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ABSTRACT

Reza Tavakoli (Doctor of Philosophy in Petroleum Engineering)

History Matching With Parameterization Based on the SVD of a Dimensionless

Sensitivity Matrix

Directed by Albert C. Reynolds

146 pp., Chapter 5: Conclusions

(323 words)

In this work we develop efficient parameterization algorithms for history

matching based on the principal right singular vectors of the dimensionless sensi-

tivity matrix corresponding the maximum a posteriori estimate of reservoir model’s

parameters. The necessary singular vectors can be computed with the Lanczos al-

gorithm without explicit computation of the sensitivities. We provide a theoretical

argument which indicates that this parameterrization provides an optimal basis for

parameterization of the vector of the model parameters. We develop and illustrate

two gradient-based algorithms based on this parameterization. Like the limited mem-

ory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm, these algorithms avoid

explicit computation of individual sensitivity coefficients. For all synthetic problems

that we have considered, the reliability, computational efficiency and robustness of

the methods presented here are better than those obtained with quasi-Newton meth-

ods.

We also implement the SVD parameterization algorithm to generate a suite of

conditional realizations in the randomized maximum likelihood (RML) framework to

characterize the uncertainty of reservoir performance predictions. We generate mul-

tiple realizations simultaneously by minimizing an ensemble of objective functions
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concurrently using the singular triplets of a particular realization at each iteration.

We show that when combining SVD parameterization with the RML method, we

can achieve significant additional computational savings compared to the standard

implementation of RML using a quasi-Newton method and this algorithm gives good

data matches with history-matched models that are consistent with the prior geol-

ogy. We present two new algorithms based on this idea, one which relies only on

updating the SVD parameterization at each iteration and one which combines an

inner iteration based on an adjoint gradient where during the inner iteration the

truncated SVD parameterization does not vary. Results with our algorithms are su-

perior to those obtained from the ensemble Kalman filter (EnKF) with and without

covariance localization. Finally, we show that by combining EnKF with the SVD-

algorithm, we can improve the efficiency of the SVD-algorithms and the reliability

of EnKF estimates.
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CHAPTER 1

INTRODUCTION

Generating a distribution of reservoir properties (model parameters) like per-

meability and porosity fields that is consistent with all static data (core analysis

data, well logs, geology, seismic, etc.) and conditioned to dynamic data (pressure,

production data) is a very important task in reservoir characterization. While it is

relatively easy to condition reservoir models to the static data, generation of plau-

sible reservoir models conditioned to the dynamic data is far more challenging and

difficult. The process of estimation of unknown reservoir properties by tuning input

rock properties in the reservoir simulator to match dynamic data is called history

matching.

In automatic history matching and data integration problems of interest in

reservoir characterizations, an optimization algorithm is applied to minimize an ob-

jective function which quantifies the difference between the observed data and the

predictions of data computed from the model parameters. In the Bayesian approach

[59, 51] used in this study, a model mismatch term is also included in the objective

function which measures the distance from a prior mean or unconditional realiza-

tion generated from the prior geostatistical model. It is well known that the history

matching problem is ill-posed, i.e., it is not possible to obtain a unique solution

and very different estimates of reservoir parameters all yield an acceptable match

of the production history. Therefore, the incorporation of the prior information in

the objective function provides regularization and reduces the ill-posedness of the

inverse history matching problem. Minimization of the objective function yields the

maximum a posteriori (MAP) estimate of the model which is the most probable
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model.

There are two categories of optimization algorithms, gradient based opti-

mization algorithms and non-gradient based optimization algorithms. In this study,

we consider only the gradient based optimization algorithms for automatic history

matching. In gradient based optimization algorithms, the gradient information re-

quired depends on the optimization algorithm used. In the Gauss-Newton method,

the sensitivity matrix, which involves the derivative of predicted data with respect

to all model parameters, is required to form the Hessian matrix. For the nonlinear

conjugate gradient method [42, 8], explicit computation of the full sensitivity matrix

is not necessary; at each iteration, we only need to form the product of the sensitivity

matrix, G, times a vector and the product of the transpose of the sensitivity matrix,

GT , and a vector. Here and in the rest of this dissertation, G denotes the sensitivity

matrix. G times a vector can be computed by the direct method [63], which requires

a forward solution (a run of the reservoir simulator). In the reservoir simulation

literature, the direct method is usually referred to as the gradient simulator method

[3]. GT times a vector can be calculated from the adjoint method [7, 6, 38, 66],

which requires one “backward in time” run of the reservoir simulator. Rodrigues [57]

and Kraaijevanger et al. [34] present a very clear development of the computational

equations for both the gradient-simulator and adjoint methods, and the connections

between them. The development of these authors is also discussed in Oliver et al.

[51].

1.1 Parameterization Algorithms

For real field history matching problems, the number of grid blocks for nu-

merical simulation is several thousands to several tens of thousands. Therefore, the

number of model parameters to be adjusted in the automatic history matching is

very large. Reducing the number of model parameters to be estimated reduces the

computational costs and may also mitigate the effects of the natural ill-posedness
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of the large scale history matching problems. However, to preserve geological real-

ity, parameterization should yield a model that is qualitatively similar to the one

that would be obtained with no parameterization, e.g., parameterization should not

result in excessive smoothness and artifacts inconsistent with the geological model.

Thus, the development of robust and efficient algorithms for parameterization of the

history matching problem is one of the objectives of this study.

The simplest reduced parameterization is provided by the method of zonation,

in which the whole reservoir is divided into a small number of zones in each of which

the properties are assumed to be uniform. One advantage of the zonation method is

that it is simple to apply. Jacquard and Jain [30] and Jahns [31] used the zonation

method to reduce the number of parameters to be estimated in one of the first

automatic history matching studies presented in the literature. The gradzone method

[5] and adaptive multiscale methods [26, 25] are more modern clever implementations

of zonation. The gradzones are selected based on the high sensitivity of various

data with respect to model parameters in each of the selected gridblocks. Adaptive

multiscale methods use a coarse parameterization of the reservoir initially and refine

the parameterization in regions where the introduction of additional parameter is

most likely to improve the data match. Although it is simple to apply these methods,

like zonation, these methods can introduce non-geological discontinuities between

zones.

Gavalas et al. [22] recognized that by using a priori statistical information on

the unknown parameters, the problem becomes better determined and the variability

in the set of reservoir descriptions that provide an acceptable match of production

data is reduced. They propose a reduction in the number of parameters by using the

eigenvectors of the model covariance matrix to define the new basis. Shah et al. [58]

compared results obtained by reparameterization using zonation, reparameterization

using sensitivity coefficients and Bayesian estimation. For reparameterization based

on the sensitivity matrix, they proposed the use of the eigenvectors associated with
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the largest eigenvalues of GTG to reduce the dimension of the parameter space. The

trace of the a posteriori covariance matrix was used to define the total uncertainty

in the parameter estimates. They found that the smallest total uncertainty was

obtained with Bayesian estimation. They showed that a Bayesian history matching

approach gave better estimates of the true permeability and porosity fields than were

obtained by zonation in a simulated example of a one-dimensional reservoir. They

did not, however, use reparameterization when considering Bayesian estimation.

Oliver [48] also incorporated reparameterization based on the spectral (eigenvalue-

eigenvector) decomposition of the prior covariance matrix to determine two-dimensional

permeability fields conditioned to well-test pressure data and prior information.

Reynolds et al. [54] showed that when the overall prior covariance matrix contains in-

formation for both porosity and permeability, a straightforward application of spec-

tral decomposition results in a reparameterization which suppresses much of the

porosity information. However, Reynolds et al. [54] showed that this difficulty can

be eliminated by applying spectral decomposition to the prior correlation matrix.

They also showed that adding a nugget effect will decrease the rate of decay of

the eigenvalues and thus make spectral decomposition less efficient in reducing the

number of model parameters.

The subspace method [45, 46] can also be used to reduce the number of pa-

rameters and reduce the size of the matrix problems solved during optimization. In

the subspace method, the search direction vector is expanded as a linear combina-

tion of basis vectors of a lower dimensional subspace of the model space. These

vectors may, for example, be gradients of subgroups of data mismatch terms and

gradients of the model misfit part of the objective function. Reynolds et al. [54] used

subspace methods to reduce significantly the size of the Hessian matrix in each of

the Gauss-Newton iterations for automatic history-matching problems. Abacioglu

et al. [1] followed the work of Reynolds et al. [54] with a more detailed investigation.

The subspace vectors were computed with the adjoint method, and the gradient of
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the objective function with respect to the subspace vectors were calculated with the

gradient simulator method. They showed that the utility of a subspace method de-

pends on several factors, including the choice and number of the subspace vectors

to be used. In an extension of the earlier work of Shah et al. [58], they presented a

theoretical argument that suggests that the eigenvectors of a re-scaled Hessian ma-

trix would be an ideal basis for parameterization. They did not use this approach

in example problems, however, as it is not feasible to either generate the Hessian

or to do a Schur decomposition of the Hessian for large-scale problems. Other pa-

rameterization methods that have been considered include the pilot point method

[53, 10] which can introduce non-physical artifacts in the rock property fields [51],

and gradual deformation [29] which tends to yield reasonable geological models but

may encounter difficulties in obtaining a good data match [18].

The expansion of unknown model parameters in terms of the right singular

vectors of a linear data kernel operator for linear inverse problems was introduced

by Dietrich [11]. Dietrich showed that this basis is optimum in the sense that it

maximizes the amount of information passed from the solution space to the data

space. In this study, for parameterization, we use the right singular vectors of the

dimensionless sensitivity matrix, GD, defined in Zhang et al. [67]. We present a

theoretical argument that the principle right singular vectors of the dimensionless

sensitivity matrix form an optimal basis because eliminating those corresponding to

smaller singular values has a negligible effect on the reduction in uncertainty obtained

by conditioning a reservoir model to dynamic data. Rodrigues [57, 56] also applied

a history-matching procedure where the change in the vector of model parameters

over an iteration was a linear combinations of these right singular vectors.

To obtain the singular vectors corresponding to the largest singular values

of the dimensionless sensitivity matrix, we use the Lanczos algorithm [24, 47, 61]

to generate the truncated singular value decomposition. The Lanczos algorithm

requires forming G times a vector and GT times a vector; the first product can be
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computed using the “gradient simulator method” and the second product from an

adjoint solution [57, 51].

1.2 Evaluation of Uncertainty

In the presence of modeling error, noise in observed data and the inherent

non-uniqueness of the inverse history matching problem, there will always be some

uncertainty in dynamic reservoir modeling. Our main interest is in characterizing

the uncertainty in reservoir description and reservoir performance predictions as

a tool to optimize reservoir management. Quantification of the uncertainty in the

future production forecast yields a better understanding of the behavior of petroleum

reservoirs and reduces the risk of investment by increasing the knowledge of the

reservoir so that the engineer may obtain more feasible plans.

To quantify the uncertainty in reservoir performance, it is desirable to gen-

erate a suite of plausible reservoir models (realizations) that are consistent with all

static information and conditioned to observed data. The correct assessment of the

uncertainty will strongly depend on the quality of the distribution of the realiza-

tions, i.e., the realizations should be drawn from the probability distribution for the

reservoir model and should adequately represent the underlying uncertainties. In

the Bayesian framework [59, 51], the problem of uncertainty quantification is equiva-

lent to the formulation and sampling of the a posteriori probability density function

(pdf). Calculation of the MAP estimate is really only a part of the reservoir charac-

terization problem because the MAP estimate gives a very smooth model which does

not reflect the heterogeneity that would be typical for a realization generated from

the prior model. The MAP estimate provides an approximation of the conditional

mode of the distribution, or in the case of a Gaussian posterior, the MAP estimate

provides an approximation of the conditional mean of the posterior pdf.

To generate multiple plausible realizations to evaluate the uncertainty in

reservoir description and performance prediction, we need algorithms to sample cor-
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rectly and efficiently from the a posteriori probability density function. Sampling

algorithms have been widely reported in the literature. The rejection algorithm

and Markov chain Monte Carlo (MCMC) algorithm are rigorous sampling methods.

However, the results of Liu and Oliver [40] showed that the rejection algorithm is

completely impractical for the problems of conditioning a reservoir model to produc-

tion data. Unfortunately, the MCMC method is also computationally expensive and

impractical for uncertainty evaluation of reservoir performance [49].

Davis [9] and Alabert [2] applied square root decomposition of the covariance

matrix to generate realizations of Gaussian random fields in petroleum engineering.

This technique can be used to generate conditional realizations of model parameters

by computing a linearized approximation to the a posteriori covariance matrix, i.e.,

this approach assumes that the a posteriori pdf can be approximated by a Gaussian

centered at the MAP estimate (LMAP). The only advantage of this method is that

only one minimization corresponding to the MAP estimate is required, however,

because of this linear approximation for nonlinear problems, there is no guarantee

that the realizations generated by this algorithm are sampled correctly from the a

posteriori pdf. (see [39, 40]).

Randomized maximum likelihood (RML) [50, 33, 55] provides a viable proce-

dure for generating an approximate sampling of the posterior pdf. Although RML

provides only an approximate sampling procedure, by its construction, it is expected

to at least generate samples around the modes of the posterior pdf. In the linear

case where data are linearly related to the model parameters, it has been shown that

the RML method samples the a posteriori pdf correctly [55, 51]. In this algorithm,

the conditional realizations of model parameters are generated by calibration of un-

conditional realizations of model parameters drawn from the prior covariance matrix

and unconditional realizations of observed data generated from the square root of the

data covariance matrix. In this work, we incorporate the truncated singular value de-

composition (SVD) parameterization algorithm into the RML method for sampling
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from posterior pdf. Based on this, we develop two algorithms of sampling which

are significantly more efficient than the standard implementation of RML using a

quasi-Newton method.

1.3 Research Contributions and Dissertation Outline

1.3.1 Research Contributions

The development of practical, robust and efficient techniques for automatic

history matching is a research problem of great interest. The main contribution of

this work was the development of a parameterization algorithm in which the change

in the vector of model parameters is represented by the linear combination of the

right singular vectors of the dimensionless sensitivity matrix. This SVD parameter-

ization algorithm does not require the explicit knowledge of the sensitivity matrix,

G. We provide a theoretical basis which shows that the parameterization based on

the principal singular triplets of the dimensionless sensitivity matrix is ideal if the

objective is to minimize the posterior uncertainty in the model parameters. We show

that some savings in computational expense can be achieved by starting with a small

number of singular vectors initially and gradually increasing the number during the

iterative process.

In this study, we consider both the problem of generating the MAP estimate

as well as procedures for sampling from the posterior pdf to generate conditional

realizations of the log-permeability field. Another contribution of this work was to

develop efficient procedures for sampling from the posterior pdf. We provide two

algorithms for sampling from the posterior pdf based on incorporation of truncated

SVD parameterization into the RML method. The purpose of these algorithms is to

reduce the computational costs of generating a suite of plausible samples compared

to the standard implementation of RML using a quasi-Newton method.
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1.3.2 Dissertation Outline

There are five chapters and one appendix in this dissertation. In Chapter

2, we briefly present the basic equations of an implicit pressure explicit saturation

(IMPES) reservoir simulator, the adjoint method and the forward gradient simulator

used with the IMPES simulator. A detailed procedure of the Lanczos algorithm is

also presented in this chapter. Chapter 3 includes a discussion of Bayesian inversion,

the theoretical development of the MAP estimate and the formulation of the SVD

parameterization algorithms. The computational results of the MAP estimate with

different algorithms are compared in this chapter. Chapter 4 covers the detailed de-

velopment of the sampling algorithms based on incorporation of the SVD truncated

parameterization into the RML. This chapter also includes the results of the uncer-

tainty of both model parameters and future performance predictions obtained with

SVD sampling algorithms compared to results generated using the ensemble Kalman

filter (EnKF). Chapter 5 presents the conclusions and summarizes the research con-

tribution of this study. In Appendix A, the critical properties of the singular value

decomposition needed in this study are provided.
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CHAPTER 2

GRADIENT CALCULATION IN IMPES RESERVOIR SIMULATOR

WITH ADJOINT CODE AND FORWARD GRADIENT METHODS

In gradient-based optimization methods for automatic history matching, cal-

culation of the gradient information, i.e., the sensitivity of dynamic data to reservoir

model parameters, is the most challenging part. As we mentioned in the introduction

chapter, we use the Lanczos algorithm to obtain the singular vectors corresponding

to the largest singular values of the dimensionless sensitivity matrix. The Lanczos

algorithm requires forming the sensitivity matrix, G, times a vector and GT times

a vector; the first product can be computed using the “gradient simulator method”

and the second product from an adjoint solution. In the first section of this chapter,

the details of two-phase (oil and water), two-dimensional (x-y coordinate system)

IMPES reservoir simulator is described. In the second section, an outline of the

derivation of the adjoint and the gradient simulator methods used to generate the

product of the sensitivity matrix and the transpose of the sensitivity matrix with

arbitrary vectors are presented. Finally, we present the details of the bidiagonalized

Lanczos algorithm procedure which is used to compute the truncated singular value

decomposition of a dimensionless sensitivity matrix.

2.1 IMPES Simulator

The simulator used to generate finite-difference solutions is a standard “im-

plicit pressure and explicit saturation” (IMPES) simulator. This IMPES simula-

tor is based on finite-difference formulation black-oil equations, two phase and two-

dimensional (x-y coordinate system) flow of oil and water in an isotropic reservoir of
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uniform thickness. Capillary pressures, gravity effects and rock compressibility are

assumed to be negligible. We assume no-flow outer reservoir boundaries and specify

uniform initial pressure and water saturation as the initial conditions. We suppose

there are Nx and Ny gridblocks in the x and y directions respectively. We let N

denote the total number of gridblocks, i.e., N = Nx × Ny. At each gridblock, two

basic finite-difference equations apply which represent the mass balance for each of

the two components, oil and water. In addition, a constraint is applied at each of

the Nw wells to yield Nw additional equations. At each well at each time step, either

an individual phase flow rate, the total flow rate or the wellbore pressure may be

specified as a well constraint.

Based on the mass balance equations, we can drive the finite-difference equa-

tion for each component in each grid block at each time step. We partition the

reservoir into rectangular gridblocks using a standard block-centered grid and let

(xi,yj), i = 1, 2, . . . , Nx and j = 1, 2, . . . , Ny denote the areal coordinates of the

gridblock centers. Using standard notation, the difference equations can be written

fn+1
u,i,j =T n+1

ux,i+1/2,j(p
n+1
i+1,j − pn+1

i,j )− T n+1
ux,i−1/2,j(p

n+1
i,j − pn+1

i−1,j)+

T n+1
uy,i,j+1/2(p

n+1
i,j+1 − pn+1

i,j )− T n+1
uy,i,j−1/2(p

n+1
i,j − pn+1

i,j−1)− qn+1
u,i,j

− V n+1
φ,i,j

[
(buSu)

n+1
i,j − (buSu)

n
i,j

]
= 0,

(2.1)

for u = o, w (oil or water), i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny, and n = 0, 1, 2, . . .,

where

V n
φ,i,j =

4xi4yjhφi,j

5.6154tn−1
. (2.2)

Note that to impose no-flow outer boundaries, for all time steps n = 0, 1, 2, . . ., we

set
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T n+1
ux,1/2,j = T n+1

ux,Nx+1/2,j = 0, (2.3)

for j = 1, 2, . . . , Ny, and

T n+1
uy,i,1/2 = T n+1

uy,i,Ny+1/2 = 0, (2.4)

for i = 1, 2, . . . , Nx. Throughout, n refers to the time index and 4tn refers to the

time step size with tn+1 = tn + 4tn, for n = 0, 1, 2, . . . where t0 = 0. The term bu

refers to the inverse of formation volume factor (FVF) of phase u, i.e., bu = 1/Bu,

where Bu is the FVF of phase u. The terms qu,i,j represent source/sink terms in

STB/D for phase u and are zero unless grid block (i, j) contains a production or

injection well.

We define ∆th
n+1 = hn+1 − hn for any arbitrary function h. Therefore, for

two arbitrary functions a and b, we can simply show that

∆t(ab)
n+1 = bn+1∆t(a)

n+1 + an∆t(b)
n+1. (2.5)

Using a trick given by Eq. 2.5 in the last term of Eq. 2.1 and doing some simple

manipulations, we can rewrite Eq. 2.1 as

fn+1
u,i,j =T n+1

ux,i+1/2,j(p
n+1
i+1,j − pn+1

i,j )− T n+1
ux,i−1/2,j(p

n+1
i,j − pn+1

i−1,j)+

T n+1
uy,i,j+1/2(p

n+1
i,j+1 − pn+1

i,j )− T n+1
uy,i,j−1/2(p

n+1
i,j − pn+1

i,j−1)− qn+1
u,i,j

− V n+1
φ,i,j b

n+1
u,i,j

[
Sn+1

u,i,j − Sn
u,i,j[1− Cu(p

n+1
i,j − pn

i,j)]
]

= 0,

(2.6)

where Cu denotes phase compressibility. Note that to obtain Eq. 2.6, we assume that

the phase FVF does not vary over a time step.

For a two-phase flow problem, there are two unknowns, or two primary vari-

ables, in each gridblock. The primary variables for a gridblock (i, j) are the gridblock
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pressure, pi,j, and oil saturation, So,i,j. Note that in each grid block, (i, j), we impose

the auxiliary condition So,i,j + Sw,i,j = 1.0. In addition to the gridblock pressures

and saturations, the flowing wellbore pressure, pwf,l, at the lth well is also a primary

variable. At each time step, the primary variables, p and So, of each individual grid-

block and pwf in each well are calculated by an IMPES simulator and are saved for

future use in constructing the adjoint system and forward gradient.

For IMPES simulator, we combine oil and water equations given by Eq. 2.6,

respectively, with u = o for oil phase and u = w for water phase. Note that for oil and

water two-phase problems So,i,j + Sw,i,j = 1.0 for (i, j)’th gridblock. Therefore, by

using this auxiliary equation in the combined equation, we can eliminate the unknown

phase saturation. Using some simple algebraic manipulations and simplification, we

obtain the following combined equation for phase pressure denoted by fn+1
p,i,j

fn+1
p,i,j =(T n

ox,i+1/2,j + T n
wx,i+1/2,j)(p

n+1
i+1,j − pn+1

i,j )− (T n
ox,i−1/2,j + T n

wx,i−1/2,j)(p
n+1
i,j − pn+1

i−1,j)+

(T n
oy,i,j+1/2 + T n

wy,i,j+1/2)(p
n+1
i,j+1 − pn+1

i,j )− (T n
oy,i,j−1/2 + T n

wy,i,j−1/2)(p
n+1
i,j − pn+1

i,j−1)−

(Bn
o,i,jq

n+1
o,i,j +Bn

w,i,jq
n+1
w,i,j)− V n+1

φ,i,j

[
CoS

n
o,i,j + Cw(1− Sn

o,i,j)
]
(pn+1

i,j − pn
i,j) = 0,

(2.7)

for i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny, and n = 0, 1, 2, . . ., where Co and Cw denote oil

and water compressibilities, respectively, and Bo and Bw denote oil and water FVF’s.

We solve this combined equation implicitly for phase pressure of all gridblocks, pn+1
i,j

for i = 1, 2, . . . , Nx and j = 1, 2, . . . , Ny. Note that to solve the pressure equations

given by Eq. 2.7, we backdate all nonlinear terms, e.g., the transmissibilities of oil

and water backdated to previous time step tn. After having obtained phase pressure,

we choose to obtain oil saturation of each gridblock explicitly from the oil phase

equations. We let fn+1
So,i,j denote the oil phase saturation equation for gridblock (i, j).

Therefore, we can write
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fn+1
So,i,j =T n

ox,i+1/2,j(p
n+1
i+1,j − pn+1

i,j )− T n
ox,i−1/2,j(p

n+1
i,j − pn+1

i−1,j)+

T n
oy,i,j+1/2(p

n+1
i,j+1 − pn+1

i,j )− T n
oy,i,j−1/2(p

n+1
i,j − pn+1

i,j−1)−Bn
o,i,jq

n+1
o,i,j

− V n+1
φ,i,j

[
Sn+1

o,i,j − Sn
o,i,j[1− Co(p

n+1
i,j − pn

i,j)]
]
(pn+1

i,j − pn
i,j) = 0.

(2.8)

We solve Eq. 2.8 explicitly to obtain Sn+1
o,i,j for i = 1, 2, . . . , Nx and j = 1, 2, . . . , Ny

for each time step of the simulation, n = 0, 1, 2, . . .. In contrast to a fully-implicit

simulator, we can partition the pressure and saturation equations in the IMPES

simulator, i.e., the pressure and saturation equations are solved independently.

