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ABSTRACT

Mohammadreza Mohammadnia Firoozabad (Doctor of Philosophy in Petroleum Engineer-

ing)

Multipoint flux approximation methods for a numerical well testing reservoir simulator

Directed by Albert C. Reynolds

99+ pp., Chapter 10: Conclusions

(254 words)

In order to match pressure transient data, a simulator must be able to calculate

well bottomhole pressures highly accurately. Our objective is to develop discretizations

that can be used to develop a thermal compositional simulator sufficiently accurate for

well testing purposes. By sufficient accuracy, we mean that the wellbore pressure as a

function of time and its derivative computed from the pressure by a standard finite difference

approximation would match well with the pressure and its derivative obtained from an

analytical solution if they were available. To do so, we develop a new near-well local grid

refinement within a base Cartesian grid and design discretization schemes using multipoint

flux approximations (MPFA’s) to obtain a numerical solution sufficiently accurate for well-

test analysis. We establish conditions that guarantee monotonicity for the specific MPFA

schemes used. Although monotonicity in and of itself does not guarantee that pressure

solutions will not exhibit nonphysical oscillations, monotone schemes do avoid decoupling

of the solution which is a major cause of nonphysical oscillations in the pressure solution.

Because we use local grid refinement within a Cartesian grid, there exist no previous results

on monotonicity that apply directly to our discrete system. Thus, in this work, we derive

criteria for discrete monotonicity for the proposed grid system, and then investigate the

monotonicity regions of different MPFA methods as functions of permeability anisotropy and

iii



grid geometry properties. To investigate the effects of the violation of a discrete maximum

principle, we conduct tests on homogeneous and heterogeneous media, for both isotropic and

anisotropic permeability fields. Finally, we demonstrate that second order convergence of

the complete numerical scheme can be obtained under appropriate conditions.
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CHAPTER 1

INTRODUCTION

Characterizing the physical nature of a subsurface oil reservoir is one of the major

problems in petroleum engineering. Pressure transient testing of wells is one of the most

common ways to obtain information about the reservoir characteristics. Interpretation of

transient well testing pressure or rate data gives an independent evaluation of average in-

situ permeability and skin factor. In particular, the assessment of skin factor is important

to determine if corrective action (stimulation) may be necessary. Conventional transient

well testing analysis assumes single-phase flow in the porous media and is based mostly on

analytical or semi-analytical solutions. For general multi-phase flow problems, analytical

solutions for the wellbore response during a well test are not available. Thus we propose

using a reservoir simulator in place of an analytical solution as a forward model to analyze

well-test pressure data by nonlinear regression analysis (history matching). To effectively

use a simulator to match pressure transient data, the simulator must be able to generate

highly accurate wellbore pressures during the first minutes and hours of the well test. To

accomplish this goal, we develop multipoint flux approximations for use in a compositional

reservoir simulator with refined polygonal grids around a vertical or horizontal well.

1.1 Literature Review

The three-phase flow of oil, gas and water in a porous-permeable medium can be

described by a system of highly nonlinear partial differential equations which apply through-

out the spatial domain in which flow occurs [8]. For the problems of interest here, the set

of partial differential equations represent the conservation of mass of each chemical species

(component) and the conservation of energy [13, 20]. As the governing equations cannot
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be solved analytically, they are replaced by discretisized equations which are typically de-

rived from the finite-volume approach. To derive the finite-volume equations, the spatial

domain is partitioned into gridblocks (cells) and mass conservation and energy conservation

are enforced on every gridblock. The constitutive equations represented by Fourier’s law

of thermal conduction and Darcy’s law suitably modified to allow non-Darcy flow in the

gas phase [19] are incorporated into the conservation equations. To close the problem, we

assume thermodynamic equilibrium on each gridblock at all times, which requires that the

fugacity of component i in the oil phase is equal to the fugacity of component i in the gas

phase. Initial and boundary conditions are also required to define the final discretized set

of equations that represent three-phase flow and transport in a hydrocarbon reservoir. The

code that solves the discretized system of equations to obtain an approximation solution,

e.g., pressure, temperature, phase compositions and phase saturations at each gridblock, is

referred to as a reservoir simulator. In most commercial reservoir simulators, e.g., Eclipse

100 and IMEX [38, 26], the grid is based on corner point geometry.

Virtually all reservoir simulators in existence were developed for field scale simulation

of reservoirs containing multiple wells, where wells are incorporated into the simulator using

source/sink terms with the relationship between a well’s rates, its wellbore pressure and

pressure at gridblocks penetrated by the well modeled by a Peaceman equation [33, 34]

which does not yield correct solutions at the early times of interest in well testing. When the

purpose of reservoir simulation is simply to make correct reservoir management decisions,

it is not necessary to calculate wellbore pressures and rates highly accurately. However,

to effectively use a simulator to match pressure transient data, which is our objective, the

simulator must be able to generate highly accurate wellbore pressures during the first minutes

and hours of the well test, in order to be useful for the estimation of reservoir properties by

analysis of the well-test pressure data. Generally, the only option for improving the accuracy

of wellbore rates and pressures in a commercial simulator is to use a hybrid grid where, in

Cartesian gridblocks that are penetrated by a well, a refined r-θ grid is introduced [35]. The

r-θ grid enables the replacement of Peaceman’s equation by a discretisized approximation

2



of the correct physical boundary condition which applies at the surface area of the wellbore.

Unfortunately, as shown in our work, the r-θ refinement introduces other computational

inaccuracies which render the radial refinement of limited use when the objective is to develop

a reservoir simulator of sufficient accuracy so that it can be used in place of an analytical

solution for the analysis of well test data. More specifically, our objective is to develop a

reservoir simulator which generates solutions which would match essentially exactly the true

analytical solution for wellbore pressures and rates as a function of time. We will refer to

a simulator which has this high accuracy as a well-testing reservoir simulator. Of course,

the true solution is not known, otherwise, we would not need to build a reservoir simulator.

Thus, we can only check the accuracy of our simulator for a limited number of cases.

Bernd Heinrich [24] introduced the method of perpendicular bisectors (PEBI) and

Z.E. Heinemann [23] used this method to generate 2D grid cells that conform to the reservoir

geometry. In the PEBI method, the connection line between each two neighboring grid center

points is perpendicular to the interface of the two cells. This method is theoretically sound

for a reservoir with a heterogeneous permeability field provided that the permeability field

is isotropic. For anisotropic media, a K-orthogonal grid provides an accurate solution only

in the specific case where the permeability ratio (anisotropy ratio) is constant throughout

the reservoir and even in this case the permeability ratio needs to be specified prior to grid

construction. In K-orthogonal girds, the grid boundaries are specified such that K · ~n is

parallel to the connection line between the two corresponding cell nodes, where, K is the

permeability tensor and ~n is the normal to each cell interface.

To overcome the inadequacy of standard r-θ grid refinement and PEBI grids, we

introduce here a near wellbore grid that is similar to an r-θ grid except the circles (or el-

lipses) are replaced by concentric polygons. When using polyhedral grid cells, we apply a

discrete finite-volume formulation using multipoint flux approximations (MPFA’s). These

methods are also called control-volume distributed (CVD) finite-volume schemes. Different

discretization methods for non-K-orthogonal grids with heterogenous and anisotropic per-

meability fields were introduced by I Aavatsmark et al. [1] and Michael G Edwards et al.
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[14], independently, and later, studied in depth by I Aavatsmark et al. [2] and Michael

G Edwards et al. [15]. The basic O-method, which is the most popular MPFA method,

requires continuity of flux and potential at the cell interfaces and uses the edge midpoint

as the continuity point for the potential. The (CVD) MPFA methods are classified by the

quadrature parameterization which is determined by the points at which we enforce conti-

nuity. For the O-methods, the choice of points where pressure continuity is enforced can

influence the monotonicity and convergence of the scheme. The resulting set of so-called

MPFA-O(η) methods use triangular pressure support (TPS) to approximate the pressure

gradient in each subcell and thus, may be referred to an TPS-MPFA method. We show that

with TPS-MPFA, we can obtain more accurate well testing solutions than are obtainable

with local grid refinement based on an r-θ grid. Moreover, unlike the two-point flux approx-

imations commonly used with the r-θ grid, MPFA schemes apply when the permeability

field is anisotropic and, in fact, can be used when the permeability tensor is non-diagonal.

However, it is important to ensure that the MPFA scheme is monotone because monotonicity

tends to prevent nonphysical oscillations in the pressure solutions [31] even though mono-

tonicity cannot guarantee that there will be no spurious oscillations in the pressure solution.

Michael G Edwards et al. [17] indicated that monotonicity is sufficient to avoid decoupling

which can directly lead to nonphysical oscillations in the solution. If the system of linear

equations for the MPFA pressure solution involves an M-matrix, then the pressure solution

can be guaranteed to be non-oscillatory [16]. While a monotone matrix is not necessarily an

M-matrix, a non-monotone matrix cannot be an M-matrix and this provides another reason

to establish the monotonicity of an MPFA scheme. While TPS-MPFA type methods, which

only have pointwise continuity of pressure, are used in our work, we note that there exist

schemes with full-pressure support (FPS) which have full pressure continuity across each

interface. The FPS-MPFA schemes appear to be more robust than TPS-MPFA implemen-

tations in that FPS-MPFA do not result in extreme nonphysical oscillations in the pressure

solution even though they do not necessarily satisfy a maximum principle.

Researchers have proposed different MPFA methods to avoid oscillatory solutions.
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Qian-Yong Chen et al. [11] introduced the enriched multipoint flux approximation (EMPFA)

for general diffusion problems on polygonal grids. I Aavatsmark et al. [6] proposed a

compact MPFA method for quadrilateral grids called the L-method. They showed that

the monotonicity regions of the EMPFA and the L-method are larger than the O-methods.

Markus Wolff et al. [40] investigated the application of L-method in 3D for two-phase

problems. As noted above, [16] presented a new family of CVD (MPFA) schemes with full

pressure support (FPS). They showed schemes with (FPS) minimize oscillations in pressure

solutions. Sissel Mundal et al. [30] studied the numerical convergence behaviour of different

MPFA schemes on anisotropic, heterogeneous, near-well flow using flexible (unstructured)

grids. They showed that the two-point flux approximation scheme does not converge for

porous media with high anisotropy. However, they observed quadratic convergence for the

pressure on logarithmically refined grids, using various MPFA schemes.

Our primary objective is to show that the thermal, compositional reservoir simulator

described in [20], can be made sufficiently accurate for well testing purposes via the MPFA-

based grid refinement developed here.

1.2 Research Objectives and Approach

As the first part of this work, we will develop a grid structure that satisfies the

following objectives:

1- Models the near-well phenomena without causing any inconsistency in transmissibility

calculations.

2- Uses a simple Cartesian grid system as the base coarse grid.

3- Causes minimal or no oscillations in the pressure derivatives for well-testing purposes.

4- Is robust to high anisotropy and heterogeneity.

5- Models the skin zone around the well.

6- Improves the computational cost of simulation by:

a) Minimizing the total number of grid cells.

b) Minimizing the number of cells which uses an MPFA method for transmissibility

5



calculations.

The grid refinement method we present here is two-and-a-half-dimensional which

is sufficient for our purposes, because the simulator in which it is employed only allows

wells which are either vertical or horizontal. In this method, the host cell is refined in

a two dimensional plane and then it is projected parallel to the well. As a result, grid

cell faces are perpendicular to the well direction. To avoid nonphysical oscillations in the

discrete solution, we investigate monotonicity properties for different MPFA methods. The

monotonicity criteria developed for general quadrilateral grids by J.M. Nordbotten et al. [31]

are not applicable for the structure of the grid refinement we present in this work. Therefore,

we need to derive criteria for discrete monotonicity for the grid and then investigate the

monotonicity regions of different MPFA methods as functions of permeability anisotropy

and grid geometry properties. Different discrete maximum principles and their relation to

monotonicity have been discussed in previous studies [39, 31]. As we mentioned in Chapter

5, J.M. Nordbotten et al. [31] defined a discrete version of the maximum principle as follows.

A discretization method which results in a discrete system of equations satisfies the discrete

maximum principle if the system matrix “for any subgrid” with homogeneous Dirichlet

boundary conditions is monotone (the inverse matrix in positive). Eirik Keilegavlen et al.

[28] claimed that this version of the discrete maximum principle will be stronger compared to

another formulation of discrete maximum principle, where only the matrix for the main grid

is monotone [28]. In other words, even though none of these two definitions guarantees that

there will be no spurious oscillations in the pressure solution, only the discrete version of the

maximum principle defined by J.M. Nordbotten et al. [31] is sufficient to avoid decoupling

which can directly lead to nonphysical oscillations in the solution and the weak version of

the discrete maximum principle, where only the matrix for the main grid is monotone, does

not necessary avoid decoupling. To see the effects of the violation of maximum principle,

we conduct tests on homogenous and heterogenous media, for both isotropic and anisotropic

permeability fields.
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CHAPTER 2

GRID REFINEMENT AROUND THE WELL

2.1 Radial Grid System

In a reservoir with isotropic permeabilities in the areal direction, the flow near a

vertical well is predominantly radial. Therefore, a radial grid system can model the near-well

flow efficiently and accurately. For radial systems, the size of the grid boundaries increases

geometrically according to the following equation.

ri+ 1
2
= αri− 1

2
, (2.1)

where

α =

(

rout
rin

) 1
nr

, (2.2)

nr is the number of gridblocks in the radial direction, rin is the minimum radius, and rout

is the maximum radius. Generally, we set rin equal to the wellbore radius, rw. However,

by doing this, the outer radius of the first ring around the well is specified automatically

as αrw which for cases with high number of rings, is relatively small. In some cases, we

specify the first few rings manually and use the outer radius of the last one as rin to specify

α. For example, in some well testing cases, well gridbocks with small volumes can cause

numerical inaccuracies in pressure analysis. To fix this, we specify the size of the well

gridblocks manually and the geometric ratio, α, is defined using the outer radius of the first

ring. In the derivation presented here, we consider a gridblock (i, j, k) centering the gridpoint

(ri, θj, zk) where point (r, θ, z) in the gridblock or on its boundary satisfy

ri− 1
2
≤ r ≤ ri+ 1

2
, θj− 1

2
≤ θ ≤ θj+ 1

2
and zk− 1

2
≤ z ≤ zk+ 1

2
. (2.3)
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In order to determine an approximate definition of ri, it is reasonable to consider an incom-

pressible fluid and assume only radial flow. Then, there is no pressure changes in the θ and

z directions on grid block (i, j, k). The volumetric average pressure of the gridblock is

p̄ =
1

V

∫

V

pdV =
2

(r2
i+ 1

2

− r2
i− 1

2

)∆θj∆zk

z
k+1

2
∫

z
k− 1

2

θ
j+1

2
∫

θ
j− 1

2

r
i+1

2
∫

r
i− 1

2

p(r)rdrdθdz

=
2

(r2
i+ 1

2

− r2
i− 1

2

)

r
i+1

2
∫

r
i− 1

2

p(r)rdr,

(2.4)

where ∆θj = θj+ 1
2
− θj− 1

2
and ∆zk = zk+ 1

2
− zk− 1

2
is the thickness of the gridblock. In

field units, under steady-state pure radial conditions, the radial pressure distribution in the

gridblock is

p(r)− pi− 1
2
=

−qµ

1.127× 10−3k∆θj∆zk
ln

(

r

ri− 1
2

)

, (2.5)

where, pi− 1
2
is the pressure at ri− 1

2
and q is positive for injection, i.e., for flow in the positive

r-direction and negative for production. Note we have assume here a homogeneous isotropic

permeability field. Substituting Eq. 2.5 into Eq. 2.4 gives

p̄− pi− 1
2
=

−2qµ

1.127× 10−3k∆θj∆zk(r2i+ 1
2

− r2
i− 1

2

)

r
i+1

2
∫

r
i− 1

2

ln

(

r

ri− 1
2

)

rdr. (2.6)

To compute the integral, in the right hand side of Eq. 2.6, we use integration by part:

r
i+1

2
∫

r
i− 1

2

ln

(

r

ri− 1
2

)

rdr =

[

1

2
r2 ln(

r

ri− 1
2

)

]r
i+1

2

r
i− 1

2

−

r
i+1

2
∫

r
i− 1

2

1

2
rdr. (2.7)

Simplifying Eq. 2.7 leads to

r
i+1

2
∫

r
i− 1

2

ln

(

r

ri− 1
2

)

rdr =
1

2
(ri+ 1

2
)2 ln

(

ri+ 1
2

ri− 1
2

)

− 1

4

(

r2
i+ 1

2

− r2
i− 1

2

)

. (2.8)
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By substituting Eq. 2.8 into Eq. 2.6, we have the final equation for the volumetric average

pressure of the gridblock:

p̄− pi− 1
2
=

−qµ

1.127× 10−3k∆θjzk

[

r2
i+ 1

2

r2
i+ 1

2

− r2
i− 1

2

ln

(

ri+ 1
2

ri− 1
2

)

− 1

2

]

. (2.9)

If we assume that the pressure at ri is equal to the volumetrically averaged pressure of the

gridblock (i.e., p(ri) = p̄), then Eq. 2.5 leads to

p̄− pi− 1
2
=

−qµ

1.127× 10−3k∆θjzk
ln

(

ri
ri− 1

2

)

. (2.10)

By comparing Eqs. 2.9 and 2.10,

ln

(

ri
ri− 1

2

)

=
r2
i+ 1

2

r2
i+ 1

2

− r2
i− 1

2

ln

(

ri+ 1
2

ri− 1
2

)

− 1

2
. (2.11)

and by using the definition of α from Eq 2.1, Eq. 2.11 can be simplified to

ln

(

ri
ri− 1

2

)

=
α2

α2 − 1
ln (α)− 1

2
. (2.12)

Then, the radius of the grid point is

ri = ri− 1
2
exp

(

α2

α2 − 1
ln(α)− 1

2

)

. (2.13)

2.1.1 Transmissibility Calculations

In transmissibility calculations for radial grids, it is assumed that the components of

the permeability tensor are in the r, θ and z directions. That is, the permeability tensor K

is diagonal with its diagonal entries equal to kr, kθ and kz. The flow rate out of a gridblock

boundaries across any surface A can be expressed in an integral form as

q = −1.127× 10−3

∫∫

A

K

µ
∇Φ.~n dA, (2.14)
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where ~n is the unit outward normal to A. To calculate the flow rate between gridblocks

(i, j, k) and (i+ 1, j, k), we assume that the flow in the radial direction is constant through

any cross sectional area r∆θj∆zk. Thus, the flowrate for a single-phase flow, through cross

sectional area r∆θj∆zk, is

qr = qr(r, θj, zk) = −1.127× 10−3kr(r, θj, zk)

µ
r∆θj∆zk

∂Φ

∂r

∣

∣

∣

∣

r

, (2.15)

where ∂Φ
∂r

is the potential gradient in the r-direction. By rearranging and integrating Eq. 2.15

from ri to ri+1, the flow rate between gridblocks (i, j, k) and (i+ 1, j, k) is

qi+ 1
2
,j,k = q(ri+ 1

2
, θj, zk) = −1.127× 10−3 1

µ

∆θj∆zk (Φi+1,j,k − Φi,j,k)

1
kr,i,j,k

ln
r
i+1

2

ri
+ 1

kr,i+1,j,k
ln ri+1

r
i+1

2

. (2.16)

The transmissibility coefficient between gridblocks (i, j, k) and (i + 1, j, k) must be

defined such that

qi+ 1
2
,j,k = −Ti+ 1

2
,j,k (Φi+1,j,k − Φi,j,k) . (2.17)

By comparing Eqs. 2.16 and 2.17, the transmissibility coefficient in the r-direction, related

to the interface between the two gridblocks, can be obtained:

Ti+ 1
2
,j,k =

1.127× 10−3∆θj∆zk

µ

(

1
kr,i,j,k

ln
r
i+1

2

ri
+ 1

kr,i+1,j,k
ln ri+1

r
i+1

2

) . (2.18)

To find an expression for the transmissibility coefficient in the angular direction, the

differential form of Darcy’s Law for the velocity in the θ-direction,

uθ(r) = −1.127× 10−3kθ
µ

∂Φ

∂s
= −1.127× 10−3kθ

µ

∂Φ

r∂θ
, (2.19)

is used. By rearranging and integrating Eq. 2.19 from θj to θj+ 1
2
and from θj+ 1

2
to θj+1,

respectively,

1.127× 10−3 1

µ

∫ Φ
i,j+1

2
,k

Φi,j,k

dΦ = −
∫ θ

j+1
2

θj

uθ(r)r

kθ
dθ, (2.20)
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and

1.127× 10−3 1

µ

∫ Φi,j+1,k

Φ
i,j+1

2
,k

dΦ = −
∫ θj+1

θ
j+1

2

uθ(r)r

k
dθ. (2.21)

By combining and rearranging the two equations,

uθ(r) = −1.127× 10−3

µr

Φi,j+1,k − Φi,j,k

θ
j+1

2
−θj

kθ,j
+

θj+1−θ
j+1

2

kθ,j+1

. (2.22)

The flow rate through the interface between gridblocks (i, j, k) and (i, j + 1, k) is obtained

by integrating Eq. 2.22 from ri−1/2 to ri+1/2 and from zk−1/2 to zk+1/2:

qj+ 1
2
= −

1.127× 10−3 ln

(

r
i+1

2

r
i− 1

2

)

∆zk

µ

(

θ
j+1

2
−θj

kθ,i,j,k
+

θj+1−θ
j+1

2

kθ,i,j+1,k

) (Φi,j+1,k − Φi,j,k) . (2.23)

Therefore, the transmissibility coefficient in the θ-direction can be expressed as

Ti,j+ 1
2
,k =

2× 1.127× 10−3 ln

(

r
i+1

2

r
i− 1

2

)

∆zk

µ
(

∆θj
kθ,i,j,k

+
∆θj+1

kθ,i,j+1,k

) . (2.24)

According to Eq. 2.14, the vertical flow rate through any cross sectional area with

the area of
∆θj
2
(r2i+1/2 − r2i+1/2) can be expressed as:

qz = qz(ri, θj, z) = −1.127× 10−3
∆θj

(

r2
i+ 1

2

− r2
i− 1

2

)

2µ
kz

∂Φ

∂z

∣

∣

∣

∣

z

. (2.25)

By rearranging Eq. 2.25 and integrating from zk to zk+1, then rearranging again, we find

that

qk+ 1
2
= −1.127× 10−3

∆θj

(

r2
i+ 1

2

− r2
i− 1

2

)

µ
( z

k+1
2
−zk

kz,i,j,k
+

zk+1−z
k+1

2

kz,i,j,k+1

) (Φi,j,k+1 − Φi,j,k) . (2.26)
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Thus, the vertical transmissibility coefficient is expressed by

Ti,j,k+ 1
2
=

1.127× 10−3∆θj

(

r2
i+ 1

2

− r2
i− 1

2

)

µ
( z

k+1
2
−zk

kz,i,j,k
+

zk+1−z
k+1

2

kz,i,j,k+1

) . (2.27)

2.2 Well Index Equation

The formulation of the well index equation assumes that the flow at the well sandface

follows Darcy’s law. The general expression for the pressure as a function of radius for

incompressible radial flow through a cross sectional area r∆θ∆z, under pure radial flow

conditions is

p(r)− pwf =
−qµ

1.127× 10−3kr∆θ∆z
ln

(

r

rw

)

, (2.28)

where again q is negative for production. In cylindrical grids, the grid point of the inner-most

gridblock, grid block (1, j, k), is located where the pressure is equal to the volumetrically

averaged pressure of that gridblock (Fig. 2.1), so according to Eq. 2.10 and the fact that

r1/2 = rw,

p1,j,k − pwf =

( −q1,j,kµ

1.127× 10−3∆θj∆zkkr,1,j,k

)

ln

(

r1
rw

)

. (2.29)

According to Eq. 2.13,

r1 = rw exp

(

α2

α2 − 1
ln(α)− 1

2

)

, (2.30)

where

α =
ri+ 1

2

ri− 1
2

=
r 3

2

rw
, (2.31)

for all i. The well index (WI) is defined by

WI1,j,k = 1.127× 10−3∆θjkr,1,j,k∆zk

ln
(

r1
rw

) . (2.32)
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Figure 2.1: Well model in radial grid.

