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ABSTRACT

Shi Chen (Doctor of Philosophy in Petroleum Engineering)

A Well Test for In-Situ Determination of Relative Permeability Curves

Directed by Dr. Albert C. Reynolds

206 pp. Chapter 7

(195 words)

In this research, a new pressure transient test consisting of a traditional injec-

tion/falloff followed by a flow period when we produce oil and injected water, an in-

jection/falloff/production test (IFPT), is proposed to estimate relative permeabilities,

reservoir permeability and well skin factor for the water-oil two-phase problem. An au-

tomatic history match code has been developed to estimate parameters defining relative

permeabilities, absolute permeability and well skin factor by matching measured data

from the test. Two parameterizations of relative permeability curves are considered, a

power law model and a more flexible B-spline representation. In this research, an analyt-

ical solution for the pressure response was obtained for the case where capillary pressure

was negligible. For the case where capillary pressure is significant, we were forced to

combine analytical method with a finite difference solution of the Buckley-Leverett equa-

tion to obtain the pressure solution during the flow back period. We show that the new

IFPT yields more accurate estimates of relative permeabilities than can be obtained with

a conventional injection/falloff test. The analytical solution assumes constant injection

rate, but we show that good parameter estimates can still be obtained by the analysis

method under reasonable flow rate fluctuations.
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CHAPTER 1

INTRODUCTION

1.1 Literature Review of Estimate of Relative Permeability Curves

Relative permeability curves are critical for many reservoir engineering calcula-

tions. these corves have a major on water flood performance. Conventionally, relative

permeabilities are obtained from laboratory core analysis. But this method has its limi-

tations. It is hard for conventional laboratory core analysis to perfectly simulate reservoir

conditions. Moreover, estimates of relative permeability curves from reservoir core sam-

ples represent only a very small portion of the reservoir (see [60]). Our objective is to

design an in-situ test for the estimate of relative permeability curves.

Although estimation of relative permeability curves is not often done in pressure

transient analysis, it has a long history in the history matching literature. Numerous

papers from the 1970’s and 1980’s discuss techniques for the estimation of relative perme-

ability curves by matching pressure and rate (or displaced volume) data from laboratory

core floods using an optimization algorithm to minimize a least squares type objective

function. It appears that Archer and Wong [4] were the first authors to consider the esti-

mation of relative permeability curves by applying a reservoir simulator to history match

laboratory core flood. They estimated only parameters that define the shape of relative

permeability curves by a trial and error method during the history match. Sigmund and

McCaffery [51] used power law expressions to model relative permeability curves and esti-

mated only the two exponential parameters in the formulas. Kerig and Watson [30] used

cubic splines to parameterize relative permeability curves and found that cubic splines

with a small number of knots appear to be sufficiently flexible to yield more accurate esti-

mates of true relative permeability curves, however, they assumed absolute permeability

is known. Lee and Seinfeld [35] considered the simultaneous estimation of the absolute
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permeability field and relative permeability for a two-dimensional, two-phase flow oil-

water system. They used power law relative permeability and assumed that the end point

values of relative permeabilities were known. Thus, only the two exponents in the power

law relative permeability functions were estimated. In the specific examples considered,

they matched pressure and water cut data at wells producing from an oil reservoir un-

der water flood. Watson et al. [57] considered the simultaneous estimation of porosity,

absolute permeability and relative permeability by automatic history matching of produc-

tion data. In these examples, they used power law relative permeabilities and estimated

only the two exponents in these two power law functions and assumed end-point values

were known. Kulkarni et al. [32] also considered the estimation of relative permeabilities

from water-cut and pressure data for a two-phase flow oil-water system. They modeled

relative permeabilities with both B-splines and power law functions. Reynolds et al. [49]

first discussed the simultaneous estimation of absolute permeability fields and relative

permeability curves under three-phase flow conditions. A power law form of relative per-

meability curves was used. Their paper gives an overview of attempts made to estimate

relative permeability curves over the past thirty or so years.

The Wireline Formation Tester (WFT) has been applied in pressure measurements

since the 1950’s. WFT, which provides direct flow tests and analysis, has been largely

confined to the determination of single-phase permeability and anisotropy. Since 2001,

however, some authors have made efforts to obtain relative permeabilities using infor-

mation from the WFT. Zeybek et al. [61] presented a methodology to integrate the

formation-tester pressure and water-fraction measurements with openhole array resistiv-

ity measurements to obtain zonal relative permeabilities of oil and water. This approach

aims to obtain relative permeabilities that honor the pressure drop and the fraction of

water observed in the flowline by trial and error. The details of the inversion of conduc-

tivity logs in terms of fractional flow are given by Ramarkrishnan and Wilkinson [48].

The WFT states that saturation change around a wellbore provides useful information

for estimation of relative permeability curves.

Although many papers have also proposed using history matching techniques (see
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reference [49]) to adjust relative permeability curves by matching long-time production

data, the objective of this research is to generate a procedure to estimate relative per-

meability curves from a well test that has a duration of a few hours to a very few days.

Intuitively, to do this successfully, one should generate data that is sensitive to a wide

range of saturations, i.e., generate data similar to that which can be obtained in a lab-

oratory core flood. To do so, an injection/falloff test followed by a production period is

proposed. The idea is that, during the flow back period, the sandface will be exposed to a

wide range of water saturations and the associated pressure and phase rate data or water

cut data should be sufficient to obtain good estimates of relative permeability curves.

1.2 Injection/Falloff/Production Test (IFPT)

1.2.1 Pressure Response of IFPT

The IFPT consists of three periods: (i) injection of water into an oil reservoir,

(ii) a falloff test, and (iii) a producing period. Fig. 1.1 shows the total flow rate and

bottomhole pressure response of an IFPT with a sequence of 5-hour injection, 5-hour

falloff and 14-hour production. Fig. 1.1 shows the bottomhole pressure responses of the

IFPT with constant rates of water injection and production, respectively. The initial

pressure is 2500 psi. At a very early times, the pressure increases rapidly at first because

of a damaged skin zone with low permeability around the wellbore. Then the bottomhole

pressure drops, mainly because of the mobility ratio effect, i.e water more mobile than

oil. Following injection, the pressure drops during falloff approaching the initial pressure

of 2500 psi. During production, the bottomhole pressure demonstrates a special behavior

due to the total mobility changing around the wellbore. The total mobility is defined as

λt = λw + λo, (1.1)

where λw = krw(Sw)/µw and λo = kro(Sw)/µo represent water phase and oil phase mo-

bilities, respectively; krw and kro represent relative permeabilities of water and oil phases

respectively; and µw and µo are water and oil mobilities. In the case shown here, the
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pressure drops sharply around 14 hours when the sandface oil saturation increases very

rapidly, because the oil mobility is smaller than the water mobility. The pressure re-

sponse may have a different behavior, depending on the endpoint mobility ratio between

the water phase and oil phase, which is expressed as

M̂ =
λ̂w

λ̂o

, (1.2)

where λ̂w = krw(1− Sor)/µw is endpoint water mobility and λ̂o = kro(Siw)/µo is endpoint

oil mobility.
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Figure 1.1: Bottomhole pressure response of injection/falloff/production test.

1.2.2 Diagnostic Plots of IFPT

Diagnostic plots are widely applied to determine the reservoir properties in con-

ventional welltesting. Using diagnostic plots, this section introduces information provided

by an IFPT. Fig. 1.2 shows a diagnostic plot of the pressure change, the circles, and its

derivative, the solid curves, for the injection period. At indicated in Bratvold and Horne

[12] and Boughrara [9], at extremely early times during the injection period, the derivative
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of the pressure difference should be nearly constant and be proportional to endpoint oil

mobility, i.e.,

d∆p

d ln(t)
=

70.6qinj

khλ̂o

. (1.3)

In practice we do not expect to see this semilog line because the data are contaminated by

wellbore storage effects at early times. At the end of the injection period, the derivative

of the pressure difference is close to a constant value (see references [56, 12, 46]) given by

d∆p

d ln(t)
=

70.6qinj

khλ̂w

. (1.4)
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Figure 1.2: Diagnostic plot of pressure difference during water injection.

Between 0.01 and 1 hours, the pressure derivative in Fig. 1.2 is negative as expected

for the case of a positive skin factor and an unfavorable mobility ratio [8]. Throughout, λ̂w

is the endpoint water mobility, i.e., the water mobility evaluated at residual oil saturation.

Similarly, λ̂o denotes the endpoint oil mobility, i.e., the oil mobility evaluated at irreducible

water saturation.
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Fig. 1.3 shows the log-log diagnostic plot of pressure data from the subsequent

falloff period. The falloff derivative represents the log-derivative of ∆p = pwf,s − pws(∆t)

with respect to Agarwal’s equivalent time[3], defined by

te =
tp∆t

tp + ∆t
, (1.5)

plotted versus shutin time ∆t. Here, pwf,s is the pressure at the end of the injection

period. tp is total injection time. Since the injection period was short, the derivative of

the falloff data reflects the oil mobility in the uninvaded zone almost immediately after

the beginning of the falloff test and is equal to its theoretical value given by the right side

of Eq. 1.3.
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Figure 1.3: Diagnostic plot of pressure difference during falloff.

The pressure change during flow back period is defined by

∆p = pwf,s − pwf (∆t), (1.6)

where pwf,s is the final shutin pressure for the falloff test and ∆t is time measured from
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the beginning of the flow back period.

Fig. 1.4 shows a log-log plot of ∆p and its derivative with respect to ∆t during the

flow back period. The behavior of the pressure derivative during the flow back period is

more complicated. The pressure derivative behavior is determined by the values of total

mobility in the region where the total rate is changing as well as reservoir properties in

the region where the total mobility is changing. It is obvious that the derivative should

represent water property first at very early production time because of a water bank

surrounding the wellbore after the injection/falloff period. In a short time, in which the

water saturation around wellbore doesn’t change much, the constant flow rate passes

through the water bank and goes into the single oil phase zone according to the steady-

state theory [55]. During the period from 0.1 to 1.0 hours, the pressure diffusion (region

where rate is changing with time) is essentially confined to the single phase oil zone

whereas the total mobility is changing only in the vicinity of the flood front location

at the end of injection. This change in total mobility has only a small effect on the

wellbore pressure during the period from 0.1 to 1.0 hours. The pressure derivative of ∆p

is close to the single phase oil result given by the right side of Eq. 1.3. When oil begins

to flow back to the wellbore, the oil saturation increases and the total mobility around

the wellbore sandface decreases significantly. Correspondingly, the derivative shows a

sharp increase beginning at about 2 hours (solid curve as shown in Fig. 1.4). At the very

essentially injected water has been produced and the derivative of the pressure difference

appearances a constant value, reflecting the single phase oil property, at late time of

production.

The above statements suggest that the data during late time of injection and falloff

production provide us with information to estimate endpoint mobilities or relative perme-

abilities and the data during production present information on the saturation and total

mobility around the wellbore, i.e., information on relative permeability curves. In later

chapters, we present information to change this objective into a conclusions by consider-

ing sensitivities and synthetic examples.
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Figure 1.4: Diagnostic plot of pressure difference during production.

1.3 Literature Review, Analytical Solution

As noted previously, our focus is to estimate relative permeability curves using

data from an IFPT. The producing period is critical, as it yields production data that

reflects changes in sandface mobility and is thus highly sensitive to the parameters used

to model relative permeability curves. We provide a nonlinear regression algorithm to use

to estimate the parameters defining the relative permeabilities by matching pressure data

both by using a numerical reservoir simulator and by applying our analytical solution for

the IFPT.

Beginning at least as early as 1952 (Verigin [56]), various analytical or approximate

analytical solutions for the pressure response during injection and/or falloff tests have been

presented in the literature. In general, these solutions require a model for generating the

saturation distribution as a function of time (piston displacement or Buckley-Leverett)

during injection and assume that the front does not move during falloff so that the falloff
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solution is equivalent to solving a multicomposite single-phase reservoir problem where

the pressure at the end of the injection solution period provides the initial condition for

the falloff problem. Abbaszadeh and Kamal [2] show that the pressure solution at the end

of injection can itself be obtained from an equivalent multicomposite problem, whereas,

Bratvold and Horne [12] assume the validity of the Boltzman transform to generate the

injection solution. Most solutions available consider only injection at a constant rate

followed by a falloff test, the major exception being the work of Levitan [37] who was able

to generate a solution for multirate tests. Most solutions, including all those mentioned

above, consider only one-dimensional radial flow problems, the major exceptions being

Thambynayagam [53] who presented injection/falloff solutions for a vertical restricted-

entry well assuming piston displacement. Recent papers [8, 46, 7] used the Thompson-

Reynolds steady-state theory [55, 54] to generate approximate analytical solutions for

complete-penetration and restricted-entry vertical wells as well as for horizontal wells.

We use a similar approach in our work.

Peres and Reynolds [8] showed that incorporation of the skin factor using the

infinitesimally thin skin is not valid during the injection period; for example, for one-

dimensional radial flow problems, they showed that a skin zone with a width of a few

inches can have a pronounced effect on the injection pressure and its derivative for several

hours. For a damaged well and an unfavorable mobility ratio, they showed that the

injection pressure derivative may be negative for a considerable period of time. Because

of this result, we use a finite-radius skin zone [28] for the injection/falloff/production test

(IFPT) considered here.

This paper focuses on obtaining the analytical solution during the multiphase

production portion of the IFPT for one-dimensional radial flow problems. By combining

this solution with the analytical solutions for injection and falloff periods [46, 8], the

pressure solution for the IFPT test is obtained. The difficult part is generating the

solution for the water saturation profile during the production period of the IFPT. Once

this is done, it is easy to use the steady-state theory [55, 54] to generate the pressure

solution.
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For water injection, the saturation distribution can be easily calculated using the

Buckley-Leverett theory [15]. However, the Buckley-Leverett theory is not directly ap-

plicable to calculate the saturation distribution during production, mainly due to the fact

that the initial saturation distribution is not uniform. The front tracking method ( see

[23, 52, 10, 11]) seems to be an appropriate way to generate the saturation distribution.

In the front tracking method, the saturation is discretized into small intervals and each

saturation discontinuity interval is treated as a shock. Different shocks travel at different

speeds according to the Rankine-Hugoniot equation. The faster shocks catch up with

slower ones and merge into new shocks. To accurately capture the propagation and merg-

ing of shocks, Juanes and T.W. Patzek [29] implemented an iterative procedure, but this

is a slow computational procedure. For the special case of production starting with a

nonuniform saturation distribution, a modified front tracking approach is presented in

this research, which does not formally discretize the saturation profile and does not re-

quire iteration to generate the evolution of the saturation profile during production. After

the saturation distribution is generated, the pressure response can be obtained easily. By

comparing the saturation and pressure results generated with the solution procedure with

those from a simulator using a very fine radial grid system, the accuracy of the solution

is validated.

It is shown that pressure data from an IFPT can be matched with our analytical

solution using nonlinear regression to obtain reliable estimates of absolute permeability,

skin factor and relative permeability curves. Our initial work on this estimation procedure

is summarized in papers of Chen et. al. [19, 20].

1.4 Assumptions

For the synthetic examples presented in this work, the parameters that we esti-

mate are reservoir permeability, skin factor (or permeability in the skin zone) and the

parameters defining relative permeability curves. All other rock and fluid properties are

assumed to be known. Wellbore storage is neglected, but we delete very early time data

from the analysis under the assumption that it would be influenced by wellbore storage
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effects. The skin zone is modeled as a circular region concentric with the wellbore using

Hawkins’ formula [28]. When matching data for the examples presented, we fix the ra-

dius of the skin zone and estimate the skin zone permeability and then estimate the skin

factor by applying the formula of Hawkins [28]. Hysteresis effects are neglected after we

gave investigation on different models from literatures. Experiments by Carlson [18] and

Bedrikovetsky et al. show that the hysteresis of the wetting phase relative permeability

curve is generally small. Killough [31] considered the hysteresis on the wetting and non-

wetting phase relative permeability curves. Ramakrishnan and Wasan [47] also support

the above quote from Killough. Recently, Zeybek et al. [61] also used Killough’s model

[31] to argue flow test data obtained with a formation tester (drainage process) reflects the

imbibition relative permeability curves that govern filtrate invasion (imbibition). For the

non-wetting phase relative permeability curves, hysteresis models generally assume that

the scanning curves are reversible, which bears some theoretical rationale [13]. All results

considered here are based on the two-phase radial flow of oil and water where, during the

first time period, water is injected into a homogeneous oil reservoir of uniform thickness

at a constant rate through a completely-penetrating vertical well. In this research, the

Thompson-Reynolds steady-state theory [55, 54] is applied during the water injection and

production (oil flow back) periods.

Although in some examples, constant flow rates during water injection and produc-

tion are assumed in practice, it is difficult to maintain constant injection and production

rates, in practice, thus the effects of flow rate fluctuation are investigated. We used some

time interval with a average flow rate to represent the fluctuation of flow rate when we do

the nonlinear regression. The results suggest that the IFPT analysis can still be applied.

We also considered IFPT analysis for a heterogeneous permeability field by a homoge-

neous model of permeability. The results show that the IFPT can provide a reasonable

average estimates of model parameters for the heterogeneous field.
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CHAPTER 2

ANALYTICAL SOLUTION OF PRESSURE RESPONSE

DURING IFPT

In this chapter, some theoretical results about two phase oil-water system flow

in reservoir porous media are presented. In the first section, the steady-state theory

presented by Thompson and Reynolds [55] is introduced. The steady-state theory is an

important assumption and one of the theoretical foundations for the IFPT. In the second

section, the Buckley-Leverett theory for radial flow is discussed. Buckley-Leverett theory

predicts the saturation profile versus time during water injection. In the third section,

an approximate analytical solution for pressure for the injection/falloff/production test

is presented for the case where the capillary pressure effects are negligible. This solution

relies on computing the saturation evolution during production based on the Buckley-

Leverett theory and the front tracking method. The analytical results are verified with

simulation results obtained from a black oil simulator in the third section. Finally, the

validation of this saturation evolution model and pressure response is also validated with

simulation results by comparison with synthetic cases.

2.1 Steady-state Theory for Water Injection

It is assumed that water is injected into an infinite and homogeneous reservoir

through a completely-penetrating vertical well. The initial water saturation for water

injection is uniform and equal to the irreducible water saturation, Siw. Thompson and

Reynolds [55] showed that, during water injection, a constant rate zone increasing in ra-

dius with time, propagates from the wellbore into the reservoir and the extent of this

growing “steady-state” zone due to water injection always encompasses the water bank.
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Fig. 2.1 shows an example obtained from a simulation result where the relationship be-

tween the total injection rate qt and water saturation, Sw, at one particular time is shown

clearly. In this figure, the total flow rate, the constant flow rate part of qt (the dashed

curve), is always larger than the zone where water saturation is varying. Let rss(t) be

the radius of the steady-state zone of constant flow rate at injection time t. We always

have rss(t) > rwf (t), where rwf (t) is the radius of the water front during water injection

for any reasonable values of reservoir properties, see Peres and Reynolds [46]. Within the

steady-state region, for r < rss, qt(r, t) is equal to qinj.

Figure 2.1: Relationship between water saturation and total flow rate in steady-state of
water injection.

2.2 Buckley-Leverett Theory for Radial Flow

Water injection is assumed to be implemented in a one-layer reservoir with a uni-

form thickness by a completely penetrating vertical well. Gravity effects are neglected.

Therefore, the flow in the reservoir can be treated as an oil-water two-phase one dimen-

sional radial flow. When we consider capillary pressure, we assume a water wet system

so that capillary pressure is given by
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pc = po − pw, (2.1)

where po is pressure in the oil phase, pw is pressure in the water phase, and pc is the

capillary pressure. Applying Darcy’s law, for this one dimensional radial flow problem

with gravity ignored, the rates of oil and water in field units are given by

qo = −1.127× 10−3kkro

µo

2πhr
∂po

∂r
(2.2)

and

qw = −1.127× 10−3kkrw

µw

2πhr
∂pw

∂r
, (2.3)

where for injection, qw ≥ 0 and qo ≥ 0. Multiplying by krw

µw
on both sides of Eq. 2.2 and

kro

µo
on both sides of Eq. 2.3, and subtracting subtracting the results, we have

qw
kro

µo

− qo
krw

µw

= −1.127× 10−3 · 2πhk
kro

µo

krw

µw

r

(
∂pw

∂r
− ∂po

∂r

)
. (2.4)

From Eq. 2.1, we have

∂pw

∂r
− ∂po

∂r
= −∂pc

∂r
. (2.5)

Substituting Eq. 2.5 and qo = qt − qw into Eq. 2.4, one can rearrange to get

qw

(
kro

µo

+
krw

µw

)
= qt

krw

µw

+ 1.127× 10−3 · 2πhk
kro

µo

krw

µw

r
∂pc

∂r
, (2.6)

where qt is the total flow rate. When both sides of Eq. 2.6 are divided by

qt

(
kro

µo

+
krw

µw

)
,

we have the general fractional flow equation for Fw which includes the influence of capillary

pressure and is given by
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Fw =
qw

qt

= fw + 1.127× 10−3 · 2πhk
1

qt

fwλor
∂pc

∂r
,

(2.7)

where, in this work, fw and λo are always defined by

fw(Sw) =

krw(Sw)
µw

krw(Sw)
µw

+ kro(Sw)
µo

, (2.8)

and

λo(Sw) =
kro(Sw)

µo

. (2.9)

While water is being injected into an infinite reservoir, the reservoir can be con-

sidered to be a combination of an infinite set of rings centered at the wellbore, as shown

in Fig. 2.2. A grid block, Swj
, represents a ring with water saturation Swj

between its left

boundary, rj− 1
2
, and right boundary, rj+ 1

2
. The first grid bock, Sw1 , has a left boundary

of r 1
2

= rw. During water injection, the conservation of mass of water in each grid block

should be satisfied. Here, it is assumed that water density is constant and the flow rate

is at reservoir conditions, which means the volume factor is equal to 1. The mass con-

servation of water on the jth gridblock, assuming incompressible flow, can be expressed

by


Increase in water due

to Sw change with

a time interval ∆t

 =


Volume of water flowing into

the control volume - volume of

water flowing out the control volume


or

πhφ
(
r2
j+ 1

2

− r2
j− 1

2

)
θ

∆Sw = ∆t

qw

∣∣∣∣
r
j− 1

2

− qw

∣∣∣∣
r
j+1

2

 , (2.10)

where θ is a unit conversion constant in field units with time in hours, θ = 5.165/24. Here
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∆Sw defines the change in saturation over the time step of length ∆t, and we assume the

rates in and out are constant over this time step. From Eq. 2.7, the equations of water

rate at the two boundaries of the control volume are

qw

∣∣∣∣
r
j− 1

2

= qtFw
j− 1

2

, (2.11)

and

qw

∣∣∣∣
r
j+1

2

= qtFw
j+1

2

. (2.12)

Using Eqs. 2.11 and 2.12 in Eq. 2.10 and dividing the resulting equation by ∆t(rj+ 1
2
) gives

πhφ(rj+ 1
2

+ rj− 1
2
)

θ

∆Sw

∆t
= −qt

[
Fwr

j+1
2

− Fwr
j− 1

2

rj+ 1
2
− rj− 1

2

]
. (2.13)

Since this applies for all gridblocks, we simply let

r = rj =
rj+ 1

2
+ rj− 1

2

2
. (2.14)

So Eq. 2.13 can be written as

2πhφ

θ

∆Sw

∆t
= −qt

r

[
Fwr

j+1
2

− Fwr
j− 1

2

rj+ 1
2
− rj− 1

2

]
. (2.15)

Taking the limit of as ∆t → 0 and ∆r = rj+ 1
2
− rj− 1

2
→ 0 gives

2πhφ

θ

∂Sw

∂t
= −1

r
qt

∂Fw

∂r
. (2.16)

Because Fw is a function of Sw, using the chain rule ∂Fw

∂r
= dFw

dSw

∂Sw

∂r
, Eq. 2.16 can be

expressed by

2πhφ

θ

∂Sw

∂t
= −1

r
qt

dFw

dSw

∂Sw

∂r
, (2.17)

with the initial condition and boundary condition for water injection given by
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Figure 2.2: Block center grid system of Sw change for water injection.


I.C. Sw(r, t = 0) = Siw;

B.C. Sw(r = rw, t) = 1− Sor;

Sw(r = ∞, t) = Siw.

(2.18)

In this chapter, capillary pressure is ignored, so Eq. 2.17 can be simplified to

∂Sw

∂t
+

1

r

θqt

2πhφ

dfw

dSw

∂Sw

∂r
= 0. (2.19)

This is a nonlinear hyperbolic PDE. The characteristic method indicates that water satu-

ration, Sw, is constant along a characteristic curve. Thus, along any characteristic curve,

the total differential of the water saturation is zero, i.e.,

dSw =
∂Sw

∂r
dr +

∂Sw

∂t
dt = 0, (2.20)

which means

∂Sw

∂t
= −dr

dt

∂Sw

∂r
. (2.21)
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Substituting Eq. 2.21 into Eq. 2.19 results in

dr(Sw)

dt
=

1

r

θqt

2πhφ

dfw(Sw)

dSw

. (2.22)

Then the Buckley-Leverett equation for radial flow can be represented by rewriting

Eq. 2.22 as

dr2

dt
=

θqt

πhφ

dfw(Sw)

dSw

. (2.23)

All saturations between Sw and 1−Sor exist at t = 0, we can integrate Eq. 2.23 to obtain

r2(Sw) = r2
w +

θ

πhφ

dfw(Sw)

dSw

∫ t

0

qtdt. (2.24)

Eq. 2.24 gives an equation for locating the radial location (r(Sw)) of the saturation Sw

at time t and applies for any Sw such that Siw ≤ Sw ≤ 1 − Sor. In the case that qt is

constant for all time and capillary pressure is negligible, Eq. 2.24 becomes

r2(Sw) = r2
w +

θqt

πhφ
t
dfw(Sw)

dSw

. (2.25)

As in one-dimensional linear flow, the solution of Buckley-Leverett has a shock,

a jump discontinuity in the saturation profile at location of the water front. Where

Swf denotes the saturation at the flood front. The water balance across the shock front

indicates that the shock speed (the speed of water front) can be expressed by the Rankine-

Hugoniot shock condition,

dr2

dt
=

θqt

πhφ

f+
w (S+

w )− f−w (S−w )

S+
w − S−w

, (2.26)

where, on the two sides of the shock, S+
w = Siw and S−w = Swf , as shown in Fig. 2.1. So

according to Eq. 2.26 (speed of water front) the shock speed becomes

dr2

dt
=

θqt

πhφ

fw(Swf )− fw(Siw)

Swf − Siw

. (2.27)
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Using Sw = Swf in Eq. 2.22 and comparing the resulting equation with Eq. 2.27 gives

dfw(Swf )

Swf

=
fw(Swf )− fw(Siw)

Swf − Siw

(2.28)

This equation represents the equation for calculating Swf . Welge [58] showed that Swf

can be calculated graphically as shown in Fig. 2.3, which shows the fractional flow curve

and its derivative. Note the shock speed of the water front movement is represented by

the slope of the tangent line, i.e., the straight dashed line through (Siw, fw(Siw)) and

(Swf , fw(Swf )).
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f w
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 d f w / d S w

S w f
S i w

Figure 2.3: Fractional flow and its derivative.

Buckley-Leverett theory states that, for water injection into an oil reservoir with

uniform initial water saturation, the water front separates the oil reservoir into two parts:

ahead of the water front is the single phase oil with initial water saturation, Siw; and

behind the water front is the two-phase zone. In the two-phase zone, water saturation is

between 1− Sor and Swf from the wellbore to the water front.
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2.3 Approximate Analytical Solution for Pressure Response

The following sections discuss the bottomhole pressure responses during the water

injection, falloff and production periods (capillary pressure is ignored) based on Buckley-

Leverett theory and front tracking method. When water is injected into an infinite reser-

voir through a completely-penetrating water injection well, according to the Darcy’s law

expressed in Eqs. 2.3 and 2.2, total flow rate, qt, can be expressed by

qt(r, t) = −1.127× 103 · 2πhkλt
dp(r, t)

dr
, qt > 0, (2.29)

where

λt(Sw) =
krw(Sw)

µw

+
kro(Sw)

µo

. (2.30)

Rearranging and integrating Eq. 2.29, we have

∫ p(r=∞,t)

p(rw,t)

dp(r, t) = − 1

1.127× 103 · 2πh

∫ ∞

rw

qt(r, t)

λt(r, t)k(r)

dr

r
, (2.31)

where p(r = ∞, t) = pi and p(rw, t) = pwf (t). Then the pressure difference between the

bottomhole pressure, pwf (t), and the reservoir initial pressure, pi, is defined by

∆p(t) = pwf (t)− pi =
α

h

∫ ∞

rw

qt(r, t)

λt(r, t)k(r)

dr

r
, (2.32)

where α is a unit conversion constant. In field units,

α =
1

1.127× 103 · 2π
= 141.2. (2.33)

In this research, it is assumed that water is injected into a homogeneous reservoir, but

a damaged zone with known radius, rs, around the wellbore is also considered. The

damaged zone has its own permeability, ks, to denote mechanical skin factor. So the

permeability distribution can be expressed by
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k(r) =


ks, for rw < r ≤ rs;

k, for r > rs.

(2.34)

2.4 Approximate Analytical Solution of Pressure Response during Injection

In the previous section, it was stated that a reservoir is divided into two parts

by the water saturation front during water injection through a completely-penetrating

vertical well in an infinite reservoir. Ahead of the front, Sw = Siw and λt = λ̂o for single-

phase oil. Separating the integral in Eq. 2.32 into two parts by location of the water front,

rf (t), and adding two terms which sum to zero, i.e.,

α

h

∫ rf(t)

rw

qt(r, t)

λ̂ok(r)

dr

r
− α

h

∫ rf(t)

rw

qt(r, t)

λ̂ok(r)

dr

r
, (2.35)

Eq. 2.32 can be rewritten as

∆p(t) = pwf (t)− pi

=
α

h

∫ rf(t)

rw

qt(r, t)

λt(r, t)k(r)

dr

r
+

α

h

∫ ∞

rf(t)

qt(r, t)

λt(r, t)k(r)

dr

r

+
α

h

∫ rf(t)

rw

qt(r, t)

λ̂ok(r)

dr

r
− α

h

∫ rf(t)

rw

qt(r, t)

λ̂ok(r)

dr

r
.

(2.36)

Combining the first and the forth terms in Eq. 2.36, we have

∆p(t) =
α

hλ̂o

∫ rf(t)

rw

qt(r, t)

k(r)

(
λ̂o

λt(r, t)
− 1

)
dr

r

+
α

h

∫ ∞

rf(t)

qt(r, t)

λt(r, t)k(r)

dr

r
+

α

h

∫ rf(t)

rw

qt(r, t)

λ̂ok(r)

dr

r
.

