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ABSTRACT

Xin Li (Doctor of Philosophy in Petroleum Engineering)

Development of a Proposal Distribution for an Efficient Metropolis-Hasting MCMC Al-

gorithm for the Characterization of Uncertainty in Reservoir Description and Production

Forecasts

Directed by Albert C. Reynolds

142 pp., Chapter 6: Conclusions

(396 words)

Generating an estimate of uncertainty in production forecasts has become almost

standard in the oil industry but is often done with procedures that yield at best a highly

approximate uncertainty quantification. Formally, the uncertainty quantification of a pro-

duction forecast can be achieved by generating a correct characterization of the posterior

probability density function (pdf) of reservoir model parameters conditional to dynamic data

and then sampling this pdf correctly. While Markov chain Monte Carlo (MCMC) provides

a theoretically rigorous method for sampling any target pdf that is known up to a nor-

malizing constant, in reservoir engineering applications, researchers have found that it may

require extraordinarily long chains containing millions to hundreds of millions of states to

obtain a correct characterization of the target pdf. When the target pdf has a single mode

or has multiple modes concentrated in a small region, it may be possible to implement a

proposal distribution based essentially on random walk so that the resulting Markov chain

Monte Carlo algorithm based on the Metropolis-Hastings acceptance probability can yield

a good characterization of the posterior pdf with a computationally feasible chain length.

However, for a high-dimensional complex non-Gaussian pdf, for example, a multimodal pdf

with modes separated by large regions of low or zero probability, characterizing the pdf
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with MCMC based on random walk is not computationally feasible. While methods such

as population MCMC exist for characterizing a multimodal pdf, their computational cost

generally makes the application of these algorithm far too costly for field application. In

this paper, we design a new proposal distribution based on a Gaussian mixture pdf for use

in MCMC where the posterior pdf can be multimodal with the modes spread far apart.

Simply put, the method generates modes using a gradient-based optimization method and

constructs a Gaussian mixture model to use as the basic proposal distribution. Tests on three

simple problems are presented to establish the validity of the method. The performance of

the new MCMC algorithm is compared with random walk MCMC and is also compared

with population MCMC for a target pdf which is multimodal. In addition, we compared

the performance of several MCMC methods including the new developed two-level MCMC

method in terms of the quality of uncertainty characterization and computational cost. We

use a small but highly nonlinear reservoir model to compare the posterior pdf sampled using

different MCMC methods with multiple Markov chains.
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CHAPTER 1

INTRODUCTION

Numerical reservoir simulation is an important tool for the overall field management

and production forecasting. It uses a model of the geological and rock and fluid properties as

input into a numerical model to predict the flow of fluids through porous media. In order to

find a reservoir model or models which can be used for analysis and prediction, one generates

models which minimize the difference between the observed data and the reservoir simulation

outputs, a process known as history matching. However, neither static nor dynamic data

have sufficient information and accuracy to resolve the features and properties of a complex,

heterogeneous reservoir by integrating observed data by history matching, i.e., geological

uncertainty in the reservoir model is unavoidable. Therefore, it is essential to quantify the

uncertainty in the reservoir description and production forecasts in order to support field

development decision making and manage risk.

Bayesian statistics provides a formal tool to treat the uncertainty quantification prob-

lem from a rigorous probabilistic point of view. Specifically, given a prior probability density

function (pdf) of the reservoir model parameters, the posterior pdf conditional to the ob-

served data can be obtained up to a normalizing constant by multiplying the prior pdf by the

function that defines the likelihood of model parameters given the vector of observed data.

Thus, quantifying the uncertainty in model parameters is reduced to sampling the posterior

pdf [79]. Given a set of samples of this posterior pdf (realizations of the reservoir model),

the uncertainty quantification of a production forecast can be generated by simply running

the reservoir simulator with each realization.

The randomized maximum likelihood (RML) is one of the earliest methods designed to

sample a posterior pdf of reservoir model parameters conditional to observed data. However,
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theoretically, RML can only sample correctly only if the the prior model is Gaussian and

the predicted data are a linear function of the model parameters. Therefore, RML cannot

provide an accurate characterization of the posterior pdf. Recently, ensemble-based methods

such as ensemble Kalman filter (EnKF) [26, 9, 48] and ensemble smoother (ES) [97] have

become prominent in history-matching. These methods are very attractive because they are

computationally efficient and easy to implement. However, none of these methods can sample

the posterior pdf accurately when the predicted data are nonlinearly related to the model

parameters. Unlike RML and ensemble-based methods, Markov chain Monte Carlo (MCMC)

methods are able to sample the posterior pdf correctly as the number of states in the Markov

chain goes to infinity [43]. For our history matching problems, to obtain each state in the

Markov chain a run of the reservoir simulator is requited which makes MCMC methods very

computationally expensive. In addition to the high computational cost problem, MCMC can

encounter a local trapping problem, when the target pdf is multi-model.

1.1 Literature Review

1.1.1 Randomized Maximum Likelihood

Oliver et al. [77] presented one of the earliest methods for generating an approximate

sampling of the posterior pdf for reservoir model parameters conditional to dynamic data.

Their method, which is now known as randomized maximum likelihood (RML), approximates

the prior pdf for the vector of reservoir model parameters by a Gaussian and assumes that

measurement errors are Gaussian. When the prior pdf is Gaussian, measurement errors are

Gaussian and predicted data are a linear function of the model parameters, RML provides

a theoretically correct sampling of the posterior pdf [79], and two different proofs have been

presented by Reynolds et al. [84] and Oliver [76]. For the nonlinear case, RML is not guaran-

teed to correctly sample the posterior pdf. More importantly, however, RML is designed to

generate samples around the modes of a multimodal pdf which is a highly-desirable charac-

teristic of RML or any other sampling algorithm. Even though RML was motivated by the
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work of [96] on Markov chain Monte Carlo, unlike MCMC, there is no guarantee that RML

provides a highly accurate characterization of the posterior pdf conditional to observed data

and it is possible to design examples where it does not. On the other hand, for multimodal

distributions, standard MCMC algorithms can be trapped in a region near a single mode for

a long time and generating a correct sampling of the posterior pdf may require chains which

contain tens of millions of states even for reasonably simple history-matching problems. Liu

and Oliver [59] considered a small 1D single phase reservoir with 20 gridblocks. They use

MCMC as the base case and compare five different algorithms to sample the posterior pdf

for porosity and permeability conditional to pressure data. For MCMC, they generate a

extremely long chain with 320 million states and their results suggest that the mixing of the

chain is very slow and samples are correlated over one million iterations. Compared with the

results obtained from MCMC, only RML gives a similar uncertainty characterization but

with much less computational cost.

RML requires the optimization process to minimize the objective function, for large-

scale reservoirs only the gradient-based methods are computationally feasible, such as Gauss-

Newton [54] and Levenberg-Marquardt [101, 54]. However, the adjoint gradient which can

efficiently give the gradient information is not always available in most of the commercial

reservoir simulators. Even if the gradient information is given, the optimization process in

RML may require many iterations to converge, thus the computational cost for RML may

be high.

1.1.2 Ensemble-based Methods

Recently, it has become popular to use ensemble-based methods for assisted history-

matching because they are computationally efficient and easy to adapt to different types of

model parameters and to couple with any reservoir simulator. The ensemble Kalman filter

(EnKF) [26, 9, 48] was the first such method introduced into the petroleum engineering

literature [61, 73, 74]. In [61], EnKF is used to improve the predictions of the pressure

behavior of two-phase flow in wellbore. Nævdal et al. [73] use EnKF on near-well reservoir
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monitoring, updating permeability fields to forecast the future production. The review paper

of Aanonsen et al. [1] gives an overview and a discussion of EnKF’s successful application

on reservoir problems. It is important to note that, EnKF has been applied successfully to

field assisted-history matching problems [21, 28, 5, 44].

EnKF is designed as a parameter-state estimation algorithm but again can only be

shown to sample correctly as the size of the ensemble goes to infinity under Gaussian and

linear assumptions [94]. The linear-Gaussian assumptions, where the prior model parameters

follow a Gaussian distribution and the relationship between model parameters and data is

linear, are sufficient to ensure that the ensemble of updated (analyzed) states are statistically

consistent with the ensemble of updated parameters (updated vectors of reservoir model pa-

rameters), i.e., the ensemble of updated states is statistically consistent with the ensemble

of updated states obtained by running the forward model (reservoir simulator) from time

zero with each updated vector of parameters. Unfortunately, there exist cases where this

statistical consistency is not a reasonable assumption, e.g., when the random vector of reser-

voir model parameters includes depths of the initial fluid contacts [98] or reservoir structural

features [90].

Largely because of this potential inconsistency between updated states and parame-

ters in EnKF, many people have advocated using the ensemble smoother (ES) [97] instead

of EnKF. The formulation of ES is similar with EnKF, only it simulates all the available

data simultaneously in one step without recursively updating in time. Compared to EnKF,

ES is faster, easier to implement (does not require restarts of the reservoir simulator) when

applied to reservoir history matching problems. However, the data match obtained with ES

is usually inferior to the one generated with EnKF [27]. Emerick and Reynolds [23] also show

ES can give worse data match than EnKF on a small highly non-linear 1D water flooding

case.

Significant effort has been investigated on “iterative” ES algorithms designed to im-

prove the quality of the data match obtained with ES and its effectiveness in uncertainty

quantification. Motivated by the equivalence between single and multiple data assimilation
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for linear-Gaussian cases, Emerick and Reynolds [22, 24] proposed the ensemble smoother

with multiple data assimilation (ES-MDA). In ES-MDA, one assimilates the same data mul-

tiple times with an inflated covariance matrix for measurement error. It has been successfully

applied to Brugge field case to history match production data [24], results suggest that the

performance of the standard ES is worse than the performance of EnKF and ES-MDA.

Moreover, ES-MDA can provide a better data match than EnKF with comparable compu-

tational costs. Similar results were obtained by Emerick and Reynolds [25] who presented

a field case application of EnKF and ES-MDA for history matching production and seismic

data. ES-MDA gives significantly better data matches than EnKF with only 4% higher com-

putational cost. Despite the low computational cost and better data match obtained with

ES-MDA, until recently, there was no clear guidance on how to choose the optimal inflation

factors for ES-MDA. Le et al. [52] proposed adaptive ES-MDA in which the inflation factors

can be chosen by two automatic procedures. The application of the adaptive ES-MDA on a

complicated synthetic case suggests that the adaptive ES-MDA methods are superior to the

original ES-MDA algorithm in that they can prevent overcorrection of the initial guesses and

result in good data matches. The results of Le et al. [52] also suggest that adaptive ES-MDA

performs as well or better than the Levenberg-Marquardt form of an iterative ES proposed

by Chen and Oliver [15]. Recently, Rafiee and Reynolds [82] developed a method to choose

a priori the inflation factors. Their method allows the user to specify the number Na of

inflation factors a priori. As the number of reservoir simulation runs required to condition

the Ne realizations in the ensemble of reservoir models to dynamic data by history match-

ing, the total number of reservoir simulation runs required to provide Ne history-matched

models using ES-MDA is NeNa. Thus, specifying Na a priori allows the reservoir engineer to

determine the computational resources that will be necessary to apply ES-MDA. Once Na is

specified, the inflation for the first data assimilation step is determined from the discrepancy

principle and the other inflation factors follow a geometric sequence where the geometric ra-

tio is determined such that the sum of the inverse of the Na inflation factors sum to unity, a

condition which is required to ensure that ES-MDA samples correctly in the linear Gaussian
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case, see Emerick and Reynolds [24, 22]. The results of Rafiee and Reynolds [82] suggest that

ES-MDA based on geometric inflation factors is more robust and reliable than the methods

of Le et al. [52] in terms of obtaining a good history match, avoiding large corrections in the

prior ensemble of models which produce unrealistically rough maps of rock property field,

and avoiding an unrealistic reduction in uncertainty. Moreover, ES-MDA implementation

is generally more computationally efficient than the Le et al. [52] method based on using a

discrepancy principle or the Iglesias iterative ensemble-based method which is also based on

using a inflation factors derived from the discrepancy principle. In one particular example,

Rafiee and Reynolds [82] found that the Iglesias algorithm fails to converge in 200 iterations,

i.e., a 200×Ne reservoir simulation runs, where Ne = 400. The main competitor to ES-MDA

appears to be the Levenberg-Marquardt (LM) form of the iterative ES proposed by Chen

and Oliver [15]. As shown by Le et al. [52], however, achieving a good performance with

this method is strongly depend on the choice of the initial value of the LM parameters, an

improper choice can result in a poor history match and guideline for choosing the initial

value does not always result in a good performance; see Le et al. [52]. Most importantly,

none of the methods discussed above is theoretically guaranteed to sample the posterior pdf

for the case where the relation between predicted data and model parameters are non-linear.

Emerick and Reynolds [23] consider a small highly non-linear 1D water flooding case

with 31 gridblocks. They compare the performance of nine different ensemble-based methods

in terms of the quality of the data matches, quantification of uncertainty and computational

cost. The reference posterior distribution is generated using MCMC with random walk

proposal, the length of the Markov chain is 20 million. The results suggest that only RML

can give similar data matches as good as those obtained with MCMC. Other non-iterative

methods like EnKF and ES did not give acceptable history matches. ES-MDA has the best

performance of all the tested iterative ensemble-based methods in terms of the approximation

of posterior pdf of reservoir model parameters, data matches and uncertainty quantification.

In addition, it can provide a quantification of uncertainty which is fairly similar to those

generated with RML and MCMC.
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1.1.3 MCMC

MCMC methods are used to sample a pdf by constructing a Markov chain which

is a sequence of random variables (states), and the probability of generating a new state

in the chain only depends on the current state. Theoretically, Markov chain Monte Carlo

(MCMC) methods are able to sample asymptotically the target pdf [29, 95]. Many MCMC

methods are developed based on the general framework of the Metropolis-Hastings algorithm

[68, 43]. The efficiency of the Metropolis-Hastings algorithm depends on the choice of the

proposal distribution; there are two popular choices for the proposal distribution. One

of them is called an independent sampler, where the proposal distribution is independent

of the current state. The rejection sampling is an independent sampler, Mengersen and

Tweedie [67] showed that the choice of proposal distribution in rejection sampling should

resemble the target distribution and have longer tails than the target distribution. To have

the best performance, the proposal distribution must be a good approximation of the target

distribution. The other choice of the proposal distribution is a Gaussian distribution, the

mean of the Gaussian distribution is the current state and the covariance matrix (prior

covariance matrix for our history matching problem) is fixed. Metropolis-Hastings algorithm

with this proposal distribution is often called random walk. A difficult choice for the random

walk proposal is the scaling factor for the covariance matrix. Roberts and Tweedie [88] and

Roberts and Rosenthal [85] suggest that the scaling factor should be chosen such that the

acceptance rate is between 20% and 50%. Gelman et al. [36] indicate that the acceptance

rate of 0.234 is optimal as the dimension of the problem approaches infinity, but he also

suggests 2.382/d (d is the dimension of the problem) as the optimal value for the scaling

factor.

A special case of Metropolis-Hastings algorithm is the Gibbs sampler [37, 35]. This

algorithm generates a component of a new state at one update using the conditional distri-

bution of one component of the state given the rest of the components. One can show that

the new state generated from the conditional distribution in the Gibbs sampler has an ac-

ceptance probability equal to 1. Thus, the Gibbs sampler is a very efficient sampling method
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and it simplifies complex high-dimensional problem by breaking it down to low-dimensional

problems. However, for some problems the conditional distribution of one component is very

hard to derive. If the conditional distribution of some components cannot be easily obtained,

Muller [71, 72] suggests that at any step that Gibbs sampler has difficulty, a Metropolis-

Hastings proposal can be used instead. This method is called Metropolis-within-Gibbs ( or

variable-at-a-time Metroolis-Hastings).

Direct application of MCMC to realistic reservoir engineering history-matching prob-

lems is generally very computationally expensive, since it generally requires a minimum of

one new run of the reservoir simulation to calculate the acceptance probability of transition

from the current state to the proposed new state in the Markov chain. Thus, if one needs

to generate millions of states in the burn-in period of a Markov chain before reaching a

point where the states in the chain start to represent the target distribution [59, 70, 23],

then MCMC becomes implausible for large-scale reservoir models. Emerick and Reynolds

[23] applied random walk proposal on a 1D highly non-linear, water flooding, heterogeneous

31 gridblocks reservoir problem, they generated a very long Markov chain with 20 million

states to obtain a relatively stable posterior distribution. One way to attempt to improve

the computational efficiency of MCMC is to replace the reservoir simulator by a proxy or

surrogate model [46, 45, 12] but to the best of our knowledge, there is no rigorous investiga-

tion of how much error is introduced in uncertainty quantification when the “true” forward

model is replaced by a proxy.

A good MCMC algorithm needs to allow the Markov chain to explore the whole sam-

ple space rapidly, i.e., the chain should mix fast. In addition, the Markov chain needs to

converge fast, i.e., that the chain should begin sampling from the stationary distribution in

a computationally feasible number of iterations. In order to improve the mixing and con-

vergence of the Markov chain, several schemes based on the Metropolis-Hastings algorithm

have been proposed. The Hit-and-Run Metropolis algorithm [91, 92, 14] separates the pro-

cess of generating a new state in the Metropolis-Hastings algorithm into two subprocesses:

(i) randomly generate a direction on the unit sphere; (ii) generate a signed distance along
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the selected direction then add it to the current state. Berger [4] showed that this algorithm

is very useful for problems with a sharply constrained parameter space. Gradient of the

target distribution can also be used to accelerate the convergence of the Metropolis-Hastings

algorithm. Roberts and Tweedie [88] proposed the Metropolis-Adjusted Langevin Algorithm

(or Langevin Monte Carlo) based on the Langevin diffusion process. In this algorithm, new

states are proposed using the gradient information of the target pdf, then the new states are

accepted or rejected based on the Metropolis-Hastings rule. The gradient information can

drive the Markov chain towards the high probability regions, which is the reason why this

algorithm has better mixing and converges faster than the Metropolis-Hastings algorithm

with random walk proposal. Because computing the gradient of the target pdf can be very

expensive, Dostert et al. [18] applied an inexpensive approximation of the gradient based on

a coarse scale model to improve the computational efficiency. In addition, Martin et al. [66]

proposed a stochastic Newton MCMC method in which the Metropolis-Hastings algorithm

is accelerated by proposing a new states from a local Gaussian approximation based on local

gradient and Hessian of the objective function evaluated at the current state. To reduce

the computational cost of calculating the Hessian, they use a low-rank approximation of the

Hessian and apply this method to a problem with 1025 model parameters, their results show

that the stochastic Newton MCMC converges faster than the Langevin Monte Carlo. Algo-

rithms that use gradient or Hessian information can generally find a high probability region

much faster than the traditional Metropolis-Hastings algorithm, however, for a multi-model

problem they could be easily trapped at a local mode, and in this case may converge but

only sample part of the target distribution.

For most of the problems, gradient information is not available. Liu et al. [58] pro-

posed a multiple-try Metropolis algorithm which use Monte Carlo samples to approximate

the gradient of the target distribution. Instead of generating one new state in the Metropolis-

Hastings algorithm, the multiple-try algorithm generates a set of proposals and then selects

a good one based on the Metropolis-Hastings rule. The advantage of this algorithm is that

it has higher acceptance rate. However, it needs to evaluate the objective function several
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times to generate one state in the Markov chain, which adds computational expense. In

addition, the reason why this method has a higher acceptance rate and a better mixing of

Markov chain could because it utilizes more computations at each iteration.

The Metropolis-Hastings algorithm requires a choice of the proposal distribution,

and the efficiency of the Markov chain can be improved by tuning the proposal distribution.

Adaptive Metropolis algorithm, which was first proposed by Haario et al. [40], extends the

random walk algorithm by adapting the covariance matrix based on all the existing states in

the Markov chain. If the covariance matrix is adapted appropriately, the adaptive Metropolis

algorithm will converge faster than random walk, because the adaptation process can gather

more information about the target pdf. However, the adaptive Metropolis algorithm also

suffers from the local trapping problem, i.e., if the target pdf is multi-model, the adapta-

tion can be trapped for a long period at one mode. Roberts and Rosenthal [86] show that

the adaptive Metropolis algorithm can converge to the stationary distribution under some

assumptions, including that the adaptation should diminish as the number of states in the

Markov chain increases. In order to make sure the Markov chain converges to the stationary

distribution, Haario et al. [40] suggests that the gain factor of the covariance matrix calcu-

lated using the previous states in the chain should be equal to O(1/n), here n is the number

of states in the Markov chain. Similar to random walk, it is difficult to tune the scaling

factor of the covariance matrix with adaptive Metropolis algorithm. Andrieu and Thoms [3]

showed that if the scaling factor is too large or too small, the adaptive Metropolis algorithm

will either have a very small or very large acceptance rate, and that this could result in

a slow learning process of the covariance matrix. They improved the adaptive Metropolis

algorithm by also adapting the scaling factor. In their work, an adaptation process for the

scaling factor is added to make the acceptance rate of the Markov chain approach a user

defined value. Fossum and Mannseth [30, 31] implemented a different version of the adap-

tive Metropolis algorithm, in which the proposal distribution is a Gaussian mixture model

(GMM) with two different covariance matrices, one is the adapted covariance matrix and

the other one is the prior covariance matrix.
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All the previous MCMC methods assume the problem is discretized into a finite num-

ber of dimensions, so the Markov chain explores a finite dimensional space. The convergence

and mixing of the Markov chain generated using all the previous MCMC algorithms are heav-

ily depend on the dimension of the problem, so that they are not computationally feasible for

very large scale problems. For a problem in which the unknowns are a continuous functions,

all the previous MCMC methods are not useful. Cotter et al. [16] designed a preconditioned

Crank-Nicolson MCMC (pCN-MCMC) algorithm which has a convergence property invari-

ant to the dimension of the model parameters when applied to discrete problems, so that

pCN-MCMC is potentially very useful for large-dimensional problems. However, like random

walk, the pCN-MCMC also has a scaling factor, which can control the performance of this

algorithm. If it is too large, the acceptance rate is very low. Otherwise, the chain does not

have sufficient mixing. Similar to random walk, the scaling factor can be determined by trial

with short chains in order to control the acceptance rate of the Markov chain. Iglesias et al.