2.3 Radial Grid Refinement

A radial grid system, or more generally, a cylindrical coordinate system can model

near-well flow accurately. However, a pure radial grid system cannot be applicable for the

entire reservoir, unless the reservoir is cylindrical. [36] used a rectangular grid system with

a radial grid refinement around the well to represent flow in the vicinity of the wellbore and

in regions far from the well.

Using a hybrid gridblock with a cylindrical grid system around the well creates ir-

regularly shaped grids between the last r-θ gridblock and adjacent Cartesian gridblocks. As

shown by the shaded gridblock in Fig. 2.2a, such gridblocks have a curvilinear surface on

one side and a flat surface on the other. The basic idea for this procedure is given by [36]

and [18].

In order to calculate the transmissibility coefficient at the curvilinear surface in the

radial direction between a radial grid and an irregularly shaped grid, the irregularly shaped

grid is replaced by a radial grid with the same “angle” and area. Following Eq. 2.13, the

radius of the center of the imaginary cell, r∗nr+1,j is calculated as

r∗nr+1,j = rnr+
1
2
exp

(

(α∗
j )

2

(α∗
j )

2 − 1
ln(α∗

j )−
1

2

)

, (2.33)

13



where

α∗
j =

r∗
nr+

3
2

, j

rnr+
1
2

(2.34)

and r∗
nr+

3
2
,j
is the radius of the outer boundary of the imaginary radial gridblock. Here,

j = 1, 2, 3, 4 specifies the grid cell index in the angular direction. As we showed later,

unless the rectangular grid is square (∆l = ∆w), the four irregular cells have different areas.

Therefore, r∗
nr+

3
2
,j
is not necessarily equal for all four cells. The area of the irregularly shaped

block is

Aj =
∆l∆w

4
−

∆θjr
2
nr+

1
2

2
, (2.35)

where ∆θj is the angle between the two lines that separate the cell in the angular direction

and ∆l and ∆w are the dimensions of the rectangular gridblock (See Fig. 2.2a). The area

of the imaginary radial grid is

Aj =
∆θj
2

(

r∗2nr+
3
2
,j − r2

nr+
1
2

)

. (2.36)

By comparing Eqs. 2.35 and 2.36, we compute the radius of the outer boundary of the

imaginary radial gridblock:

r∗
nr+

3
2
,j
=

√

∆l∆w

2∆θj
. (2.37)

Using Eq. 2.18, the transmissibility in the radial direction between the gridblock centered at

(nr, j, k) and the irregular grid block is

Tnr+
1
2
,j,k =

1.127× 10−3∆θj∆zk

µ

(

1
kr,nr,j,k

ln
r
nr+

1
2

rnr
+ 1

kr,nr+1,j,k
ln

r∗nr+1

r
nr+

1
2

) , (2.38)

where r∗nr+1 is given by Eq. 2.40.

To determine the transmissibility in the radial direction at the flat surface of the

shaded gridblock, the irregular grid is replaced by an imaginary rectangular grid with the
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Figure 2.2: Irregularly shaped grid and the fictitious grid.

same area (see Fig. 2.2b). The area of the imaginary rectangular grid is

Aj = ∆l∗j∆w. (2.39)

By comparing Eqs. 2.35 and 2.39, we compute the length of the imaginary rectangular grid,

∆l∗j =
Aj

∆w
=

∆l

4
−

∆θjr
2
nr+

1
2

2∆w
. (2.40)

We use the transmissibility equation between two rectangular grid cells to calculate the

transmissibility between the irregular cell and its neighboring rectangular cell, as follows:

Tnr+
3
2
,j,k =

2.254× 10−3∆w∆zk

µ
(

∆l∗j
kr,nr+1,j,k

+ ∆l
kl,neighbor

) . (2.41)

where, kl,neighbor is the permeability of the neighboring rectangular cell in the l direction

in the Cartesian coordinate system. Note that in Eq. 2.41, we use kr,nr+1,j,k, which is the

permeability of the irregularly shaped cell in the radial direction, as an approximation of the

permeability of that cell in the direction of l in the Cartesian coordinate system.

To calculate the transmissibility between two irregularly shaped grids in the θ direc-

tion, these two grids are replaced by two imaginary radial grids, shown in Fig. 2.3. The area
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of the sum of these two imaginary grids is equal to the total area of the irregularly shaped

grids. Since ∆θj +∆θj+1 = π, the sum of the area of these two adjacent irregularly shaped

blocks is calculated by subtracting the half of the area of the inner circle from the half of

the area of the rectangle, as follows:

Anr+1,j,k + Anr+1,j+1,k =
∆w∆l

2
−

πr2
nr+

1
2

2
, (2.42)

The sum of the area of the imaginary radial grids is

Anr+1,j,k + Anr+1,j+1,k =
π

2

(

r∗∗2nr+
3
2
− r2

nr+
1
2

)

. (2.43)

By comparing Eqs. 2.42 and 2.43, the radius of the outer boundary of the imaginary grids,

r∗∗
nr+

3
2

=

√

∆w∆l

π
. (2.44)

By substituting r∗∗
nr+

3
2

into Eq. 2.24, the transmissibility in the angular direction between

two irregularly shaped gridblocks is

Tnr+1,j+ 1
2
,k =

2.254× 10−3 ln

(

r∗
nr+

3
2

r
nr+

1
2

)

∆zk

µ
(

∆θj
kθ,nr+1,j,k

+
∆θj+1

kθ,nr+1,j+1,k

) . (2.45)

The above method of approximation to calculate the two transmissibilities at the

boundaries of the irregularly shaped block considers two different points as the center of

the gridblock. These two points cannot both represent the actual center of the irregular

grid where the pressure is equal to the volumetrically averaged pressure of the gridblock.

The inconsistency in transmissibility calculations at the boundaries of coarse and refined

grids causes problems when used in a reservoir simulator when we wish to obtain numerical

solutions that produce pressure and pressure derivatives sufficiently accurate for well testing

purposes.
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Figure 2.3: 2 irregularly shaped grids and the fictitious grids.

A second major problem of r-θ refinement around a well arises because, in the cylin-

drical grid system, the principal permeability values are in the radial, angular and vertical

directions. However, the principal permeabilities of a fine grid model used for upscaling

generally are expressed in Cartesian coordinates. In order to use a radial grid refinement

around the well, the principal permeability values have to be transformed to the permeability

values in the r, θ and z directions. If the permeability field is isotropic, it is unchanged by

the transformation. However if the permeability field is anisotropic in planes perpendicular

to the wellbore, even if the permeability is a tensor where all the off-diagonal components

are zero, this transformation can cause inaccuracies in the transmissibility calculations. This

lack of accuracy in transmissibilities can introduce a significant error in the simulation of

anisotropic reservoirs [36].

To illustrate the problem introduced by r-θ refinement when permeability is anisotropic

in the r-θ plane, we assume that the r-θ plane coincides with the x-y plane as shown in

Fig. 2.4, where the grid only contains four refinements in the θ-direction. In this case, we
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can approximate kr and kθ as shown in Fig. 2.4. Specifically, we calculate the permeability

values in the r and θ directions, based on the number of refinements in the angular direction.

In Fig. 2.4, if the line connecting the well to the center of the grid is in the x-direction, then

kr = kx, and kθ = ky. (2.46)

This approximate procedure for assigning kr and kθ based on kx and ky becomes completely

unrealistic if, for example, we use 16 divisions (grid refinements) in the θ-direction as we do

for the MPFA methods introduced later.

 

𝑘𝑟 = 𝑘  ,   𝑘𝜃 = 𝑘  𝑘𝑟 = 𝑘  ,   𝑘𝜃 = 𝑘  

𝑘𝑟 = 𝑘  ,   𝑘𝜃 = 𝑘  

𝑘𝑟 = 𝑘  ,   𝑘𝜃 = 𝑘  

 

 

Figure 2.4: Permeability approximation in radial grid refinement.

In a radial grid without any angular division, we specify the permeability value in the

r direction using the geometric mean of the permeability values in the x and y directions,

i.e.,

kr =
√

kxky. (2.47)

The Eclipse 300 simulator [38] uses a similar approach described here to calculate the trans-

missibility between the irregularly shaped grid and adjacent Cartesian gridblock.

To show the problem, we use this local grid refinement scheme, described here, to

approximate the pressure solution for a transient three-dimensional single-phase radial flow

problem. We use a Cartesian 11× 11× 5 grid with ∆x = ∆y = 600 ft and ∆z = 15 ft grid
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and the well gridblock is refined into 20 rings in the r-direction and 4 slices in the θ-direction,

where ∆θ = π
2
. A production well with a wellbore radius of 0.5 ft is located in the center

of the reservoir. The skin factor is set equal to zero. The initial reservoir pressure at the

reference depth (7067.5 ft) is 5500 psi and the composition of the reservoir fluid is given in

Table 8.1.

Table 2.1: The initial reservoir fluid composition at the reference depth.

Component Mole Percent Component Mole Percent
N2 1.0194 CO2 0.2302
C1 54.8065 C2 8.2977
C3 4.4832 IC4 0.9975
NC4 2.2909 IC5 0.8440
NC5 1.2606 C6+ 25.7700

The well is set to a constant liquid production rate of 1,000 RB/day for one day

followed by a two day pressure buildup test. The reservoir fluid is liquid throughout the

simulation. The case under study is a 75 ft thick reservoir which is divided into five homoge-

neous layers with equal thicknesses (15 ft), porosity (0.2) and permeability values (100 md

in the x and y directions and 10 md in the z direction). The well is fully penetrating and

there is no flow in the vertical direction. In Fig. 2.5, the ∆p curve is a log-log plot of ∆p

which is the difference between the initial reservoir pressure and the bottom hole pressure

at the same datum, versus the flowing time. The d∆p/d ln t curve is the derivative of the

pressure drop with respect to the natural logarithm of time. Following D. Bourdet et al.

[10], it is calculated numerically as follows:

(

d∆p

d ln t

)

i

=
ti

ti+1 − ti−1

(

∆pi −∆pi−1

ti − ti−1

(ti+1 − ti) +
∆pi+1 −∆pi
ti+1 − ti

(ti − ti−1)

)

. (2.48)

In the diagnostic plot of buildup data, we plot ∆p = pws(∆t)− pwf,s and d∆p/d ln te versus

shut-in time ∆t. Here, te is Agarwal’s equivalent time defined by te = (t∆t)/(t + ∆t),

where t is the producing time. Throughout, pws(∆t) denotes the shut-in pressure as a

function of shut-in time, ∆t, and pwf,s denotes the pressure at the instant of shut-in. For

a homogeneous reservoir containing a slightly-compressible, constant-compressibility, single-
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phase fluid of constant viscosity and a constant rock compressibility, the wellbore pressure

during drawdown at time t, pwf (t), is given by

pwf (t) = pi −
162.6qBoµ

kh

(

log t+ log

(

k

φctµr2w

)

− 3.23 + 0.87s

)

, (2.49)

where s is the skin factor and, in Eq. 2.49, we assume a thin skin. From Eq. 2.49, it follows

that

d(pi − pwf (t))

d ln t
=

70.61qBoµ

kh
. (2.50)

The standard log-log diagnostic plot of drawdown/buildup data presented in Fig. 2.5, shows a

hump in the pressure derivative curve between 0.4 and 6.0 hours. The radius of investigation

for the time period where the hump appears is 228 to 312 ft which are the locations of the

inner and outer boundaries of the irregularly shaped block (shaded area in Fig. 2.2). Fig. 2.5

compares pwf (t) computed from Eq. 2.49, the results of our compositional simulator (CS)

with r-θ refinement and the results of Eclipse when we use a Cartesian grid with radial

grid refinement around the well. In particular, the pressure derivative from both reservoir

simulators indicates that Eclipse result and our CS result are in good agreement but fail

to match the solution of Eq. 2.49. The lack of agreement between the simulators and the

correct pressure derivative is due directly to the way the transmissibilities for irregularly

shaped grids are calculated.

1

10

100

0.01 0.1 1 10 100

D
P

 (
p

si
),

 d
D

P
/d

ln
 t

 

Time (hr) 

Δ Δ Δ
Δ Δ Δ

1

10

100

0.01 0.1 1 10 100

D
P

 (
p

si
),

 d
D

P
/d

ln
 t

 

Time (hr) 
Δ Δ Δ
Δ Δ Δ

 

Figure 2.5: Log-log diagnostic plot of drawdown (left) and buildup (right) data.
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For this example, we can minimize the oscillation in the pressure derivative curve,

by adjusting the number of rings, inner radius of the first ring and outer radius of the last

ring. However, we cannot remove the oscillation from the pressure derivative curve and it

will always be non-negligible.
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CHAPTER 3

POLYGONAL NEAR-WELL GRID REFINEMENT

In order to model the near-well phenomena efficiently without causing any inconsis-

tency in transmissibility calculations, a polygonal gird is used to refine the grid around the

well. The base coarse grid and its neighboring grids, are a set of rectangular gridblocks,

shown with bold lines in Figs. 3.1 and 3.2. In the grid refinement procedures presented in

this work, we refine the coarse well gridblock and its 8 coarse rectangular neighboring grid-

blocks. Two types of grid structures have been proposed in this refinement method. In the

first type, the host cell is refined into a set of irregular octagons as shown in Fig. 3.1. Each

adjacent rectangular grid block is refined into nine rectangular grids. In order to keep the

size of all nine rectangular fine grids equal, we have to modify the structure of the octagonal

grids. We create these octagons in such a way that each side of a host cell, containing an

octagonal refinement, is separated into three equal parts. Lets call the 8 coarse rectangular

cells around the well gridblock as ring 1 and the next 12 cells around the cells in ring 1 as

ring 2. These 12 cells are not shown in the figure. As shown in Fig. 3.1, after refining each

rectangular neighboring gridblock, located in ring 1, into 9 refine rectangular cells, each outer

boundary of these 8 coarse cells is divided into 3 parts. This means that the other coarse

gridblocks in ring 2 that share a boundary with gridblocks in ring 1, now are connected to

three refine rectangular cells. Thus, this type of grid structure connects a grid to three refine

Cartesian grids. Consequently, the size of the outermost refine grid cell is one-ninth of the

size of the adjacent coarse rectangular grid.

In the MPFA technique, it is assumed that potential gradient in each grid cell is

constant. Therefore, increasing the number of refinements in the angular direction repre-

sents the radial behavior of flow near the well more accurately. In the second type, we
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Figure 3.1: Octagonal grid refinement around the well.

consider a hexadecagonal grid refinement where the well grid cell is refined into a set of

irregular hexadecagons (16-sided polygons). Note that the area between each two adjacent

hexadecagons is divided into 16 trapezoidal grids. Here, we refine the coarse well grid block

and its 8 coarse neighboring gridblocks. Each rectangular gridblock, that is adjacent to a

well gridblock containing a hexadecagonal refinement, is refined into a set of rectangular

grids, as shown in Fig. 3.2. Each base Cartesian gridblock adjacent to a well gridblock that

lies immediately east, west, north or south if the well gridblock is divided into ten gridblocks.

A base Cartesian gridblock immediately northeast, northwest, southeast or southwest of the

well gridblock is subdivided into seven rectangular gridblocks; see Fig. 3.2. The other coarse

base gridblocks (not shown in Fig. 3.2) are not refined. In this grid refinement technique,

even with a square host cell, the 16 trapezoidal grids between two adjacent hexadecagons

are not of equal area. This refinement was chosen because it can accurately approximate r-θ

refinement, mitigate the numerical errors that arise when r-θ refinement is applied within a

Cartesian grid and at the same time, the numerical errors can be reduced because MPFA

can be used with a polygonal grid but cannot be used with an r-θ grid. We use an example

later to show that the octagonal refinement is inferior to hexadecagonal refinement and all

work presented here, is based on the hexadecagonal refinement.
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Figure 3.2: Hexadecagonal grid refinement around the well.

Two-dimensional flow near a point source well in an infinite-acting anisotropic porous

medium has elliptical equipotential curves. Therefore, adjusting the structure of hexadcago-

nal grids based on the near-well elliptical flow pattern is expected to simulate the flow be-

havior more accurately. To modify the grid to conform to “elliptical flow,” each hexadecagon

is generated in such a way that all 16 vertices are located on an ellipse (see Fig. 3.3) given

by the following equation.

x2

a2
+

y2

b2
= 1, (3.1)

where a = 1
2
li+ 1

2
, b = ∆y

∆x
a and li+ 1

2
is the length of the ith hexadecagon in the x-direction,

i.e., the length of the x-axis of the ellipse in which the hexadecagon is inscribed. The

wellbore is replaced by a hexadecagon with the same area, i.e., πr2w. This hexadecagon is

also constructed based on an ellipse given by Eq. 3.1.

We define the geometric ratio as α = li+ 1
2
/li− 1

2
, and regardless of the value of ∆y/∆x,

α is calculated as follows:

α =

(

lmax

lw

) 1
Nr

=

(

lNr+
1
2

lw

) 1
Nr

, (3.2)

where Nr is the number of hexadecagons, lw is the length of the hexadecagon that represents

the wellbore and lmax is the length of the last hexadecagon. lmax is calculated in such a way
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that an ellipse given by Eq. 3.1 with aNr+
3
2
= 1

2
αlmax and bNr+

3
2
= ∆y

∆x
aNr+

3
2
has the same

area as the Cartesian cell containing the well, i.e.,

πaNr+
3
2
bNr+

3
2
= ∆x∆y. (3.3)

In this way, the area between the last hexadecagon and the boundaries of the Cartesian

cell is equal to the area between the last hexadecagon and an imaginary hexadecagon with

lNr+
3
2
= αlmax. To calculate lmax, we rewrite Eq. 3.3 as πa2

Nr+
3
2

= ∆x2 and since aNr+
3
2
=

1
2
αlmax, the length of the last hexadecagon can be written as a function of ∆x, i.e.,

lmax =
2∆x

α
√
π
. (3.4)

Substituting Eq. 3.4 into Eq. 3.2 yields

α =

(

2∆x√
πlw

) 1
Nr+1

. (3.5)

𝒍𝒊+  

∆  

∆  

 

 

a 
b 

Figure 3.3: Hexadecagonal Grid Structure.

As discussed in detail later, if the well is vertical and the kx and ky of a refined
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gridblock are known, it is optional to choose ∆x and ∆y of the base coarse Cartesian grid

so that

kx
∆x2

=
ky
∆y2

. (3.6)

If kx = ky = k, then it is appropriate to use ∆x = ∆y and the ellipses become circles.

Now we consider the same drawdown-buildup test example considered before but we now

use a hexadecagonal refinement system with the MPFA scheme introduced later and ∆x

and ∆y are chosen so that Eq.3.6 holds where kx = ky = 100 md. Numerical results from

the simulator using this refinement method are compared with the one using radial grid

refinement. Similar to the previous example, the reservoir is homogenous and isotropic and

the reservoir model is a Cartesian 11×11×5 grid with ∆x = ∆y = 600 feet and ∆z = 15 ft.

The grid cell around the well is replaced by 20 hexadecagonal grids in the radial direction and

16 divisions in the angular direction. The size of the grid boundaries increases geometrically.

Each adjacent rectangular gridblock is refined into a set of rectangular grids.

Fig. 3.4 shows the log-log diagnostic plot of drawdown and buildup data. Unlike

radial grid refinement, hexadecagonal grid refinement does not create oscillations in the

pressure derivatives. Having demonstrated the utility of hexadecagonal refinement within a

Cartesian gridblock containing a well, the remainder of the paper is devoted to developing

the procedure for calculating the transmissibilities and investigating the monotonicity of the

MPFA formulations.
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Figure 3.4: Log-log diagnostic plot of drawdown (left) and buildup (right) data.

26



Fig. 3.5 compares the numerical results of the previous example using the hexadecago-

nal refinement system with a similar case using an octagonal refinement. The pressure deriva-

tive results for the case with hexadecagonal refinement are closer to the analytical solution

and in fact the results form the octagonally refined grid, still show a very small pressure

hump in the time period from 0.4 to 6.0 hours. Because of this, all results from this point

on will consider only the hexadecagonal refinement.
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Figure 3.5: Log-log diagnostic plot of drawdown (left) and buildup (right) data.
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CHAPTER 4

MULTIPOINT FLUX APPROXIMATION

The two-point flux approximation is the simplest technique to evaluate the flux.

This scheme is still used in most commercial reservoir simulators. However, it does not

provide accurate and consistent solutions except for K-orthogonal grids where a two-point

flux approximation method has an exact solution [3]. Given a permeability tensor K, K-

orthogonal grid is one where the normal, ~n, to each cell interface between any pair of cells,

is such that K ·~n is parallel to the vector joining the two cell nodes. Fig. 4.1 shows two pairs

of K-orthogonal and non-K-orthogonal grid cells.

 𝑛   

𝑲 ∙ 𝑛   

(a) K-orthogonal

 𝑛   

𝑲 ∙ 𝑛   

(b) non-K-orthogonal

Figure 4.1: Two Pairs of K-orthogonal and non-K-orthogonal grid cells.

For a K-orthogonal grid, the flow across any surface is only a function of potentials

at the two cell nodes,i.e., the flow rate of a single-phase fluid between cells i and j can be

represented by:

qij = Tij(pi − pj), (4.1)

where Tij is the transmissibility coefficient between cells i and j. Here, Tij is a function of

the permeability values and the geometry of the two cells. A transmissibility formulation for
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rectangular cells is given by K. Aziz et al. [9] and a set of transmissibility formulations for a

radial grid system can be found in O.A. Petrosa et al. [36]. Following D. Gunasekera et al.

[22], the transmissibility between two K-orthogonal cells with indices i and j, with constant

anisotropy, in field unit is given by

Tij =
1.127× 10−3Aij

µ( li
‖Ki·nij‖

+
lj

‖Kj ·nij‖
)
, (4.2)

where Aij is the area of the cell interface between cells i and j, nij is the normal to the cell

interface, Ki and Kj are the permeability tensors of cells i and j, respectively and li and

lj are the distance between the interface and the center of cells i and j along the line that

connects the centers of the two cells, respectively. For isotropic reservoirs, i.e. kx = ky in

each cell, Eq. 4.2 is reduced to the following equation.

Tij =
1.127× 10−3Aij

µ( li
kj

+
lj
kj
)

, (4.3)

where ki and kj are the permeability values of cells i and j.

It is possible to generate K-orthogonal grids only if the anisotropy ratio is constant

throughout the field. For a non-K-orthogonal grid in two spatial dimensions, more than two

potential points are necessary to obtain an accurate first-order linear approximation of the

potential in each gridblock. Therefore, to discretize the flow equations, more than two grid

points are required. A multipoint flux approximation (MPFA) method was introduced by I.

Aavatsmark et al. [2] to solve control-volume formulations on polygonal and triangular grid

cells in 2D. With MPFA methods more than two pressure points are used for the flux eval-

uation. Generally, MPFA methods are more accurate but they increase the computational

cost of the simulation Q. Y. Chen et al. [12] and can encounter convergence and monotonic-

ity issues. MPFA methods consider anisotropy and general geometry (I. Aavatsmark et al.

[2]) and, in fact, can be applied for general permeability tensors. The O-method, which is

the most popular MPFA method, assumes the continuity of flux and potential at the cell
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interfaces. The basic O-method uses the edge midpoint as the continuity point for the po-

tential. I. Aavatsmark et al. [6] introduced a compact MPFA method for quadrilateral grids

called the L-method. This method uses fewer pressure points in transmissibility calculations.

They showed that the monotonicity region of the L-method is larger than the monotonicity

region for the O-methods and for Cartesian local grid refinements, where the host cells are

subdivided into a Cartesian grid of refined cells, the solutions of the L-method provide more

accurate solutions for heterogeneous systems than the O-method.

