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ABSTRACT

Mehrdad Gharib Shirangi (Master of Science in Petroleum Engineering)

History Matching Production Data With Truncated SVD Parameterization

Directed by Albert C. Reynolds

206 pp., Chapter 6: Conclusions

(299 words)

For large scale history matching problems, gradient based algorithms, including

the Gauss-Newton and the Levenberg-Marquardt algorithms, require forming the sensi-

tivity matrix which can be computationally very expensive. Parameterization based on

the SVD of a dimensionless sensitivity matrix has been discussed by some authors to be

a computationally efficient gradient based method of history matching production and,

more recently, seismic data. In SVD parameterization algorithms, only a truncated SVD

of a dimensionless sensitivity matrix is obtained with the Lanczos method. The SVD pa-

rameterization method has been previously applied to generate realizations of horizontal

log permeability fields; we apply the method to simulate other rock property fields, i.e.,

porosity and vertical log permeability fields. This is one step towards the application

of the method to large scale history matching problems. In this work, a modified SVD

parameterization algorithm is developed which is computationally more efficient than

the previous algorithms introduced in this framework. The method is applied to several

2D and 3D synthetic reservoirs for simulation of porosity fields as well as horizontal and

vertical log permeability fields.

We also compare the Gauss-Newton and Levenberg-Marquardt algorithms. In

this work, we show that the LM algorithm generates a good estimate of the model not

only because of damping the change of model parameters, but also because the LM
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search direction at early iterations has almost negligible components in the direction of

eigenvectors associated with the small eigenvalues of the Hessian matrix. On the other

side, at early iterations of the Gauss-Newton algorithm, the search direction vector

may have large components in the direction of eigenvectors associated with the small

eigenvalues, and thus it adds roughness to the model.
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CHAPTER 1

INTRODUCTION

1.1 History Matching as an Inverse Problem

In forward problems, the evolutionary state of a system is predicted from some

predictive model, given auxiliary conditions and physical properties. Physical properties

are referred to as model parameters. One example of a forward problem is to predict

pressures and saturations of gridblocks and well rates of a reservoir versus time, given

the initial state and the geometry of the reservoir, the rock property fields and fluid

properties.

In an inverse problem, given a finite number of observed data which are functions

of state variables, one aims to infer information about model parameters. Observed data

contain measurement error.

History matching is a discrete inverse problem which is characterized by a fi-

nite number of model parameters. The history matching process consists of estimating

reservoir properties through matching predicted data to reservoir production history

(observed data).

It is well-known that large scale inverse problems are usually ill-posed as there

are conceptually an infinite number of models that match the data.

Here, the non-uniqueness property of solution to history matching problems is

discussed. A history matching problem does not have a unique solution; there exist

infinite number of solutions that match the observed data equally well. Thus the solution

to a history matching problem, which is an inverse problem, is not a single model. If

one is to pick a single model as solution, there should be a logic to selecting it. One

approach to inverse problems is based on Bayesian statistics [28]. In this context a
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probability distribution is defined for the solution of an inverse problem. The full solution

of an inverse problem is the a posteriori probability density function (pdf) for the model

variables [28].

1.2 A Priori and A Posteriori Probability Density Functions

In this study, the Nm-dimensional vector of model parameters is denoted by m

and it can include horizontal and vertical log permeability and porosity of gridblocks.

Permeability fields are assumed to have a log-normal distribution, while porosity fields

are assumed to have normal distribution.

In reservoir characterization, probability density functions are usually assumed

to have a Gaussian distribution. Gaussian distributions are convenient to deal with

in multidimensional space, as they can be fully described by the mean of the random

variable and its covariance.

The prior uncertainty in the model parameters is described by a pdf. If the

prior pdf has a Gaussian distribution, it can be fully described by its mean and the

covariance. To show a Gaussian prior distribution, with m denoting the random vector

of model parameters, the following notation is used:

m ∼ N(mprior, CM), (1.1)

which means the random vector m has a normal (Gaussian) distribution with mean

mprior and covariance matrix CM . The prior pdf is given by

f(m) = a1 exp
[
− 1

2
(m−mprior)

TC−1
M (m−mprior)

]
, (1.2)

where a1 is the normalizing constant. The Nd-dimensional column vector of predicted

data d is related to the vector of model parameters m by

d = g(m). (1.3)
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If m is the vector of true model parameters, then d is referred to as true data.

However, what is available is observed data which is the true data with measurement

error added to it. The difference between true data, dtrue, and the corresponding vector

of observed data, dobs, represents measurement error εd, i.e.,

εd = dtrue − dobs. (1.4)

It is usually reasonable to assume that measurement error has a Gaussian distri-

bution with mean zero and an Nd×Nd covariance matrix CD. In other words, observed

data is a random vector that has a Gaussian distribution with mean of dtrue = g(mtrue)

and covariance matrix CD. However, in reality mtrue is unknown; which means that the

mean of this pdf, g(mtrue), is unknown, but a sample of this distribution which is dobs

is available. For this reason the Gaussian pdf is expressed with a known sample and

unknown mean, g(m):

f(dobs|m) = f(εd) = a2 exp
[
− 1

2
(dobs − g(m))TC−1

D (dobs − g(m))
]
, (1.5)

where a2 is the normalizing constant. This pdf characterizes the uncertainty in observed

data, dobs, given the model parameters, m. As dobs is given, Eq. 1.5 gives the likelihood

of m given dobs denoted by L(m|dobs); the value of L(m|dobs) is greater if the predicted

data corresponding to the model m is closer to dobs. According to the Bayes Theorem

[35, 28], the posterior pdf of the model parameters conditional to the observed data is

proportional to the product of the prior pdf and the likelihood function for the model

parameters:

f(m|dobs) ∝ f(m)L(m|dobs). (1.6)

Using Eqs. 1.2 and 1.5 in Eq. 1.6, the posterior pdf of model parameters condi-

tioned to observed data can be written as

f(m|dobs) = a exp(−O(m)), (1.7)
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where a is the normalizing constant and O(m) which is referred to as the total objective

function, is

O(m) =
1

2
(m−mprior)

TC−1
M (m−mprior) +

1

2
(g(m)− dobs)TC−1

D (g(m)− dobs)

= Om(m) +Od(m). (1.8)

The total objective function has two parts, the model mismatch part, Om, and

the data mismatch term, Od. The model mismatch part, which comes from the prior

pdf, provides regularization to avoid unrealistic changes in model parameters.

To sample the posterior pdf and find a highly probable model, f(m|dobs) should

be relatively high, which means that the objective function in Eq. 1.8 should be small.

Thus to find a probable model, an optimization problem should be solved.

1.3 Sampling the a Posteriori PDF

As mentioned before, the full solution of an inverse problem is the a posteriori

probability density function for the model variables [28]. The maximum a posteriori

estimate (MAP), is the one that maximizes Eq. 1.7 or equivalently minimizes Eq. 1.8.

The MAP estimate represents the mean of the posteriori distribution in the Gaussian

case and thus is smooth compared to a sample (realization) from the posterior pdf; the

MAP does not reflect the full heterogeneity in the model. In order to perform uncertainty

analysis on the geological description and performance predictions, one needs to generate

a suite of realizations from the a posteriori pdf.

For large scale history matching problems, full characterization of the a posteriori

pdf is impractical. Instead, an approximate sample of the a posteriori pdf is obtained

with proposed methods, to have an approximate solution of the inverse problem. Sam-

pling the a posteriori pdf is equivalent to constructing a suite of realizations which is

referred to as simulation. Constructing a particular estimate of the model is referred to

as estimation. In this thesis, emphasis is on estimation and simulation of permeability

and porosity fields.
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There are two types of sampling methods, those which are known to sample

correctly and those that are only approximately correct. Theoretically rigorous methods

of sampling such as the Markov chain Monte Carlo (MCMC) method or the rejection

algorithm are computationally expensive [23].

Approximate sampling methods include linearization around the MAP (LMAP)

and Randomized Maximum Likelihood (RML) method. Linearization around the MAP

has been applied to the problem of generating realizations conditional to production data

by several authors [6, 26]. The advantage of linearization around the MAP is its low

computational cost, which requires minimizing only one objective function. However,

in highly non-Gaussian cases the method fails to give an acceptable sample. Liu and

Oliver [23] found that for a nonlinear problem, the realizations generated with the LMAP

method, did not even approximately honor the data. RML introduced by Oliver et al.

[27], is proven to sample correctly in the linear case, i.e, when data are linearly related to

the model parameters. Although there is no rigorous theoretical foundation that RML

samples correctly when data is not linearly related to the model parameters, several

computational experiments have shown that the method performs an adequate sampling

in the nonlinear case [23, 31, 14].

The work by Liu and Oliver [23] indicates that RML gives a reasonable characteri-

zation of uncertainty compared to MCMC. In this work we mainly use the RML method.

1.3.1 Randomized Maximum Likelihood Method

Randomized Maximum Likelihood(RML), introduced by Oliver et al. [27], is a

Monte Carlo method to sample the a posteriori pdf. In this method, Eq. 1.8 is modified

such that, mprior is replaced by an unconditional simulation, muc, from the prior model

and dobs is replaced by a sample duc, from the Gaussian distribution with mean dobs and

covariance matrix CD. A realization from the Gaussian prior pdf is generated from

muc = mprior + C
1/2
M zm, (1.9)
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where zm is an Nm-dimensional column vector of random normal deviates. The matrix

C
1/2
M is a square root of CM , e.g., its Cholesky decomposition. Similarly a realization

from N(dobs, CD) is generated from

duc = dobs + C
1/2
D zd, (1.10)

where zd is an Nd-dimensional column vector of random normal deviates. The matrix

C
1/2
D is a square root of CD. Finally the following equation is minimized to generate a

sample of the a posteriori pdf.

Oj(m) =
1

2
(m−muc,j)

TC−1
M (m−muc,j) +

1

2
(g(m)− duc,j)TC−1

D (g(m)− duc,j). (1.11)

In order to generate Ne samples of the a posteriori pdf, Ne simulations of dobs

and Ne simulations of mprior are generated and Eq. 1.11 is minimized for j = 1, · · ·Ne.

Based on the results discussed in Oliver et al. [28], if mc is the model obtained at

convergence, we expect ON(mc), the normalized objective function evaluated at mc,

satisfy

1− 5
√

2/Nd ≤ ON(mc) ≤ 1 + 5
√

2/Nd . (1.12)

When generating a MAP estimate, the normalized objective function is defined

by

ON(m) = 2
O(m)

Nd

, (1.13)

and in generating a conditional realization with RML, the normalized objective function

is defined by

ON,j(m) =
Oj(m)

Nd

. (1.14)

This result will be used to provide an indication of the quality of data match.

1.4 The Sensitivity Matrix

One way to minimize the objective function of Eq. 1.8 is using the gradient based
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algorithms, in particular the Gauss-Newton method. In the Gauss-Newton method of

minimizing the objective function O(m), given by Eq. 1.8, the search direction δml+1 at

the lth iteration, is generated from

Hlδm
l+1 = −∇Ol, (1.15)

where ∇Ol is the gradient of O(m) evaluate at ml, given by

∇Ol = C−1
M (ml −mprior) +GT

l {C−1
D (g(ml)− dobs)}, (1.16)

and Hl is the GN-Hessian matrix, given by

Hl = C−1
M +GT

l C
−1
D Gl. (1.17)

G is the matrix of total derivatives of the predicted data, gi, i = 1, 2, . . . , Nd, with

respect to the model parameters, which is called the sensitivity matrix and is defined as

G =
[
Gi,j

]
=
[ ∂gi
∂mj

]
, (1.18)

for i = 1, 2, . . . , Nd and j = 1, 2, . . . , Nm. Thus G is an Nd × Nm matrix. Here and in

the rest of this thesis, G denotes the sensitivity matrix, given by

G =



∂g1
∂m1

∂g1
∂m2

. . . ∂g1
∂mNm

∂g2
∂m1

∂g2
∂m2

. . . ∂g2
∂mNm

...
...

...
...

∂gNd

∂m1

∂gNd

∂m2
. . .

∂gNd

∂mNm


, (1.19)

where the (i, j) entry of the matrix G, denoted as ∂gi
∂mj

, is the total derivative of the ith

predicted data with respect to the jth model parameter.

The product of G times an arbitrary Nd-dimensional vector v, which is a linear
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combination of the columns of G, can be computed with the “gradient simulator method”

[4]. The product of GT times an arbitrary Nm-dimensional vector u, which is a linear

combination of the rows of G, can be computed with the “adjoint method” [22, 43].

These methods are discussed in Oliver et al. [28].

The whole sensitivity matrix, G, can be formed by either Nm applications of the

gradient simulator method or Nd adjoint solutions. If both Nm and Nd are very large,

forming the matrix G can be computationally very expensive; because of this fact, a

direct application of the GN algorithm to large scale problems is not efficient.

For the nonlinear conjugate gradient method [24, 7, 20], and for the quasi-Newton

methods, explicit computation of the full sensitivity matrix is not necessary. Both algo-

rithms use the gradient information, and to apply them, only the product of G times a

vector and/or the product of GT times a vector are required. Among the quasi-Newton

methods, the limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) method has

been successfully applied to history matching problems [43, 13].

1.5 Generating Rock Property Fields

In the examples of this thesis, we generate the synthetic rock property fields by

first generating a covariance matrix. Different types of rock property fields, i.e., porosity,

horizontal and vertical permeability, are not independent but they are correlated. This

is because, at a low permeability region of the reservoir, we usually do not expect high

porosity, and vice versa.

The vector of model parameters, m, can be shown with:

m =

(
[ln(kh)]

T [ln(kz)]
T [φ]T

)T
, (1.20)

where ln(kh) denotes the vector of horizontal log permeability of all gridblocks, ln(kz)

denotes the vector of vertical log permeability of all gridblocks and φ denotes the vector

of porosity of all gridblocks.
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The covariance matrix for the vector of m can be written as

CM =


Cln kh Cln kh,ln kz Cln kh,φ

Cln kz ,ln kh Cln kz Cln kz ,φ

Cφ,ln kh Cφ,ln kz Cφ

 , (1.21)

where Cln kh denotes the covariance matrix for the vector ln(kh), and Cln kz ,ln kh denotes

the cross covariance between the vectors ln(kh) and ln(kz). Other vectors are defined

the same way. A prior realization of rock property fields is generated with Eq. 1.9 in

Subsection 1.3.1.

For details and types of covariance matrices, see Chapter 5 of Oliver et al. [28].

In this thesis, we avoid specific modeling of the cross covariance matrices by using the

“screening hypothesis” of Xu et al. [41]. As explained in Reynolds et al. [29], the screening

hypothesis implies that

Cφ,ln kh = Cln kh,φ =
ρφ,ln khσφ
σln(kh)

Cln kh , (1.22)

where σln(kh) is the standard deviation of horizontal log permeability, and ρφ,ln kh is the

correlation coefficient between porosity and log permeability at a common location. The

cross correlation matrices for other pairs of rock property fields can be defined similar

to Eq. 1.22.

This screening hypothesis eliminates the need to develop a model for the cross-

variogram between porosity and permeability.

1.6 Parameterization Algorithms

In real field history matching problems, the number of model parameters to be

adjusted is very large; besides that, the number of data can be small and the data may

be available only at few locations. The data may have very small or even no sensitivity to

some of the model parameters. Using the data to resolve the properties of all parameters

individually, is misleading. Instead of finding the individual properties of the gridblocks,
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one should try to resolve the important geological features of the rock property fields.

In geological descriptions based on Gaussian models, there is connectivity between rock

properties of neighboring gridblocks.

In history matching problems, the number of model parameters can be very large.

Reducing the number of model parameters to be estimated, can significantly reduce the

computational costs, and may also introduce a regularization. Many parameterization

algorithms are developed to reduce the number of parameters to be estimated.

One of the first parameterization methods applied to history matching problems,

is the method of zonation. In this method, in order to reduce the number of model

parameters, the reservoir is divided into a small number of zones. In each of the zones

the properties are assumed to be uniform. A modeling error is thus introduced through

the assumption of uniform properties within each zone and by assigning the boundaries

of these zones more or less arbitrarily [16]. Jacquard and Jain [18] and Jahns [19] used

the zonation method to estimate to match pressure data in synthetic one dimensional

and two dimensional single phase reservoirs.

The work by Gavalas et al. [16] shows that by using a priori statistical information

on the unknown parameters, the problem becomes better determined. They showed

that the results of Bayesian estimation, where an objective function containing the prior

information of the rock properties, is minimized by an optimization algorithm, is more

accurate than those of zonation.

Shah et al. [34] proposed a parameterization based on the eigenvectors associated

with the largest eigenvalues of the matrix GTG to reduce the number of parameters.

They compared Bayesian estimation, parameterization using sensitivity vectors and pa-

rameterization by zonation. They used the trace of the a posteriori covariance matrix

for the measure of the uncertainty in the estimate. They concluded that the Bayesian

estimation generated a model with the lowest uncertainty.

Gavalas et al. [16] advocated the use of eigenvectors of the prior covariance matrix

for parameterization. For the one dimensional problems they considered, they reduced
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the number of parameters from sixty six to twenty without significantly affecting the

accuracy of the estimates of the porosity and permeability fields. Later, Oliver [26] used

parameterization based on the Karhunen-Loeve expansion, to condition log permeabil-

ity fields to well test pressure data, variogram and point measurements of permeability.

The Karhunen-Loeve expansion is referred to the decomposition of a random function, in

terms of the eigenvectors of the covariance. It is optimal in a sense that it is the most ef-

ficient in putting the maximum amount of energy into the fewest modes. In one example

by Oliver [26], repararneterization based on the Karhunen-Loeve expansion, reduced the

number of parameters to be obtained in the Gauss-Newton matrix problem, from 1089

to 128 without a significant reduction in the quality of the final permeability estimates.

Reynolds et al. [30] applied the parameterization based on the spectral decomposition

of the prior correlation matrix which is dimensionless. They found that when the over-

all prior covariance matrix contains information for both porosity and permeability, a

straightforward application of the spectral decomposition results in a reparameterization

which suppresses much of the porosity information; in case that the covariance matrix

is for different types of model parameters, the spectral decomposition should be applied

to the prior correlation matrix.

Reynolds et al. [30] used the subspace method to reduce the size of the matrix

problem in each of the Gauss-Newton iterations for history matching problems. In the

subspace method, the search direction vector is expanded as a linear combination of a few

basis vectors. These vectors may be gradients of subobjective functions, e.g., gradient

of data mismatch term and gradient of the model misfit part of the objective function.

Abacioglu et al. [2] followed the work of Reynolds et al. [30] with a more detailed investi-

gation. The subspace vectors were computed with the adjoint method, and the gradient

simulator method was used in calculation of the Hessian matrix. They investigated the

effect of the number of the subspace vectors on the efficiency of a subspace method. They

also suggested that instead of using a fixed number of subspace vectors, the number of

subspace vectors can be gradually increased. They presented a theoretical argument

11



that suggests the eigenvectors of the dimensionless matrix LTGTC−1
D GL associated with

the largest eigenvalues, form an ideal basis for parameterization. They did not use this

approach in example problems, and they also mentioned that the computation of this set

of vectors is probably too expensive to be practical. The parameterization they proposed

as an ideal basis, is the same as parameterization in terms of the right singular vectors

of dimensionless sensitivity matrix, defined by Zhang et al. [44] as

GD = C
−1/2
D GC

1/2
M , (1.23)

noticing that GT
DGD = LTGTC−1

D GL, if one uses a Cholesky decomposition for C
1/2
M .

The Cholesky decomposition of CM , is written as CM = LLT , and L can be used for

C
1/2
M . Eigenvectors of LTGTC−1

D GL are the same as the right singular vectors of GD, and

the eigenvalues of LTGTC−1
D GL are the squares of the singular values of GD. Later, we

discuss the computation of a truncated SVD of GD using the Lanczos algorithm, without

explicitly forming the whole matrix. Abacioglu et al. [2] also found that the number of

subspace vectors required to achieve rapid convergence is approximately equal to the

number of eigenvalues of LTGTC−1
D GL that are greater than 0.1. They noticed that

although this matrix changes as the minimum is approached, the number of eigenvalues

that are greater than 0.1 was relatively constant in their examples.

Rodriques [33, 32] applied a history matching procedure where the change in

the vector of model parameters over an iteration is expressed as a linear combinations

of a few right singular vectors of the dimensionless sensitivity matrix. To obtain the

singular vectors corresponding to the largest singular values of the dimensionless sensi-

tivity matrix, they used the Lanczos algorithm. At each iteration of the Gauss-Newton

or Levenberg-Marquardt algorithm, a truncated singular value decomposition of the di-

mensionless sensitivity matrix is constructed with the application of the Lanczos method.

Lanczos’s algorithm requires the product of G times a vector and GT times a vector;

the first product can be computed using the gradient simulator method and the second

product from an adjoint solution.
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Tavakoli and Reynolds [38] used the right singular vectors of a dimensionless sen-

sitivity matrix, GD, for parameterizing the vector of the change in model parameters at

each iteration of the LM algorithm. They presented a theoretical argument that sug-

gests the principal right singular vectors of the dimensionless sensitivity matrix form an

optimal basis of parameterization, as eliminating those corresponding to smaller singular

values has a negligible effect on the reduction of uncertainty obtained by conditioning a

reservoir model to dynamic data. In their results, they obtained more reasonable per-

meability maps with SVD parameterization and with LBFGS-SVD, than they obtained

with LBFGS.

Dickstein et al. [8] used SVD parameterization in the Gauss-Newton algorithm

to condition the log permeability field to production and seismic data. In their syn-

thetic example, in the absence of seismic data, when they used a fixed number of SVD

parameters (25) with the GN algorithm, the resulting model was very rough, giving a

poor representation of the reservoir, although the data matches were very good. They

obtained good representations of the model with an increasing NSVD strategy, i.e., start-

ing with a few SVD parameters and gradually increasing the number of SVD parameters.

1.6.1 Gauss-Newton and Levenberg-Marquardt Algorithms

The results of Dickstein et al. [8] and Tavakoli and Reynolds [37] show that when

using a fixed number (20−25) of SVD parameters, with the LM algorithm, one can obtain

a good representation of the true model (permeability field), while the GN algorithm may

provide a rough and poor estimate of the model. Although, by gradually increasing the

number of SVD parameters, both algorithms would provide a good estimate of the true

model.

Li et al. [22] applied the GN algorithm and a modified LM algorithm to generate

the MAP estimate conditioned to pwf data for a simple 2D synthetic reservoir. In their

results, the MAP estimate generated from the Gauss-Newton method is very rough

and far from the true model. They concluded that the modified LM algorithm is more
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reliable for obtaining good estimates of model parameters, because by using a very high

value of the LM parameter at early iterations, the changes in model parameters are

damped. Although they did not use a parameterization and they formed the whole

sensitivity matrix in their implementation, their comparison of the results of GN and

LM algorithms is in agreement with the results of Dickstein et al. [8] and Tavakoli and

Reynolds [37].

1.7 Research Scope and Thesis Outline

1.7.1 Research Scope

Development of a practical, robust and efficient technique for automatic history

matching is a problem of great interest. For large scale history matching problems, O(m)

is typically minimized by implementation of the LBFGS algorithm discussed in Zhang

and Reynolds [43] and Gao and Reynolds [13]. However in this study, our focus is on

applying a modified Levenberg-Marquardt (LM) [21, 25] algorithm described in Oliver

et al. [28] for minimization of the objective function. The equation of the modified LM

algorithm can be solved with a truncated SVD technique.

Truncated SVD algorithms have been successfully applied to estimate or simulate

log permeability fields of synthetic 2D examples [8, 37]. The main contribution of this

work is to investigate the applicability of SVD parameterization algorithms for estima-

tion or simulation of rock property fields of 3D reservoirs. This is one step towards

applying this gradient based algorithm for large scale history matching problems. In

some synthetic examples of this work, realizations of porosity and vertical log perme-

ability as well as horizontal log permeability fields are generated to perform RML. In

addition, SVD-EnRML algorithm for generating multiple realizations of rock property

fields, which was suggested by Tavakoli and Reynolds [39], is modified to be more efficient

and robust.

Tavakoli and Reynolds [39] applied a truncated SVD parameterization method to

perform RML, by minimizing the objective functions of all realizations simultaneously.
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They used a modified Levenberg-Marquardt algorithm to minimize the objective func-

tions. Although they gave a brief description on how they use the Levenberg-Marquardt

algorithm, they did not discuss an important issue, which is presented here.

At each iteration of SVD-EnRML, a truncated SVD of GD for a particular real-

ization, mbase, is calculated and is used in the LM search direction of all realizations to

decrease the objective functions. Although by using this parameterization, the objective

functions of all realizations may decrease at early iterations, there is no guarantee that

using a truncated SVD of GD of a particular realization in calculating LM search direc-

tion for another realization will decrease the objective function of that realization. To

expand this point, let us look at the equation of the LM search direction at iteration l

given by [39]

L−1δml+1
j =

= −[(1 + γlj)INm +GT
D,lGD,l]

−1{L−1(ml
j −muc,j) +GT

D,lC
− 1

2
D (g(ml

j)− duc,j)}, (1.24)

where γlj is the LM parameter of the jth realization at the lth iteration of the algorithm,

and ml
j is the vector of model parameters of the jth realization at the lth iteration of the

algorithm. In this equation, the matrix GD,l is supposed to be computed at ml
j; while in

SVD-EnRML algorithm, we approximate GD,l with a truncated SVD of GD,l computed

at another model, ml
base. Since this approximation is ad hoc, it is possible that in an

iteration of SVD-EnRML, applying the LM algorithm without the actual GD,l would

not decrease the objective function of a realization; and as discussed later, this often

happens, specially after the convergence of the MAP estimate.

In the implementation of the LM algorithm, if the search direction did not de-

crease the objective function, the LM parameters is multiplied by a factor and the itera-

tion is repeated until a decrease in the objective function is obtained. This procedure is

guaranteed to provide a decrease in the objective function, only if the actual GD,l is used

in the search direction. However, in using a truncated SVD of GD,l based on another
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model, there should be an upper bound for the LM parameter.

Tavakoli and Reynolds [39] presented a second algorithm, which they called SVD-

EnRML-AG. In this algorithm, they introduced an inner loop that the actual gradient of

each realization is computed. They obtained better results with this algorithm in terms

of computational costs and final values of objective functions.

Each iteration in the LM algorithm involves a reservoir simulation run. In this

work we show that by some simple modifications, we can obtain better results than

those obtained by Tavakoli and Reynolds [39] in terms of the computational cost and

final values of the normalized objective functions. We present an ad hoc procedure to

improve the SVD-EnRML algorithm so that all realizations generated tend to correspond

to appropriately low values of the objective functions. We specify a maximum number

of iterations in the LM algorithm and an upper bound for the LM parameter.

We also investigate the effect of the number of SVD parameters in truncated

SVD algorithms on convergence properties and the final values of normalized objective

functions.

As discussed at the end of the previous section, using the GN algorithm in history

matching problems may generate a MAP estimate that is rough and far from the true

model. On the other side, applying the LM algorithm with a high LM parameter at

early iterations, will generate a good estimate of the true reservoir model. In this work,

we investigate the details of the search directions for the two algorithms.

The subspace method was introduced into petroleum engineering by Reynolds

et al. [30] in 1996. It has been successfully applied to synthetic single phase reservoirs.

In this work, the convergence properties of the subspace method is compared with SVD

parameterization in some synthetic 2D and 3D examples.

1.7.2 Thesis Outline

There are six chapters in this thesis. In Chapter 2, the formulation of the LM and

GN algorithms with SVD parameterization for generating the MAP estimate and RML

realizations are presented. Then a new modified SVD-EnRML algorithm is introduced.
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In order to solve the issues pointed out in the previous subsection, we present some mod-

ifications to SVD-EnRML algorithm. Then the extension of SVD-EnRML to simulate

rock property fields of 3D reservoirs are discussed. In the next section of this chapter,

the GN and LM algorithms with SVD parameterization for simulation of rock property

fields are compared. The details of the search direction and convergence properties of

the two algorithms are investigated in an example which is a synthetic 28 by 30 reservoir.

This chapter ends with a discussion on the number of required SVD parameters in the

SVD-EnRML algorithm.

In Chapter 3, the subspace method and EnKF are first briefly described. Then

some 2D examples are presented where the results of algorithms are compared. In the

examples of this chapter, both porosity and log permeability fields are assumed to be

uncertain. Prior information and fluid properties are assumed to be known. In the

first two examples of this chapter, SVD-EnRML algorithms are compared in terms of

computational cost and convergence rate with a 21 by 24 synthetic reservoir. We also

investigate the effect of the number of singular triplets retained in the approximation of

GD, on the computational cost and convergence rate of the modified SVD-EnRML algo-

rithm. Finally, the results of the subspace method is compared with the results of SVD

parameterization. The 3rd example of Chapter 3 is a 29 by 35 synthetic reservoir, where

again the results of SVD-EnRML algorithms are compared. The effect of the maximum

number of singular triplets retained in the approximation of GD, on the computational

cost is also investigated. For this example, the results of the modified SVD-EnRML

are compared with the results of EnKF in terms of quality of predictions and updated

realizations.

Chapter 4 includes 3D examples. In the examples of this chapter, all rock prop-

erty fields, i.e., porosity, horizontal and vertical log permeability fields, are assumed to

be uncertain. Prior information and fluid properties are assumed to be known. The first

example is a 28 by 30 by 3 synthetic reservoir with rock property fields having corre-

lations in the vertical direction. In this example, we first compare the results from the
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subspace method and SVD parameterization when generating the MAP estimate. Then

the modified SVD-EnRML algorithm is applied for simulation of the rock property fields

in two cases. In one case we condition reservoir models only to pressure data, and in the

other case, we condition realizations to both pressure and water rate data. In Example

2, a 30 by 30 by 3 reservoir model is presented where the rock property fields of different

layers are uncorrelated. The modified SVD-EnRML algorithm is applied to this example

and the results are presented. Example 3 of this chapter is a 30 by 15 by 4 reservoir

model with the rock property fields of different layers uncorrelated.

In Chapter 5 we use SVD parameterization for estimating a non-Gaussian field

for a synthetic 2D example.

Finally in Chapter 6, we present the conclusions.
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CHAPTER 2

SIMULATION OF PERMEABILITY AND POROSITY FIELDS WITH

SVD-ENRML ALGORITHMS

In this chapter, the SVD parameterization algorithm for generating an estimate

of the model introduced by Tavakoli and Reynolds [38] is described first. Then the

SVD-EnRML algorithm, for simultaneously generation the MAP estimate and RML

realizations, introduced by Tavakoli and Reynolds [39] is explained. After this, our mod-

ifications to the original SVD-EnRML algorithm are presented, and the extension of this

algorithm to 3D reservoirs is discussed. A modified SVD-EnRML algorithm is also intro-

duced. Then, SVD parameterization with the Gauss-Newton and Levenberg-Marquardt

algorithms are compared for an example.

2.1 Levenberg-Marquardt Algorithm with SVD Parameterization

In this section, SVD parameterization algorithm to generate an estimate of the

rock property fields, suggested by Tavakoli and Reynolds [39] is briefly described.

In generating the MAP estimate, the search direction in the modified LM algo-

rithm [28] is calculated as

δml+1 = −[(1 + γl)C−1
M +GT

l C
−1
D Gl]

−1{C−1
M (ml−mprior) +GT

l C
−1
D (g(ml)− dobs)}, (2.1)

where l denotes the iteration index and γl denotes the LM parameter; ml is the vector of

model parameters at the lth iteration of the algorithm. mprior is the prior estimate of the

model and dobs is the vector of the observed data; Gl is the sensitivity matrix described

in Section 1.4; CM is the prior covariance matrix for the vector of model parameters, m,
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and CD is the covariance matrix for the vector of observed data, dobs.

The preceding LM algorithm can be applied successfully if the number of data is

sufficiently small so that it is computationally feasible to calculate all entries of the sen-

sitivity matrix with the adjoint method; since this is impractical for large scale history

matching problems, it is desired to find a parameterization algorithm which has con-

vergence properties similar or close to those of the LM algorithm but does not require

forming the whole sensitivity matrix.

Applying the LM algorithm with SVD parameterization, does not require forming

the whole sensitivity matrix. In SVD parameterization, the change of transformed model

parameters at each iteration, δm̃l+1, is expanded as a linear combination of a few right

singular vectors of the dimensionless sensitivity matrix [33]. As in large problems, the

computation of all entries of the sensitivity matrix is not feasible, this method can be

considered as an alternative to the original LM algorithm.