[50] applied the pCN-MCMC on a reservoir model which has 3600 gridblocks with a total of

110 Markov chains, where each chain contains 500 thousand states. The total computational

cost for this case is 55 million forward simulation runs which is very high.

Various authors have tried to improve the computational efficiency of MCMC. As in

[78], the idea is that if one applies the Metropolis-Hastings algorithm with a proposal dis-

tribution that is close to the target distribution, it is expected that the chain will converge

quickly so that we can obtain a correct representation of the target distribution with rela-

tively short chains and thus significantly enhance computational efficiency. Oliver et al. [78]

explored different MCMC algorithms to sample the posterior pdf of the permeability field

conditional to transient pressure data for a small 2-D single-phase flow reservoir with 225

gridblocks. The proposal distribution is the prior Gaussian pdf or the Gaussian pdf centered

at the maximum a posteriori (MAP) estimate with covariance matrix equal to the inverse

Hessian matrix. If the proposal distribution given by the MAP estimate is a good approxi-

mation of the posterior pdf, then the acceptance probability for a new state proposed from

this Gaussian should be higher than the acceptance probability for a new state proposed
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from the prior Gaussian distribution. For the case considered in [78], the higher acceptance

rate is achieved by incorporating the sensitivity information into the sampling distribution,

however, for the most nonlinear case with prior variance of each gridblock log-permeability

equal to 1.0, the number of independent states for both local and global perturbations is

quite small (14 independent states out of 50,000 proposed transitions and 8 independent

states out of 50,000 proposed transitions, respectively) in the Markov chain .

Ma et al. [64, 65] proposed a two-stage MCMC method to sample the posterior

pdf of the permeability field conditional to water cut or gas-oil ratio. They reduce the

computational cost of random walk by calculating the objective function on a reservoir

model with coarser grid. The objective of the method is to sample the posterior pdf on

a fine-grid model, for a new proposed permeability field on the fine-grid model, the data

match is first calculated on a coarse-grid approximate model using an upscaled permeability

field, then use a linear proxy or a nonparametric regression-based statistical function to

approximate the data match on the fine-grid. If there is an improvement on the data match

compared with the current state in the Markov chain, the fine-grid reservoir simulation is

run to calculate the true data match, and the Metropolis-Hastings acceptance criteria is

applied to determine whether to accept the new proposed state. Although they improved

the computational efficiency, the two-stage MCMC method is indeed random walk, and it

can be trapped at a local mode when the posterior pdf has multiple modes. Efendiev et al.

[19] proposed a similar approach using streamline simulation to accelerate the random walk

process.

Emerick and Reynolds [20] proposed a EnKF-MCMC which combines the EnKF and

MCMC methodologies to improve the data matches and obtain a more reliable sampling of

the posterior pdf. The proposed algorithm approximates the posterior pdf by a Gaussian

distribution with the mean equal to the ensemble mean and the covariance matrix equal

to the approximate covariance matrix based on the final ensemble obtained from EnKF.

Thus, sampling the posterior distribution of the model parameters is the same as sampling

the Gaussian approximation which is easy to sample. Application of the EnKF-MCMC
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on a synthetic reservoir model suggests that the EnKF-MCMC gives better uncertainty

characterization and data matches than EnKF. However, the computational cost of this

method is high especially for a large scale case, because the calculation of the acceptance

rate of a new state requires a simulation run to evaluate the objective function. In addition,

because the new states are generated from the square root of the approximate covariance

matrix, it is possible that the samples in the chain do not represent the posterior pdf correctly.

To alleviate those problems, based on the work of Emerick and Reynolds [20], Emerick and

Reynolds [22] proposed another relatively efficient EnKF-MCMC algorithm, in which they

use a proposed combined parameter-state vector to approximate the likelihood part of the

objective function instead of directly run using the reservoir simulator. They also make

extra effort to improve the accuracy of the sampling by applying EnKF multiple times from

different initial ensembles of state vectors, generating a number of chains from each final

ensemble starting from different initial state, and resampling based on the actual values

(obtained from reservoir simulation run) of the normalized objective function. The modified

EnKF-MCMC algorithm was applied to history match and predict production data on a

3D two-phase case. They found that the posterior pdfs for commutative oil and water

production obtained using EnKF-MCMC are very similar to those obtained using a random

walk MCMC method with 2 million states in the Markov chain. For the simple 1D reservoir

water flooding case considered in [25], the EnKF-MCMC outperforms ES and EnKF, and

gives acceptable data matches and uncertainty quantification compared with the results

obtained using random walk MCMC with a chain of length 20 million.

In addition to the high computational cost involved in the application of a MCMC

algorithm, MCMC can encounter a local trapping problem, where for an exceeding large

number of iterations, all states in the chain remain near a local mode and the probability

of proposing and accepting a state on a different mode is extremely low. This situation is

expected when the posterior distribution has multiple modes which are far from each other

and are separated by regions of very low or zero probability. Although a hybrid MCMC

algorithm [75] has been developed that conceptually allows the chain to move between high
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probability regions widely separated by regions where the value of the target pdf is extremely

small or zero, this algorithm can be extremely computationally expensive [6].

Population-based MCMC methods are proposed to alleviate the local-trapping prob-

lem, in which several Markov chains are run in parallel. Each of the parallel chains has

different but related target pdfs. Parallel tempering is one of the population-based MCMC

methods proposed by Geyer [38] and is also known as exchange Monte Carlo [49]. In parallel

tempering, each of the parallel chains has a target pdf with a different temperature, the chain

sampling the target pdf has the lowest temperature . The idea is that increasing the temper-

ature can flatten the target distribution, by exchanging states in different chains, the chain

with the lowest temperature (target pdf) can explore the sampling space more efficiently

and converge faster. In practice, the temperature needs to be chosen very carefully in order

to have a reasonable acceptance rate of exchanging states in different chains. Motivated by

the genetic algorithm [47, 39], Liang and Wong [55] proposed the evolutionary Monte Carlo

algorithm (EMC) which combines features in the genetic algorithm with MCMC. Compared

to the parallel tempering algorithm, EMC adds a crossover operator which can improve

the convergence of the Markov chains. Mohamed et al. [70] modified the population-based

MCMC method developed by Liang and Wong [55] and applied it on a challenging problem

known as the IC fault model [10] which has a multimodal posterior pdf.

Inspired by information sharing among different modes, Gao et al. [34] developed a

distributed parallelized Gauss-Newton (DNG) optimization method to find multiple local

minimums of an objective function. Starting from a large number of different base cases, a

local quadratic model around each base case is constructed using a Gauss-Newton formu-

lation. Then, based on the minimization of the local quadratic model within a small trust

region, a new base case and trust region size are generated. By updating the local base case

and local quadratic models iteratively, different local minima are located. The DNG method

does not require the derivative of the objective funcion, and compared with the traditional

derivative-free optimization algorithms, the DNG method is more efficient. Moreover, it also

inherits the robustness from the traditional Gauss-Newton methods. Based on the DNG
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optimization method, Gao et al. [33] proposed an approach with low computational cost to

generate approximate conditional realizations using the multiple local Gaussian approxima-

tion technique. The posterior pdf is approximated using a Gaussian mixture model (GMM)

with different weight, which is very easy to sample. The means in the GMM are the local

minimums obtained from the DNG, the inverse of the covariance matrices are approximated

by the Hessian obtained from the Gauss-Newton approximation along with the prior inverse

covariance matrix. Although this sampling method is very efficient, the means and covari-

ance matrices in GMM are only approximations which means the samples from the GMM

may not represent the posterior distribution correctly. In addition, for a posterior pdf with

multiple modes which are not fully separated, the weight associated with each Gaussian

distribution may not be accurate. So that, directly sampling from the GMM may not give

a correct representation of the posterior pdf, a resampling process is recommended after

sampling the GMM.

Luengo and Martino [63] proposed a fully adaptive Gaussian mixture Metropolis-

Hastings algorithm for sampling a non-Gaussian target pdf. In the algorithm of [63], one

can ostensibly start with a completely random Gaussian mixture model (GMM) and use the

states generated in the Markov chain to continuously adapt the means and covariances of

the Gaussians as well as the weight of each Gaussian in the GMM. The objective of their

algorithm is similar to the objective of the two-level MCMC algorithm we propose, namely,

to find a proposal distribution that is close to the target pdf. The Luengo and Martino

[63] algorithm starts with a GMM with arbitrary means whereas our algorithm starts with

the mean of each Gaussian equal to a mode of the true target pdf so our initial Gaussian

mixture model includes Gaussians with appropriate means which correspond to modes of

the target distribution. Thus in the algorithm developed in this dissertation, we start with

an initial GMM that is far better calibrated with the target pdf we wish to sample than

is the initial GMM in the Luengo and Martino [63] algorithm. For this reason, our two-

level MCMC should require shorter chains to obtain an appropriate sampling of the target

pdf and thus increase computational efficiency for high-dimensional problems of ultimate
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interest in petroleum reservoir history matching and uncertainty characterization. In fact,

[63] state that one should not even begin adaptation of the GMM until we have generated

at least 100d states in the chain where d is the dimension of the problem, which for history

matching corresponds to the number of history-matching parameters; thus, according to their

100d criteria, their method would not be computationally feasible for a large scale history-

matching problem. Note the authors apply their method to only three exceedingly trivial

problems containing a maximum of two parameters and Gaussian mixture models consisting

of at most six Gaussians yet generate Markov chains of length 5,000 in order to obtain good

approximations to the posterior mean; they never demonstrate that they sample the true

pdf correctly and, in the examples where the target pdf in a GMM, they always use the

same number of Gaussians in the initial GMM used for the proposal distribution that are in

the target distribution, whereas, in reality one would not know a priori how many Gaussians

to include in the Gaussian mixture model. Finally, the Luengo and Martino [63] procedure

requires that the length of the chain be specified a prior whereas in the algorithm presented

here, we generate parallel Markov chains and utilize a procedure to monitor the convergence

of the chains to the target distribution. Finally, an approximation of one basic algorithmic

presented which yields a significant additional increase in computational efficiency.

1.2 Research Objectives

The Metropolis-Hastings algorithm is one of the MCMC methods which can asymp-

totically sample the target pdf. When the target pdf has a single mode or has multiple

modes concentrated in a small region, using Metropolis-Hastings algorithms such as random

walk can yield a good characterization of the target pdf. However, such a method may still

require on the order of millions of states in the chain to converge to the target pdf. For

a multimodal target pdf with modes separated by large regions of low or zero probability,

standard Metropolis-Hastings algorithms are not feasible. While methods such as stochastic

approximation Monte Carlo (SAMC) [56] and parallel tempering [38] have been proposed for

such problems, our test results suggest that these methods either fail or are too expensive
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because for our problems to get a state in the Markov chain requires one run of a reservoir

simulation.

To solve the aforementioned problems, we intend to develop an efficient MCMC

method which can sample a multi-modal target pdf with a plausible low computational cost.

More specifically, the objectives of my research were as follows: (1) to develop a computa-

tionally efficient MCMC method to generate realizations of reservoir model parameters that

can accurately characterize the posterior pdf conditional to observed data. If we can define a

proposal distribution which is very similar to the target pdf, and use the Metropolis-Hastings

algorithm with that proposal distribution to sample the target pdf, then we intuitively believe

that we can sample a multimodal target pdf efficiently; (2) to investigate the performance

of several MCMC methods for history matching and uncertainty characterization.

1.3 Dissertation Organization

There are 6 chapters in this dissertation. Chapter 1 gives a brief introduction of

history matching and uncertainty characterization, literature review on RML, ensemble-

based methods and various MCMC methods, and research objectives. In Chapter 2, the

history matching problem in Bayesian framework is discussed, including the construction of

the MAP estimate and RML, the theoretical background of MCMC and different MCMC

algorithms. Chapter 3 presents the comparison in the quality of data matches, uncertainty

characterization and computational cost using several MCMC methods on a small but highly

nonlinear 1D water flooding case. In Chapter 4, we present the first major contribution

of our work, a two-level MCMC method which generates modes using a gradient-based

optimization method and uses the modes and the inverse Hessians at these modes to construct

a Gaussian mixture model (GMM) to use as the basic proposal distribution. Via example

problems we show that the constructed proposal distribution leads to a Metropolis-Hastings

implementation that is far more efficient than traditional MCMC algorithms. As our second

contribution, Chapter 5 presents a more computationally efficient approximation of our two-

level MCMC method and its application on these four examples considered in Chapter 4.
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The final chapter presents conclusions.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Bayesian Framework of the History Matching Problem

For problems of interest in assessing the uncertainty in reservoir description and

performance, Bayes’ theorem can be applied to obtain the conditional pdf for the Nm-

dimensional vector of model parameters, m, given the vector of Nd-dimensional vector of

observed data, dobs. Let π(m) or f(m|dobs) denote the posterior pdf for m conditional to

dobs, Bayes’ theorem gives,

π(m) ≡ f(m|dobs) =
f(dobs|m)f(m)

f(dobs)
= aL(m|dobs)f(m). (2.1)

Here, f(m) is the prior pdf of the model parameters, f(dobs) is the pdf of the observed data,

f(dobs|m) is the conditional pdf of dobs given m, L(m|dobs) is the likelihood function, and a is

a normalizing constant. If we approximate the prior pdf as a Gaussian with mean mpr and

covariance matrix CM , and assume that the measurement error is Gaussian with mean zero

and covariance matrix CD, then following Tarantola [93] or Oliver et al. [79] the posterior

pdf, f(m|dobs) is given by
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π(m)

≡ f(m|dobs)

= a exp

{
−1

2
(m−mpr)

T C−1M (m−mpr)
T

}
× exp

{
−1

2
(g(m)− dobs)T C−1D (g(m)− dobs)T

}
= a exp

{
−1

2
(m−mpr)

T C−1M (m−mpr)
T − 1

2
(g(m)− dobs)T C−1D (g(m)− dobs)T

}
= a exp {−O(m)}

(2.2)

[79] where O(m) is the objective function defined by

O(m) =
1

2
(m−mpr)

TC−1M (m−mpr) +
1

2
(g(m)− dobs)TC−1D (g(m)− dobs). (2.3)

If we define the model mismatch part as

Om(m) =
1

2
(m−mpr)

TC−1M (m−mpr), (2.4)

and the data mismatch part as

Od(m) =
1

2
(g(m)− dobs)TC−1D (g(m)− dobs), (2.5)

then

O(m) = Om(m) +Od(m). (2.6)

Here g(m) is the data predicted from the forward model (reservoir simulator in our appli-

cations) given the vector of model parameters m. If g(m) involves no model error, e.g.,

represents exact physics, the difference between g(m) and dobs is equal to the measurement

error.
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2.2 The MAP Estimate

The maximum a posteriori (MAP) estimate is the model mMAP that maximizes the

pdf of Eq. 2.2, i.e.,

mMAP = arg min
m

O(m). (2.7)

Because the forward model g(m) is highly nonlinear, the posterior pdf f(m|dobs) is not a

Gaussian. Hence, there is no guarantee that Eq. 2.3 has a unique minimum, it may have

multiple local or global minima, i.e., the pdf π(m) may have multiple modes.

If the relation between the model parameters and the predicted data is linear, i.e.,

g(m) = Gm, (2.8)

the posterior pdf given by Eq. 2.2 is Gaussian where G is the Nd × Nm sensitivity matrix,

then the MAP estimate can be found by solving the following equation:

0 = ∇mO(m) =
(
C−1M +GTC−1D G

)
(m−mpr) +GTC−1D (Gmpr − dobs) . (2.9)

Solving Eq. 2.9 for m, the MAP estimate is given by

mMAP = mpr −
(
C−1M +GTC−1D G

)−1
GTC−1D (Gmpr − dobs) . (2.10)

If we expand O(m) around mMAP usng a Taylor series, we can rewrite O(m) as:

O(m) = O(mMAP) + (∇mO(mMAP))T (m−mMAP) +
1

2
(m−mMAP)T H (m−mMAP) ,

(2.11)

where H is the Hessian matrix given by

H = C−1M +GTC−1D G (2.12)

If the the relation between the model parameters and the predicted data is linear (Eq. 2.8),
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then using ∇mO(mMAP) = 0, Eq. 2.11 can be further written as

O(m) = O(mMAP) +
1

2
(m−mMAP)T H (m−mMAP) . (2.13)

Substituting Eq. 2.13 to Eq. 2.2, we can write the posterior pdf as

f(m|dobs) = a exp {−O(mMAP)} exp

{
−1

2
(m−mMAP)T H (m−mMAP)

}
= â exp

{
−1

2
(m−mMAP)T H (m−mMAP)

}
. (2.14)

Here, â is a normalizing constant. Thus, for linear case (Eq. 2.8), f(m|dobs) is a Gaussian

with mean given by mMAP and covariance matrix given by

CMAP = H−1

=
(
C−1M +GTC−1D G

)−1
= CM − CMG

T
(
GCMG

T + CD

)−1
GCM, (2.15)

If the relation between the model parameters and the predicted data is linear (Eq. 2.8),

then the minimum of 2O(m) has a χ2 distribution with Nd degrees of freedom [79], i.e., the

mean is Nd and the variance is 2Nd. It is reasonable to assume the result is approximately

correct for nonlinear case, so that O(mMAP) should satisfy

Nd − 5
√

2Nd ≤ O(mMAP) ≤ Nd + 5
√

2Nd. (2.16)

2.3 The Randomized Maximum Likelihood (RML) Estimation

For uncertainty analysis, it is desirable to have multiple realizations of the reservoir

model. One of the earliest method for generation of an approximate sampling of the posterior

pdf represented by Eq. 2.2 was proposed by Oliver et al. [77]. This method is now known

as randomized maximum likelihood (RML) which can efficiently generate an approximation

sampling of the posterior pdf. However, RML is guaranteed to generate to generate theoret-

22



ically correct samples of the posterior pdf only when the prior pdf is Gaussian, measurement

errors are Gaussian and predicted data are linearly related to the model parameters [79].

Although for nonlinear case RML is not guaranteed to sample correctly, there are works

[77, 23, 84] that shows RML can give an approximate sampling in some cases. In addition,

the most important characteristic of RML is that it is designed to sample from different

modes of the posterior distribution. Suppose Ne is the number of samples, RML generates

an approximate sampling of the posterior pdf of Eq. 2.2 as follows:

RML Algorithm

Do j = 1, 2, · · · , Ne.

1. Generate realizations muc from the prior Gaussian N (mpr, CM) using

muc,j = mpr + C
1/2
M Zj

M , (2.17)

here Zj
M is a column vector of independent standard random normal deviates with NM

(number of model parameters) dimensions. C
1/2
M is the square root of CM . If the Cholesky

decomposition of CM is CM = LLT , then C
1/2
M = L.

2. Generate realizations duc from N (dobs, CD) using

duc,j = dobs + C
1/2
D Zj

D, (2.18)

here Zj
D is a column vector of independent standard random normal deviates with ND

(number of observed data) dimensions. C
1/2
D is the square root of CD. If CD is a diagonal

matrix, then the square root C
1/2
D can be found by simply replacing each diagonal entry of

CD by its square root. More generally, we let C
1/2
D denote the symmetric square root of CD

which can be found from its spectral decomposition.
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3. Minimize the following objective function to obtained a realization muc,j.

Oj(m) =
1

2
(m−muc,j)

T C−1M (m−muc,j) +
1

2
(g(m)− duc,j)T C−1D (g(m)− duc,j) . (2.19)

With two quite different approaches, Oliver et al. [79] and Reynolds et al. [84] prove

this procedure can sample the posterior pdf correctly in the linear Gaussian case. The result

of Oliver et al. [79] is more general as it allows for uncertainty in the prior mean. Follow the

RML algorithm, a sample of the posterior pdf is given by

mc = arg min
m

Or(m), (2.20)

where the Or(m) is defined as

Or(m) =
1

2
(m−muc)

T C−1M (m−muc) +
1

2
(g(m)− duc)T C−1D (g(m)− duc) , (2.21)

here muc and duc are realizations from N (mpr, CM) and N (dobs, CD), respectively. Follow

Eq. 2.16, the objective function O(mc) should satisfy [79]

Nd − 5
√

2Nd ≤ O(mc) ≤ Nd + 5
√

2Nd (2.22)

or equivalently,

1− 5

√
2

Nd

≤ O(mc)

Nd

≤ 1 + 5

√
2

Nd

. (2.23)

2.4 Markov Chain Monte Carlo (MCMC)

RML and ensemble-based history matching methods such as ES, EnKF are compu-

tationally efficient but cannot generally characterize the uncertainty accurately when the

data is not linearly related to the model parameters. MCMC is a procedure for generating

samples of a target pdf, the most important characteristic for MCMC method is that under

reasonably assumptions, it is able theoretically to asymptotically sample the posterior pdf;

however, MCMC methods are normally very computationally expensive.
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A Markov chain is a sequence of random vectors {mn}n≥0 where the probability of

the next state depends only on the current state, i.e.,

P(mn|m0,m1,m2, ...,mn−1) = P(mn|mn−1) (2.24)

2.4.1 Metropolis-Hastings Algorithm

A properly defined Markov Chain Monte Carlo (MCMC) algorithm can sample a

target probability density function (pdf) by constructing Markov chains. Throughout π(m)

denotes the target pdf which is the probability distribution for the random vector m. In cases

of interest to us, π(m) represents the posterior distribution of the model m (vector of model

parameter) conditional to a vector of observed data dobs. In most of the MCMC algorithms,

the proposed new state in the chain depends on the current state, and the proposed state

will be accepted or rejected as the next state in the chain based on an acceptance criteria.

Throughout, q(m, m̃) is the proposal distribution (pdf), i.e., “the probability” of proposing

a transition from the state m in the chain to the state m̃. Note this means the proposed

state, m̃, is obtained by sampling q(m, m̃). Throughout, α(m, m̃) denoted the acceptance

probability which is the probability of accepting the new proposed state, m̃; i is the index of

the chain, i.e., mi denotes the ith state in the chain. The most popular MCMC algorithm is

the Metropolis-Hastings algorithm [68, 43], which is given below.

Algorithm 2.1: Metropolis-Hastings Algorithm

1. Set i = 0 and choose the initial state m0.

2. Propose a new state m̃i+1 by sampling the proposal distribution q(mi, m̃i+1).

3. Evaluate the acceptance probability (pdf) at m̃i+1 by the Metropolis-Hastings

condition given by

α(mi, m̃i+1) = min
{

1,
π(m̃i+1)q(m̃i+1,mi)

π(mi)q(mi, m̃i+1)

}
. (2.25)

4. Generate a random number u from the uniform distribution U(0, 1).
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5. If u ≤ α(mi, m̃i+1), the new proposed state is accepted and we set mi+1 = m̃i+1.

