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ABSTRACT

Onur, Mustafa (Doctor of Philosophy in Petroieum Engineering)
New Well Testing Applications of The Pressure Derivative

(245 pp. - Chapter V)
Directed by Dr. Albert C. Reynolds, Jr.

(350 words)

Type curves based on pressure derivatives have become highly popular for ana-
lyzing well test data. This work presents new derivative type curves based on a new
derivative group which is equal to the dimensionless pressure group divided by its
logarithmic derivative with respect to dimensionless time group. One major advan-
tage of these type curves is that the type-curve match of field pressure/pressure-
derivative data with the new derivative type curves is accomplished by moving
the field data plot in only the horizontal direction. This type-curve match fixes
time match-point values. The pressure change versus time data is then matched
with the dimensionless pressuve solution to determine pressure match-point values.
Well /reservoir parameters can then be estimated in the standard way. This two
step type-curve matching procedure increases the likelihood of obtaining a unique
match. Moreover, the unique correspor 2ence between the ordinate of the field data
plot and the new derivative type curves should prove useful in determining whether
given field data actually represents the well/reservoir model assumed by a selected
type curve solution. It is also shown that the basic idea used in constructing the
type curves can be used to ensure that proper semilog straight lines are chosen
when analyzing pressure data by semilog methods. Analysis of both drawdown
and buildup data is considered and actual field cases are analyzed using the new

derivative type curves and the semilog identification method.
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This work also presents new methods based on the pressure derivative to
analyze buildup data obtained at a well (fractured or unfractured) produced to
pseudosteady-state prior to shut-in. By using a method of analysis based on the
pressure derivative, it is shown that a well’s drainage area at the instant of shut-in
and the flow capacity can be computed directly from buildup data even in caces
where conventional semilog straight lines are not well-defined. By using the esti-
mate of drainage area obtained from the derivative analysis, one can construct a
modified semilog plot of pressure buildup data versus time which properly accounts

for producing time effects.

.
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CHAPTER I
INTRODUCTION

Recently, well test analysis methods incorporating the pressure derivative (time
rate of change of pressure) have been used extensively for analyzing well test data.
Specifically, type curves based on pressure derivatives have become a highly popular
method in identifying the most appropriate theoretical reservoir/well model (and
the flow regimes) exhibited by well test data and in determining reservoir/well pa-
rameters. Moreover, it has been shown that pressure derivative, as an interpretation
method, is a valuable tool for determining some of the reservoir parameters which
cannot be obtained from type curve analysis or from the conventional semilog anal-
ysis of well test pressure data. The main objective of this work is two-fold: (i) to
develop new procedures for constructing type curves utilizing the pressure deriva-
tive, which further simplify the interpretation of well test data; and (ii) to present
new analysis procedures based on the pressure derivative which can be applied to
problems where type curve analysis or conventional semilog analysis of pressure
data is not appropriate.

To the best of our knowledge, type curves based on pressure derivatives were
first presented in the petroleum engineering literature by Tiab and Crichlow! who
used the pressure derivative (time rate of change of pressurc) to aid in fault detec-
tion and presented type curves based on the derivative of dimensionless pressure
for a well located near a rpultiple-sea.ling-fa.ult system and for a well located in
a closed rectangular bounded reservoir, and by Tiab and Kumar? who presented
type curves based on the derivative of dimensionless pressure for analyzing well test
data obtained at an interference well. Previously, Hurst® and others®:S had used the

pressure derivative in water influx calculations. Since the appearance of Refs. 1 and

1
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2, several authors have presented type curves based on pressure derivatives. For ex-
ample, Bourdet et al. presented derivative type curves for wellbore storage and skin
problems® and for naturally fractured reservoirs”®, Wong et al.? presented concep-
tually similar type curves for finite-conductivity fractures, and Suresh and Tiab!'®
presented derivative type curves for analyzing well test pressure buildup data ob-
tained at a well located at the center of a uniform-flux or infinite-conductivity planar
fracture. Yeh and Reynolds!? presented both pressure and pressure-derivative type
curves for analyzing pressure data obtained at a restricted-entry well. Typically,
these derivative type curves represent a graph (usually log-log) of dimensionless
pressure (or a dimensionless pressure group) and the derivative of dimensionless
pressure (or a constant times the derivative of dimensionless pressure) versus di-
mensionless time (or a dimensionless time group). Such type curves have two main
advantages over conventional type curves based on a graph of dimensionless pressure
versus dimensionless time. First, a graph of the derivative of dimensionless pres-
sure often has more character (curvature); hence, it is easier to obtain a unique,
well-defined type-curve match of field data with derivative type curves. Second,
such type curves usually involve a graph of both the dimensionless pressure and
the derivative of dimensionless pressure; thus, in analyzing field data, one must
match simultaneously both the measured pressure change and the derivative of the
measured pressure change, which further enhances the likelihood of obtaining a
well-defined type-curve match and a consistent analysis.

In this work, an alternate method to constructing type curves that are based on
a new combination of pressure and its derivative is presented. Essentially, the new
method involves plotting both dimensionless pressure and dimensionless pressure
divided by the logarithmic derivative of dimensionless pressure, which is called the
pressure/pressure-derivative group throughout in this work, versus dimensionless
time. In Chapter II, we formulate the basic idea of the new pressure/pressure-
derivative group and show that when using type curves based on this new group,
type curve matching of field pressure/pressure-derivative data is accomplished by
moving the field data plot only in horizontal direction; thus, this procedure not only
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simplifies the type-curve matching process, but also is advantageous in determining
whether given field data are representative of the solution assumed by a particu-
lar type-curve solution. In addition, it is shown that the new pressure/pressure-
derivative group can be used effectively to identify proper semilog straight line(s)
when pressure data is analyzed by conventional semilog methods. In Chapter II, we
also present some of the numerical differentiation methods used to obtain pressure
derivatives from the measured pressure-time data and compare these methods in
regard to obtaining smooth pressure derivatives.

We demonstrate that the pressure/pressure-derivative group established in
Chapter II can be used to construct new type curves for a broad range of problems
encountered in well testing. In Chapter III, the basic procedure is used to construct
new type curves for classical line source solution (or Theis!? solution), for classi-
cal wellbore storage and skin problems!3:14:15:16_ for a well intercepted by a pla-
nar (uniform-flux or infinite-conductivity) fracture!?=19, and for finite-conductivity
fractured wells?-24, These type curves are constructed using the solutions based
on single phase flow of a slightly-compressible fluid of constant viscosity. The type
curves are presented for both infinite-acting reservoirs and closed bounded reser-
voirs, and for a well produced either at a constant rate or at a constant pressure. In
Chapter ITI, we also investigate the validity of using new drawdown type curves to
analyze buildup data and delineate the conditions under which buildup data can be
analyzed by using such type curves. The applicability of semilog straight line iden-
tification using the pressure/pressure-derivative group is demonstrated in Chapter
I for composite reservoirs2>—2% and for naturally fractured reservcirs®®~33. At the
end of Chapter III, analyses of actual field data cases are presented to illustrate the
advantages associated with the use of new type curves and the applicability of the
new pressure/pressure-derivative group for identifying the proper semilog straight
line exhibited by actual field data.

In Chapter IV, we present new applications of the pressure derivative method
for analyzing the pressure buildup data obtained at a well located in a system of
wells draining a closed bounded reservoir. Both fractured and unfractured wells
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are considered. As is well known, Miller-Dyes-Hutchinson®* (MDH) and Matthews-
Brons-Hazebroek3> (MBH) procedures are the ones which are commonly used to
compute the average reservoir pressure from a buildup test. However, these pro-
cedures for estimating average reservoir pressure require knowledge of the well’s
drainage area and the Dietz3 shape factor, and also assume that one can identify
the proper semilog straight line on a conventional semilog plot (Horner®” or MDH)
of buildup pressure data. By using a method of analysis based on the pressure
derivative, it is shown that the drainage area of the well (at the instant of shut-in)
and the flow capacity (permeability-thickness product) can be computed directly
from the derivative of pressure buildup data even in cases where it is difficult to
identify a well-defined semilog straight line on a conventional semilog analysis of
pressure buildup data. By using the estimates obtained from this derivative analysis
procedure, it is shown that one can construct a modified semilog plot of pressure
buildup data versus the shut-in time, which properly accounts for producing time
effects. This modified semilog plot can be used to obtain estimates of the skin factor
and the average pressure, and checks on the estimate of flow capacity obtained by
our derivative analysis technique. In Chapter IV, we also present a second method
for estimating well’s drainage area from pressure buildup data. The second method
relies on the fact that during buildup, the well’s shut-in pressure increases to a
maximum and then decreases due to interference from neighboring producing wells.
It is shown that the derivative of shut-in pressure at the point where the shut-in
pressure is maximum is equal to zero and that the maximum shut-in pressure and
the time at which it occurs can be utilized to compute the well’s drainage area and
the average reservoir pressure. We also investigate the validity of these methods to
analyze pressure buildup data influenced by wellbore storage and skin effects and
delineate the conditions under which such pressure buildup data can be analyzed by
these methods to determine the well’s drainage area and the permeability-thickness
product. At the end of Chapter IV, we present the analysis of an actual well-
test pressure buildup data to illustrate the use of new pressure-derivative analysis
procedures suggested in this work.
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The foundational work on the new pressure/pressure-derivative group used to
construct new type curves for well test analysis presented in this work was first pre-
sented publicly in a paper submitted to the SPE (Society of Petroleum Engineers)
in Feb, 1987; see Ref. 38, (later published in the March 1988 issue of SPEFE; Soci-
ety of Petroleum Engineers Formation Evaluation). Since that time another paper;
see Ref. 39, which has presented type curves using the same pressure/pressure-
derivative group for analyzing well test data obtained at a horizontal well, was
presented at the 1987 California Regional Meeting. Later our work was applied to
construct new type curves for a well intercepted by a vertical finite-conductivity
fracture and to aid in the identification of semilog straight lines; these results were
presented at the 1987 SPE Annual Fall Meeting; see Ref. 40. At the same meeting
another paper (Ref. 41) presented type curves for wellbore storage and skin prob-
lems based on a similar combination of the pressure/pressure-derivative group and
discussed the conditions under which those type curves can be used to analyze the
pressure buildup data influenced by wellbore storage and skin effects.

The work presented here on new analysis procedures based on the pressure
derivative for analyzing pressure buildup data obtained at a well located in a system
of wells draining a closed bounded reservoir was first publicly presented at the 1988
SPE Annual Fall Meeting; see Ref. 42.
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CHAPTER II
NEW PRESSURE-DERIVATIVE GROUP

In this chapter, a new pressure-derivative group for constructing new type
curves is formulated. This new pressure-derivative group involves the dimensionless
pressure change divided by its logarithmic derivative. It is shown that when using
type curves based on this pressure/pressure-derivative group, the vertical scale of
these type curves is automatically aligned with the vertical scale of the correspond-
ing field pressure/pressure-derivative data; thus, type-curve matching of field data
can be accomplished by moving the field data plot only in horizontal direction. This
automatic alignment of vertical scales simplifies type-curve matching and also is ad-
vantageous for determining whether the field data actually represents the solution
assumed by a given type curve. Moreover, it is shown that this pressure/pressure-
derivative group can be used to ensure that proper semilog straight lines are chosen
when analyzing well test pressure data by conventional semilog methods.