In our IMPES simulator, after calculation of the phase pressures and satu-

rations, we can use well constraint equations to obtain well bottom-hole pressure

(BHP) and oil and water flow rates. If a well flowing BHP is specified, phase flow

rates of that well are computed by Peaceman’s equation [52]. The oil and water

flow rates of a producer well l located at gridblock (i, j) at time step n + 1 can be

evaluated as

qn+1
o,i,j = WIi,j

( kro

Boµo

)n+1

i,j
(pn+1

i,j − pn+1
wf,l), (2.9)

qn+1
w,i,j = WIi,j

( krw

Bwµw

)n+1

i,j
(pn+1

i,j − pn+1
wf,l), (2.10)

where WIi,j denotes the well index term which represents the well geometry and

pn+1
wf,l is the specified BHP of a producer. Similarly, the total water injection rate for

a injection well l at gridblock (i, j) at time step n+ 1 can be evaluated as

qn+1
w,i,j = WIi,j

( kro

Boµo

+
krw

Bwµw

)n+1

i,j
(pn+1

i,j − pn+1
wf,l), (2.11)

Note that for injection wells, we use total mobility (oil+water) to compute injection

rate. After initial simulation time steps, the total mobility at injection well grid block
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is equal to the water mobility. Therefore, depending on the specified constraint for

well l, we can calculate the phase flow rates or BHP with Eqs. 2.9, 2.10 or 2.11 for

l = 1, 2, . . . , Nw. Note that when we solve Eqs. 2.7 and 2.8 for phase pressures and

oil saturations, we use Eqs. 2.9, 2.10 and 2.11 to replace qn+1
o,i,j and qn+1

w,i,j.

From this point on, we will assume that the gridblocks are reordered in one

dimension from k = 1, 2, . . . , N = Nx ×Ny. This reordering is done such that for a

gridblock (i, j) in two-dimension, the index k in one dimension ordering is obtained

with k = (j−1)Nx+i, where i = 1, 2, . . . , Nx and j = 1, 2, . . . , Ny. We let yn+1 denote

a column vector which contains the set of primary variables (pressures, saturations

and well bottom hole pressures) at time step n+1. Since we solve gridblock pressure

and saturation equations separately in the IMPES simulator and then we obtain well

BHP’s, we write yn+1 as

yn+1 =[(P n+1)T , (Sn+1
o )T , (P n+1

wf )T ]T

= [pn+1
1 , pn+1

2 , . . . , pn+1
N , Sn+1

o,1 , Sn+1
o,2 , . . . , Sn+1

o,N , pn+1
wf,1, . . . , p

n+1
wf,Nw

]T ,

(2.12)

where

P n+1 = [pn+1
1 , pn+1

2 , . . . , pn+1
N ]T , (2.13)

Sn+1
o = [Sn+1

o,1 , Sn+1
o,2 , . . . , Sn+1

o,N ]T , (2.14)

and

P n+1
wf = [pn+1

wf,1, p
n+1
wf,2, . . . , p

n+1
wf,Nw

]T . (2.15)

Therefore, the finite-difference combined (pressure) equation given by Eq. 2.7 and

oil saturation equation given by Eq. 2.8 in gridblock k at time tn+1, respectively, can
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be written as

fn+1
p,k = fn+1

p,k (yn+1, yn,m) = 0, (2.16)

and

fn+1
So,k = fn+1

So,k (yn+1, yn,m) = 0, (2.17)

for k = 1, 2, . . . , N and n = 1, 2, . . . , L. Note that m denotes the vector of model

parameters like gridblock porosities and permeabilities given by

m = [m1,m2, . . . ,mNm ]T . (2.18)

Also, the well constraints equations given by Eqs. 2.9, 2.10 and 2.11 can be repre-

sented by

fn+1
wf,l = fwf,l(y

n+1, yn,m) = 0, (2.19)

for l = 1, 2, . . . , Nw and n = 1, 2, . . . , L. Therefore, similar to a fully implicit simu-

lator, the complete system of equations for IMPES simulator for all gridblocks and
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all simulation time steps can be written as

fn+1 = f(yn+1, yn,m) =


fn+1

p

fn+1
So

fn+1
wf

 =



fn+1
p,1

...

fn+1
p,N

fn+1
So,1

...

fn+1
So,N

fn+1
wf,1

...

fn+1
wf,Nw



= 0, (2.20)

where

fn+1
p = [fn+1

p,1 , fn+1
p,1 , . . . , fn+1

p,N ]T , (2.21)

fn+1
So

= [fn+1
So,1 , f

n+1
So,1 , . . . , f

n+1
So,N ]T , (2.22)

and

fn+1
wf = [fn+1

wf,1, f
n+1
wf,1, . . . , f

n+1
wf,Nw

]T . (2.23)

Note that unlike a fully implicit simulator, for the IMPES simulator, we

have partitioned the combined pressure equations, saturation equations and well

constraints equations. The total number of unknowns to be solved is Ne = 2N +Nw

for each time step of simulation.

2.2 Adjoint Equations

In gradient-based optimization algorithms, minimization of objective function
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requires computation of the gradient of the objective function, O(m). In quasi-

Newton algorithms and in the SVD parameterization algorithm based on the Lanczos

method, the calculation of the product of the transpose of the sensitivity matrix,

GT , times a vector is required. This product can be obtained by adjoint solution

[66, 57]. In this section, we describe the detail formulation of the adjoint code for the

IMPES simulator. The predicted data g(m) and the objective function, O(m), are

functions of the primary variables, y1, y2, . . . , yL, and model parameters, m. Note

that the primary variables, yi’s, for i = 1, 2, . . . , L are implicit functions of the

model parameters m, where this implicit relation is represented by the mass balance

equations given by Eq. 2.20.

Following Oliver et al. [51], Gao [17], Li et al. [38], we define a general scalar

function by

β = β(y1, . . . , yL,m), (2.24)

where L corresponds to the last time step tL at which one wishes to compute sensi-

tivities. Our objective is to compute the product of the transpose of the sensitivity

matrix by a vector. Therefore, in the SVD parameterization algorithm, β will rep-

resent the vector of predicted data, g(m) times a vector v. Here, the objective is to

compute the sensitivity of β to the model parameter, m, i.e. dβ/dm. We now adjoin

Eq. 2.20 to the function β to obtain the adjoint functional J given by

J = β +
L∑

n=0

(λn+1)Tfn+1, (2.25)

where λn+1, n = 0, 1, . . . , L, is the vector of adjoint variables at time step n+ 1, and

is given by
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λn+1 =


λn+1

p

λn+1
So

λn+1
wf

 =



λn+1
p,1

...

λn+1
p,N

λn+1
So,1

...

λn+1
So,N

λn+1
wf,1

...

λn+1
wf,Nw



. (2.26)

Here, λn
u,j denotes the scalar adjoint variable (Lagrange multiplier) for the u simulator

equation at gridblock j at time tn. As shown in Li et al. [37] and Oliver et al. [51],

the adjoint problem is

λn+1 = 0, (2.27)

and

[∇yn(fn)T ]λn = −[∇yn(fn+1)T ]λn+1 −∇ynβ, (2.28)

for n = L,L − 1, . . . , 1. Based on Eqs. 2.12 and 2.20, we can partition pressure, oil

saturation and well constraints equations. Therefore, we can write the following

∇yn(fn)T =


∇pn(fn

P )T ∇pn(fn
So

)T ∇pn(fn
wf )

T

∇Sn
o
(fn

P )T ∇Sn
o
(fn

So
)T ∇Sn

o
(fn

wf )
T

∇pn
wf

(fn
P )T ∇pn

wf
(fn

So
)T ∇pn

wf
(fn

wf )
T

 . (2.29)

Note that in the IMPES simulator formulation based on Eqs. 2.7 and 2.8

and well constraints equations (Eqs. 2.9, 2.10 and 2.11), some of the block matrix

entries of ∇yn(fn)T given by Eq. 2.29 are zero, e.g., ∇Sn
o
(fn

P )T = 0, ∇Sn
o
(fn

wf )
T = 0,

∇pn
wf

(fn
P )T = 0 and ∇pn

wf
(fn

So
)T = 0. Also, ∇Sn

o
(fn

So
)T and ∇pn

wf
(fn

wf )
T are diago-

nal matrices. Similarly, using Eqs. 2.12 and. 2.20, we can rewrite ∇yn(fn+1)T by
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partitioning as follows

∇yn(fn+1)T =


∇pn(fn+1

P )T ∇pn(fn+1
So

)T ∇pn(fn+1
wf )T

∇Sn
o
(fn+1

P )T ∇Sn
o
(fn+1

So
)T ∇Sn

o
(fn+1

wf )T

∇pn
wf

(fn+1
P )T ∇pn

wf
(fn+1

So
)T ∇pn

wf
(fn+1

wf )T

 . (2.30)

Note that based on the same equations we developed for the IMPES simulator

in the previous section (Eqs. 2.7, 2.8, 2.9, 2.10 and 2.11), there are some null and

diagonal matrices in ∇yn(fn+1)T given by Eq. 2.30. For example, the gradients of

fn+1 = [fn+1
p , fn+1

So
, fn+1

wf ]T with respect to pn
wf are null matrices (∇pn

wf
(fn+1

P )T = 0,

∇pn
wf

(fn+1
So

)T = 0, ∇pn
wf

(fn+1
wf )T = 0). The matrices ∇pn(fn+1

P )T and ∇pn(fn+1
So

)T are

diagonal. We can rewrite ∇ynβ based on partitioned primary variables (Eq. 2.12) as

follows

∇ynβ =


∇pnβ

∇Sn
o
β

∇pn
wf
β

 . (2.31)

We let RHS denote a column vector which contains the right hand side of

Eq. 2.28 as RHS = [RHST
p , RHS

T
So
, RHST

wf ]
T . Therefore, using Eqs. 2.26 and. 2.29,

we can rewrite Eq. 2.28 as


∇pn(fn

P )T ∇pn(fn
So

)T ∇pn(fn
wf )

T

0 ∇Sn
o
(fn

So
)T 0

0 0 ∇pn
wf

(fn
wf )

T



λn

p

λn
So

λn
wf

 =


RHSp

RHSSo

RHSwf

 . (2.32)

From Eq. 2.32, it is clear that we obtain λn
wf , λ

n
So

and λn
p from following

equations respectively

∇pn
wf

(fn
wf )

Tλn
wf = RHSwf , (2.33)

20



∇Sn
o
(fn

So
)Tλn

So
= RHSSo , (2.34)

and

∇pn(fn
P )Tλn

p = RHSp −∇pn(fn
So

)Tλn
So
−∇pn(fn

wf )
Tλn

wf , (2.35)

We solve adjoint equations (Eqs. 2.33, 2.34 and 2.35) backward in time for

n = L,L − 1, . . . , 1 where Eq. 2.27 gives the starting condition for the backward

solution in time. Note that the forward simulation equation is solved forward in

time. Also note that the coefficients in Eqs. 2.33, 2.34 and 2.35 are independent of

the adjoint variables λp, λSo and λwf , which means that the adjoint equations are

linear. The information needed in building the coefficients in the adjoint equations

must be saved from the forward simulation run. When the λns satisfy the adjoint

system of Eq. 2.28, as shown in Li et al. [37] the total differential of J can be written

as

dJ =
{

[∇mβ]T +
N∑

n=1

(λn)T [∇m(fn)T ]T
}
dm. (2.36)

It follows that the total derivative of J with respect to m, i.e. the sensitivities are

given by

dJ

dm
=


dJ

dm1

...

dJ
dmNm

 = ∇mβ +
N∑

n=1

[
∇m(fn)T

]
(λn), (2.37)

or equivalently based on the partitioned λn and fn given by Eqs. 2.26 and 2.20, we

can write
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dJ

dm
= ∇mβ+

N∑
n=1

{[
∇m(fn

p )T
]
(λn

p )+
[
∇m(fn

So
)T

]
(λn

So
)+

[
∇m(fn

wf )
T
]
(λn

wf )
}
, (2.38)

where

∇mβ =

[
∂β

∂m1

,
∂β

∂m2

, . . . ,
∂β

∂mNm

]T

, (2.39)

and

∇m[fn
p ]T =



∂fn
p,1

∂m1

∂fn
p,2

∂m1
. . .

∂fn
p,N

∂m1

∂fn
p,1

∂m2

∂fn
p,2

∂m2
. . .

∂fn
p,N

∂m2

...
...

...
...

∂fn
p,1

∂mNm

∂fn
p,2

∂mNm
. . .

∂fn
p,N

∂mNm


. (2.40)

In Eq. 2.40, if we use fn
So

instead of fn
p , we will obtain equation for ∇m[fn

So
]T . The

matrices ∇m[fn
p ]T and ∇m[fn

So
]T are Nm ×N sparse matrices. The matrix ∇m[fn

wf ]
T

is an Nm×Nw sparse matrix. Note that in the preceding two equations, the gradients

involve the explicit partial derivatives of terms with respect to model parameters. If

the expression for a term does not explicitly involve a model parameter, the partial

derivative of that term with respect to that model parameter is zero.

In order to apply for example a quasi-Newton algorithm in minimization of

an objective function, we need only to compute the gradient of the objective function

and this can be done by setting β equal to the data mismatch part of the objective

function in the adjoint procedure. The detailed description of how to obtain the

gradient of the data mismatch part of the objective function by the adjoint procedure

is given in Zhang [68] and Oliver et al. [51].

2.2.1 GT Times a Vector

The implementation of the Lanczos algorithm to obtain the truncated SVD
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of the dimensionless sensitivity matrix requires computation of product of GT times

a vector v. As shown in Oliver et al. [51], if g(m) is the vector of all predicted data

obtained by running the simulator forward corresponding to all observed data, then

for any fixed vector v we denote β as

β = [g(m)]Tv. (2.41)

The total derivative (sensitivity) vector of β is given by

dβ

dm
= GTv. (2.42)

Thus to compute GTv, we simply apply the adjoint procedure to compute dβ/dm.

2.3 Forward Gradient Method

In this section, we will show how the forward gradient method for an IMPES

reservoir simulator can be used to calculate the sensitivity matrix. Also, in the

process, we show how to calculate the product of the sensitivity matrix, G with an

arbitrary vector u.

In order to provide the derivation of the forward gradient method for com-

puting G times a vector, we rewrite the system of reservoir simulator finite difference

equations given by Eq. 2.20 as

fn = f(yn, yn−1,m) = 0, (2.43)

for n = 1, 2, . . . , L. Note that y0 represents given fixed initial conditions. Next, we

combine vectors of primary variables given by Eq. 2.12 at all time steps into one

overall primary column vector Y with size of NY = Ne × L as

Y = [(y1)T , (y2)T , . . . , (yL)T ]T , (2.44)
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and combine the simulation equations given by Eq. 2.43 at all time steps into one

overall simulation equation F = F (Y,m) as

F = F (Y,m) =



f 1(y1, y0,m)

f 2(y2, y1,m)

...

fL(yL, yL−1,m)


, (2.45)

so the complete functional relationship defining the reservoir simulator is written as

F (Y,m) = 0. (2.46)

To calculate the total derivatives (sensitivities) of primary variables with re-

spect to the model parameters, we take the total differential of F . From Eq. 2.46, it

follows that

(∇Y F
T )TdY + (∇mF

T )Tdm = 0. (2.47)

It follows from Eq. 2.47 that

(∇Y F
T )T dY

dm
= −(∇mF

T )T , (2.48)

where the matrix of total derivatives, dY/dm, contains sensitivity matrices for all

time steps and is given by

dY

dm
=



dy1

dm

dy2

dm

...

dyL

dm


=



[∇m(y1)T ]T

[∇m(y2)T ]T

...

[∇m(yL)T ]T


, (2.49)

and
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(∇Y F
T )T =



[∇y1(f 1)T ]T O O . . . O

[∇y1(f 2)T ]T [∇y2(f 2)T ]T O . . . O

O [∇y2(f 3)T ]T [∇y3(f 3)T ]T . . . O

...
...

. . . . . .
...

O O . . . [∇yL−1(fL)T ]T [∇yL(fL)T ]T


,

(2.50)

where the O’s denote null matrices and

(∇mF
T )T =



[∇m(f 1)T ]T

[∇m(f 2)T ]T

...

[∇m(fL)T ]T


. (2.51)

As shown in Rodrigues [57] and Oliver et al. [51], from Eqs. 2.48- 2.51 it follows

that the total derivatives of primary variables with respect to model parameters can

be written forward in time recursively as

(∇yn [(fn)T ]T )Ĝn = −(∇yn−1 [(fn)T ]T )Ĝn−1 − [∇m(fn)T ]T , (2.52)

where Ĝn = [∇m(yn)T ]T for n = 1, 2, . . . , L. Note that Ĝ0 is a null matrix because

y0 is a fixed vector and hence independent of m.

The vector of simulator predicted data corresponding to the observed data

is denoted by g and it is actually a function of primary variables, Y and model

parameters, m which can be written as

g = g(Y,m) = [g1(Y,m), g2(Y,m), . . . , gNd
(Y,m)]T , (2.53)

where Nd is the number of observed data and gi(Y,m)’s for i = 1, 2, . . . , Nd are
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the predicted data, like bottom hole pressure (BHP), water oil ratio (WOR), . . .,

obtained by running the reservoir simulator forward. The matrix of total derivatives

of the predicted data, gi(Y,m), i = 1, 2, . . . , Nd, with respect to the model parameters

is called the sensitivity matrix and is defined as

G =
[
Gi,j

]
=

[ dgi

dmj

]
(2.54)

for i = 1, 2, . . . , Nd and j = 1, 2, . . . , Nm, i.e., G is an Nd × Nm matrix. The (i, j)’s

entry of G can be obtained as follows

dgi

dmj

=

NY∑
k=1

∂gi

∂yk

∂yk

∂mj

+
∂gi

∂mj

, (2.55)

where yk denotes a single entry of the vector Y defined by Eq. 2.44. Using Eq. 2.55,

one can write the sensitivity matrix, G, as

G = [∇Y g
T ]T

dY

dm
+ [∇mg

T ]T , (2.56)

where the matrix ∇mg
T is an Nm ×Nd matrix and defined as

∇mg
T =



∂g1

∂m1

∂g2

∂m1
. . .

∂gNd

∂m1

∂g1

∂m2

∂g1

∂m2
. . .

∂gNd

∂m2

...
...

...
...

∂g1

∂mNm

∂g2

∂mNm
. . .

∂gNd

∂mNm


. (2.57)

where the (j, i) entry of the matrix ∇mg
T , denoted as ∂gi

∂mj
is the partial derivative

of the ith predicted data with respect to the jth model parameter. Note that if the

formula for gi does not explicitly involve mj, then ∂gi

∂mj
= 0. The detailed formulas

for calculation of entries of ∇mg
T is given in Li et al. [38].

Using Eq. 2.48 to solve for dY/dm and using the result in Eq. 2.56 gives
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G = −[∇Y g
T ]T [∇Y F

T ]−T [∇mF
T ]T + [∇mg

T ]T , (2.58)

where the superscript −T denotes the dual operation of taking the transpose and

then the inverse.

2.3.1 G Times a Vector

Here, we show in details how to calculate the product of G times a vector

in the process of gradient simulator without explicitly computing the entries of the

G. Implementation of this procedure into an IMPES reservoir simulation is also

described. Multiplying Eq. 2.58 by an arbitrary Nm-dimensional column vector u

gives

Gu = −[∇Y g
T ]T [∇Y F

T ]−T [∇mF
T ]Tu+ [∇mg

T ]Tu. (2.59)

If we define a column vector Z by

Z = [∇Y F
T ]−T [∇mF

T ]Tu, (2.60)

or equivalently

[∇Y F
T ]TZ = [∇mF

T ]Tu. (2.61)

then Eq. 2.59 becomes

Gu = −[∇Y g
T ]TZ + [∇mg

T ]Tu. (2.62)

Note that Z consists of L column subvectors of length Ne, the number of primary

variables for each time step, so that

Z = [(z1)T , (z2)T , . . . , (zL)T ]T . (2.63)
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Recalling the structure of (∇Y F
T )T given by Eq. 2.50, the zn’s can be obtained

forward in time as

[∇y1(f 1)T ]T z1 = [∇m(f 1)T ]Tu, (2.64)

and

[∇yn(fn)T ]T zn = [∇m(fn)T ]Tu− [∇yn−1(fn)T ]T zn−1, (2.65)

for n = 2, 3, . . . , L. Note when we solve the two preceding equations to obtain

zi’s with IMPES reservoir simulator, we can use Eqs. 2.12 and 2.20 to partition

the coefficients matrices. For example, we simply replace ∇yn(fn)T by Eq. 2.29 for

n = 1, 2, . . . , L. The zn vector for the IMPES simulator in partitioned form is given

by

zn = [(zn
p )T , (zn

So
)T , (zn

wf )
T ]T , (2.66)

for n = 1, 2, . . . , L. After Z has been calculated, we can calculate Gu by rewriting

Eq. 2.62 as

Gu = −
L∑

n=1

[∇yngT ]T zn + [∇mg
T ]Tu. (2.67)

The ith component of the vector Gu is given by

(Gu)i = −
L∑

n=1

Ne∑
k=1

∂gi

∂yn
k

zn
k +

Nm∑
j=1

∂gi

∂mj

uj. (2.68)

Note that the partial derivatives on the right-hand side of Eq. 2.68 are computed

directly from the explicit expression for the predicted data. For an IMPES reservoir

simulator, we can partition ∇yngT by using Eq. 2.12. Therefore, we can rewrite

Eq. 2.67 as
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Gu = −
L∑

n=1

{
[∇pngT ]T zn

p + [∇Sn
o
gT ]T zn

So
+ [∇pn

wf
gT ]T zn

wf

}
+ [∇mg

T ]Tu. (2.69)

2.4 Lanczos Algorithm for computing a partial SVD

We implement parameterization based on singular value decomposition (SVD)

of a dimensionless sensitivity matrix in order to obtain a robust algorithm in the

gradient-based automatic history matching. The dimensionless sensitivity matrix,

GD, involves the sensitivity matrix G. For a large scale history matching problem,

explicit construction of G is not feasible. Therefore, in our application of SVD

parameterization algorithm, we need to obtain singular triplets with SVD algorithms

which do not require explicit calculation of all individual entries of the sensitivity

matrix. If singular values of the dimensionless sensitivity matrix decay rapidly to

very small values (close to zero), one does not need to compute many singular values

and it suffices to obtain a partial SVD consisting of only the largest singular values

and their corresponding singular vectors because the information content of small

singular triplets is typically quite low. Therefore, another desirable property of the

algorithm chosen to compute SVD is that the algorithm converges quickly to the

largest singular values.

To obtain the singular vectors corresponding to the largest singular values of

the dimensionless sensitivity matrix, we use the Lanczos algorithm (see [24, 47, 61])

to generate the truncated singular value decomposition. The Lanczos algorithm has

two main benefits. First, the algorithm iteratively approximates the largest singu-

lar values, the ones carrying most of the information content of the dimensionless

sensitivity matrix. Second, this algorithm does not require explicit knowledge of the

sensitivity matrix, i.e., the matrix G need not be explicitly computed. The matrix G

is only referenced through matrix-vector multiplication. The Lanczos algorithm only

requires calculation of the product of the sensitivity matrix with an arbitrary vector
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(Gu) and the product of the transpose of the sensitivity matrix with an arbitrary

vector (GTv). To obtain Gu, we use the forward (or gradient simulator) method as

described in the previous section ([56]). Calculation of GTv is done with the adjoint

method ([51, 56]), which was also described previously.

Next, we describe details of the Lanczos bidiagonalization algorithm. The

Lanczos algorithm proceeds in two steps (see [47]). In the first step, the problem

is reduced to a problem on a subspace which is computationally much more eco-

nomical. This is a bidiagonalization algorithm. In this step, the original matrix is

converted to a bidiagonal matrix during the fundamental recurrences that define the

Lanczos bidiagonalization. In the second step, the singular triplets of the original

domain are calculated based on the decomposition of the reduced problem defined

by the bidiagonal matrix. In the paragraphs below we describe in further detail how

the iterative bidiagonalization process may be used in the SVD calculations for the

dimensionless sensitivity matrix, GD, which were introduced initially in Zhang et al.

[67] and we will define it in Chapter 3.

For a rectangular Nd × Nm matrix, GD the Lanczos bidiagonalization com-

putes a sequence of Lanczos vectors uj ∈ RNd and vj ∈ RNm and scalars αj and

βj for j = 1, 2, . . . , k. This can be done using very elementary manipulations; we

need to form the product of GD and GT
D with various vectors and to take linear

combinations and inner product of vectors. Furthermore, rather than doing the full

bidiagonalization algorithm, the Lanczos algorithm can be terminated early to give a

truncated factorization of the matrix GD. The Lanczos bidiagonalization algorithm

proceeds as follows;

1. Let v1 be an Nm×1 starting unit vector. Compute y = GDv1 and let α1 =‖ y ‖,

u1 = y
α1

.

2. For iterations ` = 1, 2, ... do

a. w = GT
Du` − α`v`
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• Reorthogonalize: for i = 1, 2, ..., ` do

• w = w − (vT
i w)vi

• end

b. β` =‖ w ‖

c. v`+1 = w
β`

d. y = GDv`+1 − β`u`

• Reorthogonalize: for i = 1, 2, ..., ` do

• y = y − (uT
i y)ui

• end

e. α`+1 =‖ y ‖

f. u`+1 = y
α`+1

end.

After L−1 steps (Lanczos iterations), we have generated the upper bidiagonal

L× L matrix BL given by

BL =



α1 β1

α2 β2

. . . . . .