Otherwise, repeat the current state in the chain, i.e., set mi+1 = mi.

6. Set i = i + 1 and return to step 2 until the chain has converged and we have

obtained the number of samples desired.

It is important to note that the acceptance probability requires calculating the ra-

tio π(m̃i+1)/π(mi), and this ratio can be calculated without knowledge of the normalizing

constant which is an important advantage of the Metropolis-Hastings algorithm. In our

history matching problems, after using Bayes’ theorem, the target pdf π(m) has the form

of π(m) = f(m|dobs) = aexp(−O(m)) where a is the normalizing constant and O(m) is the

objective function which typically involves the sum of a data mismatch term and a model

mismatch term, see Eq. 2.11.

From Eq. 2.24, we define the transition probability pi,j=P(mj |mi). A state m in a

Markov chain is said to have period k where k is a positive integer if given mn = m at any

state n, the probability of returning to state m at state n+ i is zero when i < k and nonzero

for i = k. If k = 1 for all states in the chain, then the chain is said to be aperiodic. The

chain is said to be irreducible if starting from any state, it is possible to reach any other state

in a finite number of transitions. If a Markov chain is aperiodic, irreducible and satisfies

∑
i

π(mi)pi,j = π(mj), (2.26)

the chain will converge to a unique stationary (invariant) distribution π starting from any

initial state as the length of chain goes to infinity. Metropolis et al. [68] introduced a stronger

condition, known as the detailed balance which is given by

π(mi)pi,j = π(mj)pj,i. (2.27)

Summing the detailed balance equation over i and using
∑
i

pji = 1, it is easy to see that

if the detailed balance holds, then Eq. 2.26 holds. Metropolis et al. [68] also suggested use
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pi,j = α(mi,mj)q(mi,mj), while Hastings [43] proved that the chain will converge to the

stationary distribution π if we define

α(mi,mj) = min

(
1,
π(mj)q(mj,mi)

π(mi)q(mi,mj)

)
,

and the chain is aperiodic and irreducible. Note the preceding equation is Eq. 2.29 in the

Metropolis-Hastings algorithm (Algorithm 2.1).

One of the simplest proposal distributions is the random walk [62], in which the new

state in the Markov chain is sampled from a Gaussian distribution centered at the current

state mk, with a scaled covariance matrix σ2CM , i.e., q(mk, m̃k+1) = N(mk, σ
2CM), where

CM is the prior covariance matrix, and σ is a scaling factor with σ ≤ 1. Note that σ controls

the size of perturbation, i.e., the magnitude of m̃k+1−mk and the performance of the Markov

chain [89]. Generally, if the value of σ is too high, the acceptance rate will be very low and it

will require an extremely long chain to generate a sufficient number of samples to represent

the target pdf. As the value of σ decreases, the acceptance rate tends to increase, but if

σ is too small, the chain may not be well mixed and may require excessively long chain to

characterize the posterior pdf. The optimal choice of σ is case-dependent, but in general an

optimal value of σ should lead to a asymptotically optimal acceptance rate equal to 0.234

under quite general conditions [36, 87]. Brooks et al. [8] suggests that for problems with

dimension 1, the optimal acceptance rate is approximately 0.44. For our test problems, we

chose the value of σ based on some experiments with short chains in order to attempt to

find a value of σ that gives an acceptance rate roughly equal to 0.234. It is also known

from Roberts et al. [87] and Roberts and Rosenthal [85] that σ = (2.38)2

d
is optimal for large

dimensional problems, here d is the dimension of the problem.

In random walk, the proposal distribution is symmetric, i.e., q(mk, m̃k+1) = q(m̃k+1,mk).

Therefore, the acceptance probability of Eq. 2.29 simplifies to

α(mk, m̃k+1) = min
{

1,
π(m̃k+1)

π(mk)

}
. (2.28)
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While the Metropolis-Hastings algorithm using random walk will theoretically con-

verge, it may require chains which contain millions of states to obtain a reasonable approxi-

mation to the target pdf [59, 23]. Thus, as noted earlier, our primary objective is to develop

an MCMC algorithm that can generate a correct sampling using chains of length on the

order of 10,000 or less as opposed to algorithms that require chain lengths to be on the order

of millions or tens of millions to obtain a reasonable approximation of the target pdf [59, 23].

Algorithm 2.2: Random Walk Metropolis-Hastings Algorithm

1. Set i = 0 and choose the initial state m0.

2. Propose a new state m̃i+1 by sampling the proposal distribution N(mi, σ
2CM).

3. Evaluate the acceptance probability (pdf) at m̃i+1 by the Metropolis-Hastings

condition given by

α(mi, m̃i+1) = min
{

1,
π(m̃i+1)

π(mi)

}
. (2.29)

4. Generate a random number u from the uniform distribution U(0, 1).

5. If u ≤ α(mi, m̃i+1), the new proposed state is accepted and we set mi+1 = m̃i+1.

Otherwise, repeat the current state in the chain, i.e., set mi+1 = mi.

6. Set i = i + 1 and return to step 2 until the chain has converged and we have

obtained the number of samples desired.

2.4.2 Gibbs Sampler

The Metropolis-Hastings algorithm requires a user defined proposal distribution,

which can affect the efficiency of the sampling. Gibbs sampling is a method that does

not need to specify the proposal distribution; all the samples are proposed from conditional

distributions with the acceptance probability equal to 1. Suppose the model parameter m has

NM dimensions, and m = {m1,m2, · · · ,mNM
}. Let fk(mk | m1, · · · ,mk−1,mk+1, · · · ,mNM

)

denote the full conditional distribution of mk given {m1, · · · ,mk−1,mk+1, · · · ,mNM
}
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Algorithm 2.3: Gibbs Sampler

1. Set i = 0 and choose the initial state m0 = {m0,1,m0,2, · · · ,m0,NM
}.

2. Set i = i+ 1, generate mi,1 ∼ f1(m1 | mi−1,2, · · · ,mi−1,NM
).

3. Generate mi,2 ∼ f2(m2 | mi−1,1,mi−1,3, · · · ,mi−1,NM
).

...

NM . Generate mi,NM
∼ fNM

(mNM
| mi−1,1,mi−1,2, · · · ,mi−1,NM−1).

NM+1. Return to step 2 until we have obtained the number of samples desired.

Although Gibbs sampler does not need to specify a proposal distribution, Gibbs

sampler requires a method to sample from the conditional pdf. In addition, if the model

parameters are highly correlated, it is very difficult to change the value of one parameter

without changing the others.

2.4.3 Adaptive MCMC

The Metropolis-Hastings algorithm requires an input of the proposal pdf, and the

efficiency of the chain depends on the choice of the proposal pdf. If the proposal pdf is

the target distribution itself, then every new state generated from the proposal pdf will be

accepted. However, the point of MCMC is that we cannot directly sample from the target

pdf. Haario et al. [40] proposed an adaptive MCMC algorithm in which the proposal pdf is

estimated using all the available samples in the Markov chain. One of the adaptive MCMC

algorithm is given below. The proposal distribution in this algorithm has the same form as

the random walk proposal, but the covariance matrix in the proposal distribution and the

mean which is used to calculate the covariance matrix adapt as the chain evolves. In this

algorithm, CMi denotes the covariance matrix at the ith iteration (ith state in the chain),

initially it is the prior covariance matrix for our history matching problem. µi denotes the

mean which is used to calculate the updated covariance matrix, it is set to the initial state

in the chain at the beginning of the algorithm.

Algorithm 2.4: Adaptive Metropolis Algorithm
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1. Set i = 0 and choose the initial state m0.

2. Propose a new state m̃i+1 by sampling the proposal distribution N(mi, σ
2CMi).

3. Evaluate the acceptance probability (pdf) at m̃i+1 by the Metropolis-Hastings

condition given by

α(mi, m̃i+1) = min
{

1,
π(m̃i+1)q(m̃i+1,mi)

π(mi)q(mi, m̃i+1)

}
. (2.30)

4. Generate a random number u from the uniform distribution U(0, 1).

5. If u ≤ α(mi, m̃i+1), the new proposed state is accepted and we set mi+1 = m̃i+1.

Otherwise, repeat the current state in the chain, i.e., set mi+1 = mi.

6. Update the mean and covariance matrix using

µi+1 = µi + βi+1(mi+1 − µi) (2.31)

CMi+1 = CMi + βi+1((mi+1 − µi+1)(mi+1 − µi+1)
T − CMi). (2.32)

7. Set i = i + 1 and return to step 2 until the chain has converged and we have

obtained the number of samples desired.

The term βi is a gain factor sequence, it is assumed that βi satisfies the following

condition:
∞∑
i=1

βi =∞ and
∞∑
i=1

β1+δ
i <∞, (2.33)

for some δ ∈ (0, 1] in order to show that the Markov chain converges to its stationary pdf

[40]. Haario et al. [40] suggests setting βi = O(1
i
).

The adaptive Metropolis algorithm can be improved in various ways. Similar to the

random walk, the efficiency of the chain could be affected by the choice of the scaling factor

σ. If σ is too large or too small, the algorithm will either have a very small or a very large

acceptance rate which could affect the efficiency of the chain. Because the covariance matrix

in the proposal distribution is changing as the chain evolve, using trial runs with short chains

can only estimate a scaling factor for the initial covariance matrix. Andrieu and Thoms [3]
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proposed an improved adaptive Metropolis algorithm in which the scaling factor and the

covariance matrix are adapted simultaneously in order to make the acceptance rate of the

chain reach a desired value. At the ith iteration, the scaling factor σi is updated by

log(σi+1) = log(σi) + βi+1(αi − α∗). (2.34)

Here, α∗ is the desired acceptance rate, αi is the acceptance probability given by Eq. 2.30

at the ith iteration, βi+1 is the gain factor sequence. In the early stage of the chain, this

adaptation of the scaling factor can be very useful. As the chain evolves, the gain factor βi+1

can be very small so that the scaling factor does not change.

2.4.4 Newton MCMC Method

In Section 2.2, we showed that if the relation between the model parameters and the

predicted data is linear (Eq. 2.8), then the posterior pdf f(m|dobs) is a Gaussian distribution.

However, for the nonlinear case, the posterior pdf is no longer a Gaussian. At a given point

mi, the quadratic approximation of the objective function is given by

Qi(m) ≈ Qi(mi) + gTi (m−mi) +
1

2
(m−mi)

THi(m−mi)

= Qi(mi) +
1

2
gTi (m−mi) +

1

2
(m−mi)

Tgi +
1

2
(m−mi)

THi(m−mi) + gTi H
−Tgi − gTi H−Tgi

= Qi(mi) +
1

2
gTi H

−T
i Hi(m−mi) +

1

2
(m−mi)

THiH
−1
i gi

+
1

2
(m−mi)

THi(m−mi) + gTi H
−T
i gi − gTi H−Ti gi

= Qi(m) +
1

2
(m− (mi −H−1i gi))

THi(m− (mi −H−1i gi))− gTi H−Ti gi

= Qi(m) +
1

2
(m− (mi −H−1i gi))

THi(m− (mi −H−1i gi)) + const

(2.35)

where gi = g(mi) = ∇O(mi) and Hi = ∇2O(mi). Eq. 2.35 shows the minimizer of Qi(m) is

given by mi+1 = mi−H−1i gi. Inspired by the local quadratic approximation of the objective
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function, in Newton MCMC method, the proposal distribution is given by

q(m̃i+1|mi) = N (mi − σ1H−1i gi, σ
2H−1i ), (2.36)

The Newton MCMC algorithm is given below, unlike random walk, the proposal distribution

in the Newton MCMC algorithm is not symmetric, so that the acceptance probability is

calculated using Eq. 2.38. Note that design a chain that has the desired acceptance rate, i.e.,

between 20% and 50%, we add two scaling factors σ and σ1 in Eq. 2.37. Both of the scaling

factors can be tuned based on the acceptance rate of the chain. To estimate an approximate

value of σ and σ1 that roughly has acceptance rate 0.2, we run several experimental chains

with different values of the scaling factors, each chain has 2000 states, then we use the value

of scaling factors associate with the chain that has the desired acceptance rate.

Algorithm 2.5: Newton MCMC Algorithm

1. Set i = 0 and choose the initial state m0.

2. Propose a new state m̃i+1 using

m̃i+1 = mi − σ1H−1i gi + σξ, (2.37)

where ξ ∼ N (0, H−1i ).

3. Evaluate the acceptance probability at m̃i+1 by the Metropolis-Hastings condition

given by

α(mi, m̃i+1) = min
{

1,
π(m̃i+1)q(m̃i+1,mi)

π(mi)q(mi, m̃i+1)

}
. (2.38)

4. Generate a random number u from the uniform distribution U(0, 1).

5. If u ≤ α(mi, m̃i+1), the new proposed state is accepted and we set mi+1 = m̃i+1.

Otherwise, repeat the current state in the chain, i.e., set mi+1 = mi.

6. Set i = i + 1 and return to step 2 until the chain has converged and we have
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obtained the number of samples desired.

This method can improve the convergence of the chain by sampling new states from

a local Gaussian approximation, however, this method also can be trapped at a local mode

when the posterior pdf is multi-model.

2.4.5 Population MCMC Method

When the target pdf is complex and multimodal, the standard Metropolis-Hastings

algorithms can be trapped for a very long time near a single mode, and thus have difficulty

sampling the whole distribution. In order to sample a target pdf which has complex response

surface and multiple modes, Liang and Wong [55] proposed an algorithm named population

Monte Carlo (or evolutionary Monte Carlo). This algorithm is derived from the conceptual

idea inherent in the genetic algorithm and simulated annealing, and it works by running

several separate parallel Markov chains with different temperatures in parallel. Chains with

higher temperature allow the state to move more freely in the sampling space, and different

chains interact by exchanging states, so the chain which samples the target pdf can escape

from a local mode more easily. Mohamed et al. [70] implemented the population MCMC

method, and applied it on the IC-fault model.

Within the Bayesian framework, the target pdf that we want to sample is the posterior

distribution given by the equation

f(m|dobs) = CL(m|dobs)f(m), (2.39)

where m is the model parameter, L(m|dobs) is the likelihood of m given observed data, C is

the normalising constant and f(m) is the prior pdf form. For the IC fault model considered

in this paper, the objective function does not have the model mismatch part, which is similar

to assuming the prior distribution is uniform.

For population MCMC, in order to sample a target distribution f(m), one sample an
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augmented system with the distribution

f(m(1),m(2), . . . ,m(N)) =
N∏
k=1

fk(m(k)), (2.40)

where {m(1),m(2), . . . ,m(N)} is a population, N is the population size which is also the

total number of parallel chains each with a different temperature. Note here one of the fk

is the target pdf. Define t = (t1, . . . , tN) with t1 = 0 < · · · < tN = 1 is the temperature

ladder associated with parallel chains, i.e., tk is associated with chain k. The target pdf for

the sequence of chains is given by the equation

fk(m(k)|dobs) = Ck(tk)(L(m(k)|dobs))tkf(m(k)), (2.41)

where m(k) is the state (model parameters) of the kth chain at temperature tk, and Ck

is the corresponding normalizing constant. Note that the temperature ladder is inversely

proportional to the temperature defined in the original population MCMC algorithm [55].

The target pdf of the chain with tN = 1 is actually the posterior pdf and it has the lowest

temperature. The chain with the highest temperature has t1 = 0 and its target pdf is the

prior distribution. In population MCMC, a state in the Markov chain is not a state in a

single chain, it is the population M which is consist of N states, i.e., M = {m(1), . . . ,m(N)},

here, m(k) is a single state from the kth chain. Thus, the target pdf is the joint pdf given

by

f(M |dobs) = Ct(t)
N∏
k=1

(L(m(k)|dobs))tkf(m(k)), (2.42)

where t = (t1, . . . , tN), Ct(t) =
N∏
k=1

Ck(tk).

We first present the population MCMC algorithm below, and then we give a more

detailed discussion of the crossover, mutation and exchange operator, for those not familiar

with the genetic algorithm.

Algorithm 2.5: Population MCMC

34



1. Randomly generate the initial state for each parallel chain, form the initial pop-

ulation M0 = {m0(1), . . . ,m0(N)} and assign a temperature for each of the parallel chain

from the temperature ladder t = {t1, . . . , tN}.

2. One iteration of the Markov chain includes the following steps.

a. Similar to the genetic algorithm, apply a mutation or crossover operator to each

parallel chain to get a new population with mutation rate qm and crossover rate 1− qm. qm

can be chosen to achieve a trade-off between the exploration (mutation) and convergence

of algorithm (crossover). For a small population size, qm is usually set to a large value to

explore the sample space more.

b. Apply an exchange operator. Exchange m(k) (k ∈ {1, 2, · · · , N}) and its adjacent

state m(j) in the current population for N pairs (k, j), where k is sampled uniformly in

{1, . . . , N} and j = k ± 1. The probability of exchange m(j) and m(k) is pe(m(j),m(k)),

where pe(m(k + 1),m(k)) = pe(m(k − 1),m(k)) = 0.5 and pe(m(2),m(1)) = pe(m(N −

1),m(N)) = 1.

3. Repeat step 2 until chains converge.

On the IC fault model, we follow the same implementation as [70], and the mutation

rate is qm = 1, which means we want to have more opportunities to explore the sample

space. In the step b, pe(m(j),m(k)) is the probability of exchanging states m(j) and m(k).

Because j = k±1, if k = 1, the only choice for j is j = 0. Similarly, if k = N , the only choice

for j is j = N − 1. Thus, pe(m(2),m(1)) = pe(m(N − 1),m(N)) = 1. For other values of k,

as j = k±1, the probability of j = k+ 1 is 0.5 and the probability of j = k−1 is also 0.5. It

means pe(m(k+ 1),m(k)) = pe(m(k− 1),m(k)) = 0.5. For k = 1, then we automatically set

j = 2; for 1 < k < N , we generate a random number between [0, 1], if the random number

is less than 0.5, we set j = k − 1. Otherwise, we set j = k + 1; for k = N , we set j = N − 1

automatically. The operators used in our implementation are defined below.
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Mutation

For the statem(k) randomly selected from the current populationM = {m(1), . . . ,m(k),

. . . ,m(N)}, we generate a new state m(k)′ as the next sate in the kth chain, then a new

population is formed as M ′ = {m(1), . . . ,m(k)′, . . . ,m(N)}. The next state m(k)′ is chosen

based on the sampling method used. The acceptance probability of the new population M ′

is,

αi = min

(
1,
f(M ′|dobs)T (M |M ′)

f(M |dobs)T (M ′|M)

)
, (2.43)

Substitute Eq. 2.42 to Eq. 2.43,

αi = min

(
1,
L(m(k)′|dobs)tkf(m(k)′)

L(m(k)|dobs)tkf(m(k))

T (M |M ′)

T (M ′|M)

)
, (2.44)

where T (M |M ′) defines the transition probability from population M to population M ′.

When the transition is symmetric, then the transition probability in Eq. 2.44 is canceled.

Exchange

This operation is the same as defined in parallel tempering [38]. Suppose M is the

current population, and t is the temperature ladder, and let

(M, t) = [(m(1), t1), . . . , (m(k), tk), (m(j), tj), . . . , (m(N), tN)], (2.45)

where tk is the temperature associated with state mk. Suppose we wish to exchange two

adjacent states m(k) and m(j) (assume j = k − 1) without changing the temperature, i.e.,

change from Eq. 2.45 to

(M ′, t) = [(m(1), t1), . . . , (m(j), tk), (m(k), tj), . . . , (m(N), tN)]. (2.46)

The acceptance probability of the new population (M ′, t) is min(1, re), with

re =
f(M ′|dobs)T (M |M ′)

f(M |dobs)T (M ′|M)
=
L(m(j)|dobs)tkL(m(k)|dobs)tj
L(m(k)|dobs)tkL(m(j)|dobs)tj

T (M |M ′)

T (M ′|M)
(2.47)

36



where T (M |M ′) defines the transition probability from population M to population M ′.

It is shown by [55] that, T (M |M ′) = T (M ′|M), so the transition term in the acceptance

probability is canceled, and

re =
L(m(j)|dobs)tkL(m(k)|dobs)tj
L(m(k)|dobs)tkL(m(j)|dobs)tj

. (2.48)

2.4.6 Preconditioned Crank-Nicolson MCMC

All the MCMC methods introduced in the previous sections assume the sampling

space is a finite dimensional space, i.e., the vector of model parameters m is finite dimen-

sional. If m is a continuous function of position, all the MCMC methods we mentioned

previously are not applicable. Moreover, the efficiency of the standard MCMC methods are

highly dependent on the dimension of the problem, so that the normal MCMC algorithms

like random walk and adaptive MCMC can be computationally prohibitive for large-scale

problems. Derived from the Crank-Nicolson discretization of stochastic partial differen-

tial equations, Cotter et al. [16] proposed the preconditioned Crank-Nicolson MCMC (pCN

MCMC) method, in which the convergence property is invariant with respect to the dimen-

sion of the model parameters when applied to discrete problems. The proposal distribution

pCN MCMC algorithm is very similar to the proposal distribution in the random walk

algorithm. For random walk proposal, the new state m̃i+1 is generated by

m̃i+1 = mi + σξ, (2.49)

where ξ ∼ N (0, CM) and σ is the scaling factor. Whereas, in the pCN-MCMC method, the

new state m̃i+1 is generated by

m̃i+1 =
√

1− σ2mi + σξ, (2.50)

here, ξ is generated in the same way as random walk. The proposal distribution is derived

from the discretization of stochastic partial differential equations which are invariant for
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eigher the reference or the target measure [16]. Although the pCN-MCMC method is in-

dependent of the dimension of the problem, the efficiency of the chain still depends on the

value of the scaling factor, which can be chosen the same way as random walk.

