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ABSTRACT

Ranran Lu (Doctor of Philosophy in Petroleum Engineering)

Oil Field Development Optimization Under Geological Uncertainty

Directed by Albert C. Reynolds Jr.

227 pp., Chapter 6: Discussions and Conclusions

(451 words)

Field development optimization is a critical part of the decision making process for

reservoir management. Many researchers have studied individual parts of this optimiza-

tion process, where the two most typical problems are the well control optimization and

well placement optimization where the number, types and drilling orders of the wells to be

drilled are assumed to be known which is not the case most of the time; hence, there is a

strong need to do research on the full field development optimization problem where the

number of wells, their types, drilling sequences, locations and control settings are considered

as optimization (design) variables. The full field development optimization problem is a

mixed integer problem. Common mathematical optimization algorithms, e.g. branch and

bound, for solving mixed integer problems are too computationally intensive to apply to field

optimization because each iteration of an optimization requires at least one run of a reservoir

simulation to evaluate the cost function, which in this work is represented by the net present

value (NPV) of production over the life of the reservoir. The full field development prob-

lem becomes even more computationally intensive when one considers geological uncertainty

where one generally performs robust optimization to maximize the average NPV of life-cycle

production over a set of Ne plausible reservoir models representing geological uncertainty.

For robust optimization, one needs to perform at least Ne reservoir simulation runs at each

iv



iteration of an optimization algorithm. Moreover, when geological uncertainty is considered,

it may be desirable to conduct bi-objective optimization to minimize the downside risk.

This research focuses on proposing parameterizations for field optimization, and de-

veloping efficient methodologies to solve the field development optimization problem. The

focus is a sequential optimization as an alternative to simultaneous optimization. The prob-

lems considered include (i) selecting a fixed number of wells from a given set of potential

drilling paths and determining the well types (injectors or producers), drilling order and con-

trol settings, (ii) optimizing number of wells, types and locations followed by optimizing well

controls, (iii) robust optimization of the second problem where a set of realizations is used

to characterize the geological uncertainty, and (iv) bi-objective well placement optimization

where the first objective is to maximize the average NPV and the second is to maximize the

minimum NPV of a given set of realizations. The methodologies focus on hybridizing the

Genetic Algorithm (GA), the Stochastic Simplex Approximate Gradient method (StoSAG)

and the General Pattern Search (GPS) to handle different types of optimization variables

and to combine global search ability and local search ability. The validity of the proposed

methods are tested mainly on waterflooding examples, considering vertical wells, slanted

wells and multi-segment wells subjected to the nonlinear well spacing constraints.
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CHAPTER 1

INTRODUCTION

Closed-loop reservoir management (CLRM) is a general reservoir management frame-

work that consists of a loop of three sequentially performed inter-related tasks during the life

of a reservoir: data collection, history matching and optimization [36]. Fig. 1.1 presents the

schematic diagram of the CLRM framework. Relevant data, e.g., geological, seismic, well

logs and production data can be gathered via different surveillance operations. These data

can be assimilated to obtain a posterior reservoir model that better matches the data. The

importance of this step is that the new model is expected to have more accurate predictive

capability as well as reduce the uncertainty about the reservoir. Based on the calibrated

reservoir model, the most beneficial operating strategies can be devised using an optimiza-

tion algorithm. Typically, in CLRM, only the well control parameters of existing wells are

optimized, such as bottomhole pressures, production rates and valve settings.

Our focus in this work is on the optimization step of CLRM where the cost (objective)

function is the net present value (NPV) of production over the remaining life of the reservoir

(life-cycle optimization) and the design (optimization) variables may include well controls

(operating pressure or rates on specified time intervals or control step), well paths, well

drilling order, well type (injector or producer) and the number of wells. When the optimiza-

tion process includes some of the aforementioned key decision variables, it is referred to as

field development optimization, rather than simply production optimization. This problem

is essentially a mixed-integer problem determining high-dimensional variables which can be

either numerical or categorical, continuous or discrete. This research focuses on developing

suitable algorithms to solve the field development optimization and its sub-problems under

geological uncertainty.
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Figure 1.1: Schematic diagram of closed-loop field development management.

When geological uncertainty is considered, instead of a single reservoir model, a set

of models that are consistent with observed data, geological information and seismic inter-

pretation are obtained in the data assimilation process. Correspondingly, the optimization

process has to be adapted to improve the average reservoir performance such as the life-cycle

NPV over a set of reservoir models selected to represent the geological uncertainty, which is

commonly referred to as robust optimization. Note the average NPV of production over the

reservoir life is the standard estimation of expected value and we sometimes see the average

NPV referred to as the expected NPV and we may occasionally do so here. Although max-

imizing the average NPV of life-cycle production is important, the variance in the resulting

NPV’s of individual models at the computed optimal values of the design variables may be

large and in this case, there is considerable downside risk. To mitigate downside risk, one can

consider bi-objective optimization [22, 86, 20, 49, 50], or even multi-objective optimization

[48]. One common bi-objective optimization formulation is to consider the two conflicting

objectives of maximizing the expected value of the life-cycle NPV of production and max-

imizing the minimum value of the ensemble NPV’s [49, 50], and this is the bi-objective

optimization considered here.

1.1 Literature Review

Field development optimization is a critical part of the decision making process for a

reservoir. Many researchers have studied several individual parts, where the two most typical
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problems are the well control optimization in which the injection/production rate and/or the

bottomhole pressure of wells are optimized and well location optimization in which the well

locations and trajectories are optimized. Recently, there has been a growing interest in

solving the joint optimization problem of well locations and controls with both sequential

and simultaneous approaches. Some researchers also investigated on the field development

optimization problem using global search algorithms. Previous procedures in the literature

are discussed in this section according to their design parameters and algorithms applied.

The well control optimization problem has been studied extensively in previous liter-

ature, using both adjoint gradient-based method [42, 73] and stochastic methods, e.g. PSO

[84, 80], CMA-ES [25, 77], EnOpt [13], StoSAG [19, 24], SPSA [47], etc. The adjoint method

provides the most accurate gradient and is computationally the most efficient method when

the cost function is a differential function of the optimization variables which is the case

when the optimization variables are well controls, but is not the case when the optimization

variables are well types and number of wells. In addition to lack of differentiability issue,

the use of a gradient-based optimization algorithm is precluded if the reservoir simulator

used lacks the capability to compute all the gradient information needed which is often the

case. When the simulator can compute the needed gradient, one should use adjoint gradient

for well control optimization and to some extend for well placement optimization. Of these

two types of design variables, the use of adjoint gradient of the NPV with respect to the

well placement variables is more tenuous for two reasons. Firstly, unlike the well control

variables which explicitly affect the source/sink terms in reservoir simulation equations, the

well locations exert their effects on the well index which indirectly controls the value of

the source/sink terms. Secondly, the NPV function is rough and becomes non-differentiable

when part of a well path crosses a gridblock.

Despite the aforementioned obstacles, there has been attempts to use the adjoint

based techniques in the well placement optimization. Sarma et al. [74] considered to op-

timizing the well locations for fully-penetrating vertical wells under bottomhole pressure

control using the adjoint formulation. In their work, the discrete parameters ((i, j) well lo-
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cation indices) are replaced with their continuous counterparts in the spatial domain ((x, y)

well coordinates) and the discontinuous Dirac-delta function (defining wells as point sources)

in the underlying governing PDEs (reservoir simulation equations) is replaced with a continu-

ous function (a bivariate Gaussian function) of the defined well coordinates (x, y). With this

modification, the source/sink term becomes a continuous and differentiable function with re-

spect to the continuous well location variables which makes the adjoint formulation possible.

The discretization of the modified PDEs yields (additional) non-zero source/sink beyond the

original well blocks. The extent and total number of these additional terms are determined

by the size of the base of the approximating Gaussian function. In practice, the base is made

small enough so that the non-zero source/sink term (pseudo-wells) for gridblocks other than

the nearest ones are discarded. In their work, the NPV function is defined based on the

well terms for both the original and the additional perforated gridblocks. However, there is

an inconsistency when mapping the continuous source/sink back to point source/sink term

since they define similar but different dynamics and only keeping the nearest pseudo-wells

in the continuous source/sink term may underestimate the point source/sink term.

Forouzanfar and Reynolds [27] used an idea similar to that of Sarma et al. [74]

to smooth the objective functions for the placement of vertical, horizontal and deviated

wells operating at specified rates or bottomhole pressures. In their work, they perforate the

surrounding gridblocks of the well trajectory as well as the gridblocks actually penetrated

by the well. However, their representation is only an approximation since they assumed the

surrounding gridblocks and the actually penetrated gridblocks have (i) same well indices

(ii) same phase mobilities and (iii) same drawdown pressures. These assumptions are not

valid if there are abrupt changes in permeabilities, pressures and saturations between the

surrounding gridblocks and the actual penetrated gridblocks. They found that the NPV

obtained with wells under rate control is better estimated than those under bottomhole

pressure control. For rate-controlled wells, the total production rate remains constant while

for the bottomhole pressure controlled wells, the total production rate may be overestimated

due to the extra perforations in surrounding gridblocks. In their work, the well trajectories
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are parametrized as the coordinates of the perforation center (xw, yw, zw), the perforation

length (lw), the inclination angle (ϕ) and the azimuth angle (θ). Instead of using the adjoint

framework, they carried out the optimization using a derivative free method, i.e., Bound

Optimization by Quadratic Algorithm (BOBYQA) which does not require the NPV function

to be differentiable everywhere. One advantage of the BOBYQA is that it uses the reservoir

simulator as a “black box,” and hence can handle the economic and field operating constraints

(e.g., maximum water cut constraint) as reactive constraints in the reservoir simulator.

Volkov and Bellout [82] proposed an efficient approach to approximate the gradient

of the NPV term with respect to the well placement design parameters through the adjoint

framework using one forward run where the reservoir simulation is performed and the state

variables are saved and one backward run where the adjoint system is solved. At each step

of the backward simulation run, the adjoint system is formulated with the state variables

and solved with respect to the corresponding adjoint variables λ. The adjoint gradient for

the control variables are solved directly using Eq. 1.1.

∇uJ =
∂J

∂u
+ (

∂g

∂u
)Tλ, (1.1)

where u is the vector of well control variables, J is the objective function (e.g. the cumulative

oil production or the net present value of life-cycle production); g represents the nonlinear

residual equation at each gridblock of the reservoir; λ is the adjoint vector. Denote the vector

of well location variables as x. The gradient components corresponding to the well config-

uration variables are obtained by a finite difference scheme by perturbing each element xj

individually and evaluating the residual and NPV terms of the perturbed xj. Unlike analyt-

ical derivatives, finite difference may be able to capture the coarse-scale slope of the function

in the case of function roughness or discontinuities. However, the suitable perturbation size

is case-dependent, which means that parameter tuning has to be performed for each differ-

ent reservoir model considered and that the obtained perturbation ranges are assumed valid

for all feasible well configurations explored by the optimization procedure. In their work,
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they considered optimization of the placement of both vertical wells and slanted wells. Since

the (approximated) adjoint gradient can be obtained for both the control variables and well

configuration variables, this approach can handle simultaneous optimization of both terms.

They tested the simultaneous optimization on a 2D reservoir with 15 vertical wells under

rate control. They did not show the comparison between simultaneous optimization and se-

quential optimization using the adjoint framework. The well spacing constraints and signed

well-to-boundary distance constraints are considered where the derivative of the constraints

with respect to the well configuration variables are also obtained by finite difference.

Zandvliet et al. [87] placed eight “pseudo-wells” in the neighboring gridblocks around

each actual well. A pseudo-well is a well with a very low rate with negligible effect on the

reservoir’s overall performance. They used an adjoint method to calculate the gradients

of NPV with respect to the small flow rates prescribed for the pseudo-wells. The pseudo-

well that gives the largest gradient determines the location of the well in next iteration.

Vlemmix et al. [81] applied a similar concept to find the optimum well trajectory for a single

horizontal/deviated well. Their method includes creating “pseudo-side-tracks” from each

trajectory point. Each pseudo-side-track is assigned a very small perforation length that

makes their effect on the overall reservoir performance negligible. These side tracks are then

used to find the approximate gradient direction for each trajectory coordinate. A smoothing

step is needed after every update of the trajectory coordinates, to ensure the drillability of

the well (i.e., the curvature of the well trajectory has to stay below a maximum value allowed

by the directional drilling technology and equipment). However, this search direction is not

guaranteed to be uphill due to the following reasons: (i) the largest gradient of the NPV with

respect to the control settings of the pseudo-wells (pseudo-tracks) is not necessarily positive

(ii) the interactions between wells may counter the positive effect expected by increasing the

flow rates of each pseudo-well (pseudo-track) individually (iii) the decrease in the flow rate

of a main well may have a negative effect on the performance countering the positive effect

by increasing the flow rate of its best pseudo-well (pseudo-track). In both of their works,

only the well placement variables are optimized.
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Some researchers rephrased the well placement optimization problem as the well con-

trol optimization problem. Wang et al. [83] proposed to put a well in every gridblock and

optimize a modified objective function (NPV minus an approximation of the drilling cost

as a function of the injection rate) using the adjoint gradient in order to find the optimal

number of injectors, their locations and rates. In their work, for each well, when the injection

rate is zero, the approximate drilling cost becomes zero, and this well is eliminated; when

the injection rate is large enough, the approximated drilling cost equals the true drilling

cost and this well needs to be drilled. They also imposed a total injection rate constraint

which helps to eliminate unnecessary wells. However, it is challenging to find a suitable

approximation function for the drilling cost and to decide the total injection rate. Zhang et

al. [89] speeded up the algorithm proposed in [83] by eliminating more than one injectors

at each iteration. Forouzanfar and Reynolds [26] experimented with different approximation

functions of the drilling cost, proposed an heuristic initialization procedure to determine the

total injection rate and total production rate, and extended the method to the placement of

both injectors and producers. However, there is an inconsistency in their objective function

and the gradient calculation. The method used in [83], [89] and [26], is only applicable to

wells under rate control. Issues with the methodology are that (i) wells eliminated at the

current iteration may not be brought back in future iterations; (ii) an unnecessarily large

amount of wells may be obtained in the final solution which means the solution may be

somewhat suboptimal. Compared to the previously mentioned algorithms which also use

the adjoint framework, this method can optimize the number, type and control settings for

wells under total liquid rate control, as well as the well locations. However, their method

has only been applied to the placement of vertical wells with only one control step and it is

difficult to include the well trajectory parameters in the optimization process.

As the adjoint gradient is not generally available, some researchers used the stochastic

gradient to approximate the true gradient and thus calculate a search direction. Calculating

stochastic gradients does not require the objective function to be differentiable. Hence,

there is no need to smooth the objective function or to change the optimization variables
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to well control variables. However, the advantage of the stochastic gradient procedures

comes with the disadvantage that an approximate gradient generally reduces the overall

performance of the optimization algorithm. Common stochastic gradient-based methods

applied in well placement optimization include SPSA, EnOpt and StoSAG. Bangerth et

al. [5] applied an integer variant of the SPSA method to well placement optimization by

simply rounding the perturbation size and the step size to the nearest integers. In their

work, they considered the placement of 7 vertical wells for a 2D reservoir where the well

locations are represented by the (i, j) gridblock indices and compared the optimum results

obtained with SPSA, finite different method (FDM) and the very fast simulated annealing

(VFSA). They concluded that SPSA was more computationally efficient in finding good

locations than VFSA, while VFSA obtained good locations more reliably but with more

function evaluations than SPSA; the FDM is less reliable and requires more simulation runs

than both SPSA and FDM. Li et al. [47] combined the optimization of the placement of

vertical wells and their corresponding rates into a joint problem using a modified SPSA

algorithm. The total injection rate and total production rate are constrained to be equal

to 1 pore volume per year (linear constraints). In the modified SPSA, the perturbations to

the well location variables and well rates are randomly chosen from the full set of feasible

directions. For the well placement variables, at each iteration, a random neighbor of the

grid block is chosen and the NPV is evaluated for locating a vertical well in this gridblock

as well as in the gridblock in the opposite direction, and the well is then moved to the

grid block with the higher NPV. In this SPSA variant, the step size of the line search is

limited to a single grid block. Li et al. investigated the two common approaches for the joint

optimization of well locations and controls, which are namely the simultaneous and sequential

approaches. In the simultaneous approach, the vector of optimization variables includes

both the control variables and the well trajectory variables. In the sequential approach,

the well placement optimization is carried out first with the controls fixed at their initial

values, and then based on the optimal well locations obtained, the well control optimization is

carried out. According to their paper, simultaneous optimization for vertical wells under rate
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control outperformed sequential optimization for both deterministic and robust optimization

regarding the number of iterations and the optimum NPV’s obtained. They showed that

in robust optimization, using only a small random subset of model realizations resulted in

optimization results similar to those obtained when the entire ensemble of models is used.

Jesmani et al. [37] considered two well placement optimization problems where the location

of a vertical well is optimized in one problem and the trajectory for a horizontal well is

optimized in the other problem, using the original SPSA algorithm. They also investigated

an approach to handle geological uncertainty in [47]. Their results suggested that the robust

well placement optimization using randomly selected subset of realizations saves significant

computational time, while the optimum of the expected NPV remains almost the same as

in the case where all realizations are used. They also observed that the SPSA algorithm

is a local search method in which the performance is highly dependent on the initial well

configuration. Besides that, Jesmani et al. [37] considered well length constraints and the

inter-well distance constraint by combining the SPSA algorithm with the decoder method

and the projection method respectively; however, no conclusion of the performance of these

constraint handling methods have been drawn due to the limited trials.

Chen et al. [12] proposed the ensemble based optimization (EnOpt) for the robust

control optimization problem. In EnOpt, at each iteration, (i) for each realization, one per-

turbation vector is generated and the corresponding NPV is calculated for the perturbed

control vector, and (ii) the cross-covariance between the perturbed controls and NPV’s is

used as the search direction. Fonseca et al. [24] proposed a variant for robust control

optimization, i.e., StoSAG, in which the search direction is estimated as a stochastic approx-

imation of the simplex gradient. Fonseca et al. [24] theoretically show that when there is

a large variation in the ensemble of reservoir models, StoSAG provides a better approxima-

tion of the true gradient than EnOpt. They provide examples to illustrate this theoretical

result, i.e., they show, via computational experiments, that StoSAG generally yields a sig-

nificantly higher value of the life-cycle NPV for robust optimization than is achieved with

the standard EnOpt algorithm. Though both StoSAG and EnOpt are designed for robust
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optimization, i.e., optimization over an ensemble of reservoir realizations characterizing the

geological uncertainty, they can be readily adapted to deterministic optimization, see Do

and Reynolds [19]. Leeuwenburgh et al. [45] applied EnOpt to deterministic optimization

of vertical well placement in a 2D reservoir for up to 9 wells whose locations are represented

by the (x, y) coordinates. They concluded that EnOpt works well for the tested determin-

istic well placement problems. Zhang et al. [90] applied StoSAG to the deterministic well

placement and control optimization problem for a 3D channelized reservoir with 13 slanted

wells with water-alternating-gas/surfactant-alternating-gas flooding process. The well loca-

tions are represented as the (x, y, z) coordinates of the heel point and toe point of a well

in the reservoir. He concluded that StoSAG works well for both problems, however, simul-

taneous optimization did not outperform sequential optimization. Lu et al. [52] improved

the StoSAG search direction and proposed updating the well placement variables and the

control variables alternatively iteration by iteration, referred to as an iterative simultane-

ous procedure. Their results showed that the iterative simultaneous procedure outperforms

the sequential procedure for deterministic optimization, but these two procedures perform

similarly for robust optimization where 10 realizations are used to represent the geological

uncertainty. They also developed an efficient StoSAG gradient estimation for bi-objective

optimization where the two objectives are to maximize the expected NPV and minimize the

minimum NPV among all the realizations representing the geological uncertainty.

Some researchers ([31, 44]) reparameterized the categorical variables (to-drill or not-

to-drill, injector or producer, drilling order of wells) as continuous variables and carried out

optimization using a search direction estimated by stochastic gradients. Hanea et al. [31]

determined the well drilling order, types and times for converting a producer to an injector

under geological uncertainty using the Stochastic Simplex Approximate Gradient (StoSAG)

in a Quasi-Newton method. For the case of determining drilling order and well type for a

given set of well paths, each well is assigned one continuous priority variable (for drilling

order) and one continuous type variable. The larger the priority variable, the earlier the well

is drilled. The well is an injector if the type variable is greater than 0.5 and otherwise, the
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well is a producer. However, this procedure can be problematic as perturbing a continuous

priority or type variables may not change the actual drilling order or well type which then

leads to a low quality stochastic gradient, i.e., a poor search direction. In the extreme case

where the perturbation produces no change in drilling order and does not change the type

of even one well, the stochastic gradient would be zero even when the current estimate of

the optimization variables is far from optimum.

Evolutionary methods have also been tried for optimization problems like those con-

sidered in this work. The Genetic algorithm (GA) is one of the most popular methods in

well placement optimization. GA can be thought of as a self-adapting system. Bittencourt

and Horne [8] developed a hybrid GA and applied it to determine the best well locations

and trajectories for a real case of an offshore oil reservoir development project. In their

project, geological uncertainty is not considered; the total number and types of wells are

pre-specified; wells trajectories can only be vertical or horizontal and if horizontal, wells

can take any orientation in the oil zone; no restrictions concerning well spacing and injec-

tor/producer patterns are applied. Their work focuses on well placement optimization where

the control settings are pre-fixed. The chromosome is formulated as a binary string of the

head point coordinates (gridblock indicies), the trajectory type (vertical or horizontal) and

the orientation (8 directions) for 33 wells. The length of the well is not optimized either.

In the final solution, they found that about five wells were placed very close to injectors,

faults or even to other producers which can provide heuristic guidance for reducing the num-

ber of wells. Montes et al. [59] studied the effect of several GA parameters such as initial

population, population size, and mutation rate on optimizing the well locations for vertical

wells. These are important GA parameters that can directly affect the efficiency and relia-

bility of GA convergence to a result close to a global optimum. If these parameters are not

selected carefully, GA may require an unnecessary large number of reservoir simulations (for

fitness evaluation) or can get trapped around a local optimum. Montes et al. [59] tested

a deterministic layercake reservoir with 5 vertical wells where the (i, j) indicies are used

to describe well locations. Their results show that the initial population does not have a
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significant effect on the results. They also conclude that the general rule in GA literature

for the optimum population size (twice the number of bits used in a chromosome) applies

for their problem too. However, it is not clear that this conclusion applies when the number

of variables becomes very large. Their results are not conclusive about the mutation rate.

Yeten et al. [86] determined the optimal location and trajectory of a non-conventional well

(heel and toe point of the main bore, number of junctions and number of laterals emanating

from the same junction, lateral trajectory, the wellbore diameter and the total liquid produc-

tion rate) using the genetic algorithm with a binary encoding. In their work, the trajectory

of both the main bore and the laterals are described by the coordinates of the entry point

(hx, hy, hz), the length of the trajectory projected onto the x-y plane lxy, the orientation of

the well in the x-y plane θ, and the depth to the trajectory endpoint tz. Both deterministic

optimization and robust optimization are tested. In robust optimization, 10 realizations are

used represent the geological uncertainty and the objective function is defined as a weighted

sum of the average NPV and the standard deviation. In all their test cases, the maximum

number of junctions on the main bore is set to be 4 and maximum number of laterals ema-

nating from the same junction is set to 1. Emerick et al. [21] used the Genetic Algorithm for

Numerical Optimization of Constrained Problems (Genocop III) to determine the number,

types, locations and trajectories of slanted wells subject to various constraints for a deter-

ministic reservoir. In their work, the chromosome is composed of both binary variables (well

type, i.e., injector or producer, and well status, i.e., open or shut-in) and integer variables

((i, j, k) gridblock indices of the heels and toes for each well), but treated as a string of real

numbers. In their work, an arithmetic crossover is used to make linear combinations of a

randomly selected parent pair and the genes of the produced offsprings are truncated to

the nearest integers. They also mutate the locations variables, the type variables and the

status variables in different ways and at different mutation probabilities. Emerick et al. [21]

considered both linear and nonlinear constraints where any individual in the population has

to be repaired before its evaluation if it is infeasible. These constraints include maximum

well length, minimum distance between wells and user-defined undesirable regions for well
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placement. In their work, they are able to test different cases with up to a maximum number

of 16 wells within 5000 simulations. Based on three full-field reservoir models, (i) they have

shown significant increases in the NPV and cumulative oil production using Genocop III over

the well placement scenarios proposed by reservoir engineers; (ii) the optimization defining

the whole initial population randomly achieved a value of NPV lower than the results using

the engineer’s suggested case in the initial population. Lee et al. [43] used GA to optimize

the number, location and trajectory of horizontal wells using a 2D node-based configuration.

In their method, a horizontal well can have multiple kick-off points. However, they only

tested their methodology on two small 2D synthetic reservoirs (one with 10× 10 gridblocks

and one with 20× 20 gridblocks) and considered the placement of three horizontal wells at

maximum. Though their estimated optimal NPV’s are larger compared to placing three ver-

tical wells, increasing the number of kick-off points gives negligible increase in the estimated

optimal NPV’s. Morales et al. [60] used GA to optimize the heel and toe coordinates of a

horizontal well in a reservoir with 30 × 30 × 11 grids considering 5 different realizations of

the reservoir. In their method, the fitness value is calculated as the weighted sum of the

NPV’s of realizations whose NPV’s are among the top ps percent and they showed that the

trajectories of the horizontal well obtained with different ps values have significant changes.

Salam et al. [72] proposed to calculate the fitness of each candidate solution using a proxy

trained by artificial neural networks (ANN) and to evolve to next generation following the

GA operators. They optimized the placement of 10 vertical producers and their conversion

time from production into injection respectively and showed that the hybrid algorithm of GA

and ANN only requires a few hundred simulation runs for the two problems they considered.

Besides GA, some other methods have also been tried, PSO [65, 66], simulated annealing

[6], CMA-ES [18, 25], and pattern search algorithms [7, 33, 32].

Bellout et al. [7] proposed a nested joint optimization algorithm where the upper level

optimization problem is the well placement optimization using Pattern Search Algorithms,

i.e., Generalized Pattern search (GPS), Hooke-Jeeves Direct Search (HJDS) or a hybrid

optimization parallel search package (HOPSPACK, a distributed computing implementation
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of GPS, and the lower level is the well control optimization using the adjoint gradient.

In the sequential optimization (well placement optimization with fixed controls followed

by well control optimization using the optimal locations obtained), two control strategies

are considered in the well placement optimization: a fixed control strategy where injectors

operate at their upper bounds of the bottomhole pressure and producers operate at their

lower bounds of the bottomhole pressure, and a “reactive” control strategy where injectors

operate at their upper bounds of the bottomhole pressure and producers operate at their

lower bounds of the bottomhole pressure until a prescribed limit to the maximum water cut

is reached. In their work, they consider a 2D reservoir with 5 vertical wells and 10 control

intervals, based on which the nested joint optimization algorithm outperformed sequential

optimization with both aforementioned control strategies. From their results, GPS and

HOPSPACK are slightly faster than HJDS, but they yield lower NPV values than HJDS.

However, GPS and HOPSPACK can be accelerated, in terms of clock time, if a cluster is

available. Li and Jafarpour [46] used an iterative procedure in which they alternated between

a full well placement optimization and a full well control optimization. Again, different

optimization approaches were used for the two problems, where a coordinate descent random

search algorithm is used for the well placement optimization and the adjoint gradient-based

method is used for the well control optimization. Their work pertains to vertical wells under

total liquid rate control. Though the number of control steps is only provided for one case

with five wells, they tested cases with up to 15 wells. For all cases, they were able to achieve

significant improvements over a single well placement followed by well control optimization.

As we mentioned previously, Lu et al. [52] used a modified iterative procedure based on

StoSAG to optimize well trajectories and controls for 13 slanted wells with 12 control steps,

and found that the iterative procedure also outperformed the procedure of a single well

placement followed by well control optimization. The above mentioned works essentially all

decompose the joint problem into two smaller subproblems. This enables the application of

a specialized optimization method for each of the two subproblems.
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Li et al. [47] combined the optimization of vertical well placements and their cor-

responding rates into a joint problem using a modified SPSA algorithm where the total

injection rate and total production rate are constrained to be 1 pore volume per year (lin-

ear constraints). The results they obtained for the PUNQ model showed that simultaneous

optimization outperformed sequential optimization. Isebor et al. [34] applied a hybrid tech-

nique that combined the PSO and the mesh adaptive direct search (MADS) for the joint

optimization problem of the example considered by Bellout et al. [7], but with only 5 con-

trol steps. Besides that, they also developed a consistent filter-based treatment ([23]) of

nonlinear constraints in both stand-alone PSO and the PSO-MADS hybrid. In their work,

they handled three types of nonlinear constraints (minimum distance between wells, max-

imum field rate, and maximum well water cut) whereas in Bellout et al. [7] only bound

constraints are considered. Bellout et al. [7] required about 4,000 simulations for each of

their optimization runs for 10 location variables with 50 control variables, whereas Isebor et

al. [34] used around 30,000 simulations for each run where there are 10 location variables

and 25 optimization variables. Forouzanfar et al. [25] implemented the CMA-ES optimiza-

tion algorithm to solve both the simultaneous and sequential joint optimization problem of

slanted wells where they kept the parametrization of well trajectories and introduced a new

parametrization strategy for the control variables. Their numerical results for PUNQ model

showed that simultaneous optimization algorithm gave slightly better NPV’s than sequen-

tial optimization framework. In summary, Li et al. [47], Isebor et al. [34] and Forouzanfar

et al. [25] all show that the simultaneous approach outperforms the sequential approach.

However, the alternate conclusion has been reached by others. Specifically, Humphries et

al. [33] used a hybrid algorithm that combines PSO and GPS for simultaneous optimiza-

tion, which is an approach similar to the one used by Isebor et al. [34]. In their sequential

optimization implementation, PSO is used for the well placement optimization and GPS is

used for the well control optimization. Humphries et al. [33] did not find the simultaneous

approach to consistently provide better solutions than the sequential procedure. Humphries

et al. [32] later applied their method to joint optimization for non-conventional wells with

15



different complexity of trajectories and suggested that the sequential approach is better able

to deal with increasingly complex well parameterizations than the simultaneous approach,

and for their complex problems where there are 24 trajectory variables (4 slanted wells) and

20 control variables (5 control intervals), compared to simultaneous optimization, sequential

optimization gives 5% higher NPV’s under bound constraints and 9% higher NPV’s under

nonlinear constraints.

Most of the well control and placement optimization problems mentioned above as-

sume the number, types and drilling orders of the wells to be drilled are known which is not

the case most of the time. Hence, there is a strong need to research on the full field de-

velopment optimization problem where the number of wells, their types, drilling sequences,

locations and control settings are optimized altogether. The full field development optimiza-

tion problem determines both categorical variables (drill-or-not, injector or producer, and

well drilling sequence) and numerical variables (well locations and control settings). Hence,

as a mixed-integer problem, it is far more complicated than the joint optimization of well

locations and controls. Recall that Wang et al. [83], Zhang et al. [89], and Forouzanfar

and Reynolds [26] rephrased the field development optimization problem as a well control

optimization problem where the drilling cost is defined as a smooth function of the injec-

tion/production rate and optimize the number, type, locations and control settings for wells

under total liquid rate control. Ciaurri et al. [14] proposed to solve the field development

optimization problem by well pattern optimization followed by a second-stage well placement

optimization which provides a minor change of the well locations within the patterns using

PSO method. Although this method is more computationally tractable, it suffers from three

drawbacks: firstly, it is only applicable to newly discovered reservoirs where no wells has

been drilled; secondly, the control setting of the wells has to be pre-specified; thirdly, this

method theoretically will lead to suboptimal results since wells are constrained to repeated

patterns. Awotunde [2] optimized the well number, types, locations and controls using dif-

ferential evolution (DE). He proposed to divide the search space of the control variables

at the first control step (or the coefficient of a polynomial/trigonometric parametrization
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of the control variables) into three intervals (indicating an injector, no-well and a producer

respectively), referred to as well control zonation method. Hence, the “drill-or-not” status

and “injector/producer” type of a well can be determined from the control variables. The

settings of the no-well zone has a large effect on the algorithm performance and its optimal

settings are case dependent. Based on the well control zonation method, Awotunde [1] in-

troduced two additional design variables, the project life and the fractional times at which

the wells are brought online, and he is able to simultaneously optimize well types, locations,

controls and well open time. However, the well controls over the reservoir life were assumed

to follow a Cosine function of time and wells were brought online without considering the rig

availability. Awotunde [3] compared the well control zonation method and the mixed-integer

non-linear programming (MINLP) procedure using DE and his results showed the former

method outperforms the latter in most cases provided that the no-well zone is set as large

as or larger than the combined width of the two other zones. Khan et al. [41] extended the

well control zonation method to include the vertical/horizontal well type in addition to the

injector/producer type and used PSO as the optimizer. They found that the well control

zonation method outperforms the MINLP method, which is consistent with the observations

of Awotunde [3].

Isebor et al. [35] introduced a ternary categorical variable (where the three levels rep-

resents injector, do-not-drill and producer) in addition to the locations and control settings

and then optimized these variables using PSO-MADS. To handle the integer and ternary

variables, they simply round the variables to the nearest integer value before evaluation in

the PSO search step and use a discrete mesh in the MADS poll step. They noted that both

PSO and MADS perform satisfactorily for continuous problems, but with the inclusion of

integer variables, they may converge to relatively poor local optima. What is more, the

convergence of PSO-MADS with multi-level categorical variables (the ternary variable) is

not clearly understood. Shirangi and Durlofsky [76] extended the work of [35] to closed

loop field development optimization under geological uncertainty where the history match-

ing process is solved with the Random Maximum Likelihood (RML, [64]) method using the
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adjoint gradient and the optimization process is carried out using the PSO-MADS method.

In the work of Shirangi and Durlofsky [76], the well locations are represented by the (i, j, k)

gridblock indices of their two end points and the number of control steps per well is set

equal to the number of wells, Nw, with the length of the first Nw − 1 control steps equal to

the specified constant drilling time. Based on a deterministic 2D reservoir with four vertical

wells where each new well is drilled every 210 days, they demonstrated that simultaneous

optimization (optimizing the well types, locations, time-varying controls of these four wells

simultaneously) obtained 16% higher NPV than well-by-well optimization where the location

and type of the first well is optimized first and given the optimal location and type of the

first well, the location and type of the second well (drilled at 210 days) are optimized, and

so on. This simple case took 200 equivalent simulation runs (number of times a batch of

simulation runs is submitted to the compute cluster with a maximum of 400 available cores),

which equals 80,000 actual simulation runs. They solved the full problem of closed-loop field

development for a 2D reservoir with a maximum number of 8 vertical wells and 8 control

steps with 50 realizations used to represent the geological uncertainty. However, due to

the heavy computational cost of PSO-MADS, they proposed a sample validation procedure

(optimizing over an representative subset, e.g. 10 realizations) in the field development op-

timization. This case took 1700 equivalent simulation runs using a cluster with a maximum

of 400 cores, i.e., approximately 350,000 actual reservoir simulation runs. A 3D example

with 6 wells are also presented where they fix the number, type and drilling sequences of

wells and pre-specify whether a well is vertical or horizontal. Although the procedure using

PSO-MADS may be computationally tractable for realistic field cases using parallelization

with a large number of cores, there is a concern about whether simultaneous optimization

will still outperform the well-by-well procedure with an increase of the problem complexity

(e.g. considering geological uncertainty, optimizing number of wells and trajectories for com-

plicated wells) and number of variables (optimizing over more wells and using more control

steps), according to the findings in [32].
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Yeten et al. [86], Essen et al. [22], Durlofsky et al. [20], Liu and Reynolds [49],

Lu et al. [52] have all considered the optimization process using a set of model realizations

representing the geological uncertainty. However, only a small ensemble is used in robust

optimization, which may not be able to properly capture the subsurface uncertainty. The

computational cost for a large ensemble of realizations may be prohibitive. Thus, it is

significant to develop strategies to improve computational efficiency for large ensemble size.

Yang et al. [85] proposed conducting robust optimization on a small subset of repre-

sentative realizations which is selected based on a reliable ranking of the calculated perfor-

mance of all the realizations under a reference operating condition. However, the ranking of

reservoir performance changes if the well operational controls are updated in the optimiza-

tion process and in fact can change significantly so that the chosen subset no longer gives an

adequate representation of the full ensemble [53]. To further reduce the computational cost,

Yang et al. also replaced the reservoir simulation process with a trained response surface

model. Li et al. [47] evaluated the objective function with a subset of randomly selected

realizations at each iteration of the SPSA algorithm in order to achieve the desired com-

putational efficiency. Although SPSA is able to handle a noisy objective function, there is

no guarantee that selected subsets can represent the full set. Shirangi and Durlofsky [76]

proposed reselecting the representative realizations based on the solutions obtained with

a previous complete subset optimization, and repeat the subset optimization until a pre-

specified relative improvement ratio is reached, i.e., 0.5 in their work. In their work, the

relative improvement ratio is defined as the increase in the expected NPV for the subset

of realizations (based on the initial expected NPV for the subset) over the increase in the

expected NPV for the full set of realizations (compared to the initial expected NPV in the

full set). However solving a complete optimization problem for each subset is expensive, and

the obtained solution is not guaranteed to be the optimal solution of the full-set.

Many researchers have worked on multi-objective optimizations of the well controls.

For both deterministic and roust optimization, it is desirable to maximize the long-term NPV

and the short-term NPV at the same time so that the invested money can be payed back
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sooner and hence can be invested on other projects without significantly harming the long-

term benefit. For cases considering geological uncertainty, it is desirable to maximize the

expected NPV and to minimize the risk (i.e., minimize the standard deviation of the NPV’s of

all realizations or maximize the minimum NPV). Essen et al. [22] proposed an adjoint-based

hierarchical production optimization method in which the secondary objective (maximization

of the short-term NPV) is optimized based on the null space of the Hessian matrix of the

primary objective (maximization of the long-term NPV). They observed a significant increase

in short-term objectives without significantly decreasing the life-cycle NPV. However, the

authors point out that the convergence of the method is slow, due to infeasible solution steps.

They also introduced an alternative method, referred to as switching method in which the

long-term NPV is not treated as a strict constraint. Chen and Reynolds [11] carried out a

robust short term control optimization after long-term control optimization subject to the

constraint that the average long-term NPV should not be decreased using the Augmented

Lagrangian method for waterflooding examples and showed that robust long-term alternating

with short-term optimization is able to increase the short-term NPV without compromising

the life-cycle NPV. Liu and Reynolds [49] built the Pareto front of maximizing the long-term

NPV and maximizing the short-term NPV using an adjusted weighted sum method and

an normal boundary intersection method with adjoint gradient for an optimal well control

problem of a waterflood example. Liu and Reynolds [49] found that both methods gave

similar estimates of the Pareto front where the solution points distribute fairly evenly. Yeten

et al. [86] and Durlofsky et al. [20] used a simple treatment of uncertainty by incorporating

the standard deviation of the NPV’s for all realizations into the objective function with

the framework of GA to maximize the expected NPV and to minimize the risk over an

ensemble of realizations. However, Liu and Reynolds [49] observed the undesired feature

that the reduction in the standard deviation of the NPV’s is achieved mostly by reducing

the highest plausible NPV’s. Thus, they propose to maximize the minimum NPV instead of

minimizing the standard deviation in bi-objective optimization where the primary objective

is to maximize the average NPV. However, the computational cost of finding the Pareto
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front may be expensive. What is more, for a problem with rough objective function surface

and multiple local solutions, e.g. the joint optimization of well control settings and well

placement, our experience suggests that it may be difficult to obtain a good approximation

of the Pareto front. Hence, it is much cheaper and practical to simply find a reasonable

trade-off instead of the whole front. Liu and Reynolds [50] combined lexicographic method

with adjoint based gradient to solve a bi-objective well control optimization problem where

the two objectives are optimized in a sequence according to the order of importance in order

to find a reasonable trade-off solution.

1.2 Research Objectives and Contextures

Formulating field development planning as an optimization problem is slowly be-

coming an acceptable approach in the petroleum industry. Many researchers have studied

several individual parts, where the two most typical problems are the well control optimiza-

tion which has been extensively studied in the literature and well placement optimization

which is continuing to gain more and more attention.

As limited adjoint capability is available in commercial simulators, we focus our atten-

tion on a gradient-based algorithm where the true gradient is approximated by a stochastic

gradient when optimizing well controls and well trajectories. Specifically we use the StoSAG

(stochastic simplex approximate gradient) to replace the true gradient in a steepest ascent

(or descent) algorithm. We consider both deterministic optimization based on a single reser-

voir model and robust optimization when we maximize the average net present value of

productions over a set of reservoir models selected to represent the geological uncertainty in

reservoir model parameters.

For general field development optimization, we will also need to incorporate some

combinations of the following variables: the number of wells that will be drilled, the well types

(injector or producer) and the drilling order. Generally, there is a strong need to conduct

research on the complete field development problem where the number of wells, their types,

drilling order, locations and control settings are optimized altogether. Since the complete
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field development optimization is in fact a mixed-integer programming problem, different

algorithms (e.g. evolutionary algorithms), other than (stochastic) gradient-based algorithms,

will likely need to be applied. Previous works solve the field development optimization

problem in two ways. The first way re-parameterizes the categorical design variables as

continuous variables (i.e., controls [83, 89, 26, 3]) or priorities [31, 44]), uses optimizers

designed for continuous variables to estimate their optimal value and then map the estimated

continuous variables back to the categorical variables. According to Lu and Reynolds [54],

this type of methods not only enlarge the search space, but also give sub-optimal solutions.

The second way parameterizes the categorical variables as they are and uses a hybrid of

global and local search optimizers, i.e., PSO-MADS, where at each iteration, the categorical

variables are again treated continuous and then truncated back to their nearest discrete

values after an update, which does not seem ideal. As part of our research, we will attempt

to develop suitable encodings for variables of different types and use the Genetic algorithm

(GA), which handles the categorical variables more naturally, as the optimizer. Since it is

well known that GA is computationally expensive, we also attempt to improve its efficiency

by either decoupling the problem or combining GA with stochastic gradient methods.

Geological uncertainty, which leads to the uncertainty in the performance prediction,

has a relevant effect on the decision-making process regarding reservoir development. The

common method is to use multiple plausible geostatistical realizations when evaluating the

objective function. Given a large ensemble of realizations which reasonably covers the un-

certainty of the model parameters, the primary objective function of robust optimization

will be to maximize the average NPV over all realizations efficiently. However, when the

number of realizations of the reservoir model is large, computational feasibility requires that

one reduces the number of models on which robust optimization will be preformed, i.e., to

determine a representative subset of the the whole ensemble so that robust optimization on

the subset will produce an expected value of NPV close to the one obtained via robust op-

timization on the full ensemble. Previous work on well placement and control optimization

problems uses a subset of representative models equally spaced on the cumulative distribu-
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tion function of NPV’s of all realizations evaluated at a reference operating condition where

the subset size varies from 3 [85] to 50 [16] depending on the user preference. Most of the

previous work on the field development optimization problem, due to its complexity, uses

only one reservoir model [83, 89, 26, 14, 2, 1, 3, 41, 35], except Shirangi and Durlofsky who

used a subset of 10 realizations of a 2D synthetic reservoir with 56 optimization variables at

the cost of around 350,000 simulations which is hardly affordable without parallel comput-

ing. However, it is difficult to specify the reference operating condition and it seems obvious

that it is highly unlikely that the selected realizations will remain representative during the

whole optimization process. As part of our research, we will attempt to develop a procedure

to select an initial representative subset of reservoir models from the full set that represents

geological uncertainty and to update this subset during the optimization so that at the end

of robust optimization, the optimal parameter for the subset will also be at least weakly op-

timal for the complete set of reservoir models. Robust optimization maximizes the average

NPV of production over a plausible set of reservoir models. However, the set of optimal

design variables obtained by maximizing average NPV may produce widely varying values

of NPV when their optimization variables are applied to each reservoir model. Hence, we

also consider to achieve a secondary objective to reduce the risk which is to maximize the

minimum NPV or minimize the standard deviation of the NPV’s over the given ensemble.

The objectives of this research and our associated contributions are as follows:

• Our first objective was to explore the applicability of StoSAG algorithm in well place-

ment optimization of slanted wells and multi-segmented wells considering minimum

well spacing, maximum well length and drillability constraints. We firstly proposed

suitable parameterizations for slanted wells and multi-segmented wells and then cou-

pled the augmented Lagrangian method with StoSAG to solve the constrained well

placement optimization problem. Though StoSAG has been shown to be efficient for

well placement optimization problems [52, 30], we found the solutions obtained by

StoSAG are only sub-optimal and added a subsequent General Pattern Search (GPS)

method to fine tune the well locations and trajectories.
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• A second objective was to develop improved methods for the field development op-

timization problem. Here, we consider two problems. The first one has not been

considered previously in any journal publications where we want to select a fixed num-

ber of wells from a given set of potential drilling paths and to determine their types,

drilling order and control settings. The second is a more general problem where we

optimize well number, types, locations and control settings. We decouple the control

optimization from both problems and optimize well control settings using StoSAG at

the end to reduce problem complexity and to be computationally feasible. For the

first problem, we developed different encodings for well locations, types and drilling

order, and used GA with mixed operators which is shown to outperform the methods

of [83, 89, 26] and [31, 44] in this work. For the second problem, we develop two dif-

ferent hybrids of GA, StoSAG and GPS to efficiently optimize well number, types and

locations, which are able to consider a much larger problem compared to Isebor et al.

[35] and are shown to significantly outperform the Genocop III method by [21].

• A third objective was to improve computational efficiency for robust optimization

when a large number of realizations are used to characterize the uncertainty. Here, we

developed a robust procedure to adaptively choose representative subsets from the full

ensemble of reservoir models during the optimization process. The adaptive procedure

outperforms the case of using a fixed subset throughout the optimization process,

and only requires a few thousand simulations in contrast to a few hundred thousand

simulations required for Shirangi and Durlofsky [76].

• In addition, we consider bi-objective optimization within the context of robust op-

timization. Here, we consider the bi-objective well placement optimization problem

where the two objectives are to maximize the average NPV and maximize the mini-

mum NPV. Following the lexicographic method, the two objectives are optimized in

a sequence where the average NPV is optimized first, and starting from the optimal

solution obtained, the minimum NPV is optimized subject to an additional constraint

24



that the average NPV is not decreased by 1%. The constrained optimization prob-

lem is solved using augmented Lagrangian method where an efficient implementation

of StoSAG and GPS are developed to solve the inner loop problem. Compared to

previous work [86, 22, 11, 49, 50], this piece of work extends the bi-objective optimiza-

tion from the optimal control problem to the optimal well placement problem whose

objective function surface is rougher.