4.1 Potential Gradient and Flux Approximation

The basic assumption of any MPFA method is that the potential gradient ∇Φ in each

grid is constant. Under this assumption, the potential at any point in gridblock l is given by

Φl(x) = φl + (x− xl) · ∇Φl, (4.4)

where φl is the value of Φl at a point xl in the gridblock under consideration and ∇Φl is

the constant potential gradient in cell l. Note that in Eq. 4.4 and similar equations that

follow the dot denotes the dot (inner) product. Consider two linearly independent vectors

vAB = B − A and vAC = C − A (Fig. 4.2). It is assumed that Φ is linear inside the triangle

which is created by vectors vAB and vAC (A, B and C are any three non-colinear points all

inside or on the boundary of a specific gridblock). Vectors v′AB and v′AC are in the outward

direction to the triangle
∆

ABC and v′AB and v′AC respectively are normal to vAB and vAC ,

with ‖v′AB‖2 = ‖vAB‖2 and ‖v′AC‖2 = ‖vAC‖2. Because the points A, B and C colinear, the

two vectors v′AB and v′AC are linearly independent and may be used as a basis to express the

potential gradient vector, i.e.,

∇Φ = αv′AB + βv′AC (4.5)

within the gridblock containing points A, B and C. The potentials at points B and C are
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𝑣  

𝑣  

𝑣′  

𝑣′  

Figure 4.2: Triangle ABC with linear potential.

determined from Eq. 4.4 as follows:

ΦB = ΦA + vAB · ∇Φ, (4.6)

and

ΦC = ΦA + vAC · ∇Φ. (4.7)

By substituting the potential gradient from Eq. 4.5 into Eqs. 4.6 and 4.7, rearranging and

simplifying using vAB · v′AB = 0 and vAC · v′AC = 0, we have

ΦB − ΦA = vAB · (αv′AB + βv′AC) = βvAB · v′AC , (4.8)

and

ΦC − ΦA = vAC · (αv′AB + βv′AC) = αvAC · v′AB. (4.9)

The area of a triangle in two-dimensional space whose vertices are the points A, B

and C is calculated as follows: The dot product of two vectors vAB and v′AC is given by
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vAB.v
′
AC = ‖vAB‖‖v′AC‖ cos(θ + π/2) = ‖vAB‖‖vAC‖ cos(θ + π/2), (4.10)

where θ is the angle between vAB and vAC . From trigonometric identities we have,

cos(π/2 + θ) = − sin(θ). (4.11)

By substituting Eq. 4.11 into Eq. 4.10, we have

vAB.v
′
AC = −‖vAB‖‖vAC‖ sin(θ). (4.12)

Using the formula that the area of a triangle is (1/2)hb, where h is the height and b is the

length of the base, the area of triangle ABC is given by

F =
1

2
‖vAB‖‖vAC‖ sin(θ). (4.13)

Combining Eqs. 4.13 and 4.12, we obtain

F = −1

2
(vAB.v

′
AC). (4.14)

Similarly, we can show that

F = −1

2
(vAB · v′AC) = −1

2
(vAC · v′AB). (4.15)

We substitute Eq. 4.15 into Eqs. 4.8 and 4.9 and rearrange the resulting equations to obtain

α = −ΦC − ΦA

2F
, and β = −ΦB − ΦA

2F
. (4.16)

Using Eq. 4.16 in Eq. 4.5, the potential gradient becomes

∇Φ = −ΦC − ΦA

2F
v′AB − ΦB − ΦA

2F
v′AC . (4.17)
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The flowrate from the gridblock l across an interface i of gridblock l may be deter-

mined from

qil = −nT
i AiKl∇Φl, (4.18)

where Kl is the absolute permeability tensor of gridblock l, Ai is the area of interface i and

ni is the outward unit normal vector to the interface. By assuming that A, B and C are any

three non-colinear points inside the gridblock and using Eq. 4.17, the flowrate equation can

be rewritten as

qil = −nT
i AiKl

(

−ΦC − ΦA

2F
v′AB − ΦB − ΦA

2F
v′AC

)

= (nT
i AiKlv

′
AB)

ΦC − ΦA

2F
+ (nT

i AiKlv
′
AC)

ΦB − ΦA

2F
.

(4.19)

4.2 Transmissibility Calculations for the O-method

We construct an interaction region between a collection of grid cells with one common

vertex, by connecting the cell centers of each two neighboring cells through a point on the

interface. In the hexadecagonal grid structure, the interaction region can be either between

three, four or five grid cells. The examples of the three possible interaction regions are shown

in Fig. 4.3. The triangle with dashed sides in Fig. 4.4a shows an interaction region for three

grid cells centered P1, P2, P3 where all three gridblocks have a common vertex at the point

O. Fig. 4.4b shows an interaction region for four grid cells centered P1, P2, P3 and P4 and

Fig. 4.4c shows an interaction region for five grid cells centered P1, P2, P3, P4 and P5. In

these figures, no complete gridblock is shown. In Fig. 4.5, Pl, l = 1, 2, ..., N represent the

centers of N distinct gridblocks. N is the number of gridblocks in the interaction region.

We consider the interaction region between N grid blocks with grid points Pl, l =

1, 2, ..., N . We will need to use the forward integer function p(l) and the backward integer

function m(l), where are defined as

p(l) =











l + 1 if l < N ;

1 if l = N,
(4.20)
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Figure 4.3: Three possible interaction regions in a hexadecagonal refinement.
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Figure 4.4: Possible interaction regions in the hexadecagonal grid structure.

and

m(l) =











l − 1 if l > 1;

N if l = 1,
(4.21)

where N is the number of grid blocks in the interaction region. It is clear that m(p(l)) =

p(m(l)) = l.

As mentioned earlier, it is assumed that the potential gradient in each gridblock
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Figure 4.5: An interaction region between N grid cells.

is constant. Since triangle PlP
′
lP

′
m(l) is located inside gridblock l with a constant pressure

gradient, the potential gradient in triangle PlP
′
lP

′
m(l) is also constant. Comparing this triangle

with the triangle ABC in the previous part, we can obtain a similar equation as Eq. 4.17 to

approximate the potential gradient.

Vectors v+l and v−l are in the outward direction to the triangle PlP
′
lP

′
m(l) and v+l

and v−l respectively are normal to (P ′
l − Pl) and (P ′

m(l) − Pl), with ‖v+l ‖ = ‖P ′
l − Pl‖ and

‖v−l ‖ = ‖P ′
m(l) − Pl‖. Using Eq. 4.17, the potential gradient of gridblock l centered at Pl is

approximated as

∇Φl = −
Φ′

m(l) − Φl

2Fl

v+l − Φ′
l − Φl

2Fl

v−l , (4.22)

where Φ′
m(l), Φl and Φ′

l, respectively, are the potentials at points Pm(l), Pl and P ′
l , and Fl is

the area of the triangle P ′
m(l)PlP

′
l . Similarly to Eq. 4.19, using Eq 4.22 in Eq. 4.18 gives that
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the flowrate from/to the gridblock l across the sub-interface i can be determined from

qil = (nT
i AiKlv

+
l )

(

Φ′
m(l) − Φl

2Fl

)

+ (nT
i AiKlv

−
l )

(

Φ′
l − Φl

2Fl

)

. (4.23)

where l = i, p(i). Sub-interface i is a part of the interface between gridblocks l = i and

l = p(i), which is located inside the interaction region. The flow through other part of the

interface is computed using another interaction region. Note that the flow through the sub-

interface i is not necessarily out of the gridblock l. The direction of the flow is determined

based on the direction of the normal vector ~ni. Then, the flow rate through the sub-interface

computed based on the pressure gradient of the gridblock on one side of the sub-interface

has the same direction as the one computed based on the pressure gradient of the gridblock

on the other side. In the approach used in this work, the direction of normal vectors are

clock-wise in each interaction region.

We define a new scalar coefficient which is a function of geometry and permeability

of the grid, as follows:

w±
il =

nT
i AiKlv

±
l

2Fl

. (4.24)

Then, Eq. 4.23 can be simplified to

qil = w+
il (Φ

′
m(l) − Φl) + w−

il (Φ
′
l − Φl). (4.25)

The continuity condition is used to eliminate the potentials at the gridblock interfaces

from the flowrate equations. From Eq. 4.25, we can calculate the flowrate through sub-

interface i using the potential gradients of the two adjacent gridblocks. Since, sub-interface

i is between gridblocks l = i and l = p(i), the flowrate continuity equation for sub-interface

i can be written as

qi,i = qi,p(i), i = 1, 2, .., N. (4.26)
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By substituting Eq. 4.25 into Eq. 4.26 and rearranging the resulting equation, we obtain

w+
iiΦ

′
m(i) + w−

iiΦ
′
i − (w+

ii + w−
ii )Φi

= w+
i,p(i)Φ

′
i + w−

i,p(i)Φ
′
p(i) − (w+

i,p(i) + w−
i,p(i))Φp(i),

(4.27)

where i = 1, 2, .., N . For example, in an interaction region containing four gridblocks (N =

4), shown in Fig. 4.4b, the flowrate continuity equation over the interface (i = 1) and between

gridblocks l = 1 and l = 2 can be written as follows:

q1,1 = q1,2. (4.28)

Here, both q1,1 and q1,2 are in the direction of ~n1. From Eq. 4.27, the flowrate continuity

equation becomes

w+
1,1Φ

′
4 + w−

1,1Φ
′
1 − (w+

1,1 + w−
1,1)Φ1

= w+
1,2Φ

′
1 + w−

1,2Φ
′
2 − (w+

1,2 + w−
1,2)Φ2.

(4.29)

Eq. 4.27 holds for all sub-interfaces in the interaction region. If we define Φ = (Φ1,Φ2, ..,ΦN)
T

and Φ′ = (Φ′
1,Φ

′
2, ..,Φ

′
N)

T , then the system of Eq. 4.29 for all sub-interfaces in the interaction

region becomes

AΦ + BΦ′ = CΦ +DΦ′, (4.30)

where A = (aij), B = (bij), C = (cij) and D = (dij) are N × N matrices with non-zero

components as follows:

aii = −
(

w+
ii + w−

ii

)

, (4.31)

bii = w−
ii , bim(i) = w+

ii , (4.32)

cip(i) = −
(

w+
ip(i) + w−

ip(i)

)

, (4.33)

and

dii = w+
ip(i), dip(i) = w−

ip(i). (4.34)
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where p(i) and m(i), respectively, are the forward and the backward integer functions defined

earlier in Eqs 4.20 and 4.21. All entries of A, B, C and D not defined by Eqs. 4.31- 4.34 are

zero. By rearranging Eq. 4.30 we obtain,

Φ′ = (B −D)−1(C − A)Φ. (4.35)

The transmissibility coefficient of the potential of the gridblock l associated with sub-interface

i, til, is defined implicitly by

qi =
N
∑

l=1

tilΦl, (4.36)

where qi is the flowrate through sub-interface i. If we define Q = (q1, q2, .., qN)
T , for any

interaction region of Fig. 4.4, then we can write a system of Eq. 4.36 as

Q = TΦ, (4.37)

where T = (til) is the transmissibility matrix for the interaction region, where element til is

the transmissibility coefficient of the gridblock l associated with sub-interface i. Combining

Eqs. 4.30 and 4.37 and rewriting in a matrix form gives











AΦ + BΦ′ = TΦ,

CΦ +DΦ′ = TΦ.
(4.38)

By substituting Φ′ from Eq 4.35 into Eq. 4.38, the transmissibility matrix can be expressed

as follows:

T = B(B −D)−1(C − A) + A = D(B −D)−1(C − A) + C. (4.39)

The transmissibility coefficients for the interfaces are computed by assembling the

coefficients of two sub-interfaces (Fig. 4.6). Note that the transmissibility of an interface is

not necessarily the summation of two coefficients calculated from each interaction region.

For example, in Fig. 4.6, the normal vector of interface 1 (red segment associated with area
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A1, n1, is oriented toward P1 and the normal vector of interface 2, n2, is in the opposite

direction. This means the flowrate values calculated for each part of the interface, consisting

of the sum of the two sub-interfaces of area A1 and A2, are in the opposite directions. In

order to calculate the total flowrate, one set of coefficients has to be subtracted from the

other set. For special cases, such as where the interfaces are near the reservoir boundary, the

transmissibility coefficients are obtained from only one interaction region. Table 4.1 shows

 

P2 

P1 

P3 

P4 

P5 

A1 

A2 

n2 

n1 

Figure 4.6: The two sub-interfaces between gridblocks 1 and 3.

how to calculate the coefficients of two sub-interfaces from the example in Fig. 4.6. The

second and the third columns of this table are the calculated transmissibility coefficients

from the first and the second interaction regions. Here, the first interaction region is the

triangle with vertices P1, P2 and P3 and the second interaction region is the quadrilateral

with vertices P1, P3, P4 and P5. The last column is the final transmissibility coefficients used

to calculate the flow from gridblock 1 to gridblock 3.

The flow rate from gridblock 1 to gridblock 3 through the interface consisting of the

two sub-interfaces with area A1 and A2 is

q = (−t1,1 + t2,1)Φ1 − t1,2Φ2 + (−t1,3 + t2,3)Φ3 + t2,4Φ4 + t2,5Φ5. (4.40)
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Table 4.1: Assembling the coefficients of two sub-interfaces of area A1 and A2.

Grid Point Interaction Interaction Transmissibility
Index region 1 region 2 Coefficients

P1 t1,1 t2,1 −t1,1 + t2,1
P2 t1,2 −t1,2
P3 t1,3 t2,3 −t1,3 + t2,3
P4 t2,4 t2,4
P5 t2,5 t2,5

Note that after multiplying the transmissibility coefficients from the first interaction region

by (-1), the flow direction through both sub-interfaces is from gridblock 1 to 3. Then, if the

flowrate computed from Eq. 4.41 is positive, the direction of the flow is from gridblock 1 to

3. Eq. 4.41 can also be written

q = −t1,2(Φ2 − Φ1) + (−t1,3 + t2,3)(Φ3 − Φ1) + t2,4(Φ4 − Φ1) + t2,5(Φ5 − Φ1), (4.41)

because the summation of transmissibility coefficients,

−t1,1 + t2,1 − t1,2 − t1,3 + t2,3 + t2,4 + t2,5 = 0. (4.42)

4.3 Transmissibility Calculations for the L-method

I. Aavatsmark et al. [6] proposed a compact MPFA method for quadrilateral grids

called the L-method. This method uses a similar approach to compute the transmissibility co-

efficients, as the one discussed previously, but it uses fewer pressure points in transmissibility

calculations. Unlike the O-methods, where we use continuity points at the sub-interfaces in

the interaction regions, the L-method assumes full potential continuity on the sub-interfaces.

Fig. 4.7a shows an interaction region between three cells, in which we wish to compute the

transmissibility coefficients, containing two sub-interfaces, shown by the red and blue line

segments. The boundaries of the interaction regions are depicted using dashed lines. To

specify an interaction region between three cells, each two neighboring cells are connected

by a curve that passes through the midpoint of the interface between two cells and the cells

along the diagonal are connected by a curve that goes through the common point (vertex)
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of the three cells. For each sub-interface, there are two possible interaction regions. Fig. 4.7

shows the two possible interaction regions for the sub-interface between cells 1 and 2, shown

by the blue line segment.
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Figure 4.7: Possible interaction regions for a sub-interface in the L-method.

I. Aavatsmark et al. [6] proposed a technique for how to choose the interaction region.

First, the transmissibility coefficients of the sub-interface are computed using both possible

interaction regions. Interaction regions are labeled based on the cell index of the “middle”

cell. For example, the interaction region shown in Fig. 4.7a is labeled as interaction region

1 and the one in Fig. 4.7b is called interaction region 2. The flow rate through the blue

sub-interface, shown in Fig. 4.7a, is computed using the interaction region 1:

q = t1Φ1 + t2Φ2 + t3Φ3, (4.43)

and the flow rate through the blue sub-interface, shown in Fig. 4.7b, is computed using the

interaction region 2:

q = t′1Φ1 + t′2Φ2 + t′4Φ4, (4.44)

where the transmissibility coefficients tl are computed from interaction region 1 and the

transmissibility coefficients t′l are computed from interaction region 2. To determine which

interaction region (1 or 2) should be chosen to compute the transmissibility coefficients for
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the blue sub-interface, we compare the absolute values of t1 and t′2. If t1 < t′2, then we

use all the transmissibility coefficients computed from the interaction region 1 for the blue

sub-interface, otherwise, we use the coefficients from interaction region 2. Note that this

technique choose the interaction region for each sub-interface separately and even though

there are two sub-interfaces in each interaction region, if an interaction region is chosen for

one sub-interface, it does not mean that the same interaction region is used to compute the

transmissibility coefficients for the other sub-interface in that interaction region.

Similar to the O-method, to calculate the transmissibility coefficients of the L-method,

we assume that the potential gradient in each cell is constant. Fig. 4.8 shows one of the

two possible interaction regions for the L-method. Vectors v+l and v−l , for l = 1, 2, 3, are

defined as normal to (P ′
l − Pl) and (P ′

m(l) − Pl) respectively, with lengthes chosen so that

‖v+l ‖ = ‖P ′
l − Pl‖ and ‖v−l ‖ = ‖P ′

m(l) − Pl‖, v4 is defined as the vector connecting P1 to P ′
2,

i.e., v4 = P ′
2 − P1 and Fl is defined as the area of the triangle P ′

m(l)PlP
′
l (see Fig. 4.8). Here

m(l) is the backward integer function which is defined in Eq. 4.21, where in this case N = 3.

Then, Eq. 4.22 can be used to approximate the potential gradient of gridblock l.

 P  

P  
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P ′ 
P ′ P ′ 

𝑣− 

𝑣+ 

𝑣− 

𝑣+ 

𝑣+ 

𝑣− 

𝑣  
𝑛  𝑛  

Figure 4.8: The interaction region in the L-method.

We use Eq. 4.25 to determine the flowrate from gridblock l across sub-interface i.

Here, ni is defined as the unit normal vector to sub-interface i, in such a way that n1 is
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toward cell 2 and n2 is toward cell 1. The flowrate continuity equations for sub-interfaces 1

and 2 respectively are q1 = q1,1 = q1,2 and q2 = q2,1 = q2,3. Using Eq. 4.25, the two continuity

equations can be written as follows:

q1 = q1,1 = w+
1,1Φ

′
3+w−

1,1Φ
′
1−(w+

1,1+w−
1,1)Φ1 = w+

1,2Φ
′
1+w−

1,2Φ
′
2−(w+

1,2+w−
1,2)Φ2 = q1,2, (4.45)

q2 = q2,1 = w+
2,1Φ

′
3+w−

2,1Φ
′
1−(w+

2,1+w−
2,1)Φ1 = w+

2,3Φ
′
2+w−

2,3Φ
′
3−(w+

2,3+w−
2,3)Φ3 = q2,3. (4.46)

Since we assume full potential continuity on the sub-interfaces in the L-method, we

can calculate the potential at any point on the sub-interface using the potential gradient and

the potential at any point in the cell. Then, the potential at P ′
2 can be written as a function

of the potential at P1 and the potential gradient in cell 1. Using Eq. 4.6, Φ′
2 is calculated as

follows:

Φ′
2 = Φ1 + v4 · ∇Φ1, (4.47)

where ∇Φ1 is constant throughout the cell containing P1. By substituting ∇Φ1 from Eq. 4.22

into Eq 4.47, we have:

Φ′
2 = Φ1 − v4 ·

(

Φ′
3 − Φ1

2F1

v+1 − Φ′
1 − Φ1

2F1

v−1

)

. (4.48)

We introduce a new scalar coefficient which is only a function of geometry, as follows:

x± =
v4 · v±1
2F1

. (4.49)

Then, Eq. 4.48 can be simplified to

Φ′
2 = (1 + x+ + x−)Φ1 − x+Φ′

3 − x−Φ′
1. (4.50)

Finally, using Eq. 4.50 to eliminate Φ′
2, the two continuity equations in Eqs. 4.45 and 4.46
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can be written as functions of Φ1, Φ2, Φ3, Φ
′
1 and Φ′

3, i.e.,

(w+
1,1 + w−

1,2x
+)Φ′

3 + (w−
1,1 + w−

1,2x
− − w+

1,2)Φ
′
1

= (w+
1,1 + w−

1,1 + w−
1,2(1 + x+ + x−))Φ1 − (w+

1,2 + w−
1,2)Φ2,

(4.51)

(w+
2,1 + w+

2,3x
+ − w−

2,3)Φ
′
3 + (w−

2,1 + w+
2,3x

−)Φ′
1

= (w+
2,1 + w−

2,1 + w+
2,3(1 + x+ + x−))Φ1 − (w+

2,3 + w−
2,3)Φ3.

(4.52)

We define Φ = [Φ1,Φ2,Φ3]
T and Φ′ = [Φ′

1,Φ
′
3]

T to write the two continuity equations of

Eqs. 4.51 and 4.52 in matrix form.

AΦ′ = BΦ, (4.53)

where,

A =







(w−
1,1 + w−

1,2x
− − w+

1,2) (w+
1,1 + w−

1,2x
+)

(w−
2,1 + w+

2,3x
−) (w+

2,1 + w+
2,3x

+ − w−
2,3)






, (4.54)

B =







(w+
1,1 + w−

1,1 + w−
1,2(1 + x+ + x−)) −(w+

1,2 + w−
1,2) 0

(w+
2,1 + w−

2,1 + w+
2,3(1 + x+ + x−)) 0 −(w+

2,3 + w−
2,3)






. (4.55)

By defining q = [q1, q2]
T and considering the left hand sides of Eqs. 4.45 and 4.46, we have

q = CΦ′ +DΦ, (4.56)

where,

C =







w−
1,1 w+

1,1

w−
2,1 w+

2,1






, (4.57)

D =







−(w+
1,1 + w−

1,1) 0 0

−(w+
2,1 + w−

2,1) 0 0






. (4.58)

By defining tij as the transmissibility coefficient of the potential at the grid point in cell j

for computing the flowrate through the sub-interface i, the flowrate through sub-interfaces
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1 and 2 are calculated as follows:

qi = ti1Φ1 + ti2Φ2 + ti3Φ3, i = 1, 2, (4.59)

or in matrix form,

q = TΦ, (4.60)

where,

T =







t11 t12 t13

t21 t22 t23






. (4.61)

We assume the matrix A in Eq. 4.53 is nonsingular. Then,

Φ′ = A−1BΦ. (4.62)

Substituting Φ′ from Eq. 4.62 into Eq. 4.56 yields

q = CA−1BΦ+DΦ, (4.63)

and it follows that

T = CA−1B +D. (4.64)
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CHAPTER 5

MONOTONICITY FOR MPFA METHODS

Generally, discretisized systems of finite volume equations based on multipoint flux

approximation techniques are not guaranteed to be monotone. As discussed in the intro-

duction, monotone schemes tend to prevent nonphysical oscillations in the discrete solution

even though there is no theoretical guarantee than a monotone MPFA methods will not

generate spurious oscillations in the pressure solution. In multi-phase flow simulations, such

oscillations can result in wrong flux directions and convergence issues in non-linear solvers.

Moreover, for a grid cell where the pressure is close to the bubble-point, this problem may

lead to a diverging solution due to undesirable phase transitions. E. Keilegavlen et al. [27]

claimed that it is only possible to investigate the monotonicity properties theoretically for

single-phase flow, but the single-phase flow results can be used in two-phase flow simulations.

MPFA methods are derived under the assumption that the potential gradient in

each grid is constant, and when this assumption is valid, the MPFA solution is exact and

montonicity is not relevant. However, in regions where the potential gradient is not constant,

MPFA introduces an error that leads to nonphysical oscillatory solutions, and for this reason,

it is important to investigate monotonicity.

J.M. Nordbotten et al. [31] developed sufficient monotonicity criteria based on a dis-

crete maximum principle for general quadrilateral grids. They investigated the monotonicity

regions of a case with uniform parallelogram grid cells and a homogeneous medium for the

class of nine-point schemes as a function of permeability and geometrical properties. E. Kei-

legavlen et al. [28] proved that the sufficient conditions developed in [31] are also necessary.

However, the grid system presented in this work is not covered by the grid structures consid-

ered previously by [31, 28]. Specifically, the general approach to establish monotonicity given
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by [31], must be customized to account for the grid ordering and to account for the fact that

the refined polygonal grid is imbedded in a Cartesian grid so, unlike the cases considered

by [31], the aspect ratio ∆x/∆y and the number of rings directly affect the monotonicity

conditions, i.e., previous results on monotonicity are not directly applicable for the discrete

MPFA used in our work.

5.1 Maximum Principle

Two-dimensional incompressible flow of a single-phase liquid through a porous medium

is described by the following partial differential equation:

−∇ · 1
µ
(K∇p(x, y)) = q(x, y) for (x, y) in Ω ⊆ R2, (5.1)

p(x, y) = γ(x, y) in ∂Ω, (5.2)

where ∂Ω denotes the boundary of the domain Ω, K = K(x, y) is a symmetric permeability

tensor, q acts as a source term and the viscosity µ is assumed to be constant. Without loss of

generality, we assume µ = 1 for the purposes of our discussion of the maximum (minimum)

principle. Also note that Eq. 5.1 neglects the effects of gravity. Theorem 1 which follows is

given in [25].

