − A2n,jδdmis,n,j). (3.32)

This method assumes that pairs of Gaussian random field values at different well

locations are uncorrelated because the pairs in the target vector are obtained inde-

pendently. This assumption requires that the distance between any two wells exceeds

the correlation lengths of the two Gaussian random fields and that the Gaussian ran-

dom fields are uncorrelated vertically.

Step 3: Redo the Analysis. After the pseudo-data vector cn,j is found, the

adjusted state vector can be obtained using Eq. 3.24. Because we redo the analysis

with the expanded data, each data point is effectively integrated only once.

3.2 Quantitative Comparisons of Results from Each Cases

Although general qualitative conclusions can be obtained by examining figures

which show data matches, future predictions and a comparison between the true

reservoirs and realizations obtained at the end of data assimilation, it is useful to

also try to define some quantitative means for comparison. These quantitative results

will be shown in tables.

Here, we use the two pluri-Gaussian models as examples. For both models,

the last data assimilation time is at 360 days, and predictions are made forward from

360 days to 660 days. In addition, the final ensemble is rerun from time zero to 660

days to compare with these procedures as a consistency check [77]. For quantitative

comparison, we partition observed data and predictions into nine subsets. Each

of the first five subsets, k = 1, · · · 5, pertains to bottomhole pressure at a well,

and each of the last four subsets, k = 6, 7, 8, 9, represents watercut at one well.

For comparison of predictions, we denote the true prediction for the kth subset of

data by dk,true,1, dk,true,2, · · · , dk,true,Np , where these Np data are uniformly distributed
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(daily) during the 300 days (so Np = 300) of prediction subsequent to the time

period where data are assimilated, i.e., dk,true,l represents the true prediction of subset

k at the 360 + l days. Because the time steps in the simulator are non-uniform,

we obtain these daily predictions by linearly interpolation if necessary. Using the

same method, the predictions of the subset k from the jth conditional ensemble

member (simulated from time zero) can also be written as dp
k,j,1, d

p
k,j,2, · · · , dp

k,j,Np
, for

j = 1, 2, · · · , Ne, where dp
k,j,l represents the prediction of subset k at the 360+ l days

for the jth conditional realization. The ensemble average of the predicted data from

the conditional ensemble for the subset k is denoted by dp
k,avg,1, d

p
k,avg,2, · · · , dp

k,avg,Np
,

for k = 1, 2, · · · 9, where

dp
k,avg,i =

1

Ne

Ne∑
j=1

dp
k,j,i, for i = 1, 2, · · · , Np.

As the measurement errors for pressure and watercut data are quite different, we

put data mismatches on a dimensionless basis by normalizing the predictions of the

kth type by σ2
k,last, which denotes the variance of the measurement error of the kth

type at the last data assimilation time (360 days). The total prediction error is then

defined by

Op
TOT =

√√√√ 1

9Np

9∑
k=1

Np∑
i=1

(dk,true,i − dp
k,avg,i)

2

σ2
k,last

. (3.33)

The corresponding average prediction error for pressure and watercut data are de-

fined, respectively, by

Op
BHP =

√√√√ 1

5Np

5∑
k=1

Np∑
i=1

(dk,true,i − dp
k,avg,i)

2

σ2
k,last

, (3.34)

and

Op
WCT =

√√√√ 1

4Np

9∑
k=6

Np∑
i=1

(dk,true,i − dp
k,avg,i)

2

σ2
k,last

. (3.35)
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We also make comparisons between the true model and the ensemble of condi-

tional realizations. Although the Gaussian random fields are the model parameters,

our objective is to generate reasonable facies distributions, and, thus, we make com-

parisons on the basis of the facies occupying a gridblock in the true case and the

ensemble of realizations of facies on the gridblock.

Suppose the true facies distribution is f1, f2, · · · , fNg , where Ng is the number

of gridblocks and fi denotes the facies in the ith gridblock. The facies distribution

of the jth ensemble member is denoted by f1,j, f2,j, · · · , fNg ,j, where fi,j is the facies

of the ith gridblock for the jth ensemble member. We define the model mismatch at

the ith gridblock for the jth ensemble member as δmi,j = 0 if fi,j = fi, and δmi,j = 1

otherwise. Then the model mismatch error is defined by

Om =
1

Ne ×Ng

Ne∑
j=1

Ng∑
i=1

δmi,j. (3.36)

We also compare data mismatches obtained from the predictions based on

running the simulator from time zero with each ensemble member obtained at the fi-

nal data assimilation step (360 days). Let Nd denote the total number of data that are

assimilated using realizations of the observed data obtained by adding noise to the ob-

servations, where these perturbed observations are denoted by duc,j,1, duc,j,2, · · · , duc,j,Nd
,

for j = 1, 2, · · · , Ne, where Nd is the number of production data assimilated over all

the data assimilation steps. The corresponding predicted data generated by running

the reservoir simulator from time zero using the jth conditional ensemble member

as input is denoted by dp
j,1, d

p
j,2, · · · , dp

j,Nd
, and j = 1, 2, · · · , Ne. The average data

mismatch is then defined by

Od
TOT =

√√√√ 1

Ne ×Nd

Ne∑
j=1

Nd∑
i=1

(duc,j,i − dp
j,i)

2

σ2
i

, (3.37)
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where σ2
i is the variance of measurement error of the ith datum. The corresponding

data mismatches for bottomhole pressure and water cut considered separately are

denoted, respectively, by Od
BHP and Od

WCT , and are obtained by limiting the sum to

only bottomhole pressure or only water cut data, respectively.

Finally, we consider the prediction errors defined as in Eqs. 3.33, 3.34 and

3.35 but based on simulating each model in the final ensemble from time zero. We

calculate Op,EnKF
TOT , Op,EnKF

BHP and Op,EnKF
WCT , respectively, with the same formulas used

to compute Op
TOT , Op

BHP and Op
WCT , respectively, except the predictions are based

on continuing simulation with the final analyzed ensemble of state.

For PUNQS3 model, we use same algorithm to compute the quantitative

conclusions of data mismatches and prediction errors for bottomhole pressure, GOR

and watercut. The model mismatch Om, however, is redefined as

Om =

√√√√ 1

Ne ×Nm

Ne∑
j=1

Nm∑
i=1

(mi,j −mi,true)2

σ2
m,i

, (3.38)

where mi,true is the true value of the ith model parameter, Nm is the number of model

parameters and σm,i is the standard deviation of this model parameter computed from

the initial ensemble.

3.3 Case One (Base Case): EnKF for Production Data

As the first case, only production data will be assimilated. The results will

be used to identify and demonstrate the problems of EnKF in solving the history

matching problems in a general way. Knowing its limitations, we will be more clear

about the motivations of the subsequent studies. This is a base case because the

results will be used as a reference for the other cases considered later, i.e. assim-

ilating water breakthrough time, normal score transform applied to water and gas

saturations, assimilating seismic data as additional data and iterative EnKF.
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To show how EnKF works for each example, three types of predictions are

presented. We show the set of predictions from the initial set of realizations, pre-

dictions forward from the last data assimilation step and predictions from time zero

using the final analyzed ensemble of realizations. In all cases, a red curve represents

a prediction generated from the true model, and symbols (black or red) represent

the observed data. The ensemble predictions are shown as gray curves in all figures.

For some PUNQS3 model cases, the final ensemble of analyzed models are

shown in 6 plots, i.e., mean and standard deviation ratio of porosity, ln kh and ln kz.

The standard deviation ratio of a property in a gridblock is the standard deviation of

this property in the final ensemble divided by the standard deviation of this property

in the initial ensemble. The value range of the standard deviation ratio is from 0 to 1,

and lower value means smaller posterior uncertainty (larger uncertainty reduction).

We will indicate the mean and the standard deviation ratio as “mean” and “STDR”,

respectively.

3.3.1 PUNQS3 Example

Fig. 3.3 shows the predictions of the bottom hole pressure and water cut for

producer 11. Fig. 3.4 shows the predictions of water cut for producers 1, 4, 5 and 12.

Fig. 3.5 shows the predictions of GOR for producers 1, 4 and 15. Fig. 3.6 shows the

predictions of field cumulative gas and water; Fig. 3.7 repeats the true model shown

in Chapter 2. Fig. 3.8 shows the estimated means and standard deviation ratios of

the model fields, and Figs. 3.9 and 3.10 show the analyzed water and gas saturation

distributions from two conditional realizations at 2936 days together with the water

and gas saturation distributions from the true model at 2936 days.

Using Fig. 3.3 as the example, the predictions from the initial geological model

(before EnKF) are shown in Figs. 3.3(a) and 3.3(d). The gray curves are the ensemble

predictions obtained from the initial ensemble members. Blue curves always represent
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the average of these predictions, and the red curves always represent the prediction

from the true case. This type of prediction evaluates uncertainty before applying

EnKF to assimilate the production data.

Shown in Figs. 3.3(b) and 3.3(e) are predictions during the EnKF assimilation

steps. There are some sharp changes at the times of data assimilation. Before and

after these sharp changes are the predictions before and after assimilating the data at

this step. The predictions after the last assimilation time represents the uncertainty

of future performance obtained from the last updated ensemble of state.

Shown in Figs. 3.3(c) and 3.3(f) are predictions from the final ensemble ob-

tained by assimilating all data (rerun from time zero). These predictions are reason-

ably consistent with those made forward from the last data assimilation step.

From the predicted BHP and water cut, we can see that the posterior predic-

tions from EnKF either made forward from the final data assimilation step or rerun

from time zero gives overall better data matches and lower uncertainty in predicted

future performance than predictions made with the initial ensemble. The truth still

falls inside the ensemble predictions. Note, the biggest difficulty is in assimilating

and predicting water production. Also note, however, that producer 11 is the only

well with water breakthrough during data assimilation, and even for this well, we

only have two data corresponding to a water cut greater than zero. From the EnKF

assimilation shown in Fig. 3.3(e), the positive water cut data were not matched well

because most of ensemble members did not breakthrough and EnKF can not obtain

the correct correlation between the true predictions (red curve) and state vectors.

We can see that although true predicted water cut curve (red curve) still falls inside

the band of prediction, it is quite close to the upper bound of the predictions. We will

see some improvements when the water breakthrough time is assimilated in the later

discussions. The bottom hole pressure predictions for the other wells are very similar

quantitatively to producer 11; therefore we will not show them here. The water cut
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predictions for producers 1, 4, 5 and 12 are shown in Fig. 3.4, from which we can

see that although we do not have water breakthrough at these wells during the data

assimilation period, the predictions from EnKF and the final ensemble bound the

prediction for the true model (red curve), and uncertainties are decreased compared

to those from the initial ensemble. The GOR predictions for producers 1, 4 and 15

are shown in Fig. 3.5. The GOR for the other three producers are almost constant

over the whole period of production, and the data matches are good; therefore they

are not shown here.

Fig. 3.6 shows the predicted field cumulative gas and water productions. The

prediction of cumulative gas production is quite good because the average prediction

for each well is close to the truth. The true cumulative water prediction seems quite

close to the upper bound of the conditional prediction although the uncertainty is

decreased.The production schedule is based on a target oil rate, which can be met

for most of the production period so the oil rate and cumulative oil are very close to

the truth throughout both the data assimilation and the prediction periods.

Fig. 3.8 shows the mean and standard deviation ratio (STDR) of the posterior

models, i.e. porosity, ln kh and ln kz. The following comments pertain to these results:

1. The STDR of the fields are low around the perforated locations of wells (open

circles). It is especially obvious for the porosity and ln kh fields;

2. Some high porosity and high permeability zones in the true model are recovered

in each layers, but there still exist some unexpected “belts”, i.e., the left top

of the first layer (compare to the true model shown in Fig. 3.7);

3. The wells are not perforated at the first and second layers, but the STDR

in these layers also decreased significantly (by half in some area), this might

because of spurious correlation between the fields in each layer induced by

limited ensemble size.
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Figure 3.3: Prod11 BHP and WCT (PUNQS3, EnKF of production data).

Fig. 3.9 shows the comparisons of true and two conditional water saturations

distributions at 2936 days. In each of the plots we can clearly see how water influxes

into the oil region. Physically plausible values of Sw are between 0.2 (irreducible

water saturation) and 0.9 (1 − Sor). The white color in these analyzed saturations

represents non-physical values (undershooting) of water saturations induced by the

EnKF analysis, and they are truncated to the closest physical values before the next

prediction, i.e., any water saturations above 0.9 are set equal 0.9, and any below 0.2

are set equal 0.2. When we apply a normal score transform to the water saturations

during data assimilation, water saturation values will automatically be constrained

to the upper and lower physical bounds.

3.3.2 Three Facies Example

Fig. 3.11 shows the three types of predictions for injector and producer 3

bottom hole pressure for the three facies example. For this example, the matching

and prediction of pressure of all wells are quite similar; therefore, we will not show
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Figure 3.4: WCT of Prod1, Prod4, Prod5 and Prod12 (PUNQS3, EnKF of produc-
tion data).
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(e) EnKF assimilation
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(f) Final ensemble
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(g) Initial ensemble

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0 P r o d - 1 5  G O R

 

 

GO
R (

Ms
cf/

ST
B)

T I M E  ( D a y )

(h) EnKF assimilation
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(i) Final ensemble

Figure 3.5: Prod1, prod4 and prod 15 GOR (PUNQS3, EnKF of production data).
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(a) Initial FGPT
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(b) EnKF FGPT
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(c) Final FGPT

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0
0 . 0

2 . 0 x 1 0 6
4 . 0 x 1 0 6
6 . 0 x 1 0 6
8 . 0 x 1 0 6
1 . 0 x 1 0 7
1 . 2 x 1 0 7
1 . 4 x 1 0 7
1 . 6 x 1 0 7

F i e l d  W a t e r  C u m u

 
 

Wa
ter

 Cu
mu

 (S
TB

)

T I M E  ( D a y )

(d) Initial FWPT
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(e) EnKF FWPT
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(f) Final FWPT

Figure 3.6: FGPT and FWPT predictions (PUNQS3, EnKF of production data).
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Figure 3.7: True model of PUNQS3: porosity, ln kh, ln kz.
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(a) Porosity mean
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(b) ln kh mean
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(c) ln kz mean
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(d) Porosity STDR

P - 1

P - 4

P - 5

P - 1 1

P - 1 2

P - 1 5 P - 1

P - 4

P - 5

P - 1 1

P - 1 2

P - 1 5

P - 5

P - 1 1
P - 1

P - 4

P - 1 2

P - 1 5

P - 1

P - 4

P - 5

P - 1 1

P - 1 2

P - 1 5

P - 5

P - 1 1
P - 1 5P - 1

P - 4

P - 1 2

5 1 0 1 5
5

1 0
1 5
2 0
2 5Y

5 1 0 1 5
5

1 0
1 5
2 0
2 5

  

 

5 1 0 1 5
5

1 0
1 5
2 0
2 5

 

 

 

5 1 0 1 5
5

1 0
1 5
2 0
2 5

 

 

 

X5 1 0 1 5
5

1 0
1 5
2 0
2 5

 

 

 

0
0 . 2 5
0 . 5 0
0 . 7 5
1 . 0 0

(e) ln kh STDR
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(f) ln kz STDR

Figure 3.8: Mean and STDR of estimated fields (PUNQS3, EnKF of production
data).
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(a) True Sw
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(b) Posterior Sw (En40)
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(c) Posterior Sw (En60)

Figure 3.9: Water saturation at 2936 days (PUNQS3, EnKF of production data).
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(a) True Sg

P - 1

P - 4

P - 5

P - 1 1

P - 1 2

P - 1 5 P - 1

P - 4

P - 5

P - 1 1

P - 1 2

P - 1 5

P - 5

P - 1 1
P - 1

P - 4

P - 1 2

P - 1 5

P - 1

P - 4

P - 5

P - 1 1

P - 1 2

P - 1 5

P - 5

P - 1 1
P - 1 5P - 1

P - 4

P - 1 2

5 1 0 1 5
5

1 0
1 5
2 0
2 5Y

5 1 0 1 5
5

1 0
1 5
2 0
2 5

  

 

5 1 0 1 5
5

1 0
1 5
2 0
2 5

 

 

 

5 1 0 1 5
5

1 0
1 5
2 0
2 5

 

 

 

X5 1 0 1 5
5

1 0
1 5
2 0
2 5

 

 

 

0
0 . 2 0
0 . 4 0
0 . 6 0
0 . 8 0

(b) Estimated Sg (En40)
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(c) Estimated Sg (En40)

Figure 3.10: Gas saturation at 2936 days (PUNQS3, EnKF of production data).

those of the other wells. Compared to the predictions from the initial ensemble,

the predictions from the final ensemble give narrower bands of uncertainty, and the

average prediction is close to the truth. Although the truth is still inside the bands,

the uncertainty in the prediction is quite small and there is no guarantee that we

have actually characterized uncertainty.

Fig. 3.12 show the predictions of water cut for each producer. Predictions

from both EnKF assimilation and the final ensemble give smaller uncertainty on the

prediction, and the truth falls inside bands. The average of EnKF assimilation pre-

dictions are close to the truth, and the water cut for producer 4 is underestimated.

Predictions from the final ensemble have quite good match of data except that pro-

ducer 1 gives a little earlier water breakthrough. Note we obtained much better

estimates of predicted water cut in this example than we obtained for PUNQS3.

This is because of the fact that more water cut data were assimilated and EnKF was

able to successfully assimilate these water cut data.

Fig. 3.13 gives the predicted field cumulative oil. Because the production his-

tory is constrained by liquid rates and the constraints are always satisfied during the

assimilations, cumulative water production is quantitatively the same as cumulative

oil production and is not shown here. The EnKF assimilation and the final ensemble

predictions are slightly biased but the average prediction is quite close to the truth.
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(f) From final ensemble

Figure 3.11: Injector and prod3 BHP (3 facies example, EnKF of production data).

Fig. 3.14 repeats the true facies distribution shown in Chapter 2. Fig. 3.15

shows facies distributions from two initial and conditional ensemble members. After

matching the dynamic data, the conditioned facies are closer to the truth (Fig. 3.14)

but still vary considerably from realization to realization. We can see that our

procedure for incorporating hard data has succeeded in producing realizations which

honor the hard data (facies observations at wells), see Fig. 2.22 and Table 2.3. The

facies map obtained from EnKF has geological features similar to the unconditional

realizations but integrating production data has resulted in a significant change in

the distribution of facies. Fig. 3.16 shows the true and conditional water saturation

distributions at 360 days. Compared to the true distribution, the realizations of

the saturation distribution are smoother, and display less bypassed oil than the true

distribution. Producer 2 and producer 3 do not have water breakthrough in the

second and third layer in the truth case, but have water breakthrough in all the

layers for both posterior ensemble members.
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(c) From final ensemble
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Figure 3.12: Producer WCT (3 facies example, EnKF of production data).
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Figure 3.13: FOPT predictions (3 facies example, EnKF of production data).
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Figure 3.14: Three facies example, true model.
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Figure 3.15: Initial and final facies (3 facies example, EnKF of production data).
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Figure 3.16: True and analyzed Sw (3 facies example, EnKF of production data).

74



3.3.3 Channel Example

Fig. 3.17 shows the predicted injector and producer 3 bottom hole pressure

for the channel example. The predictions from the initial ensemble have much higher

uncertainty than those from the three facies case, and after EnKF assimilation of

production data the uncertainties are decreased. Fig. 3.18 shows the predictions of

water cut data for the four producers. The average water cut predictions (blue curve)

for producers 1, 2, and 4 based on running from time zero with the final ensemble

gives slightly earlier water breakthrough than the truth (red curve); corresponding

predictions for producer 3 give the results far from the truth. Therefore, matching

water cut data is clearly more difficult than matching pressure data. Note that the

predictions from the final ensemble are quite different from those made forward from

the final data assimilation time, which means the basic assumption that EnKF gives

results at any time are consistent with the results obtained by rerunning from time

zero is not valid. Fig. 3.19 shows the three types of predictions of field cumulative

oil, which also indicate inconsistent results between the two types of conditional

predictions.

Although we have investigated the usefulness of matching breakthrough time

before matching water cut data, intuitively one would not expect that matching

water breakthrough times would yield a great improvement in results in this case,

as water cut data matches were not extremely poor during data assimilation. One

can see, however, that during the data assimilation for producer 1, water saturation

in the well gridblock was increased at a data assimilation step, but then at the next

prediction, water production dropped significantly because the EnKF analysis step

only increased water saturation appropriately in the well gridblock but not in the

surrounding gridblocks. Thus, it is possible that even in this case, the matching of

breakthrough times may improve results.

Fig. 3.20 repeats the true facies distribution shown in Chapter 2. We will be

75



more clear about the problem if we look at the analyzed model and observed facies.

Fig. 3.21 shows, in the channel case, the facies distribution for two ensemble members

and the corresponding water saturation distribution at the end of data assimilation,

which are compared with the corresponding water saturation distribution generated

with the true model. Fig. 3.21(a) shows a probability map of the channel facies

obtained by assigning to each gridblock the probability that the gridblock is occupied

by the channel facies. For a gridblock, this probability is equal to the number of

ensemble members that have the channel facies in that gridblock divided by the

number of ensemble members, Ne. In the plot, however, we show at each gridblock

the number of ensemble member occupied by the channel facies. This probability

map indicates that the connectivity between the water injection well at the center

and producer 3 is somewhat lower than that between the injection well and the

other three producers. This is consistent with the fact that producer 3 has overall

the latest water breakthrough. This probability map also indicates we have the right

connectivity but with considerable uncertainty in the location of the channels. The

channel proportion is lower and the channel width in the two realizations is smaller

than in the truth case (Fig. 3.20). Below the two facies distributions are shown

the corresponding distribution of water saturation obtained with EnKF. Note these

saturations are far too diffuse since high water saturations should pertain to the

channel facies similar to the true water saturation distribution shown in Fig. 3.21(d)

which was generated from the true facies map of Fig. 3.20. These results, together

with the behavior of water cut data assimilation at producer 1 and 3 mentioned above,

indicate that the EnKF update of saturation is not consistent with the update of

the distribution of the channel facies. To obtain consistent results, as the locations

of channel facies are moved, EnKF should move high values of water saturation in a

similar way so that the high water saturation values are in the channel.
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(f) From final ensemble

Figure 3.17: Injector and prod3 BHP (channel example, EnKF of production data).

3.4 Matching Water Breakthrough Time

Motivated by results on matching water breakthrough times before matching

water cut data when using gradient based methods, we consider assimilating water

breakthrough time data before assimilating subsequent water cut data with EnKF.

Well Observed BT t̂n STD

Pro-11 2700.0 2572.0 10.0

Table 3.1: PUNQS3 case water breakthrough time

To integrate water breakthrough times, we first must decide at which time

step it should be assimilated. Although we have experimented with various options,

in all results presented here, a water breakthrough time is assimilated at or before

the earliest water breakthrough time of the ensemble predictions. Specifically, we let

tobs,bt be the observed water breakthrough time at a particular well and let t̂n be the

latest data assimilation time prior to tobs,bt. If no realization exhibits breakthrough at

this well prior to time t̂n, then we assimilate data for the time of breakthrough at time
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Figure 3.18: Producer WCT (channel example, EnKF of production data).
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(c) From final ensemble

Figure 3.19: FOPT predictions (channel example, EnKF of production data).
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Figure 3.20: Channel example, true facies distribution.
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Figure 3.21: Channel probability, two posterior facies and water saturation distrib-
utions at 360 days (channel example, EnKF of production data).
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Well Observed BT t̂n STD

Prod1 135.0 120.0 5.0
Prod2 135.0 120.0 5.0
Prod3 290.0 270.0 5.0
Prod4 105.0 90.0 5.0

Table 3.2: Channel case water breakthrough time

Well Observed BT t̂n STD

Prod1 165.0 150.0 5.0
Prod2 255.0 240.0 5.0
Prod3 315.0 300.0 5.0
Prod4 255.0 240.0 5.0

Table 3.3: Three facies case water breakthrough time

t̂n. Otherwise, we assimilate water breakthrough time at the earliest assimilation

time at which predicted water cut data indicates that one or more ensemble members

exhibits water breakthrough. Each well is dealt with individually.

To get the predicted water breakthrough time of a model from the simulator, if

tbt,1 is the first reservoir simulator time step with the water cut value wct1 higher than

a critical value (we use wctcr = 0.01 as the “critical value”), and tbt,0 is the previous

reservoir simulator time step with water cut of wct0, the predicted breakthrough

time is computed as

tbt = tbt,0 +
tbt,1 − tbt,0

wct1 − wct0
× (wctcr − wct0). (3.39)

Tables 3.1, 3.2 and 3.3 give the observed water breakthrough times, the lat-

est data assimilation time (t̂n) prior to the observed breakthrough time and the

breakthrough time standard deviation of the measurement error. In the PUNQS3

case, only one well has water breakthrough during the data assimilation period, and

hence we can not match water breakthrough time from the other wells. In the two

pluri-Gaussian cases, the water breakthrough time is available for all wells. The
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(f) Final ensemble

Figure 3.22: Prod1, 11 WCT and field cumulative water production (PUNQS3,
EnKF with BT).

measurement error of breakthrough time is 10 days for the PUNQS3 case, and are 5

days for the two pluri-Gaussian cases.

3.5 Case Two: EnKF with Water Breakthrough Time

The difference between this case and the example considered previously is

that the water breakthrough times are additional data to be assimilated. We hope

this can improve the match of water cut data. As was discussed in the last case,

the water cut data were not matched well in the PUNQS3 and channel examples.

Therefore, this study will focus on these two examples.

3.5.1 PUNQS3 Example

In the PUNQS3 example, the water breakthrough time of producer 11 is as-

similated. Because the first water breakthrough for any ensemble member occurred

during the ensemble prediction period between 2008 days and 2206 days, it is assim-

ilated at 2206 days. The observed water breakthrough time is at 2700 days. The
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(i) Final ensemble

Figure 3.23: Producers WCT, and FOPT(channel example, EnKF with BT).
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Figure 3.24: Channel probability and estimated facies(channel example, EnKF with
BT).
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additional data of water breakthrough time did not significantly affect predictions

except for the water cut for producers 1 and 11, which are shown in Fig. 3.22 to-

gether with cumulative water production (Figs. 3.22(c) and 3.22(f)). Compared to

the results without assimilating water breakthrough time, there are some consider-

able improvements:

1. For producer 11, the data match of water cut is better, and the predicted band

is narrower, and the average prediction is closer to the truth;

2. For producer 1, even more realizations exhibit water breakthrough than was

the case without matching water breakthrough time (Fig. 3.4). In the truth

case no water is produced at producer 1. Producer 1 is close to producer 11, so

it is not supervising that assimilating water breakthrough time at producer 11

affected predicted water cut at producer 1. It is, however, disappointing that

EnKF was unable to correct these erroneous positive water cut predictions back

to zero.

3. The cumulative water prediction band is narrower than was obtained form the

case without assimilating water breakthrough time (Fig.3.6), and the average

prediction is closer to the truth.

3.5.2 Channel Example

In the channel example, each well has predicted water breakthrough from at

least one ensemble member of the initial ensemble before the first data assimilation

time (30 days), and hence the four water breakthrough times are assimilated together

at the 30 days. Plots in Fig. 3.23 show the predictions of water cut data from the

final state of EnKF assimilation and the final ensemble for the four producers and

field cumulative oil obtained by matching four additional water breakthrough times.

Fig. 3.24 shows the channel PDF and two estimated facies model. Comparing these
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results with those obtained in the base case, we can see that the improvements are

quite limited:

1. For the predictions from EnKF assimilation, no improvements can be found;

2. For the predictions from final ensemble, only the water cut of producer 1 and

4 are improved because more ensemble members get later water breakthrough.

The field cumulative oil prediction from the final ensemble is also better because

the uncertainty band is decreased, and the average prediction is closer to the

truth;

3. The estimated channel PDF shows similar connectivity between injector and

each producer for the two cases. The conditioned facies maps show up with

more channels compared with the results shown in Fig. 3.21.

3.6 Normal Score Transform of Saturations

In the predicted ensemble, water saturation in each gridblock does not gen-

erally follow a Gaussian distribution. In particular, for a gridblock which contains

the true water front, the ensemble of saturation values is dominated by values near

either irreducible water saturation or near 1 − Sor if no gas is present; the pro-

portion of values near the middle of this saturation range may be relatively small.

Thus, the predicted ensemble of water saturation for this gridblock may be bi-modal

which is inconsistent with the basic EnKF assumption that the ensemble of pre-

dictions is Gaussian. Some realizations in the analyzed (updated) ensemble may

have a gridblock water saturation below Siw or greater than 1 − Sor which requires

truncation back to physically reasonable values. Analyzed water saturation obtained

from Eqs. 3.17 and 3.18 is a linear combination of the ensemble of predicted water

saturation and can result in more medium water saturations between the two peaks.

One way to attempt to eliminate non-physical values and deal with non-

Gaussian problem is to transform the original variables to Gaussian variables [8].
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Gu and Oliver [35] tried this approach for a one-dimensional water-flooding prob-

lem by applying a global normal score transform to saturations before applying the

EnKF analysis step so that the analysis is made on variables which roughly follow a

Gaussian distribution. After analysis, the corresponding updated variable are trans-

formed back to the saturation domain. The forward and backward transform are

based on same cumulative distribution function (cdf). In the work of Gu and Oliver

[35], water saturations in all gridblocks share the same empirical cdf constructed

from the entirety of predicted saturation values, i.e., they apply a global normal

score transform. Here, we consider this same procedure but also consider a local

score transform which refers to using a different cdf to define the transform on each

gridblock. One potential problem with the local tranform is that the highest pre-

dicted gridblock saturation value corresponds to the highest value of the transformed

variable, and hence no analyzed transform variable can transform back to a value of

saturation higher than this predicted value. However, our experiments with methods

for alleviating this potential problem did not improve results.

The following procedure shows the complete transform-analysis-backtransform

algorithm for water saturation in a gridblock for the local normal score transform,

which can be applied to gas saturation in the same way.

1. Forward transform. Denote water saturations of a grid block in the predicted

ensemble at the nth data assimilation time as Sp
w,n =

[
Sp

w,n,1, S
p
w,n,2, · · · , Sp

w,n,Ne

]T
.

The predicted cdf curve can be constructed by sorting from smallest to largest

all entries in Sp
w,n as V = [v1, v2, · · · , vNe ]

T . The predicted cdf evaluated at the

ith entry of V is

CDF (vi) =
i

Ne

. (3.40)

A Gaussian cdf can be constructed from a zero mean and unit variance pdf. In
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the implementation, this cdf is represented by two arrays:

Vg =
[
vg,1, vg,2, · · · , vg,Ng

]T

Fg =
[
cdfg,1, cdfg,2, · · · , cdfg,Ng

]T
,

(3.41)

where Vg contains the discrete values evenly distributed in the region [−3, 3],

and Fg contains the corresponding Gaussian cdf values for each entries of Vg,

i.e. cdfg,i = CDFg(vg,i), where CDFg is the Gaussian cdf. We use Ng =

2000 in this study. In the forward transform, the transformed data Ŝp
w,n =[

Ŝp
w,n,1, Ŝ

p
w,n,2, · · · , Ŝp

w,n,Ne

]
can be found by solving:

CDF (Sp
w,n,i) = CDFg(Ŝ

p
w,n,i)

numerically through linear interpolation of the two cdf.