• Our final contribution was to embed the optimization methodology in usable software

so that it can be applied to field problems.

1.3 Dissertation Outline

There are six chapters in this dissertation. Chapter 1 gives a brief review of the

literature pertaining to various optimization problems in oil field development, our initial

research objectives and our research contribution. In Chapter 2, the generalized field devel-

opment optimization problem is described and the methodologies considered in this disser-

tation are discussed, including Genetic Algorithm (GA), Stochastic Simplex Approximate

Gradient method (StoSAG) and Generalized Pattern Search Algorithm (GPS). In Chapter

3, we present the first major contribution of our work, a viable solution to select a fixed

number of wells from a given set of potential drilling paths and to determine the well types,

drilling order and control settings based on the Brugge model and a channelized reservoir

model. In Chapter 4, we present the second major contribution of our work, a viable solu-

tion to simultaneous optimization of well number, types and locations under assumed well

controls for both the Brugge model and the PUNQ model. Here, we also present an effi-

cient robust optimization procedure given a large number of realizations to represent the

geological uncertainty. In Chapter 5, we present an advanced parameterization of slanted

and multi-segmented well trajectories and a bi-objective well placement optimization process

to maximize the average NPV and minimize risk given multiple realizations of the reservoir

using lexicographic method. Chapter 6 summarizes our work and presents conclusions.
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CHAPTER 2

COMPUTATIONAL ALGORITHMS FOR FIELD DEVELOPMENT

OPTIMIZATION

In this chapter, we firstly present the mathematical description of a general field

development optimization problem, including the definition of the objective function, the

parameterization of the design variables and the related constraints. In this dissertation, the

field development optimization is solved using hybrids of three base algorithms, i.e., Genetic

Algorithm (GA), Stochastic Simplex Approximate Gradient (StoSAG) and General Pattern

Search (GPS). GA is introduced to handle the categorical variables naturally, StoSAG is

mainly used to optimize well locations and controls, and GPS is mainly used to fine tune

the well locations obtained by StoSAG. The three computational algorithms are described

respectively in the second part of this chapter while their hybrids are presented in the

following three chapters according to the problems considered.

2.1 Problem Description

The field development optimization considers maximizing the net present value (NPV)

over the presumed life of the reservoir to find the optimal number of wells, the corresponding

drilling order, types, locations and control settings. In this section, we present a general field

development optimization problem but this dissertation focuses on solving various subsets

of this general problem. Here, the general field development optimization problem is defined

by

max J (s,T ,O,x,u) (2.1a)

s.t. c(s,T ,O,x,u) ≤= 0, (2.1b)
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sj ∈ {0, 1} ∀ j = 1, · · · , Kmax, (2.1c)

Tj ∈ {0, 1} ∀ j = 1, · · · , Kmax, (2.1d)

x ∈ Ω, (2.1e)

ulow ≤ u ≤ uup, (2.1f)

where Kmax defines the maximum number of wells to be drilled; s is a Kmax-dimensional

categorical variable vector where the jth element, sj, is a binary variable defining whether

well j is to be drilled or not, i.e., sj = 0 corresponds to “not-to-drill” and sj = 1 corresponds

to “to-drill”; T is a Kmax-dimensional categorical variable vector where its jth element, Tj,

is a binary variable defining the type of well j, i.e., Tj = 0 corresponds to “injector” and

Tj = 1 corresponds to “producer”; O is a sequence of ordinal number, i.e., a permutation of

{1, 2, · · · , Kmax}, where the jth element, Oj, represents well j is drilled as the Ojth well; x

is a bpl∗Kmax-dimensional vector of the well location parameters, where bpl is the number of

parameters representing the location of each well; Ω represents the potential set of locations

and/or paths that wells can take; u is a Nc ∗ Kmax-dimensional vector of the well control

parameters where Nc is the number of control steps (here Nc is assumed to be the same

for all wells), where u includes the injection/production rates of wells under rate control or

bottom-hole pressure of wells under pressure control at each control step; ulow and uup are

the lower and upper bounds of the control settings respectively; c(s,T ,O,x,u) represents

the linear/non-linear constraints, where the notation ≤= means the constraints could be

either of the form c ≤ 0 or c = 0. Possible constraints include bounds on field production or

injection rates, balanced injection and production constraint, maximum water cut constraint,

or minimum well spacing constraints, etc.

The NPV for a given vector m of the reservoir model parameter is denoted by

J (m, s,T ,O,x,u) and defined by,
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J (m, s,T ,O,x,u)=
Nt∑
n=1

 ∆tn

(1+b)
tn

365

 ∑NP
j=1

(
rno ·qno,j−cnw ·qnw,j−cng ·qng,j

)
−
∑NI

k=1

(
cnwi ·qnwi,k+cngi ·qngi,k

)

−

Kmax∑
j=1

sjCw,j,

(2.2)

where n denotes the nth time step of the reservoir simulation; Nt is the total number of time

steps; tn is the simulation time at the end of the nth time step; ∆tn is the nth time step size;

NP and NI denote the number of producers and injectors, respectively, which depend on

the “drill or not” variables represented by the components of s and the components of the

type indicator vector T ; qno,j, q
n
w,j, q

n
g,j, respectively, denote the average oil production rate

(STB/day), the average water production rate (STB/day) and the average gas production

rate (Mscf/day) at the jth producer over the nth simulation time step; qnwi,k and qngi,k denote

the average water injection rate (STB/day) and the average gas injection rate (Mscf/day)

over the kth injector for the nth time step; rno is the oil price ($/STB); cnw is the water

disposal cost ($/STB); cng is the gas disposal cost ($/Mscf) (negative if gas is sold); cnwi and

cngi are the water injection cost ($/STB) and gas injection cost ($/Mscf), respectively; Cw,j

denotes the drilling cost for the jth well which depends on the trajectory variables defining

this well; and b is the annual discount rate. In this work, we use a commercial reservoir

simulator to simulate the dynamic performance of the flooding process. The NPV function

of Eq. 2.2 is computed using the output of a reservoir simulation run based on (s,T ,O,x,u)

and a specific plausible reservoir model m.

The problem described in Eq. 2.1 can be extremely complicated when (s,T ,O,x,u)

are all considered as design variables even for the deterministic case where the reservoir

model m is assumed known. Previous work in the literature focuses on solving subsets of

Eq. 2.1 where some design variables are assumed known. Only a few works (e.g., Hanea et

al. [31] and Leeuwenburgh et al. [44]) have considered drilling order optimization. When

(s,T ,O,x) is known, Eq. 2.1 describes an optimal control problem with a smooth objec-

tive function and continuous optimization variables which can be solved efficiently using
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gradient-based algorithms, given the availability of a reservoir simulator that provides the

relevant adjoint solutions needed to calculate the gradient of J(m,u) efficiently [42, 73, 10];

otherwise, one can use methods based on stochastic gradients, e.g. ensemble optimization

(EnOpt) [13], stochastic simplex approximate gradient (StoSAG) method [24], simultane-

ous perturbation stochastic approximation (SPSA) [47]. Another possibility is to use a

derivative free algorithm such as particle swarm optimization (PSO) [84, 80], covariance ma-

trix adaptation-evolutionary strategy (CMA-ES) [25, 77] and Genetic Algorithm (GA) [86].

When (s,T ,O,u) is known, Eq. 2.1 describes an optimal well placement problem where

the objective function may not be differentiable for all value of x; in fact, the optimization

variables can be either continuous or discrete depending on how the well trajectory is pa-

rameterized. For vertical wells, the well location is usually defined by the discrete (i, j, k)

indices of the gridblocks penetrated by a well [5, 7, 47] where in most papers the well is

assumed to be completely vertically penetrating. Emerick et al. [21] used the (i, j, k) grid-

block indices of the starting point and end point to describe slanted well trajectories. In this

case, the design parameters are again discrete variables since gridblock indices can only take

integer values. However, for slanted wells, the well trajectory can also be parametrized as

continuous variables, for example using the (x, y, z) coordinates of the center point of each

well, the perforation length l, the inclination angle ϕ and the azimuth angle θ [66, 27]. How-

ever, this parametrization requires a special scaling treatment for the optimization process

if the (stochastic) gradient-based method is used (Forouzanfar and Reynolds [27]). Vlem-

mix et al. [81] parameterized a single multi-segmented well as the (x, y, z) coordinates for

a set of trajectory points where the number of trajectory points is equal to the number of

gridblocks through which the trajectory passes. However, a smoothing step is needed after

every update of the coordinates of the trajectory points, to ensure the drillability of the

well. Yeten et al. [86] optimized the well trajectory for a multilateral unconventional well

where the main bore is described by coordinates of the entry point (hx, hy, hz), the length

of the trajectory projected onto the x-y plane lxy, the azimuth angle θ, and the depth to

the trajectory endpoint tz; and the lateral is described by the coordinates of the junction
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point (there can be multiple laterals from one junction, the number of junctions and the

number of laterals emanating from each junction are to be determined). In this case, the

optimization variables are mixed discrete and continuous variables. There currently exists

no adjoint code to calculate the gradient of the NPV function with respect to the well lo-

cation variables. Gradient-based algorithms using stochastic gradient and derivative free

algorithms are widely used. When (s,T ,O) is known, Eq. 2.1 reduces to the problem of

jointly optimizing well controls and well locations. The problem of optimizing well locations

leads to a rougher objective function surface (Forouzanfar and Reynolds [28]) than the one

for the problem of optimizing only well controls. For problems involving rough objective

functions, gradient-based algorithms generally work poorly although a gradient-based algo-

rithm tends to be highly efficient for the pure well control optimization problem. Thus, it

may be advantageous to use a sequential algorithm to jointly optimize well controls and

trajectories where a gradient-based algorithm is used for the well controls and an algorithm

with a better capability for finding global optima of a noisy objective function is employed

for the well trajectory optimization. Another reason for decoupling the joint optimization

problem into two subproblems, i.e., well control optimization and well placement optimiza-

tion is that, in practice, well control optimization is not conducted until all wells have been

drilled. A third reason is that when all the optimization variables (s,T ,O,x,u) need to be

determined, Eq. 2.1 is in fact a mixed-integer problem with both continuous and categorical

variables, referred to as the full field development optimization problem. In this case, the

gradient (or stochastic gradient) based method is no longer suitable since the gradient with

respect to the categorical variables is not defined. As discussed below, some authors have

tried to replace the categorical variables as continuous variables, but it is not clear that such

a procedure can yield optimal results.

Only a few papers have included well status, types and drilling order in addition to

well paths as design variables [35, 76, 2, 31, 44]. The first two papers (Isebor et al. [35] and

Shirangi et al. [76]) assign each of the Kmax wells a label, preset their drilling order and

opening time, and optimize the well status and type (-1 represents a producer, 0 represents
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do-not-drill and 1 represents an injector), locations and controls for these Kmax wells. Even

though the well status and types are considered as ternary variables, at each iteration of the

Particle Swarm Optimization (PSO), the ternary variable are treated as continuous variables

and then truncated back to the nearest integer within the set {−1, 0, 1}. What is more, to

switch the drilling order of well i and well j (i 6= j), the locations and controls for well i

and j have to be switched which is quite difficult for PSO or MADS when well i and well

j are far away from each other. Moreover, even if well i is not drilled (i.e., well status

of well i corresponds to do-not-drill), it still holds (reserves) Td days of drilling time (i.e.,

the drilling rig does not work for the next Td days) and because of the “rig down time,” the

solution obtained must be at least somewhat suboptimal. In the last two of these papers, well

status is not optimized while well type and drilling order were determined using continuous

variables which they refer to as priority variables (see section 1.1 for an explanation of

priority variables). As well status, types and drilling order are discrete variables, treating

them as continuous variables and then truncating back to discrete values at each iteration

of an optimization algorithm, does not seem ideal. Instead, we believe that it makes more

sense to treat them directly as discrete categorical variables which enables the use of the

genetic algorithm.

Probably one of the most important concerns in the decision-making process based on

the optimization results would be the uncertainty in the reservoir geological description. The

most common approach for handling geological uncertainty is to generate multiple reservoir

descriptions and do robust optimization in which, the expected value of NPV is optimized.

As noted previously, we use the terminology expected value whereas the expected value is

actually replaced by its standard estimator, i.e., the average of the NPV where the average is

over the set of reservoir models (vectors of reservoir model parameters) mk, k = 1, 2, · · · , Ne

which represent the uncertainty. Thus, the expectation of NPV is defined by

JE (s,T ,O,x,u)=
1

Ne

Ne∑
k=1

J(mk, s,T ,O,x,u) (2.3)
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Robust optimization is much more expensive than deterministic optimization in Eq.

2.1 since each objective function evaluation requires Ne simulation runs where Ne generally

ranges from ten to one, or two hundreds. There are at least three major concerns with robust

optimization, one is that maximizing the expected objective function over the given ensemble

still may incur considerable downside risk [49], and a second is that optimization over a

large set of realizations of m is generally not computationally feasible for field development

optimization problems and a third concern is that life-cyle robust optimization may yield

unacceptably low short-term production. The last issue is not dealt with here, but is generally

addressed by bi-objective optimization (Essen et al. [22], Chen and Reynolds [11] and Liu

and Reynolds [49]).

2.2 Basic Methodology Considered

The general problem stated here is a mixed-integer problem with a high-dimensional

search space which includes binary variables (“drill-or-not” status and types), ordinal vari-

ables (drilling order), numerical discrete variables (locations for vertical wells) and numerical

continuous variables (well control settings). Considering that (i) GA handles categorical vari-

ables naturally; (ii) the Stochastic Simplex Approximate Gradient (StoSAG) based method

has been proven to be efficient in optimizing well locations and controls, but searches rel-

atively poorly when close to a local optimum due to gradient estimation error, and (iii)

General Pattern search method (GPS) is a good local search method once we are close to an

optimum, but is computationally expensive for high-dimensional optimization problems, we

focus on developing hybrids of these three main algorithms when solving different aspects of

the optimization problem defined in Eq. 2.1.

The performance of an algorithm (e.g. steepest descent and general pattern search)

may depend crucially on scaling. For example, if the producers are under bottomhole pressure

control and the injectors are under rate control, changes to BHP may produce much larger

variations in the NPV than do similar changes to injection rate; same thing may happen to

the coordinates of the well end points along the (x, y) directions and the z direction. Hence,
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if the optimization problem is poorly scaled, we introduce a new variable vector which has

similar magnitude in all its components and then solve the optimization problem in terms of

the new variable vector. In this dissertation, for all the optimal well control problem and the

well placement optimization of slanted wells and multi-segmented wells, scaling is adopted;

see Chapter 5 for detailed explanation.

2.2.1 Genetic Algorithm (GA)

The genetic algorithm (GA) is a metaheuristic algorithm inspired by the process of

natural selection which is often used to solve global optimization problems. GA evolves

iteratively starting from a population of randomly generated individuals through a set of

operators: selection, crossover, mutation and replacement which are designed to move the

population away from a local optima where a traditional hill climbing algorithm might get

stuck. Each individual in the population corresponds to a set of decision variables (or scaled

variables), which in GA terminology is referred to as a chromosome or genotype, denoted as

c. The parameterization of the decision variables is referred to as encoding. Traditionally,

solutions are represented as strings of binary variables, but other encodings are possible, i.e.,

permutation encoding and real value encoding. Different encodings, crossover and mutation

strategies are used to account for different types of variables (e.g. well “on/off status,” well

types, drilling order, locations and controls), depending on the specific problem considered.

In each generation, the fitness of every individual in the population is evaluated and

a parent pool is selected from the current population by a stochastic procedure in which the

more fit individuals are likely to be selected. Next, a new generation is formed based on re-

combining and mutating chromosomes of the individuals from the parent pool. Furthermore,

the best chromosome will randomly replace one individual in this new generation. The new

generation of candidate solutions forms the population from which the parent pool will be

selected at the next iteration of the algorithm. This generational process is repeated until a

termination condition is reached. Common termination conditions include specifying a fixed

number of generations based on available computational resources or terminating GA when
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iterations (generations) no longer produce better results. A flow chart of GA is shown in

Fig. 2.1 and a general description of GA using binary encoding as an example is provided

in Algorithm 1.

Figure 2.1: Schematic of GA.

Algorithm 1 Algorithm outline for GA with binary encoding

1. Preset population size Np, maximum number of generations Ng, crossover rate pc and
mutation rate pm.

2. Initialization: generate Np feasible individuals with chromosome c randomly sampled
from {0, 1}.

3. Evaluation: evaluate the objective function of Eq. 2.2 for each individual in the current
population.

4. Selection: select Np individuals from current population to form a parent pool.

5. Crossover: recombine the candidate solutions from the parents pool with a probability
of pc using a modified one-point crossover to produce offsprings.

6. Mutation: the produced offsprings invert bits at positions randomly chosen with proba-
bility pm.

7. Termination criteria check. If number of generations exceeds Ng, terminate; otherwise,
go to step 3.

Usually in Genetic Algorithms (GA), the crossover probability is set fairly high, 0.6

to 0.9, and mutation probability of a gene is kept far smaller, 0.001 to 0.01. A higher

crossover probability helps to explore the solution space more globally while a small crossover

probability may slow down the evolution process. A very small mutation rate may lead to

genetic drift (which is non-ergodic in nature) while a high mutation rate may lead to a loss of

good solutions, unless elitist selection is employed. Finding an appropriate population size is
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a difficult task. If it is too small, GA may not be able to reach high quality solutions. If it is

too large, GA converges so slowly that it mat require an infeasible number of forward model

runs (reservoir simulation runs in this work) in order to obtained good optimum. It has

been shown, both theoretically and empirically, that the optimal size differs from problem

to problem. A somewhat widely-accepted rule of thumb on selecting the population size is

that it should be set proportionally to the problem’s size and difficulty. However, problem

difficulty is very hard to estimate for real-world problems. The general rule in GA literature

for the optimum population size is to set it equal to two times the number of bits used in

a chromosome [59]. However, this rule of thumb is computationally expensive for a high-

dimensional optimization problem, e.g. problems considered in this work, and we find that

good results can be generated with a considerably smaller population size.

2.2.2 Stochastic Simplex Approximate Gradient (StoSAG)

In this section, we simply use u to denote the optimization variables. For the well

control optimization problem, u represents the (scaled) well control settings of all wells at

all control steps (e.g well bottomhole pressure, well injection/production rate); for the well

placement optimization problem, u refers to the (scaled) well trajectory parameters for all

wells; for the simultaneous optimization problem, u includes both the (scaled) well control

settings and the (scaled) well placement variables. Following the formulation of the gradient

of Eq. 2.3, the gradient of JE is equal to the sum of the gradient of NPV calculated for each

model, i.e.,

∇uJE(u) =
1

Ne

Ne∑
k=1

∇uJ(u,mk). (2.4)

In Eq. 2.4, the ∇u is used to represent the true gradient and ∇uJE(u) represents an uphill

direction, i.e., if u` is the estimate of the optimal value u∗ obtained at iteration `, JE(u`)

increases in the direction ∇uJE(u`). Thus the steepest ascent algorithm is given by

ul+1 = u` + α`∇uJE(u`), for ` = 0, 1, · · · , (2.5)
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where u0 is the initial guess and α` is the step size which can be chosen by a line search

procedure. In the StoSAG algorithm, ∇uJ(u`,mk) is approximated by a stochastic gradient

denoted by d`k and ∇uJE(u`) in Eq. 2.5 is replaced by

d` =
1

Ne

Ne∑
k=1

d`k, (2.6)

so the steepest ascent algorithm of Eq. 2.5 is replaced by

ul+1 = u` + α`
d`

‖d`‖∞
, (2.7)

for ` = 0, 1, · · · , until convergence. α` is commonly chosen by backtracking where a max-

imum allowable step size, α0, is usually set between 0.1[uup − ulow] and 0.2[uup − ulow] to

enable a large initial trial update, and a maximum allowable number of step size cuts is

usually set as 5.

To generate a simplex gradient of J(u`,mk), we need to generate different perturba-

tions of u` for each mk. We define the perturbed vector by û`j,k, j = 1, 2, · · · , Npert where

the hat denotes a perturbed vector and the subscript j denotes the jth perturbation vector

for the realizationmk. Next, we define the Nu×Npert matrix ∆U `
k and the Npert-dimensional

column vector ∆J `k respectively by

∆U `
k = [û`1,k − u`, û`2,k − u`, · · · , û`Np,k − u

`],

and

∆J `k = [J(û`1,k,mk)−J(u`,mk), J(û`2,k,mk)−J(u`,mk), · · · , J(û`Np,k,mk)−J(u`,mk)]T .

Then the approximate simplex gradient, d`k, in Eq. 2.6 is given by

d`k = (∆U `,+
k )T∆J `k, (2.8)
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where throughout the superscript + denotes the Moore Penrose pseudo-inverse which can

be obtained using singular value decomposition, Npert represents the total number of per-

turbations for each realization mk, and Nu represents the dimension of the design variables

vector. The perturbations can be generated by any method, for example, we can use

û`j,k = u` + LZ`
j,k = u` +C

1/2
U Z`

j,k, (2.9)

where, Z`
j,k is a Nu-dimensional vector of independent standard random normal deviates

and L is the lower triangular matrix of the Cholesky decomposition of a specified covariance

matrix CU which controls the perturbation sizes and correlations between the components

of the perturbed vectors [9]. CU is a block diagonal matrix with Nw blocks and each block,

Cw
U , corresponds to the correlation matrix over the Nc control steps of well w where each

element, Ci,j,w
U is given by

Ci,j,w
U = σ2

[
1− 3

2

(
|ti − tj|
Ns

)
+

1

2

(
|ti − tj|
Ns

)3
]
, (2.10)

where, σ is the standard deviation of the perturbations, e.g., 0.03 for the normalized vari-

ables in the scale of [0,1], i and j represent the ith and jth control steps respectively,

i = 1, 2, · · · , Nc, j = 1, 2, · · · , Nc, ti and tj represent the times corresponding to the middle

of ith and jth control step interval respectively, and Ns is the length of time over which we

wish the controls of well w to be temporally correlated.

When Ne = 1, the optimization process is referred to as deterministic optimization

where Npert is usually set to a number ranges from 5 to 50. Do and Reynolds [19] used only 5

to 10 for the deterministic case where there is only a single reservoir model, but Fonseca et al.

[24] found that we may need far more than 50 perturbations in order to obtain a stochastic

gradient which has a direction fairly close to the true gradient. When we consider robust

optimization where the number, Ne, is such that Ne ≥ 10, following Fonseca et al. [24], we

use only one perturbation per reservoir model. Because the stochastic gradient of JE(u`)
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is only an approximation of the true gradient, the search direction dl may not point uphill

from u`, and if not, it may not be possible to obtain a higher value of JE(u`) by searching

in the direction dl. When this occurs, we may try to find an uphill direction by generating

new perturbations and computing new stochastic gradient, dl. In our implementation, if we

cannot improve the expected NPV after five trials, the StoSAG algorithm is terminated. The

StoSAG algorithm is summarized in Algorithm 2 and illustrated in Fig. 2.2. In Fig. 2.2, we

suppose there are only two wells (one injector under rate control and one producer under

bottomhole pressure control) and only one control step, the x−axis represents the injection

rate and the y−axis represents the production BHP, the 2D contour map represents the NPV

(for illustration only). In Fig. 2.2, lines in red and blue respectively represent the gradient

direction and the StoSAG direction at different estimates of the design variables, where in

this schematic, the angle between the gradient direction and the StoSAG search direction is

less than 90◦, i.e., the StoSAG direction is in an uphill search direction.

Figure 2.2: Illustration of the StoSAG search direction.

For the case of a single reservoir model, the expectation of the StoSAG search direction

d` is the true gradient ∇uJ with an error term O
(

max{‖δui‖2
2}
i=Npert∗Ne
i=1

)
[24]. Hence, the

larger is the perturbation size, the larger is the error term. When optimizing the well place-
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Algorithm 2 Outline for the StoSAG Algorithm

Initialize the parameters: nsc, ncuts = 0, Nres, is = 0, α` = α0, where nsc is the maximum
allowed number of step size cuts, ncuts is the number of step size cuts, Nres is the
maximum number of the consecutive search direction re-computation, is is the number
of search direction re-computation, α0 is the maximum step size.

1. Generate Npert ∗ Ne samples of perturbation at current estimate u` and compute the
search direction with Eq. 2.6. Set is = is+ 1.

2. Compute a trial update utrial,`+1 using Eq. 2.5 (truncate each element of utrial,`+1 to its
nearest integer for discrete variables).

3. Check if the trial update is acceptable.

• If JE(utrial,`+1) > JE(u`),

– set u`+1 = utrial,`+1, ` = `+ 1, is = 0, ncuts = 0, α`+1 = α0 and go to step 1.

• Otherwise,

– set ncuts = ncuts + 1,

– if ncuts > nsc and is > Nres, terminate the optimization algorithm,

– if ncuts > nsc and is < Nres, then go to step 1,

– if ncuts ≤ nsc, set α` = α`/2, then go to step 2.

4. Terminate if the maximum number of simulations or iterations are used.

ment of vertical wells where the location variables ((i, j) gridblock indicies) are discrete, the

±1 Bernoulli distribution is often used to generate random perturbations of the current esti-

mate of the well locations. In this circumstance, it is possible for O
(

max{‖δui‖2
2}
i=Npert∗Ne
i=1

)
to be quite large. Meanwhile, the objective function surface of the well placement problem is

quite rough compared to the well control optimization problem, and this can lead to a poor

StoSAG performance. In this sense, we may not be able to obtain a result close to optimum.

2.2.3 General Pattern Search (GPS)

General Pattern Search (GPS) [15] is a class of direct search methods, originally

introduced by Torczon [79]. Each iteration consists of an optional search step and a poll

step. Both steps evaluate the objective function at a finite number of trial points on a mesh

M` in order to find an improved mesh point. In this work, M` is given by
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M` =
{
u` ±∆`ei : i ∈ {1, 2, · · · , Nx}

}
, (2.11)

where, u` is the incumbent point at the lth iteration, ∆` is the mesh size at lth iteration, Nx

is the number of elements in u`, and ei represents the unit vector where the ith element of ei

is 1. The difference between search and poll steps is in the way the trial points are selected.

Any strategy, including none, can be used in the search step, and it is often tailored to the

particular application to obtain specific efficient algorithms. Since GPS is used to fine tune

the well locations obtained by StoSAG, we only consider the poll step in this work. Our

implementation of GPS is described below.

There are Nx coordinate directions in total and each coordinate direction is associated

with two objective function evaluations, J(u`+∆`ei) and J(u`−∆`ei). If both J(u`+∆`ei)

and J(u`−∆`ei) are smaller than J(u`), then we move on to the (i+1)th coordinate direction.

If J(u`+∆`ei) > J(u`) and J(u`+∆`ei) > J(u`−∆`ei), then incumbent point u` is updated,

i.e., u`+1 = u` + ∆`ei and consecutive trial updates u`+1 = u`+1 + k∆`ei, k = 1, 2, · · · , 5 on

the mesh M` along ei direction are taken until objective function stops increasing. Similarly,

if J(u`−∆`ei) > J(u`) and J(u`−∆`ei) > J(u`+∆`ei), then incumbent point u` is updated,

i.e., u`+1 = u` − ∆`ei and consecutive trial updates u`+1 = u`+1 − k∆`ei, k = 1, 2, · · · , 5

on the mesh M` along −ei direction are taken until objective function stops increasing. One

should note, in the original GPS algorithm, ∆` is initially set large to search globally and ∆`

shrinks size to search locally whenever a local optimizer on M` is found, i.e., when no trial

update that improves the objective function is found after searching along Nx coordinate

directions. GPS algorithm is only considered to converge when ∆` is smaller than a user-

defined minimum allowable mesh size. The value of the initial mesh size ∆0 depends on the

actual problem to be solved. For example, in the well placement optimization of vertical

wells, when well locations are represented by the (i, j) gridblock indicies, we can start from

a small mesh size (e.g., ∆0 = 1 gridblock) if the GPS method is used to fine tune the well

locations after the StoSAG optimization or start from a larger mesh size (e.g., ∆0 = 5) if
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GPS method is used as the standalone optimizer. The way to shrink the mesh size ∆` is

also problem dependent. For example, for the case where the mesh size has to be a positive

integer, one can use ∆` = ∆` − 1; otherwise if the mesh size is a continuous variable, one

can use ∆` = ∆`/2. For detailed implementation of GPS in this work, please see Algorithm

3. Fig. 2.3 shows an illustration of the GPS algorithm for the well control optimization

where there is one injector under liquid rate control and one producer under BHP control

considering one control step.

Algorithm 3 General Pattern Search Algorithm

Set ` = 0, idx = 0, FLGPS = 0 and ∆0. Initialize the design variable u`, set the initial
mesh size ∆` = ∆0 and the minimum allowable mesh size ∆min. Set the maximum
allowable consecutive trial updates along a coordinate direction α0 = 5, create the
mesh M` = {u` ±∆`ei : i ∈ {1, 2, · · · , Nx}}.

Do

• Set idx = idx+ 1, set i equal to the modulus of idx divided by Nx.

• Evaluate J(u` ±∆`ei).

If J(u` + ∆`ei) > J(u`) or J(u` −∆`ei) > J(u`),

– set FLGPS = 0 and k = 0.

– If J(u` + ∆`ei) > J(u` −∆`ei), set u`,k = u` + ∆`ei, d` = ei;

– otherwise, set u`,k = u` −∆`ei, d` = −ei.
– For k = 1, · · · , α0

∗ If J(u`,k−1 + ∆`d
`) > J(u`,k−1), set u`,k = u`,k−1 + ∆`d

`;

∗ else, break the for-loop.

– EndFor

– Set u`+1 = u`,k and ` = `+ 1.

Otherwise,

– set FLGPS = FLGPS + 1.

• If FLGPS = Nx,

– u` is a local optimizer of the current mesh, then reduce current mesh size ∆`,
e.g. ∆` = ∆`/2.

– If ∆l ≥ ∆min, then re-create the mesh M` = {u`±∆`ei : i ∈ {1, 2, · · · , Nx}},
and set FLGPS = 0;

– otherwise, terminate the algorithm.

EndDo
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Figure 2.3: Illustration of the General Pattern Search (GPS) search direction.
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CHAPTER 3

SELECTING WELLS FROM A GIVEN SET OF POTENTIAL PATHS

Reservoir engineers are often asked to select “the best” Nw well paths from a set of

Kmax potential paths where Kmax > Nw, determine whether each of the Nw wells should be

an injector or a producer and perhaps determine the optimal drilling order. The number

of wells, Nw, that will be drilled is determined by the drilling budget. Often optimizing

operating well controls is not done until the well paths, types and drilling order have been

selected. In this chapter, our focus is solely on the problem: given Kmax plausible well

paths, select the optimal Nw wells, the type of each of these wells, the drilling order and

find the optimal wells controls where the objective function we wish to maximize is the

net present value (NPV) of production over the life of the reservoir. That is to say, we

consider the optimization problem given in Eq. 2.1 with the design variables as (x,T ,O).

Well controls are optimized only after (x,T ,O) is optimized for a given set of well controls.

The set of Kmax potentially good well paths is determined by drilling engineers working

with geoscientists and production engineers focused on drilling sweet zones with good flow

capacity. As an aid to finding good potential well paths, one may use a reservoir quality

map generated from geological information and static data to identify high permeable regions

with significant mobile oil; see [56, 39, 40, 17].

3.1 Problem Description and Methodology

In this chapter, each path is described by its perforations where the perforation seg-

ments can be pre-specified with different shapes, i.e., vertical, horizontal, slanted or curved.

As the objective is to select the Nw “best” well paths out of Kmax possibilities rather than

to optimize the trajectories of Kmax paths, we simply map each potential path to its label.
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Hence the set of potential paths is represented as a set of positive integers, denoted as Ω,

where the numbers are used for labeling or identification only, and they do not indicate

quantity, rank, or any other measurement. Thus,

Ω = {i|i = 1, 2, · · · , Kmax}

where, each i in Ω corresponds to a specific path. Let x = [x1,x2, · · · ,xNw ] denote any Nw

paths out of Kmax possibilities. The entries xj, j = 1, 2, · · · , Nw must all be distinct but can

correspond to any value in Ω encoded as its binary representation. One realization of x can

be obtained by making Nw selections without replacement from Ω, so there are Kmax!
Nw!(Kmax−Nw)!

possibilities for x. In this chapter, xj is denoted as a xbj, where the superscript b is used to

emphasize it is a binary vector. It is important to emphasize that xbj is actually the binary

representation of one of the numbers in Ω where the number of labels in Ω determines the

length of xbj. If for example, there are 32 possible paths, then we need a binary string of

length 5 in order to define a unique binary string for each of the 32 (25) potential paths.

If there are only 30 potential paths, we still require a binary string of length 5 to uniquely

describe the 30 potential paths but in this case, there will be two coded strings which will

pertain to none of the potential paths. In general, we need a string of length bpl to uniquely

define Kmax potential paths, where bpl is the integer such that

2bpl−1 < Kmax ≤ 2bpl. (3.1)

Denote the vector T as aNw-dimensional binary vector of the form T = [T1, T2, · · · , TNw ]

where each entry Tj, j = 1, 2, · · · , Nw determines whether the well placed at the potential

path corresponding to xbj is an injector or a producer. Tj is a two-level categorical variable,

where Tj = 0 indicates a producer and Tj = 1 indicates an injector. The vector T has 2Nw

possibilities. Similarly, denote O = [O1, O2. · · · , ONw ] as an Nw-dimensional vector where

each entry Oj determines the drilling sequence of the well with its path corresponding to

xbj. For example, Oj = 5 (when Nw ≥ 5) means the well represented by xbj is the 5th well
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drilled. As Oj is an ordinal number which tells the drilling sequence of the well represented

by xbj and we are going to select Nw wells, O always represents a permutation of the numbers

from 1, 2,· · · , Nw. We assume there is only one rig and wells are drilled one by one which

means that all entries of O have to be distinct. Hence a realization of O can be obtained

by making Nw selections without replacement from a list of numbers from 1 to Nw, where

there are Nw! possibilities for O. We assume each well is drilled in Td days which means

that the well with drilling sequence Oj will be drilled at time Td(Oj − 1) days. We let

u = [u(1),u(2), · · · ,u(Nw)]T denote the vector of well controls for Nw wells where each entry

u(j) denotes the control settings of the well placed at the location represented by xbj. Since

there can be Nc control steps, u(j) = [u
(j)
1 , u

(j)
2 , · · · , u(j)

Nc
] where Nc is the total number of

control steps, u is a Nw ∗ Nc-dimensional vector of continuous variables, determining the

injection/production rates of the wells under rate control or the BHP’s of wells under bot-

tomhole pressure control. Note before a well is drilled, its controls are immaterial and this

well is fixed to shut-in status. Therefore, the number and the length of the active control

steps for each well may be different.

The problem considered in this chapter is a mixed-integer problem with a high-

dimensional design variable vector c = (x,T ,O,u). The genetic algorithm (GA) is adopted

as the main methodology to optimize (x,T ,O). Even though it is possible to simultane-

ously optimize the control variables u together with the well locations, types and drilling

order (x,T ,O), we consider a sequential optimization workflow where (x,T ,O) is firstly

optimized with fixed u and then u is optimized based on the optimal (x,T ,O) obtained,

for the reasons discussed below. Note if we choose Nw = 12 wells out of Kmax = 64 locations

as in the second numerical example presented later, then bpl = 6, dim(x) = Nw ∗ bpl = 72,

dim(T ) = 12, dim(O) = 12, which sums up to 96. If each of the 12 wells had 20 control

steps, them dim(u) ≈ 240. If u is included in the design variable, i.e., c = (x,T ,O,u),

then c would contain 336 components which would require a population size of 772, based on

common rule of thumb for GA that the population size be twice the length of c. If 50 genera-

tions were produced using GA with this population size, over 30,000 reservoir simulation runs
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would be required which would likely make GA practically infeasible. The computational

cost would of course be reduced by using only one to two control steps per well, but this

would in many cases yield a suboptimal result (Oliveira and Reynolds [63]). A second reason

for sequential optimization is that the NPV function is generally a fairly smooth function

of the controls [42, 73], so the gradient-based methods using gradients computed from the

adjoint method or from a stochastic approximation are applicable and relatively effective for

optimizing controls but is relatively inefficient for optimizing categorical variables. Hence, a

sequential optimization procedure can break a high-dimensional optimization problem into

two smaller problems, and enables us to use different algorithms suitable for each specific

sub-problem, i.e in the first stage of optimization, the optimization variables (x,T ,O) are

all categorical variables, hence GA, an algorithm with global search ability, can be employed

whereas in the second stage of optimization, the vector of well controls, u, is optimized using

the Stochastic Simplex Approximate Gradient (StoSAG) [24]. A third reason for not includ-

ing u directly in c is that in industry, control optimization is often done after the wells have

been drilled. Thus our general procedure is to maximize J(x,T ,O) with each component

of u set equal to its upper bound for a BHP-controlled injector and set equal to its lower

bound for a BHP-controlled producing well, and then maximize J(u) based on the optimal

(x,T ,O) obtained. Note that there is no guarantee that sequential algorithms converge.

Isebor et al. [34] stated that simultaneous optimization of well locations and controls gave

a higher NPV than sequential optimization. Different than [34] who focused on optimizing

vertical wells, Humphries and Haynes [32] optimized the well placement and control settings

for non-conventional wells and found that sequential approaches gave a higher NPV than

simultaneous optimization for complex well parameterizations. After providing results of our

workflow for two examples, we comment for sequential versus simultaneous optimization.

In this chapter, we used mixed encodings to account for different types of variables

in order to fully characterize the variable set c = [x,T ,O]. The location variables x and

the type variables T are encoded as binary variables, and O is parameterized as ordinal

numbers using permutation encoding. Note x is encoded with binary strings instead of
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ordinal numbers to enable the generation of new potential locations which do not belong

to any of the parents in the crossover operation. The commonly used crossover operation

for ordinal numbers, Partially Mapped Crossover (PMX), can only recombine the existing

potential locations in the parent pair. If well locations are parameterized as ordinal variables

and PMX is applied, when Kmax >> Nw, it is likely that the initial population of candidate

solutions (randomly generated) will not include some of the potential paths and it is highly

unlikely that these paths will be brought back to the gene pool in following iterations by

mutation alone.

3.1.1 Optimization of well locations, types and drilling order

In this section, we give a detailed description of the five GA operators: initialization,

selection, crossover, mutation and replacement, adapted to solve for the specific problem

of this chapter. Note that the three parts (x,T ,O) of design variable vector c have dif-

ferent encodings and each encoding requires a different crossover and mutation procedure.

Hence, GA operators suitable for the mixed encodings are designed to fit for the purpose of

simultaneous optimization of c = (x,T ,O).

1. Initialization

In the implementation of GA, we need to preset the population size Np, the maximum

number of generations Ng, the crossover rate pc and the mutation rate pm. Initially, Np

individuals will be generated to form the initial population in which each entry of chromosome

c has to be sampled randomly and independently.

As both x and T are binary strings, each of their entry is sampled randomly from

{0, 1}. Note, there are two types of constraints in the parameterization of x. Firstly, when

Kmax is strictly less than 2bpl, binary encodings can be generated that do not correspond

to any of the potential locations. Secondly, we do not allow two wells to be drilled at the

same location, or two potential locations cannot be selected twice in a single chromosome,

i.e., xbi 6= xbj for i 6= j. Any infeasible trial chromosomes (chromosomes violating any of

these two constraints) are abandoned and only feasible chromosomes are accepted in the

47



initial population. Due to the ordinal feature of O, the drilling sequence is encoded as a

permutation of the sequence [1, 2, · · · , j, j + 1, · · · , Nw] where the jth entry represents the

drilling order of the well placed at the path represented by xbj. For example, if Nw = 8, a

possible chromosome segment for the drilling order is

O = [6 4 5 3 7 8 1 2]. (3.2)

According to Eq. 3.2, well xb1 is drilled the 6th (i.e., 5Td days), well xb2 is drilled 4th (i.e.,

3Td days), well xb3 is drilled 5th (i.e., 4Td days) and so on. For each individual of the initial

population, O is sampled as a random permutation. It is worth mentioning that in the

initialization process, we force the first well drilled to be a producer as it generally would

make no sense to open an injector first. Then a random sample of (x,T ) are concatenated

with a random sample of O to form a random chromosome c. After all Np individuals are

generated, the objective function defined in Eq. 2.2 for each individual is evaluated.

2. Selection

After the current generation has been evaluated, a portion of this generation is se-

lected in order to breed a new generation where the more fit individuals are likely to be

selected. Stochastic Universal Sampling (SUS) is a development of fitness proportionate

selection where fitness can be defined as any function positively correlated to the objective

function J . To apply SUS, we first order and rank the Np chromosomes according to their

NPV in ascending order so that the chromosome with the highest NPV has a ranking of

Np, the chromosome corresponding to the second highest NPV is given a ranking of Np − 1

and so on. The ranking/ordering of two individuals of equal NPV’s is determined randomly.

The ranking is used as the fitness function. We let Fj denote the fitness of chromosome

j where the chromosomes j = 1, 2, · · · , Np are ordered according to their fitness i.e.,

F1 ≥ F2 ≥ F3 ≥ · · · ≥ FNp . The cumulative fitness of individual j is denoted by Fp(j)

and defined by Fp(j) =
∑j

k=1 Fk, so the total fitness is Fp(Np) =
∑Np

k=1 Fk. SUS then uses a

single random value r to sample the ranked individuals by choosing them at evenly spaced
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intervals. This gives a weaker member of the population (according to its fitness) a chance

to be chosen and thus avoids having the candidate space saturated by the fittest members.

For illustration purpose, consider selecting 8 parents from a population of 8, i.e., Np = 8.

In Fig. 3.1, A, B, C, D, E, F, G and H represent the eight individuals with descending

fitness (values 8, 7, 6, · · · , 1, respectively). Note that the total fitness is Fp(Np) = 36 for

this case. First, a random number r ∼ U
(

0, Fp(Np)

Np

)
is generated. For i = 1, 2, · · · , Np,

the ith selected individual is the one with fitness Fj where j ∈ {1, 2, · · · , Np} is the index

satisfying Fp(j − 1) < r + (i−1)Fp(Np)

Np
≤ Fp(j), j ∈ {1, 2 · · · , Np} where Fp(0) = 0. The Np

selected individuals compose the parent pool to breed the next generation. The selected

parents are then shuffled and divided into Np
2

parent pairs. For the r selected in Fig. 3.1,

the individuals selected as parents are A,A,B,C,C,D, F and G.

Figure 3.1: SUS selection for the GA algorithm where A,B,C,D,E, F,G,H represent the
ranked individuals in a population with their lengths proportional to their ranks in descend-
ing order; Fp represents the sum of ranks for all individuals and N represents the number of
parents to keep in the parent pool.

3. Crossover

The crossover operation produces offsprings by recombining a selected pair of can-

didate solutions from the parent pool at the crossover rate pc, which is the probability

of performing a crossover operation. For each pair of selected parents, a random number

ri, i = 1, 2 · · · , Np/2 is generated from the uniform distribution U [0, 1] and compared with

the crossover rate pc. If ri > pc, the pair of offsprings are kept the same as the parent

pair; otherwise, a random position is selected on chromosome c. If the randomly generated

crossover point falls in the part of c corresponding to the drilling order O as in Fig. 3.2(a),

then Partially Mapped Crossover (PMX), which is discussed later, is conducted for O. If the
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crossover point falls in between two genes corresponding to (x,T ) as in Fig. 3.2(b), then a

modified version of one-point crossover is applied as discussed later.

(a) Crossover point in O (b) Crossover point in (x,T )

Figure 3.2: Illustration of the crossover operation for the mixed encoding chromosomes
(x,T ,O). The red and blue colors represent (x,T ) of the two parent chromosomes re-
spectively. The green and orange colors represent (O) of the two parent chromosomes,
respectively.

One-point crossover is the most common crossover mechanism used in GA, and is

applied wherever the random position selected is in the (x,T ) part of the chromosome c.

In this case, the genes on the right of selected position are exchanged between the pair of

parents (see Fig. 3.3). However, if the crossover point falls in the x part, the produced

offsprings may possibly violate one of the two types of constraints mentioned previously, i.e.,

(i) xbj may correspond to a chromosome which is not one of the potential paths in Ω or (ii)

c may be a chromosome such that xbj = xbi for i 6= j. Whenever (i) is violated, we abandon

the infeasible trial offsprings and repeat the crossover operation where the crossover point

is selected in the x part of c until feasible offsprings are formed. Quite often the selected

pair of parents have wells in common at different locations in the two chromosomes, see the

yellow part of the chromosomes in Fig. 3.4(a). If the selected crossover point is in between

two positions represented by the yellow genes as is the case for the two parents of Fig. 3.4(a),

then the produced offsprings violate constraint (ii) since one potential location (represented

by the yellow genes) appears twice in one single chromosome, see Child 1 in Fig. 3.4(a).

However, abandoning the infeasible offspring and repeating the crossover operation until

feasible offsprings are obtained greatly reduces the diversity. Hence, instead, we propose to

do crossover on the remaining part of chromosomes that excludes the common wells, and

then replace the common wells back in their original place, see Fig. 3.4(b). The crossover

process is repeated until Np offsprings are generated.
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Figure 3.3: Illustration of one-point crossover. The red and blue colors represent x of two
parent chromosomes respectively.

(a) One-point crossover (b) Modified one-point crossover

Figure 3.4: Illustration of the original one-point crossover and the modified one-point
crossover. The red and blue colors represent x of the two parent chromosomes respectively.
The yellow color corresponds to a specific gene unit xbj, j = 1, 2, · · · , Nw.

Adding more crossover sites (i.e., N-point crossover) allows the head and tail section

of a chromosome to be accepted together in the offspring and can give offsprings of a larger

diversity compared to one-point crossover. However, it can destroy good gene segments

and can sometimes reduce the performance of the genetic algorithm. We started with the

one-point crossover and did not see a loss of diversity in the offsprings. Hence, one-point

crossover are used throughout our work for the binary encoded vectors (x,T ). The classical

one-point (or N-point) crossover operator is no longer suitable for the ordinal vector O since

they may generate offspring chromosomes where two or more wells are drilled at the same

time, hence, we used PMX crossover instead.