(2.37)

It is known that ahead of the water front, r > rf , we have λt(r, t) = λ̂o. In section

2.1, the steady-state theory of Thompson and Reynolds [55] states that the steady-state

zone, rss(t), always covers the water front zone, rf (t), i.e. rf < rss. And, within the

steady-state zone, the total flow rate, q(r<rss,t), equals the constant injection rate, qinj. So
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Eq. 2.37 becomes

∆p(t) =
αqinj

hλ̂o

∫ rf(t)

rw

(
λ̂o

λt(r, t)
− 1

)
1

k(r)

dr

r
+

α

hλ̂o

∫ ∞

rw

qt(r, t)

k(r)

dr

r
. (2.38)

It’s clear that the second term in Eq. 2.38 is the pressure change in the single-phase oil

at irreducible water saturation, denoted by ∆p̂o. Then Eq. 2.38 can be simplified as

∆p(t) = ∆p̂o(t) +
αqinj

hλ̂o

∫ rf(t)

rw

(
λ̂o

λt(r, t)
− 1

)
1

k(r)

dr

r
. (2.39)

The techniques stated above were first presented by Peres and Reynolds (see ref-

erence [46]) for the generation of approximate analytical solutions for the water injection

response. Based on the Buckley-Leverett theory and the Steady-state theory of Thomp-

son and Reynolds, the pressure response of water injection into an infinite reservoir is

denoted by a combination of the pressure response of single-phase oil and the pressure

change in a limited two-phase zone. The single-phase oil pressure is obtained with the

effective permeability, kkro(Siw), and the total oil compressibility, which is expressed by

ĉto = cwSiw + co(1− Siw) + cr, (2.40)

where cw, co and cr represent the compressibilities of water, oil and rock, respectively.

They are assumed to be constant in this research. For a given constant injection rate, the

pressure change in the two-phase region is dominated by the total mobility distribution,

which is calculated by the Buckley-Leverett theory. The single-phase oil solution based

on oil mobility at irreducible water saturation is give by

∆po = pwf − pi =
αqt

khλ̂o

[
1

2
ln

(
βkλ̂ot

φĉtor2
w

)
+ 0.4045 + s

]
, (2.41)

where β is a constant which depends on the system of units used. β = 2.637× 10−4 if oil

field units with time in hours are used. s is the skin factor of the damaged zone.
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2.5 Approximate Analytical Solution of Pressure Response during Falloff

This section introduces the approximate analytical solution of pressure response

during falloff based on the steady-state theory of Thompson and Reynolds [55] combined

with rate superposition. This method is used in this research for predicting the pressure

response during falloff. In the previous discussion, it was shown that our research is a

two-phase flow problem in a homogeneous reservoir with uniform distribution of water

saturation. Since gravity segregation and capillary pressure are ignored, the water satura-

tion can be safely assumed to remain unchanged during falloff. The study of Abbaszadeh

et al. [2] shows that this assumption is true only if the fluids are incompressible. In this

research, numerical experiments also show the change in water saturation distribution

is negligible during falloff provided capillary pressure is zero. Before falloff, there is a

water bank after a time tp of water injection with a constant flow rate, qinj. The water

saturation distribution is described by the Buckley-Leverett theory at the end of water

injection, tp. During falloff, the total compressibility of the system does not change. For

a given location, r, in the reservoir and at any shut-in time, ∆t, during falloff, the total

compressibility can be expressed by

ct(r, ∆t) = ct(r, tp) = cr + coSo(r, tp) + cwSw(r, tp)

= cr + co + (cw − co)Sw(r, tp).

(2.42)

The total mobility, which does not change either during falloff, can be expressed by

λt(r, ∆t) = λt(r, tp) =
krw(Sw(r, tp))

µw

+
kro(Sw(r, tp))

µo

. (2.43)

During falloff, Darcy’s law is still valid. Similar to the water injection equation,

the pressure difference during falloff can be represented by

∆pws(∆t) = pws(∆t)− pi =
α

h

∫ ∞

rw

qs(r, ∆t)

λt(r, ∆t)k(r)

dr

r
, (2.44)

where qs(r, ∆t) is the total flow rate profile at shut-in time ∆t. During falloff the total

flow rate can not be zero immediately after shut-in because of the fluids’ compressibilities.
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Modified in the same way as was done for the pressure difference during water injection,

Eq. 2.44 can be written as

∆pws(∆t) =
α

h

∫ rf (tp)

rw

qs(r, ∆t)

λt(r, ∆t)k(r)

dr

r
+

α

h

∫ ∞

rf (tp)

qs(r, ∆t)

λt(r, ∆t)k(r)

dr

r
, (2.45)

where rf (tp) represents the water front at the instant of shut-in. Then adding and sub-

tracting an integral from rw to rf (tp) to Eq. 2.45, we have

∆pws(∆t) =
α

h

∫ rf (tp)

rw

qs(r, ∆t)

λt(r, ∆t)k(r)

dr

r
+

α

h

∫ ∞

rf (tp)

qs(r, ∆t)

λt(r, ∆t)k(r)

dr

r

+
α

h

∫ rf (tp)

rw

qos(r, ∆t)

λ̂ok(r)

dr

r
− α

h

∫ rf (tp)

rw

qos(r, ∆t)

λ̂ok(r)

dr

r
.

(2.46)

In Eq. 2.46, qos(r, ∆t) is the oil flow rate distribution in the reservoir obtained under

single-phase oil flow conditions at the shut-in time ∆t, i.e., it is the flow rate would

be obtained if we inject oil at a rate of qinj RB/D. For r > rf (tp), it is assumed that

qs(r, ∆t) = qos(r, ∆t) and λt(r, tp) = λ̂o, so that Eq. 2.46 becomes

∆pws(∆t) =
α

hλ̂o

∫ ∞

rw

qos(r, ∆t)

k(r)

dr

r

+
α

h

∫ rf (tp)

rw

(
qs(r, ∆t)

λt(r, ∆t)k(r)
− qos(r, ∆t)

λ̂ok(r)

)
dr

r
.

(2.47)

The first term on the right side of Eq. 2.47 is the pressure change for single-phase oil

during falloff, which is denoted by ∆p̂os(∆t) and defined by

∆p̂os(∆t) = pws(∆t)− pi =
αqt

2khλ̂o

ln

(
tpD + ∆tD

∆tD

)
. (2.48)

Then Eq. 2.47 can be simplified as

∆pws(∆t) = ∆p̂os(∆t) +
α

hλ̂o

∫ rf (tp)

rw

(
λ̂o

λt(r, ∆t)
qs(r, ∆t)− qos(r, ∆t)

)
1

k(r)

dr

r
. (2.49)
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During falloff, the flow rate does not become zero through out reservoir immedi-

ately after the well is shut-in. Based on Duhamel’s principle and rate superposition (see

the reference [7]), the single-phase oil flow rate can be expressed by

qos(r, ∆t) = qinj

[
exp

(
− r2

D

4(tpD + ∆tD)

)
− exp

(
− r2

D

4∆tD

)]
, (2.50)

where rD and tD are dimensionless radial distance and time, respectively, defined by

rD =
r

rw

(2.51)

and

tD =
2.637× 10−4kλt

φctr2
w

. (2.52)

tpD is the dimensionless injection time of injection time tp. The oil single-phase solution

is based on oil properties at irreducible water saturation, Siw. The dimensionless time

should be based on the single-phase oil mobility λ̂o and the single-phase oil compressibility

expressed by

cto = cwSiw + co(1− Siw) + cr. (2.53)

Then, Eq. 2.50 becomes

qos(r, ∆t) = qinj

[
exp

(
− φctor

2

4βkλ̂o(tp + ∆t)

)
− exp

(
− φctor

2

4βkλ̂o∆t

)]
. (2.54)

where in oil field units with time in hours 4β = 10.548× 10−4.

In this research, the total flow rate, qs(r, ∆t), in the two-phase flow region is also

evaluated by applying the single-phase rate superposition equation, so qs(r, ∆t) is also

expressed by
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qs(r, ∆t) = qinj

[
exp

(
− r2

D

4(tpD + ∆tD)

)
− exp

(
− r2

D

4∆tD

)]
. (2.55)

But in Eq. 2.55, obviously the mobility and total compressibility should not be based

on single-phase oil in the two-phase flow region. The research of Peres, Boughrara and

Reynolds (see [45, 7, 9]) shows that a more accurate solution would be obtained if the

values of these two properties are based on those that exist at the instant of shut-in time

and at r. Therefore, we can set

r2
D

tpD + ∆tD
=

φct(r, tp)r
2

βkλt(r, tp)(tp + ∆t)
, (2.56)

and

r2
D

∆tD
=

φct(r, tp)r
2

βkλt(r, tp)∆t
(2.57)

in Eq. 2.55 to get

qs(r, ∆t) = qinj

[
exp

(
− φct(r, tp)r

2

4βkλt(r, tp)(tp + ∆t)

)
− exp

(
− φct(r, tp)r

2

4βkλt(r, tp)∆t

)]
. (2.58)

In this research, the approximate analytical solution of pressure response during falloff is

computed using Eq. 2.49 with flow rates evaluated by Eqs. 2.54 and 2.58.

2.6 Approximate Analytical Solution of Pressure Response during

Production

Based on the steady-state theory of Thompson and Reynolds [55] and the Buckley-

Leverett theory [15], approximate analytical solutions for pressure response during water

injection/falloff were achieved successfully. In this research, we also derive the approxi-

mate analytical solution of the pressure response during production based on the steady-

state theory, the Buckley-Leverett theory and the front tracking method. During produc-

tion, when water and oil flow back towards the well, the initial saturation distribution is
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not uniform as it is during water injection and not static as it is during falloff. In the

previous section, it was shown that the pressure change for a two phase problem can be

treated as a sum of the pressure change in the single-phase oil and the pressure change in

a limited two-phase region if the saturation distribution is known. So if we know how the

saturation evolves during production, we may obtain the approximate analytical solution

for the pressure response.

2.6.1 Water Saturation Evolution during Production

The fluid flow during production follows the same governing equation (Eq. 2.19) as

for the water injection. However, the initial condition for production is represented by the

saturation distribution at the end of falloff, i.e., it is not uniform (see Fig. 2.1). Thus the

Buckley-Leverett theory cannot be directly applied to obtain the saturation distribution

during production. However as mentioned in the introduction, the front tracking method

[29] can be applied to generate the saturation profile as a function of time.

The front tracking method discretizes the saturation profile into small steps and

treats these small saturation intervals as shocks (discontinuities). Shocks corresponding

to different saturation ranges travel at different speeds according to Eq. 2.26. For two

neighboring shocks, the faster one will catch up the slower one and the two shocks will

merge into one new shock. To keep track of how the shocks propagate and merge as a

function of time, an iterative process can be implemented [11], but this makes the al-

gorithm slow. Furthermore, to be able to have an accurate representation of the water

saturation distribution, small saturation intervals are required. To overcome these diffi-

culties, we present a modified algorithm to calculate the saturation distribution. In this

algorithm, the traditional Buckley-Leverett theory and the front tracking method are

combined. This procedure avoids discretization of the saturation and does not require

iteration.

During production, oil invades the water bank, and the initial oil saturation is

variable. In this section, we use the oil saturation to illustrate the saturation evolution in

the two-phase zone during production. Fig. 2.4, an exaggerated figure showing saturation
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Figure 2.4: Illustration of oil saturation evolution during the production.

distributions after small time steps, illustrates the oil saturation profile at the end of falloff

and at the first two time steps during production. We assume the well is at the left side

in Fig. 2.4. The oil saturation at wellbore sandface r = rw is the residual oil saturation

Sor and the water front is located at rof = rwf (tinj), where tinj is the end time of water

injection. So at very beginning of production, the initial oil saturation for oil invading

the two-phase zone at rof is Sio = 1− Swf . To the right of rof is the single phase oil zone

and oil saturation equals to 1− Siw. After falloff the initial oil saturation distribution is

represented by curve ÔASor. Starting from initial oil saturation condition, using Fig. 2.4

and Fig. 2.5 (the oil fraction flow curve), we give the first two time steps, ∆t1 and ∆t2, to

illustrate our model of water saturation evolution during production with an nonuniform

initial oil saturation distribution.

1st time step, ∆t1: According the initial oil saturation condition stated above, in

Fig. 2.5, we can find point A on the oil fraction flow curve, which is corresponding to the

initial oil saturation Sio when oil begins to invade water bank. In the same method as we

normally had water front saturation for water injection using Welge’s model [58], starting
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Figure 2.5: Oil fractional flow curve.

from the point A and drawing the tangent to the oil fractional flow curve, we obtained

the point B with the initial oil front saturation Sof . The slope of line AB, representing

the initial oil shock front speed, is expressed by

dfo(Sof )

dSo

=
fo(Sof )− fo(Sio)

Sof − Sio

. (2.59)

Then the initial shock speed is denoted by

dr2(Sof )

dt
= − θqt

πφh

[
fo(Sof )− fo(Sio)

Sof − Sio

]
, (2.60)

where total flow rate qt is assumed to be a positive constant value during production.

Here, we assume in each time step, the shock speed is contant. We integrate Eq. 2.60

based on the production time ∆t1 and have

∫ rof1(∆t1)

rof

dr2(Sof ) = −
∫ ∆t1

0

θqt

πφh

[
fo(Sof )− fo(Sio)

Sof − Sio

]
dt. (2.61)

Then, we have
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rof1(∆t1)
2 − rof

2 = − θqt

πφh

[
fo(Sof )− fo(Sio)

Sof − Sio

]
∆t1. (2.62)

where rof (∆t1) is the oil front location after the first time step ∆t1. Finally, the front

location after ∆t1 can be expressed by

rof1(∆t1) =

√
rof −

θqt

πφh

[
fo(Sof )− fo(Sio)

Sof − Sio

]
∆t1. (2.63)

After first time step ∆t1, the initial oil front moved from rof to rof1 represented by moving

of lines from AO to A1B, as shown in Fig. 2.4. In practice, we have a small time step of

∆t1, the distance between rof and rof1 is very small. In Fig. 2.5, we can see the derivatives

of oil fraction flow to the oil saturations Sio < So ≤ 1 − Siw are lower than that to the

initial oil front saturation Sio expressed by Eq. 2.59, i.e., the initial oil front saturation

has the highest speed among those oil saturations between the initial oil front saturation

Sio and oil saturation 1 − Siw. Noting that all saturation between Sio and 1 − Siw exist

at rof at ∆t = 0 similar to water injection at wellbore sandface. So after time ∆t1, the

location of oil front moves from rof to rof1 and oil distributions of saturations between

Sio and 1− Siw exactly follows the Buckley-Leverett theory given by

dr2(So)

dt
=

θqt(t)

πφh
· dfo(So)

dSo

, for Sof ≤ So ≤ 1− Siw. (2.64)

For a constant rate production, we have qt(t) = qt. Rearranging and integrating Eq. 2.64,

we have

∫ r(So,∆t)

rof

dr2(So) =

∫ ∆t

0

θqt

πφh
· dfo(So)

dSo

dt,

for Sof ≤ So ≤ 1− Siw.

(2.65)

Then, after first time step, ∆t = ∆t1, the oil distribution of oil saturation behind the oil

front rof is given by
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r2(So, ∆t1) = r2
of −

θqt

πφh
∆t1 ·

dfo(So)

dSo

,

for Sof ≤ So ≤ 1− Siw;

(2.66)

and

r(So, ∆t1) =

√
r2
of −

θqt(t)

πφh
∆t1 ·

dfo(So)

dSo

,

for Sof ≤ So ≤ 1− Siw.

(2.67)

The distribution of the oil saturation ahead of the oil front, Sor ≤ So ≤ Sio, is the

reverse process of water injection before oil “breakthrough” during production and also

follows the Buckley-Leverett theory, i.e., the distribution of oil saturations ahead of oil

front after the first time step ∆t1, according to Eq. 2.25, is given by

r2(So, ∆t1) = r2
inj(Sw = 1− So, t = tinj −∆t1)

= r2
w +

θqt

πhφ

(
tinj −∆t1

)dfw(Sw = 1− So)

dSw

,

for Sor ≤ So < Sio,

(2.68)

where rinj(Sw, t) represents, during injection, the location of water saturation of Sw at

time of t and qt is the positive water injection rate. In Fig. 2.5, we also note that the

slope of the line AB is higher than derivatives of oil fractional flow to all oil saturations

(Sor ≤ So < Sio) ahead of the oil front saturation Sio at fractional flow curve, i.e,

dfo(So)

dSo

<
fo(Sof )− fo(Sio)

Sof − Sio

,

for Sor ≤ So < Sio.

(2.69)

That means the speed of initial oil front is higher than the speeds of all oil saturation

ahead of it. Then after the first production time step, according to the front tracking

method, we have that oil front catches up and merges some saturations ahead of the oil

front as shown in Fig. 2.4 by a dashed line at right of new oil front line A1B. Using

Eq. 2.68, the saturation just ahead of the oil front, Sio1, is determined by calculating the

derivative of water fractional flow to water saturation at the location of new oil front rof1,
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i.e.,

dfw(Sw)

dSw

=

[
r2
of1(Sof1)− r2

w

]
πhφ

θqt

(
tinj −∆t1

) (2.70)

first. Then using the numerical interpolation, we can obtain the water saturation Sw

just ahead of the new oil front rof1 after ∆t1. Thus the oil saturation ahead of rof1 is

Sio1 = 1− Sw. Because the first time step ∆t1 is very small in practice, the material lost

in first time step is small enough to be ignored. Then, after the first time step ∆t1, the

finial distribution of oil saturation is represented by curve ̂OBA1Sor.

2nd time step, ∆t2: After the first time step, the saturation just ahead and

behind the new oil front (shock) rof1 are Sio1 and Sof , respectively, as shown in Fig. 2.4.

According to Rankine-Hugoniot shock condition Eq. 2.26, assumed a constant value, the

speed of the oil front in the second time step ∆t2, represented by the slope of line A1B,

is given by

dr2

dt
= − θqt

πhφ

fo(Sof )− fo(Sio1)

Sof − Sio1

. (2.71)

By Integrating, we have

∫ rof2

rof1

dr2 = −
∫ ∆t2

0

θqt

πhφ

fo(Sof )− fo(Sio1)

Sof − Sio1

, (2.72)

where qt is positive value during production rof2 is new oil front location after the second

time step ∆t2 and is given by

rof2 =

√
r2
of1 +

θqt

πhφ
∆t2

fo(Sof )− fo(Sio1)

Sof − Sio1

. (2.73)

During the second time step ∆t2, the distribution of the saturations behind the oil

front rof1, Sof ≤ So ≤ 1− Siw, follows Buckley-Leverett theory and is given by

dr2(So)

dt
= − θqt

πhφ

dfo(So)

dSo

, for Sof ≤ So ≤ 1− Siw. (2.74)
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At the second time step, after production time of ∆t1 + ∆t2, rearranging and integrating

Eq. 2.74, the distribution of saturations behind the oil front can be expressed as

∫ r(So)

rof

dr2 = −
∫ ∆t1+∆t2

0

θqt

πhφ

dfo(So)

dSo

dt,

for Sof ≤ So ≤ 1− Siw.

(2.75)

Then we have

r(So)
2 =r2

of −
θqt

πhφ

(
∆t1 + ∆t2

)
dfo(So)

dSo

dt,

for Sof ≤ So ≤ 1− Siw,

(2.76)

and

r(So) =

√
r2
of −

θqt

πhφ

(
∆t1 + ∆t2

)
dfo(So)

dSo

dt,

for Sof ≤ So ≤ 1− Siw,

(2.77)

In Fig. 2.5, we note that the slope of line A1B representing the oil front speed in second

time step ∆t2 is smaller than the slope of AB, denoting the speed of oil front in the first

time step ∆t1. So in the second time step ∆t2, some oil saturations behind the oil front

rof1 catch up and merge with the second oil front rof2 based on front tracking method, see

the dashed curve on the left side of point B1 as shown in Fig. 2.4. We lost some oil during

this merge. Similar to the first time step, using Eq. 2.76, the saturation just behind the

oil front (Sof1) at point B1 can be obtained by calculating

dfo(Sof1)

dSo

dt =

(
r2
of − r2

of1

)
πhφ

θqt

(
∆t1 + ∆t2

) (2.78)

first, then the Sof1 is obtained next by the numerical interpolation from the table of

dfo/dSo vs. So.

As we stated before, our model of saturation evolution during production assumes

that saturation ahead of the oil front is a reverse process of water injection before the oil

“breakthrough”. So according to Eq. 2.25, the distributions of the oil saturations ahead
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the oil front rof1 (Sor ≤ So ≤ Sio1) after the second time step ∆t2 is given by

r2(So, ∆t1 + ∆t2) = r2
inj(Sw = 1− So, t = tinj −∆t1 −∆t2)

= r2
w +

θqt

πhφ

(
tinj −∆t1 −∆t2

)dfw(Sw = 1− So)

dSw

,

for Sor ≤ So < Sio1.

(2.79)

From Fig. 2.5, we also can note that derivatives of oil fractional flow to oil saturation,

Sor ≤ So ≤ Sio1, is smaller than the slope of line A1B, which represents the speed of oil

front rof1. So during the second time step ∆t2, the oil front rof1 still moves faster than

oil saturations ahead of it. The oil front rof1 catches and merges some saturations to the

location rof2 denoted by Eq. 2.73. We gained some oil saturation during this catching

up. That balances we lost from the catching up behind the oil front. As we did before,

the oil saturation just ahead of new oil front rof2 after the second time step ∆t2 can be

calculated by numerical interpolating

dfw(Sw)

dSw

=

[
r2
of2(Sof2)− r2

w

]
πhφ

θqt

(
tinj −∆t1 −∆t2

) (2.80)

and obtaining water saturation Sw just ahead the oil front rof2. Thus, the corresponding

oil saturation can be achieved Sof2 = 1 − Sw. So after the second time step ∆t2, oil

saturation distribution is saturation curve ̂OB1A2Sor as shown in Fig. 2.4.

For the subsequent time steps, There are two types of saturation evolution: one is

before the oil “breakthrough”, the saturation evolution just repeats the second time step

stated above. The oil front moves more slowly. The other is after oil “breakthrough”,

the saturation evolution only involves some saturations behind the oil front. Then oil

saturation is increasing gradually at the sand face wellbore, which is shown in the section

of validation. In the practice, the size of time step at early time is much smaller than the

size of time step at late time. We use the time table for the reservoir simulator when we

calculate the saturation evolution based on our analytical model. The time sequence is

a logarithmic series, and typically, first time step size is 1 × 10−4 hours and the size of
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time step could be 0.1 hours around the oil “breakthrough” time. The results from cases

in following sections show that the sizes of time steps are good enough to obtain good

estimates of saturation evolution during production.

2.6.2 Pressure Response during Production

The pressure response during production can be derived using the steady-state

theory and, similar to the derivation of the expression for injection and falloff pressure,

is also be expressed by combination of pressure response in single phase oil and pressure

change in two-phase zone. Then bottomhole pressure change during production is given

by

∆p(∆t) ≡ pi − pwf (∆t)

= ∆p̂o(∆t) +
α

hλ̂o

∫ rwf (tp)

rw

qt(r, ∆t)

k(r)

(
λ̂o

λt(r, ∆t)
− 1

)
dr

r

(2.81)

where qt(∆t) is a positive production rate at reservoir conditions; ∆t corresponds to the

time of production so ∆t = 0 corresponds to the end of the falloff period and pwf (∆t) now

represents the wellbore pressure during production period; rwf is the water front location

at the end time of falloff, tp. Similar to injection and falloff, ∆p̂o(∆t) = pi − po(∆t),

where po(∆t) is the wellbore pressure during single-phase oil production and is obtained

by the superposition of three constant rate solutions, injection at a constant rate, followed

by shutin (zero rate), then followed by production at a constant rate. For multirate

production introduced in later section, the single-phase oil pressure is also obtained by

rate superposition method. In the previous section, we stated that the oil front, rof ,

separates the water bank into two parts. One is the saturation behind the oil front; the

other is the saturation ahead of the oil front. Therefore, Eq. 2.81 can be changed to
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∆p(∆t) ≡ pi − pwf (∆t)

= ∆p̂o(∆t) +
α

hλ̂o

∫ rof (∆t)

rw

qt(r, ∆t)

k(r)

(
λ̂o

λt(r, ∆t)
− 1

)
dr

r

+
α

hλ̂o

∫ rwf (tp)

rof (∆t)

qt(r, ∆t)

k(r)

(
λ̂o

λt(r, ∆t)
− 1

)
dr

r
,

(2.82)

where the first integral represents the pressure changes in ahead of the oil front rof and

the second integral represents the pressure changes behind the oil front in the two-phase

water bank. After oil “breakthrough”, the oil front reaches the wellbore and all saturation

in the two-phase zone are behind the oil front following Buckley-Leverett theory for oil

invading water zone as we stated before.

To evaluate the integrals in Eq. 2.81, the total mobility profile at a given time

is computed using the saturation profile and oil front radius rof (t) obtained from the

procedure described previously. After oil breakthrough (the oil front reaches the wellbore),

rof = rw and the first integral is equal to zero in Eq. 2.82.

As mentioned earlier, the steady-state assumption is valid throughout the injection

period. However, during production, the total flow rate in the two phase region is not

constant at very early times. Thus, the use of the steady-state assumption, which allowed

us to take qt outside the integrals in Eq. 2.81, causes a small difference in pressure re-

sponse between the analytical solution and the numerical simulation at early production

time. But this difference disappears shortly after production begins, unless the water

bank is very large, and does not affect the later time pressure response. For example,

Fig. 2.6 shows a case with 5-hour water injection. The water bank extends to about 15

feet at the end of the injection/falloff periods. After 0.0003 hours of production, the flow

rate profile (the dashed curve) within the two-phase zone is not constant. However, the

total flow rate is essentially constant in the two-phase zone after 0.1 hours. For a larger

water bank, the constant flow rate propagation takes longer to cover the two-phase re-

gion. Here, Fig. 2.7 shows the saturation profile and total flow rate distributions of the
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Figure 2.6: Relationship between water saturation and total flow rate profile during pro-
duction with an initial water bank for case with a 5-hour injection (M̂ = 3.0).

case with a 48-hour water injection. The radius of two-phase water bank is 43.3 ft after

injection, solid curve as shown in Fig. 2.7. In Fig. 2.7, the total flow rates at times of

0.01 hour, 0.4 hour and 1.0 hour are also shown respectively. In the region of the water

bank, we note that the total flow rate at 0.4 hours (doted curve) is close to the constant

total flow rate of 3000 RB/Day. We also know that the farther from the wellbore, the

total mobility change has the less effect on the pressure change in the water phase in

the two-phase zone. So for an initial injection test of less than a few days in length, the

inaccuracies in the pressure solution for production period are negligible for ∆t > 1 hour.

2.7 Validation of Approximate Analytical Solution of IFPT

In this section, we first considered two cases with different mobility ratios, favorable

and unfavorable calculated based on the endpoint saturations by Eq. 1.2, to study the

validity of our approximate analytical solution of the IFPT with a constant water injection

rate and a same constant production rate during production. Multirate production is also
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Figure 2.7: Relationship between water saturation and total flow rate profile during pro-
duction with an initial water bank for case with a 48-hour injection (M̂ = 3.0).

Property Value
qinj 3000 RB/Day
h 60 ft
rw 0.350 ft
re 6800 ft
k 300 md
Siw 0.1
Sor 0.25
pi 2500 psi
φ 0.22
Bo 1.003 RB/STB
Bw 1.002 RB/STB
co 8.0× 10−6 psi−1

cw 3.02× 10−6 psi−1

cr 5.0× 10−6 psi−1

Table 2.1: Reservoir, rock and fluid properties for simulation and analytical solution.

evaluated in this research. For the multirate production, we investigated the multirate

effect on our analytical solution. We also studied effects of a large water bank after a long

water injection on the our analytical solution of pressure response during production. The
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reservoir is infinite-acting throughout the test. Table 2.1 shows the parameters used for

simulation as well as for analytical calculations. The true data is generated by running

the reservoir simulator. The true relative permeability curves are generated from a power

law model. The definition of the power law model of relative permeabilities are defined

as

krw(Sw) = aw

(
Sw − Siw

1− Siw − Sor

)nw

, (2.83)

and

kro(Sw) = ao

(
1− Sw − Sor

1− Siw − Sor

.

)no

(2.84)

A detailed explanation of power law relative permeability curves is given in Chapter 4.

Note we assume that relative permeability is obtained by normalizing effective permeabil-

ities by effective oil permeability at irreducible water saturation, so kro(Siw) = 1.

2.7.1 Unfavorable Mobility Ratio (M̂ = 3.0)

In this case, the IFPT is a test sequence of 16-hour injection, 16-hour falloff and

24-hour production. We will mainly focus on the comparison between the approximate an-

alytical solution and the numerical simulation result during the production. The relative

permeability is based on power law model with krw(Sw = 1 − Sor) = 0.5 and nw = no =

2.0. The viscosities of oil and water are µo = 3.0 cp and µw = 0.5 cp, respectively. The

endpoint mobility ratio is 3.0. At the end of water injection, rwf (tp) = 25.0 ft based on

the Buckley-Leverett calculation.

Fig. 2.8 compares the analytical solution (solid curve) with the simulation result

(circular data points) from simulator IMEX. The analytical solution mirrors the numerical

result. Because water mobility is higher than oil mobility, the total pressure response

during injection is lower than the single phase oil injection pressure (dashed curve). During

production, while oil is flowing back to the well, the pressure shows a sharp drop due to a

rapid decrease in total mobility. Fig. 2.9 shows a comparison of the water saturation profile
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Figure 2.8: Bottomhole pressure, analytical solution versus simulation result for unfavor-
able mobility ratio (M̂ = 3.0).

from the analytical and numerical simulations at different times during the production

period. In this figure, the solid curves correspond to the analytical solution and the

dashed curves correspond to the numerical simulation. The analytical solution and the

simulation results are in good agreement. For the unfavorable mobility ratio, production

is more like piston displacement because when oil is displacing water, the mobility ratio

is favorable.

When we apply the analytical solution as the forward model to estimate relative

permeability curves, we only use the pressure data 0.5 hours after the last rate change

which is generally enough to avoid the inaccuracies from the steady-state assumption

and account for the fact that in practice, early time data will normally be corrupted by

wellbore storage effects. The behavior of the wellbore pressure change during production,

∆p = pwf,f (tp)− pwf (t), and the absolute value of its derivative with respective to ln(∆t)

versus ∆t are illustrated in the diagnostic plot, Fig. 2.10. Because of the effect of total

mobility change, the derivative in Fig. 2.10 is negative in the time after oil “breakthrough”,
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Figure 2.9: Comparison of water saturation profile between analytical model and simula-
tion results for unfavorable mobility ratio (M̂ = 3.0).

we have used the absolute value of the log-derivative to show that the analytical solution

matches the simulation results very well. Fig. 2.11 shows the normal diagnostic plot of

the pressure and its log-derivative.

2.7.2 Favorable Mobility Ratio (M̂ = 0.25)

Next, we consider a favorable mobility ratio case with an endpoint mobility ratio

of M̂ = 0.25. In this case, the IFPT is also a test sequence of 16-hour injection, 16-

hour falloff and 24-hour production. The relative permeabilities are based on power law

model with krw(Sw = 1 − Sor) = 0.5 and nw = no = 2.0. Viscosities of oil and water

are µw = 1.0 cp and µo = 0.5 cp, respectively. The test sequence is the same as for

the unfavorable case. After 16 hours of water injection, the water front is located at

21.5 ft from the wellbore based on the Buckley-Leverett calculation. Fig. 2.12 shows the

water saturation evolution during production and compares results from the analytical

solution (solid curves) with results from the simulator solution (the dashed curve). We
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Figure 2.10: Plot of production pressure difference and its absolute derivative for unfa-
vorable mobility ratio (M̂ = 3.0).

obtain good matches for all times, although at late times, the oil front seems to move very

slightly faster for the simulation results. In Fig. 2.13, the bottomhole pressure computed

with the approximate analytical solution (solid curve) shows a very good agreement with

the numerical simulation result (circles). After oil flows back to the wellbore, t > 40

hours in Fig. 2.13, the bottomhole pressure increases because total mobility is increasing.