2. Analysis. The transformed water saturation prediction in the current grid-

block Ŝp
w,n can be updated using

Ŝa
w,n,j = Ŝp

w,n,j +
Ne∑

j′=1

(Ŝp
w,n,j′ − ¯ˆ p

w,nS)xn,j,j′ , (3.42)

in which xn,j,j′ ’s are the same as those in Eq. 3.18, and
¯ˆ p

w,nS equals to the

average of all columns in Ŝp
w,n.

3. Backward transform. The updated water saturation in the current gridblock

can be obtained by backtransforming Ŝa
w,n using the cdfs used in the forward

normal score transform, i.e. CDF and CDFg. Specifically, we find Sa
w,n,i by

solving for each i,

CDFg(Ŝ
a
w,n,i) = CDF (Sa

w,n,i)

numerically with linear interpolation with the cdfs represented in Eqs. 3.40 and
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3.41.

This process is applied to each gridblock.

We call the process described above as local normal score transform because

the predicted cdf curves are constructed locally for each gridblock. Gu and Oliver

[35] use a single predicted cdf curve for all gridblocks. Therefore, we call their

approach global normal score transform. In this study, we construct this global

cdf curve using the predicted water saturations in all gridblock of the Ne ensemble

members. These water saturation values are sorted for smallest to largest and defined

as V G =
[
vG

1 , vG
2 , · · · , vG

NG

]T
, where NG is Ne times the number of active gridblocks.

The global cdf can be written as

CDFG(vG
i ) =

i

NG
. (3.43)

In the global normal score transform, same process as for local normal score transform

is used except the cdf values in Eq. 3.40 for each gridblock is replaced by Eq. 3.43.

The analyzed state vectors through normal score transforms can be guar-

anteed to be physically feasible because the upper-bound and lower-bound of the

analyzed state have to fall in those from the predicted state vector. This, however,

can cause difficulty if we use the local cdf, because it will be impossible for the

analyzed (updated) values of saturations to be outside the bounds of the predicted

state.

3.7 Case Three: EnKF with Normal Score Transform of Saturations

The major purpose of this case is to compare the impact of global and local

normal score transform methods to the EnKF assimilation. The PUNQS3 and chan-

nel examples are studied by analyzing the water and gas saturations using the global

and local normal score transform. For the channel example, an additional case of
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(f) Final ens. (local)

Figure 3.25: Sw at 2936 days and posterior cumulative water (PUNQS3, EnKF with
normal score transform).
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(f) Local trans.

Figure 3.26: Prod4, 11, 12 WCT, EnKF assimilation predictions, comparison be-
tween local and global normal score transform (PUNQS3, assimilating production
data).
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(f) Local trans.

Figure 3.27: Prod4, 11, 12 WCT, predictions from final ensemble, comparison be-
tween local and global normal score transform (PUNQS3, assimilating production
data).

assimilating water breakthrough times plus local normal score transform of water

saturations is also shown.

3.7.1 PUNQS3 Example

Fig. 3.25 shows the analyzed water saturation distributions for two posterior

realizations and the posterior field cumulative water production when the global and

local normal score transforms are applied. The analyzed water saturation from the

global normal score transform shows some abnormal features:

1. The analyzed Sw distribution oscillates near the WOC, especially in the third

layer for the both posterior realizations;

2. Unexpected high water saturation blocks occurs in the oil region, which is

obvious in the first and second layer in the realization 40.

In contrast, the local normal score transform gives very stable water saturation dis-
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(a) Sg En40 (global)
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(b) Sg En60 (global)
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(c) Final ens. (global)
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(d) Sg En40 (local)
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(e) Sg En60 (local)
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(f) Final ens. (local)

Figure 3.28: Sg at 2936 days and posterior cumulative gas (PUNQS3, EnKF with
normal score transform).
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(a) Global trans.
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(b) Global trans.
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(c) Global trans.
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(d) Local trans.
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(f) Local trans.

Figure 3.29: Prod1, 4, 15 GOR, EnKF assimilation predictions, comparison between
local and global normal score transform (PUNQS3, assimilating production data).
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(a) Global trans.
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(b) Global trans.
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(c) Global trans.
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(d) Local trans.
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(e) Local trans.
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(f) Local trans.

Figure 3.30: Prod1, 4, 15 GOR, predictions from final ensemble, comparison between
local and global normal score transform (PUNQS3, assimilating production data).
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(a) EnKF assim. (global)
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(b) EnKF assim. (local)
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(c) EnKF assim. (local +
BT)
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(d) Final ens. (global)
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(e) Final ens. (local)
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(f) Final ens. (local + BT)

Figure 3.31: Producer 1 WCT (channel case, EnKF with normal score transform).
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(a) EnKF assim. (global)
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(b) EnKF assim. (local)
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(c) EnKF assim. (local +
BT)
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(d) Final ens. (global)
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(e) Final ens. (local)
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(f) Final ens. (local + BT)

Figure 3.32: Producer 2 WCT (channel case, EnKF with normal score transform).
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(a) EnKF assim. (global)
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(b) EnKF assim. (local)
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(c) EnKF assim. (local +
BT)
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(d) Final ens. (global)
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(e) Final ens. (local)
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(f) Final ens. (local + BT)

Figure 3.33: Producer 3 WCT (channel case, EnKF with normal score transform).
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(a) EnKF assim. (global)
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(b) EnKF assim. (local)
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(c) EnKF assim. (local +
BT)
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(d) Final ens. (global)
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(e) Final ens. (local)
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(f) Final ens. (local + BT)

Figure 3.34: Producer 4 WCT (channel case, EnKF with normal score transform).
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(b) Local
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(c) Local + BT

Figure 3.35: Field cumulative oil production (channel case, EnKF with normal score
transform).
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Figure 3.36: Two realizations of conditional facies and water saturations at 360 days
(channel model, EnKF of production data, global normal score transform).
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Figure 3.37: Two realizations of conditional facies and water saturations at 360 days
(channel model, EnKF of production data, local normal score transform).

tributions. The predicted cumulative water from final ensemble is slightly better

than that from the global normal score transform, and is also better than that from

the case when the transforms are not used (Fig. 3.9), i.e., the average prediction is

closer to the true prediction.

Figs. 3.26 shows the predictions forward from the data assimilation and rerun

from time zero for producers 4, 11 and 12 water cut data from the case of global

normal score transform, and Fig. 3.27 shows the corresponding predictions from

the case of local normal score transform. The local normal score transform gives

smoother predictions and better estimate of truth than does the global normal score

transform. The predictions from the local normal score transform are also better

than those from the base case (Fig. 3.4), especially for producers 11 and 12 in both

EnKF assimilation and predictions from final ensemble.

Fig. 3.28 shows the corresponding results of the conditioned gas saturation

distributions and field cumulative gas production from global and local normal score

transforms. We can see that there are also more oscillations in the gas saturations

from the global normal score transform. The global and local normal score transforms

give similar predicted cumulative gas production.

Figs. 3.29 and 3.30 show the prediction of GOR for producers 1, 4 and 15 from

EnKF assimilation and final ensemble for both cases. Here, the global normal score

transform results in more accurate predictions of GOR for producer 15 than does

94



the local normal score transform. The two methods give similar predicted GORs for

the other wells.

3.7.2 Channel example

Figs. 3.31 to 3.34 are for the channel example, which show the prediction

of water cut in each well for three cases: 1) global normal score transform, 2) local

normal score transform, and 3) local normal score transform with water breakthrough

time as additional data. In the third case, all the four water breakthrough times are

assimilated at 30 days. It is difficult to say which transform works here, but over

all the best results are obtained when we use both local normal score transform and

match water breakthrough time. This can be seen clearly by considering results from

cumulative oil production shown in Fig. 3.35.

Fig. 3.36 shows two realizations of the facies distribution conditioned to all

production data and the corresponding analyzed water saturations at 360 days for the

global normal score transform case. Fig. 3.37 shows corresponding results obtained

using the local normal score transform case. Note that all the water saturations

are within the correct physical range, which is enforced by the normal score trans-

forms. However, the saturation distributions are still too diffuse although slightly

improved in this regard compared to the saturation map obtained with standard

EnKF (Fig. 3.21). The failure to obtain a significant improvement in the saturation

map may be because the normal score transform is designed to account for the non-

Gaussian distribution of water saturation rather than the effect of nonlinearity. In

Chapter 6, we will try an alternative scheme to obtain improved results.

3.8 Summary

Tables 3.4 and 3.5 show the quantitative comparison of all PUNQS3 cases

considered in this chapter. Recall that Op,EnKF
BHP , Op,EnKF

GOR , Op,EnKF
WCT and Op,EnKF

TOT

are prediction errors obtained by simply continuing to run the simulator forward
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Cases Op,EnKF
BHP Op,EnKF

GOR Op,EnKF
WCT Op,EnKF

TOT

Prior 22.935 14.604 19.643 19.366
Prod 7.901 12.002 17.669 13.149

ScGlobal 7.866 8.567 20.35 13.533
ScLocal 8.228 15.167 17.149 14.045

BT 7.955 13.638 13.433 11.968
ScLocalBT 8.623 14.785 13.547 12.602

Table 3.4: Prediction errors, PUNQS3 example, predicting forward from last data
assimilation, EnKF of production data.

Cases Om Od
BHP Od

GOR Od
WCT Od

TOT Op
BHP Op

GOR Op
WCT Op

TOT

Prior 1.482 29.928 29.405 11.839 28.668 22.935 14.604 19.643 19.366
Prod 1.457 2.505 4.285 3.164 3.123 7.893 13.323 16.004 12.857

ScGlobal 1.393 2.358 5.099 3.43 3.381 8.975 8.684 19.951 13.589
ScLocal 1.49 2.767 4.819 4.553 3.585 8.049 16.079 15.647 13.761

BT 1.458 2.596 3.989 3.707 3.121 8.326 14.6 12.414 12.063
ScLocalBT 1.48 2.899 4.482 4.74 3.56 8.522 15.795 11.038 12.165

Table 3.5: Model mismatch, data mismatch, prediction error, PUNQS3 example,
predicting final ensemble from time zero, EnKF of production data.

Cases Op,EnKF
BHP Op,EnKF

WCT Op,EnKF
TOT

Prior 20.26 10.097 16.533
Prod 11.134 5.465 9.063

ScGlobal 10.204 7.058 8.943
ScLocal 9.425 6.602 8.29

BT 24.335 6.337 18.624
ScLocalBT 11.135 7.707 9.761

Table 3.6: Prediction errors, channel example, predicting forward from last data
assimilation, EnKF of production data.

Cases Om Od
BHP Od

WCT Od
TOT Op

BHP Op
WCT Op

TOT

Prior 0.444 57.603 28.656 46.993 20.26 10.097 16.533
Prod 0.423 25.205 24.386 24.844 11.323 9.89 10.71

ScGlobal 0.4623 31.27 26.698 29.326 11.144 11.479 11.294
ScLocal 0.445 22.382 25.996 24.056 14.601 13.5 14.122

BT 0.444 41.413 24.28 34.853 21.381 8.478 16.909
ScLocalBT 0.445 24.245 20.052 22.478 5.812 4.647 5.326

Table 3.7: Model mismatch, data mismatch, prediction error, channel example, pre-
dicting final ensemble from time zero, EnKF of production data.
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from the last data assimilation time; Op
BHP , Op

GOR, Op
WCT and Op

TOT are prediction

errors obtained by running the simulator from time zero using the final ensemble

conditioned to all data; Od
BHP , Od

GOR, Od
WCT and Od

TOT are data mismatches, and

Om is the model mismatch. The first row of numbers in both tables represent the

predictions and data matches generated from the initial ensemble. The second row

is the base case obtained with standard EnKF. The last four rows are the results

from the global normal score transform (ScGlobal), local normal score transform

(ScLocal), matching water breakthrough time (BT) and combining local normal

score transform and matching water breakthrough time (ScLocalBT). Comparing

the first row and the second row of both tables, as we expected, posterior predictions

gives much smaller data mismatches and prediction errors. The prediction errors

from the final ensemble (Table 3.5 rerun from time zero) are smaller than those from

EnKF prediction (Table 3.4), which is consistent with our observation in the figure

of the basic case. It is quite difficult to draw any firm conclusion from the tables to

compare the global normal score transform and local normal score transform. When

water breakthrough times are assimilated, the data mismatches and prediction errors

of water cut are smaller, but those of pressure and GOR are slightly higher, but the

overall data mismatches and prediction errors are smaller.

Tables 3.6 and 3.7 show the quantitative comparisons for all channel cases

considered in this chapter. The base case (second row) gives better data matches

and predictions compared to the prior model. It is still difficult to draw any firm

conclusion from the table to distinguish between the performance of the global and

local normal score transforms. Assimilating water breakthrough times (row 5) shows

the data mismatches and prediction errors are higher than for the base case. When

the local normal score transform is combined with assimilating water breakthrough

times (the last case), better data match and predictions are obtained from final

ensemble. We believe this does not indicate a more robust scheme because the same
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combination failed to improve the results in the PUNQS3 model.

In summary, (1) The adjustment scheme for ensuring that the observations

of facies type at a well is honored works properly; (2) Although the normal score

transforms maintains saturation values within physical bounds, they yield no signif-

icant improvement in terms of data matches and the estimates of future predictions.

Results for the local and global normal score transforms are quantitatively similar

except for the fact that the global normal score transform yields non-physical oscil-

lations in the water saturation distributions. Overall, it appears that assimilating

water breakthrough times in conjunction with the local normal score transform gave

better results, but none of the modifications give very significant improvement over

results obtained with standard EnKF.
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CHAPTER 4

ENSEMBLE KALMAN FILTER FOR SEISMIC DATA

Inverted seismic data are normally available in a few discrete time steps during

production history. In this study, we consider only acoustic impedance data. Sim-

ilar to the definition of observed production data (Eq. 3.3), the observed acoustic

impedance data can be defined as Sobs,n = [sobs,n,1, sobs,n,2, · · · , sobs,n,Ns ], where n is

the index for data assimilation step (tn), and Ns is the number of seismic data which

is equal to the number of gridblocks because we effectively have measurements in

each gridblock. The seismic data could be the inverted acoustic impedance and/or

Poisson’s ratio etc.

In assimilating these inverted seismic data, the number of measurements

is normally much larger than the number of ensemble members. This causes two

problems: (i) it is not computationally feasible to compute or “invert” the matrix

CDp
n,Dp

n
+CD,n that appears in Eq. 3.7 (now we use Sobs,n as seismic data); (ii) at any

data assimilation step, the vector of model parameters, m, in each updated ensem-

ble member must be a linear combination of the corresponding models in the initial

ensemble so there are not sufficient degrees of freedom to properly assimilate data

when the number of independent data is far greater than the number of ensemble

members.

In order to solve this problem, there are two approaches in the literature: (i)

global analysis [73] compresses the number of data to Ne − 1 using singular value

decomposition; (ii) local analysis [59, 25, 75] updates the state vector components

in a gridblock using the seismic data located at its neighbor gridblocks to obtain

better match of data, which shares similar idea with covariance localization method
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used in the references [41, 15]. Both of these two methods have limitations: after

the global analysis of seismic data, all ensemble members become very close to each

other and it is difficult to match subsequent data unless the ensemble is very large;

the local analysis can introduce more freedom to match the data but may induce

loss of spatial smoothness in the conditional models.

During the global analysis of seismic data, to guarantee the hard data is

honored for the pluri-Gaussian model, we use the same adjustment scheme as was

used in the last chapter for assimilation of production data. If the local analysis

procedure fails to give updated Gaussian random fields which honor the hard data

(observed facies type at any well gridblock), we will also modify the update by

introducing pseudo-hard data. However, this becomes somewhat more complicated

than the adjustment for the global analysis, because it is necessary to use pseudo-

data not only when updating the Gaussian random fields at a well gridblock with

EnKF, but also when updating the Gaussian-random fields in nearby gridblocks if

these gridblocks are updated using seismic data in the well gridblock.

For a pluri-Gaussian geological model, the Gaussian random fields must be

smooth in order to generate continuous facies distributions. Local analysis of seis-

mic data offer results in facies distributions that are inconsistent with the desired

smoothness. To recover the geological smoothness, we project the difference between

each updated realization from EnKF analysis and its prior on to a space spanned by

an ensemble of realizations of the initial model of Gaussian random fields where each

of these realizations has been conditioned to the hard data. This initial ensemble

is obtained by starting with an ensemble of 1200 members and then using singular

value decomposition to reduce it to 200 members corresponding to the 200 largest

singular values. The updated model from this projection procedure may also violate

the hard data. An adjustment scheme for the projected model is also introduced to

honor the hard data, in which the projection coefficients are adjusted to ensure that
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hard data are honored.

The examples within this chapter compare the application of global and local

analysis methods for assimilating inverted seismic data (acoustic impedance data).

For each cases, the production data and seismic data observed at the same time

step are assimilated separately: seismic data are assimilated using the ensemble

conditioned to the production data as the prior. For the PUNQS3 case, the first

set of seismic data are observed at time zero, and the second set is observed at

2008 days. For both the three-facies and two facies cases, the first set of seismic

data are also obtained at time zero, and the second data set is obtained at 300

days. The same production data used previously are also assimilated. Note that the

two acoustic impedance data sets are assimilated at the time they are “measured,”

i.e., we assimilate 3D seismic data, not time-lapse seismic data. It is worthwhile

to mention that for a small 2D synthetic problem, Skjervheim et al. [74] found

that better estimates of the permeability field model were obtained by assimilating

inverted seismic data at the time they were measured instead of using 4D data.

Although the authors give no explanation of why assimilating difference data gives

worse results than assimilating seismic data directly, we believe there may be two

reasons for this. First, the variance of the difference data is twice the variance of

the individual data sets. Secondly, using difference data requires updating of the

state vector at the time of the first seismic survey several times using the ensemble

Kalman smoother (EnKS, [24]) as production data measured between the times of

the two surveys are assimilated. This could allow errors due to strong nonlinearities

or non-Gaussianity to accumulate.

Noisy seismic measurements and predicted seismic data are denoted, respec-
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tively, by Suc,n and Sp
n (similar to Eqs. 3.4 and 3.5) and are given by Ns×Ne matrices:

Suc,n = [suc,n,1, suc,n,2, · · · , suc,n,Ne ]

Sp
n =

[
sp

n,1, s
p
n,2, · · · , sp

n,Ne

]
,

(4.1)

where suc,n,j is obtained by summing up the observed seismic data at the nth data

assimilation step (Sobs,n) and the jth realization of the measurement error in Sobs,n,

and sp
n,j is the predicted seismic data for the jth ensemble member at the nth data

assimilation time step. If the seismic data are assimilated directly, the analysis

equation is similar to Eq. 3.7 except that the data are replaced by the seismic data.

Before showing the analysis equation for the seismic data at the nth data assimilation

step, we need to define the following terms. The error matrix of predicted seismic

data is

∆Sp
n = Sp

n − Sp
n (4.2)

where Sp
n represents a matrix with each column equals to the average of the columns

of Sp
n. The data mismatch of the jth ensemble member is

δsmis,n,j = suc,n,j − sp
n,j. (4.3)

Two approximations of covariance matrices can be written in ensemble form as

CY p
n ,Sp

n
=

1

Ne − 1
∆Y p

n (∆Sp
n)T

CSp
n,Sp

n
=

1

Ne − 1
∆Sp

n(∆Sp
n)T .

(4.4)

Similar to Eq. 3.15, the standard EnKF analysis for the seismic data can be written

as

ya
n,j = yp

n,j + ∆Y p
n (∆Sp

n)T
[
∆Sp

n(∆Sp
n)T + (Ne − 1)CS,n

]−1
δsmis,n,j, (4.5)

where CS,n represents the measurement error matrix of the seismic data. If CS,n is
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the true full-rank covariance matrix, then this Ns × Ns matrix is nonsingular and

there is no loss of rank when updating the covariance matrix [43]. If CS,n is also

represented by a sample of size Ne, then loss-of-rank issues can become significant

[43, 28]. Specifically, suppose we have an ensemble of seismic data measurement

error denoted by the matrix ES,n = [eS,n,1, eS,n,2, · · · , eS,n,Ne ] with each column as a

realization of seismic data measurement error, then we can approximate CS,n as:

CS,n =
1

Ne − 1
ES,nE

T
S,n. (4.6)

As discussed above, it is not feasible to assimilate the seismic data using Eq. 4.5.

In the following sections, we will discuss implementations of the global analysis and

local analysis to assimilate the seismic data.

4.1 Global Analysis of Seismic Data

The singular value decomposition of the matrix ∆Sp
n can be computed as

∆Sp
n = UΛV T , where U is an Ns × Ns matrix, Λ is an Ns × Ne matrix, and V is a

Ne ×Ns matrix.

We can rewrite Eq. 4.5 using UUT = I (or U−1 = UT ), as

ya
n,j = yp

n,j + ∆Y p
n (∆Sp

n)T UUT
[
∆Sp

n(∆Sp
n)T + (Ne − 1)CS,n

]−1
UUT δsmis,n,j

= yp
n,j + ∆Y p

n (UT ∆Sp
n)T

[
UT ∆Sp

n(UT ∆Sp
n)T + (Ne − 1)UT CS,nU

]−1
UT δsmis,n,j.

(4.7)

Now we define transformed predicted data as

Ŝp
n = UT Sp

n (4.8)

with the jth column as

ŝp
n,j = UT sp

n,j. (4.9)
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The corresponding predicted error matrix is

∆Ŝp
n = UT ∆Sp

n, (4.10)

and the transformed data mismatch for the jth ensemble member is

δŝmis,n,j = UT δsmis,n,j. (4.11)

Here, the transformed data terms are denoted with hat. Using Eqs. 4.8 to 4.11 and

Eq.4.6, Eq. 4.7 can be written as:

ya
n,j = yp

n,j + ∆Y p
n (∆Ŝp

n)T
[
∆Ŝp

n(∆Ŝp
n)T + ÊS,nÊ

T
S,n

]−1

δŝmis,n,j, (4.12)

where ÊS,n = UT ES,n, and ÊS,n represents the transformed measurement error ma-

trix. If U is a full matrix of left singular vectors with Ns columns, Eq. 4.7 and 4.12

are equivalent to Eq. 4.5.

However, there are only maximum Ne − 1 non-zero eigenvalues in Λ. This is

because ∆Sp
n has only Ne columns and is a deviation matrix with each column equals

to the corresponding column in Sp
n subtract the average of all columns in Sp

n (Eq. 4.2),

which will induce loss of one dimension. In the global analysis scheme, we use only

Ne− 1 eigenvectors corresponding to the Ne− 1 non-zero eigenvalues. Redefine U as

a Ns×Ne − 1 matrix containing only the first Ne− 1 column of the original U . This

definition is then applied to the transformed data in Eqs. 4.8 to 4.11. The dimension

of the transformed predicted data (Ŝp
n,j) and transformed data mismatch (δŝmis,n,j)

are then decreased to Ne−1, and hence the computation of Eq. 4.12 become feasible

because we need only to invert a (Ne − 1) × (Ne − 1) matrix. However, in this

case, UUT 6= I, and therefore, Eqs. 4.5 and 4.12 are no longer equivalent. Although

Eq. 4.12 is not equivalent to the standard EnKF scheme because of limited ensemble
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(d) Final ensemble (300)

Figure 4.1: Prod4 BHP for ensemble size of 100 and 300 (PUNQS3, global analysis).

size, like Skjervheim et al. [73], we will still use this equation to analyze the seismic

data because this solution makes it feasible to assimilate seismic data using EnKF.

However, as will be shown, this scheme can suffer from severe filter divergence, and

we may need a very large ensemble to get meaningful results. This is the major

reason why we need local analysis as the second choice to assimilate the seismic

data.

4.2 Global Analysis Results

A global analysis of seismic data for the PUNQS3 model and the channel

model will be discussed here. Two ensemble sizes of 100 and 300 are used for both

models. Using an ensemble size of 100 gives very small uncertainty of the posterior

model, bad data matches and wrong predictions for both examples. This is because

the ensemble members get very close to each other after assimilating the first seismic

data. Some improvement can be observed when the ensembles are enlarged. At a

specific data assimilation step with both production and seismic data, production
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(b) Final ensemble (100)
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(c) EnKF assimilation (300)
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Figure 4.2: Prod11 BHP for ensemble size of 100 and 300 (PUNQS3, global analysis).
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(a) EnKF assimilation (100)
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(b) Final ensemble (100)
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(c) EnKF assimilation (300)
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Figure 4.3: Prod4 WCT for ensemble size of 100 and 300 (PUNQS3, global analysis).
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(a) EnKF assimilation (100)
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(b) Final ensemble (100)
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(c) EnKF assimilation (300)
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Figure 4.4: Prod11 WCT for ensemble size of 100 and 300 (PUNQS3, global analysis).
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Figure 4.5: True model of PUNQS3: porosity, ln kh, ln kz.
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Figure 4.6: Mean and STDR of conditional fields, ensemble size is 100 (PUNQS3,
global analysis).
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(b) ln kh mean
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(c) ln kz mean
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(d) Porosity STDR
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Figure 4.7: Mean and STDR of conditional fields, ensemble size is 300 (PUNQS3,
global analysis).
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(b) Final ensemble (100)

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0
P r o d  3

 

 

BH
P (

ps
i)

T I M E  ( D a y )

(c) EnKF assimilation (300)
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Figure 4.8: Prod3 BHP, ensemble size of 100 and 300 (channel case, global analysis).
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(b) Final ensemble (100)
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(c) EnKF assimilation (300)
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(d) Final ensemble (300)

Figure 4.9: Prod3 WCT, ensemble size of 100 and 300 (channel case, global analysis).
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Figure 4.10: True facies, channel PDF of two ensemble size 100 and 300 (channel
case, global analysis).
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data are assimilated first to get a conditional ensemble, which is then used as the

prior ensemble to assimilate the seismic data, i.e., assimilate the production data

and seismic data separately and sequentially.

4.2.1 PUNQS3 Example

Figs. 4.1 to 4.4 show the predicted bottom hole pressure and water cut in

producers 3 and 11 with ensemble sizes of 100 and 300. Even with the ensemble

size of 300, the predictions still fail to bound the truth except for water cut data for

producer 11 when we predict from time zero using the final ensemble. We can say

that for both ensemble sizes the conditional predictions as well as the data matches

are wrong.

Figs. 4.6 and 4.7 show the means and standard deviation ratios (STDR) of the

conditional fields for both ensemble sizes, in which the posterior means of porosity

and ln kh fields can roughly capture the structure of the truth (Fig. 4.5), but the

posterior mean of ln kz is much different from the truth with some overshooting

and undershooting. From the figures, the standard deviations of the conditional

model for the 100 ensemble members case is decreased to under 10% (STDR) of the

values in the initial ensemble. For the case with 300 ensemble members, this ratio is

higher but is still below 20%. Thus, it seems clear that the global analysis greatly

underestimates the posterior uncertainties of models and predictions (severe filter

divergence), which make it difficult to assimilate subsequent production data with

EnKF.

4.2.2 Channel Example

Figs. 4.8 and 4.9 show the predictions of bottom hole pressure and water

cut for producer 3 for the cases with different ensemble sizes of 100 and 300. Note

that the predictions are extremely biased for the 100 ensemble member case, but

are much more reasonable for the 300 ensemble case although predictions from time
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zero appear to be somewhat biased. Fig. 4.10 shows the true facies distribution

and the channel PDF of these two cases. The small ensemble size case gives a very

small uncertainty in the distribution of facies, which is obviously wrong connectivity

between producer 4 (near lower right corner) and injector, which corresponds to the

fact that the predictions are too narrow and far from the truth. The larger ensemble

size of 300 gives higher uncertainty in the channel distribution and better overall

results. However, for an ensemble size of 300, the connectivity between the injector

and producers 3 and 4 is better. All ensemble members converge to a wrong facies

map, see Fig. 4.10.

From the results of both examples, it is clear that global analysis require a

large ensemble to give a reasonable result, and even an ensemble size of 300 may be

insufficient to correctly characterize the posterior uncertainty.

4.3 Local Analysis of Seismic Data

Local analysis is the second method we will consider to assimilate seismic

data. In this scheme, we update variables gridblock by gridblock. ybi,n contains all

entries of state vector associated with the ith gridblock. In this way, the local analysis

can be used to update the state vector components located in a certain gridblock

using the data in its neighbor gridblocks, and hence the state vector components

from different gridblocks are updated using different set of data.

Denote a predicted state matrix composed of Ne predicted state vectors with

all their components located in the ith gridblock as Y p
bi,n

=
[
yp

bi,n,1, y
p
bi,n,2, · · · , yp

bi,n,Ne

]T
,

where yp
bi,n,j represents all entries in the predicted state vector located in the ith

gridblock, and hence it is the subvector of yp
n,j with the entry list indicating the

components in the ith gridblock, i.e. porosity, permeability, Gaussian random field

values, pressure, and saturations etc. The dimension of matrix Y p
bi,n

is Ny,bi
× Ne,

where Ny,bi
is the number of entries in the ith subvector, for i = 1, 2, · · · , N , and
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N is the total number of gridblocks. Local analysis will find the updated states in

the ith gridblock (Y a
bi,n

) by matching the seismic data located in the neighbor of

this gridblock. sobs,bi,n is a vector which contains all observed seismic data in the

neighborhood of gridblock i that will be used to update all entries of the state vector

corresponds to gridblock i. We then use suc,bi,n,j to denote a perturbation of sobs,bi,n

obtained by adding noise. Here, Sp
uc,bi,n

denotes a matrix containing the perturbed

seismic data for the ensemble, i.e., Suc,bi,n = [suc,bi,n,1, suc,bi,n,2, · · · , suc,bi,n,Ne ]. In this

study, the size of the neighborhood used is 5 × 5, so the number of data included

when performing the EnKF analysis for each gridblock is 25.

The predicted data matrix for the ith gridblock is written as

Sp
bi,n

=
[
sp

bi,n,1, s
p
bi,n,2, · · · , sp

bi,n,Ne

]
,

where sp
bi,n,j denotes the predicted seismic data from the jth realization in the neigh-

bor gridblocks of the ith gridblock, and hence Sp
bi,n

has the same dimension as Suc,bi,n

(Nd,bi,n×Ne). To construct a local analysis equation, we define error matrices of the

predicted state vector and the predicted data localized for the ith gridblock:

∆Y p
bi,n

= Y p
bi,n

− Y p
bi,n

∆Sp
bi,n

= Sp
bi,n

− Sp
bi,n

,

(4.13)

where Y p
bi,n

and Sp
bi,n

, respectively, are the matrices with each column equal to the

average of the columns in Y p
bi,n

and Sp
bi,n

, respectively. The corresponding approxi-

mation of covariance matrices can be written as

CY p
bi,n,Sp

bi,n
=

1

Ne − 1
∆Y p

bi,n
(∆Sp

bi,n
)T

CSp
bi,n,Sp

bi,n
=

1

Ne − 1
∆Sp

bi,n
(∆Sp

bi,n
)T ,

(4.14)
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and the data mismatches for the jth realization is

δsmis,bi,n,j = suc,bi,n,j − sp
bi,n,j. (4.15)

Using the definitions in Eqs. 4.13 to 4.15, each column of the analyzed ensemble

matrix Y a
bi,n

=
[
ya

bi,n,1, y
a
bi,n,2, · · · , ya

bi,n,Ne

]
can be obtained using

ya
bi,n,j = yp

bi,n,j + ∆Y p
bi,n

(∆Sp
bi,n

)T
[
∆Sp

bi,n
(∆Sp

bi,n
)T + (Ne − 1)CSbi,n

]−1

δsmis,bi,n,j,

(4.16)

where CSbi,n
is the measurement error covariance matrix for the measurements entries

of sobs,bi,n.