2.4.7 Monitoring Convergence of a Markov Chain

Although Markov chains are known to converge to the stationary distribution (target

distribution) under reasonable assumptions [53], unless proposed states in the Markov chain

are obtained by sampling the target distribution itself, states mi, i = 0, 1, 2, · · · I generally

do not represent a correct characterization of π(m), where, unfortunately, I may be an

extremely large integer. These early states represent the burn-in part of the chain and are

discarded because they do not provide a correct sampling of π(m). It is useful to estimate a

value of I that ensures that the states mi, i = I + 1, I + 2, · · · represents a correct sampling

of the posterior pdf and thus can be used to characterize this pdf. In order to determine

the burn-in period, the convergence of the Markov chain needs to be monitored. In this

paper, we use the multivariate potential scale reduction factor (MPSRF) [7] to monitor the

convergence of Markov chains. For a target pdf which is multimodal and the modes are far

apart, a chain may appear to converge when in actuality, it in trapped near a single mode,

so it is important to initiate multiple parallel chains from different initial states to check

convergence [7].

Starting from different initial states generated randomly from the prior distribution of

model parameters, we run s parallel chains, but denote the current length of each chain by i,

i.e., the current iteration number for each chain is i. The chain convergence is determined by

comparing the within chain variance with the variance of the samples from all the different

chains. If the two variances are sufficiently close, the chains have converged and all states

obtained subsequent to convergence give a representative characterization of the target pdf.

The between sequence covariance at iteration i is defined as

Bi =
1

s− 1

s∑
j=1

(mi
j −mi)(mi

j −mi)T , (2.51)
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where mi
j is the mean of the samples in the jth Markov chain, and mi is the mean of all the

chains, which is defined as

mi =
1

s

s∑
j=1

mi
j. (2.52)

The within-sequence variance W is defined as

W =
1

s(i− 1)

s∑
j=1

i∑
t=1

(mt
j −mi

j)(m
t
j −mi

j)
T , (2.53)

where mt
j is the state of index t from the jth chain. The posterior covariance matrix is

defined as

V =
i− 1

i
W +

s+ 1

s
Bi. (2.54)

By measuring the ”closeness” of the posterior covariance matrix V and the within-sequence

variance W , the convergence of multiple Markov chains can be monitored. Under the rea-

sonable assumption that the average covariance matrix of the chains, W , is nonsingular,

closeness could be defined as

‖ R ‖F≤ ε, (2.55)

where

R = W−1V =
i− 1

i
+
s+ 1

s
W−1Bi; (2.56)

the subscript F denotes the Frobenious norm and ε is the error tolerance, Enforcing Eq. 2.55

would require knowledge of how to properly define ε. Thus, we instead monitor convergence

using the scalar measure of the distance between the matrices V and W developed by [7].

Here as in [7], the scalar measure is defined by

R̂ =
i− 1

i
+
s+ 1

s
λ1, (2.57)

where λ1 is the largest eigenvalue of the matrix W−1Bi. R̂ is a scalar approximation of the

MPSRF convergence factor for multivariate problems. When chains converge, the value of

R̂ should approach 1 [7], but for multimodal distributions, the value of R̂ is always greater
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than 1 [51]. (Note R̂ → 1 as i → ∞ if λ1 → goes to zero.) For all the example problems

presented, we calculate and plot the value of R̂ from the beginning of multiple chains. When

the value of R̂ is close to 1 and tends to be stable for a sufficiently large number of states,

we discard the burn-in samples of each chain obtained prior to convergence and then regard

the rest of the samples as correct samples from the target pdf.
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CHAPTER 3

SAMPLING PERFORMANCE OF SEVERAL MCMC METHODS

In this chapter, we compare the performance of six MCMC methods on the quality

of data matches, uncertainty characterization and chain convergence. Because the high

computational cost of MCMC algorithms, the example we used for comparison is a small 1D

highly nonlinear two-phase reservoir model. The reference posterior distribution we use to

compare with other MCMC methods is generated using random walk with 5 Markov chains,

each chain has 2.3 billion iterations. For the other MCMC methods, we initialize five Markov

chains, the largest size of each chain is 1 million and we use them to check the convergence

and generate the posterior distribution. The MCMC methods we considered including the

modified adaptive MCMC [31], the original adaptive MCMC proposed by Haario et al.

[40], preconditioned Crank-Nicolson MCMC [16], Newton MCMC [66] and two-level MCMC

(chapter 4).

3.1 Case Description

This test case is the two-phase 1-D horizontal waterflooding example considered by

Emerick and Reynolds [23]. As shown in Fig. 3.1, the number of gridblocks is 31, and each

gridblock is 50 ft× 50 ft× 50 ft. The porosity is uniform and equal to 0.25; the oil viscosity

is 2 cp; the water viscosity is 1 cp. The compressibility of water, oil and rock, respectively, is

given by 10−6 psi−1, 10−5 psi−1 and 10−6 psi−1, respectively. The water injector in the first

gridblock is operated at a constant bottomhole pressure of 4,000 psi. There is a producer

in the last gridblock, which is operated at a constant bottomhole pressure of 3,000 psi. In

the center of the gridblock, there is a monitor well. The initial reservoir pressure is 3500 psi.

The model parameters are log-permeability of each gridblock, the prior mean for ln(k) is 5.0
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Figure 3.1: Gridblocks and well locations.

(a) Permeability of the true model. (b) Water saturation distribution.

Figure 3.2: Example 2: (a) the permeability distribution of the true model; (b) the water
saturation distribution at the end of history matching period (blue) and at the end of the
forecast period (red). In both plots, the vertical dashed line is the location of the monitor well.

and the prior variance is 1.0. The true permeability field was generated using an exponential

covariance function with a practical range equal to 500 ft, which is equal to ten times the

width of a gridblock. Fig. 3.2(a) shows the true permeability field. Fig. 3.2(b) presents the

water saturation distribution at the end of historical period (blue squares) and at the end

of the forecast period (red circles). The historical period is 360 days, the total reservoir life

is 750 days. The observation data is the pressure at the monitor well, which is measured

every 30 days throughout the 360 days historical period. Random Gaussian measurement

error is added to the pressure data generated by the true model with mean equal to zero and

standard deviation equal to 1 psi. Note that the results of Fig. 3.2(b) indicate that no water

has broken through at the right-end production well at the end of the 360 day historical

period.

As the prior pdf is Gaussian and the measurement errors are Gaussian, the posterior
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pdf is given by Eq. 2.2, where the objective function O(m) is given by Eq. 2.3.

3.2 Random Walk

The reference posterior distribution for comparison is generated using random walk

which was presented in Chapter 2 (Algorithm 2.2). In the random walk algorithm, the value

of the scaling factor σ is 0.005. This value was chosen based on several experiments in which

we generated chains of length 2000 with different values of σ and chose the value which gave

an acceptance rate closest to 0.234 as recommended by Gelman et al. [36], Roberts et al.

[87]. Specifically, we ran five experimental chains with 2000 states. The value of σ for each

chain is 0.05, 0.01, 0.007, 0.005, 0.001, respectively, and the acceptance rate for each chain

respectively is 0.003, 0.08, 0.15, 0.25, 0.74. Thus we choose σ = 0.005. For random walk, we

initialize five parallel Markov chains where the initial states are generated randomly from

the prior Gaussian distribution, the length of each chain is 23 million, the convergence rate

is plotted in Fig. 3.3. It indicates that when the random walk proposal distribution is used,

very long chains much be generated before the value of MPSRF converges to a value close to

one. In fact, the results of Fig. 3.3 suggest that the MPSRF value is still slightly decreasing

as the chain index increases even after generating chains of length 23 million. Metropolis-

Hastings algorithm with a random walk proposal distribution converges very slowly because

each new state proposed is obtained from a relatively small neighborhood around the current

state in order to obtain acceptable acceptance rates. This proposal distribution results in a

chain where the states are highly correlated as a function of the chain index [78, 6, 59], and,

in this case, it requires the generation of very long chains in order to generate a reasonable

characterization of the posterior pdf. Fig. 3.3 indicates that the chains converge very slowly,

but the value of MPSRF has almost stabilized at a value of roughly 2 from states 19 million

to 23 million. Thus, we combine the last 500 thousand samples from each chain to form

the posterior distribution. Fig. 3.4(a) presents the posterior distribution of the permeability

field obtained using random walk, this figure shows a higher uncertainty for the gridblocks

to the right of the water front (at the end of the history matching period) which is the
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Figure 3.3: Convergence rate calculated using 5 Markov chains of random walk. Only values
of MPSRF less than 25 are plotted.

22nd gridblock as shown in fig. 3.2(b). Fig. 3.4(b) presents the posterior distribution of the

prediction of the water production rate, it indicates that the true water production rate is

located slightly above the P75 percentile. Fig. 3.5 shows the normalized objective function

values that correspond to the states of the Markov chains. It indicates that the states in the

chains are highly correlated which means the chains are not well mixed.

3.3 The Preconditioned Crank-Nicolson (pCN) MCMC

For MCMC algorithms such as random walk and adaptive MCMC, the convergence

rate heavily depends on the dimension of the problem. For large scale problems, it is com-

putationally prohibitive to apply these MCMC methods. Proposed by Cotter et al. [16], the

Preconditioned Crank-Nicolson (pCN) MCMC is a method such that the number of itera-

tions required for convergence is almost invariant of the dimension of the vector of model

parameters when applied to discrete problems. This unique property makes it very useful

on large-dimensional problems. The pCN MCMC algorithm we applied here is the one im-

plemented by Iglesias et al. [50], they applied this algorithm on a reservoir model with 3600

gridblocks with a total of 110 Markov chains. The algorithm of the pCN MCMC is very

similar to the algorithm of random walk. The difference is that in the algorithm of pCN
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(a) Permeability distribution using random
walk.
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(b) Water production rate using random walk.

Figure 3.4: The posterior distribution of permeability (a) and water production rate prediction
(b) obtained using iterations from 22.5 to 23 million when applying random walk. In both of
the figures, the red curve represents the true case, the solid black curves from bottom to top
are P2, median and P98, the blue dashed curves from bottom to top are P25 and P75. In plot
(b), the vertical dashed line separates the historical and prediction periods.
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(a) Mixing using the random walk.

Figure 3.5: Normalized objective function value of every 1000th states from all the 5 parallel
Markov chains using random walk.
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MCMC, the proposal distribution at the current state m is given by

q(m, m̃) = N (
√

1− σ2m+ (1−
√

1− σ2)mpr, σ
2CM), (3.1)

where σ is a scalar and 0 < σ < 1, m̃ is the new proposed state, mpr is the prior mean

and CM is the prior covariance matrix. Similar to random walk, the proposal distribution

is symmetric, thus the acceptance probability only depends on the value of the target pdf.

In addition, the efficiency of the chain still depends on the value of σ, which can be chosen

the same way as random walk, i.e., run several short chains with different values of σ, the

one gives the acceptance rate close to 0.23 will be used. In this case, we set σ = 0.005; the

corresponding acceptance rate is 0.25.

For pCN MCMC, we initialize five parallel chains with the same initial states as

used in the random walk, the length of each chain is one million. Although the value of

MPSRF shown in Fig. 3.6 decreases much faster than is the case for the random walk

result (Fig. 3.3). The value of the MPSRF reduces to 5 at the end of one million iterations

where we stopped the chains. We use the last 200 thousand states in each of the chains to

form the posterior distribution. The posterior distribution of permeability field is shown in

Fig. 3.7(a), it indicates that spread of the permeability is very narrow and very different

from the results obtained using random walk, the permeability of the true case on gridblocks

23 to 31 are not covered in the spread. This is due to the fact that the chains did not

converge. Fig. 3.7(b) presents the posterior distribution of the water production rate, and

we note that the uncertainty obtained using the pCN MCMC is lower than the uncertainty

obtained using random walk. However, the water production rate generated from the true

case is located slightly above the 75 percentile, which is similar to the corresponding random

walk result. Fig. 3.8 shows the mixing of the chain, i.e., the normalized objective function

values that correspond to the states in the Markov chains. As shown in Fig. 3.8, the range

of the normalized objective function using the pCN MCMC is less than the range obtained

using random walk (Fig. 3.5), and the states in the chains are highly correlated because

46



5 6 7 8 9 10

x 10
5

0

5

10

15

20

25

Chain Index

M
P

S
R

F

Figure 3.6: Convergence rate calculated using 5 Markov chains of pCN MCMC. Only values
of MPSRF less than 25 are plotted.

using σ = 0.005 in Eq. 3.1 results in highly correlated states.

3.4 The Original Adaptive MCMC

In the original adaptive MCMC algorithm proposed by Haario et al. [40], the proposal

pdf is adapted using all the available samples in the chain. The adaptive MCMC algorithm is

the same as the Metropolis Hastings algorithm, except the covariance matrix in the proposal

pdf and the mean which is used to calculate the covariance matrix keep adapting as the

chain evolves. If the covariance matrix in the proposal pdf is adapted appropriately, the

adaptive MCMC can converge faster than random walk, as the adaptation process can gather

information on the distribution of the target pdf. Because the covariance matrix in the

proposal pdf keeps changing, the chain does not necessarily converge to the stationary pdf.

Roberts and Rosenthal [86] show that the adaptive MCMC will converge to the stationary

distribution under some assumptions. The most important assumption is that the adaptation

should diminish as the number of the states in the chain increases. The algorithms we applied

on this case is the one proposed by Haario et al. [40], where the complete algorithm is given

in Chapter 2 as Algorithm 2.4.

An approximation value of the scaling factor in the proposal distribution can be deter-
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(a) Permeability distribution using pCN
MCMC.
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(b) Water production rate using pCN MCMC.

Figure 3.7: The posterior distribution of permeability (a) and water production rate prediction
(b) obtained using iterations from 800 thousand to 1 million when applying pCN MCMC. In
both of the figures, the red curve represents the true case, the solid black curves from bottom
to top are P2, median and P98, the blue dashed curves from bottom to top are P25 and P75.
In plot (b), the vertical dashed line separates the historical and prediction periods.
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(a) Mixing using the pCN MCMC.

Figure 3.8: Normalized objective function value of every 1000th states from all the 5 parallel
Markov chains using pCN MCMC.
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mined using the same procedure as for random walk, i.e., we run several short experimental

chains with different values of the scaling factor, and then use the value of the scaling fac-

tor that has an acceptance rate around 0.23. In this method, the covariance matrix in the

proposal distribution keeps changing, the overall acceptance rate in the chain may change

as the chain evolves. For this case, we set the value of the scaling factor equal to 0.07. The

acceptance rate at the end of the chain is 0.28. We run 5 chains start from the same initial

states as used in random walk to check the convergence where the length of each chain is

one million. We plot the convergence rate in Fig. 3.9. The results of Fig. 3.9 suggests that

the chains converge much faster using adaptive MCMC than using random walk. Moreover,

the value of the MPSRF reduce to 2 at the end of one million iterations as opposed to

5 for pCN MCMC. We use the last 200 thousand states from each of the chains to form

the posterior distribution. Fig. 3.10(a) and Fig. 3.10(b) show the posterior distribution of

permeability field and water production rate using the adaptive MCMC. The posterior dis-

tributions shown in Fig. 3.10(a) and Fig. 3.10(b) are very similar to the result obtained using

random walk. For the posterior distribution presented in Fig. 3.10(b), the water production

rate generated using the true case is slightly higher than the 75 percentile, which is the same

as results obtained using random walk. Fig. 3.11 shows the normalized objective function

values that corresponding to the states in the Markov chains generated using the adaptive

MCMC. These results indicate less correlation between states in the chain than is evident

from the random walk or pCN MCMC.

3.5 Modified Adaptive MCMC [31]

The adaptive MCMC algorithms are a group of algorithms in which the covariance

matrix in the proposal pdf is adapted using all the available states in the chain. The modi-

fied adaptive MCMC algorithm is a variation of the original adaptive MCMC algorithm and

was applied to a two-phase reservoir flow problem by Fossum and Mannseth [30]. Compared

to the original adaptive MCMC algorithm, the proposal distribution in the modified adap-

tive MCMC algorithm is a Gaussian mixture model (GMM) with two different covariance

49



4 6 8 10

x 10
5

0

2

4

6

8

10

Chain Index

M
P

S
R

F

Figure 3.9: Convergence rate calculated using 5 Markov chains of the original adaptive MCMC.
Only values of MPSRF less than 8 are plotted.
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(a) Permeability distribution using the adaptive
MCMC.
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(b) Water production rate using the adaptive
MCMC.

Figure 3.10: The posterior distribution of permeability (a) and water production rate prediction
(b) obtained using iterations from 80 thousand to 1 million when applying the original adaptive
MCMC. In both of the figures, the red curve represents the true case, the solid black curves
from bottom to top are P2, median and P98, the blue dashed curves from bottom to top
are P25 and P75. In plot (b), the vertical dashed line separates the historical and prediction
periods.
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(a) Mixing using the adaptive MCMC.

Figure 3.11: Normalized objective function value of every 1,000 state from iteration 500
thousand to 1 million in all the 5 parallel Markov chains using the original adaptive MCMC.

matrices (Eq. 3.2), i.e., the prior covariance matrix and the adapted covariance matrix. Al-

though the proposal distribution is a GMM, it is symmetric and the acceptance probability

is calculated using the value of the target pdf as shown in Eq. 3.3 below.

Algorithm 3.1: Modified Adaptive MCMC Algorithm

1. Set i = 0 and β = 1, choose the initial state m0 and set CM 0 = CMprior.

2. Propose a new state m̃i+1 by sampling the proposal distribution which is given by

GMM.

m̃i+1 ∼ (1− β)N
(
mi,

2.382

Nm

CMi

)
+ βN

(
mi,

2.382

Nm

CMprior

)
(3.2)

3. Evaluate the acceptance probability (pdf) of the proposed state m̃i+1 by the

Metropolis-Hastings condition given by

α(mi, m̃i+1) = min
{

1,
π(m̃i+1)

π(mi)

}
. (3.3)

4. Generate a random number u from the uniform distribution U(0, 1).

5. If u ≤ α(mi, m̃i+1), the new proposed state is accepted and we set mi+1 = m̃i+1.

Otherwise, repeat the current state in the chain, i.e., set mi+1 = mi.
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6. Update the mean and covariance matrix using

µi+1 = µi +
1

i+ 1
(mi+1 − µi), (3.4)

CMi+1 =
i− 1

i
CMi +

1

i
((mi+1 − µi+1)(mi+1 − µi+1)

T ). (3.5)

7. Update β using

β =

 1 if O(mi+1) ≤ 50

0.1 if O(mi+1) > 50

8. Set i = i + 1 and return to step 2 until the chain has converged and we have

obtained the number of samples desired.

Here, the gain factor is set to 1
i
. To check the convergence, we run five parallel

Markov chains using the same initial states as used in random walk, the length of each chain

is one million. Fig. 3.12 presents the convergence rate, it indicates that using the modified

adaptive MCMC algorithm, the chains converge faster than does random walk, however,

the value of the MPSRF is still greater than 10 after 1 million iterations in the chain. It

converges slower than the original adaptive MCMC in which the proposal distribution is a

Gaussian with only the adapted covariance matrix. We combine the last 200,000 states from

each chain to form the posterior distribution shown in Fig. 3.13. Fig. 3.13(a) shows the

posterior distribution of the permeability field, it is very similar with results obtained using

random walk proposal. Fig. 3.13(b) presents the posterior distribution of water production

rate, it is also very similar with the posterior distribution obtained using random walk. For

both the modified adaptive MCMC and the random walk, the water production rate from

the true model is slightly higher than the 75 percentile. Fig. 3.14 shows the normalized

objective function values that correspond to the states in the Markov chains. The range of

the normalized objective function using the modified adaptive MCMC is very similar with

the range based on random walk, however, the result of Fig. 3.14 shows less correlation than

is evident in the Fig. 3.5 random walk result.
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Figure 3.12: Convergence rate calculated using 5 Markov chains of the modified adaptive
MCMC method. Only values of MPSRF less than 30 are plotted.
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(a) Permeability distribution using the modi-
fied adaptive MCMC.
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(b) Water production rate using the modified
adaptive MCMC.

Figure 3.13: The posterior distribution of permeability (a) and water production rate prediction
(b) obtained using iterations from 80 to 100 thousand when applying the modified adaptive
MCMC method. In both of the figures, the red curve represents the true case, the solid black
curves from bottom to top are P2, median and P98, the blue dashed curves from bottom
to top are P25 and P75. In plot (b), the vertical dashed lines separates the historical and
prediction periods.
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(a) Mixing using the modified adaptive
MCMC.

Figure 3.14: Normalized objective function value of every 1,000 state from iteration 500
thousand to 1 million in all the 5 parallel Markov chains using the modified adaptive MCMC
method.

3.6 Newton MCMC

A good MCMC algorithm should alow the Markov chain to explore the whole sample

space and find the region with high probability rapidly, i.e., the chain should mix fast and

converge to the stationary distribution in a computationally feasible number of iterations.

The gradient of the target distribution can be used to accelerate the convergence and also

improve the mixing of the Markov chain, because using a gradient can drive the Markov

chain to high probability regions in fewer iterations. Proposed by Martin et al. [66], Newton

MCMC is one of the methods that utilize the gradient information of the target pdf. For

Newton MCMC, a new state is proposed from a the Gaussian approximation based on local

gradient and Hessian of the objective function evaluated at the current state. The proposal

pdf is given by

q(m, m̃) = N (m− σ1H(m)−1i g(m), σ2H(m)−1), (3.6)

where m is the current state, m̃ is the new proposed state, g(m) = ∇O(m) and H(m) =

∇2O(m). The terms σ1 and σ are two scaling factors which can be turned in the same way

as random walk. Note this proposal pdf given by Eq. 3.6 is not symmetric, so the acceptance
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probability should be calculated using Eq. 2.38. Details on the Newton MCMC algorithm

are given in Chapter 2 Algorithm 2.5.