In order to define the dimensionless sensitivity matrix, a square root of CM is

needed. One may use spectral decomposition or Cholesky decomposition to obtain an

expression for C
1/2
M . With Cholesky decomposition of CM , CM = LLT , where L is a

lower triangular matrix, it follows that C−1
M = L−TL−1, where L−T denotes the inverse

of LT . CD could be factored in the same way, but if CD is diagonal, one can simply use

C−1
D = C

− 1
2

D C
− 1

2
D . Let GD,l denote the dimensionless sensitivity matrix corresponding to

Gl, i.e., GD,l = C
− 1

2
D GlL. Left multiplying Eq. 2.1 by L−1 and using the decompositions

of CM and CD, the following equation is obtained:

L−1δml+1 =

−L−1[(1+γl)L−TL−1+L−TLTGT
l C

−1
D Gl]

−1{L−TL−1(ml−mprior)+GT
l C

−1
D (g(ml)−dobs)}

= −[(1 + γl)INm +GT
D,lGD,l]

−1{L−1(ml −mprior) +GT
D,lC

− 1
2

D (g(ml)− dobs)}, (2.2)
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where INm denotes Nm ×Nm identity matrix. Defining the transformed model, m̃l, by

m̃l = L−1(ml −mprior), (2.3)

the vector of the change in model parameters at iteration l in the transformed domain

can be written as

δm̃l+1 ≡ m̃l+1 − m̃l = L−1(ml+1 −ml) = L−1δml+1. (2.4)

Using Eq. 2.4, Eq. 2.2 becomes

δm̃l+1 = −[(1 + γl)INm +GT
D,lGD,l]

−1{m̃l +GT
D,lC

− 1
2

D (g(ml)− dobs)}, (2.5)

or

[(1 + γl)INm +GT
D,lGD,l]δm̃

l+1 = −{m̃l +GT
D,lC

− 1
2

D (g(ml)− dobs)}. (2.6)

The properties of singular value decomposition (SVD) needed for this discussion

can be found in Golub and van Loan [17]. Let ui and vi, respectively denote the left and

right singular vectors corresponding to the singular value λi determined from a SVD of

the dimensionless sensitivity matrix, GD. For the normal case where the number of data

Nd is less than the number of model parameters Nm, it is easy to show that

[(1 + γl)INm +GT
D,lGD,l]vi =


(1 + γl + λ2i ) vi if 1≤i≤Nd

(1 + γl)vi if Nd < i≤Nm.

(2.7)

Thus, the eigenvalue-eigenvector pairs of the Nm × Nm matrix [(1 + γl)INm +

GT
D,lGD,l] are (1+γl+λ2i , vi) for i = 1, 2 · · ·Nd and (1+γl, vi) for i = Nd+1, · · ·Nm. For

a detailed proof of Eq. 2.7, see the appendix of Tavakoli [36]. Note that the Hessian in

the transformed space, which appears in the left-hand-side of Eq. 2.6, is real symmetric

positive definite. Moreover, the eigenvectors of this matrix are the same as the right
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singular vectors of GD,l. As discussed in the spectral analysis of the LM algorithm in

Oliver et al. [28], δm̃ obtained by directly solving Eq. 2.6, is a linear combination of the

eigenvectors of Hessian. Thus one can write δm̃l+1 in the form:

δm̃l+1 =
Nm∑
j=1

αjvj = V α. (2.8)

Note that by using Eq. 2.8, we are just expressing δm̃ in an orthogonal coor-

dinate system with axis vectors composed of the right singular vectors of GD,l (which

are the same as the eigenvectors of the Hessian), instead of the Cartesian coordinate

system. Since the smaller singular values tend to amplify noisy, oscillating components

of the solution, using only the largest singular values is a well-known technique to get

regularized solutions [32]. Moreover, Tavakoli and Reynolds [38] provided theoretical

support that the right singular vectors corresponding to the largest singular values may

provide an optimal parameterization of the change in the model over an iteration with

a gradient based method. With this motivation, we only compute the p largest singular

values of GD,l. With the singular vectors corresponding to the p largest singular values,

a truncated SVD approximation of GD,l is written as

GD,l = UpΛpV
T
p =

p∑
i=1

λiuiv
T
i , (2.9)

where it is assumed that p ≤ Nd. Keeping only the components of δm̃ along the right

singular vectors associated with the p largest singular values, Eq. 2.8 is replaced with

δm̃l+1 =

p∑
j=1

αjvj = Vpα. (2.10)

Using the truncated SVD of GD,l, Eq. 2.6 can be approximated by

[(1 + γl)INm + VpΛ
2
pV

T
p ]δm̃l+1 = −{m̃l +GT

D,lC
− 1

2
D (g(ml)− dobs)}. (2.11)
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Substituting Eq. 2.10 into the left hand side of Eq. 2.11, it follows

[(1 + γl)INm + VpΛ
2
pV

T
p ]Vpα = −{m̃l +GT

D,lC
− 1

2
D (g(ml)− dobs)}. (2.12)

Using Eq. 2.7 and using the properties of SVD, Eq. 2.12 is equivalent to

p∑
j=1

αj(1 + γl + λ2j)vj = −{m̃l + VpΛ
T
pU

T
p C

− 1
2

D (g(ml)− dobs)}, (2.13)

where p ≤ Nd. Left multiplying Eq. 2.13 by vTk and using the orthogonality of singular

vectors, it follows that

αk =
−vTk m̃l − λkuTkC

− 1
2

D (g(ml)− dobs)
1 + γl + λ2k

, (2.14)

for k = 1 to p. Using Eq. 2.14 in Eq. 2.10 yields

δm̃l+1 =

p∑
j=1

[−vTj m̃l − λjuTj C
− 1

2
D (g(ml)− dobs)

1 + γl + λ2j

]
vj. (2.15)

So from Eq. 2.4,

δml+1 = Lδm̃l+1 = L

p∑
j=1

[−vTj m̃l − λjuTj C
− 1

2
D (g(ml)− dobs)

1 + γl + λ2j

]
vj. (2.16)

Once δml+1 is computed, the new vector of model parameters can be computed

from

ml+1 = ml + δml+1. (2.17)

Unlike the GN algorithm where a line search is performed after finding the search

direction, in the LM algorithm, the parameter γl controls both the search direction

and the step size. The LM parameter, γl, varies from iteration to iteration. A simple

procedure can be used to obtain the value of γl for each iteration. If O(ml+1) < O(ml),

ml+1 and m̃l+1 are accepted as the new model parameters in the original and transformed
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space, respectively and γl is decreased by a decay factor of 10 (γl+1 = γl/ 10) for the

next iteration. Otherwise, γl is increased by a growth factor of 10 (γl+1 = 10γl) and the

iteration is redone with the increased LM parameter.

Oliver et al. [28] suggested that the initial value of γ should be between
√
O(m0)/Nd

and O(m0)/Nd, where O(m0) is the initial value of the objective function. Abacioglu

et al. [2] stated that if the value of γ is too small at an early iteration, the model acquires

roughness which is difficult to remove at late iterations. A very large γ (e.g. 1010) will

also result in a very small initial rate of reduction in the objective function. They stated

that in their examples it was necessary to start with γ between 106 and 107 to achieve

a small value of the objective function for the 3-D reservoir case.

Based on our experiments with several examples of applying SVD parameteriza-

tion algorithms, an initial value of 107 for γ0 with a growth and decay factor of 10 works

well.

At each iteration of Eq. 2.15, the truncated SVD of GD,l is updated, which is

computationally expensive. As mentioned earlier, the Lanczos algorithm is used to com-

pute a truncated SVD of the dimensionless sensitivity matrix. The Lanczos algorithm

requires the products of G times a vector and GT times a vector; the first product can

be computed with the gradient simulator method and the second product from the ad-

joint method. The computational cost of the Lanczos algorithm increases linearly with

the level of truncation, p. To obtain p singular triplets, the Lanczos algorithm requires

approximately p + n iterations, where each iteration involves one adjoint solution and

one application of the gradient simulator method. The value of n depends on the mag-

nitude of assigned relative error (εsv) for convergence of each of the singular values. The

details on convergence criteria for the Lanczos algorithm can be found in Chapter 2 of

Tavakoli [36]. Each application of the Lanczos algorithm requires roughly the equivalent

of (p+ n)/2 reservoir simulation runs. In all examples of this thesis, εsv = 10−5 is used.

With this choice, the value of n varied from 3 to 8.

In SVD parameterization, the number of retained SVD parameters is gradually
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increased as iteration proceeds. A parameter called singular cutoff is used to determine

the truncation level, p, at each iteration of the algorithm. The singular cutoff is denoted

by “sv-cut” and is an input parameter for the Lanczos method. The Lanczos algorithm is

terminated when the ratio of the smallest singular value retained to the largest singular

value is less than or equal to sv-cut, i.e., λp/λ1 ≤ sv-cut.

In SVD parameterization algorithm, two parameters are defined for sv-cut, which

are µ1 and µmin. At the first iteration of the algorithm, l = 1, one sets sv-cut = µ1 and

sv-cut is divided by 2 at each subsequent iteration until it reaches the final sv-cut of µmin

where this value is used in all iterations until the convergence.

Although sv-cut is used to change the number of SVD parameters from one it-

eration to another, we noticed that for a small value of sv-cut (at late iterations), the

number of retained singular values can be very sensitive to a small change of sv-cut, i.e.,

with a small change of sv-cut, the number of singular values significantly change. In

addition, the distribution of the singular values of GD for each example can be different.

Thus, we modified the algorithm, so that the maximum allowable number of SVD pa-

rameters ( NSVD,max ) to be calculated by the Lanczos method is also specified as input,

i.e., the Lanczos method is terminated at either p = NSVD,max or the smallest value of

p such that λp/λ1 ≤ sv-cut, whichever is reached first. We usually tend to set a small

µmin, e.g., 0.0002, so that at late iterations of the algorithm, the Lanczos method would

compute the specified number of singular triplets, NSVD,max. However, µmin should not

be unreasonably very small or high.

In examples of this work we used the following parameters for sv-cut, unless stated

otherwise.

µ1 = 0.5,

µmin = 0.0002. (2.18)

Throughout, the objective function for generating the MAP estimate, O(m) or
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O0(m), refers to the following equation:

O(m) =
1

2
(m−mprior)

TC−1
M (m−mprior) +

1

2
(g(m)− dobs)TC−1

D (g(m)− dobs),

(2.19)

and the objective function for generating an RML realization, Oj(m), refers to

Oj(m) =
1

2
(m−muc,j)

TC−1
M (m−muc,j) +

1

2
(g(m)− duc,j)TC−1

D (g(m)− duc,j). (2.20)

2.1.1 Steps of Levenberg-Marquardt Algorithm with SVD Parameterization

Here the specific steps of the LM algorithm with SVD parameterizaton for gen-

erating an estimate of the model is presented.

Throughout l is the iteration index of the Levenberg-Marquardt algorithm, where

a truncated SVD of GD,l is computed using the Lanczos method.

1. Set l = 0 and assign the initial guess of m0 = mprior for the MAP estimate. Assign

the initial value of the LM parameter, γ0. Set the initial sv-cut, µ1. Also, set

the final value of the singular cutoff, µmin, and the maximum number of SVD

parameters ( NSVD,max ) to be calculated by the Lanczos method.

2. Run the simulator with initial guess of the model parameters for the MAP estimate,

and Compute O(ml) from Eq. 2.19.

3. Use the Lanczos method with the inputs sv-cut and NSVD,max, to compute a trun-

cated SVD of the dimensionless sensitivity matrix associated with the MAP esti-

mate at iteration l, ml.

4. (a) Compute the LM search direction with γl using Eq. 2.16, then use

ml+1
temp = ml + Lδm̃l+1 (2.21)
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to calculate a proposed new update of the MAP estimate. Run the simulator

with ml+1
temp and calculate the objective function O(ml+1

temp) given with Eq. 2.19.

(b) If O(ml+1
temp) < O(ml), then set

γl+1 = γl/10,

ml+1 = ml+1
temp. (2.22)

Else, if O(ml+1
temp) ≥ O(ml), then set γl = max(10γl, 10) and go to step (a).

5. Check for convergence using the criteria discussed later. If the algorithm has not

converged, increase iteration index l by 1, replace sv-cut by max
{

sv-cut
2
, µmin

}
and

go to step 3; otherwise, if the convergence criteria are satisfied, go to step 6.

6. End.

Note that the reason we set γl = max(10γl, 10) in step 4(b), is that a small value

of the LM parameter (say 0.1) usually does not make an effective change in the search

direction, so if 10γl < 10, we set it to 10.

In large scale history matching problems, large changes in the objective function at

an early iteration may result in convergence to a model with a high value of the objective

function. However, based on our experience, and based on the results of Example 1 of

Chapter 3, with a large starting LM parameter (e.g. 106) in generating an estimate of

the model with the algorithm just presented, there is no need to control the change in

the objective function at early iterations.

2.2 SVD-EnRML Algorithms

SVD-EnRML algorithms, proposed by Tavakoli and Reynolds [39], aim to simul-

taneously minimize the objective function of the MAP estimate and Ne RML realizations

to sample the posterior pdf. The main idea of this algorithm is that in the LM search
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direction in the transformed space, at each iteration l, GD,l of all realizations are ap-

proximated by a truncated SVD of GD,l of a particular realization. In addition, the

right singular vectors of this truncated SVD are used to parameterize the vector of the

change in model parameters of all realizations at that iteration of the algorithm. Tavakoli

and Reynolds [39] introduced two SVD-based algorithms to perform RML, which they

called SVD-EnRML-SMM and SVD-EnRML-AG. The SVD-EnRML-SMM is the basic

SVD-EnRML algorithm, and SMM refers to sensitivity matrix multiplication. Since in

SVD-EnRML-SMM, the dimensionless sensitivity matrix in both the Hessian and gra-

dient is approximated with a truncated SVD of GD,l of a particular realization, the

gradient is computed by multiplying the transpose of the truncated SVD matrix and a

vector, hence the name SMM. The second algorithm is called SVD-EnRML-AG, where

AG refers to adjoint gradient. In the added inner loop of this algorithm, the gradient of

each objective function is computed using the adjoint method, hence the name AG.

At each iteration l of SVD-EnRML, a truncated SVD of dimensionless sensitivity

matrix, GD,l, for a particular realization is computed by using the Lanczos method. In

SVD-EnRML, similar to the SVD parameterization algorithm, the number of retained

SVD parameters is gradually increased as iteration proceeds. The singular cutoff, sv-

cut, is used to determine the number of retained singular triplets at each iteration of the

algorithm.

In addition to µ1 and µmin, we define another parameter, µ2, for sv-cut in SVD-

EnRML. At the first iteration of the SVD-EnRML algorithms, one sets sv-cut = µ1

and this number is divided by 2 at each subsequent iteration until it reaches the final

sv-cut of µmin, where this value is used in all iterations until the convergence of the MAP

estimate. After the convergence of the MAP estimate, at each iteration of SVD-EnRML,

a truncated SVD of the dimensionless sensitivity matrix corresponding to the realization

with the maximum objective function is calculated. At this point sv-cut is set to µ2 and

again the same procedure is followed to determine sv-cut at each iteration. In examples

of this work for SVD-EnRML, we used the following parameters for sv-cut, unless stated
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otherwise.

µ1 = 0.5,

µ2 = 0.05,

µmin = 0.0002. (2.23)

Similar to the SVD parameterization algorithm for generating an estimate of the

model, in SVD-EnRML, the maximum allowable number of SVD parameters ( NSVD,max

) to be calculated by the Lanczos method is also specified as input, i.e., the Lanczos

algorithm is terminated at either p = NSVD,max or the smallest value of p such that

λp/λ1 ≤ sv-cut, whichever is reached first.

2.2.1 SVD-EnRML-SMM Algorithm

A detailed step-by-step description of the original algorithm is provided in Tavakoli

and Reynolds [39]. What is given for step by step description of the algorithm in Sub-

section 2.2.4, is with our modifications.

Throughout, ml
0 denotes the approximation of the MAP estimate at the lth iter-

ation of the LM algorithm when minimizing the objective function of Eq. 2.19, and ml
j,

j = 1, 2, · · ·Ne denotes the estimate of the jth RML realization at iteration l in minimiz-

ing Oj(m) given by Eq. 2.20. Let (λi, ui, vi), i = 1, 2, · · · p denote the ith singular triplet

from the truncated SVD of the dimensionless sensitivity matrix, GD,l, corresponding to

a particular realization, mbase, at iteration l. The truncated SVD of GD,l is computed

based on the MAP estimate; and after the convergence of the MAP estimate, a truncated

SVD of GD,l for the realization with the maximum objective function is computed. In

applying the LM algorithm, the search direction to generate the MAP estimate, δm̃`+1
0 , is

obtained from Eq. 2.15, whereas the search direction to generate the jth RML realization

is calculated by the obvious analogue of Eq. 2.15,

δm̃l+1
j =

p∑
i=1

[
−vTi m̃l

j − λiuTi C
− 1

2
D (g(ml

j)− duc, j)
1 + γlj + λ2i

]
vi, (2.24)
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for j = 1, 2, · · ·Ne. Once δm̃l+1
j is obtained, δml+1

j is calculated from:

δml+1
j = Lδm̃l+1

j . (2.25)

The new candidate for updated model is calculated using ml+1
j = ml

j + δml+1
j ,

which is accepted only if it decreases the objection function, Oj(m).

After decreasing the objective functions of all realizations, a truncated SVD of

GD,l is computed again, and the loop is repeated until convergence.

Note that although the algorithm was derived directly from a gradient-based LM

algorithm, neither sensitivities nor gradients of the objective functions are explicitly

computed.

2.2.2 SVD-EnRML-AG Algorithm

A second algorithm, introduced by Tavakoli and Reynolds [39], is called SVD-

EnRML-AG. This algorithm, is a modification to SVD-EnRML-SMM. In SVD-EnRML-

AG an inner iteration is added to the basic procedure described for SVD-EnRML-SMM.

In the inner loop, for each realization, a damped objective function instead of the actual

objective function is minimized. In the inner loop iterations, the SVD parameterization

is kept fixed and the gradient of each objective function is calculated with the adjoint

method. In applying the LM algorithm in the inner iteration, the search direction δm̃k+1
j

for each realization is calculated using the following equation:

δm̃k+1
j =

p∑
i=1

[
−vTi m̃k

j − vTi LTGT
k,jC̃

−1
D,j(g(mk

j )− duc, j)
1 + γlj + λ2i

]
vi, (2.26)

where k is the iteration index of the inner loop. The matrix vector productGT
k,jC̃

−1
D,j(g(mk

j )−

duc, j) is computed using the adjoint method. For each realization, the inner iteration is

ended when the change in the objective function is small.
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The damped objective function for generating a realization, refers to

Odamp,j(m) =
1

2
(m−muc,j)

TC−1
M (m−muc,j) +

1

2
(g(m)−duc,j)T C̃−1

D,j(g(m)−duc,j), (2.27)

where C̃D,j is obtained by multiplying the nth diagonal entry of CD by ψ2
n where ψn is

calculated by

ψn = max{1, |
gn(ml

j)− [duc,j]n

3σd,n
|}. (2.28)

In the preceding equation, σd,n denotes the standard deviation of the nth mea-

surement error, ml
j is the last updated model obtained at the outer iteration, gn(ml

j) is

the nth component of the predicted data vector evaluated at ml
j and [duc,j]n denotes the

nth entry of the perturbed data vector duc,j. In the inner loop at iteration l, damping

factors and thus C̃D,j are fixed.

2.2.3 Levenberg-Marquardt Algorithm in SVD-EnRML

In SVD-EnRML-SMM, when GD,l in the LM search direction for minimizing the

objective function Oj(m) of an RML realization, is approximated by a truncated SVD

of GD,l for another realization, mbase, there is no guarantee that the objective function

Oj decreases, as the GD,l in the LM search direction is supposed to be computed for

ml
j. In practice, what happens is that in some cases, when the truncated SVD of GD,l

of a particular realization (mbase) is used to try to decrease the objective function of

realization j (mj 6= mbase), no matter how much the LM parameter is increased, the

objective function of realization j does not decrease. Note that in the original LM search

direction given by Eq. 2.1, a large LM parameter is similar to taking a small step in the

steepest descent direction; however in SVD-EnRML-SMM, since we are approximating

the gradient using a truncated SVD of GD,l computed at another model, the search

direction is not necessarily downhill. A search direction is downhill, if its inner product

with the gradient of objective function is negative.

Based on the discussion in this subsection, we limit the number of iterations in
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the LM algorithm for decreasing the objective function Oj(m), at the lth iteration of

SVD-EnRML. We also assign an upper bound for the LM parameter. With these simple

modifications, many unnecessary simulation runs are avoided.

At iteration l of SVD-EnRML, a truncated SVD of GD,l is computed based on

a particular realization, ml
base. For realization ml

base, the SVD parameterization should

decrease the objective function, unless the algorithm has converged for this realization.

However, for realization j (mj 6= mbase), we specify a maximum number of iterations,

smax and an upper bound for the LM parameter, γmax.

Throughout, l refers to the lth updating of SVD parameters by the Lanczos

method; γmax is an upper bound for the LM parameter which is specified as input.

s denotes the iteration index in an application of the LM algorithm at iteration l to

decrease an objective function. smax refers to the maximum allowable iterations in an

application of the LM algorithm for a realization j (mj 6= mbase) which is specified as

input.

Throughout, γj,s (with a subscript s) is referred to the LM parameter which is

used in the LM search direction for the jth realization at a fixed l. γlj (with a superscript

l) is the initial value of γj,s, i.e., γj,s=0 = γlj.

2.2.4 Steps of SVD-EnRML-SMM and SVD-EnRML-AG

The specific steps for the implementation of the SVD-EnRML-AG algorithm are

given first. Then it will be shown how to convert the steps to the SVD-EnRML-SMM

algorithm. Note that the steps given here are with our modifications discussed in the

previous subsection.

1. Set l = 0 and assign the initial guess of ml
j = muc,j for j = 1, 2, · · ·Ne for RML

realizations and an initial guess of ml
0 = mprior for the MAP estimate. Assign the

initial value of the LM parameter, γ0, and set γlj = γ0 for j = 0, 1, · · ·Ne. Set

the initial sv-cut and sv-cut after the convergence of the MAP estimate, µ1 and

µ2, respectively. Set the final value of the singular cutoff, µmin and the maximum
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number of SVD parameters ( NSVD,max ) to be calculated by the Lanczos method;

also set γmax and smax.

2. Calculate the initial values of the objective functions by running the simulator to

the final time with initial guesses of the model parameters for the MAP estimate

and all realizations. Compute Oj(m
l
j) with Eq. 2.20 for j = 1, 2, · · ·Ne and compute

O(ml
0) from Eq. 2.19.

3. If ON,MAP(ml
0) < 1 + 5

√
2/Nd or if Eqs. 2.37 and 2.38 are both satisfied, i.e., the

MAP estimate has converged, use the Lanczos method to compute a truncated

SVD of the dimensionless sensitivity matrix pertaining to ml
base where

Ojbase(m
l
base) = max

1≤j≤Ne

Oj(m
l
j). (2.29)

In this case as the truncated SVD of GD,l is computed for mbase, we want to have

a large step for the change of the model in decreasing the maximum objective

function, Ojbase ; in addition, γl for the base realization may have a large value that

would result in a small decrease of the maximum objective function, Ojbase . Thus,

set γlbase (γl pertaining to ml
base) to a small number, e.g., 0.1.

Otherwise, use the Lanczos method to compute a truncated SVD of the dimen-

sionless sensitivity matrix for the MAP estimate at iteration l, ml
0.

4. For j = 0, 1, 2, · · ·Ne

(a) Set s = 0, where s is the iteration index in the LM algorithm for decreasing

the objective function of the jth realization, at a fixed l.

(b) Set the initial value for the LM parameter,

γj,s = γlj. (2.30)

(c) Compute the LM search direction, δm̃l+1
j , using γj,s in Eq. 2.24 for an RML
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realization, or in Eq. 2.15 for the MAP estimate, then use

ml+1
temp,j = ml

j + Lδm̃l+1
j , (2.31)

to calculate a proposed new update of the jth realization. Run the simulator

and calculate the objective function Oj(m
l+1
temp,j).

(d) If Oj(m
l+1
temp,j)≥Oj(m

l
j), then

i. If s = smax or γj,s ≥ γmax, and mj 6= mbase, then set

γl+1
j = γlj,

ml+1
j = ml

j, (2.32)

and go to step (a) for the next realization, i.e., terminate the LM algo-

rithm for the jth realization at iteration l. Note that the jth realization

and its corresponding LM parameter are not updated at this iteration.

ii. Else, if s < smax and γj,s < γmax, or mj = mbase, set

γj,s+1 = max(10γj,s, 100),

s = s+ 1. (2.33)

and return to step (c).

Else, if Oj(m
l+1
temp,j) < Oj(m

l
j), set

ml+1
j = ml+1

temp,j,

γl+1
j = γj,s/10. (2.34)
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5. Check for convergence using the criteria discussed later. If the algorithm has not

converged, increase iteration index l by 1, replace sv-cut by max
{

sv-cut
2
, µmin

}
and

go to step 6; otherwise, go to step 7, i.e., terminate the algorithm.

6. For j = 0, 1, 2, · · ·Ne

(a) With k denoting the iteration index of the inner loop, set k = 0 and set the

initial guess of the model parameters for the inner loop as mk
j = ml

j, where

ml
j is the last updated model obtained at the outer loop.

(b) Compute the damping factors by Eq. 2.28, then compute the damped ob-

jective function Odamp,j(m
k
j ) by Eq. 2.27. Then, set the initial value of the

LM parameter for the inner loop, γj,k = Odamp,j(m
k
j )/Nd for j 6= 0, and

γj,k = 2Odamp,j(m
k
j )/Nd for j = 0.

(c) Calculate the product of GT
k,j with the vector C̃−1

D,j(g(mk
j ) − duc,j) using the

adjoint method.

(d) Calculate δm̃k+1
j by Eq. 2.26 using γj,k, then use

mk+1
temp,j = mk

j + Lδm̃k+1
j (2.35)

to calculate a proposed new update of the jth realization, mk+1
temp,j.

(e) Run the simulator with mk+1
temp,j and calculate the value of the damped objec-

tive function, Odamp,j(m
k+1
temp,j).

(f) If Odamp,j(m
k+1
temp,j) ≥ Odamp,j(m

k
j ), then set γj,k = 10γj,k, and return to step

(d).

Else, if Odamp(mk+1
temp,j) < Odamp,j(m

k
j ), then set mk+1

j = mk+1
temp,j, γj,k+1 =

γj,k/10, and go to the next step.

(g) Check for convergence of the inner loop. The convergence criterion is

Odamp,j(m
k
j )−Odamp,j(m

k+1
j )

Odamp,j(mk
j )

< 5× 10−3. (2.36)
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If the condition given by Eq. 2.36 is not satisfied, increase the iteration index,

k, by one and return to step (c).

Once convergence of all damped objective functions is obtained, set ml
j =

mk+1
j for each j and go to step 3.

7. End.

To implement SVD-EnRML-SMM, the step 6 of the algorithm described above

is deleted and step 5 is replaced by:

Step 5: Check for convergence using the criteria discussed later. If the algorithm

has not converged, increase iteration index l by 1, replace sv-cut by max
{

sv-cut
2
, µmin

}
and go to step 3. Otherwise terminate the algorithm.

In this modified SVD-EnRML-SMM algorithm, each application of the LM al-

gorithm requires at most smax simulation runs; since, if the objective function did not

decrease after smax iterations, the LM algorithm is terminated and ml
j and γlj are kept

the same for the next iteration. Before the convergence of the MAP estimate, we set

smax = 5, and after the convergence of the MAP estimate we set smax = 3. We also set

γmax = 108, for the upper bound of the LM algorithm.

In the step by step description of the SVD-EnRML-AG algorithm, given in

Tavakoli and Reynolds [39], they simply used the same LM parameter in the inner

loop as they described for the outer loop. Based on our experience, decreasing the LM

parameter in both the inner loop and outer loop is not efficient. We modified the inner

loop of the SVD-EnRML-AG, so that the first value of the LM parameter in the inner

loop is set to normalized damped objective function, and the LM parameter of the outer

loop for the next iteration, is not influenced by the final γ from the inner loop. In the in-

ner loop, since we are minimizing a damped objective function, the data mismatch terms

are damped and using a high LM parameter will provide a search direction with very

small entries. Thus we set the initial value of the LM parameter to the the normalized

damped objective function.
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In our implementation of the SVD-EnRML algorithms, when the normalized ob-

jective function of a realization, ON(m), decreases to a value less than 1 + 5
√

2/Nd, that

realization is accepted as a conditional realization and is not minimized any more; this

is because we want to use the same criterion for all examples and all SVD-EnRML al-

gorithms; however, the convergence criteria of the algorithm are not based on the values

of ON(m).

2.2.5 Convergence Criteria

The convergence criteria for termination of SVD-EnRML algorithms are based on

the requirement that both the maximum relative change in the objective function and

the maximum relative change in the model parameters of all realizations be small, i.e.,

4O(m) = max
1≤j≤Ne

{
|Oj(m

l+1
j )−Oj(m

l
j)|

Oj(m
l+1
j ) + 10−5

}
< ηo, (2.37)

and

4m = max
1≤j≤Ne

{
‖ml+1

j −ml
j‖

‖ml+1
j ‖+ 10−5

}
< ηm. (2.38)

In the examples presented here, the following values are used:

ηo = 10−3, (2.39)

ηm = 10−2. (2.40)

In practice, one may also specify a maximum number of iterations, e.g., terminate

the algorithm at a maximum of 50 applications of the Lanczos method.

2.3 SVD-EnRML With Multiple Iteration Method

In SVD-EnRML, a significant cost is for calculation and updating singular triplets

with the Lanczos algorithm. Each iteration of the Lanczos algorithm for computing a

truncated SVD of GD,l, requires one application of the gradient simulator method to

obtain Glx and one adjoint solution to obtain GT
l y. Therefore, it is desirable to avoid
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extensive updates of the singular triplets during the minimization. Computational cost

can be reduced if either the number of iterations of SVD-EnRML or the number of SVD

triplets at each iteration are reduced.

The main idea of the SVD-EnRML-SMM algorithm, which is the original SVD-

EnRML algorithm, was to approximate the truncated SVD of GD,l of all realizations

by a truncated SVD of GD,l for a particular realization. In addition, the right singular

vectors of this truncated SVD are used to parameterize the vector of the change in the

model parameters of all realizations at that iteration of the LM algorithm. The idea of

this multiple iteration method is to use the truncated SVD of GD,l in more than one

application of the LM algorithm. We add an inner loop to the basic algorithm, where

the truncated SVD of GD,l, at a fixed l, is used multiple times to decrease the objective

functions. Unlike the SVD-EnRML-AG algorithm, in the inner loop of this multiple

iteration method, we use the same equation of the outer loop for computing the search

direction and the gradient is not computed with the adjoint method.

At early iterations, where the truncated SVD of GD,l is computed based on the

MAP estimate, the rate of decrease of all objective functions is quite fast; thus, as long

as the SVD parameters are computed based on the MAP estimate, or mbase = m0, we

follow the same steps of the SVD-EnRML-SMM algorithm. After the convergence of

the MAP estimate, the algorithm is modified as follows. Like the original SVD-EnRML-

SMM algorithm, after computing a truncated SVD of GD,l for the realization with the

maximum objective function by using the Lanczos method, the LM algorithm is used

to decrease the objective function of each realization, mj for j = 1, 2, · · ·Ne. In the

application of the LM algorithm, if the objective function of realization mj decreases by

more than 1%, the realization enters a loop where the same SVD parameters are used

to further decrease the objective function, Oj(m). In this loop, the LM parameter is

not changed, i.e., the same LM parameter is used in the search direction at every inner

iteration. This loop is ended if the objective function does not decrease more than 1%.

We call this method SVD-EnRML-MI which refers to SVD-Ensemble-RML-Multiple-
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Iterations.

Keeping the LM parameter constant in the inner loop is ad hoc, however there

is a motivation for it. As the outer iteration, (with iteration index of l) proceeds, the

truncated SVD of GD,l is updated and the LM parameter of each realization is decreased

after each successful iteration. However, the truncated SVD of GD,l that is used in the

inner loop (with iteration index of k at a fixed l), has already been used in the outer loop

in an application of the LM algorithm to decrease Oj(m). Changing the LM parameter,

while using the same SVD parameters might even increase the computational cost. Note

that the LM parameter has an impact on the weight of each of the right singular vectors in

the search direction, and since the right singular vectors are the same, the LM parameter

is kept fixed in the inner loop iterations.

In multiple iterations with the same SVD parameters, the cost of each successful

iteration (with the same SVD parameters) is only one reservoir simulation run.

2.3.1 Steps of SVD-EnRML-MI

Now we present the steps of the SVD-EnRML-MI algorithm. Throughout l is the

iteration index of SVD-EnRML-MI, where a truncated SVD of GD,l is computed using

the Lanczos method; k denotes the iteration index of the inner loop at a fixed l.

1. Set l = 0 and assign the initial guess of m0
j = muc,j for j = 1, 2, · · ·Ne for RML

realizations and an initial guess of m0
0 = mprior for the MAP estimate. Assign the

initial value of the LM parameter, γ0, and set γ1j = γ0 for j = 0, 1, · · ·Ne. Set

the initial sv-cut and sv-cut after the convergence of the MAP estimate, µ1 and

µ2, respectively. Set the final value of the singular cutoff, µmin and the maximum

number of SVD parameters ( NSVD,max ) to be calculated by the Lanczos method;

also set γmax and smax.

2. Calculate the initial values of the objective functions by running the simulator to

the final time with initial guesses of the model parameters for the MAP estimate

and all realizations. Compute Oj(m
l
j) with Eq. 2.20 for j = 1, 2, · · ·Ne and compute
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O(ml
0) from Eq. 2.19.

3. If ON,MAP(ml
0) < 1 + 5

√
2/Nd or if Eqs. 2.37 and 2.38 are both satisfied, i.e., the

MAP estimate has converged, use the Lanczos method to compute a truncated-

SVD of the dimensionless sensitivity matrix pertaining to ml
base where

Ojbase(m
l
base) = max

1≤j≤Ne

Oj(m
l
j). (2.41)

In this case as the truncated SVD of GD,l is computed for mbase, in decreasing the

maximum objective function, Ojbase , we want to have a large step for the change of

the model; in addition, γl for the base realization may have a large value. Thus,

set γlbase (γl pertaining to ml
base) to a small number, e.g., 0.1.