αL−1 βL−1

αL


. (2.70)

We let VL = [v1, v2, ..., vL] where vj, j = 1, 2, . . . , L are the right Lanczos vectors and

UL = [u1, u2, ..., uL] where uj, j = 1, 2, . . . , L are the left Lanczos vectors. In exact

arithmetic, the Lanczos vectors are orthonormal so that

UT
LUL == ULU

T
L = IL, (2.71)
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and

V T
L VL = VLV

T
L = IL, (2.72)

where IL is the L×L identity matrix. In the presence of roundoff errors, the orthog-

onality among the left and right Lanczos vectors is gradually lost so that Eqs. 2.71

and 2.72 no longer hold. The reorthogonalize steps in the algorithm prevent signifi-

cant accumulation of round off error. Based on the above Lanczos bidiagonalization

algorithm (see step 2, a and c, and d and f), we can write the following recurrences

α`+1u`+1 = GDv`+1 − β`u`, (2.73)

and

β`v`+1 = GT
Du` − α`v`. (2.74)

We can write Eqs. 2.73 and 2.74 in compact matrix form as

GDVL = ULBL, (2.75)

and

GT
DUL = VLB

T
L + βLvL+1. (2.76)

Using the orthogonality property of Eq. 2.71, we can rewrite Eq. 2.75 as follows

UT
LGDVL = BL. (2.77)

It can be shown [23] that the matrix BL has singular values that are close

to certain singular values of matrix GD, typically the largest and smallest singular

values of GD. Having obtained the matrix BL with the Lanczos bidiagonalization
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algorithm, the estimates for the singular values and corresponding singular vectors

of GD can be obtained by calculation of the SVD of the matrix BL, i.e.,

BL = ŨLΛLṼ
T
L , (2.78)

where ΛL is a L×L diagonal matrix with diagonal entries denoted by λ`
j, j =

1, 2, ..., L. Using Eq. 2.78 in Eq. 2.77 and performing simple algebraic manipula-

tion gives

GD = ULŨLΛLṼ
T
L V

T
L = UΛLV

T (2.79)

where, U = ULŨL and V = VLṼL. The diagonal entries of ΛL are the approximations

to the L largest singular values of GD. The columns of U and V approximate the

corresponding left and right singular vectors [61].

2.4.1 Stopping conditions of Lanczos Algorithm

The number of Lanczos iterations depends on; i) the assigned number of

retained converged singular values, i.e., the level of truncation of singular value de-

composition (p) and ii) the assigned singular cutoff (sv-cut). The singular cutoff,

sv-cut, is defined as the ratio of the smallest converged singular value to the largest

converged singular value. Since with Lanczos algorithm, the first obtained singular

value is the largest one, therefore we can write

sv-cut =
λ`

j

λ`
1

. (2.80)

With a specified value of the singular cutoff, we terminate the Lanczos algorithm

at the smallest value of p such that λp

λ1
≤ sv-cut. To obtain converged singular

values, we do iterations of Lanczos algorithm and check the convergence criterion.

For convergence of each of the singular values we require that the relative change in

the singular values from current iteration to the next iteration be small, i.e.,
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|λ`
j − λ`−1

j |
λ`

j

≤ εsv (2.81)

where ` is the iteration index and the λ`
j’s are the approximate singular values at

iteration `. At convergence, Eq. 2.81 should be satisfied for j = 1, 2, ..., p. In our

applications, we use εsv = 10−5.

Therefore, the three input parameters of the Lanczos algorithm which control

the computational cost of the algorithm are p, sv-cut and εsv. The strategy of using

the Lanczos bidiagonalization algorithm to compute the partial SVD with truncation

level p is that for iterations ` = 1, 2, ..., p, we perform only the bidiagonalization

algorithm. Then, for further iterations (` > p), in addition to the bidiagonalization

process, we use Eq. 2.78 to compute singular values of the matrix BL and we perform

the convergence check given by Eq. 2.81. If the condition given by Eq. 2.81 holds or

if
λ`

j

λ`
1
< sv-cut, then we use Eq. 2.79 to calculate the right and left singular vectors

of GD and terminate the Lanczos algorithm.

In the implementation of the Lanczos algorithm, the computational cost of

applying matrix-vector multiplication to calculate GDvj and GT
Duj far exceeds other

computational costs. The Lanczos algorithm with k iterations requires k+1 forward

gradient runs to obtain GDvj and k adjoint runs to obtain GT
Duj.
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CHAPTER 3

MAP ESTIMATE WITH SVD PARAMETERIZATION

In this chapter, we present the basic equations and notation for the history

matching problem in a Bayesian setting by developing an equation for the posterior

probability density function (pdf). We discuss the computation of the maximum a

posteriori (MAP) estimate of reservoir model parameters which is the model that

maximizes the posterior pdf. Based on the linearization of the posterior pdf in

the neighborhood of the MAP estimate, we provide a theoretical argument which

indicates that parameterization based on the principle right singular vectors of the

dimensionless sensitivity matrix provides an optimal basis for parameterization of

the vector of model parameters. We also develop parameterization algorithms based

on the singular value decomposition (SVD) of the dimensionless sensitivity matrix

to compute the MAP estimate. In the last section of this chapter, we present the

computational results of the MAP estimate with different SVD parameterization

algorithms for two 2-dimensional synthetic examples.

3.1 The Posterior Probability Density Function

In the Bayesian domain, suppose that our Nm-dimensional random column

vector of model parameters m are uncertain, and that we can represent the uncer-

tainty through an estimate of the prior mean mprior and the Nm×Nm prior model

covariance matrix, CM . The prior uncertainty in the model parameters is described

by the following Gaussian probability density function (pdf)

f(m) = a1 exp
[
− 1

2
(m−mprior)

TC−1
M (m−mprior)

]
, (3.1)
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The theoretical relationship between an Nd-dimensional column vector of predicted

data d and the vector m of model parameters is given by

d = g(m), (3.2)

If m is the true model parameters, then the difference between d and corresponding

vector of observed data, dobs, represents measurement error εd, i.e.,

εd = d− dobs, (3.3)

Assuming measurement error is Gaussian with mean zero and an Nd×Nd covariance

matrix CD, then the probability of observed data dobs given the model parameters is

simply the probability of measurement error εd, i.e.,

f(dobs|m) = f(εd) = a2 exp
[
− 1

2
(dobs − g(m))TC−1

D (dobs − g(m))
]
, (3.4)

Note if we assume dobs is given, then Eq. 3.4 gives the likelihood of m given dobs

denoted by L(m|dobs). By Bayes Theorem [59, 51], the posterior pdf of the model

parameters conditional to the observed data is proportional to the product of the

prior pdf and the likelihood function for the model parameters, i.e.

f(m|dobs) ∝ f(m)L(m|dobs). (3.5)

Using Eqs. 3.1 and 3.4 in Eq. 3.5 gives the posterior pdf of model parameters condi-

tioned to observed data as follows

f(m|dobs) = a exp(−O(m)), (3.6)
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where a is the normalizing constant and

O(m) =
1

2
(m−mprior)

TC−1
M (m−mprior) +

1

2
(g(m)− dobs)

TC−1
D (g(m)− dobs), (3.7)

O(m) in Eq. 3.7 is referred to as the total objective function.

3.2 Approximate Posterior Covariance Matrix

Let mMAP, denote the MAP estimate obtained by minimizing the objective

function of Eq. 3.7. As mMAP corresponds to a minimum of O(m), the gradient must

be zero at the MAP estimate, i.e.,

∇O(mMAP) = C−1
M (mMAP −mprior) +GT

MAPC
−1
D (g(mMAP)− dobs) = 0, (3.8)

where GMAP denotes the sensitivity matrix evaluated at mMAP. Using standard

matrix inversion lemmas [59, 24], it follows easily that

mMAP = mprior − CMG
T
MAP(CD +GMAPCMG

T
MAP)−1

[g(mMAP)− dobs −GMAP(mMAP −mprior)]. (3.9)

In some neighborhood of mMAP, g(m) is well approximated by the following first

order Taylor series:

g(m) = g(mMAP) +GMAP(m−mMAP). (3.10)

When Eqs. 3.8 and 3.10 hold, the following second order Taylor’s series expansion

holds exactly:

O(m) = O(mMAP) +
1

2
(m−mMAP)THMAP(m−mMAP), (3.11)
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where HMAP denotes the Hessian evaluated at the MAP estimate of the model, i.e.,

HMAP = C−1
M +GT

MAPC
−1
D GMAP. (3.12)

Using Eq. 3.11 in Eq. 3.6 gives the following approximation of the posterior pdf

f(m|dobs) = â exp
[
− 1

2
(m−mMAP)THMAP(m−mMAP)

]
, (3.13)

where â is equal to the original normalizing constant amultiplied by exp
(
−O(mMAP)

)
.

Eq. 3.13 is in the form of a Gaussian pdf with mean mMAP and (posterior) covariance

matrix given by

CMAP = H−1
MAP = (C−1

M +GT
MAPC

−1
D GMAP)−1. (3.14)

Eq. 3.13 applies only in the neighborhood of mMAP where the approximation of

Eq. 3.10 is accurate and in other regions of the model space, the posterior pdf may

be very different. However, if Eq. 3.10 is exact for all m, i.e., the relation between

the model m and predicted data g(m) is linear, then Eq. 3.13 holds for all m so the

posterior pdf is Gaussian. Finally, we note that using the matrix inversion lemmas

[59], the posterior covariance matrix of Eq. 3.14 can be rewritten as

CMAP = CM − CMG
T
MAP(GMAPCMG

T
MAP + CD)−1GMAPCM . (3.15)

3.3 Normalized Variance

The diagonal entries of CM and CMAP, respectively, represent the prior and

posterior variances of the ith model parameter, mi, for i = 1, 2, · · ·Nm. Denoting

the diagonal entries of CM and CMAP by ci,i and c′i,i, respectively, we define the ith

normalized posterior variance by
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varn,i ≡
c′i,i
ci,i

= 1− bi,i
ci,i
. (3.16)

for i = 1, 2, · · ·Nm, where bi,i is the ith diagonal entry of the matrix B defined by

B = CMG
T
MAP(GMAPCMG

T
MAP + CD)−1GMAPCM . (3.17)

The diagonal entries of B are nonnegative because B is real-symmetric positive

semi-definite. CMAP is clearly real symmetric positive definite and hence its diagonal

entries, which are given by c′i,i = ci,i − bi,i > 0. From this fact and the fact noted

above that bi,i ≥ 0, it follows that

0 ≤ bi,i < ci,i for i = 1, 2, · · ·Nm, (3.18)

and

0 < varn,i ≤ 1 for i = 1, 2, · · ·Nm, (3.19)

Note the normalized variance gives a measure of the reduction in the variance ob-

tained by integrating the observed data. If, for example, the normalized variance of

mi is 1, then we have not reduced uncertainty by conditioning to production data,

whereas if its value is 0.5, we have obtained a 50% reduction in uncertainty by con-

ditioning the prior model to the observed data, dobs. Several authors [22, 27, 37, 36]

have used the normalized variance in some form, e.g., the sum of the normalized

variances, to measure the reduction in uncertainty obtained by integrating produc-

tion data. However, considering only the reduction in uncertainty due to a reduction

in the variances neglects the reduction in uncertainty due to a higher correlation

between model parameters that often results from integrating production data. To

obtain a better indication of how conditioning to production data modifies uncer-

tainty in the model parameters, Zhang et al. [67] introduced dimensionless sensitivity
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coefficients. They, however, did not provide a precise characterization of the reduc-

tion of uncertainty. We provide this characterization below.

3.4 Dimensionless Sensitivity Matrix

The dimensionless sensitivity matrix GD is defined by

GD = C
−1/2
D GC

1/2
M , (3.20)

where G is the sensitivity coefficient evaluated at some particular m, C
1/2
M denotes

the square root of the covariance matrix and C
−1/2
D denotes the inverse of the square

root of CD. For the purpose of characterizing the change in uncertainty obtained by

conditioning to data, any square root will suffice. In our applications, we use the

square roots obtained by the Cholesky decomposition. Here, we use C
1/2
M to denote

“the square root of CM and write

CM = C
1/2
M C

T/2
M , (3.21)

where C
T/2
M denotes the transpose of C

1/2
M . If CM = LLT is the Cholesky decomposi-

tion of CM where L is lower triangular, then C
1/2
M = L. If the Schur decomposition

(eigenvalue-eigenvector decomposition) is used to generate the square root, then

C
T/2
M = C

1/2
M and CM = (C

1/2
M )2, a result which better fits our notion of a square

root. From Eq. 3.21, it follows that

C−1
M = C

−T/2
M C

−1/2
M , (3.22)

where C
−T/2
M represents the inverse of C

T/2
M . Similarly,

CD = C
1/2
D C

T/2
D , (3.23)
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and

C−1
D = C

−T/2
D C

−1/2
D . (3.24)

Introducing the square roots of the covariance matrices and letting G and GD rep-

resent the sensitivity and dimensionless sensitivity matrices evaluated at the MAP

estimate, and letting INm and INd
, respectively, denote the Nm × Nm and Nd × Nd

identity matrices, Eq. 3.15 can be rewritten as

CMAP = C
1/2
M

(
INm − C

T/2
M GTC

−T/2
D

[
C
−1/2
D GCMG

TC
−T/2
D + INd

]−1

C
−1/2
D GC

1/2
M

)
C

T/2
M

= C
1/2
M

(
INm −GT

D

[
GDG

T
D + INd

]−1

GD

)
C

T/2
M

.

(3.25)

3.5 Confidence Regions

Assuming the posterior pdf is Gaussian (Eq. 3.13) with covariance matrix

CMAP, a surface of the form

(m−mMAP)TC−1
MAP(m−mMAP) = r2 (3.26)

is a surface of constant probability density and the interior of this ellipsoid represents

a confidence region [4]. The volume of this ellipsoid is given by

V ′ =

√
r2πNm

Γ(1 + (Nm/2))

√
detCMAP, (3.27)

where Γ is the Gamma (generalized factorial) function. For a fixed value of r2, the

volume of this ellipsoid reflects the uncertainty in m. The smaller the volume of this

ellipsoid, the smaller the uncertainty in mMAP as an estimate of the true model, or

the more likely that a sample of the pdf of Eq. 3.13 will be close to mMAP. For the

same value of r2, the corresponding volume of the ellipsoid

(m−mprior)
TC−1

M (m−mprior) = r2 (3.28)
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is given by

V =

√
r2πNm

Γ(1 + (Nm/2))

√
detCM . (3.29)

The ratio of V ′ to V represents the reduction in uncertainty obtained by conditioning

the prior model to dobs. From Eqs. 3.27, 3.29 and 3.25, it follows that

V ′

V
=

√
detCMAP

detCM

=

√
det

(
INm −GT

D

[
GDGT

D + INd

]−1

GD

)
. (3.30)

Next we show that the characterization of Eq. 3.30 can be rewritten in terms of the

singular values of the dimensionless sensitivity matrix.

3.6 Reduction in Uncertainty in Terms of Singular Values of

Dimensionless Sensitivity Matrix

In the discussion of this section, we assume that Nd < Nm as this is almost

always the case in history matching problems of interest. This assumption simply

allows us to be more specific regarding the SVD of the Nd × Nm dimensionless

sensitivity matrix, GD. However, the results presented here can also be established

in Nd ≥ Nm.

The critical properties of singular value decomposition (SVD) needed for our

discussion can be found in Golub and van Loan [24] and are summarized in Appendix

A. Here, we let ui and vi, respectively denote the left and right singular vector

corresponding to the singular value λi determined from a SVD of the dimensionless

sensitivity matrix GD. Eq. A.14 gives

(
INd

+GDG
T
D

)−1
ui =

1

(1 + λ2
i )
ui, for i = 1, 2, · · ·Nd, (3.31)

so the eigenvalue-eigenvector pairs of the Nd × Nd matrix
(
INd

+ GDG
T
D

)
are (1 +

λ2
i , ui) for i = 1, 2 · · ·Nd where λ2

1 ≥ λ2
2 ≥ · · · ≥ λ2

Nd
≥ 0 . From Eqs. A.15 and

A.16, it follows easily that the eigenvalue-eigenvector pairs of the Nm × Nm matrix
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INm −GT
D

(
INd

+GDG
T
D

)−1
GD are

{
βi, vi

}Nm

i=1
where

βi =


1− λ2

i

(1+λ2
i )

for i = 1, 2, · · ·Nd

1 for i = Nd + 1, · · ·Nm.

(3.32)

As the determinant of a matrix is equal to the product of its eigenvalues, it follows

that

det
(
INm −GT

D

(
INd

+GDG
T
D

)−1
GD

)
=

Nm∏
i=1

βi =

Nd∏
i=1

1

1 + λ2
i

. (3.33)

Using Eq. 3.33 in Eq. 3.30 gives

V ′

V
=

√
detCMAP

detCM

=

√√√√ Nd∏
i=1

1

1 + λ2
i

, (3.34)

where λi, i = 1, 2, · · ·Nd are the singular values of the dimensionless sensitivity ma-

trix, GD. Eq. 3.34 indicates that the singular values of the dimensionless sensitivity

matrix determine the reduction in uncertainty in m obtained by conditioning to ob-

served data and very small singular values have a small effect on the reduction in

uncertainty obtained by conditioning to data. For Nd ≤ Nm, there can be at most

Nd nonzero singular values. These results suggest that the right singular vectors cor-

responding to the largest singular values may provide an optimal parameterization

of the change in the model during an iteration of a gradient-based optimization algo-

rithm. Moreover, if the singular values of the dimensionless sensitivity matrix decay

rapidly, we may need only a few singular vectors in the parameterization. Thus,

the development given above provides theoretical support for the parameterization

method used by Rodrigues [57].

3.7 Levenberg-Marquardt for SVD Parameterization

We use a gradient-based optimization algorithm to minimize the objective

function of Eq. 3.7. For large scale problems, we typically minimize O(m) by the
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implementation of the limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS)

method discussed in Zhang and Reynolds [66] and Gao and Reynolds [19] but in this

study we use a modified Levenberg-Marquardt (LM) [35, 43] algorithm described in

Oliver et al. [51] for minimization. In order to avoid overshooting and undershooting

in the final model, it is sometimes necessary to control the magnitude of change

in model parameters over an iteration at least during the early iterations [38, 20].

For this purpose we use the modified LM algorithm [35, 43] which is basically a

regularization procedure.

In generating the MAP estimate, the search direction in the modified LM

algorithm is calculated as

δml+1 = −[(1 + γl)C
−1
M +GT

l C
−1
D Gl]

−1{C−1
M (ml −mprior) +GT

l C
−1
D (g(ml)− dobs)}.

(3.35)

where l denotes the iteration index and γl denotes LM parameter. The preceding

LM can be applied successfully [38] if the number of data is sufficiently small so that

it is computationally feasible to calculate all entries of the sensitivity matrix with an

adjoint method. Here, following Rodrigues [57], we seek to improve computational

efficiency by expanding δm̃l+1 in terms of the right singular vectors of the dimen-

sionless sensitivity matrix at each iteration for cases where the computation of all

entries of the sensitivity matrix is not feasible.

Using the Cholesky decomposition of CM given by CM = LLT , it follows that

C−1
M = L−TL−1 where L−T denotes the inverse of LT . CD could be factored in the

same way but as CD is diagonal in the examples considered here, we simply use C−1
D =

C
− 1

2
D C

− 1
2

D . We let GD,l denote the dimensionless sensitivity matrix corresponding to

Gl, i.e., GD,l = C
− 1

2
D GlL. Then, we left multiply Eq. 3.35 by L−1 and simplify to

obtain
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L−1δml+1 =

−L−1[(1+γl)L
−TL−1+GT

l C
− 1

2
D C

− 1
2

D Gl]
−1{L−TL−1(ml−mprior)+G

T
l C

−1
D (g(ml)−dobs)}

= −[(1 + γl)INm +GT
DGD]−1{L−1(ml −mprior) +GT

DC
− 1

2
D (g(ml)− dobs)}, (3.36)

where INm denotes Nm ×Nm identity matrix. Defining the transformed model, m̃l,

by

m̃l = L−1(ml −mprior) (3.37)

for iteration l, we must also have

δm̃l+1 = m̃l+1 − m̃l = L−1(ml+1 −ml) = L−1δml+1. (3.38)

Using this notation, Eq. 3.36 becomes

δm̃l+1 = −[(1 + γl)INm +GT
D,lGD,l]

−1{m̃l +GT
D,lC

− 1
2

D (g(ml)− dobs)}, (3.39)

or

[(1 + γl)INm +GT
D,lGD,l]δm̃

l+1 = −{m̃l +GT
D,lC

− 1
2

D (g(ml)− dobs)}. (3.40)

For the case where the number of data Nd is less than the number of model

parameters Nm, it follows from Eqs. A.11 and A.12, that
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[(1 + γl)INm +GT
D,lGD,l]vi =


(1 + γl + λ2

i ) vi if 1≤i≤Nd

(1 + γl)vi if Nd < i≤Nm.

(3.41)

Thus, the eigenvalue-eigenvector pairs of the Nm×Nm matrix [(1+γl)INm +GT
D,lGD,l]

are (1 + γl + λ2
i , vi) for i = 1, 2 · · ·Nd and (1 + γl, vi) for i = Nd + 1, · · ·Nm.

We seek an approximation to δm̃l+1 contained in the subspace spanned by the

right singular vectors. Specifically, we write the change in m̃ as a linear combination

of the right singular vectors corresponding to the p largest singular values, i.e.,

δm̃l+1 =

p∑
j=1

αjvj. (3.42)

where we assume that p ≤ Nd. Substituting Eq. 3.42 into the left hand side of

Eq. 3.40, using the truncated SVD of GD,l in the form of GT
D,l = VpΛ

T
pU

T
p , and using

Eq. 3.41, Eq. 3.40 can be approximated by

p∑
j=1

αj(1 + γl + λ2
j)vj = −{m̃l + VpΛ

T
pU

T
p C

− 1
2

D (g(ml)− dobs)}, (3.43)

where p ≤ Nd. Left multiplying Eq. 3.43 by vT
k and using the orthogonality of

singular vectors, it follows easily that

αk =
−vT

k m̃
l − λku

T
kC

− 1
2

D (g(ml)− dobs)

1 + γl + λ2
k

(3.44)

for k = 1 to p. Using Eq. 3.44 in Eq. 3.42, yields

δm̃l+1 =

p∑
j=1

[−vT
j m̃

l − λju
T
j C

− 1
2

D (g(ml)− dobs)

1 + γl + λ2
j

]
vj. (3.45)

So from Eq. 3.38,
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δml+1 = Lδm̃l+1 = L

p∑
j=1

[−vT
j m̃

l − λju
T
j C

− 1
2

D (g(ml)− dobs)

1 + γl + λ2
j

]
vj. (3.46)

Once δml+1 has been computed, we can compute new model parameter from

ml+1 = ml + δml+1. (3.47)

The parameter γl varies from iteration to iteration based on the variation of

objective function. We use a simple procedure to obtain the value of γl for each

iteration. If O(ml+1) < O(ml), we accept ml+1 and m̃l+1 as the new models in

original and transformed space, respectively, decrease γl by a factor of 10 for the

next iteration (γl = γl/10). Otherwise, we increase γl by a factor of 10 and redo the

iteration. This is repeated until we obtain convergence. As suggested in Oliver et al.

[51], the initial value of γl should be between
√
O(m0)/Nd and O(m0)/Nd, where

O(m0) is the initial value of the objective function. We use the larger of these two

values. After applying Eq. 3.45, we apply Eq. 3.46 to obtain the search direction

in the original domain and then update the vector of original model parameters by

Eq. 3.47.

At each iteration of Eq. 3.45, the truncated SVD must be updated, which is

computationally expensive. As we mentioned in Chapter 2, we use Lanczos algorithm

to compute the singular triplets of the dimensionless sensitivity matrix. Moreover,

the computational cost of the Lanczos increases linearly with the level of truncation,

p. In the examples, presented here, at each iteration, the truncated SVD is based on

specification of the value of sv-cut.

3.8 More Efficient Algorithms Based on SVD parameterization

Even though truncated SVD for parameterization appears to provide a viable

approach for reducing the computational cost of history matching, the calculation
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and updating of singular triplets iteratively with the Lanczos algorithm, involves a

significant cost as each iteration of Lanczos requires one forward simulation solu-

tion to obtain GD,lx and one adjoint solution to obtain GT
D,ly. To obtain p singular

triplets, the Lanczos algorithm requires approximately p + n iterations of Lanczos.

The value of n depends on the magnitude of assigned relative error (εsv) for con-

vergence of each of the singular values. The details on convergence criteria for the

Lanczos algorithm are given in Chapter 2. Therefore, each call of Lanczos requires

roughly the equivalent of (p+n)/2 reservoir simulation runs. In all examples we have

done, we have used εsv = 10−5. With this choice, the value of n varied from 3 to 7.

Therefore, we can not afford to do extensive updates of the singular triplets during

the minimization or the SVD will become more computationally expensive than a

quasi-Newton method. Great savings in computationally efficiency can be achieved

if the number of truncated singular value decompositions is significantly reduced. In

the following two subsections, we present two new algorithms which try to enhance

efficiency of the SVD parameterization algorithm.