The partially mapped crossover (PMX) was proposed by Goldberg and Lingle [29]

for ordinal numbers. Firstly, two random crossover points are chosen along the chromosome

string, then the substrings between these two crossover points are exchanged between the

selected pair of parents, and then the remaining information of the offsprings are determined

according to the mapping relationship in the selected substrings. Consider, for example, two

parents (denoted as P1 and P2) with one random crossover point between the 3rd and 4th

bits and the other crossover point between the 6th and 7th bits where, with the two crossover
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points (shown below) marked with |, P1 and P2 are given by:

P1 = [8 4 3 | 5 7 6 | 1 2],

P2 = [4 6 5 | 3 7 8 | 1 2].

(3.3)

The mapping sections that are interchanged are between these two crossover points. In this

example, the mapping systems are 5 → 3, 7 → 7 and 6 → 8. Now these two mapping

sections are exchanged with each other so that the two offsprings have the following form,

C1 = [× × × | 3 7 8 | × ×],

C2 = [× × × | 5 7 6 | × ×],

(3.4)

where the entries of genes marked × are still to be determined. Then, determine the re-

maining bits using information from the original parents that produce no conflicts, i.e., do

not generate two equal bits in one chromosome, to obtain

C1 = [× 4 × | 3 7 8 | 1 2],

C2 = [4 × × | 5 7 6 | 1 2].

(3.5)

If it did not cause a conflict, the first × in the first offspring C1 would be 8 which comes

from the first parent P1. However, 8 is already in C1 so it cannot be used again. According

to the mapping sections, 8 → 6, and the fact that 6 is absent from C1 in Eq. 3.5, 6 should

then occupy the first × in C1. The second × in C1 is 3 according to Eq. 3.3, but 3 is already

in this offspring, C1 of Eq. 3.5. Thus, according to mapping 3 → 5, 5 should replace the

second × since 5 has no conflict with the existing elements. Thus the first offspring C1 is

given by

C1 = [6 4 5 | 3 7 8 | 1 2]. (3.6)

Analogously, the second offspring C2 is given by

C2 = [4 8 3 | 5 7 6 | 1 2]. (3.7)
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4. Mutation

All Np offsprings are mutated before they are evaluated. Again, we used different

mutation operators for the binary encoded variables (x,T ) and the permutation encoded

variables O.

For each gene of (x,T ), a random number ri is generated from the uniform distri-

bution U [0, 1] and compared with the mutation rate pm, which represents the probability

of mutation operation. If ri < pm, the corresponding gene will be flipped, i.e., we change

0 to 1 or vice versa. If either constraint (i) or (ii) is violated after the mutation operation,

the chromosome will be repaired by replacing the infeasible chromosome, x, with a feasible

chromosome following three steps: (i) find the potential paths that do not appear in x and

their corresponding binary representations; (ii) calculate the Euclidean distance between xbj

and each binary representation; (iii) replace xbj (the well that cause a conflict) with one of

these binary representations which has the shortest Euclidean distance to xbj. Note that

mutation of a type variables gene Tj will not cause infeasibility.

Since each element of the drilling orderO is related to each other, i.e., O is a sequence,

we cannot perform the classical gene by gene mutation as we do for (x,T ). Instead, we do

mutations, chromosome by chromosome, with a larger mutation probability, p̂m, than is

used when mutating genes of binary variables (x,T ). In particular, for each individual in

the current population, we generate one random number ri ∼ U(0, 1), i = 1, 2, · · · , Np. If

ri < p̂m, then mutate the drilling order O of ith individual, otherwise, leave O of the ith

chromosome unchanged. Three mutation operations are used with equal probability. We use

O in Eq. 3.2 as an example to demonstrate the procedure used when ri < pm.

• Two-point swap. Randomly select two points in the O segment of a chromosome, and

swap the ordinal numbers at these two points. For example, select the 3rd and 6th

locations in Eq. 3.2, then the mutated drilling order is obtained as

[6 4 |8| 3 7 |5| 1 2]. (3.8)
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• Flipping of genes. Randomly select two points out of the O segment of a chromosome,

and flip the ordinal numbers in between these two points, i.e., reverse the order in

which they appear. For example, select the 3rd and 6th locations, then the mutated

drilling order of Eq. 3.2 is obtained as

[6 4 |8 7 3 5| 1 2]. (3.9)

• Re-combine genes. Randomly select one point out of the O segment of a chromosome,

split it into two segments and re-combine the two segments by putting the first segment

of genes after the second segment of genes. For example, select one point between the

6th and 7th locations and then the mutated drilling order of Eq. 3.2 is obtained as

[ 1 2 |6 4 5 3 7 8]. (3.10)

5. Replacement

In the replacement operation, the best candidate solution from the current generation

(with highest NPV or fitness) will randomly replace one of the newly generated offsprings

so that the best chromosome will be carried over to the next generation.

In this chapter, besides simultaneous optimization of (x,T ,O), we also considered

a two-stage sequential optimization procedure. In the first stage, the locations of Nw wells

from Kmax potential locations, x, and the well types, T , are optimized where all Nw wells

operate from time zero since x and T are always represented as binary vectors. In the second

stage, the drilling order of Nw wells O is optimized based on the optimal (x,T ) obtained

in the first stage. In this way the drilling order O is considered as a second order effort.

The performance of the sequential procedure and the simultaneous procedure are compared

based on two numerical examples.

3.1.2 Optimization of well controls u

As mentioned earlier, StoSAG combined with steepest ascent is used to optimize u
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based on the optimal well locations, types and drilling orders, (x,T ,O), obtained for fixed

values of the well controls. In the implementation of StoSAG, at each iteration, based on

the current estimate of control settings u`, 10 perturbations are generated from a normal

distribution where the ith diagonal of Cu is
(
0.03 ∗ (uup

i − ulow
i )
)2

and Cu is selected to

enforce a temporal correlation of the controls of each well; see Chen and Reynolds [9]. The

maximum step size, along the normalized stochastic gradient direction (gradient divided

by its infinity norm) is set as 0.2 ∗ [uup − ulow]. If the NPV is increased, then update u`

and move to the next iteration. If the NPV is not increased, then the step size is cutback

by 50%. The maximum number of step-size cuts is set as 5. If after 5 step-size cuts, the

NPV cannot be improved, 10 new perturbations around u` are re-sampled to estimate a new

stochastic gradient. The maximum number of re-samples is set as 5, i.e., after 5 re-samples,

the algorithm is terminated.

3.2 Numerical Examples

In this section, the proposed methodology is tested on two waterflooding examples, a

channelized reservoir with three different facies (Example 1) and the Brugge model (Example

2). In Example 1, we select 8 best wells from 30 potential paths (either vertical or horizontal).

In Example 2, we consider three cases: in case A, we try to determine the best 12 well

locations out of 30 potential locations; in case B, we still select 12 best wells, but the

number of potential paths is enlarged to 64. In case C, we consider simultaneously selecting

12 wells starting from time 0 and 8 infill wells starting from the fourth year, out of 64

potential locations. For both examples, we first determine the optimal well locations, types,

drilling order using GA with BHP’s for producers and injectors, respectively, fixed at their

minimum and maximum values, and then the optimal control settings are determined using

the StoSAG algorithm while we fix the well locations, types and drilling order at the optimal

values obtained in the first optimization. We also compare simultaneous optimization of

(x,T ,O) and sequential optimization where (x,T ) are optimized first assuming all wells

start operation at 0 days and then drilling order (O) is optimized with (x,T ) fixed at the
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optimal values obtained, referred to as (x,T )→ O.

In the implementation of GA, the crossover probability pc is set to 0.8 for both (x,T )

and O. However, for the binary encoded parameters (x,T ), the mutation probability p̂m is

set to 0.01. For the ordinal parameters O, pm is defined by

p̂m = min{0.03 ∗ ig, 0.3}, (3.11)

where ig represents the igth generation. As discussed previously, we do mutations gene by

gene for (x,T ) and chromosome by chromosome for O. The population size Np is set to be

50; the maximum number of generations Ng are set differently for Example 1 and Example 2.

Based on our numerical experiments, we found that the rule of thumb in the GA literature

that Np should be set equal to twice the number of bits in a chromosome gives a larger value

of Np than what is needed. Np = 50 gives a reasonable trade-off between fast convergence

and the good quality of the solution.

3.2.1 Example 1: channelized reservoir

The first example considered is a channelized reservoir model defined on a 50 ×

50 × 14 reservoir simulation grid where each grid block is 200 ft × 200 ft × 10 ft. The

reservoir is composed of three geologic zones: zone 1 is composed of the first four reservoir

simulation layers, zone 2 contains the middle six simulation layers, zone 3 is composed of

the bottom four simulation layers. There are three facies, i.e., the channel facies, the levee

facies and the shale facies generated using the object-based modeling. When generating the

petrophycical parameters, the azimuth angle is set to 0◦ and the correlation length is set

to 1,000 ft in both the major and minor correlation directions. We assume no correlation

in the vertical direction. Both the horizontal permeability field and the porosity field are

generated following normal distribution where the mean and deviation of the petro-physical

parameters for each individual facies are given in Table 3.1. The vertical permeability field is

set equal to 1/10 of the horizontal permeability field. The top of the reservoir is at the depth

of 4,800 ft. The initial reservoir pressure is 3,800 psi and the initial reservoir oil saturation
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is 0.9. Note the upper bound on the production BHP’s and the lower bound on the injection

BHP’s are set equal to the initial reservoir pressure, i.e., 3,800 psi.

Wells can only be drilled at the 30 possible locations shown in Fig. 3.5 and each

location corresponds to one prescribed well trajectory (a fully penetrating vertical well or

a horizontal well). Each potential well location corresponds to a label. The potential hori-

zontal wells are completed in different layers and the prescribed well trajectories at different

potential locations do not intersect with each other. Note that two potential well locations

can intersect or overlap with each other areally when their paths are projected. For example,

the label “24/28” in Fig. 3.5 means that path 24 and path 28 project to the same line in the

x-y plane but path 24 is a horizontal well located in layer 12 whereas path 28 is a horizontal

well located in layer 14. The square symbol represents the starting point of a well, the circle

symbol represents the end point of a well and the bold line represents the perforation in

the plotted layer. This configuration contains 11 vertical wells fully penetrating all 14 layers

(with labels from 1 to 11) and 19 horizontal wells completed in different layers (with labels

from 12 to 30), see Table 3.2. The perforation lengths of the horizontal wells are equal to

2,000 ft which are much longer than those of the vertical paths which have a perforation

length equal to the reservoir thickness, 140 ft.

The problem is to select Nw = 8 best wells from Kmax = 30 potential locations and

determine their optimal locations x, types T , drilling order O and control settings u. All

wells are under BHP control. We consider the effect of the value of the upper bound on

BHP’s at injectors and the lower bound on BHP’s at producers and the effect of the values

of fixed BHP’s when we optimize (x,T ,O) with the value of BHP’s held fixed. Two sets

of bounds on the control settings are considered, where in bound A the upper bound for

injectors is 4,600 psi and the lower bound for producers is 3,000 psi and in bound B the

upper bound for injectors is 5,000 psi and the lower bound for producers is 1,000 psi. A

producer will be shut-in if its water cut goes above 0.98. The production life, which is

set to be 4,000 days, is divided into 16 control steps where the first 7 control steps are all

90 days in length, the subsequent 8 control steps are all 365 days in length and the last
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control step is 450 days. We assume it takes three months to drill a well, Td = 90 days.

Accordingly, the first well has 16 control steps, the second well has 15 control steps, and so

on. The eighth well drilled has 9 control steps. Hence, there are 100 control variables in

total, i.e., the vector of the continuous control variables, u, is 100-dimensional. In this case,

the drilling cost of a vertical well is Cw,j = $8× 106 and the drilling cost of each horizontal

well is Cw,j = $16× 106. The economic parameters for the computation of NPV are set as:

rno = $50.0/STB, cnw = $5.0/STB, cnwi = $5.0/STB, b=10.0%. Only oil and water flow in

the reservoir.

Given Kmax = 30, a bpl = 5 bit binary vector is used to describe the possibility of each

of the 30 potential locations. Hence, with Nw=8, x is a Nw ∗ bpl = 40-dimensional binary

variable vector, T is a 8-dimensional binary variable vector and O is a 8-dimensional ordinal

vector, so there are 56 categorical optimization variables. Hence, a sequential optimization

of (x,T ,O) and u is adopted where (x,T ,O) are determined first fixing the BHP’s of

injectors and producers at their upper bound and lower bound respectively and then u

is optimized based on the optimal (x,T ,O) obtained. In simultaneous optimization of

(x,T ,O) with GA using mixed encoding, the maximum number of generations is set equal

to 80. In sequential optimization of (x,T ) using binary encoding followed by optimization

of O using permutation encoding, the maximum number of generations are set as 50 and 30,

respectively, so that the computational effort of simultaneous and sequential optimization

are comparable in that 80 generations are used in both cases.

In this example, we consider the determination of optimal (x,T ,O,u) under bound

A and bound B, where we denote the optimization processes as “Bound A” and “Bound

B” respectively. For both Bound A and Bound B, we set the BHP’s at the bounds when

determining the optimal (x,T ,O) and then determine the optimal u using the optimal

(x,T ,O) obtained. To investigate the effects of controls used to determine well locations,

types and drilling order, we also considered a case where we set the controls at bound A to

determine the optimal (x,T ,O) and then optimize well controls within bound B, referred

to as “Bound A→B”. Note that the bounds in Bound A are closer to the initial reservoir
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pressure than those of Bound B. Bound A→B is a special case of Bound B where the controls

are not set at the bounds (1,000 psi for production BHP and 5,000 psi for injection BHP)

when determining (x,T ,O), but are fixed equal to the initial guesses used for the subsequent

optimization of well controls (3,000 psi for production BHP and 4,600 psi for injection BHP).

Table 3.1: Petrophysical parameters for each facies, Example 1, i.e., selecting Nw = 8 wells
given Kmax = 30 potential locations in a channelized reservoir.

Facies
Porosity Horizontal Permeability, mD

Mean Variance Mean Variance
Channel 0.25 0.03 1500 200

Levee 0.20 0.03 500 100
Shale 0.15 0.03 50 10

(a) Layer 1 (b) Layer 7 (c) Layer 12

Figure 3.5: The full set of potential well locations and trajectories projected to the horizontal
permeability field, Example 1.

Table 3.2: Perforated layers of the horizontal wells, Example 1.

Path Label 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Completed Layer 1 1 1 1 1 3 3 3 3 3 3 12 12 12 12 14 14 14 14

1. Optimal solution of (x,T ,O)

In this section, we use Bound A as the base case to illustrate the performance of the

proposed methodology. In Bound A, the BHP controls at all producers are fixed at their

lower bound (3,000 psi), the BHP controls at all injectors are fixed at their upper bound

(4,600 psi) when optimizing (x,T ,O). Fig. 3.6 shows the NPV versus number of generations
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Table 3.3: Fixed BHP’s used in the optimization of (x,T ,O) and initial guesses used in the
subsequent control optimization, Bound A, Bound A→B and Bound B for Example 1.

Case Bound A Case Bound A→B Case Bound B
Upper bound on injection BHP, psi 4600 5000 5000
Lower bound on production BHP, psi 3000 1000 1000
Injection BHP for (x,T ,O) optimization, psi 4600 4600 5000
Production BHP for (x,T ,O) optimization, psi 3000 3000 1000
Initial injection BHP for control optimization, psi 4500 4600 4800
Initial production BHP for control optimization, psi 3100 3000 1200

for the joint optimization of only well locations and types (no optimization of O) obtained

with three different initial random seeds. The NPV’s for the candidate solutions in the initial

generation range widely, approximately from $0 × 109 to $4 × 109, i.e., the well locations

and types significantly impact the NPV. The best NPV’s obtained with seed 2 and seed 3

are somewhat higher than the best NPV obtained with the run using seed 1, but seed 1

gives only a 4% lower optimal NPV than the highest optimal NPV so the method is fairly

robust to the choice of the initial population. The best NPV among the Np = 50 candidate

solutions increases significantly during the first 20 generations but the rate of improvement

slows down dramatically during the following 30 generations and is essentially stable for the

last few generations for all three seeds. Table 3.4 shows the best candidate solution obtained

up to 10, 20, 30, 40 and 50 generations using seed 2. In Table 3.4 and similar tables presented

later, “P” corresponds to a producer and “I” corresponds to an injector, e.g., “I04” represent

an injector at the well path represented by label 4 in Fig. 3.5; Ninj, Npro, NV , NH respectively

represent the optimal number of injectors, producers, vertical wells and horizontal wells. As

we can see, the optimal well locations and types change greatly in the first 20 generations

(specifically, generations 10 and 20 have only one well in common), but generations 40 and

50 have identical optimal solutions.

Based on the optimal well locations and types, a second stage of drilling order op-

timization is carried out and the resulting NPV versus the number of generations is shown

in Fig. 3.7. Compared to the optimal NPV in Fig. 3.6, the initial NPV’s in Fig. 3.7 are

much smaller. This is because in the first optimization stage where (x,T ) is optimized,
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all wells are assumed to begin operating at time 0 while in the second optimization stage,

wells are brought online sequentially (every Td = 90 days) which corresponds to a shorter

total operation time and hence gives smaller NPV’s. The NPV’s for the candidate solutions

in the initial generation in Fig. 3.7 have a relatively small range, about $0.2 × 109 which

indicates the well drilling order has a much smaller impact on the NPV compared to the

well locations and types. The best NPV obtained with each seed increases only slightly (on

average 0.7%) by optimizing the drilling order and stabilized at around 30 generations for all

three seeds. More precisely, if we had chosen the “optimal” drilling order based on the best

NPV of the initial population of Fig. 3.7(b), we would have obtained an “optimal” NPV

equal to $4.67× 109 whereas as drilling order optimization increased this to $4.72× 109, an

absolute increase of 50 million dollars at the cost of 1500 reservoir simulation runs. How-

ever, if we simply ignored any evaluation of NPV for a set of possible drilling order, i.e.,

did not even generate the initial population of Fig. 3.7(b), we could have picked a drilling

order that resulted in an NPV of $4.44× 109 which is about 230 million lower than the best

NPV from the initial population. Table 3.5 shows the optimal solutions including the well

locations, types and drilling order for all three seeds. Each well is represented in the form

“type-label-order,” e.g., “P05-6” represents drilling the producer with potential path labeled

5 starting from (6 − 1) ∗ Td = 300 days. “V” represent a vertical well and “H” represents

a horizontal well. If a well is horizontal, the completed layer of that well is also given, e.g.

“H-1” represents a horizontal well completed in layer 1. As we can see from Table 3.5, the

number of injectors is 3 or 4 for all 3 seeds. The variation in the optimal NPV is also small.

Comparing the optimal solutions obtained with seed 1 and seed 2, they have 6 similar wells,

including four wells in common {P05, P16, P23, I29}, one pair of wells at same areal location

but completed in different layers {I21 and I15}, and one pair of wells close to each other {I13

and I18}. Comparing the optimal solutions obtained with seed 2 and seed 3, they have 6

wells in common {I04, P05, I15, P16, P20, P23} and one pair of wells close to each other {I13

and I18}. For all three seeds, the common wells have the same relative drilling order and the

first four wells drilled follow the sequence “producer-injector-producer-injector”. Fig. 3.8
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shows the optimal well placement obtained with three initial random seeds plotted on the

horizontal permeability field and the remaining oil saturation field of layer 7 after 4,000 days

of production. Note that the distribution of the remaining oil saturation is fairly similar for

the three estimates of optimal solutions. Hence, the optimization gives us a clear idea about

good locations, their types, drilling order, the optimal NPV and the sweep efficiency.
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Figure 3.6: NPV versus generations obtained with joint optimization of well locations and
types using three seeds, Bound A, Example 1.

Table 3.4: Optimal solutions obtained at different number of generations for the joint opti-
mization of well locations and types using seed 2, Bound A, Example 1.

Generations NPV, $× 109 Ninj Npro NV NH Wells
10 4.49 4 4 3 5 I04 I08 P10 I13 I14 P16 P23 P28
20 4.68 4 4 2 6 I04 P09 P12 I13 I15 P16 P23 I29
30 4.75 4 4 2 6 P01 I04 I13 I15 P16 P20 P23 I29
40 4.96 4 4 2 6 I04 P05 I13 I15 P16 P20 P23 I29
50 4.96 4 4 2 6 I04 P05 I13 I15 P16 P20 P23 I29
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Figure 3.7: NPV versus generations obtained with the optimization of drilling order using
three seeds, Bound A, Example 1.
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(a) Seed 1 (b) Seed 2 (c) Seed 3

Figure 3.8: Optimal solutions obtained with sequential optimization of (x,T ) → O, using
three seeds, plotted on the horizontal permeability field (upper row) and the oil saturation
field (bottom row) of layer 7 at end of 4,000 days of production, Bound A, Example 1.

(a) Seed 1 (b) Seed 2 (c) Seed 3

Figure 3.9: Optimal solutions obtained with sequential optimization of (x,T ) → O, using
three seeds, plotted on the horizontal permeability field (upper row) and the oil saturation
field (bottom row) of layer 7 at end of 4,000 days of production, Bound B, Example 1.
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Fig. 3.9 presents the optimal wells obtained with sequential optimization using three

seeds for Bound B, plotted on the horizontal permeability field (upper row) and the oil

saturation field (bottom row) of layer 7 at end of 4,000 days of production. In this case,

the BHP’s are fixed at their bounds (5,000 psi for injectors, 1,000 psi for the producers)

at all control steps when optimizing (x,T ,O). From Fig. 3.9, with seed 1 and seed 3, we

obtain similar flooding patterns (with 6 wells in common) with two injection wells where

the injected water at I24 flows from the southwest corner to the northeast direction along

the channels and the producers are gathered at the north and east sides of the reservoir.

On the other hand, for seed 2, there is only one injector (i.e., I13) and the injected water

flows from the northeast to the southwest with most producers at the south and west sides

of the reservoir. Despite the difference in flow paths and well paths obtained for seed 1

and 3 compared to those generated with seed 2, the estimated optimal NPV’s are almost

identical for the 3 seeds as shown in Table 3.6. Table 3.6 shows a summary of the optimal

solutions obtained with sequential optimization of (x,T ) → O for Bound B. Compared to

Bound A where 3 to 4 injectors are obtained, only one (horizontal) to two injectors (one

horizontal, one vertical) are obtained in case Bound B, due to the higher injection BHP’s.

Meanwhile, for all three seeds of Bound B, (i) the first injector drilled is horizontal and is

brought online Td = 90 days later than that in Bound A; (ii) the first four wells drilled follow

the sequence “producer-producer-injector-producer”. Hence, the optimal results of Bound B

also illustrate that the proposed optimization procedure can provide a clear guidance on the

optimal well combinations and drilling sequence, indicating GA algorithm is quite robust.

Based on the optimal well locations, types and drilling order obtained with sequential

optimization of (x,T ) → O, control optimization is carried out using StoSAG. For both

Bound A and Bound B, the initial guesses of BHP’s for the control optimization are set close

to the bounds and are given in Table 3.3. For Bound A→B, the initial guesses of BHP’s

are set at the upper bound on injection BHP’s (4,600 psi) and lower bound on production

BHP’s (3,000 psi) of bound A, which are far from the bounds of case Bound B (upper bound

on injection BHP’s at 5,000 psi and lower bound on production BHP’s at 1,000 psi).
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Table 3.5: Optimal solutions obtained with sequential optimization of (x,T ) → O using
three seeds, Bound A, Example 1. For seed 1 and seed 3 results, wells that are different from
the solution of seed 2 are marked in red.

Seeds NPV, $× 109 Ninj Npro NV NH Wells

Seed 1 4.55 3 5 2 6
P05-6 P09-8 P12-7 P16-3 I18-4 I21-2 P23-1 I29-5

V V H-1 H-1 H-3 H-3 H-12 H-14

Seed 2 4.72 4 4 2 6
I04-4 P05-8 I13-5 I15-2 P16-3 P20-7 P23-1 I29-6

V V H-1 H-1 H-1 H-3 H-12 H-14

Seed 3 4.66 3 5 2 6
I04-5 P05-6 I15-2 P16-3 P17-7 I18-4 P20-8 P23-1

V V H-1 H-1 H-3 H-3 H-3 H-12

Table 3.6: Optimal solutions obtained with sequential optimization of (x,T ) → O using
three seeds, Bound B, Example 1. Injectors are in bold.

Seeds NPV, $× 109 Ninj Npro NV NH Wells

Seed 1 6.39 2 6 3 5
P01-8 I02-5 P03-4 P12-1 P13-7 P16-2 P20-6 I24-3

V V V H-1 H-1 H-1 H-3 H-12

Seed 2 6.36 1 7 2 6
P05-5 P08-6 P12-1 I13-3 P14-8 P15-4 P16-2 P19-7

V V H-1 H-1 H-1 H-1 H-1 H-3

Seed 3 6.40 2 6 3 5
P01-6 I02-5 P03-8 P12-7 P16-2 P17-1 P18-4 I24-3

V V V H-1 H-1 H-3 H-3 H-12

2. Investigation of the effect of initial guesses and bounds

The estimated NPV’s obtained for case Bound A, Bound A→B as well as Bound

B obtained for the optimization of (x,T ) → O followed by well control optimization, are

shown in Table 3.7. Figs. 3.10 and 3.12 show the optimal controls obtained for Bound A

using seed 1 and for Bound B using seed 2. Note in both figures, wells tend to operate at

or very close to the bounds for the first 2,000 days which contributes more than 80% of the

NPV. Fig. 3.11 shows the optimal controls obtained for Bound A→B using seed 2. Note

unlike cases Bound A and Bound B where the well control optimization did not increase

NPV significantly beyond the NPV obtained by optimization of (x,T ,O) with fixed BHP

controls, in case Bound A→B, optimizing well controls resulted in about a 30% increase

in NPV. However, the final optimal NPV results for Bound A→B are on the order of 5%

lower than those obtained for the Bound B case where during (x,T ,O) optimization well

controls were fixed at bounds; see Table 3.3. It is important to note the bounds on BHP’s are

the same for case Bound B and case Bound A→B, the only differences are the fixed values

of BHP’s used when optimizing (x,T ,O) and the initial guesses used in the subsequent
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optimization step where we optimize only controls. Specifically, if we put the controls at the

bounds of Bound B (i.e., injecting at 5,000 psi and producing at 1,000 psi) for the optimal

(x,T ,O) obtained in Bound A→B (i.e., injecting at 4,600 psi and producing at 3,000 psi),

we obtain an average NPV which is 21% lower than that in Bound A→B, and 26% lower

than that obtained in Bound B, indicating that the well controls used when optimizing

(x,T ,O) strongly affect the optimal well locations, type, drilling order (see Tables 3.5 and

3.6) which in turn affect the optimal well controls (see Figs. 3.11 and 3.12). The results

presented to this point and other results not presented, indicate that with our workflow when

the optimization of (x,T ,O) and the optimization of well controls are done in two separate

steps, the fixed values of BHP used in the optimization of (x,T ,O) may strongly influence

the result and lead to at least a somewhat suboptimal final estimate of the optimal NPV.

Table 3.7: Effects of initial guesses and bounds on sequential optimization of well locations
and types, drilling order (i.e., (x,T )→ O) and controls using three seeds, Example 1.

Seeds
Optimal NPV, $× 109

Bound A Bound A→B Bound B
(x,T )→ O (u) (x,T )→ O (u) (x,T )→ O (u)

Seed 1 4.55 4.62 4.55 5.96 6.39 6.39
Seed 2 4.72 4.72 4.72 6.09 6.36 6.43
Seed 3 4.66 4.70 4.66 6.07 6.40 6.43

Average 4.64 4.68 4.64 6.04 6.38 6.42
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Figure 3.10: Optimal controls for the well locations, types and drilling order obtained with
sequential optimization of (x,T )→ O using seed 1, Bound A, Example 1.
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Figure 3.11: Optimal controls for the well locations, types and drilling order obtained with
sequential optimization of (x,T )→ O using seed 2, Bound A→B, Example 1.
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Figure 3.12: Optimal controls for the well locations, types and drilling order obtained with
sequential optimization of (x,T )→ O using seed 2, Bound B, Example 1.

3. Investigation of simultaneous (x,T ,O) versus sequential (x,T ) → O) optimiza-

tion

Simultaneous optimization of the well locations, types and drilling order using GA

with mixed encodings with three initial random seeds is also carried out and the optimal

NPV’s obtained for the three cases are presented in Table 3.8. Comparing Tables 3.7 and 3.8,

sequential optimization slightly outperformed simultaneous optimization with same compu-

tation cost based on the average optimal NPV’s obtained for three different runs. However,

it is impossible to argue this is a general conclusion and based purely on mathematical intu-

ition, one would guess that simultaneous optimization would generally perform as well as or

better than sequential optimization as simultaneous optimization ensures the best possible

67



solution exists somewhere in the search space. Isebor et al. [34] compare simultaneous versus

sequential optimization for only one simple problem where the reservoir model is 2D, and

the number of wells is fixed at five with three producers and two injectors. Moreover, the

only optimization variables are the well controls based on five control steps and the loca-

tions of the five vertical wells, i.e., unlike our work, well types and drilling order are not

considered. The problem they consider involves only 35 total design variables. In addition,

they only compare sequential and simultaneous optimization using PSO-MADS. For their

case, based on five distinct optimizations, simultaneous optimization gives an NPV about

4% to 8% higher than sequential optimization which is in conflict with our conclusion on this

issue. On the other hand, Humphries and Haynes [32] compare sequential and simultaneous

optimization of locations and controls for a set of problems using PSO-MADS. They find

that as the problem become more complex, e.g., as allowed well paths become more “com-

plex,” i.e., slanted well trajectories are allowed as opposed to requiring all wells be vertical,

sequential optimization results in 5% to 9% higher NPV than simultaneous optimization.

Moreover, as we consider well locations, types and drilling order while [34] and [32] consider

only well locations and controls, when comparing sequential versus simultaneous optimiza-

tion, there is no way to know a priori whether the conclusions of either paper on sequential

versus simultaneous optimization would apply to the problem we consider here. Given the

expected highly rough optimization problem where two types of categorical design variables

are used and the large search space, we are not surprised to find that, for the problems we

consider, sequential optimization performs slightly better than simultaneous optimization

which agrees with the conclusion of [32].

3.2.2 Example 2: Brugge model

The Brugge field was developed by TNO in conjunction with the SPE Applied Tech-

nology Workshop held in Brugge in June 2008 to benchmark the technology available at that

time for closed loop (real-time) reservoir management, see Peters et al. [71]. The original

model was constructed with approximately 20 million gridblocks and then upscaled to a
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Table 3.8: Effects of initial guesses and bounds on simultaneous optimization of well locations
and types, drilling order (i.e., (x,T ,O)) and controls using three seeds, Example 1.

Seeds
Optimal NPV, $× 109

Bound A Bound A→B Bound B
(x,T ,O) (u) (x,T ,O) (u) (x,T ,O) (u)

Seed 1 4.61 4.64 4.61 5.93 6.16 6.36
Seed 2 4.53 4.54 4.53 6.12 6.33 6.39
Seed 3 4.65 4.70 4.65 5.95 6.38 6.43

Average 4.60 4.63 4.60 6.00 6.29 6.39

60,048 (139 × 48 × 9) gridblock model. The stratigraphy of the Brugge field is modeled

after a typical North Sea Brent field and is an elongated half-dome with one internal fault

and one boundary fault. Originally, 20 vertical producers are placed inside the oil zone while

10 vertical injectors are placed close to the water oil contact. The top structure map with the

original well locations is shown in Fig. 3.13. Fig. 3.14 shows the log horizontal permeability

field and the porosity field of layer 1 and layer 9 respectively.

Figure 3.13: Top structure of the Brugge model with the original 30 wells. Left: 3D structure
plotted on the initial oil saturation field. Right: 2D depth contour of layer 1 where wells
with label 21 to 30 are the locations of the original injectors and wells with label 1 to 20 are
the locations of the original producers, Example 2.

In this example, we considered three cases. In case A, we use the original 30 well

locations as 30 potential locations and select 12 wells out of these 30 potential locations.

In case B, we enlarge the number of potential locations to 64 but still select 12 wells. For

both cases, we determined the optimal locations, types, drilling order and control settings

for 12 wells. In case C, we considered simultaneously selecting 12 wells starting from time
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Figure 3.14: The log-horizontal permeability (ln kx) field and porosity (φ) field of the Brugge
model, Example 2.

0 and 8 infill wells starting from the fourth year, from 64 potential locations. The initial

average reservoir pressure is 2,514 psi. All wells operate under BHP control. The upper

bound on the production BHP’s and the lower bound on the injection BHP’s are set the

same as the initial reservoir pressure, i.e., 2,514 psi. The lower bound on the production

BHP’s is set equal to 725 psi and the upper bound on injection BHP’s is set equal to 2,662

psi. In this example, producers only penetrate the first 8 layers and injectors penetrate all 9

layers. Either producers or injectors can be drilled at any potential location in the oil zone.

We force a well drilled at potential locations in the aquifer to be an injector. A producer will

be shut-in if its water cut goes above 0.94. The reservoir life is set as 20 years. The economic

parameters are set as: rno = $80.0/STB, cnw = $5.0/STB, cnwi = $5.0/STB, b=10.0%. The

drilling cost for each well is set as Cw,j = $8× 106. We assume it takes one month to drill a

well, i.e., Td = 30 days.

1. Case A of Example 2: Nw = 12, Kmax = 30

In this case, the locations of the 30 wells used in the original Brugge model are used

as the 30 potential locations. Given Kmax = 30 and Nw = 12, a bpl = 5 bit binary vector

is used to describe the possibility of each potential location. Hence, x is a Nw ∗ bpl = 60-
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dimensional binary variable vector, T is a 12-dimensional binary variable vector and O is a

12-dimensional ordinal vector. The reservoir life is divided into 20 control steps where each

control step contains 365 days. Since it takes 30 days to drill a well, all wells are drilled

within the first year, i.e., all wells have 20 control steps. However, the first control step is

365 days for the first well (from days 0 to 365 days), 335 days for the second well (from 30

days to 365 days), 305 days for the third well (from 60 days to 365 days), etc. Hence, u is

a Nw ∗Nc = 240-dimensional vector composed of continuous variables.

A sequential optimization of (x,T ,O) and u is adopted where (x,T ,O) is deter-

mined first with the BHP’s of injectors and producers fixed at their upper bound and lower

bound respectively and then u is optimized based on the optimal (x,T ,O) obtained. In

simultaneous optimization of (x,T ,O) with GA using mixed encoding, the maximum num-

ber of generations are set as 60. In sequential optimization of (x,T ) using binary encoding

and O using permutation encoding, the maximum number of generations are set as 40 and

20 respectively.

Fig. 3.15 shows the NPV’s versus number of generations for the joint optimization of

well locations and types with three seeds. In this case, the NPV’s for the candidate solutions

in the initial generation range approximately from $0 × 109 to $7.4 × 109, again indicating

that well locations and types have a big impact on the NPV. The highest optimal NPV is

obtained with seed 3, but the worst optimal NPV estimate is only 0.5% worse than the best

optimal NPV of $9.34× 109 which indicates that GA algorithm is quite robust. The average

best NPV in the initial population is $7.32 × 109 and the average best NPV in the final

solution is $9.34 × 109, i.e., GA algorithm improved the NPV by 21.6% on average. Table

3.9 shows the best solutions obtained at different generations using seed 3. From Table 3.9,

the optimal well locations and types change substantially during the first 20 generations

while in the following 20 generations, only two wells changed locations and types. The

difference between the maximum and the minimum of the optimal NPV’s for all three seeds

(0.025×109$) is quite small compared to their absolute average value (9.32×109$). Based

on the optimal well locations and types, a second-stage drilling order optimization is carried
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out and NPV versus the number of generations is shown in Fig. 3.16. Similar to Example

1, the optimal NPV’s obtained are lower than that in Fig. 3.15 due to a shorter operational

time when drilling order is considered. The NPV’s for the candidate solutions in the initial

generation have a relatively small range, about $0.2 × 109. If we had chosen the “optimal”

drilling order based on the best NPV of the initial population of Fig. 3.16(c), we would

have obtained an “optimal” NPV equal to $9.04×109 whereas as drilling order optimization

increased this to $9.08 × 109, an absolute increase of 40 million dollars at the cost of 1000

reservoir simulation runs. However, if we simply ignored any evaluation of NPV for a set of

possible drilling order, i.e., did not even generate the initial population of Fig. 3.16(c), we

could have picked a drilling order that resulted in an NPV of $8.89× 109 which is about 150

million lower than the best NPV from the initial population.

Table 3.10 shows the optimal solutions obtained with sequential optimization of

(x,T ) → O. From Table 3.10, all three seeds resulted in 4 injectors and 8 producers.

Comparing the optimal well configurations obtained with seed 2 and seed 3, they have 9 out

of 12 wells in common. Comparing the optimal solutions obtained with seed 1 and seed 3,

they again have 9 out of 12 wells in common. For all three seeds, the first injector drilled is

I01 and is drilled as the 6th or 7th well; the first producer drilled is P19. Fig. 3.17 shows

the optimal well configurations obtained with all three seeds and the corresponding oil sat-

uration fields of layer 1 after 20 years of production. From Fig. 3.17, the well locations and

the oil saturation field obtained for the three seeds are quite similar to each other. Note that

all three seeds obtained four injectors where two injectors are placed in the aquifer and two

injectors are placed in the oil zone. Among the two injectors placed in the oil zone, all three

seeds chose I01 as the first injector. Hence, as in Example 1 (the channelized reservoir), the

optimization gives us a clear indication about good potential locations, their corresponding

types and when to drill the injectors.

Based on the optimal well locations, types and drilling order obtained with sequential

optimization of (x,T ) → O, we carried out control optimization for the selected 12 best

wells using StoSAG starting from the initial guesses where at all control steps, the BHP’s
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Figure 3.15: NPV versus generations obtained with the optimization of well locations and
types, i.e., (x,T ), using three seeds, Example 2-A, i.e., selecting Nw = 12 wells given
Kmax = 30 potential locations.
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Figure 3.16: NPV versus generations obtained with drilling order optimization using three
seeds, Example 2-A.

Table 3.9: Optimal solutions obtained at different number of generations for the optimization
of well locations and types using seed 3, Example 2-A.

Generations NPV, $× 109 Ninj Npro Wells
10 8.58 3 9 P01 P02 P07 P08 P11 P12 P13 I16 P17 P19 I21 I30
20 9.02 3 9 I01 P02 P03 P07 P08 P11 P13 P16 P17 P19 I21 I25
30 9.04 3 9 I01 P02 P03 P07 P08 P11 P13 P16 P17 P19 I21 I26
40 9.34 4 8 I01 P02 P03 P07 P08 I09 P11 P13 P16 P19 I21 I25

Table 3.10: Optimal solutions obtained with sequential optimization of (x,T ) → O using
three seeds, Example 2-A. Wells that are different from the solution of seed 3 are in red.

Seeds NPV, $× 109 Ninj Npro Wells
Seed 1 9.03 4 8 I01-6 P02-4 P03-3 P06-5 I07-12 P08-11 P11-8 P13-9 P16-2 P19-1 I21-7 I27-10
Seed 2 9.06 4 8 I01-6 P02-5 P03-2 P06-5 I07-12 P08-10 P11-8 P13-11 P16-3 P19-1 I21-7 I30-9
Seed 3 9.08 4 8 I01-7 P02-3 P03-2 P07-6 P08-12 I09-9 P11-5 P13-10 P16-4 P19-1 I21-11 I25-8

at producers are 870 psi (150 psi more than the fixed production BHP during the (x,T ,O)

optimization) and the BHP’s at injectors are 2,640 psi (22 psi less than the fixed injection
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Figure 3.17: Well configurations and oil saturation fields of layer 1. (a) shows the set of
initial potential locations plotted on the oil saturation field; (b)-(d) show the optimal well
configurations obtained with sequential optimization of (x,T )→ O for three seeds, with the
corresponding oil saturation fields after 20 years of production on the top layer, Example
2-A. ⊗ represents an injector and o represent a producer.

BHP during the (x,T ,O) optimization). Note different wells have different starting times

since they are drilled one by one. However, well control optimization did not increase the

value of NPV obtained by optimizing only (x,T ,O) with well controls fixed at bounds, see

Table 3.11. We did observe that, the control settings of the injectors increased to their upper

bounds and those of the producers decreased to their lower bounds in a few iterations, but

caused an increase in NPV smaller than $0.01× 109 (10 million dollar), which suggests that

the upper bound on the injection pressure and the lower bound of the producing pressure are

the optimal control settings for this example. The fact that the optimal controls found were

at bounds, for this example, is likely due to the following: we are placing a relatively small

number of wells for the lengths of reservoir life specified, compared with 30 wells specified

in the original Brugge example.

Table 3.11 presents a summary of the optimal NPV’s obtained with both sequential

optimization of (x,T )→ O and simultaneous optimization of (x,T ,O). Based on the aver-

age optimal NPV, the sequential process performed as well or better than the simultaneous
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process, which is consistent with the results of Example 1.

Table 3.11: Comparison of the optimal NPV’s obtained with optimization of (x,T ) → O
and (x,T ,O) followed by control optimization, Example 2-A.

Seeds
Optimal NPV, $× 109

Sequential Simultaneous
(x,T ) (O) (u) (x,T ,O) (u)

Seed 1 9.29 9.03 9.03 8.96 8.96
Seed 2 9.32 9.06 9.06 9.11 9.11
Seed 3 9.34 9.08 9.08 9.11 9.11

Average 9.32 9.06 9.06 9.06 9.06

We denote the minimum production BHP’s of 725 psi and the maximum injection

BHP’s of 2,662 psi as Bound B which is the case we just considered. Now, we also consider a

set of bounds (referred to as Bound A) where the lower bound on producer BHP’s is 1,619.5

psi and the upper bound on injection BHP’s is 2,588 psi. Note the bounds of Bound A are

midway between the value of Bound B and the initial reservoir pressure. Similar to Example

1, the determination of the optimal (x,T ,O,u) using Bound A is denoted as “Bound A.”

The case where we set the controls at Bound A to determine the optimal (x,T ,O) and then

optimize well controls within Bound B, is referred to as “Bound A→B”. Table 3.12 shows

the optimal NPV’s obtained for the optimization process of (x,T )→ (O)→ (u) for Bound

A, Bound B and Bound A→B.

From Table 3.12, the control optimization improves the NPV’s only slightly for Bound

A, but significantly for Bound A→B, indicating that the bounds on BHP’s affect the optimal

controls and that increasing the upper bound for injection pressure and reducing the lower

bound on production BHP’s during the control optimization can further improve the NPV’s.

Compared to Bound B, slightly less NPV’s are obtained for Bound A→B where the optimal

(x,T ,O) are obtained with BHP’s fixed at the middle of Bound B, and controls are optimized

within Bound B. If we obtain a global optimizer for the optimization of (x,T ,O) with well

control fixed, it is optimal for the controls used. However, it may be possible to increase the

optimal NPV by well control optimization using the optimal (x,T ,O) obtained. We find that

for all the examples considered, that if we fix controls at bounds (upper bound of the injection
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BHP and lower bound for the production BHP) during (x,T ,O) optimization, then the well

control optimization have a negligible effect on the optimal NPV. However, if we fix well

controls at non-bounds during the optimization of (x,T ,O), then well control optimization

with the (x,T ,O) fixed, tends to move pressure closer the bounds but ultimately produce

a lower final NPV than is obtained by optimization of (x,T ,O) with controls fixed at the

bounds. Similar to Example 1, this fact recommends that it is preferable to operate the

injectors at their maximum BHP and producers at their minimum BHP to determine the

optimal (x,T ,O). Table 3.13 shows the optimal (x,T ,O) obtained for Bound A where wells

that are different from the solution of seed 3 in Table 3.10 are marked in red. Different from

Example 1 where different flooding patterns for Bound A→B and Bound B are obtained,

similar wells are obtained in this case. From Table 3.13, Bound A also gives 4 injectors and 8

producers which is consistent with the result of the base case (Bound B) given in Table 3.10.

What is more, 8 out of 12 wells selected in Table 3.13 are also selected in Table 3.10. Hence,

it is not surprising that similar optimal NPV’s after control optimization are obtained for

Bound A→B and Bound B.

Table 3.12: Comparison of the optimal NPV’s obtained with sequential optimization of
(x,T )→ (O) followed by control optimization, i.e., (x,T )→ (O)→ (u), Example 2-A.

Seeds
Optimal NPV, $× 109

Bound A Bound A→B Bound B
(x,T )→ (O) (u) (x,T )→ (O) (u) (x,T )→ (O) (u)

Seed 1 6.29 6.29 6.29 8.73 9.03 9.03
Seed 2 6.40 6.29 6.29 8.96 9.06 9.06
Seed 3 6.29 6.29 6.29 8.87 9.08 9.08

Average 6.33 6.29 6.29 8.85 9.06 9.06

Table 3.13: Optimal solutions obtained with sequential optimization of (x,T ) → O using
three seeds, Bound A, Example 2-A. Wells that are different from the solution of seed 3 in
Table 3.10 are marked in red.

Seeds NPV, $× 109 Ninj Npro Wells
Seed 1 6.29 4 8 I01-5 P02-3 I03-12 P06-10 P08-9 P11-6 P13-11 P16-2 P17-4 P19-1 I21-8 I30-7
Seed 2 6.40 4 8 I01-7 P02-3 P06-8 I07-10 P08-12 P11-4 P13-6 P16-1 P17-11 P19-2 I21-9 I30-5
Seed 3 6.29 4 8 I01-6 P02-4 P03-1 P06-10 I07-9 P08-12 P11-5 P16-3 P18-11 P19-2 I21-8 I30-7
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2. Case B of Example 2: Nw = 12, Kmax = 64

In this case, the number of potential locations is increased to 64 by adding 34 addi-

tional potential paths to the 30 locations used in case A, including 4 more locations in the

aquifer near the water-oil contact and 30 more locations in the oil zone, see Fig. 3.20(a).