As described in the preceding paragraph, the new pressure/pressure-derivative
group involves the derivative of pressure with respect to time; and therefore, the
construction of this group from a given measured pressure versus time data re-
quires numerical differentiation of such data. We docnmeﬁt some of the numerical
differentiation methods to obtain pressure derivatives from measured pressure-time
data and compare these methods with regard to obtaining reliable smooth pressure-
derivative data by applying them to real well test data.

2.1 Definitions
The purpose of this section is to present some of the basic definitions that
will be used in the formulation of the new pressure/pressure-derivative group. All

6
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definitions are given in oil field units and assume single phase flow of a slightly-
compressible fluid of constant viscosity.

The dimensionless wellbore pressure drop for a well producing at a constant
rate, dimensionless time based on wellbore radius, dimensionless time based on
fracture-half length, and dimensionless time based on drainage area are defined,
respectively, by

_ khlpi — puy (2)]
PwD = 1412¢Bg ' (2'1'1)

2,637 x 10™4kt

tp = 2.1.2
D deur2 (2.12)

2.637 x 104kt
— 203l X0 1.3
t‘ID ¢= ﬂLg! ’ (2 1 )

and
-4

2.637 x 10 kt. (2.1.4)

t =
AD doepd
In Eqs. 2.1.2 through 2.1.4, ¢ is in hours.

Since the new pressure/pressure-derivative group proposed in this work involves
the derivative of dimensionless pressure with respect to the natural logarithm of
dimensionless time, we use p/, ,, to denote this logarithmic derivative; that is,

- dwa

From the chain rule, it follows that Eq. 2.1.5 is equivalent to:

dpw
p=tp dtDD. (2.1.6)
2.2 Theory

In this section, the theory of the new pressure/pressure-derivative group that
motivated us to generate new type curves for well test analysis is presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



From Eq. 2.1.6, it follows that the constants making time (in hours) dimen-
sionless may be canceled from the logarithmic derivative and thus,

-

dpop _ _dpwD dpwp _ dpwp
! = = = = - olie
PeD =Gty ~ dinty,p  dintap  dint (22.)

We let Ap (in psi) denote the pressure change during the test (for drawdown
test; Ap = p; — puy) and define Ay’ by

dAp dAp
’ = e e ] e—
Ap' = FIT) =t T’ (2.2.2)

where the second equality of Eq. 2.2.2 follows directly from the chain rule. From

Egs. 2.1.1-2.1.6 and 2.2.2, it follows easily that
Pup _ Ap .
29 = 2ap’ (2.2.3)

that is, the vertical scale on a plot Ap/(2Ap’) versus real time ¢ is identical to
the vertical scale on a plot of p,p/(2p.,p) versus dimensionless time tp (or, ¢,p,
or, t4p) and thus, when using type curves based on the left side of Eq. 2.2.3,
type-curve matching of the pressure/pressure-derivative data will require moving
the field data plot in only the horizontal direction. This is one major advantage
that the new type curves to be presented in the next chapter have over previous
type curves based on pressure derivatives. Previous type curves (see Refs. 1, 2,
and 6-11) incorporating pressure derivatives require both horizontal and vertical
movement of the field data plot in order to obtain a type-curve match. Since the
vertical scale of type curves based on the group given by the left side of Eq. 2.2.3
is always automatically aligned with the vertical scale on a plot of Ap/{2Ap'), such
type curves should also be advantageous in determining whether given field data is
representative of the type curve chosen for analysis; i.e., a log-log plot of Ap/(2Ap’)
versus ¢ should prove useful in selecting the most appropriate reservoir/well model
to be used for analysis.

Although we have chosen to use the group p,p/(2p,,p) in preparing most
of the type curves of interest, other similar groups, as illustrated in Chapter II,
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can be used. For example, the inverse of the group defined by the left side of
. Eq. 2.2.3; that is, 2p),,/puD, the group that eliminates 2 from denominator of
left side of Eq. 2.2.3; that is, pyp/plp (or its inverse) could also be used. It
shouid be noted that the vertical scale of type curves based on a particular group
chosen is automatically aligned with the vertical scale of corresponding field data
plot. Therefore, each of these type curves will have the same advantages as do type
curves based on pyp/(2p.,p)- However, the motivation for the specific group used
is aesthetic - it allows one to correlate the pressure/pressure-derivative group with
the dimensionless pressure during radial or pseudoradial flow. For example, during
plane radial flow, it is well known that the dimensionless pressure drop is given by

1
PuD =3 [Intp + 0.80907] + s, (2.24)

where s is the skin factor due to damage or stimulation around the wellbore. Dif-
ferentiating Eq. 2.2.4 with respect to In¢p and multiplying the resulting equation

by 2 gives
2.0 =1, (2.2.5)

and hence, during radial flow, the following equation will apply:

Pw
= =|lntp 7 2.
PwD 27 o 2[ln + 0.80907] + 5. (2.2.6)

Eq. 2.2.6 indicates that the dimensionless group, pup/(2p,,p), and the dimension-
less pressure, p,,p Will be identical functions of time during radial flow and that both
dimensionless groups will be given by the well known semilog straight line equation.
The same result, as shown later in this work, will apply during pseudoradial flow
exhibited by a vertically fractured well.

Other important and useful feature of the pressure/pressure-derivative group
defined by Eq. 2.2.3 follows directly from Eq. 2.2.6. Specifically, using Egs. 2.1.2
and 2.2.3, Eq. 2.2.6 can be rewritten as

Ap k .
2Ap’ =1.151 [logt +log (m) - 3.23] + s; (2.2.7)
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that is, a semilog plot of Ap/(2Ap’) versus t will always exhibit a semilog straight
line with slope equal to 1.151 during plane radial flow; i.e., when Eq. 2.2.6 applies. It
is important to note that this observation holds regardless of the values of reservoir
parameters and thus, a semilog plot of Ap/(2Ap') versus ¢t should prove useful
in identifying proper semilog straight line(s) when analyzing field data. If such a
plot identifies a semilog straight line (or lines), then conventional semilog analysis
methods can be applied with confidence to determine reservoir parameters. The
same result (Eq. 2.2.7 with the skin factor defined suitably) applies during the
pseudoradial flow regime for a restricted entry-well!*4® and for the pseudoradial
flow regime for fractured wells!7=39,

2.3 Numerical Differentiation of Pressure-Time Data

Here, we present some of the numerical differentiation techniques to obtain
pointwise pressure derivatives from measured pressure versus time data. It is not
the intention of this work to develop new techniques for differentiating pressure-time
data or to study numerical analysis aspects of these techniques; rather the objec-
tive is to show which differentiation methods can be used to obtain reliable smooth
pressure derivative data. In this regard, three numerical differentiation techniques
have been considered. In the first technique, the pressure derivative data (time rate
of change of pressure change; i.e., dAp/dt) is obtained by fitting a moving Lagrange
interpolating polynomial through each five successive data points, (¢, Ap), and then
differentiating this polynomial at the central data point. Here, this technique is re-
ferred to as the five-point formula. In the second technique, the pressure derivative
data, dAp/dt, is obtained by fitting a moving Lagrange irterpolating polynomial
through each three successive data points and then differentiating this polynomial
at the central point. Here, this technique is referred to as the three-point formula.
In the third technique, the pressure derivative data is computed by fitting a moving
least squares quadratic through each five successive data points and then differen-
tiating this quadratic at the central point. The details of these techniques can be
found in any numerical analysis book; for example, see Refs. 44-46.
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After obtaining the derivative of pressure with respect to time ¢, the logarithmic
pressure derivative data, dAp/dint, at the point of interest is obtained by using
the basic chain rule; that is,

dA dA
Ap; = (ﬁﬁ). =t (—dtz) E (2.3.1)

where “s” represents the point where the pressure derivative is computed.

While working with the actual field data, derivative data is often noisy (oscilla-
tory). Ref. 47 has suggested a procedure for obtaining smooth pressure derivative
data when using a differentiation formule given by

Apl =

& 6pit1 ., , 6P,
T T [ Bttt 6t,+1] , (2.3.2)

where 6p; 41, 6p;, 6t;41, and &t; are defined, respectively, by

6Pi+1 = Apiy1 — Ap;, (2.3.3)
8p; = Ap; — Ap;-1, (2.3.4)
btiy1 =tiy1 — &, (2.3.5)
and )
Sty =t; —t;_y. (2.3.6)

Here, subscript ¢ represents the central data point, subscript ¢ — 1 represents the
data point to the left of central point and subscript ¢ + 1 represents the data point
to the right of central point. It should be noted that the differentiation formula
used by Ref. 47 (Eq. 2.3.2) is as same as the differentiation formula obtained
by fitting a Lagrange interpolating polynomial through each successive three data
points and differentiating this polynomial at the central data point; i.e., the three-
point Lagrange formula; see Eq. 5.18 of Ref. 45. Smoothing procedure of Ref. 47
is based on a parameter L which is defined as:

L = min{ln ("T“) JIn (EE.T) ; (2.3.7)
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that is, L defines 2 minimum distance based on the logarithmic time scale between
the left and right points of the central time points where the derivative is computed
and is a dimensionless parameter. The basic idea of this parameter is to smooth out
noise by using points further away from the point at which the pressure derivative is
computed; that is, by applying the differentiation formula given by Eq. 2.3.2 subject
to condition given by Eq. 2.3.7. They recommended choosing L between 0.1 and 0.5
and noted that it may be necessary to use different values of L for different intervals
of given pressure-time data. Although this procedure can be used to obtain smooth
pressure derivative data, we have found that determining an appropriate value of L
may require a trial and error procedure.

Working with a simulated pressure-time data, we have found that all of the
techniques described above produce accurate and nonoscillatory pressure-derivative
data. However, it has been our experience that, when working with actual pressure-
time data, the third technique (least squares quadratic) produces much smoother
pressure derivative data than do other two techniques and its use is much simpler
than the procedure suggested by Bourdet et al.47. Therefore, throughout this work,
we have used this “least squares quadratic” technique to differentiate pressure-time
data.