Fig. 2.14 shows the production pressure change and the absolute value of its log-derivative

as defined in the previous subsection. In this figure, we also use the absolute derivative

value, because the total mobility is increasing, the derivative of the pressure change is

negative value while oil is flowing back in the wellbore, ∆t > 4.1 hours. Fig. 2.15 shows

the corresponding semi-log plot pressure difference ∆p and its log-derivative.
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mobility ratio (M̂ = 3.0).
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Figure 2.12: Comparison of water saturation profile between analytical model and simu-
lation results for favorable mobility ratio (M̂ = 0.25).
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Figure 2.13: Bottomhole pressure, analytical solution versus simulation result for favorable
mobility ratio (M̂ = 0.25).
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Figure 2.14: Plot of production pressure difference and its absolute derivative for favorable
mobility ratio (M̂ = 0.25).
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Figure 2.15: Plot of production pressure difference and its derivative for favorable mobility
ratio (M̂ = 0.25).

45



2.7.3 Multi-rate Production

In practice, it is always difficult to maintain a constant production rate. The fol-

lowing provides some examples with multirate production to show the applicability of our

analytical pressure solution. For multirate production, three situations were considered

based on the size of the water bank after water injection and frequency of fluctuation of

flow rate in this research.

We first present cases with a small water bank after a short period of water in-

jection. We study cases with both unfavorable and favorable mobility ratios. The water

banks are obtained after 5 hours of water injection. Fig. 2.16 shows the production rate

history of the well. The production rate changes from 3000 RB/Day to 1800 RB/Day

in 5 steps and the difference between two sequential rates is 300 RB/Day. Each rate,

except the last one, is maintained for a period of 3 hours. Figs. 2.17 and 2.18 show the

comparison between the analytical solution and the simulation result of the bottomhole
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Figure 2.16: Multirate production step function for the case of an initial water bank after
5 hours of water injection.

pressure for unfavorable and favorable mobility ratios, respectively. Very good agreement

is obtained in both cases. In both cases, the pressure behavior is complicated by the
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production rate changes. When the production rate decreases, the pressure usually in-

creases. However, in this case as the production rate changes from the first rate to the

second smaller rate, the pressure shows a sharp drop because oil breaks through. For the

unfavorable case, the oil flows back to to the well around 4.2 hours in the second rate

region, which is shown as a sharp decrease on the pressure curve in Fig. 2.17.

0 2 4 6 8 10 12 14
2000

2100

2200

2300

2400

2500

p w
f, p

si

t, hour

 Analytical
 Simulation

Figure 2.17: Bottomhole pressure of multirate production step function for the case of
unfavorable mobility ratio (M̂ = 4.8).

It is not easy to determine the time of oil breakthrough from the bottomhole

pressure for the favorable mobility ratio case as shown in Fig. 2.18, but it occurs within

the first 3 hour flow period. The comparison of the analytical and simulation results

shows very good agreement in both cases. From an earlier discussion, we know that the

analytical solution deviates from the simulation at very early time due to the steady-state

assumption. A similar deviation can also occur whenever the production rate changes.

Fig. 2.19 shows the total flow rate profile at different production times for the case of an

unfavorable mobility ratio case. During the first rate step, from 0 to 3000 RB/Day, it

takes about 0.5 hours to reach a constant total flow rate within 14.9 ft to the wellbore

(at the end of injection rf = 14.9 ft). However, it takes less time (about 0.1 hours)
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Figure 2.18: Bottomhole pressure of multirate production step function for case of favor-
able mobility ratio (M̂ = 0.25).

to form the constant flow rate in that range of the reservoir for subsequent production

rate changes. The favorable mobility case shows essentially the same behavior and is not

presented here.

A more complicated production rate profile is shown in Fig. 2.20. This case (M̂ =

4.8) is based on a 5-hour injection with injection rate of 3000 Rb/Day followed by a 5-

hour falloff and a 14-hour production. After injection, the radius of water bank is 14.9

ft. During production, the change of rate is randomly generated with the maximum

flow rate change between two neighboring times equal to 200 RB/Day. Fig. 2.21 shows

the comparison of the analytical solution (solid curve) to the numerical results (dash

curve). which is obtained from reservoir simulation based on the parameters in Table 2.1.

Surprisingly good agreement between the two curves is obtained and no visual distinction

can be made from the figure. This case shows that the analytical solution is quite stable for

the multirate case, and that the steady-state assumption is appropriate. The bottomhole

pressure looks noisy due to the high frequency change on the production rate. Oil breaks

into the well around 5 hours after production as revealed by the sharp pressure decrease.
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Figure 2.19: Production rate distributions in the two-phase zone at different time (M̂ =
4.8).
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Figure 2.20: A variable flow rate production schedule.
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Figure 2.21: Bottomhole pressure under the random production flow rate schedule for the
case of unfavorable mobility ratio (M̂ = 4.8).

The cases shown above indicated that with a small two phase zone, the steady-

state assumption is reasonable. This section presents some cases with a much larger water

bank (two phase region) formed after a long time of water injection. The main purpose

for this case is to test the validity of the steady-state assumption with a large water bank

for variable production rate.

Following case is an IFPT with a sequence of 48-hour injection, 24-hour falloff and

72-hour production. Some parameters for reservoir simulation and analytical solution

are shown in Table 2.1. We use power law model for the relative permeabilities with

krw(Sw = 1 − Sor) = 0.5 and nw = no = 2.0. The viscosities of oil and water are,

respectively, µw = 0.5 cp and µo = 3.0 cp. The endpoint mobility ratio is M̂ = 3.0. During

production, we use also a multirate production as shown in Fig. 2.22. The multirate

production is combined with 36 decreasing production rate steps. The time of each step

is two hours. The production rates of the first step and the last one are 2950 RB/Day

and 1200 RB/Day respectively. The rate difference between two neighbor uniform time

interval steps is 50 RB/Day. At the end of the water injection, the water front location is
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rwf (tp) = 43.3 ft based on the Buckely-Leverett theory as shown in Fig. 2.23, a comparison

of water saturation evolution between reservoir simulation and our analytical solution

during production. In Fig. 2.23, we compared the water saturation snapshots at the end

of water injection, before oil “breakthrough” and after oil “breakthrough”, respectively.

For all saturation snapshot, the solutions of our analytical model (solid curves) and the

results of reservoir simulation (dashed curves) have a good agreement. Fig. 2.24 shows

the comparison bottomhole pressure between the solution of our analytical model (solid

curve) and the result of reservoir simulation (dashed curve). They have a good match

with each other again, even for the oscillation of pressure during production because of

the multirate production. The oil “breakthrough” time is around 120 hours and makes

a sharp drop on pressure response. After oil “breakthrough”, the pressure response is

essentially dominated by single-phase oil and shows increasing pressure steps because of

the decreasing production rate steps.
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Figure 2.22: Total flow rate for case of 48-hour injection, 24-hour falloff and 72-hour
production (M̂ = 3.0).
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Figure 2.23: Comparison of water saturation evolution during production for case of
48-hour injection, 24-hour falloff and 72-hour production (M̂ = 3.0).
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Figure 2.24: Comparison of bottomhole pressure for case of 48-hour injection, 24-hour
falloff and 72-hour production (M̂ = 3.0).
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Next case is an IFPT with a sequence of 100-hour injection, 100-hour falloff and

150-hour production. All other parameters of reservoir and fluids are the same as in the

cases, previous. The water front is located at 66.7 ft from the wellbore after 100 hours

of water injection for the unfavorable mobility ratio (M̂ = 4.8) case. Fig. 2.25 shows

the production rate changes. Each production rate is maintained for 30 hours. Fig. 2.26
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Figure 2.25: Step of production flow rate for case after 100 hours water injection.

shows the comparison of bottomhole pressure between the analytical solution (solid curve)

and the simulation result (dashed curve) for both the single phase oil and two-phase pres-

sure response. The analytical solution has a good agreement with the simulation result.

Generally, the difference between the bottomhole pressure of the analytical solution and

simulation result of two phase is less than 1 psi except during early production time,

where the steady state assumption is not valid. However, the data points at oil break-

through (around 95 hours) show a maximum pressure difference of 15 psi between the

analytical solution and simulation result at only one time point. In practice of nonlinear

regression, we need to avoid using this type of singular point as the observed data. This

is mainly due to fact that at oil breakthrough the pressure decreases sharply (Fig. 2.26)
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and a small difference in oil breakthrough time makes a big pressure difference. As in the

small water bank cases, the steady-state assumption has limited impact on the analytical

solution during production rate change, except at very early time of production when the

production rate changes from 0 to 3000 RB/Day. The diagnostic plot in Fig. 2.27 shows

that the pressure difference between analytical solution and simulation result is greater

than 5 psi before 1 hour and decreases to less than 2 psi around 5 hours. Compared with

the previous cases with a short injection time and a smaller water bank, it takes a longer

time to overcome the non-constant rate effect for the analytical solution.
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Figure 2.26: Bottomhole pressure under the production flow rate step after 100 hours
water injection for case of unfavorable mobility ratio (M̂ = 4.8).

Figs. 2.28 and 2.29 show the results for a favorable mobility ratio case (M̂ = 0.25)

case. After 100 hours of water injection, the water front location is 55.4 ft away from the

wellbore. The pressure match between the analytical solution and simulation is as good

as the unfavorable case shown in Fig. 2.26. The semi-log plot of pressure in Fig. 2.29
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shows that the non-constant production rate effect disappears around 0.2 hour, which is

much shorter than for the unfavorable case because of a slightly smaller water bank and

a higher oil mobility.
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Figure 2.27: Pressure difference under the production flow rate step after 100 hours water
injection for case of unfavorable mobility ratio (M̂ = 4.8).
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Figure 2.28: Bottomhole pressure under the production flow rate step after 100 hours
water injection for case of favorable mobility ratio (M̂ = 0.25).
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Figure 2.29: Pressure difference under the production flow rate step after 100 hours water
injection for case of favorable mobility ratio (M̂ = 0.25).
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CHAPTER 3

PRESSURE RESPONSE OF THE IFPT WITH

CAPILLARY PRESSURE

In this chapter, the capillary pressure effect on the Injection/Falloff/Production

test is studied. In the previous chapter, the pressure response of two-phase oil-water

flow was obtained as a sum of pressure responses in single-phase oil and in a water bank

around the wellbore. In this chapter, the nonlinear partial differential equation (PDE)

for water saturation evolutions including capillary pressure is solved using a finite differ-

ence method. Then the pressure responses of the IFPT with capillary pressure were also

obtained using the steady-state theory of Thompson and Reynolds [55]. The numerical

results are compared with the results from a reservoir simulator with capillary pressure

effect and shown to be in good agreement.

3.1 Saturation Evolutions with the Capillary Pressure Effect

In Chapter 2, Eq. 2.16 gives the nonlinear hyperbolic PDE system based on mass

conservation of water with the capillary pressure effect. By substituting Eq. 2.7 into

Eq. 2.16 and rearranging, we get

2πhφ

θ

∂Sw

∂t
+

1

r
qt

∂

∂r

[
fw(Sw)

+ 1.127× 10−3 1

qt

2πhkfw(Sw)λo(Sw)r
∂pc(Sw)

∂r

]
= 0,

(3.1)

or equivalently, as
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2πhφ

θ

∂Sw

∂t
+

1

r
qt

∂fw(Sw)

∂r

+ 1.127× 10−3 · 2πhk
1

r

∂

∂r

[
fw(Sw)λo(Sw)r

∂pc(Sw)

∂r

]
= 0,

(3.2)

For injection, falloff and production, Eq. 3.2 has different initial conditions (IC) and

boundary conditions (BC). During injection and production, the total flow rate, qt, is

not equal to zero, and convection dominates the physical behavior at high rates. During

falloff, it is assumed that the total flow rate, qt, is zero in the water bank almost imme-

diately after the shut-in, so diffusion shows the dominant behavior. We were unable to

find an analytical solution for this PDE system using perturbation theory. Thus we use

a finite difference method to solve this nonlinear PDE.

3.1.1 Saturation Evolution during Water Injection

We assume water is injected into an infinite homogeneous reservoir with an initial

uniform distribution equal to irreducible water saturation, Siw. Then the PDE has its

initial condition and boundary condition as


I.C. Sw(r, t = 0) = Siw;

B.C. Sw(r = rw, t) = 1− Sor, t > 0;

Sw(r = ∞, t) = Siw, t ≥ 0.

(3.3)

When the finite difference method is used to solve the PDE, we solve the problem in a

cylindrical reservoir of radius re, where re is sufficiently large to ensure that the water

front at the end of injection does not reach re. In practice, we set re equal to 2 times the

radius of the water front at the end time of water injection, tp, i.e.,

re = 2

√
r2
w +

θqt

πhφ
tp

dfw(Swf )

dSwf

. (3.4)

which also should clearly be greater than the maximum distance of the capillarity diffusion

58



during falloff. Considering mass conservation, we take a uniform block center grid system

for the finite difference as shown in Fig. 3.1.
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Figure 3.1: Block center grid of water saturation distribution.

There are N blocks in the r-direction. Each grid block represents a water saturation

ring, Swj
, 1 ≤ j ≤ N , centered at the wellbore. The grid block has a uniform thickness

defined by

∆r = rj+ 1
2
− rj− 1

2
=

re

N
, for 1 ≤ j ≤ N, (3.5)

The initial condition and boundary conditions for the finite difference method can be

expressed by



I.C. S0
wj

, 1 ≤ j ≤ N ;

B.C. Sn
w 1

2

= 1− Sor, n = 1, 2, 3, · · · ;

Sn
w

N+1
2

= Siw, n = 1, 2, 3, · · · ,

(3.6)

where the superscript n refer to the time step.

In order to obtain the numerical solution of the partial differential equation of mass

conservation by a finite difference method, finite difference quotients are used to replace

the partial derivatives. Using the implicit backward-difference equation and assuming a

total injection rate qt > 0, the mass conservation can be expressed by

πhφ
(
r2
j+ 1

2

− r2
j− 1

2

)
θ

Sn+1
wj

− Sn
wj

∆t
+ qt

(
F n+1

w
j+1

2

− F n+1
w

j− 1
2

)
= 0, (3.7)

where, according to the definition of fractional flow considering the capillary pressure, we

have
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F n+1
w

j− 1
2

= fn+1
w

j− 1
2

+ 1.127× 10−3 1

qt

2πhkj− 1
2
rj− 1

2
fn+1

w
j− 1

2

λn+1
o

j− 1
2

∂pc

∂r

∣∣∣∣n+1

j− 1
2

(3.8)

and

F n+1
w

j+1
2

= fn+1
w

j+1
2

+ 1.127× 10−3 1

qt

2πhkj+ 1
2
rj+ 1

2
fn+1

w
j+1

2

λn+1
o

j+1
2

∂pc

∂r

∣∣∣∣n+1

j+ 1
2

. (3.9)

For the uniform grid, we have

r2
j+ 1

2
− r2

j− 1
2

= (rj + ∆r)2 − (rj −∆r)2

= (rj + ∆r + rj −∆r)(rj + ∆r − rj + ∆r)

= 2rj∆r.

(3.10)

Substituting Eqs. 3.8, 3.9 and 3.10 into Eq. 3.7 and reorganizing, we have

2πh

θφ
rj

∆r

∆t

(
Sn+1

wj
− Sn

wj

)
+ qt

(
fn+1

w
j+1

2

− fn+1
w

j− 1
2

)
+ 1.127× 10−32πh

(
kj+ 1

2
rj+ 1

2
fn+1

w
j+1

2

λn+1
o

j+1
2

∂pc

∂r

∣∣∣∣n+1

j+ 1
2

− kj− 1
2
rj− 1

2
fn+1

w
j− 1

2

λn+1
o

j− 1
2

∂pc

∂r

∣∣∣∣n+1

j− 1
2

)
= 0.

(3.11)

Using the backward difference to replace the partial difference of capillary pressure pc

with respect to distance, r, i.e.,

∂pc

∂r

∣∣∣∣n+1

j− 1
2

=
pn+1

cj
− pn+1

cj−1

rj − rj−1

=
pn+1

cj
− pn+1

cj−1

∆r
(3.12)

and

∂pc

∂r

∣∣∣∣n+1

j+ 1
2

=
pn+1

cj+1
− pn+1

cj

rj+1 − rj

=
pn+1

cj+1
− pn+1

cj

∆r
, (3.13)

then Eq 3.11 can be written as
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2πh

θφ
rj

∆r

∆t

(
Sn+1

wj
− Sn

wj

)
+ qt

(
fn+1

w
j+1

2

− fn+1
w

j− 1
2

)
+ 1.127× 10−32πh

(
kj+ 1

2
rj+ 1

2
fn+1

w
j+1

2

λn+1
o

j+1
2

pn+1
cj+1

− pn+1
cj

∆r

− kj− 1
2
rj− 1

2
fn+1

w
j− 1

2

λn+1
o

j− 1
2

pn+1
cj

− pn+1
cj−1

∆r

)
= 0.

(3.14)

In virtually all cases, we consider homogeneous permeability and porosity fields. If per-

meability values from gridblock to gridblock, we use the standard and harmonic average

to evaluate kj+ 1
2

0 ≤ j ≤ N with k 1
2

= k1 and kN+ 1
2

= kN . We use upstream weighting

[44] to evaluate the values at the grid block boundaries, so, for water injection, we have

fw
j+1

2

= fwj
;

λo
j+1

2

= λoj
;

fw
j− 1

2

= fwj−1
;

λo
j− 1

2

= λoj−1
.

(3.15)

Thus, setting kj+ 1
2

= kj− 1
2

= k, and using upstream weighting, Eq. 3.14 can be replaced

by

2πh

θφ
rj

∆r

∆t

(
Sn+1

wj
− Sn

wj

)
+ qt

(
fn+1

wj
− fn+1

wj−1

)
+ 1.127× 10−32πh

(
rj+ 1

2
kfn+1

wj
λn+1

oj

pn+1
cj+1

− pn+1
cj

∆r

− rj− 1
2
kfn+1

wj−1
λn+1

oj−1

pn+1
cj

− pn+1
cj−1

∆r

)
= 0,

1 ≤ j ≤ N.

(3.16)

For spacial values at boundaries j = 0 and j = N + 1, we have values of

∂pc

∂r

∣∣∣∣n+1

N+ 1
2

=
pn+1

c1
− pn+1

c 1
2

r1 − r 1
2

=
pn+1

c (Sw1)− pn+1
c (1− Sor)

1
2
∆r

(3.17)

and
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∂pc

∂r

∣∣∣∣n+1

N+ 1
2

=
pn+1

c
N+1

2

− pn+1
cN

rN+ 1
2
− rN

=
pn+1

c (Siw)− pn+1
c (SwN

)
1
2
∆r

(3.18)

Because fw(Sw), λo(Sw) and pc(Sw) are functions of water saturation, the preceding

system equations represent N nonlinear equations in the N unknowns, Sn+1
wj

, 1 ≤ j ≤ N .

For a new time step, n+1, denote the nonlinear finite difference equation centered at grid

block j as gn+1
j :

gn+1
j

(
Sn+1

w1
, Sn+1

w2
, · · · , Sn+1

wN

)
= 0. (3.19)

The solution of this system is denoted by a vector:

Sn+1
w =

(
Sn+1

w1
, Sn+1

w2
, · · · , Sn+1

wN

)T
. (3.20)

The Newton-Raphson method is used to system equations gi. Let Sn+1,k
w be the most

recent iteration’s estimate of Sn+1
w , and Sn+1,k+1

w be the next iteration’s estimate. Let

δSn+1,k+1
w = Sn+1,k+1

w − Sn+1,k
w . Then by a Taylor’s series expansion, we have

gn+1,k+1
j ≡ gn+1

j (Sn+1,k+1
w ) = gn+1

j (Sn+1,k
w ) +

[
∇(gn+1,k

j )
]T

δSn+1,k+1
w

+O(δSn+1,k+1
w

T
δSn+1,k+1

w ) = 0,

(3.21)

Keeping only the first-order term, we have

gn+1
j (Sn+1,k

w ) +
[
∇(gn+1,k

j )
]T

δSn+1,k+1
w

∼= 0, (3.22)

where

gn+1,k
j ≡ gj

(
Sn+1,k

wj

)
. (3.23)

Eq. 3.22 is for a single equation gn+1
j . Assembling all the equations gives
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∂gn+1,k
1

∂Sn+1,k
w1

∂gn+1,k
1

∂Sn+1,k
w2

· · · ∂gn+1,k
1

∂Sn+1,k
wN

∂gn+1,k
2

∂Sn+1,k
w1

∂gn+1,k
2

∂Sn+1,k
w2

· · · ∂gn+1,k
2

∂Sn+1,k
wN

...
...

. . .
...

∂gn+1,k
N

∂Sn+1,k
w1

∂gn+1,k
N

∂Sn+1,k
w2

· · · ∂gn+1,k
N

∂Sn+1,k
wN





δSn+1,k+1
w1

δSn+1,k+1
w2

...

δSn+1,k+1
wN


= −



gn+1,k
1

gn+1,k
2

...

gn+1,k
N


. (3.24)

The coefficient matrix is the Jacobian,
(

∂gi

∂Sn+1,k
wj

)
. When the linear equations, Eq. 3.24, is

solved, the update,
(
δSn+1,k+1

wj

)
N×1

, is obtained for iteration k. the updated saturations

at tn+1 are given by

Sn+1,k+1
wj

= Sn+1,k
wj

+ δSn+1,k+1
wj

, for 1 ≤ j ≤ N. (3.25)

When an update satisfies the convergence criteria,

max ‖δSn+1,k+1
w ‖∞ ≤ ε, (3.26)

the iteration stops, where ε = 0.001 in this work. Then the calculation of Swj
goes to the

next time step. The initial guess for next time step Newton-Raphson is the solution for

saturation at the previous time step.

For the problem of water saturation evolution during water injection, Eq. 3.16, the

finite difference equation can be written as

gn+1
1 = qt

(
fn+1

w1
− fn+1

w 1
2

)
+ 1.127× 10−32πh

(
r1+ 1

2
kfn+1

w1
λn+1

o1

pn+1
c2

− pn+1
c1

∆r

− r 1
2
kfn+1

w 1
2

λn+1
o 1

2

pn+1
c1

− pn+1
c 1
2

1
2
∆r

)
+

2πh

θφ
r1

∆r

∆t

(
Sn+1

w1
− Sn

w1

)
= 0

(3.27)
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gn+1
j = qt

(
fn+1

wj
− fn+1

wj−1

)
+ 1.127× 10−32πh

(
rj+ 1

2
kfn+1

wj
λn+1

oj

pn+1
cj+1

− pn+1
cj

∆r

− rj− 1
2
kfn+1

wj−1
λn+1

oj−1

pn+1
cj

− pn+1
cj−1

∆r

)
+

2πh

θφ
rj

∆r

∆t

(
Sn+1

wj
− Sn

wj

)
= 0,

for 2 ≤ j ≤ N − 1;

(3.28)

and

gn+1
N = qt

(
fn+1

wN
− fn+1

wN−1

)
+ 1.127× 10−32πh

(
rN+ 1

2
kfn+1

wN
λn+1

oN

pn+1
c
N+1

2

− pn+1
cN

1
2
∆r

− rN− 1
2
kfn+1

wN−1
λn+1

oN−1

pn+1
cN

− pn+1
cN−1

∆r

)
+

2πh

θφ
rN

∆r

∆t

(
Sn+1

wN
− Sn

wN

)
= 0.

(3.29)

In Eq. 3.28, for 2 ≤ j ≤ N−1, note that one finite difference equation, gn+1
j , only involves

three water saturations, Sn+1
wj−1

, Sn+1
wj

and Sn+1
wj+1

. Thus we have

∂gn+1
j

∂Sn+1
wl

= 0, for l 6=, j − 1, j and j + 1 (3.30)

and

∂gn+1
j

∂Sn+1
wj−1

= −qtf
′n+1
wj−1

+ 1.127×10−32πhrj− 1
2
k

(
− f

′n+1
wj−1

λn+1
oj−1

pn+1
cj

− pn+1
cj−1

∆r

− fn+1
wj−1

λ
′n+1
oj−1

pn+1
cj

− pn+1
cj−1

∆r
+ fn+1

wj−1
λn+1

oj−1

p
′n+1
cj−1

∆r

)
,

(3.31)
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∂gn+1
j

∂Sn+1
wj

= qtf
′n+1
wj

+1.127× 10−32πh

[
rj+ 1

2
k

(
f
′n+1
wj

λn+1
oj

pn+1
cj+1

− pn+1
cj

∆r

+ fn+1
wj

λ
′n+1
oj

pn+1
cj+1

− pn+1
cj

∆r
− fn+1

wj
λn+1

oj

p
′n+1
cj

∆r

)
− rj− 1

2
kfn+1

wj−1
λn+1

oj−1

p
′n+1
cj

∆r

]
+

2πh

θφ
rj

∆r

∆t

(3.32)

and

∂gn+1
j

∂Sn+1
wj+1

= 1.127× 10−32πhrj+ 1
2
kfn+1

wj
λn+1

oj

p
′n+1
cj+1

∆r
, (3.33)

where

f
′

wj
=

dfw(Swj
)

dSw

,

λ
′

oj
=

dλo(Swj
)

dSw

,

p
′

cj
=

dpc(Swj
)

dSw

.

(3.34)

According to Eq. 3.27, for j = 1, we have

∂gn+1
1

∂Sn+1
w 1

2

= −qtf
′n+1
w 1

2

+ 1.127×10−32πhr 1
2
k

(
− f

′n+1
w 1

2

λn+1
o 1

2

pn+1
c1

− pn+1
c 1
2

1
2
∆r

− fn+1
w 1

2

λ
′n+1
o 1

2

pn+1
c1

− pn+1
c 1
2

1
2
∆r

+ fn+1
w 1

2

λn+1
o 1

2

p
′n+1
c 1
2

1
2
∆r

) (3.35)

∂gn+1
1

∂Sn+1
w1

= qtf
′n+1
w1

+1.127× 10−32πh

[
r1+ 1

2
k

(
f
′n+1
w1

λn+1
o1

pn+1
c2

− pcn+1
1

∆r

+ fn+1
w1

λ
′n+1
o1

pn+1
c2

− pn+1
c1

∆r
− fn+1

w1
λn+1

o1

p
′n+1
c1

∆r

)
− r 1

2
kfn+1

w 1
2

λn+1
o 1

2

p
′n+1
c1

1
2
∆r

]
+

2πh

θφ
r1

∆r

∆t

(3.36)

and
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∂gn+1
1

∂Sw2

= 1.127× 10−32πhr1+ 1
2
kfn+1

w1
λn+1

o1

p
′n+1
c2

1
2
∆r

, (3.37)

where

f
′

w 1
2

=
dfw(Sw 1

2

)

dSw

,

λ
′

o 1
2

=
dλo(Sw 1

2

)

dSw

,

p
′

c 1
2

=
dpc(Sw 1

2

)

dSw

.

(3.38)

From Eq. 3.29, for j = N , we have

∂gn+1
1

∂Sn+1
wN−1

= −qtf
′n+1
wN−1

+ 1.127×10−32πhrN− 1
2
k

(
− f

′n+1
wN−1

λn+1
oN−1

pn+1
cN

− pn+1
cN−1

∆r

− fn+1
wN−1

λ
′n+1
oN−1

pn+1
cN

− pn+1
cN−1

∆r
+ fn+1

wN−1
λn+1

oN−1

p
′n+1
cN−1

∆r

) (3.39)

∂gn+1
1

∂Sn+1
wN

= qtf
′n+1
wN

+1.127× 10−32πh

[
rN+ 1

2
k

(
f
′n+1
wN

λn+1
oN

pn+1
c
N+1

2

− pcn+1
N

1
2
∆r

+ fn+1
wN

λ
′n+1
oN

pn+1
c
N+1

2

− pn+1
cN

1
2
∆r

− fn+1
wN

λn+1
oN

p
′n+1
cN

1
2
∆r

)
− rN− 1

2
kfn+1

w
N− 1

2

λn+1
o

N− 1
2

p
′n+1
cN

∆r

]
+

2πh

θφ
rN

∆r

∆t

(3.40)

and

∂gn+1
1

∂Sw
N+1

2

= 1.127× 10−32πhrN+ 1
2
kfn+1

wN
λn+1

oN

p
′n+1
c
N+1

2

1
2
∆r

, (3.41)

where
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f
′

w
N+1

2

=
dfw(Sw

N+1
2

)

dSw

,

λ
′

o
N+1

2

=
dλo(Sw

N+1
2

)

dSw

,

p
′

c
N+1

2

=
dpc(Sw

N+1
2

)

dSw

.

(3.42)

For the above problem, apply the Newton-Raphson method to the iteration esti-

mate of the grid block value of Sn+1
wj

, 1 ≤ j ≤ N . Then we have

(
J
)



δSn+1,i+1
w 1

2

δSn+1,i+1
w1

...

δSn+1,i+1
wj

...

δSn+1,i+1
wN

δSn+1,i+1
w

N+1
2



= −



gn+1,i
1

gn+1,i
2

...

gn+1,i
j

...

gn+1,i
N−1

gn+1,i
N



(3.43)

where
(
J
)

N×(N+2)
is the Jacobian coefficient matrix, which is equal to

(
J
)

N×(N+2)
=



∂gn+1,i
1

∂Sn+1,i
w 1

2

∂gn+1,i
1

∂Sn+1,i
w1

∂gn+1,i
1

∂Sn+1,i
w2

0 · · · · · · · · · · · · 0

0
∂gn+1,i

2

∂Sn+1,i
w1

∂gn+1,i
2

∂Sn+1,i
w2

∂gn+1,i
2

∂Sn+1,i
w3

0 · · · · · · · · · 0

...
. . . . . . . . . . . . . . .

...
...

...

0 · · · 0
∂gn+1,i

j

∂Sn+1,i
wj−1

∂gn+1,i
j

∂S
w

n+1,i
j

∂gn+1,i
j

∂Sn+1,i
wj+1

0 · · · 0

...
...

...
. . . . . . . . . . . . . . . 0

0 · · · · · · · · · 0
∂gn+1,i

N−1

∂Sn+1,i
wN−2

∂gn+1,i
N−1

∂Sn+1,i
wN−1

∂gn+1,i
N−1

∂Sn+1,i
wN

0

0 · · · · · · · · · · · · 0
∂gn+1,i

N

∂Sn+1,i
wN−1

∂gn+1,i
N

∂Sn+1,i
wN

∂gn+1,i
N

∂Sn+1,i
w

N+1
2


In Eq. 3.43, there are N equations, but N + 2 unknowns. Boundary Condition, Eq. 3.6,

provides Sw 1
2

= 1− Sor and Sw
N+1

2

= Siw, which mean δSw 1
2

= 0 and δSw
N+1

2

= 0. Then

the Jacobian matrix above can be simplified as
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(
J
)

=



∂gn+1,i
1

∂Sn+1,i
w1

∂gn+1,i
1

∂Sn+1,i
w2

∂gn+1,i
2

∂Sn+1,i
w1

∂gn+1,i
2

∂Sn+1,i
w2

∂gn+1,i
2

∂Sn+1,i
w3

. . . . . . . . .