Otherwise, use the Lanczos method to compute a truncated SVD of the dimen-

sionless sensitivity matrix associated with the MAP estimate at iteration l, ml
0.

4. For j = 0, 1, 2, · · ·Ne do the following steps of the LM algorithm, to decrease the

objective function, Oj(m).

(a) Set s = 0, where s is the iteration index in the LM algorithm for decreasing

the objective function of the jth realization, Oj(m), at a fixed l.

(b) Set the initial value for the LM parameter,

γj,s = γlj.

(c) Compute the LM search direction, δm̃l+1
j , using γj,s in Eq. 2.24 for an RML

realization or in Eq. 2.15 for the MAP estimate, then use

ml+1
temp,j = ml

j + Lδm̃l+1
j , (2.42)

to calculate a proposed new update of the jth realization. Run the simulator

and calculate the objective function Oj(m
l+1
temp,j) with Eq. 2.20.
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(d) If Oj(m
l+1
temp,j)≥Oj(m

l
j), then

i. If s = smax or γj,s ≥ γmax, and mj 6= mbase, set

γl+1
j = γlj,

ml+1
j = ml

j, (2.43)

and go to step 4(a) with the next realization, i.e., terminate the LM algo-

rithm for the jth realization at iteration l. Note that the jth realization

and its corresponding LM parameter are not updated at this iteration.

ii. Else, if s < smax and γj,s < γmax, or mj = mbase, set

γj,s+1 = max(10γj,s, 100),

s = s+ 1, (2.44)

and return to step (c).

Else, if Oj(m
l+1
temp,j) < Oj(m

l
j), set

ml+1
j = ml+1

temp,j,

γl+1
j = γj,s/10. (2.45)

(e) If mbase is not the MAP estimate, and

Oj(m
l
j)−Oj(m

l+1
j )

Oj(ml
j)

> 0.01, (2.46)

go to the next step which is the first step for the multiple iterations with the

same SVD parameters. Otherwise, go to step 4(a) with the next realization.

The following steps are for multiple iterations with the same SVD parameters.
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(a) Set k = 1, mk
j = ml+1

j , where k is the iteration index for the inner loop.

(b) Compute the LM search direction with γj,s using Eq. 2.24, then use

mk+1
j = mk

j + Lδm̃k+1
j , (2.47)

to calculate a proposed new update of the jth realization. Run the simulator

and calculate the objective function Oj(m
k+1
j ) given with Eq. 2.20.

(c) If Oj(m
k+1
j ) < Oj(m

k
j ), then set

ml+1
j = mk+1

j , (2.48)

if k < 10 and
Oj(m

k
j )−Oj(m

k+1
j )

Oj(mk
j )

> 0.01, (2.49)

then set k = k + 1 and return to the previous step.

Otherwise, go to step 4(a) with the next realization, i.e., end the multiple

iterations for the jth realization.

5. Check for convergence using the criteria discussed before. If the algorithm has not

converged, increase iteration index l by 1, replace sv-cut by max
{

sv-cut
2
, µmin

}
and

go to step 3 ; otherwise, go to step 6.

6. End.

In the algorithm described, k < 10 is included to limit the number of iterations

with the same SVD parameters.

In large scale history matching problems, large changes in the objective function

at an early iteration may result in convergence to a model with a high objective function.

If the objective function decreases by a factor of 10 or greater at the first iteration, the

initial value of γ may be too small [28]. Based on this, in all SVD-EnRML algorithms,

the change in the objective function of RML realizations is controlled at the first two
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iterations so that it does not decrease by more than 50%, i.e., at the first two iterations

we require that
Oj(m

l
j)−Oj(m

l+1
j )

Oj(ml
j)

≤ 0.5, (2.50)

for j = 1, 2, · · ·Ne.

2.4 Rescaling Search Direction

Tavakoli and Reynolds [39] applied the SVD-EnRML method to simulate per-

meability fields. In this work, in addition to horizontal permeability fields, the method

is applied to simulate porosity and vertical permeability fields as well. In estimating

different rock property fields, scaling is an important issue. Since in SVD-EnRML, pa-

rameterization is performed in a LM algorithm, the Hessian matrix automatically scales

the search direction. However, we do not want to change any property of a gridblock by

several standard deviations at one iteration.

As mentioned before, the transformed model is defined as:

m̃l = L−1(ml −mprior). (2.51)

For the transformed model in Eq. 2.51, and with the Cholesky decomposition of

CM , written as CM = LLT , the objective function for the MAP estimate can be written

as:

O(ml) =
1

2
(ml −mprior)

T (LLT )−1(ml −mprior)

+
1

2
(g(ml)− dobs)T (C

1/2
D C

1/2
D )−1(g(ml)− dobs), (2.52)

which can also be written in the following form:

O(ml) =
1

2
{L−1(ml −mprior)}T{L−1(ml −mprior)}

+
1

2
{C−1/2

D (g(ml)− dobs)}T{C−1/2
D (g(ml)− dobs)}, (2.53)
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where L−1 denotes the inverse of L, and C
1/2
D is a square root of the matrix CD.

C
−1/2
D (g(ml) − dobs) is defined as the dimensionless data mismatch. Thus, O(m̃) can

be obtained as

O(m̃l) =
1

2
(m̃l)T (m̃l) +

1

2
{C−1/2

D (g(m̃l) − dobs)}T{C−1/2
D (g(m̃l) − dobs)}. (2.54)

By taking the gradient and the Hessian of O(m̃l) in Eq. 2.58, it is easy to obtain

the LM search direction for the transformed model given in Eq. 2.6.

By using Eq. 2.51, although the model is dimensionless, and we are not worried

about different types of model parameters, but still it is not clear how much a model

parameter in the original space would change over an iteration. Following the work of

Gao and Reynolds [13], we rescale the model parameters by defining the new rescaled

variable m̂l by

m̂l = D−1(ml −mprior), (2.55)

where D is a diagonal Nm×Nm matrix, and its ith diagonal entry is equal to the square

root of the ith diagonal entry of CM . In other words, the ith diagonal entry of D is the

standard deviation of the prior uncertainty in the ith model parameter. With the new

model defined in Eq. 2.55, the objective function can be written as:

O(ml) =
1

2
(ml −mprior)

T (DĈMD)−1(ml −mprior)

+
1

2
(g(ml)− dobs)T (C

1/2
D C

1/2
D )−1(g(ml)− dobs), (2.56)

which is equivalent to:

O(ml) =
1

2
{D−1(ml −mprior)}T Ĉ−1

M {D
−1(ml −mprior)}

+
1

2
{C−1/2

D (g(ml)− dobs)}T{C−1/2
D (g(ml)− dobs)}, (2.57)

where ĈM denotes the prior correlation matrix. Thus, O(m̂l) can be obtained with the
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following equation:

O(m̂l) =
1

2
(m̂l)T Ĉ−1

M (m̂l) +
1

2
{C−1/2

D (g(ml)− dobs)}T{C−1/2
D (g(ml)− dobs)}. (2.58)

The gradient of O(m̂l) can easily be obtained as

∇m̂lO(m̂l) = Ĉ−1
M m̂l +D−1GTC

−1/2
D {C−1/2

D (g(ml)− dobs)}. (2.59)

The Hessian for O(m̂l) can be shown to be

Hl = C̃−1
M +D−1GT

l C
−1
D GlD

−1. (2.60)

Thus, the equation of the GN search direction at iteration l for m̂l, is written as:

Hlδm̂
l+1 = −∇m̂lO,

(Ĉ−1
M + D−1GT

l C
−1
D GlD

−1)δm̂l+1 = −Ĉ−1
M m̂l − D−1GT

l C
−1/2
D {C−1/2

D (g(ml) − dobs)}.

(2.61)

With the Cholesky decomposition of the correlation matrix ĈM given by ĈM =

L̂L̂T , Eq. 2.61 can be written as

(L̂−T L̂−1+D−1GT
l C

−1
D GlD

−1)δm̂l+1 = −L̂−T L̂−1m̂l−D−1GT
l C

−1/2
D {C−1/2

D (g(m̂l)−dobs)},

L̂−T (INm + L̂TD−1GT
l C

−1
D GlD

−1L̂)L̂−1δm̂l+1 =

− L̂−T L̂−1m̂l −D−1GT
l C

−1/2
D {C−1/2

D (g(m̂l)− dobs)}, (2.62)

where L̂−T denotes the inverse of the matrix L̂T . As δm̂l+1 = D−1δml+1, and L̂−1D−1 =

L−1, thus L̂−1δm̂l+1 = L−1δml+1 = δm̃l+1. Left multiplying both sides of Eq. 2.62 by
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L̂T , the resulting equation is the GN search direction for the transformed model, m̃:

(INm + L̂TD−1GT
l C

−1
D GlD

−1L̂)L̂−1δm̂l+1

= −L̂−1m̂l − L̂TD−1GT
l C

−1/2
D {C−1/2

D (g(m̂l)− dobs)},

(INm +GT
DGD)δm̃l+1 = −{m̃l +GT

DC
−1/2
D (g(m̂l)− dobs)}. (2.63)

Thus, minimizing the objective function for the rescaled vector of the model given

by Eq. 2.55, is equivalent to minimizing the objective function for the transformed model,

in Eq. 2.51. To use the rescaled model in Eq. 2.55, one can not directly use Eq. 2.61

with SVD parameterization. The minimization is performed in the transformed space,

however after obtaining the search direction in the transformed space, δm̃, we calculate

the rescaled search direction:

δm̂l+1 = D−1δml+1 = D−1Lδm̃l+1. (2.64)

To calculate δm̂l+1, one can simply divide each entry of δml+1 by the square root

of the corresponding diagonal entry of CM , and the matrix D is not formed.

If the infinity norm of δm̂l+1 corresponding to a search direction is greater than

κ, we take a smaller step in the direction of δml+1 with the following equation.

δml+1 =
κ

‖ δm̂l+1 ‖inf
δml+1. (2.65)

Note that δm̂l+1 is only used to obtain the infinity norm of the rescaled search

direction. As the minimization is performed in the transformed space, we do not change

the search direction, and we only take a smaller step in the direction of δml+1 if necessary.

Since δml+1 = Lδm̃l+1, i.e., the transformation is linear, taking a step in the direction of

δml+1 in the actual space, is equivalent to take the same step in the direction of δm̃l+1

in the transformed space. In the examples of this thesis, for the LM algorithm with

SVD parameterization or SVD-EnRML, κ = 2 is used, and for the GN algorithm with
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SVD-EnRML κ = 1 is used.

2.5 Reordering Model Parameters for Uncorrelated Layers

For a 3D reservoir with Nz layers, the covariance matrix can be very large, since

there are many model parameters to be adjusted to history match data. However, if

the model parameters of some layers are not correlated, one can reorder the vector of

model parameters so that in the reordered m, the correlated parameter are grouped

together. As an example, consider a 4 layer reservoir, where the model parameters in

the 2 lower layers, have correlation with each other, and the model parameters in each

of the 2 upper layers are uncorrelated with model parameters of any other layer. If the

model parameters are porosity, horizontal and vertical log permeability of gridblocks of

all layers, one can reorder the model parameters in the following form,

m =

(
mT

1 mT
2 mT

34

)T
=

(
(ln kh1)

T (ln kz1)
T φT1 (ln kh2)

T (ln kz2)
T φT2 (ln kh34)

T (ln kz34)
T φT34

)T
,

(2.66)

where m1 is the vector of the model parameters in the 1st layer, ln kh1 denotes the vector

of horizontal log permeability of gridblocks in the 1st layer; ln kz1 denotes the vector of

vertical log permeability of gridblocks in the 1st layer; φ1 is the vector of porosity of

gridblocks in the 1st layer. ln kh34 denotes the vector of horizontal log permeability of

gridblocks in the 3rd and the 4th layers. Other vectors are defined the same way.

In Eq. 2.66, the subscript 34 refers to layer 3 and 4, i.e.,

ln kz34 =

(
(ln kz3)

T (ln kz4)
T

)T
. (2.67)
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The corresponding covariance matrix for vector m in Eq. 2.66 can be written as

CM =


CM1 0 0

0 CM2 0

0 0 CM34

 . (2.68)

In Eq. 2.68, each entry is a block matrix. The block matrices may have different

dimensions. The matrix CM1 has the following form

CM1 =


Cln kh1

Cln kh1 ,ln kz1
Cln kh1 ,φ1

Cln kz1 ,ln kh1
Cln kz1

Cln kz1 ,φ1

Cφ1,ln kh1 Cφ1,ln kz1 Cφ1

 . (2.69)

CM2 has a similar form to CM1 . CM34 which is the covariance matrix of model

parameters in layers 3 and 4, has the following form:

CM34 =


Cln kh34

Cln kh34 ,ln kz34
Cln kh34 ,φ34

Cln kz34 ,ln kh34
Cln kz34

Cln kz34 ,φ34

Cφ34,ln kh34 Cφ34,ln kz34 Cφ34

 . (2.70)

Since in the SVD parameterization algorithms, we only need the products of GD

times a vector and GT
D times a vector, the covariance matrix of Eq. 2.68 is not required

to be formed, and only the nonzero block matrices are required. The dimensionless

sensitivity matrix, GD, for m in Eq. 2.66, can be written as

GD = C
−1/2
D GC

1/2
M =

(
C

−1/2
D G1C

1/2
M1

C
−1/2
D G2C

1/2
M2

C
−1/2
D G34C

1/2
M34

)
, (2.71)

where G1 is the sensitivity matrix of model parameters in the first layer, G2 is the

sensitivity matrix of model parameters in the second layer, and G34 is the sensitivity

matrix of model parameters in the 2 bottom layers. Eq. 2.71 can be used to calculate

GD times a vector and GT
D times a vector, which are required in the Lanczos method for
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computing a truncated SVD of GD. This way, the square root or Cholesky decomposition

of each of the covariance matrices can be directly used for computations, and there is

no need to form the covariance matrix of Eq. 2.68. Note that in Eq. 2.71, in order to

computed a truncated SVD, the dimensionless sensitivity matrix is not formed, and only

the product of GD times a vector and the product of GT
D times a vector are required;

thus the matrices C
1/2
M1

, C
1/2
M2

and C
1/2
M34

can be saved in sparse form.

2.6 SVD-EnRML with Levenberg-Marquardt and Gauss-Newton

Algorithms

Tavakoli and Reynolds [37, 38] provided the derivation of the search direction

for both the GN and LM algorithms with SVD parameterization; however, they only

applied the LM algorithm and they did not use the GN algorithm to estimate the log

permeability fields. In their examples, a good estimate of the true model was obtained

with a fixed number of SVD parameters (20).

Dickstein et al. [8] used SVD parameterization in GN algorithm to condition the

log permeability field to production and seismic data. In their synthetic example, in

the absence of seismic data, when they used a fixed number of SVD parameters (25)

in the GN algorithm, the resulting model was very rough, giving a poor representation

of the reservoir, although the data matches were very good. However, they obtained

good representations of the model with increasing NSVD strategy, i.e., starting with a

few SVD parameters and gradually increasing the number of SVD parameters as the GN

iterations proceeds.

In summary, the results of Dickstein et al. [8] and Tavakoli and Reynolds [37, 38]

show that with the LM algorithm one can obtain a good representation of the model

with a fixed number of SVD parameters, while the GN algorithm may provide a rough

and poor estimate of the model. Although, by gradually increasing the number of SVD

parameters, both algorithms would provide a good estimate of the model. The literature

also suggests that in the LM algorithm one should begin with a high initial value of γ

[28, 2, 22].
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The spectral analysis of the LM algorithm is provided in Oliver et al. [28]. They

presented a theoretical argument that suggests a small LM parameter may result in

large changes in the component of m that lies in the direction of eigenvectors of the GN

Hessian associated with small eigenvalues. Noticing that in the transformed space, the

eigenvectors of Hessian are the same as the right singular vectors of the dimensionless

sensitivity matrix, GD, the argument can be used to justify the failure of the GN algo-

rithm with SVD parameterization in obtaining a reasonable estimate of the permeability

field when a high number of SVD parameter are calculated at early iterations.

Although at late iterations of the LM algorithm, the LM parameter may have a

small value, one should note that the data mismatch terms at late iterations are much

smaller than early iterations of the algorithm. In addition, the important features of the

model are resolved at early iterations. Further, we will discuss that even with a small

LM parameter, e.g., 10, the eigenvectors associated with the small eigenvalues would

have smaller components in the search direction.

As we will show, with a high value of the LM parameter, the major components

of the search direction are along a few eigenvectors of the Hessian associated with the

largest eigenvalues; the result is that at an early iteration of the LM algorithm, only

a few important features of the true model are resolved; and as iteration proceeds, the

weight of the eigenvectors associated with smaller eigenvalues increases in the search

direction. Thus with the LM algorithm, the features of the true model are gradually

resolved. Opposite to the LM algorithm, the GN search direction at an early iteration

may have large components along eigenvectors of the Hessian associated with small

eigenvalues. This means that the GN search direction tries to resolve many features of

the true model from an early iteration. If the GN search direction, has large components

along eigenvectors with very small eigenvalues, the resulting model can be very rough.

In this section, we discuss the difference of the GN and LM algorithms by looking

at the search directions of the two methods. Further, the efficiency and applicability of

SVD parameterization in the GN and LM algorithms are compared based on a synthetic
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example.

In SVD parameterization with GN algorithm, the search direction is given with

the following equation:

δml+1
j = L

p∑
i=1

[
−vTi m̃l

j

1 + λ2i
− λi

1 + λ2i
uTi C

− 1
2

D (g(ml
j)− duc,j)

]
vi, (2.72)

while the search direction with the LM algorithm is as follows:

δml+1
j = L

p∑
i=1

αivi = L

p∑
i=1

[
−vTi m̃l

j

1 + γlj + λ2i
− λi

1 + γlj + λ2i
uTi C

− 1
2

D (g(ml
j)− duc,j)

]
vi. (2.73)

Comparing Eqs. 2.72 and 2.73, one can see the effect of the LM parameter on the

search direction. With a high value of the LM parameter, e.g., 106, and a small singular

value, the fraction λi
1+γl+λ2i

is very small. Note that the relative effect of the prior model

for each singular vector in the two search directions are the same. The ratio of the

coefficient of vTi m̃
l
j to the coefficient of uTi C

− 1
2

D (g(ml
j) − duc,j) for the ith right singular

vector in the GN search direction is:

(
−1

1 + λ2i
)/(
−λi

1 + λ2i
) =

1

λi
, (2.74)

and the same ratio in the LM search direction is:

(
−1

1 + γlj + λ2i
)/(

−λi
1 + γlj + λ2i

) =
1

λi
. (2.75)

Thus, the relative weight of the prior model for each of the right singular vectors

is the same for the GN and LM search directions.

At early iterations of the GN or LM algorithm, the model mismatch term is small,

while the data mismatch term is very large; therefore, the data mismatch term has the

significant effect on the search direction. By taking the derivative of the term λ
1+γl+λ2

with respect to λ, one can investigate the effect of the LM parameter on the search
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direction:

∂

∂λ

{
λ

1 + γl + λ2

}
=

1 + γl − λ2

(1 + γl + λ2)2
, (2.76)

therefore:

∂

∂λ

{
λ

1 + γl + λ2

}
> 0, if 1 + γl > λ2

< 0, if 1 + γl < λ2,

(2.77)

thus, if the value of γl is chosen such that 1 + γl > λ21, where λ1 is the first singular

value, λ
1+γl+λ2

is an increasing function of λ, which means that the right singular vectors

corresponding to the largest singular values are likely to have the largest coefficients

in the search direction; while in the GN search direction with γl = 0, and all retained

singular values greater than 1, we have 1 + 0 < λ2, which means that the right singular

vectors corresponding to the smallest retained singular values are likely to have the

largest coefficients in the search direction. In addition, for a moderate value of γl, the

maximum value of λ
1+γl+λ2

is likely to be at a singular value, λi, that is close to
√

1 + γl,

as λ =
√

1 + γl gives a derivative of zero in Eq. 2.76.

If the LM parameter is small, say 100 or 10, for the singular values which are

smaller than 1, the term λi
1+γl+λ2i

is approximately equal to λi
1+γl

; while the term λi
1+λ2i

is close to λi. It means that with the LM parameter, the weight of the corresponding

eigenvector is approximately reduced by a factor of γl.

In Example 1-2, the numerical values of λi
1+γl+λ2i

and λi
1+γl

are compared and the

discussion is continued in Subsection 2.7.2.

As we will use the SVD parameterization with GN algorithm in Example 1-2, the

step by step description of the algorithm is given here. In the following subsections, D

denotes a diagonal Nm × Nm matrix, with the ith diagonal entry equal to the square

root of the ith diagonal entry of CM , as explained in Section 2.4. α denotes the step

size. The step by step description of SVD-EnRML with the GN algorithm is introduced

as it is used in Example 1 of this chapter; however we do not use it in any other example

of this thesis.
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Throughout this section l is the iteration index of the GN algorithm, where a

truncated SVD of GD,l is computed using the Lanczos method.

2.6.1 Steps of Gauss-Newton Algorithm with SVD Parameterization

Here the specific steps of the GN algorithm with SVD parameterizaton for gen-

erating an estimate of the model is presented:

1. Set l = 0 and assign the initial guess of m0 = mprior for the MAP estimate. Set

the initial sv-cut, µ1. Also, set the final value of the singular cutoff, µmin, and the

maximum number of SVD parameters ( NSVD,max ) to be calculated by the Lanczos

method.

2. Run the simulator with initial guess of the model parameters for the MAP estimate,

and Compute O(ml) from Eq. 2.19.

3. Use the Lanczos method with the inputs sv-cut and NSVD,max, to compute a trun-

cated SVD of the dimensionless sensitivity matrix associated with the MAP esti-

mate at iteration l, ml. Set α = 1.0.

4. (a) Compute the GN search direction:

δm̃l+1 =

p∑
i=1

[−vTi m̃l − λiuTi C
− 1

2
D (g(ml)− dobs)

1 + λ2i

]
vi, (2.78)

then use

δml+1 = Lδm̃l+1. (2.79)

Compute δm̂l+1 by

δm̂l+1 = D−1δml+1. (2.80)

For the GN algorithm, we use Eq. 2.65 with κ = 1; thus, if ‖δm̂l‖inf > 1.0

then set

δml+1 = δml+1/‖δm̂l+1‖inf. (2.81)
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(b) Use the following equation to calculate a proposed new update of the MAP

estimate:

ml+1
temp = ml + αδml+1. (2.82)

Run the simulator with ml+1
temp and calculate the objective function O(ml+1

temp)

given by Eq. 2.19.

(c) If O(ml+1
temp) < O(ml), then set

ml+1 = ml+1
temp. (2.83)

Else if O(ml+1
temp) > O(ml), then set α = α/2 and go to step b.

5. Check for convergence using the criteria in Eqs. 2.37 and 2.38. If the algorithm has

not converged, increase iteration index l by 1, replace sv-cut by max
{

sv-cut
2
, µmin

}
and go to step 3; otherwise, if the convergence criteria are satisfied, go to step 6.

6. End.

2.6.2 Steps of SVD-EnRML with Gauss-Newton

Here the steps of the GN algorithm with SVD parameterizaton for simulation

of rock property fields is presented. The steps of this algorithm are the same as the

SVD-EnRML-SMM algorithm, with a difference that the LM algorithm is replaced with

a simple line search.

1. Set l = 0 and assign the initial guess of m0
j = muc,j for j = 1, 2, · · ·Ne for RML

realizations and an initial guess of m0
0 = mprior for the MAP estimate. Set the

initial value of the step size, αlj = 1.0 for j = 0, 1, · · ·Ne. Set the initial sv-cut

and sv-cut after the convergence of the MAP estimate, µ1 and µ2, respectively.

Set the final value of the singular cutoff, µmin and the maximum number of SVD

parameters ( NSVD,max ) to be calculated by the Lanczos method; also set αmin and
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smax, where αmin is the minimum step size and smax is the maximum iterations in

a line search.

2. Calculate the initial values of the objective functions by running the simulator to

the final time with initial guesses of the model parameters for the MAP estimate

and all realizations. Compute Oj(m
l
j) with Eq. 2.20 for j = 1, 2, · · ·Ne and compute

O(ml
0) from Eq. 2.19.

3. If ON,MAP(ml
0) < 1 + 5

√
2/Nd or if Eqs. 2.37 and 2.38 are both satisfied, i.e., the

MAP estimate has converged, use the Lanczos method to compute a truncated

SVD of the dimensionless sensitivity matrix pertaining to ml
base where

Ojbase(m
l
base) = max

1≤j≤Ne

Oj(m
l
j). (2.84)

In this case set αlbase (αl pertaining to ml
base) to a 1.0, i.e., take a full step for the

base realization.

Otherwise, use the Lanczos method to compute a truncated SVD of the dimen-

sionless sensitivity matrix associated with the MAP estimate at iteration l, ml
0.

4. For j = 0, 1, 2, · · ·Ne

(a) Set s = 0, where s is the iteration index in the line search for decreasing the

objective function of the jth realization, at a fixed l. If αlj < 0.1, set αlj = 0.1

(b) Compute the GN search direction, δm̃l+1
j , using Eq. 2.78 for the MAP esti-

mate, or using the following equation for an RML realization:

δm̃l+1
j =

p∑
i=1

[
−vTi m̃l

j − λiuTi C
− 1

2
D (g(ml

j)− duc, j)
1 + λ2i

]
vi, (2.85)

then use

δml+1
j = Lδm̃l+1

j . (2.86)
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Compute δm̂l+1
j by

δm̂l+1
j = D−1δml+1

j . (2.87)

For the GN algorithm, we use Eq. 2.65 with κ = 1; thus, if ‖δm̂l
j‖inf > 1.0

then set

δml+1
j = δml+1

j /‖δm̂l+1
j ‖inf. (2.88)

(c) Use the following equation to calculate a proposed new update of the jth

realization:

ml+1
temp,j = ml

j + αljδm
l+1
j . (2.89)

Run the simulator withml+1
temp,j and calculate the objective functionOj(m

l+1
temp,j).

(d) If Oj(m
l+1
temp,j)≥Oj(m

l
j), then

i. If s = smax or αlj = αmin, and mj 6= mbase, then set

αl+1
j = αlj,

ml+1
j = ml

j, (2.90)

and terminate the line search for the jth realization at iteration l. Note

that the jth realization is not updated at this iteration.

ii. Else, if s < smax and αlj > αmin, or mj = mbase, set

αlj = max(
αlj
2
, αmin),

s = s+ 1, (2.91)

and return to step (c).
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Else, if Oj(m
l+1
temp,j) < Oj(m

l
j), set

ml+1
j = ml+1

temp,j,

αl+1
j = min(2αlj, 1). (2.92)

5. Check for convergence using the criteria in Eqs. 2.37 and 2.38. If the algorithm has

not converged, increase iteration index l by 1, replace sv-cut by max
{

sv-cut
2
, µmin

}
and go to step 3; otherwise, go to step 6, i.e., terminate the algorithm.

6. End.

In our implementation, we used αmin = 0.005.

2.7 Example 1

This example pertains to a two-dimensional horizontal reservoir model with 28×

30 uniform grid. True porosity and log permeability fields are shown in Fig. 2.1. The

key geostatistical parameters used to generate the true model are listed in Table 2.1. In

this table, φmean and [ln(k)]mean, denote the prior mean of porosity and log-permeability,

respectively. The standard deviations of porosity and log-permeability are denoted by

σφ and σln(k), respectively; ρφ,ln(k) denotes the correlation coefficient between porosity

and log-permeability; α is the angle measured counterclockwise from the x-axis to the

principal correlation direction of the covariance function; r1 is the correlation range in

the principal direction and r2 is the correlation range in the orthogonal direction.

The gridblock dimensions are:

4x = 4y = 200 ft, 4z = 10 ft.

The initial reservoir pressure is 4800 psi. Initially the reservoir is at irreducible

water saturation. There are 7 producers and 2 injectors in this reservoir. Table 2.2

shows the summary of well controls. The total history matching period is 1800 days.
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Table 2.1: Geostatistical parameters of Example 1.

Parameters Values
φmean 0.15
[ln(k)]mean 4.50
σφ 0.0016
σln(k) 1.414
ρφ,ln(k) 0.80
α 45o

r1 254x
r2 74x
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(a) True porosity field
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(b) True log permeability field

Figure 2.1: True porosity and log permeability fields, Example 1.

At 1800 days, only Prod-1, Prod-3 and Prod-7 have experienced water breakthrough.

Observed data include the flowing bottom hole pressure (BHP) of all wells and water

rates of producers which had water breakthrough, at 30 day intervals.

Synthetic observed data are generated by adding Gaussian random noise to the

true data, where the true data are the simulator output when it is run with the true

model. The standard deviation of noise (measurement error) is 2% of rates for water

rate data and 3 psi for pressure data, i.e., σBHP = 3 psi and σqw = 0.02qw. The mini-

mum measurement error for water rate is specified to 0.5 STB/D while the maximum

measurement error is 3 STB/D.
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Table 2.2: Well controls of Example 1. Total liquid rate is specified at producers and
injection rate is specified at injectors. The rates are in STB/D.

Time Period Inj-1 Inj-2 Prod-1 Prod-2, 3 Prod-4,5 Prod-6 Prod-7
0− 90 Days 450 450 300 300 200 200 200
90− 5000 Days 1050 1000 350 300 300 200 300

Model parameters include porosity and log permeability of all gridblocks. Fluid

properties are assumed to be known. The number of model parameters and observed

data are

Nm = 2Nx ×Ny = 1680, Nd = 720.

In Example 1-1 and 1-2, the objective is to simulate porosity and log permeability

fields with SVD parameterization in LM and GN algorithms and compare the results in

terms of the final values of objective functions, the rate of convergence and details of

search direction. Only 5 conditional realizations in addition to the MAP estimate are

generated. In both the LM and GN algorithms, the change in the objective functions

are controlled over the first two iterations, such that

O(ml
j)−O(ml+1

j )

O(ml
j)

≤ 0.5, (2.93)

for j = 1, · · ·Ne. In both the LM and GN algorithms, the parameter sv-cut is used to

control the number of SVD parameters at each iteration with a maximum of 55 singular

triplets. The same unconditional realizations are used in the two algorithms.

For the LM algorithm, SVD-EnRML-SMM with the step by step description given

this chapter, is used. For the GN algorithm, we follow the step by step description given

in Subsection 2.6.2.

Throughout, µ1 refers to the initial value of sv-cut in SVD-RML algorithms; µ2

refers to the value of sv-cut at the first iteration after the convergence of the MAP esti-

mate; µmin is the minimum sv-cut. NSVD,max is the maximum number of SVD parameters

which can be calculated at an iteration.
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In tables or figures, “MI” refers to SVD-EnRML-MI; “SMM” refers to SVD-

EnRML-SMM, “AG” refers to SVD-EnRML-AG, “Sim.” refers to reservoir simulation

runs; and Direct refers to direct method (gradient simulator method). The computational

costs are compared based on equivalent simulation runs which is denoted by “Equ. Sim.

Runs”. In computing the computational cost in terms of equivalent simulation runs, 4

adjoint solutions or 4 direct method applications are roughly assumed to be equivalent

to 1 reservoir simulation run. Niter refers to the number of iterations until convergence.

We consider two cases. In the first case, we use µ1 = 0.5. In the second case, we

choose µ1 = 0.01. In both cases, the results of the GN and LM algorithms are compared.

Note that in all the figures of this example, at iteration l, the truncated SVD of

GD,l is updated by the Lanczos method.

2.7.1 Example 1-1

Table 2.3 shows the input parameters of the algorithms. Fig. 2.2 shows the

values of normalized objective functions of all realizations versus iterations for the two

algorithms, and Fig. 2.3 shows the values of the max{ON(m)} versus iterations of the two

algorithms. SVD-EnRML with GN algorithm converged in 37 iterations, while the SVD-

EnRML-SMM algorithm converged in 45 iterations. At convergence of both algorithms,

all realizations have normalized objective function of less than 1 + 5
√

2/Nd = 1.263.

One may conclude that the GN has better convergence properties as the algorithm

has converged in fewer iterations; however, it should also be noticed that in Fig. 2.3, the

value of max{ON(m)}, between iteration l = 8 and l = 33 for the LM algorithm is less

than the one from the GN algorithm.

Table 2.3: Input parameters of the SVD-EnRML with GN and LM algorithm, Example
1-1.

Algorithm µ1 µ2 NSVD,max µmin

GN 0.5 0.05 55 0.0002
LM 0.5 0.05 55 0.0002
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Figure 2.2: ON (m) of realizations versus iterations of SVD-EnRML with the GN and the LM
algorithms, Example 1-1.
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Figure 2.3: Max{ON (m)} versus iterations of SVD-EnRML with GN and the LM algorithms,
the green line shows the value of 1 + 5

√
2/Nd = 1.263, Example 1-1.
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The number of retained SVD parameters versus iteration of the SVD-EnRML-

SMM are shown in Fig. 2.4(b). The jump in this figure happens at the convergence of

the algorithm, where we set sv-cut= µ2 = 0.05. Fig. 2.4 shows the values of sv-cut and

λp/λ1 versus iteration of the SVD-EnRML-SMM algorithm. According to this figure,

at late iterations the Lanczos algorithm computed 55 singular triplets of GD,l, since we

specified NSVD,max = 55. Note that the value of λ55/λ1 is greater than the minimum

sv-cut which is 0.0002.
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Figure 2.4: Values of sv-cut and λp/λ1, and the number of retained singular triplets versus
iterations of SVD-EnRML-SMM, Example 1-1.