In the following, we apply three numerical differentiation techniques described
above to an actual field data set and compare these techniques with regard to ob-
taining smooth pressure derivatives. The field example considered here is buildup
test 1 of Ref. 6. Relevant reservoir/well parameters are given in Table 2.3.1. The
analysis of this field buildup data will be presented in Chapter III. Since the pro-
ducing time prior to shut-in is shorter than the maximum shut-in time considered,
we differentiate buildup pressure data with respect to Agarwal’s equivalent time*®

which is defined as:
t, At

m , (2.3.8)

te=

where ¢, is the producing time prior to shut-in, and At is the shut-in time. Table
2.3.2 presents the recorded pressure change, Ap, and the logarithmic derivative
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Table 2.3.1
Reservoir/Well Parameters; Test 1 of Ref. 6

Porosity (Dercent) . . . - - ¢ v .t 4 et et e et e e e e e 0.25
Thickness (ft) . . . . . . . . ¢ o o it oo e ... 107
Wellbore Radius (ft) . . . . . . . . .« . o o v v v v oo 0.29
System Compressibility (1/psi) . . . . . . . .« .. .. .. ... 4.2E-06
Viscosity of Fluid (¢p) . . . . . « « v ¢ ¢ 0 o v 0 v v v v ot e 2.5
Formation Volume Factor (RB/STB) . . . . . .. ... ....... 1.06
Production Rate Prior to Shut-in (STB/D) . . . .. ... ... ... 174
Flowing Pressure at the Instant of Shut-in (psi) . . . .. ... .. 3086.33
Producing Time (hrs) . . . . . . . . .. .o oo v v v oL 15.33
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Table 3.3.23

" Comparison of Numerical Differentiation Techniques; Test 1 of Ref. €

ithmic Derivative of Pressure
Ay (psi)

Shut-in Time Equivalent Time Pressure Change Three-Point Lesst Squares Five-Point
At (Hours) te (Hours) Ap (psi) Formuls Quadratic Formula
8.3333E-03 8.3288E-03 7.4800E+00 5.9830E+00 6.1160E+00 -
1.2500E-02 1.2490E-02 1.0220E+01 9.3381E+00 9.4940E+00 9.2737E+00
1.6667E-02 1.6649E-02 1.8700E+01 1.3454E+01 1.3071E+01 1.3614E+01
2.0833E-02 2.0805E-02 1.6940E+01 1.6873SE+01 1.6853E+01 1.6882E+01
2.5000E-02 2.4959E-02 2.0440E+01 2.0252E+01 1.9940E+01 2.0882E+01
2.9167E-02 2.9111E-02 2.3680E+01 2.2728E+01 2.3087E+01 2.2572E+01
3.3333E-02 $.8261E-02 2.6920E+01 2.5977E+01 2.3126E+01 2.6445E+01
3.7500E-02 S.7408E-02 $.0160E+01 2.3978E+01 2.2877E+01 2.3593E+01
4.5833E-02 4.5697E-02 $.3150E+01 2.7570E+01 2.7¢54E+01 2.5519E+01
§.0000E-02 4.9837E-02 $.6150E+01 S.7081E+01 $.1785E+01 3.8278E+01
5.8333E-02 5.8112E-02 4.2630E+01 4.7221E+01 4.4896E+01 4.8451E+01
6.6667E-02 6.6378E-02 4.9590E+01 4.9045E+01 5.0288E+01 4.8542E+01
7.5000E-02 7.4635E-02 5.4840E+01 B.3005E+01 €.2083E+01 4.9842E+01
8.3333E-02 8.2883E-02 6.1310E+01 7.71419E+01 7.1714E+01 7.9554E+01
9.5833E-02 9.5238E-02 7.5620E+01 8.8837E+01 8.2718E+01 9.4905E-+01
1.0833E-01 1.0757E-01 8.43S0E+01 7.1787E+01 8.6728E+01 6.5492E-01
1.2083E-01 1.1989E-01 9.2060E+01 8.9855E+01 8.0870E+01 9.3624E-+01
1.8333E-01 1.3218E-01 1.0279E+02 8.5221E+01 8.7698E-+01 8.6978E+01
1.4583E-01 1.4446E-01 1.0791E+02 7.8863E+01 9.4754E+01 7.0545E+01
1.6250E-01 1.6080E-01 1.1963E+02 1.1054E+02 1.0302E+02 1.1565E+02
1.7917E-01 1.7710E-01 1.3035E+02 1.3926E+02 1.1983E+02 1.1903E+02
1.9583E-01 1.9336E-01 1.4156E+02 1.2905E+02 L2841E+02 1.2031E+02
2.1250E-01 2.0960E-01 1.5204E+02 1.3689E+02 1.8520E+02 1.3714E+02
2.2917E-01 2.2579E-01 1.6274E+02 1.4109E+02 14299E+02 1.42362+02
2.5000E-01 2.4599E-01 1L7446E+02 1.4903E+02 15531E+02 1.4423E+02
2.9167E-01 2.8622E-01 2.0088E+02 1.7598E+02 L7535E+02 1.7956E+02
S.3333E-01 3.2624E-01 2.2382E+02 1.9265E+02 19453E+02 1.9191E+02
3.7500E-01 8.6605E-01 2.4801E+02 2.1256E+02 2.0425E+02 2.1600E+02
4.1667E-01 4.0564E-01 2.6994E+02 2.0864E+02 2.1474E+02 2.0808E+02
4.583SE-01 4.4503E-01 2.8865E+02 2.1624E+02 2.234E+02 2.1328E+02
5.0000E-01 4.8421E-01 3.0811E+02 2.4110E+02 2.64048E+02 2.4135E+02
5.4168E-03 5.2819E-01 $.2757E+02 2.6511E+02 2.4955E+02 2.7166E+02
8.8333E-01 5.6195E-01 8.4750E+02 2.4798E+02 2.5824E+02 2.4355E+02
©.2500E-01 €.0052E-01 S.6172E+02 2.5330E+02 2.6310E+02 2.4939E+02
6.6067E-01 G.3888E-01 S.7998E+02 2.8306E+02 2.5636E+02 2.9412E+02
7.083SE-01 6.7705E-01 3.9564E+02 24375E+02 2.7433E+02 2.3716E+02
‘7.5000E-01 7.1802E-01 4.0736E+02 2.888SE+02 2.7207E+02 2.4929E+02
8.1250E-01 7.7160E-01 4.3230E+02 2.9844E+02 2.7814E+02 $.1832E+02
8.7500E-01 8.2775E-01 4.5101E+02 2.5828E+02 2.8220E+02 2.4822E+02
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Table 3.8.2 (Cont'd)

Comparison of Numerical Differentiation Techniques; Test 1 of Ref. 6

Logarithmic Derivative of Pressure
Ap' (psi)

Shut-in Time Equivalent Time Pressure Change Three-Point Least Squares Five-Point
At (Houn) ¢, (Hours) Ap (pii) Formula Quadratic Formula
9.8750E-01 8.8347E-01 4.6722E+02 2.7398E+02 2.6979E+02 2.7589E+02
1.0000E-00 9,3876E-01 4.8542E+02 2.7826E+02 2.7927E+02 2.7T764E+02
1.0625E-00 9.9363E-01 4.9990E+02 2.837SE+02 2.8872E+02 2.8184E+02
1.1250E-00 1.0481E-00 5.1662E+02 $.0104E+02 2.8960E-+02 3.0567E~+02
1.1875E-00 1.1021E-00 5.3108E+02 2.8861E+02 2.8087E+02 2.9194E+-02
1.2500E-00 1.1558E-G0 5.4482E+02 2.5331E+02 2.6627E+02 2.4770E-02
1.8125E-00 1.2090E-00 5.5453E+02 24756E+02 2.6320E+02 2.4121E+02
1.8750E-00 1.2618E-00 5.66852E+02 2.8117E+02 2.6075E+02 2.89¢4E+02
1.4375E-00 1.3143E-00 5.7799E+02 2.6345E+02 2.6802E+02 2.6482E+02
1.5000E-00 1.3663E-00 5.8748E+02 2477SE+02 2.5608E+02 2.4216E+02
1.6250E-00 1.4693E-00 6.0594E+02 2.2742E+02 2.3240E+02 2.2885E+02
1.7500E-00 1.5707E-00 6.1919E+02 2.1057E+02 2.2880E+02 2.0526E+02
1.8750E-00 1.6707E-00 6.3293E+02 2.2474E+02 2.0810E+02 2.2871E+02
2.0000E-00 1.7692E-00 6.4590E+02 2.0836E+02 2.0145E+02 2.1042E+02
2.2500E-00 1.9620E-00 6.6338E+02 1.6284E+02 1.6327E+02 1.6060E-02
2.3750E-00 2.0564E-00 6.7086E+02 1.5046E+02 1.687SE+02 1.4994E~02
2.5000E-00 2.1495E-00 6.7711E+02 1.4025E+02 1.d528E+02 1.3708E+02
2.7500E-00 2.8317E-00 6.8832E+02 1.4046E+02 1.4001E+02 1.4008E+02
8.0000E-00 2.5090E-00 6.9878E+02 1.3898E+02 1.3110E+02 1.4233E+02
8.2500E-00 2.6815E-00 7.0T73E+02 1.1507E+02 1.3254E+02 1.0726E+-02
3.5000E-00 2.8494E-00 7.1347E+02 1.3368E+02 1.8266E+02 1.3497E+02
8.7500E-00 3.0130E-00 7.2317E+02 1.5018E+02 1.2718E+02 1.6929E+02
4.0000E-00 $.1728E-00 7.2964E+02 1.0737E+02 1.0872E+02 1.0688E+02
4.2500E-00 8.3276E-00 7.8887E+02 6.4245E+01 7.3077E+01 6.0351E+01
4.5000E-00 S.4788E-00 7.8562E+02 4.0753E+01 5.6544E+01 S.4258E+01
4.7500E-00 3.6264E-00 7.8737E+02 5.6315E+01 5.9062E+01 5.5288E+-01
5.0000E-00 $.7703E-00 7.4012E+02 7.9610E+01 7.3095E+01 8.2359E+01
5.2500E-00 $.9107E-00 7.4336E+02 8.7166E+01 7.9242E+01 9.0465E+01
§.5000E-00 4.0478E-00 7.4631E+02 74572E+01 7.8805E+-01 7.2621E+01
5.7600E-00 4.1816E-00 7.4837E+02 7.2122E+01 7.2575E+01 7.2177E+01
6.0000E-00 4.3122E-00 7.5086E+02 7.0514E+01 6.1852E+01 7.4801E+01
6.2500E-00 4.4399E-00 7.5261E+02 §.1683E+01 4.4603E+01 4.8306E+01
7.2500E-00 4.9222E-00 7.5445E+02 $.9156E+01 S.3518E+01 S.T676E+01
7.7500E-00 8.1476E-00 7.56068E+02 4.3295E+01 3.8598E+01 4.2407E+01
8.2500E-00 5.8636E-00 7.5819E+02 4.1517E+01 4.2043E+01 4.1535E+01
8.7500E-00 8.5705E-00 7.5994E+02 4.0822E+01 3.8158E+01 4.1792E+01
9.2500E-00 8.7600E-00 7.6118E+02 S.3245E+01 3.9084E+01 $.0726E+01
9.7500E-00 5.9596E-00 7.6219E+02 4.0199E+01 S.6457E+01 4.2096E+01
1.0250E+03 €.1428E-00 7.6388E+02 3.7654E+01 $.6512E+01 $.7742E+01

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15



Table 3.3.2 (Cont'd)

Comparison of Numerical Differentiation Techniques; Test 1 of Ref. 6

Logarithmic Derivative of Pressure
Ap' (psi)