In this case we set σ1 = 0.0001 and σ = 0.25, those values were chosen based on

several experiments in which we generated chains of length 4000 with different values of σ1

and σ, and then select the values that gave an acceptance rate close to 0.23. Because the

covariance matrix in the proposal distribution is changing as the chain evolves, the final

acceptance rate of the chain could be different from the acceptance rate of the short chain

in the experiment. In this case, the acceptance rate of the whole chain is 0.45, which is

between the suggested range [66], i.e., from 30% to 50%. To check the convergence rate,

we initiate five parallel Markov chains with the same initial states as random walk, the

size of each chain is one million. The convergence rate is plotted in Fig. 3.15. Compared

with random walk, Newton MCMC converges much faster. The value of MPSRF reduces

to 1.2 at the 300 thousand iteration, and it has almost stabilized at a value of roughly 1.1

after 600 thousand iterations. Thus, we combine states from 600 thousand to 800 thousand

iterations in all five Markov chains to form the posterior distribution. Fig. 3.16(a) presents

the posterior distribution of the permeability field using Newton MCMC, this figure shows a

lower permeability on gridblocks on the right of the 22nd gridblock (location of water front

at the end of the history matching period) than results obtained using random walk. The

posterior distribution of water production rate from the producer is shown in Fig. 3.16(b)

indicates bias; Even though the width of the spread generated using Newton MCMC is

similar with the one obtained using random walk, the water production rate generated from

the true case is not in the spread which is very different from the results obtained using

random walk. Overall, although Newton MCMC converges faster and the value of the

MPSRF is very close to unity, the posterior distribution shown in Fig. 3.16 is different from

the posterior distribution obtained using random walk. There is no clear reason why this

occurs possibly, the reason could be that all the chains converge to a high probability region

of the target pdf, and they are all trapped in this region. Fig. 3.17 presents the mixing of

the chains, i.e., the normalized objective function values that correspond to the states of the

55



2 4 6 8 10

x 10
5

1

1.1

1.2

1.3

1.4

1.5

1.6

Chain Index

M
P

S
R

F

Figure 3.15: Convergence rate calculated using 5 Markov chains of the Newton MCMC. Only
values of MPSRF less than 2 are plotted.

chains. As we mentioned previous, the mixing of states generated using Newton MCMC is

better than the results obtained using random walk, i.e., the chains constructed with the

Newton MCMC exhibits much less correlation than is evident in the random walk.

3.7 Two-level MCMC Method

The two-level MCMC method is developed in this work, the detailed description of

this method is discussed in the next chapter. Here, we only show the results obtained using

the two-level MCMC method on this case and compare the results with the results obtained

using other MCMC methods. The idea of the two-level MCMC method is that we design

a proposal distribution which is very similar to the target pdf, and use the Metropolis-

Hastings algorithm with that proposal distribution to sample the target pdf. In this way,

we can sample a multimodal target pdf efficiently. For the two-level MCMC method, we

run 5 parallel Markov chains with each chain starting from an sample randomly generated

from the GMM constructed at the first level of the algorithm. The convergence rate of the

5 parallel chains is shown in Fig. 3.18, where it indicates that the chains converge after

about 15 thousand iterations. States generated using the two-level MCMC method converge

much faster than any of other MCMC methods discussed in this chapter. Based on the
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(a) Permeability distribution using the Newton
MCMC.
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(b) Water production rate using the Newton
MCMC.

Figure 3.16: The posterior distribution of permeability (a) and water production rate prediction
(b) obtained using iterations from 15 to 25 thousand when applying the Newton method. In
both of the figures, the red curve represents the true case, the solid black curves from bottom
to top are P2, median and P98, the blue dashed curves from bottom to top are P25 and P75.
In plot (b), the vertical dashed lines separates the historical and prediction periods.
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(a) Mixing using the Newton MCMC.

Figure 3.17: Normalized objective function value of every 1,000 state from iteration 500
thousand to 1 million in all the 5 parallel Markov chains using the Newton MCMC.
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convergence rate shown in Fig. 3.18, we use states from 15 thousand to 25 thousand in all

chains to generate the posterior distribution. Fig. 3.19(a) presents the posterior distribution

of the permeability field, it indicates that the marginal pdf’s of gridblock permeabilities

obtained using the two-level MCMC method is fairly similar to the results obtained using

random walk. Both of them show higher uncertainty in permeability to the right of the

water front (at the end of the historical period) than the uncertainty in permeability to the

left of the water front. The posterior distribution of the water production rate is presented

in Fig. 3.19(b), the uncertainty obtained using the two-level MCMC is slightly higher than

the uncertainty obtained using random walk. For both methods, the water production

rate of the true model is slightly above the 75 percentile. Fig. 3.20 shows the normalized

objective function values that correspond to the states of the Markov chains. Comparing

Fig. 3.20 with those of Fig. 3.5, random walk proposal exhibits far more correlation than

is shown in the two-level MCMC results. This result arises because in random walk new

states are generated from a relatively small neighborhood of the current state which can

induce long correlations in the chain, whereas, for the two-level MCMC method, states are

generated independently from the proposal distribution which tens to eliminate correlation

and promote mixing. Overall, results obtained using two-level MCMC method are similar

to results obtained using random walk; however, states generated using two-level MCMC

converges much faster and the computational cost using two-level MCMC method is much

lower than any other methods tested in this chapter.

58



0 0.5 1 1.5 2

x 10
5

0

2

4

6

8

10

Chain Index

M
P

S
R

F

Figure 3.18: Convergence rate calculated using 5 Markov chains of the two-level MCMC
method. Only values of MPSRF less than 8 are plotted.
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(a) Permeability distribution using the two-
level MCMC.
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(b) Water production rate using the two-level
MCMC.

Figure 3.19: The posterior distribution of permeability (a) and water production rate prediction
(b) obtained using iterations from 15 to 25 thousand when applying the two-level MCMC
method. In both of the figures, the red curve represents the true case, the solid black curves
from bottom to top are P2, median and P98, the blue dashed curves from bottom to top
are P25 and P75. In plot (b), the vertical dashed lines separates the historical and prediction
periods.
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(a) Mixing using the Newton MCMC.

Figure 3.20: (a) Normalized objective function value of states in all the 5 parallel Markov
chains using the two-level MCMC method.
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(a) Mean of the permeability field.
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(b) Variance of the permeability field.

Figure 3.21: Comparison of mean (a) and covariance (b) of the permeability field using different
MCMC algorithms. The vertical dashed lines denotes the 22nd gridblock, which is the location
of water front at the end of the history matching period.

3.8 Overall Comparison

Fig. 3.21 presents the values of the mean and variance (var[lnk]) of log-permeability

for all the MCMC methods considered in this chapter. We assume the results generated

from the five chains are the correct one, although there is no way to prove this is the

case. According to the results shown in Fig. 3.21(a), the means are fairly similar except for

gridblocks 1, 2, and gridblocks on the right of 22 (position of waterfront at the end of history

matching period). Of all results those obtained using pCN MCMC and Newton MCMC are

the most different from the results obtained using random walk. Fig. 3.21(b) indicates that,

pCN MCMC and Newton MCMC result in the largest under estimation of log-permeability.

For the other MCMC methods except pCN MCMC and Newton MCMC, the variances of

gridblock log-permeabilities are fairly similar, and the uncertainty for gridblocks on the right

of the 22nd gridblock are much higher than the gridblocks on the left of the 22nd gridblock.

Fig. 3.22 presents the values of the mean and variance of oil production rate for all the

MCMC methods considered in this chapter. Fig. 3.22(a) indicates the mean of oil production

rate obtained using all the MCMC methods are very similar. According to results shown

in Fig. 3.22(b), pCN MCMC underestimated the var[q0], two-level MCMC and modified
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(a) Mean of oil production rate.
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(b) Variance of oil production rate.

Figure 3.22: Comparison of mean (a) and covariance (b) of oil production rate using different
MCMC algorithms. The vertical dashed lines separates the historical and prediction periods.

adaptive MCMC result in var[q0] fairly close to the variance obtained from random walk,

although a little overestimation (two-level MCMC) and underestimation (modified adaptive

MCMC) are observed for the forecast period.
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CHAPTER 4

TWO-LEVEL MCMC METHOD

To obtain a computationally efficiency MCMC method, we develop in this chapter a

procedure to generate a proposal distribution that is a reasonable approximation of the tar-

get distribution. As in [78], the idea is that if one applies the Metropolis-Hastings algorithm

with a proposal distribution that is close to the target distribution, it is expected that the

chain will converge quickly so that we can obtain a correct representation of the target distri-

bution with relatively short chains and thus significantly enhance computational efficiency.

Computational efficiency is of paramount importance for problems of interest to us where

m is a vector of reservoir model parameters, the target pdf, π(m) is the posterior pdf for m

conditional to observed data and the evaluation of the acceptance probability requires a run

of a reservoir simulator. As discussed in detail below, our proposal distribution is a Gaussian

mixture model which is constructed using modes of the target pdf where these modes are

estimated by history matching the observed data starting with a set of initial guesses.

4.1 Posterior pdf and objective function

For problems of interest in assessing the uncertainty in reservoir description and

performance, it is common to approximate the prior pdf for the Nm-dimensional vector of

model parameters, m, as a Gaussian with mean mpr and covariance matrix CM ; it is also

customarily assumed that the measurement error is Gaussian with mean zero and covariance

matrix CD. Under the preceding two assumptions the posterior pdf for m given the vector

of Nd-dimensional vector of observed data, dobs, is given by

π(m) = f(m|dobs) = aexp(−O(m)), (4.1)
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[79] where a is the normalizing constant and O(m) is the objective function defined by

O(m) =
1

2
(m−mpr)

TC−1M (m−mpr) +
1

2
(g(m)− dobs)TC−1D (g(m)− dobs). (4.2)

Here g(m) is the data predicted with the forward model (reservoir simulator in our appli-

cations) using the model m. If m is the vector of model parameters and g(m) involves no

model error, e.g., represents exact physics, the difference between g(m) and dobs is equal to

the measurement error.

The third example that we present in this work pertains to the IC-fault model which

was considered previously by [70]. The authors used the posterior pdf of Eq. 4.1 as the target

pdf with O(m) defined by

O(m) =
1

Nd

(g(m)− dobs)TC−1D (g(m)− dobs), (4.3)

as the target pdf. Thus, in order to compare the results on uncertainty quantification

generated with our two-level MCMC algorithm to those of [70], which were obtained using a

population MCMC algorithm, the objective function of Eq. 4.3 is used to define the posterior

pdf. This corresponds to seeking maximum likelihood estimates when we build our Gaussian

mixture model as described below, where we use the plural form to indicate that O(m) may

have multiple local minima.

4.2 Two-level MCMC Algorithm

In the first level of our MCMC algorithm, we approximate the target pdf, π(m) by

a Gaussian mixture model (GMM). At the second level, this GMM is used as the proposal

distribution in the Metropolis-Hasting Algorithm, i.e., Algorithm 2.1.

4.2.1 Gaussian mixture model

In the two-level MCMC method, the proposal distribution is a Gaussian mixture

model (GMM). GMM is a probability density function which is a weighted summation of
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Gaussian probability densities, and it can be represented by

p(m) =
k∑
`=1

w`N (m∗` , C`) =
k∑
`=1

w`G`(m|m∗` , C`), (4.4)

where p(m) is constructed so that it gives a reasonable approximation of the true pdf for m.

In Eq. 4.4, G`(m|m∗` , C`) is a Gaussian density function of the form

G`(m|m∗` , C`) =
1√

(2π)Nm |C`|
exp(−1

2
(m−m∗`)TC−1` (m−m∗`)), (4.5)

with mean vector m∗` and covariance matrix C`. Here |C`| denotes the determinant of the

covariance matrix C`. It is important to note that the weights w`’s must satisfy
k∑̀
=1

w` = 1

is order for p(m) to be a pdf.

To generate a Gaussian mixture model (GMM) which approximates the target pdf of

Eq. 4.1 we apply the algorithm below.

Algorithm 4.1: Approximating the Target Distribution with a Gaussian Mixture

Model.

1. For ` = 1, 2, · · ·n1, where n1 is the number of initial guesses, generate an initial guess

m̃0
` and minimize O(m) to find a mode, m∗` of the pdf π(m) given in Eq. 4.1. If the prior

pdf is the Gaussian N (mpr, CM), the m̃0
`s can be generated as independent samples

of this prior Gaussian. Given an initial guess, the minimum of O(m) is obtained by

the BFGS quasi-Newton method [100, 32]. In our examples, we use an in-house trust-

region BFGS code [13] which approximates the Hessian itself, not the inverse Hessian.

At the end of each optimization process, we record the quasi-Newton estimate of the

Hessian, Bk(m
∗
`) and the inverse Hessian B−1k (m∗`) is used as the covariance matrix for

the Gaussian distribution with mean m∗` in the Gaussian mixture model.

2. As for large scale problems, it is possible to generate a large number of minima, where

many of them are close to each other [79], we may wish to reduce the number of

Gaussians in the Gaussian mixture model to k where k << n1. A fundamental result
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of [93], [32] and [79] suggests that at a minimizer, the normalized objective function

defined by

ON(m) =
2O(m)

Nd

(4.6)

with O(m) given by Eq. 4.2 should satisfy the following condition:

ON ≤ 1 + 5

√
2

Nd

. (4.7)

In our examples, to further reduce the number of Gaussians in the Gaussian mixture

model we retain only minimizing models that satisfy O(m∗`) ≤ 1.5 which in the exam-

ples considered (except for the toy problem) is only slightly less than the upper bound

of the Eq. 4.7. For simplicity, we denote the set of models retained at the end of this

step by m∗` , ` = 1, 2, · · ·n and in the next step we further reduce this set by k means

clustering.

3. For the user-chosen value of k, apply k-medoids clustering [60] to obtain clusters with

the set of centroids given by {m̃∗1, · · · , m̃∗k} where k is the number of clusters. Then, for

` = 1, 2, · · · k, we replace each centroid m̃∗` by the minimizing model from step 2 that is

closest to m̃∗` and in the `th cluster. We now simply denote the remaining minimizing

models by m∗` , ` = 1, 2, · · · k. Then the GMM is given by

p(m) =
k∑
`=1

w`N (m∗` , C`), (4.8)

where m∗` is the `th mode and C` = B−1` (m∗`) where w` is set equal to the fraction of

the minimizing models in the `th cluster divided by the total number of minimizing

models retained at the end of step 2.

To sample the posterior pdf, π(m), we use the Metropolis-Hastings algorithm, Algo-

rithm 2.1 with the GMM constructed in Algorithm 4.1 as the proposal distribution, i.e., the
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probability of proposing a transition from state mi to the state m̃i+1 is given by

q(mi, m̃i+1) = p(m̃i+1) =
k∑
`=1

w`G`(m̃i+1|m∗` , C`). (4.9)

It is important to note that the proposal distribution of Eq. 4.9 is independent of mi, which

promotes mixing in the chain. Because the covariance matrix obtained from the quasi-

Newton trust region optimization method is not the exact covariance matrix, we use proposed

samples to update each Gaussian in the Gaussian mixture model. The updating procedure

used is similar to the rank-µ-update in CMA (Covariance Matrix Adaptation) Evolution

Strategy (ES) proposed by [41, 42].

Algorithm 4.2 - Two Level MCMC

1. Apply Algorithm 4.1 to obtain a Gaussian mixture model. This step represents

Level 1 in its entirety and steps 2-6 represent Level 2.

2. Set i = 0 and choose mi = m0, the initial state in the Markov chain, which is

generated randomly from the proposal pdf.

3. Propose a new state, m̃i+1, with probability q(mi, m̃i+1), i.e., m̃i+1 is obtained by

sampling the proposal pdf of Eq. 4.9.

4. Compute the probability of accepting the transition from mi to m̃i+1, i.e., the

probability of accepting m̃i+1 as the next state in the Markov chain as

α(mi, m̃i+1) = min
{

1,
π(m̃i+1))q(m̃i+1,mi)

π(mi)q(mi, m̃i+1)

}
. (4.10)

5. Sample a random number u from a uniform distribution on [0, 1]. If u ≤ α(mi, m̃i+1),

then the proposed state m̃i+1 is accepted as the next state in the Markov chain, i.e. mi+1 =

m̃i+1. If u > α(mi, m̃i+1), repeat the old state in the chain, i.e., set mi+1 = mi. Find the

closest Gaussian mode to mi+1, i.e., find the Gaussian index in the GMM such that

j = arg min
k
||mi+1 −m∗k||. (4.11)
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Update the covariance matrix associated with the jth Gaussian in the GMM follow [40] using

C
(i+1)
j = C

(i)
j + βi[(mi+1 −m∗j)(mi+1 −m∗j)T − C

(i)
j ]. (4.12)

Here, m∗j is the mean associated with the jth Gaussian in the GMM and C
(i+1)
j is the

covariance matrix associated with the jth Gaussian in the i + 1th iteration. The terms βi

are defined as a gain factor sequence. It is required that βi satisfies the following conditions:

∞∑
i=1

βi =∞ and
∞∑
i=1

β1+δ
i <∞, (4.13)

for some δ ∈ (0, 1] in order to show that the Markov chain converges to its stationary pdf.

[40]. Haario et al. [40] also suggested setting βi = O(1
i
). In this paper, for low dimensional

cases (test problem one and three) we use βi = 1
i
, for a higher dimensional case (test

problem two), we use βi = C
i
, where the value C is chosen such that the overall acceptance

rate of the Markov chain is between 15% and 50% [85]. We chose the value of C based on

some experiments with short chains in order to attempt to find a value of C that gives an

acceptance rate between 15% and 50% . The maximum value of βi is 0.01.

6. Set i = i + 1 and go to step 3, until the value of the convergence rate (MPSRF)

close to 1 (Chapter 2, section 2.4.7).

Note to sample the Gaussian mixture model of Eq. 4.9, we first define the following

subintervals of the interval [0, 1]: I1 = [0, w1] and Ij = (wj−1, wj] for j = 1, 2, · · · k. Then to

sample the GMM of Eq. 14, we generate a sample z from the uniform distribution on [0, 1]

and find the I` that contains z. To obtain our sample of the GMM, we then sample the `th

Gaussian, N (m∗` , C`) = G`(m|m∗` , C`). A sample of this multivariate Gaussian can be done

using the Cholesky decomposition of covariance matrix [2, 79] for reasonably sized problems.

For very large problems, by sequential Gaussian simulation [17] or, preferably, with the FFT

[83] a sample of N (m∗` , C`) can be generated.
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4.3 Verification and Applications

We tested our two-level MCMC method on five example problems. The first one

(Example (1a)) is a simple non-linear problem, which has only one model parameter and

one observation data, but the posterior pdf has two modes. In this example, the exact

posterior distribution is known, so it is used to demonstrate that the two-level MCMC

method can sample the target pdf correctly and relatively efficiently. Our second example

is a modification of Example 1a which is then used to illustrate the importance of using

covariance matrix adaptation. The third example is a 1-D horizontal waterflooding case,

and we compare the results obtained from the two-level MCMC method with the random

walk method which can sample the target pdf reasonably accurately given a sufficiently long

Markov chain. The fourth example is the IC fault Model. For this problem the posterior

pdf is known to be multimodal [11, 10]. We compare our results with the results from the

population MCMC method which is known to be able to sample a multimodal target pdf

[55]. The last example is a 2D synthetic case. In all of these three examples, we run multiple

chains and use the convergence factor MPSRF to monitor the convergence of the chains.

4.3.1 Example 1a

We apply the two-level MCMC method to a simple non-linear problem [99]. The

forward model is given by

d(m) = g(m, t) = 1− 4.5(m− 2π/3)2 + (t− 1) sin(m), (4.14)

where m is a 1-D model parameter which is a scalar and t is time. A single time step data

is used with t = 1. The prior model is a normal distribution N (2.3, 0.04). The true data

is generated using t = 1 and m = 1.88 in Eq. 4.14. We add random noise generated from

the normal distribution N (0, 0.01) to the true data to generate the observation data dobs. In

this case, we have a Gaussian prior and Gaussian measurement error. So by Bayes theorem,
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the target pdf is the posterior distribution given by

π(m) = f(m | dobs) = aexp(−O(m)), (4.15)

where a is the normalizing constant and the objective function O(m) is given by

O(m) = 0.5

((
m− 2.3

0.2

)2

+

(
g(m, 1)− dobs

0.1

)2
)

(4.16)

We run the two-level MCMC algorithm on this simple case using 30 different ini-

tial guesses generated randomly from the prior pdf. After optimization, 25 of the initial

guesses converge to 2.3077 with variance Ck = 0.0025 and for the other 5 initial guesses,

the optimization algorithm converged to 1.9141 with variance Ck = 0.0035. Based on the

optimization results, the GMM is given by

p(x) =
25

30
N (2.3077, 0.0025) +

5

30
N (1.9141, 0.0035). (4.17)

In this problem Eq. 4.17 represents the proposal distribution for Algorithm 4.1. In this

example, the gradient can be calculated explicitly and only 180 evaluations of the objective

function are required to do all 30 optimization runs.

The blue curve in Fig. 4.1 represents the target pdf distribution, while the black

curve in Fig. 4.1 is the GMM represented the proposal distribution of Eq. 4.17. For two-level

MCMC, using this GMM distribution as the proposal pdf, we run 5 parallel Markov chains

starting from different initial states which are generated randomly by sampling the initial

GMM of Eq. 4.15. The length of each chain is 10 thousand, which we will show is much

longer than is needed to obtain a reasonable sampling of the posterior pdf. In order to check

the convergence of these 5 parallel Markov chains, we calculate the convergence rate from

the beginning of each Markov chain. Fig. 4.2(a) shows that the MPSRF stabilizes at a value

close to one by the 500th state in the Markov chain, which suggests the chains have converged

to the target pdf. This suggests from state 500 onward, we are correctly sampling the target
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Figure 4.1: Comparison of target pdf in blue and proposal (GMM) pdf in black for example
1a.

pdf. For a one parameter problem, we believe 1,500 samples from each chain is sufficient to

construct the pdf, by monitoring the MPSRF, we could stop the chains after constructing

2,000 states in each chain. However, as we wish to validate the utility of MPSRF, in all

examples, we generate far more states that are necessary after the value of MPSRF indicates

convergence of the chains. Thus, by combining the states corresponding to an index of 500

to 2000 in all chains, we should obtain a good representation of the posterior distribution,

and the results of Fig. 4.2(b) indicates that we do. The overall acceptance rate in this case is

80%. In Fig. 4.3, we show that the value of the normalized objective function ON obtained

at accepted states in the 5 parallel chains. In Fig. 4.3, and all similar figures in this paper,

we plot all states in the first chain followed by the second chain and so on, where the four

red vertical lines demarcate the point where one chain ends and another chain begins. The

range of the normalized objective function value changes from close to 0 to 5, and there is

no obvious trend in the plot of Fig. 4.3, which indicates that the chain is well mixed.

4.3.2 Example 1b

To show the value of adapting the covariance matrix, we apply the two-level MCMC
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(b) Posterior Distribution.

