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ABSTRACT

Zhan Wu (Doctor of Philosophy in Petroleum Engineering)

CONDITIONING GEOSTATISTICAL MODELS TO TWO-PHASE FLOW

PRODUCTION DATA

(126 pp.-Chapter V)

Co-Directed by Drs. Albert C. Reynolds and Dean S. Oliver

(88 words)

A discrete adjoint method for generating sensitivity coefficients related to two-phase

flow production data is derived. The procedure is applied to calculate the sensitiv-

ity of wellbore pressure and water-oil-ratio to reservoir simulator gridblock perme-

abilities and porosities. Using these sensitivity coefficients, an efficient form of the

Gauss-Newton algorithm is applied to generate maximum a posteriori estimates and

realizations of the rock property fields conditioned to a prior geostatistical model and

pressure and/or water-oil ratio data obtained under two-phase (oil and water) flow

conditions.
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CHAPTER I

INTRODUCTION

1.1 Background and Literature Review

To the best of our knowledge Jacquard and Jain [28] presented the first proce-

dure for numerically computing sensitivity coefficients for history matching purposes.

They applied their method to the estimation of permeability in a two-dimensional

reservoir from pressure data. The procedure was based on an electric circuit ana-

logue, but later, following Jacquard and Jain’s basic ideas (also see Jacquard [27] and

Jahns [29]), Carter et al. [9] presented an elegant derivation of a method to compute

sensitivity coefficients for two-dimensional single-phase flow problems. Carter’s pro-

cedure for single-phase flow has been extended to three-dimensional problems in a

computationally efficient way by He et al. [23]. For nonlinear problems, e.g., multi-

phase flow problems, the derivations of Carter et al. [9] and He et al. [23] do not apply.

Thus, we are forced to seek other alternatives. One possible choice is the adjoint or

optimal control method, introduced independently for the single-phase history match-

ing problem by Chen et al. [11] and Chavent et al. [10]. (For linear problems, Carter

et al. [8] have shown that the adjoint method is equivalent to the procedure of Carter

et al. [9]. Although the adjoint method has been applied to multiphase flow problems

(see, for example, Lee and Seinfeld [33], Yang et al. [56] and Makhlouf et al. [34]),

these implementations have proved to be computationally inefficient. Specifically,

the procedure has normally been applied only to compute the gradient of an objec-

tive function based on a sum of the squares of the production data mismatch term.
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Limited to this information, one is forced to minimize the objective function using

a steepest descent, variable-metric, or conjugate gradient algorithm, which results in

slow convergence. The sensitivity coefficients needed to form the Hessian for Newton

or Gauss-Newton iteration are not available from the traditional adjoint systems, and

even if they were, the Hessian would typically be ill-conditioned because the history

matching problem is generally ill-posed. Because of the computational cost of repeat-

edly solving the adjoint system for many iterations (see, for example, Makhlouf et

al. [34] in which history matching of a two-phase (water-oil) 450 cell reservoir model

required 6400 CPU seconds on a CRAY X-MP/48), the complete rigorous adjoint (or

optimal control) method has not been applied to history match production data for

multiphase flow problems in real reservoirs. For example, when Wasserman et al. [54]

applied an optimal control approach to history match a two-dimensional Saudi Ara-

bian oil field, they actually computed adjoint variables (Lagrange multipliers) only

for the overall pressure equation and used an objective function based only on pres-

sure mismatch terms, other production data, e.g., water-oil ratios were not included

in the objective function.

Another popular choice for computing sensitivity coefficients for multiphase

flow problems is the method known in the petroleum engineering literature as the gra-

dient simulator method. This method was introduced to the petroleum engineering

literature by Anterion et al. [2], but was known earlier in the ground water hydrology

literature as the sensitivity coefficient method; see, for example, Yeh’s [57] review of

parameter identification methods. In the gradient simulator method, one computes

the sensitivity of pressures and saturations to model parameters at the end of a simu-

lator time-step by solving a linear system obtained by differentiating the matrix form

of the finite-difference equations with respect to a model parameter, e.g., a gridblock

value of permeability or porosity. The resulting system of equations can then be

solved to obtain the sensitivity of all gridblock pressures and gridblock saturations to

this particular model parameter. (From these sensitivities, one can easily construct
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other sensitivity coefficients, e.g., the sensitivity of wellbore pressure and water-oil-

ratio to model parameters.) The advantage of the gradient simulator method is that

the matrix problem solved to obtain these sensitivity coefficients involves the same

coefficient matrix as the one used to solve for pressures and saturations at this time

step. Moreover, the coefficient matrix does not depend on the model parameters; only

the right hand side of the matrix problem depends on the model parameters. Thus,

the problem reduces to solving a matrix problem with multiple right-hand side vec-

tors, one right-hand side vector, for each model parameter. The difficulty is that if we

wish to estimate (or construct realizations of) permeabilities and porosities at several

thousand gridblocks, then we have several thousand right-hand sides. The number

of right-hand sides is equal to the number of model parameters to be estimated. Al-

though Killough et al. [31] developed a faster iterative solver for this problem, the

effort required for each sensitivity is still of the order of 10% of a forward simulation.

Of course, if the reservoir model has only a few parameters, e.g., some form of zona-

tion ( [28], [4]) is used, or the model can be reparameterized without losing significant

information, the gradient simulator becomes more attractive. Effectively zonation is

a reparameterization procedure in which one applies history matching to estimate

permeability (or porosity) multipliers with the same multiplier applied to all grid

block permeabilities within a particular zone. The history matching procedure using

by Hegstad and Omre [25] is essentially a zonation procedure, albeit one embedded

within a formal Bayesian estimation procedure. In their paper, history matching is

done by adjusting the mean log-permeability of each layer instead of adjusting indi-

vidual grid block permeabilities. It our belief that the subspace introduced into the

geophysics literature Kennett and Williamson [30] (also see Oldenberg et al. [37] and

Oldenberg and Li [36]) provides a reparameterization method that can significantly

improve computational efficiency of simulation and estimation procedures based on

inverse problem theory [52]. Reynolds et al. [47] have applied the subspace method

to estimate or simulate permeability and porosity fields by history matching multi-
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well single-phase flow pressure data. However, the subspace method has not been

implemented to history match multiphase flow production data.

In the gradient simulator method, one actually obtains the sensitivity of all

gridblock pressures (or saturations) to each model parameter. For the most part, this

is useless information, as one typically only has measurements at wells. In essence, it

is the computation of this useless information that detracts from the computational

efficiency of the gradient simulator method. To avoid this inefficiency, Chu et al. [12]

used the basic ideas of Tang et al. [51] to develop a modified generalized pulse-

spectrum technique (MGPST) to estimate the sensitivity of wellbore pressure to

reservoir simulator gridblock permeabilities and porosities. This method is effectively

an approximation of the gradient simulator method, an approximation in which one

computes only the sensitivity of well gridblock pressures to the rock property fields.

The MGPST yields reasonably accurate estimates of sensitivity coefficients related to

the permeability field, but, unfortunately does not yield accurate values of sensitivity

coefficients related to the porosity field. Ref. [17] contains a review of parameter

estimation methods including some discussion of methods for calculating sensitivity

coefficients.

For the purpose of this work, history matching will refer to the determina-

tion of model parameters (reservoir simulator grid block values of permeability and

porosity) which honor production data, i.e., observed wellbore pressures and water

oil ratios (or water cuts). In the typical case, there are several thousand model pa-

rameters and the number of independent pressure data is far less than the number

of model parameters. Thus, the data is not sufficient to determine unique gridblock

values of permeability and porosity. In such cases, there exist an infinite set of reser-

voir descriptions which will generate predicted production data which agrees with the

observed data. In mathematical terms, the inverse problem of determining the rock

property fields from the production data is ill-posed, i.e., does not have a unique so-

lution. To specify a particular solution (estimate of the rock property fields) requires
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some form regularization; see, for example, Tikhonov [53] or Tang et al. [51]. Here, we

also refer to the specification of additional constraints in the form of prior knowledge

(see Menke [35] or Tarantola [52]), or the reduction in the number of model param-

eters by zonation (see Jacquard and Jain [28] or Bissel [4]), and as regularization.

If the number of model parameters is greater than the number of independent data

and one attempts to perform history matching by minimizing the objection function

defined as the sum of production data mismatch terms squared by a Newton method,

the Hessian matrix generated at each iteration would be singular. Somewhat like a

Levenberg-Marquardt algorithm (see Fletcher [19] or Ref. [46]), regularization gives

rise to a Hessian matrix which is nonsingular. The disadvantage of regularization

is that the particular estimate of model parameters generated depends on the spe-

cific form of regularization chosen. In our work, we prefer to use a prior geostatistical

model as a regularization term; see, for example, Tarantola [52] and Oliver [39] and He

et al. [24]. Conceptually, this prior geostatistical model can be generated from static

data (all available data and geologic knowledge or interpretation except production

data).

As in Tarantola et al. [52], we use an approach based on probability theory.

Specifically, we assume that probability density function (pdf) for the prior model is a

multivariate Gaussian distribution. Then by applying Bayes’ theorem, the a posteriori

pdf can be determined and has a particularly simple form. The a posteriori pdf

represents the pdf for the model parameters based on both production data and prior

information so realizations (samples) of this pdf represent realizations conditioned

to both prior information and data. The maximum a posteriori estimate of the

model parameters can be obtained by minimizing a particular objective function

(see Tarantola [52]) and an approximate sampling of the a posteriori pdf can be

obtained using a method proposed in the petroleum engineering literature by Oliver

et al. [42]; also see Kitanidis [32]. Here the procedure given in Oliver et al. [42] is

referred to as the randomized maximum likelihood method. If an objective function
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is minimized by a Newton procedure, then the generation of the Hessian matrix

requires knowledge of the sensitivity coefficients. The maximum a posteriori estimate

of the rock property fields is in general too smooth to be a plausible realization

as it is the mean of a Gaussian distribution; see Tarantola [52]. The a posteriori

pdf represents the pdf for the model parameters based on both production data

and prior information. Thus, realizations (samples) of this pdf represent realizations

conditioned to both prior information and production data. The uncertainty in model

parameters can sometimes be estimated from the a posteriori covariance matrix (see

Tarantola [52]), but our main goal is to estimate the uncertainty in predicted reservoir

performance. To do so, it is important to first generate a suite of model realizations

via a correct sampling of the a posteriori pdf. Then, for the proposed operating

conditions, predicted performance for each realization of the rock property fields is

computed using a reservoir simulator. By constructing statistics (mean, variance,

histogram) for the set of outcomes for each predicted parameter (e.g., cumulative oil

production, water oil ratios or break through times), one can estimate the uncertainty

in the predicted parameters. Reynolds et al. [48] have applied this specific procedure

to the case where geostatistical realizations from a prior model were conditioned to

multiwell pressure data.

The procedure mentioned above for characterizing the uncertainty in reser-

voir performance predictions is reliable only if the set of realizations of the rock prop-

erty fields correctly reflects the uncertainty in grid block permeabilities and porosities,

i.e., represents a correct sampling of the a posteriori pdf. Thus, sampling this pdf

properly is of paramount importance. Having said this, it is important to note that

the randomized maximum likelihood method provides only an approximate sampling

except in the case where data is linearly related to the model see, Oliver [40], Oliver

et al. [42] and Reynolds et al. [48]. If the data is linearly related to the model, then

the randomized maximum likelihood method provides a rigorous sampling procedure.

Although a Markov chain Monte Carlo method provides a theoretically rigorous pro-
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cedure to sample the a posteriori pdf correctly, current implementations of these

procedures are not sufficiently computationally efficient for practical application; see,

for example, Hegstad et al. [26], Oliver et al. [41] and Cunha et al. [14].

As a historical note, many of the ideas currently under investigation for reg-

ularized automatic history matching are rooted in the fundamental work of Gavalas

et al. [20] and Shah et al. [50]. Although only one-dimensional single-phase flow

problems were considered, the work of these authors laid the ground work for much

of the research work being done today on automatic history matching.Gavalas et al.

recognized that the proper incorporation of prior information or a prior model stabi-

lizes the history-matching problem and reduces the variability in the possible values

of grid block rock properties that provide an acceptable history match of pressure

data. They used Gaussian type expressions for the covariance functions for perme-

ability and porosity and their cross covariance and prior estimates of the means of

porosity and permeability to incorporate prior information in the objective function.

They showed that the incorporation of prior information reduced the errors in the

estimates of grid block permeability and porosity and also improved the convergence

properties of the minimization algorithms considered. As they considered synthetic

examples, the true values of grid block permeabilities and porosity were known so

the error defined as the difference between true and estimated values could be com-

puted. They also showed that Bayesian estimation gave better approximations of

the true rock property fields than were obtained by zonation. They also showed that

the number of parameters to be estimated can be reduced by reparameterizing the

model in terms of the eigenvectors corresponding to the largest eigenvalues of the

prior covariance matrix. For a small one-dimensional single-phase flow problem, they

showed that the number of parameters to be estimated could be reduced from sixty

six to twenty without significantly affecting the accuracy of the estimates of the rock

property fields. Later the same authors (see Shah et al. [50]) compared results ob-

tained by Bayesian estimation, by zonation, reparameterization based on vectors of
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sensitivity coefficients. Their comparisons were based on computing the trace of the

a posteriori covariance matrix obtained by assuming the objective function could be

linearized around the true model. As the trace is the sum of the a posteriori variances,

it gives an approximate measure of the global uncertainty in the estimated values of

grid block permeabilities and porosities. They found that Bayesian estimation results

in the smallest uncertainty. The work of Reynolds et al. [47] contains a direct exten-

sion of Refs. [20] and [50] to two-dimensional single-phase flow problems. However,

the latter reference considers the problem of conditioning to multiwell pressure data,

estimates well skin factors as well as rock property fields and implements a subspace

method to perform reparameterization. Finally, we note that procedures similar to

those introduced by Gavalas et al. [20] and Shah et al. [50] have also been applied to

estimate aquifer properties; see, for example the excellent series of papers by Carrera

and Newman [5], [6] and [7].

As we have discussed above, our interest is in generating estimates or realiza-

tions of grid block porosities and permeabilities (or log-permeabilities) by conditioning

a geostatistical model to dynamic data. Typically, a procedure for generating a par-

ticular estimate of the model parameters would be based on minimizing an objective

function which includes both data mismatch term squared as well as a regularization

term. The regularization term could be a mismatch term representing the deviation

from the prior model, constraints derived from the prior model, or a smoothness con-

straint. It is important to choose an efficient optimization algorithm to minimize the

objective function. Simulated annealing has often been applied as a minimization

technique; see, for example, Ouenes et al. [43] and Hegstad et al. [25]. Simulated

annealing requires many thousands of iterations to converge even for problems with

a few hundred model parameters (grid block permeabilities and porosities). Thus, it

is an impractical procedure if one has to run a reservoir simulator to generate the

predicted data corresponding to the estimate of model parameters at each iteration.

For this reason, Deutsch [16], who considered the problem of conditioning a model to
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geostatistical information and pressure transient data, did not include the pressure

data directly into the objective function. Instead, he formed an objective function

which included the variogram mismatch and a mismatch between an “average” perme-

ability interpreted from the pressure transient data and the corresponding predicted

average permeability calculated from the permeability field obtained at each itera-

tion of the simulated annealing algorithm. There are two major difficulties with this

approach. First, the procedure lacks a rigorous basis for the relative weighting of

the two component parts (variogram mismatch and average permeability mismatch)

of the objective function. One is forced to construct an ad hoc weighting; see, for

example, Deutsch and Cockerham [15]. Second, the choice of the objective function

defines the probability density function that is being maximized, Geman and Ge-

man [21]. This means the pdf arises from the objective function chosen, whereas, the

objective function to be minimized should be derived directly from stochastic model

(pdf). For example, Cunha et al. [14] have shown that if one wishes to condition a

prior multivariate Gaussian distribution to pressure transient data, then minimizing

the objective function used by Deutsch [16] does not yield the correct maximum a

posteriori estimate (most probable model). In addition, the approach of Deutsch [16]

requires the determination of an “average permeability” from the measured pressure

transient data. Deutsch used a power law averaging (see, for example, Alabert [1]).

In a minor modification of Deutsch’s work, Sagar et al. [49] used computational tech-

niques provided by Feitosa et al. [18] to compute average permeability. The Feitosa

et al. work was based on the analytical solution of Oliver [38].

1.2 Summary of Research Objectives and Results

We consider the two-dimensional, two-phase flow of water and oil in an x-y

coordinate system. Gravity and capillary effects are neglected. The reservoir may

contain any number of completely-penetrating water injection wells and any number
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of completely-penetrating producing wells. Water injection rates are specified but the

producing well may be produced at either a specified total flow water or at a specified

bottom hole pressure. A well constraint may be changed during the simulation run.

Fluid properties and relative permeabilities are assumed to be known for both the

forward problem and the inverse problem. Outer reservoir boundaries are no-flow

boundaries. As our first task, we developed an IMPES finite-difference simulator

to predict production data given all rock and fluid property data. The simulator

represents our forward model.

As we believe it is preferable to include the production data mismatch in

our objective function, at each iteration of the optimization algorithm, it will be

necessary to run the simulator to calculate predicted data. Thus, computational

efficiency requires an optimization algorithm which converges rapidly. As in Refs.

[39], [12], [42] and He [23], the Gauss-Newton procedure is used as an optimization

algorithm. Following these same references and Tarantola [52], we cast the estimation

problem in terms of maximizing the a posteriori pdf. An approximation for the

uncertainty in estimates of gridblock log-permeabilities and porosities is obtained

from the a posteriori covariance matrix as in Tarantola [52]. To sample the a posteriori

pdf for the purpose of characterizing the uncertainty in performance predictions, a

method proposed by Oliver et al. [42] and Kitanidis [32] is used. Here, this sampling

procedure is referred to as the randomized maximum likelihood method. Although

this procedure gives a completely rigorous sampling only if production data is linearly

related to the vector of model parameters (see Oliver et al. [42] and Reynolds et

al. [48]), the results of Oliver et al. [42] suggests it generates a reasonable sampling

of the a posteriori pdf.

To obtain the a posteriori pdf, it is necessary to specify production data

measurement errors. Procedures for doing this have been formulated. Our modeling

of these errors recognize that, on a percentage basis, the measurement error in water-

oil ratio may be large when the water production rate is small.
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If only long-time production data is used in the inverse procedure, we found

that the Gauss-Newton method may not converge properly. This result occurs be-

cause at early iterations, the production data mismatch terms are large and the effect

of the prior model as a regularization term becomes small. This results in excessively

rough rock property fields at the first iteration which are difficult to correct at later

iterations. We have developed a procedure to overcome this convergence problem.