This example shows that the SVD-EnRML with GN algorithm and gradually

increasing the number of SVD parameters, can be used to efficiently generate the MAP

estimate and RML realizations. In both the GN and LM algorithms, the MAP esti-

mate converged in the same number of iterations, with comparable values of normalized

objective functions.

In Example 1-2, we compare the two algorithms when using a high number of

singular triplets at early iterations.

2.7.2 Example 1-2

In this case, both the SVD-EnRML-SMM algorithm and SVD-EnRML with GN

algorithm start with µ1 = 0.01, i.e., more singular triplets are calculated at early it-
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erations compared to Example 1-1. We already know that computing many singular

triplets at early iterations is neither necessary, nor beneficial; however our objective is

to compare the results of the GN and LM algorithms in this situation.

Table 2.4: Input parameters of SVD-EnRML with GN and LM algorithms, Example 1-2.

Algorithm µ1 µ2 NSVD,max µmin
GN 0.01 0.01 55 0.0002
LM 0.01 0.01 55 0.0002

Table 2.4 shows the input parameters of the algorithms. The SVD-EnRML with

GN converged in 12 iterations, as both Eqs. 2.37 and 2.38 were satisfied. At convergence,

ON(m) of the MAP estimate from GN is slightly greater than 1+
√

2/ND = 1.264. With

the LM method, the algorithm converged in 35 iterations, with small values of ON(m)

for all realizations.
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Figure 2.5: ON (m) of realizations versus iterations of SVD-EnRML with GN and LM algo-
rithms, Example 1-2.

Table. 2.5 contains the final values of ON(m) of realizations at convergence of the

algorithms. Fig. 2.5 shows ON(m) of all realizations versus iterations for the GN and LM

algorithms. The convergence properties of the LM algorithm over iterations in this case

that more singular triplets were calculated at early iterations, is very similar to Example

1-1. However, convergence properties of the GN algorithm for RML realizations is much
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worse than Example 1-1. At convergence of the GN algorithm, only the MAP estimate

has ON close to a reasonable value.

In this example, the rate of decrease of objective functions of RML realizations

in SVD-EnRML with GN is very slow at early iterations. One reason can be that by

retaining a high number of SVD parameters at early iterations, roughness is added to

the models. Note that we are using a truncated SVD of GD,l computed for the MAP

estimate for decreasing Oj(m) of RML realizations; at early iterations, the right singular

vectors corresponding to small singular values of GD,l computed for the MAP estimate,

contain the less important features of the model, and they are very noisy. The GN search

direction composed of these noisy vectors for an RML realization adds roughness to the

model.

Table 2.5: Final values of normalized objective functions at convergence of the GN and
LM algorithms with SVD parameterization, Example 1-2.

Algorithm j = 0 j = 1 j = 2 j = 3 j = 4 j = 5
GN 1.355 1612.9 3484.2 78.2 161158.0 27540.1
LM 1.244 1.280 1.280 1.272 1.255 1.257

Table 2.6: Comparison of objective functions of the MAP estimate at convergence, gen-
erated from the GN and LM algorithms with SVD parameterization, Example
1-2.

Algorithm Od(m) Om(m) ON(m)
GN 398 90.14 1.355
LM 413.7 34.018 1.244

Fig. 2.6 shows the log permeability and porosity fields of the MAP estimate

with the two algorithms. The rock property fields obtained from both the GN and

LM algorithms, display the main characteristic of the true rock property fields shown in

Fig. 2.1. Unlike the results of Dickstein et al. [8], the MAP estimate generated from SVD

parameterization in GN algorithm, is not rough and it has captured the main features

of the true model.
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(b) ln(k) field, GN algorithm
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(c) Porosity field, LM algorithm
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Figure 2.6: Log permeability and porosity fields of the MAP estimate from the LM and GN
algorithms with SVD parameterization, Example 1-2.
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Fig. 2.7 shows the model mismatch and data mismatch terms of the objective

function of the MAP estimate versus iterations of the two algorithms. It can be seen that

in the GN algorithm with SVD parameterization, the model mismatch term increased to

a high value in a few iterations and then it has small changes, while in the LM algorithm,

the model mismatch term increases by a slow rate during all iterations. Table 2.6 shows

the values of model mismatch part and data mismatch part of the objective function

of the MAP estimate for the two algorithms. The model mismatch term of the MAP

estimate with the GN algorithm is noticeably higher than the one from the LM algorithm.
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Figure 2.7: Od(m) and Om(m) of the MAP estimate versus iterations of SVD-EnRML with
the GN (red) and LM (black) algorithms, Example 1-2.

At the first iteration, with sv-cut of 0.01, 20 singular triplets were calculated. As

can be seen in Eq. 2.73, the ratio λi
1+γl+λ2i

has a major effect on the search direction. Note

that for a large γl and small λi, the ratio λi
1+γl+λ2i

would have a small value. Here, some

details of the search direction for the MAP estimate at the first iteration of the GN and

LM algorithms are investigated.

In the LM algorithm, a value of 107 was used for γ0. In Fig. 2.8(a) the left column

shows the value of λi
1+γ1+λ2i

for the ith largest singular value with γ1 = 107, while the right

column shows the value of λi
1+λ2i

. Fig. 2.8(b) shows the singular values of GD calculated

at the first iteration. The largest 2 singular values are 7474 and 7108, and then the 3rd

singular value is 2621 which is much lower than λ1 and λ2.
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Figure 2.8: Singular values, λi, and λi
1+γ1+λ2i

at the first iteration. For GN, the column shows

the values of λi
1+λ2i

. Example 1-2.

Fig. 2.9(a) shows the absolute values of αi, i = 1, · · · p from Eq. 2.73. Note that

αi is the coefficient of vi in the expansion of δm̃ in terms of the right singular vectors,

vi, i = 1, · · · p. Fig. 2.9(b) shows the ratio |αi/α1| for the retained singular values. α1

is the coefficient of v1 corresponding to the largest singular value. This figure shows

that the LM search direction has its main components in the direction of v1 and v2,

corresponding to the two largest singular values. In addition, |αi/α1| for all i > 12,

is less than 0.005. For the smallest retained λ which is the 20th singular value, the

ratio |α20/α1| is 0.001. Note that the first 2 singular values in fig. 2.8(b) form a cluster.

Returning to Fig. 2.9(b), we see that the GN search direction has large components

along several right singular vectors, including the right singular vectors corresponding

to the small singular values. This is the opposite of the LM search direction. If we

were to retain more singular triplets, LM search direction will not highly change, as the

right singular vectors corresponding to the small singular values would have very small

components in the search direction, δm̃, but the GN search direction is very sensitive to

the number of retained singular triplets.

Now we consider the search direction of an RML realization. Fig. 2.10(c) shows

the singular values of GD at iteration l = 3. Figs. 2.10(a) and 2.10(b) show the absolute
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Figure 2.9: Parameters of the search direction at the first iteration of SVD-EnRML with the
GN and LM, corresponding to the MAP estimate. The index in the horizontal
axis represents ith largest singular value, Example 1-2.
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l = 3. (c) Retained singular values of GD at iteration 3, corresponding to the
MAP estimate. Example 1-2.
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values of αi/α1 for the ith singular value, in the search direction, δm̃ of realization #2 for

the GN and LM algorithms. The value of γ2 was 108 in calculating the search direction at

this iteration of the LM algorithm. Note that in Fig. 2.10(a), for the LM search direction,

the values are on a log scale and the absolute values αi/α1 are all less than 0.001 for

i > 14, while in Fig. 2.10(b), for the GN search direction, some αi, corresponding to

small singular values, are even higher than α1.

Here, we investigate more on the effect of the number of retained singular triplets

on the search direction. In Example 1-1, at the first iteration of the algorithm (l = 1),

with sv-cut= 0.5, 3 singular triplets were retained. The ln(k) part of the search direction

for the MAP estimate in the actual space, δm1, with the LM and GN algorithms are

shown in Figs. 2.11(a) and 2.11(c), respectively.

In Example 1-2, at the first iteration of the algorithm (l = 1), with sv-cut=

0.01, 20 singular triplets were retained. The ln(k) part of the search direction for the

MAP estimate in the actual space, δm1, with the LM and GN algorithms are shown in

Figs. 2.11(b) and 2.11(d), respectively. Comparing Figs. 2.11(b) and 2.11(a), one can see

that the search direction for the LM algorithm with 3 singular triplets, look very similar

to the one with 20 singular triplets. Opposite to the LM search direction, the GN search

direction with 3 singular triplets in Fig. 2.11(c), is very different from the one with 20

singular triplets, in Fig. 2.11(d).

As one can see in Figs. 2.11(b) and 2.11(a), the LM search direction is mainly

changing the permeability of two important regions of the true model, which are around

the two injectors. As can be seen in Fig. 2.15, these two high permeability zones are

from the two eigenvectors associated with the largest eigenvalues. This is in agreement

with the results of Fig. 2.9(b), where only the first 2 eigenvectors have large components

in the search direction of the MAP estimate at l = 1. Except these two eigenvec-

tors, the search direction is not mainly affected by other eigenvectors which contain high

frequency components. This effectively means that the LM algorithm is gradually resolv-

ing the important characteristics of the model. The GN search direction in Figs. 2.11(d)
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Figure 2.11: ln(k) part of δm1 in the LM and GN algorithms with 3 and 20 singular triplets,
Example 1-2.
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and 2.11(c) is affected by all the eigenvectors that were used in calculating δml+1, and

the algorithm is trying to change many parts of the model at the same time.

The search direction for an RML realization (j = 2) with both the GN and LM

algorithms at iteration l = 1 of the algorithms are shown in Fig. 2.12. As can be seen

in this figure, the search direction in the LM algorithm with retaining either 3 or 20

singular triplets look very similar, however the search direction in the GN algorithm

with 3 singular triplets is far different from the one with 20 singular triplets.
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Figure 2.12: ln(k) part of δm1
2 in the LM and GN algorithms with 3 and 20 singular triplets,

Example 1-2.

We also would like to compare the model mismatch terms versus iterations for

the two algorithms. However, since both algorithms are performed in a transformed

space, we investigate the behavior of the norm of δm̃. Since the right singular vectors
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are orthogonal, this norm can be computed as

‖δm̃l+1‖ = ‖Vpαl+1‖ =
√

(αl+1)TV T
p Vp(α

l+1) =
√

(αl+1)T (αl+1). (2.94)
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Figure 2.13: Om(m) and ‖δm̃‖ of realization #2 versus iterations of SVD-EnRML-SMM with
GN and LM algorithms, Example 1-2.

Fig. 2.13(b) shows ‖δm̃l+1‖ of realization #2 versus iterations l in the GN and

LM algorithms. Although not shown, the infinity norm of δm̂l+1
2 , given by Eq. 2.65, in

the GN was greater than 6 during the first 9 iterations of the GN, while the infinity norm

of δm̂l+1
2 in the LM algorithm was less than 2 during the first 9 iterations. It means that

in the GN algorithm, to avoid large changes in model parameters, a small step along the

search direction for this realization was used at all these 9 iterations. Fig. 2.13(a) shows

the model mismatch term for realization #2 versus the first 9 iterations. By comparing

Figs. 2.13(a) and 2.13(b), one can see that in the GN, the model mismatch term at the

first 2 iterations is small (1.158 and 3.267, at l = 1 and l = 2 respectively), but ‖δm̃l
2‖

is high from the first iteration. In the LM algorithm, γ decreases with iterations and it

reached a value of 1.0 at iteration l = 9, but ‖δm̃l
2‖ does not increase to a high value

compared to the GN algorithm. The reason is that, at early iterations of GN, the high

data mismatch term in Eq. 2.72 makes the αi corresponding to small singular values

even higher, and the search direction would have large components along the noisy right

singular vectors. But in the LM algorithm, as γ decreases with iterations, by the time γ
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reaches a relatively small value, the data mismatch term is much smaller and the values

of αi corresponding to small singular values, are not high.

At late iterations where the LM parameter is small, the distribution of the values

of |αi| in the LM search direction are different from the one at early iteratiuons. At

iteration l = 10 of SVD-EnRML algorithm, the value of γ for the MAP estimate was

very small (γ = 0.01), but since the LM search direction did not decrease the objec-

tive function, γ increased to 100, and with this value the objective function decreased.

Fig. 2.14(a) shows the values of |αi| for the MAP estimate at iteration l = 10. In this

figure, black shows the values of |αi| with γ = 0.01 and red shows the values of |αi|

with γ = 100. Note that increasing γ to 100, had a negligible effect on αi corresponding

to large singular values, but it highly reduced the values of |αi| corresponding to small

singular values.
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Figure 2.14: (a) The values of |αi| in the search direction with the LM algorithm correspond-
ing to the MAP estimate, red is with γ = 100, black is with γ = 0.01. (b) The
retained singular values of GD,l at l = 10, Example 1-2.

2.7.3 Conclusions

The results presented, show that with a large value of γ, the search direction

δm̃ in the LM algorithm has components mainly in the direction of the right singular

vectors corresponding to the largest singular values, while the search direction δm̃ in the

GN algorithm has large components mainly in the direction of the right singular vectors
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corresponding to the small singular values. These results are consistent with the discus-

sion about spectral analysis of the LM algorithm given in Oliver et al. [28], that with

a γ close to zero, the search direction in the LM algorithm may have large components

in the direction of eigenvectors of the Hessian associated with the small eigenvalues;

where for our LM algorithm, the eigenvectors of the Hessian in the transformed space

are the eigenvectors of GT
DGD, which are the same as the right singular vectors of the

dimensionless sensitivity matrix, GD.

The LM algorithm does not only damp the change of model parameters at early

iterations. At early iterations, the LM algorithm gradually resolves the important fea-

tures of the model which are contained in eigenvectors of the Hessian associated with

the largest eigenvalues.

The results of Tavakoli and Reynolds [37] shows that with SVD parameterization,

the behavior of the normalized objective function with a fixed sv-cut of 0.003125 and

with sv-cut changing from 0.1 to 0.003125 by dividing by 2 at each iteration, are almost

the same. In addition, in their results, the behavior of the normalized objective function

at early iterations has no visible difference for 3 different cases, which are fixed sv-cut

of 0.1, fixed sv-cut of 0.003125, and changing sv-cut from 0.1 to 0.003125. Their results

can be justified with the results of this example. No matter how many singular triplets

are calculated at early iterations, with a high LM parameter, the main components of

the search direction are along a few right singular vectors associated with the largest

singular values. Thus in the LM algorithm, the behavior of objective function at early

iterations are almost identical in cases that a few singular triplets be calculated or many

singular triplets be calculated.

The results of Dickstein et al. [8] can also be justified with our discussion. Ac-

cording to their results, in the absence of seismic data, by using a fixed number of SVD

parameters (25) with the GN algorithm, the resulting model was very rough, and a poor

representation of the reservoir. In this example, we showed that in SVD parameteriza-

tion, if many singular triplets are calculated at early iterations, the GN search direction
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would have large components along the right singular vectors corresponding to some

small singular values.

2.7.4 Right and Left Singular Vectors of GD,l

In this part, we show some of the right and left singular vectors of GD,l, corre-

sponding to the SVD-EnRML-SMM algorithm in Example 1-2. The singular vectors

of GD,l are corresponding to iterations l = 1 and l = 12. At these two iterations, the

truncated SVD of GD,l is computed for the MAP estimate.

The right singular vectors of the dimensionless sensitivity matrix are used to

parameterize the change in the model in the transformed space, and the left singular

vectors can be used to parameterize the change in the predicted data. Each right singular

vector of GD,l is an Nm-dimensional column vector. The search direction in the actual

space, δml+1, is

δml+1 = Lδm̃l+1 = L

p∑
i=1

αivi, (2.95)

where L is from the Cholesky decomposition of CM , and vi is the ith right singular vector

of GD,l. Thus, we plot Lvi, since Lvi is in the actual space, and it shows the features

that the ith Lvi contains. As model parameters include log permeability and porosity

of gridblocks, each right singular vector should be plotted for both log permeability and

porosity.

The left singular vectors can be plotted versus time. Each left singular vector is

an Nd dimensional column vector and its ith entry, is corresponding to the ith entry of

the predicted data vector.

As GDvi = λiui, if the ith right singular vector contains a feature around a

particular well, we expect that the corresponding left singular vector have the most

pronounced components related to the predicted data of that well.

Fig. 2.15 shows the ln(k) and φ part of some of the Lvi, where vi is the ith

right singular vector of GD,l corresponding to the MAP estimate, at iteration l = 1

of the algorithm. Since the porosity and log permeability fields are highly correlated,
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the corresponding porosity and log permeability parts of each Lvi, are very similar.

In addition, all features of the Lvi are in the principal correlation direction, with a

correlation length affected by the correlation length of the covariance matrix; it means

that if the CM we used, was not correct, the features would be in wrong direction.

In Figs. 2.15(a) and 2.15(d), the main feature of the right singular vector is

the high permeability and high porosity region around Inj-1. Note that the feature is

extended around the gridblock of Inj-1. There is also a low permeability and porosity

region around Inj-2. Since the prior model is uniform, the features in the Lvi seem to be

symmetric with respect to the principal correlation direction. As one can see in Fig. 2.1,

in the true model, there is high permeability region close to Inj-1, and a low permeability

region around Inj-2, which justifies the features in Lv1. Fig. 2.16 shows the components

of u1, the first left singular vector of GD,1, for some of the wells. As can be seen in

Fig. 2.16, the first left singular vector of GD,1 has large components corresponding to

pwf of Inj-1 and Inj-2, and the components of u1 corresponding to other wells in Fig. 2.16,

are small or negligible.

In Figs. 2.15(b) and 2.15(e), the main feature of the 2nd right singular vector

is the low permeability and low porosity region around Inj-2. This feature is extended

around the gridblock of Inj-2. The components of u2, the second left singular vector of

GD,l, are shown in Fig. 2.17, for some of the wells. As one can see in Fig.2.17(b), the

2nd left singular vector of GD,l has large components corresponding to pwf of Inj-2, and

other components of u2 are small.

In Figs. 2.15(h) and 2.15(k), the 14th right singular vector contains several fea-

tures. The components of u14, the corresponding left singular vector of GD,l, are shown

in Fig. 2.18, for some of the wells. As one can see in this figure, the 14th left singular

vector of GD,l has large components for the data of several wells.

Fig. 2.19 shows the ln(k) part of some of Lvi at iteration l = 12 of the algorithm,

where the truncated SVD of GD,l is computed for the MAP estimate. In this figure, as

the singular values get smaller, the corresponding right singular vector is noisier.
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Figure 2.15: ln(k) and φ parts of 6 of Lvi, where vi is the ith right singular vector of GD,l at
iteration l = 1, Example 1-2.
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Figure 2.16: The components of the 1st left singular vector of GD,l versus time, at iteration
l = 1, for some of the wells, Example 1-2.
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Figure 2.17: The components of the 2nd left singular vector of GD,l versus time, at iteration
l = 1, for some of the wells, Example 1-2.
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Figure 2.18: The components of the 14th left singular vector of GD,l versus time, at iteration
l = 1, for some of the wells, Example 1-2.
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Figure 2.19: ln(k) part of 8 of Lvi, where vi is the ith right singular vector of GD,l at iteration
l = 12, Example 1-2.
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2.7.5 Example 1-3, The Maximum Number of Required SVD Parameters

In the SVD parameterization algorithm, one important source of computational

cost is the number of SVD parameters that is calculated with the Lanczos method. For a

synthetic example, Tavakoli and Reynolds [37] compared the results of the LM algorithm

with SVD parameterization for a fixed 10, 15 and 20 SVD parameters. They generated

only the MAP estimate. According to their results, with a fixed 10 singular triplets the

algorithm converged in 48 iterations with ON(m) = 3.98 which is high. With 15 SVD

parameters, the MAP estimate converged in 34 iterations with ON(m) = 1.34 which

is slightly larger than 1 + 5
√

2/Nd = 1.27. They obtained the best results in terms

of both computational efficiency and final value of objective function by using a fixed

20 SVD parameters. In the latter case, the MAP estimate converged in 29 iterations

with ON(m) = 0.99. Their results show that if one uses a few SVD parameters, the

normalized objective function at convergence does not decrease to an acceptable value,

i.e., to a value less than 1 + 5
√

2/Nd.

Later, Tavakoli and Reynolds [38] used the parameter sv-cut to control the number

of parameters at each iteration. Their results showed that using a high sv-cut of 0.1,

the final value of normalized objective function is more than 100, however with sv-cut

of 0.003125 they obtained a small value of the objective function at convergence of the

algorithm.

Based on several examples that we have done with SVD parameterization in

generating a single estimate of the model, and the examples that are presented in the

next chapters, it seems that in order to obtain fast convergence rate, small value of

objective function and computational efficiency, the number of retained singular triplets

should be high enough and the smallest retained singular value at late iterations should

be reasonably close to 1. In other words, in addition to the final sv-cut, the smallest

retained singular value and the number of singular values should also be considered. This

is one reason that we modified the algorithm to specify NSVD,max as well as final sv-cut.

As we will show in some examples, after the first few iterations, the largest singular

80



value of GD,l does not change significantly. The value of the largest singular value at

late iterations differs from example to example. If the maximum singular value is around

10000 for a case, then with a sv-cut of 0.001, the minimum retained singular value will

be around 10, and if there are many singular values between 10 and 1, it is less likely

to obtain a fast convergence rate and small value of the objective function. Thus by

specifying a minimum sv-cut of 0.003 or 0.001, the minimum singular value and the

number of retained singular values can be different for any case.

Table 2.7: Summary of computational costs of SVD parameterization algorithm to the
generate porosity and log permeability fields of the MAP estimate, Example
1-3.

NSVD,max Simulations Direct Adjoint Equ. Sim. Runs Niter ON

65 13 367 356 194 11 1.244
55 12 440 428 229 12 1.158
45 12 350 339 189 11 1.241
35 16 469 455 247 14 1.395
25 21 634 614 333 19 6.0

In order to study the effect of the number of singular triplets on convergence

properties and computational costs of SVD parameterization, we apply the algorithm

with different numbers for NSVD,max. We specify a µmin of 0.0001, which is fairly small,

and we expect that the number of retained singular values be around NSVD,max at late

iterations. Table 2.7 shows the computational cost and the final values of ON(m) for

different cases. Note that using a small number of singular triplets (NSVD,max = 25),

gives the worst results in terms of both computational cost and final value of objective

function. Fig. 2.20(a) shows the value of ON of the MAP estimate versus iterations for

different specified NSVD,max. Fig. 2.20(b) shows the corresponding number of singular

triplets versus iterations for each case. Note that with NSVD,max of 35 and 25, the final

value of ON(m) is larger than 1 + 5
√

2/ND = 1.264. Although for NSVD,max = 35, the

value of λ35/λ1 was less than 0.0025 during iterations, this number of singular triplets

was not enough to achieve a small value of objective function at convergence of the
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algorithm. However with NSVD,max of 45 or more, we could obtain a small value of the

objective function. Fig. 2.22 shows the largest 71 singular values, λi, of GD and the

corresponding ratio of λi/λ1 at a late iteration of the algorithm. Note that a noticeable

number of singular triplets (35 of them) are between 10 and 1.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
1

1 0

1 0 0

1 0 0 0

1 0 0 0 0

O N(m
)

I t e r a t i o n  N u m b e r

 6 5
 5 5
 4 5
 3 5
 2 5

(a) ON of the MAP estimate

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0

p
I t e r a t i o n  N u m b e r

 6 5
 5 5
 4 5
 3 5
 2 5

(b) Number of retained SVD parameters

Figure 2.20: (a) The Values of ON of the MAP estimate for different NSVD,max. (b) The
number of retained singular triplets of GD versus iterations, Example 1-3.

Fig. 2.21 shows the log permeability fields of the MAP estimate with 3 different

NSVD,max. True log permeability field is also shown for comparison. The MAP estimate

with NSVD,max = 25 is very smooth and is distinctly different from the other two. There

is not a distinct difference between the MAP estimate from NSVD,max = 45 with the one

from NSVD,max = 35, and both of them contain the main features of the true model,

although the MAP estimate with NSVD,max = 45 has a smaller objective function.

This example shows that in order to obtain a small value of the objective func-

tion at convergence of the algorithms and computational efficiency, in addition to a small

singular cut off, the number of singular triplets should be reasonably high at late itera-

tions of the algorithm. Computing a small number of singular triplets may decrease the

computational effort in the Lanczos method over one iteration, but the algorithm would

converge in more iterations to a model with a high value of objective function which is

not desired.
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Figure 2.21: Log permeability fields of the MAP estimate with 3 different NSVD,max compared
with the truth, Example 1-3.
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Figure 2.22: λi, singular values of GD for the MAP estimate, and the corresponding ratio of
λi/λ1 at iteration l = 11, Example 1-3.

83



2.7.6 Example 1-4, Results of SVD-EnRML-MI and SVD-EnRML-SMM

In this part, the results of SVD-EnRML-SMM and SVD-EnRML-MI for gener-

ating the MAP estimate and Ne = 15 RML realizations are compared in terms of the

computational cost and final values of objective functions. In both algorithms, the same

prior realizations of porosity and log permeability fields are used.

We applied the two algorithms with NSVD,max = 65. The 1st and 2nd rows of

Table 2.8 show the computational costs of the two algorithms and the maximum ON

at convergence. The SVD-EnRML-SMM algorithm did not converge in 57 iterations,

and it was terminated at 57 iterations. As one can see in the 1st row of Table 2.8, the

maximum ON after 57 iterations is 1.482. After 57 iterations, only 3 out of 16 conditional

realizations have ON < 1+5
√

2/Nd = 1.264. The SVD-EnRML-MI algorithm converged

in 40 iterations, and at convergence the ON(m) of all realizations is less than 1.264.

Fig. 2.23 shows the values of ON(m) for all realizations versus iterations of the SVD-

EnRML-SMM algorithm, and Fig. 2.25(b) shows the values of ON(m) for all realizations

versus iterations l of the SVD-EnRML-MI algorithm with NSVD,max = 65.

We also applied the SVD parameterization algorithm with NSVD,max = 65, to gen-

erate the MAP estimate and Ne = 15 RML realizations one by one. Fig. 2.24(a) shows

the values of ON(m) for all realizations versus iterations of the SVD parameterization

algorithm; note that each realization is minimized separately with the step by step de-

scription given in this chapter. Fig. 2.24(b) shows the computational cost in terms of

equivalent simulation runs for generating each of the 16 conditional realizations. Gen-

erating the MAP estimate has the lowest computational cost, which is 194 Equ. Sim.

Runs, while generating some of the RML realizations, takes a computational cost of

more than 500 equivalent simulation runs. The last row of Table 2.8 shows the total

computational cost of generating 16 conditional realizations, with SVD parameteriza-

tion algorithm. The number of simulation runs with SVD parameterization algorithm is

less than SVD-EnRML algorithms; but, the total computational cost in terms of equiva-

lent simulation runs, for minimizing the objective functions one by one, is far more than
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SVD-EnRML algorithms. With SVD parameterization algorithm, 2 of RML realizations

converged with ON(m) greater than 1 + 5
√

2/Nd = 1.264.

Table 2.8: Computational costs of SVD-EnRML-SMM and SVD-EnRML-MI algorithms
for generating 16 conditional realizations of porosity and log permeability, and
the max{ON} at convergence, Example 1-4.

Method NSVD,max Sim. Direct Adjoint Equ. Sim. Runs Niter max{ON}
SMM 65 1811 3870 3813 3732 57 1.482
MI 65 1411 2479 2439 2640 40 1.26
MI 55 1356 2358 2316 2524 42 1.38
MI 75 1131 2020 1987 2133 33 1.26
SVD 65 301 12651 12431 6571 - 1.856
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Figure 2.23: ON (m) of all realizations versus iterations of the SVD-EnRML-SMM algorithm,
with NSVD,max = 65, red curve is for the MAP estimate, gray curves are from 15
RML realizations, Example 1-4.

In order to investigate the effect of NSVD,max on the computational efficiency of

SVD-EnRML-MI, we applied the algorithm with NSVD,max of 75 and 55 as well. Fig. 2.25

shows the values of ON(m) for all realizations versus iterations l of the SVD-EnRML-MI

algorithm with NSVD,max of 55, 65 and 75. The computational costs of SVD-EnRML-MI

and the maximum ON at convergence for 3 different NSVD,max are shown in Table 2.8.

As one can see in this table, the computational cost of SVD-EnRML-MI in terms of

equivalent simulation runs, with NSVD,max = 75 is about 20% less than the one with

NSVD,max = 65. With NSVD,max = 55, the SVD-EnRML-MI algorithm converged in 42
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Figure 2.24: (a) ON (m) of the MAP estimate (red) and 15 RML realizations (gray) versus
iterations of the SVD parameterization algorithm, with NSVD,max = 65. (b)
Computational cost in terms of equivalent simulation runs for generating each of
the 16 conditional realizations, Example 1-4.

0 1 0 2 0 3 0 4 0
1

1 0

1 0 0

1 0 0 0

1 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0 0

O N(m
)

I t e r a t i o n  N u m b e r  

(a) NSVD,max = 55

0 1 0 2 0 3 0 4 0
1

1 0

1 0 0

1 0 0 0

1 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0 0

O N(m
)

I t e r a t i o n  N u m b e r  

(b) NSVD,max = 65

0 1 0 2 0 3 0
1

1 0

1 0 0

1 0 0 0

1 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0 0

O N(m
)

I t e r a t i o n  N u m b e r  

(c) NSVD,max = 75

Figure 2.25: ON (m) of all realizations versus iterations of the SVD-EnRML-MI algorithm.
Red curve is for the MAP estimate, gray curves are from 15 RML realizations,
Example 1-4.
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iterations, as both the change in the model and the change in the objective functions of all

realizations were small. At convergence, only 3 of the realizations have ON(m) < 1.264,

however, the maximum ON is 1.38 which is fairly small. Note that in this example, the

least computational cost of SVD-EnRML-MI for generating the MAP estimate and 15

conditional realizations is obtained with NSVD,max = 75.

Fig. 2.26 shows the minimum retained singular value of GD,l versus iterations of

the SVD-EnRML-MI algorithm, for 3 different numbers of NSVD,max. The 55th singular

value of GD,l is around 2.2, while the 75th singular value of GD,l is around 0.9. It means

that 20 of the singular values are very close, and retaining these singular values decreases

the computational cost of the algorithm. Fig. 2.27 shows the first 75 singular values of

GD,l at a late iteration of the algorithm.
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Figure 2.26: The smallest retained singular value ofGD,l versus iterations of the SVD-EnRML-
MI algorithm, Example 1-4.

Fig. 2.28 shows the number of retained singular triplets of GD,l versus iterations

of the SVD-EnRML-MI algorithm, for 3 different numbers of NSVD,max. By retaining a

higher number of singular values, the algorithm converges in fewer iterations.

Now we show some of the conditional realizations from SVD-EnRML-MI with

NSVD,max = 75. In Figs. 2.30 and 2.29, respectively, 3 unconditional and conditional

realizations of log permeability field are shown. In Figs. 2.32 and 2.31, respectively, 3

unconditional and conditional realizations of porosity field are shown. All conditional

realizations have the main features of the truth shown in Fig. 2.1.
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Figure 2.27: Singular values of GD,l at iteration l = 33 of SVD-EnRML-MI with
NSVD,max = 75, Example 1-4.
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Figure 2.28: The number of retained singular values of GD,l versus iterations of the SVD-
EnRML-MI algorithm, Example 1-4.
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Figure 2.29: 3 conditional realizations of log-permeability field, generated with SVD-EnRML-
MI, Example 2.
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(b) Realization 8
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Figure 2.30: 3 unconditional realizations of log-permeability field, Example 2.
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(b) Realization 8
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Figure 2.31: 3 conditional realizations of porosity field generated with SVD-EnRML-MI,, Ex-
ample 2.

I n j - 1

I n j - 2

P r o d - 1

P r o d - 2

P r o d - 3

P r o d - 4 P r o d - 5 P r o d - 6

P r o d - 7

0 5 1 0 1 5 2 0 2 50

5

1 0

1 5

2 0

2 5

3 0

 

Y

X

0 . 0 5
0 . 1 1
0 . 1 7
0 . 2 4
0 . 3 0

(a) Realization 2

I n j - 1

I n j - 2

P r o d - 1

P r o d - 2

P r o d - 3

P r o d - 4 P r o d - 5 P r o d - 6

P r o d - 7

0 5 1 0 1 5 2 0 2 50

5

1 0

1 5

2 0

2 5

3 0

 

Y

X

0 . 0 5
0 . 1 1
0 . 1 7
0 . 2 4
0 . 3 0

(b) Realization 8

I n j - 1

I n j - 2

P r o d - 1

P r o d - 2

P r o d - 3

P r o d - 4 P r o d - 5 P r o d - 6

P r o d - 7

0 5 1 0 1 5 2 0 2 50

5

1 0

1 5

2 0

2 5

3 0

 

Y

X

0 . 0 5
0 . 1 1
0 . 1 7
0 . 2 4
0 . 3 0

(c) Realization 15

Figure 2.32: 3 unconditional realizations of porosity field, Example 2.
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Fig. 2.33 shows the data matches and predictions of water rates of all producers

and pwf for some of the wells, from SVD-EnRML-MI with NSVD,max = 75. The mean of

the predictions is very close to the truth; in addition, the predictions of water rate even

for the wells that experienced the water breakthrough after the end of history matching,

are noticeably close to the truth. As expected, the uncertainty range in predictions of

qw for a well that has experienced the water breakthrough before the end of history

matching, e.g., in Fig. 2.33(c), is smaller than the uncertainty range in predictions of

qw for a well with water breakthrough after the end of history matching period, e.g.,

Fig. 2.33(d). Data matches and predictions of pwf for the wells not shown are similar.
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(b) pwf of Prod-5
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(c) qw of Prod-1
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(d) qw of Prod-2
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(e) qw of Prod-3

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

Time (days)
w

a
te

rr
a

te
 w

e
ll
 6

 S
T

B
D

 

 
True Data
Observed data
Mean Predicted Data
Realizations

(f) qw of Prod-4
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(g) qw of Prod-5
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(h) qw of Prod-6
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Figure 2.33: Data matches and predictions from the conditional realizations generated by
SVD-EnRML-MI with NSVD,max = 75. The dashed vertical line shows the end
of history matching (1800 days), Example 1-4.
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CHAPTER 3

2D EXAMPLES

In this chapter, some synthetic 2D examples are presented. We compare the

results of SVD-EnRML algorithms. We also compare the efficiency and computational

cost of some other parameterization methods based on the results of examples. The algo-

rithms which are compared with SVD-EnRML, are the subspace method and ensemble

Kalman filter (EnKF). As the formulation of SVD-EnRML algorithms was discussed in

the previous chapter, here, only the subspace method and the EnKF are briefly discussed

and then examples are presented.