Given Kmax = 64 and Nw = 12, a bpl = 6 bit binary vector is used to provide a unique

representation of each of the 64 potential well locations. Hence, x is a Nw ∗ bpl = 72-

dimensional binary variable vector, T is a 12-dimensional binary variable vector and O is a

12-dimensional ordinal vector. The reservoir life is divided into 40 control steps where each

control step contains 182.5 days. As it takes 30 days to drill a well, the first 7 wells are drilled

within the 182.5 days. That is to say, the first 7 wells all have 20 control steps, but with a

different length for the first control step which is 182.5 days for the first well (from days 0

to 182.5 days), 152.5 days for the second well (from 30 days to 182.5 days), and so on. The

remaining 5 wells are drilled in the second half year, i.e., they have 39 control steps where

the first control step length is 155 days for the eighth well (from 210 days to 365 days), 125

days for the ninth well (from 240 days to 365 days), and so on. Hence, u is a 475-dimensional

vector composed of continuous variables. A sequential optimization of (x,T ,O) and u is

adopted where (x,T ,O) are determined by first fixing the BHP’s of injectors and producers

at their upper bound and lower bound, respectively, and then u is optimized based on the

optimal (x,T ,O) obtained. In sequential optimization of (x,T ) using binary encoding and

O using permutation encoding, we still use the population size equal to 50, however, the

maximum number of generations are set as 50 and 20 respectively. Note GA is allowed to

run for 10 more generations compared to case A when optimizing (x,T ) since the length of

the chromosome is 12 bits longer. One may also choose to increase the population size Np.

Fig. 3.18 shows the NPV’s versus the number of generations for the joint optimization

of well locations and types with three seeds. Similar to case A, the NPV’s for the candidate

solutions in the initial generation range approximately from $0 × 109 to $8.0 × 109. The

highest NPV is obtained with seed 1, but the worst optimal NPV estimate is only 2.5% less

than the best optimal NPV of $10.44× 109, so again the GA algorithm is quite robust. The
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average best NPV in the initial population is $7.82× 109 and the average best NPV in the

final population is $10.31 × 109. Hence, the GA algorithm improved the NPV by 24% on

average. Compared to case A, the average optimal NPV is 10% larger due to more options

of well locations.

Based on the optimal well locations and types, a second stage of drilling order op-

timization is carried out and NPV versus the number of generations is given in Fig. 3.19.

Similar to case A, the optimal NPV’s are lower than all the initial NPV’s in Fig. 3.18 due to

a shorter operational time when drilling order is considered. The NPV’s for the candidate

solutions in the initial generation have a relatively small range, about $0.2 × 109, which is

consistent with case A where we select 12 wells out of 30 potential locations. If we had

chosen the “optimal” drilling order based on the best NPV of the initial population of Fig.

3.19(a), we would have obtained an “optimal” NPV equal to $10.12×109 whereas as drilling

order optimization increased this to $10.13× 109, an absolute increase of 10 million dollars

at the cost of 1000 reservoir simulation runs. However, if we simply ignored any evaluation

of NPV for a set of possible drilling order, i.e., did not even generate the initial population

of Fig. 3.19(a), we could have picked a drilling order that resulted in an NPV of $9.94× 109

which is about 180 million lower than the best NPV from the initial population.

Table 3.14 shows the optimal solutions obtained with sequential optimization of (x,T )

andO. In this case, the number of possible selections of 12 wells among 64 potential locations

is 64!
12!52!

≈ 6× 1010. Hence it is difficult to comment on the quality of the optimal solutions

by comparing the labels of the selected locations. Instead, the locations of optimal wells

obtained with three seeds are shown in Fig. 3.20. From Fig. 3.20, the three runs using

different seeds lead to consistent solutions in that they all lead to (i) 8 producers and 4

injectors, (ii) similar locations of the producers, and (iii) 2 injectors in the oil zone and 2

injectors in the aquifer. For all three seeds, the first injector is drilled as the 6th or 7th well.

Hence, the optimization gives us a clear indication about the good potential locations, their

corresponding types and when to drill the injectors.
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Based on the optimal well locations, types and drilling order obtained with well con-

trols fixed at bounds (upper bound of the injection BHP and lower bound of the production

BHP), we carried out control optimization for the selected 12 best wells using StoSAG start-

ing from the initial guesses where at all control steps, the BHP’s at producers are 870 psi

(145 psi higher than the lower bound of production BHP) and the BHP’s at injectors are

2,640 psi (22 psi lower than the upper bound of injection BHP). Similar to case A, NPV is

not improved by control optimization. Table 3.15 presents a summary of the optimal NPV’s

obtained with both sequential optimization ((x,T ) → O) and simultaneous optimization

(x,T ,O). As in case A, sequential optimization of (x,T )→ O outperformed simultaneous

optimization of (x,T ,O) for all three seeds.
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Figure 3.18: NPV versus generations obtained with the optimization of well locations and
types using three seeds, Example 2-B, i.e., selecting Nw = 12 wells given Kmax = 64 potential
locations in a channelized reservoir.
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Figure 3.19: NPV versus generations obtained with drilling order optimization using three
seeds, Example 2-B.
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Figure 3.20: Well configurations and oil saturation fields of layer 1. (a) shows the set of
potential locations plotted on the initial oil saturation field; (b)-(d) show the optimal well
configurations obtained with sequential optimization of (x,T )→ O for three seeds, with the
corresponding oil saturation fields after 20 years of production on the top layer, Example
2-B. ⊗ represents an injector and o represent a producer.

Table 3.14: Optimal solutions obtained with sequential optimization of (x,T ) → O using
three seeds, Example 2-B.

Seeds NPV, $× 109 Ninj Npro Wells
Seed 1 10.13 4 8 P03-6 P07-12 P16-4 P22-9 P24-2 P27-1 P31-3 P40-5 I42-11 I48-7 I56-10 I63-8
Seed 2 10.03 4 8 P03-1 P07-11 P16-5 P24-2 I25-12 P27-3 P29-4 P35-10 P40-7 I43-8 I53-6 I60-9
Seed 3 9.85 4 8 P01-6 P03-4 P13-10 P16-5 P19-1 I25-9 P27-3 P29-2 P33-12 I48-7 I60-11 I63-8

Table 3.15: Comparison of the optimal NPV’s obtained with optimization of (x,T ) → O
and (x,T ,O) followed by control optimization, Example 2-B.

Seeds
Optimal NPV, $× 109

Sequential Simultaneous
(x,T ) (O) (u) (x,T ,O) (u)

Seed 1 10.44 10.13 10.13 10.07 10.07
Seed 2 10.33 10.03 10.03 9.42 9.42
Seed 3 10.16 9.85 9.85 9.51 9.51

Average 10.31 10.00 10.00 9.67 9.67

3. Case C of Example 2

Based on the 64 potential locations presented in case B, we carried out a study to

select 12 wells starting from time 0 in addition to selecting 8 infill wells starting from the
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fourth year, i.e., we select in total Nw = 20 wells. Due to the three year’s gap between

the original wells and the infill wells, it is risky to adopt a sequential procedure where the

well locations and types are determined assuming all 20 wells operate from time 0 and then

optimize drilling order based on the optimal locations and types obtained. Hence, in this

example, we only consider simultaneous optimization of well locations, types and drilling

order. In this case, the drilling order is still parameterized as a permutation of the sequence

[1, 2, · · · , j, j+ 1, · · · , Nw]. However, wells with Oj ≤ 12 are drilled at (Oj−1)Td days, while

wells with Oj > 12 are drilled at (Oj − 13)Td +Tinfill days, where Tinfill is the time at which

we drill the first infill well, i.e., the 13th well. In this example, Tinfill = 1460 days. Given

Nw = 20 and bpl = 6, x is a 120-dimensional vector, T is a 20-dimensional vector, O is a

20-dimensional vector, which sums up to 160. In this case, we used a larger population size

Np = 80 and run for 70 generations.

Table 3.16 shows a summary of the results obtained with simultaneous optimization

for case C. As one can see, based on the average NPV of three runs, the infill case ob-

tained a 29% increase compared to the initial NPV and 3.4% higher NPV compared to the

simultaneous result of Example 2-B (Table 3.15), before the subsequent control optimiza-

tion. However, simultaneous optimization only obtained a suboptimal solution, i.e., the best

NPV obtained with seed 3 ($10.07× 109) is slightly less than the best NPV of Example 2-B

(Table 3.15) obtained by sequential optimization ($10.13 × 109). Similar to previous cases,

the subsequent control optimization only lead to slight increase in the optimal NPV; see

the result of u in Table 3.16. This is because the optimal control settings for the optimal

(x,T ,O) happen to be at the bounds. Similar to Example 1, we extended the lower bound of

production pressure from 725 psi to 500 psi and the upper bound of injection pressure from

2,662 psi to 2,800 psi and re-did the well control optimization to obtain the optimal NPV’s

presented in the “û” column of Table 3.16. As one can see, after extending the bounds on

pressure, the NPV is improved by 4.5% on average. The 12 wells scheduled to drill within

the first year include 3 injectors and 9 producers on average which is similar to case B, the

8 infill wells starting at year 4 include 4 injectors and four producers on average. Fig. 3.21
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shows the optimal well locations plotted on the remaining oil saturation field after 20 years

of production. From Fig. 3.21, generally, we still obtain two injectors in the oil zone where

the two injectors are scheduled to drill within the first year after 120 days (i.e., after the 5th

drilling sequence).

+++++

+++++

+++++

+++++

+++++

+++++

+++++

+++++

+++++

+++++

+++++

+++++

+++++

+++++

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o
o

o

o
o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o
o

o

o

o

o

oo

o o

o

o

oo

o

o
o

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) So-initial

o

o

o

o

o

+

o

+
+

o o

o

o

o

o

+++++++

o
o+++++++

+++++++

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Sopt
o -seed 1

o

o

o

+

o

oo

o

+
o
+

o

o

+++++++ o

o

+++++++

o

+++++++

+++++++

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) Sopt
o -seed 2

o

o

o

o

+

+

o

o

o

+

+

o

+++++++

o

o

+++++++

+++++++

o

+++++++
+++++++

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) Sopt
o -seed 3

Figure 3.21: Well configurations and oil saturation fields of layer 1. (a) shows the set of
potential locations plotted on the initial oil saturation field; (b)-(d) show the optimal well
configurations obtained with simultaneous optimization of (x,T ,O) for three seeds, with the
corresponding oil saturation fields after 20 years of production on the top layer, Example 2-
C. ⊗ represents an injector and o represent a producer. The first 12 wells drilled are marked
in black color and the 8 infill wells are marked in blue color.

Table 3.16: Comparison of the optimal NPV’s obtained with simultaneous optimization of
(x,T ,O) followed by control optimization, i.e., (x,T ,O)→ (u), Example 2-C.

Seeds
Optimal NPV, $× 109 Number of wells

Initial (x,T ,O) u û
first 12 wells 8 infill wells
NInj NPro NInj NPro

Seed 1 7.33 10.03 10.05 10.52 3 9 3 5
Seed 2 7.80 9.88 9.90 10.31 3 9 4 4
Seed 3 8.05 10.07 10.10 10.58 4 8 5 3

Average 7.73 10.00 10.02 10.47 3 9 4 4
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3.2.3 Investigation on drilling order effect

In both examples (the channelized reservoir and the Brugge model), a sequential

optimization of (x,T ) followed by O was carried out. In the optimization of (x,T ), all wells

are assumed to start operating from time 0 and the various candidate solutions during all

generations have a large range, i.e., approximately $4 × 109 for the channelized reservoir

model and $7 × 109 for the Brugge model. Based on the optimal (x,T ) obtained, the

candidate solutions in the subsequent drilling order optimization only have a small range

which is approximately $280 × 106 (6% of the optimal NPV) for the channelized reservoir

example and $200 × 106 (2% of the optimal NPV) for the Brugge example. Nevertheless,

Leeuwenburgh et al. [44] find that the drilling order has a much larger impact on the

NPV’s than in our cases. In [44], different drilling orders can lead to a change which is

approximately 90% of the optimal NPV in one case and 17% of the optimal NPV in another

case. We believe, this is because that [44] used a very short reservoir life, i.e., 645 days

which is only 120 days after drilling 16 wells at an interval of 35 days, while in our work the

reservoir life is much longer, i.e., 20 years. Hence, the impact of drilling order depends on

the reservoir life, Tres, and the time required to drill a well, Td.

1. Investigation of the effect of Tres on drilling order

In Example 2-B, 12 paths are selected out of 64 potential paths. Based on the optimal

(x,T ) obtained, a secondary drilling order optimization considering different reservoir lives

is carried out. Besides the reservoir life of 20 years, two shorter reservoir lives are considered

to resemble the cases in [44], one is 1.5 years which is 217.5 days after all 12 wells are drilled

and the other one is 2 years which is 390 days after all 12 wells are drilled. Fig. 3.22 shows

the NPV’s versus number of generations during the drilling order optimization for the three

different reservoir lives. Table 3.17 shows the optimal drilling order obtained. The optimal

drilling orders obtained for reservoir lives of 1.5 years and 2.0 years are very similar to each

other while for the reservoir life of 20 years, the first injector is drilled 30 days earlier and

the drilling order of I56 and P03 are almost switched. Table 3.18 shows a summary of the

NPV’s, including the NPV of the worst drilling order encountered, the range of NPV’s in
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the first generation, the optimal NPV and the optimal NPV minus the worst NPV. The

results of Table 3.18 indicate that the shorter the reservoir life, the larger the ranges of the

NPV’s in the initial generation and the larger the improvements in NPV’s using drilling

order optimization. The results of Table 3.18 partially explain why Leeuweeburg et al. [44]

found drilling order has a larger impact when the reservoir life is short. In industry, the

reservoir life is often a few decades and the time required to drill a well is usually quite short

(e.g. 1 to 3 months).
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Figure 3.22: NPV versus generations obtained with drilling order optimization within dif-
ferent reservoir lives using the optimal well locations and types (x,T ) obtained with seed 1,
Example 2-B.

Table 3.17: Optimal drilling order within different reservoir lives using the optimal well
locations and types (x,T ) obtained with seed 1, Example 2-B.

Tres (days) Wells
547.5 P03-10 P07-12 P16-5 P22-4 P24-1 P27-2 P31-3 P40-8 I42-11 I48-9 I56-6 I63-7
730.0 P03-11 P07-12 P16-4 P22-5 P24-1 P27-2 P31-3 P40-8 I42-10 I48-9 I56-6 I63-7
7300 P03-6 P07-12 P16-4 P22-9 P24-2 P27-1 P31-3 P40-5 I42-11 I48-7 I56-10 I63-8

Table 3.18: Summary of NPV’s obtained with drilling order optimization within different
reservoir lives using the optimal well locations and types (x,T ) obtained with seed 1, Ex-
ample 2-B.

Tres NPV, $× 109

years Initial Worst Initial Best - Initial Worst Optimal Optimal - Initial Worst
1.5 2.21 0.48 2.76 0.55
2.0 3.17 0.42 3.63 0.46
20 9.94 0.19 10.13 0.19
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2. Investigation of the effect of Td on drilling order

In Example 2-A, 12 paths are selected out of 30 potential paths. Based on the optimal

(x,T ) obtained, a secondary drilling order optimization considering different drilling time

Td is carried out. Besides Td = 30 days, we also consider Td = 90 days. Fig. 3.23 shows

the NPV’s versus number of generations during the drilling order optimization. Table 3.20

shows the optimal NPV’s and drilling order obtained. Candidate solutions for Td = 90 days

have lower NPV’s (approximately by 5.5%) than those for Td = 30 days. This is because

for Td = 90 days, the total operation time for 12 wells are less than that for Td = 30 days.

For both scenarios, the first injector being drilled is I01. However, for Td = 30 days, I01 is

drilled as the 7th well at 180 days while for Td = 90 days, I01 is drilled as the 5th well at

360 days. Applying the optimal drilling order obtained for Td = 30 days to Td = 90 days

gives a $94×106 lower NPV, indicating that both the optimal drilling order and the optimal

NPV’s are dependent on the time required to drill a well, Td. Table 3.19 shows a summary

of the NPV’s, including the NPV of the worst drilling order encountered, the range of NPV’s

in the first generation, the optimal NPV and the optimal NPV minus the worst NPV. The

results of Table 3.19 indicate that the longer the drilling time, the larger the ranges of the

NPV’s in the initial generation and the larger the improvements in NPV’s using drilling

order optimization.
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(a) Td = 30 days (b) Td = 90 days

Figure 3.23: NPV versus generations obtained with drilling order optimization with different
drilling time Td using the optimal well locations and types (x,T ) obtained with seed 3,
Example 2-A.
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Table 3.19: Summary of NPV’s obtained with drilling order optimization within different
drilling time Td using the optimal well locations and types (x,T ) obtained with seed 3,
Example 2-A.

Td NPV, $× 109

days Initial Worst Initial Best - Initial Worst Optimal Optimal - Initial Worst
30 8.89 0.15 9.08 0.20
90 8.07 0.39 8.58 0.51

Table 3.20: Optimal drilling order with different drilling time Td using the optimal well
locations and types (x,T ) obtained with seed 3, Example 2-A.

Td (days) NPV, $× 109 Wells
30 9.08 I01-7 P02-3 P03-2 P07-6 P08-12 I09-9 P11-5 P13-10 P16-4 P19-1 I21-11 I25-8
90 8.58 I01-5 P02-3 P03-2 P07-9 P08-12 I09-10 P11-8 P13-11 P16-4 P19-1 I21-7 I25-6

3.2.4 Investigation on population size

In a traditional genetic algorithm (GA), the population size is set by the user to

a fixed value at the beginning of the search and remains constant through the entire run.

Specification of the population size is problematic in many ways. If it is too small, then GA

may not be able to reach high quality solutions. If it is too large, then GA spends unnecessary

computational resources, and, in fact, may require more computational resources than can

be allocated. The scenarios are illustrated in Fig. 3.24.

Finding an adequate population size is a difficult task. It has been shown, both

theoretically and empirically, that the optimal population size is something that differs from

problem to problem. A somewhat widely accepted intuition towards population size is that it

should be set proportionally to the problem’s size and difficulty. However, problem difficulty

is very hard to define for real-world problems. Faced with such difficulties, many users end

up either using a so-called “standard setting” (50-100 population size) or rule of thumb that

the population size be twice the length of the chromosome [59], guessing a number, or doing

experimentation with a number of different sizes to see which one works best. In this section,

we investigate the effect of population size on GA performance based on Example 2-A.

In addition to Np = 50 used previously, three more different population sizes are

tested for the joint optimization of well locations and types in case A of Example 2. The
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Figure 3.24: Effect of population size on GA performance from Lobo et al. [51].

sizes tested are Np = 24, 72, and 108 which are equivalent to 1
3
, 1

1
and 11

2
of the chromosome

length respectively. Figs. 3.25, 3.26 and 3.27 respectively show the NPV versus generations

obtained with three seeds using Np = 24, 72, and 108. The corresponding results for Np = 50

are shown in Fig. 3.15. As one can see, seed 1 got stuck at a sub-optimal solution using

Np = 24 and the optimal results obtained using Np = 50, 72, 108 do not vary significantly

from seed to seed. Most importantly, with an increase in Np, better optimal NPV’s are

obtained. Table 3.21 shows a summary of the NPV’s obtained including the one using

Np = 50. From Table 3.21, Np = 50 is the best choice given 2000 simulation runs. The

general rule in GA literature for the optimum population size (twice the number of bits used

in a chromosome) is not necessary for this problem.

(a) Seed 1 (b) Seed 2 (c) Seed 3

Figure 3.25: NPV versus generations obtained for the optimization of well types and locations
using three seeds, Np=24, Example 2-A.
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(a) Seed 1 (b) Seed 2 (c) Seed 3

Figure 3.26: NPV versus generations obtained for the optimization of well types and locations
using three seeds, Np=72, Example 2-A.

(a) Seed 1 (b) Seed 2 (c) Seed 3

Figure 3.27: NPV versus generations obtained for the optimization of well types and locations
using three seeds, Np=108, Example 2-A.

Table 3.21: Best NPV’s obtained by optimizing well locations and types with about 2000
reservoir simulation runs using different population sizes, Example 2-A.

Item
Optimal NPV, ×109$

Np=24 Np=50 Np=72 Np=108
Iterations 40 80 20 40 20 40 20 40

Simulations 960 1920 1000 2000 1440 2880 2160 4320
Seed 1 8.96 9.03 9.07 9.29 9.23 9.23 9.09 9.32
Seed 2 8.91 9.39 9.20 9.32 9.27 9.32 9.23 9.46
Seed 3 9.15 9.29 8.88 9.34 9.05 9.23 9.27 9.39

Average 9.01 9.24 9.05 9.32 9.18 9.26 9.20 9.39
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3.3 Comparison with StoSAG Using Priority Parametrization

3.3.1 StoSAG using priority parametrization

Somewhat similar to our work, Leeuwenburgh et al. [44] selected Nw wells from a

given set of Kmax potential wells with Kmax > Nw and determined the drilling order of the

Nw wells using the priority parameterization. Recall that in the priority parametrization, (i)

each well is assigned one continuous priority variable for drilling order, and (ii) the larger

the priority variable, the earlier the well is drilled. Unlike our work, they did not consider

the well type as a distinct optimization variable. Instead, for each of the Kmax potential well

paths, they assigned a fixed well type. Then, they fix the well controls and optimize only the

set of priority variables where each priority variable corresponds to one specific well out of

the Kmax, and each priority variable is restricted to be in the interval [0, 2]. At each iteration

of the StoSAG algorithm, the Nw wells with the Nw highest priority variables are selected

to be drilled and the drilling order is based on the ordering of the priority variables where

the well with the highest value of its priority variable is drilled first. The paths of these

Nw wells and their drilling order along with the values of the fixed well controls are input

into the reservoir simulator to evaluate the NPV of production. In order to avoid having

multiple priority variables reach the same bound, [44] introduced an inequality constraint on

the sum of the priority variables and used the interior point method to solve the constrained

optimization problem. However, their numerical results show that, this methodology may

lead to lower NPV’s than the initial guess which is feasible but suboptimal; see the cyan

curve in Fig. 3.28 (or equivalently Fig. 3 of [44]).

To avoid solving a constrained optimization problem, they proposed to reset the

updated priority variables (after each iteration that improves NPV) to pre-set values with

equal intervals, such that only the ordering of values of priority variables changes at each

iteration. However, their numerical results showed that this method underperformed the one

in which the best performing perturbed vector of priorities is selected as the trial update as

opposed to using StoSAG which underscores our concern that it may be difficult to obtain
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Figure 3.28: NPV versus iterations for the drilling order optimization process starting from
four different initial guesses (Fig. 3 in [44]).

good stochastic derivatives of the objective function when drilling order is parameterized

using continuous priority variables; see Fig. 3.29 or equivalently Fig. 6 of [44].

Figure 3.29: NPV versus iterations for the drilling order optimization of 4 injectors and 8
producers (Fig. 6 in [44].) Trial update using best performing perturbed priority sample is
shown in red line where individual samples are shown as gray dots. Trial updates obtained
with line search using StoSAG gradient estimated from normal distributed perturbations is
shown in blue line. Trial updates obtained with line search using StoSAG gradient estimated
from Bernoulli perturbations is shown in green line.

3.3.2 Numerical examples

Next, we apply a modified procedure of [44] to the two examples in last section. We

do not consider one of their examples because they do not provide enough information to

reproduce their example results and, even if they did, it would be preferable to consider a
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more complicated problem. Leeuwenburgh et al. [44] consider two procedures for updating

the vector of priority variables at each iteration. In the first procedure, they generate a set of

perturbations of the current estimate of this priority vector and use the stochastic gradient

(StoSAG). Then they consider potential updates obtained by taking steps in the direction

of StoSAG to try to find an updated vector that increases NPV. In the second procedure,

they simply consider the perturbed vector of priorities and select as the update the one

that gives the largest NPV. In our modification, we include in the total set of trial updates

both the perturbed priorities and the updates generated by taking steps in the StoSAG

direction. From this total set, we select the one that gives the highest NPV. Since this

modification makes use of both the random search ability and the search ability along the

StoSAG gradient, it seems clear that it should outperform both individual update methods

considered in [44].

For both Example I (the channelized reservoir) and case A of Example 2 (the Brugge

model), there are 30 potential locations. Following [44], each of the 30 potential locations

is assigned one priority variable, based on which, the Nw well locations and drilling order

can be determined. Besides the 30 priority variables, we also added the type variables.

For the channelized reservoir, 30 well type variables are added. For case A of the Brugge

model, only 20 well types variables are added since 10 out of 30 potential locations are in

the aquifer which can only have “injector” type. The priority variables are preset as values

from 0.1 to 3.0 with an interval of 0.1; the type variables are preset as either 0.25 or 0.75. If

a type variable is greater than 0.5, an injector is placed; otherwise, a producer is placed. At

each iteration, the perturbation is sampled from Gaussian distribution N (0, 0.22) for priority

variables and N (0, 0.52) for type variables. The initial step size in the normalized StoSAG

direction is set as 0.5, the maximum number of step-size cuts is set as 3, and the maximum

number of perturbation resamples is set as 5.

For the channelized reservoir, Fig. 3.30 shows the NPV’s versus generations obtained

with simultaneous optimization of well locations and types using GA for three seeds. The

initial guess of the priority method is chosen as the best individual of the 50 random samples
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of the well locations, types and drilling order generated at the first iteration of GA using seed

3 in Fig. 3.30. Fig. 3.31 shows the NPV versus the number of iterations using three seeds

following the modified methodology of [44]. The green square represents the case where the

update is the best performing perturbation, the blue star represents the scenario where the

update is along the StoSAG search direction, and the red circle represents an iteration where

no update that increases the NPV is obtained. When this occurs, new perturbations are

generated. If at one iteration, we generate five sets of perturbations without improving NPV,

the algorithm is terminated. As one can see, almost half of the iterations fail to improve

the NPV’s by searching along the StoSAG gradient direction. Moreover, the average of the

optimal NPV’s obtained in Fig. 3.31 is approximately 6% less than that generated with GA

in Fig. 3.30.

0 20 40 60 80
No. of Generations

0

2

4

N
P

V
, 1

0
9 $

Best Chrom: $4.6341# 109

(a) Seed 1

0 20 40 60 80
No. of Generations

0

2

4

N
P

V
, 1

0
9 $

Best Chrom: $4.53# 109

(b) Seed 2

0 20 40 60 80
No. of Generations

0

2

4

N
P

V
, 1

0
9 $

Best Chrom: $4.6673# 109

(c) Seed 3

Figure 3.30: NPV versus generations obtained with simultaneous optimization of (x,T ,O)
using three seeds, Bound A, Example 1.

For case A of Example 2, Fig. 3.32 shows the NPV versus generations obtained with

simultaneous optimization of well locations, types and drilling order using GA with three

seeds. The initial guess of the priority method is chosen as the best individual of the 50

random samples generated at the first iteration of GA using seed 2 in Fig. 3.32. Fig. 3.33

shows the NPV versus the number of iterations using three seeds following the modified

methodology of [44]. As one can see, most of the NPV gain is obtained by random perturba-

tions while searching along the StoSAG direction only yields a slight increase. Moreover, the

optimal NPV’s obtained in Fig. 3.33 are approximately 8% less than the NPV’s generated

with GA in Fig. 3.32.
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(a) Seed 1 (b) Seed 2 (c) Seed 3

Figure 3.31: NPV versus iterations obtained with simultaneous optimization of (x,T ,O)
following the methodology of [44] using three seeds, Example 1. The green square represents
a successful update of the best performing perturbation, the blue star represents a successful
update along the StoSAG search direction, and the red circle represents a iteration where
no successful updates is obtained.
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Figure 3.32: NPV versus generations obtained with simultaneous optimization of (x,T ,O)
using three seeds, Example 2-A.

(a) Seed 1 (b) Seed 2 (c) Seed 3

Figure 3.33: NPV versus iterations obtained with simultaneous optimization of (x,T ,O) fol-
lowing the methodology of [44] using three seeds, Example 2-A. The green square represents
a successful update of the best performing perturbation, the blue star represents a successful
update along the StoSAG search direction, and the red circle represents a iteration where
no successful updates is obtained.
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3.4 Comparison with a Gradient-based Algorithm

As mentioned in Chapter 1, [83, 89, 26] used a gradient-based method to optimize

the number, types and control settings of wells given Kmax potential locations, a problem

similar to the one considered in this chapter. Hence, in this section, we provide a comparison

between GA and a gradient-based algorithm.

3.4.1 A gradient-based algorithm

In the gradient-based method in [83, 89, 26], a well is placed at each potential location

with a pre-specified type (injector or producer) and a liquid rate qj, j = 1, 2, · · · , Kmax which

applies during the whole reservoir life. The liquid rates are the optimization variables and

if qj → 0, well j is not drilled. The cost of drilling a well in location j is then approximated

with a continuous and differentiable function of the well rate, f(qj), and the actual drilling

cost, Cw,j. The total drilling cost is
∑Kmax

j=1 f(qj)Cw,j. It is desirable to have f(qj) = 0 when

qj = 0 and f(qj) = 1 when qj is large. By optimizing the control settings of Kmax wells and

by driving the rates to zero one by one to reduce the drilling cost, an approximation of the

optimal well number, types, locations and rates can be eventually obtained. If the algorithm

is terminated when the number of wells is equal to Nw, the same problem of interest is

solved, which is to select Nw wells from Kmax potential locations. Major disadvantages of

this procedure are that (i) it is only applicable to wells under rate control, (ii) only one

control step can be used and (iii) it cannot optimize the drilling order although that could

be obtained by a sequential optimization. Since only one control step is considered, this

problem can also be efficiently solved using GA by optimizing the well rates, types and

locations simultaneously. It is interesting to compare the optimal results obtained with the

gradient-based method and GA.

Wang et al. [83] proposed to define f(q`j) using the following function

f(q`j) =
q`j

q`j + β
, (3.12)

where, β is a small constant number, 10−10; ` represents the `th iteration; qj is the injection

94



or production rate of well j at `th iteration. Hence,
∂f(q`j)

∂q`j
= β

(q`j+β)2
≈ β

(q`j)
2 . When β is

small, Eq. 3.12 tends to be insensitive to the change of controls which is not desirable.

Thus, Forouzanfar and Reynolds [26] proposed to use the following function for f(q`j)

f(q`j) =

(
q`j

q`−1
j

)0.25

, (3.13)

where, q`−1
j represents the control variable (flow rate) of well j at (`−1)th iteration. However,

the above function can take values significantly different than 1.0 for q`j 6= 0. To avoid this

difficulty, Forouzanfar and Reynolds [26] simply set f(q`j) = 1.0 if q`j 6= 0 and f(q`j) = 0.0 if

q`j = 0. Hence there is an inconsistency in the evaluation of f(q`j) and ∂f
∂q`j

. To ensure enough

sensitivities and keep the consistency, we propose to use a logistic form for f(q`j) given by,

f(q`j) =
1− e−ωq`j

1 + e−ωq
`
j

, (3.14)

where, ω is a weighting factor to control the magnitude of ∂f
∂q`j

. The logistic function is

composed of one steep part for small values of ωq`j where ωq`j � 5 and one flat part where

f(q`j) ≈ 1 for ωq`j > 5. Here, based on a computational experiment, ω is chosen to satisfy

ωqcritj ≈ 5 (see Fig. 3.34) where qcritj is an estimate of the minimum liquid rate necessary for

well j to be profitable. qcritj is obtained by solving

qcritj ∗ (ro − rw)Tres − Cw,j = 0, (3.15)

where ro is the oil price, rw is the water injection cost, and Tres is the reservoir life. Assuming

balanced injection and production, the left hand side of Eq. 3.15 represents the maximum

net revenue (non-discounted) for a well with rate qcritj , i.e., the revenue of the oil production

(for a producer) or the displaced oil (for an injector) deducted by the water injection cost.

Besides the new form for f(q`j), two more modifications are made based on [26] in the

implementation of the gradient-based method. The first modification is that each feasible
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Figure 3.34: Illustration of the logistic function and its derivative in Eq. 3.14.

potential location is assigned two wells of different types (one injector and one producer)

with same initial rates to avoid bias due to pre-specifying the type of each well as was done

in [26]. Hence, the optimization variable set is u = [qI1 , q
P
1 , q

I
2 , q

P
2 , · · · , qIKmax , q

P
Kmax

], where

the superscript “I” represents an injector and the superscript “P” represents a producer.

The objective is to eliminate wells one by one until only Nw wells are left while maximizing

the NPV function using the adjoint gradient ∇uJ(u`) where J(u`) is given by

J
(
u`
)

=
Nt∑
n=1

{
∆tn

(1+b)
tn

365

[
NP∑
j=1

(
rno ·qno,j−cnw ·qnw,j−cng ·qng,j

)
−

NI∑
k=1

(
cnwi ·qnwi,k+cngi ·qngi,k

)]}

−
2Kmax∑
j=1

f(u`j)Cw,j.

(3.16)

The second modification made to the algorithm used in [26] is that we removed the equality

constraint on the total injection (or production) rate so that the well control settings can be

adjusted more flexibly, i.e., only bound constraints are enforced. The lower bound, ulow, is

a 2Kmax-dimensional vector whose elements are zero and the upper bound, uup, is a 2Kmax-

dimensional vector whose elements are the maximum allowable rate for each well. The bound

constraints are enforced using the gradient projection method discussed below. Rewrite the

active constraints in the following form

Au` = b, (3.17)

where, A is theNactive×2Kmax-dimensional sensitivity matrix of the active bound constraints,

96



Nactive is the number of active bound constraints and b is an Nactive-dimensional vector

whose element can be either 0 if a lower bound constraint is active or uup
j if an upper bound

constraint is active. The projected search direction can be obtained as

d` = (I − AT (AAT )−1A)∇uJ(u`). (3.18)

At each iteration, ∇uJ(u`) can be obtained by subtracting ∇u

{∑2∗Kmax
j=1 f(q`j)Cw,j

}
from the adjoint gradient outputted from the reservoir simulator. ∇uJ(u`) is then projected

onto the active bound constraints using Eq. 3.18 and an aggressive initial step size α`max along

d` is then tried to bring at least one component of u to either its lower or upper bound;

see Eqs. 3.19 and 3.20. If taking a step α`maxd
` fails to improve the objective function,

backtracking is implemented with a maximum number of step-size cuts equal to 5. If after

5 cuts, the trial update still fails in improving the objective function, we accept the initial

trial step α`maxd
` even though this decreases the NPV. We continue the iterations until there

are only Nw wells left or d` is empty. The detailed algorithm is shown in Algorithm 4.

α`max = min{α`max,j}Nuj=1. (3.19)

α`max,j =


ulowj −u`j

d`j
, if d`j < 0,

uupj −u
`
j

d`j
, if d`j > 0,

for j = 1, 2, · · · , Nu. (3.20)

3.4.2 Optimization of (x,T ,u) using GA

It is computationally feasible to optimize the well control settings using GA when the

number of control steps is small. As the well control variables are continuous variables, it is

suitable to use a real value encoding. However, for the joint optimization of well locations,

types and controls using GA, well types change from generation to generation and the bounds

on controls for injectors and producers are usually different. For example, if injectors are

under rate control and producers are under BHP control where the upper bound on the
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Algorithm 4 Pseudo-code for the gradient-based optimization

1. Place one injector and one producer at each of the Kmax potential paths. Set qcritj , j =
1, 2, · · · , 2 ∗Kmax and ω. Formulate the vector of the initial control variables, u0. Set
the number of existing wells as 2∗Kmax, the maximum number of step-size cuts nsc = 5
and the number of step-size cuts ncuts = 0. Set ` = 0.

2. Calculate the gradient ∇uJ(u`) where J(u`) is given in Eq. 3.16.

3. Find the active constraints at the estimate of u`, form A of Eq. 3.17 and then calculate
d` using Eq. 3.18.

4. If the number of existing wells is equal to Nw or d` is empty, terminate the algorithm.

5. Calculate α`max using Eqs. 3.19 and 3.20. Set α` = α`max.

6. Take a trial step, u`+1,trial = u` +α`d`, run reservoir simulation and evaluate J(u`,trial).

7. If J(u`,trial) > J(u`), set u` = u`,trial, ` = `+ 1, ncuts = 0.

8. Otherwise, check if ncuts < nsc. If yes, set α` = α`/2 and ncuts = ncuts + 1, go to step 6;
otherwise, set α` = α`max and update u`+1 = u` + α`d`, set ` = `+ 1 and ncuts = 0.

9. Calculate the number of existing wells as number of potential wells with non-zero rate.
Go to step 2.

injection rate is much larger than the upper bound on the production BHP’s, it is possible

that after crossover and mutation, one producer is assigned a BHP value which is greater

than its upper bound, which thus may shut-in this producer; if both injectors and producers

are under BHP control, it is quite often that one producer may be shut-in if it switches to

an injector without changing the BHP’s in the next generation. To avoid these potential

problems, choking factors û between 0 to 1 are used as the design variables instead of well

controls u. If a well is an injector (Tj = 1), the actual control variable u
(j)
i is then given by

u
(j)
i = ulow

I + û
(j)
i (uup

I − u
low
I ), (3.21)

where, ulow
I and uup

I are the lower bound and upper bound specified for the control variables

of injectors, i = 1, 2, · · · , Nw, j = 1, 2, · · · , Nc. If a well is a producer (Tj = 0), the actual
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control variable u
(j)
i is given by

u
(j)
i = ulow

P + û
(j)
i (uup

P − u
low
P ), (3.22)

where, ulow
P and uup

P are the lower bound and upper bound specified for the control variables

of producers.

For real value encoded chromosomes, linear recombination is commonly used as the

crossover operation where the variables of the offsprings are chosen as the linear combinations

of variables of the parents (P1 and P2) using

C1 = aP1 + (1− a)P2. (3.23)

Here, a is a scaling factor randomly sampled from the uniform distribution U [−d, 1 + d]. A

value of d = 0.25 ensures (statistically) that the variable range of the offspring is the same

as the variable range spanned by the variables of the parents [61]. In the mutation, if û
(j)
i

is to be mutated, “controlled mutation” is applied, i.e., it will be replaced by a random

value sampled from the uniform distribution given by U [0.9û
(j)
i , 1.1û

(j)
i ]. If the variables of

the produced offsprings are outside the specified bounds, we simply truncate them to the

nearest bounds.

To jointly optimize Nw well locations, types and control settings, we consider mixed

encodings of real values and binary values of

c = [x,T , û]. (3.24)

For the mixed encoding in Eq. 3.24, a similar procedure discussed for the crossover/mutation

operations for the chromosome of (x,T ,O) is applied. If the randomly generated crossover

point falls in the part of c corresponding to the well control settings û, then the linear

recombination crossover is carried out for û; if the crossover point falls in the gene parts

corresponding to (x,T ), then chromosomes after the crossover point are exchanged using
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the modified one-point crossover scheme discussed earlier. Similarly, the mutation operation

starts with the common gene-by-gene mutation. If any binary gene describing (x,T ) is to be

mutated, it will be flipped, i.e., 0 is changed to 1 or vice versa; if any of the gene describing

the well control settings is to be mutated, “controlled mutation” will be applied.

3.4.3 Numerical example: channelized reservoir

Based on the channelized reservoir example introduced in Section 3.2.1, we now com-

pare the performance of the gradient-based method [26] and GA. We consider the case that

both injectors and producers are under liquid rate control. The lower and upper bounds for

the injection and production rates for all wells are set as 0 STB/day and 40,000 STB/day re-

spectively. In this example, the critical rate qcritj (see Eq. 3.15) is approximately 50 STB/day

for a vertical path and 100 STB/day for a horizontal path, the weighting factor ω is set as

0.1 and initial rate for each well at all potential locations is set as 1,200 STB/day. The

optimal rates, locations and types of Nw = 8 wells are determined. Fig. 3.35 shows the

NPV versus simulation runs (on the left) and the number of remaining wells versus simula-

tion runs (on the right) obtained with the gradient-based method. Note that the NPV does

not increase monotonically with respect to the simulation runs. When all well rates are far

greater than qcritj , this problem reduces to a pure control optimization problem. Whenever

the back tracking line search method cannot find a step size that improves the NPV and

the number of wells is still greater than Nw, an aggressive step size is taken to bring at least

one component of u to either its lower or upper bound. Taking this aggressive step size may

decrease the NPV. From Fig. 3.35, we see that this NPV decrease happens frequently after

about 100 simulation runs. The highest NPV obtained is $7.37 × 109 with 21 wells. When

the number of wells is reduced to 8, the NPV is reduced to $6.59× 109.

Fig. 3.36 shows the NPV’s versus the number of generations obtained with GA. With

GA, the optimization variables are the locations of the 8 wells selected out of the 30 paths,

x, the type of the 8 wells, T , and the vectors of the scaled well controls, û. A chromosome

thus has the form (x,T , û). Binary encoding is used for (x,T ). For û, real value encoding
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is used with a linear recombination crossover and controlled mutation. The optimal NPV

obtained with GA is $7.69× 109 which is 14% higher the NPV obtained using the gradient-

based method. Moreover, the optimal NPV of GA is also higher than the best NPV that

the gradient-based algorithm achieved ($7.37 × 109 when the number of well is 21). Fig.

3.37 shows the optimal well placement and the remaining oil saturation field of layer 7. Fig.

3.38 shows the optimal well injection/production rates obtained with the gradient-based

method (left) and GA (right) respectively. The gradient-based algorithm finds one injector

and seven producers while the optimal result obtained with GA indicates that we should

select 2 injectors and 6 producers.
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Figure 3.35: NPV and number of wells versus simulation runs for the joint optimization of
well locations, types and rates obtained with the gradient-based method, Example 1.
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Figure 3.36: NPV versus generations for the joint optimization of well locations, types and
rates obtained with GA, Example 1.
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(a) Gradient-based (b) GA

Figure 3.37: Optimal well configurations obtained with the gradient-based method and GA
method respectively, plotted on the oil saturation fields of layer 7 at the end of 4,000 days,
Example 1.
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Figure 3.38: Optimal well injection/production rates obtained with the gradient-based
method and GA, Example 1.

3.5 Summary and Discussion

In this chapter, we considered the problem of maximizing the NPV by optimizing the

well locations, types and drilling order given a set of potential drilling paths and the number

of wells that are authorized to be drilled. After the categorical variables are optimized, we

optimize well controls. It is important to note the approach presented here would likely

become too computationally expensive to be practical if the potential drilling paths are

not restricted to a reasonably small number. Up to now, we have considered a maximum

of 64 potential drilling paths. Increasing the number to 128 or more would likely require a

computational cluster to be computationally feasible. Because we only consider selecting Nw

well paths from Kmax potential well paths, the optimization of the paths, types and drilling

order can be accomplished with the Genetic Algorithm (GA). If, however, the well paths

are allowed to be anywhere in the reservoir, it would be more natural to parametrize well
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trajectories (paths) as continuous variables and use StoSAG as the optimization algorithm

[52, 90]. This is discussed in Chapter 5.

In implementations of GA, mixed encodings are applied where the well locations and

types are parameterized using binary encoding and the drilling sequence is parameterized

using ordinal numbers. Suitable mutation and crossover operations for the mixed encodings

are proposed and applied. The sets of encoded variables are optimized both simultaneously

and sequentially. Results indicate that GA gives good solutions in the following sense: (i)

the NPV produced is significantly larger than the NPV of any member of a set of initial

guesses; (ii) different runs of GA produce a variety of choices of optimal well paths, but

the variation in the estimated optimal NPV’s is relatively small, and (iii) GA outperformed

the method proposed by Leeuwenburgh et al. [44] for the simultaneous optimization of well

locations, types and drilling order, and GA also outperformed a gradient-based method by

[83, 89, 26] for the simultaneous optimization of well locations, types and rates.

.
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CHAPTER 4

JOINT OPTIMIZATION OF WELL NUMBER, TYPES AND LOCATIONS

In addition to the problem considered in last chapter, here, we consider a more general

problem where no prior information on potential well paths is given and the number of wells

to be drilled is not specified. Thus, the problem becomes as follows: given a maximum of

Kmax wells authorized to be drilled, determine how many wells actually should be drilled,

the path of each well and the type of each well (i.e., an injector or a producer). Again the

cost function to be maximized is the net present value (NPV) of production over the life the

reservoir. We firstly consider the joint optimization of well number, types and locations for

a deterministic reservoir model. Then we develop an efficient robust optimization procedure

when a large number of realizations are used to characterize the reservoir uncertainty.

4.1 Problem Description and Methodology

4.1.1 Problem description

Optimizing the number of wells explicitly may change the size of design variables (well

types, locations, control settings and so on) from iteration to iteration of the optimization

algorithm. To fix the size of the design variables, we specify the maximum number of wells

authorized to be drilled as Kmax, and then assign each well a “drill-or-not” status variable,

sj, j = 1, 2 · · · , Kmax. We use sj = 1 to denote “to-drill” well j and sj = 0 to denote “not-

to-drill” well j. Hence, the number of actual drilled wells can be obtained as Nw =
∑Kmax

j=1 sj

by determining sj for Kmax wells. Similarly, assign each of the Kmax wells a type indicator,

Tj. As a well can only be an injector or a producer, Tj is also parameterized as a binary

variable, where, Tj = 1 represents an injector and Tj = 0 represents a producer. Let xj

denote the location of a well where the size of xj depends on the trajectory of well j. In this
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chapter, we only consider placement of fully-penetrating vertical wells. Hence, xj is simply

the (i, j) indicies of the gridblock that well j is placed in. Given pre-specified operating

conditions for injectors and producers, well j can be characterized by wj = (sj, Tj,xj). Note

that, (Tj,xj) has an impact on the development plan only if well j is drilled, i.e., sj = 1;

otherwise, the (Tj,xj)’s only act like place holders in the design variable set.

With this parametrization, it is difficult to consider simultaneous optimization of

drilling order, O, and (s,T ,x). Denote the time required to drill a well as Td days, then

following the last chapter, O could be parameterized as a Kmax-dimensional ordinal number,

i.e., a permutation of {1, 2, 3, · · · , Kmax}, and well j would be put into operation at time

(Oj − 1)Td days. However, even if well j is not drilled (i.e., well status of well j corresponds

to do-not-drill), it still holds (reserves) Td days of drilling time (i.e., the drilling rig does not

work for the next Td days) and because of the “rig down time,” the solution obtained will

be at least somewhat suboptimal. [35, 76] assign each of the Kmax wells a label, preset their

drilling order and opening time, and optimize the well status (“an injector,” “do-not-drill”

and “a producer”), locations and controls for these Kmax wells. In their work, to switch the

drilling order of well i and well j (i 6= j), the locations and controls for well i and j have to

be switched which is difficult for Mesh Adaptive Direct Search (MADS) or Particle Swarm

Optimization (PSO) (optimizers used in [35, 76]) when well i and well j are far away from

each other. Moreover, in their parameterization, the total number of control steps should be

no less than Kmax(Kmax+1)
2

which can be computationally intensive for stochastic algorithms

(e.g., PSO and GA). Considering that in practice, well control optimization is usually not

conducted until all wells have been drilled and that it is difficult to find the optimal solution

of a high-dimensional optimization problem, we only consider optimizing the drilling order

and controls after the optimal (s,T ,x) has been determined. In this way, the dimension of

the drilling order and control variables can be reduced to account for only Nw =
∑Kmax

j=1 sj

wells. Since in last chapter, we have discussed the optimization of drilling order and well

controls, in this chapter, we only focus on the joint optimization of well number, types and

locations.
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4.1.2 Constraints handling

Constrained optimization problems contain two classes of constraints: hard con-

straints (sometimes referred to as mandatory constraints) that must be satisfied by any

solution, and soft constraints, that may or may not be satisfied (Jiang et al. [38]). In

the optimization problem considered in this chapter, we consider four types of constraints,

including one hard constraint and three soft constraints.