The analyzed ensemble from Eq. 4.16 is no longer confined to the subspace

spanned by the predicted ensemble and thus, for local analysis it is easier to find

an updated ensemble that matches a large data set because the components in dif-

ferent gridblocks are updated using different linear combination of the predictions.

However, the smoothness of the updated models may be less than the smoothness

inherent in the covariance of the predicted ensemble because the state vector com-

ponents with more than 5 gridblocks apart are updated using totally different data

sets. The degradation of the spatial smoothness in the conditional models can be a

significant problem for the pluri-Gaussian case because the analyzed model may not

have smooth boundaries between facies. In this study, a projection method is used

to eliminate this problem.

For the pluri-Gaussian geological model, an adjustment algorithm is needed

to honor the hard data whenever the models are updated. In the rest of this section,

adjustment schemes for both the local analysis and the projection process will be

discussed.
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4.3.1 Honoring Hard Data in Local Analysis

For the pluri-Gaussian geological model, the analyzed model obtained using

Eq. 4.16 may violate the hard data (observed facies) if the ith gridblock is a well

gridblock. To honor the hard data, we will follow three steps similar to those shown

in Chapter 3. Here, if the hard data at a well gridblock is not honored, we augment

the seismic data in this gridblock with pseudo data.

To define the expanded data vector, we need to consider the following compli-

cations for the local analysis: 1) we assume the size of neighborhood is small enough

so that the local analysis for a well gridblock does not include the data in another

well gridblock; 2) for a well gridblock, if an adjustment is needed to honor the hard

data, the number of the pseudo data is 2 because only one pair of Gaussian random

field values are included in this gridblock; 3) for a gridblock without a well, if a

neighbor gridblock includes a pseudo data (because of violation of the hard data at

that well), the pseudo data will also be included in the local analysis. Therefore, we

can define the expanded data as follows:

1. The expanded predicted data for the jth ensemble member is defined as

s̃p
bi,n,j =

[
(yp

bw,k,n,j)
T , (sp

bi,n,j)
T
]T

, (4.17)

where yp
bw,k,n,j represents the predicted Gaussian random field values (one pair)

of the kth well gridblock for the jth ensemble member if two conditions are

satisfied: (1) the kth well gridblock is in the neighborhood of the ith gridblock

and (2) the hard data in the kth gridblock is not honored (or this gridblock

contains pseudo data to enforce honoring the hard data). Here, i could be

equal to k. The corresponding expanded predicted data matrix can be denoted
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as S̃p
bi,n

with s̃p
bi,n,j as its jth column, and the corresponding error matrix is

∆S̃p
bi,n

= S̃p
bi,n

− S̃p
bi,n

, (4.18)

where S̃p
bi,n

is a matrix with each column equals to the average of the columns

of S̃p
bi,n

. Note that if either one of the above two conditions is not satisfied, we

will use Eq. 4.16 as the analysis equation for the ith gridblock (without data

expansion) and the adjustment scheme described here will not be used.

2. If the predicted data is augmented, the corresponding data mismatch for the

jth ensemble member is defined as

δs̃mis,bi,n,j =
[
(cbw,k,n,j)

T , (δsmis,bi,n,j)
T
]T

, (4.19)

where cbw,k,n,j is the pseudo data included to honor the hard data in the kth

well gridblock. cbw,k,n,j has the same dimension as yp
bw,k,n,j.

3. Similar to Eq. 3.22, we define CS̃bi,n
as the covariance matrix of the measure-

ment error expanded by an identity matrix.

With these definitions, the corresponding covariance matrix for the predicted state

and the predicted data and the auto covariance matrix of the predicted data can be

written as

CY p
bi,n,S̃p

bi,n
=

1

Ne − 1
∆Y p

bi,n
(∆S̃p

bi,n
)T

CS̃p
bi,n,S̃p

bi,n
=

1

Ne − 1
∆S̃p

bi,n
(∆S̃p

bi,n
)T .

(4.20)

Similar to Eq. 3.24, the local analysis equation with expanded data can be written
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as

ỹa
bi,n,j = yp

bi,n,j + ∆Y p
bi,n

(∆S̃p
bi,n

)T
[
∆S̃p

bi,n
(∆S̃p

bi,n
)T + (Ne − 1)CS̃bi,n

]−1

δs̃mis,bi,n,j,

(4.21)

where the tilde terms represent the expanded predicted data and expanded data

mismatches.

Using a similar scheme to the one in the last chapter, we use the following

three steps to find the values of the cbw,k,n,j’s to be used as pseudo-data to ensure

that the facies observations at well gridblocks will be honored.

1. Normal Analysis. The three steps are applied to the ensemble members one

by one. For the jth member, we use Eq. 4.16 (without pseudo data) to obtain

the Gaussian random fields at the Nw well gridblocks:

Y a
bw,n,j =

[
ya

bw,1,n,j, y
a
bw,2,n,j, · · · , ya

bw,Nw ,n,j

]T

. (4.22)

If the analyzed state vector in the kth well gridblock ya
bw,k,n,j is consistent with

the hard data, then no pseudo data will be introduced into this gridblock, but

if not, the adjusted Gaussian random field pairs for this gridblock (yadj
bw,k,n,j) is

found using the method shown in the last chapter (Eq. 3.28).

2. Calculate Adjustment. Each of the adjusted pair in a well gridblock contains

two values, and the corresponding pseudo data cbw,k,n,j’s can be found by solving

Eq. 4.21 (with ỹa
bi,n,j replaced by yadj

bw,k,n,j) for cbw,k,n,j. Similar to Eq. 3.29 in the

last chapter we solve

yadj
bw,k,n,j = yp

bk,n,j + Abk,n,jδs̃mis,bk,n,j, (4.23)

117



where

Abk,n,j = ∆Y p
bk,n(∆D̃p

bk,n)T
[
∆D̃p

bk,n(∆D̃p
bk,n)T + (Ne − 1)CD̃,bk,n

]−1

(4.24)

is a 2 × (2 + Ns,bk,n) matrix. Eq. 4.23 is solved only for the well gridblock to

find the pseudo data. Here, the same algorithm as shown in Eqs. 3.30, 3.31

and 3.32 is used.

3. Redo Analysis. Using the solved pseudo data obtained in step 2, Eq. 4.21

is applied to perform the local analysis of the state vector for the gridblocks

affected by the pseudo data, and the ỹa
bi,n,j will be obtained as the locally

analyzed state vector at the ith gridblock after adjustment. For the gridblocks

not affected by the pseudo data, the local analysis will be performed using

Eq. 4.16.

In the following discussion, we will always use ya
n,j to denote the analyzed state vector

whether or not its components are obtained using the adjustment scheme.

4.3.2 Local Analysis of Seismic Data with Projection

As mentioned in the last section, a drawback of the local analysis scheme

is that some non-smooth components can be introduced into the analyzed models

so that the continuity of the fields can be severely degraded. Assume the pre-

dicted model of the jth ensemble member before analysis is written as mp
n,j =[

mp
n,j,1, m

p
n,j,2, · · · , mp

n,j,Nm

]T
, and ma

n,j =
[
ma

n,j,1, m
a
n,j,2, · · · , ma

n,j,Nm

]T
is the model

obtained through local analysis, where Nm is the number of the model parameters.

The correction term is δma
n,j = ma

n,j −mp
n,j. Here, we will use a projection method

to remove the unwanted non-smooth components in δma
n,j while keeping the smooth

components.

Assume we have a large ensemble of N b
e realizations of the model conditioned
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only to the hard data (without assimilating the dynamic data). This ensemble can

be written as a matrix:

M0 =
[
m0

1, m
0
2, · · · , m0

Nb
e

]
, (4.25)

which is totally different from the initial ensemble. The correction term is projected

onto a subspace of the space spanned by the columns of M0. To project each δmn,a
j

onto the subspace spanned by the m0
j ’s, we simply minimize the objective function

of Eq. 4.26 to obtain the vector of coefficients, αj = [αj,1, αj,2, · · · , αj,Nb
e
]T .

O(αj) = (δma
n,j −M0αj)

T (δma
n,j −M0αj); (4.26)

then we set δm̂a
n,j = M0αj. Setting the gradient equal to zero and solving for αj

gives

∇αj
O(αj) = −(M0)T (δma

n,j −M0αj) = 0

(M0)T M0αj = (M0)T δma
n,j.

(4.27)

The singular value decomposition of M0 is given by

M0 = UpΛpV
T
p , (4.28)

where p is the number of positive singular values that are retained in the approxima-

tion, Λp is a p× p matrix with the largest p singular values on its diagonal, the jth

column of Up is the jth left singular vector and the jth column of Vp is the jth right

singular vector. Using this singular value decomposition in the second equation of

Eq. 4.27 and using standard procedures gives

αj = VpΛ
−1
p UT

p δma
n,j. (4.29)
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Using this result in the definition of δm̂a
n,j gives

δm̂a
n,j = M0Vp(Λp)

−1UT
p δma

n,j = UpΛpV
T
p Vp(Λp)

−1UT
p δma

n,j

= UpU
T
p δma

n,j.

(4.30)

For the examples presented in this work, we use N b
e = 1200 for all cases

and use 200 left singular vectors corresponding to the 200 largest singular values

in Eq. 4.30. We have experimented with choosing the number of singular values

retained based on the ratio of largest to smallest singular value retained, but for all

examples we have tried with an ensemble size of 100 (for EnKF), the choice of 200

has worked well.

The corresponding modified analyzed model is given by

m̂a
n,j = mp

n,j + δm̂a
n,j. (4.31)

The projected models m̂a
n,j’s are then used to replace the ma

n,j’s that were obtained

by local analysis and adjustment. However, this modification of the model is not

guaranteed to honor the hard data for the pluri-Gaussian model.

If we let βj = UT
p δma

n,j, we can rewrite Eq. 4.30 as

δm̂a
n,j = Upβj, (4.32)

and hence Eq. 4.31 become

m̂a
n,j = mp

n,j + Upβj. (4.33)

The state vector with the ensemble of models obtained by the projection

method is denoted by ŷa
n,j, j = 1, 2, · · ·Ne. Let ŷa

bw,n,j be the subvector of ŷa
n,j that

corresponds to pairs of the Gaussian random fields at well gridblocks. Note this

means that ŷa
bw,n,j is actually a subvector of m̂a

n,j. So from Eqs. 4.31 and 4.32, it
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follows that

ŷa
bw,n,j = yp

bw,n,j + Up,bwβj, (4.34)

where Up,bw is the submatrix of Up corresponding to well data, i.e.,

Up,bwβj = ŷa
bw,n,j − yp

bw,n,j. (4.35)

If ŷa
bw,n,j is not consistent with observed facies at one or more well gridblocks, we

compute ŷadj
bw,n,j using the same method described in Chapter 3 (Eq. 3.28) and then

we can obtain a modified β̂j by solving

ŷadj
bw,n,j = yp

bw,n,j + Ubw β̂j (4.36)

to obtain β̂j by solving

Ubw β̂j =
(
ŷadj

bw,n,j − yp
bw,n,j

)
(4.37)

using SVD method. Replacing βj in Eq. 4.33 with β̂j gives

m̌a
n,j = mp

n,j + Upβ̂j, (4.38)

where m̌a
n,j is the projected and adjusted model that honors the hard data. This

scheme is applied to each ensemble member.

4.4 Local Analysis Example

As was noted, the local analysis provides more degrees of freedom for match-

ing inverted seismic data. The purpose of this section is to: (1) evaluate the the

local analysis scheme in assimilating seismic data in both the Gaussian and pluri-

Gaussian geological models; (2) to demonstrate that the projection scheme can pre-

serve smoothness in the conditional models in both the Gaussian and pluri-Gaussian

cases.
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Figure 4.11: Mean and STDR of conditional fields (PUNQS3, EnKF local analysis,
no projection).

We consider all three examples introduced in Chapter 2. For each example,

two sets of seismic data as well as production data are assimilated. Local analysis

with and without projection will be compared. For the channel model, the results

from the case of local analysis with projection will be shown, but the local analysis

without projection failed to give continuous channel facies; as a result the reservoir

simulator could not be run forward with most ensemble members.

4.4.1 PUNQS3 Example

The conditional models obtained with EnKF for the PUNQS3 example are

shown in Figs. 4.11 (without projection) and 4.12 (with projection). The posterior

means of porosity and ln kh fields for both cases capture the basic structure of the

true model (Fig. 4.5), but the ones from the case with projection are much smoother.
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Figure 4.12: Mean and STDR of conditional fields (PUNQS3, EnKF local analysis,
with projection).
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Figure 4.13: Prod4, 11, 12 BHP, assimilation predictions, comparison between with
and without projection (PUNQS3, EnKF local analysis).
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Figure 4.14: Prod4, 11, 12 BHP, predictions from the final ensemble, comparison
between with and without projection (PUNQS3, EnKF local analysis).
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Figure 4.15: Prod4, 11, 12 WCT, assimilation predictions, comparison between with
and without projection (PUNQS3, EnKF local analysis).
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(f) With Projection

Figure 4.16: Prod4, 11, 12 WCT, predictions from the final ensemble, comparison
between with and without projection (PUNQS3, EnKF local analysis).
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Figure 4.17: Three facies example, true model.
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Figure 4.18: Two realizations of conditional facies for the case without projection
(three facies model, EnKF local analysis).
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Figure 4.19: Two realizations of conditional facies for the case with projection (three
facies model, EnKF local analysis).
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(c) From EnKF assimilation
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(d) From final ensemble

Figure 4.20: Producer 4 BHP and WCT, without projection, (3 facies case, EnKF
local analysis).
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(c) From EnKF assimilation
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(d) From final ensemble

Figure 4.21: Producer 4 BHP and WCT, with projection, (3 facies case, EnKF local
analysis).
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Figure 4.22: Channel probability, two posterior models and water saturations (chan-
nel case, EnKF local analysis, (1): without projection (2): with projection).
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(b) Prod3 BHP
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(c) Prod1 WCT
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(d) Prod2 WCT
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(e) Prod3 WCT
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(f) Prod4 WCT

Figure 4.23: Predictions from EnKF assimilation (channel case, EnKF local analysis
with projection).
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(c) Prod1 WCT
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(d) Prod2 WCT
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(e) Prod3 WCT
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Figure 4.24: Predictions from EnKF assimilation (channel case, EnKF local analysis
with projection).
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(b) Posterior FOPT

Figure 4.25: FOPT predictions (channel case, EnKF local analysis with projection).

For the case without projection, the continuity of ln kz field is much worse than

if projection is used, and additionally more overshooting and undershooting occur

compared to the true model (Fig. 4.5). The standard deviation ratios from the case

without projection are significantly lower than those from the case with projection,

especially for the porosity field. We can see that the local analysis of the seismic

data can introduce non-smooth components into the models, and the projection can

help to remove this roughness.

The predictions of bottom hole pressure and water cut for producers 4, 11

and 12 from the two cases with and without projection are shown in Figs. 4.13 to

4.16. Unfortunately, overall, no improvement in predictions were obtained using

projection.

Comparing the results in the base case of the PUNQS3 example, the local

analysis of seismic data with projection give a better estimate of model fields but

not significantly more dependable predictions.

4.4.2 Three Facies Example

Fig. 4.18 shows two conditional realizations of the facies distributions for the

three facies case without using projection in the local analysis of seismic data. Most

structures in the truth case (Fig. 4.17) are captured, but some undesired roughness

is introduced into the facies distribution by local analysis. If we use the projection

method in the local analysis, the facies maps (shown in Figs. 4.19) are much smoother

131



and also capture most features of the true model.

Figs. 4.20 and 4.21 show the predictions of bottom hole pressure and water

cut for producer 4 for both cases. The data matches and predictions are good for

both cases, but the uncertainty band for the case with projection is wider because

the conditional models are more varied.

4.4.3 Channel Example

In the channel case, local analysis without projection failed to assimilate dy-

namic data after assimilating the first seismic data set because the channels became

discontinuous and for most of the resulting models the simulation would not run.

Fig. 4.22 shows the conditional facies distribution of both cases with and without

using projection. The plots numbered with a 1 are the conditional facies distribu-

tions (seismic data assimilation at time zero) for the case without using projection.

We can see that both conditional realizations of the channel facies are highly dis-

continuous. The plots numbered with a 2 are from the case with projection, in

which the channel PDF, two conditional realizations of facies distributions and a

realization of estimated water saturation distribution are shown. We can see that

the projection results in the channels that are continuous. The conditional models

can correctly reflect the connectivity of the reservoir and are more similar to the

true model (Fig. 4.10(a)) than what is obtained in the case assimilating only the

production data (Fig. 3.21).

Figs. 4.23 and 4.24 show the bottom hole pressure predictions for producers

1 and 3 and water cut predictions for all producers. Compared to the predictions

from the base case (Figs. 3.17 and 3.18) there are no significant improvements.

4.5 Summary

Tables 4.1 and 4.2 show the quantitative comparison of the four PUNQS3

cases discussed in this chapter. From the tables, the case with a larger ensemble
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Cases Op,EnKF
BHP Op,EnKF

GOR Op,EnKF
WCT Op,EnKF

TOT

Global 10.826 23.222 19.222 18.492
Global 300 9.856 16.568 18.028 15.239

Local No Proj. 4.334 5.301 14.065 9.031
Local + Proj. 8.032 23.319 18.418 17.772

Table 4.1: Prediction errors, PUNQS3 example, predicting forward from last data
assimilation, EnKF of the production data and seismic data.

Cases Om Od
BHP Od

GOR Od
WCT Od

TOT Op
BHP Op

GOR Op
WCT Op

TOT

Global 1.036 3.196 4.847 2.806 3.671 11.353 21.471 17.407 17.251
Global 300 0.929 2.207 4.249 1.807 2.858 10.053 14.013 16.169 13.649

Local No Proj. 0.83 1.947 3.216 6.242 2.926 5.61 5.238 15.622 10.049
Local + Proj. 1.164 2.501 4.396 2.998 3.147 8.368 20.35 17.375 16.187

Table 4.2: Model mismatch, data mismatch, prediction error, PUNQS3 example,
predicting final ensemble from time zero, EnKF of the production data and seismic
data.

Cases Op,EnKF
BHP Op,EnKF

WCT Op,EnKF
TOT

Prior 7.674 6.709 7.261
Prod. Only 1.508 3.506 2.594

Local No Proj. 1.122 2.313 1.754
Local With Proj 1.017 0.904 0.969

Table 4.3: Prediction errors, three facies example, predicting forward from last data
assimilation, EnKF of production data and seismic data.

Cases Om Od
BHP Od

WCT Od
TOT Op

BHP Op
WCT Op

TOT

Prior 0.605 18.624 13.944 16.707 7.674 6.709 7.261
Prod. Only 0.537 5.967 8.259 7.077 6.508 4.701 5.775

Local No Proj. 0.217 2.682 3.452 3.048 1.596 1.931 1.753
Local With Proj 0.327 3.743 5.454 4.583 4.138 2.665 3.559

Table 4.4: Model mismatch, data mismatch, prediction error, three facies example,
predicting final ensemble from time zero, EnKF of production data and seismic data.

Cases Op,EnKF
BHP Op,EnKF

WCT Op,EnKF
TOT

Global 6.091 11.97 9.181
Global 300 6.336 3.455 5.255

Local with Proj. 12.34 4.726 9.723

Table 4.5: Prediction errors, channel example, predicting forward from last data
assimilation, EnKF of production data and seismic data.
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Cases Om Od
BHP Od

WCT Od
TOT Op

BHP Op
WCT Op

TOT

Global 0.417 11.045 32.691 23.297 7.91 16.702 12.599
Global 300 0.437 11.161 13.829 12.418 7.907 5.824 7.058

Local with Proj. 0.41 28.421 21.142 25.444 12.694 8.541 11.043

Table 4.6: Model mismatch, data mismatch, prediction error, channel example, pre-
dicting final ensemble from time zero, EnKF of production data and seismic data.

size of 300 gives smaller data mismatches and prediction errors, but as was discussed

above, the global analysis with 300 realizations still leads to filter divergence, i.e.,

too narrow and wrong predictions. Compared to the global analysis of seismic data,

the local analysis gives better data matches and predictions. The model mismatch,

data mismatches and prediction errors from the local analysis case with projection

are higher than those from the case without projection, but the conditional models

are smoother. The model mismatches from these four cases are all much lower than

those from the cases in Chapter 3 (Table 3.5) indicating better estimation of models.

Tables 4.3 and 4.4 show the quantitative comparison of the three facies cases

discussed up to now including the base case discussed in Chapter 3. We can see

that although the local analysis case with projection gives a more reasonable model

(good continuity), the model mismatch, data mismatches and prediction errors are

all bigger than those from the case without projection (except the predictions from

the final EnKF assimilation state). Compared to the case assimilating only the

production data, assimilating additional seismic data gives a better model, better

data match and better predictions.

Tables 4.5 and 4.6 show the quantitative comparison of the channel cases

discussed in this chapter. We can see that global analysis with 300 realizations gave

model mismatch, data mismatches and prediction errors significantly smaller than

obtained in the other cases including those from the local analysis cases, but the

conditional models from the global analysis are obviously too close to each other and

converged to a wrong model. The local analysis with projection gives smaller model

134



mismatch than the other cases, but worse data matches and predictions.
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CHAPTER 5

ENSEMBLE RANDOMIZED MAXIMUM LIKELIHOOD METHOD

The ensemble Kalman filter (EnKF) assimilates production and seismic data

sequentially in time, and in each data assimilation step model parameters and simu-

lation primary variables are adjusted to match the data measured at the assimilation

step [24]. In this way, the predictions for the next data assimilation step can be ob-

tained by restarting the simulator using the analyzed models and simulation primary

variables without running from time 0. This is why the process is fast. However,

EnKF may give inaccurate predictions because primary variables and data are non-

linear functions of the model parameters, and the predictions may not satisfy a

Gaussian distribution which is a fundamental assumption used to define the EnKF

analysis equation. Each EnKF analysis step is similar to one Gauss-Newton update

[68], which gives the proper minimum of the objective function related only if the

system is linear [77]. As a result, the conditional primary variables may be inconsis-

tent with the corresponding conditional model parameters. As is shown in Chapter

3, this is especially obvious in the channel cases where the conditional saturations

and models are inconsistent. The normal score transform did not fix this problem

because it was designed to deal with non-Gaussian distribution of the state variables,

not non-linearity. An iterative scheme [49, 86] can be an option to solve this problem

because (i) the predictions are obtained by simulating the ensemble members from

time zero rather than from the analyzed state, and hence the predictions will al-

ways be consistent with the corresponding models; (ii) iterative schemes can handle

non-linearity.

In this study, an iterative scheme introduced by Gu and Oliver [34] (we call
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Gu-Oliver scheme or ensemble randomized maximum likelihood (EnRML)) is tested,

which also assimilate data sequentially in time. This scheme is a modification of an

iterative method presented by Zupanski [86]. This method is effectively the Gauss-

Newton method except each realization is updated using an approximation to the

average sensitivity matrix, rather than the sensitivity matrix pertaining to the par-

ticular model being updated. This method offers advantages for this study, because

the gradient of the objective function does not exist on the facies boundary for the

pluri-Gaussian model. The problem that we have sometimes encountered with the

Gu-Oliver procedure [34] is that when the same step size is used for all ensemble

members, some accepted updated models give a worse data match than is obtained

with the corresponding prior models. Therefore, in this study, the EnRML scheme

is modified by using individual line search for each ensemble member to guarantee

that the updated model gives a better match of the observed data at each iteration.

We call this scheme as modified Gu-Oliver scheme with individual line search.

5.1 Ensemble Randomized Maximum Likelihood (EnRML)

At the nth data assimilation time, the matrix of predicted models is denoted

by Mp
n =

[
mp

n,1, m
p
n,2, · · · , mp

n,Ne

]
with mp

n,j denoting Nm-dimensional column vectors

of the predicted model parameters for the jth ensemble member. Noisy data (duc,n,j)

and covariance matrices are the same as defined in Eqs. 3.4 and 3.14. We want to

obtain the set of analyzed models Ma
n = [ma

n,1, m
a
n,2, · · · , ma

n,Ne
] by minimizing the

objective function

Oj(mn,j) =
1

2

(
mn,j −mp

n,j

)T
C−1

Mn

(
mn,j −mp

n,j

)
+

1

2
(g(mn,j)− duc,n,j)

T C−1
D,n (g(mn,j)− duc,n,j) ,

(5.1)

for j = 1, 2, · · · , Ne. We let ma
n,j denote the minimizing model, i.e., ma

n,j = Argmin[Oj(mn,j)]

for j = 1, 2, · · · , Ne. Here, the function g is the system equation for the predicted
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data, i.e. dn,j = g(mn,j), and CM,n is the covariance matrix of the prior model at the

nth data assimilation step. Note we have replaced the parameter-state estimation

problem used in EnKF by a problem where we only care about the estimates of

realizations of the model.

By viewing EnKF as an optimization algorithm, Reynolds et al. [68] were able

to derive an iterative EnKF method. This iterative method or equivalently the first

iterative EnKF method of Li and Reynolds [49] is based on the following equation

for assimilating data at the nth data assimilation time (time tn):

δm`+1
n,j = −

[
CMn + CMnGT

n,j,`

(
CDn + Gn,j,`CMnGT

n,j,`

)−1
Gn,j,`CMn

]
{
C−1

Mn
(m`

n,j −mp
n,j) + GT

n,j,`C
−1
Dn

(dn(m`
n,j)− duc,n,j)

}
,

(5.2)

which represents the `th (` = 0, 1, 2, · · · ) Gauss-Newton iteration for the randomized-

maximum-likelihood method (RML) for generating samples of the pdf for the model

conditional to observed data. Eq. 5.2 gives the search direction for Gauss-Newton

iteration. The new updated model of parameters is obtained from

m`+1
n,j = m`

n,j + α`+1
j δm`+1

n,j , (5.3)

where α`+1
j represents the step-size which can be determined by a line search proce-

dure. At this point, Gn,j,` denotes the gradient of predicted data dn with respect to

m evaluated at m`
n,j, and mp

n,j denotes the jth realization obtained by conditioning

to data up to and including the (n−1)st data assimilation time. Note Gn,j,` is simply

a sensitivity matrix related to the predicted data at the nth assimilation time.

The term in square brackets in Eq. 5.2 represents the inverse of the Gauss-

Newton Hessian, and the term in braces represents the gradient of the objective

function that is being minimized; in the iterative method of Reynolds et al. [68], the
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term GT
n,j,`C

−1
Dn

(dn(m`
n,j)−duc,n,j) is computed by an adjoint method, as implemented

by Li et al. [51] and Zhang and Reynolds [82] and the Hessian inverse is evaluated

in the same way as the corresponding terms in the EnKF procedure.

As in EnKF, the iterative scheme is a sequential data assimilation method.

Eq. 5.2 is for the assimilation of data at the nth data assimilation step (time tn).

Each iteration, however, requires a simulation run from time zero to time tn and a

corresponding adjoint solution using the adjoint implementation of Li et al. [51]. Li

and Reynolds [49] suggest a much more computationally efficient iterative scheme

that requires only rerunning the simulator from the previous data assimilation step

at each iteration.

As mentioned previously, however, for the truncated pluri-Gaussian model

the gradient is undefined on facies boundaries (Chapter 1). One possibility for using

the basic algorithm of Eq. 5.2 is to replace all individual sensitivity matrices by

an average sensitivity matrix Gn,`, where Gn,` can be estimated as suggested by

Zupanski [86] and Gu and Oliver [34]. Define the deviation matrix of models and

predictions in the `th iteration as

∆M `
n =M `

n −M `
n

∆D`
n =D`

n −D`
n,

(5.4)

where D`
n =

[
d`

n,1, d
`
n,2, · · · , d`

n,Ne

]
is the predicted data matrix with d`

n,j = g
(
m`

n,j

)
,

and M `
n and D`

n respectively, are the matrices with each column equal to the aver-

age of the columns in M `
n and D`

n, respectively. An approximation to the average

sensitivity matrix can be found by solving

(∆M `
n)T G

T

n,` = (∆D`
n)T (5.5)

using singular value decomposition. We can apply standard matrix inversion lemma
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[76] to rewrite Eq. 5.2 as

δm`+1
n,j = mp

n,j −m`
n,j + CMnG

T

n,`

(
CDn + Gn,`CMnG

T

n,`

)−1

(
duc,n,j − dn(m`

n,j) + Gn,`(m
`
n,j −mp

n,j)
)
.

(5.6)

Thus, we can compute a search direction with Eq. 5.6 and then use the same step

size to update every model for j = 1, 2, · · ·Ne, i.e., we replace Eq. 5.3 by

m`+1
n,j = m`

n,j + α`+1δm`+1
n,j . (5.7)

This is the procedure used by Gu and Oliver [34]. After each m`+1
n,j is computed, they

evaluate a term which effectively represents the average data mismatch. To evaluate

this average data mismatch requires rerunning the simulator from time zero with each

proposed updated ensemble member, m`+1
n,j , j = 1, 2, · · ·Ne. If the resulting average

data mismatch is less than the one obtained with the ensemble m`
n,j, j = 1, 2, · · ·Ne,

then the set m`+1
n,j , j = 1, 2, · · ·Ne is accepted as the updated ensemble and α`+1 is

increased by some undefined factor as the initial guess for the step size at the next

iteration. If the new proposed ensemble results in an increase, then α`+1 is decreased

by some undefined factor and, using this smaller step size, Eq. 5.3 is reapplied to all

ensemble members.

At each iteration, some of the final mj’s are equal to the normal EnKF update.

In this iterative scheme, the “prior” model covariance CMn is based on the ensemble

of models obtained at the previous data assimilation step and does not change during

the iterations. As in EnKF, this covariance matrix is never formally generated and

is represented by the ensemble mp
n,j, j = 1, 2, · · ·Ne, i.e.

CM,n =
1

Ne − 1
∆Mp

n (∆Mp
n)T , (5.8)
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where we use deviation matrix of the prior model for the nth data assimilation step

∆Mp
n = Mp

n −Mp
n, where Mp

n is a matrix with each column equal to the average of

the columns of Mp
n. Combining Eqs. 5.6 and 5.7, and applying Eq. 5.8 we obtain

m`+1
n,j =α`+1mp

n,j + (1− α`+1)m`
n,j

+ α`+1CMnG
T

n,`

(
Gn,`CMnG

T

n,` + CD,n

)−1 [
duc,n,j − g(m`

n,j) + Gn,`

(
m`

n,j −mp
n,j

)]
=α`+1mp

n,j + (1− α`+1)m`
n,j

+ α`+1∆Mp
n

(
Gn,`∆Mp

n

)T [
(Gn,`∆Mp

n)(Gn,`∆Mp
n)T + (Ne − 1)CD,n

]−1

[
duc,n,j − g(m`

n,j) + Gn,`

(
m`

n,j −mp
n,j

)]
(5.9)

with initial guess of model m0
n,j = mp

n,j. The analysis Eq. 5.9 can be written as:

m`+1
n,j =α`+1mp

n,j + (1− α`+1)m`
n,j

+ α`+1∆Mp
n

(
∆D`−

n

)T
[(

∆D`−
n

) (
∆D`−

n

)T
+ (Ne − 1)CD,n

]−1 [
duc,n,j −∆d`+

n,j

]
,

(5.10)

where the definitions of ∆D`−
n and ∆d`+

n,j are

∆D`−
n =Gn,`∆Mp

n

∆d`+
n,j =g(m`

n,j)−Gn,`

(
m`

n,j −mp
n,j

)
.