Theorem 1. Let u(x) be in C2(D) where the domain D is a open subset of Rn and assume

that the following differential inequality is satisfied:

Lu(x) ≡ −
∑

ij

aij
∂2u

∂xi∂xj

−
∑

j

bj
∂u

∂xj

≥ 0 (≤ 0) (5.3)

for all x in D, where the symmetric matrix aij = aij(x) is locally uniformly positive definite

in D ( that is, for any compact set D′ ⊂ D,
∑

i,j aij(x)ηiηj is positive and uniformly bounded

away 0 for all x ∈ D′ and all η ∈ Rn with ‖η‖2 = 1 ) and the coefficients aij and bj = bj(x)

are locally bounded (bounded around every point). If u takes on a minimum (maximum)
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value M at some x0, in D, then u(x) = M for all x in D.

Let ∂D denote the boundary of D and assume u is continuous on D ∪ ∂D and that the

assumptions of Theorem 1 apply with Lu ≥ 0. Then the theorem states that u cannot take

on a minimum M in the interior of D, unless u is equal to M throughout D, and in this case,

u takes on its minimum on ∂D. On the other hand, if u does not take on a minimum at

some point in D, then the continuity of u implies that u takes on its global minimum (over

D ∪ ∂D) on ∂D. Similarly if the left hand side of Eq. 5.3 is nonpositive, then u takes on its

maximum M on ∂D and if u(x0) = M at some x0 in the interior of D, then u = M at all

points in D. In the preceding discussion, the word interior is actually superfluous because

D is a domain means D is an open connected set.

In the Cartesian coordinate system, the term K∇p in Eq. 5.1 is a vector whose

components are
∑

j

kij

∂p(x)

∂xj

, (5.4)

where the elements of the permeability tensor K are denoted by kij. The left-hand side of

Eq. 5.1 (with µ = 1) in a Cartesian coordinate system is given by

−
∑

ij

kij

∂2p

∂xj∂xi

−
∑

j

(

∑

i

∂kij

∂xi

)

∂p

∂xj

. (5.5)

It follows that Eq. 5.1 can be written as

−
∑

ij

kij

∂2p

∂xi∂xj

−
∑

j

(

∑

i

∂kij

∂xi

)

∂p

∂xj

= q. (5.6)

Suppose that the source term, q(x), is a non-negative continuous function on the domain

Ω and the permeability tensor, K is symmetric and continuously differentiable in Ω. Then,

Theorem 1 implies that the solution p(x) of Eq. 5.6 has no strict local minimum at any x in

Ω. This means that there is no point x0 ∈ Ω and domain ω ⊂ Ω such that p(x0) < p(x) for

all other x ∈ ω, i.e., p(x) has no strict local minima in Ω.
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Suppose on an arbitrary domain ω ⊂ Ω, we impose zero Dirichlet boundary conditions

(p = 0 on the boundary of ω) for Eq. 5.1 or equivalently Eq. 5.6. If q is non-negative on ω,

then Theorem 1 implies that the solution p(x) of Eq. 5.1 has no minimum in ω and since

p = 0 on the boundary, the solution p is non-negative in ω. It follows that

q ≥ 0 ⇒ p ≥ 0 in ω. (5.7)

In reservoir simulation, the reservoir is discretized into control volumes and a unique

pressure value is assigned to each grid point. For simplicity, let Ω ⊆ R2. A discrete approxi-

mation to Eq. 5.1 defined on a grid Ωh ⊆ Ω̄ = Ω ∪ ∂Ω, given zero pressure on the boundary

of grid points (Ωh ∩ ∂Ω), results in a system of linear equations which can be represented by

Ap = q, (5.8)

where A is the matrix of coefficients, and p and q respectively, represent the column vectors

of the pressure and the source/sink terms of the grid cells. Even though Theorem 1 holds for

the elliptic equation (Eq. 5.1), there is no guarantee that a discrete version of the maximum

(minimum) principle holds for Eq 5.8. However, as discussed below, there exists an analogous

discrete maximum (minimum) principle for Eq. 5.8.

Definition 1. A real n×n matrix B is said to be monotone if for all x ∈ Rn, Bx ≥ 0

implies x ≥ 0. It is easy to prove the following theorem.

Theorem 2. Let B be a nonsingular n × n matrix then B is monotone if and only if

B−1 ≥ O, where O denotes the n× n null matrix.

Theorem 2 implies that if A in Eq. 5.8 is monotone, then

q ≥ 0 ⇒ p ≥ 0. (5.9)

Following J.M. Nordbotten et al. [31], a discrete version of the maximum principle can

be stated as follows: Let Ap = q be a discrete approximation to Eq. 5.1 on any subgrid
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bounded by a closed Jordan curve with zero pressure specified on the boundary. Then the

matrix A must satisfy the monotonicity property (A−1 ≥ 0). In [31], this “discrete maximum

principle” is referred to as property MD.

Definition 2. A discretization method which results in a discrete system of equations

which satisfies property MD is said to be monotone.

Although, the discrete maximum principle (property MD) is a natural discrete ana-

logue of Theorem 1, there is no proof that property MD guarantees no nonphysical oscilla-

tions in the pressure solutions. However, previous studies gave shown that monotone schemes

tend to prevent spurious oscillations [17, 27].

To satisfy property MD, for any subset of grid points, the matrix A in Eq. 5.8 should

be constructed in such a way that p ≥ 0 whenever q ≥ 0, or, equivalently, such that p ≥ 0

whenever Ap ≥ 0. The definition of a monotone matrix implies that monotonicity of the

matrix A for all subgrids with homogenous Dirichlet conditions is a sufficient criterion to

ensure that the discrete version of maximum principle is preserved in the dicretization.

5.2 Monotonicity Criteria

To study the monotonicity of the MPFA method on the grid structure of Fig. 3.2, we

first derive sufficient criteria for discrete monotonicity and then investigate which parameters

affect the transmissibility coefficients. Here, we consider a set of irregular hexadecagons

where the area between each two adjacent hexadecagons is divided into 16 trapezoidal grids.

As in the numerical well testing simulator, permeability heterogeneities are confined to the

coarsest Cartesian grid. Inparticular, kx and ky are uniform on the refined grid of each

gridblcok penetrated by a well where hexadecagonal grid refinement is used, see Fig. 3.2

which is represented here as Fig. 5.1.

Fig. 5.2a shows the local numbering of neighboring cells and four interaction regions

for the cell whose center is at the point labeled 1 in the first and the third quadrants of

each ring. The neighboring cells do not have to be in the same quadrant as the cell 1. A

hexadecagonal structure has two lines of symmetry. In order to keep the local numbering
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Figure 5.1: Hexadecagonal grid refinement around the well.

consistent with these two lines of symmetry, we use a different local numbering in the second

and the fourth quadrants, as shown in Fig. 5.2b. Following these local numberings, for any

gridblock in the second, third or fourth quadrant, there is a gridblock in the first quadrant

with the exact same transmissibility coefficients. An interaction region between four neigh-

boring grid cells can be constructed by selecting the center of each cell and a point at each

interface.
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Figure 5.2: Local numbering and the interaction regions (a) for grid cells located in the first
and the third quadrants and (b) for grid cells located in the second and the fourth quadrants.

Considering cell 1 in Fig. 5.3, tj is defined as the transmissibility coefficient of the
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potential of gridblock j. The total flux out of cell 1 is calculated as
∑9

j=1 tjpj, where pj is

the potential of the neighboring cell j of the grid cell 1, and this expression for the total flux

includes the flow out of cell 1 through all four of its interfaces. As there is no flow out of

cell 1 if the potential of all the nine cells are equal, it follows that the summation of the

transmissibility coefficients is equal to zero, i.e.,
∑9

j=1 tj = 0. Thus, the flux out of cell 1

through all four boundaries can be written as a function of the potential differences between

cell 1 and each neighboring cell, i.e., as
∑9

j=2 tj(pj − p1).

Fig. 5.3 shows the numbering of the 8 sub-interfaces of cell 1 and the direction of

the flow through each sub-interface when the flowrate is positive. We define t
(c)
kj as the

transmissibility coefficient of the potential of gridblock j associated with sub-interface k

calculated from interaction region c, where k refers to the indices of sub-interfaces depicted

by nk in Fig. 5.3. For example, we use interaction region 1 in Fig. 5.3 to compute the flux
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Figure 5.3: Flow directions through 8 sub-interfaces of cell 1 located in the first and the
third quadrants.
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out of cell 1 through the sub-interfaces depicted by normal vectors n1 and n2. t
(1)
13 and t

(1)
23

are the coefficients of the potential of the cell 3 in interaction region 1. Since in Fig. 5.3,

the flux between cells 1 and 2 is into cell 1 and the flux between cells 1 and 4 is out of

cell 1, we set the transmissibility coefficient of the potential of cell 3, t3, equal to t
(1)
23 − t

(1)
13 ,

which represents the effect of the potential of cell 3 on the flow rate out of cell 1 through

sub-interfaces 1 and 2.

The transmissibility coefficients for the cell interfaces are calculated by combining the

coefficients obtained from the four interaction regions around the cell as follows:

t1 = −t
(1)
21 + t

(1)
11 − t

(2)
81 + t

(2)
71 + t

(3)
51 − t

(3)
61 − t

(4)
41 + t

(4)
31 (5.10)

t2 = −t
(1)
22 + t

(1)
12 − t

(4)
42 + t

(4)
32 (5.11)

t3 = −t
(1)
23 + t

(1)
13 (5.12)

t4 = −t
(1)
24 + t

(1)
14 − t

(2)
84 + t

(2)
74 (5.13)

t5 = −t
(2)
85 + t

(2)
75 (5.14)

t6 = −t
(2)
86 + t

(2)
76 + t

(3)
56 − t

(3)
66 (5.15)

t7 = +t
(3)
57 − t

(3)
67 (5.16)

t8 = +t
(3)
58 − t

(3)
68 − t

(4)
48 + t

(4)
38 (5.17)

t9 = −t
(4)
49 + t

(4)
39 . (5.18)

We add superscript/subscript i as the global index of grid cells shown in Fig. 5.4 to

write the general form of the mass conservation equation for grid cell i as follows:

9
∑

j=1

tijp
i
j = qi for i = 1, 2, . . . , n, (5.19)

where tij denotes the transmissibility of the potential of gridblock j used to approximate the
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total flux out of cell i, qi is the source term of cell i, pij is the potential of the neighboring cell

j of the grid cell i and n is the number of trapezoidal cells in a hexadecagonal grid refinement.

Here, the left hand side of the equation represents the summation of all the fluxes out of the

cell i. We introduce the vector quantities p = (p1, p2, ..., pn)
T and q = (q1, q2, ..., qn)

T where

pi is the potential of cell i. Then, Eq. 5.19 can be written in matrix form as Ap = q, where

A is the n× n matrix of coefficients.
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Figure 5.4: A set of irregular hexadecagonal grids for determining transmissibilities for flow
into and out of cells i, i+ 1, .., i+ 15.

We specify l as the ring number with the first ring around the well as ring l = 1.

Based on the global ordering of the grid cells shown in Fig. 5.4, the first cell (i = 16l − 15)

and the last cell (i = 16l) in ring l are located in the fourth quadrant and we use the local

numbering of grid cells shown in Fig. 5.2b for these cells. Considering the local ordering in

Fig. 5.2 and the global ordering of the grid cells shown in Fig. 5.5, the ith row of the matrix

A can be written as shown in Table. 5.1. Row i represents the transmissibility coefficients

used to compute the total flux out of cell i.

As we defined earlier, tij is the transmissibility of the potential of neighboring cell j

used to approximate the total flux out of cell i. In Table 5.1, the column index i 6= 16l, 16l−15
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Table 5.1: The nonzero entries of the ith row of the matrix A.

Column index i− 31 i− 17 i− 16 i− 15 i− 1 i i+ 1 i+ 15 i+ 16 i+ 17 i+ 31
If i 6= 16l, 16l − 15 ti3 ti4 ti5 ti2 ti1 ti6 ti9 ti8 ti7

ti5 ti4 ti3 ti6 ti1 ti2 ti7 ti8 ti9
If i = 16l ti3 ti5 ti4 ti2 ti6 ti1 ti9 ti7 ti8
If i = 16l − 15 ti4 ti3 ti5 ti1 ti2 ti6 ti8 ti9 ti7

has two rows. The first row represents the transmissibility coefficients of a cell in the first and

the third quadrants and the second row represents the transmissibility coefficients of a cell

in the second and the fourth quadrants. Cell i in Fig. 5.5a can be located in any quadrant.

Note that the elements in the first and the second rows of the column index i 6= 16l, 16l− 15

are obtained respectively, by comparing the global numbering in Fig. 5.5a with the local

numberings shown in Fig. 5.2a and Fig. 5.2b. The elements in the column index i = 16l are

obtained by comparing the global numbering in Fig. 5.5b with the local numbering shown

in Fig. 5.2b and the elements in the column index i = 16l − 15 are obtained by comparing

Fig. 5.5c with Fig. 5.2b.

 𝑖 − 1 𝑖 − 17 

𝑖 + 15 

(a) i 6= 16l, 16l − 15

 𝑖 − 1 𝑖 − 17 

𝑖 + 15 

(b) i = 16l

 𝑖 + 15 𝑖 − 1 

𝑖 + 31 

(c) i = 16l − 15

Figure 5.5: Global numbering of a gridblock and its 8 neighboring cells for three different
locations in the ring.

To derive conditions that ensure A, with the nonzero entries shown in Table 5.1, is

monotone, we apply the following theorem given by J.M. Nordbotten et al. [31]:

Theorem 1. Assume the real n×nmatrix A has a splitting A = B−C, such that B−1 ≥ 0,

CB−1 is irreducible, CB−1 ≥ 0 and for at least one j,
∑

i aij ≥ 0. Then the matrix A is

monotone, i.e., A−1 exists and A−1 ≥ 0.
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J.M. Nordbotten et al. [31] showed that the sum of the jth column of the matrix A

(from Ap = q) is zero. Here j can be the index of any inner grid cell, i.e. a cell that does

not share any interface with the reservoir boundary. To prove this, let p be a vector such

that the jth component is equal to 1 and all other components are equal to zero (here, each

component of the vector p represents the potential at the center of a grid cell). This means,

all cells except the inner cell j have zero potential (this includes all boundary cells). Then

we solve Ap = q for q which yields

qi = aij. (5.20)

Since j is the index of an inner grid cell, the potential of the boundary cells are zero and

because we use the zero Dirichlet boundary conditions, the potential on the boundary is also

zero. Thus, there is no flow across the boundary. Since, in the monotonicity analysis, the

flow is assumed to be incompressible, thus the sum of the source terms is zero. Therefore,

∑

i

aij =
∑

i

qi = 0, (5.21)

so the last monotonicity condition of Theorem 1 is satisfied.

We specify matrix B as the tridiagonal part of the matrix A. Referring back to the

structure of the matrix A given in Table 5.1, the ith row of B can be written as shown in

Table 5.2. The following result is from G. D. Poole[37].

Table 5.2: The nonzero entries of the ith row of the matrix B.

Column index i− 1 i i+ 1
If i 6= 16l, 16l − 15 ti2 ti1 ti6

ti6 ti1 ti2
If i = 16l ti6 ti1 ti9
If i = 16l − 15 ti5 ti1 ti2

Definition 3. The square matrix A = (aij) is called an M-matrix if aij ≤ 0 whenever

i 6= j, aii > 0 for each i and any one of the following conditions:

(a) A = αI − B for some nonnegative matrix B and some α > ρ, where ρ is the spectral

radius of B.
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(b) The real part of each eigenvalue of A is positive.

(c) All principal minors of A are positive.

(d) A−1 exists and A−1 ≥ 0.

(e) There exists a vector x > 0 such that Ax > 0.

Thus if we can show that a given matrix A satisfies aij ≤ 0 whenever i 6= j, aii > 0

for each i and condition (e) of Definition 3, then A is an M-matrix and thus, A must also

satisfy condition (d), i.e., A−1 exists and A−1 ≥ 0 (A is monotone). If we let x be the m-

dimensional column vector with all entries equal to unity, then Ax = y where yi =
∑m

j=1 aij

for i = 1, 2, . . .m. Hence, Ax > 0 if and only if

m
∑

j=1

aij > 0 for i = 1, 2, . . .m. (5.22)

If Eq, 5.22 holds, then it follows from Definition 3 that A is an M-matrix if aij ≤ 0 whenever

i 6= j, aii > 0 for each i.

Considering the preceding discussion of Poole’s result and referring back to the com-

ponents of the matrix B shown in Table 5.2, it follows that the conditions given in Table 5.3

are sufficient to guarantee that B is an M-matrix, so that, B−1 ≥ 0 are

Table 5.3: Sufficient conditions for B−1 ≥ 0.

If i 6= 16l, 16l − 15 If i = 16l If i = 16l − 15
ti6 + ti1 + ti2 > 0 ti9 + ti1 + ti6 > 0 ti2 + ti1 + ti5 > 0

ti1 > 0 ti1 > 0 ti1 > 0
ti6 ≤ 0 ti9 ≤ 0 ti2 ≤ 0
ti2 ≤ 0 ti6 ≤ 0 ti5 ≤ 0

Note that even though the column index i 6= 16l, 16l − 15 in Table 5.2 has two rows,

there is only one set of conditions in Table 5.3 for both rows.

As the objective is to apply Theorem 1 to show that A is monotone, the matrix C is

defined as C = B − A. Based on the structure of matrices A and B in Tables 5.1 and 5.2,

the ith row of C is given by
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Table 5.4: The nonzero entries of the ith row of the matrix C.

Column index i− 31 i− 17 i− 16 i− 15 i+ 15 i+ 16 i+ 17 i+ 31
If i 6= 16l, 16l − 15 −ti3 −ti4 −ti5 −ti9 −ti8 −ti7

−ti5 −ti4 −ti3 −ti7 −ti8 −ti9
If i = 16l −ti3 −ti5 −ti4 −ti2 −ti7 −ti8
If i = 16l − 15 −ti4 −ti3 −ti6 −ti8 −ti9 −ti7

We shall now establish conditions that are sufficient to ensure that CB−1 ≥ 0. In

this part, we only consider the first row of column index i 6= 16l, 16l − 15 and at the end,

to consider the second row, we can simply interchange the subscripts 3 with 5 and 7 with

9 for grid cells located in the second and the fourth quadrants (cells with local numbering

shown in Fig. 5.2b). We define the matrix D = [dij] as the inverse of the matrix B. Then

each entry in the ith row and jth column of E = CB−1 = CD is given below.

If i 6= 16l, 16l − 15:

eij = −ti3di−17,j − ti4di−16,j − ti5di−15,j − ti9di+15,j − ti8di+16,j − ti7di+17,j, (5.23)

If i = 16l:

eij = −ti3di−31,j − ti5di−17,j − ti4di−16,j − ti2di−15,j − ti7di+15,j − ti8di+16,j, (5.24)

If i = 16l − 15:

eij = −ti4di−16,j − ti3di−15,j − ti6di+15,j − ti8di+16,j − ti9di+17,j − ti7di+31,j. (5.25)

We assume that the conditions of Table 5.3 hold, so B−1 ≥ 0 and hence dij ≥ 0.

Then the following conditions are sufficient to ensure eij ≥ 0 and therefore, CB−1 ≥ 0.

tik ≤ 0 for























k=3,4,5,7,8,9 if i 6= 16l, 16l − 15;

k=3,4,5,2,8,7 if i = 16;

k=6,4,3,7,8,9 if i = 16l − 15.

(5.26)
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J.M. Nordbotten et al. [31] used the equation BD = I to obtain less restrictive

conditions on the transmissibility coefficients and next, we consider this approach for the

problem of interest here. If i 6= 16l, 16l − 15, BD = I implies

ti2di−1,j + ti1di,j + ti6di+1,j = δi,j, for all j. (5.27)

Rearranging Eq. 5.27 gives,

di,j =
δi,j
ti1

− ti2
ti1
di−1,j −

ti6
ti1
di+1,j, for all i 6= 16l, 16l − 15. (5.28)

Similarly, for i = 16l,

di,j =
δi,j
ti1

− ti6
ti1
di−1,j −

ti9
ti1
di+1,j, for all j, (5.29)

and for i = 16l − 15,

di,j =
δi,j
ti1

− ti5
ti1
di−1,j −

ti2
ti1
di+1,j, for all j. (5.30)

Next, we write Eqs. 5.28, 5.29 and 5.30 for di−16,j and di+16,j, and substitute the results into

Eqs. 5.23, 5.24 and 5.25 to obtain the following results.

if i 6= 16l, 16l − 15:

eij = −ti4
δi−16,j

ti−16
1

+

(

ti4
ti−16
2

ti−16
1

− ti3

)

di−17,j +

(

ti4
ti−16
6

ti−16
1

− ti5

)

di−15,j

−ti8
δi+16,j

ti+16
1

+

(

ti8
ti+16
2

ti+16
1

− ti9

)

di+15,j +

(

ti8
ti+16
6

ti+16
1

− ti7

)

di+17,j ≥ 0;

(5.31)

if i = 16l:

eij = −ti4
δi−16,j

ti−16
1

+

(

ti4
ti−16
6

ti−16
1

)

di−17,j +

(

ti4
ti−16
9

ti−16
1

− ti3

)

di−15,j

−ti8
δi+16,j

ti+16
1

+

(

ti8
ti+16
6

ti+16
1

− ti6

)

di+15,j +

(

ti8
ti+16
9

ti+16
1

− ti9

)

di+17,j − ti7di+31,j ≥ 0;

(5.32)
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and if i = 16l − 15:

eij = −ti3di−31,j − ti4
δi−16,j

ti−16
1

+

(

ti4
ti−16
5

ti−16
1

− ti5

)

di−17,j +

(

ti4
ti−16
2

ti−16
1

− ti2

)

di−15,j

−ti8
δi+16,j

ti+16
1

+

(

ti8
ti+16
5

ti+16
1

− ti7

)

di+15,j + ti8
ti+16
2

ti+16
1

di+17,j ≥ 0.

(5.33)

The conditions which ensure that each individual term on the right hand side of

Eqs. 5.31- 5.33 is non-negative always give less restrictive conditions than Eq. 5.26 and

are sufficient to ensure CB−1 ≥ 0. Recalling B−1 = [dij] ≥ 0, these conditions are given

in Table 5.5. As we mentioned earlier, to consider the second row of column index i 6=

Table 5.5: Sufficient conditions for CB−1 ≥ 0.

If i 6= 16l, 16l − 15 If i = 16l If i = 16l − 15
ti4 ≤ 0 ti4 ≤ 0 ti4 ≤ 0
ti8 ≤ 0 ti8 ≤ 0 ti8 ≤ 0

ti4t
i−16
2 − ti3t

i−16
1 ≥ 0 ti4t

i−16
5 − ti5t

i−16
1 ≥ 0 ti−16

6 ≤ 0

ti4t
i−16
6 − ti5t

i−16
1 ≥ 0 ti4t

i−16
2 − ti2t

i−16
1 ≥ 0 ti4t

i−16
9 − ti3t

i−16
1 ≥ 0

ti8t
i+16
2 − ti9t

i+16
1 ≥ 0 ti8t

i+16
5 − ti7t

i+16
1 ≥ 0 ti8t

i+16
6 − ti6t

i+16
1 ≥ 0

ti8t
i+16
6 − ti7t

i+16
1 ≥ 0 ti+16

9 ≤ 0 ti8t
i+16
2 − ti9t

i+16
1 ≥ 0

ti3 ≤ 0 ti7 ≤ 0

16l, 16l − 15 in Table 5.4, we interchange the subscripts 3 with 5 and 7 with 9 of the

conditions in the first column of Table 5.5. However interchanging these subscripts results

in the same set of conditions given in Table 5.5.

If CB−1 is a positive matrix, i.e., eij > 0 for all i, j, then it is irreducible. Referring

to Eqs. 5.31, 5.32 and 5.33, it follows that eij > 0 for all i, j if the conditions shown in

Tables 5.3 and 5.5 are changed to strict inequalities. With this change to strict inequalities

in Tables. 5.3 and 5.5, Theorem 1 can be applied to show that A is monotone. Specifically,

the criteria in Table 5.6 guarantee that the matrix A is monotone, i.e., A−1 exists and

A−1 ≥ 0.

Since we did not consider the specific type of MPFA method when deriving the criteria

for the monotonicity shown in Table 5.6, these conditions are also valid for other MPFA

methods that are defined on the hexadecagonal grid and use a nine-point computational

stencil.
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Table 5.6: Conditions for A−1 ≥ 0.