1. All Kmax wells must be placed in the active gridblocks of a reservoir.

Denoting the set of active gridblocks as Ωactive, this constraint is given by

xj ∈ Ωactive, j = 1, 2, · · · , Kmax. (4.1)

This is a hard constraint that traditional constrained optimization methods (e.g.,

penalty method, augmented Lagrangian method, barrier method and so on) cannot

handle. Violation of this type of constraints may result in failed simulation runs where

there is no way to evaluate the NPV function. In this work, whenever a well is placed

in an inactive gridblock after a trial update or a perturbation (see the case of xj,trialk+1

in Fig. 4.1), it is projected to the nearest bound of the active gridblocks (see the case

of xjk+1 in Fig. 4.1). Note that since xjk+1 represents the (i, j) gridblock indices which

are discrete, xjk+1 has to be truncated to the nearest integer values.

2. The inter-well distance between any pair of wells has to be larger than a predefined

value of the minimum allowable well spacing, which is denoted byRmin. Let ci,j (s,T ,x)

denote the well spacing constraint corresponding to well i and well j, where ci,j is

defined by

ci,j
(
x(i),x(j)

)
= max {0,−(ri,j −Rmin)} ≤ 0, (4.2)

where ri,j is the areal distance between well i and well j. In this chapter, ri,j is measured

in terms of number of gridblocks. There are Kmax(Kmax−1)
2

well spacing constraints at

maximum.
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Figure 4.1: Constraint handling when a well is placed in an inactive gridblock.

Even though the ci,j’s are soft constraints, it is difficult to couple the traditional con-

strained optimization methods designed for continuous variables into the mixed-integer

problem in an efficient manner. In this work, we consider two methods to enforce the

constraints in Eq. 4.2. One is the repair method used in Genocop III [57], which re-

pairs infeasible solutions by combining them with feasible solutions. As an alternative,

we propose a method based on a heuristic mapping. The idea is simple: whenever a

pair of wells violate the well spacing constraints, they are moved away from each other

along the line through the two locations until the distance between them is greater

or equal to Rmin while both wells still fall in active gridblocks. If either well hits the

boundary of the active gridblocks, stop moving it and continue to move the other well

until the distance is greater or equal to Rmin. Note that this operation may lead to

constraint violations of other well pairs containing either of these two wells. Repeating

this operation many times (in the extreme case, it can be even an infinity number of

times) does not guarantee the well spacing constraints can be honored. Hence, we set

the maximum number of repeats as 20Kmax(Kmax−1)
2

where Kmax(Kmax−1)
2

is the maxi-
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mum number of well pairs. Afterwards, we classify the Kmax wells into two sets, one

feasible set whose element does not cause any violation of the minimum well spacing

constraints and one infeasible set whose element cause at least one violation of the

minimum well spacing constraints. The active gridblocks within Rmin gridblocks away

from each well in the feasible set are marked as occupied gridblocks (the rest of the

gridblocks are marked as unoccupied gridblocks). The well with the maximum number

of violations, well w, whose location is x(w), is then moved to the unoccupied active

gridblock nearest to x(w), denoted as x
(w)
new, and well w is removed from the infeasible

set and added to the feasible set. The gridblocks within Rmin gridblocks away from

the current location of well w, x
(w)
new, are also marked as occupied and removed from

the unoccupied gridblocks. If the infeasible set is not empty, i.e., there exist wells that

cause violations, we continue to move the well with the maximum number of violations

to the unoccupied active gridblock nearest to its original location following the same

procedure. A detailed description of this procedure is given in Algorithm 5.

3. A producer cannot be placed in the aquifer. In this work, we explicitly convert a

producer in the aquifer to an injector.

4. The gas-oil-ratio and water cut of a producer cannot exceed prescribed upper limits.

These are two nonlinear state constraints and are enforced through the embedded well

management procedure in commercial simulators, e.g., a producer is shut-in if its water

cut exceeds a prescribed upper limit, or the oil rate is cutback by a predefined factor

if the gas-oil-ratio is higher than the predefined maximum value.

4.1.3 Joint optimization of well status, types and locations

We propose two algorithms to simultaneously optimize well status, types and loca-

tions. Note that it is possible that the aforementioned constraints are violated after each

update of the design variable (e.g., crossover, mutation, StoSAG perturbations, backtrack-

ing, GPS update and so on). Hence, the constraints on the design variables are enforced
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Algorithm 5 Algorithm to enforce well spacing constraints

Set Nmove = 0, feasible = false.

Do while (Nmove < 20Kmax(Kmax−1)
2

and feasible = false )

– Nmove = Nmove + 1;

– Find the infeasible well pair with minimum distance among all well pairs, move
this pair of wells apart along the line through the two locations; stop moving a well
if it hits the boundary of the active gridblocks and continue to move the other well
until the distance is greater or equal to Rmin.

– Check the well spacing constraint violations for all well pairs. If there is no violation,
set feasible = true; otherwise, set feasible = false.

EndDo

If feasible = false,

– Find all the infeasible pair of wells and put them in an infeasible set, W I , and put
the rest of the Kmax wells in a feasible set, W F .

– Do while (feasible = false)

∗ Put the active gridblocks within Rmin gridblocks away from each well in W F

as Ωoccupied and the rest of the active gridblocks as Ωunoccupied.

∗ Find the well with the largest number of constraint violations in W I and denote
it as well w. Move well w to a gridblock in Ωunoccupied nearest to its original
location and move well w from the infeasible set W I to the feasible set W F .

∗ If W I is empty, set feasible = true; otherwise, set feasible = false.

∗ If feasible = false and Ωunoccupied is empty, report warning message “Rmin is
specified too large” and break the loop.

– EndDo

EndIf

before each evaluation of the objective function using the strategies presented in last section.

Both algorithms we develop are compared with the Genocop III method used in [21].

The first algorithm is an iterative sequential optimization where we alternate opti-

mizing well status and types using GA with pure binary encoding and optimizing locations

of wells drilled in the chromosome with the highest objective function, x, using StoSAG or

GPS if a StoSAG step fails to improve the NPV. This algorithm is designed to improve the

convergence speed of GA and is presented in Algorithm 6. Since we start with the GA step,

a reasonable set of locations for all Kmax wells have to be provided as a prior. In the GA

step, we use the Stochastic Universal Sampling method [4] (discussed in Section 3.1.1) to
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select the parent pool. Since the chromosome only consists of binary variables, we simply

use the one-point crossover operator and invert the bit of a gene if it is to be mutated (i.e.,

change 1 to 0 or vice versa). To apply this method, we need to pre-specify (i) the GA related

parameters including population size Np, maximum number of generations Ng, crossover

rate pc and mutation rate pm and number of consecutive GA generations NGA; (ii) StoSAG

related parameters including number of perturbations Npert, initial step size α0, maximum

number of step-size cuts is nsc, maximum number of resampling Nres and the number of

consecutive StoSAG iterations NSto. Although it is not clear how to set NGA and NSto, our

heuristic settings of NGA = 4 and NSto = 5 give a significant increase in the convergence

speed. We intentionally avoid using NGA = 1 because it is not likely that the best chromo-

some gets updated after only one generation of GA evolution and we want to balance the

contribution of optimizing (sj, Tj) and xj. As the computational cost for the GPS method

can increase dramatically with respect to the dimensions of the optimization variables, we

limit the number of coordinate directions traversed in each GPS step to Nx. Since GPS is

used after the StoSAG algorithm converges to fine-tune the well locations, a fixed and small

mesh size is used, i.e., ∆0 = 1 gridblock.

A second algorithm which simultaneously optimizes well status, types and locations

using GA with mixed encoding of binary variables (for well status and types) and discrete

variables (for well locations) is proposed. Different crossover and mutation operations are

required for different encodings. When doing crossover, for each pair of parents (P1, P2),

sample a random number from the uniform distribution, r ∼ U [0, 1]. If r < pc, then (i)

carry out one-pint crossover for genes corresponding to well status and types; (ii) obtain

the location information of an offspring using arithmetic crossover. When doing mutation,

for each gene, sample a random number r from U [0, 1]. If r < pm, invert bit for genes

corresponding to well status and types or move wells to one of its neighboring gridblocks for

genes corresponding to locations. A detailed description is provided in Algorithm 7.

Both the iterative sequential method and mixed-encoded GA are compared with the

Genocop III method used in Emerick et al. [21], see Algorithm 8. Similar to the mixed-
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Algorithm 6 Iterative sequential algorithm to jointly optimize well number, types and
locations

1. Preset Np, Ng, pc, pm, NGA, NSto, ∆0 = 1 and the maximum number of simulation
runs, Nsim. Set FLSto = false and FLGPS = false. In general, FLSto = true
indicates that StoSAG has failed to improve the NPV in Nres consecutive iterations
and FLGPS = true indicates that GPS has failed to improve the NPV after searching
along Nx coordinate directions. Generate the initial locations for all Kmax wells based
on engineering judgment and generate the initial population where each chromosome
has the form c = [s1, T1, s2, T2, · · · , sKmax , TKmax ].

2. Continue for NGA generations of GA to optimize well status and types.

3. If FLSto = true (the StoSAG step failed), FLGPS = true (the GPS step failed) and the
best chromosome c remains the same during the last NGA iterations, go to step 4.

Otherwise,

• if FLSto = false (the StoSAG step did not fail), optimize the locations of wells
being drilled in the chromosome which gives the highest NPV among current
population, x, using StoSAG for NSto iterations. If StoSAG fails to improve the
NPV for Nres iterations, set FLSto = true (otherwise, FLSto remains false).

• else, optimize x using GPS for Nx coordinate directions. If GPS fails to improve
the NPV for Nx coordinate directions, set FLGPS = true (otherwise, FLGPS
remains false).

• If NPV is increased, evaluate each chromosome of the current population with
the updated well locations x. Go to Step 4.

EndIf

4. Termination criteria check. If the number of generations is greater than Ng, or the number
of simulations is greater than Nsim, terminate; otherwise, go to step 2.

encoded GA, the Genocop III method is designed for simultaneous optimization of well

status, types and locations. However, it is different from the mixed-encoded GA in two

aspects. Firstly, the Genocop III defines two populations, one search population where each

chromosome is only required to satisfy the hard constraints and one reference population

in which all chromosomes are required to satisfy all constraints considered. The population

size of the search population Nsp and the population size of the reference population Nrp can

be different, though we use Nsp = Nrp in the numerical examples of this chapter. At each

generation, a new search population is generated based on the existing search population
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using GA operators (i.e., selection, crossover, mutation and replacement). However, it is

possible that some of the newly generated chromosomes are infeasible. Different from the

mixed-encoded GA which simply uses the heuristic mapping discussed earlier, the Genocop

III method repairs an infeasible chromosome S in the search population by combining it

with a feasible chromosome R which is randomly selected from the reference population.

Once a feasible chromosome Z is obtained after the repair of S, we evaluate the objective

function J(Z) and set J(S) = J(Z). If Z gives a larger objective function than R for a

maximization problem, R is then replaced by Z, i.e., Z is added to the reference population.

Hence, the best feasible solution is always given in the reference population. Moreover, Z

replaces S with the replacement ratio of pr. Whether to replace an individual S with its

repaired version Z is related to Lamarckian inheritance [78]: that is, can an organism pass

on traits that it acquires during its lifetime to its offspring? Some researchers never replace

individuals with their repaired versions (pr = 0), others always replace individuals with their

repaired versions (pr = 1), and others recommend that value of pr between 5% and 20%

gives good results (Schoenauer and Michalewicz [75], Orvosh and Davis [67]). In this work,

we use the same value for pr as Emerick et al. [21], which is 25%. Secondly, Genocop III uses

the arithmetic crossover (crossover operators designed for real values) while mixed-encoded

GA use different crossover operations for different types of variables (arithmetic crossover

for well locations and one-point crossover for binary variables).

In this work, the convergence criterion for the iterative sequential method is set as two

consecutive failures in the GA step followed by the GPS step or the GPS step followed by the

GA step; the convergence criterion for both the mixed-encoded GA method and the Genocop

III method is set as failure to improve the NPV in 10 consecutive generations. The iterative

sequential method combines the global search ability of GA and the local search ability of

StoSAG or GPS and is more likely to converge faster than either the mixed-encode GA or

the Genocop III method where only GA is utilized. The three algorithms are terminated

either at convergence or when the number of simulation runs exceeds a pre-defined value

(2,500 for deterministic optimization in this work).
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Algorithm 7 Simultaneous optimization of well status, types and locations using mixed-
encoded GA

1. Preset Np, Ng, pc, pm and the maximum number of simulation runs Nsim.
Generate the initial population where each chromosome has the form c =
[s1, T1,x1, s2, T2,x2, · · · , sKmax , TKmax ,xKmax ].

2. Evaluate the NPV for each of the chromosomes in the current population.

3. Termination criteria check. If the number of generations is greater than Ng, or the
number of simulations is greater than Nsim, terminate.

4. Selection. A portion of current population is selected to form the parent pool using the
Stochastic Universal Sampling (SUS) method.

5. Crossover. Select random pairs of parents from the parent pool without replacement. For
each pair of parents (P1, P2), sample a random number from the uniform distribution,
r ∼ U [0, 1]. If r < pc, then

• randomly select a crossover point and exchange (sj, Tj) on the right of the
crossover point between P1 and P2.

• Sample a random number a from U [−0.25, 1.25], and obtain the location informa-

tion of an offspring by x
(C1)
j = ax

(P1)
j +(1−a)x

(P2)
j , j = 1, 2, · · · , Kmax where x(P1)

and x(P2) represent the location information of P1 and P2 respectively; repeat this
procedure to obtain x

(C2)
j . Note, x

(C1)
j and x

(C2)
j need to truncated to the nearest

integer value and bounded inside the active gridblocks. If well spacing constraints
are violated, apply heuristic mapping given in Section 4.1.2.

• Combine (sC1
j , T

C1
j ) and xC1

j , (sC2
j , T

C2
j ) and xC2

j to obtain two offspring chromo-
somes, c1 and c2.

6. Mutation. For each gene, sample a random number r from U [0, 1], if r < pm, invert bit
for genes corresponding to (sj, Tj) and move well xj to neighboring gridblock for genes
corresponding to xj. Goto step 2.

Following all three methods given in Algorithms 6, 7 and 8, we perform a second-stage

optimization which fine tunes the locations of wells that are drilled using StoSAG followed by

GPS. For simplicity of notation, the three two-stage optimization processes are still referred

to as the iterative sequential optimization method, mixed-encoded GA and the Genocop III

method respectively. In the iterative sequential method, if the first-stage optimization has

converged, then the second-stage optimization is not required. In the mixed-encoded GA and

the Genocop III method, even if the first-stage optimization has converged, a second-stage
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Algorithm 8 Genocop III method

1. Preset the replacement probability pr, the search population size Nsp, the reference
population size Nrp. Preset Ng, pc, pm and the maximum number of simulation runs,
Nsim. Generate the initial search population which contains Nsp individuals that satisfy
the hard constraints (given in Eq. 4.1 in our case). Chromosomes in the search
population are not required to satisfy the soft constraints (given in Eq. 4.2 in our
case). Generate the initial reference population which contains Nrp individuals that
satisfy all the constraints (in our case, they are Eqs. 4.1 and 4.2). Each chromosome
has the form c = [s1, T1,x1, s2, T2,x2, · · · , sKmax , TKmax ,xKmax ]. Evaluate the objective
function for each individual in the initial reference population.

2. Evaluate the objective function for each individual in the search population. Note, each
individual, if infeasible, has to be repaired according to Algorithm 9.

3. Termination criteria check. If the number of generations is greater than Ng, or the
number of simulations is greater than Nsim, terminate.

4. Selection. A portion of the current search population is selected to form the parent pool
using the Stochastic Universal Sampling (SUS) method.

5. Crossover. Select random pairs of parents from the parent pool without replacement.
For each pair of parents,

• sample a random number r from the uniform distribution U [0, 1];

• if r < pc, then do simple arithmetic crossover to generate a pair of offsprings, e.g.,

c1 = aP1 + (1− a)P2, (4.3)

where, P1 and P2 are the selected pair of parents, c1 is one of the gener-
ated offsprings, a is a random variable generated from a uniform distribution
U [−0.25, 1.25]. Truncate the genes corresponding to (sj, Tj) in c1 to the nearest
integer in {0, 1}. Truncate the genes corresponding to xj in c1 to the nearest
integer and bound xj inside the active gridblocks using the procedure given in
Section 4.1.2. c2 is generated in the same way as for c1.

7. Mutation. For each gene, sample a random number r from U [0, 1], if r < pm, invert bits
for genes corresponding to (sj, Tj) and move well j to a random grid among the four
neighboring gridblocks for genes corresponding to xj. Goto step 2.

optimization is still necessary considering that it is difficult for GA to find the optimal well

location variables.
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Algorithm 9 Pseudo-code for evaluation of the search population in Genocop III
For i = 1 : Nsp

• Denote S as the ith individual in the search population.

• If S does not satisfy constraints defined in Eq. 4.2,

– Set Z = S;

– Choose an individual, R, from the reference population;

– Do while (Z is not feasible)

∗ generate a random variable a from U [0, 1];

∗ Z = aZ + (1− a)R;

– EndDo

– Evaluate the objective function of the repaired chromosome, J(Z);

– Set J(S) = J(Z);

– If J(Z) > J(R) for a maximization problem, set R = Z;

– Sample r from U [0, 1]. If r < pr, replace S by Z.

• EndIf

EndFor

4.2 Numerical Examples of Deterministic Optimization

In this section, the three proposed algorithms are tested on two numerical examples,

the PUNQ model and the Brugge model, where the maximum number of wells is set equal

to 20 and 30 respectively. For both examples, we determine the optimal well status, types

and locations with well controls fixed at their minimum BHP’s for producers and maximum

BHP’s (or rates) for injectors, respectively. For both examples, we generate a reference

scenario of the well status, types and locations based on engineering judgment and this

reference scenario is included as one of the candidate solutions in the initial population, i.e.,

the best NPV of the initial population is no less than the NPV obtained with the reference

scenario. For both examples, the optimal results obtained by the proposed three algorithms

are also compared with a pure well placement optimization of the reference scenario using

StoSAG followed by GPS.

In this work, when using GA, we set population size Np = 50, maximum number of

generations Ng = 50, maximum number of simulation runs in each stage of the optimization
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process Nsim = 2, 500, the crossover probability pc = 0.9 and the mutation probability

pm = 0.01; when using StoSAG, we set the number of perturbations for each gradient

estimation Npert = 10, the initial step size α0 = 5 gridblocks, the maximum number of step-

size cuts is nsc = 4 and the maximum allowable number of consecutive failures in improving

the NPV, Nres, as 2. In the iterative sequential algorithm, the number of generations in

each GA step is set as NGA = 4 and the number of iterations in each StoSAG step is set

as NSto = 5. In both examples, the economic parameters are set as: rno = $80.0/STB,

cnw = $5.0/STB, cnwi = $5.0/STB, b=10.0%. In the PUNQ model, we set the drilling cost of

a well Cw,j = $30 × 106 while in the Brugge model, we set Cw,j = $6 × 106. Moreover, in

both examples, the minimum well spacing is set equal to Rmin = 3 gridblocks.

4.2.1 Example 1: PUNQ-S3 model

The PUNQ-S3 reservoir is a synthetic model based on an actual North Sea reservoir.

The original simulation grid for the PUNQ-S3 problem consists of 19 × 28 × 5 grids with

∆X = ∆Y = 590.6 ft and 1,761 active gridblocks. The top structure of the field in Fig. 4.2,

shows that the field is bounded to the east and south by a fault, and links the north and

west to a fairly strong aquifer. A small gas cap is located in the center of the dome shaped

structure. The production life is set as 20 years. In this example, we consider the case

that all wells are vertical and a well can only be placed at the center of active gridblocks.

Producers operate under specified bottomhole pressure control at 1,740.45 psi. However, if

the gas-oil-ratio of a producer is greater than 1,121.92 SCF/STB, the oil rate will be cut back

to 75% of the oil flow rate at last time step and the well control will switch to oil rate control

for this time step. Water injection wells operate under rate control at 314.5 STB/day. In

this model, we preset the maximum number of wells authorized to be drilled, Kmax, equal to

20. The reference scenario contains 10 injectors and 10 producers, as shown in Fig. 4.3(a).

1. Well placement optimization of the reference scenario

We carried out a well placement optimization of the 20 wells given in the reference

scenario to illustrate the efficacy of StoSAG followed by GPS search and to benchmark the
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Figure 4.2: The top layer of PUNQ model. Left: the depth of the top layer. Right: the
initial pressure of the top layer. The black curve delineates the water-oil contact and the
red curve delineates the gas-oil contact.

three proposed algorithms. Note in the following GPS search step, we set the initial mesh

size ∆0 equal to one gridblock since GPS is used to fine-tune the solutions obtained by the

StoSAG. Fig. 4.4 shows NPV versus the number of simulation runs where o’s represent

the StoSAG iterations and ∗’s represent the GPS iterations. As one can see, the StoSAG

algorithm increased the NPV from $1.88 × 109 to $2.07 × 109 in 44 simulations, and after

two consecutive failures in improving the NPV with StoSAG, the optimization switched to

the GPS algorithm after 75 simulation runs. The GPS algorithm obtained a similar increase

in the NPV, from $2.07 × 109 to $2.28 × 109, in 375 simulation runs. This confirms our

previous discussion that StoSAG is efficient in optimizing numerical discrete variables, but

cannot do a good local search. Thus, a secondary optimization using GPS can give another

boost in the optimal NPV. Fig. 4.3(b) shows the optimal locations for the 20 wells after

the well placement optimization. Compared with the initial locations in Fig. 4.3(a), only

7 wells have moderate changes in the locations while the rest of the wells only have minor

changes. This also indicates that the locations given in the reference scenario are somewhat

reasonable.

Considering that there are only 20 vertical wells (40 location variables) and the PUNQ

model only contains 19×28×5 active gridblocks (i.e., the search domain is relatively small),

it is computationally feasible to use GPS alone for the well placement optimization following
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Figure 4.3: Locations of 20 wells in the reference scenario (left) and their locations after
well placement optimization (right), plotted on the top layer of the PUNQ model. Injector
locations are marked in brown color and labeled with ⊗; producer locations are marked in
yellow color and labeled with o; the gas cap is marked in green color; the aquifer is marked
in dark blue and the oil zone is marked in light blue color.
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Figure 4.4: NPV versus the number of simulation runs in the well placement optimization
of the 20 wells in the reference scenario of the PUNQ model. o’s represent the StoSAG
iterations and ∗’s represent the GPS iterations.

Algorithm 3. Hence, besides using StoSAG followed by GPS, we also consider the well

placement optimization of the reference scenario using only GPS. Three different initial

mesh sizes are used, i.e., ∆0 = 1 gridblock, ∆0 = 2 gridblocks and ∆0 = 3 gridblocks. In

the application of GPS, the mesh size is reduced by one gridblock when the NPV’s cannot

be improved after searching all coordinate directions and GPS is terminated only when the

minimum mesh size (i.e., 0 gridblock) is achieved. For each element of the variable vector at
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`th iteration x`, e.g., the ith element, if either point of x` + ∆`ei and x`−∆`ei gives higher

NPV than x`, then 5 follow-up trial updates along the direction that improves the NPV are

taken until the NPV stops improving where the size of each trial update equals ∆`. Fig. 4.5

shows the NPV versus number of simulation runs using GPS with three different ∆0’s. From

Fig. 4.5, with a small initial mesh size, GPS tends to take small steps which may cause the

algorithm to be trapped at a local solution which is far from the global optimum, see the

case of ∆0 = 1. An optimal NPV of $2.24× 109 is obtained using GPS with ∆0 = 1, which

is 2% less than the NPV obtained using StoSAG follow by GPS with ∆0 = 1. Increasing

the initial mesh size can produce higher optimal NPV’s. For example, when ∆0 is increased

from one gridblock to two gridblocks, the optimal NPV is increased by 7% to $2.39 × 109.

A further increase in ∆0 to 3 gridblokcs gives an optimal NPV of $2.38 × 109 which is

slightly less than that obtained with ∆0 = 2 gridblocks because a different local solution is

obtained. Increasing the initial mesh size would inevitably increase the computational cost.

For ∆0 = 1, 2, 3 gridblocks, the optimization processes cost approximately 400, 550, 850

simulation runs, respectively.
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Figure 4.5: NPV versus number of simulations for the well placement optimization of the
reference scenario, using GPS with three different initial mesh sizes, PUNQ model.

To investigate the effect of well controls, a subsequent control optimization is carried

out based on the optimal well locations presented in Fig. 4.3(b). The upper and lower

bounds of the water injection rate is set as 314.5 STB/day and 0 STB/day respectively.
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The upper and lower bound of the bottomhole pressure for a producer is set as 3,379 psi

and 1,740.45 psi respectively. The reservoir life is divided into 20 equal control steps where

each control step has the length of one year. The temporal correlation length is set to be

730 days. During all control steps, the initial guesses for the injection rates are set as 283

STB/day and the initial guesses for the production BHP’s are set as 1,885 psi. i.e., the initial

guesses for controls are somewhat different than but close to the fixed values used in the

well placement optimization. Fig. 4.6 shows the NPV versus the number of simulation runs

during the control optimization where the NPV is increased by approximately 2% compared

to setting the controls at the pre-fixed controls used to optimize the well locations, i.e.,

the upper bound of the injection rates and the lower bound of the production BHP’s. As

illustrated in Chapter 3 where we select Nw wells out of Kmax potential paths, whether the

subsequent control optimization can significantly increase the NPV’s or not depends on the

controls used to optimize the well locations and the bounds of the control settings. Fig.

4.7 shows the optimal well controls where most of the wells remain operating close to the

upper bound of the injection rates and the lower bound of the production BHP’s, but that

“P4” and “P8” tend to produce less in the later stage of the production life. It is worth to

mention that the optimal controls look a bit rough due to the fact that we set the temporal

correlation length small, i.e., equivalent to two control steps.
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Figure 4.6: NPV versus number of simulation runs during the well control optimization
using the optimal well locations of the reference scenario, PUNQ model. The red dashed
line represents the optimal NPV’s obtained after the well placement optimization.

120



5 10 15 20
Control steps

1

2

3

4

5

6

7

8

9

10

P
ro

du
ce

r 
in

de
x

2000

2500

3000

(a) Production Control

5 10 15 20
Control steps

1

2

3

4

5

6

7

8

9

10

In
je

ct
or

 in
de

x

0

50

100

150

200

250

300

(b) Injection Control

Figure 4.7: Optimal controls obtained for the reference scenario with optimal well locations,
PUNQ model.

2. Joint Optimization of well status, types and locations

The definition of the initial population may impact the performance of the optimiza-

tion process. It is likely that a population of poor individuals will require several generations

until it produces a good solution. In this sense, employing the engineer’s knowledge to set

up the initial population is highly desirable. Hence, for all three algorithms to optimize

the well status, types and locations, the reference scenario developed based on engineering

judgment (given in Fig. 4.3(a)) is included in the initial population. The reference scenario

gives an NPV of $1.88× 109, which, as shown later, is higher than the rest of the randomly

generated chromosomes in the initial population, indicating that reference scenario defines

a good initial case.

In the iterative sequential algorithm, chromosomes within a population have identi-

cal well locations, but different well status and types. The initial population of the iterative

sequential method uses the Kmax = 20 well locations given in Fig. 4.3(a) and contains 50

candidate solutions of the well status and types where one chromosome is the same as given in

Fig. 4.3(a) and the rest of the 49 chromosomes are generated randomly by sampling the well

status sj and well type Tj from {0, 1} for each of the Kmax wells. Considering that it is pos-

sible that we sample a producer in the aquifer and the fact that we force it to be an injector,
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we avoid placing more injectors than producers by increasing the probability of a well being

a producer (Tj = 0) in the initial population. As a reservoir generally has more producers

than injectors, we pre-set the the probability of a well being a producer (Tj = 0) is equal to

twice the probability of a well being an injector (Tj = 1). In the mixed-encoded GA method,

a chromosome contains information of the well status, types and locations of all Kmax wells,

and chromosomes within a population are different from each other. The initial population

of mixed-encoded GA method again consist of one reference chromosome given in Fig. 4.3(a)

and 49 random chromosomes. For each random chromosome, (sj, Tj), j = 1, 2, · · · , Kmax

are sampled in the same way as in the iterative sequential algorithm while the location of

well j is randomly sampled from the 35 locations given in Fig. 4.8. For the Genocop III

method, both the initial search population and the initial reference population are generated

using the same way as for the mixed-encoded GA method, but that the chromosome given

in Fig. 4.3(a) is repeated 25 times in the initial reference population. Emmerick et al. [21]

show that starting from a reference population in which, the reference scenario (engineer

suggested case) represents 50 % of the individuals, leads to better solutions than starting

the optimization with a completely random reference population. By repairing the infeasible

chromosomes in the search population with the feasible chromosomes in the reference popu-

lation, the Genocop III method tends to generate an optimal solution similar to the reference

scenario, i.e., an “improved engineer defined case.” Since the distances between each pair of

wells in Fig. 4.8 and Fig. 4.3(a) are all greater than Rmin = 3 gridblocks, all chromosomes

of the initial population satisfy the minimum well spacing constraints.

The optimal NPV’s obtained with the three different algorithms using three random

seeds are plotted in Fig. 4.9 and summarized in Table 4.1. As one can see, the iterative

sequential algorithm converged in the first stage of optimization (i.e., a secondary well place-

ment optimization is not used) while both the mixed-encoded GA and Genocop III method

increased the NPV using the second-stage optimization to fine-tune the optimal well loca-

tions. During the first-stage optimization, the iterative sequential algorithm gives the highest

NPV, the mixed-encoded GA gives the second highest NPV while the Genocop III method
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Figure 4.8: The set of potential locations (marked in yellow and red colors) for the initial
population, plotted on the top layer of the PUNQ model.

gives the worst NPV. After the second-stage optimization, the Genocop III method still gives

the lowest NPV on average, and the mixed-encoded GA gives a slightly higher NPV than

the iterative sequential algorithm because the first-stage optimization of the mixed-encoded

GA simultaneously optimized the well status, types and locations and hence finds a better

solution than the iterative sequential optimization procedure. However, as we found in last

chapter, simultaneous optimization does not always gives a higher estimated optimal NPV

than the a sequential method. The Genocop III method converges the slowest among all

three algorithms during the first-stage optimization since the linear combination process to

repair infeasible chromosomes tends to produce similar chromosomes to the reference sce-

nario (the engineer defined case), considering that the candidate solutions in the search

population have a good chance to be combined with the reference scenario. However, this

does not indicate that starting from a randomly generated reference population, Genocop

III could converge faster since the randomly generated chromosomes generally have lower

NPV’s than the reference scenario and linear combination with these poor individuals may

lead to an even slower converge. In any case, the Genocop III method produces the worst

NPV. Fig. 4.10 shows the NPV’s versus the number of simulations obtained with the best

seed of each of the three algorithms during the first-stage optimization. From Fig. 4.10, the

reference scenario given in Fig. 4.3(a) has the largest NPV among the initial populations

generated for all three algorithms, indicating the reference scenario is indeed a good initial

123



guess. In the iterative sequential algorithm, ∗’s represent the NPV’s of current population

re-evaluated with the updated locations after a StoSAG step, ∗’s represent the NPV’s of

current population re-evaluated with the updated locations after a GPS step. Even though

only the locations drilled in the best chromosome are updated in the StoSAG and GPS steps,

the NPV’s for the whole population are shifted up with a similar variance to NPV’s before

the well location updates. The first StoSAG step increased the NPV by $0.17 × 109 while

the second StoSAG step failed to improve the NPV for Nres = 2 iterations which invoked the

GPS step after NGA = 4 GA generations. The iterative sequential algorithm converged at

around 1600 simulation runs. The best NPV’s of each generation for the mixed-encoded GA

and the Genocop III method increase slowly until they are terminated at 2,500 simulation

runs. All three algorithms obtained higher optimal NPV’s compared to the well placement

optimization of the reference scenario, respectively by %11, %12 and %5. Table 4.2 shows

the simulation cost for the three different algorithms using three random seeds. From Table

4.2, the iterative sequential method requires the least number of simulation runs while both

the mixed-encoded GA and the Genocop III method require over 2,500 simulation runs.

Since StoSAG and GPS are better at local search compared to GA, the simulation runs for

the second-stage optimization is much less than the first-stage optimization.

Table 4.1: Comparison of the optimal NPV’s obtained with three different algorithms using
three seeds, PUNQ model.

Seeds
Iterative sequential Mixed-encoded GA Genocop III

Stage #1 Stage #2 Stage #1 Stage #2 Stage #1 Stage #2
Seed 1 2.55 - 2.47 2.53 2.29 2.36
Seed 2 2.46 - 2.48 2.56 2.12 2.48
Seed 3 2.54 - 2.48 2.60 2.35 2.36

Average 2.52 - 2.48 2.56 2.25 2.40

The number of injectors and producers in the optimal solutions obtained with the

three different algorithms using three seeds are summarized in Table 4.3 and plotted in

Fig. 4.11. The iterative sequential algorithm and the mixed-encoded GA obtained similar

number of wells, i.e., 9 or 10 wells on average for three different runs. Due to the existence
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Figure 4.9: Comparison of the optimal well numbers obtained with three different algorithms
using three seeds, PUNQ model. “W1-(s,T,x) and “W1-x” respectively represent the first-
stage and the second-stage optimization of the iterative sequential algorithm, “W2-(s,T,x)
and “W2-x” respectively represent the first-stage and the second-stage optimization of the
mixed-encoded GA, “W3-(s,T,x) and “W3-x” respectively represent the first-stage and the
second-stage optimization of the Genocop III method, and the black dashed line represents
the NPV of the reference scenario.
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Figure 4.10: NPV’s versus the number of simulation runs obtained with the best seed of each
of the three algorithms, PUNQ model. In the iterative sequential algorithm, ∗’s represent
the NPV’s of current population re-evaluated with the updated locations after a StoSAG
search step, ∗’s represent the NPV’s of current population re-evaluated with the updated
locations after a GPS search step.

of the strong aquifer which provides pressure support for producers, the optimal solutions

tend to have no more than two injectors. As the Genocop III method tends to follow the

guidance of the reference scenario which has 20 wells, it obtained 15 wells on average, based

on three different runs, including 10 producers and 6 injectors. Fig. 4.12 shows the optimal

well locations obtained with the best seed of the three runs for each algorithm. From Fig.
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Table 4.2: Comparison of simulation cost obtained with three different algorithms using
three seeds, PUNQ model.

Seeds
Iterative sequential Mixed-encoded GA Genocop III

Stage #1 Stage #2 Stage #1 Stage #2 Stage #1 Stage #2
Seed 1 1619 - 2500 128 2500 164
Seed 2 2004 - 2500 187 2500 559
Seed 3 2295 - 2500 175 2500 225

Average 1973 - 2500 163 2500 316

4.12, even though the total number of wells is different, the optimal number and locations

of producers are somewhat similar to each other. Note that the inter-well distances are all

greater than the pre-defined minimum well spacing, Rmin = 3 gridblocks.

Table 4.3: Comparison of optimal well numbers obtained with three different algorithms
using three seeds, PUNQ model.

Seeds
Iterative sequential Mixed-encoded GA Genocop III
Nw NPro NInj Nw NPro NInj Nw NPro NInj

Seed 1 9 8 1 11 9 2 13 9 4
Seed 2 9 8 1 10 10 0 18 10 8
Seed 3 10 9 1 10 10 0 15 10 5

Average 9 8 1 10 10 1 15 10 6
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Figure 4.11: Comparison of optimal well numbers obtained with three different algorithms
using three seeds, PUNQ model. “W1” represents the iterative sequential algorithm, “W2”
represents the mixed-encoded GA, and “W3” represents the Genocop III method.
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Figure 4.12: Optimal well locations obtained with the three algorithms using the best seed,
plotted on the top layer of the PUNQ model.

3. Investigation of the effect of drilling cost

In the preceding optimization of well status, types and locations, the drilling cost of a

well was set equal to $30× 106. To investigate the effect of the drilling cost, we consider two

more different drilling cost of a well, $100× 106 and $8× 106. The mix-encoded GA which

performs the best during the optimization of (s,T ,x) is used in this comparison. Figs. 4.13

and 4.14 respectively show the optimal NPV’s and the optimal number of wells obtained for

three different drilling cost.

When drilling a well is relatively cheap (e.g., Cw,j = $8 × 106), the total drilling

cost (i.e.,
∑Kmax

j=1 sjCw,j) represents a smaller penalty on the number of wells, and hence

the optimal solution tends to drill more wells. The case of Cw,j = $8 × 106 obtains the

largest number of wells (i.e., 9 producers and 5 injectors) along with the highest optimal

NPV among all three cases. Since there is a strong aquifer in the PUNQ model to provide

pressure support, with an increase in the drilling cost from $8×106 to $30×106, injectors are

eliminated and only 10 producers are drilled. The fact that the two cases of Cw,j = $30×106

and Cw,j = $8 × 106 give similar optimal NPV’s may indicate that 10 producers are more

or less enough to deplete the PUNQ reservoir and the increase in well number beyond 10

producers only has a negligible affect on the overall production. With a further increase
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in the drilling cost, i.e., from Cw,j = $30 × 106 to Cw,j = $100 × 106, four more producers

are eliminated, i.e., only 6 producers are obtained which significantly reduced the optimal

NPV. The decrease in the optimal NPV is because of (i) the reduced production due to the

reduced number of producers and (ii) the increase in the total drilling cost.
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Figure 4.13: Optimal NPV’s obtained with different drilling cost using the mixed-encoded
GA algorithm, PUNQ model.
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Figure 4.14: Optimal number of wells obtained with different drilling cost using the mixed-
encoded GA algorithm, PUNQ model.

4.2.2 Example 2: Brugge model

A brief introduction of the Brugge model was provided in Chapter 3. In this example,

we consider the case that all wells are vertical and a well can only be placed at the center of

active gridblocks. Both injectors and producers operate under bottomhole pressure control

where the BHP’s for producers are specified as 725 psi and BHP’s for injectors are specified
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as 2,662 psi. However, a producer is shut in when its water cut is greater than 0.94. In this

model, we preset the maximum number of wells authorized to be drilled, Kmax, equal to

30. The original 30 wells (including 20 producers and 10 injectors) are used as the reference

scenario shown in Fig. 4.15(a). The reference scenario gives an NPV of $8.33× 109, which,

as shown later in Fig. 4.18, is higher than most of the randomly generated chromosomes in

the initial population, indicating that the reference scenario defines a good initial case. The

initial population for all three algorithms contains one chromosome of the reference scenario

given in Fig. 4.15(a) and 49 random scenarios generated in a similar way as for the PUNQ

model. For the mixed-encoded GA method and the Genocop III method, the well locations

of the 49 random chromosomes are randomly sampled from the 64 locations given in Fig.

3.20(a). Since the distances between each pair of wells in Fig. 3.20(a) and Fig. 4.15(a) are

all greater than Rmin = 3 gridblocks, all chromosomes of the initial population satisfy the

minimum well spacing constraints.

1. Well placement optimization of the reference scenario

We first carried out a well placement optimization of the 30 wells given in the reference

scenario (shown in Fig. 4.15(a)) to illustrate the efficacy of a GPS search after the StoSAG

search and to benchmark the three proposed algorithms. Fig. 4.16 shows the NPV versus the

number of simulation runs where o’s represent the StoSAG iterations and ∗’s represent the

GPS iterations. As one can see, the StoSAG algorithm increased the NPV from $8.33× 109

to $11.18× 109 in 283 simulations, and after two consecutive failures in improving the NPV,

the optimization switched to the GPS algorithm at 313 simulation runs. The GPS algorithm

increased the NPV by $109, to $12.15×109, in 616 simulation runs. This observation is quite

consistent with the result for the PUNQ model. Fig. 4.15(b) shows the optimal locations

for the 30 wells after the well placement optimization. Compared with the initial locations

in Fig. 4.15(a), two injectors are moved into the oil zone and two producers are moved into

the aquifer. Since a producer will be shut-in if its water cut exceeds 0.94, the two producers

placed in the aquifer are shut-in for the whole reservoir life to avoid extra water production.

The fact that two producers are placed in the aquifer suggests that 20 producers are enough.
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Figure 4.15: Locations of the 30 wells in the reference scenario (left) and their locations
after well placement optimization (right), plotted on the top layer of the Brugge model. ⊗
represents an injector; o represents a producer.
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Figure 4.16: NPV versus the number of simulation runs in the well placement optimization
of the 30 wells in the reference scenario of the Brugge model. o’s represent the StoSAG
iterations and ∗’s represent the GPS iterations.

2. Optimization of well status, types and locations

The optimal NPV’s obtained with three different algorithms using three seeds are

summarized in Table 4.4 and plotted in Fig. 4.17. For the iterative sequential method, only

the first seed requires a second-stage optimization where the NPV is increased slightly, while

for the other two seeds, the last GPS step of the first-stage optimization found local solutions
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of the well locations and subsequent GA generations before termination did not change the

optimal well status and types. Both the mixed-encoded GA and the Genocop III method

require the second-stage optimization where the NPV’s are increased by more than $109

on average. During the first stage of optimization, the iterative sequential algorithm gives

the highest NPV, the mixed-encoded GA method gives the second highest NPV while the

Genocop III method gives the worst NPV. After the second-stage optimization, the mixed-

encoded GA gives a higher NPV than the iterative sequential algorithm while the Genocop

III method still gives the worst NPV. This again is quite consistent with the results from

the PUNQ model. The run obtained with seed 3 gives a relatively poor performance for all

three algorithms. Considering only the runs obtained with seed 1 and seed 2, the optimal

NPV’s obtained with the three different algorithms are similar and comparable to the optimal

NPV’s obtained with well placement optimization of the reference scenario, indicating that

optimizing well status and types only marginally improved the NPV. This is because the

drilling cost of a well is relatively cheap in this example, i.e., $6×106, which imposes a small

penalty on number of wells. Hence, the optimal well status are somewhat similar to the

reference scenario.

Fig. 4.18 shows the NPV’s versus the number of simulation runs obtained with the

best seed of each of the three algorithms in the first-stage optimization. In the iterative

sequential algorithm, the fourth StoSAG search step failed to improve the NPV for Nres =

2 which invoked the GPS search step after NGA = 4 GA generations. Even though we

terminated the iterative sequential algorithm after 2,500 simulation runs, its NPV stabilized

at around 1,500 simulation runs. The best NPV’s of each generation of the mixed-encoded

GA and the Genocop III method increase slowly until they are terminated at 2,500 simulation

runs. Table 4.5 shows the simulation cost for the three different algorithms using three

random seeds. From Table 4.2, the iterative sequential method requires the least number

of simulation runs while both the mixed-encoded GA and the Genocop III method require

over 3,000 simulation runs on average of three runs. Since the Brugge model has many more

active gridblocks and more wells in the optimal solution compared to the PUNQ model, the
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second-stage optimization requires more simulation runs for the Brugge model than for the

PUNQ model.

Table 4.4: Comparison of optimal NPV’s obtained with three different algorithms using
three seeds, Brugge model.

Seeds
Iterative sequential Mixed-encoded GA Genocop III

Stage #1 Stage #2 Stage #1 Stage #2 Stage #1 Stage #2
Seed 1 12.27 12.32 11.00 12.23 11.28 12.32
Seed 2 12.28 – 11.39 12.60 10.63 11.53
Seed 3 11.94 – 11.35 12.46 11.22 12.12

Average 12.16 12.18 11.25 12.43 11.04 11.99

Seed 1 Seed 2 Seed 3 Average
8
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12

13

N
P

V
, #

 1
09  $

W1-x
W2-x
W3-x
W1-(s,T,x)
W2-(s,T,x)
W3-(s,T,x)
Reference

Figure 4.17: Comparison of optimal well numbers obtained with three different algorithms
using three seeds, Brugge model. “W1-(s,T,x) and “W1-x” respectively represent the first-
stage and the second-stage optimization of the iterative sequential algorithm, “W2-(s,T,x)
and “W2-x” respectively represent the first-stage and the second-stage optimization of the
mixed-encoded GA, “W3-(s,T,x) and “W3-x” respectively represent the first-stage and the
second-stage optimization of the Genocop III method, and the black dashed line represent
the NPV of the reference scenario.

The number of injectors and producers in the optimal solutions obtained with three

different algorithms using three seeds are summarized in Table 4.6 and plotted in Fig. 4.19.

All three algorithms obtained a similar number of wells on average (25 or 26), but the number

of wells varies widely from seed to seed when the Genocop III is used. Fig. 4.20 shows the

optimal wells obtained with the best of the three runs for each algorithm. From Fig. 4.12,

even though the number of wells are different for each algorithm, in all cases, we obtain
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Figure 4.18: NPV’s versus the number of simulations obtained with the best seed of each
of the three algorithms, Brugge model. In the iterative sequential algorithm, ∗’s and ∗’s re-
spectively represent the NPV’s of current population re-evaluated with the updated locations
after a StoSAG search step and a GPS search step.

Table 4.5: Comparison of the simulation cost for the three different algorithms using three
seeds, Brugge model.

Seeds
Iterative sequential Mixed-encoded GA Genocop III

Stage #1 Stage #2 Stage #1 Stage #2 Stage #1 Stage #2
Seed 1 2500 433 2500 698 2500 720
Seed 2 2500 – 2500 630 2500 432
Seed 3 2500 – 2500 653 2500 500

Average 2500 144 2500 660 2500 552

Table 4.6: Comparison of optimal well numbers obtained with three different algorithms
using three seeds, Brugge model.