(5.11)

We can rewrite Eq. 5.10 as

m`+1
n,j = α`+1mp

n,j + (1− α`+1)m`
n,j + α`+1δm

`+1

n,j , (5.12)
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where

δm
`+1

n,j = ∆Mp
n

(
∆D`−

n

)T
[(

∆D`−
n

) (
∆D`−

n

)T
+ (Ne − 1)CD,n

]−1 [
duc,n,j −∆d`+

n,j

]
.

(5.13)

The vector δm
`+1

n,j could be computed using the same subroutine as the standard

EnKF (correction term in Eq. 3.15). Note that in the first iteration, Gn,0 need not

to be computed because if we use the initial given m0
n,j = mp

n,j, then ∆D0−
n = ∆Dp

n

(Eq. 5.5) and ∆d0+
n,j = g(mp

n,j).

In general, there is no reason to believe that Eq. 5.6, which uses an approx-

imate average sensitivity matrix, gives a downhill direction from all m`
n,j, and for

the problems considered here, it does not. Thus, we implemented an individual line

search for each ensemble member update, i.e., we use Eq. 5.3 in place of Eq. 5.7, and

Eq. 5.10 for individual line search can be written as

m`+1
n,j =α`+1

j mp
n,j + (1− α`+1

j )m`
n,j

+ α`+1
j ∆Mp

n

(
∆D`−

n

)T
[(

∆D`−
n

) (
∆D`−

n

)T
+ (Ne − 1)CD,n

]−1 [
duc,n,j −∆d`+

n,j

]
,

(5.14)

where α`+1
j is the step size for the jth ensemble member at the nth data assimilation

time. At the first iteration, we always attempt a unit step, and the update always

corresponds to the standard EnKF. At an iteration, if we do not obtain a decrease

in the objective function for a specific ensemble member, then we halve the step size

for line search. We will refer to this procedure as modified Gu-Oliver or Gu-Oliver

with individual line search.

For the pluri-Gaussian geological model, if a full step size is used (α`+1
j = 1),

exactly the same procedure of adjustment described in Chapter 3 can be used to

guarantee the updated model m`+1
n,j honors the hard data. In applying the adjustment

scheme of Chapter 3 for the EnRML scheme, the predicted model corresponds to
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mp
n,j, and the analyzed model corresponds to m`+1

n,j where α`+1
j = 1. If during the

line search, the step size is decreased, then m`+1
n,j might violate the hard data. If this

should happen to a specific ensemble member, the proposed model will be rejected

and a smaller step size will be tried as line search. If the smallest step size still

fails to honor the hard data or fails to give smaller the objective function, the most

recently accepted model for this ensemble member will be used, i.e., m`+1
n,j = m`

n,j.
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Figure 5.1: The scheme of EnRML with line search.

Fig. 5.1 shows the EnRML scheme used in this study. Each analysis is com-

posed of multiple iterations, and each iteration is a line search process for each

ensemble member. In this figure, the outer loop index of n is for the data assimila-

tion time steps, and the inner loop index of ` is for the iterations of each ensemble

member which is repeated for j = 1, 2, · · · , Ne. The line search is performed in

the inner loop, which is based on the objective function constructed from the data

mismatches for each ensemble member, i.e.

Od(mn,j) =
1

Nd,n

(g(mn,j)− duc,n,j)
T C−1

D,n (g(mn,j)− duc,n,j) . (5.15)
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The line search at the `th iteration follows the following rules:

1. If the objective function is smaller than 1.1 for an ensemble member, i.e.

Od(m
`+1
n,j ) < 1.1, then we set ma

n,j = m`+1
n,j and no further iterations are done on

this ensemble member. However, this realization will still be used to compute

the average sensitivity matrix for the followed iterations;

2. The initial step sizes for each data assimilation time step and each ensemble

member are all set equal to 1.0. From the second iteration on, the step sizes

are same as those obtained at the previous iteration;

3. If the proposed model (m`+1
n,j ) fails to give lower objective function value or is

invalid (does not honor the hard data in pluri-Gaussian case), we will sequen-

tially try smaller step sizes as 1
2
, 1

4
, and 1

8
until we get a model with a lower

objective function value. If the line search fails for a step size of 1
8
, i.e. do not

decrease the objective function, the analyzed model is set equal to the most

recently accepted model, i.e. m`+1
n,j = m`

n,j;

4. If the line search is successful, the step size is multiplied by 2, and we set the

maximum step size equals to 1.0.

The iteration procedure will stop if one of the following two conditions are satisfied:

1. All the ensemble members converge (Od(m
`+1
n,j ) < 1.1 for all j);

2. The maximum number of iteration (2 iterations) is reached and the decrease in

average normalized objective function (Eq. 5.16) is less than 10 percent of that

obtained in the previous iteration, i.e., if Ō(m`
n)−Ō(m`+1

n )

Ō(m`
n)

≥ 0.1, the iteration will

continue even if the maximum number of iteration is reached, here

Ōd(mn) =
1

Ne

Ne∑
j=1

Od(mn,j). (5.16)
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Figure 5.2: Comparison of objective functions for the four cases (PUNQS3 case,
iterative).

In the following cases, when the seismic data are assimilated with global

analysis we use the iterative scheme, and if the local analysis is used, we use the

EnKF analysis scheme, and the predictions for the next data assimilation time are

obtained by simulating the updated models from time zero.

5.2 EnRML Results for PUNQS3 Example

This example pertains to results from the PUNQS3 example obtained us-

Cases Om Od
BHP Od

GOR Od
WCT Od

TOT Op
BHP Op

GOR Op
WCT Op

TOT

Prod. Only 1.457 2.505 4.285 3.164 3.123 7.893 13.323 16.004 12.857
Global 1.036 3.196 4.847 2.806 3.671 11.353 21.471 17.407 17.251

Local No Proj. 0.83 1.947 3.216 6.242 2.926 5.61 5.238 15.622 10.049
Local + Proj. 1.164 2.501 4.396 2.998 3.147 8.368 20.35 17.375 16.187

Table 5.1: Model mismatch, data mismatch, prediction error, PUNQS3 example,
predicting final ensemble from time zero, EnKF copied from the previous chapters
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Figure 5.3: Comparison of field cumulative water for the four cases (PUNQS3 case,
iterative).
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Figure 5.4: True model of PUNQS3: porosity, ln kh, ln kz.

Cases Om Od
BHP Od

GOR Od
WCT Od

TOT Op
BHP Op

GOR Op
WCT Op

TOT

Prod. Only 1.37 2.333 3.994 2.756 2.894 6.275 12.636 9.815 9.922
Global 1.285 2.311 4.321 2.783 3.005 7.671 14.434 18.353 14.189

Local No Proj. 0.79 1.588 3.286 1.66 2.167 7.771 12.539 11.152 10.152
Local With Proj. 1.156 1.828 3.276 2.279 2.33 5.437 16.37 13.22 12.547

Table 5.2: Model mismatch, data mismatch, prediction error, PUNQS3 example,
predicting final ensemble from time zero, EnRML
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Figure 5.5: Mean and STDR of conditional fields (PUNQS3, assimilating production
data, iterative).
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Figure 5.6: Predictions from final model (PUNQS3 case, assimilating production
data, iterative).
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Figure 5.7: Mean and STDR of conditional fields (PUNQS3, assimilating production
data + global analysis of seismic data, iterative).
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Figure 5.8: Predictions from final model (PUNQS3 case, assimilating production
data + global analysis of seismic data, iterative).
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Figure 5.9: Mean and STDR of conditional fields (PUNQS3, assimilating production
data + local analysis of seismic data without projection, iterative).
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Figure 5.10: Predictions from final model (PUNQS3 case, assimilating production
data + local analysis of seismic data without projection, iterative).
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Figure 5.11: Mean and STDR of conditional fields (PUNQS3, assimilating production
data + local analysis of seismic data with projection, iterative).
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Figure 5.12: Predictions from final model (PUNQS3 case, assimilating production
data + local analysis of seismic data with projection, iterative).
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ing the EnRML scheme. Four cases will be considered: A) matching only produc-

tion data; B) matching production data plus seismic data using global analysis; C)

matching production data plus seismic data using local analysis without projection;

D) matching production data plus seismic data using local analysis with projection.

We focus on the following three aspects: 1) Comparison of conditional predictions

and models from EnKF and EnRML; 2) Comparison of global and local analysis of

seismic data in the EnRML scheme; 3) Find the impact of the projection method

for local analysis of seismic data in the EnRML scheme. For all cases here, the en-

semble size is 100. Table 5.2 shows the quantitative comparison of these four cases.

Comparing the results to the corresponding EnKF cases (Tables 3.5 and 4.2), which

are repeated here in Table 5.1, both the data mismatches and prediction errors are

smaller in the EnRML results, except that the global analysis case gives slightly

higher prediction errors. In Table 5.2, compared to the case assimilating only the

production data using EnRML, the two cases of assimilating seismic data (using

local analysis with and without projection) give smaller data mismatches, but gives

higher prediction errors in general. To compare the results in detail, we need to look

at the conditional models and predictions in figures.

Fig. 5.2 show the average and normalized objective function (averaged over

the ensemble and then normalized over the data, Eq. 5.16) of the four cases at each

data assimilation time. The shaded columns show the values of the objective function

before analysis at each data assimilation step, and the solid columns are those after

analysis. In the global analysis case, the stars and triangles represent the objective

function values of seismic data before and after global analysis, respectively. The

final objective function values of seismic data remain too high after global analysis,

which indicates that the global analysis failed to give a good match of the seismic

data. From this plot, we can also see that the global analysis does not give improved

matches of the production data. After local analysis of the seismic data, a much
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better match of production data is obtained than after global analysis of seismic

data. For both cases with and without projection, the final objective function values

in most assimilation steps are below 5. The objective function values from the case

with projection is slightly higher than those from the case without projection.

Fig. 5.3 shows the predicted field cumulative water production from the final

ensemble for the four cases. Compared to the results from the EnKF case assimilating

only production data for the corresponding case (Fig. 3.6), the EnRML scheme gives

much better predictions (Fig. 5.3(a)). Although the uncertainty band is a little wider,

the average prediction is much closer to the truth. The predictions obtained from

assimilating seismic data have much narrower bands, and global analysis gives biased

predictions. Before further discussion of these results, we compare the predictions of

water cut for each producer.

For each case, the predictions shown are obtained by running the final updated

ensemble from time zero. The bottom hole pressure and water cut for producers 4, 11

and 12 will be compared. The conditioned models will also be shown as the ensemble

mean and STDR for the three rock property fields.

Figs. 5.5 and 5.6 show the conditional models and predictions for the case

assimilating only production data. Compared to the model obtained from EnKF in

the base case (Fig. 3.8), the structure obtained from the iterative scheme is much

closer to the truth (Fig. 5.4) in that there are fewer incorrect structures, i.e. the high

values on the left top of the reservoir in all the three property fields in Fig. 3.8. The

STDR from EnRML are similar to those from the base EnKF case. The predictions

are also better compared to those obtained in Figs. 3.3 and 3.4, i.e., the predicted

bottom hole pressure and water cut for the three producers are all much narrower

and the average predictions are all closer to the truth in general.

Figs. 5.7 and 5.8 give the conditional models and predictions for the case where

se assimilate production data and seismic data using the global analysis scheme. We
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can see that the means of the models are are not similar to the truth, the STDR of

the three rock property fields are quite low (lower than 0.3), and many structures in

the true model are not captured even for the porosity. This is why the final objective

function values of seismic data shown in Fig. 5.2(b) are still high, above 10000, where

as they should be around 1 for a correct match. The predicted bottom hole pressure

and water cut for producer 12 are also worse than those from the case assimilating

only production data because the predictions are too narrow and the truth is outside

the bands. The water cut data for producer 11 are not matched, and the prediction is

wrong. This means the global analysis in EnRML not only has difficulty in matching

the seismic data, but also results in worse matches and predictions of the production

data.

Figs. 5.9 and 5.10 show the conditional models and predictions for the case

assimilating additional seismic data using the local analysis scheme without pro-

jection, and Figs. 5.11 and 5.12 show those from the local analysis scheme with

projection. The comparison of these results is quite similar to the corresponding

comparison in the EnKF scheme: (1) Both cases give good structure of porosity and

ln kh, but without projection the estimated ln kz has worse continuity and contains

more overshooting and undershooting; (2) The STDR of the conditional fields from

the projection case is higher than those from the case without projection; (3) The

predictions from the case without projection is narrower, and is wrong for the water

cut of the producer 12. Therefore, although the data matches in the case without

projection is better (lower objective function compared in Fig. 5.2(b) and Table 5.2),

the predictions are actually worse because of each of continuity of ln kz field and they

under-estimate of the uncertainties in the model parameters. Comparing the results

from EnKF and EnRML schemes for the local analysis with projection (Figs. 4.12,

4.14 and 4.16), the conditional models are quite similar (means and STDR), buf the

matches and predictions of bottom hole pressures for each producers and water cut
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Figure 5.13: Channel example, true facies distribution.
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Figure 5.14: Estimated channel PDF, posterior mean and STDR of Z1 after assimi-
lating the first seismic data using global analysis(channel case, EnRML).

for producer 4 are improved in the EnRML scheme.

5.3 EnRML Results for Channel Example

Global analysis of the seismic data in EnRML scheme can not give reason-

able results for the channel example because after the analysis of the seismic data

set, although the average objective function value is decreased from 2444 to 230,

most gridblocks become non-channel facies except some at and around the wells.

Cases Om Od
BHP Od

WCT Od
TOT Op

BHP Op
WCT Op

TOT

Prod. Only 0.444 14.599 18.756 16.576 4.349 5.995 5.146
Prod. + BT 0.458 14.831 17.498 16.071 3.216 3.743 3.46

Local 0.446 15.921 19.71 17.706 3.303 5.88 4.629
Local + BT 0.442 13.318 17.749 15.445 3.496 3.757 3.615

Table 5.3: Model mismatch, data mismatch, prediction error, channel example, pre-
dicting final ensemble from time zero, EnRML
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Figure 5.15: Comparison of objective functions for the four cases (channel case,
iterative).

This make it impossible to match the production data. The channel pdf and the

mean/STDR of the Gaussian random field Z1 are shown in Fig. 5.14. The channel

pdf shows the four wells are completely disconnected, and the conditional Z1 field is

unreasonable as the mean and STD are far too large except the gridblocks close to

the wells. A similar phenomenon is observed in the conditional Z2 field, which is not

shown.

In this case, for the channel example, we show four cases: A) assimilation of

production data only; B) assimilation of water breakthrough times as additional data;

C) assimilation of seismic data using local analysis with projection; D) assimilation

of additional water breakthrough times and seismic data using local analysis with

projection. The purpose of this case is mainly in two aspects: (1) compare EnRML

and EnKF in assimilating production data and seismic data in local analysis for the

channel model; (2) check how much improvement can be obtained by assimilating
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Figure 5.16: Comparison of field cumulative oil for the four cases (channel case,
iterative).

water breakthrough times using EnRML scheme. The water breakthrough times for

each producers are assimilated at the time t̂n listed in Table 3.2.

Table 5.3 shows the quantitative comparison of the four cases. Compared to

those from the corresponding EnKF cases (Tables 3.7 and 4.6), both data mismatches

and prediction errors are much smaller for the EnRML results. Comparing the four

cases from the EnRML scheme, assimilating seismic data using local analysis makes

data mismatches slightly larger than if we assimilate the production data only, but

makes the prediction errors slightly smaller.

Figs. 5.15 and 5.16 show the objective function values of production data

and the field cumulative oil predictions for the four cases. Compared to the case

assimilating only the production data, matching water breakthrough times gives a

slightly lower objective function values than if we do not match them, and assimi-

lating seismic data gives a little higher objective function values than if we do not
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Figure 5.17: Estimated channel PDF and two conditional realizations of facies and
water saturation distributions at 360 days (channel case, assimilating production
data, iterative).
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Figure 5.18: Predictions from final model (channel case, assimilating production
data, iterative).
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Figure 5.19: Estimated channel PDF and two conditional realizations of facies dis-
tributions (channel case, assimilating production data + water break through time,
iterative).
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Figure 5.20: Predictions from final model (channel case, assimilating production data
+ water breakthrough time, iterative).
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Figure 5.21: Estimated channel PDF and two realizations of facies distributions
(channel case, assimilating production data + local analysis of seismic data with
projection, iterative).
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Figure 5.22: Predictions from final model (channel case, assimilating production data
+ local analysis of seismic data with projection, iterative).
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Figure 5.23: Estimated channel PDF and two realizations of facies distributions
(channel case, assimilating production data + water breakthrough time + local
analysis of seismic data with projection, iterative).
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Figure 5.24: Predictions from final model (channel case, assimilating production
data + water breakthrough time + local analysis of seismic data with projection,
iterative).
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match them, which is consistent with our comments for Table 5.3. Assimilating both

water breakthrough times and seismic data gives the best data match, but the im-

provement seem quite limited. The predicted field cumulative oil for the four cases

are all similar trend.

Fig. 5.17 shows the channel PDF and two conditional realizations of facies

and water saturation distributions at 360 days from the case where we assimilate

only production data. Fig. 5.18 shows the predictions of bottom hole pressures from

injector and producer 1 and water cut from each producers for the case assimilating

only the production data. Comparing results from EnRML with those from EnKF

(Figs. 3.17, 3.18 and 3.21), we can make the following comments:

1. The channel PDF from EnRML shows much less clearly the low channel PDF

regions between the injector and producer 3, because the conditional facies

distributions from the EnRML are more varied (compared to 3.21).

2. The conditional water saturation distributions are consistent with the corre-

sponding facies distributions because they are obtained by simulating the con-

ditional models from time zero.

3. Bottom hole pressure matches from EnRML scheme are much better than those

from EnKF scheme (from final ensemble), and predictions of water cut are also

improved (except the producer 4) in that the water breakthrough time matches

are better and the average predictions are closer to the truth. These can be

reflected in the comparison of field cumulative oil (compare Figs. 3.19 and 5.16)

because the average is very close to the truth in the EnRML prediction, while

it is biased in those from the final EnKF ensemble.

Figs. 5.19 and 5.20 show the conditional models and the predictions of bottom

hole pressure of injector and producer 3 and water cut of the four producers from the
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case assimilating both production data and water breakthrough times. Compared to

the previous case (assimilating only production data), there are some improvements:

1. The channel PDF indicates more blue colors (poor connectivity) between the

injector and producer 3, which is also reflected in the comparisons of the two

conditional realizations of facies distributions;

2. In the predictions of water cut, some realizations with very late breakthrough

time in the previous case (assimilating only production data) are corrected

towards the truth. We believe this is the major reason why we get smaller

water cut data mismatch and prediction errors than the case assimilating only

the production data (Table 5.3, row 1 and 2).

Figs. 5.21 to 5.24 show the conditional models and predictions obtained by

assimilating seismic data using the local analysis scheme with and without assimilat-

ing water breakthrough times. These two cases give quite limited improvements on

the production data predictions compared to the previous two cases, but the channel

PDF plots indicates a clearer recovery of connectivity between the injector and the

producer 3.

5.4 Summary

In the modified Gu-Oliver scheme with individual line search, the predictions

are obtained by simulating from time zero, and hence are consistent with the analyzed

models. In addition, it is an iterative scheme and hence is more adapted to the non-

linear problem. Therefore, the data matches and predictions obtained from EnRML

are somewhat better than those obtained from EnKF. EnRML uses an approximation

to an average sensitivity computed from the predicted ensemble. This makes it easy

to implement and more suitable for the pluri-Gaussian geological model, in which

the true sensitivity of data to the Gaussian random field values does not exist at
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facies boundaries. However, because it uses an average sensitivity matrix, it is not

guaranteed to give a downhill search direction for each realization and thus usually

fails to fit data as well as expected.

For the iterative scheme used in this study, global analysis still has difficulty in

assimilating the seismic data: (i) for the PUNQS3 model, the final objective function

values are still very high and the conditional models can only capture part of the

structures in the true model; (ii) for the channel model, the abnormally high and low

values of Z1 and Z2 are introduced to most gridblocks so that the conditional facies

distributions are non-physical, i.e., most gridblocks are non-channel facies and the

wells are not connected with channel facies. Therefore, global analysis is not a good

candidate for assimilating seismic data in the EnRML scheme. This is due to the

deficiency in EnRML mentioned above as we were able to apply global analysis to

assimilate seismic data when using EnKF. The local analysis scheme implemented

in this study, although it does not assimilate seismic data iteratively, is also efficient

when combined with the EnRML scheme used to assimilate the production data.

Compared to EnKF, EnRML gives improved results for both the PUNQS3 model

and the channel example. Matching water breakthrough times in EnRML scheme

gives very slight improved matches and predictions of water cut.
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CHAPTER 6

CASES OF PLURI-GAUSSIAN MODEL WITH UNCERTAIN

PARAMETERS

For the two pluri-Gaussian geological models discussed in the previous chap-

ters, the facies porosity and permeability were assumed to be known. In this chapter,

we will consider examples where these facies properties are uncertain. Tables 6.1 and

6.2 shows the true porosity and ln k, and their prior means and standard deviations

for the examples considered in this chapter. For both models, the correlation coef-

ficients between porosity and ln k for each facies are 0.5. For the three facies case,

the vertical permeability is 10% of horizontal permeability, and hence is not a model

parameter.

Property Truth Mean STD

Channel φ 0.212 0.15 0.05
Nonchannel φ 0.162 0.15 0.05
Channel ln k 7.259 7.20 0.50
Nonchannel ln k 2.441 2.00 1.00

Table 6.1: Channel example porosity and log-permeability.

Property Truth Mean STD

Facies 1 φ 0.060 0.08 0.02
Facies 2 φ 0.127 0.17 0.03
Facies 3 φ 0.213 0.22 0.03
Facies 1 ln k 2.372 2.80 0.50
Facies 2 ln k 4.604 4.80 0.50
Facies 3 ln k 6.269 6.80 0.50

Table 6.2: Three facies example porosity and log-permeability.
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Figure 6.1: Objective function and comparison of conditional facies properties (three
facies example).

Cases Op,EnKF
BHP Op,EnKF

WCT Op,EnKF
TOT

Prior 7.674 6.709 7.261
Prod EnKF 2.534 4.954 3.805

Table 6.3: Prediction errors, three facies example, predicting forward from last data
assimilation, uncertain facies properties

This chapter considers only the assimilation of production data. Here, the

porosity and log-permeability (ln k) of each facies are included in the state vector

so that they can be conditioned to the production data. For both models, produc-

tion data are assimilated in both the EnKF and EnRML framework. For all cases,

the initial ensemble of Gaussian random fields is the same as those in the previous

chapters.

6.1 Three Facies Example

Figs. 6.1(a) and 6.1(b) show the prior and posterior distributions of porosity

Cases Om Od
BHP Od

WCT Od
TOT Op

BHP Op
WCT Op

TOT

Prior 0.605 25.203 15.502 21.441 9.634 10.171 9.877
Prod EnKF 0.546 7.395 9.404 8.348 7.293 4.517 6.214

Prod EnRML 0.553 4.176 4.329 4.245 1.437 3.233 2.407

Table 6.4: Model mismatch, data mismatch, prediction error, three facies example,
predicting final ensemble from time zero, uncertain facies properties
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(f) From final ensemble

Figure 6.2: Injector and prod3 BHP (three facies example, EnKF of production
data).

and ln k for the three facies model cases. In each plot, three error bars are given for

the properties of the three facies with the width corresponding to plus and minus

three standard deviations from the mean. The first bar shows the uncertainty of

the prior, and the following two show the posterior uncertainty from EnKF and

EnRML. After assimilating data, each of the 6 model parameters has much smaller

uncertainty and the truth falls inside the bands. EnRML gives a better estimate of

facies 3 porosity than EnKF but the estimates of the other parameters are quite close

for the two methods. Fig. 6.2 shows the three types of predictions of bottom hole

pressure for the injector and producer 3, and Fig. 6.3 shows the predictions of water

cut for all producers. The predictions from the initial ensemble are broader than

those from the base case in the Chapter 3, because of the uncertainty in the facies

porosity and permeability. Fig. 6.4 shows the predictions from the final ensemble

from EnRML. Fig. 6.5 shows field cumulative oil from both EnKF and EnRML cases.

We can see good data matches and predictions are obtained from both the EnKF
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Figure 6.3: Producer WCT (three facies example, EnKF of production data).
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(c) Prod1 WCT
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(d) Prod2 WCT
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(e) Prod3 WCT
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(f) Prod4 WCT

Figure 6.4: Predictions from conditional models (three facies case, EnRML of pro-
duction data).
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(c) EnRML ensemble

Figure 6.5: FOPT predictions (three facies example, EnKF and EnRML of produc-
tion data).
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Figure 6.6: Three facies example, true model.
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Figure 6.7: Conditional facies distributions (three facies example, EnKF of produc-
tion data).
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(f) Sw en40 layer 3

Figure 6.8: Conditional Sw (three facies example, EnKF of production data).
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Figure 6.9: Conditional facies distributions (three facies example, EnRML of pro-
duction data).
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(f) Sw en40 layer 3

Figure 6.10: Conditional Sw (three facies example, EnRML of production data).
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Figure 6.11: Objective functions (three facies example, EnRML of production data).

Cases Op,EnKF
BHP Op,EnKF

WCT Op,EnKF
TOT

Prior 7.674 6.709 7.261
Prod EnKF 4.231 6.626 5.428

Table 6.5: Prediction errors, channel example, predicting forward from last data
assimilation, uncertain facies properties

and EnRML algorithm. The predictions from EnRML give narrower uncertainty

bands, better data matches and average predictions closer to the truth. This point

is even more clear in the quantitative comparison in the Table 6.4, where the data

mismatches and prediction errors are all much smaller in the EnRML case. Two

posterior realizations of conditional facies distributions and the corresponding water

saturations at 360 days are shown in Figs. 6.7 and 6.8.

Figs. 6.9 and 6.10 gives the two posterior realizations of facies distribution

and the corresponding water saturations at the time 360 days. Fig. 6.11 shows

the objective functions (average and normalized) before and after analysis at each

assimilation time, we can see that most assimilation steps has final objective functions

less than 30.

6.2 Channel Example

Fig. 6.12 shows the estimates of the facies porosity and ln k for the channel

model. The three bars for each of the four model parameters show prior uncer-

tainty and the posterior uncertainty obtained from EnKF and EnRML, respectively.
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Figure 6.12: Objective function and comparison of conditional facies properties
(channel example).
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(f) From final ensemble

Figure 6.13: Injector and prod3 BHP (channel example, EnKF of production data).

Cases Om Od
BHP Od

WCT Od
TOT Op

BHP Op
WCT Op

TOT

Prior 0.444 97.719 35.801 76.646 51.363 12.398 39.165
Prod EnKF 0.44 30.777 28.289 29.697 16.44 8.324 13.452

Prod EnRML 0.461 14.142 18.187 16.066 2.845 4.391 3.615

Table 6.6: Model mismatch, data mismatch, prediction error, channel example, pre-
dicting final ensemble from time zero, uncertain facies properties
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Figure 6.14: Producer WCT (channel example, EnKF of production data).
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(b) Prod3 BHP
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(e) Prod3 WCT
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Figure 6.15: Predictions from final model (channel example, EnRML of production
data).
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(c) EnRML ensemble

Figure 6.16: FOPT predictions (channel example, EnKF and EnRML).
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Figure 6.17: Channel example, true facies distribution.
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Figure 6.18: Estimated channel PDF and two conditional realizations of facies and
water saturations at 360 days (channel example, EnKF of production data).
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(c) Facies En40
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Figure 6.19: Estimated channel PDF and two conditional realizations of facies and
water saturations at 360 days (channel example, EnRML of production data).
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Figure 6.20: Objective functions (channel example, EnRML of production data).

The posterior uncertainty bands are much smaller than those from the prior. The

posterior uncertainty band of the channel porosity from EnKF failed to include the

true porosity, and the uncertainty bands from EnKF are all smaller than those from

EnRML. This may be due to inconsistency between analyzed model parameters and

water saturations. Fig. 6.13 shows the predictions of injector and producer 3 pressure

from EnKF, and Fig. 6.14 shows the predictions of water cut for each producer from

EnKF. Similar to the predictions from the base case in Chapter 3, the average pre-

diction of water cut is farther from the truth than is the average prediction of bottom

hole pressure, and the predictions of water cut from producer 3 appear to be biased.

Fig. 6.15 shows the predictions of pressure and water cut from EnRML. Comparing

these results from EnKF and EnRML, EnRML gives narrower uncertainty bands,

better data match and better predictions (the average is closer to the truth), which

is obvious in the quantitative comparison of Table 6.6, i.e., the data mismatches and

prediction errors are significantly smaller in the EnRML case. Fig. 6.16 compares

the field cumulative water productions from EnKF and EnRML. EnRML gives much

narrower prediction, and the average prediction is much closer to the truth compared

to that from EnKF.

Figs. 6.18 and 6.19 show the posterior channel PDF, facies distributions and

corresponding water saturation distributions from both EnKF and EnRML. We can

see that the water distributions are consistent with the analyzed models in EnRML.
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EnRML gives a more blurred channel PDF map indicating that the facies distribution

from EnRML are more varied. Fig. 6.20 shows the average objective function values

at each data assimilation step.

6.3 Summary

The uncertainty of the facies properties in the pluri-Gaussian model can be

greatly decreased by assimilating the production data using either EnKF or En-

RML. However, EnRML gives more dependable estimates of facies porosity and

permeability for the method considered. This is because EnRML guarantees that

the predictions are always consistent with the updated model.

177



CHAPTER 7

MEASUREMENT ERROR ESTIMATION METHOD FOR

PRODUCTION DATA

Characteristics of measurement error in data is a very important issue in auto-

matic history matching. This study on automatic history matching is focused on the

larger issues of data integration and characterization of uncertainty in reservoir de-

scription and predicted performance rather than the problem of simply constructing

reservoir models that honor production data. In order to characterize uncertainty,

our approach to data integration has been based on a Bayesian formulation. Al-

though many of the computational difficulties of the Bayesian formulation have been

addressed, until now we have ignored the important problem of characterizing the

measurement errors. Our approach to the integration of static and dynamic data and

the characterization of uncertainty involves constructing multiple reservoir models

(multiple realizations) using the randomized maximum likelihood (RML) method

[63, 45, 69] or the ensemble Kalman filter (EnKF) method [22, 62, 60, 24]. In the

RML method, construction of an individual realization requires minimization of an

objective function which includes a prior model mismatch term, production data

mismatch terms and a seismic data mismatch term. As the data covariance matrices

for measurement errors determine the relative weighting of different types of data

in the objective function, correct integration of data and evaluation of uncertainty

require an accurate characterization of these measurement errors. Intuitively, we

expect that accurate characterization is more important when multiple data types

(e.g., wellbore pressure, GOR, WOR and time lapse seismic) with widely different

data covariances are integrated. In the EnKF method, as was discussed in Chapter
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3, at each data assimilation time step we also need to sample the noisy measurements

for each realization using the covariance matrix of the measurement error, which has

impact on the conditional ensemble.