3.8.1 First Modified Algorithm; LBFGS and SVD Parameterization

One option for obtaining a computationally efficient method is to use a quasi-

Newton method, such as LBFGS, and SVD parameterization as a combined algo-

rithm. When downhill conditions are satisfied, each iteration of LBFGS requires one

forward simulation run and one adjoint solution. Therefore, the computational cost

of each iteration of LBFGS algorithm is much less than the cost of one iteration

of SVD parameterization algorithm. In our computational examples in this disser-

tation, we have used the LBFGS algorithm described by Zhang and Reynolds [66]

with the line search algorithm given by Gao and Reynolds [19]. In this approach,

the periodic use of truncated SVD keeping 10 to 20 singular triplets may ameliorate

the effects of ill-conditioning by smoothing results whereas the LBFGS algorithm

promotes computationally efficiency.
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We have tried various combinations of the two algorithms. Unfortunately,

we have been able to achieve at best only modest improvements in computational

efficiency and thus, we present here only a simple combination of the two algorithms.

Far more computationally efficient procedures are presented in the next chapter. In

this method, we start the minimization by using the LBFGS algorithm and continue

the LBFGS algorithm until we obtain a value of the normalized objective function

less than 100. Then we do one iteration of SVD parameterization to update the

model parameter using Eq. 3.45 and then switch to the LBFGS algorithm again.

The normalized objective function is denoted by ON(m) and as defined by Gao et al.

[20] for the MAP estimate is given by

ON(m) =
2×O(m)

Nd

. (3.48)

Note that in all the examples in this study for the LBFGS algorithm we have

used the prior covariance matrix as an initial guess for the inverse of the Hessian

matrix, i.e., H̃−1
0 = CM . Also, in the first call of the LBFGS algorithm, we terminate

the LBFGS when ON(m) ≤ 100, at which point, we compute the singular triplets for

the first time in the combined algorithm. Using the singular triplets, we update the

model using Eq. 3.45. Then we switch to the LBFGS algorithm again with the initial

guess equal to the updated model obtained by the SVD algorithm and H̃−1
0 = CM .

We continue the LBFGS algorithm as long as

O(ml)−O(ml+1)

O(ml)
× 100 > 0.1, (3.49)

is satisfied. If Eq. 3.49 is not satisfied, and the convergence criteria are not satisfied,

we use the SVD algorithm again to update the model parameters once and then

again switch back to the LBFGS algorithm. The condition given by Eq. 3.49 implies

that when the relative change in the objective function is small, we should switch to
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the SVD algorithm if we still have a high value of the objective function. Throughout

we refer to this combined algorithm simply as LBFGS-SVD.

3.8.2 Second Modified Algorithm

In this algorithm, to further improve computational efficiency of the SVD

parameterization algorithm, we add an inner iteration in which we explicitly compute

the gradient of the objective function with the adjoint method, where during the inner

iteration the truncated SVD parameterization (computed in the outer loop) does not

vary.

The right and left hand sides of Eq. 3.40, respectively, represent the gradient

of the objective function and the “Levenberg-Marquardt Hessian“ for minimization in

terms of the transformed model parameter m̃, Eq. 3.37. By using the actual definition

of the dimensionless sensitivity matrix, GT
D,l, given by Eq. 3.20 as GT

D,l = LTGT
l C̃

− 1
2

D ,

in the right hand side of Eq. 3.40, we obtain

[(1 + γl)INm +GT
D,lGD,l]δm̃

l+1 = −{m̃l + LTGT
l C̃

−1
D (g(ml)− dobs)}. (3.50)

In the inner loop, we use a fixed set of SVD-triplets to evaluate the Hessian at each

iteration, but update the gradient on the right-hand side. Note that here we introduce

the possibility of damping the model changes by artificially inflating the noise level

along the lines suggested by Gao and Reynolds [19] which is effectively done by

replacing the measurement error covariance matrix CD by a matrix C̃D ≥ CD where

this inequality refers to an element by element inequality. We use C̃D to restrict the

size of the change in the model parameters and to avoid overshooting/undershooting

problems [62, 19]. Using the eigenvalue-eigenvector properties given in Eq. 3.41 and

expanding δm̃l+1 as a linear combination of right singular vectors, Eq. 3.42, it follows

easily from Eq. 3.50 that
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δm̃k+1 =

p∑
j=1

[
−vT

j m̃
k − vT

j L
TGT

k C̃
−1
D (g(mk)− dobs)

1 + γk + λ2
j

]
vj, (3.51)

where in this inner loop iteration, k denotes the iteration index. Note this inner

iteration also uses an LM algorithm with parameter γk for minimization. In Eq. 3.51,

we need to calculate the product of the transpose of sensitivity matrix, GT
k , with the

vector C̃−1
D (g(mk) − dobs). This product can be obtained with one adjoint solution

[66].

For the examples considered in this dissertation, CD is a diagonal matrix

and following Gao and Reynolds [19], we specify different damping factors for each

data based on the difference between the observed data and predicted data, i.e., the

matrix C̃D is obtained by

C̃D = ΨCDΨ (3.52)

where Ψ is a diagonal matrix with its diagonal elements equal to the damping factors,

ψi for i = 1, 2, · · · , Nd . The ith damping factor, ψi, is calculated by

ψi = max
[
1,

∣∣∣gi(m
0)− dobs,i

3σd,i

∣∣∣], (3.53)

where σd,i denotes the standard deviation of the ith measurement error, m0 is the last

updated model obtained at the outer iteration, gi(m
0) is the ith component of the

predicted data vector evaluated at m0 and dobs,i denotes the ith entry of the observed

data vector dobs. In applying Eq. 3.51 during inner loop iterations for k = 0, 1, 2, · · · ,

C̃D does not change from iteration to iteration. Therefore, we effectively trying to

find model parameter, mk+1, that minimize the “damped” objective function
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Odamp(m) =
1

2
(m−mprior)

TC−1
M (m−mprior) +

1

2
(g(m)− dobs)

T C̃−1
D (g(m)− dobs),

(3.54)

using as the initial guess the model, m0 obtained from the outer iteration. As we wish

to use the correct data covariance, CD, in constructing the final estimate of model

parameters, we use this damping strategies in the inner loop as long as the value of

the original normalized objective function (Eq. 3.48) is greater than 3. Otherwise,

we use the original data covariance matrix in the inner loop and we minimize the

original objective function to construct the final estimate of the model parameters.

This modified SVD parameterization algorithm is referred to as the SVD-Gradient

algorithm which is denoted simply by SVD-Grd.

3.8.3 Steps of the SVD-Grd Algorithm

Here, the detail of specific steps for the implementation of the SVD-Grd

algorithm is given. After its presentation, we will show how to convert the steps to

the basic SVD parameterization algorithm.

1. Here l is the iteration index for the outer loop. Set l = 0 and assign the initial

guess of m0 = mprior for the MAP estimate. Set the initial value of the sv-cut.

2. To obtain the initial value of the objective function, we run the simulator for-

ward to the final data assimilation time with an initial guess of the model

parameters (as assigned in the previous step) for the MAP estimate and com-

pute O(ml) from Eq. 3.7. Set the initial value of the LM parameter equal to

γ = O(ml)/Nd.

3. Call the Lanczos algorithm to compute the truncated-SVD of the dimensionless

sensitivity matrix associated with the MAP estimate at outer loop iteration l,

pertaining to ml.
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4. Use Eq. 3.45 together with

ml+1
temp = ml + Lδm̃l+1 (3.55)

to calculate a proposed new update of model parameter, ml+1
temp.

5. Calculate O(ml+1
temp) by running the simulator. If O(ml+1

temp)≥O(ml), then in-

crease γ by a factor of 10 and return to step 4. If O(ml+1
temp) < O(ml), then

set

ml+1 = ml+1
temp, (3.56)

m̃l+1 = m̃l + δm̃l+1, (3.57)

and decrease γ by a factor of 10

6. Check for convergence using the criteria discussed later. If the algorithm has

not converged, increase iteration index l by 1 and go to the next step which

is the first step of the inner loop. Otherwise, go to step 7, i.e., terminate the

algorithm.

(a) With k denoting the iteration index of the inner loop, set k = 0 and set

the initial guess of the model parameter for the inner loop as mk = ml,

where ml denotes the last updated model obtained at the outer loop.

(b) Compute the damping factors from Eq. 3.53, then compute the value of

the damped objective function Odamp(m
k) with Eq. 3.54.

(c) Call the adjoint gradient subroutine to calculate the product of GT
k with

the vector C̃−1
D (g(mk)− dobs).

(d) Use Eq. 3.51 together with
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mk+1
temp = mk + Lδm̃k+1 (3.58)

to calculate a proposed new update of model parameter, mk+1
temp.

(e) Run the simulator forward to calculate the corresponding value of the

damped objective function, Odamp(m
k+1
temp).

(f) if Odamp(m
k+1
temp) ≥ Odamp(m

k), then increase γ by a factor of 10 and return

to step d. If Odamp(m
k+1
temp) < Odamp(m

k), then set mk+1 = mk+1
temp, decrease

γ by a factor of 10 and go to the next step.

(g) Check for convergence of inner loop. The computational cost of each

successful iteration in the inner loop is one forward simulation run and

one adjoint solution, which is much less than the cost of one iteration

of the outer loop. Therefore, it is feasible to do inner loop iterations as

long as the decrease of objective function is reasonable compared to the

computational cost of iterations. In our history matching examples, we

have used the following convergence criterion

Odamp(m
k)−Odamp(m

k+1)

Odamp(mk)
< 5× 10−3. (3.59)

If the condition given by Eq. 3.59 is not satisfied, increase the k index

by one and return to step c. Otherwise, set ml = mk and go to step 3.

When we return to the outer loop, we may choose to increase the number

of singular vectors used, i.e., decrease the value of the sv-cut for the next

call of the Lanczos algorithm.

7. end

In the basic SVD parameterization algorithm, we need to update the trun-

cated SVD in each iteration and there is no inner loop. Therefore, to implement the
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basic SVD parameterization algorithm, we delete step 6 of the algorithm described

above and replace step 5 by

Step 5: Check for convergence using the criteria discussed later. If the algorithm has

not converged, increase iteration index l by 1 and go to step 3. Otherwise terminate

the algorithm.

3.9 Convergence Criteria

We use the following convergence criteria for all of the algorithms described

in this chapter in computation of MAP estimate. For convergence, we require both

the change in the objective function and the change in the model to be small, i.e.,

|O(ml+1)−O(ml)|
O(ml+1)

< εo (3.60)

and

‖ml+1 −ml‖2

‖ml+1‖2

< εm (3.61)

where for the examples considered in this study,

εo = 10−3, (3.62)

and

εm = 10−2. (3.63)

Based on results given in Tarantola [59] which are discussed in more detail in Oliver

et al. [51], if mc is the model obtained at convergence, we expect ON(mc), the

normalized objective function evaluated at mc, will satisfy,

1− 5
√

2/Nd ≤ ON(mc) ≤ 1 + 5
√

2/Nd. (3.64)

When we are generating a MAP estimate, the normalized objective function is defined
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by Eq. 3.48. This result will be used to provide an indication of the quality of our

match.

3.10 Computational Results

3.10.1 Example 1

This synthetic example pertains to a two-dimensional horizontal reservoir with

a 20× 25 grid and 500 active grid blocks. The areal dimensions of the reservoir are

6000 feet by 7500 feet, with a uniform grid size of 4x = 4y = 300 feet. The reservoir

thickness is 10 feet thick. The true rock property fields were generated using sequen-

tial Gaussian co-simulation. The key geostatistical parameters used to generate the

truth are listed in Table 3.1. In this table, ϕmean and [ln(k)]mean, respectively, denote

the prior mean of porosity and log-permeability. The standard deviations of poros-

ity and log-permeability, respectively, are denoted by σϕ and σln(k). Here, ρϕ,ln(k)

denotes the correlation coefficient between porosity and log-permeability, α is the

angle measured counterclockwise from the x-axis to the principal direction of the

covariance function, r1 is the correlation range in the principal direction and r2 is

the correlation range in the orthogonal direction. The prior mean of horizontal log-

permeability is uniform and equal to 4.5, i.e, all entries of mprior are equal to 4.5. The

true horizontal log-permeability and true porosity maps with the location of wells

are shown in Figures 3.1(a) and 3.1(b).

There are 5 production wells and one injection well in the reservoir. As

can be seen from Figure 3.1(a), there is essentially a high permeability channel in

the reservoir. The injection well (Inj-1), Prod-2 and Prod-4 are located within the

channel. Also there is a barrier with low permeability values in the north-west part

of the reservoir. Prod-5 is located behind this barrier. The initial reservoir pressure

is 4800 psi. The injection well starts injecting water with a specified injection rate

of qw = 1000 STB/day, and at the same time, all producers start production. The
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(a) True ln(k).
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(b) Porosity.

Figure 3.1: True horizontal log-permeability and porosity fields, Example 1.

production rate at each well is specified to be qo = 200 STB/day. This schedule is

continued until we reach a total time of t = 3300 days. The observation data in this

example include the flowing bottom hole pressure (BHP) and water-oil ratio (WOR)

recorded at 30 days intervals. At the end time of simulation (t = 3300 days), only

Prod-1 and Prod-4 have experienced water breakthrough.

Table 3.1: Geostatistical parameters.

Parameters Values
ϕmean 0.2
[ln(k)]mean 4.50
σϕ 0.05
σln(k) 2.0
ρϕ,ln(k) 0.80
α 40o

r1(ft) 8400
r2(ft) 1500

The true synthetic data are generated with a simulator and the observation

data are obtained by adding Gaussian random noise to the true synthetic data. The

standard deviations of the Gaussian noises are σBHP = 10 psi for BHP of all wells,
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σWOR1,i = 0.02WOR1true,i (STB/STB), and σWOR4,i = 0.04WOR4true,i (STB/STB).

We only use the set of gridblock ln(k) as model parameters with the porosity field

fixed equal to the true porosity field. Therefore, the number of model parameters

are the same as the number of gridblocks, i.e., equal to Nm = 500. The number of

observed data is Nd = 880. Note the variation in the original ln(k) field is from -3

to 9, thus we may need a fairly large number of singular vectors to approximate this

variability.

3.10.2 MAP Estimate Results of Example 1

We have implemented the SVD and SVD-Grd parameterization algorithms

to obtain the MAP estimate for this example. To compute the truncated-SVD,

we need to specify the value of the sv-cut for each call of the Lanczos algorithm.

In the basic implementation of the SVD parameterization algorithm, we use fixed

value of sv-cut = 0.003125 during all the iterations. One obvious possibility for

improving the efficiency of SVD parameterization is to start with a fairly low number

of singular triplets and gradually increase the number during iterations, i.e., we can

start the SVD parameterization algorithm with a fairly large value of sv-cut, say 0.1,

and gradually decrease the sv-cut during iterations. Here, we show results for one

implementation of this idea where we simply start with sv-cut = 0.1 and decrease

sv-cut at each iteration by dividing by two until we reach sv-cut = 0.003125. Then

from this point on, we iterate with the fixed value sv-cut = 0.003125 until we obtain

convergence. Throughout, this implementation of the SVD algorithm is referred to as

the modified SVD parameterization algorithm. In implementation of the SVD-Grd

algorithm, we use the same strategy for changing sv-cut as was used in the modified

SVD parameterization algorithm.

Figure 3.2(a) shows the behavior of the normalized objective function dur-

ing iteration obtained with the SVD and SVD-Grd parameterization algorithms.

As shown in this figure, the basic SVD parameterization algorithm (red curve) and
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the modified SVD parameterization algorithm (blue curve) converged in 34 and 22

iterations, respectively, to the final value of the normalized objective functions of

ON(m) = 1.24 and ON(m) = 1.18. Note that for the SVD parameterization algo-

rithms the number of updating of the singular triplets is the same as the number of

iterations. Therefore, with the modified SVD algorithm, we have improved the com-

putational efficiency of the SVD parameterization algorithm. For the example under

consideration, Nd = 880, so the right-side of Eq. 3.64 is equal to 1.24. A lower value

of the objective function at convergence indicates a more probable model (higher

value of the pdf). For the SVD-Grd parameterization algorithm in Figure 3.2, the

x-axis represents the iteration number of both the outer and the inner loops. Specif-

ically, odd values of the iteration index correspond to the result from the outer loop

and even values of the iteration index correspond to the final result obtained from

an inner loop iteration. Thus, the behavior of the normalized objective function

in Figure 3.2(a) shows that the SVD-Grd parameterization algorithm (green curve)

converged to the final value of the normalized objective function of ON(m) = 1.29

using 18 updates of the singular triplets (18 calls to the Lanczos algorithm). Note

that with the value of sv-cut = 0.003125, for all three algorithms 21 number of

singular triplets retained at convergence.

The first term in the objective function (Eq. 3.7) is the model mismatch term

denoted by Om(m), which is defined by

Om(m) =
1

2
(m−mprior)

TC−1
M (m−mprior). (3.65)

Om(m) gives a measure of how much we have had to change the prior best estimate,

mprior, to match the data during iterations of the optimization algorithm, i.e., gives

a measure of the smoothness of the model. Since in the example considered here, the

permeability field represented bymprior is uniform, larger values of Om(m) correspond

to rougher models. The behavior of Om(m) during iteration of the SVD and SVD-
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Grd algorithms is shown in Figure 3.2(b).
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(b) Om(m).

Figure 3.2: Behavior of the normalized objective function and model mismatch part of the
objective function during iteration, red is from basic SVD parameterization
algorithm, blue is from modified SVD parameterization algorithm, and green
is from SVD-Grd algorithm, Example 1.

The final estimate of the log-permeability fields, ln(k), obtained with SVD and

SVD-Grd parameterization algorithms are shown in Figure 3.3. Note that we use

mprior as an initial guess of the model parameters in both algorithms. As can be seen

from this figure, both SVD and SVD-Grd parameterization algorithms captured the

essential features of the truth and the existence of the channel and low permeability

barrier is visible in the final fields and is comparable with the truth (Figure 3.1(a)).

Figure 3.4 shows the history matching results and future forecasts of the BHP

of Inj-1 and the WOR of Prod-1 and Prod-4 obtained with the SVD and SVD-Grd

parameterization algorithms. Note that in this and similar figure the vertical line

denotes the end of the history matching period. As can be seen from Figure 3.4(a),

good BHP history matches of Inj-1 are obtained and also the prediction of BHP

obtained with both the SVD and SVD-Grd algorithms are in good agreement with

the true prediction. The BHP data matches and future performance predictions

for other producers (not shown) are similar to Inj-1. The history matching results
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(a) Basic SVD.
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(b) Modified SVD.
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(c) SVD-Grd.

Figure 3.3: Final log-permeability fields with basic and modified SVD parameterization
algorithms and SVD-Grd algorithm, Example 1.

and future forecasts of the WOR of Prod-1 and Prod-4 are shown in Figures 3.4(b)

and 3.4(c), respectively. We observe that both algorithms performed very well during

the history matching period for both producers. The good history matching results

were expected from the low values of the normalized objective function obtained

at convergence with both the SVD and SVD-Grd parameterization algorithms (Fig-

ure 3.2(a)). Although we obtained very good history matches of the WOR of Prod-1,

at later times, the WOR prediction results of Prod-1 obtained from the algorithms

deviated from the true prediction. The WOR prediction performances of Prod-4

is comparable to the truth for both algorithms. There is no water breakthrough

for other producers up to 4300 days of prediction for the true model or any of the

estimated permeability fields.

Table 3.2 summarizes the total computational costs of the SVD and SVD-Grd

parameterization algorithms based on the number of the simulation runs, adjoint

solutions, and forward gradient. Note that for each call of the Lanczos algorithm

we only need one complete (nonlinear) reservoir simulation run. During this run,

we save all information required for building the relevant matrices for subsequent

Lanczos iterations in which we need to calculate G times a vector with a “forward

run” (gradient simulator) and GT times a vector with an adjoint solution. The

computational cost of a forward gradient and an adjoint solution are approximately
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(a) BHP Inj-1.
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(b) WOR Prod-1.
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(c) WOR Prod-4.

Figure 3.4: Observed and predicted data with basic and modified SVD parameterization
algorithms and SVD-Grd algorithm, open red circles are observed data, red is
from true model, blue is from basic SVD parameterization algorithm, green is
from modified SVD parameterization algorithm and orange is from SVD-Grd
algorithm, Example 1.

equal and the computational cost of each is approximately equal to one fourth of one

reservoir simulation run. The total computational costs are given in the fifth column

of the Table 3.2 based on the number of equivalent simulation runs. As can be

seen, the basic SVD parameterization algorithm has the highest computational cost.

Implementations of the SVD-Grd algorithm increased the computational efficiency of

the SVD parameterization algorithm. However, the modified SVD parameterization

algorithm has the lowest computational cost for this example.

Table 3.2: Summary of computational costs of the SVD and SVD-Grd parameteri-
zation algorithms, Example 1.

Algorithm Simulations Forward Runs Adjoint Equ. Sim. Runs ON(m)
Basic SVD 98 929 895 554 1.24
Modified SVD 63 535 513 325 1.18
SVD-Grd 138 414 458 356 1.29

3.10.3 LBFGS and LBFGS-SVD Results of Example 1

Next, we consider results generated from the LBFGS algorithm and the com-
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bination of LBFGS and SVD parameterization algorithms (LBFGS-SVD). Figure 3.5

illustrates the behavior of the normalized objective function and the model mismatch

part of the objective function obtained with LBFGS, basic SVD, and LBFGS-SVD

algorithms. The implementation of the SVD parameterization algorithm is with

sv-cut = 0.003125 fixed during iteration and is the same result shown in Figure 3.2

with red curve. The LBFGS algorithm has not converged in 300 iterations and at

iteration 300 gives an estimate of the log-permeability field such that ON = 1.39.

The LBFGS-SVD algorithm converged in 79 iterations with two updates of singular

values to an estimate of the model parameters such that ON = 1.23. The number of

retained singular values are 20 and 18 in the first and the second call of the Lanczos

algorithm, respectively. In the combined algorithm, we used sv-cut = 0.00625 for the

SVD cutoff, but results are essentially identical if we also use for this singular cutoff

of 0.003125. The behavior of the model mismatch part of the objective function

(Figure 3.5(b)) shows that with the LBFGS algorithm, the model obtained is further

from mprior than is the final model obtained with the other two algorithms. This

is consistent with the results of Figure 3.6, which shows the final log-permeability

maps obtained with the LBFGS, basic SVD and LBFGS-SVD algorithms. As we can

see, LBFGS algorithm has captured some of the characteristics of the channel and

the barrier in the final model, however, we also obtained relatively high permeabil-

ity regions that do not appear in the true permeability field. We obtained a more

reasonable final permeability filed with LBFGS-SVD and the pure SVD algorithm

than we obtained with the LBFGS algorithm.

Figure 3.7 shows the data matches and predictions obtained with the basic

SVD, LBFGS and LBFGS-SVD algorithms. As we expect from the low value of

the normalized objective function, we obtained reasonably good data matches with

all three algorithms. The future predictions are also reasonable although the future

prediction of WOR at Prod-1 is not as accurate as one would hope to obtain. Note the

implementation of the LBFGS-SVD algorithm has improved the prediction results
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(b) Om(m).

Figure 3.5: Behavior of the normalized objective function and model mismatch part of the
objective function during iteration, red is from basic SVD parameterization
algorithm, blue is from LBFGS algorithm, and green is from LBFGS-SVD
algorithm, Example 1.
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(a) Basic SVD.
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(b) LBFGS.
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(c) LBFGS-SVD.

Figure 3.6: Final log-permeability fields with basic SVD parameterization, LBFGS and
LBFGS-SVD algorithms, Example 1.
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of the WOR of Prod-1 compared to the results obtained with the LBFGS method.
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(a) BHP Inj-1.
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(b) WOR Prod-1.
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(c) WOR Prod-4.

Figure 3.7: Observed and predicted data with basic SVD parameterization, LBFGS and
LBFGS-SVD algorithms, open red circles are observed data, red is from true
model, blue is from basic SVD parameterization algorithm, green is from
LBFGS algorithm and orange is from LBFGS-SVD algorithm, Example 1.

Table 3.3 summarizes the total computational costs of LBFGS, basic SVD

and LBFGS-SVD algorithms based on the number of simulation runs, gradient sim-

ulator and adjoint solutions. In Table 3.3, the overall computational cost of each

algorithm is given in the last column based on the number of equivalent simulation

runs. The total computational cost of the LBFGS algorithm is the highest and the

computational cost of the combined algorithm (LBFGS-SVD) is the lowest. In fact,

the combined algorithm is significantly more efficient than the LBFGS and basic

SVD parameterization algorithms. The comparison of the results of this table with

Table 3.2 indicates that the LBFGS-SVD combined algorithm is the most efficient

algorithm for this example.

3.10.4 Example 2

This example pertains to a two-dimensional horizontal reservoir model with a

17×24×1 uniform grid. The areal dimensions of the reservoir are 6800 feet by 9600

feet and the reservoir thickness is uniform and equal to 10 feet. The sizes of the grid

blocks are ∆x = ∆y = 400 feet. We use an anisotropic spherical covariance function
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Table 3.3: Summary of computational costs of the basic SVD, LBFGS and LBFGS-
SVD algorithms, Example 1.

Algorithm Simulations Forward Runs Adjoint Equ. Sim. Runs ON(m)
Basic SVD 98 929 895 554 1.24
LBFGS 449 —– 449 561 1.39
LBFGS-SVD 180 50 221 248 1.23

to generate the prior covariance matrix, CM . The principle direction has an angle

of 120◦ with the x-direction measured counter clockwise from the x-axis. We use a

correlation length equal to 25 × ∆x = 10, 000 feet in the principal direction and a

shorter correlation length equal to 10×∆x = 4, 000 feet in the orthogonal direction.