Figure 4.2: Results of two-level MCMC, Example 1a: (a) MPSRF versus chain index calculated
using 5 Markov chains. (b) Comparison of the posterior pdf with the distribution obtained using
every 2nd samples from the 500th to the 2000th state from all of the 5 Markov chains.
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Figure 4.3: Value of normalized objective function of every 125th sample of each of the 5
Markov chains using two-level MCMC, Example 1a.
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algorithm on a modification of Example 1a. For this new case, we change the prior model

to a different normal distribution N (2.1, 0.04). The true data is generated using t = 1 and

m = 1.66 in Eq. 4.14. We again add random noise generated from N (0, 0.01) to the true data

to generate the observation data dobs = 0.0621. Using 30 different initial guesses generated

randomly from the prior pdf, we run the two-level MCMC algorithm. After the optimization

process, 16 of the 30 initial guesses converge to 1.6448 with variance Ck = 0.0006 and for

the other 14 initial guesses, the optimization algorithm converges to 2.5442 with variance

Ck = 0.0006. To show the value of adapting the covariance matrix, we significantly reduce

both of the variances to Ck = 0.00005, so that, our proposal pdf is given by

p(x) =
16

30
N (1.6448, 0.00005) +

14

30
N (2.5442, 0.00005)

=
16

30
G(m|1.6448, 0.00005) +

14

30
G(m|2.5442, 0.00005).

(4.18)

The sampling results without the adaptation of the covariance matrix are considered first.

To check the convergence of the chains, we run 5 Markov chains starting from five different

initial guesses generated from Eq. 4.18. The behavior of the MPSRF shown in Fig. 4.4

is erratic and we cannot definitively conclude that we have obtained convergence of the 5

Markov chains. Here, we use states from the 2,000th iteration to the 8,000th iteration to

generate the posterior pdf and compare it with the target pdf in Fig. 4.5(b). Note that we

obtain a poor approximation (red curve in Fig. 4.5(b)) to the true posterior pdf shown by the

black curve in Fig. 4.5(b). This poor approximation result from the GMM (Eq. 4.18) shown

in Fig. 4.5(a) is very different from the target pdf. Specifically, the approximate pdf shown

in blue does not adequately represent the tails of the two Gaussians of the target pdf. This

occurs because the covariances of Gaussians which define the proposal distribution of Eq. 4.18

(Fig. 4.5(a)) are two small so that from a practical viewpoint the chain is not irreducible,

i.e., we effectively cannot sample from the tails of the target distribution because we cannot

propose states from the tails of the Gaussians making up the target pdf. Fig. 4.5(b) indicates

that we did not sample the target pdf correctly when we used Eq. 4.18 as the proposal pdf
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(a) Convergence Rate.

Figure 4.4: Example 1b, results with no covariance matrix adaptation: convergence rate of the
Markov chain generated without covariance matrix adaptation.

without covariance matrix adaptation. However, we are able to correct the initial GMM of

Eq. 4.18 with covariance matrix adaptation so that as the iteration proceed, the proposal

pdf becomes more similar to the target pdf. The distribution of the proposed GMM after

adaptation is shown Fig. 4.7(a). Note that with covariance matrix adaptation, the final

GMM proposal pdf (blue) in Fig. 4.7(a) is close to the target pdf shown in black, and

because of this, by using covariance matrix adaptation, we were able to obtain a virtually

exact representation of the posterior pdf as shown in Fig. 4.7(b), whereas with no covariance

matrix adaptation the MCMC algorithm resulted in a relatively poor representation of the

target pdf; see Fig. 4.5(b). In Fig. 4.7(b), we compare the posterior pdf using states from

the 1000th iteration to the 3000th iteration with the target pdf. The results of Fig. 4.7(b)

indicate that we can obtain a very good representation of the target pdf using two-level

MCMC with covariance matrix adaptation. The overall acceptance rate in this case is 0.78.

For comparison, we also use random walk to approximate the posterior pdf discus-

sion. The scaling factor σ in the random walk proposal is chosen such that the acceptance

rate of the chain is around 0.234. To estimate an approximate value of σ that roughly

achieves this acceptance ratio, we run five experimental chains each with 2000 states. The
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Figure 4.5: Example 1b, results with no covariance matrix adaptation: (a) comparison of target
pdf in black and the initial proposal (GMM) pdf in blue. (b) Comparison between the target
pdf and the distribution of every second samples from the 2000th iteration to 8000th iteration
using all five chains. In (b), the black curve represents the target pdf, the red curve represents
the sampled pdf.
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Figure 4.6: convergence rate (MPSRF) with covariance matrix adaptation.
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(a) GMM after Adaptation.
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Figure 4.7: Example 1b, results using covariance matrix adaptation: comparison of target pdf
in black and proposal (GMM) pdf at the end of adaptation in blue with covariance matrix
adaptation. (b) is the comparison between the target pdf and the distribution of every 2nd
samples from the 1000th iteration to 3000th iteration using all five chains. In (b), the black
curve represents the target pdf, the red curve represents the sampled pdf.

value of σ for each chain is 0.5, 0.6, 0.7, 1.0, and the acceptance rate for each chain is

0.285, 0.251, 0.221, 0.157, respectively. Based on these results, we use σ = 0.7. In order

to monitor convergence, we also initialize five parallel chains where the five initial guesses

are generated randomly by sampling the prior distribution. The convergence rate is shown

in Fig. 4.8(a). Fig. 4.8(a) indicate that for this case, random walk does not converge. Nev-

ertheless, we use states from the 10,000th iteration to the 30,000th iteration to generate

the posterior distribution shown in Fig. 4.8(b). Note that the posterior pdf generated using

random walk is different from the target pdf, which indicates that random walk does not

sample correctly. More specifically, each individual chain actually generates samples from

only one of the Gaussians in the target pdf. This means if we generated only one chain, our

approximation to the target pdf would have only a single mode.

4.3.3 Example 2

Reservoir model description: This test case is the two-phase 1-D horizontal water-

flooding example considered by Emerick and Reynolds [23]. As shown in Fig. 4.9, the number
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Figure 4.8: Example 1b: results using random walk proposal: (a) MPSRF versus chain index
calculated using 5 Markov chains. (b) Comparison of the posterior pdf with the distribution
obtained using samples from the 10,000th to the 30,000th state from all of the 5 Markov
chains. In (b), the black curve represents the target pdf, the red curve represents the sampled
pdf.

of gridblocks is 31, and each gridblock is 50 ft× 50 ft× 50 ft. The porosity is uniform and

equal to 0.25; the oil viscosity is 2 cp; the water viscosity is 1 cp. The compressibility of wa-

ter, oil and rock, respectively, is given by 10−6 psi−1, 10−5 psi−1 and 10−6 psi−1, respectively.

The water injector in the first gridblock is operated at a constant bottomhole pressure of

4,000 psi. There is a producer in the last gridblock, which is operated at a constant bottom-

hole pressure of 3,000 psi. In the center of the gridblock, there is a monitor well. The initial

reservoir pressure is 3500 psi. The model parameters are log-permeability of each gridblock,

the prior mean for ln(k) is 5.0 and the prior variance is 1.0. The true permeability field was

generated using an exponential covariance function with a practical range equal to 500 ft,

which is equal to ten times the width of a gridblock. Fig. 4.10(a) shows the true permeability

field, which is the same as the one used by Emerick and Reynolds [23]. Fig. 4.10(b) presents

the water saturation distribution at the end of historical period (blue squares) and at the

end of the forecast period (red circle). The historical period is 360 days, the total reservoir

life is 750 days. The observation data is the pressure at the monitor well, which is measured

every 30 days throughout the 360 days historical period (same as the observation data used
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Figure 4.9: Gridblocks and well locations.

(a) Permeability of the true model. (b) Water saturation distribution.

Figure 4.10: Example 2: (a) the permeability distribution of the true model; (b) the water
saturation distribution at the end of history matching period (blue) and at the end of the
forecast period (red). In both plots, the vertical dashed line is the location of the monitor well.

in [23]). Random Gaussian measurement error is added to the pressure data generated by

the true model with mean equal to zero and standard deviation equal to 1 psi. Note that the

results of Fig. 4.10(b) indicate that no water has broken through at the right-end production

well at the end of the 360 day historical period.

As the prior pdf is Gaussian and the measurement errors are Gaussian, the posterior

pdf is given by Eq. 4.1, where the objective function O(m) is given by Eq. 4.2.

Results: We run the two-level MCMC algorithm on this 1-D reservoir model using

200 initial guesses which are 200 samples generated from the prior distribution of the model

parameters, N (mprior, CM). The computational time required to generate one adjoint so-

lution for evaluation of the gradient in the BFGS optimization algorithm is approximately

equal to 0.3 the time required for one forward reservoir simulation run. Based on this equiv-

alence, the average number of equivalent reservoir simulation runs required to estimate each
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mode of the posterior is 52 reservoir simulation runs. As we estimated 200 modes of the

posterior pdf for this example in order to provide an exhaustive experiment, 10,400 reservoir

simulation runs were used to estimate the initial Gaussian mixture model. In practice, we

would likely have to settle for generating fewer modes to enhance computational efficiency.

In this case, we use all minimizing models which result in a normalized objective function

value less than 1.5 to generate 25 modes by k-medoids clustering, see Algorithm 4.1. During

sampling in Algorithm 4.2, to increase the sampling efficiency, we restrict the covariance

matrix to 0.1×C` in the GMM. The scale factor 0.1 is chosen by running short experiment

chains (Metropolis-Hastings algorithm without adaptation) with 200 iterations. We use scale

factor 0.1 because for chains with a scale factor larger than 0.1 do not have samples with a

normalized objective function value comparable to the objective function value at the mode

is accepted as a state in the chain. The gain factor is defined as βi = 100
i

, and the overall

acceptance rate is around 0.22. In this case, we use C = 100 because it gives an acceptance

rate between 15% and 50%. In order to check the convergence of the chain, we generate

5 parallel Markov chains with each chain starting from an independent sample randomly

generated from the GMM constructed at the first stage of the algorithm. Fig. 4.11 shows

the chain convergence rate, i.e., the value of MPSRF versus the chain index. The results

of Fig. 4.11 indicate that the chains converge after about 15 thousand iterations. Thus, we

use states from 15 thousand to 25 thousand in all chains to generate the posterior distri-

bution. Fig. 4.12 presents the posterior distribution of the permeability field and predicted

water production rate (percentiles P5, P25, P50, P75, P95). Fig. 4.12(a) indicates that the

uncertainty in permeability ahead of water front (at the end of historical period) is higher

than the uncertainty in permeability behind the water front. In Fig. 4.12(b), the water

production rate of the true model is slightly above the P75 curve. The vertical dashed line

in Fig. 4.12(b) and similar figures separates the historical period from the prediction period.

Note that even though the water rate at the producer was zero during the history matching

period and these zero rates were not used as observed data to be matched, the uncertainty

bands obtained from the MCMC characterization of the posterior pdf of the permeability
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Figure 4.11: Convergence rate calculated using 5 Markov chains for example 2 using Algorithm
4.2. Only values of MPSRF less than 10 are plotted.

field encompass the prediction of the water rate from the true model.

In order to verify that we used enough samples to generate the posterior distribution,

Fig. 4.13 compares results obtained using all states with indices from 15 thousand to 25

thousand with results obtained using all states with indices from 60 thousand to 200 thou-

sand. Fig. 4.13 indicate that the posterior distribution of the water production rate obtained

from the longer Markov chain and the shorter Markov chain are quite close, and that the

posterior distribution of permeability obtained using samples in the longer Markov chain and

the shorter Markov chain are very close. This suggests that samples (states) corresponding

to indices from 15,000 to 25,000 are sufficient to characterize the posterior pdf.

The results using random walk are used to compare with the two-level MCMC

method. For random walk, the value of σ is 0.005. This value was chosen based on sev-

eral experiments in which we generated chains of length 2000 with different values of σ,

σ = 0.05, 0.01, 0.007, 0.005, 0.001 and chose the value which gave an acceptance rate closest

to 0.234. Specifically, we ran five experimental chains with 2000 states. The value of σ for

each chain is 0.05, 0.01, 0.007, 0.005, 0.001, respectively, and the acceptance rate for each

chain respectively is 0.003, 0.08, 0.15, 0.25, 0.74. For random walk, we also initialize five
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(a) Permeability distribution using the two-
level
MCMC method.
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(b) Water production rate using the two-level
MCMC method.

Figure 4.12: The posterior distribution of permeability (a) and water production rate prediction
(b) obtained using iterations from 15 to 25 thousand when applying the two-level MCMC
method for example 2. In both of the figures, the red curve represents the true case, the
solid black curves from bottom to top are P5, median and P95, the blue dashed curves from
bottom to top are P25 and P75. In plot (b), the vertical dashed lines separates the historical
and prediction periods.

parallel Markov chains but in this case, the initial guesses are generated randomly from the

prior Gaussian distribution, the size of each chain is 23 million and we plotted the conver-

gence rate in Fig. 4.14. Compared with the two-level MCMC MPSRF results of Fig. 4.11,

Fig. 4.14 shows that, when the random walk proposal distribution is used, very long chains

much be generated before the value of MPSRF converges to a value close to one. In fact, the

results of Fig. 4.14 suggest that the MPSRF value is still slightly decreasing as the chain in-

dex increases even after generating chains of length 23 million whereas the two-level MCMC

results of Fig. 4.11 indicate the value of MPSRF has stabilized at a value close to unity

after 50 thousand iterations. MCMC with a random walk proposal distribution converges

very slowly because each new state proposed is obtained from a relatively small neighbor-

hood around the current state in order to obtain acceptable acceptance rates. This proposal

distribution results in a chain where the states are highly correlated as a function of the

chain index [78, 6, 59], and, in this case, it requires the generation of very long chains in
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(a) Comparison of permeability distribution.
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(b) Comparison of water production rate.

Figure 4.13: (a) the solid curves are distributions obtained using iterations from 60 to 200
thousand, the dashed curves are distributions obtained using iterations from 15 to 25 thousand.
In each set of the two distributions, curves in black from bottom to top are the percentiles P5,
median and percentiles P95, curves in blue from bottom to top are the percentiles P25 and
P75; (b) the solid curves are distributions obtained using iterations from 60,000 to 200,000,
the dashed curves are distributions obtained using states from 15,000 to 25,000. In each set
of the two distributions. Different colors in the curves have the same meaning as (a). In plot
(b), the vertical dashed lines separates the historical and prediction periods.

order to generate a reasonable characterization of the posterior pdf. Fig. 4.14 indicates that

the chains converge very slowly, but the value of MPSRF has almost stabilized at a value

of roughly 2 from states 19 million to 23 million. Thus, we combine the last 500 thousand

samples from each chain to form the posterior distribution. Fig. 4.15(b) and Fig. 4.16(b)

present the posterior distribution of the permeability field and the prediction of the water

production rate (P5, P25, P50, P75 and P95).

In Fig. 4.15, we compare the posterior distribution of the permeability field obtained

using the two-level MCMC method (a) and random walk (b). Note that the marginal pdf’s

of gridblock permeabilities obtained using the two different proposal pdf’s are qualitatively

similar, but there are clear difference, for example, the marginal distribution for gridblocks

28, 29 and 30. Fig. 4.16 presents the comparison of the posterior distributions of the predicted

water production rate. Note that the uncertainty obtained using the random walk results is

lower than the uncertainty obtained using the two-level MCMC method. For both the two-
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level MCMC method and the random walk, the water production rate from the true model

is slightly higher than P75 curve. Which MCMC implementation gives the best uncertainty

quantification is uncertain but based on a comparison of the MPSRF results of Fig. 4.11 and

Fig. 4.14, we believe that the two-level MCMC results are superior. It is important to note

that with the two-level MCMC scheme, Fig. 4.11 indicates the chains converged after 15,000

MCMC iterations whereas for MCMC with random walk, Fig. 4.14 suggests that we have to

generate at least 18 to 19 million states before we start sampling from the target posterior

distribution. Fig. 4.17 shows the normalized objective function values that correspond to

the states of the Markov chains. As shown the range of the normalized objective function

using the two-level MCMC is larger than the range based on random walk results. Also

note that even though we plot every 2nd state from the two-level chains as opposed to every

100th state from the random walk chains, the results of Fig. 4.17 indicate that the random

walk proposal procedure exhibit far more correlation than is evident in the two-level results.

We emphasize that results on correlation between states is as expected. Specifically, when

proposing a new state from the GMM of Eq. 4.4, the proposed state is independent of the

current state in the chain which tends to minimize correlations between successive states.

On the other hand, when using the random walk proposal distribution, (i) a new state is

proposed from a Gaussian centered at the current state in the chain and (ii) the variation of

this Gaussian is usually fairly small in order to obtain a reasonable acceptance rate; thus,

the resulting states in the chain are highly correlated [78, 6], i.e., the random walk proposal

distribution tends to yield chains that are not well mixed and thus very long chains are

required to obtain a reasonable characterization of the target pdf.

For this example, we also show below results using a different number of clusters, i.e.,

10 clusters, 25 clusters and 83 clusters (all the models obtained from optimization that gave

an acceptable value of the objective function), the posterior distribution estimated is almost

independent of the number of clusters used as shown in Fig. 4.18 (posterior distribution of

permeability) and Fig. 4.19 (posterior distribution of water production rate).
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Figure 4.14: Convergence rate calculated using 5 Markov chains of random walk. Only values
of MPSRF less than 25 are plotted.
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(a) Permeability distribution using the two-
level
MCMC method.
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(b) Permeability distribution using the random
walk.

Figure 4.15: The posterior distribution of permeability obtained using iterations from 15 to
25 thousand when applying the two-level MCMC method (a) and iterations from 19.5 to 20
million when applying random walk (b) example 2. In both plots, the red curve is the true
permeability distribution, the solid black curves from bottom to top are P5, median and P95,
the blue dashed curves from bottom to top are P25 and P75.
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(a) water production rate using the two-level
MCMC method.

0 200 400 600 800
0

20

40

60

80

Time (Day)

W
at

er
 R

at
e 

(S
T

B
/D

ay
)

 

 

P5
P25
P50
P75
P95
True

(b) water production rate using random walk
method.

Figure 4.16: The posterior distribution of water production rate prediction using iterations
from 15 to 25 thousand when applying the two-level MCMC method (a) and iterations from
19.5 to 20 million when applying random walk example 2 (b). In both plots, the red curve is
the prediction obtained with the true model, the solid black curves from bottom to top are
P5, median and P95, the blue dashed curves from bottom to top are P25 and P75.
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(a) Mixing using two-level MCMC.
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(b) Mixing using random walk.

Figure 4.17: (a) Normalized objective function value of every 2nd state (burn-in discarded)
from all the 5 parallel Markov chains using the two-level MCMC. (b) Normalized objective
function value of every 100th states (burning discarded) from all the 5 parallel Markov chains
using random walk.
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(a) 10 modes.
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(b) 25 modes.
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(c) 83 modes.

Figure 4.18: The posterior distribution of permeability obtained using iterations from 10 to
15 thousand when applying algorithm 4.2 (a) with 10 modes (b) with 25 modes (c) with 83
modes. In all the plots, the red curve is the prediction obtained with the true model, the
dashed curves in blue are P25 (bottom) and P75 (top). The three black solid curves are P5
(bottom), median (middle) and P95 (top).
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(a) 10 modes.
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(b) 25 modes.
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(c) 83 modes.

Figure 4.19: Prediction of water production rate obtained using iterations from 10 to 15
thousand when applying algorithm 4.2 (a) with 10 modes (b) with 25 modes (c) with 83
modes. In all the plots, the red curve is the prediction obtained with the true model, the
dashed curves in blue are P25 (bottom) and P75 (top). The three black solid curves are
P5 (bottom), median (middle) and P95 (top). The vertical dashed line separates the history
matching and prediction periods.
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4.3.4 Example 3

Reservoir model description: We also applied our two-level MCMC algorithm to the

IC fault model, which is known to have a complex pdf with multiple local modes. Methods

that have been used to estimate the posterior pdf for this model include the genetic algo-

rithms [69], distribution estimation [80] and a population MCMC algorithm [70]. This IC

fault model is a 2-D cross-sectional model of a layered reservoir, which is shown in Fig. 4.20.

There is a vertical fault in the middle of the reservoir. The grid is 100 × 12 with each ge-

ological layer divided into two simulation layers of equal thickness. Each gridblock is 10 ft

wide. The thicknesses from bottom to top are 7.5 ft, 8.5 ft, 9.5 ft, 10.5 ft, 11.5 ft and 12.5

ft. This reservoir consists of six alternating homogenous layers of good and poor quality

sands. The porosity of good quality sands and poor quality sands is 0.3 and 0.15, respec-

tively. The model parameters are permeability of good and poor quality sands, represented

by khigh and klow respectively, and the fault throw thickness denoted by h. The details of the

prior information is given in Table 4.1. Water viscosity is 0.37 cp, oil viscosity ranges from

0.51 cp and 0.74 cp over the pressure range from 4041.7 psi to 9014.7 psi. A single water

injection well is located on the left edge of the reservoir, and is completed in all layers. It

is operated at a constant bottomhole pressure of 8400 psi. The producer at the right edge

is also completed in all layers. It is operated at a constant bottomhole pressure of 8335 psi.

The historical period corresponds to 3 years, with water injection rate data, oil production

rate data and water production rate data assimilated every 30 days. The forecast period

ends at 7 years. We added random Gaussian noise with mean equals to zero and standard

deviation equal to three percent of the true data to define the measurements data. Because

the prior distribution for the model parameter is uniform and we assume that the parame-

ters are independent, the posterior pdf of Eq. 4.1 is simply a constant times the likelihood

function given by

L(m|dobs) = exp[−1

2
(g(m)− dobs)TC−1D (g(m)− dobs)]. (4.19)
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Figure 4.20: Permeability field of IC fault model.

As we wish to compare the results of the two-level scheme with those of generated with

population MCMC used by [70], we scale the augment of the likelihood objective function

and consequently define the target distribution by Eq. 4.1 with O(m) defined by Eq. 4.3.

Table 4.1: Parameters for the IC fault model and prior distribution.