We assume any measurement is the summation of true signal and measure-

ment error; We also assume that the measurement error is Gaussian with zero mean,

and the true signal is much smoother than the measurement error. Our approach

is to smooth the data properly so that the smoothed signal can approach the truth,

and we get measurement error by subtracting it from the measurements. Wavelet

transform and polynomial smoothing are often used smoothers. However, the sep-

aration of true signal and measurement error by directly smoothing the production

data can be very dangerous since the production schedule often changes frequently, so

that the underlying signal (or true signal) contains discontinuity (or sharp changes).

Applying smoothing algorithms without first partitioning the data may destroy the

structure of the signal and the covariance structure of the measurement error.

In order to overcome this difficulty, a procedure for detecting and removing

the outliers and edges is necessary before smoothing. After smoothing the edge and

outlier free signal, the true signal can be reconstructed by restoring the edges and

some necessary outliers into the smoothed signal. At the same time we can obtain

a much better estimation of measurement error. In this procedure, median filtering

is used to eliminate the outliers, and second derivatives combined with a wavelet

transform and median filtering are used to detect the edges.

7.1 Smoothing Algorithms

In this study, we consider two techniques for estimation of the true signal and

the noise, local polynomial regression and the denoising with wavelet transforms.

Although some results are promising, it is clear that our current implementation of

the methods are less reliable if (i) the correlation range for noise is large; (ii) the
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underlying true signal changes rapidly over short time intervals and/or (iii) the noise

is non-stationary.

As our starting point, we assume that the measurement error for a particular

data type can be modeled as a stationary random function, and that the underlying

“true signal” is relatively smooth. Throughout the true signal refers to the one

that would be measured (observed) if there were no measurement, processing or

modeling errors. The difference between the unknown true signal and the observed

signal represents a realization of the random function for noise or measurement error.

Here we simply refer to the difference as noise or measurement error, even though

part of this difference may be due to modeling errors. The objective is to separate

our measured signal into the true signal and the noise. Once the noise has been

estimated, we can estimate its covariance. Although the data can be a function of

space (seismic data) as well as time, here we consider only the case where data is

measured as a function of time which is the case for production data.

7.1.1 Savitzky-Golay Polynomial Smoothing Algorithm

The Savitzky-Golay smoothing algorithm is a popular technique for smooth-

ing data in the time domain. A good introductory discussion of this method can be

found in the reference [65]. More detailed information on smoothing algorithms can

be found in the reference [38]. Here, we outline the Savitzky-Golay procedure. We

assume that we are given data, di ≈ d(ti) where the ti’s represent equally spaced time

values, i.e., for some fixed t0, ti = t0 + i∆t for i = 1, 2, · · · , where the time increment,

∆t is constant. Here, we let d(t) denote the true signal and di denote a measured

or observed value of d(t) at t = ti. As di is corrupted by measurement error, di is

a noisy approximation of d(ti). Smoothing algorithms are designed to smooth the

observed data in an attempt to find a better estimate of the true d(ti)’s. The di data

can be filtered (or averaged) by replacing each di value by a linear combination of
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itself and nearby data points. Denoting the linear combination by d̂i, we have

d̂i =

n=NR∑
n=−NL

cndi+n, (7.1)

where the cn’s are the filter coefficients (or weights) and are specified by the type of

filter used. Note NL is the number of data used to the left of di and NR is the number

of points used to the right of di when constructing d̂i. Here, we refer to NL as the

left window length, NR as the right window length and NL + NR + 1 as the window

length. Note that if cn = 1/(NR + NL + 1), then d̂i represents the average of the

NR + NL + 1 data, dj, j = i−NL, i−NL + 1, · · · , NR. In this case, the filter defined

by Eq. 7.1 is referred to as moving window average or simply a moving average. This

type of filter (if NR=NL) gives unbiased results if the underlying noise free signal

(data) is a linear function of time, but introduces bias when the second derivative

of the underlying signal is nonzero. For example, if d(t) has a maximum at t = ti,

the moving window average will tend to give a d̂i < d(ti) and the magnitude of this

underestimation will tend to increase as NL and NR increases.

If we use the simple moving average, we are effectively approximating the

underlying function in each window as a constant and using the average of the

data within the window as the estimate of that constant. In Savitzky-Golay (SG)

smoothing, we approximate d(t) by a polynomial in each window. To obtain the

approximating polynomial p(t), we simply do a least-squares fit of all the data within

the window and then set

d̂i = p(ti). (7.2)

The key point is that the filter coefficients (cn’s) in Eq. 7.1 are determined a priori

independent of the actual data. The specific filter coefficients in SG smoothing

depend on specifying three parameters:

1. the left window length, NL;
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2. the right window length, NR;

3. the degree of the least squares smoothing polynomial (quadratic and quartic

are popular choices).
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Figure 7.1: Savitzky-Golay smoothing coefficients and the FFT amplitude response
(degree of 3 and 6, length of 60).

The left plot in Fig. 7.1 represents a plot of the cn (SG filter coefficients)

versus n for third and sixth degree local smoothing polynomials for the case of

a centered window of length 61. Note Eq. 7.1 represents a discrete convolution.

Convolution in the time domain is equivalent to multiplication in the frequency

domain. The right plot in Fig. 7.1 represents the amplitude versus frequency obtained

by applying the fast Fourier transform to {cn}. Amplitudes of low frequencies are

high but amplitudes corresponding to frequencies above 0.1 are small in both cases.

The results illustrate that SG smoothing acts like a low-pass filter with low frequency

components preserved and higher frequency components severely damped.

7.1.2 Wavelet With Soft-thresholds Smoothing Algorithm

Wavelets ([12, 19, 2]) have been used in a variety of applications for data com-

pression and signal processing. In the petroleum engineering literature, the wavelet
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transform has been applied to permanent pressure gauge data to remove noise (de-

noising) and identify events [44, 6]. Kikani and He [44] recommend a translation

invariant wavelet transform using the Haar wavelet with soft thresholding for denois-

ing and use the modulus maximus principal to identify rate changes and maintain

its position in time. Athichanagorn and Horne [6] indicate that a spline wavelet is

more suitable for event detection (e.g., identification of rate changes) and introduce a

hybrid thresholding procedure for denoising. Specifically, they use soft thresholding

in regions where data is continuous and hard thresholding near discontinuities. For

the permanent pressure gauge data, it may be reasonable to assume measurement

errors are uncorrelated, but this assumption can not be expected to apply for pro-

duction and time-lapse seismic data. Thus, to apply wavelet transforms to separate

the noise from the true signal to estimate the covariance functions for production

and seismic data measurement errors will require the implementation of procedures

that are robust when measurement errors are correlated in time (production data)

or space (4D seismic data). The work of Johnstone and Silverman [42] indicates that

it is possible to apply denoising even when noise is correlated.
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Figure 7.2: Daubechies wavelet coefficients.

A wavelet transform can be applied to decompose a measured signal into

several scales, ranging from the smoothest scale to the most detailed scale. In this

study, Daubechies wavelet with 20 coefficients (numerical recipe [65]) is used. The
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FORTRAN code in this reference is also used. Fig. 7.2 shows the wavelet coefficients

if we use the wavelets with 4 coefficients (DAUB4), 12 coefficients (DAUB12) or 20

coefficients (DAUB20). We use the DAUB20 because it is the smoothest, and has

better separation of high and low frequency components compared to the other.

Suppose we have sequentially N measurements:

{di, i = 1, N}

The discrete wavelet transform technically assumes the number of data is N = 2M

for some integer M . If the length of the data is not a power of 2, we have simply

added zeros at the end of the data series to satisfy this requirement. After wavelet

transform of the data, we get M scales of wavelet coefficients. The first scale has 2

data, i.e. A1 = {a1,1, a1,2} , and from the second scale on they can be written as:

Aj = {aj,k, k = 1, 2, · · · , 2j−1}, j = 2, · · · , M

with the jth scale having 2j−1 coefficients, and the total number of coefficients is N .

Each scale gives us a unique view on the data being analyzed. It is also a

linear transform, and its inverse transform can be applied very efficiently.

Decomposition of the signal into different scales by applying the wavelet trans-

form provides a basis for denoising. Effectively, denoising assumes that the true un-

derlying signal is smooth and has only low frequency components whereas the noise

in the measured signal is non-smooth, of high frequency and low energy relative to

the true signal.

Under these conditions, after wavelet transform, most coefficients on the most

detailed scales represent noise and most coefficients on the smoothest scales represent

the true smooth underlying signal. More importantly, the coefficients on the most

detailed scale that represent noise are relatively small. Thus, by zeroing these coeffi-
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cients we can eliminate the components of noise. By taking the inverse wavelet trans-

form of the modified representation of the wavelet transform, we obtain a smoother

signal (the denoised signal) which provides an approximation to the true underlying

signal.

Soft-thresholds: In our denoising procedure, we use a soft thresholding

technique as done by Donoho & Johnstone([19]). In this process, we select a threshold

level, δj, for scale j, and modify the wavelet coefficients of the detail components at

scale j (Aj) as follows:

aj,n =


sign

(
aj,n

)(
|aj,n| − δj

)
for |aj,n| > δj,

0, for |aj,n| ≤ δj.

(7.3)

Note the threshold, δj can be different on each scale. Unfortunately, the true signal

can have some high frequency components (detail components) and noise, particu-

larly correlated noise, can have some low frequency (smooth) components. Thus,

at many scales in the wavelet domain, the true signal and the noise overlap and

denoising is much more difficult in this situation. In our approach, we follow ideas of

Donoho and Johnstone [20] to denoise data. In this approach, we apply a different

threshold on each scale. The threshold, δj for the jth scale is computed as follows:

δmad =
median

{
|aj,1|, |aj,1|, · · · , |aj,nj

|
}

0.6745

δj = δmad

√
ln(N) (7.4)

where N is the number of data, and nj is the number of coefficients in the jth scale.

7.1.3 Covariance of Measurement Error

A good estimation of the true data gives a reasonable estimate of the covari-

ance of the error. Letting di denote the noisy data and gi denote the estimate of the
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true data, the error is estimated by

ei = fi − gi, (7.5)

and then the covariance is calculated as

Cj =
1

Nj − 1

∑
(k1−k2)=j

(
ek1 − ē

)(
ek2 − ē

)
, (7.6)

for j = 1, 2, · · ·Nmax where Nmax is the maximum correlation distance to be esti-

mated, which is less than N/2. Nj is number of pairs in the summation. Cj is the

estimated covariance of measurement error at a distance of j times grid size, and

C(0) is the estimate of the variance. Here ē is the mean of the error, i.e.,

ē =
1

N

N∑
k=1

ek. (7.7)

7.2 Effects of outliers and edges

An outlier is a data point (ti, di) (measured at ti) such that di is significantly

larger or smaller than the measured values at nearby points. Edges refer to locations

in the data set where the underlying data is discontinuous; although the derivative

of a function would not exist at a point of discontinuity, in discrete data sets, an

approximate derivative computed with a finite difference approximation would give a

large value at an edge compared to derivatives at nearby points. In production data,

an edge occurs due to a significant change in operating conditions, e.g., shutting in

the well. Outliers and edges have an adverse impact on the denoising process so it

is important to identify and remove edges prior to denoising.

Outliers and edges are very common in field data; Fig. 7.3 is a segment of

WOR data from a North Sea reservoir; it is not difficult to visually pick out some

edges and outliers. However, we need an automatic way to do this. As discussed in
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Figure 7.3: A section of field WOR data with outliers and edges

detail later, we use a median filter to identify edges and outliers. The outliers and

edges identified by this process are shown in the right panel of Fig. 7.3. The shutin

period also has two edges but we treat the shutin period separately as we have no

water-oil-ratio (WOR) or gas-oil-ratio (GOR) data recorded during shutin periods.

7.2.1 Adverse Impact of Outliers on Denoising
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Figure 7.4: An example of outliers, N=256. Two impulses are assumed to be outliers.

In order to illustrate the effect of outliers, we consider a simple example shown
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in (Fig. 7.4): A true signal was generated by starting with a signal that is identically

zero for i = 1, 2, · · ·N = 256 and adding two impulses as two outliers. Then an array

of uncorrelated Gaussian random numbers were added to the signal to represent noise

that we wish to eliminate.
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Figure 7.5: Denoising without removing outliers.

If our algorithms were immune of the existence of outliers, we should be

able to recover the true amplitude of impulses and at the same time eliminate or

significantly reduce the noise. But as shown in 7.5, we are unable to do this with

either SG polynomial smoothing or wavelet denoising.

1. Savitzky-Golay polynomial smoothing fits data within a window about a point

with a least squares polynomial. As is well known, outliers have a pronounced

effect on least squares estimation. For the example under consideration, the

outliers cause SG polynomial smoothing to introduce bumps into the estimated

signal at the outlier points even though we have used a very long window length

of 81.

2. As suggested by Fig. 7.5(b), in the wavelet domain, outliers tend to have sig-

nificant components on most scales, so when we apply wavelet thresholding on

these scales, we delete some of the energy of the outlier. When back trans-

formed to the time domain (see Fig. 7.5(c)), this can lead to an underestimate
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of the amplitude of the outliers and an over estimate of the error at times

corresponding to outliers.

7.2.2 Adverse Impact of Edges on Denoising
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Figure 7.6: An example of data with edges, N=512.

In order to study the effect of edges on polynomial and wavelet denoising, we

constructed the simple example shown in Fig. 7.6.

The true signal is a piecewise constant function. The true data consists of

512 uniformly distributed measurements (N=512). Note there are three edges at

N = 128, 256, 329, respectively. Uncorrelated Gaussian noise was added to the true

data to obtain the noisy data shown on the right plot of Fig. 7.6.

Now we directly apply polynomial and wavelet denoising program to the data,

and results shown in Fig. 7.7:

1. As shown in Fig. 7.7, edges have a strong effect on both polynomial smoothing

and wavelet denoising.

2. In the case of SG polynomial smoothing, if a smoothing window contain an

edge, the effect of SG polynomial smoothing (which is a low pass filter) is to
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Figure 7.7: The effect of edges on denoising.

smooth the edge which introduces errors in the estimated signal especially at

points near the edge.

3. When transformed into the wavelet domain (Fig. 7.7(c)), edges have distinc-

tively big coefficients on the detailed scales. The effect is similar to that of

outliers; applying soft thresholding we destroy some of the energy correspond-

ing to the edges, so after back transform Fig. 7.7(c), the data are over smoothed

and the estimated signal does not accurately depict the edges.

7.2.3 Detect and Remove Outliers

To detect and remove outliers we use median filtering. It is suitable for this

purpose because:

1. This procedure can smooth the signal efficiently with a very small window;

2. Most importantly, it can preserve edges very well, so we do not have to worry

that the existence of edges will have a detrimental effect on our ability to detect

outliers.

In this work, we call this algorithm as Median Filtering Algorithm (MFA)

for outlier detection. Select a window length (we always use 5 or 7). Here we use

7. For a window length of 7, we replace the data point di by the median of the set
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of values {di−3, di−2, di−1, di, di+1, di+2, di+3}. The resulting data set is referred to as

the median smoothed array, D̃, with the ith data point in this array is denoted by d̃i.

Although the new array should be outlier free, it is typically too smooth and in this

case, some valuable information on components of the error may be lost and we may

even eliminate some of the true signal if the true signal has relatively sharp changes.

Thus, we simply use the median smoothed array to detect outliers. Fig. 7.8(a) shows

the median smoothed result of a data set containing outliers and edges compared

to the true data set. We can see that outliers deviate significantly from the median

smoothed data.

Using the median smoothed array D̃, we use following procedures to detect

and remove the effect of outliers:

1. Assume the median to be the mean of the data at each sample, and estimate

the standard deviation of the error by

σ̃ =

√√√√ 1

N − 1

N∑
i=1

(
di − d̃i)2. (7.8)

Here, N is the total number of data points. Any data point di that does not

satisfy the condition

d̃i − 3σ̃ ≤ di ≤ d̃i + 3σ̃. (7.9)

are the detected outliers.

2. An outlier free data set {D̂ = d̂i, i = 1, 2, · · · , N} is constructed by removing

the outliers from the data set, i.e., d̂i = d̃i if di is an outlier, and d̂i = di if it is

not an outlier.

3. In the case of production data, we temporarily remove data values correspond-

ing to shutin periods, and we add it back to the record after denoising because

it might indicate an event, and we smooth the signal D̂ just for the purpose of
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measurement error estimation. Considering the shutin’s may be of several con-

tinuous samples, we prefer to interpolate linearly between them since median

filtered data set is not guaranteed to be continuous in this case.
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Figure 7.8: Outlier detection result from field data
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Figure 7.9: Outlier example: denoise with polynomial and wavelet.

Fig. 7.9 reconsiders the example of the smoothing results shown in Fig. 7.5.

In this case, we have applied the MFA (median filter algorithm) to remove outliers,

smoothed the resulting data, then (unlike our normal procedure of completely dis-

carding outliers) added the values of the outliers back to the estimated signal at
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the appropriate times. In this case, we have good recovery of the zero signal, in fact

almost perfect in the case of wavelet denoising, and good estimates of the amplitudes

of the two impulses.

Fig.7.8(b) shows results obtained by applying the same procedure to the WOR

field data considered in Fig.7.3. It seems that we have over smoothed around edges,

which will have a detrimental effect on the estimation of the error. We should be

able to obtain improved results by detecting edges and properly accounting for them.

7.2.4 Detect and Remove Edges

Here, we present a procedure for detecting edges (or boundaries). It is impor-

tant to note that this procedure should be applied after the removal of outliers, as

the process can be adversely affected by the presence of outliers. The edge detection

process will effectively segregate the data into periods (flow periods for production

data) separated by boundaries so that the underlying trend of the data is relatively

smooth within each period.

The following steps are used to detect edges, and we call it as Edge Detec-

tion Algorithm.

1. First apply the wavelet transform and thresholding on all scales to denoise the

data. This process will not preserve the true signal but will make the sharp

change in derivatives at an edge very distinct. The wavelet smoothed data

(smooth component) is denoted by si, i = 1, 2, · · ·N in the time domain.

2. Apply the 5-point median filter to the si’s to obtain median filtered signal s̃i,

i = 1, 2, · · ·N .

3. Calculate approximations to the right and left first-order derivatives of the

filtered data, s̃i’s. The left and right derivatives at ti, i = 1, 2 · · · , N , are
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approximated, respectively, by

al,i =
s̃i − s̃i−1

δt
, (7.10)

for i = 2, · · ·N and

ar,i =
s̃i+1 − s̃i

δt
(7.11)

for i = 1, · · ·N − 1.

Calculate the absolute difference in these values as

bi = |
(
|al,i| − |ar,i|

)
|, (7.12)

for i = 2, · · ·N − 1 and set b2 = b1 and bN = bN−1.

4. Apply the median filter with a long window length We (we define We as the

edge detect window length and for the field production data We equals to 201)

to the bi’s to obtain the median filtered results denoted by b̃i, i = 1, 2, · · ·N .

5. If bi > 10b̃i, then we tentatively say di corresponds to an edge point. It is

tentative because with field production data, rapid changes take place over

very short periods of time, we may identify too many edges, and some of them

might indicate high measurement error values. So we have to remove some of

the edges. At this point, we suppose there are K tentative edges occur at ij,

j = 1, 2, · · ·K where i1 < i2 < · · · < iK .

6. For each j, j = 1, 2, · · · , K, consider all potential edges il such that ij −M ≤

il ≤ ij + M . We define M as the minimum edge distance, and we currently

use M = 10 or M = 30. If bij ≥ bil for all il in this window, we keep ij as

an edge point. Otherwise we eliminate it. At the end of this process, we have

reduced the number of edges. Finally we add the points i = 1 and i = N as
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edge points.
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Figure 7.10: Edge detection results

Fig. 7.10 shows the results obtained from the edge detection algorithm applied

to the WOR field data of Fig. 7.3, for two different values of M (M = 10 and

M = 30). The red lines are the result obtained by appling a linear least squares fit

to the data between each two successive edges, i.e., to each period. By subtracting

these lines from the data, we can obtain transformed data which is edge free. We

then apply the denoising procedure to estimate the “true signal” for this edge free

transformed data, and add the linear parts back to get the final estimate of the

signal. The results are shown in Fig. 7.11.

7.2.5 Work-flow of Measurement Error Estimation

The following is the procedure to estimate measurement error considering

outliers and edges might exist in the measurements:

1. Detect the outliers and edges from the noisy measurements;

2. Subtract outliers (i.e. shutins) and linear interpolation between edges from the

data, and get corrected noisy measurements;
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( d )  W a v e l e t  s m o o t h i n g  a f t e r  o u t l i e r s  a n d  e d g e  e l i m i n a t i o n
( m i n i m u m  e d g e  d i s t a n c e = 3 0 ,  k e e p i n g  6  s c a l e s ) .
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Figure 7.11: Smoothing results after edge and outlier elimination

3. Apply wavelet or SG smoothing algorithm to the corrected noisy measurements

(outlier and edge free data);

4. Add back necessary outliers and all the edges to the data to reconstruct the

estimated true signal;

5. Subtract the estimated true signal from the original noisy measurements and

get estimated measurement error;

6. Characterize the measurement error by calculating the covariance function.
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7.3 Measurement Error Characterization

After smoothing, we subtract the estimated smooth signal from the original

data, to get the estimated error sequence ei, i = 1, 2, . . . N and estimate the covari-

ance as described in Eqs. 7.5, 7.6 and 7.7. However, the error in field data may not

be stationary. In this case, non-stationarity should be considered in both smoothing

procedures and covariance calculation procedures.

For the non-stationary case, we may first compute the expectation (mean) of

the error at each point using a moving window average

E[ei] =
1

N1 + N2 + 1

i+N2∑
j=i−N1

ej, (7.13)

with left and right window size of N1 and N2. For the field production data, we

have used N1 = N2 = 500. Then for i = 101, 201, 301, · · ·N − 100, we estimate the

covariance localized at ith data at a “distance” of k by

Cov(k)i =
1

(Nk)i − 1

i+N2∑
k1,k2=i−N1

k1−k2=k

[ek1 − E(ek1)][ek2 − E(ek2)] (7.14)

where (Nk)i is the number of pairs in the summation, and C(0) provides the estimate

of the variance. Note this procedure will actually provide a set of variances and

covariances. If the underlying error function were actually stationary, the sets of

covariances should be essentially identical.

7.4 Synthetic Case Study

Here we consider one synthetic example constructed as essentially a smooth

version of an actual field data, and a field production GOR data. The noisy data

of the synthetic example is shown in Fig. 7.12. There are 512 data points. The

data contains 4 internal edges, and the three significant edges can be easily found,
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but finding the “small edge” at i = 334 requires a more careful examination. The

synthetic data was generated by adding Gaussian error generated from a Gaussian

covariance function with a variance of 0.848e-3 and a correlation length of 10 points.

The data contain synthetic shutin periods where no data were recorded.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

1 . 0

1 . 5

2 . 0

 

 

M o d e l  w i t h  e d g e s  a n d  o u t l i e r s  ( 5 1 2  s a m p l e s )
E r r o r :  v a r i a n c e = 0 . 8 4 8 e - 3  ,   r a n g e = 1 0 .

 N o i s y
 T r u e

I n d e x

Am
plit

ud
e

Figure 7.12: Model defined (512 samples)

7.4.1 Detect and Remove Outliers and Edges

We call this step the data preprocessing step, which corresponds to the first

and second step of the work-flow.

1. Apply MFA for outliers detection. Shutin’s are replaced by a linear interpola-

tion, and will be preserved in the followed processes. The other outliers will be

removed forever.

2. Apply the edge detection algorithm. By subtracting least square fitted lines be-

tween edges from the data as described in edge detection section, a transformed

edge free data set was obtained for denoising.

Fig. 7.13 is the results of the data preprocessing steps. Fig. 7.13(a) and (b)

are detected outliers and their wavelet transform, Fig. 7.13(c) and (d) are detected
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Figure 7.13: Data preprocessing, synthetic data

edges and their wavelet transform. Fig. 7.13(e) shows the data without edges and

outliers.
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1. All of the shutin’s were detected correctly, and 3 out of 4 edges were correctly

detected. The small edge in the data set close to i = 334 was not detected

because the magnitude of the jump in the data is not significantly larger than

the amplitude of the noise.

2. Corrections for edges are also effective. Most of the edge components have

been removed and the transformed data set is much easier to smooth. This

transformed data set is shown as in Fig. 7.13(e).

3. In this case, the specified edge detection window length: We = 100, minimum

edge distance: M = 10.

7.4.2 Polynomial Denoising

After data preprocessing, we apply the SG polynomial smoothing to the cor-

rected data (free of outliers and edge effects).

1. The window length is NL = NR = 60;

2. The degree of the SG smoothing polynomial is fixed as 4;

Fig. 7.14 shows the results obtained for this example.

1. Fig. 7.14(a) shows the true and noisy data and the smoothed data estimated

based on the polynomial smoothing algorithm with outerlier and edge elimina-

tion. Note the estimated signal has the shutin periods restored and the three

major edges are still apparent.

2. Most importantly, the covariance estimated from Eqs. 7.5, 7.6 and 7.7 gives an

approximation to the covariance computed directly from the realization of the

noise that was added to the true signal. However, the variance, covariance and
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Figure 7.14: Results from SG polynomial smoothing.

correlation range are somewhat under estimated Fig. 7.14(b,c).

7.4.3 Wavelet Denoising

In wavelet denoising, we just keep 4 smooth scales and apply soft thresholding

on the other scales. Fig. 7.15 shows the results of the smoothing algorithm as well

as the resulting estimation of the covariance of the measurement error. Fig. 7.15(a)

is the wavelet transform of the edge and outlier free data from Fig. 7.13(e), and

Fig. 7.15(b) is the summation of the wavelet transform of detected outliers and edges.

The edge and outlier components in all scales are significant and are of complicated

structures. If we apply soft thresholding directly on the noisy data with edges and
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outliers, it is quite possible to undermine these structures. To keep the structures,

we take the edges and outliers out before smoothing them. Fig. 7.15(c) through (e)

shows the smoothing results. The effects of outliers and edges are greatly minimized

as shown in the results. The reason why noise and signal are separated so well is

because outliers and edges are efficiently eliminated and the remaining signal contains

only some low-frequency energy.

7.5 Field Case Study

Fig. 7.16 shows the field producing GOR data (std m3 per m3). Data points

are separated by 1 day so the axis can be considered to be either i, the index of

the data point, or time in days. Except for numerous shutin’s, the GOR data is

essentially constant up to about i = 2000. There are 2800 data points. When

necessary (in wavelet transform), we append 1296 zeros at the end of the array to

make it to be the power of 2, and after denoising, only the first 2800 data points are

kept. Therefore, the input of wavelet denoising is 2800 data points and output is

also 2800 data points.

7.5.1 Detect and Remove Outliers and Edges

The same data preprocessing procedures and settings are applied as those

in the synthetic case. The results are shown in Fig. 7.17(a) and (b) are detected

outliers and edges; (c) and (d) are wavelet transform of the detected outliers and

edges. Hence, (a) and (b) will be the correction to polynomial smoothing, (c) and

(d) will be taken out and preserved in wavelet denoising procedure. (e) shows the

results after outliers and edges elimination, which are much more suitable for both

polynomial and wavelet denoising methods than the data in Fig. 7.16.

7.5.2 Polynomial Denoising

The polynomial denoising procedure is applied with the parameters as follows:
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Figure 7.15: Synthetic Data wavelet smoothing result

1. The window lengths are NL = NR = 50;

2. The degree of the SG smoothing polynomial is fixed to 4;
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Figure 7.16: Field GOR data (2800 samples)

Fig. 7.18 shows the results.

We estimated the covariance as a function of time using Eqs. 7.13 and 7.14.

Fig. 7.18(b) shows estimated error, and Fig. 7.18(c) shows the covariances of the

estimated error in Fig. 7.18(b). By estimating covariance using moving windows

(centers move 100 points at a time), we obtain the approximate change of variance

and range as the analyzing window moves from left to right. It is noted that the

variances later than the 17th increase dramatically.

7.5.3 Wavelet Denoising

In wavelet denoising, we keep the 4 smoothest scales and apply soft thresh-

olding on the other scales. Fig. 7.19 shows the results of wavelet denoising and the

estimated covariances as a function of time. The following comments are made.

1. The results again indicate that the error is non-stationary. The energy in the

late time is very strong in all scales. This might be a problem in the following

aspects:

(a) It tends to increase the estimation of error level in Eq. 7.4 because the

medians of the components in all scales will be overestimated.
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( b )   E d g e s  d e t e c t e d  f r o m  f i e l d  G O R  d a t a .
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Figure 7.17: Field GOR data preparation results

(b) In the late time, a large number of components exceeds thresholds. Ac-
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Figure 7.18: Field GOR Data polynomial smoothing result

cording to soft thresholding, and the error components on these locations

are assigned the value with the same amplitude as the threshold. Because

threshold is close to the upper limit of the error, this operation tends to

overestimate the error on those locations.

2. The estimated covariances on different time intervals are smoother than those

estimated by polynomial method, but unfortunately, this does not mean they

are more accurate. Wavelet soft thresholding tends to generate a more stable

estimation of error than polynomial denoising, since polynomials have much

more difficulties in smoothing an irregularly shaped signal.
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Figure 7.19: Field GOR Data wavelet smoothing result

7.6 Summary

Our initial research for separating production data into true signal and error
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was based on two smoothing techniques: Savitzky-Golay filters and soft threshold

denoising of the wavelet transform. Applying the Savitzky-Golay filter is equiva-

lent to performing local least squares fits of data within a moving window with a

polynomial. The main difficulty with this procedure is choosing appropriate win-

dow lengths. The appropriate choice depends strongly on the correlation length of

the error. If the error represents white noise, then relatively short window lengths

are appropriate. If the error is correlated and thus has some smooth components,

longer window lengths should be used. However, if long window lengths are used,

the derivative of the true underlying smooth signal should not change sharply within

a window because smoothing across such sharp changes introduces error in the esti-

mated signal.

The main difficulty in decomposing noisy field data into error and true signal

is that the procedures depend to some extent on the smoothness of the true signal

and its derivatives as well as to whether the noise is stationary and/or correlated. It

is particularly important that rapid changes in the observed signal due to events are

accounted for so that events are not interpreted as noise when estimating the error.

In order to handle the problems associated with non-stationary and correlated

errors, we have made some efforts in the algorithms to reduce their effects on the

estimated error:

1. A procedure to eliminate outliers is applied because outliers lead to overes-

timation of the variance of the measurement error. The median filtering is

used to recognize these outliers. The reason is that although it is sensitive to

the outliers, it can preserve the structure of the signal especially even close

to edges. This is also why we first apply outlier removal before detecting the

edges. The outliers detected are replaced by the medians obtained from their

neighborhood in order to remove their effects, and we will add them back after

denoising when necessary.
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2. A procedure to eliminate edge effects is applied so that sharp changes in the

underlying signal do not cause over estimates of the noise. The two first or-

der derivatives (left and right) of the signal across the edges have significant

differences than those from its neighbors. We use it combined with wavelet

transform and median filter to detect these edges. Then the signal is parti-

tioned into several continuous regions by these edges, and is corrected by the

linearly interpolated values within each of the regions. The signal after correc-

tion should be free of discontinuities. Again, the inverse of these corrections

needs to be performed after denoising to recover the structure of the back

ground signal.