The method is conceptually similar to the Levenberg-Marquardt algorithm.

As the Gauss-Newton method requires the calculation of sensitivity coeffi-

cients, we have derived a completely rigorous adjoint procedure to generate the sen-

sitivity coefficients related to model parameters (simulator gridblock permeabilities

and porosities) for a two-phase flow (oil and water) problem. The procedure is derived

directly from the fully discretized difference equations rather than the semidiscrete

equations or original partial differential equations. With this procedure, we directly

generate the sensitivity of wellbore pressures and water-oil-ratios to model parame-

ters, i.e., we do not generate the sensitivity of gridblock pressures and saturations to

the rock property fields. Unlike previous implementations of the adjoint method, we

generate the sensitivity of production data to gridblock permeabilities and porosities,

not just the derivative of the objective function with respect to model parameters.

This allows one to generate the Hessian required for application of the Gauss-Newton

procedure. Since the objective function includes information from a prior geostatis-

tical model, as well as the sum of squares of production data mismatch terms, the

Hessian matrix includes the inverse of the covariance matrix estimated from the prior

model. Thus, the Hessian matrix is guaranteed to be positive definite, and hence

nonsingular. This of course does not mean that there is a unique solution to the in-

verse problem as there exists an infinite collection of porosity and permeability fields

which are consistent with the prior model and the observed data. But, it does mean

that we can obtain realizations by history-matching using a computationally efficient

algorithm, the Gauss-Newton method.
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Given that it requires some effort to formulate the adjoint problem, one

should ask how the gradient simulator procedure and our formulation of the adjoint

procedure compare in terms of computational efficiency. Both procedures solve linear

problems of the same size to obtain sensitivity coefficients. At least formally, both

proceed by solving a set of matrix problems where each coefficient matrix is associated

with multiple right-hand sides. In the gradient simulator method, the number of

right hand sides is equal to the number of model parameters, but in our adjoint

formulation, the number of right-hand sides is equal to the number of production

data used as conditioning data. (Actually, in our formulation, the number of right

hand is usually equal to about one-half the number of conditioning data.) Thus, if the

number of model parameters is significantly greater than the number of production

data used as conditioning data, our adjoint formulation is preferable. If not, the

gradient simulator procedure would be expected to be more computationally efficient.

In terms of memory required, the adjoint method does not compare favorably with

the gradient simulator method. In the adjoint method, all gridblock saturations and

pressures from one simulation run must be stored and all are needed when solving

the adjoint equations.

The organization of the remainder of this dissertation is as follows. Chapter

II discusses the reservoir simulator, the a posteriori pdf, a method for modeling

production data measurement errors and the application of the Gauss-Newton method

for estimation and simulation and uncertainty. Chapter III presents the derivation

of the adjoint method for generating sensitivity coefficients. Chapter IV is dedicated

to results and in Chapter V, we present conclusions and summarize the research

contributions of this work.



CHAPTER II

ESTIMATION AND SIMULATION OF ROCK PROPERTY FIELDS

In this chapter, we discuss the reservoir simulator used for the forward prob-

lem, the a posteriori probability density function (pdf), measurement errors, the

implementation of the Gauss-Newton method for estimation and simulation, and

methods for estimating uncertainty.

2.1 Reservoir Simulator

Throughout, capillary pressure is neglected and oil-field units are used. Al-

though we write some equations in general terms, all computational results presented

pertain to two dimensional flow in an x−y coordinate system with no gravity effects.

Thus, gravity terms are not included in the flow equations even when they are written

for three-dimensional flow. The constants C1 and C2, respectively, are defined as

C1 = 1.127× 10−3 (2.1)

C2 = 5.615 (2.2)

The flow equations are written as

C1∇ ·
(bmkrm

µm

[
k
]
∇p(x, y, z, t)

)
=

φ

C2

∂(bmSm)

∂t
+ q̂m(x, y, z, t), (2.3)

for m = o (oil) and m = w (water), [k] is the permeability tensor, and bm is the inverse

formation volume factor in units of STB/RB. The term q̂(x, y, z, t) is a source/sink
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term in units of STB/ft3-day, which is positive for a producing well and negative for

an injection well and is nonzero only if the point (x, y, z) is intersected by a well.

We assume that the coordinate directions are aligned with the principle permeability

directions so that

[
k
]

=


kx 0 0

0 ky 0

0 0 kz

 (2.4)

We assume a rectangular parallelepiped reservoir, i.e., Eq. 2.3 applies for all t > 0 on

Ω = {(x, y, z)|0 < x < Lx, 0 < y < Ly, 0 < z < Lz}, (2.5)

where the boundary of Ω is denoted by ∂Ω. We assume no flow boundary conditions.

Initial conditions are given by

p(x, y, z, 0) = p0(x, y, z) (2.6)

and

Sw(x, y, z, 0) = Swi(x, y, z). (2.7)

We partition Ω into gridblocks using a standard block-centered grid and let

(xi, yj, zk), i = 1, 2, ... nx, j = 1, 2, ... ny, k = 1, 2, ... nz, denote the gridblock centers.

Considering 2.3 at (xi, yj, zk), we use a standard finite-difference procedure to approx-

imate spatial derivatives in 2.3 and multiply the resulting equation by ∆xi∆yj∆zk to

obtain the following equation:

Tmx,i+1/2,j,k(t)(pi+1,j,k(t)− pi,j,k(t))− Tmx,i−1/2,j,k(t)(pi,j,k(t)− pi−1,j,k(t)) +

Tmy,i,j+1/2,k(t)(pi,j+1,k(t)− pi,j,k(t))− Tmy,i,j−1/2,k(t)(pi,j,k(t)− pi,j−1,k(t)) +

Tmz,i,j,k+1/2(t)(pi,j,k+1(t)− pi,j,k(t))− Tmz,i,j,k−1/2(t)(pi,j,k(t)− pi,j,k−1(t)) =(∆xi∆yj∆zkφi,j,k
C2

)∂(bm(t)Sm(t))i,j,k
∂t

+ qm,i,j,k(t) (2.8)
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for m = o, w. Note that the modified source sink terms are given by

qm,i,j,k(t) = ∆xi∆yj∆zkq̂(xi, yj, zk, t) (2.9)

and have units of STB/D. Throughout, ∆xi, ∆yj and ∆zk are the dimensions of the

gridblock centered at (xi, yj, zk). The x-direction boundaries of this gridblock are

xi−1/2 and xi+1/2 so that ∆xi = xi+1/2 − xi−1/2. Similar and obvious notation is used

for the gridblock boundaries in the other directions. The T ’s denote transmissibilities

at the gridblock boundaries. Note we have left the time variable continuous in Eq. 2.8

and written all terms which depend on pressure or saturation as functions of time.

At any time t and any j and k,

Tmx,i+1/2,j,k(t) =
C1∆yj∆zkkx,i+1/2,j,k

xi+1 − xi

(bm(t)krm(t)

µm(t)

)
i+1/2,j,k

(2.10)

for m = o, w and all i = 1, 2, ... nx − 1. To incorporate no flow boundaries, we set

Tmx,1/2,j,k(t) = Tmx,nx+1/2,j,k(t) = 0. (2.11)

Similarly,

Tmy,i,j+1/2,k(t) =
C1∆xi∆zkky,i,j+1/2,k

yj+1 − yj

(bm(t)krm(t)

µm(t)

)
i,j+1/2,k

, (2.12)

for m = o, w and j = 1, 2, ... ny − 1,

Tmy,i,1/2,k(t) = Tmx,i,ny+1/2,k(t) = 0, (2.13)

Tmz,i,j,k+1/2(t) =
C1∆xi∆yjkz,i,j,k+1/2

zk+1 − zk

(bm(t)krm(t)

µm(t)

)
i,j,k+1/2

, (2.14)

for m = o, w and all k = 1, 2, ... nz − 1, and

Tmz,i,j,1/2(t) = Tmz,i,j,nz+1/2(t) = 0. (2.15)

In our simulator, time dependent terms which appear in the transmissibilities are

evaluated by upstream weighting, i.e.,
((
bm(t)krm(t)

)
/µm(t)

)
terms are calculated
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by upstream weighting. As we consider multiple producing and injection wells, the

upstream direction may be different in different regions of the reservoir. At each time

step in the simulator, upstream directions are calculated using the latest approxi-

mation of the pressure field. Permeabilities at gridblock interfaces are computed as

harmonic averages. Specifically, for all 1 ≤ j ≤ ny and 1 ≤ k ≤ nz,

kx,i+1/2,j,k =
(∆xi + ∆xi+1)kx,i,j,kkx,i+1,j,k

∆xikx,i+1,j,k + ∆xi+1kx,i,j,k
, (2.16)

for i = 1, 2, ... nx − 1,

kx,1/2,j,k = kx,1,j,k (2.17)

and

kx,nx+1/2,j,k = knx,j,k. (2.18)

Similarly,

ky,i,j+1/2,k =
(∆yj + ∆yj+1)ky,i,j,kky,i,j+1,k

∆yjky,i,j+1,k + ∆yj+1ky,i,j,k
, (2.19)

for j = 1, 2, ... ny − 1,

ky,i,1/2,k = ky,i,1,k, (2.20)

ky,i,ny+1/2,k = ki,ny ,k (2.21)

kz,i,j,k+1/2 =
(∆zk + ∆zk+1)kz,i,j,kkz,i,j,k+1

∆zkkz,i,j,k+1 + ∆zk+1kz,i,j,k
, (2.22)

for k = 1, 2, ... nz − 1,

kz,i,j,1/2 = kz,i,j,1, (2.23)

and

kz,i,j,nz+1/2 = ki,j,nz . (2.24)
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For two dimensional problems, we simply use one gridblock in the z-direction

and replace ∆z1 by the reservoir thickness h and set all z-direction transmissibilities

to zero, i.e., delete all terms that pertain to vertical flow in Eq. 2.8 and delete the z

variable from the equations. By appropriate discretization in time and combination

of the discrete equations, one can derive from Eq. 2.8 all standard seven-point finite-

difference schemes ranging from IMPES to fully implicit schemes.

Our simulator is a standard IMPES simulator. At each time step, the set of

finite difference equations for the overall pressure equation at each time step is solved

to obtain gridblock pressures and the finite difference form of the water flow equa-

tion is solved for gridblock values of water saturation. The pressure finite-difference

equations are solved using a sparse matrix routine.

2.1.1 Well Constraints

The simulator can include water injection wells and multiple producing wells.

At injection wells, the water injection rate is specified. Either the flowing bottom

hole pressure, the total flow rate or the oil flow rate is specified at the producing

wells. The relation between a gridblock source or sink term, the gridblock pressure

and flowing bottom hole pressure is specified by Peaceman’s equation [45]. Specific

source sink terms in a gridblock penetrated by a well must be computed from the

specified well constraint. Since our actual simulator pertains only to two-dimensional

(x − y) two-phase (oil and water), we discuss the pertinent relations only for this

special case. Assume well k is located in a gridblock centered at (xi, yj), which here,

we also refer to as gridblock k. Applying Peaceman’s equation for the two-phase

flow problem at time tn gives the phase flow rate (qnm,k) for well k is related to the

gridblock pressure, pnk = pni,j, and the flowing wellbore pressure, pnwf,k by

qnm,k = WIk
knrm,kb

n
m,k

µnm,k

(
pnk − pwf,k

)
, (2.25)
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where WIk = WIi,j is the well index term for gridblock k which is centered at (xi, yj).

Defining, the constant C3 by

C3 = (2π)1.127× 10−3, (2.26)

WIk =
C3h

√
kx,kky,k

ln(ro,k/rw,k) + sk
, (2.27)

where kx,k and ky,k, respectively, denote the x and y direction absolute permeabilities

for the gridblock containing well k, (i.e., kx,k = kx,i,j and ky,k = ky,i,j and

ro,k =
0.28073∆xi

√
1 +

kx,k∆y2
k

ky,k∆x2
k

1 +
√
kx,k/ky,k

. (2.28)

Here rw,k is the wellbore radius of well k, sk is the skin factor for well k, and ∆xk

and ∆yk, respectively, denote the x and y dimensions of gridblock j, i.e., ∆xk = ∆xi

and ∆yk = ∆yj. Moreover the term knrm,kb
n
m,k/µm,k denotes the product of the inverse

formation volume factor and mobility of phase m evaluated at the estimated water

saturation and pressure for the gridblock at time tn.

Suppose a water injection well is located in gridblock k and the water injec-

tion rate is specified as qnw,k at time tn. Then for gridblock k we set qno,k = 0, and

set

qnw,k = WIk

(knrw,kbnw,k
µnw,k

+
knro,kb

n
o,k

µno,k

)(
pnk − pwf,k

)
, (2.29)

where qw,k < 0 corresponds to injection. The oil mobility term is included in Eq. 2.29

to ensure that water can be injected without an extremely large increase in the

wellbore pressure. For example, if water is immobile at the initial water saturation in

the gridblock, and Eq. 2.29 was applied without including the oil terms,
(
pnk − pwf,k

)
would become infinite. Of course once the gridblock fills with water so Sw = 1− Sor,
kro,k = 0 and the oil terms in Eq. 2.29 are automatically deleted.
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Now assume k corresponds to a production well where the total production

rate is specified, i.e., qnt,k > 0 is specified at time tn. Then, Peaceman’s equation is

qnt,k = WIk

(knrw,kbnw,k
µnw,k

+
knro,kb

n
o,k

µno,k

)(
pnk − pwf,k

)
. (2.30)

Defining the mobility of phase m in gridblock k at time tn by

λnm,k =
knrm,k
µnm,k

, (2.31)

Eq. 2.30 can be expressed as

qnt,k = WIk

(
λnw,kb

n
w,k + λno,kb

n
o,k

)(
pnk − pwf,k

)
. (2.32)

The oil and water difference equations at this gridblock require the sink terms

qno,k and qnw,k where

qnt,k = qo,k + qw,k, (2.33)

and the unknown individual phase flow rates are still required to satisfy Peaceman’s

equation, Eq. 2.25. But, for m = o or m = w,

qnm,k =
qnm,k
qnt,k

qnt,k. (2.34)

Using Eqs. 2.25 and 2.32 in Eq. 2.34 and simplifying gives

qnm,k =
λnm,kb

n
m,k

λnw,kb
n
w,k + λno,kb

n
o,k

qnt,k, (2.35)

for m = 0, w. Eq. 2.35 can be used to specify the relevant sink terms in the phase

m finite-difference equation for gridblock k. After solving the IMPES equations for

grid block pressures and saturations, Eq. 2.32 can solved for pnwf,k.

Alternatively, we can insert the right side of Eq. 2.25 directly into the finite

difference equations. When this is done, the flowing wellbore pressure pnwf,k adds

an additional unknown to the system of difference equations. However, since qt,k

is specified, Eq. 2.32 provides the additional equation needed so that the number
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of equations is equal to the number of unknowns. Specifically, the set of IMPES

pressure finite-difference equation plus Eq. 2.32 are solved simultaneously for the

gridblock pressure and the wellbore pressure, pnwf,k.

If the flowing bottom hole pressure is specified as the rate constraint, then the

right hand side of Eq. 2.25 is substituted as the sink term into the finite difference

for phase m. Since pnwf,k is specified, this introduces no additional unknowns into

the system of finite difference equations. After solving for grid block pressures and

saturations are calculated, Eq. 2.25 can be applied to calculate the phase flow rates

and the producing water-oil ratio at time tn at well k given by

WORn
k =

qnw,k
qno,k

=
λno,kb

n
o,k

λnw,kb
n
w,k

. (2.36)

Similarly the water cut can be calculated as

fnw,k =
qnw,k
qnt,k

=
λno,kb

n
o,k

λnw,kb
n
w,k + λno,kb

n
o,k

. (2.37)

2.2 Prior and A Posteriori Probability Density Function

The notation and terminology used here is the same as used in previous

related work; see for example, [12], [39] or [24]. The model parameters are gridblock

log-permeabilities and gridblock permeabilities. Although the flow equations and

adjoint equations (Chapter III) are formulated in terms of anisotropic permeabilities,

the computational results in Chapter IV all pertain to the isotropic case. Thus,

for simplicity, the formulation here assumes permeability is isotropic. However, the

extension to the anisotropic case is trivial.

Each gridblock permeability is treated as a random variable which is assumed

to have a log-normal distribution (log-permeability is normal) with known mean and

variance σ2
k. Each gridblock porosity is assumed to be a normal random variable

with known mean and variance σ2
φ. We model each of these attributes as a stationary
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Gaussian random function. The correlation coefficients between the two rock property

attributes is assumed to be known, but may be zero.

Assuming the simulation model is based on N gridblocks, the vector of model

parameters is given by the M = 2N dimensional column vector

m =

mφ

mk

 , (2.38)

where mφ is the M dimensional column vector of gridblock porosities and mk is the

M -dimensional column vector of gridblock values of ln(k). Throughout, mprior is the

vector containing the prior estimates of these parameters.

2.2.1 The Prior Model

It is assumed that the prior stochastic model for m is a correlated stationary

Gaussian random field. Thus, the prior model has a multivariate Gaussian probability

density function with prior covariance matrix, CM . For the specific problem under

consideration,

CM =


Cφ Cφk O

Ckφ Ck O

O O Cs

 . (2.39)

In Eq. 2.39, Cφ is the covariance matrix for gridblock porosities (derived from the

porosity variogram), Ck is the covariance matrix for gridblock ln(k)’s (derived from

the variogram for log-permeability), Cφk is the cross covariance matrix between poros-

ity and ln(k) at the set of gridblocks, Ckφ is equal to the transpose of Cφk and

throughout O’s denote null matrices, i.e., matrices with all entries equal to zero.

As in Ref. [13], the cross covariance is obtained using the screening hypothesis of

Xu et al. [55]. This avoids the necessity of modeling the cross variogram between

log-permeability and porosity and ensures that the covariance matrix CM is positive

definite.
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2.2.2 A Posteriori Probability Density Function

The relationship between the vector d of calculated production data and the

vector m of model reservoir parameters is written as

d = g(m). (2.40)

The functional relationship of Eq. 2.40 represents the effect of generating d from

our reservoir simulator for a given m. If the true reservoir could be described by

discretization into gridblocks and the entries ofm were exactly equal to the true values

of gridblock rock properties, then Eq. 2.40 would predict the observed production data

provided the solution of the finite difference equations was not affected by truncation

or roundoff errors and data were measured exactly. However, the observed production

data will be corrupted by measurement errors. We let dobs denote the vector of all

observed or measured production data that will be used a conditioning data in the

inverse problem.