In examples of this chapter, we used the following parameters for controlling

sv-cut in SVD-EnRML algorithms, unless stated otherwise.

µ1 = 0.5,

µ2 = 0.05,

µmin = 0.0002 . (3.1)

These parameters are discussed in Section 2.2. Note that regardless of sv-cut, the

Lanczos algorithm computes a minimum number of 3 singular triplets at each iteration

l and a maximum number of NSVD,max singular triplets.

In tables, φmean and [ln(k)]mean, denote the prior mean of porosity and log-

permeability, respectively. The standard deviations of porosity and log-permeability

are denoted by σφ and σln(k), respectively; ρφ,ln(k) denotes the correlation coefficient be-

tween porosity and log-permeability; α is the angle measured counterclockwise from the

x-axis to the principal correlation direction of the covariance function; r1 is the corre-
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lation range in the principal direction and r2 is the correlation range in the orthogonal

direction.

All examples are for two phase flow (oil and water).

3.1 Subspace Method

The subspace method is a parameterization method that significantly reduces the

size of the matrix problem solved at each iteration of the Gauss-Newton or LM algorithm.

In a subspace method, the search direction vector is expanded as a linear combination

of a few basis vectors. The dimension of the subspace is much smaller than the number

of model parameters.

Reynolds et al. [30] and Abacioglu et al. [2] applied the subspace method with

the LM algorithm to condition 2D and 3D single phase reservoirs to pressure data. They

investigated many details of the application of this method to history matching problems,

including the type and the number of subspace vectors that are required to obtain fast

convergence and a small value of objective function. In this and the next chapter, the

application of the subspace method to some synthetic 2D and 3D two phase reservoirs

is investigated. In our implementation, we follow the work of Abacioglu et al. [2] which

is explained in more detail in Abacioglu [3]. At first we briefly explain the method.

In the Gauss-Newton method of minimizing objective function O(m), given by

Eq. 1.8, the search direction δml+1 at the lth iteration is generated from

Hlδm
l+1 = −∇Ol. (3.2)

The basic idea of the subspace method is that at the lth iteration of the Gauss-

Newton or LM algorithms, the search direction vector δml+1 is parameterized as a linear

combination of a relatively small number of subspace vectors, aj for j = 1, · · · , NB.

The change in the model estimate or search direction vector at the lth iteration of the
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Gauss-Newton method is then written as

δml+1 =

NB∑
j=1

αjaj = Alα
l+1, (3.3)

where Al is the Nm × NB matrix of the subspace vectors at the lth iteration of the

algorithm and it’s jth column is alj; α
l+1 is an NB-dimensional column vector. Using

Eq. 3.3 in Eq. 3.2, and multiplying both sides by ATl , the following equation is obtained:

(ATl HlAl)α
l+1 = −ATl ∇Ol. (3.4)

Note that with this formulation the size of the Hessian matrix changes from

Nm ×Nm to NB ×NB.

From Eq. 3.4, the GN equation for the coefficients of the subspace vectors is

(ATl (C−1
M +GT

l C
−1
D Gl)Al)α

l+1 = −ATl ∇Ol. (3.5)

The gradients of the partitioned data objective functions, multiplied by CM , are

used to compute the subspace vectors; note that we calculate an orthogonal basis for the

subspace vectors.

Assuming that the measurement errors are either independent, or that the parti-

tioning is done in such a way that data with correlated measurement errors are included

in the same group, the data misfit objective function can be partitioned as

Od(m) =
∑
k

Ok
d(m) =

∑
k

1

2
(gk(m)− dk)T [Ck

D]−1(gk(m)− dk), (3.6)

where dk is the kth set of data and Ck
D is the data covariance matrix for the kth set of

data. The vector of model mismatch can also be used in 2 or 3 partial objective functions,

one for porosity, one for horizontal log permeability and one for vertical log permeability.

For now, consider the model mismatch term, given by the following equation, as a single
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subobjective function.

Om(m) =
1

2
(m−mprior)

TC−1
M (m−mprior). (3.7)

The gradients of Ok
d(m)’s are given by

∇Ok
d(m) = GT

k [Ck
D]−1(gk(m)− dk), (3.8)

where Gk is the sensitivity matrix of data in the kth subobjective function with respect

to all model parameters, and

∇Om(m) = C−1
M (m−mprior). (3.9)

A partitioning of the objective function is done at each iteration of the GN or LM

algorithms. Here, we partition the data objective function based on the type of data, the

well at which data is observed, and time periods. We also gradually increase the number

of subspace vectors. The partitioning is performed such that at first, each data type from

each well is used in one subobjective function, e.g., data mismatch terms containing qw

of Prod-1 are grouped into one subobjective function. The number of subspace vectors

is increased by partitioning each data type at each well into smaller time intervals.

Let bk be the gradient of the kth partial data objective function, and let

ak = CMbk, (3.10)

be the kth subspace vector. Two (or three) additional subspace vectors that are based

on the model mismatch vector are also included. Let Bl denote the Nm × NB matrix

that contains all the presubspace vectors at the lth iteration of the algorithm. Using

Al = CMBl in Eq. 3.5, it can be obtained

(BT
l CMBl +BT

l CMG
T
l C

−1
D GlCMBl)α

l+1 = −BT
l CM∇Ol. (3.11)
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Pre-subspace vectors, which are the gradients of subobjective functions, are ob-

tained with the adjoint method, while the product GlCMBl or GlAl is obtained with

the gradient simulator method. In obtaining ∇Ok
d , the product of GT

k times the vec-

tor [Ck
D]−1(gk(m) − dk) should be calculated. This product can simply be calculated

by obtaining the product of GT times vector wk ◦ C−1
D (g(m) − d), where ◦ denotes the

Schur product of the vectors wk and C−1
D (g(m) − d); wk is an Nd dimensional column

vector with all entries equal to zero except entries corresponding to the data of the kth

subobjective function in the data vector, dobs, which are 1.

Note that if a subobjective function only contains data at early times, since these

data are not a function of pressures and saturations at later times, the adjoint solution

for computing its gradient can be much faster than a typical adjoint solution.

In this work, we use the subspace method with the modified LM algorithm, where

at iteration l of the algorithm, the following equation is solved:

(ATl ((1 + γl)C−1
M +GT

l C
−1
D Gl)Al)α

l+1 = −ATl ∇Ol, (3.12)

where γl is the LM parameter. After solving Eq. 3.5, the search direction vector is

calculated from Eq. 3.3 and then the new candidate for the updated model is obtained

from ml+1 = ml+δml+1; if O(ml+1) < O(ml), ml+1 is accepted as the new updated model

and γl is decreased by a factor of 10 for the next iteration, otherwise γl is increased by

a factor of 10 and the iteration is redone.

3.1.1 Applying Subspace Method to Perform RML

We explore the idea of using the subspace method to perform RML. The idea is

motivated from the SVD-EnRML. In SVD-RnRML, at iteration l of the LM algorithm,

right singular vectors of a truncated SVD of GD,l computed for a particular realization,

are used to parameterize the vector of the change in model parameters of all realizations.

Similarly, subspace vectors can be calculated based on a particular realization, and be

used to decrease the objective functions of the MAP estimate and Ne RML realizations.
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In generating the MAP estimate and Ne RML realizations mj, j = 1, · · ·Ne, in

Eq. 3.11, the matrix of pre-subspace vectors, Bl, and the Hessian matrix in the left-

hand-side, are calculated based on a particular realization, mbase. For each realization,

we calculate its gradient with an adjoint solution and use it in the right-hand-side of

Eq. 3.11. Thus, Eq. 3.11 is modified for the jth realization to

(BT
l CMBl +BT

l CMG
T
l C

−1
D GlCMBl)α

l+1
j = −BT

l CM∇Ol
j, (3.13)

where αl+1
j is an NB dimensional vector, which determines the combination of the sub-

space vectors in calculating the search direction, δml+1
j . After solving Eq. 3.13, by using

Eq. 3.3, the vector of the change in model parameters for the jth realization, δml+1
j ,

is calculated. The subspace vectors are computed based on the MAP estimate; and

after the convergence of the MAP estimate, the subspace vectors are computed for the

realization with the maximum objective function. Although the subspace vectors are

computed based on a particular realization, one advantage of this formulation is that

the search direction is always downhill, since the actual gradient of each realization is

computed. To further explain the reason that the search direction is downhill, let us

return to the basic equation of the search direction. Here, for applying RML, we are

using the following equations for calculating the search direction for each realization:

Hl,baseδm
l+1
j = −∇Ol

j, (3.14)

δml+1
j = Al,baseα

l+1
j , (3.15)

where Al,base is the matrix of the subspace vectors, which is calculated for a particular

basis realization; Hl,base is the positive definite Hessian matrix that is also calculated

for the same particular basis realization. Since the actual gradient for each realization

is calculated with an adjoint solution, as long as the Hessian is positive definite, the

search direction is downhill. Although in the subspace method, both sides of Eq. 3.14

are multiplied by ATl,base, the rank of the resulting matrix, ATl,baseHl,baseAl,base, is equal
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to the rank of Al,base which is NB. Note that as explained in Abacioglu [3], we use an

orthogonal set of basis vectors, which guarantees that the rank of the matrix Al,base is

equal to the number of columns, NB.

3.2 Ensemble Kalman Filter (EnKF)

The ensemble Kalman filter (EnKF) is a Monte Carlo data assimilation method

that is able to incorporate available observations sequentially in time. The probability

distribution of a model state (including both model parameters and state variables) is

represented empirically by an ensemble of realizations. The state variables are propa-

gated forward in time based on the model dynamics. This is called the forecasting step.

The ensemble of the model state is adjusted by assimilating available observed data.

This is called the updating step [5]. The EnKF was originally introduced by Evensen

[12].

In the EnKF scheme, both the model statistics and the sensitivity can be approx-

imately obtained from the ensemble in a straightforward and computationally efficient

manner. By approximating the probability density function by an ensemble, EnKF re-

duces the dimension of the inverse problem from the number of the unknown variables

to the number of realizations [5].

EnKF has several advantages, including ease of implementation and low computa-

tional costs. It can be easily coupled with any reservoir simulator. No specific knowledge

of the simulation numerics is required for implementation of the EnKF.

In the EnKF, an augmented state vector, yn, includes reservoir model parameters

m, and state variables pn; m is an Nm dimensional column vector, and pn is an Np

dimensional column vector. pn is the state vector which includes the parameters that

describe the state of the dynamical system. The augmented state vector, yn, is a vector

with dimension Ny = Nm + Np. In black oil reservoir applications, the state vector can

include grid block pressures, two saturations and the solution gas-oil ratio. The state
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vector can be written as:

yn =

m
pn

 . (3.16)

The superscript n denotes the assimilation time. The update equation for each

ensemble member in the EnKF is given by

yn,uj = yn,fj + CY n,fDn,f (CDn,fDn,f + CDn)−1(dnuc,j − d
n,f
j ) for j = 1, 2, · · ·Ne, (3.17)

where CY n,fDn,f is the covariance between the forecast state vector yn,f and the predicted

data at the nth assimilation time, dn,f ; CDn,fDn,f is the auto-covariance for predicted

data; dn,fj denotes the predicted data corresponding to the jth ensemble member at time

n; dnuc,j is a sample from the Gaussian distribution N(dnobs, CDn), where dnobs denotes the

vector of observed data and CDn denotes the covariance of the corresponding vector of

measurement errors at the nth data assimilation step. The superscript f denotes forecast

and the superscript u refers to the result of the update step, e.g., yn,uj is the jth updated

state vector at the nth time by assimilating data dnuc,j.

The covariance matrices CY n,fDn,f and CDn,fDn,f are approximated from the en-

semble; for details see Aanonsen et al. [1] and Zafari and Reynolds [42]. The relatively

small ensemble sizes employed to represent covariances in EnKF, introduce sampling

errors that tend to produce spurious non-zero long-distance correlations between ele-

ments of the state vector and between elements of the state vector and predicted data,

whereas in reality, there is not a correlation between variables and data at gridblocks far

apart. Spurious correlations can make large changes in components of the augmented

state vector due to assimilating data at a location far away from the spatial location

of this component, whereas if covariances were accurately represented, no change in the

component would occur [9].

Representing covariances with finite samples also limits the degrees of freedom

available to assimilate data and update the state vector. Each vector of updated realiza-

tion of model parameters is a linear combination of the Ne vectors of prior realizations.
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It means that there is at most Ne degrees of freedom to assimilate data [9].

Covariance localization is a standard procedure for eliminating or reducing the

spurious correlations caused by sampling errors in EnKF [15, 9, 10, 11]. In this ap-

proach, each of the auto-covariance of the predicted data vector, CDn,fDn,f , and the

cross-covariance between the state vector and the predicted data vector, CY n,fDn,f , are

replaced with their Schur product with a correlation matrix ρ, e.g., the matrix CY n,fDn,f

is replaced with

CY n,fDn,f ,ρ = ρY D ◦ CY n,fDn,f , (3.18)

where ρY D is the correlation matrix. The dimension of the correlation matrix ρY D is

the same as CY n,fDn,f and equal to Ny × Nd, where Nd is the number of observed data

at the nth assimilation step. By replacing CY n,fDn,f with ρY D ◦ CY n,fDn,f , long-distance

correlations are set to zero, in order to remove spurious correlations. Note that the (i, j)

entry of the matrix ρY D ◦CY n,fDn,f is the product of the (i, j) entry of ρY D and the (i, j)

entry of CY n,fDn,f .

With covariance localization, the EnKF update equation of Eq. 3.17 is replaced

with

yn,aj = yn,fj + (ρY D ◦ CY n,fDn,f )(CDn + ρDD ◦ CDn,fDn,f )−1(dnuc,j − d
n,f
j ), (3.19)

for j = 1, 2, · · ·Ne, where ρY D denotes the correlation matrix between the state vector

and data and ρDD is a Nd ×Nd auto-correlation matrix for predicted data.

In our application of covariance localization, we use the fifth-order compact

anisotropic correlation function defined by Gaspari and Cohn [15] to calculate the ele-

ments of correlation matrix, so that its principal directions are aligned with the prior
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covariance function. The correlation function is given by

ρ(LD) =


−1

4
L5
D + 1

2
L4
D + 5

8
L3
D − 5

3
L2
D + 1, 0 ≤ LD ≤ 1;

1
12
L5
D − 1

2
L4
D + 5

8
L3
D + 5

3
L2
D − 5LD + 4− 2

3
L−1
D , 1 < LD ≤ 2;

0, LD > 2,

(3.20)

where LD is the dimensionless correlation length which is equal to δ/L. L is the length

scale of the correlation function; δ is the Euclidean distance between any grid point and

an observation location when computing ρY D, and the Euclidean distance between two

data observation points when computing ρDD. For more details on covariance localiza-

tion, see Emerick and Reynolds [9, 10].

3.3 Example 1

This example pertains to a two-dimensional horizontal reservoir model with 21×

24 uniform grid. True porosity and log permeability fields which are shown in Fig. 3.1 are

generated from an exponential covariance matrix. There are 6 producers and 2 injectors

in this reservoir. As can bee seen in Fig. 3.1, there is a high permeability channel which

connects Prod-2 to the injectors. There is also a barrier with low permeability and

porosity values close to Prod-3 and Prod-6.

The key geostatistical parameters used to generate the true model are listed in

Table 3.1. The prior mean of vector of model parameters which contains log-permeability

and porosity of gridblocks is uniform and equal to 4.5 for ln(k) and 0.1 for φ.

The gridblock dimensions are:

4x = 4y = 250 ft, 4z = 10 ft.

The initial reservoir pressure is 4800 psi. Initially the reservoir is at irreducible

water saturation, which is swc = 0.1. The total history matching period is 1005 days.

At 1005 days, only Prod-2 and Prod-6 have experienced water breakthrough. Observed
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Figure 3.1: True porosity and log permeability fields, Example 1.

Table 3.1: Geostatistical parameters of Example 1.

Parameters Values
φmean 0.1
[ln(k)]mean 4.50
σφ 0.0265
σln(k) 2.0
ρφ,ln(k) 0.80
α 30o

r1 184x
r2 64x

data include the flowing bottom hole pressure (BHP) of all wells and water rates of

Prod-2 and Prod-6 at 15 day intervals.

Synthetic observed data are generated by adding Gaussian random noise to the

true data, where the true data are the simulator output when it is run with the true

model. The standard deviation of the noise (measurement error) is 2% of rates for rate

data and 1.4 psi for pressure data, i.e., σBHP = 1.4 psi and σqw = 0.02qw, where qw is

the true data. The minimum measurement error for the water rate is specified to 0.5

STB/D while the maximum measurement error is 3 STB/D.

Well controls are as follows. Oil rate is specified at all producers, such that Prod-
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1, Prod-3, Prod-4 and Prod-5 produce at 150 STB/D and Prod-2 and Prod-6 produce at

200 STB/D. The injection rates are 650 and 350 STB/D for Inj-1 and Inj-2, respectively.

Model parameters include porosity and log permeability of all gridblocks. Fluid

properties are assumed to be known. The number of model parameters and observed

data are:

Nm = 2Nx ×Ny = 1008, Nd = 670.

In the following cases, the MAP estimate and Ne = 15 RML realizations of

porosity and log permeability are generated with SVD-EnRML methods, i.e., a total of

16 conditional realizations are generated. The objective is to compare the computational

cost and final values of the normalized objective function for SVD-EnRML-SMM and

SVD-EnRML-MI. The discussion about the normalized objective function can be found

in Subsection 1.3.1. We also investigate the effect of the maximum number of SVD

parameters, NSVD,max, and the effect of the growth and decay factor of the LM parameter.

3.3.1 SVD-EnRML-SMM Results

We applied the SVD-EnRML-SMM algorithm with NSVD,max = 30. Fig. 3.2(a)

shows the values of the normalized objective functions of all realizations versus iterations.

The algorithm converged in 19 iterations with ON(m) = 1.995 for the MAP estimate.

Because the number of SVD parameters was not enough, the normalized objective func-

tion of the MAP estimate did not decrease to a value less than 1 + 5
√

2/Nd = 1.273.

The computational cost are shown in the first row of Table 3.2. As NSVD,max = 30 was

specified, from iteration 10 to 19, the Lanczos method computed 30 SVD parameters.

Fig. 3.3(c) shows the number of retained singular values versus iterations. Fig. 3.3(b)

shows the smallest retained singular value of GD,l versus the iteration index l for this

case. The 30th singular value of GD of the MAP estimate is between 8.4 and 7.8 from

iteration l = 10 to l = 19. The value of λ30/λ1 is around 0.0012.

Since with a maximum 30 singular triplets, SVD-EnRML-SMM converged with a

slightly high value of objective function, we applied the method with NSVD,max = 35, i.e.,
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Figure 3.2: The normalized objective functions of 16 realizations versus iterations of
SVD-EnRML-SMM, with NSVD,max of 30 and 35. The red curve is for the
MAP estimate, while gray curves are for 15 RML realizations, Example 1.

we repeated the previous case with NSVD,max = 35. This time, the algorithm converged

in 66 iterations. At convergence of the algorithm, the normalized objective functions

of all 16 realizations decreased to less than 1 + 5
√

2/Nd = 1.273. Fig. 3.2(b) shows

the values of the normalized objective functions of realizations versus iterations. The

computational cost are shown at the 2nd row of Table 3.2.

Figs. 3.3 and 3.4 show some details of the SVD-EnRML-SMM algorithm with

NSVD,max of 30 and 35, respectively. Fig. 3.4(c) shows the number of retained singular

values versus iterations. The jumps in Figs. 3.4(b) and 3.4(c) happen at the convergence

of the MAP estimate where sv-cut is set to µ2 = 0.05 and the Lanczos algorithm computes

a truncated SVD of GD,l corresponding to the realization with the maximum objective

function.

Figs. 3.4(a) and 3.3(a) show the first singular value of GD,l versus iterations l

of SVD-EnRML-SMM, for the two cases. As one can see, after a few iterations, the

first singular value does not change significantly, even after the convergence of the MAP

estimate, where at each iteration, a truncated SVD of GD,l for the realization with

the maximum objective function is calculated. Fig. 3.4(b) shows the smallest retained

singular value of GD,l versus iterations l for this case. The 35th singular value of GD is
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Figure 3.3: The first singular value and the smallest retained singular value of GD and the
number of retained SVD parameters versus iterations of SVD-EnRML-SMM, with
NSVD,max = 30, Example 1.
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Figure 3.4: The first singular value and the smallest retained singular value of GD and the
number of retained SVD parameters versus iterations of SVD-EnRML-SMM, with
NSVD,max = 35, Example 1.
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between 4.6 and 6, and the value of λ35/λ1 is around 0.0008.

According to the results presented here, at convergence of the SVD-EnRML-

SMM algorithm with NSVD,max = 35, ON(m) of all realizations decreased to small values,

however 30 SVD parameters at late iterations was not enough to obtain values of ON(m)

that satisfy Eq. 1.12. Note that if we were to specify a final sv-cut of 0.0012 or higher,

the algorithm would have converged with slightly high values of the normalized objective

function. Further, it shows that in general, a small sv-cut at late iterations (µmin) does

not guarantee small values of objective functions at convergence of the algorithm.

3.3.2 SVD-EnRML-MI Results

Here the SVD-EnRML-MI algorithm is applied to generate a total of 16 condi-

tional realizations. Since we want to compare the results of SVD-EnRML-MI with the

results of SVD-EnRML-SMM, at first we apply the algorithm with NSVD,max = 35.

With NSVD,max = 35, the SVD-EnRML-MI algorithm converged in 51 iterations.

At convergence, normalized objective functions of all realizations decreased to less than

1 + 5
√

2/Nd = 1.273. The computational costs are shown at the 3rd row of Table 3.2.

By comparing the 2nd and the 3rd rows of Table 3.2, one can see that the computational

cost of SVD-EnRML-MI in terms of equivalent simulation runs is less than the one from

SVD-EnRML-SMM.

According to the results presented, the SVD-EnRML-MI is a more efficient al-

gorithm than SVD-EnRML-SMM. In addition, with our modifications in applying the

modified Levenberg-Marquardt algorithm, SVD-EnRML-SMM algorithm required far

less computational cost compared to the results of Tavakoli and Reynolds [39].

In order to investigate the effect of the maximum number of SVD parameters,

NSVD,max, on the computational cost and convergence behavior, we applied the SVD-

EnRML-MI algorithm with NSVD,max of 45 and 55. The same prior realizations, and the

same parameters for sv-cut are used in all cases. The last 3 rows of Table 3.2, show the

computational cost of SVD-EnRML-MI with 35, 45 and 55 maximum SVD parameters.

As one can see in this table, increasing the maximum number of SVD parameters from
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35 to either 45 and 55, actually decreased the computational costs. Fig. 3.5 shows

the values of ON(m) of all realizations versus iterations of SVD-EnRML-MI with 3

different numbers of NSVD,max. By increasing NSVD,max, although the cost of computing

the truncated SVD of GD,l at each of the late iterations increases, the convergence is

obtained in fewer iterations. We also see that, by increasing NSVD,max from 45 to 55, the

convergence is obtained in slightly fewer iterations, and the total computational cost is

close for the two cases. The 45th retained singular value of GD,l is around 2.6 while the

55th singular value is around 1.3. With

Table 3.2: Summary of the computational costs of SVD-EnRML algorithms for gener-
ating 16 conditional realizations of porosity and log permeability, and the
max{ON(m)} at convergence, Example 1.

Method NSVD,max Sim. Direct Adjoint Equ. Sim. Runs Niter max{ON(m)}
SMM 30 471 586 567 759 19 19.82
SMM 35 1345 2727 2660 2692 67 1.27
MI 35 1287 2020 1968 2284 51 1.272
MI 45 933 1825 1784 1835 41 1.266
MI 55 875 2060 2023 1896 37 1.272
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Figure 3.5: The normalized objective functions of 16 realizations versus iterations of SVD-
EnRML-MI, with 3 different NSVD,max. The red curve is for the MAP estimate,
while gray curves are frrom 15 RML realizations.

Now we show some of the results of SVD-EnRML-MI with NSVD,max = 55. Data

matches and predictions for 2 of the wells generated from the history matched realizations

are shown in Fig. 3.6. The quality of data matches and predictions of pwf of the wells
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not shown, are similar. The true prediction is between the uncertainty bounds and close

to the mean. Fig. 3.7 shows the MAP estimate for this case. The porosity and log

permeability fields of the MAP estimate are smooth and they contain the main features

of the truth. Fig. 3.8 shows 3 unconditional realizations of log permeability fields, and

Fig. 3.9 shows the corresponding updated realizations of log permeability fields. All of

the conditional realizations match the data equally well and they display some of the

main large scale features of the truth shown in Fig. 3.1, however they are distinct as

each one is a sample of the posterior pdf. As the quality of conditional porosity fields

were similar, they are not shown here.
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Figure 3.6: Data matches and predictions from realizations of SVD-EnRML-MI with
NSVD,max = 55 for two of the wells. The dashed vertical line shows the end
of the history matching period (1005 days), Example 1.

3.3.3 Growth and Decay Factor of the LM Parameter

With the improvement in the computational efficiency obtained by using more

SVD parameters, here the effect of the growth and decay factor of the LM parameter is

investigated. The growth and decay factor of the LM parameter is defaulted to 10. We

applied the SVD-EnRML-MI algorithm with a growth and decay factor of 5 for two cases,

one with NSVD,max = 45, and the other one with NSVD,max = 55. The summary of the

computational costs are shown in Table 3.3. In all 4 cases of this table, at convergence,

ON(m) of all realizations decreased to less than 1+5
√

2/Nd = 1.273. The 3rd column of

this table shows the factor by which the LM parameter is decreased or increased (growth

and decay factor). As one can see, depending on NSVD,max, using a factor of 5 for the LM
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Figure 3.7: Porosity and log permeability fields of the MAP estimate, Example 1.
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Figure 3.8: 3 unconditional realizations of log-permeability field, Example 1.
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Figure 3.9: 3 conditional realizations of log-permeability field, generated with SVD-EnRML-
MI, Example 1.
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parameter may either decrease or increase the computational cost. As using a smaller

factor for changing γ does not necessarily decrease the computational costs, for the rest

of this work we use the default value of 10 for changing the LM parameter.

With a growth and decay factor of 5, the MAP estimate converged in 20 iterations

for both NSVD,max of 55 and 45, while with a growth and decay factor of 10, it required

24 iterations or more to obtain convergence. One can conclude that in generating only

the MAP estimate, using a growth and decay factor of 5 instead of 10 may decrease the

computational cost; however, this is not necessarily correct for all examples.

Table 3.3: Summary of the computational costs of SVD-EnRML-MI algorithm with dif-
ferent input parameters for generating 16 conditional realizations of porosity
and log permeability fields, Example 1.

Algorithm NSVD,max γ factor Sim. Direct Adjoint Equ. Sim. Runs Niter

MI 45 10 933 1825 1784 1835 41
MI 45 5 888 1658 1620 1708 38
MI 55 10 875 2060 2023 1896 37
MI 55 5 1042 2019 1979 2042 39

Some details on the singular values versus iteration corresponding to the 2nd

and 4th rows of Table 3.3 are shown in Figs. 3.10 and 3.11, respectively. Fig. 3.10(a)

shows how the first singular value of GD,l changes versus iterations l of SVD-EnRML-MI.

According to this figure, after a few iterations, the first singular value does not change

significantly. Figs. 3.10(b) and 3.11(b) show the smallest retained singular value of GD,l

versus iterations l. In Fig. 3.10(b), the 45th retained singular value is around 2.33 for the

MAP estimate, and it changes between 2.85 and 2.38 after the convergence of the MAP

estimate. In Fig. 3.11(b), the 55th retained singular value is around 1.22 . Figs. 3.10(c)

and 3.11(c) display the number of computed singular triplets versus iterations. The

jumps in Figs. 3.10(c) and 3.10(b) happen at the convergence of the MAP estimate,

where sv-cut is set to µ2 = 0.05 and the algorithm computes a truncated SVD of GD,l

for the realization with the maximum objective function.

Fig. 3.12 shows the value of the LM parameter for the MAP estimate and an
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RML realization versus iteration number of SVD-EnRML-MI with NSVD,max = 45 and

a growth and decay factor of 5 for the LM parameter. The 12th RML realization has

converged in 16 iterations with ON(m) = 1.243. Note that at each iteration, when the

objective function decreased, the value of γl is divided by a factor (which is 5 in this

case) for the next iteration. According to the results of Fig. 3.12, the value of the LM

parameter is greater than 25 even at late iterations. A LM parameter in the order of 100,

reduces the weight of the right singular vectors corresponding to small singular values

in the search direction, however, it does not eliminate them. They affect the search

direction, but with a lower weight compared to the one with a LM parameter of zero.

In Example 1, the lowest computational cost is obtained with NSVD,max = 45 and a

factor of 5 for changing the LM parameter. Using a higher number of 55 SVD parameters

did not change the computational cost significantly; while with NSVD,max = 35, the

computational cost was the highest.
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Figure 3.10: The largest singular value (SV) and the smallest retained singular value of GD
and the number of retained SVD parameters versus iterations of SVD-EnRML-
MI with NSVD,max = 45, corresponding to the 2nd row of Table 3.3, Example
1.

3.3.4 Controlling the Change in the Objective Function at Early Iterations

In Example 1, γ0 = 107 was used for all realizations. Even with this large LM

parameter, we require the change in the objective function to be less than 50%, i.e., if

the objective function of a realization decreased by more than 50% at iteration l = 1 and

l = 2, the LM parameter is increased by the specified growth factor and the iteration is
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Figure 3.11: The largest singular value and the smallest retained singular value of GD and the
number of retained SVD parameters versus iterations of SVD-EnRML-MI with
NSVD,max = 55, corresponding to the 4th row of Table 3.3, Example 1.
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Figure 3.12: The LM parameter of the MAP estimate (a) and an RML realization (b)
versus iteration number l of SVD-EnRML-MI with NSVD,max = 45 and a
growth and decay factor of 5 for the LM parameter.
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redone until the change is less than 50%.

After obtaining the results corresponding to the 2nd row of Table 3.3, we repeated

that case using no control on the change in the objective functions at the first two

iterations. Table 3.4 shows the comparison between the two cases. In both cases, Ne =

15, NSVD,max = 45, µ1 = 0.5, µ2 = 0.05, µmin = 0.0001, γ0 = 107 and the factor by which

the LM parameter changes is 5. In both cases, at convergence, ON(m) of all realizations

decreased to less than 1 + 5
√

2/Nd. The first row of Table 3.4 shows the computational

costs when the change in the objective function was controlled at the first 2 iterations,

while the second row is for the case where the objective function could decrease by any

value. Note that when the change in the objective function is not controlled over the

first two iterations, the total computational cost increases.

Fig. 3.13 shows the normalized objective functions of realizations versus iterations

for the two cases. According to the results of this figure, when the change in the objective

function is not controlled over the first two iterations, the MAP estimate converged in

16 iterations, while by controlling the change in the objective function, it converged in

20 iterations. The conclusion is that, in generating a single realization with SVD param-

eterization algorithm, with a high starting value of the LM parameter, e.g, 106, there is

no need to control the change in the objective function over the first iterations; however

in generating multiple realizations with SVD-EnRML algorithms, avoiding large changes

of objective functions at the first two iterations may decrease the total computational

costs. One reason is that at early iterations of SVD-EnRML, the search directions for

RML realizations are computed using a truncated SVD of GD,l corresponding to the

MAP estimate which is different from the actual truncated SVD of GD,l for each realiza-

tion. For the MAP estimate, since a truncated SVD of its actual GD,l is computed, with

a high starting LM parameter, there is no need to control the change of its objective

function; while a large decrease in the objective function of an RML realization is not

desired.

113



Table 3.4: Comparison between the computational costs of SVD-EnRML-MI algorithm
with and without controlling the change of Oj(m) at the first 2 iterations, for
generating 16 conditional realizations of porosity and log permeability.

Algorithm Simulations Direct Adjoint Equ. Sim. Runs Niter

MI 888 1658 1620 1708 38
MI (no control) 1381 2473 2421 2604 52
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(b) Controlling change of O(m) at the first two
iterations

Figure 3.13: ON(m) versus iterations of SVD-EnRML-MI. Red curve is for the MAP
estimate while the gray curves are for 15 conditional realizations. Example
1.