3. The estimation of the error covariance is based on a moving window allowing for

the non-stationarity. We have guaranteed that the moving window smoothing

based on edges and outliers removal is quite robust and reliable. In order to

account for the non-stationarity of the measurement error, a moving window is

used to localize the information in the data. In this way, we have non-stationary

covariances depending on the location of the data being studied.
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CHAPTER 8

ESTIMATION OF MEASUREMENT ERROR IN 4-D SEISMIC DATA

USING AN EM ALGORITHM

In this study, 4-D seismic data are firstly grouped according to their measured

values and spatial coordinates using an spatial EM algorithm. By smoothing the

data group by group, we can avoid smoothing across discontinuities due to a fluid

contact or a fluid front, and obtain improved estimates of measurement errors. We

assume the data can be grouped so that data in a group can be approximated with

a Gaussian distribution. The data in the whole reservoir is therefore represented by

a Gaussian mixture model (GMM). The mean of each Gaussian model reflects the

average value of the signal in that group and the variance reflects the variation of

the underlying signal. As measurements in a specific group of data will be similar,

a group should never contain points on the opposite side of a “discontinuity” such

as a flood front or fluid contact. The task for grouping is now simplified to the

problem of finding a Gaussian mixture model. The expectation maximization (EM)

algorithm [37, 13, 67, 66, 57, 58, 47] has long been used for estimating the Gaussian

mixture model parameters based on observed data. The EM algorithm is an iterative

procedure and provides an approximation of the maximum likelihood estimate of the

Gaussian model parameters using the observed data as well as soft membership

information that gives the probability that a certain datum belongs to a certain

group (Gaussian). As is shown by Redner et al. [67, 66], although EM algorithm

has the problem that the likelihood function is unbounded above for some cases, and

that convergence can be very slow, it is still widely used and has an important role

in the mixture density estimation problem.
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Since we need to implement smoothing within each group, it is desirable that

data in a group are spatially continuous. Moreover, except for sharp changes in the

data, for example, due to movements of fronts or abrupt changes in a well’s operat-

ing conditions, we expect that two data measured at nearby locations or at slightly

different times will be similar in value. However, the traditional EM algorithm con-

siders only the measured values of the data while ignoring the spatial continuity.

This can result in groups such that a group contains data of similar value where

the spatial coordinates of the data in the group represent many small disconnected

regions in space. Although this is not always a significant problem, it can make

smoothing more difficult. Besag [9] forced spatial continuity within each group by

conditionally approximating the local Markov random field. Allard and Guillot [3]

applied an approximation to the classification EM algorithm (CEM, [11]) to group

irregularly spaced data and recover the spatial correlation of measurements in each

groups. This algorithm assumes that the measurements in each group are spatially

correlated. However, both of these two methods require a priori knowledge of the

correct number of groups, and for their methods, it has not been shown that the

log-likelihood function increases from iteration to iteration, which is the basic char-

acteristic of the EM algorithm. In this study, we propose an EM algorithm with

spatial constraints to enhance the spatial continuity of each group. In our imple-

mentation of the spatial EM algorithm, grouping quality coefficients are applied to

automatically delete some spatially scattered groups in order to find a parsimonious

grouping of the measurements. After grouping, smoothing is done with a moving

window quadratic fit within each individual group. The smoothed data represents

the estimate of the underlying true signal and the difference of the smoothed data

and original observed data is the estimate of measurement error. For our imple-

mentation, it can not be proved that the log-likelihood increases from iteration to

iteration although examples indicate this is usually the case.
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8.1 The Problem of Spatial Measurement Grouping

Although the measurements studied in most EM applications are non-sequential,

the measurements discussed here (i.e. 4-D seismic data and production data) are

spatially or temporally measured. For the convenience of discussion, we will refer

to both spatial or temporal measurements as spatial measurements. The spatially

measured data are assumed to be measured in a 2-D lattice composed of N grids:

X = {xi, i = 1, 2, · · · , N}, with xi being the coordinate of the ith grid. The mea-

surements are located at these grids, and are defined as

D̂ = {d̂i, i = 1, 2, · · · , N} d̂i ∈ Rn (8.1)

Here, d̂i is the measured value and xi is the spatial coordinates (or time coordinate)

of the ith measurement respectively. An individual d̂i may be a scalar or a vector

containing multiple data types at each location, i.e. in the case of 4-D seismic data,

it can be composed of acoustic impedance change (AIC) and Poisson’s ratio change

(PRC).

The measured value is assumed to be the summation of the underlying true

signal and measurement error. In 4-D seismic data, the underlying true signal is the

AIC or PRC caused by the production of the reservoir, and the measurement error

is the spatially distributed acquisition error and processing error introduced by the

two seismic surveys.

In order to characterize the measurement error, we need to separate the two

components mixed in the measurements. All we know is the measurements D̂ and

their spatial coordinates, X. A simple solution to this problem is to smooth the data

using a moving window, use the smoothed signal as the estimated true signal, and

then the difference between the smoothed data and the observed data represents the

estimation of the measurement error. This approach actually assumes the underlying
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signal is smooth everywhere, which is not true in many cases. When there exist some

spatially distinct changes in the measurement, the smoother will move a considerable

proportion of the true signal into the measurement error. The estimation can be

improved if we assume the true signal is regionally smooth, i.e., if we divide the

measurement into multiple spatially distributed regions, and the true signal is smooth

except at the sharp changes between regions. In order to do so, it is necessary to

find a proper partition (or grouping) of the measurements. If we assume there are M

groups, a membership indicator can be defined for each data to indicate the group

it belongs. The set of membership indicators are given by

Z = {zi, i = 1, N}, (8.2)

where each zi can take any one of the M discrete values in the set {1, 2, · · · , M}.

Thus, if zi = j, the datum d̂i, measured at xi, belongs to the jth group.

In this research, the EM algorithm [47], which will be discussed from the

next section on, is used to estimate these partitions. In general, the EM algorithm

optimizes a log-likelihood function, which represents the likelihood of model para-

meters when measurements are given. The traditional EM algorithm assumes the

measurements are non-sequential, i.e., have no spatial or temporal relation. In the

next two sections, the non-sequential EM algorithm (no incorporation of X into the

estimation process) and a spatial EM algorithm, which includes information X by

applying a spatial constraint, will be discussed.

After the group indicators Z are estimated, either from a MAP (maximum

a posteriori) estimate or stochastically, we can use Z to estimate the measurement

errors. Specifically a moving window quadratic fitting (Appendix D) is applied to

the measurements group by group to avoid smoothing across the boundaries between

groups. The smoothed signal is the estimated true signal, which is subtracted from
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the measurements to get the estimation of the measurement errors. A measurement

error covariance matrix can be estimated from the estimated measurement errors,

and used to construct the objective functions for automatic history matching.

8.2 Grouping Non-sequential Measurements Using EM Algorithm

The group indicator vector Z is going to be estimated knowing measured

values D̂ and the spatial coordinates of these measurements X. A Gaussian mixture

model can be used to construct a log-likelihood function that the EM algorithm

optimizes to solve this problem. Firstly, we discuss the traditional EM algorithm [47],

which is used to group non-sequential measurements (without spatial or temporal

coordinates). In this case, X is not used in the algorithm. EM stands for the two

iterative steps of the algorithm, expectation and maximization.

8.2.1 Gaussian Mixture Model

In the Gaussian mixture model, two random vectors need to be constructed,

i.e.

1. ∆ = {δ1, δ2, · · · , δN} is used to model the group indicators of the N measure-

ments, with the sample space for each δi given by {1, 2, · · · , M}, where M is

the number of groups. If measurements are non-sequential, it is assumed that

the group indicators are sampled independently. Hence, the δi’s are indepen-

dent and follow the same probability distribution. The discrete PDF of each

δi is given by

P (δi = j|Π) = πj, j = 1, 2, · · · , M. (8.3)

where P denotes a probability. The model parameter of this distribution is Π =

{πj, j = 1, 2, · · · , M}, where πj is normally referred to as the mixing proportion

of the jth group, and represents the probability that the ith measurement is

in the jth group regardless of measured values of data.
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2. D = {d1, d2, · · · , dN} is used to model the random data vector, i.e., the actual

measured values D̂ (Eq. 8.1) is a realization of D. Here, each di is a vector with

n real components, where in the scalar case n = 1. As it is assumed, measured

values are sampled independently, the di’s are independent of each other, the

distribution of each di depends only on δi. The conditional distribution that

each di follows can be written as a Gaussian function:

P (di|δi = j, Θ) =
1

(2π)
n
2 |Cj|

1
2

exp
[
−

(di − µj)
T C−1

j (di − µj)

2

]
. (8.4)

Here, µj and Cj are the mean vector and the covariance matrix of the jth

Gaussian. For i = 1, 2, · · · , N , δi is associated with di, i.e., δi = j if and

only if the ith data belongs to the jth group, i.e., is a sample from the jth

Gaussian. The measurements in the jth group (or partition) follows the jth

Gaussian. The set of model parameters for these Gaussian PDFs is given by

Θ = {µj, Cj, j = 1, 2, · · · , M}.

For convenience, we use the notation for the jth Gaussian as

G(di|Θj) = P (di|δi = j, Θ). (8.5)

In this model, we assume the measurements are independently sampled. Thus,

the PDF for each di can be written as a Gaussian mixture:

P (di|Π, Θ) =
M∑

j=1

P (di, δi = j|Θ)

=
M∑

j=1

P (di|δi = j, Θ)P (δi = j|Π)

=
M∑

j=1

πjG(di|Θj) (8.6)

215



In order to group the measurements properly, we need to estimate the model para-

meters Π and Θ using only the knowledge of D. This is actually a “missing data

problem” or incomplete data problem, because the estimation of Π and Θ requires

information on both D and Z.

We estimate these model parameters by maximizing a log-likelihood function

defined as:

L(Π, Θ|D̂) = ln

[
P (D = D̂|Π, Θ)

]
= ln

[ N∏
i=1

P (di = d̂i|Π, Θ)

]

= ln

[ N∏
i=1

M∑
j=1

P (di = d̂i, δi = j|Π, Θ)

]

= ln

[ N∏
i=1

M∑
j=1

P (di = d̂i|δi = j, Π, Θ)P (δi = j|Π, Θ)

]

=
N∑

i=1

ln

[ M∑
j=1

[πjG(d̂i|Θj)]

]
, (8.7)

where the first equality comes from the assumption that di’s are independent and the

other equalities follows from Eq. 8.6. Because this function is difficult to differentiate,

and can not be easily maximized, the EM algorithm was introduced. Next, we show

the EM algorithm can be used to estimate a maximum of L(Π, Θ|D̂).

8.2.2 Non-sequential EM Algorithm

Although each measurement must be a sample from only one of these Gaus-

sians, the set of Gaussian parameters (Π and Θ) for all the groups are to be esti-

mated by trying to maximize an appropriate Q function discussed in Appendix A.

This maximization step is only feasible if we have approximate information about the

membership indicators. More specifically, we define an N ×M membership matrix
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H with the entry in the ith row and jth column defined by

hj
i (Π, Θ) = P (δi = j|di = d̂i, Π, Θ). (8.8)

Note that hj
i (Π, Θ) represents the probability that the ith measurement belongs to

the jth group when the Gaussian model is given as Π and Θ. Here, we have only

considered the case that we group by the measured value of the data, the d̂i’s; spatial

information will be considered later in the next section. If we let δj
i be a random

indicator variable which is equal to 1 when the ith data belongs to the jth group,

i.e.

δj
i =


1 if ith data is from jth group

0 if ith data is not from jth group,

(8.9)

then it can be shown [38] that Eq. 8.8 can be written as:

hj
i (Π, Θ) = P (δi = j|di = d̂i, Π, Θ) = P (δj

i = 1|di = d̂i, Π, Θ) = E[δj
i |di = d̂i, Π, Θ],

(8.10)

where E denotes expectation. The last equation provides the reason why the esti-

mation of hj
i is called the expectation step in the EM algorithm. For each j, δj

i = 1

is equivalent to δi = j.

The non-sequential EM algorithm is given by Kung et al. [47], and uses only

the measured values to approximate the parameters. The EM algorithm starts from

an initial guess of the model Π0, Θ0, which can be used to evaluate the initial mem-

bership matrix hj
i (Π0, Θ0) and log-likelihood L(Π0, Θ0|D̂), and gradually increases

the log likelihood function by updating the model through an expectation step and

a maximization step.

Suppose the model at the nth iteration is Πn, Θn. In the expectation step, the

membership matrix is evaluated as the expectation of the missing data, the δj
i ’s. In
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the nth iteration, the expression for each entry of the membership matrix hj
i (Πn, Θn)

defined by Eq. 8.10 can be derived by using Bayes theorem and Eq. 8.6 as follows:

(hj
i )n ≡ hj

i (Πn, Θn) = P (δi = j|di = d̂i, Πn, Θn)

=
P (δi = j, di = d̂i|Πn, Θn)

P (di = d̂i|Πn, Θn)

=
P (di = d̂i|δi = j, Πn, Θn)P (δi = j|Πn, Θn)∑M

j′=1

{
P (di = d̂i|δi = j′, Πn, Θn)P (δi = j′|Πn, Θn)

}
=

(πj)nG(d̂i|(Θj)n)∑M
j′=1

{
(πj′)nG(d̂i|(Θj′)n)

} .

(8.11)

Here, (πj)n and (Θj)n denote the estimated models parameter of the jth group at

the nth iteration.

In the maximization step, according to Appendix C, the (n+1)th model Πn+1

and Θn+1 are calculated using the following equations:

(µj)n+1 =

∑N
i=1(h

j
i )nd̂i∑N

i=1(h
j
i )n

,

(Cj)n+1 =

∑N
i=1(h

j
i )n(d̂i − (µj)n+1)(d̂i − (µj)n+1)

T∑N
i=1(h

j
i )n

,

(πj)n+1 =
1

N

N∑
i=1

(hj
i )n,

(8.12)

which are evaluated based on the membership matrix Hn calculated from Πn and

Θn as the output of the expectation step. In order to group the data using the

spatial information, the spatial EM is considered next, after which the step by step

procedure will be described.

8.3 Spatial EM Algorithm

The traditional EM algorithm groups data according only to their values,

while ignoring the spatial relationship between them. When this algorithm is ap-

plied to spatially correlated data, it gathers all the data with similar values together
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regardless of their locations. As noted earlier, this can create groups which are

highly discontinuous spatially, which can make smoothing within groups tenuous.

Moreover, in most cases we expect data measured at close locations to have similar

values. In sequential measurement cases, we can still use the two random vectors

∆ and D to model the group indicators and measured values. We can still assume

di depends only on δi, but the δi’s are not independent any more. Reviewing the

Eqs. 8.6 and 8.7 we used in non-sequential cases, the term P (δi = j|Π, Θ) become

intractable because the δis are dependent to each other.

In the literature, two strategies have been proposed to construct a spatially-

constrained EM. One strategy is to smooth the membership matrix hj
i [16] group by

group (for different j’s). The basic idea of smoothing hj
i is that when two data points

are spatially close to each other, they tend to fall into the same group, which means

they should have a similar probability (hj
i ) for being in any particular group (or are

likely to be samples from the same Gaussian model). In the spatially-constrained

EM algorithm used by Diplaros et al. [16], a smoothing step is added between the

E-step and the M-step. Another strategy consists of adding a spatial penalty term to

the log-likelihood function (neighborhood EM algorithm [4]). Since the penalty term

of the spatial neighborhood EM algorithm does not contain the Gaussian mixture

model parameters, Θ, defined in the previous section, the maximization step of

this algorithm is equivalent to the traditional EM algorithm, but the membership

matrix is modified to include the spatial information. This is equivalent to smoothing

the membership matrix using the spatial information implicitly. Besag [9] uses a

more natural way to incorporate spatial information into the log-likelihood function:

the term P (δi = j|Π, Θ) is modified to a conditional probability (conditional to a

temporary evaluation of the membership indicator Z), which is especially suitable

for the EM algorithm because the membership indicator is always re-evaluated from

iteration to iteration. Our method for imposing a spatial constraint uses an idea
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similar to Besag [9], but the way we incorporate the spatial information is different.

More importantly, our final algorithm incorporates a method to delete groups so we

do not need to know the number of groups a priori.

As is shown later, the δi’s are dependent on each other, and only a conditional

discrete PDF can be defined based on an evaluation of the group indicator vector

Ẑ = {ẑi, i = 1, 2 · · · , N}, where we recall that ẑi = j if d̂i is from the jth group

(Gaussian). In this study, the conditional PDF is defined as:

P (δi = j|Π, Θ, Ẑ) =

∑
ẑk=j

1
2πr2

0
exp

[
− ‖xi−xk‖2

2r2
0

]
∑N

k=1
1

2πr2
0
exp

[
− ‖xi−xk‖2

2r2
0

] , (8.13)

for j = 1, 2, · · · , M , and i = 1, 2, · · · , N . In the numerator, the notation indicates

the sum is over all k such that ẑk = j; in the denominator, the sum is over all data.

Hence we have
M∑

j=1

P (δi = j|Π, Θ, Ẑ) = 1.

Here, r0 is a distance weighting factor used to construct the spatial constraints.

Originally, we tried to estimate r0 as part of the process but were unable to do so.

Thus we fix it to be 2 or 3 (2 or 3 times width of a grid-block), and found that these

values can work for the cases we have tried.

Assuming di is dependent only on δi, and the δi’s are conditionally indepen-

dent (conditional to Ẑ as shown in Eq. 8.13). The conditional PDF P (∆, D|Θ, Π, Ẑ)

can be written as

P (∆, D|Θ, Π, Ẑ) = P (D|∆, Θ, Π, Ẑ)P (∆|Θ, Π, Ẑ)

=
N∏

i=1

P (di|δi, Θ, Π, Ẑ)
N∏

i=1

P (δi|Θ, Π, Ẑ)

=
N∏

i=1

P (δi, di|Θ, Π, Ẑ).

(8.14)
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Consequently, with spatially measured data, a modified log-likelihood func-

tion based on Eq. 8.13 is constructed for the estimation of the group indicator Z:

Lc(Π, Θ, Ẑ|D̂) = ln

[
P (D = D̂|Π, Θ, Ẑ)

]
= ln

[ N∏
i=1

M∑
j=1

P (di = d̂i, δi = j|Π, Θ, Ẑ)

]

= ln

[ N∏
i=1

M∑
j=1

P (di = d̂i|δi = j, Π, Θ, Ẑ)P (δi = j|Π, Θ, Ẑ)

]

=
N∑

i=1

ln

[ M∑
j=1

[P (δi = j|Π, Θ, Ẑ)G(d̂i|Θj)]

]
. (8.15)

where P (δi = j|Π, Θ, Ẑ) is defined in Eq. 8.13. In our implementation of the EM

algorithm, we always set Ẑ as the current guess of membership Zn at the nth iteration.

The denominator of Eq. 8.13 is a constant value for all i and j, and the log-likelihood

function of the nth iteration (according to Eq. 8.15) can be written as

Lc(Πn, Θn, Zn|D̂) =
N∑

i=1

ln

{ M∑
j=1

[ ∑
(zk)n=j

1

2πr2
0

exp

[
−‖xi − xk‖2

2r2
0

]
G(d̂i|(Θj)n)

]}
+Constant

(8.16)

An iterative two step strategy used in Besag [9] is similar to the EM algorithm

we use here to estimate Π, Θ and Z:

1. E-Step: Membership matrix (Hn will be shown in Eq. 8.18) can be calculated

based on the current guess of Π = Πn, Θ = Θn and Z = Zn. The corresponding

log-likelihood can be calculated as Lc(Πn, Θn, Zn|D̂) from Eq. 8.16.

2. M-Step: Update estimation of parameters Π = Πn+1 and Θ = Θn+1 and

Z = Zn+1 using (Hn). The details will be shown later.

Using Eq. 8.13, and referring to Eq. 8.11, the membership matrix at the nth
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iteration can be written as:

hj
i (Πn, Θn, Zn) =

P (δi = j|Πn, Θn, Zn)G(d̂i|(Θj)n)∑M
j′=1

{
P (δi = j′|Πn, Θn, Zn)G(d̂i|(Θj′)n)

}
=

∑
(zk)n=j

1
2πr2

0
exp

[
− ‖xi−xk‖2

2r2
0

]
G(d̂i|(Θj)n)

∑M
j′=1

{ ∑
(zk)n=j′

1
2πr2

0
exp

[
− ‖xi−xk‖2

2r2
0

]
G(d̂i|(Θj′)n)

}
(8.17)

Although the global proportion of each group Πn is still a parameter of inter-

est, Eqs. 8.16 and 8.17 do not have this parameter in the right hand sides, because

we are using a local proportion defined in Eq. 8.13. Suppose (Nj)n is the number

of measurements that are from the jth group according to the current estimation

of membership indicator Zn. We have the global proportion of the jth group as

(πj)n ≈ (Nj)n

N
. By inserting the terms as (πj)n

N
(Nj)n

≈ 1 into the numerator and

denominator of Eq. 8.17, we obtain the modified membership matrix:

(hj
i )n = hj

i (Πn, Θn, Zn) =
(πj)nG(d̂i|(Θj)n)Sj(xi|r0, Zn)∑M

j′=1

{
(πj′)nG(d̂i|(Θj′)n)Sj′(xi|r0, Zn)

} . (8.18)

where Sj’s are spatial weight functions for the jth group defined as

Sj(xi|r0, Zn) =
1

(Nj)n

∑
(zk)n=j

1

2πr2
0

exp

[
− ‖xi − xk‖2

2r2
0

]
, i = 1, 2, · · · , N, (8.19)

for j = 1, 2, · · · , M . Hence, in the nth iteration (Ẑ = Zn), Eq. 8.13 can be written

as

P (δi = j|Πn, Θn, Zn) = C(πj)nSj(xi|r0, Zn), (8.20)

where C is a constant value. Note that for i = 1, 2, · · · , N ,

M∑
j=1

hj
i (Πn, Θn, Zn) = 1. (8.21)
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For same reason, the log-likelihood function Eq. 8.16 can be written as

Lc(Πn, Θn, Zn|D̂) =
N∑

i=1

ln

{ M∑
j=1

[
(πj)nSj(xi|r0, Zn)G(d̂i|(Θj)n)

]}
+ Constant.

(8.22)

In the implementation, an initial guess of grouping and model parameters are

provided as Z1, Π1 and Θs,1 as will be shown in the Section 5. They can be used

to construct the first guess of the modified membership matrix H1 (Eq. 8.18). In

each iteration (i.e. the nth iteration), the parameter for the next iteration Θn+1 and

Πn+1 as well as the grouping Zn+1 can be estimated from Hn. The updated indicator

variable Zn+1 can be generated as maximum a posteriori estimate (MAP estimate)

or stochastically, i.e.,

1. MAP grouping: (zi)n+1 is calculated as

(zi)n+1 = `

where

` = Argmaxj

[
(hj

i )n

]
.

2. Stochastic grouping: (zi)n+1 can be evaluated stochastically by sampling the

cumulative distribution function for the ith row of the current membership

matrix ({(hj
i )n, j = 1, 2, · · · , M}).

At the end of the next section, we will see when to use MAP grouping and when to

use stochastic grouping in the implementations.

As is shown in Appendix C, we still use Eq. 8.12 to update the model para-

meters in the maximization step except that (hj
i )n terms in this equation are given

by Eq. 8.18. Similar to comments made in Besag [9], we failed to find a way to

prove that the log-likelihood function is non-decreasing from iteration to iteration
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(see Appendices A, B and C), but we observed it is increasing for all our cases when

the number of groups is fixed as known. The next section will be used to show how

we solve for the number of groups when it is uncertain.

8.4 Spatial EM Algorithm with Group Quality Coefficient

The above spatial EM algorithm does not account for the uncertainty in the

number of groups. With this algorithm, we find that the number of groups tends

to be conserved, i.e., we end up with the same number of groups as the number of

groups in the initial grouping. From iteration to iteration in most cases, we need

to estimate the number of groups (Gaussians). Richardson and Green [70] use a

reversible jump Markov chain Monte Carlo (McMC) method to find the optimal

number of groups. Because the McMC method is very computationally demanding,

we use another approach to find the number of groups.

We start from a fairly large number of groups, and apply additional multipliers

in the membership matrix. The membership matrix is modified to

hj
i (Πn, Θn, Zn) =

(πj)n(Fj)nG(d̂i|(Θj)n)Sj(xi|r0, Zn)∑M
j′=1 (πj′)n(Fj′)nG(d̂i|(Θj′)n)Sj′(xi|r0, Zn)

. (8.23)

According to Eqs. 8.4 and 8.19,

G(d̂i|(Θj)n) = P (di = d̂i|δi = j, Θn) (8.24)

=
1

(2π)
n
2 |(Cj)n|

1
2

exp
[
− (d̂i − (µj)n)T (Cj)

−1
n (d̂i − (µj)n)

2

]
Sj(xi|r0, Zn) =

1

(Nj)n

∑
(zk)n=j

{
1

2πr2
0

exp
[
− ‖xi − xk‖2

2r2
0

]}
. (8.25)

Here, (Nj)n is the number of measurements in the jth group according to Zn, and

(zk)n is the group indicator of the kth measurement in the nth iteration. (Fj)n is a

variable used to indicate the quality of the jth group at the nth iteration. It is used
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to cause groups of low quality to be absorbed by groups of higher quality so that

the number of groups will be gradually decreased until convergence. The quality of

each group is judged by its continuity, and the groups that are sparsely distributed

spatially tend to have lower quality than those continuously distributed.

Before defining (Fj)n, the continuity of groups based on each single measure-

ment has to be quantified. We use a grouping score matrix (En)M×N at the nth

iteration. (Ej
i )n, the element in the ith row and jth column of this matrix, is used to

indicate the continuity of the jth group at the ith measurement. (Ej
i )n is a number

between 0 and 1. The continuity is good if the corresponding value is close to 1, and

poor if it is close to 0.

Suppose that according to the current membership information, the ith mea-

surement d̂i is assigned to the jth group, then we wish (Ej
i )n to have the following

properties:

1. If most points with a small distance of xi (say within a distance 3r0 of xi) are

within group j, then we wish (Ej
i )n to be greater than 1

2
, and close to 1, if all

points within a distance of 3r0 are assigned to group j based on the current

membership information. Note in this situation, the jth group is expected to

correspond to a spatially continuous region around xi.

2. If most points within a distance of 3r0 of xi do not fall within group j, we

wish (Ej
i )n to be smaller than 1

2
, and in the extreme case, where all the points

except xi itself that are within 3r0 of xi are not in group j, we wish (Ej
i )n to

be close to zero.

We view groups which have a large percentage of their data satisfying the first

situation to be of higher quality than groups which have a large percentage of their

data satisfying the second situation. Based on this, the group quality coefficient for

the jth group is defined as the average of the grouping scores of the measurements
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in the jth group. The grouping score matrix En can be defined in different ways.

In this research, we use the spatial constraint defined in Eq. 8.25 to evaluate it with

the current guess of indicator variables. i.e. for the measurement at xi:

(Ej
i )n = Ej

i (Zn) =
(Nj)nSj(xi|r0, Zn)∑M

j′=1(Nj′)nSj′(xi|r0, Zn)
. (8.26)

From Eq. 8.25, Eq. 8.26 can be rewritten as

(Ej
i )n = Ej

i (Zn) =

∑
(zk)n=j

{
exp

[
− ‖xi−xk‖2

2r2
0

]}
∑M

j′=1

∑
(zk′ )n=j′

{
exp

[
− ‖xi−xk′‖2

2r2
0

]} . (8.27)

Because exp(− (3r0)2

2r2
0

) ≈ 0.01, we say the effective radius of the spatial constraint is

3r0. We define the group quality coefficients by

(Fj)n = Fj(Zn) =
a

(Nj)n

∑
(zk)n=j

(Ej
k)n, (8.28)

for j = 1, 2, · · ·M where

a =

( M∑
j=1

[
(πj)n

1

(Nj)n

∑
(zk)n=j

(Ej
k)n

])−1

(8.29)

is a normalizing constant which ensures that

M∑
j=1

(πj)n(Fj)n = 1, (8.30)

because the term (πj)n(Fj)n is effectively the modified mixing proportion of the jth

group in the nth iteration, and we want them to sum to 1. Here, the value of a does

not have any effect on the results because it can be canceled from the nominator and

denominator of the membership matrix shown in Eq. 8.23. Note that in the definition
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of (Fj)n only one entry in each row of En is used, i.e. for the ith row, only (Ej
i )n

is used if the ith measurement falls into the jth group at the nth iteration. When

the grouping quality coefficients are not equal to 1.0, we compute log-likelihood by

considering (πj)n(Fj)n as modified mixing proportion, i.e.,

Lc,f (Πn, Θn, Zn|D̂) =
N∑

i=1

ln

{ M∑
j=1

[
(πj)n(Fj)nSj(xi|r0, Zn)G(d̂i|(Θj)n)

]}
+Constant.

(8.31)

Because the number of groups is not conserved as constant during the process of

estimating the number of groups, the log-likelihood calculated from Eq. 8.31 may

decrease as the number of groups decrease. Here, Fj actually serves as a factor that

can cause biases in πj’s. Therefore, a second run without Fj, using the obtained final

groups as the initial, should be followed to remove the biases caused by Fj. In the

second run, the log-likelihood function is expected to increase.

In this study, stochastic grouping will be used in the case when the number of

group is exactly known as a priori. If the number of groups is not known, stochastic

grouping is used in the first EM process when the number of groups is being deter-

mined. This is because computational experiments indicate that it is more robust

than grouping based on the MAP (maximum a posteriori) estimate in two ways:

1. More robust in finding the number of groups: From the experiments we made

in Zhao et al. [85], we found that the stochastic grouping has some superior

properties over MAP grouping, which leads to better robustness in the initial

grouping.

2. Help the EM processes to escape from some local maxima and reach higher

maxima: Celeux and Govaert [11] explained that stochastic grouping can relax

the problem of strong dependence on the initial guess of parameters for EM

algorithm.
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However, in the case with the number of groups uncertain, in the second run

when the number of groups has been solved in the first run, we normally use the

MAP estimate to determine Zn+1. This is because we might not solve the number

of groups precisely, although the result is closer to the correct values than the initial

estimate of the number of groups. Some small redundant groups might exist at the

end of the first run, and using the MAP estimate in this case appear to prevent some

of these groups from growing into unrealistic groups.

8.5 Application Procedures

The spatial EM algorithm starts from an initial grouping and iteratively ad-

justs the model parameters in each iteration until the grouping stops changing and

the proportions stop changing. Here, we discuss the steps of the spatial EM algorithm

when the group quality coefficients are used.

If the number of groups is known, we fix the group quality coefficients equal

to 1, and use stochastic grouping discussed later in the maximization step. On the

other hand, if the number of groups is not known, we use the basic algorithm twice:

once with Fj to decrease the number of groups, and then with a fixed number of

groups and all Fj = 1. The first run with Fj generate groups stochastically. The

second run uses the final grouping and model parameters obtained at the end of the

first run, and generate groups with maximum a posteriori (MAP grouping).

8.5.1 Initialization

The initialization step is used to construct the first membership matrix H1. To

do so, we simply divide the data into a fairly large number of groups (say 50 to 100).

The initial grouping can be done either by value, by spatial location or randomly.