Shut-in Time Equivalent Time Pressure Change Three-Point Least Squares Five-Point
At (Hours) t, (Hours) Ap (pei) Formula Quadratic Formula
1.0750E+01 6.3189E-00 7.6442E+02 $.2206E+01 $.5134E+01 $.1259E+01
1.1250E+01 6.4884E-00 7.6543E+02 3.3949E+01 S.4272E+01 $.3606E-+01
1.1750E+01 €.6517E-00 7.6617E+02 $.6542E+01 $.6264E-+01 3.687SE+01
1.2250E+01 6.8090E-00 7.6718E+02 $.8365E+01 $.6895E+01 3.8797E+01
1.2750E+01 6.9607E-00 7.6792E+02 $.6512E+01 $.4916E+01 S.7859E+01
1.3250E+01 7.1071E-00 7.6874E+02 S.0551E+01 8.2917E+01 3.0588E+01
1.3750E+01 7.2485E-00 7.6917E+02 2.7637E+01 $.1901E+01 2.5427E-+01
1.4500E+01 7.4517E-00 7.7017E+02 $.2702E+01 S.080SE+01 3.4278E-+01
1.5250E+01 7.6449E-00 7.7092E+-02 3.0226E+01 3.2139E+01 2.9473E+01
1.6000E+01 7.8289E-00 7.7166E+02 $.2510E+01 3.2539E+01 $.2509E+01
1.6750E+01 8.0043E-00 7.7241E+02 S.4826E+01 3.2394E+01 $.5911E-+-01
1.7500E+01 8.1716E-00 7.7815E+02 S.0085E+01 $.3543E+01 2.9703E+01
1.8250E+01 8.3315E-00 7.7366E+02 S.3603E+01 $.0288E+01 3.5365E+01
1.9000E+01 8.4844E-00 7.7440E+02 2.7783E+01 2.8225E+01 2.7135E+01
1.9750E+01 8.6308E-00 7.7486E+02 2.3218E+01 S.1882E+01 1.9803E-+-01
2.0500E+01 8.771CE-00 7.7516E+02 4.0280E+01 3.1851E+01 4.2936E+01
2.1250E+01 8.9055E-00 7.7691E+02 $.9266E+01 3.4290E+01 4.1555E+01
2.2250E+01 9.0764E-00 7.7641E+02 2.6716E+01 2.8704E+01 2.5361E+01
2.3250E+01 9.2385E-00 7.7689E+02 2.1831E+01 2.4708E+01 1.9635E+-01
2.4250E+01 9.3924E-00 1.T115E+02 2.4516E+01 2.7008E+01 2.3762E+01
2.5250E+01 9.5388E-00 7.7766E+02 S.3758E+01 2.6978E+01 $.6625E+01
2.6250E+01 9.6780E-00 7.71816E+02 2.5913E-+01 2.8893E+01 2.5075E+-01
2.7250E+01 9.8108E-00 7.7840E+02 2.3881E+01 2.7685E+01 2.2018E+01
2.8500E+01 9.9682E-00 7.7890E+02 $.0249E+01 2.8188E+01 -
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of pressure change, Ap’, for each of three techniques as functions of shut-in time,
At, and equivalent time, t.. Here the pressure change, Ap, and the logarithmic
derivative of pressure change, Ap/, are defined, respectively, by

Ap = Pus — Pufies (2.3.9)
and
dAp
f = —— 2.3.10
Ap dln te ? ( )

where p,,, represents the recorded shut-in pressure and p,,;,, represents the pressure
at the instant of shut-in.

Figure 2.3.1 shows a log-log graph of the logarithmic derivative obtained from
three-point formula, five-point formula and least squares quadratic technique versus
the shut-in time. The data points shown by triangle, square and circle, respectively,
represent the logarithmic derivatives obtained from three point-formula, five-point
formula and least squares gnadratic technique. It is apparent from the results
of Fig. 2.3.1 that the logarithmic derivatives obtained by differentiating a least
squares quadratic lie between the derivatives obtained from three-point and five-
point formulas and much smoother than those obtained from three-point and five

point formulas.
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CHAPTER III

APPLICATIONS OF NEW PRESSURE-DERIVATIVE
GROUP

In the previous chapter, we formulated the basic idea for a new pressure-
derivative group. The purpose of this chapter is to demonstrate two important
applications of this new group to well testing problems. As a first application, we
present new type curves based on this group for a broad range of problems encoun-
tered in well test analysis. As a second application, it is shown that this group
can be used to identify proper semilog straight lines when analyzing field data. In
this regard, identification of proper semilog straight lines by using this group are
demonstrated for nonhomogeneous reservoirs such as composite and naturally frac-
tured reservoirs. At the end of this chapter, we include the analyses of actual field
well test data by using new type curves presented in this chapter.

3.1 New Type Curves For Well Test Analysis

In this section, new type curves based on the pressure/pressure-derivative group
are constructed for the classical line source solution, for classical wellbore storage
and skin problems, for planar fractured wells and for finite-conductivity fractured
wells. Type curves are presented for a well produced at either a constant rate or 2
constant wellbore pressure. Both closed bounded reservoirs and infinite reservoirs
have been considered. These type curves are constructed so that vertical scale of the
type curves is automatically aligned with the vertical scale of the corresponding field
data plot and thus, the type-curve matching of field data plot is accomplished by
moving the field data plot only in horizontal direction. This type-curve match fixes

19
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the correspondence between the time scales; i.e., determines the time match-point
values, and then the conventional type-curve matching of dimensionless pressure is
performed by the vertical movement of the field pressure data plot. Type curves
presented here not only can be used to analyze buildup data prior to the time when
producing time effects*®+4? become important, but also can be used to analyze draw-
down and buildup data obtained from gas wells provided the proper combination
of pseudopressure®® and time or pseudotime®? is employed; see Refs. 52 and 53.

3.1.1 Line Source Solution
In this subsection, a new type curve for analyzing well test data obtained

at an interference well is presented. This type curve was constructed by using line
source solution of Theis!2, which assumes single phase flow of a slightly-compressible
fluid of constant viscosity to a well produced at a constant rate in an infinite
homogeneous-isotropic reservoir.

The dimensionless pressure drop solution at any point in an infinite reservoir
due to production of a well of infinitesimally small radius (line source well) at a
constant rate was derived by Theis!? and is given by

1..[ %
pp = —3Ei [-z; ) (3.1.1)

where Ei denotes the exponential-integral function; i.e.,

0 =-u
-Ei(-2z) =/ eru, (3.1.2)

pp denotes the dimensionless pressure drop which is defined as
_ khip—p(nt)]

141.2¢Bp °’ (3-1.3)
and tp /rZ denotes the dimensionless time group defined as
2.637 x 10~4kt
tp[ry = —————. 3.14

Here, rp denotes the dimensionless radial distance; i.e., rp = r/r,, where r is the
radial distance between wells.
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Differentiating Eq. 3.1.1 with respect to the natural logarithm of tp /r, gives

, ___dm _1 _i]
pD—dln(tp/r?,)_zexp[ o (3.1.5)

It follows easily from Eqgs. 2.2.3, 3.1.1 and 3.1.5 that

P _Ap 1 _’:’9.) _].
2, 28p 2.7 (4tp o (3-1.6)

As is well known®4, for tp /r > 25, Eq. 3.1.1 can be approximated by

pp=7 [ln (:g) +0. 80907] (3.17)

When Eq. 3.1.7 applies, it can be easily shown that the following equations apply:

2pp =1, (3.1.8)
and
_pPo _8p _1f f(ip
= 1151 [log# + log | —2— ) - 3.23 (3.1.9)
=1. og og Sorhar? 23] . .1

Figure 3.1.1 shows a log-log plot of the pp, p), and pp/(2pp) versus tp Vi
solutions. The solutions pp, p}, and pp/(2pp) shown in Fig. 3.1.1 were obtained
by using Eqgs. 3.1.1, 3.1.5, and 3.1.6, respectively. The solid curve through circular
data points represents the type curve based on the dimensionless pressure, pp,
which is commonly used to analyze the pressure data obtained at an interference
well, the dashed curve represents the type curve based on the logarithmic pressure-
derivative, pp, and the solid curve represents the type curve based on the new
pressure/pressure-derivative group, pp/(2pp). An inspection of results of Fig. 3.1.1
shows that, for values of dimensionless time group tp/r3, > 25, the pp/(2pp)
solution coincides with the pp solution as expected from Eq. 3.1.9. To the best
of our knowledge, Eq. 3.1.6 were first presented by Chow®® in the ground-water
hydrology literature. However, he did not consider any type curve application
of the pp/(2p),) function in analyzing interference test data. Specifically, Chow
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wrote down the equation for pp/pp, based on the line source solution and used the
resulting equation to develop graphical methods for analyzing interference test data
for cases where the pressure data obtained at an interference well do not exhibit
the semilog straight line predicted by Eq. 3.1.7. However, as is well known, in
cases where wellbore storage and skin effects exist at the active well (producing
well)® or the wellbore storage and skin effects exist at both the active well and
the observation well (interference weil)57, the early time interference well test data
does not obey the solution given by Eq. 3.1.1 (or, Eq. 3.1.6), and thus in general,
Chow’s graphical methods based on Eq. 3.1.6 cannot be used to determine reservoir
parameters, transmissibility kk/u and storativity ¢ce%:. As we showed in Chapter
II, the pp /(2p),) group can be used to generate a type curve, as shown in Fig. 3.1.1,
which can be used not only for analyzing early time interference test data to obtain
reservoir parameters but also for determining whether such an interference data is
actually representative of the line source solution on which the type curves of Fig.
3.1.1 are based. Therefore, the approach taken in this work is radically different
from the approach taken in Ref. 55.

The type curves presented in Fig. 3.1.1 can be used to analyze the well test
data obtained at an interference well by the following procedure: (i) Make a log-log
plot on tracing paper of Ap (= p; — p(r,2)), Ap’ and Ap/(2Ap’) versus t using the
basic scales of the type curve shown in Fig. 3.1.1; (ii) Because the vertical scale
of the field Ap/(2Ap’) plot is identical to the vertical scale of pp/(2pp) solution,
match the field data plot (;f Ap/(2Ap’) with the type curve based on pp/(2p})
solution by moving the data plot only in the horizontal direction. This step will
determine whether field data is representative of the solution on which type curve
of Fig. 3.1.1 is based. If a good type-curve match of field data is obtained with the
type curve based on pp/(2p)p) solution, then this type-curve match of field data
plot fixes the correspondence between the time scales of the type curve and the
field data, and determines the time match-point values, (£)ar and (¢p/r3)as, Where
here, and throughout this work, the subscript M refers to a match-point value; (iii)
Perform a simultaneous match of the field data plot of Ap-vs-t and Ap'-vs-t with
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the type curves based on pp and pj, solutions by moving the field data plot only
in the vertical direction. This simultaneous type-curve match of the Ap and Ap’
data determines the pressure match-point values, (Ap)as and (pp)as; (iv) Using the
pressure match-point values, determine the permeability-thickness product from

th 141228 (p0)
(Ap) ’

and using the time match-point values, determiﬁe the porosity-compressibility-

(3.1.10)

thickness product from the following equation:

2.637 x 10~*kh (¢
b= T
Although the line source solution type curves represented by the log-log plots
of pp and p}, versus ip/r? in Fig. 3.1.1 are not new; for example, see Refs. 2 and
54, to the best of our knowledge, the type curve of Fig. 3.1.1 which incorporates
the pp/(2p)) solution has not been presented previously. Although adding the
Pp/(2pp) solution or the p}, solution as a type curve in Fig. 3.1.1 does not provide

great advantages over the type curve based on the dimensionless pressure solution,

(3.1.11)

Pp, in analyzing well test data obtained at an interference well operating under sin-
gle phase flow conditions, using the basic idea presented in this work, Peres et al.5®
has recently shown that type curves based on the pseudopressure/pseudopressure-
derivative group for analyzing interference well test data obtained under multiphase
flow conditions provide great advantages over the type curve based on only the pseu-
dopressure in obtaining a unique match of the field data and in determining whether
given interference well test data can be analyzed by the type curves of Fig. 3.1.1
which are based on the single phase flow solution.