∂gn+1,i
j

∂Sn+1,i
wj−1

∂gn+1,i
j

∂S
w

n+1,i
j

∂gn+1,i
j

∂Sn+1,i
wj+1

. . . . . . . . .

∂gn+1,i
N−1

∂Sn+1,i
wN−2

∂gn+1,i
N−1

∂Sn+1,i
wN−1

∂gn+1,i
N−1

∂Sn+1,i
wN

∂gn+1,i
N

∂Sn+1,i
wN−1

∂gn+1,i
N

∂Sn+1,i
wN



,

which is an N ×N tridiagonal matrix, and the Newton-Raphson iteration, Eq. 3.43, can

be simplified as

(
J
)



δSn+1,i+1
w1

δSn+1,i+1
w2

...

δSn+1,i+1
wj

...

δSn+1,i+1
wN−1

δSn+1,i+1
wN



= −



gn+1,i
1

gn+1,i
2

...

gn+1,i
j

...

gn+1,i
N−1

gn+1,i
N



(3.44)

3.1.2 Saturation Evolution during Falloff

During falloff, it is assumed that total flow rate, qt, is zero in this research, although

as discussed previously in Chapter 2, this is not valid at very early times. Then in Eq. 3.2

the convection term disappears, i.e., diffusion dominates the physical behavior during

falloff. Another assumption is that the diffusion does not propagate to the two boundaries

during falloff. So during falloff, Eq. 3.2 gives the following partial differential equation

and initial and boundary conditions:
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PDE :
2πhφ

θ

∂Sw

∂t
+ 1.127× 10−3 · 2πhk

1

r

∂

∂r

[
fw(Sw)λo(Sw)r

∂pc(Sw)

∂r

]
= 0, (3.45)

and 
I.C. Sw(r, t = 0) = Sw(r, tp);

B.C. Sw(r = rw, t) = 1− Sor, t > 0;

Sw(r = re, t) = Siw, , t > 0,

(3.46)

where the initial condition Sw(r, t = 0) = Sw(r, tp) is the water saturation distribution

obtained at the end of water injection. The upstream weight is also used for the finite

difference equations during falloff. For a given time step, n + 1, the finite difference

equations of mass conservation of grid blocks and the initial and boundary conditions can

be expressed by

gn+1
1 = 1.127× 10−32πh

(
r1+ 1

2
kfn+1

w1
λn+1

o1

pn+1
c2

− pn+1
c1

∆r

− r 1
2
kfn+1

w 1
2

λn+1
o 1

2

pn+1
c1

− pn+1
c 1
2

1
2
∆r

)
+

2πh

θφ
r1

∆r

∆t

(
Sn+1

w1
− Sn

w1

)
= 0,

(3.47)

gn+1
j = 1.127× 10−32πh

(
rj+ 1

2
kfn+1

wj
λn+1

oj

pn+1
cj+1

− pn+1
cj

∆r

− rj− 1
2
kfn+1

wj−1
λn+1

oj−1

pn+1
cj

− pn+1
cj−1

∆r

)
+

2πh

θφ
rj

∆r

∆t

(
Sn+1

wj
− Sn

wj

)
= 0;

for 2 ≤ j ≤ N − 1,

(3.48)
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gn+1
N = 1.127× 10−32πh

(
rN+ 1

2
kfn+1

wN
λn+1

oN

pn+1
c
N+1

2

− pn+1
cN

1
2
∆r

− rN− 1
2
kfn+1

wN−1
λn+1

oN−1

pn+1
cN

− pn+1
cN−1

∆r

)
+

2πh

θφ
rN

∆r

∆t

(
Sn+1

wN
− Sn

wN

)
= 0

(3.49)

and 
I.C. S0

wj
= Swj

(rj, tp), 1 ≤ j ≤ N ;

B.C. Sw 1
2

= 1− Sor;

Sw
N+1

2

= Siw.

(3.50)

When we use the Newton-Raphson iteration to solve the equations, the elements of the

Jacobian matrix for gn+1
j to water saturation of blocks can be evaluated by following

equations: for j = 1, we have

∂gn+1
1

∂Sw 1
2

= 1.127×10−32πhr 1
2
k

(
− f

′n+1
w 1

2

λn+1
o 1

2

pn+1
c1

− pn+1
c 1
2

1
2
∆r

− fn+1
w 1

2

λ
′n+1
o 1

2

pn+1
c1

− pn+1
c 1
2

1
2
∆r

+ fn+1
w 1

2

λn+1
o 1

2

p
′n+1
c 1
2

1
2
∆r

)
,

(3.51)

∂gn+1
1

∂Sw1

= 1.127× 10−32πh

[
r1+ 1

2
k

(
f
′n+1
w1

λn+1
o1

pn+1
c2

− pn+1
c1

∆r

+ fn+1
w1

λ
′n+1
o1

pn+1
c2

− pn+1
c1

∆r
− fn+1

w1
λn+1

o1

p
′n+1
c1

∆r

)
− r 1

2
kfn+1

w1
λn+1

o 1
2

p
′n+1
c1

∆r

]
+

2πh

θφ
r1

∆r

∆t

(3.52)

and

∂gn+1
1

∂Sw2

= 1.127× 10−32πhr1+ 1
2
kfn+1

w1
λn+1

o1

p
′n+1
c2

∆r
. (3.53)

For 2 ≤ j ≤ N − 1, we have
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∂gn+1
j

∂Swj−1

= 1.127×10−32πhrj− 1
2
k

(
− f

′n+1
wj−1

λn+1
oj−1

pn+1
cj

− pn+1
cj−1

∆r

− fn+1
wj−1

λ
′n+1
oj−1

pn+1
cj

− pn+1
cj−1

∆r
+ fn+1

wj−1
λn+1

oj−1

p
′n+1
cj−1

∆r

)
,

(3.54)

∂gn+1
j

∂Swj

= 1.127× 10−32πh

[
rj+ 1

2
kj

(
f
′n+1
wj

λn+1
oj

pn+1
cj+1

− pn+1
cj

∆r

+ fn+1
wj

λ
′n+1
oj

pn+1
cj+1

− pn+1
cj

∆r
− fn+1

wj
λn+1

oj

p
′n+1
cj

∆r

)
− rj− 1

2
kj−1f

n+1
wj−1

λn+1
oj−1

p
′n+1
cj

∆r

]
+

2πh

θφ
rj

∆r

∆t

(3.55)

and

∂gn+1
j

∂Swj+1

= 1.127× 10−32πhrj+ 1
2
kfn+1

wj
λn+1

oj

p
′n+1
cj+1

∆r
. (3.56)

For j = N , we have

∂gn+1
N

∂SwN−1

= 1.127×10−32πhrN− 1
2
k

(
− f

′n+1
wN−1

λn+1
oN−1

pn+1
cN

− pn+1
cN−1

∆r

− fn+1
wN−1

λ
′n+1
oN−1

pn+1
cN

− pn+1
cN−1

∆r
+ fn+1

wN−1
λn+1

oN−1

p
′n+1
cN−1

∆r

)
,

(3.57)

∂gn+1
N

∂SwN

= 1.127× 10−32πh

[
rN+ 1

2
k

(
f
′n+1
wN

λn+1
oN

pn+1
c
N+1

2

− pn+1
cN

1
2
∆r

+ fn+1
wN

λ
′n+1
oN

pn+1
c
N+1

2

− pn+1
cN

1
2
∆r

− fn+1
wN

λn+1
oN

p
′n+1
cN

1
2
∆r

)
− rN− 1

2
kfn+1

wN−1
λn+1

oN−1

p
′n+1
cN

∆r

]
+

2πh

θφ
rN

∆r

∆t

(3.58)

and

∂gn+1
N

∂Sw
N+1

2

= 1.127× 10−32πhrN+ 1
2
kfn+1

wN
λn+1

oN

p
′n+1
c
N+1

2

∆r
. (3.59)
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The process of obtaining iteration estimates of grid block saturations by Newton-

Raphson has been described in Eq. 3.44.

3.1.3 Saturation Evolution during Production

After water injection and falloff, there is a water bank which gives the initial

saturation distribution at the beginning of production. During production, oil flows back

to the well and water saturation decreases in the water bank. If we used the total flow

rate as positive, qt > 0, then the mass conservation of water during production can be

expressed by the following partial differential equation:

2πhφ

θ

∂Sw

∂t
− 1

r
qt

∂

∂r

[
fw(Sw)

+ 1.127× 10−3 1

qt

2πhkfw(Sw)λo(Sw)r
∂pc(Sw)

∂r

]
= 0,

(3.60)

During production, the initial condition of water saturation distribution is obtained at

the time at the end time of falloff, ts. In the solution for the saturation during the flow

back (production) period, we let t = 0 correspond to the beginning of production. The

outer boundary saturation is still the irreducible water saturation, Sw(r = re, t) = Siw.

The water saturation at the well changes when oil begins to be produced. In this research

a zero saturation gradient is assumed for the production boundary. The assumption

∂Sw/∂r|r=rw = 0 makes the solution unique (see reference [5]). So the initial and boundary

conditions during production can be expressed as



I.C. Sw(r, t = 0) = Sw(r, ts), rw ≤ r ≤ re;

B.C. ∂Sw(r,t)
∂r

∣∣∣∣
r=rw

= 0, for t > 0;

Sw(r = ∞, ∆t) = Siw, for t > 0.

(3.61)

When the finite difference method is used to solve the PDE, the finite difference

equation of mass conservation of water during production is given by
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2πh

θφ
rj

∆r

∆t

(
Sn+1

wj
− Sn

wj

)
− qt

(
fn+1

w
j+1

2

− fn+1
w

j− 1
2

)
− 1.127× 10−32πh

(
kj+ 1

2
rj+ 1

2
fn+1

w
j+1

2

λn+1
o

j+1
2

∂pc

∂r

∣∣∣∣n+1

j+ 1
2

− kj− 1
2
rj− 1

2
fn+1

w
j− 1

2

λn+1
o

j− 1
2

∂pc

∂r

∣∣∣∣n+1

j− 1
2

)
= 0.

(3.62)

The upstream weighting for the values at the boundaries of the blocks is also applied.

During production the direction of upstream is the direction away from the wellbore.

Using the upstream weighting, we have

fw
j+1

2

= fwj+1
;

λo
j+1

2

= λoj+1
;

fw
j− 1

2

= fwj
;

λo
j− 1

2

= λoj
.

(3.63)

The backward finite difference is also employed for the partial derivative of pc, as shown

in Eqs. 3.12 and 3.13. So, assuming constant permeability k, the implicit finite difference

equations during production can be represented by

gn+1
j = −qt

(
fn+1

wj+1
− fn+1

wj

)
− 1.127× 10−32πh

(
rj+ 1

2
kfn+1

wj+1
λn+1

oj+1

pn+1
cj+1

− pn+1
cj

∆r

− rj− 1
2
kfn+1

wj
λn+1

oj

pn+1
cj

− pn+1
cj−1

∆r

)
+

2πh

θφ
rj

∆r

∆t

(
Sn+1

wj
− Sn

wj

)
= 0,

2 ≤ j ≤ N − 1.

(3.64)

The initial and boundary conditions for finite difference can be expressed as
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I.C. S0
wj

= Sw(rj, ts), 1 ≤ j ≤ N ;

B.C. Sn
w 1

2

= Sn
w1

;

Sn
w

N+1
2

= Siw.

(3.65)

For j = 1, we have

gn+1
1 = −qt

(
fn+1

w2
− fn+1

w1

)
− 1.127× 10−32πh

(
r1+ 1

2
kfn+1

w2
λn+1

o2

pn+1
c2

− pn+1
c1

∆r

− r 1
2
kfn+1

w1
λn+1

o1

pn+1
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c 1
2

1
2
∆r

)
+

2πh

θφ
r1

∆r

∆t

(
Sn+1

w1
− Sn

w1

)
= 0.

(3.66)

Boundary condition Sn
w 1

2

= Sn
w1

makes pn+1
c1

− pn+1
c 1
2

= 0, so Eq. 3.66 can be simplified as

gn+1
1 = −qt

(
fn+1

w2
− fn+1

w1

)
− 1.127× 10−32πhr1+ 1

2
kfn+1

w2
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− pn+1
c1

∆r

+
2πh

θφ
r1

∆r

∆t

(
Sn+1

w1
− Sn

w1

)
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(3.67)

For j = N , we have

gn+1
N = −qt

(
fn+1

w
N+1

2

− fn+1
wN

)
− 1.127× 10−32πh

(
rN+ 1

2
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w
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2

λn+1
o

N+1
2

pn+1
c
N+1

2

− pn+1
cN

1
2
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− rN− 1
2
kfn+1

wN
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oN

pn+1
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)
+

2πh

θφ
rN

∆r

∆t

(
Sn+1

wN
− Sn

wN

)
= 0.

(3.68)

As before, the Newton-Raphson method is applied to solve the finite difference

equations in Eq. 3.64. The elements in the Jacobian matrix of equation gn+1
i to Swj

for

2 ≤ j ≤ N − 1 can be expressed by
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2
kjfwn+1

j
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∆r
, (3.69)
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(3.70)

and

∂gn+1
j
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2
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(3.71)

For j = 1, we have

∂gn+1
1

∂Sn+1
w 1

2

= 0, (3.72)
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1

∂Sw1
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2
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and
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(3.74)

For j = N , we have
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and
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(3.77)

Because Sw
N+1

2

= Siw, we have δSw
N+1

2

= 0. Thus, during production, the process of

obtaining iteration estimates of grid block saturations by Newton-Raphson has been de-

scribed in Eq. 3.44.

3.2 Validation of the Capillary Pressure Effect

In this section, some examples are given to illustrate the validity of water sat-

uration evolutions and pressure responses during the injection/falloff/production test.

Comparisons were made between the results from our method and the results from the

reservoir simulator IMEX.

3.2.1 Examples of Saturation Evolution

Two cases with different mobility ratios are considered, one unfavorable mobility

ratio and one favorable mobility ratio. Some parameters for the calculation and the
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reservoir simulation are shown in Table. 2.1. An IFPT with 5-hour injection, 5-hour

falloff and 14-hour production was used to illustrate the capillary pressure effects. The

relative permeability curves are defined by the power law model, Eqs. 2.83 and 2.84, and

the capillary pressure in Corey’s model, Eq. 4.44. Table 3.1 gives the model parameters

defining relative permeability curves and capillary pressure in the examples. For the

unfavorable mobility ratio case, µw = 0.516 cp and µo = 5.1 cp. The endpoint mobility

ratio between water and oil is M̂ = 7.9. For the favorable mobility ratio case, µw = 1.0 cp

and µo = 0.5 cp. The endpoint mobility ratio is 0.4. Based on the parameters in Table 3.1,

the relative permeability and capillary pressure curve are as shown in Fig. 3.2 and 3.3,

respectively. In Fig. 3.3 the maximum of capillary pressure is 20 psi at irreducible water

saturation Siw = 0.15. Fig. 3.4 shows total mobility curves for favorable and unfavorable

mobility ratio cases respectively.

Parameter Siw Sor aw ao no nw Pe (psi) λ
value 0.15 0.25 0.8 1.0 2.0 2.0 0.5 2.0

Table 3.1: Parameters of relative permeabilities (power law model) and capillary pressure
(Corey’s model).

Fig. 3.5 displays the nonlinear function, fwSwλo(Sw)dPc(Sw)
dSw

, which affects the dif-

fusion due to capillary force. This nonlinear equation has a peak at a middle water sat-

uration and becomes zero at two end-point water saturations because it has fw(Siw) = 0

and λo(1 − Sor) = 0. Thus, as one gets closer to the end-point saturations, the effect of

the capillary pressure diffusion decreases.

Figs. 3.6 shows the water saturation distribution at the end of water injection

and falloff, respectively, for the unfavorable mobility ratio case (M̂ = 7.9). During water

injection, the movement of water is governed by the convection term in the PDE of Eq. 3.2,

viscous forces dominate the behavior. The water front is essentially behaving a shock.

Capillary force only results a very small smearing of the sharp front. The radius of the

water bank is around 17 ft after water injection. During falloff, the flow rate goes to

zero very soon after shut in the water the water bank and capillary pressure governs the
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Figure 3.2: Power law relative permeabilities.
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Figure 3.3: Capillary pressure from Corey’s model.

saturation behavior and the water front is noticeably smeared. This smearing is stronger

near the water saturation where the nonlinear function in the capillary pressure term
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Figure 3.5: Nonlinear equation of capillary pressure diffusion term vs. water saturation.
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has a large value as shown in Fig. 3.5. In Fig. 3.6, the solid curves are obtained by

using the numerical solution of water conservation equation and the dashed curves are

the results from commercial reservoir simulator IMEX. Our numerical results have a very

good agreement with the reservoir simulation results for both water saturation evolutions

during water injection and falloff. In Fig. 3.5 and similar figures, “Simulation” refers to

results from CMG IMEX reservoir simulator and “Numerical” refers to results generated

from our finite difference scheme. Note the reservoir simulator solves for both saturation

and pressure, whereas in our numerical procedure, we solve only for water saturation.
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0.8
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S
w

r, ft
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 Numerical

Injection

Falloff

Figure 3.6: Water saturation distribution at end time of injection and falloff the for
unfavorable endpoint mobility ratio M̂ = 7.9.

Fig. 3.7 displays the water saturation evolution during production. Each pair of

curve is a snapshot of water saturation distribution at a given time. The saturation dis-

tribution curve that extends farthest to the right is the saturation profile at the end time

of the falloff test. One can note that after falloff, the water saturation distribution has

a strong smearing around the water front, but during production, when oil flows back

to the well, a sharp oil front gradually develops, as the convection term (viscous forces)

overwhelm the diffusion term (capillary force). In Fig. 3.7, the results of our numerical
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solution of the water conservation equation (the solid curves) match the results from the

simulator (the dashed curves) very well. As stated in the previous chapter, at very early

production time, the total flow rate is not a constant in the water bank. Because we

used the assumption of steady-state theory of Thompson and Reynolds in this work, our

results move a little bit faster than the simulation results. As shown later, the saturation
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Figure 3.7: Water saturation evolution during production for the unfavorable endpoint
mobility ratio M̂ = 7.9.

profiles are sufficiently accurate to generate an accurate pressure solution. Fig. 3.8 shows

the comparison of saturation profiles without and with capillary pressure effects for un-

favorable endpoint mobility ratio M̂ = 7.9. In this figure, two time snapshots are shown:

one is at the end of falloff and the other is at a time before oil “breakthrough” during

production. Around the location of water front, the saturation profiles with capillary

pressure effects (solid points from reservoir simulation and solid curves from our numer-

ical solution) show deviations from the saturation profile without the capillary pressure

effect (the dashed curves from reservoir simulation). During production, there is a signif-

icant gap between the saturation profile with capillary pressure effect and the saturation

profile without capillary pressure effect. With the capillary pressure effect, the oil “break-
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Figure 3.8: Comparison of saturation profiles for the unfavorable endpoint mobility ratio
M̂ = 7.9.

through” comes earlier than that without the capillary pressure effect. That makes a huge

pressure difference when oil flows back to the wellbore as shown in later section.

Fig. 3.9 presents the water saturation distributions at the end time of water injec-

tion and falloff for a favorable mobility ratio (M̂ = 0.4). Here, during water injection, we

have almost piston displacement. The radius of the water bank is around 12.5 ft. During

falloff, the diffusion of capillary pressure shapes the water front significantly. As shown

in Fig. 3.9, water saturation distribution generated from our numerical model match the

results from the reservoir simulation. Fig. 3.10 displays the snapshots of water saturation

distribution during production. The results of our numerical solution are again in good

agreement with the results of the simulation. During production, when oil flows back

to the well, the oil front is still generated. Fig. 3.11 shows a comparison of saturation

profiles between with and without capillary pressure effect for favorable endpoint mobil-

ity ratio M̂ = 0.4. As shown in Fig. 3.11, two time snapshots are compared: one is at

end time of falloff and other is at time of 12.27 hours before oil “breakthrough” during

production. Due to the capillary pressure effect, the saturation profiles with capillary
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Figure 3.9: Water saturation distribution at end time of injection and falloff for the
favorable endpoint mobility ratio M̂ = 0.4.
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Figure 3.10: Water saturation evolution during production for the favorable endpoint
mobility ratio M̂ = 0.4.
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Figure 3.11: Comparison of saturation profiles for the favorable endpoint mobility ratio
M̂ = 0.4.

pressure effect (solid points from reservoir simulation results and solid curves from our

numerical results) have significant differences with the saturation profiles without the

capillary pressure effect (dashed curves) both at end of falloff period and at 14.08 hours

during production. For the case of favorable endpoint mobility ratio, the result also shows

that capillary pressure makes an early oil “breakthrough” than without capillary pressure

effect. The differences of saturation profiles cause the differences of the total mobility

distributions around the wellbore, which generate the errors on pressure difference ∆p in

water phase as shown by the integral term in Eq. 2.39.

3.2.2 Examples of Pressure Response

Similar to zero capillary pressure case, the pressure responses of IFPT, considering

capillary pressure effect, are obtained also based on the steady-state theory of Thompson

and Reynolds [55] and the solution of Peres and Reynolds [46]. In Chapter 2, it was stated

that the total pressure change can be expressed by a combination of the pressure change in

the single phase oil and the pressure change in the two-phase zone. When the saturation
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evolution considering the capillary pressure effect during the IFPT is resolved, the pressure

responses considering the capillary pressure effect are also obtained by the Peres and

Reynolds model in this research. Compared with the no-capillarity effect, the saturation

distribution front is deformed after falloff by the capillary pressure diffusion, which gives

a different initial condition for saturation evolution during production. Correspondingly,

the pressure response cannot be the same as that obtained from no-capillary pressure

effect. In the following section, pressure responses from the two cases are demonstrated.

Fig. 3.12 shows the bottomhole pressure response of a case of IFPT with an unfa-

vorable mobility ratio, M̂ = 7.9. In Fig. 3.12, the results from our approximate solution

for the pressure response (the dashed the curve) match the pressure responses from the

reservoir simulation with capillary pressure (the circular data points) very well. But the

results from simulation without the capillary pressure diffusion (the solid curve) have a

deviation from the results with the capillary pressure effect around time of 14 hours (the

oil “breakthrough” time). This deviation is due to the fact that the capillary pressure dif-

fusion gives a different initial condition for water saturation evolution during production

compared with no capillary pressure effect (see Fig. 3.8). During injection and falloff, the

pressure responses are not affected too much by capillary pressure because the diffusion

only affects a limited saturation region around the front, and the farther the region is

from the wellbore, the less the capillary pressure affects the total pressure response (see

Eq. 2.39). Fig. 3.13 demonstrates a log-log plot of pressure difference and its derivative

during production. Here, the pressure difference ∆p(∆t) = pws(ts) − pwf (∆t), where

pws(ts) is the bottomhole pressure at the end time of falloff; ∆t is zero at beginning of

production. Both from the pressure differences (∆p) and the derivatives (∆p′) the shift

between the cases with and without the capillary pressure effect during the oil break-

through time is apparent. The shift looks small in Fig. 3.12 due to the display scale. But

when we compared the pressure responses at time of 14.08 hours, corresponding satura-

tion profiles compared in Fig. 3.8, we found that the pressure difference is over 80 psi. In

this case, the pressure differences between bottomhole pressure with and without capillary

pressure effect vary from several psi to around 190 psi. So the large pressure difference
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may ruin the estimate of relative permeabilities and other model parameters when we do

the analysis with model of pressure response without capillary pressure effect to match

the pressure response with capillary pressure effect.
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Figure 3.12: Bottomhole pressure of IFPT for the unfavorable endpoint mobility ratio
M̂ = 7.9.

Figs. 3.14 and 3.15 show the results from a case with a favorable mobility ratio,

M̂ = 0.4. In Fig. 3.14, the pressure response from our approximate analytical solution (the

dashed curve) matches the simulation results with capillary pressure effect (the circles).

The result without capillary pressure effect still gives a deviation around the time of

oil “breakthrough”, 13 hours. This deviation is shown clearly in Fig. 3.15, the log-log

plot of pressure difference and its derivative. Corresponding to the saturation profiles

at time 12.67 hours during production as shown in Fig. 3.11, the pressure error between

with and without capillary pressure effect is over 5 psi. The largest error is 12 psi for

this favorable endpoint mobility ratio case. In Chapter 1, it is stated that the pressure

response provides information to estimate the shape of the relative permeability curves

when oil flows back to the wellbore during production. Because of the sharp oil front

and the total mobility change of oil flowing back to the well, the total pressure response
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Figure 3.13: Pressure difference and its derivative during production, unfavorable end-
point mobility ratio M̂ = 7.9.

changes rapidly. Therefore, the deviation in the pressure response could ruin the estimate

of the relative permeabilities and other model parameters during the process of inverse

regression.

The results of these two cases with different mobility ratios demonstrate that the

capillary pressure diffusion smears the water front during water injection and makes a

significant change in the water saturation distribution around the front during the falloff.

From the cases with favorable and unfavorable endpoint mobility ratios, we note that

the diffusion during falloff gives an earlier oil “breakthrough” than that without the

capillary pressure effect during production. Our approximate analytical solution in this

research provides valid results for the capillary pressure effect. As shown in Figs. 3.8 and

3.11, most water saturations on the smeared front distribute between Siw and Swf . So

a saturation among those saturations has the highest value of dfw(Sw)/dSw as shown in

Fig. 2.3. Moreover, some saturations among those saturation between Siw and Swf have

higher values of dfw(Sw)/dSw than value of dfw(1 − Sof )/dSw which represents the front

speed of oil invading water bank during production without capillary pressure effect.
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Figure 3.14: Bottomhole pressure of IFPT for the favorable endpoint mobility ratio M̂ =
0.4.

0.1 1 10
-100

-50

0

50

100

150

200

∆p
 &

 ∆
p'

, p
si

∆t, hour

 Simulation
 Numerical
 No capillary pressure

∆p

∆p'

Figure 3.15: Pressure difference and its derivative during production for the favorable
endpoint mobility ratio M̂ = 0.4.
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Thus, due to capillary force, some water saturations on the smeared front move faster

than the oil front speed without capillary pressure effect from beginning of production.

That makes an early oil “breakthrough”. The stronger capillary force gives a further

diffusion smearing front at end time of falloff period and the earlier oil “breakthrough”

time. Here, we used three different levels of capillary pressure to demonstrate the effects

of capillary pressure. Fig. 3.16 – Fig. 3.18 demonstrate the results from the effect of the

three different capillary pressure. In Fig. 3.16, the three different capillary pressure are

shown with different maximum capillary pressure (pc,max) and entry capillary pressure

(pe). Apparently, the strongest capillary pressure is shown by the doted curve with the

largest value of pc,max and pe, and the weakest capillary pressure is shown by the solid

curve. Correspondingly, Fig. 3.17 shows the water saturation distributions with the three

capillary pressure effects at the end time of falloff period. In Fig. 3.17, we can note that the

strongest capillary pressure makes the worst smearing (the doted curve) around the water

front saturation compared with others. Fig. 3.18 shows the bottomhole pressure response

under the three capillary pressure effect. We found that the strongest capillary pressure

makes the earliest oil “breakthrough” on the bottomhole pressure during production as

shown by the doted curve and the pressure response with the weakest capillary pressure

(solid curve) is closest to the pressure response without capillary pressure effect (the solid

curve with circle).
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Figure 3.16: Capillary pressure curves.
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Figure 3.17: Different capillary pressure effects on saturation distributions at the end time
of falloff period for the unfavorable endpoint mobility ratio M̂ = 7.9.
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Figure 3.18: Bottomhole pressure with different capillary pressure effects for the unfavor-
able endpoint mobility ratio M̂ = 7.9.
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CHAPTER 4

REPRESENTATION OF RELATIVE PERMEABILITIES

In this chapter, the three different representations of relative permeability curves

and model parameters representing the relative permeability curves are discussed. In the

first section, the power law model of water-oil two-phase relative permeability curves,

which have been widely applied in reservoir engineering, is presented. In the second

section, a more flexible B-spline curves representing relative permeability and the algo-

rithms for monotonic and convex relative permeability curves are presented. The third

method for modeling relative permeability curves relates relative permeability to capillary

pressure.

4.1 Power Law Model Relative Permeability Curves

The standard representation of power law relative permeability curves is as follows:

krw(Sw) = aw

(
Sw − Siw

1− Siw − Sor

)nw

, (4.1)

and

kro(Sw) = ao

(
1− Sw − Sor

1− Siw − Sor

)no

, (4.2)

where Siw represents irreducible water saturation, Sor represents residual oil saturation,

aw = krw(Sw = 1− Sor), (4.3)

is the end point water relative permeability and

ao = kro(Sw = Siw), (4.4)
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is the end point oil relative permeability. As the flow equations describing flow in a porous

medium depend only on oil and water effective permeabilities, denoted respectively by ko

and kw, production data is not sufficient to resolve absolute and relative permeabilities.

To avoid this ambiguity, we define relative permeabilities by normalizing effective perme-

abilities using effective oil relative permeability at irreducible water saturation. Thus, at

any Sw, effective oil permeability is written as

ko(Sw) =
ko(Siw)

ko(Siw)
ko(Sw) = kkro(Sw), (4.5)

where absolute permeability is defined as

k = ko(Siw), (4.6)

and relative permeability is defined as

kro(Sw) =
ko(Sw)

ko(Siw)
. (4.7)

Thus, oil relative permeability must be equal to unity when water saturation is equal to

irreducible water saturation, i.e., ao = 1. Then, defining dimensionless water saturation

by

SwD =
Sw − Siw

1− Sor − Siw

, (4.8)

the power law representation of the oil relative permeability curve can be written as

kro(Sw) =

(
1− Sw − Sor

1− Siw − Sor

)no

= (1− SwD)no , (4.9)

whereas, the water relative permeability curve is

krw(Sw) = aw

(
Sw − Siw

1− Siw − Sor

)nw

= aw (SwD)nw . (4.10)

Eqs. 4.9 and 4.10 give the power law relative permeability curves used in the examples
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presented here.

In Eqs. 4.9 and 4.10, there are only five possible parameters, aw, nw, no, irreducible

water saturation (Siw) and residual oil saturation (Sor) to define the power law relative

permeabilities. From the definition of power law relative permeability curves, one can

note that the curves are automatically monotonic and convex if the exponent values, no

and nw, are greater than 1. But the power law is not sufficiently flexible to describe the

local variation in the shape of the relative permeability curves.

4.2 B-spline Model Relative Permeability Curves

Points on a power law relative permeability curve follow the same equation, so

they can not describe local variations in a relative permeability curves. On the other

hand, the use of power law curves in history matching is convenient in that the number of

parameters to be adjusted is small, which tends to reduce the inherent non-uniqueness in

history matching; moreover, if production data is sufficient to resolve only a small part of

the curve, all of the curve is resolved. As power law models are not sufficiently flexible to

accurately model all relative permeability curves, a more general representation is sought.

Here, we consider using cubic B-splines to represent the relative permeability curves.