This grouping results in an evaluation of the initial group indicator vector denoted

by Z1.
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All the other parameters are also constructed from the initial guess

Z1 = {(z1)1, (z2)1, · · · , (zN)1},

where if (zi)1 = j, then d̂i is assigned to the group j. For j = 1, 2, · · ·M , we let (Nj)1

denote the number of measurements in the jth group according to Z1. In particular,

(Πj)1 and (Θj)1 are estimated as

(πj)1 =
(Nj)1

N
,

(µj)1 =
1

(Nj)1

∑
(zk)1=j

d̂k, (8.32)

(Cj)1 =
1

(Nj)1

∑
(zk)1=j

(d̂k − (µj)1)(d̂k − (µj)1)
T .

With these initial guesses of model parameters Π1, Θ1 and Z1, and setting (Fj)1 = 1

for j = 1, 2, · · · , M in the first iteration, we evaluate the membership matrix H1

using Eq. 8.23.

8.5.2 Membership Matrix Update (E-step)

With the above definitions, we can start the expectation step for the first

iteration by calculating the initial membership matrix H1.

In the expectation step, the probabilities of each datum belonging to each

group are evaluated based on the current model, which is the membership matrix

calculated from Eq. 8.23. Here, Hn = {(hj
i )n} is evaluated at:

{(πj)n, (µj)n, (Cj)n, Zn, j = 1, 2, · · · , M},

which are updated in the maximization step of the previous iteration. The terms in

Eq. 8.23 can be computed as following
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1. G(d̂i|(Θj)n) is evaluated at {(µj)n, (Cj)n, j = 1, 2, · · · , M} using Eq. 8.24, i.e.,

G(d̂i|(Θj)n) =
1

(2π)
n
2 |(Cj)n|

1
2

exp
[
− (d̂i − (µj)n)T (Cj)

−1
n (d̂i − (µj)n)

2

]
. (8.33)

2. Sj(xi|r0, Zn) is evaluated at Zn using Eq. 8.25, i.e.,

Sj(xi|r0, Zn) =
1

(Nj)n

∑
(zk)n=j

{
1

2πr2
0

exp
[
− ‖xi − xk‖2

2r2
0

]}
. (8.34)

3. In the first iteration, we always set (Fj)1 = 1. From the second iteration on, if

the number of groups is unknown, (Fj)n is evaluated as Eq. 8.28 when we are

trying to reduce the number of groups in the first run, i.e.,

(Fj)n = Fj(Zn) =
a

(Nj)n

∑
(zk)n=j

(Ej
k)n

(Ej
i )n = Ej

i (Zn) =
(Nj)nSj(xi|r0, Zn)∑M

j′=1(Nj′)nSj′(xi|r0, Zn)

a =

( M∑
j=1

[
(πj)n

1

(Nj)n

∑
(zk)n=j

(Ej
k)n

])−1

.

(8.35)

If the number of groups is fixed, we set all the Fj’s equal to 1.

Using these terms, the membership matrix of the current iteration can be computed

as

hj
i (Πn, Θn, Zn) =

(πj)n(Fj)nG(d̂i|(Θj)n)Sj(xi|r0, Zn)∑M
j′=1 (πj′)n(Fj′)nG(d̂i|(Θj′)n)Sj′(xi|r0, Zn)

. (8.36)

The log-likelihood functions for the current iteration is evaluated as

Lc,f (Πn, Θn, Zn|D̂) =
N∑

i=1

ln

{ M∑
j=1

[
(πj)n(Fj)nSj(xi|r0, Zn)G(d̂i|(Θj)n)

]}
+Constant,

(8.37)

in which the constant value has no effect on maximizing the log-likelihood. For H1,

set n = 1 in the Eqs. 8.33 to 8.37.
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8.5.3 Model Parameter Update (M-Step)

In the maximization step, the model parameters are updated using the mem-

bership matrix evaluated in the E-step. Here we calculate the updated parameter

Θn+1 and Πn+1 using Eq. 8.12, i.e.,

(µj)n+1 =

∑N
i=1(h

j
i )nd̂i∑N

i=1(h
j
i )n

,

(Cj)n+1 =

∑N
i=1(h

j
i )n(d̂i − (µj)n+1)(d̂i − (µj)n+1)

T∑N
i=1(h

j
i )n

,

(πj)n+1 =
1

N

N∑
i=1

(hj
i )n.

(8.38)

The membership matrix Zn+1 may be generated from Hn by stochastic group-

ing or MAP grouping (used only in the second EM process).

At this point, all the parameters that are necessary for calculating the new

membership matrix Hn+1 are evaluated. Then we go to the E-step of iteration n+1.

In the case where we are trying to determine the number of groups, after the

model parameter update, we delete some groups with very small group probabilities,

if no data tends to fall into them. To do this, the groups are sorted by their propor-

tions, so that π1 ≥ π2 ≥ · · · ≥ πM . We delete groups j′ = j0, j0 + 1, · · · , M , if group

j0 satisfies the following two criteria:

1. For j′ = j0, j0 + 1, · · · , M , (zi)n+1 6= j′ for any i;

2. (πj0)n+1 ≤ εg, where εg is a small value set by the user (i.e. 0.0001).

Under these conditions, groups j0 to M have a negligible effect on the Q function and

are not expected to increase in size. Thus, we delete these groups and set M = j0−1.

For the first criteria, it means no data belongs to the group j0, j0 + 1, · · · . We also

need the second criteria because even if no data is evaluated (stochastically or MAP)

to fall in a specific group there will still be chances that some data fall in this group

in followed iterations if the proportion of this group is not too small.
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8.5.4 Stopping Criteria

We use the following two conditions for the criteria to terminate the iterative

process:

1. No group is deleted in the current iteration;

2.
‖(πj)n+1−(πj)n‖

‖(πj)n‖ < ε1 for j = 1, 2, · · · , M ; normally, we use ε1 = 10−4.

8.6 Case Study

Synthetic 4-D seismic and field 4-D seismic data are presented to check the

ability of the spatial EM algorithm to solve the measurement error estimation prob-

lem. For both cases, the measurement errors are spatially correlated. So we need

to estimate the covariance of the measurement error. Since the measurements are

located in uniform 2-D grids, the covariance matrix will be estimated in the form of

matrix:

C(dx) =
1

N(dx)

∑
(xi−xj)=dx

eiej. (8.39)

where dx = {dx1, dx2} is spatial displacement vector between measurements in the

X and Y directions, which can take discrete values as {dx1 = iδx1, dx2 = jδx2, i =

0,±1,±2, · · · ,±Ncov j = 0,±1,±2, · · · ±Ncov} with δx1 and δx2 as the size of grid-

blocks in the two directions. xi and xj are the spatial coordinates of the ith and jth

grid-block respectively. ei and ej are the corresponding measurement errors. The

summation is made on the pairs of measurements with distance of dx in the two

directions. N(dx) is the number of such pairs. Hence, the covariance matrix will

have 2 × Ncov + 1 rows and columns, with the entry of dx = {0, 0} as the variance.

In this study we always set Ncov = 10.

In the synthetic case, we know that an approximate number of groups is

4. However, as we wish to test our algorithm, we assume the number of groups is
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unknown. In addition the sensitivity of the algorithm to different initializations will

also be studied. We use two types of initializations, random initialization and value

initialization.

1. In random initialization, we assign a group indicator to each measurement

randomly by sampling from a uniform distribution with the requirement that

each group should be expected to have the same number of data.

2. In value initialization, we sort the measurements based on the measured value

of data, and then the measurements are evenly divided into a specified number

of groups.

Therefore, we will have four cases for the synthetic data set, known or unknown

number of groups, random or value initialization.

In the field data case, the number of groups is not known. Then we will have

two variations: random or value initializations.

The estimated measurement error will also compared with those from a mov-

ing average as used by Aanonsen et al. [1]. In the implementation, we use a constant

weight for all the data inside the window. Because our algorithm uses a moving

quadratic fit in each individual group, a direct moving quadratic fit is also com-

pared.

8.6.1 Synthetic Case

The synthetic acoustic impedance change data are generated based on the

PUNQS3 reservoir model used in the previous chapters except that the reservoir is

expanded to a 20 × 30 × 5 with a numerical aquifer attached to the reservoir; the

aquifer is simulated by inputting high porosities (0.95) and high water saturation

(1.0) in the aquifer grid blocks. In this chapter we call this model PUNQ. In this

case, because seismic data always has a much finer grid than that for simulation, the

model is down-scaled to 60 × 90 × 5 grid by assigning the same values of depth in
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Figure 8.1: Synthetic PUNQ 3-D, 3-phase case simulations.

the 9 fine grids that fall into the same coarse grid. Figs. 8.1(a) and 8.1(b) shows

the porosity and permeability assigned to each grid block of the second layer. We

simulated this reservoir with an in-house reservoir simulator (CLASS) developed by

Chevron. There are 6 production wells completed in the oil column around the

gas cap. The locations are shown as black circles in Figs. 8.1(a) and 8.1(b). The

production constraint is the same for all wells. For each well, the flow rates are

specified as in Fig. 8.1(e), and the minimum bottom hole pressure is 1764 psi.

Since the acoustic impedance is implicitly a function of pressure and phase

saturations, the production activities in the reservoir which results in saturation

changes or pressure changes will cause a change in the acoustic impedance. The
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(c) Gas saturation change

Figure 8.2: Synthetic PUNQ 3-D, saturation changes.

acoustic impedance change is usually derived from a 4-D seismic survey, in which

two seismic surveys of the same field are done at two different times. In general,

geophysicists wish to infer the change in fluid distribution from this survey. For the

synthetic example, instead of doing two seismic surveys, we use a reservoir simulator

(CLASS) as the forward model to calculate the fluid and pressure distributions as

a function of time. With the calculated pressures and saturations, we use the rock

physics models discussed in Chapter 2 to determine the acoustic impedance change.

In this synthetic example, the initial seismic survey is taken 273 days after the

235



1 0 2 0 3 0 4 0 5 0 6 0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

X

Y
- 3 0 0 0
- 2 2 5 0
- 1 5 0 0
- 7 5 0 . 0
0
7 5 0 . 0
1 5 0 0
2 2 5 0
3 0 0 0

(a) Data with correlated mea-
surement error

- 1 0 - 8 - 6 - 4 - 2 0 2 4 6 8 1 0- 1 0
- 8
- 6
- 4
- 2
0
2
4
6
8

1 0

X

Y

0
1 . 1 3 E 4
2 . 2 6 E 4
3 . 3 9 E 4
4 . 5 3 E 4
5 . 6 6 E 4
6 . 7 9 E 4
7 . 9 2 E 4
9 . 0 5 E 4

(b) True covariance matrix

Figure 8.3: Synthetic PUNQ 3-D, noisy data and covariance of measurement error.
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Figure 8.4: PUNQ with correlated measurement error; Moving average with window
length of 21× 21, without EM algorithm.

reservoir was put in production and the 2nd seismic survey is taken at the 6032nd

day. Although we simulate the PUNQ reservoir with 5 layers, for the purpose of

error estimation here, we only present results for the 2nd layer. Figs. 8.2(a) through

8.2(c), respectively, show the water, oil and gas saturation distributions at the first

survey time (the 273rd day), at the second survey time (the 6032nd day) as well as

the change of the saturations during the time interval. In the left and middle panels

in Fig. 8.2(c), the blue means zero gas saturation and the red gives the highest gas

saturation of 0.8 with an irreducible water saturation of 0.2 in the reservoir. The
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Figure 8.5: PUNQ with correlated measurement error; Moving fitting with window
length of 21× 21.
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(c) Estimated covariance

Figure 8.6: PUNQ with correlated measurement error; Moving average with window
length of 11× 11, without EM algorithm.

right panel of Fig. 8.2(c) shows the change in the gas saturation. It is noted that

the gas cap invaded the oil column as evidenced by the increasing gas saturation

(red color) near the top right corner of Fig. 8.2(c). Somewhat surprisingly, the

oil invaded the gas cap as indicated by the decreasing gas saturation (blue color)

in Fig. 8.2(c). While the physics of why the oil moved up to the gas cap is not

completely clear, it is apparently due to the strength of the aquifer. Simulation runs

with a different reservoir simulator (Eclipse) shows the same phenomenon. The right

plot of Fig. 8.2(a) shows the water saturation change between the two surveys. From
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Figure 8.7: PUNQ with correlated measurement error; Moving fitting with window
length of 11× 11.

the graph, the major water saturation change occurred around the original water-oil

contact (WOC) due to the water invasion into the oil zone. Fig. 8.2(b) shows the oil

saturation change, which is similar to the combination of Figs. 8.2(a) and 8.2(c), due

to the saturation constraint, Sw +Sg +So = 1. The change of the reservoir pressure is

displayed in Fig. 8.1(c). Compared to the change in saturation, the pressure change

is not localized to certain regions, instead it occurred over the whole range of the

reservoir around the edge of original gas cap. The maximum change occurred in the

gridblocks containing the production wells shown as the dark blue spots in the oil

zone. Note that the pure white regions along the east side and at the top right corner

represent inactive reservoir cells.

Fig. 8.1(d) shows the acoustic impedance change obtained based on the change

in the saturation and pressure distributions. The procedure for the acoustic im-

pedance change calculation uses the following steps: 1) Run a reservoir simulation;

2) Calculate the acoustic impedance (Z1) at time t1 by applying a rock physics model

with the saturation and pressure distribution as well as the rock and fluid proper-

ties of the reservoir at that specific time. 3) Calculate the acoustic impedance (Z2)

at time t2. 4) Subtract (Z1) from (Z2) to obtain the acoustic impedance change
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over the time interval (∆t = t2 − t1). From Fig. 8.1(d), the acoustic impedance

change resembles the combination of the change in pressure and saturations. The

increasing water saturation along the original WOC shows high positive signal in red

(The acoustic impedance change is about 3000 lb/ft2/s). Along the original GOC,

the region where the oil invaded the gas cap also shows a high positive impedance

change, whereas the region where the gas cap expanded into the oil zone shows high

negative impedance change with dark blue color in Fig. 8.1(d). In the oil zone, the

change is due to the pressure decrease, which is represented by another blue color

region right above the water influx region (red) in Fig. 8.1(d). It can be seen that

the saturation change has a larger influence than the pressure change on the acoustic

impedance change. Note that the acoustic impedance does not change much around

(X=25, Y=40). This is because a gas saturation increase is combined with a water

saturation increase, and these two types of changes have the opposite effect on the

acoustic impedance change, and tend to cancel each other out. The original aquifer

and the part of the gas cap where there is no saturation change and with fairly small

pressure changes shows little change in acoustic impedance.

After the true synthetic acoustic impedance change signal is generated, corre-

lated measurement errors are added to the true signal to test the applicability of our

method for estimating measurement error parameters. In the following discussion,

we use the terms noise and measurement error interchangeably. Fig. 8.3(a) gives

the seismic data with correlated noise added to the “true” signal. The standard

deviation of the noise added is 300 lb/ft2/s. Fig. 8.3(b) shows the covariance matrix

estimated from the correlated measurement error. The coordinate in the X and Y

axes represents the correlation distances in the two directions. The correlation length

for this correlated noise is about 9 gridblocks in the major principle direction (about

40 degrees), and 5 gridblocks in the minor principle direction. Comparing before and

after adding noise (Figs. 8.1(d) and 8.3(a)), the image of the noisy seismic data gets
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rougher.

The purpose of this case is to check the ability of the EM algorithm to recog-

nize the boundaries of the regions of different saturation changes, and estimate the

measurement error by smoothing the data within these regions.

For each of the cases, there will be seven (or eight) plots, the initial and

final grouping, the log-likelihood function, the estimated Gaussian of each group,

the estimated mean, the estimated measurement error and the estimated covariance

of measurement error. For the cases where number of groups is unknown, there will

be two final groupings, (1) the final grouping after the first run (stochastic grouping)

with Fj (2) the final grouping after the second run (MAP grouping) without Fj.

Consequently, there will also be two log-likelihood function curves: the black one is

for the first run (decreasing number of groups using Fj), and the red one is for the

second run (with Fj fixed equal to 1).

The estimated measurement error from the spatial EM algorithm is compared

with those from the direct moving average and direct moving fitting without using

EM groups. Fig. 8.4 shows the result with a constant window size of 21×21. Although

the estimated true signal (Fig. 8.4(a)) shows some trends of the true signal, it is far

smoother. The variance of the estimated measurement error (1.25×106 lb2/ft4/s2) is

much larger than the true (0.91× 105 lb2/ft4/s2). The covariance map also indicates

a long correlation length in the direction with an angle of about 170 degrees, which

is totally wrong compared with the true covariance shown in Fig. 8.3(b). Note that

the map of the estimated measurement error (Fig. 8.4(b)) shows a structure which

has features similar to the true signal. The red band indicates the water invasion

into the oil zone. The oil invasion into the gas cap and the gas cap expansion into

the oil can be seen around the original gas cap in continuous red or blue colored

regions. The correlation of the estimated error reflects the correlation of the true

signals. The constant window average over-smoothed the data. The main reason
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for the over-smoothing is largely due to changes in saturation with respect to the

movement of fluid contacts. At the boundaries, there is a sharp change in the signal,

the moving-window average tends to smooth out this sharp edge, which in turn

incorporates some of the true signal into the estimated measurement error.

Fig. 8.5 shows the result of a moving quadratic fit with a constant window size

of 21×21. Even though the result is closer to the true than obtained with the moving

average, the estimated correlation of measurement error is also wrong as shown in

Fig. 8.5(c), and the estimated variance is 9.0×105 lb2/ft4/s2 versus the true value of

0.91×105 lb2/ft4/s2. We also tried to repeat moving average and moving fitting using

a smaller window (11 × 11, close to the correlation length of measurement error),

and the results are shown in Figs. 8.6 and 8.7. The small window still resulted in

too high variance and incorrect correlation directions. This cross boundary fitting

problem can be effectively solved using the EM groups.

Cases with Fixed Number of Groups.

For the synthetic data, 4 seems to be a reasonable value as the number of

groups based on the change in acoustic impedance in Fig. 8.3(a). We started from

two types of initial groups (value and random initialization). Figs. 8.8 and 8.9 shows

the results from these two cases. Value initialization case successfully recognized the

water region, oil region and influx regions. However, random initialization (Fig. 8.8)

grouped the water, oil and gas influx regions into one single group to give a higher

estimated value of the variance than was obtained from value initialization.

Figs. 8.8 and 8.9 both show estimated true signal, measurement error and co-

variance matrix. Recall the the variation of the true measurement error is 9.1× 104

lb2/ft4/s2, and the range of the correlation is nine gridblocks in the major direction,

and five gridblocks in the minor direction. For both of these cases, the variances are

slightly overestimated (2.12× 105 lb2/ft4/s2 for random initialization and 1.91× 105

lb2/ft4/s2 for value initialization versus the true value of 0.91×105 lb2/ft4/s2) and the
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Figure 8.8: PUNQ with correlated measurement error; no Fj, r0 = 2.0, random
initialization (4 initial groups), stochastic grouping.

correlation are underestimated. In the value initialization case, the overestimation of

variance is because the Gaussian mixture model can not accurately represent the true

signal near the boundary , as is illustrated by by a small belt shaped structure near

the boundary between the water region and the water influx region (Figs. 8.9(d)).

However, the estimated covariance gives a reasonable characterization of the mea-

surement error.

Cases with Uncertain Number of Groups.

Because Fj serves as the weight for each group to indicate their spatial con-

tinuity, the groups with weaker spatial continuity relative to other groups will be

penalized with a smaller weight. When the continuity of the groups become better,

the penalty will gradually be removed. This mechanism helps the spatial EM to

automatically remove those groups with poor continuity, and automatically find a
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Figure 8.9: PUNQ with correlated measurement error; no Fj, r0 = 2.0, value initial-
ization (4 initial groups), stochastic grouping.

reasonable number of groups.

The spatial EM algorithm is applied to the synthetic cases with two types

of initialization, initialize by sorting the measured values, and initialize randomly.

Here we show that the two different initial groupings give very close results. This

illustrates the robustness of this algorithm. There are 50 initial groups and r0 = 2.0

for each case.

Figs. 8.10 and 8.11 show the results for these two cases. Both random and

value initializations resulted in 4 major groups and a few very small groups. Similar

to the results with a fixed number of groups, the variances of measurement error

are overestimated, and the correlation lengths are underestimated. Random initial-

ization gave smaller estimated variances than the other cases because it has more

small groups. We note also that the log-likelihood function for the first run (sto-
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Figure 8.10: PUNQ with correlated measurement error; with uncertain number of
groups, r0 = 2.0, random initialization (50 initial groups).

chastic grouping with Fj) is no longer non-decreasing, because the log-likelihood is

constructed as if the number of groups are correctly known. When an additional

term of Fj is applied, and some low quality groups are gradually killed, the value

of log-likelihood may decrease because the number of groups is no longer conserved.

In the second run, the log-likelihood function experienced only a small increase, and

only the size of each group is changed, but only slightly. According to the estimated

covariance of measurement error, Figs. 8.10(h) and 8.11(h), the variances are over-

estimated (1.77 × 105 lb2/ft4/s2 for random initialization and 1.96 × 105 lb2/ft4/s2

for value initialization) and correlation length are underestimated.

8.6.2 Field Case

As is shown in Fig. 8.12, a layer of 4-D acoustic impedance change (AIC) and

Poisson’s ratio change (PRC) is chosen as the data to be analyzed using the EM
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Figure 8.11: PUNQ with correlated measurement error; with uncertain number of
groups, r0 = 2.0, value initialization (50 initial groups).

algorithms. The data set is defined on 7049 active gridblocks. Note that the data

have some trends, for example, in the top-left part, the AIC is comparatively low,

and PRC is comparatively high. However, the number of groups is uncertain.

The EM algorithm allows us to expand from grouping a single data type to

grouping multiple data types, so that we can group the data using both AIC and

PRC. The grouping results will be the same for both data. The relationship of

the two data provides more valuable information for grouping, and the grouping is

expected to be more accurate and with higher resolution. As is shown by Dvorkin

[21], the cross plot of acoustic impedance (P-impedance) and Poisson’s ratio can

be an effective pore pressure and pore fluid diagnostic chart. As the pore pressure

increases, the Poisson’s ratio will increase for a saturated rock, and will decrease for

a dry rock. The P wave velocity, and here acoustic impedance, will decrease as the
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Figure 8.12: Field 4-D seismic data.

pore pressure increases.

In the case of two data types, value initialization of grouping is more com-

plicated. In this study, we set PRC as the primary data, and AIC as the secondary

data. If we want n1 slots for the primary data and n2 slots for the secondary data,

the entire number of groups will be n1 × n2. we can first evenly divide the data into

n1 groups according to the measured value of the primary data, and then evenly

divide each group we have obtained into n2 groups according to the measured value

of the secondary data. In this case the observed data d̂i is a vector with first entry

equal to the PRC and second entry equal to AIC. The value initialization result will

also be compared with that of random initialization. In the results, we compute the

correlation coefficient for both types of data in each groups although they are not

model parameters in the spatial EM algorithm.

Figs. 8.13 to 8.17 are the estimated grouping (maps and cross-plots), Gaus-

sians, and log-likelihood from these two types of initializations. There are 8 plots for

each case. The colors of the second through seventh plots are consistent.

1. Initial and final grouping (maps and cross-plots) of the first run with Fj, and fi-

nal grouping (maps and cross-plots) of the second run without Fj. In Figs. 8.14,
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(d) Initial cross-plot (value ini-
tiate)

Figure 8.13: Initial Grouping (map and cross-plot) for field 4-D seismic data; r0 =
2.0, random and value initialization (100 initial groups).

and 8.15 we use label “(1)” as the first run, and “(2)” as the second run.

2. Estimated Gaussian functions of both AIC and PRC.

3. Log-likelihood function of the first run (black) and second run (red).

The cross-plots in Fig. 8.13(c) and Fig. 8.13(d) show the initial grouping for

random initialization and value initialization respectively, a different color is used for

each group. Fig. 8.13(d) shows the PRC is primary data in value initialization case.

For both cases, the estimated grouping of the first 7 groups are similar, and
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Figure 8.14: Final grouping map for field 4-D seismic data; r0 = 2.0, random and
value initialization (100 initial groups).

the final log-likelihood of these two cases are very close. However, there are some

differences in small groups, and the sizes of each groups. This reflects the fact that

there are some uncertainty in the grouping because the noise level is quite high. The

following are some detailed comparison of these results.

For the two cases with different initializations, the estimated groups are very

close to each other:

1. As is shown in the final groups (Figs. 8.14(c) and 8.14(d)), and the summary

statistics of final groups in Tables 8.2 and 8.3, the first 5 random initiated final
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(c) Final Cross-plot (2), random
initiate
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(d) Final Cross-plot (2), value
initiate

Figure 8.15: Final grouping cross-plot for field 4-D seismic data; r0 = 2.0, random
and value initialization (100 initial groups).

groups are close to the first 5 value initiated final groups. The correlation coef-

ficients computed from each group are all negative. Except for the 6th group in

the value initialization case, the negative correlations are strong (around -0.7).

From the final grouping maps, we can see the final resulted groups are quite

continuous. The grouping quality coefficients Fj of the largest 7 final groups

(at the end of the first run with Fj) of these two cases are quite high. Most

of them are above 0.8, and the rest of them are around 0.5. Therefore, the

estimated groups are acceptable.
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(b) Value initiate

Figure 8.16: Estimated Gaussian of field 4-D seismic data; r0 = 2.0, random initial-
ization (100 initial groups).

2. The information from AIC and PRC compliment with each other and result

in a fairly fine description of the final grouping. i.e. from Fig. 8.16(a), the

blue and dark yellow groups occupy almost same range of PRC values, but are

separated in AIC values. Similarly, the green and orange groups occupy the

same range of PRC values, but are separated in AIC values.

3. The cross plot of AIC and PRC are shown in Fig. 8.15(c) and 8.15(d). Dif-

ferent colors are used to indicate the different initial and final groups, and the

histograms are computed from the values of the measurements in each groups.

These final groups are concentrated and overlap with each other in measured

values, and are spatially continuous. This is exactly what we want to do,

gather the data with close spatial coordinates and measured values into the

same groups.

Figs. 8.18, 8.19, 8.20 and 8.21 show the estimated true values, measurement

errors and covariance matrix for both cases. The estimated true signal from these

two cases has higher resolution, because ideally the boundaries between different

regions are preserved by smoothing within each group. This is also the reason why
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(b) Value initiate

Figure 8.17: Log-likelihood of field 4-D seismic data; r0 = 2.0, value initialization
(100 initial groups).

the estimated measurement error should be much more dependable than those from

the direct moving average and moving fitting. A summary of estimated covariance

for AIC (acoustic impedance change) and PRC (Poisson’s ratio change) are listed

in Table 8.1, in which the first two rows are from the final grouping of spatial EM

algorithm, and the last two rows are for the results from direct moving average and

moving fitting. Quantitatively, the results from the spatial EM algorithm gives much

smaller variance and smaller correlation range. This is consistent with the synthetic

case.

Initiate Var. (AIC) Range (AIC) Var. (PRC) Range (PRC)

Value 1.73× 104 3× 3 2.22× 104 3× 3
Random 1.48× 104 3× 3 1.79× 104 3× 3
Direct Average 4.08× 104 5× 5 5.04× 104 5× 5
Direct Fitting 3.18× 104 4× 4 4.14× 104 4× 4

Table 8.1: Field 4-D seismic case summary

Compared to the results from the moving average and moving fitting without

EM groups as shown in Fig. 8.22 to Fig. 8.25 and Table 8.1, our new results seem

superior: 1) The moving average and moving fitting smoothes out the boundaries
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Figure 8.18: Field acoustic impedance change: moving quadratic fitting (21 × 21)
from random initiated EM groups.
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Figure 8.19: Field Poisson’s ratio change: moving quadratic fitting (21 × 21) from
random initiated EM groups.

and gives a poor resolution of the true signal; 2) The estimated variance of the

measurement error in AIC and PRC are 1.48 × 104 and 1.79 × 104 respectively for

the random initialization case, and 1.73×104 and 2.22×104 respectively for the value

initialization case. The moving average and moving fitting gives a higher estimation

of measurement error because near boundaries, the smoothing window include values

from both side of the boundary even though there may be sharp changes across

boundaries that represent flooding fronts. To sum up, we believe that the grouping

obtained from the combination of AIC and PRC is reliable and gives a more reliable
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Figure 8.20: Field acoustic impedance change: moving quadratic fitting (21 × 21)
from value initiated EM groups.
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Figure 8.21: Field Poisson’s ratio change: moving quadratic fitting (21 × 21) from
value initiated EM groups.

characterization of the data and measurement error.
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Figure 8.22: Field acoustic impedance change: direct moving average (21× 21).
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Figure 8.23: Field acoustic impedance change: direct moving quadratic fitting (21×
21).
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Figure 8.24: Field Poisson’s ratio change: direct moving average (21× 21).
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Figure 8.25: Field Poisson’s ratio change: direct moving quadratic fitting (21× 21).

Group πj µj(AIC) σj(AIC) µj(PRC) σj(PRC) ρj Fj

1 0.36 -66.3 154.4 6.4 134.7 -0.59 1.18
2 0.14 -520.6 158.5 232.8 151.6 -0.65 0.97
3 0.14 -389.2 167.5 -107.1 190.0 -0.62 0.86
4 0.09 -397.3 129.2 251.3 164.2 -0.87 0.67
5 0.08 -193.3 125.3 287.7 138.8 -0.53 0.97
6 0.05 -121.7 157.6 -152.2 192.5 -0.83 0.57
7 0.05 217.4 140.8 -244.3 223.2 -0.36 0.62

Table 8.2: Field 4-D seismic case (2 data type, random initialization)

Group πj µj(AIC) σj(AIC) µj(PRC) σj(PRC) ρj Fj

1 0.45 -133.2 176.1 62.6 182.0 -0.63 1.17
2 0.15 -528.2 155.7 251.8 164.3 -0.70 0.97
3 0.14 -390.7 190.4 -110.5 201.8 -0.70 0.74
4 0.05 -399.2 128.8 255.3 174.3 -0.89 0.65
5 0.04 -184.3 152.8 333.8 176.6 -0.65 0.51
6 0.07 162.4 153.8 -266.8 217.3 -0.21 0.84
7 0.03 -475.0 161.7 536.5 248.7 -0.72 0.48

Table 8.3: Field 4-D seismic case (2 data type, value initialization)
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8.7 Summary

We have provided a modified expectation maximization (EM) algorithm as

a tool to separate a set of measured data into groups in a way so that groups tend

to be spatially continuous where the measurements in each group follow a Gaussian

distribution. By grouping time-lapse seismic data into subsets based on regions prior

to smoothing, we avoid applying a smoothing window to a data subset where the

true underlying signal changes sharply. The smoothed signal provides an estimate

of the “true” data. Subtraction of the smooth data from the corresponding observed

data gives an estimate of the measurement error. In all synthetic cases tried here and

in other examples, reasonable estimates of the variance(s) of the measurement error

are obtained and the estimate of the associated covariance is somewhat reasonable

but the correlation length is always underestimated. The estimate of covariance of

the measurement error based on quadratic fitting within each group is superior to

that obtained with the same moving window applied to the entire data set.

The improved EM algorithm can be used to determine an appropriate num-

ber of groups. We have introduced a grouping quality coefficient to enhance spatial

continuity within each group and eliminate low continuity groups. After convergence

of this process, a second run of the EM iterations is made with a fixed number of

groups (without Fj) and MAP grouping in the maximization step. The second run

normally changes only the size of each group accompanied with a slight increase of

log-likelihood function. Results from the synthetic data presented here indicate that

the final grouping can be used to obtain a reasonably reliable characterization of

measurement error. Interestingly, our procedure tends to yield groups which corre-

spond to physical changes in the reservoir; for example, one group may correspond

to water influx into an original oil column and a second to a region where gas has

displaced oil between the two seismic surveys.