3.1.2 Wellbore Storage and Skin; Unfractured Well

Here, new type curves for classical wellbore storage and skin problems are
presented. The type curves were obtained by numerically inverting the Laplace
space analytical solution of Agarwal et al.!* (Eq. 8 of Ref. 14) using the Stehfest®®
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algorithm. Type curves presented here are based on the same assumption as those
of Refs. 6, 14, 15, and 16; that is, flow of a slightly-compressible fluid of constant
viscosity to a well of radius r,, in an infinite reservoir.

The motivation for the new wellbore storage and skin type curves follows.
During the time when the dimensionless pressure drop and its logarithmic derivative
is controlled by wellbore storage effects, it is well known®14.15:16 that

tp
PuD = Pup = &’ (3.1.12)

where Cp denotes the dimensionless wellbore storage constant defined by

5.615C

m. (3.1.13)

Cp =

Throughout C denotes the wellbore storage coefficient in RB/psi. Similarly, it
is also well known that during the time period when the wellbore storage effects
become negligible, the dimensionless pressure drop and its logarithmic derivative

are given by the following equations:
1
PoD =35 (In (tp) + 0.80907] + s, (3.1.14)

and

’

plp= (3.1.15)

N -

Here, s is the skin factor. From fundamental results of Earlougher and Kersh!®
and Refs. 16 and 6, it is alsc known that the dimensionless pressure drop p,,p and
its logarithmic derivative p,p, as functions of tp/Cp can be correlated in terms of
Cp exp(2s) for Cp exp(2s) > 10% and s > 0. Tke type curves of Bourdet et al®
shown in Fig. 3.1.2 are based on this correlation. Note that solid curves and dashed
curves, respectively, represent log-log plots of pyp versus tp/Cp and p,p, versus
tp/Cp as a function of Cp exp(2s).

Although new wellbore storage skin and skin type curves presented in this
work are based on this underlying correlation as those of Ref. 6, as discussed
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earlier, we utilize a different combination of the pressure and the pressure derivative.

Specifically, when Eq. 3.1.12 holds, it is easy to see that

Pop _ Op _1 (3.1.16)

and when Eq. 3.1.14 (or, equivalently, Eq. 3.1.15) applies, it can be easily shown
that

Pop _ AP _ _1ll,(t2
W, 2ay - PP=3 [ln (Cp) +o.80907+ln[Cpe:p(28)]] . (31.17)

Based on the basic correlation of Refs. 15, 16, 6 discussed earlier, it is clear that
Pwp and p.p /(2. p) graphed versus tp/Cp can be correlated in terms of the
parameter Cp exp(2s) and this observation provides the motivation for new wellbore
storage and skin type curves shown in Fig. 3.1.3 for various values of the parameter
Cpexp(2s). Note, as predicted by Eq. 3.1.17, the dimensionless pressure p.p
coincides with the pressure/pressure-derivative p,p /(2p.,p) at all times subsequent
to the beginning of semilog straight line. More specifically, the semilog straight line
(Eq. 3.1.17) begins at the time when the p,,p/(2p},p) solution for a given value of
Cp exp(2s) joins the p,p solution for the same value of Cp exp(2s). As mentioned
previously, this is one aesthetic advantage of the particular pressure-derivative group
used in construction of the type curves of Fig. 3.1.3.

During wellbore storage dominated flow, the graph of p,p displays the char-
acteristic unit slope line on log-log coordinates (see Eq. 3.1.12) and the graph of
Pwp/(2p,p) is flat and equal to 0.5 as predicted by Eq. 3.1.16. Clearly, type
curves of Fig. 3.1.3 indicate that if all measured pressure data corresponds to the
wellbore storage dominated flow period, type-curve match of field data with the
type curves of Fig. 3.1.3 will not be unique in regard to obtaining the parameter
Cp exp(2s) and the reservoir permeability. In this case, one can only obtain the
wellbore storage coefficient C from the unit slope line in the standard way>*. One
of the advantages of type curves of Fig. 3.1.3 is that one can easily identify when
nonunique results are possible. Note that the character (curvature) of type curves
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of Fig. 3.1.3 is as great as for the corresponding type curves of Fig. 3.1.2 during
the transitional period between wellbore storage dominated flow (Eq. 3.1.16) and
radial flow (Eq. 3.1.17). Thus, it appears that the new type curves shown in Fig.
3.1.3 have the same advantages as the Bourdet et al.® type curves with regard to
obtaining a unique match; however, as shown in the following, the procedure for
using type curves of Fig. 3.1.3 is different.

Again letting Ap denote the pressure change during the test (Ap = p; — pwy for
drawdown) and letting Ap’ denote the logarithmic derivative defined by Eq. 2.2.2,
we recommend preparing a log-log plot of both Ap and Ap/(2Ap’) versus time on
the same sheet of tracing paper. As established earlier, since the vertical scale on
a plot of Ap/(2Ap’) versus t is automatically aligned with the vertical scale on 2
plot of pup/(2pL,p) versus tp /Cp, type-curve matching of the field data plot of
Ap/(2Ap’) will require moving the field data plot in only the horizontal direction;
thus, it should be relatively easy to obtain a good match. The type-curve match of
field pressure/pressure-derivative data will determine an estimate of (Cp exp(2s))
from the specific pup/(29%p) type curve matched and will determine time match-
point values; (t)ar and (tp/Cp)m. Once time match-point values are determined,
the field data plot should be moved vertically to obtain a match of Ap versus ¢ with
the pyp-vs-tp/Cp curve corresponding to the value of Cp exp(2s) obtained from
the match of Ap/(2Ap’) data. This match will determine the pressure match-point
values as (Ap)ar and (pwp) e, and then one can estimate the permeability-thickness
product from these pressure match-point values using the following equation:

_ 141.2¢Bp (PwD)A_l_
kh = B9 , (3.1.18)

and the wellbore storage coefficient from the time match-point values using the

following equation:
_0.000205kk (£)

C= .

k(tp/Cp)a
At this point, one can compute the dimensionless wellbore storage coefficient Cp
from Eq. 3.1.13 using the value of C obtained from Eq. 3.1.19 and the skin factor

(3.1.19)
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from the value of the Cp exp(2s) associated with the curve matched as
ln [ (2")) ] (3.1.20)

It should be noted that, the preceding procedure uses the match of pressure/press-
ure-derivative data only to fix correspondence between the horizontal (t and tp /Cp)
scales and to determine the value of Cp exp(2s); however, if the wellbore storage
constant C can be estimated before type curve matching - for example, from the
unit slope line in the standard way - then the permeability-thickness product can be
computed from the time match-point values; i.e., from the obvious rearrangement
of Eq. 3.1.19. In either procedure, the type curve match obtained can be checked
by converting the Ap data to dimensionless form by using Eq. 2.1.1 and then check-
ing to see if both dimensionless pressure data and the pressure/pressure-derivative
data can be simultaneously matched with the type curves (based on both p,,p and
P«p/(20P,p)) previously matched.

We believe the preceding procedure using the type curves of Fig. 3.1.3 will
prove at least as viable as the procedure for using Fig. 3.1.2. Moreover, the fact
that the vertical scale of the derivative data, Ap/(2Ap’), is always automatically
aligned with the vertical scale of the derivative type curves is a distinct advantage
not only in type-curve matching process but also in providing an indication of
whether field data actually is representative of the solution on which all wellbore
storage and skin type curves are based.

Finally, as noted in Chapter II, one can also prepare type curves as shown in
Fig. 3.1.4, which shows log-log plots of pup/(2p,p) (solid curves with solid data
points), (29, p)/Pup (dashed curves with solid data points), and p,,p (solid curves
with open data points) versus tp/Cp for three values of Cp exp(2s). Because the
(2pL,p)/PwD solutions are simply rearrangements of the corresponding pw.p/(29),p)
solutions, adding the (2p],p)/Pwp solutions has no theoretical advantage. In cases
where we have matched field data by hand and the derivative data are noisy (os-
cillatory); however, having both groups on type curves seems to enhance visually
our ability to obtain a good match. To use the type curves of Fig. 3.1.4, one plots
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Ap/(2Ap'), (2Ap')/Ap, and Ap versus t on tracing paper. Because the vertical
scale is the same for the two sets of derivative data and for the type curve, one
first matches the two sets of derivative data by moving the field data plot only
in the horizontal direction. Once the two sets of derivative data are matched si-
multaneously, the match fixes the correspondence between the horizontal scales of
the field data plot and that of the type curve (¢ and ¢p/Cp) and determines the
value of Cp exp(2s) from the two type curves matched. The plot of Ap versus ¢ is
then matched to the pyp-vs-tp /Cp curve corresponding to the value of Cp exp(2s)
obtained from the match of two sets of derivative data. These pressure data are
matched by moving the field pressure data only in the vertical direction, and the
parameters are estimated as discussed previously. Note that in this procedure, three
sets of data are matched to three type curves in Fig. 3.1.4; to have a consistent
match, the three curves matched must all be associated with the same value of

Cp exp(2s).

3.1.3 Planar Fractures; Drawdown

Here, new type curves based on the ideas presented previously are given for a
well intercepted by a planar fracture (uniform-flux or infinite-conductivity). The
discussion in this part is restricted to the infinite-acting period when the wellbore
pressure res;onse is not affected by the reservoir drainage boundary. Moreover, it
is restricted to the cases where the well is produced at a constant rate from a single
layer homogeneous reservoir of uniform thickness with the height of the vertical
fracture equal to the formation thickness, and there exists no wellbore storage and
skin effects.

In the discussion of type curves for fractured wells, p,, , represents the logarith-
mic derivative of p,p with respect to the dimensionless time ¢;,p (see Eq. 2.1.3);
ie.,

9D
p:lD - dlntz:p H (3.1.21)

however, from Eq. 2.2.1, this derivative is identical to the logarithmic derivative
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with respect to tp (see Eq. 2.1.2) and is also the same as the logarithmic derivative
with respect to real time ¢.