Seeds
Iterative sequential Mixed-encoded GA Genocop III
Nw NPro NInj Nw NPro NInj Nw NPro NInj

Seed 1 25 17 8 24 16 8 28 15 13
Seed 2 26 16 10 26 18 8 29 15 14
Seed 3 23 14 9 26 17 9 20 13 7

Average 25 16 9 25 17 8 26 14 12

several injectors in the oil zone. As the Genocop III method tends to follow the guidance

of the reference scenario, its optimal well placement is quite similar to that of the reference

scenario. The inter-well distances are greater than or equal to the pre-defined minimum well

spacing, Rmin = 3 gridblocks, for all results.
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Figure 4.19: Comparison of the optimal well numbers obtained with three different algo-
rithms using three seeds, Brugge model. “W1” represents the iterative sequential algorithm,
“W2” represents the mixed-encoded GA, and “W3” represents the Genocop III method.
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Figure 4.20: Optimal well locations obtained with the three algorithms using the best seed,
plotted on the oil saturation field of the top layer after 20 years of production, Brugge model.
⊗ represents an injector; o represents a producer.

4.3 Field Development Optimization Considering Geological

Uncertainty

There is significant geological uncertainty in the reservoir description due to the
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limited knowledge about the underground formation. The common approach to account for

geological uncertainty is to use multiple plausible geostatistical realizations of the reservoir

model. However, the computational cost when a large ensemble of realizations is used may

be prohibitive. Hence, only a small ensemble is affordable in robust optimization, which may

not be sufficient to capture the subsurface uncertainty. Thus, in this section, we propose a

relatively efficient procedure for robust optimization of well status, types and locations when

a large number of representative realizations are considered.

Denote the number of realizations to represent the geological uncertainty by Ne, and

denote the kth realization (a vector of the model parameters) by mk, then the full-set

ensemble of reservoir models is given by

Ωf = {mk|k = 1, 2, · · · , Ne}.

The most common approach for handling geological uncertainty is to maximize the expected

value of the objective function (NPV in this work) over the ensemble of Ne realizations

[86, 22, 20, 49, 52], i.e.,

J
Ωf
E (s,T ,x) =

1

Ne

Ne∑
k=1

J(mk, s,T ,x), (4.4)

which is commonly referred to as robust optimization in the literature. The computational

cost for robust optimization is much higher compared to deterministic optimization since

each objective function evaluation requires Ne reservoir simulation runs. Hence, to reduce

the computational cost, besides developing efficient optimization algorithms, we also focus

on adaptively selecting a smaller subset of representative models and optimizing over the

subset ensemble.

Denote the subset ensemble of the representative models by

Ωs = {mjk |mjk ∈ Ωf , k = 1, 2, · · · , Nes},
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where Nes is the number of realizations in the subset. We assume the realizations of the

reservoir models in the full ensemble Ωf could be represented by a subset of realizations Ωs

in the sense that optimizing the expected NPV over the subset gives a good approximation

of that would be obtained by maximizing the expected NPV over Ne realization. Note this

representative subset may change as the estimate of (s,T ,x) changes. Under the preceding

assumption, the expected NPV over the full ensemble can be approximated by

JΩs
E (s,T ,x) =

1

Nes

Nes∑
k=1

J(mjk , s,T ,x). (4.5)

Considering that the computational cost is the main concern of robust optimization,

and that the iterative sequential algorithm is the most efficient of the three algorithms pro-

posed for deterministic optimization of well status, types and locations (see Tables 4.2 and

4.5), the iterative sequential algorithm is adapted to robust optimization. Theoretically, at

each iteration, whether an updated estimate of (s,T ,x) obtained using the subset ensemble

should be be accepted or not, depends on whether the expected NPV of the whole ensem-

ble models, J
Ωf
E (s,T ,x), is improved or not. However, considering that each evaluation of

J
Ωf
E (s,T ,x) requires Ne simulation runs, we avoid evaluating it every iteration of the opti-

mization algorithm. We emphasize that the base algorithm is an iterative sequential method

which combines GA, StoSAG and GPS. If the population size of GA is set equal to 50, the

number of GA iterations is set to 50, and the number of realizations in the subset Ωs is set

equal to 5, then it would require at least 50∗50∗5 = 12, 500 simulation runs to carry out the

optimization of (s,T ), without considering the simulation runs spent on adaptively selecting

the subset realizations and on the StoSAG and GPS search steps to update x. Hence, it

is desirable to keep the the size of the subset ensemble small. Thus, in this chapter, the

maximum number of realizations in Ωs is set equal to 3. The representative models in the

subset are selected as the models corresponding to the equally spaced percentiles of the cu-

mulative distribution function (cdf) of the NPV’s for Ne realizations. Suppose Ne = 50 and

Nes = 3, then Ωs includes the realizations corresponding to the P2, P50 and P100 (2th, 50th
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and 100th percentiles) of the cdf of NPV in Ωf .

Below, we provide three different “procedures” in the context of Algorithm 6 to

determine when to apply the estimates of (s,T ,x) obtained by maximizing JΩs
E to all Ne

realizations and how to update the subset ensemble. Procedures 1 and 2 are used as the

benchmark for Procedure 3.

• Procedure 1. The cdf of NPV for the full ensemble, Ωf , is only constructed once based

on the initial settings of the well status, types and locations (i.e., the reference scenario

generated using engineering judgment) and the realizations corresponding to P2, P50

and P100 are selected to form the subset ensemble. Throughout the optimization

process, these three realizations are used to represent the geological uncertainty and

each evaluation of the objective function (given in Eq. 4.5) requires 3 simulation runs.

• Procedure 2. The cdf of NPV for the full ensemble Ωf is initially constructed based

on the initial settings of (s,T ,x) and reservoir models corresponding to P2, P50 and

P100 of the initial cdf of NPV are selected to form the initial subset. For each search

step (the GA step, the StoSAG or the GPS step), we use the best estimate of the

optimal solution (the estimate of (s,T ,x) that gives the largest expected NPV for the

Ne realizations, denoted as wopt) as the initial guess. Denote the estimate of (s,T ,x)

after carrying out the kth search step using the selected representative subset, Ωk−1
s ,

as vk,opt. After each search step, the NPV’s of the Ne realizations in the full ensemble

are evaluated using vk,opt and the expected NPV of the Ne realizations, J
Ωf
E (vk,opt),

is calculated and a trial cdf of NPV is built. If J
Ωf
E (vk,opt) is no greater than the

one calculated using the best estimate of the optimal solution, J
Ωf
E (wopt), we do not

accept the updated solution, i.e., we replace the updated solution by the solution at

the beginning of the step. Otherwise, we (i) accept vk,opt as the best estimate of the

optimal solution and accept the trial cdf of NPV, and (ii) select a new representative

subset of realizations (reservoir models corresponding to P2, P50 and P100 of the newly

built cdf of NPV), Ωk
s , to represent the geological uncertainty for the next GA, StoSAG
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or GPS search step, whichever comes first.

• Procedure 3. In Procedure 2, to decide if an estimate of (s,T ,x) obtained with the

subset is accepted as the best estimate of the optimal solution, the NPV’s of the Ne

realizations are evaluated after each search step (the GA step, StoSAG step or GPS

step). However, it is possible that the preceding search step leads to a big change to

the design variables (s,T ,x) with which the subset realizations are no longer repre-

sentative. Hence, to decide if the subset needs to be re-selected, we also evaluate the

Ne realizations within each search step provided that a specified criterion is satisfied.

The cdf of the full ensemble Ωf is initially constructed based on the reference scenario

(the initial settings of the (s,T ,x)). A set of reference realizations (Ω0
co) are chosen as

the reservoir models corresponding to P2, P25, P50, P27 and P100 of the initial cdf of

NPV and one representative realization, the P50 of the initial cdf of NPV, is selected

to form the representative subset. Denote the estimate of (s,T ,x) obtained with the

subset realizations at the `th iteration as v` and denote the best estimate of the op-

timal solution obtained till `th iteration as wopt. If v` improves the expected NPV of

the subset ensemble compared to last iteration, then the NPV’s of the realizations in

Ω`
co are evaluated using v`. If the ordering of the NPV’s of the realizations in Ω`

co re-

mains the same as the ordering at the best estimate of the optimal solution, the subset

realizations are still considered to be representative and we move on to next iteration;

otherwise the NPV’s of the Ne realizations are evaluated using v` and the expected

NPV, J
Ωf
E (v`), is calculated. If J

Ωf
E (v`) is not greater than the one obtained with the

best estimate of the optimal solution, J
Ωf
E (wopt), we do not accept the updated solu-

tion, i.e., we replace the updated solution by wopt, and enlarge the size of the subset to

3 if there is only one realization in the subset, i.e., the reservoir models corresponding

to the P2, P50 and P100 of the best estimate of the cdf are selected. Otherwise, we

(i) accept v` as the next estimate of the optimal solution (set wopt = v`) and build

the cdf of NPV based on Ne realizations using v`, and (ii) select a new representative

subset of realizations (models corresponding to P2, P50 and P100 of the newly built
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cdf of NPV), Ω`
s, and a new reference set, Ω`

co, for next iteration.

For cases where the representative models are relatively independent of the design vari-

ables, (s,T ,x), using only one realization (the adaptively selected P50 realization) can

greatly save the simulation cost; for cases where the representative models heavily rely

on the design variables, (s,T ,x), the adaptively selected three realizations (P2, P50

and P100 realizations of the newly built cdf) can roughly represent the full ensemble.

To estimate the StoSAG search direction, if the subset ensemble size is increased, the

number of perturbations per realization, Npert, is reduced in order to keep the com-

putational cost low, i.e., we set Npert = 15 for Nes = 1 and Npert = 5 for Nes = 3.

Algorithm 6 coupled with Procedure 3 is summarized in Algorithm 10. In the context

of Algorithm 10, Procedure 3 is given in Algorithm 11.

In Algorithm 10, ALidx represents the indices of the three search step, i.e., ALidx = 1

represents the GA search step, ALidx = 2 represents the StoSAG search step, ALidx = 3 rep-

resents the GPS search step; FLSto = true and FLGPS = true respectively represent failures

in StoSAG search step and the GPS search step; evalΩf = true represents evaluating the

NPV’s of the Ne realizations in Ωf ; s
0, T 0 and x0 respectively represent the initial settings

of well status, types and locations (i.e., the reference scenario generated using engineering

judgment); the superscript opt denotes the best estimate of the optimal solution; xopt, copt

and POP opt respectively represent the best estimate of well locations, status and types, and

the population which contains copt; ` denotes the number of iterations within each search

step; Ω`
s and Ω`

co respectively represent the subset ensemble to account for the uncertainty

and the reference ensemble to check the ordering of NPV’s at `th iteration of a search step;

POP `
s represent the population at `th iteration; c`i and c`b respectively represent the ith

chromosome and the best chromosome in POP `
s ; x`,trial and x` respectively represent the

well locations after a trial update and the actual value of well locations at `th iteration.

Robust optimization of well status, types and locations given the well controls, using

the iterative sequential method coupled with Procedure 1, Procedure 2 and Procedure 3 are

referred to Robust-1, Robust-2 and Robust-3, respectively. In this section, the convergence
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Algorithm 10 Pseudo-code for adaptive robust optimization using Procedure 3

Preset Np, Ng, pc, pm, NGA, NSto and ∆0 = 1. Set FLSto = false and FLGPS = false.
Generate the initial settings of well status s0, types T 0, and locations x0. Set c0

b =

[s0
1, T

0
1 , s

0
2, T

0
2 , · · · , s0

Kmax
, T 0

Kmax
], copt = c0 and xopt = x0. Evaluate J

Ωf
E (copt,xopt) and

form cdf opt. Set the size of the initial subset, Nes = 1, select the P50 realization of
cdf opt to form Ω0

s and select the “P2, P25, P50, P75 and P100” realizations of cdf opt

to form Ω0
co. Set the number of perturbations used to estimate the StoSAG gradient

at each iteration, Npert = 15.

1. Generate the initial population, POP 0
s , with Np random chromosomes and replace one

random chromosome by c0. Evaluate POP 0
s and set POP opt = POP 0

s .

2. Set ` = 0, POP `
s = POP opt, c`b = copt and x` = xopt. If ALidx = 1, evaluate each

chromosome in POP `
s using xopt, where the fitness of a chromosome is the expected

NPV of the realizations in Ω`
s, and go to step 3; if ALidx = 2, go to step 4; if ALidx = 3,

go to step 5.

3. Continue for NGA generations of GA to maximize J
Ω`s
E by adjusting the well status

and types. At each iteration, (i) set Ω`+1
s = Ω`

s, Ω`+1
co = Ω`

co and ` = ` + 1; (ii)

generate POP `
s using GA operators based on POP `−1

s ; (iii) evaluate JΩ`−1
s

E (c`i ,x
opt)

for c`i in POP `
s and find the chromosome with the largest JΩ`−1

s
E (c`i ,x

opt), c`b; (iv) if

JΩ`−1
s

E (c`b,x
opt) > JΩ`−1

s
E (c`−1

b ,xopt), apply Procedure 3 given in Algorithm 11.

4. Maximize J
Ω`s
E by adjusting x, using StoSAG for NSto iterations. The number of pertur-

bations used to estimate the StoSAG gradient per realization is set equal to Npert
Nes

. At

each iteration, (i) set Ω`+1
s = Ω`

s, Ω`+1
co = Ω`

co and ` = `+1; (ii) search along the StoSAG

gradient to obtain a trial update x`,trial; (iii) if JΩ`−1
s

E (copt,x`,trial) > JΩ`−1
s

E (coptb ,x`−1),
set x` = x`,trial and apply Procedure 3 given in Algorithm 11, otherwise set x` = x`−1

and go to next iteration. If StoSAG failed to improve JΩ`−1
s

E for Nres iterations, set
FLSto = true; otherwise, set FLSto = false. Go to Step 7.

5. Maximize J
Ω`s
E by adjusting x along Nx coordinate directions. At each iteration, (i) set

Ω`+1
s = Ω`

s, Ω`+1
co = Ω`

co and ` = `+1; (ii) search along the coordinate direction to obtain

a trial update x`,trial; (iii) if JΩ`−1
s

E (copt,x`,trial) > JΩ`−1
s

E (coptb ,x`−1), set x` = x`,trial

and apply Procedure 3 given in Algorithm 11, otherwise set x` = x`−1 and go to next
iteration. If GPS failed to improve JΩs

E for Nx coordinate directions, set FLGPS = true;
otherwise, set FLGPS = false.

6. If ALidx 6= 1, set ALidx = 1; otherwise, set ALidx = 2 if FLSto = false, and set ALidx = 3
if FLSto = true and FLGPS = false. Go to step 2.

criterion for Robust-1 is set as failure to improve the expected NPV of the three fixed

realizations in a GA step followed by a GPS step or a GPS step followed by a GA step. The

convergence criterion for Robust-2 and Robust-3 is set as consecutive failures in updating
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Algorithm 11 Procedure 3 for adaptive robust optimization of well status, types and loca-
tions

• Set evalΩf = false.

• If ALidx = 1,

– set v`b = (c`b,x
opt);

– if ` = NGA, set evalΩf = true.

• If ALidx = 2,

– set v`b = (copt,x`);

– if ` = NSto or FLsto = true, set evalΩf = true.

• If ALidx = 3,

– set v`b = (copt,x`);

– if ` = Nx, set evalΩf = true.

• If evalΩf = false,

– evaluate J(mk,v
`
b), ∀ mk ∈ Ω`−1

co ;

– if the ordering of the NPV’s in Ω`−1
co change, set evalΩf = true.

• If evalΩf = true,

– evaluate J
Ωf
E (v`b) and build a trial cdf, cdf trial;

– if J
Ωf
E (v`b) > J

Ωf
E (copt,xopt),

∗ if ALidx = 1, set copt = c`b and POP opt = POP `
s ;

∗ if ALidx 6= 1, set xopt = x`;

∗ set cdf opt = cdf trial and re-select realizations from cdf opt to form Ω`
s and Ω`

co;

∗ evaluate J
Ω`s
E (v`b).

– otherwise,

∗ set x` = xopt, c`b = copt and POP `
s = POP opt;

∗ if Nes = 1, set Nes = 3, and re-select the “P2, P50 and P100” realizations of
cdf opt to form Ω`

s.

• Otherwise, move to next iteration.

the cdf of the Ne realizations in a GA step followed by a GPS step or a GPS step followed

by a GA step. The three methods (i.e., Robust-1, Robust-2 and Robust-3) are terminated

either at convergence or when the number of simulation runs exceeds a pre-defined value.
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4.4 Numerical Examples of Robust Optimization

In this section, the three robust optimization procedures (i.e., Robust-1, Robust-2 and

Robust-3) are applied to both the PUNQ model and the Brugge model. For both examples,

50 realizations of the reservoir model are generated to represent the geological uncertainty.

The maximum number of simulation runs is set as 10,000 for the PUNQ model and 8,000

for the Brugge model.

4.4.1 Example 1: PUNQ model

The PUNQ model is considered where 50 realizations of the horizontal and vertical

permeability fields are used to represent the geological uncertainty. The same reference well

placement scenario, well control settings and economic parameters are used as in determin-

istic optimization presented in Section 4.2.1. The only difference is that we consider the

minimum well spacing as one gridblock, i.e., two wells cannot be placed in the same grid-

block. The NPV’s for all 50 realizations are calculated using the reference scenario given

in Fig. 4.3(a) where the cdf of NPV is shown as the black curve in Fig. 4.21. The P2,

P50 and P100 realizations correspond to realization #48, #8 and #27 respectively, whose

log-permeability fields are shown in Fig. 4.22. From Fig. 4.22, the permeability fields of

these three realizations are quite different, indicating the large geological uncertainty in the

reservoir models. We first carry out the adaptive robust optimization using iterative sequen-

tial steps of GA, StoSAG and GPS, and then we consider the case where the StoSAG search

step is not used.

1. Robust optimization using the iterative sequential algorithm with GA, StoSAG

and GPS

Since GA and StoSAG are stochastic algorithms, three initial seeds are tried for each

of the three robust optimization procedures. Fig. 4.21 shows the cdf’s of NPV obtained

with the reference scenario and the optimal well placement using three seeds. The cdf’s

of NPV are generated based on evaluating the NPV of all Ne = 50 reservoir models given

an estimate of (s,T ,x). The green, blue and red circles respectively represent the P2,
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P50 and P100 realizations of the initial cdf of NPV (the black curve) obtained with the

reference scenario. From Fig. 4.21, the subset realizations selected from the initial cdf no

longer correspond to the 2th, 50th and 100th percentiles of the cdf’s of NPV obtained with

the optimal solutions, indicating that the representative realizations heavily depend on the

optimization variables for the PUNQ model and that it is necessary to adaptively re-select

the representative realizations.
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Figure 4.21: Cdf’s of NPV obtained with the reference scenario (black curve) and the optimal
well placements for the three robust procedures using three seeds (blue curve for seed 1, red
curve for seed 2 and green curve for seed 3), robust optimization of the PUNQ model. The
green, blue and red circles respectively represent the P2, P50 and P100 of the cdf of NPV
obtained with the reference scenario.

From Fig. 4.21(a), using Robust-1 (where the subset is fixed during the optimization

process), the optimal cdf’s obtained with the three seeds are quite different in that seed 2

obtained lower optimal NPV’s for almost all 50 realizations compared to those of the other

two seeds. From Figs. 4.21(b) and (c), the optimal results obtained with Robust-2 (where

the subset is re-selected at each switch of the search steps) and Robust-3 (where the subset

is re-selected following Algorithm 11), are almost independent of the seed. For example, the

difference between the best and worst expected NPV of the full ensemble for the optimal

solutions obtained with Robust-2 and Robust-3 are respectively $50×106 (2% of the average

optimal NPV) and $30× 106 (1.2% of the average optimal NPV). Besides being consistent,

the optimal expected NPV obtained with Robust-2 and Robust-3 are respectively 3.6% and

7.7% higher than the one obtained with Robust-1, on average of three seeds.
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Figure 4.22: Realizations of the log-horizontal permeability fields (upper row) and the log-
vertical permeability fields (bottom row), corresponding to P2, P50 and P100 of the cdf of
NPV obtained with the reference well placement scenario, PUNQ model. kh and kv represent
the horizontal and vertical permeability respectively.

Fig. 4.23 shows the expected NPV’s of the subset versus number of simulations using

three fixed subset realizations (realizations #48, #8 and #27) during three runs of Robust-1.

We apply the optimal solutions obtained with the subset ensemble to all Ne reservoir models

and presented the expected NPV’s of the full ensemble using dashed lines in color in Fig.

4.23. From Fig. 4.23, the optimal solution obtained with seed 2 gives an expected NPV of

$2.5 × 109 for the subset, but only $2.18 × 109 for the full ensemble which is 13% less, due

to the loss of representativeness of the subset realizations.

Fig. 4.24 shows the expected NPV’s for the full ensemble with respect to number

of simulation runs using Robust-2 where each point represents a switch of the search steps.

From Fig. 4.24, both GA and GPS search step increased the expected NPV of the full
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Figure 4.23: Expected NPV of the susbet ensemble versus number of simulation runs ob-
tained with Robust-1 using three seeds (blue curve for seed 1, red curve for seed 2 and
green curve for seed 3), robust optimization of the PUNQ model. The solid lines represent
the expected NPV’s of the subset ensemble; the dashed lines in color represent the optimal
expected NPV’s of the full ensemble; the black dashed line is the expected NPV of the full
ensemble obtained with the reference scenario.

ensemble significantly, however, the StoSAG search step only improved it slightly. For seed

2, the optimization got stuck from around 4,000 simulation runs to 9,000 simulation runs,

but then provided a sharp increase in the expected NPV of the full ensemble. Fig. 4.25 shows

both the expected NPV’s over the subset and the full ensemble during the StoSAG and GPS

search step using seed 2. From Fig. 4.25, the StoSAG step could efficiently improve the

expected NPV of the subset (the blue dots), but not the average NPV of the full ensemble

(the blue stars). This is because the StoSAG search direction is only a stochastic uphill

direction, and NSto = 5 iterations along the StoSAG search direction lead to a big change in

the well locations with which the selected subset realizations are no longer representative,

even though the improvement in the expected NPV’s of the subset seems to be less than that

in the GPS step. Hence, optimizing over the subset realizations using StoSAG only slightly

improves the expected NPV of the full ensemble.

Fig. 4.26 shows the expected NPV’s for the full ensemble with respect to number of

simulation runs using Robust-3 where it is less frequent for the expected NPV of the full

ensemble to get stuck. This is because that Robust-3 procedure not only constructs the cdf’s
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(c) Seed 3

Figure 4.24: Expected NPV of the full ensemble versus number of simulations obtained for
Robust-2 using three seeds, robust optimization of PUNQ model. o represents an update by
GA, ∗ represents an update by StoSAG, and � represents an update by GPS.
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Figure 4.25: Expected NPV versus number of simulations obtained with Robust-2 using seed
2, robust optimization of PUNQ model. o, ∗, and � respectively represent the expected NPV
of the full ensemble obtained using GA, StoSAG and GPS; . and . respectively represent the
expected NPV of the subset ensemble obtained using StoSAG and GPS.

of NPV at each switch of the search steps, but also when the ordering of NPV’s of a set of

reference realizations changes. This tends to prevent large updates to the well status, types

and locations between two neighboring cdf constructions, which may cause the representative

subset to become non-representative. It is worth to mention that Robust-3 procedure starts

with a subset containing only one realization, however, the size of the subset is increased

to 3 after the first generation of GA, since as we have observed, the representativeness of

realizations for the PUNQ model heavily depends on the optimization variables.
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Figure 4.26: Expected NPV of the full ensemble versus number of simulations obtained for
Robust-3 using three seeds, robust optimization of PUNQ model. o represents an update by
GA, ∗ represents an update by StoSAG, and � represents an update by GPS.

Figs. 4.27, 4.28 and 4.29 respectively show the optimal wells drilled, their types and

locations obtained with Robust-1, Robust-2 and Robust-3 where each optimization procedure

is repeated three times using different seeds. Due to the existence of a strong aquifer which

provides pressure support for producers, the optimal solutions tend to avoid drilling any

injectors except that one injector is drilled in the optimal solution of Robust-3 using seed 1.

Meanwhile, the number of producers obtained using three seeds ranges from 7 to 10, which

are quite consistent with each other.

The expected NPV’s of the full ensemble and the subset ensemble obtained with

optimal solutions, the optimal number of producers along with the simulation costs to obtain

convergence are summarized in Table 4.7. Note that the maximum number of simulation

runs is set to be 10,000 and seed 2 of Robust-2 didn’t reach convergence before the algorithm

termination. From Table 4.7, based on the average performance of three stochastic runs, (i)

Robust-1 costs the least number of simulation runs, but provides the lowest expected NPV’s

of the full ensemble; (ii) Robust-2 gives higher expected NPV’s of the full ensemble compared

to Robust-1, but costs the highest number of simulation runs; (iii) Robust-3 requires 1,200

simulation runs less than Robust-2, but 500 simulation runs more than Robust-1, however,

it provides the highest expected NPV’s of the full ensemble; (iv) the expected NPV’s of the

subset ensemble are generally higher than those of the full ensemble at the optimal solutions
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since the former is the objective that we actually maximize, and the difference between the

former and the latter is much larger for Robust-1 compared to Robust-2 and Robust-3.

(a) Seed 1 (b) Seed 2 (c) Seed 3

Figure 4.27: Optimal types and locations of drilled wells obtained with Robust-1 using three
seeds, robust optimization of the PUNQ model. Injector locations are marked in brown
color and labeled with ⊗; producer locations are marked in yellow color and labeled with o;
the gas cap is marked in green color; the aquifer is marked in dark blue and the oil zone is
marked in light blue color.

(a) Seed 1 (b) Seed 2 (c) Seed 3

Figure 4.28: Optimal types and locations of drilled wells obtained for Robust-2 using three
seeds, robust optimization of PUNQ model. Injector locations are marked in brown color
and labeled with ⊗; producer locations are marked in yellow color and labeled with o; the
gas cap is marked in green color; the aquifer is marked in dark blue and the oil zone is
marked in light blue color.
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(a) Seed 1 (b) Seed 2 (c) Seed 3

Figure 4.29: Optimal types and locations of drilled wells obtained for Robust-3 using three
seeds, robust optimization of PUNQ model. Injector locations are marked in brown color
and labeled with ⊗; producer locations are marked in yellow color and labeled with o; the
gas cap is marked in green color; the aquifer is marked in dark blue and the oil zone is
marked in light blue color.

Table 4.7: Summary of the optimal solutions and computational cost obtained with the three
robust optimization procedures using three seeds, robust optimization of PUNQ model.

Seeds

Robust-1 Robust-2 Robust-3
Sim. $× 109

NPro
Sim. $× 109

NPro
Sim. $× 109

NPro
# J

Ωf
E JΩs

E # J
Ωf
E JΩs

E # J
Ωf
E JΩs

E

Seed 1 5950 2.43 2.56 8 4465 2.42 2.51 9 4031 2.55 2.60 9
Seed 2 5500 2.18 2.50 7 10000 2.46 2.54 8 7443 2.53 2.58 10
Seed 3 5500 2.43 2.63 9 7547 2.41 2.46 8 6984 2.52 2.60 10

Average 5650 2.35 2.56 8 7337 2.43 2.50 8 6153 2.53 2.59 10

2. Robust optimization using the iterative sequential algorithm with GA and GPS

Due to the observation that the StoSAG optimization for the subset realizations

after NSto = 5 iterations only slightly improves the expected NPV of the full ensemble, we

investigate Robust-1, Robust-2 and Robust-3 optimization procedures using only the GA

search step and the GPS search step. Figs. 4.30 and 4.31 show the expected NPV of the full

ensemble versus number of simulations obtained with Robust-2 and Robust-3 respectively.

The convergence speed of Figs. 4.30 and 4.31 has been greatly improved compared to Figs.

4.24 and 4.26, i.e., saving over 1,300 simulation runs per seed. The expected NPV’s of
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the full ensemble and the subset ensemble obtained with the optimal solutions, the optimal

number of producers along with the simulation cost to reach convergence are summarized

in Table 4.8. From Table 4.8, based on the average performance of three stochastic runs,

(i) Robust-3 remains giving highest expected NPV’s of the full ensemble while Robust-1

still gives the worst expected NPV for Ne = 50 realizations; (ii) the expected NPV’s of the

subset ensemble are higher than those of the full ensemble at the optimal solutions and the

difference in between is much larger for Robust-1 compared to Robust-2 and Robust-3; (iii)

the optimal number of producers are consistent using different optimization procedures and

different seeds, i.e., 7 to 10 producers are drilled. Note almost no injectors are drilled, though

we do not show it.
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Figure 4.30: Expected NPV of the full ensemble versus number of simulations obtained for
Robust-2 using the iterative sequential method with GA and GPS steps, robust optimization
of the PUNQ model. o’s and �’s respectively represent updates by GA and GPS.

Table 4.8: Summary of the optimal solutions and computational cost obtained with the three
robust optimization procedures with GA and GPS, robust optimization of PUNQ model.

Seeds

Robust-1 Robust-2 Robust-3
Sim. $× 109

NPro
Sim. $× 109

NPro
Sim. $× 109

NPro
# J

Ωf
E JΩs

E # J
Ωf
E JΩs

E # J
Ωf
E JΩs

E

Seed 1 6100 2.39 2.59 9 6055 2.52 2.60 9 4905 2.54 2.59 10
Seed 2 3100 2.36 2.57 7 5915 2.40 2.46 9 4912 2.44 2.50 8
Seed 3 6400 2.44 2.59 8 5135 2.52 2.60 9 4749 2.55 2.60 9

Average 5200 2.40 2.58 8 5700 2.48 2.55 9 4855 2.51 2.56 9
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Figure 4.31: Expected NPV of the full-ensemble versus number of simulations obtained for
Robust-3 using the iterative sequential method with GA and GPS steps, robust optimization
of PUNQ model. o’s and �’s respectively represent updates by GA and GPS.

4.4.2 Example 2: Brugge model

In the original Brugge model, 104 geological realizations of the horizontal perme-

ability, vertical permeability, porosity, connate water saturation and the net-gross ratio are

generated to describe the reservoir uncertainty. However, due to our limited computational

resources, we only use 50 realizations where 10 realizations are generated using each of the

5 geo-statistical methods (see [71] for more details). The same reference well placement

scenario, well control settings, economic parameters and minimum well spacing are used as

in deterministic optimization presented in Section 4.2.2. The NPV’s for all 50 realizations

are calculated using the reference scenario given in Fig. 4.15(a) where the cdf of NPV is

shown as the black curve in Fig. 4.32. The P2, P50 and P100 realizations correspond to

realization #32, #14 and #9 respectively, whose petrophysical parameters for layer 1 are

shown in Fig. 4.33. From Fig. 4.33, the petrophysical parameters of these three realizations

are quite different, indicating the large geological uncertainty in the reservoir models.

1. Robust optimization using the iterative sequential method with GA, StoSAG and

GPS

Since each simulation run for the Brugge model costs approximately 2 minutes and

it has been observed for the PUNQ model that the inclusion of StoSAG search step in the

iterative sequential method may lead to a slow convergence speed, only one run is tried for
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each of the three robust optimization procedures using GA, StoSAG and GPS search steps.

Fig. 4.32 shows the cdf’s of NPV obtained with the reference scenario (given in Fig. 4.15(a))

and the optimal well placement for Robust-1, Robust-2 and Robust-3 respectively. The cdf’s

of NPV are generated based on evaluating the NPV of all Ne = 50 reservoir models given an

estimate of (s,T ,x). The green, blue and red circles respectively represent the P2, P50 and

P100 realizations of the cdf of NPV obtained with the reference scenario (the black curve).

From Fig. 4.32, the subset models selected from the initial cdf still roughly correspond to

the 2th, 50th and 100th percentiles of the cdf’s of NPV obtained with the optimal solutions,

indicating that the representative realizations are relatively independent of the optimization

variables (well status, types and locations) for the Brugge model, and that it is unnecessary

to frequently re-select the representative realizations.
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Figure 4.32: Cdf’s of NPV’s obtained with the reference scenario (black curve) and the
optimal well placement for three robust optimization procedures, robust optimization of
Brugge model. The green, blue and red circles, respectively, represent the P2, P50 and P100
of the cdf of NPV obtained with the reference scenario.

With Robust-1 procedure where the subset ensemble (containing 3 realizations) are

fixed during the optimization process, the optimal solution gives an expected NPV of $10.77×

109 for the subset and $10.47 × 109 for the full ensemble which is 3% less; see Fig. 4.34.

With Robust-2 procedure where the subset ensemble (containing 3 realizations) is re-selected

at each switch of the algorithms, i.e., from GA to StoSAG/GPS or vice versa, the optimal

solution gives an expected NPV of $10.10× 109 for the full ensemble, which is far less than

the value obtained with Robust-1; see Fig. 4.35. This is because the StoSAG step converges
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Figure 4.33: Petrophysical parameters for the top layer of the realizations corresponding to
P2, P50 and P100 of the cdf of NPV obtained with the reference well placement scenario,
Brugge model. kh and kv represents the horizontal and vertical permeability respectively, φ
is the porosity, NTG is the net to gross ratio and Sconw is the connate water saturation.
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slowly when it comes near a local solution, but the slight improvements of the expected NPV’s

of the subset ensemble and the full ensemble are sufficient to avoid triggering the convergence

criteria for the StoSAG search step until about 8,000 simulations and hence delayed the GPS

fine-tune step for Robust-2. Given the maximum number of simulation runs as 8,000 for

robust optimization, the inclusion of StoSAG search steps seems disadvantageous. In fact

the resulting slow convergence could happen to all three robust optimization procedures and

Robust-2 happens to be an unlucky run. With Robust-3 procedure where the subset ensemble

(starting with ensemble size 1) is re-selected following Algorithm 11, the optimal solution

gives the highest expected NPV of the full ensemble, $10.67×109, and the fastest convergence

speed; see Fig. 4.36. For Robust-3, the subset ensemble only contains one realization in the

early iterations and hence can save simulation costs and search more thoroughly within the

specified number of simulation runs.

The optimal expected NPV’s for the full ensemble and subset ensemble, the optimal

number of injectors and producers along with the simulation costs to achieve convergence are

summarized in Table 4.9. Note we terminate the optimization process when the number of

simulation runs exceeds 8,000 even if it hasn’t converged yet. From Table 4.9, (i) Robust-3

requires less simulation runs compared to Robust-1 and Robust-2, and provides the highest

expected NPV’s for the full ensemble; (ii) the expected NPV’s of the subset ensemble are

generally higher than those of the full ensemble at the optimal solutions since the former is

the objective that we actually maximize, and the difference between the former and the latter

is quite similar for all three optimization procedures which is consistent with Fig. 4.32; and

(iii) the optimal number of wells are similar using different optimization procedures, i.e., 23

to 25 wells are drilled. Figs. 4.37, 4.38 and 4.39 respectively show the optimal wells drilled,

their types and locations obtained with the three optimization procedures, along with the

oil saturation of the top layer after 20 years of production obtained with realization #14.

2. Robust optimization using the iterative sequential method with GA and GPS

Due to the observation that the inclusion of StoSAG optimization may lead to a

slow convergence speed, we investigate the Robust-1, Robust-2 and Robust-3 optimization
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Table 4.9: Summary of the optimal solutions and computational cost obtained with three
robust optimization procedures, robust optimization of the Brugge model.

Seeds

Robust-1 Robust-2 Robust-3
Sim. $× 109

NInj NPro
Sim. $× 109

NInj NPro
Sim. $× 109

NInj NPro
# J

Ωf
E JΩs

E # J
Ωf
E JΩs

E # J
Ωf
E JΩs

E

Seed 1 7798 10.47 10.77 8 15 8000 10.10 10.20 14 11 7159 10.67 10.88 15 8
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Figure 4.34: Expected NPV of the subset ensemble obtained with the best candidate so-
lution of a population versus number of simulation runs obtained with Robust-1, robust
optimization of Brugge model. The solid line in blue represents the expected NPV’s of the
subset ensemble, the blue dashed line represents optimal expected NPV of the full ensemble,
and the black dashed line represents the expected NPV of the full ensemble obtained with
the reference scenario.

procedures using the iterative sequential method with GA and GPS search steps only. Three

runs are tried for each of the robust optimization procedures. Fig. 4.40 shows the cdf of

NPV for the 50 realizations obtained with the reference scenario given in Fig. 4.15(a)

and the optimal solutions for the three optimization procedures. Similar to Fig. 4.32, the

subset models selected from the initial cdf still roughly correspond to the 2th, 50th and

100th percentiles of the cdf’s of NPV obtained with the optimal solutions, indicating that

the representative realizations are relatively independent of the optimization variables (well

status, types and locations) for the Brugge model. This indicates that the optimal expected

NPV’s of the full ensemble obtained with Robust-1, Robust-2 and Robust-3, should be more

or less the same, since it is not necessary to re-select the representative subset ensemble

frequently.
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Figure 4.35: Expected NPV versus number of simulations obtained with Robust-2, robust
optimization of the Brugge model. o, ∗ respectively represent the expected NPV of the
full ensemble obtained using GA and StoSAG; . represents the expected NPV of the subset
ensemble obtained using StoSAG.
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Figure 4.36: Expected NPV of the full ensemble versus number of simulations obtained
for Robust-3, robust optimization of the Brugge model. o represents an update by GA, ∗
represents an update by StoSAG, and � represents an update by GPS.

The expected NPV’s of the full ensemble and the subset ensemble obtained with

optimal solutions, the optimal number of injectors and producers along with the simulation

costs to obtain convergence are summarized in Table 4.10. Note that the maximum number

of simulation runs is set to be 8,000 and seed 1 of Robust-1 didn’t reach convergence before

the algorithm termination. From Table 4.10, based on the average performance of three

stochastic runs, (i) Robust-1 costs the least number of simulation runs because the runs
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Figure 4.37: Optimal types and locations of drilled wells obtained for Robust-1, plotted on
the oil saturation field at the top layer of realization #14 after 20 years of production, robust
optimization of the Brugge model. ⊗ represents an injector and o represents a producer.
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Figure 4.38: Optimal types and locations of drilled wells obtained for Robust-2, plotted on
the oil saturation field at the top layer of realization #14 after 20 years of production, robust
optimization of the Brugge model. ⊗ represents an injector and o represents a producer.

with seed 2 and seed 3 converged at local solutions which are far from the global solution;

(ii) as expected, Robust-2 and Robust-3 give almost the same optimal expected NPV’s of

the full ensemble which is higher than the value of Robust-1, but Robust-3 requires 700

157



+++++

+++++
+++++
+++++

+++++

+++++

+++++

o

o
o

o
o

o

+++++

o

o

o

o

o

o
o

oo

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Layer 1

+++++

+++++
+++++
+++++

+++++

+++++

+++++

o

o
o

o
o

o

+++++

o

o

o

o

o

o
o

oo

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Layer 9

Figure 4.39: Optimal types and locations of drilled wells obtained for Robust-3, plotted on
the oil saturation field at the top layer of realization #14 after 20 years of production, robust
optimization of the Brugge model. ⊗ represents an injector and o represents a producer.
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Figure 4.40: Cdf’s of NPV’s obtained with the reference scenario (black curve) and optimal
well placement for the three robust optimization procedures with GA and GPS search steps,
robust optimization of Brugge model. The green, blue and red circles respectively represent
the P2, P50 and P100 of the cdf of NPV obtained with the reference scenario.

simulation runs less than Robust-2; (iii) the expected NPV’s of the subset ensemble are

generally higher than those of the full ensemble at the optimal solutions since the former is

the objective that we actually maximize, and the difference between the former and the latter

is almost the same for Robust-1, Robust-2 and Robust-3; (iv) the number of wells obtained

with the optimal solutions whose expected NPV’s are larger than $10.50 × 109, are quite

similar, i.e., 8 to 9 injectors and 13 to 19 producers. Figs. 4.41 and 4.42 respectively show
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the expected NPV of the full ensemble versus number of simulations obtained with Robust-2

and Robust-3. Compared to Figs. 4.35 and 4.36, the convergence speed of Robust-2 and

Robust-3 without the StoSAG search step have been greatly improved, i.e., saving about

1,000 simulations per run.

Table 4.10: Summary of the optimal solutions and computational cost obtained with the
three robust optimization procedures using the iterative sequential method with GA and
GPS search steps, robust optimization of Brugge model.

Seeds

Robust-1 Robust-2 Robust-3
Sim. $× 109

NInj NPro
Sim. $× 109

NInj NPro
Sim. $× 109

NInj NPro
# J

Ωf
E JΩs

E # J
Ωf
E JΩs

E # J
Ωf
E JΩs

E

Seed 1 8000 10.55 10.80 9 13 5894 10.66 10.83 9 19 5054 10.68 10.87 7 14
Seed 2 5345 10.14 10.36 9 11 7795 10.49 10.76 11 14 6247 10.63 10.82 9 17
Seed 3 4796 10.31 10.52 7 13 7429 10.66 10.89 7 18 7227 10.50 10.63 10 12

Average 6047 10.33 10.56 8 12 6908 10.60 10.79 9 17 6176 10.60 10.77 9 14
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Figure 4.41: The expected NPV of the full ensemble versus number of simulation runs
obtained for Robust-2 using the iterative sequential method with GA and GPS steps, robust
optimization of Brugge model. o’s and �’s respectively represent updates by GA and GPS.

4.5 Summary and Discussion

In this chapter, we considered maximizing the NPV by optimizing the well status,

types, locations given a maximum number of wells authorized to drill. The optimization

problem considers both deterministic reservoir models and stochastic reservoir models whose

uncertainty is represented by a large number of realizations of the reservoir properties. For

deterministic optimization, three algorithms are designed to combine the global search abil-

ity of GA with the local search ability of StoSAG and GPS methods, including an iterative
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Figure 4.42: The expected NPV of the full ensemble versus number of simulation runs
obtained for Robust-3 using the iterative sequential method with GA and GPS steps, robust
optimization of Brugge model. o’s and �’s respectively represent updates by GA and GPS.

sequential procedure and two simultaneous procedures followed by StoSAG and GPS search

steps, one using mixed-encoded and one using the Genocop III method. Numerical results

on the PUNQ model and the Brugge model show that both the iterative sequential method

and the mixed-encoded GA outperform the Genocop III method and that the iterative se-

quential method has the fastest convergence speed. For the optimization under geological

uncertainty (also referred to as robust optimization), we developed an efficient subset real-

ization selection procedure and coupled it with the iterative sequential method. Numerical

results on the PUNQ model and the Brugge model show that with the adaptive procedure,

we can achieve robust optimization within a few thousand simulation runs, given a large

ensemble to characterize the geological uncertainty. Besides, we find it desirable to exclude

StoSAG from the iterative sequential method for robust optimization.
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CHAPTER 5

WELL PLACEMENT OPTIMIZATION WITH COMPLICATED WELL

TRAJECTORIES

In this chapter, we consider well placement optimization of complicated well trajec-

tories, e.g. slanted wells and multi-segmented wells, given the well number, their types and

controls. Corresponding parameterizations for the well trajectories are firstly proposed and

applied to deterministic optimization using a hybrid of StoSAG and GPS. Afterwards, bi-

objective well placement optimization under geological uncertainty is investigated where the

two objectives are to maximize the expected value of the life-cycle net-present-value (NPV)

and to maximize the minimum NPV of the set of realizations representing the geological

uncertainty, using an efficient implementation of the lexicographic method.

5.1 Well Trajectory Parameterization

5.1.1 Slanted well trajectory parameterization

Here, a slanted well trajectory refers to the case where the center-line of a well is

a straight line in the 3D space. Emerick et al. [21] proposed to use the (i, j, k) gridblock

indices of the heel point and toe point of a well to characterize the trajectory of a slanted

well . We propose to use the (x, y, z) coordinates of the two end points of a well inside the

reservoir, which is a slightly more general parameterization. We consider a procedure to

obtain the path of well iw given the vector

Xiw = [xiw0 , y
iw
0 , z

iw
0 , xiw1 , y

iw
1 , ziw1 ], (5.1)

where, (xiw0 , y
iw
0 , ziw0 ) and (xiw1 , y

iw
1 , z

iw
1 ) are the coordinates of the two end points of well
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iw; see Fig. 5.1(a). The entry point (xiw0 , y
iw
0 , z

iw
0 ) and the exit point (xiw1 , y

iw
1 , ziw1 ) are

required to fall in the active gridblocks, Ωactive. Two types of the most commonly considered

constraints are the minimum well spacing constraints where the distance between any pair

of well trajectories, d(Xiw,Xjw) should be greater than a pre-specified value Rmin and the

maximum/minimum well length constraints, these two constraints are given by

d(Xiw,Xjw) > Rmin iw, jw = 1, 2, · · · , Nw, iw 6= jw, (5.2a)

llow
iw ≤ liw ≤ lup

iw iw = 1, 2, · · · , Nw, (5.2b)

where, d(Xiw,Xjw) is the Euclidean distance between the iwth and jwth wells (see Appendix

A for the detailed calculation), Rmin is the minimum allowable inter-well distance, liw is the

length of the iwth well and is calculated as liw =
√

(xiw1 − xiw0 )2 + (yiw1 − yiw0 )2 + (ziw1 − ziw0 )2,

llow
iw and lup

iw correspond to the minimum and maximum allowable well lengths for the iwth

well respectively, and Nw is the number of wells. There are Nw(Nw−1)
2

well spacing constraints

and 2Nw well length constraints in total. For the parameterization given in Eq. 5.1, both

constraints in Eq. 5.2 are nonlinear constraints on the design variables, i.e., the evaluations

of d(Xiw,Xjw) and liw do not require simulation runs.

In order to evaluate the objective function, we simulate the reservoir dynamic perfor-

mance using the commercial simulator, CMG, where deviated perforations can be specified

by the (x, y, z) coordinates of their entry and exit points running through each perforated

gridblock. With this information, CMG is able to calculate an accurate deviated well pro-

ductivity/injectivity index using a Peaceman type well model ([68, 69, 70]). Thus, a routine

which identifies the grid cells crossed by each well and calculates the Cartesian coordinates

of the entry point and exit point of each perforation of a well in its perforated cell is imple-

mented, see Appendix C. In this dissertation, this routine is only developed for reservoirs

with (transformed) Cartesian grids.