As is commonly done, we model measurement errors as independent Gaussian

random variables with prescribed means and variances. If there are Nd production

data, we let σ2
d,j denote the variance of the jth measurement error and define CD to

be a Nd × Nd diagonal matrix with its jth diagonal equal to σ2
d,j. Throughout, CD

is referred to as the data covariance matrix. Then from basic inverse problem theory

(see, for example, Tarantola [52]), an application of Bayes’ theorem indicates that a

posteriori probability density function is given by

f(m) = a exp
(
− 1

2

[
(m−mprior)

TC−1
M (m−mprior) +

(g(m)− dobs)TC−1
D (g(m)− dobs)

])
, (2.41)

where a is the normalizing constant.



23

2.2.3 Estimation and Simulation

Given production data, dobs, the inverse problem refers to the determination

of models m that are consistent with the observed data. Based on the probabilistic

formulation, realizations of m can be obtained by sampling the a posteriori pdf given

by Eq. 2.41. Any sample of this pdf gives a plausible set of values of gridblock log-

permeabilities and porosities that are conditioned to the production data, however,

based on the pdf, some realizations are more likely than others. The process of

generating realizations of this pdf is referred to simulation, or to differentiate this

sampling from reservoir simulation, stochastic simulation.

Estimation refers to the construction of a particular estimate of the model

or model parameters that is consistent with the production data and the prior model.

If a prior model were not specified, then one formulation of the estimation problem

is as follows: find a model m that minimizes the data mismatch objective function

Od(m) defined by

Od(m) =
1

2

(
(g(m)− dobs)TC−1

D (g(m)− dobs)
]
. (2.42)

Thus, we have cast the inverse problem in the form of a classical least squares prob-

lem. For the cases of interest to us, the number of independent production data

is far fewer than the number of model parameters (gridblock log-permeabilities and

porosities). Thus, unlike standard least squares problems, the problem is undeter-

mined and does not have a unique solution. For example, if the production data

correspond to “early times”, the data may be completely insensitive to the values

of permeability and porosity at grid blocks far from wells. Thus, if there exists one

model m which minimizes O(d), any other model obtained from m by perturbing val-

ues of permeability and porosity in these gridblocks will also minimize the objective

function. In such a situation, minimization of Eq. 2.42 by a Newton method would

fail because the Hessian matrix would be singular. Some form of regularization is
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required to mathematically specify a particular estimate, i.e., to determine a specific

model m from the set of all m which minimize Eq. 2.42. As discussed in Parker [44]

and Menke [35], there exist a variety of regularization techniques. In the probabilistic

approach we have taken, the prior stochastic model provides the regularization term.

2.3 The Maximum A Posteriori Estimate

Here, the most probable model refers to the estimate of m which maximizes

the a posteriori pdf. More commonly, this estimate would be referred to as the

maximum a posteriori (MAP) estimate. Throughout the MAP estimate of the rock

property fields is denoted by m∞. It can be obtained by minimizing the objective

function

O(m) =
1

2

[
(m−mprior)

TC−1
M (m − mprior) + (g(m)− dobs)TC−1

D (g(m) − dobs)
]
.

(2.43)

If the predicted data are linearly related to the model, i.e.,

d = Gm, (2.44)

where G is an Nd×M matrix, then Eq. 2.43 has a unique global minimum which can

be constructed from an analytical formula. As given in Tarantola [52], the analytical

equation for the MAP is

m∞ = mprior −H−1
(
C−1
M +GTC−1

D (Gmprior − dobs)
)

(2.45)

where the M ×M matrix H is given by

H = C−1
M +GTC−1

D G. (2.46)

Since CM and CD are covariance matrices and hence positive definite, H is also posi-

tive definite and hence nonsingular. Note, however, if no prior model were available,
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then CM would be deleted from the equations so that Eqs. 2.45 and 2.46 become

m∞ = mprior −H−1
(
GTC−1

D (Gmprior − dobs)
)

(2.47)

where

H = GTC−1
D G. (2.48)

In this case, there is no reason to believe that H is nonsingular. In fact, if the

number of model parameters is greater than the number of data, H must be singular,

Menke [35]. Thus, we see that the prior model provides regularization so that the

linear inverse problem has a unique maximum a posteriori estimate. For the problem

of conditioning to nonlinear production data, Eq. 2.44 does not hold and there is no

guarantee that there is a unique MAP estimate.

2.4 The Gauss-Newton Method

In our work, the maximum a posteriori estimate is constructed by mini-

mizing the objective function of Eq. 2.43 using the Gauss-Newton procedure with

restricted-step. This is the same procedure used in many other papers, see, for exam-

ple, Refs. [12], [47] and [24]. As will be discussed in a later section, the Gauss-Newton

procedure is also applied to sample the a posteriori pdf.

The gradient of the O(m) with respect to the model parameters m is given

by

∇mO(m) = GTC−1
D (g(m)− dobs) + C−1

M (m−mprior), (2.49)

and the Hessian for the Gauss-Newton method is given by

H = GTC−1
D G+ C−1

M , (2.50)
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where G is the matrix of sensitivity coefficients. In our work, sensitivity coefficients

are generated by the adjoint method discussed in Chapter III.

In the Newton procedure, the Hessian, gradient and sensitivity coefficients

change from iterate to iterate. At the lth iteration of the Gauss-Newton algorithm,

we solve

Hlδm
l+1 = −∇Ol (2.51)

for the search direction δml+1 and then compute the updated estimate of the model

parameters from

ml+1 = ml − µlδml+1, (2.52)

where µl is computed by the same restricted step procedure used in Refs. [12] and

[24]. Fletcher [19] provides a detailed discussion of the restricted-step method. In

Eqs. 2.51, l denotes the iteration index, ∇Ol denotes the gradient evaluated at the

old iterate (ml) and Hl denotes the Hessian matrix evaluated at ml.

Similar to Tarantola [52], Chu et al. [12], show that matrix inversion lemmas

can be used to rewrite Eq. 2.52 as

δml+1 = µ̂l(mprior −ml)− µlCMGl
T
(
CD +GlCMGl

T
)−1

×[
g(ml)− dobs −Gl(m

l −mprior)
]
, (2.53)

where µ̂l = µl. If we set µ̂l = µl = 1 in Eq. 2.53, the resulting equation is equivalent

to Eq. 2.51. We have used different notation for these two quantities since some

authors (see, for example, Tarantola [52]) simply set µ̂l = 1 in Eq. 2.53 to obtain

ml+1 = mprior − µlCMGl
T
(
CD +GlCMGl

T
)−1

×[
g(ml)− dobs −Gl(m

l −mprior)
]
. (2.54)

As the Gauss-Newton method converges to the MAP estimate, µl → 1, thus setting

µ̂l = 1 should not cause significant difficulties, and in previous work done at the



27

University of Tulsa, it was found that setting µ̂l = 1 did not cause any noticeable

degradation in the rate of convergence or in the maximum a posteriori estimate

obtained from the Gauss-Newton method. Nevertheless, in the results shown in this

work, Eq. 2.53 with µ̂l = µl = 1 is applied to compute δml+1 and then ml+1 is

calculated from Eq. 2.52.

Although Eqs. 2.51 and 2.53 are mathematically equivalent, the computa-

tional time for the two schemes may be different. The inverse matrix on the right side

of Eq. 2.53 is Nd ×Nd, where Nd is the number of observed production data used as

conditioning data. The Hessian matrix in Eq. 2.51 is M×M , where M is the number

of model parameters. If Nd << Mp, it is most convenient to apply Eq. 2.53. In the

computational results presented here production data are thinned to fewer than 25

data points per well and Eq. 2.53 is incorporated into the Gauss-Newton algorithm.

2.4.1 Convergence Criteria for the Gauss-Newton Algorithm

In this work, we assume that the Gauss-Newton procedure has converged to

the maximum a posteriori estimate when the following criterion is satisfied:

O(ml+1)−O(ml)

O(ml+1) + 10−14
≤ ε1, (2.55)

where the convergence tolerance ε1 is on the order of 10−3. Another appropriate

convergence tolerance is given by

‖ δml+1 ‖
‖ ml ‖ +10−14

≤ ε2, (2.56)

where ε2 is on the order of 10−3.

Regardless of the tolerance used, we also check the condition

Nd∑
i=1

(dobs,i − gi(m)

σd,i

)2

≤ Nd, (2.57)

If measurement errors are Gaussian and m represents the true model, then the left

side of Eq. 2.57 has a chi-squared distribution with expected value given by Nd and



28

variance equal to 2Nd; see Barlow [3]. If the left hand side of Eq. 2.57 is significantly

greater than Nd, we expect that something is wrong, e.g., our model of measurement

errors is incorrect, the Gauss-Newton method has converged to a local minimum, or

the prior model is inappropriate. In fact Eq. 2.57 can be used if conjunction with

Eq. 2.55 (or Eq. 2.56). In this situation, if either equation is satisfied, we assume that

the Gauss-Newton method has converged.

2.5 Modeling of Production Data Measurement Errors

As noted previously, production data measurement errors are modeled as

independent Gaussian random variables. As we use two types of production data,

wellbore pressure data and water-oil-ratio (or water cut) data, two distinct types of

measurement errors must be considered in order to specify the data covariance matrix

CD. In our work, it is assumed that pressure measurement errors are identically

distributed independent random variables with mean zero and variance σ2
d. For water-

oil-ratio data, however, it is clear that the measurement error should be related to

the magnitude of the data themselves. A procedure for doing so is discussed in this

section.

As both pressure and production data obtained from flow rates may be used

as conditioning data, we denote the data covariance matrix for pressure measurement

errors as CDp, denote the data covariance matrix for all other production data as CDq

and let CD denote the overall data covariance matrix. If only pressure data is used

as conditioning data, then CD = CDp. If both pressure and some other type of

production data (water-oil-ratio for the computational examples presented in this

work) are used as conditioning data, then

CD =

CDp O

O CDq

 , (2.58)

where a submatrix O always denotes a null matrix of appropriate order. If only
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water-oil ratio data is used as production data, then CD = CDq. As in our previ-

ous implementations, we assume that pressure measurements errors are independent,

identically distributed random variables with mean zero and variance σ2
d. Thus, the

pressure data covariance matrix CDp is a Np ×Np diagonal matrix, with all diagonal

entries equal to σ2
d, where Np is the number of pressure data used as conditioning

data.

2.5.1 Rate Measurement Errors

The emphasis in this section is on the model used for measurement errors

in flow rate data, water-oil-ratio data, and water-cut data. Throughout, qm, m =

o, w denotes the true rate (no measurement error), qm,obs, m = o, w denotes the

observed or measured rate, V ar[X], denotes the variance of a random variable X,

E[X] its expectation, em denotes the measurement error for the rate of phase m and

is considered to be a Gaussian variable of mean zero. We let σ(x) = σx =
√
V ar[X].

With the preceding notation,

qm,obs = qm + em, (2.59)

so

E[qm,obs] = qm + E[em] = qm, (2.60)

and

V ar[qm,obs] = V ar[qm] + V ar[em] = V ar[em]. (2.61)

Throughout, we assume that rate measurement errors are normally distributed with

mean zero so that

E[em] = 0, (2.62)
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for m = o, w Eqs. 2.60 and 2.61, respectively, are equivalent to

E[qm,obs − qm] = E[em] = 0, (2.63)

and

V ar[qm,obs − qm] = V ar[em]. (2.64)

The preceding equations apply to each observation of the rates. Here, we assume

measurement errors are uncorrelated so the associated data covariance matrix is di-

agonal.

One would expect the error in a rate measurement to depend on the mag-

nitude of the rate. For example, if the water rate is on the order of 0.5 STB/D, it

does not make sense to specify V ar[qw,obs] = 2.25 (STB/D)2. On the other hand, if

the water rate is 500 STB/D, σqw,obs = 1.5 STB/D probably represents an unrealistic

measurement accuracy.

For simplicity, we will assume a constant relative measurement error, εm,

that is, for a one percent relative measurement error in oil rate, we set εo = 0.01. We

approximate the relevant standard deviations by

σ(qm,obs − qm) = σqm,obs = σ[em] ≈ εmqm,obs, (2.65)

or,

V ar(qm,obs − qm) = V ar[em] ≈ (εm)2q2
m,obs. (2.66)

2.5.2 Variance of WOR

The true water-oil ratio is given by

f(qo, qw) = WOR =
qw
qo
, (2.67)
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whereas, the observed water-oil ratio is given by

f(qo,obs, qw,obs) = WORobs =
qw,obs
qo,obs

. (2.68)

A standard Taylor series approximation of f(qo,obs, qw,obs) about the true values of the

rates is given by

f(qo,obs, qw,obs) = f(qo, qw) +
∂f(qo, qw)

∂qo
(qo,obs − qo) +

∂f(qo, qw)

∂qw
(qw,obs − qw) (2.69)

Eq. 2.69 is equivalent to

eWOR = WOR−WORobs

=
∂f(qo, qw)

∂qo
(qo,obs − qo) +

∂f(qo, qw)

∂qw
(qw,obs − qw)

=
∂f(qo, qw)

∂qo
eo +

∂f(qo, qw)

∂qw
ew.

(2.70)

Taking the expectation and variance, respectively, of Eq. 2.70 and applying Eq. 2.62

yields

E[eWOR] = 0, (2.71)

and

V ar[eWOR] =

(
∂f(qo, qw)

∂qo

)2

V ar[qo,obs − qo] +

(
∂f(qo, qw)

∂qw

)2

V ar[qw,obs − qw].

(2.72)

The derivatives appearing in Eq. 2.72 can be formally calculated from Eq. 2.67.

The true values of rates are unknown, however, so we evaluate the derivatives at

(qo,obs, qw,obs). Inserting then, these partial derivatives of f into Eq. 2.72 gives

V ar[eWOR] =
q2
w,obs

q4
o,obs

V ar[qo,obs − qo] +
1

q2
o,obs

V ar[qw,obs − qw]. (2.73)
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Performing trivial algebra and using Eq. 2.66, Eq. 2.73 becomes

V ar[eWOR] =
q2
w,obs

q2
o,obs

(
1

q2
o,obs

V ar[qo,obs − qo] +
1

q2
w,obs

V ar[qw,obs − qw]

)
= WOR2

obs(ε
2
o + ε2w). (2.74)

The preceding formula results, however, in what seem to be unrealistically

small values for the variance in measurements of WOR when the water rate is small.

The problem is that we assumed that the same relative error in the water rate was

valid for any water rate, including water rates that are approximately zero. It seems

more reasonable to assume that there is some finite detection limit, below which the

uncertainty in the measurement of the water rate has a fixed magnitude.

Thus, we rewrite Eq. 2.74 as

V ar[eWOR] = WOR2
obs ε

2
o +

1

q2
o,obs

σ2
qw,obs

, (2.75)

where

ε2m =
V ar[qm,obs − qm]

q2
m,obs

(2.76)

and also specify

σqw,obs = max[εwqw,obs, σ
min
qw,obs

]. (2.77)

With εo and εw specified, Eq. 2.75 is used to define the variance of the measurement

error for the water-oil ratio where σqw,obs is computed with Eq. 2.77 . In the examples

considered in this work, we set σminqw,obs
= 2 STB/D, εo = 0.01 and εw = 0.02.

Eqs. 2.72 through 2.75 assume that the water and oil rates are measured

independently and that the two rates are uncorrelated, which may not be the case.

If the measurement errors of oil and water rates are correlated, then, as shown in

Barlow [3], Eq. 2.72 (with partial derivatives evaluated at observed rates) should be
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replaced by

V ar[eWOR] =

(
∂f(qo,obs, qw,obs)

∂qo

)2

V ar[qo,obs−qo]+
(
∂f(qo,obs, qw,obs)

∂qw

)2

V ar[qw,obs−qw]+

2

(
∂f(qo,obs, qw,obs)

∂qo

)(
∂f(qo,obs, qw,obs)

∂qw

)
cov[qo,obs − qo, qw,obs − qw], (2.78)

where the covariance of the rate measurement errors is given by

cov[qo,obs − qo, qw,obs − qw] = ρ
√
V ar[qo,obs − qo]V ar[qw,obs − qw]. (2.79)

Here, ρ denotes the correlation between oil and water rate measurement errors. Sim-

ilarly, Eq. 2.73 should be replaced by

V ar[eWOR] =
q2
w,obs

q4
o,obs

V ar[qo,obs − qo] +
1

q2
o,obs

V ar[qw,obs − qw]−

2
qw,obs
q3
o,obs

cov[qo,obs − qo, qw,obs − qw] (2.80)

We can of course always apply the general formula for the variance of the WOR and

then simply set ρ = 0 if we wish errors to be uncorrelated.

2.5.3 Variance of Water-Cut Measurement Error

The water cut is given by

fw =
qw

qo + qw
=
qw
qt

(2.81)

Following the same procedure used to derive Eq. 2.73, we have

V ar[e(fw)] =
q2
w

q4
t

V ar[qt,obs − qt] +
1

q2
t

V ar[qw,obs − qw] =

f 2
w

(
V ar[qt,obs − qt]

q2
t

+
V ar[qw,obs − qw]

q2
w

)
, (2.82)

where e(fw) denotes the measurement error in water cut. Note we have assumed here

that qt and qw are measured independently and that these two measurement errors

are uncorrelated. If we actually measure qo and qw independently, and then construct

a “measured” qt by adding these two measurements, then

V ar[qt,obs − qt] = V ar[qw,obs − qw] + V ar[qo,obs − qo]. (2.83)
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2.6 Gauss-Newton Adjustments in Data Covariance Matrices

For the examples presented in this report, all conditioning data used to

construct realizations correspond to t ≥ 280 days. In this case, the initial data

mismatch terms are extremely large and the effect of the prior covariance matrix

CM which provides regularization and also promotes continuity in the simulated rock

property fields (assuming that CM corresponding to a variogram with a range that

spans at least a few gridblocks) has little effect at the first iteration of the Gauss-

Newton method. Because of this, a very rough rock property field is generated at

the first iteration, and it is often impossible to remove the excessive roughness at

subsequent iterations. To avoid this problem, we use artificially high values of the

measurement error variances at early iterations, a procedure which is at least in the

spirit of the Levenberg-Marquardt algorithm.