The solution of the dimensionless pressure drop at well intercepted by a planar
fracture in an infinite reservoir was derived by Gringarten et al.17 and is given by

pen = 3vTs ot (1522 ) +et (3522 )] -
(ﬂ)Ei (l—zp)z]_(1+zp [ (1+zp) ] (3.1.22)

4 4t,.p dt.,p

where “erf” denotes the error function; i.e.,
erf (z exp —u? du, 3.1.23

and Ei denotes the exponential integral given by Eq. 3.1.2. In Eq. 3.1.22, zp
denotes the point at which the dimensionless pressure drop is computed, and is

defined as

Ip = —. (3.1.29)
zy

As shown by Ref. 17, the dimensionless wellbore pressure drop for a uniform-flux
fracture is obtained from Eq. 3.1.22 by setting zp = 0, whereas the dimensionless
wellbore pressure drop for an infinite-conductivity fracture is obtained from Eq.
3.1.22 by setting zp = 0.732.

Differentiating the dimensionless pressure drop given by Eq. 3.1.22 with respect

tolnt,,p gives
#tz,D l-2zp 1+4+2p
! o = X1 erf(—)+erf )] 3.1.25
o = Y2 ot (3 = e (3.1.25)

With Egs. 3.1.22 and 3.1.25, as shown in Appendix A, we can establish the following
short time and long time asymptotic formulas:

. PwD
Im —=1, 3.1.26
‘.!D-’o \/ ﬂg,D ( )
PwD
lim =1, 3.1.27
ta,p—o0 0.5 [In(tz,p) + ¢ ( )
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lim —2PeD — 1, (3-1.28)

ta;0—0 \/Xig D
and
. ) —
‘.:l;rgm 2?.,3 =1 (3.1.29)
In Eq. 3.1.27, ¢ = 2.80907 for a uniform-flux fracture and ¢ = 2.20 for an infinite-
conductivity fracture.

From Egs. 3.1.26 and 3.1.28, it follows that for sufficiently small values of ¢; ,p,
the following approximations are valid:

PuD = 2p4p = \/%te,D, (3.1.30)
and
pup _ Ap _
e =g =" (3.1.31)

where the justification of the first equality of Eq. 3.1.31 was established in Chapter
II. From Eq. 3.1.31, it follows that

20.p 2Ap
—_— = — =1 3.1.32
PwD Ap ( )

It should be noted that Egs. 3.1.30 through 3.1.32 apply during the linear flow
period. Similarly, it follows from Eqgs. 3.1.27 and 3.1.29 that for sufficiently large

values of ¢;,p,
Pop _ Ap _ % [In (tz,p) + ], (3.1.33)

and

1 _2p,p - 2A9 - 1

Pop Pup Ap 05[ln(t.,p)+¢
Note that Eqs. 3.1.33 and 3.1.34 apply during pseudoradial flow.

Figure 3.1.5 shows a log-log plot of pup, Pub/(27,,p), and (2P, p)/Pup versus

t;,p for a well at the center of a uniform-flux fracture. An inspection of the results
shows that for practical purposes linear flow occurs; that is, Egs. 3.1.30 through
3.1.32 apply for t;,p < 0.1. Similarly, pseudoradial flow occurs, that is, Eqgs. 3.1.33

and 3.1.34 with ¢ = 2.80907 apply for t;,p > 3. Note that the pressure/pressure-

(3.1.34)

derivative group, pop /(2P p), Was chosen so that it correlates exactly with the
dimensionless pressure p,p during pseudoradial flow; see Fig. 3.1.5 and Eq. 3.1.33.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10°

T 1 T T T 1 =
_ 1
[ d N X
|
- {1 1
S
N —_
= 430 % 3
= 1" X &
: 7 = \‘g
= B < &
y -
- 1 o 2
X 2
= 498 E
: 3713 =
= g - o ®
[ Q - z
R g4 a i S 3
N " .
- [ ~ - [=
N "a Q [:.
Q -
a d & B
:_ 1] N E_ - 3
- -~ " - T} é
- -
| -2 g - g 5
= Q g - - E;Q
(‘:" B 7 £ g
B -2 7 € q
$ §a - Y 53
a o « 1 N
- 402 2 T
— :'_O ZS
N ] 5 &
_ 1 = &
o (]
TN | ((THTH I I
« X
o) o - o

dy/,dvz = AMd/AMd3Z yo
(dvz)/zdv=(*dz)/Md
“(gb2 b1 )/(dvyn) = dNd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35



Similarly, Fig. 3.1.6 shows a log-log plot of pup, pun /(27 p), 2nd (20, p)/PuD
versus i, p for the infinite-conductivity case. Computational results and an inspec-
tion of Fig. 3.1.6 indicate that linear flow (Egs. 3.1.30 through 3.1.32) occurs only
for t;,p < 0.01 and that pseudoradial flow (Eqs. 3.1.33 and Egs. 3.1.34 with
¢ = 2.20) holds for ¢, >

Figure 3.1.7 presents a comparison of the uniform-flux and infinite-conductivity
solutions. Fig. 3.1.7 shows a log-log plot pyp and (2p,,p)/Pwp versus t;,p. Note
that uniform-flux and infinite-conductivity solutions are similar. However, the di-
mensionless pressure soluticn for the infinite-conductivity case falls slightly below
the dimensionless pressure solution for the uniform-flux case, and the curvature of
the two solutions in the time interval 0.05 < tz,p <5 is different. In Fig. 3.1.7,
the cross on the (2p,, p)/Pwp solution (dashed curves) denotes the time when linear
flow ends based on a 2% difference between the right and left sides of Eq. 3.1.32.
On the basis of this criterion, linear flow for the infinite-conductivity solution ends
before t;,p = 10~2. Also note that the (2p),5)/pwp solutions for the uniform-flux
and infinite-conductivity solutions cross at ¢, +D % 0.5,

Figures 3.1.5, 3.1.6 and 3.1.7 can be used as a type curve by the following
procedure.

1. Make a log-log plot of Ap, Ap/(2Ap’), and (2Ap’)/Ap versus ¢ on tracing
paper by using the basic scale of the type curve.

2. Match the two sets of pressure/pressure-derivative data, Ap/(2Ap') and
(2Ap')/ Ap simultaneously with the two derivative type curves by moving the data
plot in only the horizontal direction. This match fixes the time scale of the field data
plot and the time scale of the type curve; that is, it determines the time match-point
values, (t)ar and (tz,p)ar, Where the subscript M refers to a match-point value.

3. Perform a type-curve match of the Ap-vs-t data with the p,, D-V&-tz,p type
curve by moving the field data plot only in the vertical direction. (The corre-
spondence between the time scales has already been determined in Step 2.) This
type-curve match of pressure data yields the pressure match-point values, (Ap)s

and (p,,p)u.
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4. Using the pressure match-point values, determine the permeability from

39

k= 141:2082 (Pub)y (3.1.35)

h(Ap)y,
Using the time match-point values, determine the fracture half-length from the
following equation:

. (3.1.36)

I, = 2.637 x 10~4k (£),
éept (t2,D)pr

Although the uniform-flux and infinite-conductivity type curves represented by
the log-log plots of p,p versus ¢;,p in Figs. 3.1.5 and 3.1.6 are not new, to the
best of our knowledge, the type curves of Figs. 3.1.5 and 3.1.6, which incorpo-
rates the two sets of derivative data, have not been presented previously. Adding
the pressure/pressure-derivative solutions enhances the probability of obtaining a
unique match, identifies when nonunique results are possible, and provides another
means of checking whether the field data really represent the solution assumed by
the type curves of Figs. 3.1.5 and 3.1.6 because the vertical scales of the two sets of
field derivative data and the two pressure/pressure-derivative type curves are iden-
tical (see Eqs. 3.1.31 through 3.1.34). Again, ncte that the two derivative groups
are simply rearrangements of the same basic solution and thus, from a theoretical
viewpoint, it is sufficient to incorporate only one of the pressure/pressure-derivative
type curves (either p,p/(2pLp) or (29,,p)/Pwp) on the basic type curve. When
field data are matched by hand, however, having both pressure/pressure-derivative
groups on the type curve seems to make performing a type curve-match easier from
a visual viewpoint.

3.1.4 Planar Fractures; Buildup

Here, we investigate the validity of using new drawdown type curves presented
in the previous subsection to analyze the buildup data obtained at a planar fractured
well and delineate the conditions under which such type curves can be used to
analyze buildup data. It is shown that new drawdown type curves can be used
to analyze buildup data prior to the time when producing time effects become
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important. Moreover, it is shown that if producing time effects are important; i.e .,
buildup data cannot be analyzed by using new drawdown type curves, new buildup
type curves can be mnstm&d by using the basic pressure/pressure-derivative group
to analyze such buildup data. Although results presented here are restricted to
planar fractures, some of the specific conclusions obtained would be valid for other
reservoir/well models.

We define two buildup pressure changes, namely, p,p and p,p, respectively, by

_ kh(p; = pws)
PeD = oey (3.1.37)
and
~ kh (pwo —ow.a)
P:D = 141.2¢Bp ' (3.1.38)

where p,, is the shut-in wellbore pressure and p,, ¢, is the wellbore pressure at the
instant of shut-in; that is, the final flowing wellbore pressure.

Suresh and Tiab!? presented type curves for analyzing buildup data by plotting
dp,p [dAt, D versus Atz p, where At; p is the dimensionless shut-in time defined

by
2.637 x 10™4kAt

geenlZ,
There are two disadvantages to such an approach. First, the buildup data plotted in

Atgp= (3.1.39)

this way cannot be correlated with the analogous derivative for the drawdown case;
that is, dpup /dtz,p. Second, even for large values of producing time, a different
solution is obtained for each value of producing time (see Figs. 2 and 3 of Ref.
10). The approach taken in this work, however, is to use the logarithmic derivative
and to examine the conditions under which the type curves of Figs. 3.1.5 and 3.1.6
can be used to analyze buildup data. This approach does not suffer from these two
disadvantages. We begin with an outline of the theoretical background.

Throughout, ¢, is the producing time in hours and ¢p.,p is the dimensionless
producing time, which is defined by

: _2.637x 10~ 4kt,
pzs D de: Li: .