If i 6= 16l, 16l − 15 If i = 16l If i = 16l − 15
ti6 + ti1 + ti2 > 0 ti9 + ti1 + ti6 > 0 ti3 + ti1 + ti5 > 0

ti1 > 0 ti1 > 0 ti1 > 0
ti6 < 0 ti9 < 0 ti2 < 0
ti2 < 0 ti6 < 0 ti5 < 0
ti4 < 0 ti4 < 0 ti4 < 0
ti8 < 0 ti8 < 0 ti8 < 0

ti4t
i−16
2 − ti3t

i−16
1 > 0 ti4t

i−16
5 − ti5t

i−16
1 > 0 ti−16

6 < 0

ti4t
i−16
6 − ti5t

i−16
1 > 0 ti4t

i−16
2 − ti2t

i−16
1 > 0 ti4t

i−16
9 − ti3t

i−16
1 > 0

ti8t
i+16
2 − ti9t

i+16
1 > 0 ti8t

i+16
5 − ti7t

i+16
1 > 0 ti8t

i+16
6 − ti6t

i+16
1 > 0

ti8t
i+16
6 − ti7t

i+16
1 > 0 ti+16

9 < 0 ti8t
i+16
2 − ti9t

i+16
1 > 0

ti3 < 0 ti7 < 0

To find useful monotonicity conditions for different MPFA methods, we need to de-

termine which parameters affect the transmissibility coefficients and specific expressions for

the transmissibilities. We consider a grid structure where each grid cell is refined into a set

of irregular hexadecagons, as this is the grid refinement scheme we advocate for the well

testing reservoir simulator, see Fig. 5.4. To keep the size of all refined rectangular neighbor-

ing cells equal, we modify the structure of the hexadecagons in such a way that each side

of the host cell is divided into four equal parts. Then, the 16 trapezoidal grids between two

hexadecagons are not of equal size, as shown in Figs. 5.4 and 3.2. As is typical in such an

analysis, we consider the case where the medium is homogeneous but anisotropic.

In this part, we solve the flow equations using the basic MPFA O-method in two

dimensions following I. Aavatsmark et al. [2, 5] and the earlier discussion in Section 4.2.

To specify an interaction region between each four grid cells with one common point, each

cell center is connected to the midpoints of interfaces (I. Aavatsmark et al. [4]). To account

for the logarithmic behavior of pressure with distance from the well, when flow is primarily

radial in the near wellbore region, the size of the refined grid increases geometrically as we

move away from the center of the cell designated as the well location.

Fig. 5.6 shows the interaction region between four grids with grid points P1, P2,

P3 and P4. Here vectors v+l and v−l , respectively, are defined as normal to (P ′
l − Pl) and

(P ′
m(l) − Pl), chosen so that ‖v+l ‖ = ‖P ′

l − Pl‖ and ‖v−l ‖ = ‖P ′
m(l) − Pl‖. We emphasize that

v+l and v−l are always outward normal to the part of the grid cell under consideration, ni
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is the outward-pointing unit normal vector to interface i and m(l) is the backward integer

function defined as

m(i) =











i− 1 if i > 1;

4 if i = 1.
(5.34)

Following the earlier discussion in Section 4.2, to compute the transmissibility coefficients, we

calculate the following scalar coefficients which are functions of geometry and permeability

of the grid,

w±
il =

nT
i Klv

±
l Ai

2Fl

. (5.35)

As throughout, the Kl is the absolute permeability tensor of grid cell l, Ai is the area of

interface i and Fl is the area of triangle PlP
′
lP

′
m(l). For example, the coefficients associated

with grid cell 1 and interface 4 in Fig. 5.6 are defined by

w−
41 =

nT
4K1v

−
1 A4

2F1

and w+
41 =

nT
4K1v

+
1 A4

2F1

, (5.36)

where A4 is the area of the subinterface between grid cells 1 and 4 inside the interaction

region. The w±
il coefficients are used to calculate the transmissibility coefficients in each

interaction region. In this part, we assume that K =







kx 0

0 ky






is homogeneous anisotropic

diagonal permeability tensor in the base Cartesian gridblock containing the well.

If we define the transmissibility matrix as T = (tij) where tij is the transmissibility

coefficient of the potential of the gridblock j associated with interface i, following Section

4.2, the flux and potential continuity conditions at the interfaces of the grid cells in the

interaction region yield,

T = B(B −D)−1(C − A) + A = D(B −D)−1(C − A) + C, (5.37)

where following Eqs. 4.31 – 4.34, matrices A,B,C, and D are expressed in the following way.
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Figure 5.6: Interaction region of four trapezoidal grids.

A =



















−(w+
11 + w−

11) 0 0 0

0 −(w+
22 + w−

22) 0 0

0 0 −(w+
33 + w−

33) 0

0 0 0 −(w+
44 + w−

44)



















, (5.38)

B =



















w−
11 0 0 w+

11

w+
22 w−

22 0 0

0 w+
33 w−

33 0

0 0 w+
44 w−

44



















, (5.39)

C =



















0 −(w+
12 + w−

12) 0 0

0 0 −(w+
23 + w−

23) 0

0 0 0 −(w+
34 + w−

34)

−(w+
41 + w−

41) 0 0 0



















(5.40)
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and

D =



















w+
12 w−

12 0 0

0 w+
23 w−

23 0

0 0 w+
34 w−

34

w−
41 0 0 w+

41



















. (5.41)

First, we calculate the scalar coefficients, w±
il , for the interaction region centered

at (rj+ 1
2
, θ) where the angle θ is measured counter-clockwise from the positive y-axis, as

shown in Fig. 5.6. Here rj+ 1
2
is the radius of the circle that passes through the vertices of

ith hexadecagon. Since the reservoir is anisotropic, the transmissibility coefficients are a

function of θ.

The unit normal vectors, ni, are obtained as a function of θ, ∆θ1 and ∆θ2, shown in

Fig. 5.6. Specifically,

n1 =







sin(θ − ∆θ1
2
)

cos(θ − ∆θ1
2
)






, n2 =







cos θ

− sin θ






, n3 =







− sin(θ + ∆θ2
2
)

− cos(θ + ∆θ2
2
)






and n4 =







− cos θ

sin θ






.

(5.42)

For example, n1 is a unit normal to line segment (C ′ − C). Since line segment (P2 − O) is

perpendicular to (C ′ − C), then n1 is parallel to (P2 − O). P ′
1 is in the middle of (C ′ − C),

then the angle between the positive y-axis and (P2−O) (and hence n1) is
(

θ − (∆θ
2
)
)

. Using

the angle between n1 and the positive y-axis, and ‖n1‖ = 1, the x component of unit normal

vector n1 is equal to sin(θ − ∆θ1
2
) and y component of n1 is equal to cos(θ − ∆θ1

2
).

Here, we specify the magnitudes and the directions of vectors v±l individually.

v+1
‖v+1 ‖

=
v−2

‖v−2 ‖
=







− cos(θ − ∆θ1
2
)

sin(θ − ∆θ1
2
)






,

v+3
‖v+3 ‖

=
v−4
‖v−4 ‖

=







cos(θ + ∆θ2
2
)

− sin(θ + ∆θ2
2
)






. (5.43)

For example, both vectors v+1 and v−2 are perpendicular to (P2 −O) and hence n1. We know

that vectors [a, b]T and [−b, a]T are perpendicular with the same magnitude. Then, if (l)x
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and (l)y respectively, represent the x and y components of vector l, the x and y components

of v+1 and v−2 can be obtained based on n1 components as follows: (v+1 )y = (v−2 )y = (n1)x,

and (v+1 )x = (v−2 )x = −(n1)y.

A trapezoid has a pair of parallel sides. Then, vectors v+2 and v−1 are both parallel to

n1, and vectors v+4 and v−3 are parallel to n3. Specifically,

v+2
‖v+2 ‖

= − v−1
‖v−1 ‖

= n1,
v+4
‖v+4 ‖

= − v−3
‖v−3 ‖

= n3. (5.44)

The vector magnitudes, ‖v±l ‖, are a function of rj− 1
2
, α, θ, ∆θ1 and ∆θ2. Throughout, the

geometric ratio is defined as

α =
ri+ 1

2

ri− 1
2

, i = 1, 2, ..,m, (5.45)

where, r1/2 = rw and m is the number of rings. In this part, we compute the magnitudes of

v±l for l = 1. The magnitudes of other vectors can be computed in a similar way. Vector v−l

is defined as normal to (P ′
m(l) − Pl) with ‖v−l ‖ = ‖P ′

m(l) − Pl‖. Thus,

‖v−1 ‖ = ‖P ′
4 − P1‖. (5.46)

Considering the right-angle triangle OP1P
′
4 in Fig. 5.7,

‖P ′
4 − P1‖ = ‖P ′

4 −O‖ sin
(

∆θ1
2

)

. (5.47)

As we mentioned before, to specify an interaction region between each four grid cells with

one common point, each cell center is connected to the midpoints of interfaces. Using this

observation and Eq. 5.45, it follows that

‖P ′
4 −O‖ =

ri+ 1
2
+ ri− 1

2

2
=

ri− 1
2
(α + 1)

2
. (5.48)
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Using Eqs. 5.47 and 5.48 in Eq. 5.46, it follows that

‖v−1 ‖ = ‖P ′
4 − P1‖ = ri− 1

2

α + 1

2
sin

(

∆θ1
2

)

. (5.49)

The vector v+1 is defined as normal to (P ′
1 − P1) with

‖v+1 ‖ = ‖P ′
1 − P1‖. (5.50)

On the other hand,

‖P ′
1 − P1‖ = ‖P ′

1 −O‖ − ‖P1 −O‖. (5.51)

Considering the right-angle triangles OP1P
′
4 and OP ′

1C in Fig. 5.7, we have

‖P ′
1 −O‖ = ri+ 1

2
cos

(

∆θ1
2

)

, (5.52)

and

‖P1 −O‖ =
ri+ 1

2
+ ri− 1

2

2
cos

(

∆θ1
2

)

. (5.53)

Therefore, using Eqs. 5.51, 5.52 and 5.53 in Eq. 5.50, the magnitude of v+1 is computed as

follows:

‖v+1 ‖ = ‖P ′
1 − P1‖ = ri− 1

2

α− 1

2
cos

(

∆θ1
2

)

. (5.54)

The vector v−2 is defined as normal to (P2 − P ′
1) with

‖v−2 ‖ = ‖P2 − P ′
1‖. (5.55)

Similar to Eq. 5.53 and using Eq. 5.45, the magnitude of (P2 − O) can be computed as

follows:

‖P2 −O‖ =
ri+ 3

2
+ ri+ 1

2

2
cos

(

∆θ1
2

)

= α
ri+ 1

2
+ ri− 1

2

2
cos

(

∆θ1
2

)

. (5.56)
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Then, using Eqs. 5.52 and 5.56 in Eq. 5.55, the magnitude of v−2 is computed as follows:

‖v−2 ‖ = ‖P2 − P ′
1‖ = αri− 1

2

α− 1

2
cos

(

∆θ1
2

)

. (5.57)

Similarly,

‖v−1 ‖ =
1

α
‖v+2 ‖ = rj− 1

2

α + 1

2
sin

(

∆θ1
2

)

, (5.58)

‖v+4 ‖ =
1

α
‖v−3 ‖ = rj− 1

2

α + 1

2
sin

(

∆θ2
2

)

, (5.59)

‖v−4 ‖ =
1

α
‖v+3 ‖ = rj− 1

2

α− 1

2
cos

(

∆θ2
2

)

. (5.60)
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Figure 5.7: Interaction region of four trapezoidal gridblocks.

The area of each interface is a function of rj− 1
2
, α, ∆θ1 and ∆θ2 but not θ. Specifically,

A1 = αrj− 1
2
sin

(

∆θ1
2

)

, A3 = αrj− 1
2
sin

(

∆θ2
2

)

, A4 = αA2 = rj− 1
2

α− 1

2
. (5.61)

Here A1 = ‖P ′
1 −C‖ is the area of the sub-interface between cells 1 and 2 shown in Fig. 5.7.

Referring back to Eq. 4.13 in Section 4, the area of the triangle, Fl, with vertices Pl, P
′
l and
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P ′
m(l), is computed as follows:

Fl =
1

2
‖v−l ‖‖v+l ‖ sin(β), (5.62)

where, β is the angle between v−l and v+l and is equal to π/2 ; see Fig. 5.7. Therefore, Fl is

computed using the magnitudes of vectors v−l and v+l .

F1 =
‖v−1 ‖‖v+1 ‖

2
= r2

j− 1
2

(

α2 − 1

16

)

sin∆θ1, (5.63)

F2 =
‖v−2 ‖‖v+2 ‖

2
= α2r2

j− 1
2

(

α2 − 1

16

)

sin∆θ1, (5.64)

F3 =
‖v−3 ‖‖v+3 ‖

2
= α2r2

j− 1
2

(

α2 − 1

16

)

sin∆θ2. (5.65)

F4
‖v−4 ‖‖v+4 ‖

2
= r2

j− 1
2

(

α2 − 1

16

)

sin∆θ2. (5.66)

Substituting Eqs. 5.42 trough 5.64 into Eq. 5.35 yields

w−
11 =

A1‖v−1 ‖
2F1

nT
1K1

v−1
‖v−1 ‖

=
αrj− 1

2
sin
(

∆θ1
2

)

(

rj− 1
2

α+1
2

sin
(

∆θ1
2

)

)

r2
j− 1

2

α2−1
8

sin (∆θ1)






sin(θ − ∆θ1
2
)

cos(θ − ∆θ1
2
)







T 





kx 0

0 ky













− sin(θ − ∆θ1
2
)

− cos(θ − ∆θ1
2
)






.

(5.67)

After rearranging Eq. 5.67 and using sin2(∆θ1/2)
sin∆θ1

= tan(∆θ1/2)
2

,

w−
11 = −2α tan

(

∆θ1
2

)

α− 1

(

kx sin
2

(

θ − ∆θ1
2

)

+ ky cos
2

(

θ − ∆θ1
2

))

, (5.68)

Similarly,

w−
22 =

(α− 1)

α(α + 1) sin
(

∆θ1
2

)

(

ky sin (θ) sin

(

θ − ∆θ1
2

)

− kx cos (θ) cos

(

θ − ∆θ1
2

))

, (5.69)
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w−
33 = −2 tan

(

∆θ2
2

)

α− 1

(

kx sin
2

(

θ +
∆θ2
2

)

+ ky cos
2

(

θ +
∆θ2
2

))

, (5.70)

w−
44 = − α(α− 1)

(α + 1) sin
(

∆θ2
2

)

(

kx cos (θ) cos

(

θ +
∆θ2
2

)

+ ky sin (θ) sin

(

θ +
∆θ2
2

))

, (5.71)

w+
11 = − α

α + 1
(kx − ky) sin (2θ −∆θ1) , (5.72)

w+
22 =

1

α cos
(

∆θ1
2

)

(

kx cos (θ) sin

(

θ − ∆θ1
2

)

− ky sin (θ) cos

(

θ − ∆θ1
2

))

, (5.73)

w+
33 = − 1

a+ 1
(kx − ky) sin (2θ +∆θ2) , (5.74)

w+
44 =

α

cos
(

∆θ2
2

)

(

kx cos (θ) sin

(

θ +
∆θ2
2

)

− ky sin (θ) cos

(

θ +
∆θ2
2

))

, (5.75)

w−
12 = w+

11/α, (5.76)

w−
23 =

1

α cos
(

∆θ2
2

)

(

kx cos (θ) sin

(

θ +
∆θ2
2

)

− ky sin (θ) cos

(

θ +
∆θ2
2

))

, (5.77)

w−
34 = αw+

33, (5.78)

w−
41 =

α

cos
(

∆θ1
2

)

(

kx cos (θ) sin

(

θ − ∆θ1
2

)

− ky sin (θ) cos

(

θ − ∆θ1
2

))

, (5.79)

w+
12 = −w−

11/α, (5.80)

w+
23 =

(α− 1)

α(α + 1) sin
(

∆θ2
2

)

(

kx cos (θ) cos

(

θ +
∆θ2
2

)

+ ky sin (θ) sin

(

θ +
∆θ2
2

))

, (5.81)

w+
34 = −αw−

33, (5.82)

w+
41 =

(α− 1)α

(α + 1) sin
(

∆θ1
2

)

(

kx cos (θ) cos

(

θ − ∆θ1
2

)

+ ky sin (θ) sin

(

θ − ∆θ1
2

))

. (5.83)

It is important to note that the scalars w±
il in Eqs. 5.68 to 5.83 are functions of geometry

(θ,∆θ1,∆θ2 and α) and permeability (kx, ky) of the grid but not a function of ri+ 1
2
or ri− 1

2

individually. Based on Eqs. 5.68 to 5.83, w±
il can be written as kyw

′±
il , where w

′±
il is a function

of permeability ratio (kx/ky) and geometry (θ,∆θ1,∆θ2 and α). For example, Eq. 5.79 can
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be written as w−
41 = kyw

′−
41 , where

w−
41 =

α

cos
(

∆θ1
2

)

(

(
kx
ky

) cos (θ) sin

(

θ − ∆θ1
2

)

− sin (θ) cos

(

θ − ∆θ1
2

))

. (5.84)

As shown in Eqs. 5.10 to 5.18, tj coefficients are calculated by combining the coefficients

obtained from the four interaction regions using Eq. 5.37 (Fig. 5.6). From Eqs. 5.37 to 5.41,

it is easily seen that tkj also can be written as kyt
′k
j where t′kj is a function of permeability

ratio and geometry. Since the matrix A is constructed from transmissibility coefficients as

shown in Table 5.1, if the matrix A′ is defined as A′ = 1
ky
A, then, A′ (and as a result A′−1)

is only a function of geometry and permeability ratio and not permeability values. Based

on the definition of A′, the matrix A is monotone (A−1 ≥ 0) if and only if the matrix A′

is monotone (A′−1 ≥ 0). Thus, even though A−1 is a function of permeability values, the

monotonicity properties of A are only functions of geometry and permeability ratio.

Since the scalars w±
il (and hence the transmissibility coefficients) are function of α =

ri+ 1
2
/ri− 1

2
and not functions of ri+ 1

2
or ri− 1

2
individually, the transmissibilities are repeated

after every 16 gridblocks and the nonzero entries of row i of the matrix A are the same

as the nonzero entries of row i + 16. Because the grid structure is symmetric, we only

need to analyze the transmissibility coefficients of the four grid cells in the first quarter of

the ring between two hexadecagons. In this case, we consider five interaction regions with

θ = 0, π/8, π/4, 3π/8, π/2, where is measured from the y-axis.

5.2.1 Monotonicity for the O-method

As an example, to investigate the monotonicity regions for the permeability ratio

of kx/ky = 2 and ∆x/∆y = 1, we plot in Fig. 5.8, the parameters given in Table 5.6 for

i 6= 16, 16l − 15 as a function of geometric ratio for hexadecagonal grid cells, calculated as

follows:

α = li+ 1
2
/li− 1

2
, (5.85)

where li+ 1
2
is the length of the x-axis of the ellipse (or the circle in this case where ∆x = ∆y)
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in which the hexadecagon is inscribed. The bold black line in each graph represents the

boundary of the condition for the specific parameter shown in the same graph. To determine

the range of α we expect to use in practice, we use Eq. 3.5 which is represented as follows:

α =

(

2∆x√
πlw

) 1
Nr+1

, (5.86)

to calculate the minimum and the maximum values of α for a case with ∆x = ∆y between

50 and 500 ft and the number of rings between 8 and 25, and lw between 0.5 and 1.5 ft. A

case with ∆x = 50, lw = 1.5 and Nr = 25 has the minimum value of α which is equal 1.15

and a case with ∆x = 500, lw = 0.5 and Nr = 8 has the maximum value of α which is equal

2.15. Therefore, we only consider the monotonicity criteria for values of the geometric ratio

between 1.15 and 2.15.

Based on Fig. 5.8, all inequalities given in Table 5.6 are satisfied for α greater than or

equal to 1.1, except the inequality ti4t
i−16
6 − ti5t

i−16
1 > 0. The results of the plot in the second

row and second column of Fig. 5.8 show that this inequality holds only when 1.23 ≤ α ≤ 1.88.

To find the range where A−1 ≥ 0 holds, we also have to investigate the conditions for i = 16l

and i = 16l− 15. For instance, t5 of cells with index i = 16l has to be negative. However, in

the above example, this coefficient is positive in the entire range of α (see Fig. 5.9). Thus, the

for the MPFA O-method the monotonicity criteria given in Table 5.6 fails in the entire range

of α. This, however does not mean the MPFA scheme constructed will not be monotone as

the conditions of Table 5.6 are sufficient conditions for monotonicity, but nut necessary to

have monotonicity.

5.2.2 Monotonicity for the L-method

Figs. 5.8 and 5.9 pertain only to the specific case where the permeability ratio, kx/ky,

is equal to 2, although computational results not shown here, indicate that the MPFA O-

method does not satisfy all the monotonicity criteria given in Table 5.6 for any permeability

ratio. Therefore, we use a different MPFA method to achieve a discrete maximum princi-

ple. Since the L-method uses fewer potential points in transmissibility calculations and the
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Figure 5.8: The parameters of the monotonicity criteria for i 6= 16l, 16l − 15 as a function
of geometric ratio, α, with the permeability ratio of kx/ky = 2 and ∆x/∆y = 1, using the
O-method.

monotonicity region of the L-method is usually larger than the O-methods, it is expected

to yield better results [6]. We use the same conditions listed in Table 5.6 to analyze the

monotonicity regions for the grid model presented in this work (Fig. 3.2). Similar to the

example for the O-method, we show in Figs. 5.10, 5.11 and 5.12 the criteria given in Ta-

ble 5.6 as a function of the geometric ratio, α, to investigate the monotonicity regions for
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Figure 5.9: The parameter t5 of criterion t5 < 0 for the last cell in each ring (i = 16l) as a
function of geometric ratio, α, with kx/ky = 2 and ∆x/∆y = 1, using the O-method.

the permeability ratio of 2. Based on the results of Figs. 5.10, 5.11 and 5.12, all conditions

in Table 5.6 hold if 1.2 ≤ α ≤ 1.8, whereas the O-method does not satisfy all monotonicity

conditions of Table 5.6 for any reasonable α, see Fig. 5.9.

Fig. 5.13 shows the monotonicity regions that we calculated for a set of irregular

hexadecagonal grids with a homogeneous medium using the L-method as functions of α and

kx/ky. Throughout, the aspect ratio is defined as the ratio of the dimensions of the Cartesian

cell, i.e. the aspect ratio denoted by AR as AR = ∆x/∆y and the geometric ratio is defined

by Eq. 5.85. To create the monotonicity regions in Fig. 5.13, we calculate the transmissibility

coefficients based on Eqs. 5.68 to 5.83, Eqs. 5.37 to 5.41 and Eqs. 5.10 to 5.18 for each α,

kx/ky and ∆x/∆y and then we determine whether the conditions in Table 5.6 are satisfied.

As shown in Fig. 5.13a, for an aspect ratio of 1, the L-method is monotone in the

entire range of α for an isotropic permeability field. However, increasing the permeability

ratio decreases the monotonicity regions significantly and in a medium with a permeability

ratio higher than 4, the method fails to satisfy the criteria of Table 5.6, so we cannot

guarantee that it is monotone. However, as shown next, the monotonicity region can be

increased by choosing the size of the gridblock containing the well so that

∆x

∆y
=

√

kx
ky

, (5.87)

73



0

5

10

15

20

25

30

35

40

45

1.1 1.3 1.5 1.7 1.9

t 1
 

α 

-5

0

5

10

15

20

25

30

35

1.1 1.3 1.5 1.7 1.9

t 1
+

t 2
+

t 6
 

α 

-5

0

5

10

15

20

25

30

35

40

1.1 1.3 1.5 1.7 1.9

t 4
t 2

-t
3
t 1

 

α 

-10

-8

-6

-4

-2

0

2

4

6

8

10

1.1 1.3 1.5 1.7 1.9

t 4
t 6

-t
5
t 1

 

α 

-8

-6

-4

-2

0

2

4

6

8

10

1.1 1.3 1.5 1.7 1.9

t 8
t 2

-t
9
t 1

 

α 

0

5

10

15

20

25

30

1.1 1.3 1.5 1.7 1.9

t 8
t 6

-t
7
t 1

 

α 

Cell 1 Cell 2 Cell 3 Cell 4

Figure 5.10: The parameters of the monotonicity criteria for i 6= 16l, 16l − 15 as a function
of geometric ratio, α with the permeability ratio of 2 and ∆x/∆y = 1, using the L-method.

or equivalently,

R ≡ ∆x

∆y

√

ky
kx

= 1. (5.88)

The results of Figs. 5.13b, 5.13c and 5.13d consider grids with different aspect ratios,

in order to show the effects of adjusting the structure of hexadecagons based on the near-well
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Figure 5.11: The parameters of the monotonicity criteria for the last cell in each ring (i = 16l)
as a function of geometric ratio, α with the permeability ratio of 2 and ∆x/∆y = 1, using
the L-method.

flow geometry. From the results of Fig. 5.13 and other similar computations, the L-method

for an anisotropic medium has the largest monotonicity range when the aspect ratio is equal

to the square root of permeability ratio, i.e. Eq. 5.88 holds. Interestingly, Figs. 5.13a to 5.13d

indicate that for any aspect ratio, the geometric ratio of 1.4 is always monotone for the largest

range of the permeability ratio, but we have no theoretical explanation of this result.