Although the results presented here focus on the case in which irreducible water

saturation and residual oil saturation are known, when these endpoint saturations are

considered as parameters, it is convenient to work in terms of dimensionless saturation

so that one can use uniform knots and one-dimensional control points (see references

[24, 50, 25]). To make the notation general, let u be the dependent variable and assume

one wants to construct a B-spline approximation of a function f(u) defined on [a, b]. To

do so, one needs to define knots on this interval. Computational algorithms are more

efficient if uniform knots are used [50]. For a given positive integer n, let

∆u =
b− a

n
, (4.11)

and define uniform knots by
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uj = a + j∆u for j = −3,−2, · · · , n + 3. (4.12)

Note that un = b and the knots uj for j < 0 and uj for j > n are outside the interval

of interest [a, b] = [u0, un]. Relative to these knots, Bj(u) is the standard B-spline basis

function which is nonzero only on the interval [uj, uj+4]; see deBoor[24] and Appendix A.

For the case considered here, dimensionless water saturation is defined by Eq. 4.8,

and the interval of interest for u = SwD is [0, 1]. Knots represent values of dimensionless

water saturation with uniform knots on [0, 1] given by

uj = SwD,j = j∆u for j = 0, 1, 2, · · · , n, (4.13)

where ∆u = 1/n and knots outside [0, 1] are defined by uj = SwD,−j = j∆u for j =

−1,−2,−3 and uj = SwD,j = j∆u for j = n + 1, n + 2, n + 3.

The approximating cubic B-splines for the oil and water relative permeability

curves (see Appendix A), respectively, are given by

kro(SwD) =
n−1∑

j=−3

Co
j+2Bj(SwD), (4.14)

and

krw(SwD) =
n−1∑

j=−3

Cw
j+2Bj(SwD), (4.15)

where the Co
k ’s and Cw

k ’s, respectively, denote the control points for the B-spline approx-

imations of the oil and water relative permeability curves. The control points Co
−1 and

Co
n+1 are not independent but are defined to ensure that kro passes through Co

0 and Co
n.

(The approximating spline, kro does not in general pass through any of the other control

points.) Because we have chosen to normalize effective permeabilities by ko(Siw) to define

relative permeabilities, it follows that Co
0 = 1 so it is not a model parameter. Moveover,

oil relative permeability is zero at SwD = 1 so we must have Co
n = 0. Similarly, the con-

trol points, Cw
−1 and Cw

n+1, are not independent but are defined to ensure that krw passes
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through Cw
0 and Cw

n . Because water relative permeability is equal to zero at SwD = 0, it

follows that Cw
0 = 0. It now follows that the parameters that must be estimated to obtain

the B-spline approximations are Co
j , for j = 1, 2 · · ·n − 1 and Cw

j for j = 1, 2, · · ·n, i.e.,

there are 2n− 1 parameters to estimate.
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Figure 4.1: Relative permeability curves generated from specified control points.

Fig. 4.1 shows two B-spline approximations of relative permeability curves for the

two sets of control points shown on the figure. In Fig. 4.1, the circles are the control

points, Cm
i for m = o, w; the solid curves are the B-spline relative permeability curves,

and the dashed lines passing through the control points form the control polyline. The

B-spline is always within the control polyline, which means that the all points on the

B-spline curve are always in the area generated by connecting all control points. Note

that each B-spline curve passes through only two of its control points, the one labelled

with the subscript zero and the one labelled with the subscript n. The cubic spline is

“attracted” to the other control points but does not normally pass through them. For

each curve, there are two control points which are not shown. For m = o, w these points

are defined by
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Cm
−1 = 2Cm

0 − Cm
1 , (4.16)

and

Cm
n+1 = 2Cm

n − Cm
n−1. (4.17)

The last two definitions ensure that the B-spline curve for krm will pass through Cm
0 and

Cm
n (see Appendix A).
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Figure 4.2: Approximating B-spline curve and interpolating spline curve.

The B-spline curve is a combination of a set of weighted control points. The ad-

justment of the control points makes it is easy to adjust the local shape of the relative

permeability curves. When nonlinear regression is used to automatically estimate the rel-

ative permeabilities, it is easy to place conditions on the control points. This requirement

to keep the relative permeability curves monotonic or convex conditions are naturally

satisfied by the power law model of relative permeability curves for no > 1 and nw > 1.

For the B-spline model with the uniform knots, the monotonically increasing (decreasing)
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control points implies that the approximating B-spline is monotonically increasing (de-

creasing) and convex control points implies that the approximating B-spline is convex.

Using results from Lane and Resienfeld [34], it is possible to establish these results even

when the knots are not uniform; see [25]. In Appendix A, the properties of monotony and

convexity of B-spline relative permeability curves are proved based on the cubic B-spline.

Fig. 4.2 shows a comparison of the approximating B-spline and interpolating spline. In

this figure, the solid points are the control points. They are monotonically increasing.

Correspondingly, their B-spline curve (solid curve) is also monotonically increasing. How-

ever, passing through the control points, the interpolating spline (the dashed curve) is

not monotonically increasing as shown near the control point C6 in Fig. 4.2.

4.2.1 Monotonicity and Convexity Constraints

If the relative permeability curves are not monotonic, then they are not meaningful,

and will not be accepted for use in reservoir engineering or as input to a reservoir simulator.

Thus, one wishes to introduce constraints to keep the B-spline approximations to relative

permeability curves monotonic. This can be done by requiring that the control points are

monotonic. Similarly, if desired, one can force the B-spline representation of a relative

permeability curve to be convex by requiring the control points to be convex. This is a

major advantage of B-spline approximations. If an interpolating cubic spline were used,

the spline would not be guaranteed to be monotonic even when the function values at

interpolation points are monotonic.

First, for the monotonic water relative permeability curve, it is required that the

control points are monotonically increasing, i.e.,

Cw
0 < Cw

1 < · · · < Cw
i−1 < Cw

i < Cw
i+1 < · · · < Cw

n . (4.18)

For the oil relative permeability curves, one wishes to require that the control points are

monotonically decreasing, i.e.,

98



Co
0 > Co

1 > · · · > Co
i−1 > Co

i > Co
i+1 > · · · > Co

n. (4.19)

To enforce these conditions, using the logarithm transform (see Chapter 5 and Section

5.5.2), the parameters Cw
i are transformed to a new set of parameters, xi, i = 1, 2, · · ·n,

which are defined by



x1 = ln

(
Cw

1

Cw
2 −Cw

1

)
,

xi = ln

(
Cw

i −Cw
i−1

Cw
i+1−Cw

i

)
, for 2 ≤ i ≤ n− 1,

xn = ln

(
Cw

n −Cw
n−1

1−Cw
n

)
.

(4.20)

This transformation maps Ci to the variable xi. Optimization (matching of data) is done

in terms of the transformed variables. Note that the inverse transformation is represented

by the following system of equations:

ex1 =
Cw

1

Cw
2 − Cw

1

, 1 ≤ i ≤ n− 1, (4.21)

exi =
Cw

i − Cw
i−1

Cm
i+1 − Cw

i

, for 1 ≤ i ≤ n− 1, (4.22)

and

exn =
Cw

n − Cw
n−1

1− Cw
n

. (4.23)

Eqs. 4.21, 4.22, and 4.23, respectively, give

Cw
1 =

ex1

1 + ex1
Cw

2 , (4.24)
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Cw
i =

exi

1 + exi
Cw

i+1 +
1

1 + exi
Cw

i−1, for 2 ≤ i ≤ n− 1, (4.25)

and

Cw
n =

exn

1 + exn
+

1

1 + exn
Cw

n−1. (4.26)

Since all the xi’s must be between −∞ and ∞, it follows from Eqs. 4.24, 4.25 and 4.26,

respectively, that

0 < Cw
1 < Cw

2 , (4.27)

Cw
i−1 < Cw

i < Cw
i+1, for 2 ≤ i ≤ n− 1, (4.28)

and

Cw
n−1 < Cw

n < 1. (4.29)

Thus, the control points are monotonically increasing, which guarantees that the resulting

B-spline approximation for krw is monotonically increasing.

Once we obtain new values of the xi’s at one iteration of the optimization process,

we find the associated values of the control points by solving the system of equations

given by Eqs. 4.24–4.26 which can be written in matrix form as



ex1 + 1 −ex1

−1 ex2 + 1 −ex2

. . . . . . . . .

−1 exi + 1 −exi

. . . . . . . . .

−1 exn + 1





Cw
1

Cw
2

...

Cw
i

...

Cw
n


=



0

0

...

0

...

exn


. (4.30)
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As the coefficient matrix in the preceding equation is irreducibly diagonally dominant,

the system of equations has a unique solution.

Treatment of the control points for the B-spline approximation of the oil relative

permeability curve is similar except for the fact that the control points must be monoton-

ically decreasing. Thus, the appropriate transformation of variables is defined by



y1 = ln

(
Co

1−Co
2

1.0−Co
1

)
;

yi = ln

(
Co

i −Co
i+1

Co
i−1−Co

i

)
, 2 ≤ i ≤ n− 2;

yn−1 = ln

(
Co

n−1−0

Co
n−2−Co

n−1

)
.

(4.31)

Thus, the inverse process of solving Co
i based on a set of given yi for knots of oil relative

permeability curve can be done by solving Eq. 4.31 as



ey1 + 1 −1

−ey2 ey2 + 1 −1

. . . . . . . . .

−eyi eyi + 1 −1

. . . . . . . . .

−eyn−1 eyn−1 + 1





Co
1

Co
2

...

Co
i

...

Co
n−1


=



ey1

0

...

0

...

0


. (4.32)

Second, for convex relative permeability curves, control points must be convex or

concave up, which means

Cm
i+1 − Cm

i

SwD,i+1 − SwD,i

>
Cm

i − Cm
i−1

SwD,i − SwD,i−1

. (4.33)
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If the knots are uniform,

Cm
i+1 − Cm

i > Cm
i − Cm

i−1, (4.34)

for m = o, w, i = 1, 2, · · · , n − 1. Note that if we divide Eq. 4.34 by the uniform knot

spacing, ∆u = SwD,i − SwD,i−1, then the resulting equation represents the requirement

that the slope of the line segment through the two points (SwD,i−1, C
m
i−1) and (SwD,i, C

m
i ) is

an increasing function of i. Thus, Eq. 4.34 is equivalent to the requirement that the slope

of the polyline (in Fig. 4.1, the connected curve consisting of the dashed line segments

through the control points) is monotonically increasing.

Eq. 4.34 can be used to obtain the following upper and lower bounds for Cm
i :

Cm
i <

1

2
(Cm

i+1 + Cm
i−1), for i = 1, 2, · · ·n− 1, (4.35)

and

Cm
i > 2Cm

i−1 − Cm
i−2, for i = 2, 3, · · ·n. (4.36)

The preceding two equations effectively provide constraints for the control parameters

that must be satisfied to ensure that the resulting B-splines are convex curves. For the

water relative permeability curve, we set Cw
0 = 0, set the lower bound for Cw

1 to 0 and

set the upper bound for Cw
n equal to 1. For oil relative permeability, we wish to fix the

endpoint relative permeability equal to 1, which we do by fixing Co
0 = 1. We also set

Co
n = 0, set the upper bound for Co

1 equal to 1 and set the lower bound for Co
n−1 equal to

zero.

To enforce convex relative permeability curves, it is required that the inequalities

of Eqs. 4.35 and 4.36 are satisfied. As with the monotonicity condition, we can make a

transformation to a new coordinate system can be make to ensure that the control points

are convex. In this case, the appropriate transformation is
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x1 = ln

(
Cw

1
1
2
(Cw

2 +0)−Cw
1

)
;

xi = ln

(
Cw

i −(2Cw
i−1−Cw

i−2)
1
2
(Cw

i+1+Cw
i−1)−Cw

i

)
, 2 ≤ i ≤ n− 1;

xn = ln

(
Cw

n −(2Cw
n−1−Cw

n−2)

1−Cw
n

)
.

(4.37)

The equation for xn can be obtained by setting i = n and Cw
n+1 = 1 in the second equation

when i = n. Setting the value of Cw
n+1 = 1 is used simply to provide an upper bound for

the slope and is not the correct value of Cw
n+1. In fact, in order to force the approximating

spline to pass through the control point Cw
n , the following must be satisfied:

Cw
n+1 = 2Cw

n − Cw
n−1. (4.38)

Similarly to ensure that the approximating spline pass through Cw
0 , it is required that

Cw
−1 = 2Cw

0 − Cw
1 . (4.39)

These two requirements are valid for the cubic B-spline used in this research. Similar

results apply to the control point parameterization of the oil relative permeability curve.

Optimization is applied to the transformed variables. After one iteration of the

optimization algorithm, the new xi values are transformed back to update the values of

the control points by solving the following system of equations:
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ex1 + 1 −1
2
ex1

−(1
2
ex2 + 2) ex2 + 1 −1

2
ex2

1 −(1
2
ex3 + 2) ex3 + 1 −1

2
ex3

. . . . . . . . .

1 −(1
2
exi + 2) exi + 1 −1

2
exi

. . . . . . . . .

1 −2 exn + 1





Cw
1

Cw
2

Cw
3

...

Cw
i

...

Cw
n



=



0

0

0

...

0

...

exn



. (4.40)

For the oil relative permeability curve, Co
0 is set to 1, Co

n is set to 0. Except for

this change, the same log-transformation is used to define new variables in a way that

guarantees that the approximating B-spline will be convex (concave up). The appropriate

transformation is



y1 = ln

(
Co

1−(2Co
2−Co

3 )
1
2
(Co

2+1)−Co
1

)
;

yi = ln

(
Co

i −(2Co
i+1−Co

i+2)
1
2
(Co

i+1+Co
i−1)−Co

i

)
, 2 ≤ i ≤ n− 2;

yn−1 = ln

(
Co

n−1−0
1
2
Co

n−2−Co
n−1

)
.

(4.41)

Given updated yi’s, updated values of the control points can be obtained by solving the

following system of equations:

104





ey1 + 1 −(1
2
ey1 + 2) 1

−1
2
(ey2) ey2 + 1 −(1

2
ey2 + 2) 1

. . . . . . . . .

−1
2
eyi eyi + 1 −(1

2
eyi + 2) 1

. . . . . . . . .

−1
2
eyn−2 eyn−2 + 1 −2

−1
2
eyn−1 eyn−1 + 1





Co
1

Co
2

...

Co
i

...

Co
n−2

Co
n−1



=



1
2
ey1

0

...

0

...

0

0



.

(4.42)

As noted previously, optimization is performed in terms of the xi and yi variables.

Sensitivities are computed by a finite difference method. For example, to generate the

sensitivity of a single predicted datum di to parameter xj, we make a perturbation δxj

to xj to obtain a new value x̂j = xj + δxj. If one wishes to generate monotonic relative

permeability curves, one solves Eq. 4.30 for the new values of Cw
i corresponding to x̂j. If we

require convexity, we solve Eqs. 4.40 and 4.42 instead of Eqs. 4.30 and 4.32. These control

points give a new B-spline approximation for the water relative permeability curves, which

is used to generate a new relative permeability table for running the reservoir simulator

to generate new predicted data di(x̂j) corresponding to the data di = di(xj) computed

with the unperturbed value xj. Then, the sensitivity of di to xj is approximated by

si,j =
di(x̂j)− di(xj)

δxj

. (4.43)

All sensitivities needed to compute the Gauss-Newton Hessian and the gradient of the

objective function are computed in this way (see Chapter 5).

4.3 Relative Permeability Model from Capillary Pressure

Many studies (see references [17], [22], [14], [39] and [38]) indicate that there is a

relationship between relative permeability and capillary pressure.
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Based on the work of Corey [22] and Brooks [14] studies, the capillary pressure

can be expressed as

pc(S
∗
w) = pe(S

∗
w)−1/λ, (4.44)

where, pe is entry capillary pressure (threshold pressure) and λ is the pore size distribution

index. The normalized water saturation, S∗w, is defined by

S∗w =
Sw − Siw

1− Sor − Siw

. (4.45)

The relative permeabilities of the water and oil phases are given by the following equations:

krw(S∗w) = aw(S∗w)
2+λ

λ , (4.46)

and

kro(S
∗
w) = (1− S∗w)2

[
1− (S∗w)

2+λ
λ

]
. (4.47)

From Eq. 4.44 we can note when S∗w approaches to zero, the capillary pressure pc could

be infinite. So in practice, we introduce variable ε, a small value to adjust the maximum

of pc by

pc(S
∗
w) = pe(S

∗
w + ε)−1/λ. (4.48)

The maximum of pc should be pc,max = pe(ε)
−1/λ. With ε fixed, the relative permeabilities

and capillary pressure can be described by the model parameters Siw, Sor, λ and pe.
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CHAPTER 5

MODEL PARAMETER AND HISTORY MATCHING

In this research the automatic history matching method (nonlinear regression) is

applied to estimate model parameters, including the reservoir absolute permeability, well

skin factor and parameters representing relative permeability curves. History matching

is the process of changing model parameters to find a set of values that yield predicted

data that matches observed data. The automatic history matching is accomplished by

applying an optimization algorithm to minimize an objective function which is constructed

by the data mismatch between predicted data and the observed data. In this chapter, the

focus is on automatic history matching using the nonlinear regression. Model parameters

will be discussed first and then the optimization method applied in this research will be

introduced.

5.1 Model Parameter

For the synthetic examples presented here, the parameters that were estimated are

absolute permeability, well skin factor and the parameters defining permeability curves.

All other rock and fluid properties are assumed to be known. When estimating the skin

factor at the wellbore, the radius of the skin zone is assumed to be known. Then the

permeabilities in the reservoir and the damaged zone dominate the value of the skin

factor. Based on the Hawkins’ formula [28], the skin factor can be expressed as

s =
( k

ks

− 1
)
ln

rs

rw

, (5.1)

where k and ks are the permeabilities of reservoir and wellbore damaged zone, respectively;

rw and rs are the radii of the wellbore and the damaged zone. During calculation, the

permeability of the damaged zone is treated as a model parameter. At the end of the
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estimation of model parameters, the skin factor is provided by Eq. 5.1.

In this research, different methods representing relative permeabilities are stated

as in Chapter 4. According to the method used, different model parameters were used

to describe the relative permeability curves. For the power law model (see Eqs. 4.1 and

4.2), the relative permeability curves are controlled by the end-point of water relative

permeability, aw = krw(1 − Sor), the exponent value of the water relative permeability

curve, nw, and the exponent value of oil relative permeability curve, no. As the flow

equations involve only kkro and kkrw, it is clear that data can only resolve effective

permeabilities instead of absolute and relative permeabilies individually. The analysis of

well test data can not uniquely resolve reservoir permeability k, the end-point relative

permeability of the water phase aw and the endpoint relative permeability of oil the

phase ao = kro(Siw), but may be able to generate highly accurate estimates of kaw and

kao and effective permeability curves. Then the relative permeabilities could be obtained

by normalizing the effective permeabilities by kao, endpoint oil effective permeability,

which gives oil relative permeabilities equal to one at irreducible water saturation. So in

this work, we simply set the end point of the oil phase relative permeabilities equal to 1,

i.e., ao = 1. We also attempted to consider irreducible water saturation, Siw, and residual

oil saturation, Sor, but we found that it is difficult to estimate them simultaneously. We

give an explanation for that combining examples in Chapter 6. Thus we can have a total

of seven model parameters for the power law model. The vector of model parameter, m,

is given by

m = [k, s, aw, nw, no, Siw, Sor]
T . (5.2)

When the B-spline model is used to represent the relative permeability curves,

a set of control points is used to adjust the shape of the relative permeability curves

as stated in Chapter 4. The uniform cubic B-spline method is used to representing

relative permeability curves in this research. For each relative permeability curve, the

control points are distributed uniformly in a dimensionless water saturation domain, Swd,
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defined in Eq. 4.8, and the control points adjust their values up or down in the relative

permeability domain kr ∈ [0, 1]. Obviously, the more control points we have, the more

flexible it is for us to adjust the shape of the relative permeability curves, but it is more

time consuming. Via extensive experimentation we have found that 7 control points

represent each relative permeability curve well. Fig. 5.1 gives an example of the model

parameter of control points that were used to represent the relative permeability by the

B-spline model. As stated in the previous chapter, the B-spline curve is an approximate

curve. It is not necessary that the B-spline curve passes through the control points, but we

need to force the B-spline curves pass to through the end points of relative permeability,

krw(1 − Sor) and kro(Siw), and relative permeabilities of krw(Siw) = 0 and kro(1 − Sor).

In Fig. 5.1, One can see that the control points Cw
0 and Co

6 are always equal zero in

the relative permeability domain. Because it is assumed that the end point relative

permeability of the oil phase equals 1, the control point Co
0 is always equal to 1 in this

work. The adjustments of irreducible water saturation Siw and residual oil saturation Sor
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Figure 5.1: Model parameter of control points for B-spline relative permeability curves.

shift the control points left or right in the Sw domain although in the SwD domain they
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are fixed when the number of control points is given. So for the B-spline model of relative

permeability curves, the total model parameters are expressed as

m = [k, s, Co
1 , C

o
2 , C

o
3 , C

o
4 , C

o
5 , C

w
1 , Cw

2 , Cw
3 , Cw

4 , Cw
5 , Cw

6 , Siw, Sor]
T . (5.3)

We introduced the relative permeability model generated from capillary pressure

in Chapter 4. In this model, the parameters defining the capillary pressure curve and

relative permeability curves are entry capillary pressure, pe, rock pore size distribution

index, λ, end point relative permeability of water phase, aw, irreducible water saturation,

Siw, residual oil saturation, Sor, reservoir permeability, k, and skin factor, s. The model

parameters of the relative permeabilities from capillary pressure are expressed by the

vector m as

m = [k, s, aw, pe, λ, Siw, Sor]
T . (5.4)

5.2 Objective Function

In this research, the main aim is to find the model parameters m which generate

the vector of predicted data

dpred = g(m) (5.5)

which is in good agreement with the observed data dobs. If m is the true model, then the

difference between dpred and dobs represents measurement error, i.e.,

e = dobs − dpred. (5.6)

Assuming measurement error is random, dobs = dpred − e is a random vector. If measure-

ment errors are Gaussian, the probability density function (pdf) of dobs for a given model

m is expressed by
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p(dobs|m) = a exp
(
− 1

2
(dpred − dobs)

T C−1
D (dpred − dobs)

)
= a exp

(
−1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs)

)
,

(5.7)

where a is the normalizing constant defined by

a =
1

(2π)
Nd
2

√
detCD

. (5.8)

CD is an Nd×Nd data covariance matrix, dobs is an Nd dimensional vector of observed data

and dpred is also an Nd dimensional vector representing the predicted data corresponding

to the vector of model parameter m. Eq. 5.7 gives the likelihood of m given dobs, which

is expressed as

l(m|dobs) = a exp
(
− 1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs)

)
. (5.9)

The most likely estimate is the model that maximizes l(m|dobs), i.e., the model that

minimizes

O(m) =
1

2

(
g(m)− dobs)

T C−1
D (g(m)− dobs)

)
. (5.10)

In this work, it is assumed that bottom hole pressure measurements are the only

data recorded during the injection and falloff periods, whereas, both bottom hole pressure

and rate data are recorded as observed data for a production period conducted subsequent

to the falloff period. Cumulative oil production as a function of time during the flow back

or production period can also be used as observed data. In this case, the vector of observed

data can be expressed by

111



dobs =



pobs,1

...

pobs,Np

Qobs,1

...

Qobs,Nq


, (5.11)

where Qobs is observed cumulative oil production. When we consider both pressure and

production data (cumulative oil production) are used as the observed data, data mea-

surement errors are assumed to be independent random variables with mean zero and a

prescribed variance, so the covariance matrix CD is a diagonal matrix represented by

CD =



σ2
p,1

. . .

σ2
p,Np

σ2
Q,1

. . .

σ2
Q,Nq


. (5.12)

The objective function, Eq. 5.10, to be minimized can be written as

O(m) =
1

2

Np∑
i=1

(ppred,i(m)− pobs,i)
2

σ2
p,i

+
1

2

Nq∑
j=1

(Qpred,j(m)−Qobs,j)
2

σ2
Q,j

.

(5.13)

Throughout, ppred,i is the “ith” predicted pressure data (based on a given vector of model

parameters) corresponding to the ith observed pressure data pobs,i and Qpred,j represents

the “jth” predicted production data (cumulative oil in STB) corresponding to Qobs,j, the

jth “observed” value of cumulative oil production during the flow back period. The σp,i’s,

and σQ,j’s represent, respectively, the standard deviations of pressure measurement errors
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and cumulative oil production measurement errors. Measurement errors are assumed to

be Gaussian. The means of all measurement errors are assumed to be equal to zero and

uncorrelated. All σp’s are in psi and all σQ’s are in STB.

The examples presented here consider only synthetic data which are generated

by adding noise (measurement error) to pressure and cumulative oil production data

generated from a reservoir simulator with the true parameters as input. For these data,

all σp,i are equal. To model the measurement error in cumulative oil production, we

assume that the noise is directly related to the magnitude of cumulative oil production,

i.e., we specify a relative noise level by

σQ,i = αQo,i, (5.14)

for all i, where α is a constant and Qo,i is the true cumulative oil production. We also

specify a minimum value σQ,min and a maximum value for σQ,max. If the value of σQ,i

computed from Eq. 5.14 is less than σQ,min, σQ,i is automatically set equal to σQ,min. If

the value of σQ,i computed from Eq. 5.14 is greater than σQ,max, σQ,i is automatically set

equal to σQ,max.

5.3 Optimization Algorithm

In this research, the gradient based optimization algorithms (see [59, 40, 62]),

the Levenberg-Marquardt (LM) (see [36, 41, 26, 43]) method is applied to minimize the

objective function of Eq. 5.10. The typical rapid convergence of the Gauss-Newton and the

Levenberg-Marquardt methods results from using the curvature information represented

by the second derivative of the objective function. In order to avoid an nonphysical

meaning model parameter during the the optimization, a logarithm transform, changing

the constrained optimization to unconstrained optimization, is also introduced.

5.3.1 Gradient Based Optimization–Levenberg-Marquardt Method

During iterations of the optimization process to minimize the objective function

(Eq. 5.10), let mk be the most recent estimate of the model m that minimizes O(m).
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When O(m) is approximated by the second order truncated Taylor’s expansion about

mk, we have

O(m) = O(mk) + (∇O(mk))T δm +
1

2
δmT

[
∇ · (∇O(mk))T

]
δm, (5.15)

where,

δm = m−mk. (5.16)

The Hessian matrix, H(m), is defined by

H(m) = ∇ · (∇O(m))T . (5.17)

In Eq. 5.15, with the respect to mk, the Hessian matrix can be expressed as

Hk = ∇ · (∇O(mk))T . (5.18)

Taking the gradient of O(m) in Eq. 5.15 with respect to m, we have

∇O(m) = ∇δmT
[
∇O(mk)

]
+

1

2

[
∇δmT (Hkδm) +∇(mT HkT

)δm
]

= ∇O(mk) +
1

2
(Hkδm + HkT

δm).

(5.19)

Hk is a symmetric matrix, so Eq. 5.19 becomes

∇O(m) = ∇O(mk) + Hkδm. (5.20)

If m minimizes O(m), then

∇O(m) = 0. (5.21)

Then Eq. 5.20 can be rearranged to yield
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Hkδm = −∇O(mk). (5.22)

During the iteration of optimization, Eq. 5.22 is usually written as

Hkδmk+1 = −∇O(mk), (5.23)

and the update of model m is

mk+1 = mk + δmk+1. (5.24)

This gradient based optimization is called Newton’s method.

According to the objective function, Eq. 5.10, in this research, the gradient of the

objective function can be easily obtained, and is given by

∇O(m) = GT C−1
D

(
g(m)− dobs

)
. (5.25)

The second derivative of the objective function, the Hessian matrix of Eq. 5.17, can be

written as

H(m) = ∇
[
GT C−1

D

(
g(m)− dobs

)]T
= ∇

[(
g(m)− dobs

)T
C−1

D G
]

= GT C−1
D G +∇GT C−1

D

(
g(m)− dobs

) (5.26)

where, in these equations, G denotes the matrix of sensitivity coefficients, i.e., the deriv-

ative of the predicted data g(m) with respect to model parameters m. GT is given by

GT =


∂

∂m1

...

∂
∂mNm


(

g1 · · · gNd

)
= ∇gT , (5.27)

where Nm is the number of model parameters and Nd is the number of data to be matched.

A sensitivity coefficient, Gi,j is a measure of how strongly the change in the data, dpred,i =
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gi(m), is affected by the change in the model parameter mj. In Eq. 5.26, the calculation

of gradient of G is impractical in practice. In the Gauss-Newton method, the second term

in Eq. 5.26 is ignored and the Hessian matrix is approximated by

H(m) ≈ GT C−1
D G. (5.28)

Although H(m) is theoretically positive semi-definite, with the numerical optimization

process, the approximate Hessian matrix could be singular. The Levenberg-Marquardt

method provides a way to handle these problems. Using the Levenberg-Marquardt method,

the iteration of optimization in Eq. 5.23 is represented by

(
λI + Hk(mk)

)
δmk+1 = −∇O(mk), (5.29)

where λ > 0 is the Levenberg-Marquardt parameter, and I is the identity matrix. λI

alters the Hessian matrix H to be positive definite.

Depending on the magnitude of λ, the method varies smoothly between two al-

gorithms: Newton’s method as λ → 0 and the steepest descent method as λ → ∞. At

the beginning of the optimization, we take the initial value of λ to be a large value.

Some authors (see [1, 9]) consider the value of the objective function and the number

of observed data and give the initial value of λ. In this research, it was found that the

problem is strongly ill-conditioned by investigating the Euclidean condition number [42] of

the Hessian H. For a real symmetric positive definite matrix A, the Euclidean condition

number is defined by

κ(A) = ‖A‖2‖A−1‖2 =
λmax

λmin

. (5.30)

The Euclidean condition number of the Gauss Newton Hessian was found to typically be

above 108 in the examples considered. We select the magnitude of the largest eigenvalue

λ1 as the initial Levenberg-Marquardt parameter λ0 with a typical value of 107. In the

iteration of optimization, for a new iteration model parameter mk+1, such that O(mk+1) >

O(m), then mk+1 is not accepted as the new estimate of the model parameter and the
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Levenberg-Marquardt parameter λ is increased by a factor of 10 and the iteration of

Eqs. 5.23 and 5.24 is recalculated. If O(mk+1) < O(mk), then λ is divided by a factor

of 10 and this new iteration model parameter mk+1 is accepted. The above process is

repeated until convergence is reached.

5.3.2 Logarithm of Model Parameters

When minimizing O(m), it is possible to obtain unreasonable or nonphysical values

of model parameters if the Hessian is ill-conditioned, i.e., if λk becomes small, so that

λkI + Hk is poorly conditioned. To avoid this, one needs to impose constraints on the

model parameters. For example, one wishes to require that permeabilities are positive if

that Siw and Sor are positive and less than unit, and that aw is the power law for relative

permeability is such that 0 < aw ≤ 1. To do so, Gao and Reynolds [27] introduced a

logarithmic transformation to replace each model parameter mi by a new parameter xi.

If mi is constrained between a minimum value mi,min and a maximum value mi,max, then

xi is given by

xi(mi) = ln

(
mi −mi,min

mi,max −mi

)
. (5.31)

As shown in Fig. 5.2, this means mi = mi,min is mapped to xi = −∞ and mi = mi,max

corresponds to xi = +∞. Also note that we can solve Eq. 5.31 for mi to obtain either of

the two following equivalent expressions,

mi(xi) =
exp(xi)mi,max + mi,min

1 + exp(xi)
, for xi < 0, (5.32)

and

mi(xi) =
exp(−xi)mi,min + mi,max

1 + exp(−xi)
, for xi > 0. (5.33)

The choice between Eqs. 5.32 and 5.33 is made to control computational error.