Recall that the data mismatch part of the objective function of Eq. 2.43 is

1/2 times

Od = [d− dobs]TC−1
D [d− dobs]. (2.84)

Since pressure measurement errors and water-oil-ratio measurement errors are uncor-

related, we can write Eq 2.84 as

Od = Op +Oq, (2.85)

where

Op = [p− pobs]TC−1
Dp[p− pobs] =

Np∑
j=1

(pj − pobs,j)2

V ar[pobs,j]
=

1

σ2
d

Np∑
j=1

(pj − pobs,j)2, (2.86)

and

Oq = [WOR−WORobs]
TC−1

Dq [WOR−WORobs] =

Nq∑
j=1

(WORj −WORobs,j)
2

V ar[WORobs,j]
.

(2.87)
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Here pobs,j is the jth pressure measurement and WORj is the jth water-oil-ratio

data point. The vector pobs contains all of the observed pressure data and the vec-

tor WORobs contains all of the observed water-oil-ratio data. The last equality of

Eq. 2.86 follows from the assumption that pressure data measurement errors are

identically distributed Gaussian random variables with variance equal to σ2
d. Given

the assumption that measurement errors are Gaussian, Eqs. 2.86 and 2.87 both have

a chi-squared probability function and the expected values of the two sub-objective

functions are given by

E[Op] = E
[
[p− pobs]TC−1

D [p− pobs]
]

= Np, (2.88)

and

E[Oq] = E
[
[WOR−WORobs]

TC−1
Dq [WOR−WORobs]

]
= Nq. (2.89)

Prior to performing iteration l + 1 of the Gauss-Newton method to calculate ml+1,

we compute

Ol
p = [pl − pobs]TC−1

D [pl − pobs], (2.90)

and

Ol
q = [WORl −WORobs]

TC−1
Dq [WORl −WORobs], (2.91)

where pl and WORl denote vectors of pressure and WOR data calculated from ml.

If Ol
p > 3Np, we replace CDp by (Ol

p/3Np)CDp. If Ol
q > 3Nq, we replace CDq by

(Ol
q/3Nq)CDq when generating ml+1. This somewhat ad hoc procedure results in

smoother convergence and for all examples we have tried prevents convergence to a

local minimum which gives an unacceptable match of the data. Typically, after a

few iterations, a sufficiently low data mismatch is achieved so that the specified data

covariance matrices CDp and CDq can be used.
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2.7 Sampling the Posterior Probability Density Function

As discussed in the introduction, it is desirable to generate a set of real-

izations of the model by sampling the a posteriori pdf in order to characterize the

uncertainty in reservoir performance predictions. The procedure used for sampling

is the one introduced into the petroleum engineering literature by Oliver et al. [42].

The same procedure was introduced earlier into the groundwater literature without

discussion of its limitations by Kitanidis [32]. The procedure is effectively the one

formulated for linear problems by Oliver [40]. An alternate derivation of the method

is given in Reynolds et al. [48]. Here, this sampling procedure is referred to as the

randomized maximum likelihood method. Strictly speaking, the method provides a

rigorous sampling of the a posteriori pdf only if the data are linearly related to the

model.

To generate a single realization of the vector of model parameters by the

randomized maximum likelihood method, we generate an unconditional realization of

muc of the vector of model parameters by sampling the prior pdf and an unconditional

realization of the data. The unconditional realization of the model can be generated

using a Cholesky or square root decomposition of the prior covariance matrix or

by sequential Gaussian cosimulation; see, for example, Ref. [22]. Since the data

covariance matrix is a positive definite, diagonal matrix, an unconditional simulation

of the data can be obtained from

dobs,uc = dobs + C
1/2
D ZD, (2.92)

where ZD is a vector of independent standard random normal deviates. A conditional

realization, mc of the vector of model parameters is then generated by minimizing

Or(m) =
1

2

[
(m−muc)

TC−1
M (m − muc) + (g(m)− dobs,uc)TC−1

D (g(m) − dobs,uc)
]
.

(2.93)
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The Gauss-Newton procedure is applied to minimize Od(m). If one wishes to generate

Nr realizations, the process is repeated Nr times.

2.8 Evaluation of Uncertainty

Throughout, m∞ denotes the approximate of the MAP estimate obtained by

applying the Gauss-Newton procedure to minimize the objection function of Eq. 2.43

andG∞ denotes the sensitivity coefficient matrix6−8,20 evaluated atm∞. For the prob-

lems considered here, sensitivity coefficients are calculated from the adjoint method

developed in Chapter III.

As discussed in Tarantola [52], the a posteriori covariance matrix, CMP , is

given by

CMP =
(
G∞C

−1
D GT

∞ + C−1
M

)−1

=

CM − CMG∞T (G∞CMG∞
T + CD)

−1
G∞CM . (2.94)

The diagonal elements of CMP represent the a posteriori variances. Letting, σMP,j

denote the jth diagonal entry, the 95 percent confidence interval for the jth model

parameter, mj can be approximated by [m∞,j − 2σMP,j, m∞,j + 2σMP,j].

If predicted production data were linearly related to the model as in Eq. 2.44,

then the a posteriori pdf of Eq. 2.41 is Gaussian with expectation m∞ and covariance

CMP . In this case, one can sample the a posteriori pdf by calculating the Cholesky

decomposition of CMP ,

CMP = LLT , (2.95)

and applying the equation

mr = m∞ + LZr, (2.96)

to generate a realization. Here, Zr is a vector of independent standard random normal

deviates. By generating a set of Nr independent Zr vectors, one can obtain a set of
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Nr realizations. This set represents a correct sampling of the a posteriori pdf when

data are linearly related to the model. However, the results of Oliver et al. [41],

indicate that one can not assume that this is a valid procedure when the relationship

between data and model is nonlinear. The latter reference illustrates that Eq. 2.96

may provide a very poor sampling procedure even when production data consists

solely of well-test pressure data obtained under single-phase flow conditions.

As the randomized maximum likelihood method appears to be the most

reliable sampling procedure available, it is the one used in this work. Note one

could generate a large number of realizations from this method, and estimate means,

variances and covariances from the set of realizations to evaluate the uncertainty

in the rock property fields. However, characterizing the uncertainty in predicted

reservoir performance is of greater interest. Thus, we simulate reservoir performance

for each realization and construct statistics from the suite of predicted outcomes for

each predicted parameter of interest (e.g., cumulative oil production) in order to

estimate the uncertainty in each prediction parameter.



CHAPTER III

GENERATION OF SENSITIVITY COEFFICIENTS BY THE ADJOINT

METHOD

Here, a formal derivation of the adjoint method used to generate sensitivity

of pressures and water-oil ratios to the rock property fields is presented.

3.1 Formulation of the Adjoint Problem

In this major section, we present a derivation of the discrete adjoint equa-

tions. The adjoint variables obtained by solving this system of equations are used

later to generate the sensitivity coefficients related to production data.

3.1.1 Flow Equations and Reservoir Simulator

Throughout, oil-field units are used and the constants C1 and C2, respec-

tively, are defined as

C1 = 1.127× 10−3 (3.1)

C2 = 5.615 (3.2)

As derived in Chapter II (see Eq. 2.8), the semidiscrete flow equation is given

by

Tmx,i+1/2,j,k(t)(pi+1,j,k(t)− pi,j,k(t))− Tmx,i−1/2,j,k(t)(pi,j,k(t)− pi−1,j,k(t)) +

Tmy,i,j+1/2,k(t)(pi,j+1,k(t)− pi,j,k(t))− Tmy,i,j−1/2,k(t)(pi,j,k(t)− pi,j−1,k(t)) +

Tmz,i,j,k+1/2(t)(pi,j,k+1(t)− pi,j,k(t))− Tmz,i,j,k−1/2(t)(pi,j,k(t)− pi,j,k−1(t)) =(∆xi∆yj∆zkφi,j,k
C2

)∂(bm(t)Sm(t))i,j,k
∂t

+ qm,i,j,k(t) (3.3)
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for m = o, w. The term qm,i,j,k(t) is the source or sink term for the gridblock centered

at (xi, yj, zk) and has units of STB/D, with q > 0 corresponding to production and

q < 0 corresponding to injection.

As noted in Chapter II, the current simulator is an IMPES simulator, how-

ever, we will use a fully implicit formulation of the adjoint equations. We let ∆tl,

l = 0, 1, ..., denote the time steps used in the reservoir simulator so that tl+1 = tl+∆tl

where t0 = 0. The time steps used in the adjoint solution do not need to be identical

to the time steps used in the reservoir simulator, but for now, we will assume they

are identical. If they are not, one may need to interpolate between the pressure and

saturation values generated in a simulation run to obtain pressure and saturation

values at time steps used in the adjoint solution. However, preliminary results not

discussed here indicate that one can take larger time steps in the adjoint solution than

in the simulator. In this case, it is easiest to just use a subset of the simulator times

(tl’s) when solving the adjoint equations. This avoids the need to do interpolation.

Whether our recent observation that one can generally use far larger time steps in the

adjoint solution is (a) a consequence of the fact the simulator is based on the IMPES

method and the adjoint equations are solved by a fully implicit formulation, (b) a

consequence of the fact that the simulator problem is nonlinear, whereas the adjoint

problem is linear, (c) a consequence of the fact that the adjoint solutions are solved

backward in time using a unit source at a specific points (xi, yj, zk, t
l) and except near

the time where the source is located, the adjoint solutions vary slowly and smoothly,

(d) a combination of (a), (b) and (c), or (e) a non-general observation, is unclear at

this time.

To simplify notation, we define

V l
φ,i,j,k =

∆xi∆yj∆zkφi,j,k
C2∆tl−1

(3.4)

denote the left-hand side of Eq. 3.3 by fm,i,j,k(t) for m = o, w and let f lm,i,j,k denote

this term evaluated at tl for l = 0, 1, ... . Using this notation, setting t = tl+1 in Eq. 3.3
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and performing a backward difference in time, it follows that

f l+1
m,i,j,k = V l+1

φ,i,j,k

[(
bmSm

)l+1

i,j,k
−
(
bmSm

)l
i,j,k

]
+ ql+1

m,i,j,k, (3.5)

for m = o, w.

From this point on we will assume that there are M simulator gridblocks

which have been ordered 1, 2, ...M . How gridblocks are ordered is irrelevant to the

discussion except, porosities, permeabilities, pressures and saturations, and the dif-

ferenced flow equations must be ordered consistently. Relative to this ordering, we

define relevant M-dimensional vectors. First, we define the M ×M matrix, V l
φ, by

V l
φ =


V l
φ,1 0 0 . . . 0

0 V l
φ,2 0 . . . 0

...
...

. . . . . .
...

0 0 0 . . . V l
φ,M

 (3.6)

for all l where V l
φ,j denotes the pore volume of gridblock j in ft3 divided by C2∆tl1 .

Similar notation will be used for the other variables.

Relative to the gridblock ordering, we define for l = 0, 1, 2, ...,

pl =
[
pl1, p

l
2, ..., p

l
M

]T
. (3.7)

For l = 0, 1, 2, ... and m = 0, w, we define

Slm =
[
Slm1, S

l
m2, ..., S

l
mM

]T
, (3.8)

(bS)lm =
[
blm1S

l
m1, b

l
m2S

l
m2, ... bmMS

l
mM

]T
, (3.9)

qlm =
[
qlm1, q

l
m2, ..., q

l
mM

]T
, (3.10)
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and

f lm =
[
f lm1, f

l
m2, ..., f

l
mM

]T
. (3.11)

Throughout, the superscript T on a matrix represents the operation of taking

the matrix transpose. With the preceding notation, Eq. 3.5 can be written as

f l+1
m = V l+1

φ

[(
bS
)l+1

m
−
(
bS
)l
m

]
+ ql+1

m , (3.12)

for m = o, w.

3.1.2 The Adjoint Functional

Even though the finite difference equations solved in the IMPES simulator are

not identical to Eq. 3.12, we formulate the adjoint solution based on this equation. In

essence, we are assuming that the pressures and saturations obtained from our IMPES

simulator satisfy Eq. 3.12. If this is not exactly true, some error may be introduced

into our adjoint solutions, however, in all computations we have done, we have not

encountered any significant inaccuracy due to this approach. However, we always use

small time steps in the IMPES solutions, with a maximum time step of no more than

four days. The alternative would be to form the adjoint problem directly from the

IMPES finite-difference equations, but as we intend to use an implicit finite-difference

procedure for three-dimensional problems, we formulate the adjoint problem assuming

that Eq. 3.12 is satisfied by the IMPES finite-difference solution.

We define vectors of gridblock permeabilities and porosities as follows:

kx =
[
kx,1, kx,2, ..., kx,M

]T
(3.13)

ky =
[
ky,1, ky,2, ..., ky,M

]T
(3.14)

kz =
[
kz,1, kz,2, ..., kz,M

]T
(3.15)
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and

φ =
[
φ1, φ2, ..., φM

]T
(3.16)

Although we use kx, ky, kz and φ as both scalar and vector variables, which is meant

should be clear from the context and the fact that the scalar forms normally have

index subscripts attached to them to indicate the gridblock in which they are located.

We denote the differentials of these variables by

dkx =
[
dkx,1, dkx,2, ..., dkx,M

]T
(3.17)

dky =
[
dky,1, dky,2, ..., dky,M

]T
(3.18)

dkz =
[
dkz,1, dkz,2, ..., dkz,M

]T
(3.19)

and

dφ =
[
dφ1, dφ2, ..., dφM

]T
(3.20)

We define a general function by

g = g(p1, ..., pL, Sw1, ..., SwL, kx, ky, kz). (3.21)

The function is arbitrary, but the choice is dictated by the sensitivity coefficients we

wish to compute. In fact, the adjoint method is formulated so that we can calculate

the sensitivity coefficients of g. It is perfectly acceptable to choose g as the objective

function given by the sum of squares of production data misfit terms; in fact, this

is the standard choice. Our choice of Eq. 3.21 is dictated by our desire to find the

sensitivity coefficients related to pressure (and/or saturation), e.g., find

∂plj
∂α

, (3.22)
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where α is one of the model parameters, i.e., a gridblock permeability or porosity

and plj is the pressure at gridblock j at time tl. Gridblock j represents a gridblock

containing a well at which we have measured data that we wish to use as conditioning

data. As shown later, flowing wellbore pressure sensitivities can be computed directly

from the associated sensitivity coefficient of the associated gridblock pressure. If we

wish to compute the sensitivity coefficient given by the expression of Eq. 3.22, we can

simply choose

g(pl, Slw) = plj. (3.23)

For all l, we now define two M -dimensional vectors of adjoint variables,

λlw =
[
λlw,1, λ

l
w,2, ... λ

l
w,M

]T
, (3.24)

and

λlo =
[
λlo,1, λ

l
o,2, ... λ

l
o,M

]T
. (3.25)

Here, λlm,j denotes the scalar adjoint variable for phase m at gridblock j at time tl.

Note at each time tl, we have two adjoint variables per gridblock. Note this number

corresponds to the reservoir simulation problem in which, at each time step, we solve

for two unknowns at each gridblock, pressure and water saturation.

We now “adjoin” Eq. 3.12 to the function g (3.21) to obtain the functional

J given by

J = g +
∑
m=o,w

L−1∑
l=0

(
λl+1
m

)T [
f l+1
m − ql+1

m − V l+1
φ

(
(bS)l+1

m − (bS)lm
)]
, (3.26)

where for now, we may think of L as the number of time steps used to generate

pressure and saturation from the reservoir simulator. Since pressure and saturation

obtained from the finite difference simulator are assumed to satisfy Eq. 3.12, the

terms in the sum are zero for any values of the adjoint variables. This is convenient

because it means that the derivative of J with respect to any model parameter α (a
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gridblock permeability or porosity) is the same as the derivative of g with respect to

any model parameter, i.e.,

∂J

∂α
=
∂g

∂α
. (3.27)

Thus the sensitivity coefficients for J and g are identical.

3.1.3 Gradients and Differentials

From the viewpoint of computing total differentials, we consider f l+1
m and

ql+1
m as functions of permeabilities and gridblock pressures and saturations at time

tl+1, i.e.,

f l+1
m = fm(pl+1, Sl+1

w , kx, ky, kz), (3.28)

and

ql+1
m = qm(pl+1, Sl+1

w , kx, ky, kz). (3.29)

The total differential of the ith component of fm is then given by

df l+1
mi =

M∑
j=1

(∂f l+1
mi

∂pl+1
j

dpl+1
j +

∂f l+1
mi

∂Sl+1
wj

dSl+1
wj +

∂f l+1
mi

∂kx,j
dkx,j +

∂f l+1
mi

∂ky,j
dky,j +

∂f l+1
mi

∂kz,j
dkz,j

)
.

(3.30)

If we define the gradient operator in the standard way, then

∇pl+1fmi =



∂fmi
∂pl+1

1

∂fmi
∂pl+1

2
...

∂fmi
∂pl+1
M


, (3.31)

∇kxfmi =


∂fmi
∂kx,1

∂fmi
∂kx,2

...

∂fmi
∂kx,M

 , (3.32)
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with similar notation used for gradients with respect to the M dimensional vectors

Sl+1
w , kx, ky, kz and φ. With this notation, Eq. 3.30 can be rewritten as

df l+1
mi =

(
∇pl+1f l+1

mi )Tdpl+1 +
(
∇Sl+1

w
f l+1
mi

)T
dSl+1

w +
(
∇kxf

l+1
mi

)T
dkx +(

∇kyf
l+1
mi

)T
dky +

(
∇kzf

l+1
mi

)T
dkz, (3.33)

where dkx, dky and dkz respectively, are given by Eqs. 3.17, 3.18 and 3.19,

dpl+1 =
[
dpl+1

1 , dpl+1
2 , ... dpl+1

M

]T
, (3.34)

and

dSl+1
w =

[
dSl+1

w1 , S
l+1
w2 , ... S

l+1
wM

]T
. (3.35)

Using gradient notation and recalling Eq. 3.11, we also see that for any l,

∇kx

[(
f lm
)T ]

=


∂

∂kx,1

∂
∂kx,2

...

∂
∂kx,M

 [f lm]T =


∂

∂kx,1

∂
∂kx,2

...

∂
∂kx,M


[
f lm1, f

l
m2, ... f

l
mM

]

=
[
∇kxf

l
m1,∇kxf

l
m2, ...∇kxf

l
mM

]
=



∂f lm1

∂kx,1

∂f lm2

∂kx,1
. . .

∂f lmM
∂kx,1

∂f lm1

∂kx,2

∂f lm2

∂kx,2
. . .

∂f lmM
∂kx,2

...
...

. . .
...

∂f lm1

∂kx,M

∂f lm2

∂kx,M
. . .