5.3 Effect of Skin Zone on Monotonicity Regions for the L-method

One of the advantages of a grid refinement around the well is that the skin zone can

be modeled adequately based on the permeabilities in the skin zone, and the external radius

of the skin zone, rs. Fig. 5.14 shows a hexadecagonal grid refinement around the well where

the two rings closest to the well represent the skin zone (shown in grey). As we mentioned

earlier, the coefficients calculated from an interaction region between four cells in a case with

a homogeneous medium are not a function of li+ 1
2
. However, considering a skin zone around
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Figure 5.12: The parameters of the monotonicity criteria for the first cell in each ring (i =
16l−15) as a function of geometric ratio, α with the permeability ratio of 2 and ∆x/∆y = 1,
using the L-method.

the well, the interaction region between four cells where two of them are in the skin zone

and the other two are out of the skin zone, creates coefficients which are different from the

ones for a homogeneous medium. These coefficients affect the transmissibilities of grid cells

in the last ring of the skin zone and the first ring out of the skin zone.

In this study, we assume that the premeability ratio in the skin zone is the same as

the one in the unaffected zone, i.e.,

ksx
ksy

=
kx
ky

. (5.89)

We define γ as the ratio of the permeability in the skin zone to the unaffected formation

permeability, i.e., Ks = γK. Since we assumed that the permeability ratio in both regions

are equal (Eq. 5.89), then

γ =
ksx
kx

=
ksy
ky

. (5.90)
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Figure 5.13: Monotonicity regions of hexadecagonal grids using the L-method.

First, we analyze the transmissibility coefficients calculated from an interaction region

where all four cells are in the skin zone. In this zone, the permeability values are multiplied

by the constant value γ. Based on Eqs. 5.68 to 5.83, the scalers
(

w±
il

)

s
can be written

as γ
(

w±
il

)

ns
. In this part, subscript s refers to values calculated from the permeabilities

of the skin zone and subscript ns means that the value is calculated from the unaffected

formation permeabilities. Matrices As, Bs, Cs and Ds from Eqs. 4.54, 4.55, 4.57 and 4.58 in

the skin zone, respectively can be written as γAns, γBns, γCns and γDns. From Eq. 4.64, the

transmissibility coefficient matrix of a cell where all its eight neighbors are in the unaffected

zone, Tns = ((tij)ns), is as follows:

Tns = CnsA
−1
nsBns +Dns, (5.91)

77



Figure 5.14: A set of irregular hexadecagonal grids with a skin zone shown in grey.

and the transmissibility coefficient matrix of a cell where all its eight neighbors are in the

skin zone, Tn = ((tij)n), is given as follows:

Ts = CsA
−1
s Bs +Ds. (5.92)

Since, As = γAns, Bs = γBns, Cs = γCns and Ds = γDns and using Eq. 5.91, Eq. 5.92 can

be rearrange as follows:

Ts = CsA
−1
s Bs +Ds = (γCns)(γAns)

−1(γBns) + (γDns) = γ(CnsA
−1
nsBns +Dns) = γTns.

(5.93)

From Eq. 5.93, it is easily seen that (tij)s also can be written as γ (tij)ns. Therefore, if the

transmissibility coefficients of a cell where all its eight neighbors are in the unaffected zone

satisfy the monotonicity conditions listed in Table 5.6, then, the transmissibility coefficients

of a cell with the same geometry properties (θ, α) but with all of its neighbors in the skin

zone also satisfy the monotonicity conditions.
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The major issue is where two cells out of the four cells in the interaction region are

in the skin zone and the other two are in the unaffected zone. Transmissibility calculations

of the O-method and the L-method show that the permeability values of the skin zone

affect all transmissibility coefficients of the interaction region. To analyze the effect of skin

on the monotonicity regions for the L-method, we use the coefficients of the interaction

regions on the outer boundary of the skin zone and Eqs. 5.10 through 5.18 to compute the

transmissibility coefficients of cells in the last ring of the skin zone and the first ring out of

the skin zone. For example, in Fig. 5.14, the interaction region between cells i− 16, i− 15, i

and i+1 contains two cells from the skin zone and two cells from the unaffected zone. Then,

unlike other interaction regions where all four cells have the same permeability tensor, the

permeability tensors of the four cells in this interaction region are different.

Fig. 5.15 shows the monotonicity regions for a set of irregular hexadecagonal grids

with a skin zone around the well. In all cases considered ksx = 0.1kx, ksy = 0.1ky and the

four rings closest to the well represent the skin zone. Then, by defining ks =
√

ksxksy and

k =
√

kxky, we have

ks
k

=

√

ksxksy
√

kxky
= 0.1. (5.94)

The monotonicity regions for the case of skin zone with k/ks = 10 are shown in

Fig. 5.15. Comparing the results of Fig. 5.15 with those of Fig. 5.13, we see that the presence

of a skin decreases the size of the monotonicity region of the L-method. In Fig. 5.13, the

geometric ratio of 1.4, for any aspect ratio, is always monotone for the largest range of

the permeability ratio. Fig. 5.15 indicates that this “optimal” value of α increases to 1.47

for the skin case. In Fig. 5.15, for a permeability ratio of 1, the monotonicity conditions

are not satisfied when the aspect ratio is 2, 3 or 5. However, the conditions are sufficient

to guarantee monotonicity but not necessary and our numerical results in the next section

show that if a case is out of the monotonicity region but not far from the region, solutions

show no non-physical oscillatory behavior, i.e., are monotone.

As shown in Figs. 5.13 and 5.15, for each aspect ratio, we have a different monotonicity
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(d) Aspect ratio of 5

Figure 5.15: Monotonicity regions of hexadecagonal grids with a skin zone using the L-
method.

region. Our investigation on these results shows that if we plot the monotonicity region as

a function of (∆y/∆x)
√

kx/ky instead of permeability ratio, the difference between plots

is small, i.e, monotonicity regions correlate as a function of α and (∆y/∆x)
√

kx/ky and

one plot can represent the monotonicity region for all aspect ratios. Fig. 5.16a shows the

monotonicity regions of hexadecagonal grids without skin using the L-method and Fig. 5.16b

shows the monotonicity regions of hexadecagonal grids with the skin zone around the well.

Although the monotonicity results of this and the next section are presented in terms

of kx, ky, ∆x and ∆y, i.e., implicitly seen to pertain to a vertical well, it is important to

note that they are also applicable to a horizontal well.

80



1.15

1.25

1.35

1.45

1.55

1.65

1.75

1.85

1.95

2.05

2.15

1 9 17 25 33 41 49

G
eo

m
et

ri
c 

R
at

io
 

Permeability Ratio 

(a) No skin

1.15

1.25

1.35

1.45

1.55

1.65

1.75

1.85

1.95

2.05

2.15

1 9 17 25 33 41 49

G
eo

m
et

ri
c 

R
at

io
 

Permeability Ratio 

(b) Skin (k/ks = 10)

Figure 5.16: Monotonicity regions of hexadecagonal grids using the L-method.
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CHAPTER 6

CONVERGENCE AND NUMERICAL TESTS FOR THE L-METHOD

6.1 Convergence

In this part, we investigate the convergence behavior of the L-method for the polygo-

nal grid refinement system. We consider the effects of the aspect ratio and the skin zone. The

case under study is only the polygon part of the grid refinement system and we consider here

only the hexadecagonal grid structure, the complete grid system us discussed in Chapeter 7.

As shown in Fig. 5.4, the polygon used in the grid refinement system is 16-sided. To increase

the number of grid cells, we can only increase the number of rings in the r-direction (Nr).

By increasing the number of rings and keeping the number of divisions in the θ-direction

(Nθ) constant, the width to height ratio of trapezoidal cells increases. Fig. 5.16 shows that

there is an optimum geometric ratio (α = li+ 1
2
/li+ 1

2
) for a given permeability ratio to have

the maximum monotonicity range.

Since we cannot investigate the convergence behavior of the L-method for the grid

refinement system where the number of divisions in the θ-direction is constant, we modify the

grid refinement system by adjusting Nθ based on Nr, in such a way that the width (average

length of the two bases) to height ratio of trapezoidal cells stays constant. Fig. 6.1 shows an

isosceles trapezoidal grid cell with the width of wi and the height of hi. In the figure, the

magnitude of (C1 −O) and (C2 −O) are computed as:

‖C1 −O‖ = ri− 1
2
cos (θ/2), (6.1)

and,

‖C1 −O‖ = ri+ 1
2
cos (θ/2). (6.2)
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Figure 6.1: An isosceles trapezoidal grid cell

Then, using Eqs. 6.1 and 6.2, the height of the trapezoid can be computed as a function of

ri+ 1
2
, ri− 1

2
and θ as follows:

hi = ‖C2 − C1‖ =
(

ri+ 1
2
− ri− 1

2

)

cos (θ/2) = (α− 1)ri− 1
2
cos (θ/2), (6.3)

where α = ri+ 1
2
/ri− 1

2
. The width of the trapezoid, wi, is defined as the average of the two

bases of the trapezoid. Then,

wi =
(

ri+ 1
2
+ ri− 1

2

)

sin (θ/2) = (α + 1)ri− 1
2
sin (θ/2). (6.4)

Using Eqs. 6.3 and 6.4, the width to height ratio can be written as follows:

γ =
wi

hi

=
α + 1

α− 1
tan (θ/2), (6.5)

where γ is the width to height ratio of the trapezoid, where we wish to keep constant. By

83



substituting θ = 2π/Nθ into Eq. 6.5 and rearranging, we have:

Nθ =
π

tan−1
(

γ
(

1− 2
α+1

)) . (6.6)

were α is computed as follows:

α =

(

lmax

lw

) 1
Nr

, (6.7)

where lmax is the length of the ellipse that is used to construct the last polygon, in the

x-direction and lw is the length of the ellipse, used to construct the wellbore polygon, in

the x-direction. The wellbore polygon represents the wellbore and has the same area as

the wellbore. Since there is no specified value of γ, we use the optimum α = 1.4 for the

16-sided polygon to estimate the width to height ratio which gives the highest monotonicity

range. As the result, in order to keep the width to height ratio of trapezoidal grid cells

approximately constant, for a given number of rings in the r-direction, Nr, the number of

divisions in the θ-direction, Nθ, which is calculated using Eq. 6.6, is rounded to the nearest

integer, as follows:

Nθ =





π

tan−1
(

γ
(

1− 2(lw)1/Nr

(lmax)1/Nr+(lw)1/Nr

))



 . (6.8)

6.1.1 Boundary Conditions Implementation

In this work, we obtain the discrete pressure solutions for cases with polygon grids

on homogeneous and heterogenous media. In these cases, equal point sources are located

in the grid cells of the first ring and zero Dirichlet boundary conditions are imposed on

the boundary of the last polygon. This part presents how we impose Dirichlet boundary

conditions.

A simple way to impose Dirichlet boundary conditions is to use an imaginary hex-

adecagonal ring with lNr+3/2 = αlNr+1/2, where lNr+1/2 is the length of the last hexadecagon

in the x-direction and lNr+3/2 is the length of the imaginary hexadecagon in the x-direction.

The outer boundary of the ring has the same aspect ratio as the original boundary where

we impose the zero pressure. The pressure of each imaginary cell is equal to negative of the
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neighboring cell pressure. Fig. 6.2 shows boundary cell i with two neighboring boundary

cells i − 1 and i + 1, three neighboring inner cells i − j − 1, i − j and i − j + 1 and three

imaginary cells i + j − 1, i + j and i + j + 1. A boundary cell is a cell that shares an edge

with the boundary. For the hexadecagonal grid system, j is equal 16. However, the cases we

 

+ + 1 

+  + − 1 

+ 1 

 − 1 

− + 1 

−  − − 1 

 

 

 

Figure 6.2: A boundary cell with 8 neighboring cells including 3 imaginary cells.

use to analyze the convergence behavior, j is not necessarily equal to 16. The red segments

in Fig. 6.2 show the boundary that we wish to impose the zero pressure. For example, we

use the interaction region shown in blue in Fig. 6.2 and an MPFA method to compute the

transmissibility coefficients for flux between cells i and i + 1 through the sub-interface “a”

and the flux out of the boundary (in red) from cells i and i + 1 through sub-interfaces “b”

and “c” The flowrate between cells i and i+ 1 is written as follows

qi,i+1 = tipi + ti+1pi+1 + ti−jpi−j + ti−j+1pi−j+1 + ti+jpi+j + ti+j+1pi+j+1, (6.9)

where pl represents the pressure of cell l and tl is the transmissibility coefficient of cell l for
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flowrate calculation between cells i and i + 1. Note that qi,i+1 is the flow rate through the

interface between cells i and i+1 and not the sub-interface in the interaction region. As we

mentioned before, the pressure of each imaginary cell is equal to negative of the neighboring

cell pressure, i.e., pi+j = −pi and pi+j+1 = −pi+1. Then Eq. 6.11 can be written as follows:

qi,i+1 = (ti − ti+j)pi + (ti+1 − ti+j+1)pi+1 + ti−jpi−j + ti−j+1pi−j+1. (6.10)

Similarly, the flowrate out of the boundary from cell i can be written as

qi,i+j = (t′i − t′i+j)pi + (t′i+1 − t′i+j+1)pi+1 + (t′i−1 − t′i−j+1)pi−1, (6.11)

where t′l is the transmissibility coefficient of cell l for flowrate calculation between cells i and

i+ j.

6.1.2 Analytical Solution

Consider an elliptic reservoir with a boundary as

x2

a2
+

y2

b2
= 1, (6.12)

where a = 1
2
l and b = 1

2
w. Here l and w are the lengths of the ellipse in the x and y directions.

We define the aspect ratio of the ellipse as l/w. The reservoir is an anisotropic medium with

the permeability ratio of kx/ky , the source term q at the center and zero pressure on the

elliptical outer boundary. The differential equation solution for the steady-state pressure

distribution in the ellipse in Cartesian coordinates is given by

kx
∂2p

∂x2
+ ky

∂2p

∂y2
= 0, (6.13)

where the pressure is zero on the boundary of the ellipse, i.e,

p = 0 at
x2

(l/2)2
+

y2

(w/2)2
= 1. (6.14)
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Following D. W. Peaceman et al. [34], in Eq. 6.13, we make the change of variables

defined by

u = (ky/kx)
1/4 x (6.15)

and

v = (kx/ky)
1/4 y, (6.16)

to obtain

∂2p

∂u2
+

∂2p

∂v2
= 0. (6.17)

The boundary condition is transformed to

p = 0 at (kx/ky)
1/2 u2

(l/2)2
+ (ky/kx)

1/2 v2

(w/2)2
= 1. (6.18)

Note that the outer boundary is transformed to an ellipse which has an aspect ratio in the

u-v plane that is different than the aspect ratio in the x-y plane. The lengths of the ellipse

in the u and v directions are as follows:

l′ = (ky/kx)
1/4 l (6.19)

and

w′ = (kx/ky)
1/4 w. (6.20)

The aspect ratio of the outer boundary in the u-v plane is

l′

w′
=

(

ky
kx

)1/2
l

w
. (6.21)

Note that if the aspect ratio in the original plane is equal to
√

kx/ky, i.e., l/w =
√

kx/ky,

then l′/w′ = 1 and hence the outer boundary in the u-v plane is a circle and the solution to

Eq. 6.13 in the u-v plane is radial. However, if l/w 6=
√

kx/ky, then the outer boundary in

the u-v plane is an ellipse and the equipotential lines in the u-v plane are a set of concentric
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ellipses, and as we get close to the circular well the equipotential line becomes a circle.

To solve Eq. 6.17 with the boundary condition given by Eq. 6.18, we transform the u-v

coordinate to an elliptic coordinate system. After this point, we assume (ky/kx)(l/w)2 < 1.

However, we can follow a similar procedure for a case with (ky/kx)(l/w)2 > 1. We make the

change of variables given by

u = b sinh ρ sin θ (6.22)

and

v = b cosh ρ cos θ, (6.23)

where ρ is a nonnegative real number identifying each ellipse (similar to r for a circle), θ

is a real number between 0 and 2π and b is a constant which is determined later based on

the boundary ellipse. Let ρe denote the outer boundary ellipse (similar to re for a circle).

Substituting Eqs. 6.22 and 6.23 into the Pythagorean trigonometric identity, gives

sin2 θ + cos2 θ =
u2

b2 sinh2 ρe
+

v2

b2 cosh2 ρe
= 1. (6.24)

Now we wish to specify ρe and b is such a way that the boundary ellipse defined in Eq. 6.18

be the same as the ellipse in Eq. 6.24. Comparing Eq. 6.24 with the boundary ellipse defined

in Eq. 6.18, gives










(ky/kx)
1/2 (l/2)2 = b2 sinh2 ρe;

(kx/ky)
1/2 (w/2)2 = b2 cosh2 ρe.

(6.25)

Solving Eq. 6.25 for ρe and b, we have

tanh2 ρe = (ky/kx) (l/w)
2 , (6.26)

and

b2 = (kx/ky)
1/2 (w/2)2 − (ky/kx)

1/2 (l/2)2 . (6.27)

Since the change of variables given in Eqs. 6.22 and 6.23 is a conformal mapping [34], Eq. 6.17
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can be written in the elliptic coordinate system as follows:

∂2p

∂ρ2
+

∂2p

∂θ2
= 0. (6.28)

The boundary condition given in Eq. 6.18 is transformed to

p = 0 at ρ = ρe. (6.29)

D. W. Peaceman et al. [34] showed that the solution to Eq. 6.17 is a set of concentric ellipse

isobars in the u-v plane, pressure is constant on any ellipse corresponding to a given fixed ρ

and the solution to Eq. 6.28 is only a function of ρ and does not depend on θ. Therefore, if

we integrate Eq. 6.28, the following expression for the pressure is obtained:

p = C (ρe − ρ) . (6.30)

In Appendix A, it is shown that the constant C is given by:

C =
qµ

2πh (kxky)
1/2

. (6.31)

Using Eq. 6.31 in Eq. 6.30, the solution to Eq. 6.28 is given by

p =
qµ

2πh (kxky)
1/2

(ρe − ρ) , (6.32)

where Eq. 6.26 indicates that

ρe = tanh−1

(

l

w

√

ky
kx

)

. (6.33)

6.1.3 Convergence Behavior

To investigate the convergence behavior of the L-method for the grid refinement

system, we compute the discrete L2 norm of the pressure error. The normalized discrete L2
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norm is defined by the following expression.

e =

(

1

A

N
∑

i=1

Ai(pex,i − pi)
2

)1/2

, (6.34)

where, N is the number of cells, Ai is the area of cell i, A =
∑

i Ai and pex,i is the pressure

evaluated analytically from Eq. 6.32 at the same position as the center of the cell i, where

we compute pi numerically. Fig. 6.3 shows the convergence behaviour of the L-method with

different permeability ratios. All cases in Fig. 6.3 have the aspect ratio of 1. Note that by

 

𝑘𝑘 =         𝑘𝑘 = 5        𝑘𝑘 = 5         𝑘𝑘 =         
Figure 6.3: Convergence behaviour of the L-method, aspect ratio equals 1.

increasing the number of cells (N), the size of each cell decreases in both directions with the

same ratio. If we define h in such a way that A = h2, where A is the area of the cell, then
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N ∝ 1/h2. The slopes of the cases with the permeability ratio 1 and 5 are close to -1, which

indicates the convergence rate of these two cases is close to O(h2). However, increasing the

permeability ratio to 50 decreases the convergence rate. The case with the permeability ratio

100 does not convergence.

Fig. 6.4 shows the convergence behavior of the L-method for two cases with the aspect

ratios of 2 and 7. As we see, increasing the aspect ratio, improves the convergence rate of

the case with high permeability ratio.

(a) Aspect ratio 2 (b) Aspect ratio 7
 

𝑘𝑘 =         𝑘𝑘 = 5        𝑘𝑘 = 5         𝑘𝑘 =         
Figure 6.4: Convergence behaviour of the L-method.

6.2 Numerical Tests for the L-method

To see the effects of the violation of the discrete maximum principle, we have con-

ducted tests on homogeneous and heterogenous media with hexadecagonal grids. In these

computations, 16 equal point sources are located in the grid cells of the first ring and zero

Dirichlet boundary conditions are imposed on the boundary of the last hexadecagon. To

construct a heterogeneous medium, we assume that log(kx) of each grid cell varies randomly

based on a Gaussian distribution with the mean of 6 and the standard deviation of 1.6. The

conditions of Table 5.6 represent sufficient conditions for monotonicity but there exist no

proof that they are necessary for monotonicity. Thus, even when they are not satisfied, a
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MPFA method may yield non-oscillatory pressure solutions.

Each curve in Figs. 6.5 and 6.6 represents the pressure profile along a particular ray in

the r-direction emanating from the center of the refined Cartesian gridblock. When the aspect

ratio is equal to the square root of permeability ratio, i.e., when Eq. 5.88 holds, as noted

earlier, each ellipse is an equipotential surface and we expect the maximum monotonicity

range. In Figs. 6.5a and 6.6c pressures at the center of all 16 cells in each ring of sixteen

gridblocks are equal. However, for cases with a high permeability ratio and low aspect ratio,

i.e., when (∆x/∆y)
√

ky/kx is not close to unity, small oscillations can be seen close to the

well and a one to the boundary, as shown in Figs. 6.5f and 6.6f. The numerical results for a

homogeneous media show that even with a high permeability ratio, no oscillation appears in

the near-well region, but we see negative potentials close to the boundaries; see Figs. 6.5c, 6.5e

and 6.6e. Results of similar cases with heterogeneities show potential oscillations close to

the well region; see Figs. 6.5d, 6.5f and 6.6f.

Fig. 6.7 shows the results of similar cases shown in Figs. 6.6d and 6.6f but with

different aspect ratio. By modifying the aspect ratio in such a way that
√

kx/ky = ∆x/∆y,

solutions show no non-physical behavior.
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(a) Homogeneous, kx/ky = 1 (b) Heterogeneous, kx/ky = 1

(c) Homogeneous, kx/ky = 20 (d) Heterogeneous, kx/ky = 20

(e) Homogeneous, kx/ky = 100 (f) Heterogeneous, kx/ky = 100

Figure 6.5: Pressure solutions for grid cells with the aspect ratio of 1 and a geometric ratio
of 1.3.

93



(a) Homogeneous, kx/ky = 1 (b) Heterogeneous, kx/ky = 1

(c) Homogeneous, kx/ky = 9 (d) Heterogeneous, kx/ky = 9

(e) Homogeneous, kx/ky = 100 (f) Heterogeneous, kx/ky = 100

Figure 6.6: Pressure solutions for grid cells with the aspect ratio of 3 and the geometric ratio
of 1.3.

(a) ∆x/∆y = 4.47, kx/ky = 20 (b) ∆x/∆y = 10, kx/ky = 100

Figure 6.7: Pressure solutions for grid cells of a heterogenous medium and the geometric
ratio of 1.3,

√

kx/ky = ∆x/∆y.
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CHAPTER 7

CARTESIAN GRID REFINEMENT

We consider a type of Cartesian refinement where each side of a rectangular cell is

connected to either one or two refined cells. The simple case, shown in Fig. 7.1a, consists

of 18 base rectangular cells. choosing 16 cells in the bottom row is an example. Connecting

cells 3, ..., 18 to cell 2 can cause numerical error in the pressure results. Therefore, to more

accurately model flow from cells 3, ..., 18 through cell 2 to cell 1, we refine cell 2 by the

following procedure. First, Cell 2 is divided into four equal cells. Then, each fine cell on

the right is divided into 4 equal cells. We continue this procedure until each refined grid in

the bottom row inside base cell 2 is connected to two neighboring cells (cells 3 to 18). In

Fig. 7.1b, the refined Cartesian cells are shown by red. Note that the aspect ratio ((∆x/∆y)

for a vertical well and (∆z/∆y) for a horizontal well in the x-direction) of the refined cells

is equal to the aspect ratio of the base cell. As you can see in this example, each cell has at

most two neighbors on each of its side.