For the examples presented here, some of the maximum and minimum values of the

model parameters are shown in Table 5.1. The maximum and minimum values of model

parameters could be adjusted based on one’s expectation of reasonable values. Using
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Figure 5.2: Logarithm transform from m domain to x domain.

the chain rule, one obtains the following relationship between sensitivities of a predicted

datum, gi(m), to model parameters before and after the logarithmic transform as

∂gi(m)

∂mi

=
∂gi(m)

∂xi

∂xi

∂mi

=
∂gi(m)

∂xi

mi,max −mi,min

(mi,max −mi)(mi −mi,min)
, (5.34)

and

∂gi(m)

∂xi

=
∂gi(m)

∂mi

∂mi

∂xi

=
∂gi(m)

∂mi

(mi,max −mi)(mi −mi,min)

mi,max −mi,min

. (5.35)

After the logarithmic transform, the new model parameters are estimated by an opti-

mization algorithm. At the end of each iteration of optimization, we apply the inverse

logarithmic transform to calculate the original parameters for the simulator run.

Parameter k(md) ks(md) aw nw no Siw Sor

Maximum 4000 4000 1.0 4.5 4.5 0.45 0.45
Minimum 5 5 0.05 0.5 0.5 0.05 0.05

Table 5.1: Maximum and minimum values of model parameters

In the process of using the Levenberg-Marquardt method to minimize the objective
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function, because the new model parameters based on logarithmic transform are involved,

one iteration of the Levenberg-Marquardt method can be represented by the following

equations:

(
λI + Hk(xk)

)
δxk+1 = −∇O(xk), (5.36)

xk+1 = xk + δxk+1 (5.37)

where H is the Hessian matrix. Using the new model parameter x in the logarithm

transform domain, the Hessian matrix H and sensitivity coefficient G can be expressed

by

H = GT C−1
D G, (5.38)

and

GT = ∇x(g
T (x)) = Dx∇m

(
[g(m)]T

)
, (5.39)

G =
(
∇x(g

T (x))
)T

=
(
∇m

(
[g(m)]T

))T

Dx, (5.40)

where Dx is a Nm ×Nm diagonal matrix with its entry equal to

dx,i =
∂mi

∂xi

=
(mmax,i −mi)(mi −mmin,i)

mmax,i −mmin,i

.

(5.41)

When the new parameter x is obtained, it can be transformed back to model parameter

m by inverse transform Eqs. 5.32 and 5.33.

5.3.3 Sensitivity Analysis of Observed Data to Model Parameter

As stated above, the sensitivity coefficients reflect how strongly the change in

the data is affected by the change in the model parameter. If one cannot calculate the

sensitivity coefficients accurately enough, it is difficult to obtain the correct gradient (and
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Hessian) for optimization. If it is possible, one should calculate the sensitivity coefficient

analytically, but this is sometimes difficult to obtain the analytical sensitivity coefficient.

For example, it is difficult for us to calculate the sensitivity coefficient of the pressure data

to a control point of the relative permeability curves. In this work, the finite difference

method is applied to calculate the sensitivity coefficient. For example, to generate the

sensitivity of all predicted data dpred,i, i = 1, 2, · · · , Nd, to parameter mj, we make a

perturbation δmj to mj to obtain a new value m̂j = mj + δmj. Then the sensitivity of

dpred,i to mj is approximated by

∂dpred,i

∂mj

=
dpred,i(m̂j)− dpred,i(mj)

δmj

, 1 ≤ i ≤ Nd. (5.42)

The appropriate size of the perturbation was chosen based on the previous experiments

(see reference [21]). A relative perturbation size was used for model parameters. The

following were used: 0.5 percent for permeability, 0.5 percent for end-point water relative

permeability, 5 percent for exponent values of the power law model relative permeability

curves and 20 percent for irreducible water saturation and residual oil saturation. It has

been stated that the optimization is implemented in the unconstrained logarithm domain.

So when the sensitivity coefficient is obtained, one can calculate the sensitivity coefficient

in the logarithm domain by Eq. 5.35. All sensitivities needed to compute the Gauss-

Newton Hessian and the gradient of the objective function are calculated in the same

way. If convex (concave up) relative permeability curves are desired, the procedure is the

same but the relation between control points and transformed variables is different, as

discussed in Chapter 4.

The results show that the different types of observed data and the data from

different periods (injection, falloff and production) have different sensitivities. Figs. 5.3-

5.5 demonstrate the sensitivities of the pressure response to some model parameters based

on a 5-hour injection, 5-hour falloff and 14-hour production test. The x-axis is the time t

from the beginning of the test, so the falloff period corresponds to 5 < t < 10. In Fig. 5.3,

typical sensitivities of the pressure response to logarithm permeabilities are shown. The
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sensitivities in the falloff are the smallest. At the end of injection and at the end of

falloff, the sensitivities tend to flat constant values, because late time data reflect single

phase properties as has been shown by the diagnostic plots (see Eqs. 1.1 and 1.2). So

the later time pressure data from injection/falloff are able to resolve relative endpoint

permeabilities and absolute permeabilities. At late production time, the sensitivities also

show constant values because we have produced virtually all injected water.
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Figure 5.3: Sensitivity of pressure to permeabilities.

Fig. 5.4 displays the sensitivity of the pressure response to the logarithm exponent

values of power law relative permeability curves. The exponent values control the shape

of the relative permeability curves. In Fig. 5.4, the sensitivities have the largest values

during the production and change greatly when oil flows back to the well from 13 hours to

15 hours. That indicates that the pressure data from production can significantly improve

the estimates of the shape of relative permeability curves.

Fig. 5.5 shows the sensitivities of pressure to the control points in the log domain

during the 24 hour injection/falloff/production test to the log-transformed parameters.

Shortly after the beginning of falloff, all sensitivities become zero and remain zero through-
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Figure 5.4: Sensitivity of pressure to exponent values of relative permeabilities, power law
model.

out the shutin period. This is as expected from our previous discussion because falloff

data resolves only k because oil relative permeability at Siw is always equal to 1. Also

the injection time was short, so the zero rate propagates through the water bank al-

most immediately after shutin. The dashed curves indicate sensitivities to the xi’s (log

transforms of the control points for the water relative permeability curve) and the solid

curves, the sensitivities to the yi’s (log transforms of the control points for the oil relative

permeability curve). Perturbing an xi (or yi) in general changes all non-fixed control

points for the water (oil) relative permeability curve and hence changes the whole curve.

Because both end points of the oil relative permeability curve are fixed, the magnitude

of the sensitivity of wellbore pressure to the xi’s is larger than its sensitivity to the yi’s

throughout the injection period and throughout most of the production period. Near the

end of the production period, the sensitivity of pressure to relative permeability becomes

zero because at this time, only oil is flowing in the reservoir. Recall that the injection

rate is fixed. Thus, sensitivities are negative during injection because increasing the total

mobility enables the rate to be maintained with a lower injection pressure. During pro-
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duction, increasing total mobility allows production at the specified constant total rate

with a higher wellbore pressure (smaller pressure drop) so sensitivities are positive.
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Figure 5.5: Sensitivity of pressure data to log-transformed control points, B-spline model.

In this research, the rate data during production are also considered for estimat-

ing the model parameters. Figs. 5.6-5.8 compare the sensitivities of oil production rate

and cumulative oil production to the exponent values of power law relative permeability

curves. In Chapter 3.2, we showed that there is still a saturation front (shock), which

gives a singularity for ∂λt(r,t)
∂ ln(∆t)

, when oil flows back to the well during production. Cor-

respondingly, the oil production rate has a sharp change (shown in Fig. 5.6) around the

oil breakthrough time of 12.5 hours. On the other hand, the cumulative oil production

changes smoothly in Fig. 5.6. The sharp change of oil production rate while oil is flowing

back gives an extremely high value of the sensitivity of oil the production rate to log-

arithm exponent values of relative permeability curves at the time of oil breakthrough

in Fig. 5.7. But sensitivities at other times are small. In the practice of inverse regres-

sion, this extremely high sensitivity is difficult to be computed accurately with a finite

difference method and highly inaccurate values can introduce errors in the optimization
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process. The sensitivities of cumulative oil production to exponent values of relative per-

meability curves show smoother variations than those of oil production rate as shown in

Fig. 5.8. Thus, we employ the cumulative oil production rather than oil production or

water cut during production as observed data in addition to bottomhole pressure data

from injection, falloff and production.
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Figure 5.6: Oil production rate and cumulative production oil during production, power
law relative permeabilities.
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Figure 5.7: Sensitivity of oil production data to logarithm exponent value of power law
relative permeabilities.
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Figure 5.8: Sensitivity of cumulative oil production data to logarithm exponent value of
power law relative permeabilities.

125



5.3.4 Convergence of Optimization

In this work, two criteria to determine the convergence of the optimization algo-

rithm were applied. One is based on the change in the vector of model parameters and is

given by

max
i

∣∣mk+1
i −mk

i

∣∣∣∣mk
i

∣∣+ 10−14
< ε1, (5.43)

and the other is based on the change in the objective function and is given by

∣∣O(mk+1)−O(mk)
∣∣

max
(∣∣mk+1

i

∣∣ , 1) < ε2. (5.44)

where, the terms ε1 and ε2 are convergence tolerances, and we give them values of 0.001

and 0.1, respectively. In this work, both criteria must be satisfied for the optimization to

converge. Also, a maximum of 100 iterations is allowed.
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CHAPTER 6

EXAMPLES OF ESTIMATES OF RELATIVE

PERMEABILITIES

This chapter shows some synthetic cases and the results of estimate of relative

permeabilities and other model parameters, as stated in chapter 4, three models for repre-

senting relative permeabilities were applied in the synthetic cases. The data from different

periods of the IFPT were studied with respect to the reliability of estimating the relative

permeabilities by using data from different time periods. In this research, the nonlinear

regression was used to estimate relative permeabilities and other model parameters based

on either using the reservoir simulator (IMEX) as a forward model or our approximate

analytical solution of the pressure response from different periods of the IFPT. Cases with

different fluid mobility ratios, favorable and unfavorable, are also studied. Considering

application of the IFPT in the field case, the effects from the horizontal heterogeneity

of reservoir permeability, hysteresis of relative permeability and fluctuation of flow rate

during the IFPT were simulated and studied for synthetic cases. For all synthetic cases,

the observed data used in this research were after 0.5 hours after a rate change.

6.1 Estimate of Relative Permeabilities Based on the Power Law Model

Results from cases using the power law model to estimate the relative permeabili-

ties and other model parameters are shown in this section. We investigated the flexibility

of the power law model by matching the observed data generated by relative permeabili-

ties that did not fit the power low model. The simulator IMEX is used as a forward model

for all cases in this section.
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6.1.1 Estimate Based on Data from the IFPT

Here, we used the power law relative permeability model in the nonlinear regres-

sion to match the observed pressure data generated using the power law model relative

permeability curves as the true relative permeability curves. Table 6.1 gives the true

values of k and s, and some parameters for reservoir simulation. For the true power law

Property Value
re 6800 ft
h 60 ft
rw 0.350 ft
rs 1.264 ft
k 372 md
ks 74.4 md
Skin factor, s 5.14
Siw 0.164
Sor 0.271
µo 5.1 cp
µw 0.516 cp

λ̂w 0.73

λ̂o 0.18

Endpoint mobility ratio, M̂ 4.00
pi 2500 psi
φ 0.2
Bo 1.03 RB/STB
Bw 1.02 RB/STB
co 8.0× 10−6 psi−1

cw 3.02× 10−6 psi−1

Injection Rate, qinj 3000 RB/Day
Production Rate, qt(rw) 3000 RB/Day

Table 6.1: Reservoir, rock and fluid properties for simulation of well test.

model relative permeability, endpoint value of water phase relative permeability curve

is aw = 0.5; exponent values of water and oil relative permeability curves are nw = 2.0

and no = 3.0, respectively; irreducible water saturation is Siw = 0.164 and residual oil

saturation is Sor = 0.271.

Estimate Based on Bottomhole Pressure: In this case, the irreducible water sat-

uration Siw and residual oil saturation are assumed to be known. We used the pressure
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data from all periods of injection(5 hours)/falloff(5 hours)/production(14 hours) as the

observed data. The observed data was generated by added noise to data generated from

the reservoir simulator with noise generated from a Gaussian distribution with mean zero

and a standard deviation of 0.25 psi. The noise is uncorrelated in all examples. Un-

less stated otherwise all observed pressure data were generated with this noise model.

After applying nonlinear regression, Fig. 6.1 shows that bottomhole pressure predicted

with our estimated model parameters (solid curve) matches the observed pressure data

(circular data points) well. As shown in Fig. 6.2, our estimates of relative permeability

curves (curves through circular data points) mirror the true relative permeability curves

(solid curves). Table 6.2 shows that the estimates of all model parameters provide good

estimates of the true values.
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Figure 6.1: Pressure data match based on the power law model matching observed data
from the true power law relative permeabilities, M̂ = 4.0.

Estimate Based on Pressure and Cumulative Oil: This case shows the results from

matching observed pressure data and cumulative oil data. The pressure data are from

all three periods of injection, falloff and production. The cumulative oil data during the
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Figure 6.2: Estimate of relative permeabilities based on power law model matching ob-
served data from the true power law relative permeabilities,, M̂ = 4.0.

Model Parameter k (md) ks (md) s aw nw no

True 372 74.4 5.14 0.5 2.0 3.0
Estimate 389.6 74.9 5.39 0.5 2.0 3.0

Initial Guess 800 200 3.85 0.7 1.5 2.0

Table 6.2: Estimate of model parameters based on power law model matching pressure
data from injection/falloff/production.

production were generated from the true data by adding noise based on σQ,min = 0.1

RB/Day and σQ,max = 5 RB/day as we stated in Chapter 5. In this case, the irreducible

water saturation Siw and residual oil saturation Sor are also estimated by the nonlinear

regression. As in the previous case where we only matched the observed pressure data,

we obtained a good match of pressure. Fig. 6.3 shows the match of cumulative oil, we

note that our estimate of cumulative oil (solid curve) is in good agreement with the

observed data (circular points). The initial guess of cumulative oil shows a different time

of oil “breakthrough ” compared with the observed data in Fig. 6.3. We also obtained

the good estimate of relative permeability curves as shown in Fig. 6.4, our estimates

of relative permeability curves (circle points) mirror the true relative permeability curves
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(solid curves). All estimates of model parameter are shown in Table 6.3, and our estimates

of model parameters are accurate.

12 14 16 18 20 22 24
1

10

100

1000

 Observed
 Initial guess
 Estimate

Q
o, 

R
B

t, hour

Figure 6.3: Cumulative oil data match based on power law model matching observed data
from the true power law relative permeabilities, M̂ = 4.0.

Model Parameter k (md) ks (md) s aw nw no Siw Sor

True 372 74.4 5.14 0.5 2.0 3.0 0.164 0.271
Estimate 389.7 75.0 5.39 0.5 2.0 2.99 0.163 0.270

Initial Guess 800 200 3.85 0.7 1.5 2.0 0.1 0.1

Table 6.3: Estimate of model parameters based on the power law model matching pressure
data from injection/falloff/production.

In this example we obtained good estimates of both the irreducible water satu-

ration, Siw, and residual oil saturation, Sor. But we found that it is very difficult to

obtain reliable estimates of endpoint saturations. This difficulty can be explained as fol-

lows. If the sum Sor + Siw is kept equal to the true value and all other parameters are

kept fixed, then varying the individual values of Sor and Siw simply shifts the relative

permeability curves and does not change the fractional flow curve. Thus, the only effect

that the individual values of Sor and Siw can have on the pressure response during the
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Figure 6.4: Estimate of relative permeabilities based on the power law model matching
observed data from the true power law relative permeabilities, M̂ = 4.0.

injection/falloff/production test is due to the change in system compressibility, and if the

water and oil compressibilities are equal, this effect is completely negligible.

6.1.2 Estimate of Polynomial Relative Permeabilities Based on the Power Law Model

It has been stated that the points on the power law relative permeabilities are

controlled by the same model parameters, such as exponent values, which make it hard

for the power law model to characterize the local shape of relative permeability curves.

In this section, an example is given to show the validity of the power law relative per-

meability curves representing polynomial relative permeability curves. The true relative

permeabilities are expressed by the following polynomials:

krw(SwD) = 0.182SwD − 0.104S2
wD + 0.328S3

wD

kro(SwD) = 1.0− 3.430SwD

+ 4.387S2
wD − 2.388S3

wD + 0.431S4
wD

(6.1)

The above relative permeability curves do not follow the power law model. The end-point
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values of relative permeabilities for water and oil phases are krw(1 − Sor) = 0.406 and

kro(Siw) = 1.0, respectively. The observed data are generated by running the simulator

IMEX based on the true relative permeabilities, Eq. 6.1, and the parameters in Table 6.1.

In this case, we assume the irreducible water saturation, Siw, and residual oil saturation,

Sor, are known. This test is a 5-hour injection, 5-hour falloff and 14-hour production

test. The observed data are bottomhole pressure from all three periods. The noise is a

Gaussian distribution with mean zero and standard deviation of 0.25 psi. The simulator

is used as the forward model for calculating the predicted pressure response based on the

estimate of model parameters.
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Figure 6.5: Normalized objective function (polynomial true relative permeabilities), M̂ =
4.0.

Fig. 6.5 shows the normalized objective function value change iteration by itera-

tion. We can note that the Levenberg-Marquardt algorithm converged in 35 iterations

but the normalized objective function, 2O(m)/Nd, which should be around 1 normally, is

over 60. The estimated relative permeability curves (the circle points) shown in Fig. 6.6

deviate from the true relative permeability curves (the solid curves). The dashed curves

are the initial guesses of the relative permeability curves. In Fig. 6.7, the match of bottom-
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Figure 6.6: Estimate of relative permeabilities based on the power law model (polynomial
true relative permeabilities), M̂ = 4.0.
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Figure 6.7: Estimate of bottomhole pressure (polynomial true relative permeabilities),
M̂ = 4.0.
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hole pressure, the estimate of bottomhole pressure (the circle points) follows the observed

pressure data (the solid curve) although the initial guess (the squared points) are far from

the observed data. But we can note the high data mismatch when oil flows back to the

well during production. Less accurate estimates of absolute permeability and skin factor

were also obtained. The estimated values are k = 412.4 md and s = 6.0 compared to the

true values of k = 372.0 md and s = 5.14. The failure to obtain good estimates of relative

permeability curves is due to the fact that the power law model is not flexible and is not

appropriate for this example.

6.2 Estimate of Relative Permeabilities Based on the B-spline Model

Results from cases using the B-spline model to estimate the relative permeabilities

and other model parameters are shown in this section. Reservoir simulator (IMEX) were

used as the forward model in nonlinear regression. From the study of the sensitivity of

observed data to model parameters representing relative permeability curves, we found

that the data obtained during production are more sensitive to the model parameters

than the data during injection and falloff periods. The estimates of relative permeabil-

ities and other model parameters, based on the pressure data from injection/falloff and

injection/falloff/production, are compared in this research. The flexible B-spline model,

with 7 knots on each of the relative permeability curves, was used to represent the relative

permeability curves.

6.2.1 Estimate Based on the Injection/Falloff Test

We used three cases to investigate the efficiency of the pressure data from an in-

jection/falloff test. The observed pressure data of the three synthetic cases were obtained

based on the value given in Table 6.1, and the true relative permeability curves defined

by Eq. 6.1. The observed pressure data are added a Gaussian noise with mean zero and

a standard deviation of 0.25 psi. The convex (concave up) B-spline model is used in the

process of the nonlinear regression to estimate relative permeabilities. The irreducible

water saturation Siw and residual oil saturation Sor are assumed to be known.
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In the first case, the observed pressure data are from a test with 5-hour injection

and 5-hour falloff. We used pressure data after 0.5 hours for each period as the observed

data. Fig. 6.8 shows the match of bottomhole pressure after nonlinear regression. The

dashed curve is our initial guess of bottomhole pressure based on the given initial estimate

of model parameters. We can see that bottomhole pressure calculated using the estimate

parameters (solid curve) gives a good match of the observed pressure (circular points).

However, we obtain a poor estimate of the model parameters. In Fig. 6.9, our finial

estimate of relative permeability curves (the circled points) do not match the true relative

permeability curves (the solid curves). The estimate of the endpoint value of water phase

aw = 0.88, which is far from the true value of aw = 0.406. The estimates of the absolute

permeabilities are k = 368.1 md and ks = 20.6 md (s=21.7) compared to the true values

of k = 374.0 md and ks = 74.4 md (s=5.14). From the results, we note that this short

time injection/falloff test only gave a good estimate of absolute permeability.
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Figure 6.8: Match of bottomhole pressure based on 5-hour injection and 5-hour falloff,
M̂ = 4.0.

When we matched only pressure data from the injection and falloff tests together

(total of 10 hours of data) in the above case, we obtained very poor estimates of the relative
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Figure 6.9: Estimate of relative permeabilities based on 5-hour injection and 5-hour falloff,
M̂ = 4.0.

permeability curves. To obtain a fairer comparison, we generated comparable data for two

longer tests with an 24-hour injection period followed by a 24-hour falloff period. In one

case, parameters are estimated by matching observed pressure data from both injection

and falloff periods after 0.5 hours; in the other case, to eliminate the information from

early times of each period, we used observed data from the injection after 5 hours together

with observed pressure data from the falloff period after 0.5 hours considering sensitivity

of observed data to parameters are close to zero during falloff. Figs. 6.10–6.13 give the

results of the case with observed pressure data after 0.5 hours for the injection and falloff

periods. Fig. 6.10 shows that there is a good match between our estimate of bottomhole

pressure and the observed pressure data. Fig. 6.11 shows the estimate of the relative

permeability curves. Our estimate of relative permeability curves (circle points) obtained

the main structure of the true relative permeability curves. The estimate has a good

match of endpoint value of water phase with estimated aw = 0.40 compared the the true

value aw = 0.406. But the shifts between the estimated relative permeability curves and

the true relative permeability curves can be observed between irreducible water saturation
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Siw and the saturation 1− Sor in Fig. 6.11. The estimates of absolute permeabilities are

k = 370.8 md and ks = 70.1 md (s = 5.51) compared to the true values of k = 372.0 md

and ks = 74.4 md (s = 5.14). Fig. 6.12 shows the diagnostic plot of pressure difference
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Figure 6.10: Match of bottomhole pressure based on 24-hour injection and 24-hour falloff
with observed pressure data after 0.5 hours for each period, M̂ = 4.0.

and its derivative during production of the 24-hour injection and 24-hour falloff test. After

nonlinear regression, although the derivative of the observed data (triangular data) is very

noisy, the derivative of our estimate (solid curve) traces the derivative of the true pressure

difference (circled data) well. Here, the true pressure data are obtained based on the true

model parameters without adding noise. At late injection times, the derivative of the

pressure difference shows a constant value 12.1 representing the water property defined

by Eq. 1.4. From the derivative of pressure difference in Fig. 6.12, we also note that most

data do not give the constant value representing water property for 5 hours of injection.

So the pressure data from the short time test of the 5-hour injection do not provide enough

information for estimating the endpoint value of water phase relative permeability curve.

Fig. 6.13 shows the diagnostic plot of pressure data from the subsequent falloff period.

The derivative of our estimate (solid curve) has a good agreement with the derivative of
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Figure 6.11: Estimate of relative permeability curves based on the test of 24-hour injection
and 24-hour falloff with observed pressure data after 0.5 hours for each period, M̂ = 4.0.

true data (circled data). The all derivatives of pressure difference during falloff give a

constant value of 48.7, representing the oil property given by

d∆p

d ln (te)
=

70.6qt

khλ̂o

=
70.6qtµo

kh
(6.2)

The falloff derivative represents the log-derivative of ∆p = pwf,s − pws(∆t) with respect

to Agarwal’s equivalent time (te) plotted versus shutin time.

In Chapter 1, we state that at end of the injection and falloff, the pressure data only

provide the information representing endpoint water relative permeability and endpoint

oil relative permeability, respectively. We note that the derivatives of pressure differences

during falloff in Fig. 6.13 show an essentially constant value throughout the falloff. So

here, we gave a case selecting the pressure data after 5 hours as the observed data for

the injection period, i.e., the observed data for both the injection and falloff only show

constant values of pressure difference as shown in Figs. 6.12 and 6.13. Although we

obtained a good match between our estimate of pressure and observed data, the estimated
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Figure 6.12: Match of bottomhole pressure based on 24-hour injection and 24-hour falloff,
M̂ = 4.0.
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Figure 6.13: Estimate of relative permeabilities based on 24-hour injection and 24-hour
falloff, M̂ = 4.0.
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relative permeability curves as shown in Fig. 6.14 are not accurate because we did not

use the earlier time injection data which reflects total mobility values between the two

endpoint values. Our estimate of relative permeability curves (circle points) represents a

good estimate of the endpoint value of water phase, aw = 0.401 compared with true value

aw = 0.405. However, our estimate of relative permeability curves do not match the true

curves (solid curves) in the region between irreducible water saturation Siw and saturation

1 − Sor. The estimates of absolute permeabilities are k = 370.8 md and ks = 70.1 md

(s = 5.51) compared to the true values of k = 372.0 md and ks = 74.4 md (s = 5.14).
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Figure 6.14: Estimate of relative permeabilities based on 24-hour injection and 24-hour
falloff with observed pressure data after 5 hours for injection period, M̂ = 4.0.

Comparing the results and estimates from cases from injection/falloff, we found

that in all cases, we obtain a good estimate of absolute permeability because the pressure

data from falloff period provides enough information to resolve absolute permeability,

injection test does not reflect both endpoint water relative permeability and total mobility

at intermediate water saturations, we get relatively poor estimate of relative permeability

curves. For the 24-hour injection/24-hour falloff case, we obtained good estimate of

endpoint value of water relative permeability curve. However, we show next that we
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obtain an much better estimate using data from 24 hours injection/falloff/production test

with a 5-hour of injection, a 5-hour of falloff and a 14-hour flow back period.

6.2.2 Estimate Based on the IFPT

When we have injection/falloff/production test (IFPT) data, we have more infor-

mation than only using injection/falloff test. Here, we show some nonlinear regression

results from cases with different endpoint mobility ratios and different scenarios of ob-

served data from the IFPT. The observed pressure data from the IFPT is generated from

the reservoir simulator based on the model parameters in Table 6.1 by adding uncorre-

lated Gaussian noise of mean zero and standard deviation 0.25 psi. The true relative

permeability curves are defined by Eq. 6.1. The pressure data after 0.5 hours in each

period are used for nonlinear regression.

Estimate Based on Pressure Data from the IFPT M̂ = 7.9: This test is based on

the pressure data from all three periods from this 24 hour IFPT with endpoint mobility

ratio M̂ = 7.9. Fig. 6.15 and Fig. 6.16 show the pressure data match and the estimate

of relative permeability obtained by nonlinear regression. In Fig. 6.15, the predicted

pressure data generated using our estimate of model parameters (solid curve) match the

observed data (the triangular data) very well. As shown in Fig. 6.16, our estimate of

relative permeability curves (circle data points) also is in good agreement with the true

relative permeability curves (solid curves). The estimates of absolute permeability and

skin variables are k = 373.7 md, ks = 74.5 md and s = 5.14 compared to the true

values of k = 372.0 md, ks = 74.4 md and s = 5.14. Compared with the results from

cases based on injection/falloff test, the estimate of relative permeability curves and other

model parameters using the pressure data from the IFPT are more accurate.

We also did nonlinear regression based on using the monotonic B-spline curve to

represent the relative permeabilities. In this case, we also using 7 knots for each relative

permeability curve. Fig. 6.17 shows the pressure data match. Our predicted pressure data

(solid curve) match the observed pressure data (circle data) very well. The initial guesses

of pressure data (squared data) are far from the observed pressure data and our predicted
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Figure 6.15: Match of bottomhole pressure based on 5-hour injection, 5-hour falloff and 14
hour production with observed pressure data after 0.5 hours for each period with convex
B-spline model, M̂ = 4.0.

data. Fig. 6.18 compares the estimate of relative permeability curves (circled curves)

and the true curves (solid curves). They are in very good agreement. The true relative

permeability curves are convex (concave up). We can note that estimate of water phase

relative permeability curve id not convex between saturations Sw = 0.3 and Sw = 0.6

in this case. The estimate of the endpoint value of water phase relative permeability

curve is aw = 0.386 compared with the true value aw = 0.405. The estimates of absolute

permeability and skin variables are k = 372.6 md, ks = 74.4 md and s = 5.15 compared

to the true values of k = 372.0 md, ks = 74.4 md and s = 5.14.

Estimate Based on Pressure Data from the IFPT (M̂ = 0.53): This test is also

based on the pressure data from the 24 hour IFPT. In this case, oil viscosity is µo = 0.8 cp

and water viscosity is µw = 1.0 cp, and the other model parameters same as those given

in Table 6.1. The true relative permeability curves are still the polynomial equations

defined by Eq. 6.1. The true endpoint values of oil and water phase relative permeability
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Figure 6.16: Estimate of relative permeability curves based on 5-hour injection, 5-hour
falloff and 14 hour production with observed pressure data after 0.5 hours for each period
with convex B-spline model, M̂ = 4.0.

curves are 1.0 and 0.405, respectively. The endpoint mobility ratio is M̂ = 0.51. During

the production period, oil is displacing the injected water so a favorable mobility during

injection results in an unfavorable mobility ratio when oil is displacing water. Fig. 6.19

and Fig. 6.20 show the pressure data match and the estimate of relative permeability

obtained by nonlinear regression, respectively. In Fig. 6.19, the predicted pressure data

based on our estimate of model parameters (solid curve) match the observed data (the

triangular data) very well. As shown in Fig. 6.20, our estimate of relative permeability

curves (circle data points) also are in good agreement with the true relative permeability

curves (solid curves) again. The estimate of the endpoint value for water phase relative

permeability curves is aw = 0.391 compare with the true value aw = 4.06. The estimates

of absolute permeability and skin variables are k = 382.8 md, ks = 76.5 md and s = 5.14

compared to the true values of k = 372.0 md, ks = 74.4 md and s = 5.14.
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Figure 6.17: Match of bottomhole pressure based on pressure data from 5-hour injection,
5-hour falloff and 14 hour production with monotonic B-spline model, M̂ = 4.0.

Estimate Based on Only Falloff and Production: In this case, the total number

of observed pressure data from the falloff and flowback periods combined is 126 and the

number of observed cumulative oil production data from the flow back period is 63. For

this synthetic case, we added the noise to cumulative oil with σQ,min = 0.1 RB/Day and

σQ,max = 5 RB/day as we stated in Chapter 5. Fig. 6.21 and Fig. 6.22 show the pressure

match of data from the falloff and production periods and cumulative oil data match

during production, respectively. Our predicted data from estimates of model parameters

match the observed data very well both on the pressure data and the cumulative oil data.