Denote the full set of the variable vector for vertical well placement optimization as

x = [X1,X2, · · · ,XNw ], where the dimension of x is Nx = 6Nw. The net present value
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(NPV) of production is defined as

J(m,x) =
∑Nt

n=1

{
∆tn

(1+b)
tn
365

[∑NP
j=1

(
rno ·qno,j−cnw ·qnw,j−cng ·qng,j

)
−
∑NI

k=1

(
cnwi ·qnwi,k+cngi ·qngi,k

)]}
−
∑Nw

iw=1 Cw(Xiw),

where n, Nt, ∆tn, NP , NI , r
n
o , cnw, cng , cnwi, c

n
gi, q

n
o,j, q

n
w,j, q

n
g,j, q

n
wi,k, q

n
gi,k denote the same

terms as in Section 2.1, and Cw(Xiw) denotes the drilling cost for the iwth well which

depends on the trajectory variables defining this well, Xiw. Given a vector of the reservoir

model parameter, m, the trajectory optimization problem of vertical wells considered in this

chapter is stated as follows,

max
x∈RNx

J(m,x) (5.3a)

s.t. (xiw0 , y
iw
0 , z

iw
0 ) ∈ Ωactive, iw = 1, 2, · · · , Nw, (5.3b)

(xiw1 , y
iw
1 , z

iw
1 ) ∈ Ωactive, iw = 1, 2, · · · , Nw, (5.3c)

d(Xiw,Xjw) > Rmin iw, jw = 1, 2, · · · , Nw, iw 6= jw, (5.3d)

llow
iw ≤ liw iw = 1, 2, · · · , Nw, (5.3e)

liw ≤ lup
iw iw = 1, 2, · · · , Nw. (5.3f)

5.1.2 Multi-segmented well trajectory parameterization

For a multi-segmented well, using the (x, y, z) coordinates of the end points of each

segment as design variables may destroy the smoothness of the well trajectory after the

variable updates in the optimization process. Hence, we propose a different parameterization

(see Fig. 5.1(b) and Eq. 5.4 below) to transform the drillability (smoothness) constraint to

the bound constraints on optimization variables which then can be effectively enforced by

truncation. Specifically, the vector of parameters for well iw is given by,

Xiw = [xiw0 , y
iw
0 , z

iw
0 , ziw1 , liw1 , θ

iw
1 , z

iw
2 , liw2 , δθ

iw
2 , · · · , ziwNseg , l

iw
Nseg , δθ

iw
Nseg ], (5.4)

where, (xiw0 , y
iw
0 , ziw0 ) are the coordinates of the entry point of the iwth well into the reservoir
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((xiw0 , y
iw
0 , ziw0 ) is required to fall into an active gridblock of the reservoir), see Fig. 5.1(b);

θiw1 is the azimuth angle of the first segment (the angle between the x-axis and the projection

of the first segment onto the x-y plane); δθiwi , i = 2, 3, · · · , Nseg represents the change in

azimuth angle of the ith segment compared to the (i − 1)th segment so the azimuth angle

of each segment can be calculated recursively using θiwi = θiwi−1 + δθiwi , i = 2, 3, · · · , Nseg;

ziwi , i = 1, · · · , Nseg represents the z coordinate of the end point of the ith segment of

the iwth well; liwi , i = 1, · · · , Nseg represents the length of the ith segment. The (x, y)

coordinates of the end point of the ith segment of the iwth well can be calculated as xiwi =

xiwi−1 +
√

(liwi )
2 −

(
ziwi − ziwi−1

)2 ∗ cos(θiwi ) and yiwi = yiwi−1 +
√

(liwi )
2 −

(
ziwi − ziwi−1

)2 ∗ sin(θiwi ).

Similar to the azimuth angle concept, we define ϕiw1 as the inclination angle of the first

segment (the angle between z-axis and the first segment of the well trajectory), and define

δϕiwi , i = 2, 3, · · · , Nseg as the change in inclination angle of the ith segment compared to

the (i− 1)th segment. Note that ϕiw1 and δϕiwi are not in the well trajectory parameter Xiw.

For a multi-segmented well, there may be two segments of perforations in the gridblock

containing the end point of a well segment (except the last well segment). Since in CMG as

well as other commercial simulators, one can only define a perforation with one line segment,

thus a slanted pseudo-perforation is required. We propose to adjust the completion factor

of the pseudo-perforation based on CMG [55] so that equal injectivity/productivity can be

obtained. The calculation of the coordinates of the entry and exit point and the completion

factor of this pseudo-perforation is presented in Appendix C.2.

In fact, the multi-segmented well trajectory depicted in Fig. 5.1(b) is not drillable

using current directional drilling techniques, and a good-quality wellbore should be smooth

in practice. Hence, when applying the optimal multi-segmented well trajectory, we smooth

the ith and the (i + 1)th well segments as a circular arc located in the plane of these two

segments. Fig. 5.2 illustrates the smoothing of two consecutive well segments for a multi-

segmented well where points A and C denote the two end points of the ith well segment,

points C and E denote the two end points of the (i + 1)th segment and points B and D

denote the points on segments AC and CE such that |BC| = |CD| = min( |AC|
2
, |CE|

2
) and O
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(a) Slanted well

(b) Multi-segmented well

Figure 5.1: Illustration of well trajectory parameterization for a slanted and a multi-
segmented well.

is the center of the arc B̂D. The calculation of the segment end points and the smoothing

of the trajectory of well iw are given in Appendix B.

To be drillable, the dogleg severity (DLS) of the well trajectory in Fig. 5.2 has to

stay below a maximum value. DLS ([58]) is the dogleg angle (defined as the overall change

in inclination and azimuth of a borehole from the ith segment to the (i+ 1)th segment) per

100 feet of the measured depth. Following the notation in Fig. 5.2, DLS is given by

DLSiwi =
100βiwi

B̂D
=

100

OB

180

π
, (5.5)
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Figure 5.2: Illustration of the smoothed trajectory of two consecutive well segments for a
multi-segmented well.

where,

OB =
BC

tan
βiwi

2

, (5.6)

and

βiwi = 2arcsin

√(
sin

δϕiwi
2

)2

+ sinϕiwi sin(ϕiwi + δϕiwi )

(
sin

δθiwi
2

)2

. (5.7)

Substituting Eq. 5.6 into Eq. 5.5, we obtain

DLSiwi =
100

BC

180

π
tan(

βiwi
2

). (5.8)

From Eq. 5.8, the dogleg severity is low if βiwi is low or BC (i.e., min(
liwi
2
,
liwi+1

2
)) is large.

Since the thickness of a reservoir is usually much smaller than its width or length and the

perforated length of a directional well is usually quite large, the change in inclination δϕiwi

is usually kept at a small value if a well trajectory is bounded within the a reservoir (or a

specific target zone). To avoid handling the nonlinear constraints that the dogleg severity

has to be below a maximum value, we put bound constraints on the changes in the azimuth

angle δθiwi and the segment length liwi . The lower and upper bounds of δθiwi and liwi are
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denoted as δθlow,iw
i and δθup,iw

i , and, llow,iw and lup,iw, respectively. Thus the total set of

bound constraints on optimization variables are given by

(xiw0 , y
iw
0 , z

iw
0 ) ∈ Ωactive, iw = 1, 2, · · · , Nw,

zlow,iw
i < ziwi < zup,iw

i , iw = 1, 2, · · · , Nw, i = 1, 2, · · · , Nseg,

llow,iw
i < liwi < lup,iw

i , iw = 1, 2, · · · , Nw, i = 1, 2, · · · , Nseg,

θlow,iw
1 < θiw1 < θup,iw

1 , iw = 1, 2, · · · , Nw,

δθlow,iw
i < δθiwi < δθup,iw

i , iw = 2, · · · , Nw, i = 2, 3, · · · , Nseg.

(5.9)

Note that even though the bound constraints in Eq. 5.9 can be efficiently enforced by

truncation, they only roughly enforce the drillability constraint. If the nonlinear constraints

given in Eq. 5.2 are considered in the multi-segmented well optimization, then d(Xiw,Xjw)

is defined as the minimum distance between any pair of well segments of the iwth and jwth

wells (iw 6= jw).

Denote the full set of the variable vector for multi-segmented well placement as x =

[X1,X2, · · · ,XNw ], where the dimension of x is Nx =
∑Nw

iw=1 3(N iw
seg + 1). Given a vector

of reservoir model parameter, m, the well trajectory optimization of multi-segmented wells

considered in this chapter is stated as follows,

max
x∈RNx

J(m,x) (5.10a)

s.t. (xiw0 , y
iw
0 , ziw0 ) ∈ Ωactive, iw = 1, 2, · · · , Nw, (5.10b)

zlow,iw
i < ziwi < zup,iw

i , iw = 1, 2, · · · , Nw, i = 1, 2, · · · , Nseg, (5.10c)

llow,iw
i < liwi < lup,iw

i , iw = 1, 2, · · · , Nw, i = 1, 2, · · · , Nseg, (5.10d)

θlow,iw
1 < θiw1 < θup,iw

1 , iw = 1, 2, · · · , Nw, (5.10e)

δθlow,iw
i < δθiwi < δθup,iw

i , iw = 2, · · · , Nw, i = 2, 3, · · · , Nseg (5.10f)

d(Xiw,Xjw) > Rmin iw, jw = 1, 2, · · · , Nw, iw 6= jw. (5.10g)
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5.2 Constrained Optimization using Augmented Lagrangian Method

The problems described in Eqs. 5.3 and 5.10 are maximization problems under both

bound constraints and nonlinear constraints on the design variables. For the vertical well

placement optimization, Eqs. 5.3b to 5.3c are bound constraints and Eqs. 5.3d to 5.3f are

nonlinear constraints. For the multi-segmented well trajectory optimization, Eqs. 5.10b

to 5.10f are bound constraints and Eq. 5.10g is a nonlinear constraint. Denote the upper

and lower bounds of x respectively as xup and xlow, then the bound constraints can be

re-written in a general form that xlow
i ≤ xi ≤ xup

i , i = 1, 2, · · · , Nx where xlow
i , xi and xup

i ,

respectively denote the ith component of the vectors xlow, x and xup. In this chapter, the

bound constraints are enforced by truncating the design variables beyond the bounds to their

nearest bounds while the nonlinear constraints are handled using the augmented Lagrangian

method (ALM).

As the nonlinear constraints in Eqs. 5.3d, 5.3e, 5.3f and 5.10g may be of different

scales, and C. Chen [10] observed that the convergence rate of ALM can be slowed appreciably

by poor scaling of the constraints based on numerical examples, we scale these nonlinear

constraints so that the scaled constraints are more or less on the same magnitude. The

scaled nonlinear constraints in Eqs. 5.3f and 5.10g are given below,

c (x) =
Rmin − d(Xiw,Xjw)

Rmin

≤ 0, iw, jw = 1, 2, · · · , Nw, iw 6= jw. (5.11)

The scaled constraints of Eqs. 5.3d and 5.3e are given by

c (x) =
llow
iw − liwi
llow
iw

≤ 0, iw = 1, 2, · · · , Nw,

c (x) =
liwi − l

up
iw

lup
iw

≤ 0, iw = 1, 2, · · · , Nw.

(5.12)

The components of the design variable vector x are also of different scales, e.g., for a slanted

well, ziw0 and ziw1 may be of different scales with xiw0 , xiw1 , yiw0 and yiw1 ; for a multi-segmented

well, δθiwi are of completely different scales with xiw0 , yiw0 and ziw0 . Similar changes to each
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component of x may produce different magnitude of changes in the NPV function J(m,x).

Hence, we introduce a new variable vector, v, which has similar magnitude in all its com-

ponents and then solve the optimization problem in terms of v. The ith component of v is

given by

vi =
xi − xlow

i

xup
i − xlow

i

, for i = 1, 2, · · · , Nx, (5.13)

where 0 ≤ vi ≤ 1. Given vi, the ith component of x can be obtained by

xi = xlow
i + vi(x

up
i − xlow

i ), for i = 1, 2, · · · , Nx. (5.14)

Denote the total number of nonlinear constraints as Nnc and the nonlinear constraints

as ci(v) ≤ 0, i = 1, 2, · · · , Nnc, the problems defined in Eqs. 5.3 and 5.10 can be written in

a general form of

max
v∈RNx

J(m,v)

s.t. vi ∈ [0, 1], i = 1, 2, · · · , Nx,

ci (v) ≤ 0, i = 1, 2, · · · , Nnc.

(5.15)

With ALM, the solution of a constrained optimization problem is obtained by solving

a series of bound constrained optimization sub-problems with a penalized objective function

defined by

LA(m,v, λkLi , µ
kL) = J(m,v)−

Nnc∑
i=1

[
λkLi (ci(v) + si) +

1

2µkL
(ci(v) + si)

2

]
, (5.16)

where λkLi is the Lagrangian multiplier within the kLth inner loop for the nonlinear constraint

ci(v), µkL is the penalty parameter within the kLth inner loop iterates where all ci’s share

the same µkL , and si is a positive slack variable used to convert the ith inequality constraint

(ci(v) ≤ 0) into an equality constraint. The Lagrangian function of Eq. 5.16 is a concave

quadratic function of the slack variable si. Denote the term in the bracket of Eq. 5.16 as
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ψci , then

LA(m,v, λkLi , µ
kL) = J(m,v)−

Nnc∑
i=1

ψci . (5.17)

Following Nocedal and Wright [62], we eliminate the slack variables for the inequality con-

straints, si, by solving si from
∂ψci
∂si

= 0 and substitute si back to ψci so that

ψci(v, λ
kL
i , µ

kL) =


−µkL

2

(
λkLi

)2

ci < −µkLλkLi

λkLi ci +
c2i

2µkL
ci ≥ −µkLλkLi

. (5.18)

Eq. 5.18 indicates that in ALM, if ci(v) is less than the switch-point, −µkLλkLi , ψci is a

constant that has no effect on the optimization; otherwise, ψci is a quadratic function of

ci(v).

The optimization process using ALM consists of two coupled loops. In the inner loop,

an iterative optimization procedure is used to maximize LA(m,v, λkLi , µ
kL) given in Eq. 5.17

with the value of the Lagrangian multiplier λkLi and penalty parameter µkL fixed. In the outer

loop of the optimization process, the value of λkLi and µkL are updated in order to minimize

the violation of constraints. When the constraint violation is small, λkLi ’s are updated and

µkL is unchanged; otherwise, λkLi ’s are kept the same and µkL is updated (decreased), see

Chen and Reynolds [11]. In this chapter, following [11], the initial Lagrangian multipliers

are estimated as

λ0
i = max

{
0,
ci(v0)

µ0

}
, i = 1, 2, · · · , Nnc, (5.19)

where v0 is the initial guess of the scaled design variables. It is very important to choose a

reasonable value for the initial penalty parameter µ0. From Eq. 5.16, if µ0 takes a large value

which imposes negligible penalty to the NPV, then the first few inner loops, perform like

unconstrained optimization which may lead to a great constraint violation. When this occurs,

many extra simulations are needed to eliminate the constraint violation in the following inner

loops so that the updated µkL is small enough. However, if µ0 takes a very small value which

corresponds to a large penalty term, we may not be able to increase the NPV once the
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the current estimate is infeasible or close to the boundaries of the feasible region, since the

objective function will be dominated by the penalty term. In this work, we chose µ0 by

ensuring that the average penalty term is on the order of a reasonable portion of the initial

NPV value.

γJ(v0) =
Nnc

2µ0
ĉ, (5.20)

where, γ is the percentage of the average penalty term over the initial NPV value (we use

γ = 10%), ĉ is the average value of the constraints ci’s (we use ĉ = 1). From Eq. 5.20, we

can obtain

µ0 =
Nnc

2γJ(v0)
ĉ. (5.21)

Please see Algorithm 12 for a detailed implementation of the ALM method.

Due to the gradient estimation error in StoSAG and the fact that the objective

function surface of the well placement optimization is rough, ALM is applied twice. In the

first application of ALM, the inner loop optimization represented by Eq. 5.17 is solved

using StoSAG. Then starting from the optimal estimates of v, λi’s and µ obtained, ALM

is applied again where the inner loop optimization is solved using GPS. Both applications

of ALM are terminated either at convergence or when the maximum number of simulation

runs exceeds a specified number. Algorithms 2 and 3 in Chapter 2, respectively, present the

procedures of StoSAG and GPS algorithms. The convergence criteria for StoSAG is set as five

consecutive failures in improving LA(m,v, λkL , µkL) along the StoSAG search direction using

backtracking where the maximum number of step size cuts is set equal to 5. However, the

perturbation size and the initial step size are chosen according to the optimization problem

and are specified for each numerical example presented later. The convergence criteria for

GPS is that the relative change of LA(m,v, λkL , µkL) is less or equal to 10−4 after searching

along Nx coordinates directions or a maximum number of simulations is reached. In both

StoSAG and GPS, the bound constraints are solved using truncation, i.e., truncating the

design variables beyond the bounds to their nearest bounds.
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Algorithm 12 Augmented Lagrangian method to solve Eq. 5.15

• Initialization: kL = 0. Choose x0,v0, λ
0
i and µ0. Set β = 0.2, α = 0.1, τ = 0.25, η∗ =

0.01, ηkL = 0.1.

• Step 1: Find the approximate optimum of the augmented Lagrangian function defined
in Eq. 5.17 subject to the bound constraints using StoSAG or GPS, starting from v0.
The optimal solution is denoted by v∗kL in the transformed domain or x∗kL in the original
domain.

• Step 2: Check constraint violation, σcv. If σcv < η∗, set s∗ = x∗kL and terminate the
optimization algorithm; otherwise go to Step 3.

σcv =

√√√√Nnc∑
i=1

{
max

(
0, ci

(
v∗kL
))}2

• Step 3: If σcv ≤ ηkL , update the Lagrangian multipliers and tighten the constraint
violation tolerance by

λi = max{0, λi +
ci(v

∗
kL

)

µkL
} and ηkL+1 = max{ηkL ∗min

{
(µkL)β, 0.5

}
, η∗},

and set

µkL+1 = µkL , v0 = v∗kL and kL = kL + 1.

• Step 4: If σcv > ηkL , update the penalty parameter and tighten the constraint violation
tolerance by

λkL+1
i = λkLi and ηkL+1 = max{ηkL ∗min

{
(µkL)α, 0.5

}
, η∗},

and set

µkL+1 = τµkL , v0 = v∗kL , kL = kL + 1.

Where, ηkL and η∗ are the constraint violation tolerance at the kLth outer loop and that at
convergence, respectively.

5.3 Bi-objective Well Placement Optimization

Given an ensemble of realizations which reasonably covers the uncertainty of the

model parameters, it is desirable to maximize the average NPV over all realizations and,

in order to minimize downside risk, to maximize the minimum NPV. The lexicographical

method optimizes the two objectives sequentially according to the order of importance where

the most important objective is firstly optimized and then the less significant objective is

optimized with the value of previous objective treated as an additional constraint.
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In this section, the primary objective is to maximize the expected value of NPV over

the set of Ne realizations of the reservoir model parameter chosen to represent the geological

uncertainty, {mk}Nek=1, i.e., the optimization problem pertaining to the primary objective is

given by

max
v∈RNx

JE(v) =
1

Ne

Ne∑
k=1

J(v,mk) (5.22a)

s.t. 0 ≤ vi ≤ 1, i = 1, 2, . . . , Nx (5.22b)

ci(v) ≤ 0, i = 1, 2, · · · , Nnc (5.22c)

where Ne is the number of realizations representing the geological uncertainty, v is the

scaled well trajectory variables, ci(v)’s represent the nonlinear constraints, and Nnc is the

total number of nonlinear constraints. The primary optimization problem defined in Eq.

5.22 is simply the robust optimization under nonlinear constraints which can be solved

using StoSAG followed by GPS coupled with ALM. When the number of reservoir models,

Ne, is greater or equal to 10, following [24], we use only one perturbation per reservoir

model to estimate a StoSAG gradient which requires Ne simulation runs. In GPS, each

coordinate search requires at least 2 ∗ Ne simulation runs. By solving Eq. 5.22, we obtain

the estimate of the optimal (scaled) vector of well trajectories, denoted by v∗E, and the

corresponding expected NPV, denoted by J∗E. To minimize the uncertainty in the NPV’s

resulted from the geological uncertainties, previous researchers have tried to minimize the

standard deviation of the optimal NPV’s, or to maximize the minimum NPV. To avoid the

situation that minimization of the standard deviation is achieved by decreasing the highest

NPV, as observed for fluvial models by [49], we maximize the minimum NPV in the secondary

optimization, subject to the constraint that the average NPV should not be smaller than

J∗E or some percentage of J∗E, i.e., ηJ∗E where 0.95 ≤ η ≤ 1.0. Note that the constrained

optimization problem starts from v∗E, which is a feasible point.
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The second optimization problem is given by

max
v∈RNx

JR(v) = min{J(v,mk)}Nek=1 (5.23a)

s.t. JE(v) ≥ ηJE(v∗E), (5.23b)

0 ≤ vi ≤ 1, i = 1, 2, . . . , Nx, (5.23c)

ci(v) ≤ 0, i = 1, 2, · · · , Nnc (5.23d)

and solved using ALM. To avoid poor scaling of the constraints, Eq. 5.23b is reformulated

as

cJ =
ηJE(v∗E)− JE(v)

JE(v∗E)
≤ 0. (5.24)

The corresponding augmented Lagrangian function is defined similar to Eq. 5.17, but with

an extra term. Specifically,

LA(v, λkLci , λ
kL
cJ
, µkL) = JR(v)−

Nnc∑
i=1

ψci(v, λ
kL
i , µ

kL)− ψcJ (v, λkLcJ , µ
kL), (5.25)

where

ψcJ (v, λkL , µkL) =


−µkL

2

(
λkLcJ
)2

cJ < −µkLλkLcJ

λkLcJ cJ +
c2J

2µkL
cJ ≥ −µkLλkLcJ

. (5.26)

Here, λkLcJ is the Lagrangian multiplier associated with the nonlinear constraint cJ(v) ≤ 0

within the kLth inner loop iterates. Following a a similar approach as presented in Eq. 5.19,

the initial value of λcJ is set to 0 since

λ0
cJ

= max

{
0,
cJ(v∗E)

µ0

}
= 0. (5.27)

Maximization of the minimum NPV over all realizations, JR(v), is a max-min prob-

lem. JR(v) is continuous with respect to the optimization variables v, but not differentiable

everywhere. When the NPV of the risk realization becomes higher than or equal to another

realization, the function JR(v) becomes non-differentiable and the gradient becomes unde-
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fined. Liu and Reynolds [50] used the adjoint gradient to solve a bi-objective well control

optimization problem. They had to transform the maximization of the expected shortfall,

JR(v), to a constrained optimization problem which maximizes a newly introduced param-

eter α subject to the constraints that NPV for each realization is greater than α. However,

with the stochastic approximate gradient coupled with steepest ascent algorithm, the non-

differentiability is not an issue.

Denote ĴR(v, λkLi , µ
kL) = JR(v)−

∑Nnc
i=1 ψci(v, λ

kL
i , µ

kL), Eq. 5.25 can be rewritten as

LA(v, λkLci , λ
kL
cJ
, µkL) = ĴR(v, λkLi , µ

kL)− ψcJ (v, λkLcJ , µ
kL). (5.28)

Denote the realization with the lowest NPV value among the Ne realizations at `th iteration

as mr, then mr is given by

mr = min
k
{J(v`,mk)}Nek=1. (5.29)

mr is not fixed and may change whenever the (scaled) design variable v is updated.

When maximizing Eq. 5.28, a basic simplex search direction dsim can be obtained in

a similar way as presented in Eq. 2.8, i.e.,

dsim ≡ dLA = (∆V ∆V T )+∆V∆LA

(
v, λkLi , λ

kL
cJ
, µkL

)
, (5.30)

where ∆V = [δv1, δv1, . . . , δvNpert ], and ∆LA = [δLA,1, δLA,2, . . . , δLA,Npert ]
T . To obtain a

reliable stochastic gradient of LA, five to fifteen perturbations have to be used (i.e., 5 ≤

Npert ≤ 15). Since the evaluation of Eq. 5.28 requires Ne simulation runs, Eq. 5.30 requires

Ne ∗Npert simulation runs, which is quite expensive.

Note that at beginning of each iteration of an optimization algorithm,mr (Eq. 5.29) is

computed so ĴR(v, λkLi , µ
kL) only involves a single modelmr while ψcJ (Eq. 5.26) involves the

entire ensemble of realizations used to represent the geological uncertainty. When computing

the stochastic gradient of cJ(v, λkLcJ , µ
kL) in order to obtain the stochastic gradient of ψcJ ,
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it is appropriate to use one perturbation per realization as discussed previously in Section

2.2.2. However, ĴR(v, λkLi , µ
kL) depends only on mr so we will need to use five to fifteen

perturbations to compute the stochastic gradient of ĴR where the simulation will need to

be run for each perturbation but based on the single model mr. In essence, the stochastic

gradient of the augmented Lagrangian function can be approximated using the sum of two

stochastic gradients. The details of this procedure are formulated below.

The gradient of Eq. 5.28 (or equivalently Eq. 5.25) is given by

∇vLA(v, λkLci , λ
kL
cJ
, µkL) = ∇vĴR(v, λkLi , µ

kL)−∇vψcJ (v, λkLcJ , µ
kL), (5.31)

where

∇vψcJ (v, λkLcJ , µ
kL) =


0 cJ ≤ −µkLcJ λ

kL(
−λkLcJ + cJ

µkL

)
∇vcJ cJ > −µkLλkLcJ

, (5.32)

and from Eq. 5.24,

∇vcJ(v) = −∇vJE(v)

JE(v∗E)
. (5.33)

We propose to separate the StoSAG direction dLA into two parts where we estimate StoSAG

gradients for the two terms ĴR and ψcJ separately, denoted as dĴR and dψcJ respectively.

dLA obtained in this way is denoted by

dsep = dĴR − dψcJ . (5.34)

dĴR is the stochastic gradient of the summation of JR and −
∑Nnc

i=1 ψci , and is approximated

using Npert perturbations (we use Npert = 10 in this chapter):

dĴR = (∆V ∆V T )+∆V∆Ĵ
(
v,mr, λ

kL , µkL
)
. (5.35)
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dψcJ is obtained as

dψcJ =


0 cJ ≤ −µkLλkL(
−λkL + cJ

µkL

)
dcJ cJ > −µkLλkL ,

(5.36)

where dcJ is approximated using one perturbation per realization given by

dcJ =
1

Ne ∗ J∗E

Ne∑
k=1

(δvkδv
+
k )δvkδJ

(
v,mk, λ

kL , µkL
)
. (5.37)

The number of simulation runs required to approximate dsep is Npert if cJ ≤ −µkLλkLcJ and

Ne + Npert if cJ > −µkLλkLcJ . If Ne = 10 and Npert = 10, estimating dsep requires only 10 to

20 simulation runs while estimating dsim requires 100 simulation runs.

5.4 Numerical Example: Channelized Reservoir

In this section, we present numerical results for the channelized reservoir model whose

description is given in Section 3.2.1. Recall that the channelized reservoir is box-shaped

with 50 × 50 × 14 gridblocks where each gridblock is 200 ft × 200 ft × 10 ft. We firstly

consider the well trajectory optimization of slanted wells and multi-segmented wells for

deterministic optimization. Then we consider the bi-objective well placement optimization

where we maximize the expected NPV over a set of realizations characterizing the geological

uncertainty and maximize the minimum NPV.

Ten realizations are used to represent the geological uncertainty where the facies

depositions are generated using object-based modeling and the petrophysical parameters

for each facies (i.e., permeability and porosity) are generated using sequential Gaussian

Simulation; see related parameters in Table 3.1. The horizontal permeability along the x and

y directions are set equal while the vertical permeability is set equal to 1
10

th of the horizontal

permeability. The reservoir life is set to be 3,000 days throughout where all wells operate

under BHP control. The BHP’s for injectors are 6,000 psi and the BHP’s for producers are

2,000 psi. We consider placing 8 wells including 6 producers initialized as horizontal wells

of 2, 000 ft in length which are completed at different layers and 2 injectors initialized as
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slightly slanted wells of 616 ft in length which fully penetrate all 14 layers. Fig. 5.3 shows

the initial well trajectories plotted on the horizontal permeability field (upper row) and the

porosity field (bottom row) of layer 7 for three different realizations. For easier view, the

projected initial paths are plotted on layer 7 in Figs. 5.6(a) and 5.11(a) without any value

of petrophysical parameters. In Figs. 5.3, the squares, circles and black dots represent the

projections of the entry points, exit points and perforations of a well respectively; the black

solid line represent the projections of the perforations in the current layer. PRO-01 and PRO-

06 are initially completed in layer 1, PRO-03 and PRO-04 are initially completed in layer 5,

and PRO-02 and PRO-05 are initially completed in layer 11. The economic parameters to

calculate the NPV are set as: rno = $50.0/STB, cnw = $5.0/STB, cnwi = $5.0/STB, b=10.0%.

The drilling cost for well iw is defined as

Ciw
w =

Nseg∑
i=1

{
1, 524

√
(ziwi − ziwi−1)2 + 3, 048

√
(xiwi − xiwi−1)2 + (yiwi − yiwi−1)2

}
. (5.38)

A minimum well spacing of 500 ft is also enforced, see Eq. 5.11. Meanwhile, we also enforce

the maximum length of a well be no greater than 4,000 ft for producers and 2,000 ft for

injectors, see Eq. 5.12.

We consider the optimization of two scenarios, where in one case, all eight wells are

considered as slanted wells and in another case, the six producers are parameterized as multi-

segmented wells and the two injectors remain as slanted wells. Each multi-segmented well is

characterized by 8 segments where the entry point of a well (x0, y0, z0) is bounded into the

reservoir, the lower and upper bounds on the azimuth angle of the entry segment θiw1 are

set equal to 0◦ and 360◦, the lower and upper bounds on the change in the azimuth angle

between two consecutive well segments, δθiwi , are set equal to −20◦ and 20◦, and the lower

and upper bounds on the segment length, liwi , are set equal to 200 ft and 500 ft.

All the optimization variables are normalized to [0,1]. In StoSAG, the perturbations of

the ith design variable are sampled from the normal distribution N(0, σ2
i ), i = 1, 2, · · · , Nx,

where σi’s are chosen so that a perturbation causes a reasonable change in the objective
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(a) kh - Realization #1 (b) kh - Realization #8 (c) kh - Realization #10

(d) φ - Realization #1 (e) φ - Realization #8 (f) φ - Realization #10

Figure 5.3: Projections of the initial well trajectories on the horizontal permeability field
(upper row) and the porosity field (bottom row) of layer 7 for three different realizations,
channelized model.

function that is being maximized. Here, σi’s are chosen so that the two end points of each

well move by approximately one gridblock when the perturbation of each parameter have a

magnitude of σi. For example, if the ith design variable is a coordinate variable and there

are N gridblocks along the coordinate direction, we approximately take σi = 1
N

. Hence,

σi is set to 0.02 in the x and y directions and 0.07 in the z direction. Denote the initial

length of each multi-segmented well as l0iw, iw = 1, 2, · · · , Nw and denote the minimum value

of the length and width of a gridblock as ∆X. The perturbations in θiw1 , δθiwi and liwi

in the real domain should move the end point of a multi-segmented well roughly by one

gridblock. σi’s for θiw1 ’s are chosen so that l0iw sin(σi(θ
up,iw
1 − θlow,iw

1 )) ≈ ∆X, σi’s for δθiwi ’s

are chosen so that l0iw sin(σi(δθ
up,iw
i − δθlow,iw

i )Nseg) ≈ ∆X, and σi’s for liwi ’s are chosen so

that σi(l
up,iw
i − llow,iw

i )Nseg ≈ ∆X. So for variables θiw1 , δθiwi and liwi , the standard deviations

σi’s are set as 0.01, 0.02 and 0.05 respectively, which correspond to 3.6◦, 0.8◦ and 32 ft.
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The maximum step size is set as 0.1, and the maximum number of step size cuts and the

maximum number of allowable resamples are both set equal to 5. After the application of

ALM using StoSAG, ALM using GPS is used to fine tune the optimal well locations. In

ALM using GPS, a fixed mesh is used where ∆i’s are set equal to σi’s. GPS is considered to

converge if NPV cannot be improved after searching all coordinate directions of the design

variable. Note that there is still a possibility that higher NPV can be obtained if we continue

the optimization process with a smaller mesh size ∆i. However, we avoid doing that to save

computational resources. In deterministic optimization, the maximum number of simulation

runs is set as 3,000. In bi-objective well placement optimization, the maximum number of

simulation runs is set as 4,500 for each stage of the optimization runs (the robust optimization

and the secondary optimization).

5.4.1 Deterministic optimization using realization #1

In this section, deterministic optimization using realization #1 of the channelized

reservoir example (see Fig. 5.3(a) and (d)) is conducted starting from the initial well place-

ment given in Fig. 5.3. We consider the optimization of both slanted wells and multi-

segmented wells. For slanted well parameterization, (i) bound constraints on the design

variables ((x, y, z) coordinates of the two end points of wells) enforce the condition that all

wells fall in the reservoir and (ii) the nonlinear constraints include the well spacing con-

straints and well length constraints. However, for multi-segmented well parameterization,

(i) the bound constraints on design variables do not guarantee that the whole well lays in-

side the reservoir and well trajectories that fall outside the reservoir are not considered as

perforations, and (ii) since the maximum well length constraints can be enforced by bound

constraints on liwi , minimum well spacing constraint is the only type of nonlinear constraints

in this example. Different than the initial guess for slanted wells, the circle symbols of PRO-

03 and PRO-06 in Fig. 5.3 are selected as the entry points of the multi-segmented wells, in

order to avoid the truncation of the well trajectories when the segment lengths are increased

so that PRO-03 and PRO-06 go beyond the eastern boundary of the reservoir.
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1. Slanted trajectory optimization followed by multi-segmented trajectory optimiza-

tion

The 8 wells are initially parameterized as slanted wells and StoSAG followed by GPS

coupled with ALM is used to optimize the well trajectories where the total number of design

variables (coordinates of well end points) is 48. Then the optimal solutions of the producers

found in the first optimization are parameterized as multi-segmented wells with 8 segments

of equal lengths while the injectors are parameterized as one-segmented wells, i.e., slanted

wells, then using the reparameterized optimal solution for the slanted well case as the initial

guess, StoSAG followed by GPS is applied. The total number of design variables in this

case is 174. Three optimization runs with different seeds are tried. Fig. 5.4 shows the

NPV versus number of simulation runs obtained where the blue and red solid lines represent

the slanted well trajectory optimization using StoSAG and GPS respectively, and the blue

and red dashed lines represent the subsequent multi-segmented well trajectory optimization

using StoSAG and GPS respectively. When optimizing the slanted well trajectories, StoSAG

improved the NPV significantly, by approximately 55% on average, within 600 simulation

runs. However, the difference between the optimal NPV’s obtained with three seeds can be

up to $0.17×109, which is equivalent to 4.4% of the initial NPV, indicating that StoSAG can

suffer from pre-mature convergence due to the roughness of the objective function surface

and the gradient estimation error. A subsequent optimization using GPS is able to improve

the NPV by approximately another 8% and the difference between the optimal NPV’s for the

three seeds is reduced to $0.15× 109, or equivalently 3.7% of the initial NPV. The follow-up

multi-segmented trajectory optimization only improves the NPV slightly (from $6.41× 109

to $6.49 × 109 on average of three seeds, which is equivalent to 2% of the initial NPV),

indicating that it may be unnecessary to use over complicated parametrization for wells in

a box-shaped reservoir.

Fig. 5.5 shows the cumulative oil production, cumulative water production and in-

jection for the initial and optimal well placement obtained using seed 3 (the one with the

highest NPV among three seeds) after the optimization using slanted well parameteriza-
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Figure 5.4: NPV versus number of simulation runs obtained for slanted well trajectory op-
timization followed by multi-segmented trajectory optimization, deterministic optimization
using realization #1, channelized model. The solid lines represent the slanted well trajectory
optimization (StoSAG in blue and GPS in red) and the dashed lines represent the subsequent
multi-segmented well trajectory optimization (StoSAG in blue and GPS in red).

tion followed by multi-segmented well parameterization. In Fig. 5.5, Qcum
o , Qcum

w and Qcum
wi

respectively represent the cumulative oil production, cumulative water production and injec-

tion. From Fig. 5.5, after the optimization using slanted well parameterization, the amounts

of injected and produced water are both greatly reduced while the amount of produced oil

remains similar. Consistent with Fig. 5.4 that the multi-segmented trajectory optimization

only improves the NPV slightly, there is only slight change in Qcum
o , Qcum

w and Qcum
wi after

the follow-up optimization.

In Fig. 5.6, the well trajectories of the initial and optimal well placement (obtained

with seed 3) are projected onto layer 7 without any value of petrophysical parameters. These

paths are also plotted on the oil saturation field of layer 7 after 3,000 days of production in

Fig. 5.7. Since in Figs. 5.6 and 5.7, the projections of the optimal trajectories of the multi-

segmented wells are close to straight, we only present the coordinates of the starting and end

points for all eight wells in Table 5.1. From Fig. 5.7 and Table 5.1, in the optimal solution

of the slanted wells, (i) after using StoSAG, both injectors are moved in the north direction

with shorter trajectories where the lengths of INJ-01 and INJ-02 are reduced to 315 ft and

324 ft respectively from 616 ft, and all producers are moved closer to the reservoir bounds;

(ii) the subsequent application of ALM with GPS tends to increase the lengths of some
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wells, i.e. PRO-01, PRO-02 and PRO-04, and also causes PRO-04 to be moved closer to the

southwest corner. Considering that the subsequent multi-segmented trajectory optimization

only slightly increases the optimal NPV, the optimal well trajectories look quite similar to

the ones obtained after the slanted well optimization. Fig. 5.8 shows the projections of the

initial and optimal injector perforations obtained with slanted followed by multi-segmented

trajectory optimization using seed 3, onto the x−z plane of the horizontal permeability field

of realization #1. From Fig. 5.8, after optimization, the two injectors not only have shorter

trajectories, but also perforate gridblocks with relative low permeabilities compared to the

initial well placement given in Fig. 5.8(a), leading to a significant decrease in the amount of

cumulative water injection and production (see Fig. 5.5).
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(c) Slanted - multi-segmented Opt.

Figure 5.5: Cumulative oil production, water production and water injection obtained with
the initial and optimal well placements after slanted well trajectory optimization followed
by multi-segmented trajectory optimization using seed 3, deterministic optimization using
realization #1, channelized model.

2. Multi-segmented trajectory optimization

To compare with the optimization process of slanted wells followed by multi-segmented

wells, we also carried out optimization of multi-segmented wells by itself starting from the

initial well trajectories given in Fig. 5.7(a). Fig. 5.9 shows the NPV versus number of

simulation runs obtained using StoSAG (solid blue line) and GPS (solid red line) respec-

tively. From Fig. 5.9, StoSAG improves the NPV significantly, by approximately 52% on

average, within 600 simulation runs. However, the difference between the optimal NPV ob-

tained with three seeds can be up to $0.34 × 109, or equivalently 9% of the initial NPV,
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(a) Initial locations (b) Slanted Opt. - StoSAG (c) Slanted Opt. - GPS

(d) Multi-segmented Opt. -
StoSAG

(e) Multi-segmented Opt. - GPS

Figure 5.6: Projections of the initial and optimal well placements after slanted well trajectory
optimization followed by multi-segmented trajectory optimization on layer 7 using seed 3,
deterministic optimization using realization #1, channelized model.

Table 5.1: Summary of the trajectories of all 8 wells obtained with the initial and opti-
mal well placements after slanted well trajectory optimization followed by multi-segmented
trajectory optimization using seed 3, deterministic optimization using realization #1, chan-
nelized model.

Wells
Initial setting Slanted Opt. Slanted-multi-segmented Opt.

(xiw0 , y
iw
0 , ziw0 ) (xiwNseg , x

iw
Nseg

, xiwNseg) (xiw0 , y
iw
0 , z

iw
0 ) (xiwNseg , x

iw
Nseg

, xiwNseg) (xiw0 , y
iw
0 , z

iw
0 ) (xiwNseg , x

iw
Nseg

, xiwNseg)

PRO-01 (300, 700, 4806) (2300, 700, 4806) (100, 218, 4800) (4092, 0, 4800) (100, 218, 4800) (4099, 202, 4800)
PRO-02 (3900, 700, 4905) (5900, 700, 4905) (5194, 2707, 4880) (6958, 0, 4888) (4994, 3107, 4880) (6976, 252, 4888)
PRO-03 (7700, 700, 4845) (9700, 700, 4845) (7549, 236, 4800) (9900, 0, 4850) (7550, 220, 4800) (9887, 1, 4850)
PRO-04 (300, 9300, 4845) (2300, 9300, 4845) (0, 9202, 4831) (1322, 9400, 4826) (0, 9202, 4831) (1694, 9259, 4805)
PRO-05 (3900, 9300, 4905) (5900, 9300, 4905) (3701, 9654, 4860) (5553, 9366, 4823) (3701, 9654, 4863) (5659, 9435, 4800)
PRO-06 (7700, 9300, 4806) (9700, 9300, 4806) (7335, 9223, 4800) (10000, 9471, 4800) (7320, 9184, 4800) (9800, 9450, 4800)
INJ-01 (900, 4900, 4940) (1500, 4900, 4800) (1047, 4564, 4940) (1349, 4685, 4804) (1052, 4556, 4940) (1349, 4685, 4801)
INJ-02 (8500, 4900, 4800) (9100, 4900, 4940) (9164, 3991, 4936) (9211, 4213, 4800) (9164, 3991, 4936) (9211, 4213, 4800)

again indicating that StoSAG by itself cannot find the optimal solution of the well place-

ment optimization problem. A subsequent optimization using GPS is able to improve the
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(a) Initial locations (b) Slanted Opt. - StoSAG (c) Slanted Opt. - GPS

(d) Multi-segmented Opt. -
StoSAG

(e) Multi-segmented Opt. - GPS

Figure 5.7: Oil saturation after 3,000 days of production plotted on layer 7, obtained with
the initial and optimal well placements after slanted well trajectory optimization followed
by multi-segmented trajectory optimization using seed 3, deterministic optimization using
realization #1, channelized model.

NPV by another 10% and the difference between the optimal NPV of any pair of results for

two distinct seeds is narrowed to $0.09× 109, or equivalently 2.4% of the initial NPV. More

importantly, the average optimal NPV obtained with 3 runs for the multi-segmented well

optimization is 3.3% less than the optimization process of slanted trajectories followed by

multi-segmented trajectories within 3,000 simulation runs, which again indicates that it is

unnecessary to use over-complicated well trajectory parameterization. In fact, the number

of optimization variables for a multi-segmented well trajectory in this example is 3.5 times

more than the number needed for slanted well trajectory parameterization so the multi-

segmented case requires more simulation runs to converge. This explains the observation

that a smaller NPV is obtained for a given number of total reservoir simulation runs when
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Figure 5.8: Projections of the initial and optimal injector perforations obtained with slanted
followed by multi-segmented trajectory optimization using seed 3, onto the x−z plane of the
horizontal permeability field, deterministic optimization using realization #1, channelized
model.

using the multi-segmented parameterization throughout the optimization process.
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(c) Seed 3

Figure 5.9: NPV versus number of simulations obtained for multi-segmented trajectory
optimization, deterministic optimization using realization #1, channelized reservoir. The
blue lines represent the StoSAG algorithm and the red lines represent the GPS algorithm.

Fig. 5.10 shows the cumulative oil production, cumulative water production and in-

jection for the initial and optimal well placement obtained using seed 1 (the one with the

highest NPV among three seeds) after the optimization using multi-segmented well param-

eterization throughout the optimization process. From Fig. 5.10, similar to the previous

case, after the optimization, the amounts of injected and produced water are both greatly

reduced while the amount of produced oil remains similar. In Fig. 5.11, the well trajectories

of the optimal well placement (obtained with seed 1) after StoSAG and GPS are projected
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onto layer 7 without any value of petrophysical parameters. These paths are also plotted

on the oil saturation field of layer 7 after 3,000 days of production in Fig. 5.12. Since in

Figs. 5.12, the projections of the optimal trajectories of the multi-segmented wells are close

to straight, we only present the coordinates of the starting and end points, the total lengths,

azimuth angles of the entry segments, and the intervals of the perforated layers for all eight

wells in Table 5.2.

From Fig. 5.12, (i) similar to the optimal solution of slanted wells, both injectors are

moved in the north direction and all producers are moved closer to the reservoir bounds,

after using StoSAG; (ii) the subsequent application of ALM with GPS significantly changes

some well trajectories, i.e., the lengths of both PRO-01 and PRO-02 are increased, PRO-

02 is shifted downward by almost 2,000 ft, and PRO-04 whose trajectory lays outside of

the reservoir after StoSAG is now shifted back into the reservoir again. Note that with the

multi-segmented well parameterization, the bound constraints on the design variables do not

guarantee that the whole well lays inside the reservoir and trajectories outside of the reservoir

boundaries are not considered as perforations, which is the case of PRO-04 in Figs. 5.11(b)

and 5.12(b). Fig. 5.13 shows the projections of the initial and optimal injector perforations

obtained with the multi-segmented trajectory optimization using seed 1, onto the x−z plane

of the horizontal permeability field of realization #1. From Fig. 5.13, after optimization, the

two injectors not only have shorter trajectories, but also perforate gridblocks with relative

low permeabilities compared to the initial well placement given in Fig. 5.13(a), which is

similar to Fig. 5.8.

For all the optimal well placement scenarios shown in Figs. 5.7 and 5.12, both the

minimum well spacing constraints and the maximum well length constraints are satisfied. In

fact, these two types of constraints are rarely violated since maximizing the NPV tends to

penalize long well trajectories and to avoid wells intersecting with each other.

5.4.2 Bi-objective optimization using 10 realizations

In this section, we consider the bi-objective well placement optimization where we
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(b) Multi-segmented Opt.

Figure 5.10: Cumulative oil production, water production and water injection obtained for
the initial and optimal well placements after multi-segmented well trajectory optimization
using seed 1, deterministic optimization using realization #1, channelized model.

(a) Initial locations (b) Multi-segmented Opt. -
StoSAG

(c) Multi-segmented Opt. - GPS

Figure 5.11: Projections of the initial and optimal well placement after multi-segmented
trajectory optimization onto layer 7 using seed 1, deterministic optimization using realization
#1, channelized model.

Table 5.2: Summary of the trajectories of all 8 wells obtained for multi-segmented trajec-
tory optimization using seed 1, deterministic optimization using realization #1, channelized
model.

Wells
Initial Setting Slanted-multi-segmented Opt.