(3.1.40)
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Agarwal’s equivalent time and dimensionless equivalent time are denoted by t. and
t.p, respectively, and are defined, respectively, by

_ tAt
te= 5 Ap (3.1.41)
and
-t
tw - t”!DAtz!D - 20637 X 10 kte (3.1.42)

B tP’jD + At::D - é@gﬂbg’ o
Throughout our discussion of buildup analysis, Ap denotes the change in the well-
bore shut-in pressure during buildup; that is,

Ap = Pus — Pufe- (3.1.43)

In addition, )y, is the derivative of §,p with respect to the natural logarithm of
dimensionless equivalent time, and Ap' is the derivative of Ap with respect to the
natural logarithm of equivalent time:

d‘i‘D dicD

0 = T (t0)  dint,’ (3-1.44)
and
dAp
9 T e——
. Ap - dlnte, (3-1.45)

where the justification of the second equality of Eq. 3.1.44 is identical to the justi-
fication for Eq. 2.2.1. From the chain rule and Eq. 3.1.42, it follows easily that

=t _ At.,p (tpe,p0 + Atz,p) dPep _ Alsp dp,p

= 3.1.46
Pep tpe;D dAt,,p  tp din(At,,p) (3-1.46)

From a well known superposition result, we have
aD = Pwp (Atz,p) + [~PuD (tpz;D + Bte,D) + PuD (tpz,0)] » (3.1.47)

where each p,p term on the right side of Eq. 3.1.47 represents drawdown solution
(Eq. 3.1.22) evaluated at different values of dimensionless time. Replacing each
Pup term in Eq. 3.1.47 by the drawdown solution (Eq. 3.1.22) evaluated at the
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appropriate value of dimensionless time and differentiating the resulting equation
by use of Eq. 3.1.46 gives )

o _ (Atz,p)? (VBte,p [eﬂ(zl_zp )+erf( 1+2zp )]

Vatep  44/teplep & Algp At,p 2\/At;,p
_ V‘;;D + K!le

[ () ()l o
where zp = 0.0 for an uniform-flux fracture and zp = 0.732 for an infinite-
conductivity fracture.

If At;,p << tpsz,p 80 that t.p = At p, and the terms within the square
brackets of Eq. 3.1.47 can be neglected, then Eq. 3.1.47 and Eq. 3.1.48 can be
approximated by the following equations:

Pap = Pup (Atz;p) = pup (teD) (3.1.49)

and

-— -_— 1

When Egs. 3.1.49 and 3.1.50 apply, the dimensionless buildup pressure change,
P.p, and its logarithmic derivative, f,p, as a function of either At;,p or t.p will
correlate with the corresponding drawdown solutions, and in such cases, buildup
data can be analyzed with the drawdown type curves shown in Figs. 3.1.5 and
3.1.6. On the other hand, if all pyp terms in Eq. 3.1.47 can be represented by the
semilog equation (Eq. 3.1.33 evaluated at the appropriate value of dimensionless
time), then Eq. 3.1.47 reduces to

Pap = %[ln (tep) + ¢, (3.1.51)

where ¢ = 2.80907 for an uniform-flux fracture and ¢ = 2.20 for an infinite-
conductivity fracture. When Eq. 3.1.51 applies, the dimensionless buildup pressure
change, P,p, as a function of Z.p can be correlated exactly with the drawdown
semilog equation (Eq. 3.1.33); however, p,p as a function of At;,p will not agree
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with the drawdown solution unless ¢.p = At;,p. Thus, following the jdeas of
Agarwal*®, we expect that the buildup solution will correlate best with the draw-
down solution when buildu;; solution is plotted versus equivalent time.
From Eq. 3.1.48, it can be shown that
. 20p

‘01;9’0 Vﬂep
and thus for sufficiently small values of shut-in time, the following approximation
holds:

=1, (3.1.52)

27, p = Vatep. (3.1.53)

For sufficiently smail values of shut-in time, p,p is also given by right side of Eq.
3.1.53; that is,

Pap = Vrtep; (3.1.54)
therefore, it follows from Egs. 3.1.53 and 3.1.54, for sufficiently small values of ¢.p,
P.p _ Ap
2o P _, 3.1.55
2., 2A7 ( )
and
2f.p 2A7
= =1. 3.1.56
0 Ap ( )

Starting witk Eqs. 3.1.47 and 3.1.48, it can be also shown that for sufficiently
large values of At.,p, the following approximations apply:

tup iR, PP (t0) = PuD (tpz;D) (3.1.57)
and
. -' -
e, 2P0 =1 (3.1.58)

Thus, it follows from Egs.. 3.1.57 and 3.1.58 that for sufficiently large values of
At ,p, the following approximation applies:

P.D

2}3:19 = PuD (tep) = PwD (tpz,D) . (3.1.59)
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Eq. 3.1.59 always holds in the limit; that is, as At;,p — oo, or, equivalently, as
teDp — tpe,p (see Eq. 3.1.42). Eq. 3.1.59 implies that the dimensionless buildup
pressure/pressure-derivative group, ,p(tep)/[27,p(tep)], Will correlate with the
dimensionless drawdown derivative group, pup (t,0)/[2P,, p (tz,D)], at large values
of shut-in time if and only §f P,p(tep) = PubD(te,D0)/[2P%p(tz,0)] When t.p =
tp2,D, and this occurs only when Eqgs. 3.1.33 and 3.1.51 hold. (The derivations of
Eqgs. 3.1.52 through 3.1.59 are presented in Appendix B.)

Figure 3.1.8 presents a comparison between the uniform-flux drawdown and
buildup solutions for various values of the producing time, {p;,p. In Fig. 3.1.8,
the solid curves represent the drawdown solutions of Fig. 3.1.5 and also represent
the buildup solutions (plotted versus equivalent time) whenever the producing time
satisfies ¢,;,p > 3. Solid data points represent the #,p/(27,p) solutions and open
data points are used for both the (27, ) /P.p and p,p solutions. As the producing
time decreases below #pz,p = 3, the difference between the buildup and drawdown
solutions increases. For the tpz,p = 1 case shown by inverted triangles, the buildup
solutions are reasonably close to the analogous drawdown solutions. When #,2,p =
0.1, however, there is a clear difference between the buildup and drawdown solutions.
As shown by the results of Fig. 3.1.8, the p,p/(2f,p) solution always approaches
Pop when t.p approaches t,;,p, which is the result predicted by Eq. 3.1.59. Note
that this observation could be very useful in identifying the short producing time
effects directly from the field data plot of Ap/(2Ap’) versus equivalent time ¢, due
to the fact that p,p/(27.p) = Ap/(2Ap’). The resulis of Fig. 3.1.8 indicate that
the the drawdown type curves of Fig. 3.1.5 (solid curves of Fig. 3.1.8) can be used to
obtain a reasonably accurate analysis of buildup data provided that the producing
time satisfies ¢, ,p > 1 and buildup data are analyzed in terms of equivalent time.
For shorter values of producing time, one can construct a specific buildup type curve
for each value of producing time. In this regard, the buildup solutions represented
by the open and solid data points on Fig. 3.1.8 would represent the buildup type
curves for the ¢;z,p =0.1.

Similarly, Fig. 3.1.9 presents a comparison between the infinite-conductivity
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drawdown and buildup solutions. From the Figs. 3.1.8 and 3.1.9, it is apparent
that for a given value of producing time, the correlation between the buildup and
drawdown solutions is slightly better for the uniform-flux case than for the infinite-
conductivity case. For the infinite-conductivity case, computations indicate that the
difference between buildup and drawdown solutions is negligible only if £,z,p > 7.
Also note that for all values of producing time, §,p/(25,p) approaches p,p as shut-
in time increases, which indicates that the asymptotic formula of Eq. 3.1.59 also
applies for the infinite-conductivity case.

Raghavan*® constructed buildup type curves for analyzing buildup data from a
well at the center of uniform-flux and infinite-conductivity fracture. The three lower
curves in Fig. 3.1.10 represent his uniform-flux type curves for three specific values
of producing time, ¢p;,p, 0.1, 0.5, and 1.0. Note that a different buildup solution,
9.D, is obtained for each value of producing time and that the buildup pressure
change P, p is plotted versus At p not equivalent time {.p. The curve through solid
circular data points of Fig. 3.1.10 represents the corresponding drawdown solution,
PuD(tz,p) (Eq. 3.1.22 with zp = 0). The inherent problem in attempting to use
these type curves is that all buildup curves have a similar character (curvature)
and thus it is usually possible to match buildup data with more than one curve
when producing time effects are important; i.e., when the buildup and drawdown
solutions differ significantly. To determine which buildup curves should be used to
match given field data requxres that one know the dimensionless producing time,
tpz,D, Which cannot be computed directly. Comparing Figs. 3.1.8 and 3.1.10, we see
that the buildup pressure change, p,p, will correlate with the drawdown solution,
PwD(tz,D), for a longer period of time when the buildup pressure change is plotted
in terms of equivalent time, ¢.p, instead of At; p. In Fig. 3.1.10, the dimensionless
pressure/pressure-derivative group §,p/(27,p) [= Ap/(2Ap")] is also plotted versus
the dimensionless shut-in time, At;,p for each value of the producing time. Note
that here, 7, is the logarithmic derivative of p,p with respect to equivalent time
t.p not with respect to At. p and thus, during buildup, the pseudoradial Sow

regime starts when 9,p and P,p/(27.p) solutions coincide for a given value of
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the producing time. Because, as mentioned earlier, type-curve matching of this
pressure/pressure-derivative group requires only that we move the field data plot
in the horizontal direction, it was thought that adding this group to Raghavan’s
type curve, which is based on only the buildup pressure change, would enhance
one’s ability to obtain a unique match. The results of Fig. 3.1.10 show that this is
the case if sufficient buildup data are available. The results also indicate that if all
buildup data correspond to At.,p < 0.1, then it will not be possible to determine a
unique time match point by type-curve matching the pressure/pressure-derivative
data. (This result is not surprising because for At;,p < 0.1, all buildup data
reflect linear flow.) On the other hand, the results of Fig. 3.1.10, as well as other
computations not shown, indicate that if buildup data are available throughout the
time range 1072 < At;,p < 2, then one may be able to obtain 2 unique match of
the pressure /pressure-derivative data. If so, the match of derivative data determines
time match-point values, (At;,p)arr and (At)as, and the value of producing time
tpz,p from the specific curve matched. One then matches the buildup pressure data
(Ap-vs-At) plot by moving these data only vertically until a2 match with the p,p
curve corresponding to the value of ¢,;,p is obtained. This determines the values
of permeability and fracture half-length by the standard computational procedure.

Before closing this section, we note that if the producing time is sufficiently
greater than the maximum shut-in time considered, then the buildup data plotted
along the lines mentioned above can be analyzed using the drawdown type curves
presented in this work. However, if the producing time is less than the maximum
shut-in time considered, then the use of Agarwal’s equivalent time may significantly
compress the span of data available, as observed in Figs. 3.1.8 and 3.1.9, and
may even lead one to ignore the possibility of semilog analysis in some cases where

. a semilog straight line actually exists; see Rosato et al.?4, Soliman®® and Ozkan

et al®'. In such cases, the use of the pressure/pressure-derivative group can be
extremely useful in identifying the semilog straight line as follows.