∂f lmM
∂kx,M

 (3.36)

Expressions similar to Eq. 3.36 can be written for the gradient of f lm with respect to

other vector variables.
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3.1.4 Total Differential of Flux Terms

Applying all of the preceding notation, and using Eq. 3.33, we see that for

l = 0, 1, ...

df lm =


df lm1

df lm2

...

df lmM

 =



(
∇plf

l
m1)Tdpl +

(
∇Slw

f lm1

)T
dSlw(

∇plf
l
m2)Tdpl +

(
∇Slw

f lm2

)T
dSlw

...(
∇plf

l
mM)Tdpl +

(
∇Slw

f lmM
)T
dSlw

+



(
∇kxf

l
m1)Tdkx +

(
∇kyf

l
m1

)T
dky +

(
∇kzf

l
m1

)T
dkz(

∇kxf
l
m2)Tdkx +

(
∇kyf

l
m2

)T
dky +

(
∇kzf

l
m2

)T
dkz

...(
∇kxf

l
mM)Tdkx +

(
∇kyf

l
mM

)T
dky +

(
∇kzf

l
mM

)T
dkz

 =


(∇plf

l
m1)T

(∇plf
l
m2)T

...

(∇plf
l
mM)T

 dp
l +


(∇Slw

f lm1)T

(∇Slw
f lm2)T

...

(∇Slw
f lmM)T

 dS
l
w +


(∇kxf

l
m1)T

(∇kxf
l
m2)T

...

(∇kxf
l
mM)T

 dkx +


(∇kyf

l
m1)T

(∇kyf
l
m2)T

...

(∇kyf
l
mM)T

 dky +


(∇kzf

l
m1)T

(∇kzf
l
m2)T

...

(∇kzf
l
mM)T

 dkz =

[
(∇plf

l
m1) (∇plf

l
m2) . . . (∇plf

l
mM)

]T
dpl +[

(∇Slw
f lm1) (∇Slw

f lm2) . . . (∇Slw
f lmM)

]T
dSlw +[

(∇kxf
l
m1) . . . (∇kxf

l
mM)

]T
dkx +

[
(∇kyf

l
m1) . . . (∇kyf

l
mM)

]T
dky +[

(∇kzf
l
m1) . . . (∇kzf

l
mM)

]T
dkz =(

∇pl(f
T
m)
)T
dpl +

(
∇Slw

(fTm)
)T
dSlw +(

∇kx(f
T
m)
)T
dkx +

(
∇ky(f

T
m)
)T
dky +

(
∇kz(f

T
m)
)T
dkz. (3.37)
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3.1.5 Total Differential of J

To further simplify notation, we introduce flow and accumulation vector

variables, respectively, by

F l+1
m = F l+1

m (pl+1, Sl+1
w , kx, ky, kz) = f l+1

m − ql+1
m , (3.38)

Al+1
m = Al+1

m (pl+1, Sl+1
w , φ) = V l+1

φ (bS)l+1
m , (3.39)

and

Ãlm = Ãlm(pl, Slw, φ) = V l+1
φ (bS)lm, (3.40)

for m = 0, w and l = 0, 1, ..., L − 1. Note V l+1
φ appears in both Eqs. 3.39 and 3.40,

but the only reason this term is time dependent is that it involves ∆tl; see Eqs. 3.4

and 3.6. If a constant time step were used, this term would be independent of time

and we would have Alm = Ãlm. Again, we let tL represent the termination time of a

reservoir simulation run. Definitions of relevant terms in the two preceding equations

are given in Eqs. 3.6 through 3.11 . The notation used in Eqs. 3.38–3.40 indicates

that F l+1
M involves only the gridblock pressures and saturations at time tl+1 and all

gridblock permeabilities, whereas Al+1
m and Ãl+1

m explicitly involve the same pressures

and saturations as well as gridblock porosities, but not permeabilities. Thus, in

computing total differentials of these vector variables, we can use

∇φ

[(
F l+1
m

)T ]
= O, (3.41)

∇kx

[(
Al+1
m

)T ]
= ∇ky

[(
Al+1
m

)T ]
= ∇kz

[(
Al+1
m

)T ]
= O, (3.42)

and

∇kx

[(
Ãlm
)T ]

= ∇ky

[(
Ãlm
)T ]

= ∇kz

[(
Ãlm
)T ]

= O, (3.43)
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where O represents the M ×M null matrix; i.e., all its entries are equal to zero.

Using the the notation of Eqs. 3.38–3.40,we can write Eq. 3.26 as

J = g +
∑
m=o,w

L−1∑
l=0

(
λl+1
m

)T [
F l+1
m − Al+1

m + Ãlm
]
. (3.44)

Taking the total differential of Eq. 3.44, using operational formulas like Eq. 3.37, we

obtain

dJ = dg +
∑
m=o,w

L−1∑
l=0

((
λl+1
m

)T[(∇pl+1 [F l+1
m − Al+1

m ]T
)T
dpl+1 +

(
∇Sl+1

w
[F l+1
m − Al+1

m ]T
)T
dSl+1

w +(
∇kx [F

l+1
m ]T

)T
dkx +

(
∇ky [F

l+1
m ]T

)T
dky +

(
∇kz [F

l+1
m ]T

)T
dkz −(

∇φ[Al+1
m ]T

)T
dφ+

(
∇φ[Ãlm]T

)T
dφ+(

∇pl [Ã
l
m]T
)T
dpl +

(
∇Slw

[Ãlm]T
)T
dSlw

])
. (3.45)

By simply changing the index of summation, we have

L−1∑
l=0

(
λl+1
m

)T (∇pl+1 [F l+1
m − Al+1

m ]T
)T
dpl+1 =

L−1∑
l=1

((
λlm
)T (∇pl [F

l
m − Alm]T

)T
dpl
)

+

(
λLm
)T (∇pL [FL

m − ALm]T
)T
dpL (3.46)

and

L−1∑
l=0

(
λl+1
m

)T (∇Sl+1
w

[F l+1
m − Al+1

m ]T
)T
dSl+1

w =

L−1∑
l=1

((
λlm
)T (∇Slw

[F l
m − Alm]T

)T
dSlw

)
+

(
λLm
)T (∇SLw

[FL
m − ALm]T

)T
dSLw. (3.47)

We define

BTL =
∑
m=o,w

(
λLm
)T[(∇pL [FL

m − ALm]T
)T
dpL +

(
∇SLw

[FL
m − ALm]T

)T
dSLw

]
. (3.48)
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Using Eqs. 3.46, 3.47 and 3.48, Eq. 3.45 can be rewritten as

dJ = dg +
∑
m=o,w

L−1∑
l=1

(
λlm
)T[(∇pl [F

l
m − Alm]T

)T
dpl +

(
∇Slw

[F l
m − Alm]T

)T
dSlw

]
+

∑
m=o,w

L−1∑
l=0

((
λl+1
m

)T[(∇kx [F
l+1
m ]T

)T
dkx +

(
∇ky [F

l+1
m ]T

)T
dky +

(
∇kz [F

l+1
m ]T

)T
dkz −

(
∇φ[Al+1

m ]T
)T
dφ+

(
∇φ[Ãlm]T

)T
dφ+

(
∇pl [Ã

l
m]T
)T
dpl +

(
∇Slw

[Ãlm]T
)T
dSlw

])
+BTL.

(3.49)

Since p0 and S0
w represented fixed specified initial conditions, they will not

change if the rock property fields are perturbed. Thus, their differentials are zero,

i.e.,

dp0 = dS0
w = 0. (3.50)

Thus, we can add or delete any terms that involve a matrix multiplication of these

differential from any equation, e.g.,

(
∇p0 [Ã0

m]T
)T
dp0 =

(
∇S0

w
[Ã0

m]T
)T
dS0

w = 0. (3.51)

In all cases of interest to us, the function g will be chosen so that it depends

explicitly on one or more of the pl and Slw vectors, l = 1, ... L − 1 and possibly kx,

ky and kz. Thus, using an operational formula like the one of Eq. 3.33, the total

differential of g can be written as

dg =
{ L−1∑

l=1

(
[∇plg]Tdpl + [∇Slw

]TdSlw

)}
+

[∇kxg]Tdkx + [∇kyg]Tdky + [∇kzg]Tdkz + [∇φg]Tdφ. (3.52)
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Using Eq. 3.52 in Eq. 3.49 and rearranging the resulting equation gives

dJ =

L−1∑
l=1

{([ ∑
m=o,w

(
λlm
)T (∇pl [F

l
m−Alm]T

)T]
+
(
∇plg

)T
+
[ ∑
m=o,w

(λl+1
m )T

(
∇pl [Ã

l
m]T
)T])

dpl+

([ ∑
m=o,w

(
λlm
)T (∇Slw

[F l
m−Alm]T

)T]
+
(
∇Slw

g)T+
[ ∑
m=o,w

(λl+1
m )T

(
∇Slw

[Ãlm]T
)T])

dSlw

}
+

{( ∑
m=o,w

L−1∑
l=0

(
λl+1
m

)T (∇kx [F
l+1
m ]T

)T)
+ (∇kxg)T

}
dkx +

{( ∑
m=o,w

L−1∑
l=0

(
λl+1
m

)T (∇ky [F
l+1
m ]T

)T)
+ (∇kyg)T

}
dky +

{( ∑
m=o,w

L−1∑
l=0

(
λl+1
m

)T (∇kz [F
l+1
m ]T

)T)
+ (∇kzg)T

}
dkz +

{( ∑
m=o,w

L−1∑
l=0

(
λl+1
m

)T[(∇φ[Ãlm]T
)T − (∇φ[Al+1

m ]T
)T])

+ (∇φg)T
}
dφ+BTL. (3.53)

3.1.6 Discrete Adjoint Equations

Next we choose the adjoint variables to insure that the coefficients multiply-

ing dpl and dSlw in Eq. 3.53 vanish, for l = 1, 2, ..., L− 1, i.e., we require that{ ∑
m=o,w

[(
λlm
)T (∇pl [F

l
m − Alm]T

)T
+ (λl+1

m )T
(
∇pl [Ã

l
m]T
)T]}

+
(
∇plg

)T
= 0, (3.54)

and{ ∑
m=o,w

[(
λlm
)T (∇Slw

[F l
m − Alm]T

)T
+ (λl+1

m )T
(
∇Slw

[Ãlm]T
)T]}

+
(
∇Slw

g)T = 0,

(3.55)

where the zeros on the right-side of Eqs. 3.54 and 3.55 denote M -dimensional row

vectors with all entries equal to zero. Taking transposes of Eqs. 3.54 and 3.55, re-
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spectively, and rearranging the resulting equations gives∑
m=o,w

[(
∇pl [F

l
m − Alm]T

)
λlm +∇pl [Ã

l
m]Tλl+1

m

]
= −∇plg, (3.56)

and ∑
m=o,w

[
∇Slw

[F l
m − Alm]Tλlm +∇Slw

[Ãlm]Tλl+1
m

]
= −∇Slw

g, (3.57)

for l = 1, 2, ..., L − 1. Eqs. 3.56 and 3.57 represent the discrete system of adjoint

equations. To solve for the adjoint variables, we need to specify additional constraints.

As is standard, we specify these by

λLo = λLw = 0, (3.58)

where the right side of Eq. 3.58 (as well as Eqs. 3.56 and 3.57 ) is the M -dimensional

column vector with all entries equal to zero. Using Eq. 3.58 in Eq. 3.48, it follows

that

BTL = 0. (3.59)

By applying the auxiliary condition of Eq. 3.58 we can solve the adjoint system

(Eqs. 3.56 and 3.57) backward in time, i.e., solve the system for l = L−1, L−2, ... 0.

We postpone discussion of the solution of this adjoint system until later. Our next

task is to derive the expressions for sensitivity coefficients.

3.2 General Formulas for Computing Sensitivity Coefficients

Considering J as a function of φ, kx, ky and kz, we can write its total differ-

ential as

dJ =
(
∇kxJ

)T
dkx +

(
∇kyJ

)T
dky +

(
∇kzJ

)T
dkz +

(
∇φJ

)T
dφ. (3.60)



53

By applying Eqs. 3.56, 3.57 and 3.59, Eq. 3.53 reduces to

dJ =
{( ∑

m=o,w

L−1∑
l=0

(
λl+1
m

)T (∇kx [F
l+1
m ]T

)T)
+ (∇kxg)T

}
dkx +

{( ∑
m=o,w

L−1∑
l=0

(
λl+1
m

)T (∇ky [F
l+1
m ]T

)T)
+ (∇kyg)T

}
dky +

{( ∑
m=o,w

L−1∑
l=0

(
λl+1
m

)T (∇kz [F
l+1
m ]T

)T)
+ (∇kzg)T

}
dkz +

{( ∑
m=o,w

L−1∑
l=0

(
λl+1
m

)T[(∇φ[Ãlm]T
)T − (∇φ[Al+1

m ]T
)T])

+ (∇φg)T
}
dφ (3.61)

By comparing Eqs. 3.60 and 3.61, it follows that

(∇kxJ)T =
( ∑
m=o,w

L−1∑
l=0

(
λl+1
m

)T (∇kx [F
l+1
m ]T

)T)
+ (∇kxg)T , (3.62)

(∇kyJ)T =
( ∑
m=o,w

L−1∑
l=0

(
λl+1
m

)T (∇ky [F
l+1
m ]T

)T)
+ (∇kyg)T , (3.63)

(∇kzJ)T =
( ∑
m=o,w

L−1∑
l=0

(
λl+1
m

)T (∇kz [F
l+1
m ]T

)T)
+ (∇kzg)T , (3.64)

and

(∇φJ)T =
( ∑
m=o,w

L−1∑
l=0

(
λl+1
m

)T[(∇φ[Ãlm]T
)T − (∇φ[Al+1

m ]T
)T])

+ (∇φg)T . (3.65)

Eqs. 3.62 through 3.65 give the desired sensitivity coefficients. For example, Eq. 3.62

gives the sensitivity to the x-direction permeability field. Taking transposes of the

equations for the sensitivity coefficients gives

∇kxJ =


∂J
∂kx,1

∂J
∂kx,2

...

∂J
∂kx,M

 =
( ∑
m=o,w

L−1∑
l=0

(
∇kx [F

l+1
m ]T

)
λl+1
m

)
+ (∇kxg), (3.66)
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∇kyJ =


∂J
∂ky,1

∂J
∂ky,2

...

∂J
∂ky,M

 =
( ∑
m=o,w

L−1∑
l=0

(
∇ky [F

l+1
m ]T

)
λl+1
m

)
+ (∇kyg), (3.67)

∇kzJ =


∂J
∂kz,1

∂J
∂kz,2

...

∂J
∂kz,M

 =
( ∑
m=o,w

L−1∑
l=0

(
∇kx [F

l+1
m ]T

)
λl+1
m

)
+ (∇kzg), (3.68)

and

∇φJ =


∂J
∂phi1

∂J
∂φ2

...

∂J
∂φM

 =
( ∑
m=o,w

L−1∑
l=0

[(
∇φ[Ãlm]T

)
−
(
∇φ[Al+1

m ]T
)]
λl+1
m

)
+ (∇φg). (3.69)

If the permeability field is isotropic kx(x, y, z) = ky(x, y, z) = kz(x, y, z) = k(x, y, z),

then we do not compute sensitivity coefficients for kx, ky and kz and add them

together. We simply use

∇kJ =


∂J
∂k1

∂J
∂k2

...

∂J
∂kM

 =
( ∑
m=o,w

L−1∑
l=0

(
∇k[F

l+1
m ]T

)
λl+1
m

)
+ (∇kg); (3.70)

Eqs. 3.66–3.68 are not applied. We choose specific forms of g to generate

the sensitivity coefficients we want. If g depends explicitly only on pressure and

saturation, the gradients of g that appear on the right side of Eqs. 3.66–3.70 are zero.

A typical choice used by others is to set g equal to the sum of squares

of the data mismatch terms, but, as discussed before, this precludes generation of
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the sensitivity coefficients needed to apply a Gauss-Newton method to minimize the

objective function. Instead, we wish to generate the sensitivity coefficients related to

each measured data point, provided of course, that we intend to use the measured

data as conditioning data. We will have to make several choices for g to get all of the

sensitivity coefficients we want. As the procedure has only been implemented for two-

dimensional flow problems, from this point on we consider specific implementation

only for two-dimensional flow in the x-y plane.

3.3 Sensitivity of Production Data to Rock Property Fields

We assume that wellbore pressures and/or other production data are mea-

sured at times tlj , j = 1, 2, ....r and we wish to compute the sensitivity of these data

to the model parameters (gridblock permeabilities and porosity). For simplicity, we

assume that these times corresponds to some of the tl’s used in the reservoir simu-

lator, although this is unnecessary. We may have data measured at different wells

at different times. This major section focuses on the derivation of specific formu-

las for calculating the sensitivity of pressure and water-oil ratios to the gridblock

permeabilities and porosities.

3.3.1 Sensitivity of Gridblock Pressures or Saturations.

One procedure for generating the sensitivity coefficients related to wellbore

pressures is to first calculate the sensitivity of gridblock pressures to the rock property

fields and then translate these results to obtain the sensitivity of flowing wellbore

pressures to the rock property fields. In our simulator, gridblock pressures are related

to wellbore pressures by Peaceman’s equation [45]. Thus, we assume we have a

measured wellbore pressure, pobswf,j(t
r) at time tr, where the superscript obs refers to

measured (observed) data and the subscript j indicates the well is located in gridblock

j. Suppose one wishes to compute the sensitivity coefficients related to the calculated
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pressure, pwf,j(t
r), that will be predicted by the simulator for a given set of gridblock

permeability and porosity values, and let prj denote the corresponding calculated value

of gridblock pressure at time tr.

If we choose

g = prj , (3.71)

then for all l,

∇Slw
g = 0. (3.72)

For l 6= r,

∇plg = 0, (3.73)

whereas, for l = r,

∇prg = ∇prp
r
j = ej, (3.74)

where the ith component of ej is given by

eji = δi,j, (3.75)

where δi,j is the Kronecker delta function, i.e., δj,j = 1 and δi,j = 0 for i 6= j.

Eqs. 3.72–3.74 give the source terms to be used in the right-side of Eqs. 3.56 and 3.57

when solving for the adjoint variables. Note Eqs. 3.73 and 3.74 indicate that there is

a unit source in the j component of the right-side of Eq. 3.56 (corresponding to the

jth gridblock) at time tl = tr. Thus, to obtain the sensitivity coefficients for prj , we

simply insert the source terms given by Eqs. 3.72–3.74 into Eqs. 3.56 and 3.57 and

solve the resulting adjoint equations backward in time for l = r, r − 1, r − 2, . . . , 0.