7.1 Monotonicity Criteria

We use the MPFA method to compute the flux between refined cells. In the proposed

Cartesian refinement, there are two different interaction regions between a collection of grid

cells with one common point. Fig. 7.2 shows an interaction region between cells P1, P2 and

P3 and Fig. 7.3 shows two interaction regions between cells P1, P2, P3 and P3, P4, P1. We use

the L-method for the interaction regions in Fig. 7.3.

We calculate the transmissibility coefficients of these two interaction regions, based

on the assumption that the base cell has the permeability values of kx and ky with an aspect

ratio of AR = ∆x/∆y. Since the aspect ratio of refined cells is equal to the aspect ratio of
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3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

(a)

 

(b)

Figure 7.1: 18 rectangular cells in the x-y plane with y in the vertical direction, (a) before
and (b) after refinement.
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Figure 7.2: An interaction region containing three cells.

the base cell, each refined cell has the same permeability values and aspect ratio.

Considering the triangular interaction region shown in Fig. 7.2, the unit normal vec-
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Figure 7.3: An interaction region containing four cells.

tors, ni, i = 1, 2, 3, are simply computed as n1 = [0, 1]T , n2 = [0,−1]T and n3 = [−1, 0]T . If

the width of the cell centered at P1 is ∆x1, then vectors v±l are computed as follows:

v−1 = v+3 =







0

−∆x1/2






, v+1 = −v−3 =







−∆x1/(2AR)

0






,

v−2 =







−∆x1/AR

∆x1/2






, v+2 =







∆x1/AR

∆x1/2






. (7.1)

The area of sub-interfaces are A1 = A2 = ∆x1/2 and A3 = ∆x1/(2AR) and the triangle

areas,

Fl =
1

2
‖v−l ‖‖v+l ‖ sin (β), l = 1, 2, 3, (7.2)

where β is the angle between ‖v−l ‖ and ‖v+l ‖. Then, from Eq. 7.2 we have

F1 = F3 = ∆x2
1/(8AR), (7.3)

and,

F2 = ∆x2
1/(2AR). (7.4)
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Following the definition of wpm
il in Eq. 4.24, represented as follows:

w±
il =

nT
i AiKlv

±
l

2Fl

, (7.5)

the non-zero scalar coefficients for the triangular interaction region are as follows:

w+
23 = −w−

11 = ARky,

w+
22 = w−

22 = −AR

4
ky,

w+
12 = w−

12 =
AR

4
ky,

w+
31 = −w−

33 =
kx
AR

. (7.6)

The reset of the scalar coefficients are zero. We use Eqs. 4.31, 4.32, 4.33 and 4.34 to construct

matrices A, B, C and D, as follows:

A =













−(w+
11 + w−

11) 0 0

0 −(w+
22 + w−

22) 0

0 0 −(w+
33 + w−

33)













=













ARky 0 0

0 AR
2
ky 0

0 0 kx
AR













, (7.7)

B =













w−
11 0 w+

11

w+
22 w−

22 0

0 w+
33 w−

33













= −













ARky 0 0

AR
4
ky

AR
4
ky 0

0 0 kx
AR













, (7.8)

C =













0 −(w+
12 + w−

12) 0

0 0 −(w+
23 + w−

23)

−(w+
31 + w−

31) 0 0













= −













0 AR
2
ky 0

0 0 ARky

kx
AR

0 0













, (7.9)
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D =













w+
12 w−

12 0

0 w+
23 w−

23

w−
31 0 w+

31













=













AR
4
ky

AR
4
ky 0

0 ARky 0

0 0 kx
AR













. (7.10)

By substituting the matrices in Eqs. 7.7- 7.10 in Eq. 5.37, we have the transmissibility matrix

for the interaction region shown in Fig. 7.2 as follows:

T3×3 =













1
6
ARky −1

3
ARky

1
6
ARky

−1
6
ARky

1
3
ARky −1

6
ARky

−1
2
kx/AR 0 1

2
kx/AR













(7.11)

The transmissibility matrix for the interaction regions shown in Fig. 7.3 are obtain similarly.

We use Eqs. 4.54, 4.55, 4.57 and 4.58 to construct matrices A, B, C and D for each interaction

region. To compute these matrices, we also need to compute x±, given in Eq. 4.49, for

interaction regions between cells (P1,P2, P3) and (P3,P4, P1) denoted respectively as x±
1 and

x±
2 , as follows:

x±
1 =

v5 · v±2
2F2

, (7.12)

x±
2 =

v6 · v±4
2F4

, (7.13)

where, v5 and v6, that are not shown in Fig. 7.3, are as follows

v5 = O − P2 =







∆x1

−∆x1/AR






, (7.14)

and,

v6 = O − P4 =







−∆x1/2

∆x1/(2AR)






, (7.15)

Eqs. 7.16 and 7.17 show the entries of the transmissibility matrices for the both interaction

regions in Fig. 7.3, computed from Eq. 4.64. For the interaction region between (P1,P2, P3),
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we have

(T3×2)1 =







1
3
ARky −1

4
ARky − 1

12
ARky

0 1
2
kx/AR −1

2
kx/AR






, (7.16)

and for the interaction region between (P3,P4, P1), we have

(T3×2)2 =







1
12
ARky

1
4
ARky −1

3
ARky

−1
2
kx/AR 0 1

2
kx/AR






. (7.17)

In the Cartesian grid refinement used in this work (Fig. 5.1), we can divide cells into two

categories based on neighboring cells. In both Figs. 7.4 and 7.5, Cell i shares a boundary

with two smaller cells on the bottom. Considering these two boundary cells of cell i, the cell

on the left is placed in category one and the right one is placed in category two. Figs. 7.4

and 7.5 show the cells from categories one and two in blue.

 

+ + 1 +  

−  𝒊− 𝒌+  𝒊− 𝒌+  𝒊− 𝒌−  

(9) (8) 

(7) 

(6) (5) (4) (3) 

(2) (1) 

+ 1 − 1 

𝑛  𝑛  
𝑛  𝑛  𝑛  

 

Figure 7.4: A cell from category one and its neighboring cells.

In these two figures, the black indices are parts of the global numbering and indices in

parenthesis show the local numbering. For both cases (Figs. 7.4 and 7.5), the four neighboring

cells on the bottom are labeled i− k− 1 to i− k+2 and the two cells on the top are labeled

i+ j and i+ j+1. k is the number of cells from cell i to its left bottom neighboring cell and

j is the number of cells from cell i to its top neighboring cell. Here, variables k and j are
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−  𝒊− 𝒌+  

(9) 
(8) 

(7) 

(6) 

(1) 

(5) (4) (3) 

(2) 

− 1 + 1 

𝒊− 𝒌−  𝒊− 𝒌+  

Figure 7.5: A cell from category two and its neighboring cells.

not constant and even when we move from left to right in one row, considering the center

cell as cell i, variables k and j are reduced by half.

We write the general form of the mass conservation equation for grid cell i as follows:

9
∑

l=1

tilp
i
l = qi for i = 1, 2, ..., n, (7.18)

where til is the transmissibility of neighboring cell l used to approximate the total flux out

of cell i, qi is the source term of cell i, pil is the pressure of the neighboring cell l of cell i

and n is the total number of cells. In both cases shown in Figs. 7.4 and 7.5, there are eight

interaction regions between cell i and other neighboring cells including 6 interaction regions

where we use the L-method for flux calculations and 2 interaction regions, where we use the

O-method. We combine the transmissibility coefficients computed from these interaction

regions which are given by Eqs. 7.11, 7.16 and 7.17 to determine til for each cell.

For example, in category one shown in Fig. 7.4, we determine the effect of cell (8) on

the total flux out of cell (1) to calculate ti8. Cell (8) is included in two interaction regions. The

interaction region between cells (1), (8) and (7) is shown in Fig. 7.4. The entries in the second

column of matrix T3×3 in Eq. 7.11 are the transmissibility coefficients of the potential of cell

(8) in Fig. 7.4. The first entry associated with sub-interface 1 and the third entry associated
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with sub-interface 3. Note that the direction of the flux through sub-interface 3 is from cell

(7) to cell (1) and to change the flux direction we multiply the third row of matrix T3×3 by -1.

The interaction region between cells (1), (2) and (8) is shown in Fig. 7.4, where we use the

L-method to compute the transmissibility coefficients. Comparing Fig. 7.4 with Fig. 7.3, the

interaction region between cells (1), (2) and (8) is similar to the interaction region between

cells P4, P1 and P3 in Fig. 7.3. Then, we use the corresponding transmissibility matrix for

this interaction region, (T3×2)2, given in Eq. 7.17 to compute the transmissibility coefficients.

The entries in the first column of matrix T3×2,2 are the transmissibility coefficients of the

potential of cell (8) in Fig. 7.4. The first entry associated with sub-interface 4 and the second

entry associated with sub-interface 5 in Fig. 7.4. Here, the direction of the flux through sub-

interface 4 is from cell (8) to cell (1) and to change the flux direction to out of cell (1), we

multiply the first row of matrix (T3×2)3 by -1. Therefore, the transmissibility of neighboring

cell (8) used to approximate the total flux out of cell i is calculated as follows:

ti8 = −1

3
ARky −

1

4
ARky = − 7

12
ARky (7.19)

Similarly, the other non-zero transmissibilities for the case shown in Fig. 7.4 are as follows:

ti1 =
5

3
ARky + 2kx/AR (7.20)

ti2 =
1

12
ARky − kx/AR (7.21)

ti4 = −2

3
ARky (7.22)

ti5 = −2

3
ARky (7.23)

ti7 = −1

4
ARky − kx/AR (7.24)

ti9 = − 1

12
ARky (7.25)

In the second category shown in Fig. 7.5, the value of ti2 is interchanged with the value of ti7
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and the value of ti3 is interchanged with the value of ti6.

We introduce the vector quantities p = [p1, p2, .., pN ]
T and q = [q1, q2, .., qN ]

T where

pi is the potential of cell i. Then, Eq. 7.18 can be written in matrix form as Ap = q, where

A is the matrix of coefficients. Comparing the local ordering and the global ordering of the

cells in both categories in Figs. 7.4 and 7.5, the ith row of matrix A is written as

Table 7.1: The nonzero entries of the ith row of matrix A.

Column index i− k i− k + 1 i− 1 i i+ 1 i+ j i+ j + 1
ti4 ti5 ti2 ti1 ti7 ti9 ti8

To derive criteria that ensure matrix A is monotone, we apply Theorem 1 from the

“Polygonal Near-Well Grid Refinement” section. Matrix A is split into matrices B and C in

such a way that A = B − C. We specify matrix B as the tridiagonal part of the matrix A.

The nonzero entries of the ith row of the matrix B are shown in Table 7.2.

Table 7.2: The nonzero entries of the ith row of matrix B.

Column index i− 1 i i+ 1
ti2 ti1 ti7

From the discussion of Poole’s result in section 5.2, matrix B = [bij] is an M-matrix,

if
n
∑

j=1

bij > 0 for i = 1, 2, . . . n, (7.26)

bij ≤ 0 whenever i 6= j and bii > 0 for each i. Therefore, the conditions given in inequalities

ti2 + ti1 + ti7 > 0, (7.27)

ti1 > 0, (7.28)

ti2, t
i
7 ≤ 0, (7.29)

are sufficient to guarantee that B is an M-matrix and hence B−1 ≥ 0.

Based on the structures of matrices A and B given in Tables. 7.1 and 7.2, the ith row

of matrix C = B − A is given by
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Table 7.3: The nonzero entries of the ith row of matrix C.

Column index i− k i− k + 1 i+ j i+ j + 1
−ti4 −ti5 −ti9 −ti8

As the last criterion in Theorem 1 in section 5.1, we establish conditions that are

sufficient to ensure that CB−1 ≥ 0. We assume that inequalities 7.27, 7.28 and 7.29 hold,

so B−1 ≥ 0. Then, conditions til ≤ 0 for l = 4, 5, 8, 9 (C ≥ 0) are sufficient to guarantee

CB−1 ≥ 0. These conditions are changed to strict inequalities to ensure CB−1 is irreducible.

The final criteria that guarantee matrix A is monotone are

ti2 + ti1 + ti7 > 0, (7.30)

ti1 > 0, (7.31)

til < 0 for l = 2, 4, 5, 7, 8, 9. (7.32)

Substituting transmissibilities from Eqs. 7.20 to 7.25 into inequalities 7.27, 7.28

and 7.29 shows all inequalities hold for all AR, kx and ky, except for ti2 < 0. To ensure

ti2 < 0, AR, kx and ky must be such that

ti2 =
1

12
ARky − kx/AR < 0, (7.33)

or equivalently,

(

∆x

∆y

)2
ky
kx

< 12. (7.34)

Therefore, if Eq. 7.34 holds, the MPFA method used to compute the flux in the proposed

Cartesian refinement is guaranteed to be monotone. Eq. 7.34 is valid when the cells are

refined in the y-direction, as shown in Fig. 7.1. To determine the sufficient monotonicity

criteria for Cartesian grid refinement in the x-direction, as shown in Fig. 7.6, we can simply

replace the x-axis with y-axis. Therefore, following the inequality in Eq. 7.34 for refinement
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in the y-direction, the sufficient monotonicity criteria for Cartesian grid refinement in the

x-direction is given as follows:
(

∆y

∆x

)2
kx
ky

< 12. (7.35)

Considering both refinements in the x and y directions, using Eqs. 7.34 and 7.35, we have

 

Figure 7.6: Cartesian grid refinement in the x-direction.

the following sufficient condition that guarantees the refinement is monotone:

1

12
<

(

∆x

∆y

)2
ky
kx

< 12. (7.36)

Comparing the inequality in Eq. 7.36 with the monotonicity regions of hexadecagonal grids

using the L-method shown in Fig. 5.16a shows that if the L-method for a hexadecagonal grid

is inside the monotonicity region, then the inequality 7.36 holds. Therefore, if a case with

hybrid grid refinement is inside or close to the monotonicity regions of the L-method shown

in Fig. 5.16a, the Cartesian grid refinement is guaranteed to be monotone.

7.2 Convergence

To investigate the convergence behavior of the L-method for the hybrid grid refine-

ment system presented in Fig. 3.2 and represented here as Fig. 7.7c, we follow a similar

procedure shown in Chapter 6, as follows. We modify the grid refinement system by ad-

justing Nθ based on Nr, in such a way that the width (average length of the two bases) to
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height ratio of trapezoidal cells stays constant. For a given Nr, we compute Nθ using Eq. 6.8,

represented as follows:

Nθ =





π

tan−1
(

γ
(

1− 2(lw)1/Nr

(lmax)1/Nr+(lw)1/Nr

))



 . (7.37)

However, there is a limitation in the number of divisions in the angular direction in the

polygonal grid refinement. The hybrid refinement is constructed by combining the polygonal

and Cartesian refined cells. The base coarse gridblock containing a well, can be refined into

any even number of gridblocks greater than or equal to four with the number of refinement

in the θ-direction equal to 2i, where i is a positive integer greater than or equal to 2. Fig. 7.7

shows 4 examples of grid refinements with i = 2, 3, 4, 5.

 

 

(a)

 

 

(b)

 

 

(c)

 

 

(d)

Figure 7.7: Hybrid grid refinements with (a) 4, (b) 8, (c) 16 and (d) 32 divisions in the θ
direction.
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We use Eq. 6.32, represented in Eq. 7.38, to obtain the analytical solution.

p =
qµ

2πh (kxky)
1/2

(ρe − ρ) , (7.38)

where

ρe = tanh−1

(

l

w

√

ky
kx

)

. (7.39)

However, this solution considers an elliptical boundary with zero pressure. The cases shown

in Fig. 7.7 have rectangular boundaries. To have a more accurate discrete solution, we add

16 cells around the hybrid grid cells, shown in light green in Fig. 7.8. The outer boundaries

of these cells are specified in such a way that all vertices are located on the outer elliptical

boundary given by Eq. 6.12. To implement the zero pressure on the boundary, we follow the

procedure presented in section 6.1.1, where we use imaginary cells around the boundary.

 

 

Figure 7.8: A hybrid grid refinement with 16 divisions in the θ direction with the modified
boundary.

To investigate the convergence behavior of the L-method for the grid refinement

system, we compute the normalized discrete L2 norm of the pressure error, which is defined
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by Eq. 6.34 and represented as follows:

e =

(

1

A

N
∑

i=1

Ai(pex,i − pi)
2

)1/2

, (7.40)

where, N is the number of cells, Ai is the area of cell i, A =
∑

i Ai and pex,i is the pressure

evaluated analytically from Eq. 7.38 at the same position as the center of the cell i, where

we compute pi numerically.

Fig. 7.9 shows the convergence behaviour of the L-method with the aspect ratios of

1, 2, 4 and 10. In Fig. 7.9a, the convergence rate of the cases with the permeability ratio

of 1 and 5 are close to O(h2) and the case with the permeability ratio of 100 does not

convergence. We see a similar behavior in the discrete L2 norm of the pressure error as we

saw in Figs. 6.3 and 6.4, where considering only the polygonal grid in the well gridblock.

However, for this hybrid grid system, as the permeability ratio gets far from the ideal value,

kx/ky = (∆x/∆y)2, the convergence rate diverges faster from the O(h2), compared to the

case in section 6.1.3, where we only consider the polygonal part of the grid system.

A case with a given aspect ratio has the ideal permeability ratio, if

R ≡ ∆x

∆y

√

ky
kx

= 1. (7.41)

The ideal permeability ratios (where R = 1) of the two cases shown in Figs. 7.9a

and 7.9d, are 1 and 100 respectively. The case with ∆x/∆y = 100 and kx/ky = 1 in

Fig. 7.9a and the case with ∆x/∆y = 1 and kx/ky = 10 in Fig. 7.9d have the same R = 10.

However, the first case has a better convergence behavior compared to the other case. We

showed before in Fig. 5.13 that as we increase the aspect ratio from 1 to 5, the permeability

range where the L-method is guaranteed to be monotone increases from (1-5) to (6-¿100).

7.3 Numerical Tests for the L-method

We conduct similar tests presented in Chapter 6, on the hybrid grid refinement system.

Here, 16 equal point sources are located in the grid cells of the first ring and zero Dirichlet
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(a) Aspect ratio 1 (b) Aspect ratio 2

(c) Aspect ratio 4 (d) Aspect ratio 10
 

𝑘𝑘 =         𝑘𝑘 = 5        𝑘𝑘 = 5         𝑘𝑘 =         
Figure 7.9: Convergence behaviour of the L-method, for various values of aspect ratio
(∆x/∆y) and permeability ratio (kx/ky).

boundary conditions are imposed on the elliptical shaped boundary. Red dashed lines in

Fig. 7.10 specify 16 paths emanating from the center of the inner ring of gridblocks where

the sources are located. We use these paths to show how the pressure changes as the distance

from the well changes. Ideally, these paths for an isotropic medium should be a set of straight

lines from the center to the boundary, but this is not possible in the Cartesian refinement

region, because, the paths need to go through the grid points where the pressure solution

is obtained. Otherwise, it is possible that a path goes from a point with a lower pressure

to a point with a higher pressure as we get far from the well, which means pressure curves
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can have local minima or maxima, while the pressure solution is monotone and we don’t

expect to see any oscillation in the pressure solution. For cases with low heterogeneity, these

paths can be chosen in such a way that regardless of the permeability ratio, they represent

the pressure behavior around the well correctly. Considering the well location as the origin,

the plane is divided into four quadrants by the coordinate axes, as shown in Fig. 7.10. If

permeability is defined along the grid block axes, as long as the slope of the line segments in

quadrants 1 and 3 are positive and in quadrants 2 and 4 are negative, the paths represent the

pressure behavior correctly. This is due to the fact that in quadrants 1 and 3, the tangent at

any point on any elliptical equipotential is negative, which means as long as the line segment

is positive, pressure decreases along the line segment.

We plot the pressure of grid cells versus the distance from the well on a semi-log

graph. For heterogeneous media, we assume that log(kx) of each refined grid cell varies

randomly based on a Gaussian distribution with the mean of 6 and the standard deviation

of 1.6. Fig. 7.11 shows the pressure solutions for grid cells with the aspect ratio ∆x/∆y = 1

and the geometric ratio ri+1/2/ri−1/2 = 1.3 with different permeability ratios.

In Figs. 7.11a and 7.12c pressures at different points where have the same distance

from the center are equal. However, for cases with a high permeability ratio and low aspect

ratio, i.e., when (∆x/∆y)
√

ky/kx is not close to unity, small oscillations can be seen close to

the well and a one to the boundary, as shown in Figs. 7.11f and 7.12f. In Figs. 7.11c, 7.11e

and 7.12e, even with a high permeability ratio, no oscillation appears in the near-well region,

but we see negative potentials close to the boundaries. Results of similar cases with hetero-

geneities show potential oscillations close to the well region; see Figs. 7.11d, 7.11f and 7.12f.

Comparing these results with the results shown in Fig. 6.5, we see similar pressure behav-

iors, except in regions close to the boundary. This is due to the paths we have chosen for

each curve; see Fig. 7.8. Fig. 7.12 shows the pressure solutions behaviors for grid cells with

the aspect ratio ∆x/∆y = 3 and the geometric ratio ri+1/2/ri−1/2 = 1.3. These results are

similar to the results from the polygon part of the grid refinement system, shown in Fig. 6.6.

In Fig. 7.13, we modify the aspect ratio so that
√

kx/ky = ∆x/∆y, and then the pressure
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solutions show no non-physical oscillations.

 

 

Quadrant 1 Quadrant 2 

Quadrant 3 Quadrant 4 

Figure 7.10: The hybrid grid system with paths emanating from the center.
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(a) Homogeneous, kx/ky = 1
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(b) Heterogeneous, kx/ky = 1

10
−1

10
0

10
1

10
2

10
3

−0.5

0

0.5

1

1.5

P
re

s
s
u
re

Distance

(c) Homogeneous, kx/ky = 20

10
−1

10
0

10
1

10
2

10
3

−0.5

0

0.5

1

1.5

P
re

s
s
u
re

Distance

(d) Heterogeneous, kx/ky = 20

10
−1

10
0

10
1

10
2

10
3

−0.1

0

0.1

0.2

0.3

0.4

P
re

s
s
u
re

Distance

(e) Homogeneous, kx/ky = 100

10
−1

10
0

10
1

10
2

10
3

−0.1

0

0.1

0.2

0.3

P
re

s
s
u
re

Distance

(f) Heterogeneous, kx/ky = 100

Figure 7.11: Pressure solutions for grid cells with the aspect ratio ∆x/∆y = 1 and a geo-
metric ratio of α = ri+1/2/ri−1/2 = 1.3.
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Figure 7.12: Pressure solutions for grid cells with the aspect ratio ∆x/∆y = 3 and a geo-
metric ratio of α = ri+1/2/ri−1/2 = 1.3.
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Figure 7.13: Pressure solutions for grid cells of a heterogenous medium and the geometric
ratio of 1.3,

√

kx/ky = ∆x/∆y.
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CHAPTER 8

GRID REFINEMENT ACCURACY IN WELL TESTING

8.1 Single Phase Production-Buildup

In this section, we analyze the accuracy of the proposed grid refinement method

(Fig. 3.2) using a well testing example for a bounded, single-phase oil reservoir. The case

pertains to a 19,000 ft× 10,250 ft× 100 ft reservoir with a Cartesian 19 × 41 × 5 uniform

grid. A horizontal well of half length lw = 1000 ft in the x-direction and the radius of

0.5 ft is perforated in grid cells (10, 21, 3) and (11, 21, 3). The well gridblocks are refined

into 15 hexadecagonal grids in the radial direction with 16 divisions in the angular direction.