3.4 Example 2

The true model for this example is the same as the one for the previous 21× 24

synthetic reservoir. True porosity and log permeability fields are shown in Fig. 3.1. The

details of the covariance matrix are explained in Example 1.

The difference between this example and Example 1 is the well controls. In this

example, producers are controlled with pressure specified. The total history matching

period is 1200 days. At 1200 days, only Prod-2 and Prod-6 have experienced water

breakthrough. Observed data include the flowing bottom hole pressure (BHP) of injec-

tors and oil and water rates of all producers at 30 day intervals. Although four of the

producers have not experienced water breakthrough at 1200 days, the zero water rates

of these wells after adding synthetic measurement error are included in the vector of
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observed data.

Synthetic observed data are generated by adding Gaussian random noise to the

true data. The standard deviation of the noise (measurement errors) is 2% of rates for

the rate data and 1.4 psi for pressure data, i.e., σBHP = 1.4 psi and σq = 0.02q, where q is

the true rate. The minimum measurement error for the rates is specified to 0.5 STB/D

while the maximum measurement error is 3 STB/D.

The initial reservoir pressure is 4800 psi. All 6 producers are controlled with the

same specified pwf . The summary of well controls are given in Table 3.5.

Table 3.5: Well controls of Example 2. pwf is specified at producers and injection rate
is specified at injectors. Rates are in STB/D.

Time Period, days qw of Inj-1 qw of Inj-2 pwf of producers, psi
0− 300 650 350 4500
300− 600 650 350 4200
600− 900 650 350 4000
900− 1200 650 350 3800
1200− 1500 650 350 3500
1500− 1800 650 350 3200
1800− 2100 650 350 3000
2100− 3000 650 350 2500

Model parameters include porosity and log permeability of all gridblocks. Fluid

properties are assumed to be known. The number of model parameters and observed

data are:

Nm = 2Nx ×Ny = 1008, Nd = 560.

3.4.1 Results of SVD-EnRML Algorithms

We applied the SVD-EnRML-SMM, SVD-EnRML-AG and SVD-EnRML-MI al-

gorithms to generate the MAP estimate and 15 RML realizations. The objective is to

compare the results based on the computational cost, final values of the objective func-

tions and convergence behavior. The maximum number of SVD parameters, NSVD,max,

was specified to be equal to 60 for all three methods. The first, second and the forth
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rows of Table 3.6 show the computational costs and the results of the three algorithms

mentioned, where we used the same input parameters for all. At convergence of both

the SVD-EnRML-SMM and SVD-EnRML-MI algorithms, ON(m) of all realizations de-

creased to less than 1 + 5
√

2/Nd = 1.299. ON(m) of realizations versus iterations for

SVD-EnRML-SMM and SVD-EnRML-MI are shown in Figs. 3.15(a) and 3.14(a), re-

spectively. ON(m) of realizations versus iterations for SVD-EnRML-AG is shown in

Fig. 3.15(b). Not that in Fig. 3.15(b), an even iteration number is for the result of the

inner loop, while an odd iteration number is for the outer or main loop. SVD-EnRML-MI

converged in fewer iterations and its computational cost is less than SVD-EnRML-SMM

in terms of equivalent simulation runs. The computational cost of SVD-EnRML-AG is

far more than the two other algorithms. The convergence rate of VD-EnRML-AG is

slower than the two other algorithms.
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(b) MI, NSVD,max = 45

Figure 3.14: ON(m) versus iterations of SVD-EnRML-MI algorithm. Red curve is for the
MAP estimate while the gray curves are for 15 RML realizaions. Example
2.

In order to see the effect of NSVD,max on convergence properties, we also ran the

SVD-EnRML-MI algorithm with a maximum number of 45 SVD parameters. Fig. 3.14(b)

shows ON(m) of realizations versus iterations for this case. As can be seen from the re-

sults in the 3rd row of Table 3.6, the computational efficiency has been improved by

decreasing the maximum number of singular triplets. However at convergence, the max-
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Figure 3.15: ON(m) versus iterations of SVD-EnRML-SMM and SVD-EnRML-AG al-
gorithms. Red curve is for the MAP estimate while the gray curves are for
15 RML realizaions. Example 2.

imum ON(m) of realizations is 1.53, and 4 of the realizations out of 16 have ON(m) higher

than 1.299. This result shows that when using a small number of singular triplets, at

convergence of the algorithm, the objective functions might have slightly high values.

The 45th singular value of GD varied from 2.2 for the MAP estimate to 4.6 at the last

iteration. The 60th singular value varied from 0.98 to 1.8.

The comparison in Table 3.6, shows that SVD-EnRML-MI improves the com-

putational efficiency over SVD-EnRML-SMM. In addition, SVD-EnRML-AG does not

improve the results compared to SVD-EnRML-SMM.

Table 3.6: Summary of computational costs of SVD-EnRML algorithms for generating
16 conditional realizations of porosity and log permeability, and the max{ON}
at convergence, Example 2.

Method NSVD,max Sim. Direct Adjoint Equ. Sim. Runs Niter max{ON}
SMM 60 837 2157 2117 1905 40 1.297
MI 60 953 1452 1421 1681 31 1.296
MI 45 823 1066 1038 1349 28 1.533
AG 60 4527 3177 4567 6463 52 1.297

Here we present some of the results of SVD-EnRML-MI with NSVD,max = 60,

corresponding to the 2nd row of Table 3.6. Fig. 3.16 shows the porosity and log perme-
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ability fields of the MAP estimate. For the MAP estimate, the prior porosity is uniform

and equal to 0.1 and the prior log permeability is uniform 4.5. In Figs. 3.17 and 3.18,

respectively, 3 unconditional and conditional realizations of the log permeability field are

shown. In Figs. 3.19 and 3.20, respectively, 3 unconditional and conditional realizations

of the porosity field are shown. All conditional realizations of the permeability field

have similar features of the truth shown in Fig. 3.1, including the channel through the

injectors and Prod-2; but the porosity field is not well resolved by the data.
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Figure 3.16: Porosity and log permeability fields of the MAP estimate, Example 2.
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(a) Realization 2
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(b) Realization 8
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(c) Realization 15

Figure 3.17: 3 unconditional realizations of log-permeability field, Example 2.

Fig. 3.21 shows the water saturation distribution at the end of history matching

period for the true model, the MAP estimate and one of the conditional realizations.
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(a) Realization 2
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(b) Realization 8
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Figure 3.18: 3 conditional realizations of log-permeability field, generated with SVD-EnRML-
MI, Example 2.
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(a) Realization 2
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(b) Realization 8
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(c) Realization 15

Figure 3.19: 3 unconditional realizations of porosity field, Example 2.
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(a) Realization 2
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(b) Realization 8
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(c) Realization 15

Figure 3.20: 3 conditional realizations of porosity field generated with SVD-EnRML-MI, Ex-
ample 2.
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Figure 3.21: Distribution of Sw at the end of the history matching period (1200 days) for the
true model, MAP estimate and a conditional realization, Example 2.

Figs. 3.22 and 3.23, respectively, show the data matches (0 < t < 1200 days) and

predictions (1200 < t < 3000 days) of water rates and oil rates for some of the producers.

Data matches and predictions of the wells not shown are similar to those shown. Since

pwf of producers are reduced at certain times, oil rates and water rates of the wells have

a peak at those times. In Figs. 3.22(a) and 3.22(c) the mean of the conditional sample

does not predict the water breakthrough time correctly. This may be due to the fact

that the number of realizations is small and 16 realizations is not enough to perform

reliable predictions of breakthrough time for this example.

Figs. 3.25 and 3.26 show the cumulative oil and water production of the field from

the unconditional and conditional realizations, respectively. The uncertainty in cumula-

tive oil and water production is significantly reduced by conditioning the realizations to

production data.

3.4.2 Comparison of The Subspace Method and SVD Parameterization

In this subsection, we apply the subspace method to generate the MAP esti-

mate for porosity and log permeability fields, and we compare the results with SVD

parameterization. Then we compare the subspace method when applying RML with

SVD-EnRML.

The subspace method for generating the MAP estimate converged in 11 iterations.

The initial value of the LM parameter is 107.
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(b) qw of Prod-2
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(c) qw of Prod-3
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(d) qw of Prod-4
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(e) qw of Prod-5
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(f) qw of Prod-6

Figure 3.22: Data matches and predictions of qw. The dashed vertical line shows the end of
the history matching period (1200 days), Example 2.
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(c) qo of Prod-6

Figure 3.23: Data matches and predictions of qo for 3 of producers. The dashed vertical line
shows the end of the history matching period (1200 days), Example 2.
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Figure 3.24: Data matches and predictions of pwf of the two injectors. The dashed vertical
line shows the end of the history matching period (1200 days), Example 2.
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Figure 3.25: Field oil production (in STB) from the prior and the posterior samples, red curve
is from the truth, gray curves are from 16 realizations, blue shows the mean of
gray curves. The dashed line shows the end of the history matching period (1200
days), Example 2.
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(a) prior FWPR
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Figure 3.26: Field water production (in STB) from the prior and the posterior samples, red
curve is from the truth, gray curves are from 16 realizations, blue shows the mean
of gray curves. The dashed vertical line shows the end of the history matching
period (1200 days), Example 2.

As discussed before, the subspace vectors are the gradients of subobjective func-

tions multiplied by CM . The observed data in this example include pwf of injectors,

and oil rates and water rates of the producers. At the first iteration, each subobjec-

tive function contains one data type from one well, e.g., oil rate data from Prod-3 are

used in one subobjective function while water rate data from Prod-3 are used in another

subobjective function. Although the zero water rates after adding noise were added to

observed data, if water rate of a well is zero during the whole history matching period,

it is not used in a subobjective function.

The number of the subspace vectors is increased simply by partitioning each data

type of each well into smaller time intervals. If a well has nonzero water rate data during

the history matching period, they are used together in one subobjective function during

all iterations, i.e., water rate data of a well is not partitioned into smaller time intervals.

Note that if we partition water rate data into time intervals, and a subobjective function

includes only zero rates, it will not provide an appropriate subspace vector.

Now we further explain the partitioning of data. In this example, there is 1200

days of data history with observed data at 30 day intervals. At iteration 5, each data
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type from each well (except qw data) is divided into 2 groups, one containing data until

600 days and the other one containing data after 600 days until 1200 days. Each group is

used in a separate subobjective function. From iteration 7 until convergence, each data

type from each well is divided into 6 uniform time intervals, each of length 200 days. At

this point, some of the subobjective functions contain 6 observed data and some contain

7. The choice was arbitrary. After the first iteration, the model mismatch vectors for

each of the porosity and log permeability parameters are used in 2 additional subspace

vectors.
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Figure 3.27: Porosity and log permeability fields of the MAP estimate by the subspace
method, Example 2.

Table 3.7: Computational cost of the LM algorithm with the subspace method and SVD
parameterization for generating the MAP estimate, Example 2.

Algorithm Simulations Direct Adjoint Equ. Sim. Runs Niter

Subspace method 15 362 353 193 11
SVD parameterization 15 280 275 153 11

Fig. 3.27 shows the porosity and log permeability fields of the MAP estimate ob-

tained with the subspace method. The MAP estimate is smooth and it contains the main

features of the truth. Table 3.7 shows the computational costs of the subspace method
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Table 3.8: Final values of objective function of the MAP estimate with the subspace and
SVD parameterization methods.

Algorithm Od(m) Om(m) ON(m)
Subspace method 350.1 10.5 1.288
SVD parameterization 338.5 9.9 1.244

and SVD parameterization algorithm in generating the MAP estimate. Fig. 3.28(a)

shows the value of ON(m) versus iterations of the subspace method and SVD parame-

terization. It shows that both algorithms have similar convergence properties and they

converged in the same number of iterations. Table 3.8 shows the final values of the nor-

malized objective function at convergence. Note that the final values of the normalized

objective functions are less than 1 + 5
√

2/Nd = 1.299.

Figs. 3.28(b) and 3.28(c) show the number of subspace vectors and number of

SVD parameters versus iterations of the two algorithms, respectively. At each iteration

of the SVD parameterization algorithm, the number of SVD parameters is determined

based on sv-cut, while in the subspace method, the number of subspace vectors at each

iteration is directly specified as input.
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Figure 3.28: Number of subspace vectors and SVD parameters versus iterations of the sub-
space method and SVD parameterization algorithm, and ON (m) versus iterations
of the two algorithms, Example 2.

Now, we use the subspace method to perform RML. In performing RML, the

subspace vectors and the Hessian matrix are generated based on a particular realization,

while for each realization its actual gradient is computed with adjoint method. The
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information (primary variables of simulation) needed to compute the gradient from the

adjoint solution are saved during the previous simulation run on disk using unformatted

direct access I/O which uses the binary format to store data record by record.
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Figure 3.29: (a) ON(m) of 16 realizations versus iterations of the subspace method. Red
curve is for the MAP estimate while the gray curves are for 15 RML realiza-
tions, (b) The number of subspace vectors versus iterations of the subspace
method, Example 2.

Fig. 3.29(a) shows the values of normalized objective function of all realizations

versus iterations. Although the MAP estimate converged in a few iterations, the con-

vergence of RML realizations is much slower than the results of SVD-EnRML shown in

Fig. 3.14. Number of subspace vectors versus iterations is shown in Fig. 3.29(b). We

used a reasonable number of subspace vectors for this example.

3.5 Example 3

This example pertains to a two-dimensional horizontal reservoir model with a

29× 35 uniform grid. The true porosity and log permeability fields, which are shown in

Fig. 3.30, are generated from a spherical covariance matrix. The prior parameters are

listed in Table 3.9.

The objective is to simulate porosity and log permeability fields with the SVD-

EnRML-MI algorithm and compare the results with SVD-EnRML-SMM in terms of
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computational cost and final values of objective functions. We also compare the results

with EnKF in terms of the quality of predictions and data matches.

There are 7 producers and 2 injectors in this reservoir. The summary of well

controls are presented in Table 3.10. The total history matching period is 2250 days

and is followed by 2750 days of predictions. At 2250 days, 4 of the producers have

experienced water breakthrough. These wells are Prod-1, Prod-2, Prod-3 and Prod-7.

Observed data include pwf of injectors, oil rates of all producers and water rates of the

4 producers which had water breakthrough, at 30 day intervals.

Observed data are generated by adding synthetic measurement errors to the true

data. The standard deviation of the measurement error is 2% of rates for rate data and

3 psi for pressure data, i.e., σBHP = 3 psi and σq = 0.02q. The minimum measurement

error for rates is specified to 0.5 STB/D while the maximum measurement error is 3

STB/D.

The number of observed data and model parameters are

Nm = 2Nx ×Ny = 2030, Nd = 975.

The gridblock dimensions are

4x = 4y = 250 ft, 4z = 10 ft.

Table 3.9: Geostatistical parameters of Example 3.

Parameters Values
φmean 0.12
[ln(k)]mean 4.50
σφ 0.0265
σln(k) 2.0
ρφ,ln(k) 0.80
α 30o

r1 184x
r2 84x
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Figure 3.30: True porosity and log permeability fields, Example 3.

Table 3.10: Well controls of Example 3. pwf is specified at producers and injection rate
is specified at injectors.

Time Period, days injection rates, STB/D pwf of producers, psi
0− 300 200 4500
300− 600 800 4200
600− 900 1200 4000
900− 1200 1200 3800
1200− 1500 1200 3500
1500− 1800 1200 3200
1800− 2100 1200 3000
2100− 5000 1200 2500

3.5.1 Results of SVD-EnRML-SMM and SVD-EnRML-MI

In this part, the results of SVD-EnRML-SMM and SVD-EnRML-MI for gener-

ating the MAP estimate and Ne = 15 RML realizations are compared in terms of the

computational cost and final values of objective functions. In both algorithms, the same

prior realizations of porosity and log permeability fields are used. We applied both of

the algorithms with NSVD,max = 55.

The first two rows of Table 3.11 show the computational costs of the two al-

gorithms. Comparing the first and second rows, one can see that the computational
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cost in terms of equivalent simulation runs for SVD-EnRML-MI is far less than SVD-

EnRML-SMM. Further, at convergence of the algorithms, the maximum value of the

normalized objective function of realizations for SVD-EnRML-MI, is less than that of

SVD-EnRML-SMM.

With NSVD,max = 55, the SVD-EnRML-MI algorithm converged in 40 iterations.

The MAP estimate converged in 12 iterations. At convergence of SVD-EnRML-MI,

ON(m) of 8 realizations (out of 16) are less than 1+5
√

2/Nd = 1.23, while the maximum

ON(m) is 1.33 which is fairly small. At convergence of the SVD-EnRML-SMM, ON(m)

is less than 1+5
√

2/Nd for only 2 of the realizations. Figs. 3.31(a) and 3.31(b) show the

values of ON of all realizations versus iterations l (where SVD parameters are updated

with the Lanczos method).

Fig. 3.32(b) shows some important details about the convergence properties of

SVD-EnRML-MI algorithm. According to this figure, ON(m) of all 16 realizations are

less than 2 after 28 iterations with a computational cost of 1770 equivalent simulation

runs; or at iteration 17 with 840 equivalent simulation runs, ON(m) of all 16 realizations

are less than 10.

Table 3.11: Summary of the computational costs of SVD-EnRML-SMM and SVD-
EnRML-MI algorithms for generating 16 conditional realizations of porosity
and log permeability, and the max{ON} at convergence, Example 3.

Method NSVD,max Sim. Direct Adjoint Equ. Sim. Runs Niter max{ON}
SMM 55 2070 3763 3702 3936 61 1.433
MI 55 1431 2258 2221 2550 40 1.331
MI 65 1159 2363 2325 2331 38 1.23

In order to investigate the effect of NSVD,max on the computational efficiency of

SVD-EnRML-MI, we applied the algorithm with NSVD,max = 65. Fig. 3.31(c) shows the

values of ON of all realizations versus iterations l for this case. The 3rd row of Table 3.11,

shows the computational cost of SVD-EnRML-MI with NSVD,max = 65. Comparing the

2nd and the 3rd rows of Table 3.11, one can see that increasing NSVD,max from 55 to

65, reduces the computational costs. With NSVD,max = 65, in addition to the lower
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Figure 3.31: ON (m) of all realizations versus iterations. Red curve is for the MAP estimate,
gray curves are from 15 RML realizations from (a) SVD-EnRML-SMM, (b) SVD-
EnRML-SMM, (c) SVD-EnRML-MI, Example 3.

0 1 0 2 0 3 0 4 0 5 0 6 00
5 0 0

1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0
3 0 0 0
3 5 0 0
4 0 0 0

m
ax

 O
N(m

)

I t e r a t i o n  N u m b e r

Eq
u.

 S
im

. R
un

s

1

1 0

1 0 0

1 0 0 0

1 0 0 0 0

1 0 0 0 0 0

(a) SMM, NSVD,max = 55

0 1 0 2 0 3 0 4 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

m
ax

 O
N(m

)

I t e r a t i o n  N u m b e r

Eq
u.

 S
im

. R
un

s

1

1 0

1 0 0

1 0 0 0

1 0 0 0 0

1 0 0 0 0 0

(b) MI, NSVD,max = 55

0 1 0 2 0 3 00

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

m
ax

 O
N(m

)

I t e r a t i o n  N u m b e r

Eq
u.

 S
im

. R
un

s

1

1 0

1 0 0

1 0 0 0

1 0 0 0 0

1 0 0 0 0 0

(c) MI, NSVD,max = 65

Figure 3.32: Computational cost in terms of equivalent simulation runs and max {ON (m)} ver-
sus iterations, (a) SVD-EnRML-SMM, (b) SVD-EnRML-MI, (c) SVD-EnRML-
MI, Example 3.
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computational cost, ON(m) for all 16 realizations is less than 1 + 5
√

2/Nd = 1.23 at

convergence.

With NSVD,max = 65, the value of λ65/λ1 varied between 0.0005 to 0.0006, while

with NSVD,max = 55, the value of λ55/λ1 varied from 0.00077 to 0.001.

Fig. 3.32 shows the computational cost and the maximum ON(m) versus itera-

tions of the three cases we discussed. Since multiple iterations are performed after the

convergence of the MAP estimate, all 3 cases in Fig. 3.32 are similar at early iterations.

However, after the convergence of the MAP estimate, the max(ON) decreases faster with

the SVD-EnRML-MI method.

Figs. 3.33(a) and 3.34(a) show the first singular value of GD versus iterations

of SVD-EnRML-MI with NSVD,max of 55 and 65, respectively. Similar to the results of

other examples, after the first few iterations, the largest singular value does not change

significantly. Figs. 3.33(b) and 3.34(b) show the smallest retained singular value of GD,l

versus iterations. According to the results in Figs. 3.33(b) and 3.33(c), the 55th retained

singular value is around 2.45 for the MAP estimate, and after the convergence of the

MAP estimate it changes from a maximum of 2.67 to a minimum of 2.1. According to

Fig. 3.34(b), when we increased NSVD,max from 55 to 65, the 65th singular value varied

from 1.45 to 1.75.
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Figure 3.33: The first singular value and the smallest retained singular value of GD,l and
the number of retained SVD parameters versus iterations of SVD-EnRML-MI
algorithm with NSVD,max = 55, Example 3.

Figs. 3.33(c) and 3.34(c) display the number of computed singular triplets versus
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Figure 3.34: The largest singular value and the smallest retained singular value of GD and
the number of SVD parameters versus iterations of SVD-EnRML-MI algorithm
with NSVD,max = 65, Example 3.
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Figure 3.35: Singular values of GD corresponding to the MAP estimate at iteration l =
12, Example 3.
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iterations. The jumps in these figures happen at the convergence of the MAP estimate,

where sv-cut is set to µ2 = 0.05 and the algorithm computes a truncated SVD of GD,l

for the realization with the maximum objective function. Fig. 3.35 shows 65 singular

values of GD,l corresponding to the MAP estimate, at iteration l = 12. According to

this figure, about half of these 65 singular values are less than 10. In addition, the

distribution does not show a sharp jump. The results in Table 3.11 show that retaining

more singular values which are between 1 and 10, decreased the computational costs of

SVD-EnRML-MI.
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Figure 3.36: ON versus outer and inner loop iterations, for two cases. Red line shows the
value of 1 + 5

√
2/Nd = 1.23. (a) ON of realization #6 at iteration l = 23,

(b) ON of realization #9 at iteration l = 20, Example 3.

Fig. 3.36 shows how multiple iterations with the same SVD parameters decreases

the objective function. These results are corresponding to the case with NSVD,max = 65.

In Fig. 3.36(a), the value of ON at k = 0 is the value of the normalized objection

function of realization #6 at the beginning of iteration l = 23. A truncated SVD of

GD,l is computed for jbase = 15 at iteration l = 23. Based on the results (not shown

here), the search direction with γ = 1.0 did not decrease the objective function. With

γ = 100, the normalized objective function, O6/Nd, decreased from 2.54 to 2.42. As

the decrease of O6 at the first application of the LM algorithm was more than 1%, the

realization entered a loop where the same SVD parameters and the same γ = 100 are
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used in the search direction. As one can see in Fig. 3.36(a), with multiple iterations at

iteration l = 23 of the algorithm, O6/Nd decreased from 2.42 to 1.198 which is less than

1 + 5
√

2/Nd.

In Fig. 3.36(b), the value of ON at k = 0 is the value of ON of realization #9 at the

beginning of iteration l = 20. Based on the results, the search direction with γ = 0.01 did

not decrease the objective function. With γ = 100, the normalized objective function,

O9/Nd, decreased from 4.926 to 4.102. Again, as the decrease in O9 at k = 1 was more

than 1%, the realization entered a loop where the same SVD parameters and the same

γ = 100 are used in the search direction. Note that in the inner loop, O9/Nd decreased

from 4.102 to 1.312. The inner loop ended at k = 9, as the maximum number of iterations

with the same SVD parameters was specified to 9.

In summary, the results of this example show that SVD-EnRML-MI is computa-

tionally more efficient that SVD-EnRML-SMM. The results also show that using more

singular triplets at late iterations, can actually improve the computational efficiency of

SVD-EnRML-MI. Many of the retained singular values were smaller than 10, but all of

them were greater than 1.

3.5.2 Comparison of The Results of EnKF With The Results of SVD-EnRML-MI

In this subsection, the results of EnKF and SVD-EnRML-MI are compared. For

SVD-EnRML-MI, we used the results corresponding to the second row of Table 3.11.

With the ensemble Kalman filter (EnKF), observed data are sequentially assim-

ilated. The covariance localization is performed using anisotropic Gaspari and Cohn

correlation function [15]. The anisotropic Gaspari and Cohn correlation function is gen-

erated with a principal correlation length of 204x aligned with the principal direction of

the prior covariance matrix and a critical length of 154x in the perpendicular direction.

Note that we used a fixed correlation lengths in generating the correlation matrices.

Although not shown, the results of EnKF with localization is much better than EnKF

without localization in terms of data matches and predictions.

In our implementation of EnKF, unrealistic values of porosity, log permeability
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and saturations after each assimilation step are simply truncated. The minimum bounds

for ln(k) and φ were specified to −2 and 0.01 while the maximum bounds were 10 and

0.32, respectively. Fig. 3.37 shows 3 prior realizations of the log permeability field, and

Fig. 3.38 shows 3 updated realizations of log permeability field with the EnKF and

SVD-EnRML-MI.

Fig. 3.39 shows 3 prior realizations of porosity field, and Fig. 3.40 shows 3 updated

realizations of porosity fields of EnKF and SVD-EnRML-MI. Note that the variation of

porosity in the updated models of EnKF is higher than the true model. Some gridblocks

have porosity values around 0.25.

Figs. 3.41, 3.42 and 3.43 show the data matches and predictions with SVD-

EnRML and with EnKF during assimilations and rerun. By comparing the results

in Figs. 3.42 and 3.43 one can see that during rerun, the predicted data do not match

the observed data. This behavior in EnKF is known as inconsistency between data

matches during assimilation and rerun. During assimilating observed data, pressures

and saturations of gridblocks also get updated. A strong assumption in EnKF is that

the updated pressures and saturations (state variables) are consistent with the updated

model parameters, which means if the updated model parameters were used to run the

simulator from time zero, the pressures and saturations at time t should be statistically

consistent with the updated pressures and saturations obtained from the EnKF equation

[40]. This issue is not further discussed here, as EnKF is not the main objective of this

work.

According to the results of this part, the updated rock property fields from the

SVD-EnRML-MI are closer to the truth than those from EnKF. In addition, the data

matches and predictions from SVD-EnRML-MI are more reliable.
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Figure 3.37: 3 prior realizations of log permeability field, Example 3.
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(b) Realization #4, EnKF
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(c) Realization #5, EnKF
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(d) MAP estimate, SVD
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(e) Realization #3, SVD
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(f) Realization #5, SVD

Figure 3.38: 3 updated realizations of log permeability field, Top row shows the results from
EnKF with localization, the bottom row shows the results from SVD-EnRML-MI,
Example 3.
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(a) Realization #3
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(b) Realization #4
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(c) Realization #5

Figure 3.39: 3 prior realizations of porosity field, Example 3.
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(a) Realization #3, EnKF
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(b) Realization #4, EnKF
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(c) Realization #5, EnKF
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(d) MAP estimate, SVD
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(e) Realization #3, SVD
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(f) Realization #5, SVD

Figure 3.40: 3 updated realizations of porosity field. Top row shows the results from EnKF
with localization, the bottom row shows the results from SVD-EnRML-MI, Ex-
ample 3.
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(a) qw of Prod-1, EnKF

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

350

Time (days)

w
a
te

rr
a
te

 w
e
ll
 3

 S
T

B
D

 

 

True Data
Observed Data
Mean Predicted Data
Realizations

(b) qw of Prod-1, EnKF, Rerun

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

350

Time (days)

w
a
te

rr
a
te

 w
e
ll
 3

 S
T

B
D

 

 
True Data
Observed data
Mean Predicted Data
Realizations

(c) qw of Prod-1, SVD-EnRML
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(d) qw of Prod-2, EnKF
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(e) qw of Prod-2, EnKF, Rerun
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(f) qw of Prod-2, SVD-EnRML
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(g) qw of Prod-3, EnKF
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(h) qw of Prod-3, EnKF, Rerun
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(i) qw of Prod-3, SVD-EnRML
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(j) qw of Prod-4, EnKF
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(k) qw of Prod-4, EnKF, Rerun
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Figure 3.41: Data matches and predictions of qw of four of the producers from EnKF and
SVD-EnRML-MI. The dashed vertical line shows the end of the history matching
period (2250 days), Example 3.
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(c) qo of Prod-1, SVD-EnRML
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(d) qo of Prod-2, EnKF
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(f) qo of Prod-2, SVD-EnRML
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(g) qo of Prod-4, EnKF
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(h) qo of Prod-4, EnKF, Rerun
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(i) qo of Prod-4, SVD-EnRML
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(j) qo of Prod-5, EnKF
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(k) qo of Prod-5, EnKF, Rerun
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Figure 3.42: Data matches and predictions of qo of four of the producers from EnKF and
SVD-EnRML-MI. The dashed vertical line shows the end of the history matching
period (2250 days), Example 3.
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(c) pwf of Inj-1, SVD-EnRML
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(d) pwf of Inj-2, EnKF
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(e) pwf of Inj-2, EnKF, Rerun
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Figure 3.43: Data matches and predictions of pwf of injectors from EnKF and SVD-EnRML-
MI. The dashed vertical line shows the end of the history matching period (2250
days), Example 3.
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CHAPTER 4

3D EXAMPLES

In the first example of this chapter, the true model is a 3D reservoir where the

prior model for the rock property fields is correlated in all three directions. In Exam-

ples 2 and 3, the true models are 3D reservoirs with the rock property fields of each

layer independent from all other layers, i.e., in the prior model, rock property fields are

uncorrelated in the vertical direction.

In tables, φmean and [ln(k)]mean, denote the prior mean of porosity and log-

permeability, respectively. The standard deviations of porosity and log-permeability

are denoted by σφ and σln(k), respectively; ρφ,ln(k) denotes the correlation coefficient be-

tween porosity and log-permeability; α is the angle measured counterclockwise from the

x-axis to the principal correlation direction of the covariance function; r1 is the corre-

lation range in the principal direction and r2 is the correlation range in the orthogonal

direction.

All examples are for two phase flow (oil and water).

4.1 Example 1

This example pertains to a three-dimensional reservoir model with 28 × 30 × 3

uniform grid. True porosity, horizontal and vertical log permeability fields are generated

from a spherical covariance matrix. The prior parameters are listed in Table 4.1. The

cross-covariances are calculated by assuming screening criteria, and the correlation co-

efficient is the same for all three pairs of rock property fields. True rock property fields

are shown in Figs. 4.1(a)- 4.1(c), 4.2(a)- 4.2(c) and 4.3(a)- 4.3(c).

141



Table 4.1: Geostatistical parameters of Example 1.

Parameters Values
φmean 0.15
[ln(kh)]mean 4.50
[ln(kz)]mean 3.50
σφ 0.04
σln(kh) 1.4142
σln(kz) 1
ρ 0.80
α 30o

r1 224x
r2 74x
rz 34x

The gridblock dimensions are:

4x = 4y = 150 ft, 4z = 15 ft.

There are 9 producers and 4 injectors in this reservoir, as shown in the true

horizontal log permeability field of Fig. 4.1(a). Producers are perforated only at the top

layer while injection wells are perforated at the bottom layer. Table 4.2 shows the well

control schedules. At 2250 days, Prod-1 is shut in due to high water cut. The reservoir is

initially at irreducible water saturation which is equal to swc = 0.1 . We apply the SVD-

EnRML-MI algorithm for 3 history matching periods, 600 days, 870 days and 1080 days.

At 600 days, none of the producers had water breakthrough. At 870 days, only Prod-

1, Prod-2, Prod-4 and Prod-9 have experienced water breakthrough. At 1080 days, in

addition to the 4 producers, Prod-3 has also experienced water breakthrough. Observed

data include water rate data of these producers and pwf of all wells at 30 day intervals.

Observed data are generated by adding Gaussian random noise to the true data.

The standard deviation of the noise (measurement error) is 2% of rates for rate data and

3 psi for pressure data, i.e., σBHP = 3 psi and σq = 0.02q. The minimum measurement

error for rates is specified to 0.5 STB/D while the maximum measurement error is 3
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STB/D.

Table 4.2: Well controls of Example 1. Total liquid rate is specified at producers and
injection rate is specified at injectors. Rates are in STB/D and time intervals
are in days.

Time inj-1,2 Prod-1 Prod-2, 4, 9 Prod-3 Prod-5 Prod-6, 7, 8
0− 2250 1250 700 700 600 600 300
2250− 3000 1060 0 700 600 600 300

4.1.1 Comparison of SVD Parameterization and The Subspace Method

In this part, we use the subspace method and the SVD parameterization algorithm

to generate the MAP estimate for the porosity, ln(kh) and ln(kz) fields. Thus, the model

parameters include porosity and horizontal and vertical log permeability of all gridblocks.

Fluid properties and the prior mean and covariance are assumed to be known. The

number of model parameters and observed data are:

Nm = 3Nx ×Ny ×Nz = 7560, Nd = 493.

The vector of model parameters can be shown as

m =


ln(kh)

ln(kz)

φ

 , (4.1)

where ln(kh) denotes the vector of horizontal log permeability of all gridblocks, ln(kz)

denotes the vector of vertical log permeability of all gridblocks and φ denotes the vector

of porosity of all gridblocks.