Similarly, if we want the sensitivity coefficients for psm (gridblock pressure at

time ts in gridblock m), then we choose

g = psm, (3.76)
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so

∇Slw
g = 0, (3.77)

for all l

∇plg = 0, (3.78)

for l 6= s, and

∇psg = ∇psp
s
m = em, (3.79)

where the the ith component of em is given by emi = δi,j. Using these source terms

in Eqs. 3.56 and 3.57, we solve the resulting adjoint system backward in time for

l = s, s − 1, ..., 0. Viewed in this way, we have to solve one adjoint system for each

data point. However, note that as we change g, only the right-hand sides of Eqs. 3.56

and 3.57 change. The coefficient matrices on the left-hand side of these equations do

not change. This results in considerable computational savings because it means we

solve repeatedly the same set of linear equations with different right-hand sides.

For concreteness, suppose one only wishes to generate sensitivity coefficients

related to various gridblock pressures at gridblocks j and m at at times tl1 < tl2 <

· · · < tlr , then we proceed as follows: Beginning at time tlr , we begin solving two

adjoint systems (Eqs. 3.56 and 3.57) backward in time using the two different source

generating functions, g = plrj and g = plrm. These equations are solved for l =

lr, lr − 1, . . . , lr−1. For each value of l, this requires solving Eqs. 3.56 and 3.57 with

two different right-hand sides. In doing so, two distinct sets of adjoint variables are

generated, one will be used to compute the sensitivity of plrj to the rock property fields

and one will be used to generate the sensitivity coefficient related of plrm. At l = lr−1,

we need to begin generating the adjoint variables related to the sensitivity coefficients

for p
lr−1

j and plr−1
m . Thus, at this time, we begin two additional adjoint solutions based

on the two source generating functions g = p
lr−1

j and g = plr−1
m . Note, when we begin
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the solution of the adjoint systems (Eqs. 3.56 and 3.57) related to the sensitivity

coefficients for these two pressures (p
lr−1

j and plr−1
m ), we set λlr−1+1

m = 0. Now for

l = lr−1, lr−1− 1, ..., lr−2, we solve four systems backward in time, but only the right-

hand side vectors differ from system to system. This basic procedure is continued

backward in time until we reach l = 0. When time is equal to a time tlj at which

we wish to generate sensitivity coefficients for the two gridblock pressures, we add

two more right hand side vectors and begin generating two additional sets of adjoint

variables. If, as is currently done in our code, the matrix problem of Eqs. 3.56 and

3.57 is solved using a sparse matrix technique, then only one LU decomposition needs

to be done per “time step” and then the backward-forward substitution procedure is

applied for each right-hand side vector.

Note the procedure is not restricted to generation of the sensitivity coeffi-

cients related to gridblock pressures. For example, we can just as easily generate the

sensitivity of the water saturation in gridblock j at time tlk by choosing g = Slkw . The

main point about the process is we add one right hand side per sensitivity coefficient.

However, if at the maximum time of interest tlr , we wish to generate only n sensitivity

coefficients, we have only n right-hand side vectors to consider. If at each time, tlj ,

j = 1, 2, . . . , r where tlj < tlj+1 , we wish to generate n sensitivity coefficients, then

for l ≤ l1, one will have to solve a matrix problem with n×r different right-hand side

vectors. If data were uniformly spaced in time, then on average, each matrix problem

in the adjoint system will need to be solved with (n× r)/2 right-hand side vectors.

3.3.2 Sensitivity of Wellbore Pressures

Two different methods are presented for calculating wellbore pressure sensi-

tivity coefficients. In the first method gridblock pressure and saturation sensitivity

coefficients are calculated and used to generate wellbore pressure sensitivity coeffi-

cients. In the second method, wellbore pressure sensitivity coefficients are calculated

directly. Since, we have incorporated the second method into our code, the first
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method is not presented in detail.

Method 1. The constant C3 is defined by

C3 = (2π)1.127× 10−3. (3.80)

Using somewhat confusing notation, we assume that well j is located in gridblock j

and define the well index for well j by

WIj =
C3h

√
kx,jky,j

ln(ro,j/rw,j) + sj
, (3.81)

where

ro,j =

0.28073∆xj

√
1 +

kx,j∆y2
j

ky,j∆x2
j

1 +
√
kx,j/ky,j

. (3.82)

Here rw,j is the wellbore radius of well j, sj is the skin factor for well j, and ∆xj and

∆yj, respectively, denote the x and y dimensions of gridblock j.

Applying Peaceman’s equation [45] to our two-phase flow problem gives

qrt,j = WIj

(bro,jkrro,j
µro,j

+
brw,jk

r
rw,j

µrw,j

)(
prj − prwf,j

)
, (3.83)

where the superscript r refers to time tr, qrt,j is the total flow rate in STB/D at well

j at time tr, prj is the pressure in gridblock j at this time, and prwf,j is the wellbore

pressure at the well in the jth gridblock at time tr.

Now suppose we wish to compute the sensitivity coefficient ∂pwf,j/∂α where

α is a gridblock permeability or porosity. If the total flow rate is specified as boundary

condition (wellbore constraint), then it is fixed so

∂qrt,j
∂α

= 0, (3.84)
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for all j and r. Thus, taking the derivative of Eq. 3.83 with respect to α gives

0 = WIj

[∂( bro,jkro,jr
µro,j

+
brw,jk

r
rw,j

µrw,j

)
∂α

(
prj − prwf,j

)
+(bro,jkrro,j

µro,j
+
brw,jk

r
rw,j

µrw,j

)(∂prj
∂α
−
∂prwf,j
∂α

)]
+

∂WIj
∂α

(bro,jkrro,j
µro,j

+
brw,jk

r
rw,j

µrw,j

)(
prj − prwf,j

)
. (3.85)

Note Eq. 3.85 involves several derivatives with respect to α and to obtain all deriva-

tives needed, requires we first compute the sensitivity coefficients ∂Srw,j/∂α and

∂prj/∂α. For example,

∂krro,j
∂α

=
(dkro
dSw

)
Srwj

(∂Srw,j
∂α

)
. (3.86)

However, once all of these derivatives have been generated, one can rearrange Eq. 3.85to

compute ∂prwf,j/∂α.

Method 2. Here, we choose the source terms in the adjoint equation so that one can

directly generate the adjoint variables necessary to directly compute the sensitivity

of prwf,j to the rock property fields. To do so, we define

βrj =
(bro,jkrro,j

µro,j
+
brw,jk

r
rw,j

µrw,j

)
. (3.87)

Then the source generating term is specified by

g = prwf,j = prj −
( qrt,j
WIj βrj

)
, (3.88)

where the second equality of Eq. 3.88 follows from Eq. 3.83 and the definition of

Eq. 3.87. To compute the source terms needed in Eqs. 3.56 and 3.57, we need to

take the gradients of g with respect to pl and Sw,l. Note since g now also explicitly

involves kx,j and ky,j we need to compute the gradients of g with respect to the x

and y direction permeability fields that appear on the right side of Eqs. 3.66 and 3.57

because these gradients are no longer identically zero.
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We begin by considering

∇plg = ∇plp
r
wf,j. (3.89)

For l 6= r,

∇plg = ∇plp
r
wf,j = 0. (3.90)

For l = r,

∇plg = ∇prp
r
wf,j =



∂prwf,j
∂pr1

∂prwf,j
∂pr2
...

∂prwf,j
∂prM

 , (3.91)

where from Eq. 3.88, we have

∂prwf,j
∂pri

= 0, (3.92)

for i 6= j and

∂prwf,j
∂prj

= 1 +
[ qt,j
WIj(βrj )

2

](∂βrj
∂pjr

)
. (3.93)

Currently, in our simulator, we evaluate the inverse formation volume factors at the

gridblock pressure using the relation

bm = bm(p) = bm,in
(
1− cm(pin − p)

)
, (3.94)

for m = o, w where cm is the compressibility of phase m, pin is initial pressure and

bm,in is the inverse formation volume factor of phase m at initial pressure. Thus

∂brm,j
∂prj

=
∂bm(prj)

∂prj
= cmbm,in. (3.95)

Assuming constant viscosities, and recognizing that relative permeabilities do not

depend on pressure, it follows that

∂βrj

∂pjr
=
cobo,ink

r
ro,j

µo
+
cwbw,ink

r
rw,j

µw
, (3.96)
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and thus, Eq. 3.93 becomes

∂prwf,j
∂prj

= 1 +
[ qt,j
WIj(βrj )

2

](cobo,inkrro,j
µo

+
cwbw,ink

r
rw,j

µw

)
. (3.97)

Now to obtain ∇prpwf,j for l = r, one simply uses Eq. 3.97 and Eq. 3.92 in Eq. 3.91.

Eqs. 3.91 and 3.90, provide all results needed to compute the source term on the

right-side of Eq. 3.56.

Next, the source term ∇Slwg that appears on the right side of Eq. 3.57 is

considered. Similar to the above presentation,

∇Slw
g = ∇Slw

prwf,j = 0, (3.98)

for l 6= r and for l = r,

∇Slw
g = ∇Srwp

r
wf,j =



∂prwf,j
∂Srw,1
∂prwf,j
∂Srw,2

...
∂prwf,j
∂Srw,M

 . (3.99)

From Eq. 3.88,

∂prwf,j
∂Srw,i

= 0, (3.100)

for i 6= j and

∂prwf,j
∂Srw,j

=
[ qt,j
WIj(βrj )

2

](bro,j
µo

dkro(S
r
w,j)

dSw
+
brw,j
µw

dkrw(Srw,j)

dSw

)
. (3.101)

Having done the computations of Eqs. 3.100 and 3.101, we can form the gradient of

Eq. 3.99. Then, Eqs. 3.98 and 3.99 give the source terms needed in the right side of

Eq. 3.57.

By solving the adjoint system Eqs. 3.56 and 3.57, we calculate the adjoint

variables needed to find the sensitivity of prwf,j to gridblock permeabilities and porosi-

ties. Again, if one wishes to compute the sensitivity of prwf,j to the rock property
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fields for several values of j (i.e., we have multiple wells at which we collect pressure

data) and/or several values of r (data collected at several times), then several sets

of adjoint variables will be generated by solving the adjoint system with multiple

right-hand sides.

One important comment is in order. After solving for the adjoint variables

related to the sensitivity coefficients for prwf,j, the sensitivity coefficients must be

computed from Eqs. 3.66–3.69. With the choice g = prwf,j, the gradients of g appearing

on the right sides of these equations are not all zero vectors. For example, in Eq. 3.66,

∇kxg = ∇kxp
r
wf,j =



∂prwf,j
∂kx,1
∂prwf,j
∂kx,2

...
∂prwf,j
∂krx,M

 , (3.102)

where from Eq. 3.88, it follows that

∂prwf,j
∂kx,i

= 0, (3.103)

for i 6= j, but

∂prwf,j
∂kx,j

=
qt,j

βrj WI2
j

∂WIj
∂kx,j

. (3.104)

Similarly,

∂prwf,j
∂ky,i

= 0, (3.105)

for i 6= j, but

∂prwf,j
∂ky,j

=
qt,j

βrj WI2
j

∂WIj
∂ky,j

. (3.106)

Formulas for the derivatives of WIj appearing in Eqs. 3.104 and 3.106 are given by

∂WIj
∂kx,j

=
( C3h

2[ln(ro,j/rw,j) + sj]

)
×[√

ky,j
kx,j
−
( 1

ln(ro,j/rw,j) + sj

)( ∆y2
j

√
kx,jky,j

∆x2
jky,j + ∆y2

jkx,j
−

√
ky,j√

kx,j +
√
ky,j

)]
, (3.107)
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and

∂WIj
∂ky,j

=
( C3h

2[ln(ro,j/rw,j) + sj]

)
×[√

kx,j
ky,j

+
( 1

ln(ro,j/rw,j) + sj

)( ∆y2
jkx,j

√
kx,j

∆x2
jky,j

√
ky,j + ∆y2

jkx,j
√
ky,j
− kx,j

ky,j +
√
kx,jky,j

)]
.

(3.108)

3.3.3 Sensitivity of Water-Oil Ratio to Rock Property Fields

For the two-dimensional problem under consideration, flow rates at a pro-

ducing well at time tr are computed from

qm = WIj

(brm,jkrrm,j
µm

)(
prj − prwf,j

)
, (3.109)

for m = 0, w. Thus the WOR at well j at time tr is given by

WORr
j =

(brw,jkrrw,j
µw

)( µo
bro,jk

r
ro,j

)
. (3.110)

To obtain the sensitivity of g = WORr
j to the rock property fields, we solve the

adjoint equations using source terms derived from the choice

g = WORr
j . (3.111)

From Eqs. 3.56 and 3.57, it is clear that the gradients ∇plWORr
j and ∇Slw

WORr
j are

needed.

We consider the gradient with respect to the vector of gridblock pressure

first. Note that for l 6= r,

∇plg = ∇plWORr
j = 0, (3.112)

and for l = r,

∇prg = ∇prWORr
j =



∂WORrj
∂pr1

∂WORrj
∂pr2
...

∂WORrj
∂plM

 . (3.113)
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However from Eq. 3.110, it follows that

∂WORr
j

∂pri
= 0, (3.114)

for i 6= j, but

∂WORr
j

∂prj
=
(krrw,jµo
krro,jµw

)( 1

bro,j

∂brw,j
∂prj

−
brw,j

(bro,j)
2

∂bro,j
∂prj

)
=(krrw,jµo

krro,jµw

)(cwbw,in
bro,j

−
cobo,inb

r
w,j

(bro,j)
2

)
. (3.115)

Eqs. 3.114 and 3.115 provide the information needed to compute the gradient of

Eq. 3.113. Eqs. 3.112 and 3.113 provide the source terms needed on the right-side of

Eq. 3.56.

Next, we consider the computation of ∇Slw
WORr

j . First note that

∇Slw
g = ∇Slw

WORr
j = 0, (3.116)

for l 6= r. For l = r, we need

∇Srwg = ∇SrwWORr
j =



∂WORrj
∂Srw,1
∂WORrj
∂Srw,2

...
∂WORrj
∂Slw,M


. (3.117)

From Eq. 3.110, it follows that

∂WORr
j

∂Srw,i
= 0, (3.118)

for i 6= j and

∂WORr
j

∂Srwj
=
brw,jµo

bro,jµw

( 1

krro,j

dkrw(Sw,j)

dSw
−

krrw,j
(krro,j)

2

dkro(Sw,j)

dSw

)
. (3.119)

Eqs. 3.118 and 3.119 provide the information needed to compute the gradient of

Eq. 3.117 and then Eqs. 3.116 and 3.117 provide the source terms needed on the

right-side of Eq. 3.57. Note with this choice of g, the gradients of g with respect to

the rock property fields that appear on the right sides of Eqs. 3.66–3.69 are all zero.
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3.4 Formulation of the Adjoint System

In this section, we provide more detailed information on the formulation of

the discrete system of adjoint equations. Recall that the adjoint system of equations

is given by Eqs. 3.56 and 3.57 which are repeated here as∑
m=o,w

[(
∇pl [F

l
m − Alm]T

)
λlm +∇pl [Ã

l
m]Tλl+1

m

]
= −∇plg, (3.120)

and ∑
m=o,w

[
∇Slw

[F l
m − Alm]Tλlm +∇Slw

[Ãlm]Tλl+1
m

]
= −∇Slw

g, (3.121)

where (see Eqs. 3.38–3.40

F l+1
m = F l+1

m (pl+1, Sl+1
w , kx, ky, kz) = f l+1

m − ql+1
m , (3.122)

Al+1
m = Al+1

m (pl+1, Sl+1
w , φ) = V l+1

φ (bS)l+1
m , (3.123)

and

Ãl = Ãlm(pl, Slw, φ) = V l+1
φ (bS)lm, (3.124)

for m = 0, w and l = 0, 1, ..., L− 1. Also recall from Eqs. 3.4 and 3.6 that

V l
φ =


V l
φ,1 0 0 . . . 0

0 V l
φ,2 0 . . . 0

...
...

. . . . . .
...

0 0 0 . . . V l
φ,M

 , (3.125)

where V l
φ,j denotes the pore volume of gridblock j in ft3 divided by C2∆tl = 5.615∆tl,

i.e.

V l
φ,j =

Vjφj
C2∆tl

. (3.126)
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To write individual equations in the adjoint system, we will use basic oper-

ational formulas like the following one:

∇pl [f
T
m] =



∂f lm,1
∂pl1

∂f lm,2
∂pl1

. . .
∂f lm,M
∂pl1

∂f lm,1
∂pl2

∂f lm,2
∂pl2

. . .
∂f lm,M
∂pl2

...
...

. . .
...

∂f lm,1
∂plM

∂f lm,2
∂plM

. . .
∂f lm,M
∂plM

 . (3.127)

Eq. 3.127 is general in the sense that we can replace fm by any M -dimensional column

vector and take its gradient with respect to Slw, kx or any other vector variable.