Note that this refinement is in the y-z plane for the horizontal well case. The initial reservoir

pressure is 2000 psi and initial water saturation is equal to irreducible water saturation given

by Siw = 0.2. The reservoir fluid is a mixture of four components with 10% carbon dioxide

(CO2), 10% methane (C1), 40% propane (C3) and 40% normal butane (nC4). The well is

set to a constant liquid production rate of qB = 20, 000 RB/day for 10 days followed by a

two day pressure buildup test. The reservoir fluid stays single-phase liquid during the test.

The case under study is a homogeneous reservoir with porosity 0.2 and kx = ky = 500 md

and kz = 50 md.

∆p curve is a log-log plot of ∆p which is the difference between the initial reservoir

pressure and the bottom hole pressure at the same datum, versus the flowing time. The

d∆p/d ln t curve is the derivative of the pressure drop with respect to the natural logarithm

of time. Following D. Bourdet et al. [10], it is calculated numerically as follows:

(

d∆p

d ln t

)

i

=
ti

ti+1 − ti−1

(

∆pi −∆pi−1

ti − ti−1

(ti+1 − ti) +
∆pi+1 −∆pi
ti+1 − ti

(ti − ti−1)

)

. (8.1)
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In the diagnostic plot of buildup data, we plot ∆p = pws(∆t)− pwf,s and d∆p/d ln te versus

shut-in time ∆t. Here, te is Agarwal’s equivalent time defined by te = (t∆t)/(t+∆t), where

t is the producing time. Throughout, pws(∆t) denotes the shut-in pressure as a function of

shut-in time, ∆t, and pwf,s denotes the pressure at the instant of shut-in.

PA. Goode et al. [21] and A. S. Odeh et al. [32] proposed that four transient flow

regimes can be observed in the pressure response of horizontal wells acting in finite reservoirs,

including early radial flow, early linear flow, late pseudo-radial flow and late linear flow. After

the last transient flow time period, a pseudo-steady state regime can be observed. S. Al-

Rbeawi et al. [7] showed that these five regimes, are expected to develop on a drawdown

test of sufficient lengths if

0.1 <
Lw

xe

< 0.5, (8.2)

0.1 <
Lw

ye

√

ky
kx

< 0.5, (8.3)

and

Lw

h

√

kz
kx

≤ 20. (8.4)

Here, Lw is half length of the horizontal well, xe is half the distance to the boundary in the

x direction, ye is half the distance to the boundary in the y direction, h is the formation

thickness, and the horizontal well is in the x direction. In this example (Lw = 1000 ft,

xe = 9500 ft, ye = 5, 125 ft), Lw

xe
= 0.105, Lw

ye

√

ky
kx

= 0.195, and Lw

h

√

kz
kx

= 3.162. Since these

values satisfy Eqs. 8.2, 8.3 and 8.4, we expect to observe all five regimes. Fig. 8.1 shows the

log-log diagnostic plot of drawdown and buildup data.

All five flow regimes can be seen in the pressure derivative of drawdown data shown

in Fig. 8.1, but because of producing time effect, only the first radial and first linear flow

regimes are seen on the diagnostic plot of buildup data. PA Goode et al. [21] and A.S.

Odeh[32] developed a set of equations to calculate the permeability values and the distance

to the boundaries in the x-direction. We use the slope of ∆p vs. t in a log-log plot during
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Figure 8.1: Log-log diagnostic plot of drawdown (left) and buildup (right) data.

the early radial flow regime to calculate:

√

kzky =
70.6qµoB

kro(Siw)mL
, (8.5)

where m is the value of pressure derivative during the early radial flow regime and L is length

of the horizontal well. From the simulation results, µo = 0.121 cp and kro(Siw) = 0.8 and

from the pressure derivative of drawdown data during the first radial flow regime shown in

Fig. 8.1, m = 0.67. Thus, Eq. 8.5 gives
√

kzky = 159.4 md, as opposed to the true value of
√

kzky = 158.1 md.

Note that Fig. 8.1 indicates the first linear flow exists for 0.04 < t < 0.4 or equivalently

0.2 <
√
t < 0.63. We use the slope of ∆p vs.

√
t on the Cartesian plot of Fig. 8.2 during the

early linear flow regime to calculate ky as follows:

√

ky =
8.128qB

mLh

√

µo

kro(Siw)φct
. (8.6)

From the simulation results, ct = 1.1 × 10−5 1/psi and from the slope of ∆p vs.
√
t during

the early linear flow in Fig. 8.2, m=9.5. Then, ky = 503 md, and since we estimated
√

kzky = 159.4 md, kz = 50.8 md, as opposed to the true value of kz = 50 md.
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The slope of ∆p vs. t in a log-log plot during the pseudo-radial flow regime gives

√

kxky =
70.6qµoB

kromh
, (8.7)

where m is the value of pressure derivative during the pseudo-radial flow regime. From

the pressure derivative of drawdown data during the pseudo-radial flow shown in Fig. 8.1,

m = 4.0. Then,
√

kxky = 498 md. From the previous part, we estimated ky = 503 md, then,

kx = 493 md, as opposed to its true value of kx = 500 md.

From the log-log diagnostic plot of drawdown data in Fig. 8.1 that the second linear

flow period occurs for 36 < t < 100 or equivalently 6 <
√
t < 10 or more precisely for

6 <
√
t < 10

√
hr, as shown in the ∆p versus

√
t plot of Fig. 8.2. To calculate the distance

from the well to the boundaries in the x-direction, A.S. Odeh [32], we use

xe =
8.128qB

2hm

√

µo

kykroφct
, (8.8)

where, the slope of ∆p vs.
√
t during the late linear flow, obtained from Fig. 8.2, is equal

1.05. Then, Eq. 8.8 gives xe = 9, 077 ft, where as the true value of xe is 9,500 ft.

8.1.1 Validation with an Analytical Solution

To validate the well testing results of this example, we use the analytical solutions

given by Kuchuk et al. [29]. The implementation of the analytical solutions we use here

can treat both vertical and horizontal wells producing in an infinite transversely isotropic

reservoir with closed top and bottom boundaries. However, the case in this example is a

finite reservoir. We modify the boundaries of the case in the x and y directions by increasing

the number of cells in the two directions, so that during the 10 days production and 2 days

buildup, the reservoir acts as an infinite isotropic reservoir. The case pertains to a 29,000 ft×

30,250 ft× 100 ft reservoir with a Cartesian 29×121×5 uniform grid. Fluid properties, initial

conditions and other properties of the reservoir are the same as in the preceding example.

Fig. 8.3 compares the log-log diagnostic plot of drawdown and buildup data computed from
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Figure 8.2: Complete drawdown period.

the results of our compositional simulator (CS) and the analytical solution. The pressure

and pressure derivative in the both drawdown and buildup periods indicate that the results

from our simulator and the analytical solution are in good agreement.
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Figure 8.3: Log-log diagnostic plot of drawdown (left) and buildup (right) data.

8.2 Violation of Monotonicity

In the first example in section 8.1, the permeability ratio in the plane perpendicular

to the well direction, ky/kz, is 10. For this example, the aspect ratio is ∆y/∆z = 12.5 and
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the geometric ratio is 1.45, so the parameters do not fall within the monotonicity range given

by Fig. 5.16. (In order to be in the monotonicity region, with the geometric ratio of 1.45,

the results of Fig. 5.16 indicates that ∆y/∆z should be between 0.15 and 6.5). However, the

well-testing analysis gives accurate results without any oscillation in the pressure or pressure

derivative. Also note that for a horizontal well we define

R ≡ ∆z

∆y

√

ky
kz

. (8.9)

and for the example, R = 0.25.

In the second test, we increase the aspect ratio to 50 by decreasing the number of

cells in the y-direction to 11. Fig. 8.4 shows the log-log diagnostic plot of drawdown and

buildup data. Since the second test has the same reservoir properties and the production
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Figure 8.4: Log-log diagnostic plot of drawdown (left) and buildup (right) data.

rate as the first test, we expect to see the same welltesting results. Although, the well flowing

pressure response from test 2 looks visually identical to the one from test 1, the pressure

derivative curve during the drawdown period shows oscillations from 10 minutes onward.

Although oscillatory behavior in the pressure derivative curve does not imply oscillations in

the wellbore pressure, a further investigation revealed that there are nonphysical fluctuations

in the grid cell pressures for the polygonal grid around the wellbore.

8.3 Injection-Falloff
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We consider a reservoir with 500 ft length, 9150 ft width and 350 ft thickness. This

model consists of a 5×61×7 grid with a horizontal well located in the center of the reservoir

and parallel to the shorter side, i.e., in the x-direction. The hexadecagonal grid structure is

used to refine the grid cells intersected by the well. The length of the well is equal to the

length of the reservoir in the x-direction, so the only flow regimes possible are early radial,

linear and pseudo-steady state. The skin factor is set equal to zero. Lee-Eakin (LE) is used

as the viscosity model and non-Darcy flow is not considered. the reservoir fluid at initial

conditions is liquid. The initial reservoir pressure at the reference depth (7067.5 ft) is 5500

psi, the average initial water saturation is equal to irreducible water saturation given by

Siw = 0.2 and the reservoir fluid is a mixture of ten components listed in Table 8.1.

Table 8.1: The initial reservoir fluid composition at the reference depth.

Component Mole Percent Component Mole Percent
N2 1.0194 CO2 0.2302
C1 54.8065 C2 8.2977
C3 4.4832 IC4 0.9975
NC4 2.2909 IC5 0.8440
NC5 1.2606 C6+ 25.7700

The reservoir fluid is liquid throughout the simulation. The case under study is

divided into seven homogeneous layers with equal thicknesses (50 ft), porosity (0.2) and

permeability values (100 md in the x and y directions and 10 md in the z-direction).

8.3.1 Single Phase Oil Injection

To investigate the flow regimes in a single phase fluid system, we inject oil with the

same composition as the reservoir fluid, with the specified rate of qB = 10, 000 RB/day for

five days followed by a two-day pressure fall-off test. Fig. 8.5 shows the log-log diagnostic

plot of oil injection and fall-off pressure data. The three flow regimes, early radial, linear and

pseudo-steady state can be observed in the diagnostic plot of the injection period. We use

Eq. 8.5 during the radial flow regime to estimate
√

kykz. Here m, the slope of ∆p vs. t in

the log-log plot, is 15.9, µo = 0.286 and kro(Swi) = 0.8. Then, Eq. 8.5 gives
√

kykz = 31.55

md, where as the true value is 31.62 md.
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Figure 8.5: Log-log diagnostic plot of oil injection (left) and falloff (right) data, oil injection
into an oil reservoir.

From the simulation results, the total compressibility is 0.73× 10−5 1/psi. Similar to

the first example, using the slope of ∆p vs.
√
t in Fig. 8.6 during the linear flow (m = 23.14)

and Eq. 8.6, we obtain ky = 98.65 md as opposed to the true value of ky = 100 md.
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Figure 8.6: Complete oil injection period.
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8.3.2 Water Injection

In this case, water is injected with the specified rate of 10,000 RB/day for five days

followed by a two days pressure fall-off. Fig. 8.7 shows the log-log diagnostic plot of water

injection and fall-off data. The first horizontal dashed line from the left, in the injection
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Figure 8.7: Log-log diagnostic plot of water injection (left) and falloff (right) data.

diagnostic plot in Fig. 8.7, represents the value of the pressure derivative calculated from the

mobility of oil and the second horizontal line shows the pressure derivative calculated from

the water mobility. From Fig. 8.7, the slope of the first horizontal dashed line is m1 = 14.7

and the slope of the second horizontal line is m2 = 22. Using the following equation:

λt

√

kxky =
70.6qB

mh
, (8.10)

if m = m1 = 14.7 and λt = λo = 2.97 1/cp, we estimate
√

kykz = 32.34 md and if

m = m2 = 22 and λt = λw = 2.06 1/cp,
√

kykz = 31.15 md. The true value of
√

kykz = 31.62

md.

In the fall-off plot, the first horizontal dashed line represents the value of the pressure

derivative calculated from the mobility of water and the second horizontal line represents the

value of the pressure derivative calculated from the mobility of oil. The dashed line with the

half slope in the both injection and fall-off plots, represents the linear flow in the y-direction.
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Figure 8.8: Complete water injection period.

We use the slope of ∆p vs.
√
t in Fig. 8.8 during the linear flow and the true value

of ky, to compute the total mobility as follows:

√

λt =
8.128qB

mLh

√

1

kyφct
. (8.11)

Here the slope of ∆p vs.
√
t is m = 24.27 and the total compressibility is ct = 0.64 × 10−5

1/psi. Using Eq. 8.11, the total mobility is 2.81 1/cp. Note that the mobility values of oil

and water are respectively equal to 2.97 1/cp and 2.06 1/cp.

As we can see in Fig. 8.7, a hump appears in the pressure derivative of injection data

between 0.01 and 1 hours. Since we do not see a similar behaviour in the fall-off results, this

hump is unlikely to be due to any inconsistency in transmissibility calculations. In order to

investigate the behaviour, we plot the total mobility of the cells in the first ring around the

well as a function of time (Fig. 8.9). As we compare this figure with the pressure derivative

results of the injection data, it is clear that the hump in the derivative of injection data is
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due to the varying total mobility in the first gridblock.

0

0.5

1

1.5

2

2.5

3

0.001 0.01 0.1 1 10 100

To
ta

l 
M

o
b

il
it

y
 (

1
/c

p
) 

Time (hr) 

Figure 8.9: Total mobility value of the cells in the first ring around the well as a function of
injection time.

8.3.3 Effect of Near-Well Cells

To remove the effect of total mobility in the first gridblock on the pressure derivative

plot, we decrease the size of the grids around the well. In this case, the radius of the first

16 grid cells around the well, r1, is reduced from 2 ft to 0.65 ft. The number of grids in the

radial direction is increased from 20 to 40. Fig. 8.10 shows the resulting log-log diagnostic

plot of water injection and fall-off data. By decreasing the radius of the first 16 grid cells,

the hump moves to very early times and the early radial regime represents the oil mobility.

Note that the size of near-well grid cells does not affect the two radial regimes in the fall-off

period and we can see both radial regimes due to the oil and water mobilities, i.e., the log-log

diagnostic plots of fall-off data in Figs. 8.7 and 8.10 are identical.

8.3.4 CO2 Injection

Consider the same reservoir as in water injection fall-off example. CO2 gas, with
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Figure 8.10: Log-log diagnostic plot of water injection (left) and falloff (right) data.

the same temperature as the reservoir temperature (100◦ F), is injected with the specified

rate of 100,000 Mscf/day for five days followed by a two days pressure fall-off. Fig. 8.11

shows the pseudo-pressure diagnostic plot of CO2 injection and fall-off data. Since CO2 gas

is injected into a single phase liquid reservoir, we use the CO2 properties to compute the

pseudo-pressure as follows:

m(p) = 2

∫ p

pb

p′

µz
dp′, (8.12)

where pb is an arbitrary base pressure in psi, µ is the gas viscosity in cp and the pseudo-

pressure m(p) is in psi2/cp. However, we do not know how pseudo pressure should be

defined for this two-phase problem. The pressure derivative of the injection data is slightly

oscillatory between 0.05 and 2 hours. However, these oscillations are not significant and the

pressure derivative curve can be analysed without further smoothing. The falloff derivative

is relatively smooth.

Assuming no skin, we conjecture the pseudo-pressure drop at the horizontal wellbore,

for an injection test during early-radial flow

∆m(p) = m(pwf )−m(pi) =
1637qscT

kgLw

log

(

4tD
eγ

)

, (8.13)
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Figure 8.11: Log-log diagnostic plot of CO2 injection (left) and falloff (right) data.

where qsc is the injection rate of CO2 in Mscf/day, T is the reservoir temperature in degree

Rankine, kg =
√

kykzkrg(1 − Sor) is the gas permeability in md, Lw is the wellbore length

in ft, γ = 0.5772 is Euler’s constant and tD is the dimensionless time which is given by

tD =
2.637× 104kg(1− Sor)t

µictiφr
2
w

, (8.14)

where t is the injection time in hrs, µi is the initial viscosity of CO2 in cp and cti is the total

compressibility at initial pressure in 1/psi. We use the slope of ∆m(p) vs. t in a semi-log

plot during the early radial flow regime to compute the gas permeability as follows:

kg =
1637qscT

mLw

. (8.15)

From Fig. 8.12, the slope of the semi-log line m = 7.6 × 106. In this example, the reservoir

temperature is 100◦ F, qsc = 100 Mscf/day and the wellbore length is 500 ft. Then, kg = 24.1

md, where as krg(Sg = 1− Sor) = 0.7, so the true value of
√

kykz = 31.6 md.

8.3.5 Violation of Sufficient Monotonicity Criteria

Considering the grid geometry and the permeability ratio of the case under study in

section 3.2, so the L-method satisfies the sufficient monotonicity criteria. We increase the
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Figure 8.12: Semi-log plot - CO2 injection.

number of cells in the y-direction to 549, so the parameters do not fall within the monotonic-

ity range ((∆z/∆y)
√

ky/kz = 9), which from Fig. 5.16 requires that (∆z/∆y)
√

ky/kz < 2.19.

We rerun the three cases, oil, water and CO2 injections with the new grid system. The log-

log diagnostic plots of the oil and water injections are almost identical to the ones in the

preceding example, shown in Figs. 8.5 and 8.10. However, for the modified CO2 injection

case the reservoir simulator did not converge after 0.02 hours. We rerun the CO2 injection

case with fewer cells in the y-direction. Fig. 8.13 shows the injection and fall-off data plots for

a case with the aspect ratio of ∆y/∆z = 1. So that (∆z/∆y)
√

ky/kz = 3 and referring back

to Fig. 5.16a, the parameters are still out of the monotonicity region. The pseudo-pressure

derivative of the CO2 injection data is comparable with the one in Fig. 8.11, but after 0.05

hours becomes noisy.
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Figure 8.13: Log-log diagnostic plot of CO2 injection (left) and falloff (right) data.
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CHAPTER 9

SUMMARY AND CONCLUSIONS

In this work, we developed a new near-well grid refinement within a base coarse

Cartesian grid system in order to obtain a reservoir simulator that yields solutions suffi-

ciently accurate for well-testing purposes. Each base rectangular gridblock, penetrated by

a horizontal or vertical well, is refined into a set of irregular hexadecagons and the area be-

tween each two adjacent hexadecagons is divided into 16 trapezoidal grids. Each rectangular

gridblock adjacent to a well gridblcok is refined into a set of rectangular grids. The structure

of hexadcagonal grids is adjusted based on the near-well elliptical flow pattern to simulate

the flow behavior more accurately. The grid is able to accurately reflects radial or elliptical

flow in the near wellbore without causing the inconsistency in the pressure solutions that

occurs when an r-θ refinement in the well gridblock is employed.

We provided sufficient monotonicity conditions for the MPFA methods for our hex-

adecagonal based gridding scheme for both the O and L methods. We investigated the

monotonicity regions of the L-method as functions of permeability anisotropy and grid ge-

ometry properties, including the aspect ratio.

Given any aspect ratio, the L-method satisfies the sufficient monotonicity condi-

tions for a wide range of the geometric and permeability ratios than does the O-method.

The largest range of geometric values for which the monotonicity holds is obtained when

(∆y/∆x)
√

kx/ky (vertical well) or (∆y/∆z)
√

kz/ky (horizontal well) is equal to unity, when

the axis of the horizontal well is always parallel to the x-axis.

For any aspect ratio, the geometric ratio of 1.4 has the largest monotonicity range,

when there is no skin zone, but the presence of a skin zone causes a slight increase in the

optimal value of the geometric ratio.
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The skin zone around the well decreases the monotonicity regions for MPFA method,

including the L-method. However, the skin zone does not have a significant effect on the

monotonicity regions when the aspect ratio is close to the square root of permeability ratio.

Our numerical results showed that if a case is out of the monotonicity region but not

far from the region, solutions show no non-physical behavior, i.e., exhibit the behavior of a

monotone scheme.

By comparing results from our simulator with results based on an analytical solution

for horizontal well, we show that our simulator can yield sufficiently accurate solutions so

that the simulator based on MPFA can be used as a forward model when analyzing well-test

pressure data by nonlinear regression analysis.
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APPENDIX A

SOLUTION ON LAPLACE’S EQUATION

Since we assume that the fluid is incompressible, the flow across any circumference is

constant. We integrate the normal velocity around an elliptical isobar to determine the flow

rate. Following [34],

q = −h

∫

ρ

(v · n) ds, (A.1)

where, h is the reservoir thickness, v is the fluid velocity, n is the unit normal to the ellipse

and s is the arc length around the ellipse. Here, n and s are in the x-y plane. ρ for each

ellipse is constant, then,

q = −h

∫ 2π

0

(v · n)
(

∂s

∂θ

)

ρ

dθ. (A.2)

If we define β as the angle between vector n and the x-axis, then n = [cos β, sin β], and

v · n = vx cos β + vy sin β, (A.3)

We compute vx and vy using Darcy’s Law, as follows:

vx = −kx
µ

(

∂p

∂x

)

y

, (A.4)

where,
(

∂p

∂x

)

y

=

(

∂p

∂ρ

)

θ

(

∂ρ

∂x

)

y

+

(

∂p

∂θ

)

ρ

(

∂θ

∂x

)

y

(A.5)

From Eq. 6.30, (∂p/∂ρ)θ = C and since pressure on each ellipse is constant, (∂p/∂θ)ρ = 0.

We substitute Eqs. 6.22 and 6.23 into Pythagorean trigonometric identity and combine it
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with Eqs 6.15 and 6.16 to have:

x2(ky/kx)
1/2

b2 sinh2 ρ
+

y2(kx/ky)
1/2

b2 cosh2 ρ
= 1. (A.6)

By differentiating both sides of the equation with respect to x, we have:

√

ky
kx

x sinh ρ− x2 cosh ρ(∂ρ/∂x)y

sinh4 ρ
−
√

kx
ky

y2 cosh ρ(∂ρ/∂x)y

cosh4 ρ
= 0, (A.7)

and it would simplified to
(

∂ρ

∂x

)

y

=
x

x2 cosh ρ
sinh ρ

+ kx
ky

y2 sinh3 ρ
cosh3 ρ

. (A.8)

After Eqs. 6.15, 6.16, 6.22 and 6.23 are inserted into Eq. A.8, we get

(

∂ρ

∂x

)

y

=
1

b

(ky/kx)
1/4 cosh ρ sin θ

sin2 θ + sinh2 ρ
. (A.9)

By substituting Eqs. A.5 and A.9 into Eq. A.4, we get

vx = −Ckx
µb

(ky/kx)
1/4 cosh ρ sin θ

sinh2 ρ+ sin2 θ
(A.10)

and similarly,

vy = −Cky
µb

(kx/ky)
1/4 sinh ρ cos θ

cosh2 ρ− cos2 θ
(A.11)

We compute β from the following equation.

tan β = −
(

∂x

∂y

)

ρ

= −
(

∂x

∂θ

)

ρ

/

(

∂y

∂θ

)

ρ

, (A.12)

where, from Eqs. 6.15 and 6.22,

(

∂x

∂θ

)

ρ

=
dx

du

(

∂u

∂θ

)

ρ

= (kx/ky)
1/4 b sinh ρ cos θ, (A.13)
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and, from Eqs. 6.16 and 6.23,

(

∂y

∂θ

)

ρ

=
dy

dv

(

∂v

∂θ

)

ρ

= − (ky/kx)
1/4 b cosh ρ sin θ. (A.14)

So, substitution of Eqs. A.13 and A.14 into Eq. A.12 yield

tan β = −
(

kx
ky

)1/2
tanh ρ

tan θ
. (A.15)

Substitution of expressions for vx, vy and β into Eq. A.3 then gives

v · n =
(kxky)

3/4C/µb

(ky cosh
2 ρ sin2 θ + kx sinh

2 ρ cos2 θ)1/2
(A.16)

(

∂s
∂θ

)

ρ
can be written as

(

∂s

∂θ

)

ρ

=

√

(

∂x

∂θ

)2

ρ

+

(

∂y

∂θ

)2

ρ

, (A.17)

and substitution of Eqs. A.13 and A.14 gives

(

∂s

∂θ

)

ρ

= b

√

(kx/ky)
1/2 sinh2 ρ cos2 θ + (ky/kx)

1/2 cosh2 ρ sin2 θ, (A.18)

By combining Eqs. A.16 and A.18, we have

(v · n)
(

∂s

∂θ

)

ρ

=
C(kxky)

1/2

µ
. (A.19)

Finally,

q =
2πh(kxky)

1/2C

µ
. (A.20)

So,

C =
qµ

2πh(kxky)1/2
. (A.21)
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