The prior mean for log-permeability is 4.15 and the prior standard deviation is 1.35.

The prior mean for porosity is 0.12 and the prior standard deviation is 0.056. The

correlation coefficient between porosity and log permeability is assumed to be 0.90.
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(a) True ln(k).
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Figure 3.8: True horizontal log-permeability and porosity fields, Example 2.

The true horizontal log-permeability field and the true porosity field with the

location of wells are respectively shown in Figures 3.8(a) and 3.8(b). As can be seen

from the truth maps, there is high permeability streak in the south-east to north-west
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direction connecting Prod-2 and Prod-3. Also, there is a high permeability-porosity

channel in the north-east corner of the reservoir where Prod-4 is located. There are

five wells in this reservoir. A water injection well (Inj-1) is located near the center

of the reservoir at grid block (8, 14), and four production wells (Prod-1, Prod-2,

Prod-3, and Prod-4) are located, respectively, at grid blocks of (4, 6), (13, 7), (5, 20)

and (15, 19). Only two-phase flow (oil and water) is considered. The initial reservoir

pressure is 6500 psi. The initial reservoir saturation is equal to irreducible water

saturation, which is given by Siw = 0.2. The residual oil saturation is Sor = 0.1. The

water injection rate is qw = 1000 STB/day from time zero onward and the oil rate

at each producer is specified as qo = 250 STB/day.

Observed data for the flowing bottom hole pressure (BHP) and water-oil ratio

(WOR) are obtained by adding noise to corresponding production data obtained

from a forward simulator run to t = 3000 days. Noise is generated by assuming

measurement errors are independent Gaussian random variables with all means equal

to zero. The standard deviations of measurement error for all bottom hole pressures,

WOR of Prod-2, and WOR of Prod-3, respectively, were specified as σp = 15 (psi),

σWOR2,i = 0.02 WOR2true,i (STB/STB), and σWOR3,i = 0.10 WOR3true,i (STB/STB).

Water breakthrough occurs only at producers 2 and 3. Measured data are recorded

every thirty days so for example, at each production well, we have 100 pressure

data. For this example the set of model parameters includes only the gridblock

log-permeability values with the porosity field fixed equal to the true porosity field.

Therefore, the number of model parameters are the same as the number of gridblocks,

i.e., equal to Nm = 408. The number of observed data is Nd = 700.

3.10.5 MAP Estimate Results of Example 2

The implementations of the SVD and SVD-Grd parameterization algorithms

for this example are similar to those used for the previous example, i.e., we use

the same fixed value of sv-cut = 0.003125 during iteration for the basic SVD para-
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meterization algorithm and same strategy of changing sv-cut for the modified SVD

parameterization and SVD-Grd algorithms. The behavior of the normalized objec-

tive function and the model mismatch part of the objective function obtained with

the SVD and SVD-Grd parameterization algorithms are shown in Figures 3.9(a)

and 3.9(b), respectively. As can be seen from these figures, the behavior of the

ON(m) and Om(m) for the basic (red curves) and modified (blue curves) implemen-

tations of the SVD parameterization algorithm are almost identical. The basic and

modified SVD parameterization algorithms converged to a final estimate of the model

such that ON(m) = 1.34 and ON(m) = 1.37, respectively, in 33 and 29 iterations.

Also, the SVD-Grd algorithm (green curves) converged to a final estimate of the

model such that ON(m) = 1.47 and required 18 updates of the singular triplets. At

convergence, the number of retained singular triplets are 18, 17 and 18 for the basic

SVD parameterization, modified SVD and SVD-Grd algorithms, respectively.
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Figure 3.9: Behavior of the normalized objective function and model mismatch part of the
objective function during iteration, red is from basic SVD parameterization
algorithm, blue is from modified SVD parameterization algorithm, and green
is from SVD-Grd algorithm, Example 2.

Based on Eq. 3.64, for this example, we expect that the value of the normalized

objective function to be less than 1.27 at convergence. As we presented here, with
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the final value of sv-cut = 0.003125, both algorithms converged to the model such

that Eq. 3.64 was not quite satisfied although we obtained a normalized objective

function close to one in all cases. We then tried a smaller value of sv-cut to obtain

slightly smaller values of the objective function at convergence for this example. The

results obtained with the final value of sv-cut = 0.00078125 (not shown here) satisfied

Eq. 3.64.

Figure 3.10 shows the final model estimates of log-permeability, ln(k), ob-

tained with implementations of SVD and SVD-Grd parameterization algorithms.

Note in all cases, a uniform log-permeability of ln(k) = mprior is used as an ini-

tial guess of the model parameters. As can be seen from Figures 3.10(a), 3.10(b),

and 3.10(c) the MAP estimates obtained with both SVD and SVD-Grd algorithms

illustrate the basic features of the truth. In all log-permeability fields, the main char-

acteristics of the channel have been captured compared to the true log-permeability

field (Figure 3.8(a)).
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(a) Basic SVD.
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(b) Modified SVD.
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(c) SVD-Grd.

Figure 3.10: Final log-permeability fields with basic and modified SVD parameterization
algorithms and SVD-Grd algorithm, Example 2.

The history matching results and future prediction performances of the BHP

of Prod-3 and the WOR of Prod-2 and Prod-3 are shown in Figure 3.11 for the SVD

and SVD-Grd parameterization algorithms. As can be seen from this figure, we

have obtained very good history matches of BHP and WOR with both algorithms.

Also, the BHP future forecasts are comparable with the true predictions. We have
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obtained identical history matches and prediction results of BHP for other wells (not

shown). The prediction of WOR for Prod-2 obtained with the SVD-Grd algorithm

is not as good as those obtained with the basic and modified SVD parameterization

algorithms. The WOR prediction for Prod-3 obtained with both algorithms deviates

from the truth at later times.
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(a) BHP Prod-3.
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(b) WOR Prod-2.
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(c) WOR Prod-3.

Figure 3.11: Observed and predicted data with basic and modified SVD parameterization
algorithms and SVD-Grd algorithm, open red circles are observed data, red is
from true model, blue is from basic SVD parameterization algorithm, green is
from modified SVD parameterization algorithm and orange is from SVD-Grd
algorithm, Example 2.

The computational costs in terms of the number of simulation runs, forward

gradient and adjoint solutions are summarized in Table 3.4 for the SVD and SVD-

Grd parameterization algorithms. In Table 3.4, the overall computational cost of

each implementation is given in the fifth column based on the number of equivalent

simulation runs. As indicated in this table, the SVD-Grd parameterization algorithm

is more computationally efficient than the basic and modified SVD parameterization

algorithms.

3.10.6 Comments on the Value of the Singular Value Cutoff

Based on the overall results, the singular value cutoff on the order of 0.003

is sufficient to obtain good data matches, a reasonably small value of the objective

function and a reasonable geological description of the permeability field. Based on
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Table 3.4: Summary of computational costs of the SVD and SVD-Grd parameteri-
zation algorithms, Example 2.

Algorithm Simulations Forward Runs Adjoint Equ. Sim. Runs ON(m)
Basic SVD 95 766 733 469 1.34
Modified SVD 81 644 615 395 1.37
SVD-Grd 185 342 397 370 1.47

our experiments with different examples, a singular cutoff value on the order of 0.001

has always proved sufficient to obtain good data matches, a sufficiently small value

of the objective function (see Eq. 3.64) and a geological description consistent with

the true geology. However, if this cutoff does not give a sufficient low value of the

objective function at convergence of the SVD algorithm, we simply divide the cutoff

value by 4 and continue the algorithm.

3.10.7 LBFGS and LBFGS-SVD Results of Example 2

Here, the results obtained from the LBFGS and LBFGS-SVD algorithms are

presented for the example considered previously in subsection Example 2; see Fig-

ure 3.8(a) for the true log-permeability field and well locations. Figure 3.12 shows the

behavior of the normalized objective function (Figure 3.12(a)) and the model mis-

match part of the objective function (Figure 3.12(b)) during the iterations obtained

from the basic SVD parameterization algorithm (red curves), LBFGS algorithm (blue

curves), and LBFGS-SVD algorithm (green curves). The results of the basic SVD

parameterization algorithm are the same results given in Figure 3.9 which are shown

again here for comparison. As shown from Figure 3.12(a), the LBFGS algorithm con-

verged in 258 iterations to an estimate of the vector of model parameters, m, such

that ON = 1.98. The combined algorithm, LBFGS-SVD converged in 108 iterations

with the final normalized objective function, ON = 1.32 and required three updates

of singular triplets with the Lanczos algorithm. Note that for the SVD part of the
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combined LBFGS-SVD algorithm, we use sv-cut = 0.003125. We have also used

sv-cut = 0.00625 in the LBFGS-SVD algorithm and the results are very similar to

those obtained with sv-cut = 0.003125. Even though the algorithm based solely on

SVD parameterization converged in 33 iterations, the basic SVD parameterization

algorithm is computationally expensive. In this example, LBFGS-SVD algorithm is

far more efficient than the LBFGS and SVD parameterization algorithms as discussed

in more detail later.
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Figure 3.12: Behavior of the normalized objective function and model mismatch part of
the objective function during iteration, red is from basic SVD parameteriza-
tion algorithm, blue is from LBFGS algorithm, and green is from LBFGS-
SVD algorithm, Example 2.

The final log-permeability fields obtained with LBFGS, basic SVD, and LBFGS-

SVD algorithms are shown in Figure 3.13. We can see that the LBFGS algorithm

gives a model which has captured basic features of the truth, but there is a high

permeability region around Prod-1 which does not appear in the truth. The model

obtained with the LBFGS-SVD algorithm is reasonably close to the truth map, as

the channel features and high permeability region around Prod-4 have been captured

correctly, however the final model shows a low permeability regions in the lower left

corner which does not exist in the truth.
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(b) LBFGS.
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(c) LBFGS-SVD.

Figure 3.13: Final log-permeability fields with basic SVD parameterization, LBFGS and
LBFGS-SVD algorithms, Example 2.

Figure 3.14 shows the history matches and future forecast of the BHP of

Prod-3 and the WOR of Prod-2 and Prod-3 obtained from the basic SVD, LBFGS,

and LBFGS-SVD algorithms. As expected from the low values of the objective

function, we obtained reasonably good matches of WOR and BHP data with all

three algorithms. For the BHP of Prod-3, the predictions from the three algorithms

are comparable with the true prediction. The BHP results of other wells (not shown)

are of the same quality. The WOR history matches of Prod-2 and Prod-3 obtained

with both the LBFGS and LBFGS-SVD algorithms are very good. At later times,

the prediction of the WOR for Prod-2 obtained with the LBFGS is lower than the

truth. The permeability region around Prod-2 obtained with LBFGS algorithm has

lower values of ln(k) compared to the truth, i.e., we under predict WOR for Prod-2

at later times. The prediction of the WOR of Prod-3 obtained with the LBFGS and

LBFGS-SVD algorithms are comparable to the truth.

The summary of the computational costs of the LBFGS, basic SVD and

LBFGS-SVD algorithms is given in Table 3.5. The computational cost is based

on the number of simulation runs, gradient simulator runs and adjoint solutions. For

the LBFGS algorithm, at each iteration, we need to ensure that a downhill direction

is found and also do a line search to find an approximate step size. Each check on

whether we have found a proper step size requires a forward run and an adjoint
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(b) WOR Prod-2.
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Figure 3.14: Observed and predicted data with basic SVD parameterization, LBFGS and
LBFGS-SVD algorithms, open red circles are observed data, red is from true
model, blue is from basic SVD parameterization algorithm, green is from
LBFGS algorithm and orange is from LBFGS-SVD algorithm, Example 2.

solution. The results of Table 3.5 indicate that the total computational cost of the

LBFGS-SVD algorithm is much lower than the cost of the basic SVD and LBFGS

algorithms.

Table 3.5: Summary of computational costs of the basic SVD, LBFGS and LBFGS-
SVD algorithms, Example 2.

Algorithm Simulations Forward Runs Adjoint Equ. Sim. Runs ON(m)
Basic SVD 95 766 733 469 1.34
LBFGS 377 —– 377 471 1.98
LBFGS-SVD 182 102 271 275 1.32

74



CHAPTER 4

SIMULATION OF PERMEABILITY FIELDS WITH SVD

PARAMETERIZATION ALGORITHMS AND ENKF

4.1 Introduction

In the Bayesian framework [59, 51], the problem of uncertainty quantification

is equivalent to the formulation and sampling of the a posteriori probability density

function (pdf). Calculation of the MAP estimate is really only a part of the reservoir

characterization problem because the MAP estimate gives a very smooth model which

does not reflect the extremes in heterogeneity that would be typical for a realization

generated from the prior model. The MAP estimate provides an approximation of

the conditional mode of the distribution, or in the case of a Gaussian posterior, the

MAP estimate provides an approximation of the conditional mean of the posterior

pdf.

In this chapter, our main focus is on the generation of multiple plausible real-

izations of reservoir model parameters that are consistent with all static information

and conditioned to observed data in order to quantify the uncertainty in reservoir

performance. Randomized maximum likelihood (RML) [50, 33, 55] provides a viable

procedure for generating an approximate sampling of the posterior pdf. Although

RML provides only an approximate sampling procedure, by its construction, it is

expected to at least generate samples around the modes of the posterior pdf.

In Chapter 3, we provided a theoretical basis for parameterization of reser-

voir model parameters based on the truncated-SVD of the dimensionless sensitivity

matrix [67]. Specifically, we showed that parameterization based on the principal
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singular triplets of the dimensionless sensitivity matrix is ideal if the objective is

to minimize the posterior uncertainty in model parameters. We implemented two

SVD parameterization algorithms for generation of only the MAP estimate. The

generation of multiple realizations was not considered in the previous chapter. In

this chapter, we provide two algorithms for sampling from the posterior pdf based

on the incorporation of truncated SVD parameterization into the RML method. In

the first algorithm, we generate Ne realizations simultaneously by minimizing an en-

semble of objective functions concurrently using the singular triplets of a particular

realization for parameterization at each iteration. Even though multiple realizations

are generated, the algorithm only updates one SVD parameterization per iteration,

instead of Ne SVD updates, and thus results in considerable computational savings.

In the second algorithm, to further improve computational efficiency, we add an in-

ner iteration in which we explicitly compute the gradient of each objective function

that is being minimized with the adjoint method, where during the inner iteration

the truncated SVD parameterization does not vary.

We also present results obtained with implementation of the ensemble Kalman

filter (EnKF). Despite recent intense focus on the application of the EnKF to history

matching problems, Gao et al. [20] appears to be the only paper in the petroleum

engineering literature that compares EnKF with gradient-based history matching.

For the well known PUNQ-S3 benchmark problem [15], Gao et al. [20] showed that

the ensemble mean obtained by assimilating production data with EnKF was fairly

similar to the conditional mode (maximum a posteriori (MAP) estimate) obtained

with a quasi-Newton method and both methods gave similar estimates of future per-

formance predictions. In this work, we further extend this comparison by comparing

history-matching results obtained with our new algorithms to those obtained with

the ensemble Kalman filter (EnKF) without and with covariance localization [28].

Finally, we present a combined algorithm where EnKF is used to generate

an initial guess for the truncated-SVD algorithms. This combination yields better
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data matches and performance predictions than are obtained with EnKF with a

computational cost that is less than is required by either of the pure SVD algorithms.

4.2 RML for Sampling Posterior PDF

Throughout, we use the notation x ∼ N(µ,C) to indicate that x is a Gaussian

random vector with mean (expectation) µ and covariance matrix C. A vector x is

always a column vector whereas its transpose, xT , is a row vector.

The randomized maximum likelihood (RML) algorithm generates a set of

realizations of the model, mi, i = 1, 2 · · · that represent an approximate sampling

of the posteriori pdf. To construct the realizations mi, i = 1, 2 · · · , Ne using RML,

generate Ne samples muc,i from the prior Gaussian N(mprior, CM) and Ne samples

duc,i from N(dobs, CD) as follows

muc,i = mprior + C
1
2
MZm,i, (4.1)

and

duc,i = dobs + C
1
2
DZd,i, (4.2)

where Zm,i is an Nm-dimensional vector of independent standard random normal de-

viates and Zd,i is an Nd-dimensional vector of independent standard random normal

deviates. Then set

mc,i = argmin
m

Or,i(m), (4.3)

for i = 1, 2, · · ·Ne where we have used the subscript c to denote that these are

conditional realizations generated from RML and the objective functions, Or,i(m),

i = 1, 2, · · ·Ne are defined by

Or,i(m) =
1

2
(m−muc,i)

TC−1
M (m−muc,i) +

1

2
(g(m)− duc,i)

TC−1
D (g(m)− duc,i). (4.4)
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The minimization of Or,i(m) is similar to the computation of the maximum a posteri-

ori (MAP) estimate using a minimization algorithm like the LM algorithm. However,

we use muc,i and duc,i, respectively, instead of mprior and dobs, respectively, to gener-

ate the ith realization. Using the same procedure as was used for the MAP estimate

in Chapter 3, the search direction in the modified LM algorithm for computing ith

RML realization is given by

[
(1 + γl)INm +GT

D,lGD,l

]
δm̃l+1

c,i = − {m̃l
c,i +GT

D,lC
− 1

2
D (g(ml

i)− duc,i)}, (4.5)

where l is the iteration index, INm denotes Nm×Nm identity matrix, GD,l is the

dimensionless sensitivity matrix at the lth iteration, γl is the Levenberg-Marquardt

parameter and m̃l
i denotes the vector of transformed model parameters of the ith

realization at iteration l defined as

m̃l
c,i = L−1(ml

c,i −muc,i). (4.6)

Once δm̃l+1
c,i is calculated, we set

m̃l+1
c,i = m̃l

c,i + δm̃l+1
c,i , (4.7)

and apply Eq. 4.6 to calculate the updated model parameters of the ith realization

as

ml+1
c,i = muc,i + Lm̃l+1

c,i . (4.8)

The RML procedure has a high computational cost as a different minimization

problem must be solved individually to generate each conditional realization. In this

study, to reduce the computational costs of RML algorithm, we incorporate the SVD

parameterization algorithms developed in the previous chapter with RML method
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to develop two efficient sampling algorithms.

4.3 Truncated SVD Algorithms for RML

The SVD parameterization algorithms developed in Chapter 3 could be ap-

plied directly to generate a suite of Ne conditional realizations of the pdf of Eq. 3.6

by minimizing the set of objective functions given by Eq. 4.4. However, each of these

individual Ne minimizations would require its own independent sequence of trun-

cated SVD computations using the Lanczos algorithm. Each call of Lanczos requires

roughly the equivalent of (p+5)/2 reservoir simulation runs, and thus, great savings

in computationally efficiency can be achieved if the number of truncated singular

value decompositions is significantly reduced. One way to do this is to use the same

SVD parameterization for all realizations. This means we effectively minimize all

Ne objective functions of Eq. 4.4 simultaneously, but at the lth iteration, all δm̃c,i,

i = 1, 2, · · ·Ne are required to lie in the same subspace, the subspace spanned by the

right singular vectors of one specific dimensionless sensitivity matrix.

There appear to be many ways to select the specific sensitivity matrix used

at each iteration. In the results presented here, we use the truncated SVD asso-

ciated with the MAP estimate at every iteration until we obtain ON,MAP(ml+1
c ) <

1+5
√

2/Nd (see Eq. 3.64) and then from this point on, we switch to using the trun-

cated SVD corresponding to the ml+1
c,i which gives the highest value of its normalized

objective function.

4.3.1 First RML Algorithm

Throughout, we let ml
c denote the approximation of the MAP estimate at

the lth iteration obtained by applying the LM algorithm to minimize the objective

function of Eq. 3.7, and let ml
c,i, i = 1, 2, · · ·Ne denote the estimate of the ith RML

realization at the l iteration when applying the LM algorithm to minimize Or,i(m)

given by Eq. 4.4. We let (λj, uj, vj), j = 1, 2, · · · p denote the j singular triplets from
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the truncated SVD decomposition of the dimensionless sensitivity matrix, GD(ml
c),

associated with the MAP estimate at the lth iteration. In applying the LM algorithm

to generate the MAP estimate the search direction δm̃l+1
c is obtained from Eq. 3.45

whereas, in applying LM to generate the ith RML realization (Eq. 4.5), the search

direction is updated by the obvious analogue of Eq. 3.45,

δm̃l+1
c,i =

p∑
j=1

[
−vT

j m̃
l
c,i − λju

T
j C

− 1
2

D (g(ml
c,i)− duc,i)

1 + γl + λ2
j

]
vj, (4.9)

for i = 1, 2, · · ·Ne. A detailed step-by-step description of this and a second algorithm

are provided later.

Throughout we refer the method just described for using SVD-based parame-

terization when generating realizations with RML as SVD-gradient-free-ensemble-

RML which is denoted simply by SVD-GF-EnRML. Note that although the algo-

rithm was derived directly from a gradient-based LM algorithm, neither sensitivities

or gradients of the objective functions are explicitly computed. In the next sub-

section, in an attempt to enhance efficiency, we add an inner iteration in which we

explicitly compute the gradient of each objective function that is minimized.

4.3.2 Second RML Algorithm (SVD-EnRML)

Here, we use the same idea as was used for the SVD-Grd algorithm in Chapter

3 to develop a new algorithm for generation of multiple conditional realizations. The

main part of the description of this new algorithm is the same as the description

of the SVD-Grd algorithm used to compute the MAP estimate. However, in this

chapter for computation of multiple conditional realizations, we present the second

sampling algorithm in a slightly different form as follows;

As the software we use allows us to easily compute the gradient of the objective

function using the adjoint method, we add an inner iteration to the basic procedure

computed above in which we attempt to improve the data match by iterating using
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the gradient of the objective function that is being minimized, while keeping the

SVD parameterization (computed in the “outer loop”) fixed.

The right and left hand sides of Eq. 4.5, respectively represent the gradient of

the objective function and the “Levenberg-Marquardt Hessian” for minimization in

terms of the transformed model m̃i, Eq. 4.6. In the inner loop, we use a fixed set of

SVD-triplets to evaluate the Hessian at each iteration, but update the gradient on the

right-hand side. We also use C̃D instead of data covariance matrix CD in the inner

loop, where C̃D contains artificially high variance of production data measurement

errors in the main diagonal [19]. Under these conditions, Eq. 4.5 applied to the

estimation of a single realization can be written as

δm̃k+1
c,i =

p∑
j=1

[
−vT

j m̃
k
c,i − vT

j L
TGT

k C̃
−1
D,i(g(m

k
c,i)− duc,i)

1 + γk + λ2
j

]
vj, (4.10)

where in this inner loop iteration, k denotes the iteration index. Note this inner

iteration also uses an LM algorithm with parameter γk for minimization and is ap-

plied for i = 1, 2, · · ·Ne. The inflated covariance matrix may also depend on i so we

have added a subscript i to it also. In Eq. 4.10, we need to calculate the product of

the transpose of sensitivity matrix, GT
k , with the vector C̃−1

D,i(g(m
k
c,i) − duc,i). This

product can be obtained by one adjoint solution [66].

The data covariance matrix, CD, is diagonal for the examples considered in

this study and following Gao and Reynolds [19], C̃D,i is obtained by multiplying the

nth diagonal entry of CD by ψ2
n where

ψn = max
[
1,

∣∣∣gn(m0
c,i)− [duc,i]n

3σd,n

∣∣∣], (4.11)

where σd,n denotes the standard deviation of the nth measurement error, m0
c,i is the

last updated model obtained at the outer iteration, gn(m0
c,i) is the nth component

of the predicted data vector evaluated at m0
c,i and [duc,i)]n denotes the nth entry
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of the perturbed data vector duc,i. In applying the iterative scheme of Eq. 4.10 for

k = 0, 1, 2, · · · , C̃D,i does not change from iteration to iteration. This effectively

means that in the inner loop, we are effectively trying to find a δm̃c,i in the subspace

spanned by the right singular vectors {vj}p
j=1 and corresponding mc,i that minimizes

the “damped” objective function

Odamp,i(m) =
1

2
(m−muc,i)

TC−1
M (m−muc,i) +

1

2
(g(m)− duc,i)

T C̃−1
D,i(g(m)− duc,i),

(4.12)

using as the initial guess the model, m0
c,i obtained from the outer iteration. This

is applied for each RML-generated realization, i.e,, for i = 1, 2, · · ·Ne. At early

iterations, data mismatch terms often are extremely large and if some damping

is not done, the regularization effect of the prior model is completely lost. Even

though the LM algorithm can control the step size from iteration to iteration, we

nevertheless find that some form of data damping at early iterations often improves

the convergence performance of gradient based optimization algorithms. If the initial

CD gives a true representation of the noise in the data as it does in the examples

presented here, as the iterations proceed, we obtain a sufficiently good match of

data so that ψn = 1 for all n, C̃D,i = CD and then the damped objective function

becomes equal to the actual objective function we wish to minimize to obtain the ith

conditional realization. Finally, we note that at early iterations in the inner loop,

we are using a fairly small number of singular triplets in our parameterization so it

may not be necessary to enforce tight convergence tolerances during minimization

of the damped objective function. This modified algorithm is referred to as the

SVD-EnRML algorithm.

4.3.3 Steps of the SVD-EnRML and SVD-GF-EnRML Algorithms

Here we give the specific steps for the implementation of our SVD-EnRML
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algorithm. After its presentation, we will show how to convert the steps to the

SVD-GF-EnRML algorithm.