We have studied the final groups obtained for different initial groups. In
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most cases, the differences between the final groups obtained are small, and more

important to the study, the characterization of measurement error does not depend

significantly on the initial grouping. Different initial guesses were also used for field

4-D seismic data. Although the main structure of the results are similar as are

the estimated covariance of the measurement error, the differences in the grouping

results indicate that the initial grouping can somewhat affect the final set of groups

obtained. Based on all examples considered, we conclude that the estimate of the

measurement error does not depend strongly on the initial grouping.
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CHAPTER 9

CONCLUSIONS AND DISCUSSIONS

9.1 Conclusions on the Pluri-Gaussian Geological Model

The truncation scheme using two intersecting ellipses is able to model the

connectivity of a channelized reservoir. The location of the of channel facies can be

moved by changing the Gaussian random fields values in each gridblock using EnKF

to match production data and seismic data. The same algorithm is also applied to

a three-layer, three facies model, in which three lines are used to define truncation.

Facies porosity and permeability can be included as model parameter in the state

vectors. EnRML gives a more dependable estimate of these porosity and permeability

values than does the standard EnKF algorithm.

We presented a procedure to generate an initial ensemble that honors the

hard data (observed facies at well gridblocks) as well as a procedure to ensure that

hard data are honored at each data assimilation step. The results presented indicate

that these methods are robust.

9.2 Conclusions on EnKF and EnRML

Applying global and local normal score transforms to the water saturations

to account for non-Gaussian saturation distributions at a gridblock did not yield any

significant improvement over standard EnKF. This may be because the normal score

transform is designed to handle non-Gaussian distributions, but may not alleviate

the negative effects of strong nonlinearities. Local normal score transform gives less

oscillation in the analyzed saturations during EnKF assimilation, but we could not
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distinguish between the performance of the two transform schemes in the terms of

the reliability of reservoir performance prediction.

Assimilating water breakthrough time did not give significant improvements

in the EnKF results, but gave some improvement in predictions and data matches

when EnRML was used.

The modified Gu-Oliver scheme (EnRML) with individual line search was

compared to the standard EnKF. EnRML gives a somewhat better data match and

more reliable predictions, but as each iteration requires rerunning the reservoir simu-

lator from time zero to the current assimilation step, the method requires significantly

more computational time than EnKF. Moreover, the method failed completely when

trying to assimilate seismic data with a global analysis algorithm.

9.3 Conclusions on Assimilating Seismic Data

Global analysis is less efficient than local analysis in assimilating seismic data

and can result in filter divergence even for a relatively large ensemble size. Local

analysis eliminates filter divergence but results in unrealistically non-smooth facies

distribution. In some cases, these distributions may be so unrealistic, that the reser-

voir simulator can not run with these properties. A projection method was introduced

to alleviate this problem. When combined with local analysis, it was shown that this

method gives an ensemble of geologically reasonable facies distributions that still

yield good estimates of performance predictions for both the PUNQS3 and three

facies models. However, this scheme is unable to effectively assimilate seismic data

in the channel model even though the projection method preserves the continuity of

the channel facies distributions.

9.4 Conclusions on Measurement Error Estimation

Outliers and discontinuities in 1-D production data can be effectively detected

using the algorithms developed in this study. Dependable estimates of measurement

259



errors are obtained by applying Savitzky-Golay smoothing or wavelet smoothing to

the corrected the signal, which is based on the detected outliers and discontinuities.

The spatial EM algorithm is successful in grouping the 4-D seismic data with

an unknown number of groups according to the measured values and their spatial

coordinates. Smoothing across the boundaries can be avoided by smoothing data

group by group, and the estimated measurement error is superior to those obtained

by smoothing without grouping.
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APPENDIX A

CONVERGENCE OF EM ALGORITHM

The convergence of the EM algorithm are discussed in the case of non-

sequential measurements (no spatial constraint) and the case where we use a spatial

constraint. The so-called Q function (see [67, 66]) and Qc function derived in these

two cases are discussed separately. The optimization of these two functions will be

discussed in Appendix C. Recall that ∆ = {δ1, δ2, · · · , δN} and D = {d1, d2, · · · , dN}

are the random vectors used to model the group indicators and measured values of

the N grid-blocks.

A.1 Convergence of EM (Non-Sequential)

To estimate the Gaussian mixture model parameters Θ̄ = {Θ, Π} based on

the measured value D, we maximize the following log-likelihood function:

L(Θ̄|D) = ln[P (D|Θ̄)]. (A.1)

We let Θ̄n denote the estimates of the parameters of the Gaussian mixture

model at the nth iteration of the EM algorithm. We must always have

∑
∆

P (∆|D, Θ̄n) = 1, (A.2)

which means discrete probability of all possible values of ∆ sum to 1.
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Multiplying Eq. A.1 by Eq. A.2 yields

L(Θ̄|D) = ln[P (D|Θ̄)]
∑
∆

P (∆|D, Θ̄n)

=
∑
∆

(
P (∆|D, Θ̄n) ln[P (D|Θ̄)]

)
=

∑
∆

(
P (∆|D, Θ̄n) ln

[P (D, ∆|Θ̄)

P (∆|D, Θ̄)

])
=

∑
∆

(
P (∆|D, Θ̄n) ln[P (D, ∆|Θ̄)]

)
−

∑
∆

(
P (∆|D, Θ̄n) ln[P (∆|D, Θ̄)]

)
= Q(Θ̄|Θ̄n) + R(Θ̄|Θ̄n),

(A.3)

where the Q function and the R function are defined, respectively, as

Q(Θ̄|Θ̄n) =
∑
∆

(
P (∆|D, Θ̄n) ln[P (D, ∆|Θ̄)]

)
and

R(Θ̄|Θ̄n) = −
∑
∆

(
P (∆|D, Θ̄n) ln[P (∆|D, Θ̄)]

)
.

In the following, we will show the log-likelihood function (Eq. A.3) can be in-

creased by maximizing the Q function. To do this, we need to show that L(Θ̄n+1|D) ≥

L(Θ̄n|D) if the Q function increases from the nth iteration to the (n+1)th iteration.

In Appendix B, the following inequality is proved for any Θ̄n+1 using Jensen’s

inequality:

L(Θ̄n+1|D) = Q(Θ̄n+1|Θ̄n) + R(Θ̄n+1|Θ̄n)

≥ Q(Θ̄n+1|Θ̄n) + R(Θ̄n|Θ̄n).

(A.4)

The preceding equation indicates that for any Θ̄n+1,

R(Θ̄n+1|Θ̄n) ≥ R(Θ̄n|Θ̄n).
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Thus, if we can ensure that the Q function increases from the nth iteration to the

n + 1th iteration so that

Q(Θ̄n+1|Θ̄n) ≥ Q(Θ̄n|Θ̄n), (A.5)

then it follows from Eq. A.4 that

L(Θ̄n+1|D) = Q(Θ̄n+1|Θ̄n) + R(Θ̄n+1|Θ̄n)

≥ Q(Θ̄n+1|Θ̄n) + R(Θ̄n|Θ̄n)

≥ Q(Θ̄n|Θ̄n) + R(Θ̄n|Θ̄n)

= L(Θ̄n|D).

(A.6)

To improve the Q function, the following optimization problem is normally

solved:

Θ̄n+1 = argmaxΘ̄Q(Θ̄|Θ̄n). (A.7)

We attempt to maximize the Q function at each iteration by setting the derivative

of Q with respect to each parameter in Q to zero.

A.2 Convergence of EM (Spatial)

In the case of spatial measurement, we need to maximize the modified log-

likelihood function shown in Eq. 8.22, which can be written as:

Lc(Θ̄, Ẑ|D) = ln[P (D|Θ̄, Ẑ)] (A.8)

We let Θ̄n and Zn denote the estimates of the parameters and group indicator

of the Gaussian mixture model at the nth iteration of the EM algorithm. Using
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Ẑ = Zn, we also always have:

∑
∆

P (∆|D, Θ̄n, Zn) = 1. (A.9)

which means discrete probability of all possible values of ∆ sum to 1.

Multiplying Eq. A.8 by Eq. A.9 yields

Lc(Θ̄, Zn|D) = ln[P (D|Θ̄, Zn)]
∑
∆

P (∆|D, Θ̄n, Zn)

=
∑
∆

(
P (∆|D, Θ̄n, Zn) ln[P (D|Θ̄, Zn)]

)
=

∑
∆

(
P (∆|D, Θ̄n, Zn) ln

[P (D, ∆|Θ̄, Zn)

P (∆|D, Θ̄, Zn)

])
=

∑
∆

(
P (∆|D, Θ̄n, Zn) ln[P (D, ∆|Θ̄, Zn)]

)
−

∑
∆

(
P (∆|D, Θ̄n, Zn) ln[P (∆|D, Θ̄, Zn)]

)
=Qc(Θ̄|Θ̄n, Zn) + Rc(Θ̄|Θ̄n, Zn),

(A.10)

where the Qc function and the Rc function are defined, respectively, as

Qc(Θ̄|Θ̄n, Zn) =
∑
∆

(
P (∆|D, Θ̄n, Zn) ln[P (D, ∆|Θ̄, Zn)]

)
and Rc(Θ̄|Θ̄n, Zn) = −

∑
∆

(
P (∆|D, Θ̄n, Zn) ln[P (∆|D, Θ̄, Zn)]

)
.

The log-likelihood function (Eq. A.10) can be shown to increased from itera-

tion to iteration, i.e. Lc(Θ̄n+1, Zn+1|D) ≥ Lc(Θ̄n+1, Zn|D) ≥ Lc(Θ̄n, Zn|D), if we can

prove the following two points:

1. Lc(Θ̄n+1, Zn+1|D) ≥ Lc(Θ̄n+1, Zn|D) as the first inequity;

2. Lc(Θ̄n+1, Zn|D) ≥ Lc(Θ̄n, Zn|D) (second inequity) if the Qc function increases
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from the nth iteration to the (n + 1)th iteration, i.e.

Qc(Θ̄n+1|Θ̄n, Zn) ≥ Qc(Θ̄n|Θ̄n, Zn).

In the following, we will show that the second point is true. We found that it is

intractable to find the updated model model Θ̄n+1 that satisfy the first point strictly,

which prevent us from proving that the log-likelihood is non-decrease from iteration

to iteration. However, in the Appendix C, we will still show how we optimize the Qc

function.

In Appendix B, the following inequality is proved using Jensen’s inequality:

Lc(Θ̄n+1, Zn|D) = Qc(Θ̄n+1|Θ̄n, Zn) + Rc(Θ̄n+1|Θ̄n, Zn)

≥ Qc(Θ̄n+1|Θ̄n, Zn) + Rc(Θ̄n|Θ̄n, Zn).

(A.11)

The preceding equation indicates that

Rc(Θ̄n+1|Θ̄n, Zn) ≥ Rc(Θ̄n|Θ̄n, Zn)

holds for any two different models for Θ̄n and Θ̄n+1. Here, if Lc(Θ̄n+1, Zn|D) ≥

Lc(Θ̄n, Zn|D), then we have Qc(Θ̄n+1|Θ̄n, Zn) ≥ Qc(Θ̄n|Θ̄n, Zn). Thus, if we can

ensure that the Qc function increases from the nth iteration to the n + 1th iteration

so that

Qc(Θ̄n+1|Θ̄n, Zn) ≥ Qc(Θ̄n|Θ̄n, Zn), (A.12)
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then it follows from Eq. A.11 that

Lc(Θ̄n+1, Zn|D) = Qc(Θ̄n+1|Θ̄n, Zn) + Rc(Θ̄n+1|Θ̄n, Zn)

≥ Qc(Θ̄n+1|Θ̄n, Zn) + Rc(Θ̄n|Θ̄n, Zn)

≥ Qc(Θ̄n|Θ̄n, Zn) + Rc(Θ̄n|Θ̄n, Zn)

= Lc(Θ̄n, Zn|D).

(A.13)

To improve the Qc function, the following optimization problem is normally

solved:

Θ̄n+1 = argmaxΘ̄Qc(Θ̄|Θ̄n, Zn). (A.14)

We attempt to maximize the Qc function at each iteration by setting the

derivative of Qc with respect to each parameter in Qc to zero. As is shown earlier

in the first point of proof, we need also to make sure that Lc(Θ̄n+1, Zn+1|D) ≥

Lc(Θ̄n+1, Zn|D), which is intractable and prevent us from proving the non-decreasing

properties of the log-likelihood.

A.3 Discussions on Q function (Non-Sequential)

As noted previously, the Q function is defined as

Q(Θ̄|Θ̄n) =
∑
∆

(
P (∆|D, Θ̄n) ln

[
P (∆, D|Θ̄)

])
. (A.15)

In non-sequential cases, data are independent, P (∆, D|Θ̄) can be written as

P (∆, D|Θ̄) =
N∏

i=1

P (δi, di|Θ̄). (A.16)
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If we define the random indicator variable δj
i by

δj
i =


1, if δi = j

0, otherwise

(A.17)

then P (δi, di|Θ̄) can be written as

P (δi, di|Θ̄) =
M∑

j=1

δj
i P (δi = j, di|Θ̄). (A.18)

Note that exactly one entry in the summation in the preceding equation can be

non-zero.

Substituting Eq. A.18 into Eq. A.16 yields

P (∆, D|Θ̄) =
N∏

i=1

M∑
j=1

δj
i P (δi = j, di|Θ̄), (A.19)

and

ln[P (∆, D|Θ̄)] =
N∑

i=1

M∑
j=1

δj
i ln[P (δi = j, di|Θ̄)]. (A.20)

Note that because only one δj
i is nonzero in the summation part, we moved the ln

operator inside in Eq. A.20.

Using Eq. A.20 in Eq. A.15 yields:

Q(Θ̄|Θ̄n) =
∑
∆

{
P (∆|D, Θ̄n)

N∑
i=1

M∑
j=1

δj
i ln

[
P (δi = j, di|Θ̄)

]}
=

N∑
i=1

M∑
j=1

∑
∆

[
P (∆|D, Θ̄n)δj

i

]
ln

[
P (δi = j, di|Θ̄)

]
.

(A.21)

The inner summation of Eq. A.21 is actually the expectation of δj
i with respect
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to the whole sampling space of ∆. Since δj
i is only related to δi, it can be written as

∑
∆

[P (∆|D, Θ̄n)δj
i ] =

M∑
k=1

δj
i P (δi = k|D, Θ̄n)

= P (δi = j|D, Θ̄n)

= P (δi = j|di, Θ̄n)

= (hj
i )n

(A.22)

where (hj
i )n is defined in Eq. 8.11 as the expectation of δj

i with respect to ∆ evaluated

at Θ̄n with given measurement D. Therefore,

Q(Θ̄|Θ̄n) =
N∑

i=1

M∑
j=1

(hj
i )n ln

[
P (δi = j, di|Θ̄)

]
. (A.23)

Here again, hj
i represents the conditional probability that the ith datum is sampled

from the jth Gaussian model or belongs to the jth group given Θ̄n and di. As in

Eq. 8.8, the collection of memberships (the (hj
i )n’s) is defined for all the data as the

membership matrix in the nth iteration. More specifically, the membership matrix

is given by the M ×N matrix

Hn = {(hj
i )n}

where the subscript n indicates that the membership matrix Hn is evaluated at the

model Θ̄n obtained at the nth iteration.

A.4 Discussions on Qc function (Spatial)

As noted previously, the Qc function is defined as

Qc(Θ̄|Θ̄n, Zn) =
∑
∆

(
P (∆|D, Θ̄n, Zn) ln

[
P (∆, D|Θ̄, Zn)

])
. (A.24)

For spatially measured data, the group indicators are independent, and the measured
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value di is dependent only on δi. According Eq. 8.14, the conditional PDF can be

written as:

P (∆, D|Θ̄, Zn) =
N∏

i=1

P (δi, di|Θ̄, Zn). (A.25)

If we define the random indication variable δj
i by

δj
i =


1, if δi = j

0, otherwise

(A.26)

then P (δi, di|Θ̄, Zn) can be written as

P (δi, di|Θ̄, Zn) =
M∑

j=1

δj
i P (δi = j, di|Θ̄, Zn). (A.27)

Note that exactly one entry in the summation in the preceding equation can be

non-zero.

Substituting Eq. A.27 into Eq. A.25 yields

P (∆, D|Θ̄, Zn) =
N∏

i=1

M∑
j=1

δj
i P (δi = j, di|Θ̄, Zn), (A.28)

and

ln[P (∆, D|Θ̄, Zn)] =
N∑

i=1

M∑
j=1

δj
i ln[P (δi = j, di|Θ̄, Zn)]. (A.29)

Note that because only one δj
i is nonzero in the summation part, we moved the ln

operator inside in Eq. A.29.
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Using Eq. A.29 in Eq. A.24 yields:

Qc(Θ̄|Θ̄n, Zn) =
∑
∆

{
P (∆|D, Θ̄n, Zn)

N∑
i=1

M∑
j=1

δj
i ln

[
P (δi = j, di|Θ̄, Zn)

]}
=

N∑
i=1

M∑
j=1

∑
∆

[
P (∆|D, Θ̄n, Zn)δj

i

]
ln

[
P (δi = j, di|Θ̄, Zn)

]
.

(A.30)

The inner summation of Eq. A.30 is actually the expectation of δj
i with respect

to the whole sampling space of ∆. Since δj
i is only related to δi, it can be written as

∑
∆

[P (∆|D, Θ̄n, Zn)δj
i ] =

M∑
k=1

δj
i P (δi = k|D, Θ̄n, Zn)

= P (δi = j|D, Θ̄n, Zn)

= P (δi = j|di, Θ̄n, Zn)

= (hj
i )n

(A.31)

where (hj
i )n is defined in Eq. 8.18 as the expectation of δj

i with respect to ∆ evaluated

at Θ̄n and Zn with given measurement D. Therefore,

Q(Θ̄|Θ̄n, Zn) =
N∑

i=1

M∑
j=1

(hj
i )n ln

[
P (δi = j, di|Θ̄, Zn)

]
. (A.32)

Here again, hj
i represents the conditional probability that the ith datum is sampled

from the jth Gaussian model or belongs to the jth group given Θ̄n, Zn and di. As in

Eq. 8.18, the collection of memberships (the (hj
i )n’s) is defined for all the data as the

membership matrix in the nth iteration. More specifically, the membership matrix

is given by the M ×N matrix

Hn = {(hj
i )n}

where the subscript n indicates that the membership matrix Hn is evaluated at the

model Θ̄n obtained at the nth iteration.
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For non-sequential and spatial measurements, Hn is evaluated using different

equations. However, for both cases, the evaluation of Hn is called the expectation

step, while the maximization of the Q or Qc function is called the maximization step.

In the maximization step, the Θ̄n+1 is evaluated as the updated model.
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APPENDIX B

JENSEN’S INEQUALITY IN THE Q FUNCTION

Jensen’s inequality([46]): For any real-valued concave function f(x) defined

on [a, b],

f
( n∑

k=1

λkxk

)
≥

n∑
k=1

λkf(xk), (B.1)

for any xk in [a, b], where 0 ≤ λk ≤ 1, for 1 ≤ k ≤ n, and

λ1 + λ2 + ... + λn = 1.

If Θ̄n is the model at iteration n, and Θ̄n+1 is the model at iteration n + 1,

then

L(Θ̄n+1|D) = ln
[
P (D|Θ̄n+1)

]
= ln

[∑
∆

P (D, ∆|Θ̄n+1)
]

= ln
[∑

∆

P (∆|D, Θ̄n)
P (D, ∆|Θ̄n+1)

P (∆|D, Θ̄n)

]
(B.2)

Since ln x is a concave function on (0,∞), it follows from Jensen’s inequality that

L(Θ̄n+1|D) ≥
∑
∆

P (∆|D, Θ̄n) ln
[P (D, ∆|Θ̄n+1)

P (∆|D, Θ̄n)

]
=

∑
∆

P (∆|D, Θ̄n) ln
[
P (D, ∆|Θ̄n+1)

]
−

∑
∆

P (∆|D, Θ̄n) ln
[
P (∆|D, Θ̄n)

]
= Q(Θ̄n+1|Θ̄n) + R(Θ̄n|Θ̄n), (B.3)
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where

Q(Θ̄n+1|Θ̄n) =
∑
∆

(
P (∆|D, Θ̄n) ln

[
P (D, ∆|Θ̄n+1)

])
,

R(Θ̄n+1|Θ̄n) = −
∑
∆

(
P (∆|D, Θ̄n) ln

[
P (∆|D, Θ̄n+1)

])
.

(B.4)
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APPENDIX C

OPTIMIZATION OF THE Q-FUNCTION

As is derived in Appendix A, according to Eqs. A.22 and A.23, the Q function

for non-sequential measurements in the nth iteration can be written as:

Q(Π, Θ|Πn, Θn) =
N∑

i=1

M∑
j=1

P (δj
i = 1|D = D̂, Πn, Θn) ln

[
P (δi = j, di = d̂i|Π, Θ)

]
=

N∑
i=1

M∑
j=1

(hj
i )n ln

[
P (δi = j, d̂i = di|Π, Θ)

]
.

(C.1)

where (hj
i )n is defined as the expectation of δj

i with respect to ∆ (see Eq. A.22)

evaluated at Πn, Θn with given measurement D̂, and is evaluated in Eq. 8.11.

In the case of spatial measurements, according to Eqs. A.31 and A.32, the Qc

function has the additional parameter Zn and

Qc(Π, Θ|Πn, Θn, Zn) =
N∑

i=1

M∑
j=1

P (δj
i = 1|D = D̂, Πn, Θn, Zn) ln

[
P (δi = j, di = d̂i|Π, Θ, Zn)

]
=

N∑
i=1

M∑
j=1

(hj
i )n ln

[
P (δi = j, d̂i = di|Π, Θ, Zn)

]
.

(C.2)

where (hj
i )n is re-defined as the expectation of δj

i with respect to ∆ (see Eq. A.31)

evaluated at Πn, Θn, Zn with given measurement D̂, and is evaluated in Eq. 8.18.

For simplicity, in the case of spatial measurement.
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C.1 Optimization in Non-Sequential EM Algorithm

As is shown in Appendix A, in the case of non-sequential measurements, the

log-likelihood can be guaranteed to be non-decrease if in the nth iteration we have:

Q(Πn+1, Θn+1|Πn, Θn) ≥ Q(Πn, Θn|Πn, Θn).

To do this, we normally maximize the Q function in the maximization step. The Q

function in Eq. C.1 can be further expanded, according to the non-sequential PDF

defined in Eqs. 8.6, as

Q(Θ, Π|Θn, Πn) =
N∑

i=1

M∑
j=1

(hj
i )n ln

[
P (di = d̂i|δi = j, Θ, Π)P (δi = j|Θ, Π)

]
=

N∑
i=1

M∑
j=1

(hj
i )n

{
ln[G(d̂i|Θj)] + ln(πj)

}

=
N∑

i=1

M∑
j=1

(hj
i )n

{
ln

{ 1

(2π)
n
2 |Cj|

1
2

exp
[
−

(d̂i − µj)
T C−1

j (d̂i − µj)

2

]}
+ ln(πj)

}

=
N∑

i=1

M∑
j=1

(hj
i )n

{
ln(πj)− ln[(2π)

n
2 |Cj|

1
2 ]−

(d̂i − µj)
T C−1

j (d̂i − µj)

2

}
,

(C.3)

where |Cj| is the determinant of Cj. With a known model of (Πn, Θn), the maximizer

of the Q function satisfies the following equation:

∂Q(Π, Θ|Πn, Θn)

∂µj

= 0, j = 1, M (C.4)

∂Q(Π, Θ|Πn, Θn)

∂Cj

= 0, j = 1, M (C.5)

∂

∂πj

[
Q(Π, Θ|Πn, Θn) + λ(

M∑
l=1

πl − 1)
]

= 0, j = 1, M (C.6)

Note that in the second equation, the derivative of a scalar function with respect the

matrix Cj is a matrix containing the derivative of the function with respect to each
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entry of Cj ([72]); in the last equation, a Lagrangian multiplier λ is applied.

Denote the model parameter for the (n+1)th iteration as:{(πj)n+1, (µj)n+1, (Cj)n+1}.

The optimal choice of (µj)n+1 is obtained from Eq. C.4 which is

∂Q(Θ|Θn)

∂µj

=
N∑

i=1

(hj
i )nC

−1
j (d̂i − µj) = 0,

so
N∑

i=1

(hj
i )n(µj)n+1 =

N∑
i=1

(hj
i )nd̂i,

and

(µj)n+1 =

∑N
i=1(h

j
i )nd̂i∑N

i=1(h
j
i )n

. (C.7)

In order to find (Cj)n+1, define

(Υj)n+1 = (Cj)
−1
n+1.

Here, we need to assume that (Cj)n+1 is non-singular. To differentiate with respect

to Υj, we need to use the calculus of matrix ([72]) which gives

∂Υj

∂Υj

= I, (C.8)

and

∂|Υj|
∂Υj

= |Υj|(Υj)
−1, (C.9)

where I is the identity matrix. Then, differentiating Q function with respect to Υk

gives

∂Q(Π, Θ|ΠnΘn)

∂Υj

=
N∑

i=1

(hj
i )n

1

2

[
Υ−1

j − (d̂i − µj)(d̂i − µj)
T
]

= 0,

(Υ−1
j )n+1 = (Cj)n+1 =

∑N
i=1(h

j
i )n(d̂i − (µj)n+1)(d̂i − (µj)n+1)

T∑N
i=1(h

j
i )n

.

(C.10)
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The optimal choice of (πj)n+1 is obtained from Eq. C.6, i.e.,

∂

∂πj

[
Q(Π, Θ|Πn, Θn) + λ(

M∑
l=1

πl − 1)
]

=
N∑

i=1

(hj
i )n

1

πj

+ λ = 0. (C.11)

By summing both sides of the last equality in Eq. C.11 over the M groups,

we obtain

N∑
i=1

M∑
j′=1

(hj
i )n + λ

M∑
j′=1

πj′ = 0,

N + λ

M∑
j′=1

πj′ = 0,

λ = −N.

(C.12)

Using λ = −N the last equality in Eq. C.11, we find that

(πj)n+1 =
1

N

N∑
i=1

(hj
i )n. (C.13)

To summarize, we have the following solutions for the maximization step:

(µj)n+1 =

∑N
i=1(h

j
i )nd̂i∑N

i=1(h
j
i )n

,

(Cj)n+1 =

∑N
i=1(h

j
i )n(d̂i − (µj)n+1)(d̂i − (µj)n+1)

T∑N
i=1(h

j
i )n

,

(πj)n+1 =
1

N

N∑
i=1

(hj
i )n.

(C.14)

C.2 Optimization in Spatial EM Algorithm

For the case of spatial measurements, the membership matrix term hj
i (Πn, Θn, Zn)

in Eq. C.2 is given by Eq. 8.18. According to Eqs. 8.19 and 8.20, and under the

assumption we made that di is dependent only to δi, and δi’s are conditionally inde-
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pendent (conditional to Zn), we have:

P (δi = j, di = d̂i|Π, Θ, Zn) = P (δi = j|Π, Θ, Zn)P (di = d̂i|δi = j, Π, Θ, Zn)

= CπjG(di|Θj)Sj(xi|r0, Zn),

(C.15)

where C is a constant value. The Qc function can be written as:

Qc(Θ, Π|Θn, Πn, Zn) =
N∑

i=1

M∑
j=1

(hj
i )n ln

[
P (di = d̂i|δi = j, Θ, Π, Zn)P (δi = j|Θ, Π, Zn)

]
=

N∑
i=1

M∑
j=1

(hj
i )n

{
ln[G(d̂i|Θj)] + ln(πj) + ln[Sj(xi|r0, Zn)] + Constant

}
= Qc,a(Θ, Π|Θn, Πn, Zn) + Qc,s(Θ, Π|Θn, Πn, Zn),

(C.16)

where

Qc,a(Θ, Π|Θn, Πn, Zn) =
N∑

i=1

M∑
j=1

(hj
i )n

{
ln[G(d̂i|Θj)] + ln(πj)

}

Qc,s(Θ, Π|Θn, Πn, Zn) =
N∑

i=1

M∑
j=1

(hj
i )n

{
ln[Sj(xi|r0, Zn)] + Constant

} (C.17)

In Eq. C.17, the Qc,a function is same as the Q function Eq. C.3 except

that the definition of membership matrix term (hj
i )n is spatial (Eq. 8.18). The Qc,s

function is not related to the parameter Θ and Π. Hence, maximizing Qc function

shares exactly same procedure of maximizing Q function (Eqs. C.4 to C.14); and the

maximizer of the Qc function should have same form as Eq. C.14, except that the

membership matrix term (hj
i )n includes a spatial term (Eq. 8.18).
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APPENDIX D

MEASUREMENT ERROR ESTIMATION AND THE QUADRATIC FITTING

After the data are divided into groups, smoothing is done within each group

to obtain an estimate of the true signal. A moving-window average is the simplest

method for smoothing, however, the weight on each data point within the window

can be ad hoc. As we mentioned earlier, this method is accurate when the data are

a linear function of spatial (or temporal) coordinate. If not, a better approximation

of the true signal is to fit the data with a curve (1-D problem) or with a surface (2-D

problem). For surface-fitting, we apply a generalized least square to fit the data with

a quadratic surface.

D.1 Generalized Least Squares Fitting

Suppose there are N0 observations (d̂i, i = 1, N0) in a selected window of a

group. The coordinate of each di is (xi, yi). To fit these N0 data points with a

quadratic surface, we have the following expression

di = β1x
2
i + β2y

2
i + β3xiyi + β4xi + β5yi + β6 + ei

i = 1, . . . , N0,

(D.1)

where ei is the measurement error.
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In matrix form, Eq. D.1 becomes



d1

d2

...

dN0


, =



x2
1 y2

1 x1y1 x1 y1 1

x2
2 y2

2 x2y2 x2 y2 1

...
...

...
...

...
...

x2
N0

y2
N0

xN0yN0 xN0 yN0 1





β1

β2

β3

β4

β5

β6


+



e1

e2

...

eN0


(D.2)

or

Y = Aβ + E, (D.3)

where Y is the column vector with N0 entries given by

Y =



d1

d2

...

dN0


. (D.4)

A is an N0 × 6 matrix and, according to Eq. D.2, is given by

A =



x2
1 y2

1 x1y1 x1 y1 1

x2
2 y2

2 x2y2 x2 y2 1

...
...

...
...

...
...

x2
N0

y2
N0

xN0yN0 xN0 yN0 1


, (D.5)
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and β is a column vector with 6 entries for a quadratic fit, i.e.

β =



β1

β2

β3

β4

β5

β6


. (D.6)

E is a column vector with N0 entries.

E =



e1

e2

...

eN0


. (D.7)

The known parameters in Eq. D.3 are Y and A, and the unknowns are β and

E. The generalized least square solution to β is

β = (AT A)−1(AT Y ). (D.8)

The estimated error is calculated by

E = Y − Aβ. (D.9)

To calculate β from Eq. D.8, the matrix AT A has to be invertible (positive

definite). If the above condition is not satisfied, the data are fit with a plane.
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