We used the lower triangular part, L, of the Cholesky decomposition (CM = LLT )

of the covariance matrix as C
1/2
M . In the subspace method, the modified LM algorithm is

used where we gradually increase the number of subspace vectors. In both algorithms a
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growth and decay factor of 10 is used for the LM parameter. In SVD parameterization

algorithm, parameters for sv-cut, are set to the values mentioned in Section 2.1.

At the first 3 iterations of the subspace method, each data type from each well

comprises one subspace vector. In order to increase the number of subspace vectors, we

further partitioned the data into time periods, e.g., at iteration 3, pwf data of Prod-2 is

partitioned into 2 subobjective functions, one containing data mismatch terms from time

0 until 420 days and the other one containing data mismatch terms from 450 days until

870 days. Water rate data of each of the 4 producers are always used in one subobjective

function. This is because there is no water breakthrough before 650 days. From iteration

2 on, the model mismatch term is used in 2 additional subspace vectors, one for porosity

and one for log permeabilities.

Both the subspace method and SVD parameterization algorithm converged in 22

iterations. At convergence of both algorithms, the final value of ON(m) is less than

1 + 5
√

2/Nd = 1.319. Figs. 4.1, 4.2 and 4.3 show the rock property fields for the truth

and the MAP estimates obtained with the two methods. Note that the rock property

fields of the MAP estimates obtained with the two methods are very similar. The rock

property fields of the MAP estimate are smooth and some of the main features of the

truth are recognizable. However, there are distinct differences between the true fields and

the estimates. For example, there is a low vertical permeability and low porosity region

in the 2nd layer of the MAP estimate and near to the location of Prod-2 (see Figs. 4.2(e)

and 4.3(e)) which does not exist in the truth. This is not unexpected, as we never

have enough information contained in production data to resolve all parameters. After

matching data, the reservoir description will still be highly uncertain. All we can expect

in the Bayesian history matching framework, is that matching production data will

reduce the uncertainty in the reservoir description and reservoir performance predictions,

while maintaining the essential geological heterogeneity of the prior geological model.

Fig. 4.4(a) shows the normalized objective function of the MAP estimates versus

iterations of the two algorithms, and Fig. 4.4(b) shows the model mismatch term ver-
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(b) True ln(kh), layer #2
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(c) True ln(kh), layer #3
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(d) MAP, SVD, layer #1
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(e) MAP, SVD, layer #2
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(f) MAP, SVD, layer #3
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(g) MAP, subspace, layer #1
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(h) MAP, subspace, layer #2
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(i) MAP, subspace, layer #3

Figure 4.1: Horizontal log permeability fields. Top row shows the true ln(kh) fields, the middle
row is the MAP estimate from SVD parameterization, and the bottom row is the
MAP estimate from the subspace method. History matching period is 870 days,
Example 1.
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(a) True ln(kz), layer #1
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(b) True ln(kz), layer #2
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(c) True ln(kz), layer #3
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(d) MAP, SVD, layer #1
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(e) MAP, SVD, layer #2
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(f) MAP, SVD, layer #3
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(g) MAP, subspace, layer #1
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(h) MAP, subspace, layer #2
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(i) MAP, subspace, layer #3

Figure 4.2: Vertical log permeability fields. Top row shows the true ln(kz) fields, the middle
row is the MAP estimate from SVD parameterization, and the bottom row is the
MAP estimate from the subspace method. History matching period is 870 days,
Example 1.
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(a) True porosity, layer #1
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(b) True porosity, layer #2
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(c) True porosity, layer #3

0 5 1 0 1 5 2 0 2 50
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2
2 4
2 6
2 8
3 0

 

Y

X

0 . 0 5
0 . 0 9
0 . 1 2
0 . 1 6
0 . 2 0
0 . 2 30 . 2 5

(d) MAP, SVD, layer #1

0 5 1 0 1 5 2 0 2 50
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2
2 4
2 6
2 8
3 0

 

Y

X

0 . 0 5
0 . 0 8
0 . 1 2
0 . 1 5
0 . 1 9
0 . 2 20 . 2 4

(e) MAP, SVD, layer #2
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(f) MAP, SVD, layer #3
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(g) MAP, subspace, layer #1
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(h) MAP, subspace, layer #2
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(i) MAP, subspace, layer #3

Figure 4.3: Porosity fields. Top row shows the true porosity fields, the middle row is the MAP
estimate from SVD parameterization, and the bottom row is the MAP estimate
from the subspace method. History matching period is 870 days, Example 1.
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sus iterations for the two algorithms. Both algorithms converged in the same number

of iterations and the values of model mismatch terms at convergence are very close.

Fig. 4.5(a) shows the number of subspace vectors versus iterations, while Fig. 4.5(b)

shows the number of retained singular triplets versus iterations of the SVD parameter-

ization algorithm. The number of subspace vectors and the maximum number of SVD

parameters were specified as input. Although the number of subspace vectors at each

iteration of the subspace method is not exactly equal to the corresponding number of the

SVD parameters in SVD parameterization, the two algorithms have similar convergence

properties.
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Figure 4.4: ON (m) and Om(m) of the MAP estimate with the subspace (black) and SVD
parameterization (red) algorithms, Example 1.

Table 4.3 shows the summary of the computational costs of the two algorithms.

Note that in calculating equivalent simulation runs, 4 adjoint solutions or 4 applications

of the gradient simulator method were roughly assumed to be equivalent with 1 reservoir

simulation run. As we show in Subsection 4.1.4, by extending the history matching

period to 1080 days and having more water rate data from Prod-2, the MAP estimate

converges in fewer iterations.

According to the results of this example, the subspace method and SVD param-

eterization algorithm have similar convergence properties. However, in performing SVD

parameterization, one does not need to consider subobjective functions, which makes the
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Figure 4.5: (a) The number of the subspace vectors in the subpace method, (b) The number
of retained SVD parameters in the SVD parameterization algorithm, Example 1.

Table 4.3: Computational cost of the LM algorithm with the subspace and SVD
parametrization methods for generating the porosity and horizontal and ver-
tical log permeability fields of the MAP estimate, Example 1.

Algorithm Simulations Direct Adjoint Equ. Sim. Runs Niter

Subspace method 36 1032 991 541 22
SVD parameterization 33 874 852 464 22

algorithm a more convenient and general method and easier to implement.

4.1.2 Conditioning Realizations to Pressure Data with SVD-EnRML-MI

In this part, we condition Ne = 50 realizations of porosity, horizontal and vertical

log permeability fields to only pressure data. In applying the SVD-EnRML-MI algorithm,

we used the lower triangular part of the Cholesky decomposition of the covariance matrix

as C
1/2
M . The history matching period is 600 days. At 600 days, none of the producers

have experienced water breakthrough; thus the observed data only include pressure data

of all producers and injectors. Since the observed data came from the same set which

we used for history matching in the previous section, the zero water rates of 4 of the

producers (after adding Gaussian random noise) are also included in the observed data

vector (80 water rate data). Thus the number of model parameters and observed data
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are:

Nm = 3Nx ×Ny ×Nz = 7560, Nd = 340.

At convergence of the algorithm, we expect the normalized objective function

of a conditional realization be less than 1 + 5
√

2/Nd = 1.383. The SVD-EnRML-MI

algorithm converged in 23 iterations. At convergence, ON(m) is less than 1.383 for all

Ne = 50 realizations. Table 4.4 shows the computational cost of the SVD-EnRML-MI

algorithm for conditioning 50 realizations of rock property fields to pressure data. The

computational cost is very low, compared to when the true data contain nonzero water

rates. Specifically, generating the MAP estimate by itself, when we included nonzero

water rate data, required the equivalent of 464 reservoir simulation runs (Table 4.3), but

in the current case, generating 50 realizations required only the equivalent of 1392 reser-

voir simulation runs (Table 4.4). Fig. 4.6 shows ON(m) values for all realizations versus

iterations of the algorithm. Note that the MAP estimate converged in 11 iterations. The

convergence rate for all realizations is fast.

Table 4.4: Computational cost of SVD-EnRML-MI method for conditioning 50 realiza-
tions to pressure data, Example 1.

Algorithm Simulations Direct Adjoint Equ. Sim. Runs Niter

SVD-EnRML-MI 1099 598 575 1392 23
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Figure 4.6: ON (m) of the MAP (red) and 49 RML realizations (gray) versus iterations, l, of
SVD-EnRML-MI. The history matching period is 600 days. Example 1.
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Fig. 4.7(c) shows the number of retained singular triplets versus iterations of the

SVD-EnRML-MI algorithm. Note that only a few singular triplets were calculated, even

with a small sv-cut of 0.0003 at a late iteration; this means that the singular values of

GD,l decay fast in this case. We also would like to remark that in cases where many

of the observed data have similar sensitivity to the model parameters, many singular

values of GD,l will be small and only a few singular triplets are required to adequately

represent the reservoir model and match data. Fig. 4.7(a) shows the first singular value

of GD,l versus iterations and Fig. 4.7(b) shows the smallest retained singular value of

GD,l versus iterations. At late iterations of the algorithm, the smallest retained singular

value is slightly smaller than 1.
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Figure 4.7: The largest singular value and the smallest retained singular value of GD,l and
the number of retained singular triplets versus iterations of SVD-EnRML-MI; the
history matching period is 600 days. Example 1.

Fig. 4.8 shows the rock property fields of the MAP estimate conditioned to 600

days of pressure data. The rock property fields are much smoother than those conditioned

to 870 days of pressure and qw data.

Fig. 4.9 shows the field oil and water production from the posterior and prior re-

alizations. As the total liquid rate was specified at producers, cumulative oil production

from the prior matches the truth for t ≤ 600 days. Fig. 4.10 shows data matches and

predictions for some of the wells from both the prior and conditional realizations. By

comparing Figs. 4.10(a) and 4.10(d) one can see that data match and predictions of pwf

is significantly improved. The uncertainty in water rate and its prediction (mean predic-
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(a) ln(kh) of the MAP, layer 1
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(b) ln(kh) of the MAP, layer 2
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(c) ln(kh) of the MAP, layer 3

I n j - 1 i n j - 2

I n j - 3 i n j - 4

P r o d - 1 P r o d - 2 P r o d - 3

P r o d - 4 P r o d - 5 P r o d - 6

P r o d - 7 P r o d - 8 P r o d - 9

0 5 1 0 1 5 2 0 2 50
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2
2 4
2 6
2 8
3 0

 

Y

X

1 . 5 0
2 . 3 0
3 . 1 0
3 . 9 0
4 . 7 0
5 . 5 0

(d) ln(kz) of the MAP, layer 1
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(e) ln(kz) of the MAP, layer 2
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(f) ln(kz) of the MAP, layer 3

0 5 1 0 1 5 2 0 2 50
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2
2 4
2 6
2 8
3 0

 

Y

X

0 . 0 8
0 . 1 1
0 . 1 3
0 . 1 6
0 . 1 8
0 . 2 10 . 2 2

(g) Porosity of the MAP, layer 1
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Figure 4.8: Horizontal and vertical log permeability fields, and porosity field of the MAP
estimate by history matching 600 days of pressure data, Example 1.
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tion) is greatly improved for most of the wells. However, the uncertainty in predictions

of qw data from conditional realizations, is still high; as there is no water breakthrough

at 600 days, predictions of water rates are challenging. Data matches and predictions

from the prior and conditional realizations for other wells not shown, are similar.

This example shows that with the SVD-EnRML-MI algorithm, one can efficiently

condition large number of realizations to pressure data. According to the results of

this example, the predictions of water rates from realizations which are conditioned to

pressure data before water breakthrough, are not always reliable, and the reduction in

uncertainty compared to the prior distribution is not always highly significant.
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Figure 4.9: Field oil and water production from the prior and the posterior samples. Red
curve shows the truth, gray curves are from 50 realizations. The dashed vertical
line shows the end of history matching (600 days), Example 1.
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(f) Posterior qw of Prod-2
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(h) Prior qw of Prod-5
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(k) Posterior qw of Prod-5
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Figure 4.10: Data matches and predictions for some of the wells from the prior and the pos-
terior samples; the dashed vertical line shows the end of history matching (600
days), Example 1.
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4.1.3 Conditioning Realizations to 870 Days of Data with SVD-EnRML-MI

At 870 days, four of the producers have experienced water breakthrough. In this

history matching period, there are 3 nonzero water rate data from Prod-2. Here, the

SVD-EnRML-MI algorithm is used to generate the MAP estimate and Ne = 10 RML

realizations conditional to 870 days of data. The number of model parameters and

observed data are

Nm = 3Nx ×Ny ×Nz = 7560, Nd = 493.

In applying the SVD-EnRML-MI algorithm, we used the lower triangular matrix,

L, of the Cholesky decomposition of the covariance matrix, CM = LLT , for C
1/2
M . At

convergence of the algorithm, we expect the normalized objective function of a condi-

tional realization be less than or equal to 1 + 5
√

2/Nd = 1.318. The input parameters

are listed in Table 4.5. A maximum of 50 singular triplets was specified as input. The

SVD-EnRML-MI algorithm for generating Ne = 11 conditional realizations converged in

51 iterations. Fig. 4.11(a) shows ON(m) of all realizations versus iterations. Note that

at late iterations, the rate of decrease of the objective functions is very slow. Fig. 4.11(b)

shows the computational cost and maximum ON(m) versus iterations of SVD-EnRML-

MI. It shows that at late iterations, the maximum normalized objective function has a

very small decrease. Table. 4.6 shows the summary of the computational costs, and the

maximum ON(m) at convergence.

Fig. 4.12 shows some details of the algorithm. The largest singular value is roughly

2900 at late iterations. The 50th singular value of GD,l is around 1.

Table 4.5: Input Parameters of SVD-EnRML-MI algorithm (870 Days of data), Example
1.

Algorithm µ1 µ2 NSVD,max µmin

SVD-EnRML-MI 0.5 0.05 50 0.0003

At convergence of the algorithm, the objective functions of realizations are still

high. Data matches and predictions for some of the wells from the prior and updated
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Figure 4.11: (a) ON (m) of the MAP estimate (red) and 10 RML realizations (gray) versus it-
erations l of SVD-EnRML-MI. (b) The computational cost in terms of equivalent
simulations runs and the maximum ON (m) versus iterations l of SVD-EnRML-
MI. The history matching period is 870 days. Example 1.
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Figure 4.12: The largest singular value and the smallest retained singular value of GD,l and
the number of retained singular triplets versus iterations of SVD-EnRML-MI
with NSVD,max = 50; the history matching period is 870 days. Example 1.
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Table 4.6: Computational cost of SVD-EnRML-MI method for generating the MAP es-
timate and 10 RML realizations (870 Days of data), and the max{ON} at
convergence, Example 1.

Sim. Direct Adjoint Equ. Sim. Runs Niter max{ON(m)}
1397 2566 2515 2667 51 6.482

realizations are shown in Fig. 4.13. In Fig. 4.13(e), some updated realizations do not

match the water rate data at late times of history matching period. We noticed that the

high objective functions are a result of late breakthrough and few water rate data of Prod-

2, as all data matches are good, but water rate of prod-2 for some updated realizations

is zero until the end of history matching period. Although not shown, using a smaller or

higher number of NSVD,max did not ameliorate the problem of matching the water rate of

Prod-2. According to the results of Fig. 4.13(b), with almost all prior realizations, Prod-

2 has water breakthrough later than the truth. In the next subsection, we extend the

history matching period to 1080 days. By doing this, the number of nonzero water rate

data from Prod-2 increased and at convergence of the algorithm the objective functions

of all realizations were small.

4.1.4 Conditioning Realizations to 1080 Days of Data with SVD-EnRML-MI

As shown with 2D examples, the SVD-EnRML-MI method is more efficient than

SVD-EnRML-SMM. Thus we use the SVD-EnRML-MI algorithm for this example. For

the covariance matrix we use a square root approximation of CM , as discussed later in

Section 5.2. For the algorithm not to be affected by a poor approximation of C
1/2
M , we

use a fairly high number of prior realizations, Ns = 1500.

The total history matching period is 1080 days. At 1080 days, Prod-1, Prod-2,

Prod-3, Prod-4 and Prod-9 have experienced water breakthrough. Observed data include

water rate data of these producers and pwf of all wells at 30 day intervals. The number
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(k) Posterior qw of Prod-7
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Figure 4.13: Data matches and predictions for some of the wells from the posterior and the
prior realizations. The dashed vertical line shows the end of history matching
(870 days), Example 1.
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of model parameters and observed data are

Nm = 7560, Nd = 648.

The input parameters are listed in Table 4.7. Note that we specified a maximum

of 55 singular triplets to be calculated. We chose this number as it has worked well for

2D examples; however we have not done an investigation to see if a smaller or larger

number would work better for this case. The SVD-EnRML-MI algorithm for generating

Ne = 11 conditional realizations converged in 46 iterations. At convergence, the value

of ON(m) of all realizations is less than 1 + 5
√

2/Nd = 1.278. Fig. 4.14(a) shows ON(m)

of all realizations versus iterations. Table 4.8 shows the summary of the computational

costs.

Table 4.7: Input Parameters of SVD-EnRML-MI algorithm (1080 Days of data), Exam-
ple 1.

Algorithm µ1 µ2 NSVD,max µmin

SVD-EnRML-MI 0.5 0.05 55 0.0003

Table 4.8: Computational costs of SVD-EnRML-MI to generate rock property fields of
the MAP estimate and 10 RML realizations.

Algorithm Simulations Direct Adjoint Equ. Sim. Runs Niter

SVD-EnRML-MI 1257 2651 2605 2571 46

Fig. 4.14(b) shows the computational cost and the value of the maximum ON(m)

versus iterations of SVD-EnRML-MI. Note that after 36 iterations, with a computational

cost of 2052 equivalent simulation runs, the value of ON(m) for all 11 realizations is less

than 2.

Fig. 4.15 shows some details of the algorithm. The largest singular value is roughly

3200 during iterations. The 55th singular value of GD,l is around 1.4, and it is slightly

greater than 1.0 during all iterations.
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Figure 4.14: (a) ON (m) of the MAP estimate (red) and 10 RML realizations (gray) versus
iterations (l). (b) The computational cost in terms of equivalent simulations runs
and the maximum ON (m) versus iterations (l) of SVD-EnRML-MI. The history
matching period is 1080 days, Example 1.
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Figure 4.15: The largest singular value and the smallest retained singular value of GD,l and
the number of retained singular triplets versus iterations of SVD-EnRML-MI
with NSVD,max = 55. The history matching period is 1080 days. Example 1.
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Figure 4.16: Field oil and water production from prior and posterior samples. Red curve
shows the truth, Gray curves are from 11 realizations. The dashed vertical line
shows the end of history matching (1080 days), Example 1.
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Cumulative oil and water production of the reservoir are shown in Fig. 4.16. The

uncertainty in the predictions of cumulative oil and water productions is significantly

reduced compared to the prior. Data matches and future performance predictions for

some of the wells are shown in Fig. 4.17. Data matches and predictions of the wells not

shown are similar. Unlike the results of Subsection 4.1.3, the data match and prediction

of water rate of Prod-2 are good in this case.

The prior and conditional horizontal and vertical log permeability fields of an

RML realization are shown in Fig. 4.18, and the prior and conditional porosity fields of

the same realization is shown in Fig. 4.19. The conditional rock property fields, contain

some of the main features of the truth.
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Figure 4.17: Data matches and predictions for some of the wells from the posterior sample,
the dashed vertical line shows the end of history matching (1080 days), Example
1.

4.2 Example 2

This example pertains to a three-dimensional reservoir model with 30 × 30 × 3
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Figure 4.18: Conditional and prior horizontal and vertical log permeability fields of an RML
realization. The history matching period is 1080 days, Example 1.
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(f) Updated porosity, layer 3

Figure 4.19: Conditional and prior porosity fields of an RML realization. The history match-
ing period is 1080 days, Example 1.

uniform grid. True porosity, horizontal and vertical log permeability fields are generated

from a spherical covariance matrix. The prior parameters are listed in Table 4.9. The

cross-covariances between the rock property fields of each layer, are calculated by using

the screening hypothesis discussed in Section 1.5. The prior mean of porosity, vertical

and horizontal log permeability of all layers are equal, however each layer has a different

correlation direction and correlation lengths and there is no correlation in the vertical

direction. In Table 4.9 the correlation parameters of each layer are given separately. In

this table, l1 refers to the 1st layer, l2 refers to the 2nd layer and l3 refers to the 3rd

layer. The correlation coefficients between rock property fields in each layer are the same

and equal to 0.65 . True rock property fields are shown in Figs. 4.20(a)- 4.20(c), 4.21(a)-

4.21(c) and 4.22(a)- 4.22(c).

The gridblock dimensions are:

4x = 4y = 150 ft, 4z = 15 ft.
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Table 4.9: Geostatistical parameters of Example 2.

Parameters Values
φmean 0.15
[ln(kh)]mean 4.50
[ln(kz)]mean 3.50
σφ 0.04
σln(kh) 1.4142
σln(kz) 1
ρ 0.65
α(l1) 30o

r1(l1) 254x
r2(l1) 74x
α(l2) 60o

r1(l2) 204x
r2(l2) 74x
α(l3) 120o

r1(l3) 254x
r2(l3) 104x

The initial reservoir pressure is 4000 psi. Initially the reservoir is at irreducible

water saturation which is swc = 0.1. There are 9 producers and 4 injectors in this

reservoir, located as shown in Fig. 4.20(a). Producers are perforated only in the top layer

while injection wells are perforated in the bottom layer. All producers are produced at

the same specified pwf , while injectors inject at the same injection rate. Table 4.10 shows

the well control schedules. The total history matching period is 1800 days. At 1800 days,

only producers P-1, P-3 and P-8 have experienced water breakthrough. Observed data

include oil rate and water rate data of producers and pwf of injectors at 30 day intervals.

Table 4.10: Well controls of Example 2. pwf is specified at producers and injection rate
is specified at injectors.

Time Period, days injection rates, STB/D pwf of producers, psi
0− 300 1100 3800
300− 4000 1000 3500

Observed data are generated by adding Gaussian random noise to the true data.
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The standard deviation of the noise (measurement error) is 2% of rates for rate data and

3 psi for pressure data, i.e., σBHP = 3 psi and σq = 0.02q. The minimum measurement

error for rates is specified to 0.5 STB/D, and the maximum measurement error is 3

STB/D.

The number of model parameters and observed data are:

Nm = 3Nx ×Ny ×Nz = 8100, Nd = 1320.

In applying the SVD-EnRML-MI algorithm, we used the reordering of model pa-

rameters which is explained in Subsection 2.5. We applied the algorithm with NSVD,max =

45. SVD-EnRML-MI converged in 52 iterations. At convergence only the MAP estimate

has ON(m) less than 1 + 5
√

2/Nd = 1.194. However, the maximum value of ON(m) of

realizations is 1.736 which is fairly small. The summary of the computational cost is

given in Table 4.11. The rock property fields of the MAP estimate, and a conditional

RML realization and its corresponding prior realization are shown in Figs. 4.20, 4.21

and 4.22. The rock property fields of the MAP estimate are smooth and, qualitatively,

they display most of the main structural features of the truth. Although the layers are

uncorrelated, and none of the wells are perforated in the 2nd layer, many of the main

features of this layer are also apparent in the MAP estimate of the rock property fields

of layer 2.

Table 4.11: Summary of the computational costs of SVD-EnRML-MI algorithm for gen-
erating 11 conditional realizations of rock property fields, and the max(ON)
at convergence, Example 2.

NSVD,max Sim. Direct Adjoint Equ. Sim. Runs Niter max{ON}
45 1588 2466 2412 2807 52 1.736

Fig. 4.23(a) shows the values of ON(m) of all realizations versus iterations of

the algorithm. According to this figure, the objective functions of some of the RML

realizations do not decrease or decrease by a negligible amount between iteration l = 10
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(c) True ln(kh), layer 3
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(d) MAP Estimate, layer 1
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(e) MAP Estimate, layer 2
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(f) MAP Estimate, layer 3
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(g) Conditional j = 5, layer 1
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(h) Conditional j = 5, layer 2
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(i) Conditional j = 5, layer 3
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(j) Prior j = 5, layer 1
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(k) Prior j = 5, layer 2
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(l) Prior j = 5, layer 3

Figure 4.20: Horizontal log permeability fields. Top row shows the true ln(kh) fields, the mid-
dle rows are the MAP estimate and a conditional realization from SVD-EnRML-
MI, the bottom row is the corresponding unconditional realization, Example 2.
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(b) True ln(kz), layer 2
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(c) True ln(kz), layer 3
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(e) MAP Estimate, layer 2
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(f) MAP Estimate, layer 3
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(h) Conditional j = 5, layer 2
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(i) Conditional j = 5, layer 3
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(j) Prior j = 5, layer 1
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(k) Prior j = 5, layer 2
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Figure 4.21: Vertical log permeability fields. Top row shows the true ln(kz) fields, the middle
rows are the MAP estimate and a conditional realization from SVD-EnRML-MI,
the bottom row is the corresponding unconditional realization, Example 2.
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(c) True porosity, layer 3
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(d) MAP Estimate, layer 1
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(e) MAP Estimate, layer 2
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(f) MAP Estimate, layer 3
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(g) Conditional j = 5, layer 1

X

Y

 

 

∅  P−1 ∅  P−2  P−3 ∅

∅  P−4 ∅  P−5  P−6 ∅

∅  P−7 ∅  P−8  P−9 ∅

⊗  I−1 ⊗  I−2

⊗  I−3 ⊗  I−4

5 10 15 20 25 30

5

10

15

20

25

30

0.05

0.1

0.15

0.2

0.25

(h) Conditional j = 5, layer 2
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(i) Conditional j = 5, layer 3
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(j) Prior j = 5, layer 1
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(k) Prior j = 5, layer 2
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(l) Prior j = 5, layer 3

Figure 4.22: Porosity fields. Top row shows the true porosity fields, the middle rows are
from the MAP estimate and a conditional realization from SVD-EnRML-MI, the
bottom row is the corresponding unconditional realization, Example 2.
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and l = 20 where the SVD parameters were computed based on the MAP estimate.

Fig. 4.23(b) shows the computational cost and the maximum ON(m) versus iterations

of the SVD-EnRML-MI. At early iterations, the rate of decrease in the maximum ON

is fast, while the computational cost has a small rate of increase; but at late iterations,

the rate of decrease in the maximum value of ON(m) is slow.
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Figure 4.23: (a) ON (m) of the MAP estimate (red) and 10 RML realizations (gray) ver-
sus iterations, l. (b) The computational cost in terms of equivalent simulation
runs and the maximum ON (m) versus iterations (l) of SVD-EnRML-MI with
NSVD,max = 45, Example 2.
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Figure 4.24: The largest singular value and the smallest retained singular value of GD,l and
the number of retained singular triplets versus iterations of SVD-EnRML-MI
with NSVD-max = 45, Example 2.

Fig. 4.24 shows some details of the algorithm. The largest singular value is be-

tween 8000 and 9000 during late iterations. The 45th singular value of GD,l is around

4.5. Thus, it appears that the normalized objective functions are not as small as ex-
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pected at convergence, is because too few singular triplets are used. Note that at late

iterations, the 45th singular value is around 4.5 which is fairly high, and there might be

several singular values between 1 and 4.5; in addition, even in 2D examples, we obtained

better results by retaining 55 or 65 singular values of GD,l at late iterations of the algo-

rithm, rather than 45. Unfortunately, because of the inefficient iterative solver used in

the simulator, the computer run for this result required 250 hours (more than 10 days),

therefore, limited computational experiments are possible.

Cumulative oil and water production of the reservoir are shown in Fig. 4.25.

The uncertainty in the predictions of cumulative oil and water productions is highly

decreased by conditioning the realizations to production data with SVD-EnRML-MI.

According to Fig. 4.25(c), the cumulative water production at the end of the history

matching period is small, however the future predictions are very good. As expected,

the uncertainty bound widens as time proceeds, however the mean of the predictions is

close to the truth. Data matches and future performance predictions from the prior and

the conditional realizations for some of the wells are shown in Fig. 4.26. The mean of the

predictions for qw of P-3 and P-8 in Figs. 4.26(e) and 4.26(j) are very close to the truth.

For qw of P-5 in Fig. 4.26(f), although there is high uncertainty in the breakthrough

time, the mean of the predictions of qw is very close to the truth. In Fig. 4.26(l), the

truth is out of the uncertainty bounds. Note that the mean of the predictions of qw from

the same well, in Fig. 4.26(k), does not match the true prediction, which will affect the

prediction of oil rate.

4.3 Example 3

This example pertains to a three-dimensional reservoir model with 30×15×4 uni-

form grid. True porosity and horizontal and vertical log permeability fields are generated

from a spherical covariance matrix. The prior parameters are presented in Table 4.12.

The cross-covariances are calculated by using the screening hypothesis discussed in Sec-

tion 1.5. The prior mean of each of the porosity, horizontal and vertical log permeability

for all layers are equal, however each layer has a different correlation direction and cor-
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Figure 4.25: Field oil and water production from prior and posterior distributions. Red curve
shows the truth, gray curves are from 11 realizations, blue curve is the mean
of the gray curves. The dashed vertical line shows the end of history matching
(1800 days). Example 2.
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(c) Prior qw of P-5
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(d) Posterior pwf of I-3
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(f) Posterior qw of P-5
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(g) Prior qw of P-8
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(k) Posterior qw of P-1
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Figure 4.26: Data matches and predictions for some of the wells from the posterior and prior
samples. The dashed vertical line shows the end of history matching (1800 days),
Example 2.
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relation lengths and there is no correlation in the vertical direction. In Table 4.12 the

correlation parameters of each layer are given separately. The correlation coefficients

between rock property fields in each layer is the same. True rock property fields are

shown in the left columns of Figs. 4.27, 4.28 and 4.29.

Table 4.12: Geostatistical parameters of Example 3.

Parameters Values
φmean 0.14
[ln(kh)]mean 4.50
[ln(kz)]mean 3.50
σφ 0.03
σln(kh) 1.4142
σln(kz) 1
ρ 0.65
α(l1) 30o

r1(l1) 254x
r2(l1) 74x
α(l2) 60o

r1(l2) 204x
r2(l2) 74x
α(l3) 0o

r1(l3) 184x
r2(l3) 104x
α(l4) 120o

r1(l4) 224x
r2(l4) 104x

The gridblock dimensions are:

4x = 4y = 150 ft, 4z = 15 ft.

The initial reservoir pressure is 4000 psi. Initially the reservoir is at irreducible

water saturation which is swc = 0.1. There are 6 producers and 2 injectors in this

reservoir, as can be seen in Fig. 4.27. Producers are perforated only in the top layer

while injection wells are perforated in the two bottom layers (the 3rd and the 4th layers).

All producers are produced at the same specified pwf , while injectors inject at the same
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injection rate. Table 4.13 shows the well control schedules. The total history matching

period is 1350 days. At 1350 days, only producers P-2 and P-5 have experienced water

breakthrough. Observed data include oil rate and water rate data of all producers and

pwf of injectors at 30 day intervals.

Table 4.13: Well controls of Example 3. pwf is specified at producers and injection rate
is specified at injectors.

Time Period, days injection rates, STB/D pwf of producers, psi
0− 300 1000 3800
300− 3000 1400 3500

Observed data are generated by adding noise to the true data. The standard

deviation of the noise (measurement error) is 2% of rates for rate data and 3 psi for

pressure data, i.e., σBHP = 3 psi and σq = 0.02q. The minimum measurement error for

rates is specified to 0.5 STB/D while the maximum measurement error is 3 STB/D. The

number of model parameters and observed data are:

Nm = 3Nx ×Ny ×Nz = 5400, Nd = 630.

In applying the SVD-EnRML-MI algorithm, we used the reordering of model

parameters which is explained in Section 2.5. The objective is to generate the MAP

estimate and 10 RML realizations. We applied the algorithm with NSVD,max = 40. The

values of ON versus iterations are given in Fig. 4.30(a). As one can see in Fig. 4.30(a), the

algorithm converged in 48 iterations. At convergence, some of the realizations have high

values of ON ; the maximum ON is 7.24 and the mean of ON of the 11 realizations is 3.27.

The first singular value, the number of retained singular values and the smallest retained

singular value of GD,l versus iterations are shown in Figs. 4.31(a), 4.31(b) and 4.31(c),

respectively. Although the 40th singular value of GD,l varies between 1 and 1.4, which

is small, the algorithm converged with high values of objective functions.

Next, we applied the SVD-EnRML-MI algorithm with NSVD,max = 50. The al-
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(b) MAP Estimate, layer 1
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(c) Conditional j = 4, layer 1
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(d) True ln(kh), layer 2
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(e) MAP Estimate, layer 2
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(f) Conditional j = 4, layer 2
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(g) True ln(kh), layer 3
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(h) MAP Estimate, layer 3
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(i) Conditional j = 4, layer 3
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(j) True ln(kh), layer 4
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(k) MAP Estimate, layer 4
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(l) Conditional j = 4, layer 4

Figure 4.27: Horizontal log permeability fields. Left column shows the true ln(kh) fields, the
middle column is from the MAP estimate and the right column is a conditional
realization from SVD-EnRML-MI, Example 3.
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(c) Conditional j = 4, layer 1
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X

Y

 

 

∅  P−1

∅  P−2

∅  P−3

∅  P−4

P−5 ∅

P−6 ∅

⊗  I−1 ⊗  I−2

5 10 15 20 25 30

5

10

15

0

2

4

6
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(f) Conditional j = 4, layer 2
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(h) MAP Estimate, layer 3
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Figure 4.28: Vertical log permeability fields. Left column shows the true ln(kz) fields, the
middle column is from the MAP estimate and the right column is a conditional
realization from SVD-EnRML-MI, Example 3.
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(c) Conditional j = 4, layer 1
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(h) MAP estimate, layer 3
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(j) True porosity, layer 4
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(k) MAP estimate, layer 4
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(l) Conditional j = 4, layer 4

Figure 4.29: Porosity fields. Left column shows the true porosity fields, the middle column is
from the MAP estimate and the right column is a conditional realization from
SVD-EnRML-MI, Example 3.
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gorithm converged in 66 iterations. The values of ON versus iterations are given in

Fig. 4.30(b). At convergence, the values of ON(m) are less than 1 + 5
√

2/Nd = 1.28 for

all realizations. The first singular value of GD,l versus iterations is shown in Fig. 4.33(a).