Parameter Units Prior True value
Throw thickness ft U[0, 60] 10.4

klow md U[0, 50] 1.3
khigh md U[100, 200] 131.6

Results: We first tried to use MCMC with the random walk proposal where σ was

chosen such that the acceptance rate of the chain is around 0.23. However, we found that

using the random walk proposal, we only sample around modes close to the initial guess,

i.e., similar to Example 1b, the random walk proposal could not sample the IC-fault model

correctly. For two-level MCMC, we generate 200 initial guesses randomly from the prior

uniform distributions shown in Table 4.1. Using these initial guesses, we run the quasi-

Newton trust region optimization algorithm [13] to minimize O(m) defined by Eq. 4.3. For

the IC fault model, which is based on a Eclipse 100 model, we did not have the ability to
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compute the gradient of the objective function with the adjoint method. Thus, we were

forced to use finite differences to calculate the derivatives involved in the gradient, and

the inaccuracy of these finite differences significantly slowed down the convergence of the

optimization algorithm. In addition, with three parameters, six simulation runs are required

to compute one gradient. Using finite differences to estimate gradients in the optimization

algorithm, approximately 32,000 simulation runs were required to generate 200 modes of

the posterior pdf. Fig. 4.21(a) shows all the values of O(m) less than 5 that corresponds

to a minimizing model obtained by the optimization algorithm. A few values of O(m)

greater than 5 were obtained but are not shown. All minimizing model corresponding to

a normalized objective function less than 1.5 are used in k-medoids clustering to generate

25 modes which are used to generate a GMM, see Algorithm 4.1. For this case, we did not

rescale the covariance matrix, and we use C = 1. Fig. 4.21(b) shows the distribution of all

the models that give a normalized objective function value less than 5 and all the modes

found by k means clustering. Starting from different initial states generated from the initial

GMM constructed at the first stage of the algorithm, we run 5 parallel Markov chains with

10 thousand iterations; the change in the value of the MPSRF with iteration number (index

of state) is shown in Fig. 4.22. The results of Fig. 4.22 indicate that the chains converge

very quickly. Based on the convergence rate (MPSRF), we somewhat aggressively use states

from 500 to 2500 iterations of each parallel chain to represent the posterior distribution.

Fig. 4.23 presents the distribution of predicted oil production rate and water production

rate (percentiles P5, P25, P50, P75 and P95) obtained using the two-level MCMC method.

Note that the uncertainties in the water and oil production rates are relatively small, but

the spread bounds the true prediction.

The results of Fig. 4.23 are based on 5 parallel Markov chains, with each chain of

length 2500, i.e., the total number of simulation runs required is 12,500 (2, 500 × 5). In

order to verify that the 10,000 samples (burn-in discarded) used to generate Fig. 4.23 are

sufficient to give a good characterization of the posterior pdf, we compare in Fig. 4.24 the

results from the 10,000 samples with those obtained by combining all states from all chains
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Figure 4.21: Example 3: (a) The minimum normalized objective function value from different
initial guesses. (b) Distribution of models whose normalized objective function value is less
than 1.5 (black) and modes selected by k means clustering (green).
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Figure 4.22: Convergence rate calculated using Algorithm 4.2 to generate 5 Markov chains for
example 3. Only values of MPSRF less than 10 are plotted.
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(a) Oil production rate.
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(b) Water production rate.

Figure 4.23: Prediction of oil production rate (a) and water production rate (b) using iterations
from 500 to 2500, Algorithm 4.2, example 3. In both of the plots, the red curve is the prediction
obtained with the true model, the dashed curves in blue are P25 (bottom) and P75 (top).
The three black solid curves are P5 (bottom), median (middle) and P95 (top). The vertical
dashed line separates the history matching period and the prediction period.

that have a state index from 5,000 to 10,000. As shown in Fig. 4.24, these two samplings

give essentially identical estimates of P5, P25, P50, P75 and P95 for the oil and water rates

at the producing well for both the historical period, t < 1100 days and the future prediction

period, t > 1100 days. These results suggest that the states from 500 to 2,500 in each chain

are sufficient to give a reasonable characterization of the posterior pdf.

For population MCMC algorithm, we follow the same strategy as [70]. To sam-

ple the posterior pdf, we run 10 parallel Markov chains each with a different tempera-

ture, i.e., each with a different target pdf, and the temperature assigned to each chain is

ti = (i/10)5, 1 ≤ i ≤ 10. Here, each of the temperature is inversely proportional to the tem-

perature defined in simulated annealing. To characterize the posterior pdf, only the samples

with the highest temperature are collected as this is the pdf that corresponds to the target

pdf we wish to sample. The other samples corresponding to a lower temperature are used

only to prevent being trapped near a local mode. Similar to the two-level MCMC method,

to check convergence we also run 5 parallel Markov chains where now each chain has its own

10 parallel chains, one chain for each temperature. For each chain, the initial state is gener-
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(a) Oil production rate.
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(b) Water production rate.

Figure 4.24: Two-level MCMC: comparison of oil production rate (a) and water production
rate (b) generated by samples from iteration 500 to 2500 (in solid curves) and samples from
iteration 5000 to 10 thousand (in dashed curves). In both figures, for both the dashed curves
and solid curves, the curves in black from bottom to top are P5, median and P95 and the
curves in blue are P25 (bottom) and P75 (top). The vertical dashed line separates the history
matching period and the prediction period.

ated randomly from the prior distribution. Fig. 4.25 presents the convergence rate using the

population MCMC method. Based on the convergence rate shown in Fig. 4.25, we mixed the

samples from states 1000 to states 2000 of each chain to characterize the posterior distribu-

tion, with results for the probability percentiles shown in Fig. 4.26. Comparing the posterior

distribution shown in Fig. 4.26 with those obtained by our Algorithm 4.2 shown Fig. 4.23,

we see that P95 − P5 uncertainty band for the water rate of Fig. 4.26(b) is wider than the

corresponding P95−P5 uncertainty band obtained with Algorithm 4.2 (Fig. 4.23(b)), and for

times less than 1,000 days, the oil rate uncertainty band of Fig. 4.26(a) is also greater than

the one of Fig. 4.23(a). We provide a possible explanation for this difference in the uncer-

tainty band later. The computation cost of the population MCMC is relatively high, because

generating a new state using the required Metropolis-within-Gibbs [57] requires evaluating

the objective function for the dimension of the model parameters times. For each parallel

chain with 10 different temperatures, we need 10 (the number of different temperatures) ×

3 (Metropolis-within-Gibbs)= 30 simulation runs to generate a new proposal. To check the
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Figure 4.25: Convergence rate of population MCMC for example 3 calculated using 5 Markov
chains. Only values of MPSRF less than 12 are plotted.

convergence, we run 5 parallel Markov chains, so for each iteration in Fig. 4.25, 150 (30× 5)

simulation runs are required. Thus, generating the results of Fig. 4.25 requires a total of 600

thousand (4, 000× 150) simulations.

To check whether we used enough samples to characterize the posterior pdf with this

population MCMC method, we also compare posterior probability percentiles for the oil

and water production rate obtained using states from iterations 1000 to 2000 and to those

obtained using states from iterations 2000 to 4000. The comparison is shown in Fig. 4.27.

Note that there is a very small difference between the two distributions for the 5th percentile

of the oil production rate and for the 75th percentile of the water production rate, but overall

the distributions from the two sets of realization are very close.

Fig. 4.28 presents the normalized objective function value ON , which is the same

as the objective function defined in Eq. 4.3, for all the accepted states in all the 5 parallel

Markov chains. Comparing Fig. 4.28(a) and Fig. 4.28(b), the mixing of the two-level MCMC

chains is better than the mixing using the population MCMC method. In Fig. 4.28(b), the

normalized objective function values of the third Markov chain represented by states 4000

to 6000 are greater than the the value of other Markov chains, and this could be the reason
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(a) Oil production rate.
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(b) Water production rate.

Figure 4.26: Population MCMC for example 3: prediction of oil production rate (a) and water
production rate (b) using iterations from 1000 to 2000. In both of the plots, the red curve is
the prediction obtained with the true model, the dashed curves in blue are P25 (bottom) and
P75 (top). The three black solid curves are P5 (bottom), median (middle) and P95 (top).
The vertical dashed line separates the history matching period and the prediction period.
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(a) Oil production rate.
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(b) Water production rate.

Figure 4.27: Population MCMC: comparison of oil production rate (a) and water production
rate (b) generated by samples from iteration 1000 to 2000 (in solid curves) and samples from
iteration 2000 to 4000 (in dashed curves). In both of the figures, for both of the dashed curves
and solid curves, the curves in black from bottom to top are P5, median and P95, the curves in
blue are P25 (bottom) and P75 (top). The vertical dashed line separates the history matching
period and the prediction period.
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Figure 4.28: (a) Normalized objective function value of every 100th accepted state (burn-
in discarded) from all the 5 parallel Markov chains using two-level MCMC. (b) Normalized
objective function of every 10th accepted state (burn-in discarded) from all the 5 parallel
Markov chains using population MCMC.

why the convergence rate of the 5 parallel chains can only be reduced to a value of about

1.5, also, and as noted earlier the P95− P5 uncertainty range for water rate is larger than

the corresponding P95− P5 result obtained with Algorithm 4.2.

4.3.5 Example 4

Although it is anticipated here that the uncertainty quantification methodology pro-

posed perhaps will be most useful when the number of parameters is reduced to 15 to 40 as is

often done in field history matching applications, we explore here whether the methodology

is computationally feasible for a larger problem that those considered in Examples 1 through

3.

Reservoir model description: This case considered next pertains to a synthetic reser-

voir defined on a 44× 44 uniform reservoir simulation grid. The dimension of each gridblock

is 100×100×15 ft. The model parameters are gridblock log permeabilities so the dimension

of the vector of model parameters is 1936. The true model was built using an exponen-

tial covariance function with major correlation length 2, 500ft and minor correlation length
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Figure 4.29: True log-permeability field.

1, 100ft. The angle between the positive y-axis and the principle direction of the covariance

function is 45◦. The prior mean of ln(k) is 5.0, the prior variance of ln(k) is 1.0. Fig. 4.29

shows the true log-permeability field from which the observed data are generated. For this

reservoir, there are nine production wells and four water injection wells. Fig. 4.29 also shows

the location of wells. The initial pressure of the reservoir is 3000 psi. All the production

wells and injection wells operated under bottomhole pressure control. The injection wells

operate at a constant bottomhole pressure of 4500 psi while the production wells operate

at a bottomhole pressure of 2800 psi for the first six months then operate at a constant

bottomhole pressure of 2500 psi for the rest of the simulation. The observed data are oil-

and water-production rates and water-injection rate, and they are measured every month

during the first 36 months. To generate the observed data, Gaussian random noise with zero

mean and standard deviation equal to 5% (with a minimum of 2 STB/d) are added to the

rate data predicted by the true model. The history-matching period is 36 months, and the

subsequent prediction period is 20 months. We assimilate data every 30 days, and for the

whole history match period, the total number of observed data is 792. As the prior pdf is

Gaussian and the measurement errors are Gaussian, the posterior pdf is given by Eq. 4.1,

where the objective function O(m) is given by Eq. 4.2.
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Figure 4.30: Convergence rate (MPSRF) of Algorithm 4.2 calculated using 5 Markov chains.
Only values of MPSRF less than 20 are plotted.

Results: To construct the GMM in Algorithm 4.1, we use 250 initial guesses randomly

generated from the prior Gaussian distribution of the model parameters, 69,000 reservoir

simulation runs were used to estimate the initial Gaussian mixture model. Running such a

large number of reservoir simulation runs is not feasible in practise so later, we propose a more

computationally efficient method. In this case, we use all minimizing models which result

in a normalized objective function value less than 1.5 to generate 35 modes by k-medoids

clustering and these modes are used to construct the initial GMM proposal distribution for

Algorithm 4.2. In order to improve the computational efficiency, we rescale the covariance

matrices to 0.1×C`. To check the convergence of Algorithm 4.2, we also run 5 Markov chains

in parallel starting from five different initial states generated randomly from the proposal

distribution (GMM). Fig. 4.30 presents the convergence results, i.e., the value of MPSRF

versus the chain index, it indicates that the five Markov chains converge after about 20

thousand iterations. Thus, we use the samples from 20 thousand to 30 thousand iterations

to generate the posterior distribution. The overall acceptance rate for this case is 0.23.

We did not compare our results with random walk for this case, because the compu-

tational time required to run random walk for this case was prohibitive. Fig. 4.31 shows the
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posterior distribution of oil production rate and water production rate in Producer P3, Pro-

ducer P5 and Producer P8. The results shown encompass qualitatively results for all wells.

For both the water and oil production rate, the prediction from the true reservoir model is

between the P5 and P95 results, except for the case of the water production rate of well 5

where the true prediction is very maginally higher than the P95 prediction at the very end

of the prediction period. Fig. 4.32 presents the posterior distribution of water injection rate

for all the wells obtained using Algorithm 4.2. For well 1, in the history matching period,

the true water injection rate is close to P95, whereas in the prediction period, the true is

higher than P95. For all the other wells, the true water injection rate is in the band between

by P5 and P95.

Even ignoring the tens of thousands of reservoir simulation runs necessary to compute

250 minimizing model, the cost of running such example in practice would be prohibitive be-

cause it required generating about 20,000 states in each of five chains to obtain convergence,

and the generation of each state requires one reservoir simulation run. Thus, in the next

chapter, we seek a more efficient way to increase the convergence rate in order to reduce the

number of states required in the MCMC algorithm to provide an approximate sampling of

the target pdf.

4.4 Possible Modifications

The weights in the proposal pdf (GMM) could affect the efficiency of the two-level

MCMC method. If the modes of the posterior pdf are widely separated by very low probabil-

ity regions, using the weights proportional to the unnormalized target pdf values exp(−O(m))

at convergence is preferable because it could make the GMM closer to the target pdf. How-

ever, it appears that this choice is not optimal if modes are not separated by low probability

regions [81]. To make the proposal pdf closer to the target pdf, we can adapt the weights

in the GMM during the sampling process. To add weight adaptation to Algorithm 4.2, at

the end of the current iteration i, the weight of the jth Gaussian ωj is adapted based on the
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(a) Oil Rate Well 3.
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(b) Water Rate Well 3.
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(c) Oil Rate Well 5.
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(d) Water Rate Well 5.
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(e) Oil Rate Well 8.
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(f) Water Rate Well 8.

Figure 4.31: Example 4: the prediction of oil production rate and water production rate of
algorithms 4.1 using states from 20 thousand to 30 thousand. In all the plots, the red curve is
the prediction obtained with the true model, the dashed curves in blue are P25 (bottom) and
P75 (top). The three black solid curves are P5 (bottom), median (middle) and P95 (top).
The vertical dashed line separates the history matching and prediction periods.

100



0 500 1000 1500 2000
700

800

900

1000

1100

1200

Time (Day)

W
ate

r I
nje

cti
on

 R
ate

 (S
TB

/D
ay

)

(a) Water Injection Rate Well 1.
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(b) Water Injection Rate Well 2.

0 500 1000 1500 2000
800

900

1000

1100

1200

1300

Time (Day)

W
ate

r I
nje

cti
on

 R
ate

 (S
TB

/D
ay

)

(c) Water Injection Rate Well 3.
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(d) Water Injection Rate Well 4.

Figure 4.32: The prediction of water injection rate using states from 20 thousand to 30
thousand of algorithms 4.1. In all the plots, the red curve is the prediction obtained with the
true model, the dashed curves in blue are P25 (bottom) and P75 (top). The three black solid
curves are P5 (bottom), median (middle) and P95 (top). The vertical dashed line separates
the history matching and prediction periods.
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following equation:

ω(j) =
ij
i
, (4.20)

where ij is the number of states that belong to the jth Gaussian. There are two issues related

to the weight updating. The first issue relates to the fact that it does not make sense to start

updating the weights when we generate the first accepted state that belongs to Gaussian.

If the first accepted state belongs to Gaussian k, then we would set ωk(i) = 1 and all other

weights to zero, which is clearly unreasonable. Although we have not fully explored this issue

here, we conjecture that weights should not be changed (adapted) until we have accepted

at least ` × ng proposed states in the chain where ng denotes the number of Gaussians in

the GMM proposal distribution and ` is a positive integer. We also conjecture that ` should

be between 10 and 1000, but we have not explored this choice in this work. We also do not

start to adapt weights until the chain contains at least one sample from each Gaussian in

the GMM proposal distribution to avoid setting the weight of the original Gaussian equal to

zero, the second issue is the equation of which Gaussian an accepted state should be assigned

to. While the simple answer would be to assign the new state to the GMM Gaussian that

it is sampled from, we use here a different procedure. Specifically we assign the state mi to

the jth Gaussian where j is determined by

j = arg min
`
||mi −m∗` ||. (4.21)

In this example, we only update the weight when there are more than 200 (100 × 2) states

in the chain and there is at least 1 state accepted from each of the Gaussians.

To investigate whether this weight adaptation combined with covariance matrix adap-

tation improves the computational efficiency, we try the three different sets of initial weights

shown in Table 4.2 for the toy problem of example 1a. Here, ω1 and ω2 are weights in the

proposal GMM; see Eq. 4.22 below. The third set of weights is based on the value of the

target pdf without the normalizing constant, i.e., exp(−O(m)), evaluated at each mode. For

all weights, the proposal GMM is given by
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Table 4.2: Different weight in GMM

Weights ω1 ω2 Acceptance Rate without Adapting Weights
Set 1 2

3
1
3

0.56
Set 2 1

2
1
2

0.69
Set 3 0.88 0.12 0.80

p(m) = ω1G(2.3077|m, 0.0025) + ω2G(1.9141|m, 0.0035). (4.22)

For all three sets of weights, we can use the states from the 500th iteration to the

2000th iteration of all the chains to generate the posterior distribution. In Fig. 4.33, we

show the comparison of target pdf and proposal (GMM) pdf using the three different sets of

weights of Table 4.2. Note that the proposal distribution using the weights of set 3 gives the

proposal distribution which is closest to the target pdf. Fig. 4.34 shows the comparison of

target pdf and proposal (GMM) pdf after adaptation (at the end of the Markov chain) using

different sets of weights. With weight adaptation, the final GMM proposal distributions

are all essentially equal (Table 4.3) and fairly close to the target pdf (Fig. 4.34). Fig. 4.35

presents the convergence rate using the different sets of weights, it indicates that the chain

converges faster using the weight in set 3 because these initial weights gives a good initial

proposal GMM. Fig. 4.36 indicates that the distribution of the samples in the Markov chain

is exactly the same as the target pdf.

Table 4.3: Acceptance rate using different weights in GMM

ω1 ω2 Acceptance Rate ω1 after Adaptation ω2 after Adaptation
Set 1 2

3
1
3

0.8 0.84 0.16
Set 2 1

2
1
2

0.8 0.84 0.16
Set 3 0.88 0.12 0.8 0.84 0.16
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Figure 4.33: Comparison of target pdf in blue and proposal (GMM) pdf in black using the sets
of weights of Table 4.3 in the GMM.
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Figure 4.34: Comparison of target pdf in blue and proposal (GMM) pdf after adaptation (of
both weight and covariance matrix) in black using different sets of weight in the GMM.
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(a) Convergence comparison (1-10,000).
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(b) Convergence comparison (1-1,500).

Figure 4.35: Comparison of convergence rate (MPSRF) using different sets of inital weights
with both weight and covariance matrix adaptation for example 1a, blue curve obtained from set
1, red curve obtained from set 3, black curve obtained from set 2. (a) shows the convergence
rate from iteration 1 to 10,000. (b) shows the convergence rate from iteration 1 to 1,500.
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(a) Posterior distribution using weight in
set 1.
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(b) Posterior distribution using weight in
set 2.
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(c) Posterior distribution using weight in set
3.

Figure 4.36: Comparison of sampled pdf (weight and covariance matrix adaptation) with target
pdf using different sets of weight in the GMM. (a) Distribution of samples from the 500th
iteration to 2000th iteration of all the chains using weights in set 1; (b) Distribution of samples
from the 500th iteration to 2000th iteration of all the chains using weights in set 2; (c)
Distribution of samples from the 500th iteration to 2000th iteration of all the chains using
weights in set 3;
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Without the weight adaptation but with covariance matrix adaptation, the MCMC

acceptance rate for set 1, set 2 and set 3, respectively are 0.56, 0.69 and 0.8 (Table 4.2). After

we apply the weight adaptation with covariance adaptation, the acceptance rate increases

to 0.8 for all sets of weights as shown in Table 4.3.

Fig. 4.37 shows the comparison of target pdf and proposal pdf after covariance matrix

adaptation using different sets of weights. Using the covariance matrix adaptation only, the

final GMM proposal distributions using weights in set 1 (Fig. 4.37(a)) and set 2 (Fig. 4.37(b))

are very different from the target pdf, because the weights in the GMM are not adapted to

a value close to the target pdf. However, the proposal distribution using weights in set 3

(Fig. 4.37(c)) is very similar with the target pdf, because the original weights in set 3 are

already very close to the weights in the target pdf. Fig. 4.38 presents the convergence rate

using different sets of weights, compare with Fig. 4.35 where both weights and covariance

matrix are adapted, the chains with only the covariance matrix adaptation converge faster.

However, because of the high acceptance rate achieved using both weight and covariance

matrix adaptation (weights in set 1 and set 2), the number of states required to form the

correct posterior distribution is less than the number of states required to form the correct

posterior distribution using covariance matrix adaptation only (weights in set 1 and set 2).

Fig. 4.39 indicates that the distribution of the samples in the Markov chain is exactly the

same as the target pdf.
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Figure 4.37: Comparison of target pdf in blue and proposal (GMM) pdf after adaptation (of
covariance matrix only) in black using different sets of weight in the GMM.
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(a) Convergence comparison (1-10,000).
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(b) Convergence comparison (1-1,000).

Figure 4.38: Comparison of convergence rate (MPSRF) using different set of weight with only
the covariance matrix adaptation. In both (a) and (b), blue curve is obtained from set 1, red
curve is obtained from set 2, black curve is obtained from set 3. (a) shows the convergence
rate from iteration 1 to 10,000; In order to compare the convergence rate using different sets
of weight, (b) shows the convergence rate from iteration 1 to 1,000.
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Figure 4.39: Comparison of sampled pdf (covariance matrix adaptation) with target pdf using
different sets of weight in the GMM. (a) Distribution of samples from the 500th iteration
to 2500th iteration of all the chains; (b) Distribution of samples from the 500th iteration
to 2500th iteration of all the chains; (c) Distribution of samples from the 500th iteration to
2000th iteration of all the chains;
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CHAPTER 5

AN APPROXIMATE TWO-LEVEL MCMC ALGORITHM

Although the two-level MCMC algorithm ( Algorithm 4.2) can sample the target pdf

correctly, for high-dimensional problems the computation cost of this algorithm is still high.