We now rewrite Eq. 3.120 as

(
∇pl [F

l
o]
T
)
λlo +

(
∇pl [F

l
w]T
)
λlw =(

∇pl [A
l
o]
T
)
λlo −

(
∇pl [Ã

l
o]
T
)
λl+1
o +

(
∇pl [A

l
w]T
)
λlw −

(
∇pl [Ã

l
w]T
)
λl+1
w −∇plg. (3.128)

Using the basic operational formula of Eq. 3.127 and Eq. 3.122, we can write the rth

equation of Eq. 3.128 as

M∑
s=1

[(∂f lo,s
∂plr

−
∂qlo,s
∂plr

)
λlo,s

]
+

M∑
s=1

[(∂f lw,s
∂plr

−
∂qlw,s
∂plr

)
λlw,s

]
=

M∑
s=1

[(∂Alo,s
∂plr

)
λlo,s

]
+

M∑
s=1

[(∂Alw,k
∂plr

)
λlw,s

]
−

M∑
s=1

[(∂Ãlo,s
∂plr

)
λl+1
o,s

]
−

M∑
s=1

[(∂Ãlw,s
∂plr

)
λl+1
w,s

]
− ∂g

∂plr
. (3.129)

We now assume that r corresponds to gridblock (i, j, k) so the only f lm,s’s

in the sums of Eq. 3.129 that depend on plr = pli,j,k are the ones corresponding to

s = (i − 1, j, k), s = (i, j, k), s = (i + 1, j, k), s = (i, j − 1, k), s = (i, j + 1, k),

s = (i, j, k − 1) and s = (i, j, k + 1). In Eq. 3.129, the derivatives of the flow rate

terms, the Am,s’s and the Ãm,s’s are zero unless m = r; see, Eqs. 3.123–3.126. Thus,
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in three-dimensional notation, Eq. 3.129 is equivalent to(∂f lo,i−1,j,k

∂pi,j,k

)
λlo,i−1,j,k+

(∂f lo,i+1,j,k

∂pi,j,k

)
λlo,i+1,j,k+

(∂f lo,i,j−1,k

∂pi,j,k

)
λlo,i,j−1,k+

(∂f lo,i,j+1,k

∂pi,j,k

)
λlo,i,j+1,k+(∂f lo,i,j,k−1

∂pi,j,k

)
λlo,i,j,k−1 +

(∂f lo,i,j,k+1

∂pi,j,k

)
λlo,i,j,k+1 +

(∂f lo,i,j,k
∂pi,j,k

−
∂qlo,i,j,k
∂pi,j,k

)
λlo,i,j,k +

(∂f lw,i−1,j,k

∂pi,j,k

)
λlw,i−1,j,k +

(∂f lw,i+1,j,k

∂pi,j,k

)
λlw,i+1,j,k +

(∂f lw,i,j−1,k

∂pi,j,k

)
λlw,i,j−1,k +

(∂f lw,i,j+1,k

∂pi,j,k

)
λlw,i,j+1,k +

(∂f lw,i,j,k−1

∂pi,j,k

)
λlw,i,j,k−1 +

(∂f lw,i,j,k+1

∂pi,j,k

)
λlw,i,j,k+1 +

(∂f lw,i,j,k
∂pi,j,k

−
∂qlw,i,j,k
∂pi,j,k

)
λlw,i,j,k =

(∂Alo,i,j,k
∂pli,j,k

)
λlo,i,j,k−

(∂Ãlo,i,j,k
∂pli,j,k

)
λl+1
o,i,j,k+

(∂Alw,i,j,k
∂pli,j,k

)
λlw,i,j,k−

(∂Ãlw,i,j,k
∂pli,j,k

)
λw,i,j,k−

∂g

∂pli,j,k
=

−
(Vi,j,kφi,j,k

5.615∆tl

)[(
Slo,i,j,k

∂blo,i,j,k
∂pli,j,k

)(
λl+1
o,i,j,k−λlo,i,j,k

)
+
(
Slw,i,j,k

∂blw,i,j,k
∂pli,j,k

)(
λl+1
w,i,j,k−λlw,i,j,k

)]
− ∂g

∂pli,j,l
(3.130)

where the last equality in Eq. 3.130 follows from Eqs. 3.123–3.126. To complete the

system of equations, we simple need to compute the partial derivatives in Eq. 3.130.

The derivative of the fm terms can be easily computed from the relation

fm,i,j,k = T lmx,i+1/2,j,k(p
l
i+1,j,k − pli,j,k)− T lmx,i−1/2,j,k(p

l
i,j,k − pli−1,j,k) +

T lmy,i,j+1/2,k(p
l
i,j+1,k − pli,j,k)− T lmy,i,j−1/2,k(p

l
i,j,k − pli,j−1,k) +

T lmz,i,j,k+1/2(pli,j,k+1 − pli,j,k)− T lmz,i,j,k−1/2(pli,j,k − pli,j,k−1). (3.131)

Computation of derivative of the inverse formation volume factor terms is straight-

forward; these terms are modeled using Eq. 3.94. The derivative of the flow rate

terms depends on how these sink terms are incorporated in the simulator. For the

two-dimensional results presented in this work, the total flow rate at production wells

is specified and then

qlm,i,j,k =
(qlm,i,j,k
qlt,i,j,k

)
qlt,i,j,k =

( (blm,i,j,kk
l
rm,i,j,k)/µm

(blo,i,j,kk
l
ro,i,j,k/µo) + (blw,i,j,kk

l
rw,i,j,k/µw)

)
qlt,i,j,k, (3.132)
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for m = o, w. As discussed previously, the derivative of g that appears in Eq. 3.130

depends on our choice of the source generating function.

A typical equation of the system of Eq. 3.121 can be found using the same

procedure used to obtain Eq. 3.130.

3.5 Example Sensitivities

For all problems considered in this work, a 25 by 25 grid is used as shown in

Fig. 3.1, where the i and j indices, respectively, correspond to gridblocks in the x and

y directions. The areal dimensions of the reservoir are 1, 100 ft by 1, 100 ft and we

assume a uniform thickness with h = 30 ft. In all cases, the 25 by 25 simulation grid

is the same as the model parameter grid meaning that we calculate the sensitivity to

the permeability and porosity of every grid block.

Sensitivities are more difficult to interpret physically when the reservoir prop-

erties are nonuniform and the number of wells is large, so here we consider a reservoir

model which has only two wells and uniform isotropic permeability (k = 40.4 md) and

uniform porosity (φ = 0.25). Oil and water relative permeability curves are shown in

Fig. 3.2. Other relevant rock and fluid properties are given in Table 3.1.

An injector is located at gridblock (18,18) and a producer at gridblock (5,5).

The producer is constrained to produce at a constant total rate of 1250 STB/day while

the injector is constrained to inject at a constant rate of 1600 STB/day. Because of

the differences in the formation volume factors for water and oil, the injection and

producing rate are both roughly equal to 1,600 RB/D prior to breakthrough and

during this time period, average reservoir pressure remains nearly constant. The

producing water-oil-ratio (WOR) is shown in Fig. 3.4.

As there is some smearing of the front in the reservoir simulation results,

one does not observe a perceptible increase in WOR until t ≈ 1, 780 days. However,

examination of the simulation results indicates there water saturation begins to in-
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Figure 3.1: Grid System and well locations. The • denotes the location of the injection

well and the × denotes the location of the producing well.

Figure 3.2: Oil and water relative permeability curves.
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Figure 3.3: Flowing bottom-hole pressure at the producing well.

Figure 3.4: Water-oil-ratio at the production well.
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Porosity 0.25

Permeability, md 40.4

Oil viscosity, cp 0.8

Water viscosity, cp 1.0

Initial water saturation 0.16

Residual oil saturation 0.20

Water compressibility, psi−1 4× 10−6

Oil compressibility, psi−1 1.0× 10−5

Initial pressure, psi 4,000

Oil formation volume factor at pi 1.269

Water formation volume factor at pi 1.004

Table 3.1: Rock and fluid properties for calculation of sensitivity coefficients.

crease very gradually in the producing block at t ≈ 1, 750 days. This small increase

in water saturation causes a significant decrease in the total mobility. Thus, as the

producing well is constrained to produce at a constant total rate, a rapid decrease in

the total mobility in the grid block containing the producing well results in a rapid

decrease in the the flowing wellbore pressure at the producer as shown in Fig. 3.3.

3.5.1 Sensitivity of pwf to ln k and φ at 20 Days

At early times, most of the reservoir is still single phase. The pressure at

the producer is highly sensitive to the permeability of the grid-block containing the

producing wells and very little else. At all times, the greatest sensitivity of pressure to

permeability occurs at the site of the active well as we should expect. The sensitivity

to porosity at early time is somewhat less intuitive. What we see in Fig. 3.5 is largely

a storage effect, that is an increase in porosity near the injector causes less pressure
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support at the producer, while an increase in porosity near the producer causes a

reduction in the drawdown.

3.5.2 Sensitivity of pwf to ln k and φ at 1800 Days

At the time of break through of water to the producing well, the effects

of fluid mobility are easily seen in the plot of sensitivity of pwf to porosity and

permeability (Figure 3.6). The total mobility has decreased in the swept zones and is

dropping rapidly in the grid block containing the producing well, causing the pressure

drop at the producer to increase. An increase in the permeability between the wells,

would cause the water to advance faster and the pressure to decrease more rapidly.

That explains the negative values of sensitivity to permeability in the interwell region.

On the other hand, an increase in porosity in the interwell region would delay the

advance of water, resulting in a higher total mobility and higher pressure at the

producer. Thus the sensitivity of pwf to porosity is positive in the interwell region.

3.5.3 Sensitivity of pwf to ln k and φ at 1864 days

When the water-oil ratio has reached 0.3 at 1864 days, the pressure at the

producer is very near to a minimum value. As a result, the effect of small changes

in any time-dependent variable, such as mobility or fluid compressibility, can have

only a small effect on the pressure at the producing well. Note, for example, that

the magnitude of the sensitivity to porosity in Figure 3.7 is everywhere less than 50

while the maximum magnitude at t = 1800 days was over 2000.

3.5.4 Sensitivity of pwf to ln k and φ at 2136 Days

When the water-oil ratio reaches 0.7 at 2136 days, similar effects can be seen

in Fig. 3.8. The pressure is again nearly stationary although it is close to a local

maximum instead of a minimum. The small increase in pressure that occurs between
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Figure 3.5: Sensitivity of bottom-hole flowing pressure to log-permeability (left) and

porosity (right) at 20 days.

Figure 3.6: Sensitivity of bottom-hole flowing pressure to log-permeability (left) and

porosity (right) at 1800 days.
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Figure 3.7: Sensitivity of bottom-hole flowing pressure to log-permeability (left) and

porosity (right) at 1864 days.

Figure 3.8: Sensitivity of bottom-hole pressure to log-permeability (left) and porosity

(right) when the WOR reaches 0.7.
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1864 and 2136 days is apparently due to an increase in mobility of fluids in the grid

block containing the producer as the gridblock saturation approaches the residual oil

saturation. Again, however, the magnitudes of sensitivities are relatively small except

for the sensitivity of permeability to gridblock permeability which is not a dynamic

effect. The sensitivity of pwf to porosity is negative between the wells because an

increase in porosity between the wells would decrease the saturation of the gridblock

with the producing well. An increase in porosity at the leading edge of the saturation

front causes a decrease in saturation of gridblocks “beyond” the producer. For low

water saturation, a decrease in saturation results in an increase in mobility, and a

positive sensitivity.

3.5.5 Sensitivity of WOR to ln k and φ at 1800 Days

The sensitivity of water-oil ratio with respect to porosity is relatively straight

forward. The only significant effect that a change in porosity has on water-oil ratio is

through a change in the velocity of propagation of saturations along streamlines. An

increase in porosity will cause the water to be delayed in arriving at the producer.

The effect on water-oil ratio is largest when the change in porosity occurs along a

streamline which has a rapidly changing saturation at the producer. Thus, in Fig. 3.9,

the largest sensitivity is directly between the injector and producer.

Qualitatively, the sensitivity of water-oil ratio with respect to permeability

is similar to the sensitivity of water-oil ratio with respect to porosity, except that the

sign of the sensitivity is reversed. This is because an increase in permeability causes

the velocity of the flow to increase and the saturation at the well to increase.

3.5.6 Sensitivity of WOR to ln k and φ at 1864 Days

When the water-oil ratio reaches 0.3, more streamlines contribute water to

the producing well. The boundary of non-zero sensitivities in Fig. 3.10 is a direct
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Figure 3.9: Sensitivity of producing water-oil ratio to log-permeability (left) and

porosity (right) soon after breakthrough (1800 days).

Figure 3.10: Sensitivity of producing water-oil-ratio to log-permeability (left) and

porosity (right) when the WOR reaches 0.3 at 1864 days.
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indication of the region that has broken through to the producer, and this region is

clearly larger that it was at the time of initial water breakthrough.

3.5.7 Sensitivity of WOR to ln k and φ at 2136 Days

At 2136 days, the region of significant sensitivity is wider (see Fig. 3.11) than

it was at 1800 days (Figure 3.10). A region of zero sensitivity of water-oil ratio to

porosity occurs between the wells at gridblock (7,7). The saturation in this gridblock

is no longer changing with time, so modifying the porosity cannot affect the water-oil

ratio at the producer.

3.5.8 Comparison With Finite-Difference Method

To verify that the procedure developed in Chapter III yields accurate sen-

sitivity coefficients, we have made several comparisons with sensitivity coefficients

calculated with the finite-difference method (sometimes referred to as the direct

method). In all cases, we obtained essentially identical results, less than one per

cent difference. In the finite-difference method, the permeability (or porosity) of each

grid-block is altered by a small amount and the resulting change in wellbore pressure

and water-oil ratio is calculated. The change in wellbore pressure (or WOR) dividing

by the change in the grid block value of permeability (or porosity) give the value of

the relevant sensitivity coefficient. Although it is possible for sensitivities from the

finite-difference approximation to be in error if the magnitude of the perturbation is

poorly chosen, it is reasonable to suppose that agreement between sensitivities calcu-

lated using two completely different methods indicates that both methods are giving

correct results. Fig. 3.12 shows a comparison of the sensitivity of the water-oil-ratio

to the porosity field at 1, 800 days obtained by the finite difference method and the

adjoint method. Note that the results from the two methods are indistinguishable.

It is important to also note that the finite difference method required 626 runs of
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Figure 3.11: Sensitivity of producing water-oil-ratio to log-permeability (left) and

porosity (right) when the WOR reaches 0.7.

Figure 3.12: Comparison of the sensitivity of bottom-hole pressure at the producing

well to porosity from the adjoint method (left) and from the “direct” method (right).
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the reservoir simulator while the adjoint approach required approximately as much

computer time as two simulation runs. Thus, it is clearly impractical to compute

sensitivity coefficients using the the finite-difference approach.



CHAPTER IV

CONDITIONING ROCK PROPERTY FIELDS TO PRODUCTION DATA:

COMPUTATIONAL RESULTS

The adjoint approach to calculation of sensitivities (Chapter III) was ap-

plied to the problem of estimating the maximum a posteriori (MAP) reservoir model

consistent with measurements of water-oil ratio and with pressure data and to the

problem of generating realizations that are conditional to the production data. Re-

sults for two example problems are presented in this chapter. For the second example,

we also apply the procedure discussed earlier to evaluate the uncertainty in reservoir

performance predictions.

The maximum a posteriori model is the model, which is the “most proba-

ble” (in the sense that it maximizes the a posteriori pdf), although it is generally

too smooth to be a “plausible” model. The maximum a posteriori reservoir model

should look something like a smoothed version of the true reservoir and is found by

minimizing the objective function of Eq. 2.43 which is repeated here as

S(m) =
1

2

[
(m−mprior)

TC−1
M (m−mprior) + (g(m)− dobs)TC−1

D (g(m)− dobs)
]
(4.1)

wherem is the vector of model parameters (gridblock porosities and log-permeabilities),

dobs is the vector of observed production data, and g(m) is the vector of data that are

calculated using m in the reservoir simulator. As discussed in Chapter II, the Gauss-

Newton method is applied to minimize this objective function. For the examples

considered, the number of unknowns is much less than the number of conditioning

production data. Because of this, the form of the Gauss-Newton method used is given
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by

δml+1 = (mprior −ml)− CMGl
T
(
CD +GlCMGl

T
)−1

×[
g(ml)− dobs −Gl(m

l −mprior)
]
, (4.2)

ml+1 = ml − µlδml+1, (4.3)

In Eq. 4.2, Gl is the matrix of sensitivity coefficients calculated at the lth itera-

tion where sensitivity coefficients are calculated by the adjoint method developed in

Chapter III. Eq. 4.2 can be obtained by using Eq. 2.49 in Eq. 2.51 and then applying

matrix inversion lemmas; see Tarantola [52].

As discussed in Chapter II, realizations that are conditional to production

data are found by minimizing an objective function similar to the one of Eq. 4.1, in

which the prior model is replaced by a unconditional realization generated from the

prior model and the observed data are replaced by data to which random errors have

been added.

In generating the MAP and in generating realizations, the data covariance

matrix is modified by the procedure of Section 2.6. As noted previously, this results in

more rapid convergence and reduces the likelihood of converging to a local minimum

which gives an unacceptable match of production data.

The oil and water relative permeability curves used in both examples are

given in Fig. 3.2.

4.1 Three-Zone Reservoir

The “true” model, from which the data are generated, is composed of three

zones of constant permeability constructed on a 25 × 25 grid (Fig. 4.1). The log-

permeability is 3.7 (40.44 mD) in the upper left quadrant, 4.3 (73.7 mD) in the upper
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Figure 4.1: The true log-permeability (left) and porosity (right) with well locations

for three-zone inverse problem.

right quadrant, and 4.0 (54.6 mD) in the lower two quadrants. The true porosity

field is uniform with φ = 0.25.

An injector is located in the center, and four producers are located near the

corners. The square “data points” in Fig. 4.1 represent the well locations. Water

breakthrough occurs at between 250 and 350 days at the various producers. The

prior mean for this example is ln k = 4.0 and φ = 0.25 in every grid block. The prior

variance for log-permeability is 0.5 and the prior variance for porosity is 0.0025. The

prior spatial autocorrelation, used for calculating the maximum a posteriori estimate,

is the same for both porosity and permeability: spherical with a range of 600 ft. We

assumed no prior correlation between porosity and permeability. Based on the prior,

the “most probable model” is uniform with all gridblock permeabilities and porosities

equal to the prior means for these two parameters. It should be clear that if there were

no data, or if the data are independent of the model parameters, then the maximum
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a posteriori model would be the given by the prior means. Any features that appear

in the maximum a posteriori estimate must be required by the data.

We explore the value of various types of data by calculating the maximum a

posteriori estimate using three different sets of observations:

(i) measured water-oil ratio at the producers,

(ii) measured pressure at the producers,

(iii) both measured pressure and water-oil ratio at the producers.

All of the observed pressure and WOR data are from the period of time

between 280 to 381 days. During this time period, breakthrough of water occurs at

all of the producing wells.

When only the water-oil ratio data are used to calculate the best distribution

of log-permeability the solution looks qualitatively correct (Fig. 4.2), i.e., the log-

permeability is approximately correct at each of the producing well locations. When

pressure data at the producing wells are used instead of water-oil ratio data, however,

the maximum a posteriori estimate is somewhat better, in that the region of correct

permeability is considerably larger than when only water-oil ratio data are used.

The maximum a posteriori estimate generated from a combination of both types of

data is not much different from the maximum a posteriori estimate generated from

pressure data only. The primary difference is an improvement in the distribution of

permeability on the left side near the center.

Figure 4.3 shows three maximum a posteriori estimates of the porosity dis-

tribution that were obtained using the three different combinations of data. All

combinations give relatively uniform distributions, although the use of water-oil ratio

data alone results in a maximum a posteriori solution with porosity that is somewhat

high in the upper left quadrant and low in the upper right quadrant. This is because

the sensitivity of water-oil ratio at a producing well to porosity has the opposite sign

as the sensitivity to log-permeability; see the results of Section 3.5.