(xiw0 , y
iw
0 , z

iw
0 ) (xiwNseg , x

iw
Nseg

, xiwNseg) θiw1 liw K1-K2 (xiw0 , y
iw
0 , z

iw
0 ) (xiwNseg , x

iw
Nseg

, xiwNseg) θiw1 liw K1-K2

PRO-01 (300, 700, 4806) (2300, 700, 4806) 0 2000 1 (200, 0, 4800) (4198, 32, 4810) 4.7 4000 1-2
PRO-02 (3900, 700, 4905) (5900, 700, 4905) 0 2000 11 (5159, 1968, 4926) (7898, 1219, 4940) -10.5 2868 5-14
PRO-03 (9700, 700, 4845) (7700, 700, 4845) 180 2000 5 (9400, 200, 4860) (6858, 191, 4807) 180.0 2463 1-7
PRO-04 (300, 9300, 4845) (2300, 9300, 4845) 0 2000 5 (200, 9789, 4909) (1650, 9971, 4837) 7.5 1467 4-11
PRO-05 (3900, 9300, 4905) (5900, 9300, 4905) 0 2000 11 (4202, 9564, 4921) (5929, 9890, 4940) 3.9 1813 6-14
PRO-06 (9700, 9300, 4806) (7700, 9300, 4806) 180 2000 1 (9919, 9416, 4820) (7105, 9640, 4800) 171.2 2917 1-3
INJ-01 (1500, 4900, 4800) (900, 4900, 4940) 180 2000 1-14 (883, 4567, 4800) (437, 4568, 4940) 179.8 467 1-14
INJ-02 (8500, 4900, 4800) (9100, 4900, 4940) 0 2000 1-14 (9005, 3930, 4800) (9528, 3933, 4905) 0.3 534 1-11
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(a) Initial locations (b) Multi-segmented Opt. -
StoSAG

(c) Multi-segmented Opt. - GPS

Figure 5.12: Oil saturation after 3,000 days of production plotted on layer 7, obtained for
the initial and optimal well placement after multi-segmented trajectory optimization using
seed 1, deterministic optimization using Realization #1, channelized model.

Figure 5.13: Projections of the initial and optimal injector perforations obtained with multi-
segmented well trajectory optimization using seed 1, onto the x− z plane of the horizontal
permeability field, deterministic optimization using Realization #1, channelized model.

maximize the expected NPV over ten realizations characterizing the geological uncertainty

and maximize the minimum NPV, see Eqs. 5.22 and 5.23, using Lexicographical method.

We parameterize all 8 wells as slanted wells so the total number of design variables is 48

starting from the initial guess given in Fig. 5.7(a) and considering minimum well spacing

constraints and maximum well length constraints, see Eq. 5.2. Fig. 5.14 shows a summary

of the bi-objective well trajectory optimization using StoSAG followed by GPS coupled with

ALM. According to the lexicographic method, the primary objective (the average NPV over

10 realizations, JE) is optimized first where JE is improved from $3.76× 109 to $6.14× 109,
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which represents a 63% increase in JE. The primary optimization is terminated after 4,500

simulation runs where GPS has not converged yet. During the primary optimization, the

nonlinear constraints are rarely violated. We denote the optimal solution of the primary

optimization as v∗E. Starting from v∗E, a secondary optimization is carried out where the

minimum NPV is maximized subject to an extra constraint that the average NPV is no less

than 0.99JE(v∗E), or equivalently $6.08 × 109. In the secondary optimization, Npert = 10

perturbations are used to estimate the StoSAG search direction of JR, dĴR , using Eq. 5.35

while one perturbation per realization is used to estimate the StoSAG search direction of ψcJ ,

dψcJ , using Eq. 5.36 when cJ > −µkLλkL . Fig. 5.14(b) shows the changes in the augmented

Lagrangian Function (LA), the minimum NPV (JR) and the average NPV (JE) with respect

to the number of simulation runs. It is important to note that LA increases with respect

to number of simulations monotonically only in the inner loop of the ALM. The updates

to the Lagrangian multipliers and the penalty parameter in the outer loop will change the

initial value of LA in the next inner loop. Both JR and JE do not increase monotonically with

respect to the number of simulation runs. From Fig. 5.14(b), the minimum NPV is increased

from $5.74× 109 to $6.04× 109, or by approximately 5%; although the result is unexpected,

the average NPV is also increased from $6.14×106 to $6.24×109, or by approximately 1.5%.

Fig. 5.15 shows the indices of the model with the lowest NPV value at each iteration and the

number of violated constraints during the secondary optimization process. As is observed,

the secondary optimization does not appear to suffer from the non-differentiability issue

even though the “risk model” (model mr) can change from iteration to iteration. At most

iterations, the results of Fig. 5.15 indicate that realization #8 is the risk model, but for a few

iterations, either realization #6 or #7 is the realization with the lowest NPV. Fig. 5.14(c)

shows the cumulative distribution function (cdf) of NPV’s of the 10 realizations obtained

with the well placement of the initial guess and the optimal solution of the bi-objective

optimization. From Fig. 5.14(c), robust optimization shifted the cdf of NPV to the right

and the secondary optimization makes the cdf of NPV more compact. The realizations with

the lowest, second lowest and the third lowest NPV respectively are realizations #8, #7 and
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#6, i.e., the three realizations that have served as the risk realization at some iterations of

the secondary optimization, see Fig. 5.15(b).
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Figure 5.14: Bi-objective well placement optimization using 10 realizations, channelized
model. (a) Average NPV over 10 realizations versus number of simulation runs in primary
optimization using StoSAG (blue) and GPS (red); (b) the augmented Lagrangian function,
LA, minimum NPV, JR, and average NPV, JE, versus number of simulation runs in secondary
optimization using StoSAG (blue) and GPS (red) where LA is represented by marker x, JR is
represented by the solid line, JE is represented by the dashed line and JE(v∗E) is represented
by the dotted line; (c) Cdf’s of NPV’s for the initial well placement and the optimal well
placement after primary and secondary optimization.
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Figure 5.15: Number of violated constraints and indicies of the risk realization during the
secondary optimization of the bi-objective optimization of slanted well trajectories using 10
realizations, channelized model.

Fig. 5.16 shows the cumulative oil production, cumulative water production and

cumulative water injection after the secondary optimization for realization #1 whose NPV

is reduced by 1.3% and for realization #8 whose NPV is increased by 4.6%. From Fig. 5.16,

the secondary optimization slightly increases the volume of injected water and produced

water for realization #1 and slightly decreases the volume of injected water and produced
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water for realization #8. For both realizations #1 and #8, the secondary optimization

causes negligible change in the cumulative oil production.
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(a) Robust Opt. - Realization #1
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(b) Secondary Opt. - Realization #1
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(c) Robust Opt. - Realization #8
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(d) Secondary Opt. - Realization #8

Figure 5.16: Cumulative oil production, water production and water injection obtained after
the primary and secondary optimization of the bi-objective optimization, channelized model.

The minimum NPV of the cdf obtained after the secondary optimization in Fig.

5.14 corresponds to realization #8 which was the risk realization during the last several

iterations of the bi-objective optimization procedure. This means during the last iteration,

the algorithm was maximizing the NPV of realization #8 but subject to the constraint that

the expected NPV obtained during the first optimization step of bi-objective lexicographic

optimization does not decrease by more than one percent. If the constraint is removed and

we simply apply deterministic optimization to maximize the NPV of realization #8, we

obtain an NPV value equal to $6.45 × 109, which is 6.8% higher than the minimum NPV

obtained by bi-objective optimization.

It is worthwhile to mention that if robust optimization found a solution which is

close to a global optimum, it is unlikely that the secondary optimization would improve
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Figure 5.17: NPV versus number of simulation runs for the deterministic optimization using
realization #8, channelized model. The blue line represents the StoSAG algorithm and the
red line represents the GPS algorithm.

the average NPV since these two objectives now conflict with each other. To illustrate the

more normal behavior, we tried a different run of the bi-objective optimization where we

obtained an average NPV of $6.25× 109 after the primary optimization which is decreased

to $6.23×109 after the secondary optimization, even through the minimum NPV is improved

from $5.70× 109 to $5.92× 109; see Fig. 5.18.
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Figure 5.18: Bi-objective well placement optimization using 10 realizations using a different
seed, channelized model. (a) Average NPV over 10 realizations versus number of simula-
tion runs in primary optimization using StoSAG (blue) and GPS (red); (b) the augmented
Lagrangian function, LA, minimum NPV, JR, and average NPV, JE, versus number of sim-
ulation runs in secondary optimization using StoSAG (blue) and GPS (red) where LA is
represented by marker x, JR is represented by the solid line, JE is represented by the dashed
line and JE(v∗E) is represented by the dotted line; (c) Cdf’s of NPV for the initial well
placement and the optimal well placement after primary and secondary optimization.
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5.5 Numerical Example: Oseberg Reservoir

We consider a problem which is based on a modification of the original reservoir

simulation model of Oseberg reservoir in the Norwegian sector of the North Sea. The modi-

fication simply uses a more uniform grid. The reservoir consists of three distinct geological

zones, Etive, Rannoch and Oseberg. Etive is the top zone and Oseberg is the bottom zone.

These two zones are separated by Rannoch which is a relatively tight layer. There is ver-

tical communication between the three zones. We use a 54 × 27 × 10 simulation grid with

non-uniformed grid sizes in the oil and gas zones along x and z directions. The gridblock

size in the x direction is equal to 328 ft in the top and middle part of the reservoir, and the

gridblock size increases gradually from 328 ft to 2,624 ft as we approach the bottom of the

reservoir boundary in the x direction. The gridblock size in the y direction is equal to 656

ft. Only one vertical gridblock is used in the Etive and Rannoch layers, and layers 3 through

10 correspond to the Oseberg zone. Gridblock sizes in the z direction are non-uniform with

values equal to 23.0 ft in Etive, 16.5 ft in Rannoch and 11.5 ft in Oseberg.

The initial reservoir pressure is 4,071 psi at the depth of 8,192 ft subsea, and the

original reservoir fluid bubble point pressure is 3,771 psi. The top structure of the Oseberg

model and the initial oil saturation field are shown in Fig. 5.19. Note that the reservoir is

tilted with a significant dip. The reservoir has a gas cap at the top and an aquifer at the

bottom. The initial gas-oil contact is at 8,192 ft subsea and the water-oil contact is at 8,918

ft subsea. The oil zone is separated from the aquifer by an impermeable tar mat which is

highlighted with a blue line in Fig. 5.19. In the oil zone, the initial oil saturation is 0.885

and the initial water saturation is equal to the irreducible water saturation which is equal

to 0.115. The initial gas saturation in the gas cap is equal to 0.885. The water saturation of

the gas cap is at the irreducible water saturation and there is no oil in the gas cap initially.

In this case study, all fluid related properties and statistical parameters to generate the

model realizations are obtained from Zhang [88]. When generating the petrophycical param-

eters, a 2D non-isotropic exponential covariance function is used where the major correlation

direction is along the x-axis direction and the minor correlation direction is along the y-axis
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direction. The correlation length is set to 6,555 ft in the major correlation direction, 1,968

ft in the minor correlation direction and 11.64 ft in the vertical direction. The horizontal

log-permeability, vertical log-permeability and the porosity field are all generated following

normal distribution where the mean and deviation of the petro-physical parameters for each

geological zone are given in Table 5.3. Note that horizontal and vertical log-permeability in

Oseberg decrease linearly from top to bottom, i.e., from layer 3 to layer 10. The correlation

between horizontal log-permeability and vertical log-permeability is set equal to 0.8, and the

correlation between horizontal log-permeability and porosity is set equal to 0.3, following

Zhang [88]. The minimum porosity for any gridblock in the model is set to 0.03. In the tar

mat, the horizontal permeability is set to 0.03 mD, and vertical permeability is set to 0.05

mD. Ten realizations of the horizontal permeability, vertical permeability and the porosity

fields are generated to represent the geological uncertainty where realizations #1 and #7 are

shown in Figs. 5.20 and 5.21 respectively.

(a) Reservoir depth (b) Initial oil saturation

Figure 5.19: Top structure and initial oil saturation of the Oseberg model. The tar mat is
highlighted with a blue line.

Table 5.3: Petrophysical property parameters, Oseberg model.

Parameters
Etive Rannoch Oseberg

Mean Variance Mean Variance
Mean Mean

Variance
top bottom

ln(k) 7.5 1.2 2.1 1.8 7.8 6.3 0.4
ln(kz) 6.3 1.8 0.15 2.2 6.4 4.4 0.8
φ 0.14 0.002 0.1 0.001 0.22 0.22 0.001
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We put two gas injectors under rate control in the gas cap and two oil producers

under pressure control in the oil zone. All four wells are initially vertical and are set to fully

penetrate all 10 reservoir layers. The initial locations of the two producers are set close to the

tar mat to delay gas breakthrough based on engineering experience. The two injectors are

initially placed in the middle of the gas cap. Intuitively, the locations of the gas injectors, as

long as they are in the gas cap, may not affect the reservoir development very much because

the gas density is very low compared to the densities of oil and water and the reservoir

permeabilities are high and fairly uniform with the exception of the tar mat. Due to the

low permeability of the tar mat, it seems likely that the optimal locations of the producers

are just above the tar mat. The initial well locations are shown in both Figs. 5.20 and 5.21.

Injectors are under rate control with fixed injection rate of 100 MMscf/day. Producers are

under BHP control with specified bottomhole pressure of 2,000 psi. The maximum water

cut and gas oil ratio for a producer are set to 0.98 and 561 MMscf/STB, respectively, and a

producer is shut in if these values are exceeded. Also an upper limit of 100,000 STB/day is

set for the oil production rate of each producer and a producer switches to constant oil rate

control if this value is exceeded. The maximum injection BHP is set to be 6,000 psi, and

an injector switches to bottomhole pressure control if this value is exceeded. A minimum

distance of 500 ft between any pair of the wells is enforced. During the optimization, the

bounds on the well trajectory variables of the injectors are set to be the boundaries of

the initial gas cap (the first 31 gridblocks along x direction) while the bounds on the well

trajectory variables of the producers are set to be the boundaries of the initial oil zone (the

32th to 47th gridblocks along x direction). We parameterize all four wells as slanted wells

using the coordinates of their end points and consider both deterministic optimization and

bi-objective optimization in which, there are 24 optimization variables in total. Similar to

the channelized reservoir, all the trajectory variables are scaled to the domain of [0,1] and

the StoSAG perturbations are sampled from Gaussian distributions N (0, σ2
i ) so that the

perturbation of each parameter on the magnitude of σi approximately corresponds to one

gridblock. For a design variable corresponding to the y-coordinate, σi is set equal to 1
27

; for
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a design variable corresponding to the x-coordinate, σi is set equal to 1
31

for the injectors

and 1
16

for the producers; for a design variable corresponding to z coordinate, σi is set equal

to 0.1. In the GPS implementation, a fixed mesh size, ∆i, is used where ∆i is set equal

to σi. In this example, we set the oil price equal to $50.0/STB, the water disposal cost is

$5.0/STB, the gas injection cost is $1.50/Mscf, the gas disposal cost is zero, and the annual

discount rate is 10.0%.

(a) kh - Layer 1 (b) kh - Layer 3 (c) kh - Layer 10

(d) φ - Layer 1 (e) φ - Layer 3 (f) φ - Layer 10

Figure 5.20: Horizontal permeability (mD, upper row) and porosity field (bottom row) for
realization #1, Oseberg.

5.5.1 Deterministic optimization using realization #1

We firstly investigated deterministic optimization using realization #1. Fig. 5.22

shows the NPV versus number of simulations using StoSAG (blue line) and GPS (red line)

respectively. From Fig. 5.22, StoSAG improved the NPV significantly, by approximately

12.44% within 500 simulation runs and the subsequent GPS method improved the NPV

by another 7% within 200 more simulations. It is worthwhile to mention that due to the

roughness of the objective function for the well placement optimization problem and the

existence of the gradient estimation error in StoSAG, the NPV curve may consists of multiple

plateaus where low-quality search directions are obtained. Moreover, when the StoSAG
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(a) kh - Layer 1 (b) kh - Layer 3 (c) kh - Layer 10

(d) φ - Layer 1 (e) φ - Layer 3 (f) φ - Layer 10

Figure 5.21: Horizontal permeability (mD, upper row) and porosity field (bottom row) for
realization #8, Oseberg.

algorithm is terminated after 5 consecutive re-samples without obtaining an uphill direction

(see Algorithm 2), it is often useful to apply a follow-up GPS step.
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Figure 5.22: NPV versus number of simulations obtained for deterministic optimization of
slanted well trajectories using realization #1, Oseberg. The blue line represents the StoSAG
algorithm and the red line represents the GPS algorithm.

Fig. 5.23 shows the oil saturation after 3,900 days of production for the initial and op-

timal well placement using realization #1. In Figs. 5.23, the squares, circles and black dots

represent the projections of the entry points, exit points and perforations of a well respec-

tively; the black solid lines represent the projections of the perforations in the current layer.

After deterministic optimization, (i) the two producers which are initially fully-penetrating

vertical wells become horizontal in the 10th (bottom) layer along the tar mat because of the
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high and fairly uniform permeability with a lack of high permeable conduits, and (ii) both

injectors still lay in the gas cap where INJ-01 perforates from layer 3 to layer 10 and INJ-02

perforates from layer 1 to layer 10. The minimum distance between these four wells are 511 ft

which satisfies the minimum distance constraint of 500 ft. However, the trajectories indicate

that effectively, we need only one long horizontal well whose length is almost equal to the

reservoir width in the y direction. As we can see from Fig. 5.23, the gas flooding front is

quite stable for the reservoir with a significant dip which indicates the geological uncertainty

does not make a big influence in the flooding process. Similar to the channelized reservoir

model, the minimum well spacing constraints are rarely violated during the optimization

procedure since maximizing the NPV tends to avoid wells intersecting with each other.

(a) Initial - Layer 1 (b) Initial - Layer 3 (c) Initial - Layer 10

(d) Deterministic Opt - Layer 1 (e) Deterministic Opt - Layer 3 (f) Deterministic Opt. - Layer 10

Figure 5.23: Oil saturation after 3,900 days of production obtained with initial and optimal
well locations, deterministic optimization using realization #1, Oseberg.

5.5.2 Bi-objective optimization using 10 realizations

Fig. 5.24 shows a summary of the bi-objective well trajectory optimization where the

average NPV and the minimum NPV of 10 realizations are maximized, subject to minimum

well spacing constraints using StoSAG followed by GPS. In primary optimization (robust

optimization), the average NPV over 10 realizations, JE, is improved from $5.31 × 109 to
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$6.28 × 109, by approximately 18%. The primary optimization is terminated after 4,500

simulations where GPS converged with the fixed mesh size. A secondary optimization is then

carried out where the minimum NPV is maximized subject to an extra constraint that the

average NPV is no less than 99% of the optimal NPV obtained in the primary optimization,

or equivalently $6.22 × 109. Npert = 10 perturbations are used to estimate dĴR and one

perturbation per realization is used to estimate dcJ in the secondary optimization, see the

discussion of Algorithm 12. Fig. 5.24(b) shows the changes in the augmented Lagrangian

Function (LA), the minimum NPV (JR) and the average NPV (JE) with respect to the

number of simulation runs. From Fig. 5.24(b), we see that in this example the minimum

NPV is only increased from $6.09 × 109 to $6.14 × 109 (i.e., by approximately 0.8%) and

the average NPV is also increased from $6.28 × 106 to $6.32 × 109 (i.e., by approximately

0.6%). Fig. 5.25 shows the indices of the model with lowest NPV value and the number

of violated constraints during the secondary optimization process. Again, the secondary

optimization rarely suffers from the non-differentiable issue and the risk model changes from

realization #2 to #1. Fig. 5.14(c) shows the cumulative distribution function (cdf) of NPV’s

of the 10 realizations obtained with the well placement of the initial guess and the optimal

solutions of the bi-objective optimization. From Fig. 5.14(c), both robust optimization and

the secondary optimization shifted the cdf of NPV to the right. It is worthwhile to mention

that after bi-objective optimization, the realization with the lowest NPV is realization #1

whose NPV is $6.14×109, which is equal to the optimal NPV obtained for the deterministic

optimization of realization #1.

Fig. 5.26 shows the oil saturation after 3,900 days of production for realization #1

(upper row) and #7 (bottom row) obtained with the initial guess and optimal solutions af-

ter robust optimization and secondary optimization. After robust optimization, (i) PRO-01

perforates both layer 9 and layer 10 and PRO-02 perforates only layer 10, and (ii) INJ-01

perforates from layer 2 to layer 4 and INJ-02 perforates from layer 2 to layer 10. After

bi-objective optimization, (i) both producers perforate only layer 10, and (ii) INJ-01 perfo-

rates from layer 3 and layer 4 and INJ-02 perforates layer 3 to layer 10. Realization #7 has
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the highest NPV among all 10 realizations after both robust optimization and bi-objective

optimization. Considering the locations of the gas injectors do not affect the reservoir de-

velopment much, the major change of the optimal well trajectories is that, PRO-01, which

penetrates layers 9 and 10 after robust optimization, now only penetrates layer 10.
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(a) Robust Opt.
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Figure 5.24: Bi-objective well placement optimization using 10 realizations, Oseberg reser-
voir. (a) Average NPV over 10 realizations versus number of simulation runs in primary
optimization using StoSAG (blue) and GPS (red); (b) the augmented Lagrangian function,
LA, minimum NPV, JR, and average NPV, JE, versus number of simulation runs in sec-
ondary optimization using StoSAG (blue) and GPS (red) where LA is represented by marker
x, JR is represented by the solid line, JE is represented by the dashed line and JE(v∗E) is
represented by the dotted line; (c) Cdf’s of NPV for the initial well placements and the
optimal well placement after primary and secondary optimization.
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Figure 5.25: Number of violated constraints and indicies of the risk realization during sec-
ondary optimization of the bi-objective optimization of slanted well trajectories, Oseberg.
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(a) Initial - Realization #1 (b) Robust Opt. - Realization
#1

(c) Bi-obj Opt. - Realization #1

(d) Initial - Realization #7 (e) Robust Opt. - Realization
#7

(f) Initial - Realization #7

Figure 5.26: Oil saturation in layer 10 after 3,900 days of production obtained with initial well
locations, and optimal well locations after robust optimization and bi-objective optimization,
for realization #1 and #7, Oseberg.

5.6 Summary and Discussion

In this chapter, we proposed parameterizations for both slanted wells and multi-

segmented wells, and investigated the applicability of StoSAG and GPS for deterministic

and robust well placement optimization considering the minimum well spacing constraints

and the well length constraints. The augmented Lagrangian method is adopted to handle the

nonlinear constraints. The necessity of using complicated well trajectory is also investigated

based on a box-shaped channelized reservoir. When geological uncertainty exists, StoSAG

and GPS are also coupled with lexicographic method to maximize the average NPV and

maximize the minimum NPV of the ensemble of realizations representing the uncertainty.

An efficient implementation of the StoSAG is also developed to reduce the computational

cost of the secondary optimization. The effectiveness of the bi-objective optimization is

validated on one water-flooding example, the channelized reservoir, and one gas-flooding

example, the Oseberg example.
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CHAPTER 6

DISCUSSION AND CONCLUSIONS

In this work, we developed and applied a hybrid algorithm which combines the Genetic

Algorithm (GA), stochastic simplex approximate gradient (StoSAG), and General Pattern

Search (GPS) to address three problems of interest in field development optimization:

• (i) selecting wells from a given set of potential paths and determining their types

(injectors or producers), drilling order and locations,

• (ii) determining the well status (drill or not-to-drill), types (injectors or producers)

and locations for both deterministic and robust optimization,

• (iii) and considering bi-objective well placement optimization using a complicated well

trajectory parameterization.

In virtually all cases, well control optimization is done subsequent to the optimization of the

other design variables.

For the first problem, this study revealed that (i) GA can effectively solve the prob-

lem of selecting a fixed number of wells from a given set of potential locations, moreover,

for this problem GA gives higher optimal NPV compared to a gradient-based method by

[25] and a StoSAG method using priority parameterization proposed by [44]; (ii) sequential

optimization where the well locations and types are optimized in the first stage followed by

a second stage of drilling order optimization gives a value of NPV that is comparable to

or higher than the NPV generated with simultaneous optimization of well locations, types

and drilling order; (iii) the optimization of well locations, types and drilling order with fixed

BHP’s followed by the well control optimization gives the highest optimal NPV if we operate
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injectors at their maximum BHP and producers at their minimum BHP when optimizing

the well locations, types and drilling order.

For the second problem considered, we developed an iterative sequential algorithm

(ItSA) where we alternate optimizing well status and types using GA with pure binary

encoding and optimizing locations of wells using StoSAG or GPS if a StoSAG step fails to

improve the NPV, and a sequential algorithm (SA) where we optimize well status, types

and locations using GA first and then optimize the locations of wells drilled using StoSAG

followed by GPS. ItSA and SA result in comparable values of the optimal NPV, but of these

two algorithms, ItSAG converges approximately 20% faster for deterministic optimization.

The performance of both algorithms are compared with that of Genocop III and the results

of deterministic optimization indicate that Genocop III costs similar amount of simulation

runs as SA, but gives the worst optimal NPV (6% and 7% lower than ItSA and SA for the

PUNQ model respectively, and 1.5% and 3.3% lower than ItSA and SA for the Brugge model

respectively). The ItSA coupled with an adaptive subset model selection procedure can

efficiently optimize the well status, types and locations given a large number of realizations

of reservoir models. In robust optimization where the computation cost becomes expensive,

results indicate that it is more computationally efficient to eliminate StoSAG from the hybrid

optimization algorithm when estimating the optimal value of well status, type and location

design variables, i.e., simply combine GA and GPS in the hybrid algorithm.

For the third problem considered, we proposed a parameterization for slanted and

mult-segmented well trajectories and found that for box-shaped reservoirs, there is not a

significant gain in NPV after optimization by parameterizing wells as multi-segmented wells

as opposed to slanted wells and that well placement optimization using GPS mehtod can

still improve the NPV significantly after using the StoSAG method. We also found that the

lexicographic method combined with a modified StoSAG/GPS algorithm can significantly

reduce the downside risk with negligible deterioration in the the expected (average) NPV

that is obtained by only maximizing the average NPV of life-cycle production.
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APPENDIX A

MINIMUM WELL SPACING CONSTRAINT

The enforcement of the minimum well spacing constraint requires the calculation of

the distance between two line segments in 3D. The procedure for performing this calculation

is presented here. Consider two line segments, namely AB and CD, in 3D space. The

coordinates of points A, B, C, D are denoted by xA,xB,xC and xD, respectively.

Suppose that P is a point on the line through A and B, AB, then the coordinates xP

of point P can be written as

xP = xA + sP (xB − xA) . (A.1)

If 0 6 sP 6 1, point P is on the line segment AB. If sP < 0 or sP > 1, point P is on the

extended line of the line segment AB. Similarly, if Q is a point on the line through C and D,

CD, then the coordinates xQ of point Q can be written as

xQ = xC + sQ (xD − xC) . (A.2)

Note Q is a point on the line segment CD if and only if 0 ≤ sQ ≤ 1. The distance between

the points P and Q is

|PQ| = ‖xP − xQ‖2, (A.3)

and the distance between the two lines is defined as the minimum value of |PQ|. Let

f (sP , sQ) = ‖xP − xQ‖2
2. (A.4)

216



If f (sP , sQ) is equal to the distance between the two lines AB and CD, then sP and sQ must

satisfy the following two equations,


∂f(sP ,sQ)

∂sP
= 0,

∂f(sP ,sQ)
∂sQ

= 0.

(A.5)

If the solution obtained for Eq. A.5 satisfies 0 6 sP 6 1 and 0 6 sQ 6 1, then the point

P is on the line segment AB and the point Q is on the line segment CD, and the distance

(calculated with Eq. A.3) between line AB and CD is the same as the distance between line

segments AB and CD, i.e., shortest distance between a pair of points, P and Q with P on

the line segment AB and Q on the line segment CD. Otherwise, we need to calculate the

distance between the point A and the line segment CD, the distance between the point B

and the line segment CD, the distance between the point C and the line segment AB and the

distance between point D and the line segment AB. Then the distance between line segment

AB and line segment CD is the smallest one of these four distances.

In the following, we briefly explain the computation of the distance of the point, P, to

the line segment, AB, in 3D. The following equation defines the plane that passes through

the point P and is perpendicular to the line AB.

(xB − xA)T (x− xP ) = 0. (A.6)

Let Q be the intersection point of the plane and line AB. It is obvious that PQ is per-

pendicular to AB, and the point Q is the perpendicular foot whose coordinates are given

by

xQ = xA + sQ (xB − xA) . (A.7)

Substituting Eq. A.7 into Eq. A.6 and solving the resulting equation for sQ gives

sQ =
(xA − xB)T (xA − xP )

‖xA − xB‖2
2

. (A.8)

217



If 0 6 sQ 6 1, the point Q is on the line segment AB, and the length of line segment PQ is

by definition the distance between the point P and the line segment AB. If sQ < 0, the point

Q is on the extended line of line segment BA, and the distance between the point P and the

line segment AB is the distance between the point P and point A. If sQ > 1, the point Q is

on the extended line of line segment AB, and the distance between the point P and the line

segment AB is the distance between the point P and point B.
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APPENDIX B

MULTI-SEGMENTED WELL TRAJECTORY CALCULATION

In Chapter 5 of this dissertation, the trajectory of a multi-segmented well (e.g., well

iw) is parameterized using Eq. 5.4, which is recited below

Xiw = [xiw0 , y
iw
0 , ziw0 , ziw1 , liw1 , θ

iw
1 , z

iw
2 , liw2 , δθ

iw
2 , · · · , ziwNseg , l

iw
Nseg , δθ

iw
Nseg ].

To obtain a multi-segmented well trajectory given an estimate of the variables in Eq. 5.4,

we need to calculate the coordinates of the end points of each well segment. The calculation

of the segment end points of the multi-segmented well iw with Nseg segments in Cartesian

coordinate system is presented in Algorithm 13.

Algorithm 13 Calculation of the segment end points of the multi-segmented well iw

• For i = 1 : Nseg

– Calculate the azimuth angle of the ith segment, θiwi . If i > 1, θiwi = θiwi−1 + δθiwi .

– Calculate δziwi = ziwi − ziwi−1.

– Calculate the horizontal departure of the ith segment using

HDiw
i =

√
(liwi )

2 − (δziwi )
2
.

– Calculate the (x, y) coordinates of end point of ith segment using

xiwi = xiwi−1 +HDiw
i cos(θiwi ),

yiwi = yiwi−1 +HDiw
i sin(θiwi ).

– Set i = i+ 1.

• EndFor
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To apply the optimal estimate of Eq. 5.4, the multi-segmented trajectory obtained

with Algorithm 13 has to be smoothed in order to be drillable. In this dissertation, each pair

of consecutive well segments of well iw is smoothed as a circular arc located in the plane of

these two segments; see Fig. 5.2 for an illustration. The smoothing procedure of well iw is

presented in Algorithm 14.

Algorithm 14 Smoothing of the multi-segmented well iw

• For i = 1 : Nseg − 1

– Calculate the coordinates of the end points of the ith and (i+ 1)th segments.

– Calculate the coordinates of the starting point, B, and the end point, D, of the
smoothing arc, B̂D.

If (liwi >liwi+1)

∗ s =
liwi+1

2liwi
,

∗ xiwB = xiwi − s(xiwi −xiwi−1), yiwB = yiwi − s(yiwi − yiwi−1), ziwB = ziwi − s(ziwi − ziwi−1),

∗ xiwD =
xiwi +xiwi+1

2
, yiwD =

yiwi +yiwi+1

2
, ziwD =

ziwi +ziwi+1

2
,

else

∗ s =
liwi

2liwi+1
,

∗ xiwB =
xiwi +xiwi−1

2
, yiwB =

yiwi +yiwi−1

2
, ziwB =

ziwi +ziwi−1

2
,

∗ xiwD = xiwi + s(xiwi+1− xiwi ), yiwD = yiwi + s(yiwi+1− yiwi ), ziwD = ziwi + s(ziwi+1− ziwi ).

– Calculate the inclination angle of the ith and (i+ 1)th segments,

∗ ϕiwi = 90−arcsin
(
ziwi −ziwi−1

liwi

)
, ϕiwi+1 = 90−arcsin

(
ziwi+1−ziwi
liwi+1

)
, δϕiwi = ϕiwi+1−ϕiwi .

– Calculate the dogleg angle βiwi and the radius of curvature Riw
i of the arc B̂D,

∗ βiwi = 2arcsin

√(
sin

δϕiwi
2

)2

+ sinϕiwi sin(ϕiwi + δϕiwi )
(

sin
δθiwi

2

)2

,

∗ Riw
i =

min(liwi , liwi+1)

2 tan
βiw
i
2

.

– Calculate the dogleg severity,

∗ DLSiwi = 100
Riwi

180
π

.

– Set i = i+ 1.

• EndFor
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APPENDIX C

EQUIVALENT WELL INDEX CALCULATION

In this dissertation, well trajectories can be parameterized as vertical, slanted or

multi-segmented. Each well can perforate many gridblocks. In CMG (the simulator used

in this work to simulate the reservoir dynamics) as well as other commercial simulators,

one can only define a perforation within one gridblock as a single line segment. Given

the Cartesian coordinates of the entry point and exit point to a gridblock, the perforation

length, the completion factor and the perforated gridblock indices, CMG can calculate an

accurate productivity/injectivity index using a Peaceman type well model ([69, 70, 68]). In

this section, we firstly provide a routine which identifies the grid cells crossed by each well

and calculates the required information of each perforated cell for CMG based on an estimate

of the design variables given in Eq. 5.1 or 5.4.

Note that for a multi-segmented well, there may be two segments of perforations in

the gridblock containing the end point of a well segment (except the last well segment), which

can not be specified in CMG. Thus the calculation of a one-segmented pseudo-perforation

with equal productivity/injectivity index is required and we provide the calculation based on

CMG [55] in Appendix C.2. In this dissertation, this routine is only developed for reservoirs

with (transformed) Cartesian grids.

C.1 Calculation of the Inputs for CMG

If well iw is a slanted well, we can obtain the coordinates of the two end points of

well iw directly from an estimate of the variables in Eq. 5.1. If well iw is a multi-segmented

well, we can obtain the coordinates of the end points of the Nseg well segments of well iw
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from an estimate of the variables in Eq. 5.4 using Appendix B. Consider a set of Cartesian

grids given in Fig. C.1, we provide a routine which identifies the grid cells crossed by well iw

and calculates the Cartesian coordinates of the entry and exit points, the perforation length

and the completion factor of each perforation of well iw in Algorithm 15. Since a slanted

well can be considered as a multi-segmented well with a single well segment, this routine is

general for both slanted wells and multi-segmented wells. However, we emphasize that this

routine is only developed for Cartesian grids illustrated in Fig. C.1.

In Algorithm 15, we denote the number of gridblocks of the reservoir along (x, y, z) di-

rections respectively as NGridI, NGridJ and NGridK. We define xyz as a (NGridI+1)-dimensional

array where xyzig is set equal to the x coordinate of the left surface of gridblock (ig, 1, 1), for

ig = 1, 2, · · · , NGridI and xyzNGridI+1 is set equal to the x coordinate of the right surface of grid-

block (NGridI, 1, 1). Similarly, we define yxz as a (NGridJ + 1)-dimensional array where yxzig is

set equal to the y coordinate of the back surface of gridblock (1, ig, 1) for ig = 1, 2, · · · , NGridJ

and yxzNGridJ+1 is set equal to the y coordinate of the front surface of gridblock (1, NGridJ, 1).

We also define zxy as a (NGridK + 1)-dimensional array where zxyig is set equal to the z coor-

dinate of the top surface of gridblock (1, 1, ig) for ig = 1, 2, · · · , NGridK and zxyNGridK+1 is set

equal to the z coordinate of the bottom surface of the (1, 1, NGridK) gridblock. We denote

the coordinates of the entry and exit points of the ipth perforation of the ith segment of well

iw respectively as (xiw,0i,ip
, yiw,0i,ip

, ziw,0i,ip
) and (xiw,1i,ip

, yiw,1i,ip
, ziw,1i,ip

). We also denote its perforation

length and the completion factor respectively as liwi,ip and f iwi,ip .

In the following, we describe the procedure to determine the (i, j, k) indicies of a

perforated gridblock given the coordinates of a point. Take the point (xiwi , y
iw
i , z

iw
i ) as an

example. If xiwi < xyzNGridI+1, then the gridblock index along x-direction, GI iwi , is set equal

to {ig : xyzig ≤ xiwi < xyzig+1}
NGridI
ig=1 ; otherwise, set GI iwi = NGridI. If yiwi < yxzNGridJ+1, then

the gridblock index along y-direction, GJ iwi , is set equal to {ig : yxzig ≤ yiwi < yxzig+1}
NGridJ
ig=1 ;

otherwise, set GJ iwi = NGridJ. If ziwi < zxyNGridK+1, then the gridblock index along z-direction,

GKiw
i , is set equal to {ig : zxyig ≤ ziwi < zxyig+1}

NGridK
ig=1 ; otherwise, set GKiw

i = NGridK.
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Figure C.1: Numbering of the Cartesian grids. Numbers in parenthesis on the top surface
of each gridblock indicate the (i, j, k) gridblock indicies.

Algorithm 15 Calculation of the input parameters into CMG given the Cartesian coordi-
nates of the segment end points of well iw

• For i = 1 : Nseg

– Calculate the Cartesian coordinates of the two end points of segment i,

i.e., (xiwi−1, y
iw
i−1, z

iw
i−1) and (xiwi , y

iw
i , z

iw
i ), and their gridblock indcies, i.e.,

(GI iwi−1, GJ
iw
i−1, GK

iw
i−1) and (GI iwi , GJ

iw
i , GK

iw
i ).

– Define a N trial
s -dimensional vector s where N trial

s = |GI iwi−1 − GI iwi | + |GJ iwi−1 −

GJ iwi |+ |GKiw
i−1 −GKiw

i |+ 3. Set m = 1.

– For ig = min(GI iwi−1, GI
iw
i ) : max(GI iwi−1, GI

iw
i )

∗ If xiwi 6= xiwi−1, set sm =
xyzig −x

iw
i−1

xiwi −xiwi−1
and m = m+ 1.

– EndFor

– For jg = min(GJ iwi−1, GJ
iw
i ) : max(GJ iwi−1, GJ

iw
i )

∗ If yiwi 6= yiwi−1, set sm =
yxzjg −y

iw
i−1

yiwi −yiwi−1
and m = m+ 1.

– EndFor
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•

– For kg = min(GKiw
i−1, GK

iw
i ) : max(GKiw

i−1, GK
iw
i )

∗ If ziwi 6= ziwi−1, set sm =
zxykg−z

iw
i−1

ziwi −ziwi−1
and m = m+ 1.

– EndFor

– Remove si, i = m,m + 1, · · · , N trial
s from s and remove repeated elements in s.

Define A = {si : si ≤ 0 and si ∈ s}, B = {si : 0 < si < 1 and si ∈ s} and
C = {si : si ≥ 1 and si ∈ s}. Denote the dimensionality of B as NB and set
Npiwi = NB + 2.

– Define a Npiwi -dimensional vector cp where cp1 = max{A}, cpi+1 = Bi, i =
1, 2, · · · , NB and cp

Npiwi
= max{C}. Sort cp in ascending order.

– For ip = 1: Npiwi − 1

∗ Calculate the coordinates of the entry and exit points of the ipth perforation
using

(xiw,0i,ip
, yiw,0i,ip

, ziw,0i,ip
) = (xiwi−1, y

iw
i−1, z

iw
i−1) + cpip ∗

{
(xiwi , y

iw
i , z

iw
i )− (xiwi−1, y

iw
i−1, z

iw
i−1)
}

(xiw,1i,ip
, yiw,1i,ip

, ziw,1i,ip
) = (xiwi−1, y

iw
i−1, z

iw
i−1) + cpip+1 ∗

{
(xiwi , y

iw
i , z

iw
i )− (xiwi−1, y

iw
i−1, z

iw
i−1)
}

∗ Calculate the perforation length using

liwi,ip =
(

min(cpip+1, 1)−max(cpip , 0)
)
∗
√

(xiwi − xiwi−1)2 + (yiwi − yiwi−1)2 + (ziwi − ziwi−1)2

∗ Set the completion factor f iwi,ip = 1.

∗ Calculate the perforation gridblock indices based on the coordinates

(
xiw,0i,ip

+xiw,1i,ip

2
,
yiw,0i,ip

+yiw,1i,ip

2
,
ziw,0i,ip

+ziw,1i,ip

2
).

– EndFor

– If i > 1 and cpi,1 < 0, re-calculate the required information for a pseudo-perforation
in the gridblock of the first perforation of the ith well segment,

∗ reset the coordinates of the entry and exit points of the pseudo-perforation
respectively as (xiw,0

i−1,Npiwi −1
, yiw,0
i−1,Npiwi −1

, ziw,0
i−1,Npiwi −1

) and (xiw,1i,1 , yiw,1i,1 , ziw,1i,1 ),

∗ re-calculate the length of the pseudo-perforation using

liwi,ip =
√

(xiw,1i,1 − x
iw,0

i−1,Npiwi −1
)2 + (yiw,1i,1 − y

iw,0

i−1,Npiwi −1
)2 + (ziw,1i,1 − z

iw,0

i−1,Npiwi −1
)2,

∗ re-calculate the completion factor f iwi,1 of the pseudo-perforation using Ap-
pendix C.2 which is discussed later.

• EndFor
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C.2 Two-segmented Perforation within a Gridblock

When wells are parameterized as multi-segmented wells, it is common that two line

segments of perforations exist in one simulation gird; see perforation
−→
AC and

−−→
CB in Fig.

C.2 as an example. Since in most of the commercial simulators, one can only define the

perforation with one segment, a pseudo-perforation with equal injectivity/productivity is

required. Thus, the calculation of the coordinates of the entry and exit point, the perforation

length and the completion factor of this pseudo-perforation is presented here.

Figure C.2: Two-segmented perforation within one simulation gridblock.

Take Fig. C.2 as an example where point C is the end point of the ith well seg-

ment of well iw, point A is the entry point of the last perforation of the ith well seg-

ment and point B is the exit point of the first perforation of (i + 1)th well segment. De-

note perforation
−→
AC = (xiwi , y

iw
i , z

iw
i )− (xiw,0

i,Npiwi −1
, yiw,0
i,Npiwi −1

, ziw,0
i,Npiwi −1

) and perforation
−−→
CB =

(xiw,1i+1,1, y
iw,1
i+1,1, z

iw,1
i+1,1)−(xiwi , y

iw
i , z

iw
i ). A pseudo-perforation

−→
AB (

−→
AB = (xiw,1i+1,1, y

iw,1
i+1,1, z

iw,1
i+1,1)−

(xiw,0
i,Npiwi −1

, yiw,0
i,Npiwi −1

, ziw,0
i,Npiwi −1

)) is required instead of the true perforations
−→
AC and

−−→
CB so that

the flow rate of phase p remains roughly the same, i.e.,

WI−→
AB
λp∆p−→AB = WI−→

AC
λp∆p−→AC +WI−−→

CB
λp∆p−−→CB, (C.9)

where p denotes oil, water and gas; λp is the mobility of phase p within the perforated grid-

lock; ∆p−→
AB

, ∆p−→
AC

and ∆p−−→
CB

respectively represent the pressure draw-down of perforations

−→
AB,

−→
AC and

−−→
CB, and WI−→

AB
, WI−→

AC
and WI−−→

CB
respectively represent the well indices of
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perforations
−→
AB,

−→
AC and

−−→
CB. Assume ∆p−→

AB
= ∆p−→

AC
= ∆p−−→

CB
, then Eq. C.9 reduces to

WI−→
AB

= WI−→
AC

+WI−−→
CB
. (C.10)

The well index of a perforation l (e.g., l can be
−→
AC,

−−→
CB or

−→
AB) is given by

WI =
βK(l)h(l)fcomp
ln(re(l)/rw) + s

(C.11)

where β is a coefficient involving the angular fraction and the unit conversion factor, K(l) is

the completion planar averaged permeability, h(l) is the perforation length (i.e. 2-norm of

the vector l), fcomp is the completion factor, re(l) is the the drainage radius in the direction

of the wellbore l, rw is the well radius and s is the skin factor. Note for a true perforation

(e.g.,
−→
AC and

−−→
CB), fcomp is always one. However, for a pseudo-perforation (e.g.,

−→
AB), fcomp

has to be adjusted so that Eq. C.10 is satisfied.

Denote the perforation
−→
AC as l1,

−−→
CB as l2 and

−→
AB as l. Substituting Eq. C.11 into

Eq. C.10 gives

βK(l)h(l)fcomp(l)

ln(re(l)/rw) + s
=

βK(l1)h(l1)

ln(re(l1)/rw) + s
+

βK(l2)h(l2)

ln(re(l2)/rw) + s
, (C.12)

and then fcomp(l) can be solved as,

fcomp(l) =

(
K(l1)h(l1)

ln(re(l1)/rw) + s
+

K(l2)h(l2)

ln(re(l2)/rw) + s

)
ln(re(l)/rw) + s

K(l)h(l)
. (C.13)

In the following, we will briefly discuss the calculation of the drainage radius and

the completion planar averaged permeability when a perforation does not parallel one of the

gridblock coordinate axes. Take perforation l as an example. According to CMG [55], K(l)

and re(l) are obtained by interpolating K’s and re’s along the gridblock coordinate axes.

Denote i, j and k as unit vectors pointing in the local (x, y, z) directions. When the

wellbore is parallel to the D axis (D can be either i, j and k), the drainage radius re(D) is
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calculated as

re(D) = α

√
V

h(D)
, (C.14)

where, α is a coefficient involving the geometric factor, the angular fraction and the unit

conversion factor, V is the bulk volume of the perforated gridblock, h(D) is the grid block

thickness in the directionD. Define θi = arccos( l·i
‖l‖2 ), θj = arccos( l·j

‖l‖2 ) and θk = arccos( l·k
‖l‖2 ).

Then the value of the drainage radius in the direction of the wellbore is interpolated as

re(l) =

 re(i) cos2(θi) sin2(θj) sin2(θk) + re(j) cos2(θj) sin2(θi) sin2(θk)

+re(k) cos2(θk) sin2(θi) sin2(θj)

 /S,

where, S = cos2(θi) sin2(θj) sin2(θk)+cos2(θj) sin2(θi) sin2(θk)+cos2(θk) sin2(θi) sin2(θj). Sim-

ilarly, the completion planar averaged permeability K is calculated by

K(l) =

 √
KyKz cos2(θi) sin2(θj) sin2(θk) +

√
KxKz cos2(θj) sin2(θi) sin2(θk)

+
√
KxKy cos2(θk) sin2(θi) sin2(θj),

 /S,

where Kx, Ky, Kz respectively represent the permeability of the perforated gridblock along

the (x, y, z) directions.
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