After the first few iterations, the first singular value fluctuates around 1500. The number

of singular values and the smallest retained singular values of GD,l versus iterations are

shown in Figs. 4.33(b) and 4.33(c), respectively. The 50th singular value of GD,l changes

from 0.6 to 1.27. Fig. 4.32 shows the distribution of the singular values at a late iteration

of the SVD-EnRML-MI algorithm. Note that only the first 18 singular values are greater

than 10, in addition, many of the retained singular values are around 1. The 40th and

the 50th singular values are very close.
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Figure 4.30: ON (m) of the MAP estimate (red) and 10 RML realizations (gray) versus iter-
ations, l, of SVD-EnRML-MI with NSVD,max of 50 and 40, Example 3.

By comparing Figs. 4.30(a) and 4.30(b), one can see that with NSVD,max = 40,

the MAP estimate converged in 17 iterations, while with NSVD,max = 50 the MAP es-

timate converged in 13 iterations. If we were to generate only the MAP estimate, the

computational cost with NSVD,max = 50, would be less than the one with NSVD,max = 40.

The computational cost of the SVD-EnRML-MI algorithm with NSVD,max = 40

and NSVD,max = 50 are given in the 1st and 2nd rows of Table. 4.14, respectively. By

increasing NSVD,max from 40 to 50, the computational cost increased, however, at con-

vergence, all normalized objective functions are less than 1 + 5
√

2/Nd = 1.28. Since

179



0 1 0 2 0 3 0 4 0 5 01 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

MA
X 

SV

I t e r a t i o n  N u m b e r

(a) First SV

0 1 0 2 0 3 0 4 0 5 0
1

1 0

1 0 0

1 0 0 0

Sm
all

es
t R

eta
ine

d S
V

I t e r a t i o n  N u m b e r

(b) Smallest retained SV

0 1 0 2 0 3 0 4 0 5 00

1 0

2 0

3 0

4 0

p

I t e r a t i o n  N u m b e r

(c) # of retained SVs

Figure 4.31: The largest singular value (SV) and the smallest retained singular value of GD,l
and the number of retained singular triplets versus iterations of SVD-EnRML-MI
with NSVD,max = 40, Example 3.
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Figure 4.32: 50 singular values of GD,l at a late iteration of the SVD-EnRML-MI algorithm,
Example 3.
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Figure 4.33: The largest singular value (SV) and the smallest retained singular value of GD,l
and the number of retained singular triplets versus iterations of SVD-EnRML-MI
with NSVD,max = 50, Example 3.
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the history matching is based on Bayesian framework, to have a more probable model,

the corresponding objective function should be small. A realization with a normalized

objective function of 7.24, compared to the one with ON(m) = 1.27, is far less probable.

Table 4.14: Summary of the computational costs of SVD-EnRML-MI algorithm for
generating 11 conditional realizations of rock property fields, and the
max{ON(m)} at convergence, Example 3.

NSVD,max Sim. Direct Adjoint Equ. Sim. Runs Niter max{ON}
40 1462 2145 2097 2522 48 7.24
50 1752 3553 3487 3512 66 1.276

The rock property fields of the true model, the MAP estimate and a conditional

realization, are shown at Figs. 4.27, 4.28 and 4.29. The rock property fields of the

MAP estimate are smooth and have, at best, some general features of the truth. In

particular, the estimated properties of layer 2 (no well is completed in layer 2) are

distinctly qualitatively different from the truth. The conditional realization also has

many features different from the truth, however, the conditional realization is plausible

based on the prior geological model and is consistent with the production. This is all we

can expect from a history matched model. Moreover, the producers are completed only

in the top layer, no well is completed in layer 2, and the only completions in layers 3 and

4 are those pertaining to the two injection wells. Thus, it is not surprising that data is

insufficient to provide a realization that has all of the main features of the truth.

Data matches and predictions from the prior and conditional realizations for some

of the wells are given in Fig. 4.34. The uncertainty in predictions of qw of the wells is

highly decreased in Figs. 4.34(f) and 4.34(j). The high uncertainty in the oil rate of

P-3 in Fig. 4.34(k), is because the water breakthrough at this well happens after the

end of history matching; as can be seen in Fig. 4.34(e), there is high uncertainty in the

breakthrough time at P-3.

The cumulative oil and water production from the prior and conditional realiza-

tions are shown in Fig. 4.35. The uncertainty in the cumulative oil and water production
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Figure 4.34: Data matches and predictions for some of the wells from the posterior and prior
samples. The dashed vertical line shows the end of history matching (1350 days),
Example 3.
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is highly decreased, however the true prediction for water production is very close to the

upper bound and for oil production is almost at lower bound. This may be due the fact

that the number of realizations generated, is not enough to perform reliable predictions.

In addition, only 2 of the 6 producers had water breakthrough before the end of history

matching period. Because of high uncertainty in the breakthrough time of the other 4

producers, accurate predictions of water rate is difficult.
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Figure 4.35: Field oil and water production from the prior and the posterior samples. Red
curve shows the truth, gray curves are from 11 realizations. The dashed vertical
line shows the end of history matching (1350 days), Example 3.

We also applied the SVD-EnRML-MI algorithm with a square root approximation

of CM , as explained in Section 5.2. We use a high number of prior realizations, Ns = 2500,

in the approximation of C
1/2
M . We applied the algorithm with NSVD,max = 50. The

values of ON versus iterations are given in Fig. 4.36. As one can see in this figure, the

algorithm converged in 32 iterations and at convergence, all of the realizations have high
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values of ON . Since we used a high number of prior realizations in the approximation

of C
1/2
M , and a high number of singular triplets (NSVD,max = 50), we do not expect this

behavior. We noticed that the slow rate of convergence and the high values of normalized

objective functions are due to introduction of correlation between layers. By grouping

the realizations of rock property fields of different layers, into a single column vector,

spurious cross-correlations between layers is introduced; as a result the rock property

fields of each layer is forced to have correlations with those of the neighboring layers.
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Figure 4.36: ON (m) of the MAP estimate (red) and 10 RML realizations (gray) versus itera-
tions, l, of SVD-EnRML-MI with NSVD,max = 50 and square root approximation
of CM , Example 3.

Fig. 4.37 shows the rock property fields of the MAP estimate generated in this

part. The normalized objective function of the MAP estimate is 12.6, which is high. By

comparing each of the ln(kh), ln(kz) and porosity fields of different layers in Fig. 4.37,

one can see the introduction of cross-correlation between layers. The true rock property

fields of the first layer in Figs. 4.27(a), 4.28(a) and 4.29(a) have a low permeability

and low porosity region on the North-West of the field. However, in the North-West of

the other layers of the truth, this region is different, with higher values of permeability

and porosity. As one can see in Fig. 4.37, the North-West corner of all layers have a low

porosity and low permeability, which is a result of introducing spurious cross-correlations

between layers.

According to the results of this example, with retaining 50 singular triplets of

GD,l at late iterations of the SVD-EnRML-MI algorithm, we were able to decrease the
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normalized objective functions of all realizations to small values; however with 40 singular

triplets, the values of the normalized objective functions of realizations were high at

convergence. The 40th and 50th singular values of GD,l, were both close to 1.

The results of this example also show that using the square root approximation

of CM , in case that the layers are uncorrelated, can introduce spurious cross-correlation

between layers. In order to avoid this issue, one should use the reordering of model

parameters, so that the correlated parameters are grouped together, and then use a

square root approximation of CM for each group of the correlated parameters, separately.
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Figure 4.37: Rock property fields of the MAP estimate from SVD-EnRML-MI with a square
root approximation of CM . Left column shows the ln(kh) field, the middle column
is the ln(kz) field and the right column is the porosity field, Example 3.
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CHAPTER 5

USING SVD PARAMETRIZATION TO ESTIMATE NON-GAUSSIAN

MODELS

In inverse problems, the objective function that is minimized to either find an

estimate of the model or to sample the a posteriori pdf, can have two main parts, the

data mismatch part and a regularization term. The regularization term usually contains

prior information about the model, or it imposes smoothness conditions.

In history matching problems, the objective function is usually written as

O(m) = Om(m) +Od(m), (5.1)

where Om(m) is called the model mismatch term, and Od(m) is the data mismatch term.

Minimizing only Od(m), will provide an estimate which is called the maximum likelihood

estimate. Minimizing O(m) in Eq. 5.1 provides an estimate which is the most probable

model and is referred to as the maximum a posteriori (MAP) estimate.

In Bayesian estimation, Om(m) is included in the objective function, and one

tends to preserve the prior geologic information that was used to build the prior model.

If the prior model is Gaussian and the mean and the covariance matrix are available,

Om(m) can be written as

Om(m) =
1

2
(m−mprior)

TC−1
M (m−mprior). (5.2)

However, this is not always the case, since the prior pdf is not always Gaussian.

An important example is when the true model has features in different directions. The

other case, is when there is uncertainty in prior information, e.g., the model may have

186



channels in an angle between 20o and 60o with the x axis, or the correlation lengths are

uncertain.

5.1 First Order and Second Order Regularization Terms

In the discrete inverse problems, difference operators replace derivatives. Consider

(Nm − 1) ×Nm matrix D and (Nm − 2) ×Nm matrix W for the first order and second

order regularization, respectively. For a 1-dimensional problem, the matrix D has the

following structure:

D =



−1 1 0 0 . . . 0

0 −1 1 0 . . . 0

0 0 −1 1 . . . 0

...
...

. . . . . . . . .
...

0 0 0 . . . −1 1


. (5.3)

Letting di,j denote the element in the ith row and jth column of D, di,i = −1

and di,i+1 = 1 for i = 1, 2, · · · , Nm − 1, with all other entries of D equal to zero.

For a 1-dimensional problem, the matrix W for the second order regularization,

has the following form:

W =



−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0

...
...

. . . . . . . . .
...

0 0 . . . −1 2 −1


. (5.4)

With the first order regularization, the model misfit term is defined as

Om(m) =
1

2
(m−mprior)

TDTD(m−mprior). (5.5)

Although DTD or W TW are positive semi-definite, they may not be positive

definite; since their inverse is required, an identity matrix is also added to them. In this
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case, the model mismatch term in Eq. 5.5 changes to the following equation:

Om(m) =
1

2
(m−mprior)

TDTD(m−mprior) +
1

2
(m−mprior)

T (m−mprior)

=
1

2
(m−mprior)

T (DTD + I)(m−mprior), (5.6)

where I is the identity matrix of dimension Nm. Comparing Eqs. 5.2 and 5.6, one can

obtain

C−1
M = DTD + I. (5.7)

In order to calculate CM and C
1/2
M , one can take the SVD of DTD + I. As the

matrix DTD + I is real symmetric positive definite, the right singular vectors are the

same as the left singular vectors, i.e.,

C−1
M = DTD + I = UΛUT , (5.8)

CM = UΛ−1UT , (5.9)

C
1/2
M = UΛ−1/2UT . (5.10)

One may also use the Cholseky decomposition instead of the square root obtained

by SVD. In this case, after calculating C−1
M with Eq. 5.7, CM is obtained by Eq. 5.9,

and then Cholesky decomposition of CM is computed as CM = LLT . In the example

presented here, for the first and second order regularization, the Cholesky decomposition

is used.

Similar to Eq. 5.6, the second order regularization term can be written as

Om(m) =
1

2
(m−mprior)

T (W TW + I)(m−mprior), (5.11)

where I is the identity matrix of dimension Nm. Similar to Eq. 5.9,

C−1
M = W TW + I = UΛUT . (5.12)
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By using Eq. 5.9, CM is obtained and its Cholesky decomposition can be com-

puted.

5.2 SVD Parameterization Using a Square Root Approximation of CM

In order to use SVD parameterization to generate an estimate of the model,

one needs to have a prior mean and covariance matrix; a covariance matrix is needed

because a truncated SVD of the dimensionless sensitivity matrix, GD,l, is computed at

each iteration of algorithm which requires C
1/2
M . In addition, a transformed vector of

model parameters is used, which requires having C
1/2
M .

Suppose there is uncertainty in the prior model of log permeability field and

instead of having a specified CM , there exists Ns realizations all of which may not be

from a single Gaussian distribution. In order to use the SVD parameterization method,

we still need to have an expression for C
1/2
M .

Here, the following method is used to find an appropriate square root of the covari-

ance matrix which contains the information of all available prior realizations. Consider a

Nm×Ns matrix M where Nm is the number of model parameters and Ns is the number

of prior realizations,

M =

(
m1 m2 ... mNs−1 mNs

)
, (5.13)

where each mj, j = 1, 2, ...Ns is an Nm-dimensional column vector which is a prior

realization of log permeability field. The covariance matrix, CM , can be approximated

with the following expression:

CM ∼=
1

Ns − 1

j=Ns∑
j=1

(mj − m̄)(mj − m̄)T =
1

Ns − 1
(M − M̄)(M − M̄)T , (5.14)

where M̄ is a matrix with the same dimension as M and all columns of M̄ are equal to

m̄; m̄ is the average of Ns prior realizations, i.e,

m̄ =
1

Ns

j=Ns∑
j=1

mj. (5.15)
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Thus, CM contains information from all prior models. The SVD of M − M̄ is

written as

M − M̄ = UΛV T , (5.16)

where U is the Nm × Nm matrix of left singular vectors, Λ is the Nm × Ns matrix of

singular values and V is the Ns ×Ns matrix of right singular vectors.

Since some of the singular values may be very small or zero, we use a truncated

SVD of M − M̄ , by preserving a portion of the total energy. In our implementation, we

use a truncated SVD based on 0.9999 of the total energy, i.e., we kept p singular triplets,

where p is the smallest number such that

p∑
j=1

λj ≥ 0.9999
Ns∑
j=1

λj. (5.17)

The truncated SVD of M − M̄ can be written as

M − M̄ ≈ UpΛpV
T
p , (5.18)

where Up is a Nm × p matrix of left singular vectors, Λp is the p × p diagonal matrix

of p largest singular values retained and V is the corresponding p × Ns matrix of right

singular vectors.

Thus CM can be approximated by:

CM ≈
1

Ns − 1
(M − M̄)(M − M̄)T ≈ 1

Ns − 1
(UpΛpV

T
p )(UpΛpV

T
p )T

=
1

Ns − 1
UpΛpV

T
p VpΛpU

T
p =

1

Ns − 1
UpΛpΛpU

T
p =

1

Ns − 1
UpΛpU

T
p UpΛpU

T
p

=
1

Ns − 1
(UpΛpU

T
p )(UpΛpU

T
p ) = (

1√
Ns − 1

UpΛpU
T
p )2 (5.19)

Consequently, C
1/2
M can be approximated by the following equation:

C
1/2
M =

1√
Ns − 1

UpΛpU
T
p , (5.20)
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with its pseudo inverse, C
−1/2
M , is given by

C
−1/2
M =

√
Ns − 1UpΛ

−1
p UT

p . (5.21)

5.2.1 Calculating the Value of Model Mismatch Term

By using the square root formula, the model mismatch term can simply be ap-

proximated by using the following equation:

Om(m) =
Ns − 1

2
(m−mprior)

TUpΛ
−1
p Λ−1

p UT
p (m−mprior)

=
Ns − 1

2
((m−mprior)

TUpΛ
−1
p )((m−mprior)

TUpΛ
−1
p )T

=
Ns − 1

2

p∑
j=1

((m−mprior)
Tuj/λj)

2 (5.22)

5.2.2 GD Times a Vector

To calculate GD times a vector, the gradient simulator method is used. As GD =

C
−1/2
D GC

1/2
M , to calculate GD × v, at first the product of w = C

1/2
M × v is calculated

and then Gw is computed with the gradient simulator method; then the result is left

multiplied by C
−1/2
D .

If the square root formula in Eq. 5.20 is used for C
1/2
M , this matrix is not required

to be explicitly computed or stored. The product of w = C
1/2
M ×v is computed as follows:

C
1/2
M × v =

1√
Ns − 1

UpΛpU
T
p × v =

1√
Ns − 1

UpΛp(U
T
p × v), (5.23)

C
1/2
M × v =

1√
Ns − 1

p∑
j=1

(λju
T
j v)uj ≡

1√
Ns − 1

Upβ =
1√

Ns − 1

p∑
j=1

bjuj, (5.24)

where uj is an Nm-dimensional vector which is the jth column of U and β is a p-

dimensional column vector:

β = [λ1u
T
1 v, λ2u

T
2 v, ..., λpu

T
p v]T . (5.25)
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5.2.3 GT
D Times a Vector

To calculateGT
D times a vector, the adjoint method is used. AsGT

D = C
T/2
M GTC

−T/2
D ,

to calculate GT
D×y, at first the product of GT times C

−T/2
D y is calculated with the adjoint

method; then the result is left multiplied by C
T/2
M .

If the square root formula in Eq. 5.20 is used for C
1/2
M , this matrix is not required

to be explicitly computed or stored. If x = GTC
−T/2
D y, the product of C

T/2
M x is computed

as follows:

C
T/2
M × x =

1√
Ns − 1

UpΛpU
T
p × x =

1√
Ns − 1

UpΛp(U
T
p × x), (5.26)

C
T/2
M × x =

1√
Ns − 1

Upβ =
1√

Ns − 1

p∑
j=1

(λju
T
j x)uj =

1√
Ns − 1

p∑
j=1

bjuj, (5.27)

where uj is an Nm dimensional vector which is the jth column of U ; β is a N dimensional

column vector:

β = ΛpU
T
p × x = [λ1u

T
1 x, λ2u

T
2 x, ..., λpu

T
p x]T . (5.28)

5.2.4 Calculation of δm from δm̃

In SVD parameterization algorithm, the minimization is performed in a trans-

formed space; δm is the search direction vector is the original space, and δm̃ is the search

direction vector in the transformed space. If the square root formula in Eq. 5.20 is used

for C
1/2
M , δm is computed using the following equation:

δm = C
1/2
M δm̃ =

1√
Ns − 1

UpΛpU
T
p × δm̃ =

1√
Ns − 1

UpΛp(U
T
p × δm̃), (5.29)

where the product of UT
p ×δm̃ only requires calculating inner products of δm̃ and columns

of Up.

5.3 Example 1

This example pertains to a two-dimensional horizontal reservoir model with 20×

25 uniform grid. True porosity and log permeability fields are shown in Fig. 5.1. Note
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Figure 5.1: True porosity and log permeability fields.

that the horizontal channel was simply added by changing the log permeability of the

blocks to 9. In this example, the objective is to generate an estimate of the log perme-

ability field, while the porosity field is assumed to be known.

The key geostatistical parameters used to generate the true model without the

horizontal channel are listed in Table 5.1. The prior mean of the vector of model pa-

rameters which contains horizontal log-permeability of gridblocks is uniform and equal

to 4.5.

Table 5.1: Geostatistical parameters of Example 1.

Parameters Values
ϕmean 0.2
[ln(k)]mean 4.50
σϕ 0.05
σln(k) 2.0
ρϕ,ln(k) 0.80
α 40o

r1 284x
r2 54x
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The gridblock dimensions are:

4x = 4y = 300 ft, 4z = 10 ft.

The initial reservoir pressure is 4800 psi. Initially the reservoir is at irreducible

water saturation. There are 5 producers and 2 injectors in this reservoir. The total

history matching period is 1650 days. At 1650 days, Prod-2, Prod-3 and Prod-4 have

experienced water breakthrough. Observed data include the flowing bottom hole pressure

(BHP) of all wells and water rates of all producers at 30 day intervals.

Synthetic observed data are generated by adding Gaussian random noise to the

true data, where the true data are the simulator output when it is run with the true

model. The standard deviation of noise (measurement error) is 2% of rates for water

rate data and 1.4 psi for pressure data, i.e., σBHP = 1.4 psi and σqw = 0.02qw. The

minimum measurement error for water rate is specified to 0.5 STB/D while the maximum

measurement error is 3 STB/D.

Table 5.2 shows the summary of well controls. At 2400 days, Prod-2 and Prod-4

are shut in due to high water cut.

Table 5.2: Well controls of Example 1. Total liquid rate is specified at producers and
injection rate is specified at injectors. Time period is in days and the rates
are in STB/D.

Time Period Inj-1 Inj-2 Prod-1 Prod-2 Prod-3 Prod-4 Prod-5
0− 600 500 500 200 200 200 200 200
600− 990 750 750 300 350 250 350 250
990− 2400 700 700 350 200 300 250 300
2400− 3300 500 500 300 0 400 0 300

Model parameters include log permeability of all gridblocks. The porosity field

and fluid properties are assumed to be known. The number of model parameters and

observed data are:

Nm = Nx ×Ny = 500, Nd = 660.
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We use the SVD parameterization method to estimate the log permeability field

by generating the MAP estimate. Suppose it is known that the log permeability field

has 2 possible features, which are horizontal channels and features in a direction which

makes a 40o angle with x axis (corresponding to Table 5.1). There is no information about

the location of channels. What exists as prior information is 400 realizations from two

different Gaussian distributions, one corresponding to Table 5.1 and the other one with

features in horizontal direction. In order to find an appropriate C
1/2
M and C

−1/2
M to use

in the SVD parameterization algorithm, the square root method is used. The covariance

matrix from which the true model (without the horizontal channel) was generated is

referred to as CM1 . A spherical covariance matrix is generated with a correlation length

of 164(x) in principal direction which is aligned with the x axis, and a correlation length

of 44(x) in the perpendicular direction and with σln(k) = 2.0. This covariance matrix is

referred to as CM2 . Table 5.3 shows the summary of geostatistical parameters used in

generating realizations from N(4.5, CM2).

Table 5.3: Geostatistical parameters of N(m̄, CM2)

Parameters Values
[ln(k)]mean 4.50
σln(k) 2.0
α 0o

r1 164x
r2 44x

Two hundred realizations are generated fromN(m̄, CM1) and another two hundred

are generated from N(m̄, CM2), where m̄ is a uniform vector with all entries equal to

4.5. Thus the matrix M , given by Eq. 5.13, contains 200 realizations from N(4.5, CM1)

and 200 realizations from N(4.5, CM2). By using Eqs. 5.20 and 5.21, C
1/2
M and C

−1/2
M are

calculated. Note that in this case Ns = 400.

We applied the SVD parameterization algorithm with NSVD,max = 45, µ1 = 0.5,

µ2 = 0.05, µmin = 0.0003. The algorithm converged in 28 iterations with ON(m) = 1.265

which is less than 1 + 5
√

2/ND = 1.275. The MAP estimate is shown in Fig. 5.3(b).
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We also used the SVD parameterization with other regularization terms. We

applied the algorithm for 3 cases, using first order regularization term, second order

regularization term and ‘first and second regularization term’. For the first order regu-

larization term, the model mismatch term given by Eq. 5.6 is used. This regularization

term is simply referred to as C−1
M = I − 4. For the second order regularization term,

the model mismatch term given by Eq. 5.11 is used. In the third case (‘first and sec-

ond regularization term’), both regularization terms were used with the following model

mismatch term:

Om(m) =
1

2
(m−mprior)

T (DTD +W TW + I)(m−mprior). (5.30)

In all three cases, the Cholesky decomposition of CM was used for SVD param-

eterization. We applied the algorithm with NSVD,max = 45. Sv-cut was used to control

the number of parameters, beginning with 0.5 at the first iteration and dividing this

number by 2 at each subsequent iteration. The computational costs and final values of

normalized objective function based on data mismatch term, are shown in Table 5.4.

The MAP estimates obtained with different regularization terms are shown in Fig. 5.3.

Table 5.4: Computational costs of SVD-EnRML algorithm with different regularization
terms to generate an estimate of the log permeability field.

Regu. Term Sim. Direct Adjoint Equ. Sim. Runs Niter 2Od(m)/Nd

Square Root 78 1238 1210 690 28 1.263
First Order 57 1003 1006 566 24 1.28
Second Order 49 788 768 438 20 1.245
First+Second 70 1326 1297 725 29 1.852

With the first order regularization term, a couple of gridblocks have unreasonably

high values of log permeability. The gridblock of Prod-2 has a ln(k) of 12.5, which is

relatively high. Although not shown, the model mismatch term at convergence in this

case is noticeably high (1991), compared to data mismatch term which is 422.5. This

is not a problem, since a true covariance matrix is not used to calculate the model
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Figure 5.2: The normalized data mismatch term versus iterations of SVD parameteriza-
tion algorithm with different regularization terms.
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Figure 5.3: ln(k) field of the MAP estimate, with SVD parameterization and different
regularization terms.
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mismatch term; in addition, we should compute the normalized objective function based

on data mismatch term, as the model mismatch term is not realistic. The value of model

mismatch term at convergence when using Eq. 5.30 as the regularization term, is 2833.

In Fig. 5.3, by comparing the MAP estimate obtained with different regulariza-

tion term and the true model, one can see that the MAP estimate obtained with all

regularization terms has captured some main features of the truth.

Data matches and predictions for the 3 cases are shown in Figs. 5.4, 5.5, 5.6

and 5.7. The data matches and predictions of pwf with the second order regularization

is better than other cases, however the predictions of water rates in all 3 cases show

discrepancies with the true predictions.
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(d) qw of Prod-1, 1st order
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(f) qw of Prod-3, 1st order
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(g) qw of Prod-1, 2nd order
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(h) qw of Prod-2, 2nd order
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Figure 5.4: Data matches and predictions of water rates of 3 of the producers, first row is
from the square root method, second row is from the first order regularization and
third row is from the second order regularization. The dashed vertical line shows
the end of history matching (1650 days).
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Figure 5.5: Data matches and predictions of water rates of Prod-4, the left one is from the
square root method, the middle is from the first order regularization and the right
one is from the second order regularization. The dashed vertical line shows the
end of history matching (1650 days).
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Figure 5.6: Data matches and predictions of pwf of 3 of the wells, first row is from the square
root method, second row is from the first order regularization and third row is
from the second order regularization. The dashed vertical line shows the end of
history matching (1650 days).
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Figure 5.7: Data matches and predictions of pwf of 3 of the producers, first row is from the
square root method, second row is from the first order regularization and third
row is from the second order regularization. The dashed vertical line shows the
end of history matching (1650 days).
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CHAPTER 6

COMMENTS AND CONCLUSIONS

A direct application of gradient based history matching algorithms, i.e., the

Gauss-Newton (GN) and Levenberg-Marquardt (LM) algorithms, requires forming the

whole sensitivity matrix at each iteration, which is computationally expensive. In order

to avoid forming the sensitivity matrix, one can apply the GN or LM algorithm after

parameterizing the vector of the change in model parameters in terms of the right sin-

gular vectors of a dimensionless sensitivity matrix, GD,l. With this parameterization, at

each iteration of the GN or LM algorithm, only a truncated SVD of GD,l should be com-

puted. The Lanczos method is used to compute a truncated SVD of the dimensionless

sensitivity matrix. For computing a truncated SVD of this matrix, the Lanczos method

only requires the products of G times a vectors and GT times a vector; these products

are calculated by the gradient simulator method and adjoint method, respectively.

The SVD parameterization algorithm for generating an estimate of the reservoir

model parameters is a computationally efficient method. To characterize the uncer-

tainty in performance predictions, one should generate multiple realizations from the a

posteriori pdf. Generating multiple realizations, can be performed by using the RML

method. One can generate Ne RML realizations, through Ne applications of the SVD

parameterization algorithm. However, as we showed in Example 1-4 of Chapter 2, gen-

erating realizations one by one, is computationally expensive. With the SVD-EnRML

algorithms proposed by Tavakoli and Reynolds [39], one can simultaneously generate the

MAP estimate and Ne RML realizations, with a low computational cost. In this work, we

proposed some modifications to the the SVD-EnRML algorithm; the modified algorithm

is computationally more efficient than the previous SVD-EnRML algorithms. To further

improve the computational efficiency, we added an inner loop to the SVD-EnRML al-
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gorithm, where in the inner loop iterations, the truncated SVD parameterization is not

updated. This modified SVD-EnRML algorithm, is called SVD-EnRML-MI, where MI

refers to multiple iterations. We applied this modified algorithm to some 2D and 3D

synthetic reservoirs, and in all examples, we were able to obtain conditional rock prop-

erty fields which resulted in appropriately small values of the relevant objective function

and good future predictions.

The main contribution of this work was to investigate the applicability of the

SVD parameterization algorithms for history matching production data for 3D reservoirs

and to generate conditional realizations of rock property fields. For 3D reservoirs, the

size of the covariance matrix can be very large. For applying the SVD parameterization

algorithm to 3D reservoirs, we used a square root approximation of the covariance matrix

which decreases the size of the matrix. We showed that this approximation can be used

only for correlated model parameters. We also used a reordering of model parameters,

for the case that the rock properties of some layers of the reservoir are uncorrelated with

those of other layers. With reordering of model parameters, the size of the covariance

matrix that is saved during a computer run is reduced.

In addition to the modified SVD-EnRML algorithms which are based on the LM

method, we also provided a step by step description of SVD-EnRML with the GN al-

gorithm. We applied this algorithm in Example 1 of Chapter 2, and the results showed

that by applying the GN algorithm with SVD paramererization, one can efficiently gen-

erate the MAP estimate and RML realizations, if the number of SVD parameters are

gradually increased.

In SVD-EnRML algorithms, the number of singular triplets or truncation level,

p, is gradually increased. The number of retained singular triplets are determined based

on the ratio of the smallest retained singular value to the largest singular value. Thus,

the algorithm computes p singular triplets, where p is the smallest number such that

λp/λ1 ≤ sv-cut. The singular cut off, which is denoted by sv-cut, is an input for the

Lanczos algorithm. To gradually increase the number of retained singular triplets, as
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iteration proceeds, sv-cut is decreased. As shown in the examples of this work, after the

first few iterations, the largest singular value of the dimensionless sensitivity matrix, GD,l,

does not change significantly. The value of the largest singular value at late iterations

differs from example to example. We noticed that for a small value of sv-cut (at late

iterations), the number of retained singular values can be very sensitive to a small change

of sv-cut, i.e., with a small change of sv-cut, the number of singular values may change

significantly. In addition, the distribution of the singular values of GD for each example

can be different. Thus, we modified the algorithm, so that the maximum number of SVD

parameters, NSVD,max, that the Lanczos method computes, is also specified as input, i.e.,

the Lanczos method is terminated at either p = NSVD,max or the smallest value of p such

that λp/λ1 ≤ sv-cut, whichever is reached first. We usually tend to set a small number

for the final value of sv-cut, e.g., 0.0002, so that at late iterations of the algorithm,

the Lanczos method would usually compute the specified number of singular triplets,

NSVD,max. We also noticed that to obtain computational efficiency, fast convergence

and small values of the objective functions at convergence of the SVD parameterization

algorithms, the number of retained singular triplets should not be small. In addition,

the smallest retained singular value of the dimensionless sensitivity matrix should not

be significantly greater than 1. In the examples, we usually obtained the small values of

normalized objective functions that we expected, by retaining 50 to 65 singular triplets at

late iterations of the SVD-EnRML-MI algorithm. The smallest retained singular values

were close to 1, and in most cases, slightly greater than 1, e.g., 2.

In Chapter 2, we compared the Gauss-Newton and Levenberg-Marquardt algo-

rithms with SVD parameterization. Previously, Tavakoli and Reynolds [38] observed

that in the Levenberg-Marquardt algorithm with SVD parameterization, the initial rate

of reduction in the objective function is almost independent of the number of retained

singular triplets, however they did not provided a reason for this observation. We showed

that with a high LM parameter at early iterations, the main components of the search

direction are in the direction determined by a few right singular vectors corresponding
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to the largest singular values, while the right singular vectors corresponding to small sin-

gular values have a negligible influence on the search direction. This result is important,

because it shows that a direct application of the LM algorithm based on forming the

whole sensitivity matrix has no computational merit at least at early iterations. In other

words, the search direction at early iterations of the LM algorithm, based on computing

only a few singular triplets corresponding to the largest singular values of GD,l, is almost

the same as the search direction obtained by computing the complete SVD of GD,l.

In Chapter 2, we showed that the LM algorithm generates a good estimate of the

model, because the algorithm gradually resolves the important features of the model;

in particular, at early iterations of the LM algorithm, the search direction is not cor-

rupted by the low frequency and noisy right singular vectors. On the other side, in

the Gauss-Newton algorithm with SVD parameterization, the search direction vector at

early iterations may have large components in the direction of right singular vectors as-

sociated with small singular values. Thus, the GN search direction based on computing

many singular triplets at early iteration, changes many parts of the model and rough-

ness is added to the model. Early iterations of a history matching algorithm, are very

important because the large data mismatches and the natural ill-posedness of history

matching problems may result in convergence to a model that is a poor representation

of the reservoir.

We have also compared the convergence properties of the subspace method with

SVD parameterization algorithm for generating the MAP estimate. Our results showed

that the convergence properties of the two algorithms are very similar, however the SVD

parameterization algorithm is computationally more efficient than the subspace method.
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