From the results of Fig. 6.23, we see that the B-spline approximations of the relative

permeability curves are in excellent agreement with the true curves. The estimates of

absolute permeability and skin are k = 371.6 md and s = 5.11 compared to the true

values of k = 372.0 md and s = 5.14.
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Figure 6.18: Estimate of relative permeability curves based on pressure data from 5-hour
injection, 5-hour falloff and 14 hour production with monotonic B-spline model, M̂ = 4.0.
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Figure 6.19: Match of bottomhole pressure based on 5-hour injection, 5-hour falloff and
14 hour production with observed pressure data after 0.5 hours for each period, M̂ = 0.53.
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Figure 6.20: Estimate of relative permeability curves based on 5-hour injection, 5-hour
falloff and 14 hour production with observed pressure data after 0.5 hours for each period,
M̂ = 0.53.
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Figure 6.21: Match of bottomhole pressure based on the IFPT with observed pressure
data during falloff/production periods and cumulative oil data during production period,
M̂ = 4.0.
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Figure 6.22: Match of cumulative oil based on the IFPT with observed pressure data
during falloff/production periods and cumulative oil data during production period, M̂ =
4.0.
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Figure 6.23: Estimate of relative permeability curves based on the IFPT with observed
pressure data during falloff/production periods and cumulative oil data during production
period, M̂ = 4.0.
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Estimate of Siw and Sor: In the previous section, we obtained good estimates of

Siw and Sor. As we stated before, it seems clear that both endpoint saturation cannot

generally be resolved without additional information. Our limited computational exper-

iments suggest that in general, we can only expect the sum Sor + Siw to be accurately

resolved by test data. However, in some cases we fortuitously obtain good estimates of all

parameters even when Siw and Sor are included as model parameters. Fig. 6.24 displays

such a case. This the same case that gave the results of Fig. 6.16 except now we estimate

Siw and Sor also. Note that reasonable estimates of the true relative permeability were

obtained. The estimates of other parameters are k = 375.6 md, s = 5.19, Siw = 0.161

and Sor = 0.244 compared to the true values of k = 372 md, s = 5.14, Siw = 0.164 and

Sor = 0.271.
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Figure 6.24: Estimate of relative permeability curves based on concave B-spline rel-
ative permeability curves, endpoint saturations also estimated by matching injec-
tion/falloff/production data, M̂ = 4.0.
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6.3 Analysis Based on Approximate Analytical Solution

(No Capillary Pressure)

6.3.1 Estimate Based on the Injection/Falloff Test

Based on the steady state theory of Thompson and Reynolds, the Buckley-Leverett

theory, the front tracking method and the solution of Peres and Reynolds, we presented

in Chapter 2, our approximate analytical solution for the pressure response during the

IFPT without capillary pressure effects. Using our approximate analytical solution as

the forward model in nonlinear regression, we also estimated relative permeabilities and

other model parameters. Here, we give some examples to show the validity of using

our approximate analytical solution in nonlinear regression. The observed data were

generated from the reservoir simulator IMEX based on the simulation parameters shown

in Table 6.4. The true relative permeability curves for reservoir simulation are the power

Property Value
qinj 3000 RB/Day
h 60 ft
rw 0.350 ft
re 6800 ft
rs 1.2279 ft
Number of rings 6000
k 300 md
ks 60 md
µo 3.0 cp
µw 0.5 cp

λ̂w 1.0

λ̂o 0.333
Siw 0.1
Sor 0.25
pi 2500 psi
φ 0.22
Bo 1.003 RB/STB
Bw 1.002 RB/STB
co 8.0× 10−6 psi−1

cw 3.02× 10−6 psi−1

cr 5.0× 10−6 psi−1

Table 6.4: Reservoir, rock and fluid properties for simulation and analytical solution.
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law model given by Eqs. 4.1 and 4.2 with endpoint values of water and oil phase relative

permeabilities given by aw = 0.5 and ao = 1.0, and exponent values of water and oil phases

are nw = 2.0 and no = 2.0, respectively. Endpoint mobility ratio is M̂ = 3.0. We use

both the power law and B-spline model to estimate relative permeabilities in the nonlinear

regression. From an IFPT with 16-hour injection, 16-hour falloff and 24-hour production,

bottomhole pressure data are used as the observed data. The observed data were obtained

by adding to the true data, generated from the simulator, uncorrelated Gaussian noise

with mean zero and a standard deviation of 0.1 psi. The observed pressure data that we

used for nonlinear regression are also after 0.5 hours for each period.
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Figure 6.25: Bottomhole pressure match based on approximate analytical solution of the
injection/falloff test, power law model (M̂ = 3.0).

Fig. 6.25–Fig. 6.27 display the results obtained by matching the observed pressure

data from the injection and falloff periods test using the power law model. Fig. 6.25 shows

that we have a good match between our predicted pressure (solid curve ) and the observed

pressure (circle points). Diagnostic plot of injection, Fig. 6.26, shows that the derivative

of the predicted pressure (solid curve) reaches a constant value of 11.7 representing the

water property given by Eq. 1.4 at late time of injection, although the derivative of
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Figure 6.26: Diagnostic plot of injection based on approximate analytical solution of
injection/falloff, power law model test (M̂ = 3.0).
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Figure 6.27: Diagnostic plot of falloff based on approximate analytical solution of injec-
tion/falloff test, power law model (M̂ = 3.0).
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Figure 6.28: Estimate of relative permeabilities based on approximate analytical solution
of injection/falloff test, power law model (M̂ = 3.0).

observed pressure data is highly oscillatory because of the noise. In the diagnostic plot

(Fig. 6.27) of falloff data, the derivative of the estimated pressure difference (solid curve)

si essentially constant and equal to 35.5 reflects endpoint oil mobility according to Eq. 6.2.

Figs .6.25–6.27 show that we obtained a good match of bottomhole pressure. However, we

did not obtain a good estimate of relative permeability curves by matching the observed

data from the injection and falloff periods. As shown in Fig. 6.28, our estimate of relative

permeability curves (solid curves) can not match the true relative permeability curve of

water phase, except the endpoint value of water phase aw = 0.49 compared with true

value aw = 0.5. The result also shows that a good estimate of absolute permeability is

achieved as shown in Table 6.5.
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parameter k, md Skin Factor krw(1− Sor) nw no

True 300 5.0 0.5 2.0 2.0
Initial Guess 600 0 0.8 1.2 1.2

Injection/Falloff (Power Law) 299.8 5.05 0.49 1.34 2.09
IFPT (Power Law) 300.0 4.8 0.48 2.07 1.98
IFPT (B-spline) 300.0 5.1 0.49 - -

Table 6.5: Estimates of model parameters based on the approximate analytical solution
without capillary pressure effect.
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Figure 6.29: Bottomhole pressure match based on approximate analytical solution of the
IFPT, power law model (M̂ = 3.0).
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6.3.2 Estimate Based on the IFPT

The results from the preceding case show that the pressure injection/falloff data

alone cannot provide enough information to resolve the shape of the relative permeability

curves. Next, we show the results from two cases after nonlinear regression by using pres-

sure data from all three periods. Fig. 6.29 and Fig. 6.30 display the bottomhole pressure
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Figure 6.30: Estimate of relative permeabilities based on approximate analytical solution
of the IFPT, power law model (M̂ = 3.0).

response calculated from the estimated parameters and the estimate of the relative per-

meability curves, respectively. The estimated were obtained from nonlinear regression by

matching the pressure data from the IFPT based on the power law relative permeabilities.

We obtained a good estimate pressure data again. As shown in Fig. 6.29, our estimate of

pressure response (the solid curve) mirrors the observed data (circle points). In Fig. 6.30,

our estimate of the relative permeability curves (solid curves) have a good agreement

with the true relative permeability curves (circle point curves). We also obtained good

estimates of other model parameters as shown in Table 6.5.

From the cases in previous section, we found that it is difficult to obtain good

estimate of polynomial relative permeability curves using the power law model if the true
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Figure 6.31: Bottomhole pressure match based on approximate analytical solution of the
IFPT, B-spline model (M̂ = 3.0).
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Figure 6.32: Estimate of relative permeabilities based on approximate analytical solution
of the IFPT, B-spline model (M̂ = 3.0).
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curves cannot be well approximated by the power law model. The B-spline representation

is more flexible than power law model in describing the local shape of the relative perme-

ability curves. Here, we also used the convex B-spline model to estimate the true power

law model relative permeability curves. Fig. 6.31 and Fig. 6.32 show the results obtained

using B-splines to estimate the power law relative permeability curves. In Fig. 6.31, pre-

dicted bottomhole pressure obtained from our approximate analytical solution based on

the parameter estimate (solid curve) matches the observed bottomhole pressure (circle

points) very well. Fig. 6.32 shows that our estimated relative permeability curves (solid

curves) are in good agreement again with the true relative permeability curves (circle

points). As shown in Table 6.5, we also obtained good estimates of absolute permeability

k = 300 md, skin factor s = 5.1 and endpoint value of water phase relative permeability

aw = 0.49 compared with their true values of 300 md, 5.1 and 0.5, respectively.
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Figure 6.33: Total flow rate for case of 48-hour injection, 24-hour falloff and 72-hour
production (M̂ = 3.0).

6.3.3 Estimate Based on the IFPT with a Multirate Production

In this section, we estimate model parameters from an example of an IFPT for the
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case of multirate production. In Chapter 2, we have stated that our analytical solution

matches results from the reservoir simulation. The following cases also employed the IFPT

with 48-hour injection, 24-hour falloff and 72 hour production. During production, there

are 36 uniform time interval multirate steps as shown in Chapter 2 and reproduced here

as Fig. 6.33. We also used power law relative permeabilities with krw(Sw = 1−Sor) = 0.5

and nw = no = 2.0 as the true relative permeabilities. Other true model parameter are

shown in Table 6.6 and the parameters for the reservoir simulator are shown in Table 6.4.

The viscosities of oil and water are, respectively, µw = 0.5 cp and µo = 3.0 cp. We used the

pressure data from the IFPT after 0.5 hours for each period as we used before. Fig. 6.34

and Fig. 6.35 show the results using power law relative permeabilities. After nonlinear

regression, as we expected, Fig. 6.34 shows that there is a good match of bottomhole

pressure. Our estimate of bottomhole pressure (solid curve) exactly covers the observed

pressure data (dashed curve) and our initial pressure (squared data points) is far from the

observed pressure. Fig. 6.35 shows that our estimated relative permeability curves (solid

curves) are in good agreement with the true relative permeability curves (circle points).

Our estimate of the endpoint value of water-phase relative permeability is 0.48 compared

with the true value of 0.5. We also obtained good estimates of absolution permeability

k = 300.6 md and skin factor s = 4.6 compared with true values of k = 300 md and

s = 5.0, as shown in Table 6.6.

parameter k, md Skin Factor krw(1− Sor) nw no

True 300 5.0 0.5 2.0 2.0
Initial Guess 600 0 0.8 1.2 1.2

IFPT (Power Law) 300.6 4.68 0.48 2.08 2.01
IFPT (B-spline) 300.3 4.99 0.48 - -

Table 6.6: Estimates of model parameters based on the approximate analytical solution
without capillary pressure effect for the IFPT with a multirate production.

Fig. 6.36 shows the estimate of relative permeability curves based on the B-spline

model. As shown in Fig. 6.36, we obtained a good match between our estimate of the

relative permeabilities (solid curve) and the true relative permeabilities (circle points).

Table 6.6 shows that we also obtained good estimates of absolution permeability k = 300.6
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Figure 6.34: Bottomhole pressure match based on approximate analytical solution of the
IFPT with multirate production, power law relative permeability (M̂ = 3.0).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

k r
w
 &

 k
ro

Sw

 True
 Initial guess 
 Estimate

Figure 6.35: Estimate of relative permeabilities based on approximate analytical solution
of the IFPT with multirate production, power law relative permeability (M̂ = 3.0).
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md and skin factor s = 4.6 compared with true values of k = 300 md and s = 5.0.
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Figure 6.36: Estimate of relative permeabilities based on approximate analytical solution
of the IFPT with multirate production, B-spline relative permeability (M̂ = 3.0).

6.4 Estimate of Relative Permeabilities Including Capillarity

In this section, we use the nonlinear regression to estimate both the relative per-

meability curves and the capillary pressure curve based on the model set up between

capillary pressure and relative permeabilities stated in the Chapter 4. In this case, the

true (noise free) pressure data is generated by running the reservoir simulator IMEX based

on the parameters in Table 6.4. The observed pressure generated by adding noise to the

true data where the noise is simulated from a Gaussian with zero mean and a standard

deviation of 0.25 psi. The true capillary pressure and relative permeabilities are generated

by Eq. 4.44, Eq. 4.46 and Eq. 4.47, respectively, with the true model parameters shown

in Table 6.7. In this case, we fixed irreducible water saturation, Siw, and residual oil

saturation, Sor to their true values, respectively, as shown in Table 6.7, in which “fixed”

means the corresponding parameter value is fixed to the true value. In this case, the

forward models of capillary pressure and relative permeabilities defined by Eqs. 4.44, 4.46
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and 4.46, respectively, are used to resolve our analytical solution. The pressure response

is based on generated the saturation profile during production analytically and the ap-

plying the analytical solution of Eq. 2.81. We refer to this as the Numerical-analytical

solution. After nonlinear regression, a good match of bottomhole pressure is obtained

as shown in Fig. 6.37. Fig. 6.38 shows the estimate of capillary pressure. Our esti-

parameter k, md Skin Factor aw pe λ Siw Sor

True 300 5.0 0.8 1.0 2.0 0.1 0.25
Initial Guess 600 0 0.5 2.0 5.0 0.1 0.25

Estimate (IFPT) 308.1 5.2 0.78 0.98 2.05 fixed fixed

Table 6.7: Estimates of model parameters for from capillary pressure to relative perme-
ability.
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Figure 6.37: Bottomhole pressure match based on approximate Numerical-analytical so-
lution with capillary pressure effects (M̂ = 3.0).

mate of capillary pressure (solid curve) has a good agreement with the true capillary

pressure (circled points). Fig. 6.39 shows that we also is in good estimate of the relative

permeability curves. Our estimate (solid curves) almost mirror the true (circled points).

Compared with the true values, the other estimates of model parameters are also good.
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The estimates are: the endpoint value of water relative permeability aw = 0.78, absolute

permeability k = 308.1 md, skin factor s = 0.5, entry capillary pressure pe = 0.1 and pore

size distribution index λ = 2.05 as shown in Table 6.7.
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Figure 6.38: Estimate of capillary pressure based on approximate Numerical-analytical
solution considering capillary pressure effects (M̂ = 3.0).

Fig. 6.40 and Fig. 6.41 show the results from analyzing data using the analytical so-

lution which neglects capillary pressure effect. We used the flexible B-spline representing

the relative permeability curves. After the nonlinear regression, Fig. 6.40 shows that the

predicted pressure data (solid curves) are in good agreement with the observed pressure

data (circle points). However, we did not obtain a good agreement of relative permeability

curves between our estimate (solid curves) and the true curves (circle points) as shown

in Fig. 6.41. Table 6.8 shows that we only have good estimates of absolute permeability,

k = 308.8 md, and skin factor, s = 4.6, compared with the true values of k = 300 md

and s = 5.0, respectively. The estimate of endpoint value of water relative permeability

is aw = 0.665 compared with the true of aw = 0.8.
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Figure 6.39: Estimate of relative permeabilities based on approximate Numerical-
analytical solution with capillary pressure effects (M̂ = 3.0).
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Figure 6.40: Bottomhole pressure match based on analytical solution neglecting capillary
pressure effects matching pressure data with capillary pressure effects, B-spline relative
permeability curves; IFPT (M̂ = 3.0).
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Figure 6.41: Estimate of relative permeabilities based on analytical solution neglecting
capillary pressure effects matching pressure data with capillary pressure effects; B-spline
relative permeability curves; IFPT (M̂ = 3.0).

parameter k, md Skin Factor aw pe λ Siw Sor

True 300 5.0 0.8 1.0 2.0 0.1 0.25
Initial Guess 600 0 0.5 − − 0.1 0.25

Estimate (IFPT) 308.8 4.6 0.66 − − fixed fixed

Table 6.8: Estimates of model parameters based on analytical solution neglecting capillary
pressure effects matching pressure data with capillary pressure effects; B-spline relative
permeability curves; IFPT (M̂ = 3.0).

6.5 Comments on Hysteresis, Heterogeneity and Flow Rate Fluctuation

In practice, observed data would be affected by some factors such as reservoir

heterogeneity, hysteresis and non-constant flow rate. In the following, we give some dis-

cussions on hysteresis and show some results from synthetic cases related to heterogeneity

and flow rate fluctuation.
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6.5.1 Hysteresis Effect

During this special test, the IFPT, the directions of flow are difference during

water injection and oil flowing back to the well and hence involve two different processes,

imbibition and drainage. Thus there is a question as to whether we need to incorporate

hysteresis effect in the estimated relative permeabilities.

Sw

Sn

imbibition drainage

Snmax
Sncri Sncrt Sncrd

Shy

scanning

Water injection

Figure 6.42: Hysteresis of relative permeability curves (Kilough’s model).

Many authors have proposed some models to deal with hysteresis [33, 18, 31, 13, 6].

Experiments show that the hysteresis of the wetting phase relative permeability curve is

generally small. This fact is used by many hysteresis models (see references [18, 6]), which

assumes no hysteresis on the wetting phase relative permeability curves, although Killough

[31] model (Fig. 6.42) considers hysteresis on both wetting and non-wetting phase relative

permeability curves. For the non-wetting phase relative permeability curves, hysteresis

models generally assume that the scanning curves are reversible, and this assumption has

some theoretical rationale [13]. As shown in Fig. 6.42, generally, we assume that the

oil originally reached the reservoir by a drainage process assuming water is the wetting

phase. The saturation change follows the drainage curves, and non-wetting oil phase

saturation increases to its maximum saturation Snmax = 1−Siw at the end of this process
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in the reservoir. The oil relative permeability is at end point value assuming water now

is at irreducible saturation (Siw = 1− Snmax). So the process of injecting water into the

reservoir is an imbibition process and the oil flow will follow the same imbibition relative

permeability curves. After water injection, wetting phase (water) saturation distribution

is between Siw = 1 − Snmax and 1 − Sncri, where Sncri is the residual non-wetting phase

saturation. Because of the reversibility of the hysteresis model on the non-wetting phase

(oil in our case), the oil flow during production (drainage process) will follow the imbibition

relative permeability curve that was followed during water injection for oil saturation

between Snmax and Sncri. For the non-wetting phase (oil) between saturation Sncri and

Sncrd, oil relative permeability will follow the scanning curves (the dotted curves, like the

on shown in Fig. 6.42) first, then follow the primary drainage curves. We know that all

non-wetting phase (oil) saturations are between Siw = 1−Snmax and 1−Sncri, so all these

saturations will follow the special scanning curves - the imbibition curves. Therefore,

with many relative permeability hysteresis models, the injection/falloff/production test

sequence is not affect by the hysteresis.
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Figure 6.43: Injection rate and production for case of flow rate fluctuation, M̂ = 4.0.
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6.5.2 Flow Rate Fluctuation Effect

During water injection and oil production, it is hard to keep a constant flow rate

for a long time. In this work, the effect of a nonconstant flow rate is investigated using a

synthetic case with a sequence of 5-hour injection, 5-hour falloff and 14-hour production.

The true parameters and parameters for the reservoir simulator are shown in Table 6.1.

In Fig. 6.43, the observed injection rate and production flow rate are represented by the

finer solid lines which are constant on each 0.12 hours time interval. The observed flow

rates were generated by adding noise to specified rates which are constant on each 1.2

hours interval as shown by the thicker solid lines in Fig. 6.43. The standard deviation of

the added noise is 25 RB/Day. The flow rate difference between two neighboring 1.2 hour

rates is 50 RB/Day. The noisy observed data give the same cumulative water injected

during injection and the same cumulative oil and water production during the flow back

period. The observed data, we use are pressure data generated from the noisy flow rates.

We also added an additional noise simulating Gaussian distribution with mean zero and

a standard deviation of 0.25 psi to the pressure data. We use, however, the step
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Figure 6.44: Injection pressure match, multirate problem, M̂ = 4.0.
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Figure 6.45: Falloff pressure match for case of flow rate fluctuation effect, M̂ = 4.0.
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Figure 6.46: Production pressure match for case of flow rate fluctuation effect, M̂ = 4.0.

flow rates that are constant on each 1.2 hours interval during the estimation of relative

permeabilities and other model parameters. Fig. 6.44 shows the pressure data match

168



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

k rw
 &

 k
ro

S
w

 true
 initial guess
 estimate

Figure 6.47: Estimate of relative permeability curve for case of flow rate fluctuation effect,
M̂ = 4.0.

during injection. The estimate of pressure response (the solid curve) traces the oscillated

observed pressure (the dotted data) very well. In Fig. 6.46, which shows the pressure data

match during production, the pressure response, the solid curve, from the estimates based

on the flow rate steps is in good agreement with the pressure response with oscillations

corresponding to the noise in the measured flow rates. Fig. 6.45 shows that the predicted

pressure data (solid curve) and observed pressure data (solid dots) are in good agreement

during falloff. Because of zero flow rate, pressure data are smoother than the pressure

data during injection and production periods. The estimate of relative permeability curves

almost mirror the true relative permeability curves as shown in Fig. 6.47. The estimates

of other parameters are k = 373.7 md and s = 5.13 compared to the true values of k = 372

md and s = 5.14. This case can tell us that the estimates of relative permeabilities and

other model parameters are stable for fluctuations flow rates, at lease if the rate variations

are not too large.
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6.5.3 Heterogeneity Effect

Reservoir rock is always heterogeneous to some extent. Permeability heterogeneity

affects the estimate of relative permeabilities based on our homogeneous model of the

permeability field. In order to investigate the permeability heterogeneity effect, we spec-

ified different permeabilities in the different locations of the grid rings and generated a

symmetric heterogeneous permeability field using sequential Gaussian simulation with a

correlation length of 50 ft. The permeability has a mean ln k = 5.95 (383.8 md) and a

standard deviation of 0.25. We finally constructed the heterogeneous permeability field by

averaging the permeability within some selected zones as shown in Fig. 6.48, which only

shows the permeability field within 600 ft. The IFPT is a short time test; for this case, the

water bank around wellbore after water injection is around 18 ft. The heterogeneity near

the wellbore should have more effect than that far from the wellbore. Thus we actually

introduced a higher heterogeneity in locations closer to the wellbore as shown in Fig. 6.48.

The smallest heterogeneous zone around the well is 5 ft, except for the skin zone, which

is 1.264 ft. Fig. 6.49 shows we obtained a good estimate of relative permeability curves.

The estimate of absolute permeability of reservoir is k = 378.5 md, which is close to the

true average permeability we expected k = 383.8 md. The estimate of skin is s = 5.4

compared to the true value of s = 5.5. In this work we did not consider the vertical

heterogeneity.
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Figure 6.48: Heterogeneous permeability field.
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Figure 6.49: Estimate of relative permeability curve for case of permeability heterogeneity
effect.
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CHAPTER 7

DISCUSSION AND CONCLUSIONS

7.1 Conclusions

A novel two-phase pressure transient test – injection/falloff/production test (IFPT)

is presented in this research. The IFPT has been applied to estimate relative permeability

curves, absolute reservoir permeability and skin factor successfully for a wide variety of

synthetic cases.

Through the theoretical study of the IFPT and the investigations of results from

synthetic cases, we found that data from different periods of the IFPT provide specific

information for estimating the relative permeabilities and other model parameters. The

early time pressure data and the late time pressure data during water injection provide

information representing oil properties and water properties, respectively. As envisioned,

the injection period is relatively short, so most of the falloff data reflects oil mobility in

that uninvaded zone. Thus the falloff data typically can only resolve endpoint oil mobility.

During production, when oil flows back to the wellbore, the sandface is exposed to a wide

range of saturation and total mobility changes, and thus pressure data provide significant

information for estimating the shape of relative permeability curves. The results from

cases in this research show that we can obtain a good estimate of endpoint value of water

phase relative permeability, but we cannot obtain very good estimate of the shape of

relative permeability curves when we use data from only the injection/falloff particularly

if the injection period is short. If we use data from the production period, we can achieve

a good estimate of relative permeability curves as well as other model parameters in all

cases.

B-spline relative permeability curves are more flexible than power law relative

permeability curves for representing arbitrary relative permeability curves. Our algorithm
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based on the logarithm transform provides an efficient way to control monotonic or convex

(concave up) relative permeability curves.

We presented an accurate analytical model describing the saturation evolution

during production based on Buckley-Leverett [15] theory and the front tracking method

without capillary pressure effect. Using the steady-sate theory of Thompson and Reynolds

[55], the pressure response solution of Peres and Reynolds [46, 8], and our model of

saturation evolution during production, we derived approximate analytical solutions for

the pressure response during production, and showed that it is accurate by comparing

the responses during production with results from the commercial reservoir simulator

IMEX. Because of the assumption of the steady-state during production, which assumes

a constant flow rate in the water bank immediately after a new period starts, our analytical

solutions for pressure responses during the flow back period is not accurate at the very

early times of this flow period. Falloff with rate superposition is accurate. Therefore, the

larger the water bank, the longer this non-accurate period is. But the results from the

nonlinear regression show that, for injection period of two days or longer, our analytical

solution is valid for most of the flow period.

Capillary pressure causes some small smearing at the water front during produc-

tion. During falloff, the flow rate is zero and capillarity diffusion is the dominant term, so

the smearing around the water front becomes much more significant during falloff. The

capillary smearing effect results in an earlier oil “breakthrough” time than for the case

where there is no capillary effect. When the capillary force is strong, analyzing data using

the analytical solution which neglects capillary pressure effects may yield inaccurate esti-

mates of model parameters. Based on the finite difference method, our numerical solution

of saturation evolution with effects of capillary pressure are accurate compared with the

results from the reservoir simulator. Correspondingly, the approximate analytical solu-

tion considering capillary pressure effects is also valid to represent the pressure response

and to estimate the relative permeabilities, absolute permeability and skin factor. During

production, we noted that an oil front (shock) exists when oil flows back to the wellbore

for both cases with and without capillary pressure effect. The shock causes a sharp change
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in pressure response when it reaches the well because of the singularity in total mobility

at the oil front (the location of shock).

Through the analysis of different hysteresis models, we found that the IFPT would

not be affected by hysteresis when we assume a water wet reservoir. Imbibition relative

permeability curves are always obtained. Second, simulating a flow rate fluctuation during

water injection and production periods respectively by a synthetic case, we found that

the estimates of relative permeabilities and other model parameters based on the IFPT

with flow rate fluctuations are reasonable at least when rate fluctuations are not sever.

Considering horizontal heterogeneity in reservoir absolute permeability, the results from

a synthetic case show that analysis of IFPT data also results in good estimates of relative

permeability curves and a reasonable estimate of average permeability.

7.2 Practical Comments

Despite the theoretical advantages of the injection/falloff/production test, a legit-

imate question exists as to whether this test can be run in practice. Although we can not

provide a definite answer, we do provide some suggestions as to how such a test might be

run.

7.2.1 Bottom-Hole Tool Assembly

The envisioned tool is a standard cased well testing tool string (packer, annular

operated bottom-hole valve with accurate pressure and temperature gauges in real time

mode or memory type gauges, circulating valves, etc.) plus a stationary bottom-hole

hold-up measurement tool (optical/resistivity tool) similar to ones currently used in open

hole wireline formation testers (WFT) and cased hole logging tools. Permanent pressure

gauges and gradio sensors could be used to provide more accurate measurements of total

flow rate water and water cut.

7.2.2 Surface Facilities

The simulated cases shown earlier in this paper indicate that during the backflow

period the well initially produces essentially 100 per cent water for a time period that
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may last a few hours followed by a very rapidly decreasing water cut. This behavior

poses a real challenge to obtain an efficient and controlled fluid separation at the surface.

Standard well testing three phase separators may not give reliable results for rapidly

varying phase rates which would adversely affect flow rate measurements. Even though we

are relying on bottom-hole hold-up measurements to constraint the relative permeability

optimization problem, surface measurements are necessary to estimate total flow rate as

well as provide an independent check on cumulative fluid production. Thus, a carefully

designed surface well test plan to achieve accurate flow measurements and to comply to

regulatory disposal standards is critical if the test proposed in this paper is to be run

in practice. Such a plant might include, among other components, a heater (especially

for viscous oil), highly efficient burners and fluid tanks for fluid metering calibration,

storage and disposal and chemical injection pumps for foam control. In-line multiphase

flow meters before separation and cyclone separators could be considered as well.

7.2.3 Other Important Concerns

Although we have illustrated that the test and analysis of data are applicable

under reasonable fluctuations in flow rate, large rapid changes in flow rates could reduce

the accuracy of the parameter estimates. Thus, we recommend trying to maintain a fairly

stable total flow rate during the flow back period. Perhaps the best procedure to control

production is to install an artificial lift system, such as an electrical submersible pump,

in the test string. For a deepwater offshore well such a pump installed at subsea X-tree

may prove sufficient to keep the total flow rate fairly constant.
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NOMENCLATURE

Bj = B-spline basis function

co = oil compressibility

co = water compressibility

cr = rock compressibility

ct = total compressibility

Ci
o = control point of oil relative permeability curve

Ci
w = control point of water relative permeability curve

CD = covariance matrix

dobs = observed data

dpred = data predicted based on estimated model parameters

fw(Sw) = water fractional flow

f
′

w = derivative of water fractional flow

fo(So) = oil fractional flow

Fw =
qw

qt

, total fraction flow with capillary pressure effect

G = sensitivity coefficient

I = identical matrix

H = Hessian matrix

J = Jacobian matrix

h = reservoir thickness
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k = absolute permeability, md

ks = absolute permeability of damaged zone, md

krw = water relative permeability

kro = oil relative permeability

m = model parameter

M̂ = mobility ratio

O(m) = objective function based on model parameter m

pc = capillary pressure, psi

p
′

c = derivative of capillary pressure with respect to water saturation

∆p = pressure difference, psi

pe = entry pressure for capillary pressure, psi

pi = initial reservoir pressure, psi

pwf = wellbore pressure, psi

pwf,s = final injection pres sure, psi

pwf,f = final falloff pressure, psi

ppred(m) = predicted pressure data based on model parameter m

qinj = water injection rate, RB/Day

qs = single phase oil flow rate, RB/Day

qt = total wellbore production rate, RB/Day

Qpred(m) = predicted cumulative oil production

Qobs = observed cumulative oil production
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rw = wellbore radius

rs = radius of damaged zone

rwf = radius of water front during injection/falloff

rof = radius of oil front during production

s = skin factor

Sw = water saturation

So = oil saturation

SwD = dimensionless water saturation

Siw = irreducible water saturation

Sor = residual oil saturation

te = Agarwal’s equivalent time

uj = knot of B-spline
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GREEK

α = unit conversion constant, in oil field units

α = 141.2

β = unit conversion constant, in oil field units

β = 2.637× 10−4

σp = standard deviation of pressure measurement error, psi

σQ = standard deviation of measurement error in cumulative oil production, STD

λ̂w = endpoint water mobility at Sw = 1− Sor

λ̂o = endpoint oil mobility at Sw = Siw

λ̂
′

o = derivative of oil mobility with respect to water saturation

λt = total mobility

µo = oil viscosity

µw = water viscosity

φ = porosity

θ = unit conversion constant, in oil field units

θ = 5.6146/24
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APPENDIX A

B-SPLINE MODEL OF RELATIVE PERMEABILITY CURVES

B-splines provide a very flexible way to define a parametric representation of a

curve. Assuming the curve lies in the x−y plane, we wish to define the x and y coordinates

of points on the curve in terms of the parameter u so the curve is represented by
−→
C (u) =

(x(u), y(u)) for umin ≤ u ≤ umax. Note
−→
C (u) is a two dimensional vector. To represent

−→
C (u) in terms of B-splines, we wish to define B-spline basis functions. For this purpose,

we define discrete points (knots) on the u-domain by u0 < u1 < u2 < u3 < · · · < um.