1. Using l as iteration index for outer loop. Set l = 0 and assign the initial guess

of m0
c,i = muc,i for i = 1, 2, · · ·Ne for the RML realizations and an initial guess

of m0
c = mprior for the MAP estimate. Set the sv-cut = 0.10. Also, set the

final value of the singular cutoff, sv-cutf. In the synthetic examples presented

in this dissertation, we use sv-cutf = 0.0004.

2. To obtain the initial values of the objective functions, we run the simulator

forward to the final data assimilation time with initial guesses of the model

parameters (as assigned in the previous step) for the MAP estimate and all

realizations and compute Or,i(m
l
c,i) with Eq. 4.4 for i = 1, 2, · · ·Ne and compute

O(ml
c) from Eq. 3.7.

3. If ON,MAP(ml
c) < 1 + 5

√
2/Nd or if convergence criteria of Eqs. 3.60 and 3.61

are both satisfied, call the Lanczos algorithm to compute the truncated-SVD of

the dimensionless sensitivity matrix pertaining to ml
n ≡ ml

c,k for some k such

that

Or,n(ml
n) = max

1≤i≤Ne

Or,i(m
l
c,i). (4.13)

Otherwise, use the Lanczos algorithm to compute the truncated-SVD of the

dimensionless sensitivity matrix associated with MAP estimate at iteration l,

pertaining to ml.

4. For i = 1, 2, · · ·Ne

(a) Use Eq. 4.9 together with

ml+1
c,temp,i = ml

c,i + Lδm̃l+1
c,i (4.14)

to calculate a proposed new update of the ith RML realization.
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(b) CalculateOr,i(m
l+1
c,temp,i) by running the simulator. IfOr,i(m

l+1
c,temp,i)≥Or,i(m

l
c,i),

then increase γ by a factor of 10 and return to step a. If Or,i(m
l+1
c,temp,i) <

Or(m
l
c,i), then set

ml+1
c,i = ml+1

c,temp,i, (4.15)

m̃l+1
c,i = m̃l

c,i + δm̃l+1
c,i . (4.16)

and decrease γ by a factor of 10 for the next iteration of the ith realiza-

tion. Note each realization is generated by minimizing a different objective

function and the value of γ may be different in each of the Ne minimiza-

tions. This same procedure (steps a and b) is used to obtain the new

estimate, ml+1
c of the MAP estimate. (Once we obtain a decrease in each

of the Ne + 1 objective functions, if convergence has not been obtained,

we go to the inner iteration.)

5. Check for convergence using the criteria discussed later. If the algorithm has

not converged, increase the iteration index l by 1 and go to step 6 which is

the first step of the inner loop. Otherwise, go to step 7, i.e., terminate the

algorithm.

6. For i = 1, 2, · · ·Ne

(a) With k denoting the iteration index of the inner loop, set k = 0 and set

the initial guess of the model parameter for the inner loop as m0
c,i = ml

c,i,

where ml
c,i denotes the last updated model obtained at the outer loop.

(b) Compute damping factors by using Eq. 4.11, then compute damped ob-

jective function Odamp,i(m
k
c,i) by Eq. 4.12 for each i.

(c) Call the adjoint gradient subroutine to calculate the product of GT
k with

the vector C̃−1
D,i(g(m

k
c,i)− duc,i).

(d) Use Eq. 4.10 together with
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mk+1
c,temp,i = mk

c,i + Lδm̃k+1
c,i (4.17)

to calculate a proposed new update of the ith RML realization, mk+1
c,temp,i.

(e) Run the simulator forward to calculate the corresponding value of the

damped objective function, Odamp,i(m
k+1
c,temp,i).

(f) if Odamp,i(m
k+1
c,temp,i) ≥ Odamp,i(m

k
c,i), then increase γ by a factor of 10 and

return to step d. If Odamp,i(m
k+1
c,temp,i) < Odamp,i(m

k
c,i), then set mk+1

c,i =

mk+1
c,temp,i, decrease γ by a factor of 10 and go to the next step.

(g) Check for convergence of inner loop. The computational cost of each

successful iteration in the inner loop is one forward simulation run and

one adjoint solution, which is much less than the cost of one iteration

of the outer loop. In our history matching examples, we have used the

following convergence criterion

Odamp,i(m
k
c,i)−Odamp,i(m

k+1
c,i )

Odamp,i(mk
c,i)

< 5× 10−3. (4.18)

If the condition given by Eq. 4.18 is not satisfied, increase the k index by

one and return to step c. We implement the same steps of the inner loop

to obtain the new update of the model parameters for the MAP estimate.

Once we have obtained convergence of all damped objective functions,

replace sv-cut by max
{

sv-cut
2
, sv-cutf

}
, set ml

c,i = mk
c,i for each i and go to

step 3.

7. end

To implement SVD-GF-EnRML, we delete step 6 of the algorithm described

above and replace step 5 by

Step 5: Check for convergence using the criteria discussed later. If the algorithm has
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not converged, increase iteration index l by 1 and go to step 3. Otherwise terminate

the algorithm.

4.3.4 Convergence Criteria.

The convergence criteria for termination of the SVD-GF-EnRML and the

SVD-EnRML algorithms are based on the requirement that both the maximum rela-

tive change in the objective function and the maximum relative change in the model

parameters of all realization be small, i.e.,

dO(m) = max
1≤j≤Ne

{
|Or,j(m

l+1
c,j )−Or,j(m

l
c,j)|

Or,j(m
l+1
c,j )

}
< ηo (4.19)

and

dm = max
1≤j≤Ne

{
‖ml+1

c,j −ml
c,j‖2

‖ml+1
c,j ‖2

}
< ηm (4.20)

In the examples presented in this work, we have used the following values:

ηo = 10−3, (4.21)

and

ηm = 10−2. (4.22)

Note that when we are calculating a conditional realization with RML or any trunc-

ated-SVD parameterization algorithms, the normalized objective function is defined

by

ON,i(m) =
Or,i(m)

Nd

. (4.23)

4.4 Ensemble Kalman Filter (EnKF)

Recently, the ensemble Kalman filter (EnKF) has been investigated as a reser-

voir management tool for data assimilation and assessment of uncertainty in future

forecasts. The EnKF method was originally introduced by Evensen [12] as a se-
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quential data assimilation algorithm. The EnKF sequential algorithm consist of two

major steps, first, a forecast step which is equivalent to running the simulation to

predict data at the next data assimilation time step, second, an analysis or updated

step which includes the implicit calculation of the Kalman gain matrix and update of

the model parameters and simulation variable so that they are consistent with data

and with each other. The EnKF can easily be coupled with any reservoir simulator.

Neither adjoint code nor specific knowledge of simulator is required for implemen-

tation of the EnKF. Furthermore, dynamic data (production data) is assimilated

continuously in time as they become available and covariances are updated.

When applying EnKF, we consider the reservoir model parameter m and state

variables (grid block pressures and saturations) pn in an augmented state vector, yn,

i.e.,

yn =

m
pn

 . (4.24)

Note that the subscript n denotes the time at which we wish to assimilate data. All

vectors are column vectors with the dimension ofm given byNm and the dimension of

pn given by Np. Thus, the dimension of yn, denoted by Ny is given by Ny = Nm +Np.

For simplicity in the notations, we assume that we assimilate data at every

simulation time step. Therefore, the update equation for each ensemble member by

the traditional Kalman filter [32] update is given by

ya
n,j = yf

n,j + CY f
n Df

n
(CDf

nDf
n

+ CDn)−1(dj
n,uc − df,j

n ) for j = 1, 2, · · ·Ne, (4.25)

where CY f
n Df

n
denotes the covariance between the state vector yn and predicted data

at time n, CDf
nDf

n
represents auto-covariance for predicted data, df,j

n denotes predicted

data at time n corresponding to the vector of observed data we wish to assimilate

and dj
n,uc is a sample of the normal distribution N(dn,obs, CDn) where dn,obs represents
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observed data and CDn denotes the data covariance matrix at data assimilation time

n. Here, the superscript f denotes forecast or predicted and the superscript a refers

to the result of the analysis or update data assimilation step, e.g., ya
n,j represents

updated state vector at time n by assimilating data dj
n,uc.

The vector consisting of the first Nm components of ya
n,j pertains to the model

parameter m. It is well known [12] and straightforward to show that the model part

of ya
n,j is given by

ma
j = mf

j + CMDf
n
(CDf

nDf
n

+ CDn)−1(dj
n,uc − df,j

n ), for j = 1, 2, · · ·Ne, (4.26)

where CMDf
n

denotes the covariance between the model m and predicted data at time

n.

4.4.1 Covariance localization

In the implementation of the EnKF technique, we use a limited number of

realizations to represent approximations of the relevant covariance matrices. As is

well known [28, 16], this can lead to spurious correlations between an individual

datum and components of the state vector separated by large distances. When

assimilating data, such spurious correlations can result in changes in components of

the state vector which are insensitive to the data. A second problem occurs when

the number of data are large. The limited degrees of freedom available to assimilate

data due to the limited number of ensemble members can result in loss of rank [41]

and filter divergence where eventually all updated state vectors become essentially

the same but do not give a good prediction of subsequent data. The result is that

the filter becomes unable to assimilate additional data and biased predictions with

unrealistically low uncertainty are obtained.

Increasing the ensemble size could reduce spurious correlations and increase
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the degrees of freedom available to assimilate data but at the cost of reduced compu-

tational efficiency. A more standard way to achieve these effects is to apply covariance

localization [21, 44, 28, 16]. In this approach, we form the Schur or Hadamard prod-

uct of a positive-definite matrix ρ with the ensemble-based estimate to produce a

localized covariance estimate

Cy,ρ = ρ ◦ CY . (4.27)

The entries of the matrix ρ are generated from a correlation function with compact

support. By replacing Cy by ρ◦CY , we zero long distance covariances corresponding

to spurious correlation. The (i, j) entry of Cy,ρ is the product of the (i, j) entry of

ρ and the (i, j) entry of CY . Note that the dimension of the correlation matrix ρ is

Ny ×Ny.

With covariance localization, the EnKF update equation of Eq. 4.25 is ap-

proximated by

ya
n,j = yf

n,j + ρyd ◦ CY f
n Df

n
(ρdd ◦ CDf

nDf
n

+ CDn)−1(dj
n,uc − df,j

n ), (4.28)

for j = 1, 2, · · ·Ne, where ρyd denotes the correlation matrix between the state vector

and data and ρdd represents auto-correlation matrix for predicted data.

Covariance localization allows one to eliminate long distance spurious corre-

lations between entries of the EnKF state vector due to sampling error. In addition,

covariance localization increases the rank of the forecast covariance matrix and thus

provides more degrees of freedom for assimilating production data [28, 14]. In our

application of covariance localization, the correlation function (ρ) used is the two-

dimensional form of the fifth-order compact function of Gaspari and Cohn [21] defined
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as

ρ(LD) =


−1

4
L5

D + 1
2
L4

D + 5
8
L3

D − 5
3
L2

D + 1, 0 ≤ LD ≤ 1;

1
12
L5

D − 1
2
L4

D + 5
8
L3

D + 5
3
L2

D − 5LD + 4− 2
3
L−1

D , 1 < LD ≤ 2;

0, LD > 2,

(4.29)

where LD is the dimensionless correlation length which is calculated as shown below

in the general anisotropic case. We let α denote the angle between the positive x-axis

and the principal direction (u-direction) which refers to the direction in which the

correlation length is the greatest. The v-direction is perpendicular to the u-direction;

au and av, respectively, denote the correlation lengths in the u and v directions. (In

the isotropic case, the correlation lengths au and av are identical and we may take

α = 0.)

Suppose that ci,j, which denotes here the (i, j) entry of CY f
n ,Df

n
, represents the

covariance between a component of the state vector located at areal location (x1, y1)

and data at observation location (x2, y2) and let Lx = |x2 − x1| and Ly = |y2 − y1|.

To compute ρy,i,j we calculate


Lu = Lx cosα+ Ly sinα

Lv = −Lx sinα+ Ly cosα

, (4.30)

LD =

[(Lu

au

)2

+
(Lv

av

)2
]0.5

, (4.31)

and then calculate

ρy,i,j = ρ(LD), (4.32)

using Eq. 4.29. Then the (i, j) entry of ρyd ◦CY f
n ,Df

n
is given by ρyd,i,jci,j. The entries

of ρdd◦CDf
nDf

n
in Eq. 4.28 are calculated similarly. Note that to obtain the (i, j) entry

of ρyd, we need to calculate the distance between the ith entry of the state vector
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and the jth entry of the predicted data.

We can also apply covariance localization in a slightly nonstandard form in

which the Schur product of ρ is applied directly to the Kalman gain matrix defined

as

Kf
n = CY f

n
HT

n (HnCY f
n
HT

n + CDn)−1. (4.33)

Therefore, with the Kalman gain localization, the EnKF update equation of Eq. 4.25

is approximated by

ya,j
n = yf,j

n +(ρyd◦Kf
n)(dj

n,uc−df,j
n ) = yf,j

n +ρyd◦
[
CY f

n ,Df
n
(CDf

nDf
n
+CDn)−1

]
(dj

n,uc−df,j
n ),

(4.34)

for j = 1, 2, · · ·Ne.

4.5 Computational Results

In this section, we present results obtained from implementation of the SVD-

GF-EnRML and SVD-EnRML algorithms for the same 2-dimensional synthetic ex-

amples described in Chapter 3. The objective function behavior, final estimates of

the log-permeability fields, history matches and prediction results and the computa-

tional costs are compared for both algorithms.

We also present the results obtained from implementation of the EnKF with-

out and with covariance localization for different ensemble sizes. We have tried to

investigate the effects of covariance localization on the final estimate of model pa-

rameters, data matches and future forecasts with anisotropic correlation function

(Example 1) as well as the standard implementation of the covariance localization

versus Kalman gain localization (Example 2). Results with SVD parameterization

algorithms are compared with results obtained with EnKF.

Finally, we present the results obtained with combined EnKF algorithm and

SVD parameterization algorithms where EnKF is used to generate an initial guess

for the truncated-SVD algorithms.
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4.5.1 SVD-GF-EnRML and SVD-EnRML Simulation Results of Example 1

In order to quantify the uncertainty in history matching and future fore-

casts, we need to generate plausible realizations of model parameters that honor

the observed data. We have implemented the SVD-GF-EnRML and SVD-EnRML

techniques for Example 1 to generate 15 realizations (Ne = 15). We have generated

prior unconditional realizations from the square root (Cholesky decomposition) of

the prior covariance matrix.

We use the same strategy to compute the truncated SVD in both SVD-GF-

EnRML and SVD-EnRML algorithms. We start with sv-cut = 0.1 at the first

iteration and decrease sv-cut at each (outer) iteration by dividing by two until we

reach the final value of sv-cut = 0.0004. Then from this point on, we iterate with fixed

value sv-cut = 0.0004 until we obtain convergence of the MAP estimate. Once the

MAP estimate has converged, we switch to using the truncated SVD corresponding

to the realization which gives the highest value of the normalized objective function

at each subsequent iteration. At this point, we set sv-cut = 0.1 and repeat the

strategy of changing the sv-cut from iteration to iteration in the same way as we did

for the MAP estimate.

Figures 4.1(a) and 4.1(b), respectively, show the behavior of the normalized

objective function from iteration to iteration for all the realizations using the SVD-

GF-EnRML and SVD-EnRML algorithms. During the early iterations, where the

singular triplets correspond to the dimensionless sensitivity matrix associated with

calculation of the MAP estimate, the normalized objective function of each real-

ization decreases sharply. The results of Figure 4.1(a) indicate that the MAP has

converged in 15 iterations based on the criteria given in Eqs. 3.60 and 3.61. From this

point on, we calculate the singular triplets of the dimensionless sensitivity matrix of

the realization with the highest value of the normalized objective function at each

subsequent iteration. The final value of the normalized objective function is less than

2.40 for all of the realizations at the final iteration, but only three of the realizations
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satisfy the condition given by Eq. 3.64 which indicates that all normalized objective

function values should be less than or equal to 1.24.

Note in Figure 4.1(b), the x-axis represents the iteration number of both the

outer and the inner loops. Specifically, odd values of the iteration index correspond

to the result from the outer loop and even values of the iteration index correspond to

the final result obtained from an inner loop iteration. At convergence, the maximum

value of the normalized objective function among all realizations is ON,max = 2.70

for the SVD-EnRML algorithm.
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(a) SVD-GF-EnRML.
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(b) SVD-EnRML.

Figure 4.1: Behavior of the normalized objective function during iteration of SVD-GF-
EnRML and SVD-EnRML algorithms, red curve represents MAP estimate,
gray curves represent realizations, Example 1.

The final average of log-permeability fields (the average of all realizations

of ln(k) field) obtained from the SVD-GF-EnRML and SVD-EnRML algorithms

are respectively shown in Figures 4.2(b) and 4.2(c). Note that the final fields are

comparable to the truth, there is no overshooting and undershooting in the fields

and the features of the channel and low permeability barrier have been captured

correctly compared to the truth (Figure 4.2(a)).

Three unconditional log-permeability fields generated from the prior covari-
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(b) SVD-GF-EnRML.
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(c) SVD-EnRML.

Figure 4.2: True ln(k) field and final average of realizations of log-permeability from SVD-
GF-EnRML and SVD-EnRML algorithms, Example 1.

ance matrix are shown in Figure 4.3. The final conditional log-permeability fields

corresponding to these three realizations obtained with the SVD-GF-EnRML and

SVD-EnRML algorithms, respectively, are shown in Figures 4.4 and 4.5. Although

the three realizations exhibit distinct differences, the essential features of the chan-

nel and the barrier that exist in the truth have been captured in each individual

conditional realization of Figures 4.4 and 4.5.
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(a) Realization 5.
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(b) Realization 10.
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(c) Realization 13.

Figure 4.3: Unconditional realizations of log-permeability fields, Example 1.

The BHP data matches and future forecast for Inj-1 obtained with the SVD-

GF-EnRML algorithm are shown in Figure 4.6(a). Note that in this and similar

figures, the vertical line denotes the end of the history matching period. As can be
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(a) Realization 5.
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(b) Realization 10.
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(c) Realization 13.

Figure 4.4: Conditional realizations of log-permeability field from SVD-GF-EnRML algo-
rithm, Example 1.
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(a) Realization 5.
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(b) Realization 10.
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(c) Realization 13.

Figure 4.5: Conditional realizations of log-permeability field from SVD-EnRML algo-
rithm, Example 1.
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seen from this figure, good BHP matches are obtained for all realizations and also

the prediction of BHP is in good agreement with the true prediction. The BHP data

matches and performance predictions for other producers (not shown) are similar

to Inj-1. The history matching results and future forecasts of the WOR of Prod-1

and Prod-4 are shown in Figures 4.6(b) and 4.6(c), respectively. Again good data

matches are obtained and the predicted data from the true model falls near the center

of the span of predictions from the set of realizations.
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(a) Inj-1 BHP.
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(b) Prod-1 WOR.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
0

1

2

3

4

5

 

 

W
O

R 

T i m e  ( d a y )

(c) Prod-4 WOR.

Figure 4.6: Data matches and future prediction from SVD-GF-EnRML, open red circles
are observed data, red is from true model, blue is the prediction mean, green
is from the MAP estimate, gray curves represent predictions from realizations,
Example 1.

Comparable matches and predictions obtained with the SVD-EnRML method

are shown in Figure 4.7. These results are essentially of the same quality as to those

shown in Figure 4.6.

Table 4.1 gives the number of simulation runs, number of adjoint runs and

the number of forward gradient runs for the SVD-GF-EnRML and SVD-EnRML

algorithms. The total computational cost based on the number of equivalent simu-

lation runs is given in the last column of the table. From the results, we see that

the SVD-GF-EnRML algorithm requires about 35% more computational effort than

the SVD-EnRML algorithm. This result is consistent with other examples that we

have done in that SVD-EnRML is always more efficient, but is some cases, the com-
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(a) Inj-1 BHP.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7

 

 

W
O

R 

T i m e  ( d a y )

(b) Prod-1 WOR.
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(c) Prod-4 WOR.

Figure 4.7: Data matches and future prediction from SVD-EnRML, open red circles are
observed data, red is from true model, blue is the prediction mean, green is
from the MAP estimate, gray curves represent predictions from realizations,
Example 1.

putational cost of the two algorithms is essentially the same. The results in the

third row of Table 4.1 are based on using EnKF to generate an initial guess for

SVD-GF-EnRML, a procedure which is discussed in detail later.

Table 4.1: Summary of computational costs of the SVD-GF-EnRML and SVD-
EnRML algorithms, Example 1.

Algorithm Simulations Forward Runs Adjoint Equ. Sim. Runs
SVD-GF-EnRML 2463 2732 2658 3810
SVD-EnRML 2078 1067 1618 2749
SVD-GF-RML-EnKF 1131 1020 992 1634

4.5.2 EnKF Results of Example 1

We now consider comparable results obtained with the ensemble Kalman filter

(EnKF) with three different ensemble sizes of Ne = 50, Ne = 100 and Ne = 150.

We first generated an initial ensemble for the Ne = 150 case. Then for the Ne = 50,

we selected the first 50 realizations of these 150 unconditional realizations. For the

Ne = 100 case, we selected the first 100 realizations of these 150 unconditional

realizations. In the Ne = 150 case, EnKF requires 150 simulation runs to assimilate
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the data and another 150 reruns from time zero to ensure that we have not introduced

inconsistency due to nonlinearity or non-Gaussianity [60]. Note that we have one

additional realization corresponding to the muc,Ne+1 = mprior and duc,Ne+1 = dobs

in all three ensemble sizes used here for EnKF. We consider both the standard

implementation of EnKF for the combined parameter-state estimation [13, 14] as

well as EnKF with covariance localization [28] based on the anisotropic form of the

Gaspari and Cohn [21] correlation function. We generate the anisotropic Gaspari-

Cohn correlation function so that its principle directions and correlation lengths

are aligned with the prior covariance function for the log-permeability field. In the

Gaspari-Cohn correlation function used in this example, the critical length in the

principle direction is set equal to 8400 feet and the critical length in the orthogonal

direction is set equal to 1500 feet. Although not shown, experiments with larger and

smaller critical lengths did not yield improved results.

In order to obtain an estimate of the initial (prior) uncertainty of the predicted

data compared to the observed data, we have run the simulator forward up to end

time with the initial realizations of the log-permeability field. The uncertainty in the

BHP of Prod-4 based on predictions from the initial ensembles with Ne = 150 com-

pared to the true data (red curve) is shown in Figure 4.8(a). The WOR predicted

data for Prod-1 and Prod-4 are respectively shown in Figures 4.8(b) and 4.8(c).

Prod-1 has early breakthrough with high values of WOR data and Prod-4 has late

breakthrough with low values of WOR compared to the truth. The WOR predicted

data from initial ensembles model parameters for Prod-2, Prod-3, and Prod-5, re-

spectively, are shown in Figures 4.9(a), 4.9(b) and 4.9(c). For these three producers,

there is no water breakthrough with the true model but the ensemble mean and most

realizations exhibit breakthrough.

Figures 4.10 and 4.11 show the final update of the ensemble mean of the log-

permeability fields as a function of ensemble size obtained with the standard EnKF

method without and with covariance localization, respectively. As can be seen from
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(a) Prod-4 BHP.
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(b) Prod-1 WOR.
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(c) Prod-4 WOR.

Figure 4.8: Matches and predictions of the BHP of Prod-4 and the WOR of Prod-1 and
Prod-4 with initial ensemble, open red circles are observed data, red is from
true model, blue is ensemble mean, gray curves are ensemble predictions,
Example 1.
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(a) Prod-2 WOR.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7

 

 

W
O

R 

T i m e  ( d a y )

(b) Prod-3 WOR.
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(c) Prod-5 WOR.

Figure 4.9: Matches and predictions of the WOR of Prod-2, Prod-3 and Prod-5 with initial
ensemble, open red circles are observed data, red is from true model, blue is
ensemble mean, gray curves are ensemble predictions, Example 1.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.10: Ensemble mean final log-permeability fields as a function of ensemble size
without covariance localization, Example 1.

Figures 4.10(a), 4.10(b), and 4.10(c), when we do not use covariance localization,

the final estimate of the average model gives a reasonable good approximation of the

true log-permeability field only when Ne = 150. In this figures, grid blocks colored

white indicate ln(k) values greater or smaller than the truth. Even in the Ne = 150

case, there are some high permeability regions near the upper left and lower right

corners that do not exist in the truth (Figure 4.2(a)). As Figure 4.11 shows, this

problem is removed with covariance localization and we obtain a better estimate of

the final model compared to the truth. Although, the covariance localization greatly

improved the final model, with ensemble size of Ne = 50, we still have some high

permeability values in the channel location compared to the truth.

Figure 4.12 shows three different unconditional ensemble members of the log-

permeability field. The final updated log-permeability fields corresponding to these

unconditional realizations (Figure 4.12) are respectively shown in Figures 4.13 and

4.14 for the case without localization and with anisotropic localization with an en-

semble size of Ne = 150. As illustrated in Figure 4.13, we obtained realizations of

the log-permeability field which shows some basic features of the truth with no local-

ization, however, again there are some regions of high permeability at the south-east

part of the reservoir which do not exist in the truth. Moreover, there is a small
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(b) Ne=100.
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(c) Ne=150.