In Example 4, for the 44×44 case, it required 100,000 simulation runs to obtain convergence

of all five Markov chains. To reduce the computational cost, in this chapter, we present a

more efficient but approximate way to sample the target pdf.

5.1 An approximate two-level MCMC algorithm

To lower the computation cost of the proposed two-level MCMC method, we propose

an approximate two-level MCMC method and apply it to example 1, 2, 3 and 4. For each

of the examples we compare the results using Algorithm 4.2 and Algorithm 5.1 presented

below. The steps of the second two-level MCMC method are given below.

Algorithm 5.1 - Approximate Two-Level MCMC

1. Apply Algorithm 4.1 to obtain a Gaussian mixture model. This step represents Level

1 and steps 2-7 represent Level 2.

2. Generate an equal number (ns) of samples from each Gaussian and form a set S which

contains all samples from all Gaussians. The number ns is chosen by the user based

on computational resources. For example, at step 1, if the number of Gaussians in the

GMM is 25 and at step 2, we generate 200 samples from each of the 25 Gaussians,

then there are 5,000 (200× 25) samples in the set S which means we need to run the

forward model 5000 times to compute the necessary values of the unnormalized target

pdf.
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3. Set i = 0 and sample m0 randomly from the set S.

4. Propose a new state, m̃i+1, randomly from the set S, and define the acceptance prob-

ability

α(mi, m̃i+1) = min(1,
π(m̃i+1)q(mi)

π(mi)q(m̃i+1)
), (5.1)

where the Gaussian mixture proposal pdf is given by

q(m) =
k∑
`=1

1

k
N (m∗` , C`) =

k∑
`=1

1

k
G(m|m∗` , C`). (5.2)

Here, k is the number of modes selected by k means clustering; m∗` and C` are the

mean and covariance matrix associated with the `th selected mode.

5. Generate a random number u from the uniform distribution U(0, 1).

6. If u ≤ α(mi, m̃i+1), the new proposed state is accepted and set mi+1 = m̃i+1. Other-

wise, repeat the current state in the chain, i.e., mi+1 = mi. If the next state mi+1 is

repeated in the chain for more than 20 times, find the closest Gaussian mode to mi+1,

i.e., find the Gaussian index in the GMM such that

j = arg min
k
||mi+1 −m∗k||. (5.3)

Update the covariance matrix associated with the jth Gaussian in the GMM using

C
(i+1)
j = C

(i)
j +

1

i
[(mi+1 −m∗j)(mi+1 −m∗j)T − C

(i)
j ]. (5.4)

Here, m∗j is the mean associated with the jth Gaussian in the GMM and C
(i+1)
j is the

covariance matrix associated with the jth Gaussian in the i + 1th iteration. Unlike

Algorithm 4.2, we set the gain factor equal to 1 directly. Because the point of this

algorithm is to save computational cost and we do not need to run simulation during

the sampling process, we skip the experiment process to tune the gain factor to have
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a good acceptance rate.

7. Set i = i+ 1 and go to step 4, until the number of states reaches the desired number.

We need to make some important comments pertaining to the adaptation step in

Algorithm 5.1. (i) Note that the initial Gaussian mixture model, all of the Gaussians have

equal weights. Because of this, generating 200 from each Gaussian mixture model provides a

correct procedure for sampling the initial GMM model. Thus, the application of Algorithm

5.1 with the adaptation step deleted, provides a correct procedure to generate samples from

the target pdf (π(m)). However, one cannot expect to obtain a highly accurate sample of the

high-dimensional Gaussian with only 200 samples so in the high-dimensional case, we will

obtain a very approximate approximation of the target pdf. (ii) Note that the adaptation

procedure used in Algorithm 5.1 is different than the adaptation procedure used in Algorithm

4.2. However, the more important point is that regardless of the adaptation methodology

used, whenever we modify the covariance of an individual Gaussian by adaptation, the 200

initial samples generated using the initial covariance of that Gaussian, do not represent a

correct sampling of the updated (adapted) GMM so we introduce a theoretical flaw into the

algorithm. That is, when we choose a sample from the 200 samples of the original Gaussian

the correct probability of proposing that sample is obtained by evaluating the initial GMM

rather than at the adapted GMM. It follows that if we use the adapted GMM in Metropolis-

Hasting and do not change the initial set of samples, then we introduce a theoretical flaw

into the Metropolis-Hastings acceptance probability so we have no assurance that we sample

the target distribution correctly. On the other hand, if we use the initial Gaussian mixture

model, in Metropolis-Hastings, then we have not used the adaptation for any purpose at

all. (iii) The preceding comment applies to any adaptation procedure used in Algorithm 5.1.

We could of course eliminate the aforementioned theoretical flaw by discarding all samples

from the initial Gaussian and resampling the updated Gaussian but then we are effectively

using Algorithm 4.2, and thus forego the computational efficiency that Algorithm 4.2 was

designed to achieve by placing a limit on the number of times that we have to evaluate the
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target distribution to 200 times the number of Gaussians in the proposal GMM. (iv) Each

evaluation of the target pdf requires one run of the forward model. For the quantification of

uncertainty in reservoir modeling and prediction, each forward model represents one reservoir

simulation run which can take minutes to several hours so for such problems, it is critical

that we reduce the number of forward model evaluations used to characterize uncertainty.

In fact, in practice, we may need to reduce the number of samples from each Gaussian to a

number well below 200.

In light of the preceding comments, we adopt a tradeoff between theoretical rigor and

computational feasibility. Namely, we do change the set of samples generated from the initial

GMM when we update the covariance matrices of the Gaussians but in an attempt to reduce

the aforementioned theoretical error that emanates from not replacing these original samples

with samples from the updated GMM, we only update when a Markov chain repeats the

same state from the same Gaussian 20 times, i.e., when 20 consecutive states in the chain are

from the same Gaussian of the GMM. This particular updating scheme seems heuristic but

the updating methodology has an intuitively logical basis as is discussed later. Although the

method is still not theoretically rigorous, the computational examples we have done show

this updating scheme, gives an uncertainty characterization that is similar to one that is

obtained from Algorithm 4.2, which is a theoretically sound algorithm. On the other hand,

if we implement the modification of Algorithm 5.1 obtained by updating the covariance

matrices at each time a new state is generated and do not change the original set of samples

from the initial Gaussian mixture model, then results not included here show that a very

poor characterization of the target pdf is obtained. Although the results are not shown

here, it is important to note that if we replace the covariance matrix adaptation scheme of

Algorithm 4.2 with the adaptation scheme of Algorithm 5.1, we obtain approximations of

the target pdf that are extremely close to those using Algorithm 4.2.

When the Gaussian distribution cannot provide a good approximation of a local mode,

the situation in Fig. 5.1(a) could happen. Suppose in the Markov chain the current state

is mi−1, and a new state m̃i is proposed from the proposal distribution. The acceptance
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(a) Before Adaptation. (b) After Adaptation.

Figure 5.1: Explanation of how covariance adaptation effectively broadens the proposal distri-
bution. (a) shows the target pdf and proposal pdf before adaptation; (b) shows the target pdf
and proposal pdf after adaptation.

probability for the new proposed state is α = min(1, π(m̃i)q(mi−1)
q(m̃i)π(mi−1)

). Fig. 5.1(a) indicates that

the value of q(m̃i) is very small, thus the value of π(m̃i)
q(m̃i)

is very large and the new proposed

state m̃i will be accepted as the next state in the chain with a probability of 1, i.e., mi = m̃i.

Now that the current state in the Markov chain is mi = m̃i, for a new proposed state m̃i+1,

the acceptance probability is α = min(1, π(m̃i+1)q(mi)
q(m̃i+1)π(mi)

). From Fig. 5.1(a) we can see that the

value of q(mi)
π(mi)

is extremely small, because q(mi) is a very small number. Thus, the acceptance

probability for any new proposed state is very small, and because of this, the current state

mi is likely be repeated many times in the chain before we accept a proposed state that is

different from mi. However, with the adaptation step embedded in step 6 of Algorithm 4.2,

whenever mi is repeated more than 20 times, mi is used to adapt the covariance matrix.

This adaptation causes the proposal distribution to become wider and closer to the target

pdf as depicted schematically in Fig. 5.1(b). Because of this adaptation, the value of the

term q(mi)
π(mi)

in the acceptance probability is larger (see Fig. 5.1(b)) and thus, the acceptance

probability for the new proposed state m̃i+1 is larger.
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5.1.1 Results for example 1

Using 30 different initial guesses generated randomly from the prior pdf, we run the

quasi-Newton trust region optimization algorithm [13] to minimize the objective function

O(m) defined by Eq. 4.16. After optimization, we obtained two modes with the Gaussian

distributions N (2.3077, 0.0025) and N (1.9141, 0.0035). Following step 2 of Algorithm 5.1,

1500 samples are generated from each of the modes to form the set S. Then, we run a Markov

chain with 150,000 states, and obtain the posterior pdf shown in Fig. 5.2(a). The results

of this plot, indicate that, with 3000 objective function evaluations, we can obtain a good

representation of the posterior distribution. For comparison, we also generate 200 samples

from each of the modes and form the set S with 400 (200 × 2) samples, and run a Markov

chain with 150,000 states, the posterior pdf obtained, which is shown in Fig. 5.2(b) is not

as smooth as the posterior pdf obtained by generating 1500 samples from each mode, and

around m = 2.1 there are no samples generated from the original proposal pdf. Nevertheless,

considering that only 400 samples and 400 runs of the forward model are used to generate the

approximate pdf, we are able to obtain an approximation of the target pdf that is roughly

correct.

5.1.2 Results for example 2

Using 200 initial guesses in step 1 of Algorithm 5.1, after the optimization process,

all minimizing models corresponding to a normalized objective function less than 1.5 are

used in k-medoids clustering to generate 10 modes. Here, we rescale the covariance matrix

using the same factor as the one used in Algorithm 4.2. We sample each of the Gaussians

corresponding to each of the 10 modes until we obtain 200 samples that give a normalized

objective function value less than 30. Here we use 30 to save computational cost, we want to

discard those models with a huge objective function value, at the same time we do not want

to use a number too small to increase the computational cost too much. Since we discard the

samples which give a normalized objective function value greater than 30, the total number

of simulation runs used to generate the set of 2,000 samples is actually 3600. Fig. 5.3(a)
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(a) Pdf obtained using 1500 samples from each
mode.
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(b) Pdf obtained using 200 samples from each
mode.

Figure 5.2: Comparison of target pdf with the distribution obtained using the approximate
two-level MCMC, example 1a. (a) Generate 1500 samples from each mode. (b) Generate 200
samples from each mode.

and Fig. 5.4(a) present the posterior distribution of permeability and prediction of water

production rate (P5, P25, P50, P75 and P95), respectively, obtained using Algorithm 5.1.

In Fig. 5.3 and Fig. 5.4, we compare the results obtained using Algorithm 4.2 and Algorithm

5.1 with 10 modes. The posterior distribution of permeability and prediction of water rate

using Algorithm 5.1 is very similar to the posterior distribution obtained using Algorithm

4.2. Thus, for this example, Algorithm 5.1 gives a reasonably accurate characterization of

the posterior pdf with a very low computational cost.

5.1.3 Results for example 3

Using 200 initial guesses in step 1 of Algorithm 5.1, we run the quasi-Newton trust

region optimization algorithm [13] to minimize O(m) defined by Eq. 4.3. All minimizing

models corresponding to a normalized objective function less than 1.5 are used in k-medoids

clustering to generate 25 modes which are used to generate all samples in set S in step

2 of Algorithm 5.1. Here, we rescale the covariance matrix using the same factor as the

one used in Algorithm 4.2. We sample each individual Gaussian in the GMM until we

obtain 100 models, which give a value of the normalized objective function less than 30.
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(a) Posterior distribution of permeabil-
ity using Algorithm 5.1
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(b) Posterior distribution of permeabil-
ity using Algorithm 4.2.

Figure 5.3: Example 2: comparison of posterior permeability distribution using (a) approximate
two-level MCMC (algorithm 4.2) (b) two-level MCMC (Algorithm 5.1). In both of the plots,
the red curve is the prediction obtained with the true model, the dashed curves in blue are
P25 (bottom) and P75 (top). The three black solid curves are P5 (bottom), median (middle)
and P95 (top).
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(a) Posterior distribution of permeabil-
ity using Algorithm 5.1
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(b) Posterior distribution of permeabil-
ity using Algorithm 4.2.

Figure 5.4: Example 2: comparison of water production rate prediction using (a) approximate
two-level MCMC (algorithm 4.2) (b) two-level MCMC (Algorithm 5.1). In both of the plots,
the red curve is the prediction obtained with the true model, the dashed curves in blue are P25
(bottom) and P75 (top). The three black solid curves are P5 (bottom), median (middle) and
P95 (top). The vertical dashed line separates the history matching and prediction periods.
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(a) Oil production rate from approximate two-
level MCMC.
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(b) Oil production rate from two-level MCMC.

Figure 5.5: Example 3: prediction of oil production rate obtained using (a) the approximate
two-level MCMC method (b) the two-level MCMC method. In both of the plots, the red curve
is the prediction obtained with the true model, the dashed curves in blue are P25 (bottom)
and P75 (top). The three black solid curves are P5 (bottom), median (middle) and P95 (top).
The vertical dashed line separates the history matching period and the prediction period.

Thus the set S in step 2 of algorithm 5.1 consists of 2500 models. Note we discard the

samples which give a normalized objective function value greater than 30, so the total number

of simulation runs used to generate 2,500 modes is 4600. Fig. 5.5 and Fig. 5.6 present

the posterior distribution of the oil production rate and water production rate (P5, P25,

P50, P75 and P95) obtained using the approximate two-level MCMC (a) and two-level

MCMC (b). The posterior distribution obtained using the approximate two-level MCMC is

similar to the posterior distribution obtained using the two-level MCMC, but the posterior

distribution obtained using the approximate two-level MCMC has a higher uncertainty than

the posterior distribution obtained using the two-level MCMC. Note, however, thus with a

very low computational cost, the approximate two-level MCMC gives a reasonably accurate

characterization of the posterior pdf.

5.1.4 Results for example 4

Using 250 initial guesses in Algorithm 5.1, after the optimization procedure, we use

all minimizing models corresponding to a normalized objective function less than 1.5 to
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(a) Water production rate from approximate
two-level MCMC.
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(b) Water production rate from two-level
MCMC.

Figure 5.6: Example 3: prediction of water production rate obtained using (a) the approximate
two-level MCMC method (b) the two-level MCMC method. In both of the plots, the red curve
is the prediction obtained with the true model, the dashed curves in blue are P25 (bottom)
and P75 (top). The three black solid curves are P5 (bottom), median (middle) and P95 (top).
The vertical dashed line separates the history matching period and the prediction period.

generate 35 modes using k-medoids clustering. All the modes are used to generate samples

in set S in step 2 of Algorithm 5.1. We sample each of Gaussian until we obtain 200

samples that give a normalized objective function less than 30. For this particular problem,

it required the generation of a total of 9000 samples and thus 9000 reservoir simulation runs

to obtain 200 samples from each of the 35 Gaussians. Fig. 5.7 compares the uncertainty

quantification of the prediction of field water and oil production rate, field water injection

rate. Fig. 5.7 and Fig. 5.7 compare the uncertainty quantification of the predictions of the

oil production rate and water production rate of all the producers. The results of these

figures indicate that the posterior distributions obtained using Algorithm 4.2 and Algorithm

5.1 are very close. Fig. 5.8 presents the comparison of the uncertainty quantification of the

water injection rate at all the injectors using Algorithm 4.2 and Algorithm 5.1. Similar

to the water and oil production rates, the posterior distributions of water injection rates

obtained with Algorithm 4.2 and Algorithm 5.1 are very similar. Again, the results indicate

that Algorithm 5.1 provides a characterization of the target pdf that is similar to the one
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obtained with Algorithm 4.2, but Algorithm 5.1 incurs a much lower computational cost.
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(a) Field Water Production Rate Algo-
rithm 4.2.
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(b) Field Water Production Rate Algo-
rithm 5.1.
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(c) Field Oil Production Rate Algorithm
4.2.
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(d) Field Oil Production Rate Algorithm
5.1.
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(e) Field Water Injection Rate Algorithm
4.2.
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(f) Field Water Injection Rate Algorithm
5.1.

Figure 5.7: The prediction of field water production rate using algorithms 4.2 (a) and 5.1 (b).
The prediction of field oil production rate using algorithms 4.2 (c) and 5.1 (d). The prediction
of field water injection rate using algorithms 4.2 (e) and 5.1 (f). In all the plots, the red curve
is the prediction obtained with the true model, the dashed curves in blue are P25 (bottom)
and P75 (top). The three black solid curves are P5 (bottom), median (middle) and P95 (top).
The vertical dashed line separates the history matching and prediction periods.
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(a) Oil Rate Well 1 Algorithm 4.2.
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(b) Oil Rate Well 1 Algorithm 5.1.
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(c) Oil Rate Well 2 Algorithm 4.2.
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(d) Oil Rate Well 2 Algorithm 5.1.
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(e) Oil Rate Well 3 Algorithm 4.2.
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(f) Oil Rate Well 3 Algorithm 5.1.
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(g) Oil Rate Well 4 Algorithm 4.2.
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(h) Oil Rate Well 4 Algorithm 5.1.
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(i) Oil Rate Well 5 Algorithm 4.2.
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(j) Oil Rate Well 5 Algorithm 5.1.
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(k) Oil Rate Well 6 Algorithm 4.2.
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(l) Oil Rate Well 6 Algorithm 5.1.
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(m) Oil Rate Well 7 Algorithm 4.2.
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(n) Oil Rate Well 7 Algorithm 5.1.
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(o) Oil Rate Well 8 Algorithm 4.2.
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(p) Oil Rate Well 8 Algorithm 5.1.
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(q) Oil Rate Well 9 Algorithm 4.2.

0 500 1000 1500 2000
Time (Day)

50

100

150

200

250

300

350

Oi
l R

ate
 (S

TB
/D

ay
)

(r) Oil Rate Well 9 Algorithm 5.1.

Figure 5.7: The prediction of oil production rate using algorithms 4.2 and 5.1. In all the plots,
the red curve is the prediction obtained with the true model, the dashed curves in blue are P25
(bottom) and P75 (top). The three black solid curves are P5 (bottom), median (middle) and
P95 (top). The vertical dashed line separates the history matching and prediction periods.
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(a) Water Rate Well 1 Algorithm 4.2.

0 500 1000 1500 2000
Time (Day)

0

50

100

150

200

W
ate

r R
ate

 (S
TB

/D
ay

)

(b) Water Rate Well 1 Algorithm 5.1.
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(c) Water Rate Well 2 Algorithm 4.2.
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(d) Water Rate Well 2 Algorithm 5.1.
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(e) Water Rate Well 3 Algorithm 4.2.
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(f) Water Rate Well 3 Algorithm 5.1.
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(g) Water Rate Well 4 Algorithm 4.2.
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(h) Water Rate Well 4 Algorithm 5.1.
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(i) Water Rate Well 5 Algorithm 4.2.
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(j) Water Rate Well 5 Algorithm 5.1.
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(k) Water Rate Well 6 Algorithm 4.2.
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(l) Water Rate Well 6 Algorithm 5.1.
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(m) Water Rate Well 7 Algorithm 4.2.
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(n) Water Rate Well 7 Algorithm 5.1.
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(o) Water Rate Well 8 Algorithm 4.2.
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(p) Water Rate Well 8 Algorithm 5.1.
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(q) Water Rate Well 9 Algorithm 4.2.
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Figure 5.7: The prediction of water production rate using algorithms 4.2 and 5.1. In all the
plots, the red curve is the prediction obtained with the true model, the dashed curves in blue are
P25 (bottom) and P75 (top). The three black solid curves are P5 (bottom), median (middle)
and P95 (top). The vertical dashed line separates the history matching and prediction periods.
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(a) Water Injection Rate Well 1 Algo-
rithm 4.2.
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(b) Water Injection Rate Well 1 Algo-
rithm 5.1.
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(c) Water Injection Rate Well 2 Algo-
rithm 4.2.
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(d) Water Injection Rate Well 2 Algo-
rithm 5.1.
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(e) Water Injection Rate Well 3 using Al-
gorithm 4.2.
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(f) Water Injection Rate Well 3 using Al-
gorithm 5.1.
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(g) Water Injection Rate Well 4 Algo-
rithm 4.2.
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(h) Water Injection Rate Well 4 Algo-
rithm 5.1.

Figure 5.8: The prediction of water injection rate using algorithms 4.2 and 5.1. In all the plots,
the red curve is the prediction obtained with the true model, the dashed curves in blue are P25
(bottom) and P75 (top). The three black solid curves are P2 (bottom), median (middle) and
P98 (top). The vertical dashed line separates the history matching and prediction periods.
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CHAPTER 6

CONCLUSIONS

The new two-level MCMC algorithm derived here provides a computationally feasi-

ble method to generate realizations (samples) of reservoir model parameters that accurately

characterize the posterior pdf conditional to dynamic data. Based on the computational

results, this two-level MCMC scheme can achieve a correct sampling of the posterior pdf for

the reservoir model parameters with far less computational effort than is required by MCMC

methods based on a random walk proposal distribution or population MCMC. This compu-

tational efficiency is the expected theoretical result because the two-level scheme employs a

Gaussian mixture model (GMM) as a proposal distribution where this GMM is constructed

so that it provides a reasonably good approximation to the posterior pdf. The use of a

proposal distribution based on GMM proposal distribution constructed by the technique

presented here also enable the sampling of a multimodal posterior pdf. Using the samples

generated from the two-level scheme enables one to obtain a good approximation of the un-

certainty in future reservoir performance predictions. We also present a modified version of

the basic two-level MCMC method. The modified MCMC method is far more computation-

ally efficient than the basic two-level method but still provides a reasonable approximation

of the target (posterior) pdf of model parameter. However, this modified MCMC does not

have a firm theoretical base.

We also compare the performance of several MCMC methods in terms of the quality

of history matching, uncertainty characterization and computational cost on a highly non-

linear water flooding case. Among all the methods considered, the two-level MCMC method

can sample the posterior pdf correctly with the lowest computational cost. The methods

presented here should prove useful for typical history-matching approximations where the
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number of model parameters is reduced to one or two dozen.
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