Although it is sometimes advantageous to consider multiple knots which allows for the

possibility that uj = uj+1 for some j’s, in our application we only consider the case where

uj < uj+1 for all j. Given the knots, the B-spline basis function Bj,p is nonzero only

on the interval [uj, uj+p+1] and on each subinterval [ui, ui+1] for i = j, j + 1, · · · , j + p,

Bj,p is a polynomial of degree p. Thus, Bj,p is referred to as a B-spline basis function of

degree p. Moreover, Bj,p is in Cp−1[u0, um], i.e., has p − 1 continuous derivatives on the

whole u-domain. Thus, any linear combination of these basis function is a polynomial of

degree p on each subinterval [uj, uj=1] and has p− 1 continuous derivatives on the whole

u domain. We will refer to any linear combination of the basis functions as a B-spline.

For cubic B-splines (p=3), each Bj,3 has two continuous derivatives on [u0, um].

As on each subinterval [ui, ui+1) for i = j, j + 1, · · · , j + 3, Bj,3 is a cubic polynomial and

hence infinitely differentiable, C2 continuity means that second derivatives exist and are

continuous at the knots.

The basis functions Bj,p are conveniently defined by the Cox-deBoor recursion
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formulas, [24]. Specifically,

Bj,0(u) =


1 if uj ≤ u < uj+1

0 elsewhere,

(A.1)

and

Bj,p(u) =
(u− uj)Bj,p−1(u)

uj+p − uj

+
(uj+p+1 − u)Bj+1,p−1(u)

uj+p+1 − uj+1

. (A.2)

When p = 1, Eq. A.2 gives

Bj,1(u) =
u− uj

uj+1 − uj

Bj,0(u) +
uj+2 − u

uj+2 − uj+1

Bj+1,0(u)

=



u−uj

uj+1−uj
, uj ≤ u ≤ uj+1,

uj+2−u

uj+2−uj+1
, uj+1 ≤ u ≤ uj+2,

0, elsewhere.

(A.3)

For the case of interest to us, we will use uniform knots, i.e., for some positive

constant ∆u, we will require that uj+1− uj = ∆u for all j. As noted in more detail later,

this makes it quite easy to evaluate a function which is a linear combination of B-spline

basis functions. The basis functions of the first, second and third degrees for the case of

uniform knots are shown in Fig. A.1.

We assume that we wish to approximate a function defined on the interval [a, b]

by a B-spline. To define a B-spline requires that we define knots. For the case of uniform

knots, we let ∆u = (b − a)/m, where m is an arbitrary positive integer; larger values of

m lead to more accurate approximations so ideally, m should be chosen as the smallest

possible integer so that function of interest can be approximated sufficiently accurately

with a B-spline based on m knots. Also, one expects, that we will need larger values of

m if we use linear approximating B-splines than if we use cubic approximating B-splines.

We first define knots by u0 = a and uj = uj−1 + ∆u for j = 1, 2, · · ·m. We

focus on the cubic B-spline case. Any function which is a cubic B-spline on [u0, um] has

two continuous derivatives on this interval and is a cubic polynomial on each subinterval
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Figure A.1: Uniform B-spline basis functions.
.

[uj, uj+1] for j = 0, 1, · · · , m − 1. These knots, however, are sufficient to define only the

functions, Bj,3 for j = 0, 1, · · ·m− 4. For example to define Bm−1,3, which is nonzero on

the interval [um−1, um+3] we need to define knots um+1, um+2 and um+3. If we only wish to

represent the function for u ≤ um = b, the basis function Bm,3 does not need to be defined

since it would be zero for u ≤ um = b. For our purposes we define these additional knots to

the right of b by um+i = um+i−1 +∆u for i = 1, 2, 3. At this point, the knots are sufficient

to define the cubic B-splines basis functions, Bj,3 for j = 0, 1, · · ·m − 1. These basis

functions are not sufficient to form a basis for the set of all B-spline functions, however.

This can be seen easily by noting that only one of these basis functions (B0,3) is nonzero

on [u0, u1]. Thus, we do not have enough basis functions to represent an arbitrary cubic

function on [u0, u1] and thus we need to add three additional basis functions. Defining

three additional knots, uj = u0 + j∆u for j = −1,−2,−3, we now have a set of basis

functions, Bj,3 for j = −3,−2, · · ·m−1 and any B-spline, P (u) defined on [u0, um] can be

written as a linear combination of the basis B-splines, i.e., there exist constants aj such
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that for all u in [u0, um]

P (u) =
m−1∑
j=−3

ajBj,3(u). (A.4)

Note the number of knots, (m+7) is equal to the number of basis functions (m+3) in the

sum plus the degree of the spline (3) + 1. More generally, letting nk denote the number

of knots, p the degree of the spline and nc the number of spline basis functions, we must

always have

nk = nc + p + 1, (A.5)

in order to define a basis for the set of splines of degree p defined on the interval [a, b]

where a = u0 < u1 < · · ·um = b.

If the spline P (u) defined in Eq. A.4 is to be an approximation to a function f(u),

the question becomes how to determine the aj’s. There is more than one method to do

this, e.g., interpolation, least-squares. Also we can define the aj’s as control points. The

latter is the method we will use. If P (u) is the cubic interpolating spline for f(u) on

[u0, um], we require that P agree with f at the knots, i.e.,

P (uj) =
m−1∑
j=−3

ajBj,3(uj). (A.6)

for 0 ≤ j ≤ m. Note Eq. A.6 represents m + 1 equations in m + 3 unknowns (the aj’s) so

we need two more conditions to obtain a system of m + 3 equations in m + 3 unknowns.

Free boundary conditions refer to the case where we require that the second derivative of

P (u) is zero at u0 and um and clamped boundary conditions refer to the case where we

require that

dP (uj)

du
=

df(uj)

du
, for j = 0 and j = m; (A.7)

see, for example (see [16]). Note both sets of conditions refer to specifying derivatives at

the endpoints of the interval of interest. When we use control points, the terminology

clamped boundary conditions is used to refer to the case where the approximating spline

passes through the first and last control points.

First degree B-splines are somewhat simpler in that we only need to define two
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additional knots, u−1 and um+1 to define Bj,1 j = −1, 0, 1, · · ·m − 1 and then any linear

B-spline defined on [a, b] = [u0, um] can be written as

P (u) =
m−1∑
j=−1

ajBj,1(u). (A.8)

for u0 < u < um. Here nk = m + 3, nc = m + 1 and p = 1 so Eq. A.5 holds. The linear

interpolating spline of a function f(u) defined on [a, b] must now satisfy P (uj) = f(uj)

for j = 0, 1, · · ·m, i.e.,
m−1∑
j=−1

ajBj,1(uj) = f(uj), (A.9)

for 0 ≤ j ≤ m. Note Eq. A.9 give m + 1 equations in the m + 1 unknowns and can

be solved for the aj’s. In fact, because of the local nature of the linear B-spline basis

functions (see Fig. A.1), we must have

aj = f(uj) for j = 0, 1, 2 . . . m. (A.10)

Typical relative permeability curves can be accurately approximated by a linear B-spline if

we use a sufficient number of knots. Cubic B-splines would require less knots to accurately

approximate such curves. Moreover, if relative permeability curves are represented by

smooth curves which have well defined continuous first and second derivatives, then it

should be more appropriate to approximate a relative function with a B-cubic spline.

Although, we will present results for both approaches, only the cubic B-spline case is

discussed in detail.

Our objective is to estimate (or generate realizations of) relative permeability

curves by history matching production data. For this purpose, we must parameterize the

relative permeability curves. The parameters then will be estimated (or stochastically

simulated) by history matching production data. Relative permeability curves should be

monotonic functions and it appears that they are often (if not always) convex (concave

up) functions. Unfortunately, if we approximate a relative permeability curve by an

interpolating cubic spline of the form given in Eq. A.8 using the aj’s as parameters to
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be adjusted in the history matching process, there appears to be no easy way to ensure

that P (u) is monotonic or that P (u) is convex. If instead, we use an approximating

B-spline based on control points with the control points representing parameters to be

estimated (or stochastically simulated) by conditioning to production data, then it can be

shown that the approximating B-spline is monotonic if the control points are monotonic

and the approximating B-spline is convex if the control points are convex. A major

contribution of this work is that we have been able to devise a simple method to constrain

the control points to be monotonic or convex. (If the control points are convex, they are

also monotonic.)

We started with the problem of constructing a parametric representation of curve

using B-splines. Based on the same knot system described above, we can generate our

approximate curve for u0 = umin ≤ u ≤ umax = um as

−→
C (u) =

m−1∑
j=−p

−→
C j+p−1Bj,p(u), (A.11)

where p is the degree. For cubic B-splines, p = 3 and for linear p = 1. These are the only

two cases considered, when using B-splines to approximate relative permeability curves.

The
−→
C j’s are specified control points and by specifying them one defines the parametric

curve
−→
C (u) = (x(u), y(u)). Denoting the number of control points by nc, the number of

knots is nk = m + 2p + 1 and the number of controls points, denoted by nc is given by

nc = m + p. This illustrates that Eq. A.5 holds where nc denotes the number of control

points which is identical to the number of B-spline basis functions in Eq. A.11. Note the

control points are two-dimensional and can be written as
−→
C j = (cx,j, cy,j) and then the x

and y coordinates, respectively, of points on the curve can be written as

x(u) =
m−1∑
j=−p

cx,j+p−1Bj,p(u), (A.12)

and
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y(u) =
m−1∑
j=−p

cy,j+p−1Bj,p(u). (A.13)

In this notation, the total set of knots is given by uj−p, uj−p+1, · · ·um+p. For cubic

B-splines, p = 3 and the m + 3 control points involved in Eqs. A.11 are
−→
C`, ` =

−1, 0, 1, · · ·m, m + 1 The reason for using the different indexing for the spline basis func-

tions and the control points will become apparent when we consider the representation of

relative permeability curves.

In Fig. A.2 the control points
−→
C j, j = 0, 1, · · · , 7 are represented by points con-

nected by line segments and the curve represents the cubic B-spline curve defined by

Eq. A.11 (the approximating B-spline) for values of u from u0 to um. In this case, we

have applied conditions, which are discussed later, to ensure that the curve passes through

the first and last control point. Note the curve does not pass through any of the other

control points but is “attracted” to these control points. Also note the control points are

monotonically increasing, i.e., the curve defined by the connected line segments through

control points (the control polyline) is monotonically increasing. As discussed in more

detail, monotonic control points ensures the B-spline curve of Eq. A.11 is monotonic and

convex control points ensures the B-spline curve is convex. This is the principle reason for

using approximating B-splines defined by control points. On the other hand, interpolat-

ing B-splines are not necessarily monotonic and convex even, if the interpolation points

satisfy these conditions. Fig. A.2 shows an interpolating B-spline which passes through

the interpolating points (circles). The interpolation points are monotonic but note the

B-spline is not; see the curve segment between interpolation points C5 and C6.

A.1 Evaluation of a Linear B-Spline

For the linear case, Eq. A.13 gives that

y(u) =
m−1∑
j=−1

cy,jBj,p(u), (A.14)

for u0 ≤ u ≤ um. If we wish to evaluate y at some u in [u0, um], we first find the subinterval
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Figure A.2: Interpolating B-spline curve.
.

[uk, uk+1) that contains u. On this subinterval, all basis functions except Bk−1,1 and Bk,1

are nonzero and Eq. A.14 gives

y(u) = cy,k−1Bk−1,1(u) + cy,kBk,1(u). (A.15)

For uk ≤ u < uk+1, Eq. A.3 gives

Bk−1,1(u) =
uk+1 − u

uk+1 − uk

, (A.16)

as well as

Bk,1(u) =
u− uk

uk+1 − uk

. (A.17)

Using the values obtained from Eqs. A.16 and A.17 in Eq. A.15 gives y(u). The value of

x(u) can be obtained in a similar manner. For linear B-splines, this procedure provides

a reasonable way to evaluate the point x(u) and y(u). However, for higher degree splines
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defined using uniform knots, it is convenient to use a transformation to evaluate a B-spline.

For the linear case, the procedure simple defines

t =
(u− uk)

uk+1 − uk

=
u− uk

∆u
, (A.18)

so that

u = uk + t∆u. (A.19)

Note uk ≤ u < uk+1 implies 0 < t < 1. In terms of t Eq. A.17 is

Bk,1(u) = Bk,1(t) = t, (A.20)

and Eq. A.16 is

Bk−1,1(u) = Bk−1(t) = 1− t. (A.21)

Defining b0(t) = 1− t and b1(t) = t, Eq. A.15 gives

y(u) = y(t) = cy,k−1b0(t) + cy,kb1(t). (A.22)

Thus to evaluate y(u) and x(u) for any u, we need only compute t from Eq. A.18 for the

appropriate value of k and then apply Eq. A.22.

A.2 Evaluation of a Cubic B-Spline

Using the Cox-deBoor recursion formula, basis function of degree p can be ex-

pressed as,

Bj,p(u) =
(u− uj)Bj,p−1(u)

uj+p − uj

+
(uj+p+1 − u)Bj+1,p−1(u)

uj+p+1 − uj+1

. (A.23)

the zero degree basis function, p = 0, is given by
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Bj,0(u) =


1, uj ≤ u < uj+1

0, otherwise.

(A.24)

Eq A.24 indicates that the zero degree basis function is a piecewise constant func-

tion which is zero except on the interval. Based on Eqs. A.23 and A.24, when p = 1, we

have, for uj−1 ≤ u < uj, Bj−1,0 = 1 and Bj,0 = 0 so that

Bj−1,1(u) =
u− uj−1

uj − uj−1

Bj−1,0(u) +
uj+1 − u

uj+1 − uj

Bj,0(u)

=
u− uj−1

uj − uj−1

.

(A.25)

For, uj−1 ≤ u < uj, we have,

Bj−1,1(u) =
u− uj−1

uj − uj−1

Bj−1,0(u) +
uj+1 − u

uj+1 − uj

Bj,0(u)

=
uj+1 − u

uj+1 − uj

.

(A.26)

So, when p = 1, the basis function based on uniform knots can be expressed as,

Bj−1,1(u) =



u−uj−1

uj−uj−1
, uj−1 ≤ u < uj

uj+1−u

uj+1−uj
, uj ≤ u < uj+1

0 otherwise.

(A.27)

Similarly, the expression for Bj,1(u), which will be used in calculation of basis

function for p = 2, is given by

Bj,1(u) =



u−uj

uj+1−uj
, uj ≤ u < uj+1

uj+2−u

uj+2−uj+1
, uj+1 ≤ u < uj+2

0 otherwise.

(A.28)

Basis functions for the first degree uniform B-spline, Bj,1(u), is shown as in Fig. A.1.

Note Bj,1(u) is zero outside of the interval [uj, uj+2). We should note that by uniform

B-spline, we mean that the B-spline is based on uniform knots.
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When p = 2, we have, for uj−1 ≤ u < uj,

Bj−1,2 =
u− uj−1

uj+1 − uj−1

Bj−1,1(u) +
uj+2 − u

uj+2 − uj

Bj,1(u)

=
u− uj−1

uj+1 − uj−1

u− uj−1

uj − uj−1

+
uj+2 − u

uj+2 − uj

· 0

=
u− uj−1

uj+1 − uj−1

u− uj−1

uj − uj−1

;

(A.29)

for uj ≤ u < uj+1, we find

Bj−1,2 =
u− uj−1

uj+1 − uj−1

Bj−1,1(u) +
uj+2 − u

uj+2 − uj

Bj,1(u)

=
u− uj−1

uj+1 − uj−1

uj+1 − u

uj+1 − uj

+
uj+2 − u

uj+2 − uj

u− uj

uj+1 − uj

;

(A.30)

and for uj+1 ≤ u < uj+2,

Bj−1,2 =
u− uj−1

uj+1 − uj−1

Bj−1,1(u) +
uj+2 − u

uj+2 − uj

Bj,1(u)

=
u− uj−1

uj+1 − uj−1

· 0 +
uj+2 − u

uj+2 − uj

uj+2 − u

uj+2 − uj+1

=
uj+2 − u

uj+2 − uj

uj+2 − u

uj+2 − uj+1

.

(A.31)

So, generally, when p = 2, we have

Bj−1,2(u) =



u−uj−1

uj+1−uj−1

u−uj−1

uj−uj−1
, uj−1 ≤ u < uj

u−uj−1

uj+1−uj−1

uj+1−u

uj+1−uj
+

uj+2−u

uj+2−uj

u−uj

uj+1−uj
, uj ≤ u < uj+1

uj+2−u

uj+2−uj

uj+2−u

uj+2−uj+1
, uj+1 ≤ u < uj+2

0 otherwise,

(A.32)

and
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Bj,2(u) =



u−uj

uj+2−uj

u−uj

uj+1−uj
, uj ≤ u < uj+1

u−uj

uj+2−uj

uj+2−u

uj+2−uj+1
+

uj+3−u

uj+3−uj+1

u−uj+1

uj+2−uj+1
, uj+1 ≤ u < uj+2

uj+3−u

uj+3−uj+1

uj+3−u

uj+3−uj+2
, uj+2 ≤ u < uj+3

0 otherwise.

(A.33)

When p = 3, we have, for uj−1 ≤ u < uj,

Bj−1,3(u) =
u− uj−1

uj+2 − uj−1

Bj−1,2(u) +
uj+3 − u

uj+3 − uj

Bj,2(u)

=
u− uj−1

uj+2 − uj−1

u− uj−1

uj+1 − uj−1

u− uj−1

uj − uj−1

;

(A.34)

for uj ≤ u < uj+1, we find

Bj−1,3(u) =
u− uj−1

uj+2 − uj−1

Bj−1,2(u) +
uj+3 − u

uj+3 − uj

Bj,2(u)

=
u− uj−1

uj+2 − uj−1

(
u− uj−1

uj+1 − uj−1

uj+1 − u

uj+1 − uj

+
uj+2 − u

uj+2 − uj

u− uj

uj+1 − uj

)
+

uj+3 − u

uj+3 − uj

u− uj

uj+2 − uj

u− uj

uj+1 − uj

(A.35)

for uj+1 ≤ u < uj+2,

Bj−1,3(u) =
u− uj−1

uj+2 − uj−1

Bj−1,2(u) +
uj+3 − u

uj+3 − uj

Bj,2(u)

=
u− uj−1

uj+2 − uj−1

uj+2 − u

uj+2 − uj

uj+2 − u

uj+2 − uj+1

+
uj+3 − u

uj+3 − uj

(
u− uj

uj+2 − uj

uj+2 − u

uj+2 − uj+1

+
uj+3 − u

uj+3 − uj+1

u− uj+1

uj+2 − uj+1

) (A.36)

for uj+2 ≤ u < uj+3
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Bj−1,3(u) =
u− uj−1

uj+2 − uj−1

Bj−1,2(u) +
uj+3 − u

uj+3 − uj

Bj,2(u)

=
uj+3 − u

uj+3 − uj

uj+3 − u

uj+3 − uj+1

uj+3 − u

uj+3 − uj+2

;

(A.37)

for all u /∈ [uj−1, uj+3), Bj−1,3(u) = 0.

As long as we use uniform knots, all the basis functions are similar. In fact, they

have exactly the same shape, and the only difference is that each basis function Bj,3(u)

has its support on the interval [uj, uj+4) and as j changes the support changes. We wish

to make use of this fact to simplify our calculations. For that purpose, we introduce a

general algorithm for calculation of a point on a B-spline curve, Eq. A.11, for an arbitrary

u ∈ [uj, uj+1). The universal method can be applied for the function evaluation at any

point on the domain of interest. For uniform knots, uj+1−uj = ∆u, for all j. We consider

the function evaluation on the interval [uj, uj+1); for all the other intervals, we employ the

same method. There are four non-zero basis functions on the interval [uj, uj+1), namely,

Bj−3,3(u) =

(
uj+1 − u

3∆u

)(
uj+1 − u

2∆u

)(
uj+1 − u

∆u

)
; (A.38)

Bj−2,3(u) =

(
∆u + uj+1 − u

3∆u

)[(
u− uj −∆u

2∆u

)(
uj+1 − u

∆u

)
+

(
∆u + uj+1 − u

2∆u

)(
u− uj

∆u

)]
+

(
u− uj + 2∆u

3∆u

)(
uj+1 − u

2∆u

)(
uj+1 − u

∆u

)
;

(A.39)

Bj−1,3(u) =

(
u− uj + ∆u

3∆u

)[(
u− uj + ∆u

2∆u

)(
uj+1 − u

∆u

)
+

(
∆u + uj+1 − u

2∆u

)(
u− uj

∆u

)]
+

(
2∆u + uj+1 − u

3∆u

)(
u− uj

2∆u

)(
u− uj

∆u

)
;

(A.40)

Bj,3(u) =

(
u− uj

3∆u

)(
u− uj

2∆u

)(
u− uj

∆u

)
. (A.41)

To eliminate the knots uj’s from expressions for the basis functions we introduce additional
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parameter t, that ranges from 0 to 1 on the given interval

t =
u− uj

uj+1 − uj

. (A.42)

Then we may rewrite the basis functions in Eqs. A.38-A.41 as functions of t as

Bj−3,3(t) =
1

3
(1− t)

1

2
(1− t)(1− t)

=
1

6
(−t3 + 3t2 − 3t + 1) = b0(t),

(A.43)

Bj−2,3(t) =
1

6
(t3 − 3t + 2) +

1

6
(2− t)(−2t2 + 2t + 1)

=
1

6
(t3 − 3t + 2− 4t2 + 4t + 2 + 2t3 − 2t2 − t)

=
1

6
(3t3 − 6t2 + 4) = b1(t),

(A.44)

Bj−1,3(t) =
1

3
(1 + t)

[
1

2
(t + 1)(1− t) +

1

2
(1 + 1 + t)t

]
+

1

3
(2 + 1− t)

1

2
t · t =

1

6
(−3t3 + 3t2 + 3t + 1) = b2(t),

(A.45)

Bj,3(t) =
t

3
· t

2
· t =

1

6
t3 = b3(t). (A.46)

The four basis functions b0, b1, b2 and b3 at some given interval are shown in Fig. A.3.

On each subinterval of the domain this local basis is exactly the same. So for any given

value of u ∈ [u0, um) we can use very simple expression to find the point on the curve

−→
C (u) which is in general given by

−→
C (u) =

m−1∑
j=−3

−→
C j+2Bj,3(u). (A.47)

We find the interval [uj, uj+1), such that u ∈ [uj, uj+1). As the only cubic B-spline basis

functions which are nonzero on this interval, are Bk,3(u), for k = j − 3, j − 2, j − 1, j.

Eq. A.47 gives
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−→
C (u) =

j∑
k=j−3

−→
C k+2Bk,3(u). (A.48)

and we calculate the point on the B-spline curve as

−→
C (t) =

3∑
k=0

−→
C j+k−1bk(t), (A.49)

where

t =
u− uj

uj+1 − uj

. (A.50)

0.0
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Figure A.3: Weight functions of uniform cubic B-spline on a knot interval.

A.2.1 Endpoints

We can force the cubic B-spline curve of Eq. A.11 to pass through the control point

C0 when u = u0, and through the control point Cm when u = um by requiring that

−→
C 0 =

−→
C (u0) =

−1∑
j=−3

−→
C j+2Bj(u0) (A.51)

and
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−→
C m =

−→
C (um) =

m−1∑
j=m−3

−→
C j+2Bj(um). (A.52)

Note here we used the fact that Bj,3(u0) = 0 for j ≥ 0, and Bj,3(um) = 0 for j ≤ m− 4.

A curve that passes through the first and the last control points is referred to as

clamped B-spline curve. In general, multiple knots are used to force the B-spline curve

to pass through a control point. But in the case of multiple knots we obviously do not

have have a uniform distribution of knots, which complicates calculations. In our work,

we propose an alternative method to ensure the uniform cubic B-spline passing through

the first and the last control points. Using Eqs. A.49, A.51 and A.52 we can show that

−→
C 0 =

1

6
(
−→
C −1 + 4

−→
C 0 +

−→
C 1),

−→
C m =

1

6
(
−→
C m−1 + 4

−→
C m +

−→
C m+1), (A.53)

We wish to define
−→
C −1 and

−→
C m+1 so that we can get a clamped curve. Those points

are beyond the domain of interest ([u0, um]) and are actually introduced to generate a

clamped curve. From Eqs. A.53, it follows that

−→
C −1 = 2

−→
C 0 −

−→
C 1, (A.54)

and

−→
C m+1 = 2

−→
C m −

−→
C m−1. (A.55)

For the given set of control points (
−→
C 0,

−→
C 1, . . . ,

−→
C m), in case if the knots are uniformly

spaces, we will always obtain the curve that passes through the control points C0 and Cm

if we define (
−→
C −1) and (

−→
C m+1) by Eqs. A.54 and A.55

A.2.2 Monotonic and Convex Curves

In this section we establish the main properties of B-spline curves we need for

the representation of relative permeability curves. The curve connecting all the control
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points in order of their indexes is referred to as the control polyline. We show that B-

spline approximating curve is always monotonic (convex) if a control polyline is monotonic

(convex).

Suppose the control polyline is monotonic. Mathematically, this means that if

−→
C j = (cx,j, cy,j) and cx,0 < cx,1 < · · · < cx,m, then cy,0 < cy,1 < · · · < cy,m. We wish

to prove that the B-spline approximating curve based on the given set of control points

is a monotonic function. To prove that, we make use of one remarkable property of B-

spline curves, the so called variation diminishing property : no straight line intersects a

B-spline curve more times than it intersects the curve’s control polyline (see [34]). First

of all, note that the clamped curve cannot be monotonically decreasing. If it could, it

would never pass through the both endpoints. Note also that the B-spline curve is always

contained in the control polygon C0C1C2...Cn−1CnC0. If it had a segment that lies above

that line we could find a straight line, that intersects the curve, but does not intersect

the control polyline, which would contradict the variation diminishing property. So the

curve is always above the control polyline and below the straight line C0Cn.

Suppose the B-spline curve we obtain based on the given set of control points

is non-monotonic and monotonically increasing on some subdomain, i.e. it has a local

extremum (for example a local maximum) of cy on the domain as depicted by the curve

labelled approximation curve in Fig. A.4.

Let l1 be the straight line tangent to the approximation curve at the extremum

point of cy. It intersects the approximation curve as well as the control polyline one time.

Consider a straight line l2, which is parallel to the l1 and lies below this line. We always

can find some curve l2 so that it has two intersection points with the approximation curve

and only one with the control polyline. But this conflicts with the variation diminishing

property, which means there exists no extremum points of the B-spline curve on the

domain. Therefore, the curve is monotonic.

Next, we show that if the control polyline is convex in x−y plane then the B-spline

approximation curve is also convex. Convexity of the control polyline can be expressed

as
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C n
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C 2C 1

 C o n t r o l  p o l y l i n e
 A p p r o x i m a t i o n  c u r v e

C 0

Figure A.4: Monotonic polyline.
.

cy,j − cy,j−1

cx,j − cx,j−1

<
cy,j+1 − cy,j

cx,j+1 − cy,j

. (A.56)

Suppose the approximating B-spline curve changes its curvature, i.e. it has a point of

inflection as shown by the curve labelled approximation curve in Fig. A.5.

First we note that a clamped B-spline curve cannot be concave everywhere on the

domain. If it were concave everywhere it could not pass through the control points C0 and

Cn, because it has be below the line C0Cn. Let l1 be the line tangent to the approximation

curve at the inflection point, see Fig. A.5. This line intersects the control polyline two

times at maximum. Consider a straight line l2, which also passes through the inflection

point and has a small angle with the l1. This straight line intersects the approximation

curve at least three times, while it intersect the control polyline no more than two times.

This contradicts the variation diminishing property. Therefore the curve has no points of

inflection, and hence it is convex on the domain.

203



t a n g e n t  s t r a i g h t  l i n e ,  l 1

C n

C n - 1

C 2C 1

 C o n t r o l  p o l y l i n e
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Figure A.5: Convex polyline.
.

A.2.3 Representation of Relative Permeability Curves with B-splines

To simplify the calculations, we reduce the approximation of relative permeability

curves to a one dimensional problem. In general, the control points have two coordinates

−→
C j = (cx,j, cy,j), which represent values of saturation, S, and relative permeability, Kr,

respectively. We wish to relate the x coordinate to the parameter u directly, so that the

control points coordinates are expressed as
−→
C j = (cx,j(

−→u ), cy,j), where −→u is the knot

vector.

We are free to define any set of knots, the only thing we require is that the knots

are uniform. We can define the knots on the dimensionless saturation domain, which gives

Swd = u. More specifically we divide the dimensionless saturation domain Swd ∈ [0, 1]

into m equal subintervals of length

∆Swd = (1− 0)/m =
1

m
, (A.57)
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and define the knots as

uj = j∆S, j = −3, . . . ,m + 3. (A.58)

Recall that we need additional knots u−3, u−2, u−1, um+1, um+2 and um+3 to define a full

basis on the domain of interest.

We will show that for the given set of knots, the component cx(u) of the B-spline

approximating curve is always equal to u on the domain. Let u be some point within the

interval [uj, uj+1]. From Eq. A.49 we have

cx(t) =
3∑

k=0

cx,j+k−1bk(t), (A.59)

where t is the parameter given by Eq. A.50. Note that the control points involved in

calculations for this case are

cx,j−1 = uj −∆u,

cx,j = uj,

cx,j+1 = uj+1,

cx,j+2 = uj+1 + ∆u.

(A.60)

Substituting the basis functions from Eqs. A.42-A.46 and the control points from Eq. A.60

we have

cx(t) =
1

6

[
(−t

3
+ 3t

2 − 3t + 1)(uj −∆u) + (3t
3 − 6t

2
+ 4)(uj)

+(−3t
3
+ 3t

2
+ 3t + 1)(uj+1) + (t

3
)(uj+1 + ∆u)

]
=

1

6

[
t
3
(2uj − 2uj+1 + 2∆u) + t

2
(−3uj + 3uj+1 − 3∆u)

+t(−3uj + 3uj+1 − 3∆u) + (5uj + uj+1 −∆u)

]
.

(A.61)

Note that uj+1 = uj + ∆u. Thus,

cx(t) = t∆u + uj = u. (A.62)
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This means that the two dimensional approximation curve always has the component

cx(u) = u. So we can define one dimensional control points, which are nothing but

relative permeability values, and approximate a curve as follows

Kr(S) = Kr(u) =
m−1∑
j=−p

Cj+p−1Bj,p(u), (A.63)

where the jth control point is defined as a relative permeability value at the given satu-

ration, i.e.

Cj = Kr(j∆Swd), j = 0, ...,m. (A.64)

Although the notation of Eq. A.64 is convenient we should keep in mind that the resulting

B-spline approximation to the relative permeability curve is only guaranteed to pass

through C0 and Cm.
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