Figure 4.11: Ensemble mean final log-permeability fields as a function of ensemble size
with anisotropic covariance localization, Example 1.

variability between ensemble members when no localization is used. With imple-

mentation of covariance localization, (Figure 4.14) the variability between different

ensemble members increases and the regions of high permeability values at the south-

east corner of the reservoir tends to disappear and we still obtain log-permeability

fields which are plausible compared to the true field.
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(a) Ensemble 5.
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(b) Ensemble 10.
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(c) Ensemble 13.

Figure 4.12: Three unconditional log-permeability fields, Example 1.

The history matching results during data assimilation and future prediction of

the WOR of Prod-1 without using covariance localization, for three different ensem-

ble sizes are presented in Figure 4.15. It is evident from Figures 4.15(a) and 4.15(b)

that ensemble sizes of 50 and 100 without covariance localization are insufficient to
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(a) Ensemble 5.
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(b) Ensemble 10.
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(c) Ensemble 13.

Figure 4.13: Three ensemble members of the final log-permeability fields obtained from
EnKF without localization, Ne=150, Example 1.
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(a) Ensemble 5.
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Figure 4.14: Three ensemble members of the final log-permeability fields obtained from
EnKF with anisotropic localization, Ne=150, Example 1.
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match or predict water breakthrough for Prod-1. However, we obtained a good WOR

match with an ensemble size of 150 without localization (Figure 4.15(c)) and future

predictions are reasonable and within the band of ensemble prediction. Figure 4.16

shows the history matches and performance prediction of the WOR of Prod-1 ob-

tained with covariance localization during data assimilation period as a function of

the ensemble size. With covariance localization, the ensemble means match the data

even for an ensemble size of 50 (Figure 4.16(a)) and 100 (Figure 4.16(b)) and better

predictions are obtained in all cases than for the comparable results obtained without

localization. However, the predictions with an ensemble size of 50 (Figure 4.16(a)),

are completely unreliable.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.15: Matches and predictions of WOR of Prod-1 as a function of ensemble size
during data assimilation with EnKF without localization, open red circles are
observed data, red is from true model, blue is ensemble mean, gray curves
are ensemble predictions, Example 1.

In order to investigate the EnKF consistency issue [60], we rerun the simula-

tion forward from time zero with the ensemble of final updated models and compare

the performance of the predicted data with the history matching results obtained

during the data assimilation phase. The predicted performances of WOR of Prod-1

from the final model obtained by running from time zero as a function of ensemble

size are shown in Figure 4.17 for the case without localization. For ensemble size of

150, even though we obtained a good history match during data assimilation (Fig-
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.16: Matches and predictions of WOR of Prod-1 as a function of ensemble size
during data assimilation with EnKF with anisotropic localization, open red
circles are observed data, red is from true model, blue is ensemble mean, gray
curves are ensemble predictions, Example 1.

ure 4.15(c)), when the simulator is rerun from time zero with the final ensemble of

permeability fields obtained by assimilating all production data, the WOR predic-

tions are biased and not in good agreement with the true WOR of of Prod-1; the

ensemble mean prediction is not close to the truth (Figure 4.17(c)). Inconsistency

between the statistical properties of the updated ensemble of primary reservoir simu-

lation variables and the statistical properties of the ensemble of predictions generated

by rerunning the reservoir simulator from time zero using the updated realizations

of model parameter is a problem that can occur in EnKF when the relation between

dynamical variables and model parameters is highly nonlinear [60].

Figure 4.18 shows the predicted performances of WOR of Prod-1 from the

final model obtained by running from time zero as a function of ensemble size for

the case with anisotropic covariance localization. As we can see from this figure,

severe inconsistency occurs with all three ensemble sizes compared to the results of

Figure 4.16.

Figures 4.19 and 4.20 show the results of history matching during data as-

similation and future forecasts of the WOR of Prod-4, for three different ensemble

sizes, without and with anisotropic covariance localization, respectively. As we can
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.17: Matches and predictions of WOR of Prod-1 as a function of ensemble size for
rerun from time zero with EnKF without localization, open red circles are
observed data, red is from true model, blue is ensemble mean, gray curves
are ensemble predictions, Example 1.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7

 

 

W
O

R 

T i m e  ( d a y )

(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.18: Matches and predictions of WOR of Prod-1 as a function of ensemble size
for rerun from time zero with EnKF with anisotropic localization, open red
circles are observed data, red is from true model, blue is ensemble mean, gray
curves are ensemble predictions, Example 1.
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see from Figures 4.20(a), we have obtained very good history matches of WOR data

with ensemble size of 50 by using anisotropic covariance localizations unlike the case

without localization (Figure 4.19(a)). Again for each values of Ne, covariance local-

ization resulted in the best characterization of future predictions.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.19: Matches and predictions of WOR of Prod-4 as a function of ensemble size
during data assimilation with EnKF without localization, open red circles are
observed data, red is from true model, blue is ensemble mean, gray curves
are ensemble predictions, Example 1.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.20: Matches and predictions of WOR of Prod-4 as a function of ensemble size
during data assimilation with EnKF with anisotropic localization, open red
circles are observed data, red is from true model, blue is ensemble mean, gray
curves are ensemble predictions, Example 1.

As we can see from Figure 4.21, the predicted performances of the WOR of

Prod-1 from the final model obtained by running from time zero as a function of
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ensemble size for the case without localization are almost consistent with the results

obtained during the data assimilation (Figure 4.19). However, the comparison of

Figures 4.20 and 4.22 shows that the severe inconsistency occurs in the WOR of

Prod-4 with anisotropic covariance localization for ensemble sizes of 100 and 150.
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(a) Ne=50.
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(b) Ne=100.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
0

1

2

3

4

5

 

 

W
O

R 

T i m e  ( d a y )

(c) Ne=150.

Figure 4.21: Matches and predictions of WOR of Prod-4 as a function of ensemble size for
rerun from time zero with EnKF without localization, open red circles are
observed data, red is from true model, blue is ensemble mean, gray curves
are ensemble predictions, Example 1.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.22: Matches and predictions of WOR of Prod-4 as a function of ensemble size
for rerun from time zero with EnKF with anisotropic localization, open red
circles are observed data, red is from true model, blue is ensemble mean, gray
curves are ensemble predictions, Example 1.

The history matching results during data assimilation and the future perfor-

mance prediction of BHP of Inj-1 as a function of ensemble size are shown in Fig-
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ures 4.23 and 4.24 for the cases without localization and with covariance localization,

respectively. As we can see from these figures, the history matching of BHP is very

good for all cases with and without localization. With ensemble sizes of 50 and 100,

for the prediction phase, we obtained better performances when we use covariance

localization than when no localization is used. The BHP history matches and future

forecasts for other (producer) wells (not shown) are similar to the BHP of Inj-1. The

corresponding results obtained by rerunning from time zero with the final model are

shown in Figures 4.25 and 4.26. For the case without localization, the inconsistency

does not appear to significantly affect the predictions of the BHP of Inj-1; compare

Figures 4.23 and 4.25. However, for the case with covariance localization, there is

inconsistency between results, see Figures 4.24 and 4.26.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.23: Matches and predictions of BHP of Inj-1 as a function of ensemble size dur-
ing data assimilation with EnKF without localization, open red circles are
observed data, red is from true model, blue is ensemble mean, gray curves
are ensemble predictions, Example 1.

4.5.3 Incorporation of EnKF results with the SVD-GF-EnRML algorithm, Example

1

The results of the synthetic example presented earlier showed that we greatly

improve the computational efficiency of the RML method by implementation of the

SVD algorithms. However, we still require on the order of three thousand (equiv-
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.24: Matches and predictions of BHP of Inj-1 as a function of ensemble size during
data assimilation with EnKF with anisotropic localization, open red circles
are observed data, red is from true model, blue is ensemble mean, gray curves
are ensemble predictions, Example 1.
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(a) Ne=50.
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(b) Ne=100.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
0

7 0 0
1 4 0 0
2 1 0 0
2 8 0 0
3 5 0 0
4 2 0 0
4 9 0 0
5 6 0 0
6 3 0 0

 

 

BH
P,

 p
si

T i m e  ( d a y )

(c) Ne=150.

Figure 4.25: Matches and predictions of BHP of Inj-1 as a function of ensemble size for
rerun from time zero with EnKF without localization, open red circles are
observed data, red is from true model, blue is ensemble mean, gray curves
are ensemble predictions, Example 1.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.26: Matches and predictions of BHP of Inj-1 as a function of ensemble size for
rerun from time zero with EnKF with anisotropic localization, open red
circles are observed data, red is from true model, blue is ensemble mean,
gray curves are ensemble predictions, Example 1.

alent) reservoir simulation runs to obtain a set of 15 or so plausible realizations

of the reservoir model parameters. Here we demonstrate that if we use the final

updated EnKF realizations of the permeability field as initial guesses in the SVD-

GF-EnRML, computational efficiency is significantly improved. Similar gains in

computational efficiency to those shown here were obtained by using the EnKF re-

sults as initial guesses for the SVD-EnRML algorithm. As we only directly estimate

reservoir model parameters (permeability field) with the SVD algorithms, the sta-

tistical inconsistency sometimes experienced with EnKF is not an issue when using

SVD-GF-EnRML or SVD-EnRML. Here, we refer to the final realization correspond-

ing to the mprior and dobs obtained with EnKF as a MAP realization and use the

previous described algorithm for new implementation of the SVD-GF-EnRML algo-

rithm. We use the same strategy of changing of sv-cut during iterations as was used

in the previous implementation of the SVD-GF-EnRML algorithm, i.e., we start with

sv-cut = 0.1 at the first iteration and decrease sv-cut at each (outer) iteration by

dividing by two until we reach the final value of sv-cut = 0.0004. Then from this

point on, we iterate with fixed value sv-cut = 0.0004.

The notation minitial = ma
EnkF, Loc in figure captions and elsewhere indicates
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that in applying SVD-GF-EnRML, the set of initial guesses (realizations of the per-

meability field) were selected as the first 15 realizations obtained from EnKF with

anisotropic localization with ensemble size of Ne = 150. Here, we refer to the com-

bined algorithm as SVD-GF-EnRML-EnKF. The behavior of the normalized objec-

tive function during iteration with this algorithm is shown in Figure 4.27. Note that

the initial values of the normalized objective function (value at iteration zero with

ma
EnkF, Loc) are very large indicating a poor data match which is expected from the

results of Figures 4.18(c), 4.22(c) and 4.26(c). During iteration of SVD-GF-EnRML-

EnKF, the value of ON,max(m) decreases from 9991.39 to 2.36 and the number of

retained singular triplets is 36 at convergence.
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Figure 4.27: Behavior of the normalized objective function for each realization during
iteration of SVD-GF-EnRML with minitial = ma

EnkF, Loc, Example 1.

Figure 4.28 shows the final conditional log-permeability fields obtained with

the SVD-GF-EnRML algorithm for the case of minitial = ma
EnkF, Loc. The correspond-

ing unconditional realizations are shown in Figure 4.12. As can be seen from this

figure, the essential features of the channel and the barrier that exist in the true

model have been captured in each individual conditional realization; however, each

realization is distinctly different.

The history matching results and future forecasts of the BHP of Inj-1 and the
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(a) Realization 5.
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(b) Realization 10.
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(c) Realization 13.

Figure 4.28: Three conditional realizations of log-permeability fields from SVD-GF-
EnRML algorithm using minitial = ma

EnkF, Loc, Example 1.
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(a) BHP Inj-1.
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(b) WOR Prod-1.
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(c) WOR Prod-4.

Figure 4.29: Matches and predictions of BHP and WOR from SVD-GF-EnRML using
minitial = ma

EnkF, Loc, open red circles are observed data, red is from true
model, blue is the prediction mean, gray curves represent predictions from
realizations, Example 1.
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WOR of Prod-1 and Prod-4 obtained with the SVD-GF-EnRML-EnKF algorithm

(minitial = ma
EnkF, Loc) are shown in Figure 4.29. Good matches of the BHP and

WOR are obtained. The future performance predictions (t > 3300 days) of BHP

and WOR are also reasonably good although after 3600 days the predicted WOR at

producer 1 deviates from the WOR calculated from the true permeability field. The

data matches and future predicted obtained with SVD-GF-EnRML-EnKF algorithm

are far better than the corresponding results obtained with EnKF (Figures 4.18(c),

4.22(c) and 4.26(c)).

The summary of the computational cost of the SVD-GF-EnRML algorithm

with minitial = ma
EnkF, Loc is given in the last row of Table 4.1. Note that we have sig-

nificantly improved the computational efficiency of the SVD-GF-EnRML algorithm

by generating a set of initial guesses of the log-permeability field from EnKF.

4.5.4 SVD-GF-EnRML and SVD-EnRML Simulation Results of Example 2

Here, we present results obtained from truncated-SVD parameterization algo-

rithms and EnKF method for a second example, Example 2. We have implemented

the SVD-GF-EnRML and SVD-EnRML algorithms for Example 2 to generate 15

realizations (Ne = 15). We use the same procedure to generate unconditional real-

izations as was used for Example 1. The same procedure is used here for compu-

tation of the singular triplets as was used in the previous example. Figures 4.30(a)

and 4.30(b), respectively, show the behavior of the normalized objective function

during iteration for all realizations that were obtained using the SVD-GF-EnRML

and SVD-EnRML algorithms. At convergence, the maximum value of the normalized

objective function among all realizations is ON,max = 1.34 for the SVD-GF-EnRML

algorithm compared to ON,max = 3.26 for the SVD-EnRML algorithm.

Figures 4.31(b) and 4.31(c) show the final average of the realizations of log-

permeability obtained by the SVD-GF-EnRML and SVD-EnRML algorithms, re-

spectively. As can be seen from these figures, both fields capture some basic features
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(a) SVD-GF-EnRML.
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(b) SVD-EnRML.

Figure 4.30: Behavior of the normalized objective function during iteration of SVD-GF-
EnRML and SVD-EnRML algorithms, red curve represents MAP estimate,
gray curves represent realizations, Example 2.

of the true log permeability field (Figure 4.31(a)). Specially, some characteristics of

the true channel have been captured in the final average field of the realizations with

both algorithms.
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(a) True Ln(k).
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(b) SVD-GF-EnRML.
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(c) SVD-EnRML.

Figure 4.31: True ln(k) field and final average of realizations of log-permeability from
SVD-GF-EnRML and SVD-EnRML algorithms, Example 2.

Figure 4.32 shows three unconditional realizations of log-permeability fields

obtained from the Cholesky decomposition of the prior covariance matrix. The cor-

responding final conditional realizations of the log-permeability fields that were ob-
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tained by implementation of the SVD-GF-EnRML and the SVD-EnRML algorithms

are shown, respectively, in Figures 4.33 and 4.34. Note that the main features of the

truth have been captured in all realizations but there are distinct differences between

realizations.
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(a) Realization 6.
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(b) Realization 10.
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(c) Realization 13.

Figure 4.32: Unconditional realizations of log-permeability fields, Example 2.
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(a) Realization 6.
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(b) Realization 10.
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(c) Realization 13.

Figure 4.33: Conditional realizations of log-permeability fields from SVD-GF-EnRML al-
gorithm, Example 2.

The history matching results and future prediction performances of BHP of

Prod-3 and WOR of Prod-2 and Prod-3 are shown in Figure 4.35 for all realizations.

Note that very good history matching and prediction results for BHP of Prod-3

were obtained. The results of BHP for other wells (not shown) are very similar to

those shown for Prod-3. As can be seen in Figures 4.35(b) and 4.35(c), we obtained
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(a) Realization 6.
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(b) Realization 10.
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(c) Realization 13.

Figure 4.34: Conditional realizations of log-permeability field from SVD-EnRML algo-
rithm, Example 2.

very good results for WOR for both producers during the history matching period

and the predicted data from truth (red curves) lies near the center of the band of

predictions generated from the set of realizations, i.e., the SVD-GF-EnRML method

gives unbiased history matching and prediction results. The corresponding match

and prediction results obtained with SVD-EnRML shown in Figure 4.36 are fairly

similar.
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(a) Prod-3 BHP.
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(b) Prod-2 WOR.
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(c) Prod-3 WOR.

Figure 4.35: Data matches and future prediction from SVD-GF-EnRML, open red circles
are observed data, red is from true model, blue is the prediction mean, green
is from the MAP estimate, gray curves represent predictions from realiza-
tions, Example 2.

The summary of the computational costs for the SVD-GF-EnRML and SVD-

EnRML sampling algorithms is given in Table 4.2. As shown in the last column
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(a) Prod-3 BHP.
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(b) Prod-2 WOR.
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(c) Prod-3 WOR.

Figure 4.36: Data matches and future prediction from SVD-EnRML, open red circles are
observed data, red is from true model, blue is the prediction mean, green is
from the MAP estimate, gray curves represent predictions from realizations,
Example 2.

of the Table 4.2, the overall computational costs of the SVD-EnRML algorithm

is less than that of SVD-GF-EnRML algorithm. This is comparable to the result

obtained in Example 1. Although we need a large number of simulation runs to obtain

15 conditional realizations, the SVD-GF-EnRML and SVD-EnRML algorithms are

significantly more efficient than the standard implementation of RML using a quasi-

Newton method. The results of the third row of Table 4.2 are based on incorporation

of the EnKF results with the SVD-GF-EnRML algorithm which will be discussed

later.

Table 4.2: Summary of computational costs of SVD-GF-EnRML and SVD-EnRML
algorithms, Example 2.

Algorithm Simulations Forward Runs Adjoint Equ. Sim. Runs
SVD-GF-EnRML 3420 3177 3105 4990
SVD-EnRML 3092 1239 1947 3885
SVD-GF-RML-EnKF 818 1274 1244 1447

4.5.5 EnKF Results of Example 2

For the EnKF method, 150 unconditional ensembles were generated from the
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Cholesky decomposition of the prior covariance matrix. We use this set of 150 initial

ensembles to sample different ensemble sizes of 50, 100 and 150. Note that like

previous example, we add one additional realization corresponding to the mprior to

the initial ensemble members. The observed data to be assimilated corresponding to

mprior is dobs. The main objective here is to investigate the effects of ensemble size

and covariance localization on the final estimate of the model parameters, the history

matching and prediction results of EnKF algorithm. We consider both the standard

implementation of EnKF as well as EnKF with anisotropic covariance localization

using the Gaspari and Cohn [21] correlation function. We implement the covariance

localization in two different forms for this example. The first form is the standard

covariance localization given by Eq. 4.28 and the second form is the Kalman gain

localization given by Eq. 4.34. The correlation length in the principle direction (u-

axis) and orthogonal direction (v-axis) are respectively assumed to be au = 25×4x =

10, 000 feet and av = 10×4y = 4, 000 feet. The principal direction is aligned with

the principle direction of the prior covariance matrix of the log-permeability field

(α = 120◦).

The initial estimate of the uncertainty in the prediction performance is ob-

tained by running the reservoir simulation forward with all the unconditional en-

sembles. The variability of BHP and WOR production data from the initial models

compared to the true prediction are shown in Figures 4.37 and 4.38 for an ensemble

size of 150. As can be seen from these figures, the initial spread (uncertainty) of

the ensemble predictions is very large. The initial WOR prediction data for Prod-

1, Prod-2, Prod-3, and Prod-4 are respectively shown in Figures 4.37(c)- 4.38. As

shown, there is no water breakthrough for Prod-1 and Prod-4 in the truth case but

the initial ensemble mean shows nonzero WOR data.

The final estimates of the ensemble mean of log-permeability field as functions

of the ensemble size are presented in Figures 4.39, 4.40 and 4.41, respectively, for

standard EnKF without localization, with anisotropic covariance localization and
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(a) Inj-1 BHP.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
5 0 0

1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0
3 0 0 0
3 5 0 0
4 0 0 0
4 5 0 0
5 0 0 0
5 5 0 0
6 0 0 0
6 5 0 0
7 0 0 0

 

 

BH
P,

 p
si

T i m e  ( d a y )

(b) Prod-3 BHP.
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(c) Prod-1 WOR.

Figure 4.37: Matches and predictions of the BHP of Inj-1 and Prod-3 and the WOR of
Prod-1 with initial ensemble, open red circles are observed data, red is from
true model, blue is ensemble mean, gray curves are ensemble predictions,
Example 2.
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(a) Prod-2 WOR.
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(b) Prod-3 WOR.
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(c) Prod-4 WOR.

Figure 4.38: Matches and predictions of the WOR of Prod-2, Prod-3 and Prod-4 with
initial ensemble, open red circles are observed data, red is from true model,
blue is ensemble mean, gray curves are ensemble predictions, Example 2.
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with Kalman gain localization. As shown in Figure 4.39(a), we have obtained very

poor log-permeability field with the ensemble size of 50 with standard EnKF method

without covariance localization. The final log-permeability filed exhibits overshooting

(higher values of ln(k) than are reasonable). Values of lnk greater than 7.5 were

obtained which are inconsistent with the truth. Increasing the ensemble size to 100

and 150 members improves the results and the final estimate of mean of the log-

permeability fields capture some features of the truth as shown in Figures 4.39(b)

and 4.39(c). However, these fields show a high permeability region in the lower left

corner which do not appears in the truth (Figure 4.31(a)). As Figures 4.40 and 4.41

show, this problem is removed and the final ensemble mean fields provide a good

estimate of the true log-permeability field for all three ensemble sizes. The channel

features have been captured and there is no overshooting and undershooting values

in log-permeability. Also, note that there is not much differences between the results

of the anisotropic covariance localization and the Kalman gain localization.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.39: Ensemble mean log-permeability fields from EnKF as a function of ensemble
size without covariance localization, Example 2.

Figure 4.42 shows three of the initial (unconditional) ensemble members gen-

erated using the Cholesky decomposition of the prior covariance matrix. The final

conditional ensembles of model parameters corresponding to these unconditional re-

alizations (Figure 4.42) are shown, respectively, in Figures 4.43, 4.44 and 4.45 for
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(a) Ne=50.
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(b) Ne=100.

I n j - 1

P r o d - 1 P r o d - 2

P r o d - 3 P r o d - 4

2 4 6 8 1 0 1 2 1 4 1 6
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2
2 4

Y

X

- 1 . 0 0
0 . 4 2
1 . 8 3
3 . 2 5
4 . 6 7
6 . 0 8
7 . 5 0

(c) Ne=150.

Figure 4.40: Ensemble mean log-permeability fields from EnKF as a function of ensemble
size with anisotropic covariance localization, Example 2.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.41: Ensemble mean log-permeability fields from EnKF as a function of ensemble
size with Kalman gain localization, Example 2.
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the case without covariance localization, with anisotropic covariance localization and

with Kalman gain localization for the ensemble size of Ne = 150. As can be seen in

Figure 4.43, some features of the truth (Figure 4.31(a)) have been captured in the

final ensemble members with no localization. However, there is a small variability

between ensemble members. Moreover, again there is a region of high permeability

values in the lower left corner of each of the realization which does not appear in

the truth (Figure 4.31(a)). As Figures 4.44 and 4.45 show, with implementation of

covariance localization, the variability between the ensembles increases, the region

of high permeability values at the lower right corner of the reservoir disappears and

the essential features of the truth are still captured correctly.
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(a) Ensemble 4.

I n j - 1

P r o d - 1 P r o d - 2

P r o d - 3 P r o d - 4

2 4 6 8 1 0 1 2 1 4 1 6
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2
2 4

Y

X

- 1 . 0 0
0 . 4 2
1 . 8 3
3 . 2 5
4 . 6 7
6 . 0 8
7 . 5 0

(b) Ensemble 8.
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(c) Ensemble 12.

Figure 4.42: Three unconditional log-permeability fields, Example 2.

Figure 4.46 shows the history matching results during data assimilation and

prediction performances of the WOR of Prod-2 for the 50, 100, and 150 ensemble sizes

obtained for the case without covariance localization. It is clear from Figure 4.46(a)

that with an ensemble size of 50 the history matching results are reasonable with

small variability in the ensemble. However, the WOR prediction from all ensemble

members deviates from the truth after 3300 days. Note that the sharp reduction

of WOR at later time of the prediction phase is not physically correct for this par-

ticular example. We have obtained the same behavior of the WOR for a particular

realization with a commercial simulator (ECLIPSE). As shown in Figure 4.46(b),
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(a) Ensemble 4.
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(b) Ensemble 8.
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(c) Ensemble 12.

Figure 4.43: Three ensemble members of the final log-permeability fields obtained from
EnKF without localization, Ne=150, Example 2.
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(a) Ensemble 4.
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(b) Ensemble 8.
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(c) Ensemble 12.

Figure 4.44: Three ensemble members of the final log-permeability fields obtained from
EnKF with anisotropic covariance localization, Ne=150, Example 2.
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Figure 4.45: Three ensemble members of the final log-permeability fields obtained from
EnKF with Kalman gain localization, Ne=150, Example 2.
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increasing the ensemble size to 100 members improved the history matching results

and slightly improved the prediction performances but at latter times the ensemble

mean prediction deviates from the truth. The history matching results are good with

ensemble size of 150 without using localization and the ensemble mean prediction is

in good agreement with the truth (Figure 4.46(c)).
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.46: Matches and predictions of WOR of Prod-2 as a function of ensemble size
during data assimilation with EnKF without localization, open red circles are
observed data, red is from true model, blue is ensemble mean, gray curves
are ensemble predictions, Example 2.