The uncertainty in the estimated porosity and log-permeability fields can be
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Figure 4.2: Maximum a posteriori estimate of log-permeability conditioned only to

WOR (left), only to pressure (center), and to both WOR and pressure (right) for the

three-zone inverse problem.

Figure 4.3: Maximum a posteriori estimate of porosity conditioned only to WOR

(left), only to pressure (center), and to both WOR and pressure (right) for the three-

zone inverse problem.
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Figure 4.4: The normalized a posteriori variance of log-permeability conditioned only

to WOR (left), only to pressure (center), and to both WOR and pressure (right).

characterized by the a posteriori covariance. The covariance is difficult to visualize,

however, so we often examine only the variance. Figure 4.4 shows the normalized a

posteriori variance for the maximum a posteriori estimates based on water-oil ratio

data only, on pressure data only, and on both types of data. This variance is nor-

malized by the prior variance so it is equal to 0.0 in areas that have no uncertainty

after conditioning to data. The normalized variance is equal to 1.0 in regions at the

reservoir whose variance is not reduced by the incorporation of data. Thus the best

estimate of permeability in the regions near the perimeter of the reservoir are not im-

proved by the incorporation of water-oil ratio data (left side of Fig. 4.4), the greatest

reduction occurs when both water-oil ratio and pressure data are incorporated.

Figure 4.5 shows similar plots of normalized a posteriori variance of porosity

after conditioning to production data. Again we see that the uncertainty in model

parameters is greatest near the perimeter of the reservoir and that pressure data are

better than water-oil ratio data for reducing the variance in the estimate.
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Figure 4.5: Normalized a posteriori variance of porosity conditioned only to WOR

(left), only to pressure (center), and to both WOR and pressure (right).

In each case, whether conditioning to only one type of data or to both,

convergence to the maximum a posteriori estimate was quite rapid. Figure 4.6 shows

that only four iterations were required to match the water-oil ratio data by itself,

and that only eight iterations were required to match the pressure data, or to match

the combined set of water-oil ratio and pressure data. The iterations were halted

when one of two conditions were met: 1) The value of the objective function reached

a small fraction of the “expected value” based on the number of data, or 2) the

objective function stopped decreasing.

The final matches to the data were very good in all cases. In Figs. 4.7 and 4.8,

the agreement between data (shown by the discrete symbols) and the predicted pres-

sures and water-oil ratios from the maximum a posteriori estimates can be seen to

agree very well at all times and at all wells.
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Figure 4.6: Comparison of the rate of minimization of the objective function when

conditioning only to WOR, only to pressure, and to both WOR and pressure for the

three-zone reservoir.
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Figure 4.7: Flowing bottom-hole pressure match after conditioning to both WOR

and pressure for three-zone reservoir.

Figure 4.8: Water-oil ratio match after conditioning to both WOR and pressure for

the three-zone reservoir.
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4.2 MAP Estimate Conditional to Data from Heterogeneous Reservoir

The purpose of the three-zone reservoir example of the previous section was

to illustrate the ability of the inversion method to recover the main features of the

permeability and porosity distribution from pressure and water-oil ratio data. The

composite reservoir provided a simple truth case for which comparisons could easily

be made. Now we progress to the more challenging problems associated with highly

heterogeneous permeability and porosity fields.

For this investigation, the reservoir itself is a square with length 1100 feet

subdivided into 25 gridblocks in the x and y directions. The reservoir thickness is

uniform and equal to 30 feet. Permeability is heterogeneous but isotropic. The “true”

distributions for the porosity and log-permeability fields, from which the synthetic

production data are generated, are correlated Gaussian random fields with anisotropic

spherical variograms. The range of the variogram is 360 feet in the x-direction and

600 feet in the y direction. The correlation coefficient between log-permeability and

porosity is 0.5. The Xu et al. [55] screening hypothesis is used to construct cross

covariances. Production wells are located at (6,6), (6,20), (20,6) and (20,20). The

injection well is located at (13,13). The total flow rate at each producer is fixed

at 250 bbl/day and the rate at the injector is fixed at 1250 bbl/day. This provides

approximately balanced production and injection before the breakthrough of water.

Other relevant reservoir properties are listed in Table 4.1.

The true log-permeability field is shown on the left side of Fig. 4.9. The

range of values is much larger than in the three-zone composite reservoir. Here the

ratio of largest permeability to smallest is greater than 30. The observed water-oil

ratio and pressure data were generated from the true permeability and true porosity

fields. The true porosity field is shown on the left side of Fig. 4.10.

Because Well 1 (upper left quadrant) is located in a region of low porosity,

it has early breakthrough (Fig. 4.11). Since the permeability in this region is also
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Mean porosity 0.25

Mean log-permeability 4.0

Porosity variance 0.0025

Variance of log-permeability 0.5

Correlation coefficient

between ln(k) and φ 0.5

Oil viscosity, cp 0.82

Variogram range

in x-direction, ft 360

Variogram range

in y-direction, ft 600

Water viscosity, cp 1.0

Initial water saturation 0.16

Residual oil saturation 0.20

Water compressibility, psi−1 4× 10−6

Oil compressibility, psi−1 1.0× 10−5

Initial pressure, psi 4,000

Oil formation volume factor at pi 1.269

Water formation volume factor at pi 1.004

Table 4.1: Rock and fluid properties for heterogeneous reservoir example.
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Figure 4.9: The “true” log-permeability field (left) and the MAP estimate of log-

permeability conditioned to both WOR and pressure measurements (right).

Figure 4.10: The “true” porosity field (left) and the MAP estimate of log-permeability

conditioned to both WOR and pressure measurements (right).
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low, the flowing bottom-hole pressure is low; see Fig. 4.12. Well 4, on the other hand,

is located in a region of relatively high permeability and porosity and thus has late

breakthrough and high flowing bottom-hole pressure. Wells 2 and 3 are intermediate

in breakthrough times and pressure. The maximum a posteriori estimates of log-

permeability and porosity, respectively, are shown on the right sides of Figs. 4.9

and 4.10. Although the estimate of permeability near the location of Well 1 (upper left

quadrant) looks somewhat lower than might be expected from the true permeability

field, the WOR match (Fig. 4.11) and the pressure match (Fig. 4.12) is seen to be

excellent and the overall appearance of the MAP estimate is that it is a smoothed

version of the true distributions.

4.3 Realization Conditional to Data from Heterogeneous Reservoir

As discussed earlier, the procedure for generating conditional realizations

is very similar to the method for generating the maximum a posteriori estimate.

The principal difference is that instead of finding distributions of porosity and log-

permeability that are close to the prior estimates, we find distributions that are

close to the unconditional realizations. On the left side of Fig. 4.13, the true log-

permeability is shown. This distribution of log-permeability was used to generate

synthetic observed water-oil ratio and pressure data. In the center of Fig. 4.13 is the

unconditional realization that was generated using the same covariance and mean as

used to generate the true realization. Note, however, that although the correlation

length and range are approximately the same, the details of the distribution of log-

permeability are quite different. On the right side of Fig. 4.13 is the conditional

realization that corresponds to the unconditional model realization in the center of

the figure and to an unconditional realization of the data. The conditional realization

is quite similar to the true realization, both in correlation length and in detail.

Figure 4.14 shows the corresponding sequence of porosity realizations: the
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Figure 4.11: Water-oil ratio match at the four producing wells at the MAP solution

with heterogeneous permeability and porosity.

Figure 4.12: Pressure match at the four producing wells at the MAP solution with

heterogeneous permeability and porosity.
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Figure 4.13: The true log-permeability field (left), an unconditional realization (cen-

ter), and a conditional realization (right) that is “close” to the unconditional realiza-

tion.

Figure 4.14: The true porosity field (left), an unconditional realization (center), and

a conditional realization (right) that is “close” to the unconditional realization.
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true distribution, an unconditional realization, and an conditional realization. The

conditional realization of porosity is very similar to the true distribution of porosity.

The pressure and water-oil ratio data were matched closely as shown in

Figs. 4.15 and 4.16, although several more iterations were required to generate a

conditional realization as to generate the maximum a posteriori estimate (see Fig-

ure 4.18).

The fact that many more iterations were required to generate a realization is

a source of some concern. Although it could be due to the high degree of non-linearity

in the multiphase problem and the fact that we must linearize around heterogeneous

permeability and porosity fields, it could simply be due to the fact that we have

not optimized the damping schedule in the minimization procedure. In Fig. 4.19,

we have plotted the differences between the starting (unconditional) log-permeability

field and the final, conditional log-permeability field, and between the unconditional

and conditional porosity fields. The fact that these differences are quite smooth

causes us to believe that the convergence rate can be substantially improved.



97

Figure 4.15: Pressure from the conditional realization compared with “observed”

pressure measurements from the true model.

Figure 4.16: WOR from the conditional realization compared with observed WOR

from the true model.
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Figure 4.17: Objective function of WOR and pressure match for heterogeneous (con-

ditional) realization.

Figure 4.18: Objective function conditioned to WOR and pressure for heterogeneous

reservoir. (The maximum a posteriori solution.)
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Figure 4.19: The correction to the log-permeability field (left) and the porosity field

(right).
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4.4 Evaluating the Uncertainty in Performance Predictions

The recommended procedure for evaluating the uncertainty in reservoir per-

formance predictions was discussed in Section 2.8. For this purpose, fifty uncondi-

tional realizations of the rock property fields were generated for the heterogeneous

reservoir example considered above. Each realization is conditioned to a realization

of the production data (i.e., synthetic production data from the true reservoir with

additional noise added) as discussed in Section 2.7. Both WOR and wellbore pressure

data (at producing wells) were used for conditioning the realizations. The “known

history” of the reservoir encompasses only 380 days. To evaluate the uncertainty

in performance predictions, reservoir performance up to approximately 10 years was

simulated for each conditional and unconditional realization. In each such predic-

tion, the known rate history at each well was used to specify the wellbore constraints

up to the end of the history period (380 days). At 380 days, the well constraint at

all producing wells was changed to production at a fixed bottom-hole pressure (the

bottom-hole pressure at the previous time step). At the injection well, the wellbore

was constrained to constant rate for the entire history and prediction period.

For ten of the unconditional realizations, it was not possible to reduce the

mismatch in the data to a small level. Fig. 4.20 shows that, in most cases, the value

of the objective function used in minimization (Eq. 2.93) was on the order of 50. In

ten cases, however, the value of the objective function remained above 150, and in

some cases was greater that 10,000 (Fig. 4.21). These “realizations” were rejected

so, although there are 50 unconditional realizations, there are only 40 conditional

realizations.

4.4.1 Unconditional Realizations

Fig. 4.22 shows predicted oil production at Well 1 for each of the uncondi-

tional realizations and the true oil production rate. Fig. 4.23 shows similar results
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Figure 4.20: The main part of the frequency distribution of values of the objective

function after conditioning.

Figure 4.21: The entire frequency distribution of values of the log of the objective

function after conditioning. The large values are unacceptable realizations.
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for the predicted water rates at Well 1. In both figures, the prediction from the truth

case is shown by a thick dashed red line. Fig. 4.24 and Fig. 4.25, respectively, show

the unconditional realizations of cumulative oil production for Well 1 and for the

entire field.
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4.4.2 Conditional Realizations

Fig. 4.26 shows predicted oil production at Well 1 for each of the uncondi-

tional realizations and the true oil production rate. Fig. 4.27 shows similar results

for the predicted water rates at Well 1. In both figures, the prediction from the truth

case is shown by a thick dashed red line. Fig. 4.28 and Fig. 4.29, respectively, show

the conditional realizations of cumulative oil production for Well 1 (located in the

upper left corner of the reservoir in gridblock (6,6)) and for the entire field. Only the

accepted realizations are included in these plots.
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4.4.3 Comparison of Conditional and Unconditional Realizations

Although it is clear from Figs. 4.25 and 4.29, for example, that the uncer-

tainty in the future performance of the well and the field were reduced by conditioning

to the early production data, the degree of reduction is not obvious from the figures.

It is far easier to quantify the uncertainty and the reduction in uncertainty, by looking

at the predicted performance at a particular instant in time.

In Fig. 4.30, the distribution of unconditional realizations of cumulative pro-

duction at ten years is shown. Note that the uncertainty is quite large; the standard

deviation divided by the mean is approximately 0.156. After conditioning to the

early production data, the distribution of realizations can be seen to be much nar-

rower (Fig. 4.31). The standard deviation of the conditional realizations of cumulative

oil production, divided by the mean is only about 0.055, so the relative uncertainty

is reduced by a factor of almost three.

Figs. 4.32 and 4.33 show similar results for the distribution of realizations

of cumulative oil production from the entire field. Note, however, that although

the standard deviation of the total cumulative oil production is much larger than

the standard deviation of the individual well cumulative production, it is only 1.6

times as large for the unconditional realizations. If the production from each well

was random and independent of each of the other wells, the variance in the total

should be the sum of the variances of the individual wells, so the standard deviation

for the field cumulative would be twice as large as the standard deviation in the

cumulative production at each well. Because it is smaller than this,we conclude that

the predicted performance of the four producers is not independent, even for the

unconditional realizations. Conditioning to early production data is more beneficial

in reducing uncertainty in the total field production than in the production from

individual wells (see Table 4.2). The relative uncertainty after conditioning is only

0.013. It is unlikely, however, that such small uncertainties are typical. In this
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Unconditional Conditional

Well 1 Field Well 1 Field

Realizations 50 50 40 40

Mean 173400. 699700. 160100. 731200.

Median 170300. 696300. 161200. 732600.

Std Deviation 27100. 43400. 8800. 9800.

Std Error 3830. 6130. 13920. 1540.

Skewness 0.250 -0.087 -0.061 -0.667

Kurtosis -0.656 0.722 0.527 -0.019

Table 4.2: A summary of the statistics of the distribution of conditional and uncon-

ditional realizations of cumulative oil production at the end of ten years.

synthetic example, the total pore volume was determined quite well by the early

data, and the original saturation and relative permeabilities were assumed to be

known. If neither the initial sturation or the relative permeabilities were known, the

uncertainty would be much larger.
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Figure 4.30: The distribution of unconditional realizations of cumulative oil produc-

tion from Well 1 at the end of 10 years of production.

Figure 4.31: The distribution of conditional realizations of cumulative oil production

from Well 1 at the end of 10 years of production.
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Figure 4.32: The distribution of unconditional realizations of cumulative field oil

production at the end of 10 years of production.

Figure 4.33: The distribution of conditional realizations of cumulative field oil pro-

duction at the end of 10 years of production.



CHAPTER V

CONCLUSIONS

We have considered the problem of generating the maximum a posteriori

(MAP) estimate and realizations of log-permeability and porosity fields conditioned to

a prior multivariate Gaussian distribution and two-phase flow production data. Only

the two-dimensional two-phase flow of oil and water has been considered. However,

the basic ideas presented should extend to general three-dimensional multiphase flow

problems. The rock property fields correspond to reservoir simulator gridblock perme-

abilities and porosities. Realizations and the MAP estimate require the minimization

of an objective function related to the a posteriori probability density function (pdf)

for the rock property fields. Definition of this pdf and its associated objective function

requires a probabilistic specification of measurement errors in observed production

data. We have presented a method to model these errors which recognizes that, on

a percentage basis, the measurement error in water-oil ratio may be large when the

water production rate is small. Minimization of the appropriate objective function

is accomplished by applying the Gauss-Newton iteration procedure. We found, how-

ever, that when only long-time production data are used as conditioning data in the

inverse procedure, the Gauss-Newton method converges slowly or may be trapped

in a local minimum. This result occurs because at early iterations, the production

data mismatch terms are large and dominate the search direction; the effect of the

prior model, which provides regularization term is small. Because of this, excessively

rough rock property fields at the are obtained at the first iteration of the Gauss-

Newton algorithm and it is difficult to correct these fields at subsequent iterations.

We have developed a procedure to overcome this convergence problem. The method,
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which uses an artificially high variance for measurement errors at early iterations, is

conceptually similar to the Levenberg-Marquardt algorithm.

In the Gauss-Newton method, a significant amount of the total computa-

tional work is expended in generating sensitivity coefficients. A rigorous discrete

adjoint method for calculating the sensitivity of production data to the rock property

fields has been derived. Unlike traditional adjoint approaches which generate only

the gradient of an objective function based on the sum of squares of production data

mismatch terms, our approach allows one to generate directly the sensitivity of calcu-

lated data to the model parameters (gridblock log-permeabilities and porosities). The

gradient simulator appears to be the only available alternative to the adjoint method.

Which is preferable depends directly on the number of model parameters (number

of gridblock log-permeabilities and porosities for the problem considered here) and

the number of production data used as conditioning data. Both methods solve linear

problems of the same size to obtain sensitivity coefficients. At least formally, both

proceed by solving a set of matrix problems where each coefficient matrix is associ-

ated with multiple multiple right-hand sides. In the gradient simulator method, the

number of right hand sides is equal to the number of model parameters, but in our

adjoint formulation, the number of right-hand sides is no greater than the number of

production data used as conditioning data. Thus, if the number of model parameters

is significantly greater than the number of production data used as conditioning data,

our adjoint formulation is preferable. If not, the gradient simulator procedure would

be expected to be more computationally efficient. In terms of memory required, the

adjoint method does not compare favorably with the gradient simulator method. In

the adjoint method, all gridblock saturations and pressures from one simulation run

must be stored and all are needed when solving the adjoint equations.

Using sensitivity coefficients calculated with the adjoint method, we have

generated the MAP estimate and realizations of the rock property fields for synthetic

cases. As notes above the MAP estimated and realizations are generated by mini-
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mizing the appropriate objective function using an efficient Gauss-Newton algorithm

instead of relying on slowly convergent methods (e.g., steepest descent or conjugate

gradient) which utilize only the gradient of the objective function. As the formula-

tion of the Gauss-Newton method applied requires the solution of Nd × Nd matrix

problems where Nd is the number of production data, the Gauss-Newton iterations

consume a relatively minor portion of the overall computation time provided the num-

ber of conditioning production data is not too large. The main work is in computing

the sensitivity coefficients needed at each iteration of the Gauss-Newton algorithm.

This requires one basic reservoir simulation run to generate gridblock pressures and

saturations and the solution of linear adjoint systems backward in time with multiple

right-hand side vectors.

Finally, we have applied a procedure to evaluate the uncertainty in predicted

reservoir performance. In particular, we have shown that conditioning to geostatis-

tical models to production data reduces the uncertainty in reservoir performance

predictions far below the level of uncertainty obtained if one simply makes reservoir

performance predictions from realizations generated from a prior geostatistical model

constructed solely from static data.
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