The consistency of the results have been checked by rerunning the simulation

from time zero with the ensemble of permeability fields obtained by assimilating

all data and comparing the resulting data matches and future predictions with the

results obtained during the data assimilation. Figure 4.47 shows the predicted perfor-

mances of WOR of Prod-2 from the final model obtained by running from time zero

as a function of ensemble size for the case without localization. From Figure 4.47,

we observe that the ensemble mean prediction is in good agreement with the truth

for times less than 3000 days for ensemble sizes of 50 and 100 and all the results for

three ensemble sizes are comparable with the results of Figure 4.46. However, the

spread of the ensembles increases when we rerun from time zero.

The history matching results during data assimilation period and future fore-

casts of WOR of Prod-2 as a function of the ensemble size are shown in Figures 4.48
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.47: Matches and predictions of WOR of Prod-2 as a function of ensemble size for
rerun from time zero with EnKF without localization, open red circles are
observed data, red is from true model, blue is ensemble mean, gray curves
are ensemble predictions, Example 2.

and 4.49, respectively, for the case with anisotropic covariance localization and the

Kalman gain localization, respectively. As shown in these figures, we have obtained

very good history matches of the WOR with all three ensemble sizes and as we in-

crease the ensemble size, the prediction performance improves and the mean ensemble

prediction moves toward the true prediction. The comparison of these results with

the results of Figure 4.46 shows that the covariance localization slightly improves the

future forecast results for the case with 50 and 100 ensemble members. Note that

the results are almost similar for both implementations of covariance localization.

Figures 4.50 and 4.51 show the predicted performances of WOR of Prod-2

from the final model obtained by running from time zero as a function of ensemble

size for the case with covariance localization and Kalman gain localization. As we

can see from these figures, the rerun results are inconsistent with those obtained

during the data assimilation period especially for ensemble sizes of 50 and 100 and

the the uncertainty of the forecasts increased when we rerun from time zero. How-

ever, the variances of prediction are lower than those obtained from initial models

(Figure 4.38(a)).

In general, the behavior of the WOR and BHP history matches and prediction
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.48: Matches and predictions of WOR of Prod-2 as a function of ensemble size
during data assimilation with EnKF with anisotropic covariance localization,
open red circles are observed data, red is from true model, blue is ensemble
mean, gray curves are ensemble predictions, Example 2.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.49: Matches and predictions of WOR of Prod-2 as a function of ensemble size
during data assimilation with EnKF with Kalman gain localization, open
red circles are observed data, red is from true model, blue is ensemble mean,
gray curves are ensemble predictions, Example 2.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.50: Matches and predictions of WOR of Prod-2 as a function of ensemble size
for rerun from time zero with EnKF with anisotropic covariance localization,
open red circles are observed data, red is from true model, blue is ensemble
mean, gray curves are ensemble predictions, Example 2.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.51: Matches and predictions of WOR of Prod-2 as a function of ensemble size
for rerun from time zero with EnKF with Kalman gain localization, open
red circles are observed data, red is from true model, blue is ensemble mean,
gray curves are ensemble predictions, Example 2.
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results from EnKF for other wells is similar to those presented for the WOR of Prod-

2. As we increase the ensemble size, the history matching results improve during

the data assimilation, future performance predictions improve and the mean of the

prediction moves toward the true prediction and the final log-permeability fields

capture the most essential features of the truth. Also, the implementation of the

covariance localization mitigates the spurious correlations issue and improves the

history matches and prediction results especially for the case where the ensemble

size is small. Our results show that the anisotropic covariance localization and the

Kalman gain localization gave almost similar results with all ensemble sizes. We

check the consistency of the results by rerunning the simulation from time zero with

the ensemble of permeability fields obtained by assimilating all data and comparing

the resulting data matches and future predictions with the results obtained during the

data assimilation. Because we update the ensemble of primary reservoir simulation

variables along with the model parameters sequentially with EnKF and the problem

is highly non-linear, the inconsistency usually occurs when we rerun the simulation

with the updated models.

The results of history matching during data assimilation and the future per-

formance prediction of the WOR of Prod-3 as a function of ensemble size are shown

in Figures 4.52, 4.53 and 4.54, respectively, for the case without using covariance lo-

calization, with anisotropic covariance localization and the Kalman gain localization.

The corresponding history matches and prediction results obtained by rerunning the

simulation from time zero with the ensemble of permeability fields obtained by as-

similating all data are shown, respectively, in Figures 4.55, 4.56 and 4.57.

The history matches during data assimilation period and prediction perfor-

mance of the BHP of Prod-3 as a function of the ensemble size are shown in Fig-

ures 4.58, 4.59 and 4.60, respectively, for the case without covariance localization,

with anisotropic covariance localization and the Kalman gain localization, respec-

tively.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.52: Matches and predictions of WOR of Prod-3 as a function of ensemble size
during data assimilation with EnKF without localization, open red circles are
observed data, red is from true model, blue is ensemble mean, gray curves
are ensemble predictions, Example 2.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5

 

 

W
O

R 

T i m e  ( d a y )

(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.53: Matches and predictions of WOR of Prod-3 as a function of ensemble size
during data assimilation with EnKF with anisotropic covariance localization,
open red circles are observed data, red is from true model, blue is ensemble
mean, gray curves are ensemble predictions, Example 2.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.54: Matches and predictions of WOR of Prod-3 as a function of ensemble size
during data assimilation with EnKF with Kalman gain localization, open
red circles are observed data, red is from true model, blue is ensemble mean,
gray curves are ensemble predictions, Example 2.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.55: Matches and predictions of WOR of Prod-3 as a function of ensemble size for
rerun from time zero with EnKF without localization, open red circles are
observed data, red is from true model, blue is ensemble mean, gray curves
are ensemble predictions, Example 2.
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(a) Ne=50.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5

 

 

W
O

R 

T i m e  ( d a y )

(b) Ne=100.
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(c) Ne=150.

Figure 4.56: Matches and predictions of WOR of Prod-3 as a function of ensemble size
for rerun from time zero with EnKF with anisotropic covariance localization,
open red circles are observed data, red is from true model, blue is ensemble
mean, gray curves are ensemble predictions, Example 2.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.57: Matches and predictions of WOR of Prod-3 as a function of ensemble size
for rerun from time zero with EnKF with Kalman gain localization, open
red circles are observed data, red is from true model, blue is ensemble mean,
gray curves are ensemble predictions, Example 2.
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(a) Ne=50.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
5 0 0

1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0
3 0 0 0
3 5 0 0
4 0 0 0
4 5 0 0
5 0 0 0
5 5 0 0
6 0 0 0
6 5 0 0
7 0 0 0

 

 

BH
P,

 p
si

T i m e  ( d a y )

(b) Ne=100.
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(c) Ne=150.

Figure 4.58: Matches and predictions of BHP of Prod-3 as a function of ensemble size
during data assimilation with EnKF without localization, open red circles
are observed data, red is from true model, blue is ensemble mean, gray curves
are ensemble predictions, Example 2.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.59: Matches and predictions of BHP of Prod-3 as a function of ensemble size
during data assimilation with EnKF with anisotropic covariance localization,
open red circles are observed data, red is from true model, blue is ensemble
mean, gray curves are ensemble predictions, Example 2.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.60: Matches and predictions of BHP of Prod-3 as a function of ensemble size
during data assimilation with EnKF with Kalman gain localization, open
red circles are observed data, red is from true model, blue is ensemble mean,
gray curves are ensemble predictions, Example 2.

Figures 4.61, 4.62 and 4.63 respectively, show the results of predicting the

BHP of Prod-3 obtained from rerunning the simulation from time zero with the

ensemble of permeability field obtained by assimilating all data for the cases without

localization, with anisotropic localization and the Kalman gain localization. As can

be seen from this figure, we have obtained consistent results in all cases with ensemble

sizes of 100 and 150. The BHP performances of other wells (not shown) are similar

to the performance of the BHP of Prod-3.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.61: Matches and predictions of BHP of Prod-3 as a function of ensemble size for
rerun from time zero with EnKF without localization, open red circles are
observed data, red is from true model, blue is ensemble mean, gray curves
are ensemble predictions, Example 2.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.62: Matches and predictions of BHP of Prod-3 as a function of ensemble size
for rerun from time zero with EnKF with anisotropic covariance localization,
open red circles are observed data, red is from true model, blue is ensemble
mean, gray curves are ensemble predictions, Example 2.
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(a) Ne=50.
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(b) Ne=100.
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(c) Ne=150.

Figure 4.63: Matches and predictions of BHP of Prod-3 as a function of ensemble size for
rerun from time zero with EnKF with Kalman gain localization, open red
circles are observed data, red is from true model, blue is ensemble mean, gray
curves are ensemble predictions, Example 2.

4.5.6 Incorporation of EnKF results with SVD-GF-EnRML algorithm, Example 2

Next, we present results obtained by using final updated EnKF realizations of

the permeability field as initial guesses in the SVD-GF-EnRML algorithm to generate

15 conditional realizations. We use the same procedure as described previously for

this new implementation of the SVD-GF-EnRML algorithm. We initialize the SVD-

GF-EnRML algorithm by using the final updated model corresponding to the muc =
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mprior obtained from the EnKF as a MAP realization to compute the truncated-

SVD. The strategy of changing the sv-cut during iteration is similar to the previous

implementation of the SVD-GF-EnRML algorithm. As in the previous example, this

implementation significantly improves the computational efficiency of the SVD-GF-

EnRML algorithm and the final history matches and prediction results are very good

compared to those obtained with the EnKF method.

For the results presented in this section, the set of initial guesses (realiza-

tions) of the permeability field were selected as the first 15 realizations obtained

from EnKF with anisotropic covariance localization with ensemble size of Ne = 150

(minitial = ma
EnkF, Loc). Figure 4.64 shows the behavior of the normalized objective

function during iteration obtained with SVD-GF-EnRML-EnKF algorithm. The ini-

tial large values of the normalized objective function at iteration zero are from final

log-permeability realizations obtained with the EnKF with anisotropic covariance

localization and indicate poor data matches which is expected from the results of

Figures 4.50(c), 4.56(c) and 4.62(c). Note that the value of ON,max(m) decreases

from 822.37 to 1.38 in 30 iterations with the SVD-GF-EnRML-EnKF algorithm and

the number of retained singular triplets is 37 with sv-cut = 0.0004 at convergence.
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Figure 4.64: Behavior of the normalized objective function for each realization during
iteration of SVD-GF-EnRML with minitial = ma

EnkF, Loc, Example 2.
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The average of the first 15 realizations of the final log-permeability fields

obtained from the EnKF method, i.e., the average of the initial guesses of log-

permeability fields for the SVD-GF-EnRML algorithm is shown in Figure 4.65(b).

The final average of realizations of log-permeability field obtained from the SVD-

GF-EnRML-EnKF algorithm is shown in Figure 4.65(c). As can be seen from this

figure, the essential features of the truth have been captured but are different than

the EnKF results of Figure 4.65(b).
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(a) True ln(k).
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(b) EnKF with anisotropic
localization.
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(c) SVD-GF-EnRML-
EnKF.

Figure 4.65: True log-permeability field (a) and average of first 15 realizations of final ln(k)
from EnKF with anisotropic covariance localization (b) and from SVD-GF-
EnRML algorithm using minitial = ma

EnkF, Loc (c), Example 2.

Figure 4.66 shows the final conditional log-permeability fields obtained with

the SVD-GF-EnRML-EnKF algorithm. The corresponding unconditional realiza-

tions are shown in Figure 4.42 and the corresponding initial guesses (final log-

permeability realizations from EnKF method) are shown in Figure 4.44. As can

be seen from Figure 4.66, the essential features of the high permeability region con-

necting Prod-2 and Prod-3 and the high permeability region around Prod-4 that

exist in the true model have been captured in each individual conditional realiza-

tion. Also, each realization shows some features of the low permeability region exist

in the south-west part of the reservoir; however, there is variability between each

realization.
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(a) Realization 4.
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(b) Realization 8.
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(c) Realization 12.

Figure 4.66: Three conditional realizations of log-permeability fields from SVD-GF-
EnRML algorithm using minitial = ma

EnkF, Loc, Example 2.

The history matching results and future forecasts of the BHP of Prod-3 and

the WOR of Prod-2 and Prod-3 obtained with the SVD-GF-EnRML-EnKF algo-

rithm (minitial = ma
EnkF, Loc) are shown in Figure 4.67. As can be seen from this

figure, very good matches of the BHP and WOR are obtained. The future perfor-

mance predictions (t > 3000 days) of the BHP of Prod-3 and the WOR of Prod-2

are comparable with truth. The future forecasts of the WOR of Prod-3 are in good

agreement with the truth until 3300 days after which the mean prediction of the re-

alizations over predict the WOR of Prod-3. The data matches and future predictions

obtained with SVD-GF-EnRML-EnKF algorithm are better than the corresponding

results obtained with EnKF (Figures 4.50(c), 4.56(c) and 4.62(c)).

The last row of Table 4.2 gives the summary of the computational cost of the

SVD-GF-EnRML-EnKF algorithm based on the number of simulation runs, forward

gradient and adjoint solutions. The comparison of this row with the computational

cost of the SVD-GF-EnRML algorithm (results of the first row of Table 4.2) indi-

cates that we have significantly improved the computational efficiency of the SVD-

GF-EnRML algorithm by generating a set of initial guesses of the log-permeability

field from EnKF, i.e., we gain 71 percent computational savings with the combined

algorithm.

137



0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
5 0 0

1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0
3 0 0 0
3 5 0 0
4 0 0 0
4 5 0 0
5 0 0 0
5 5 0 0
6 0 0 0
6 5 0 0
7 0 0 0

 

 

BH
P,

 p
si

T i m e  ( d a y )

(a) BHP Prod-3.
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(b) WOR Prod-2.
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(c) WOR Prod-3.

Figure 4.67: Matches and predictions of BHP and WOR from SVD-GF-EnRML using
minitial = ma

EnkF, Loc, open red circles are observed data, red is from true
model, blue is the prediction mean, gray curves represent predictions from
realization, Example 2.

4.5.7 Toy Problem

Because EnKF is constructed to estimate the conditional mean of the posterior

conditional pdf at each data assimilation step, the EnKF ensemble of realizations

may provide a poor representation of the uncertainty if the sequence of posterior pdf’s

are non-Gaussian. Zafari and Reynolds [65, 64] illustrated this EnKF difficulty by

considering two toy problems with multimodal conditional pdf’s. Here, we reconsider

the toy problem of Zafari and Reynolds [65] simply to illustrate that if we use the

final ensemble of vectors of model parameters as initial guesses in SVD-EnRML or

SVD-GF-EnRML, we generate an good approximation of the true posterior pdf.

For this toy problem, there is a single real parameter m which has a prior

Gaussian distribution with mean equal to 2.0 and variance equal to 0.2. The forward

model is given by

d = g(m, t) = 1− 9t

2
(m− 2π

3
)2. (4.35)

where m is a real random variable and t acts as time. This equation can be rewritten
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as a recursive equation so that it mimics a reservoir simulator:

g(m, t+ ∆t) = g(m, t)− 9∆t

2
(m− 2π

3
)2. (4.36)

The true synthetic data are generated with mtrue = 1.88358, at three times (tj = j,

j = 1, 2, 3). For each time, synthetic observed data were generated by adding nor-

mal random noise generated from N(0, 0.01) to true synthetic data as measurement

error. Figure 4.68 shows the prior pdf and the posterior pdf conditional to three

observed data. As can be seen from this figure, the posterior pdf has two modes, one

approximately at mtrue = 1.88358 and another at m = 2.3.
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Figure 4.68: Prior pdf (red curve) and posterior pdf (blue curve) after integrating 3 data.

We generate 1000 unconditional realizations of the model parameters from

the prior distribution and generate 1000 conditional realizations with three different

algorithms of the standard RML algorithm, SVD-EnRML algorithm and by assimi-

lating data with EnKF. We compare these distributions of m to the true posterior

pdf. Then we compare the EnKF results with those obtained from SVD-EnRML

and SVD-EnRML-EnKF where we use the EnKF ensemble as the ensemble of ini-

tial guesses for SVD-EnRML. The histograms of the conditional realizations of m
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(a) RML.
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(b) SVD-EnRML.
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(c) EnKF.
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(d) SVD-EnRML-EnKF.

Figure 4.69: Posterior pdf (blue curve) and realizations histogram (red patterns) obtained
with: (a) RML, (b) SVD-EnRML, (c) EnKF and (d) SVD-EnRML-EnKF
algorithms.
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obtained with standard RML and SVD-EnRML algorithms are shown, respectively,

in Figures 4.69(a) and 4.69(b). As can be seen from these figures, both algorithms

generated conditional realizations which provide good approximation of the true

posterior pdf. Figure 4.69(c) shows the histogram of the ensemble of model para-

meters obtained by assimilating 3 data obtained with EnKF compared to the true

posterior pdf. The EnKF generated ensemble provides a poor approximation to

the true posterior pdf whereas SVD-EnRML-EnKF provides a good approximation,

Figure 4.69(d).

The behavior of the normalized objective function during iteration for realiza-

tions that were obtained using the SVD-EnRML algorithm with minitial = muc and

minitial = ma
EnkF (SVD-EnRML-EnKF), respectively, are shown in Figures 4.70(a)

and 4.70(b). As shown in these figures, the normalized objective function has de-

creased during iterations in both cases and at convergence we have obtained low

values of the maximum of the normalized objective function.
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(a) SVD-EnRML with minitial = muc.
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(b) SVD-EnRML with minitial = mEnkF
a .

Figure 4.70: Behavior of the normalized objective function for each realization during
iteration of the SVD-EnRML algorithm with (a) minitial = muc and (b)
minitial = ma

EnkF, red curve represents MAP estimate, gray curves represent
realizations.

We obtained qualitatively similar results by implementation of the SVD-GF-
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EnRML and SVD-GF-EnRML-EnKF algorithms (not shown).
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CHAPTER 5

CONCLUSIONS

The main focus of this work was to develop and implement efficient para-

meterization algorithms for history matching. In the basic algorithms implemented

here, at each iteration of the Levenberg-Marquardt algorithm, the change in the

vector of model parameters, δm, is represented by a linear combination of the right

singular vectors of a dimensionless sensitivity matrix. We have presented theoreti-

cal arguments that show that this parameterization is optimal if the objective is to

minimize the posterior uncertainty in model parameters. The Lanczos algorithm can

be used to generate the truncated singular value decomposition in a way that avoids

explicit computation of any sensitivities.

The computational cost of generating a set of singular triplets is quite high,

but computational efficiency can be improved by combining parameterization based

on the right singular vectors corresponding to the largest singular values with the

LBFGS algorithm as a new LBFGS-SVD algorithm. We observed that the initial rate

of reduction in the objective function is almost independent of the number of singular

triplets. Therefore, the computational efficiency can also be improved by a modified

SVD parameterization where we gradually retain more right singular vectors in the

parameterization at each iteration of the optimization algorithm. To further improve

computational efficiency of the SVD parameterization algorithm, we developed the

SVD-Grd algorithm. In this algorithm, we added an inner loop iteration in which we

explicitly compute the gradient of the objective function with the adjoint method,

where during the inner loop iteration the truncated SVD parameterization computed

in the outer loop does not vary. Our computational examples indicate that the SVD-
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Grd algorithm requires less computational cost than the basic SVD parameterization

algorithm.

For both examples presented in this work, and other examples we have con-

sidered, truncated SVD based on retaining singular triplets such that the ratio of the

minimum singular value to the maximum singular value was on the order of 0.001

was sufficient to obtain a reasonable estimate of the permeability field consistent

with the geology of the truth and good data matches.

We have also incorporated a truncated-SVD parameterization algorithm with

the RML method to obtain two iterative algorithms (SVD-GF-EnRML and SVD-

EnRML algorithm) for history-matching production data and characterizing the

uncertainty in reservoir description and future performance predictions. Both al-

gorithms require generation of the singular triplets of the dimensionless sensitivity

matrix associated with a particular realization at each iteration.

For generating multiple realizations conditioned to dynamic data, these al-

gorithms are far more efficient than previous implementations of gradient-based al-

gorithms. When applied to characterize permeability fields, the algorithms gave

reasonable characterizations of the true permeability field, good data matches and

good future performance predictions.

Although the SVD-based algorithms are far less efficient than EnKF, they are

far more robust. In particular, they do not suffer from the statistical inconsistency

that can significantly degrade the results of EnKF for highly nonlinear problems; the

SVD-based algorithms can locate multiple modes when the posterior pdf is multi-

modal and the SVD-based algorithms never encounter loss of rank issues that can

lead to ensemble collapse when EnKF is used. The SVD-based algorithms yield

better matches of production data and more reliable future performance predictions

than are obtained with EnKF.

The performance of the EnKF technique and the effect of covariance local-

ization has been investigated. The rank deficiency problem of the EnKF technique
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and the spurious correlations issue have been mitigated with covariance localization

particularly for the case where the ensemble size is small; we have obtained good

history match and prediction results and the final model parameters gave feasible

approximations of the truth. Even though we obtained good history matching results

during data assimilation time with covariance localization, we obtained inconsistent

results when we reran the simulator forward from time zero.

By using the ensemble of realizations of model parameters obtained by EnKF

with localization as the initial guesses in the SVD-based algorithms, the computa-

tional efficiency of the SVD-algorithm was significantly improved. This result should

be considered carefully, however. If one used EnKF without localization and ob-

tained ensemble collapse, using the ensemble of EnKF realizations as initial guesses

in the SVD-based algorithms would probably not be appropriate.
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APPENDIX A

SINGULAR VALUE DECOMPOSITION

Without loss of generality, we assume that GD is Nd ×Nm where Nd < Nm.

Then the singular value decomposition of the dimensionless sensitivity matrix is given

by

GD = UΛV T , (A.1)

where U is an Nd ×Nd orthogonal matrix, V is an Nm ×Nm orthogonal matrix. Λ

is an Nd ×Nm matrix which can be partitioned as

Λ =

[
Λs O

]
, (A.2)

where O is the Nd × (Nm −Nd) null matrix and Λs is the Nd ×Nd diagonal matrix

which has the singular values of GD as its diagonal entries, i.e.,

Λs =



λ1 0 0 · · · 0

0 λ2 0 · · · 0

...
...

. . . · · · 0

0 0 0
. . . 0

0 0 0 · · · λNd


, (A.3)

where λj is the jth singular value of GD. We let ui be the ith column of U and vj

be the jth column of V so that

U =
[
u1, u2, · · ·uNd

]
, (A.4)
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and

V =
[
v1, v2, · · · vNm

]
. (A.5)

The set of ui’s are the left singular vector and the set of vi’s are the right singular

vectors.

Because U and V are orthogonal matrices UUT = UTU = INd
, V V T =

V TV = INm ,

uT
i uj = δi,j for i, j = 1, 2, · · ·Nd, (A.6)

and

vT
i vj = δi,j for i, j = 1, 2, · · ·Nm, (A.7)

where δi,j is the Kronecker delta function. It is well known [24] and easy to show

using Eq. A.1 and Eqs. A.4 through A.7 that

GDvi = λiui for i = 1, 2, · · ·Nd, (A.8)

GDvi = 0 for i = Nd + 1, · · ·Nm, (A.9)

and

GT
Dui = λivi for i = 1, 2, · · ·Nd. (A.10)

Multiplying Eqs. A.8 and A.9, respectively, by GT
D and using Eq. A.10 gives

GT
DGDvi = λ2

i vi for i = 1, 2, · · ·Nd, (A.11)

and

GT
DGDvi = 0 for i = Nd + 1, · · ·Nm, (A.12)

Thus, the eigenvalue-eigenvector pairs of the Nm×Nm matrix GT
DGD are (λ2

i , vi) for

i = 1, 2 · · ·Nd and (0, vi) for i = Nd + 1, · · ·Nm.
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By multiplying Eq. A.10 by GD and using Eq. A.8, it follows that

GDG
T
Dui = λ2

iui, for i = 1, 2, · · ·Nd, (A.13)

so the eigenvalue-eigenvector pairs of the Nd × Nd matrix GDG
T
D are (λ2

i , ui) for

i = 1, 2 · · ·Nd.

From Eq. A.13, it follows that

(
INd

+GDG
T
D

)−1
ui =

1

(1 + λ2
i )
ui, for i = 1, 2, · · ·Nd, (A.14)

so the eigenvalue-eigenvector pairs of theNd×Nd matrix
(
INd

+GDG
T
D

)
are (1+λ2

i , ui)

for i = 1, 2 · · ·Nd.

Multiplying Eq. A.8 by GT
D

(
INd

+ GDG
T
D

)−1
and using Eqs. A.14 and A.10

gives

GT
D

(
INd

+GDG
T
D

)−1
GDvi =

λi

(1 + λ2
i )
GT

Dui =
λ2

i

(1 + λ2
i )
vi

(A.15)

for i = 1, 2, · · ·Nd.

Similarly, multiplying Eq. A.9 by GT
D

(
INd

+GDG
T
D

)−1
, it follows easily that

GT
D

(
INd

+GDG
T
D

)−1
GDvi = 0 (A.16)

for i = Nd + 1, · · ·Nm.
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