For sufficiently large values of shut-in time so that pseudoradial flow prevails
during buildup; that is, pup(Atz,p) and pup(Atlz,p + tps,p) terms in Eq. 3.1.47
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can be represented by the semilog equation (Eq. 3.1.33 evaluated at the appropriate
value of dimensionless time), Eq. 3.1.47 can be written as

. 1 1
pp = 5 In(teD) + PuD (tpe,0) — 5 10 (tpz,D) - (3.1.60)

Differentiating Eq 3.1.60 with respect to In(t.p) and multiplying the resulting

equation by 2 gives
25, =1. (3.1.61)

Dividing Eq. 3.1.60 by Eq. 3.1.61 gives

Pop _ Ap _ . )
2}.:,7 =3ag ~ 0= 1.15110g (t.p) + PwD (tpz,0) — 1.15110g (¢52,p) ; (3-1.62)

that is, regardless of value of the producing time t,,p, if pseudoradial (or radial)
flow prevails during buildup, the pressure/pressure-derivative group will identify
the semilog straight line on a semilog plot of Ap/(2Ap’) versus t.. However, as
mentioned earlier, if the producing time is much shorter than the maximum shut-
in time considered, then the use of equivalent time will significantly compress the
span of data available. In such cases, a Cartesian plot of Ap/(2Ap’) versus Int,
can be used to visually expand the span of data available in identifying the semilog
straight line. If such a plot identifies a semilog straight line, then desired reservoir
parameters can be obtained from the dimensional analogue of Eq. 3.1.60 in the
conventional manner. We also note that as .p approaches to ¢p;,p, Eq. 3.1.62
reduces to Eq. 3.1.59.

3.1.5 Planar Fractyres With Wellbore Storage

In this section, new type curves are constructed for a well with wellbore storage
effects intercepted by a planar fracture (either uniform-flux or infinite-conductivity)
in an infinite reservoir. These type curves are generated using the well known
superposition result of van Everdingen and Hurst!3; that is,

upp
D = 3.1.63
PeD u[1+ Czlpuzﬁp] ’ ( )
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where u represents the Laplace transform variable with respect to the dimensionless
time, t,,p. In Eq. 3.1.63 p,p and pp, respectively, represent the Laplace space
solutions for the dimensionless wellbore pressure drop for a well produced at a
constant rate with wellbore storage effects and without wellbore storage effects.
Here, C;,p denotes the dimensionless wellbore storage constant based on fracture
half-length and is defined by

5.615C
Ceyp = SrchiZ. (3.1.64)

’
=

where C denotes the wellbore storage coefficient in RB/psi. The pup, dpwp/dtz,p
and p,, p/(2p., p) solutions were generated by using the Laplace space analytical so-
lution of Fraim and Lee®? (see Eq. 3.1.115), fp in Eq. 3.1.63, and then numerically
inverting Eq. 3.1.63 using the Stehfest>® algorithm.

Previously, type curves based on the dimensionless pressure, p,p, were pre-
sented for an infinite-conductivity fractured well influenced by wellbore storage ef-
fects by Ramey and Gringarten®® and for a uniform-flux fractured well influenced by
wellbore storage effects by Raghavan®¢. Here, we present the type curves which in-
corporates both the pressure derivative, p,, , and the pressure/pressure-derivative,
?wp/(20.,p), solutions for a planar fractured well influenced by wellbore storage
effects.

Figures 3.1.11 and 3.1.12 show uniform-flux and infinite-conductivity type
curves, respectively, based on both the dimensionless pressure, p,p, and its log-
arithmic derivative, p{,,, versus dimensionless time, ¢;,p, for a well influenced by
wellbore storage effects. In Figs. 3.1.11 and 3.1.12, the solid curves represent log-log
plots of pyp versus ¢;,p and dashed curves represent log-log plots of p,,, versus
tz,p for various values of the dimensionless wellbore storage coefficient C;,p. The
solid and dashed curves through circular data points represent the solutions without
wellbore storage effects; that is, Cz,p = 0. An inspection of results of Figs. 3.1.11
and 3.1.12 indicates that during wellbore storage dominated flow; that is at early
times, both the dimensionless pressure and its logarithmic derivative display 2 unit
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slope line predicted by the following relation:

tz,D
=pl y= =L, 3.1.65
PuwD = Pip Cerp ( )

Note that the same result was obtained for unfractured wells (see section 3.1.2)
during the time period that wellbore storage controls the pressure response. At
late times (t;,p > 100), for all values of dimensionless wellbore storage constants
considered in Figs. 3.1.11 and 3.1.12, wellbore storage effects no longer controls
the pressure response; that is, pseudoradial flow prevails. When pseudoradial flow
prevails, the following equations apply:

Pup = % [In(tz,D) +¢], (3.1.66)

and
pp =0.5. (3.1.67)

In Eq. 3.1.66, ¢ = 2.80907 for an uniform-flux fracture and ¢ = 2.2 for an infinite-
conductivity fracture. It should be also noted from Figs. 3.1.11 and 3.1.12 that
for large values of dimensionless wellbore storage constant during the transition
time period from wellbore storage dominated flow to the pseudoradial flow, linear
flow period is obscured because both the dimensionless pressure and its logarithmic
derivative do not display the half slope line predicted by Eq. 3.1.30.

Figures 3.1.13 and 3.1.14, respectively, show new uniform-flux and infinite-
conductivity type curves based on the Jerivative group, pup/(2p,p), versus the
dimensionless time, ;,p, in log-log coordinates for the same values of dimension-
less wellbore storage coefficient considered in Figs. 3.1.11 and 3.1.12. In Figs.
3.1.13 and 3.1.14, again the solid curve through circular data points represents the
solution without wellbore storage effects; i.e., C;,p = 0. In general, the character
(curvature) of the curves are quite good with regard to obtaining a well-defined
type-curve match of field data plot of Ap/(2Ap’) versus t. However, at early times
and for values C;,p > 0.01, the graph of pyp /(29 p) is flat and equals 0.5, which
indicates that in this interval, a unique match of field data plot with the type curves
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of Figs. 3.1.13 and 3.1.14 is not possible for determining reservoir permeability and
fracture half-length. If the field data are available beyond this interval, then a
unique match of field data plot of Ap/(2Ap’) is possible for determining reservoir
parameters and fracture half-length. When wellbore storage effects no longer dom-
inate the pop /(2p{,p) solution, the py,p/(2p, p) solution for a given value of C;,p
merges with the associated pressure/pressure-derivative solution without wellbore
storage effects; that is, pwp/(2p],p) solution corresponding to a value of C.,p =0
(solid curves with circular data points in Figs. 3.1.13 and 3.1.14). Note that each
curve merges to the curve corresponding to Cz,p = 0 at a different time depend-
ing on the value of Cz,p. Also note that the linear flow regime does not exist for
large values of C:,p; that is, pup/(2p,,p) never equals 1. Given the solution for
a particular value of C;,p, pseudoradial flow exists when the following equation
holds:

PuD _ % [In (¢2,0) +¢]. (3.1.68)

The type curves of Figs. 3.1.13 and 3.1.14 can be extremely useful in analyzing
well test data obtained at fractured well influenced by wellbore storage effects and
in identifying the flow regimes exhibited by the field data. In using the type curves
of Figs. 3.1.11 through 3.1.14, one first matches the pressure/pressure-derivative
plotted as Ap/(2Ap') versus t with the appropriate type curve [p,p/(29.,p)] shown
in Figs. 3.1.13 and 3.1.14 by the standard procedure described earlier; i.e., by
the horizontal movement of the field data plot only. This type-curve match of the
Ap/(2Ap') data will give an estimate of C;,p from the specific type curve matched,
and the time match points will fix the correspondence between ¢ and ¢;,5. Once
this correspondence is fixed, one prepares a log-log plot of Ap and Ap’ versus ¢
on a tracing paper using the basic scale of type curves shown in Figs. 3.1.11 and
3.1.12 and matches both Ap and Ap’ versus ¢ simultaneously with the p,,p and p, p,
versus ¢;,p type curve corresponding to value of C;,p obtained from the previous
match by a vertical movement of field data plot. At this point, one can estimate
the permeability from the pressure match-point values, fracture half-length from
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the time match-point values, and the value of wellbore storage coefficient from the
value of C;, p associated with the curve matched; i.e., once the pressure match-point

values are obtained, the parameters are estimated by the standard procedure®4:65,

3.1.6 Finite-Conductivity Fractures

In this section, we consider finite-conductivity fractures and present new type
curves based for analyzing well test data obtained at a well intercepted by a finite-
conductivity vertical fracture. All results presented in this section assume constant
rate production, no wellbore storage effects, negligible fracture storage, negligible
fracture damage, and a single layer homogeneous reservoir of uniform thickness with
the height of the vertical fracture equal to the formation thickness. A plan view of
the reservoir/fracture system is shown in Fig. 3.1.15. Although Fig. 3.1.15 depicts
a square drainage region, we present only results for the infinite-acting period so the
outer reservoir boundaries have no influence on the wellbore pressure response for
the time periods considered. (Fig. 3.1.15 would also depict the reservoir/fracture
system for the uniform-flux and infinite-conductivity solutions considered in the
previous sections provided we let the fracture width b approach zero to obtain a
planar fracture.) All results presented here were generated via a numerical simulator
written by Bennett®.

For finite-conductivity fractures, the dimensionless fracture conductivity is de-

fined by
kb

Cip= (3.1.69)

where k; and b, respectively, denote the permeability in the fracture and the width
of the fracture.

As is well known, for the infinite-acting period, there exist three distinct flow
regimes of practical interest that may be exhibited by the wellbore pressure re-
sponse, bilinear flow which was discovered by Cinco-L. and Samaniego?? (also see
Refs. 9, 23 and 24), pseudolinear flow, Refs. 9, 21, 24 and 66, and pseudoradial flow,
Refs. 9, 20-24 and 66. During bilinear flow, the dimensionless wellbore pressure
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drop is given by
1/4
a’tz/D

P> = T5/4)v/2Crn’

where I' denotes the gamma function. The pressure response during pseudolinear

(3.1.70)

and pseudoradial flow, respectively, is given by
PuD = \/¥ie;p + 55— c (3.1.7)

and
Pup = ‘(ln(tz;D) +0.80907) +In (L ) +ar

= §(ln(tp) + 0.80907) + 3. (3.1.72)

From the results of Refs. 24 and 66, pseudolinear fiow as described by Eq. 3.1.71
occurs provided that Cyp > 15. (For 5 < Cyp < 15, an equation similar to Eq.
3.1.71 applies provided the constant 7 /3 in Eq. 31 is decreased; see Ref. 24.) In Eq.
3.1.72, s; denotes the skin factor due to the existence of a fracture and is related
to the effective wellbore radius r/, and the fracture half-length by

= reetr = 222, (3.1.73)

where n is a parameter whose value depends on Cp; see, for example, Refs. 20 and
57. (For an infinite-conductivity fracture, n = 2 and for a uniform-flux fracture,
n = e¢; see Ref. 17) From Egs. 3.1.73 and 3.1.72, it follows easily that, during
pseudoradial flow,

Pwp = %(ln(t,,p) + 0.80907) + In(n) =

%(ln(tp,-;) + 0.80907) (3-1.74)

where, as noted previously, the value of n is determined by the value of C;p. In
Eq. 3.1.74, tp,., denotes dimensionless time based on the effective wellbore radius

v/ ; that is,

2.637 x 10~ 4kt

S (L] (3.1.75)

tp,.l' =
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As is well known?*22, p,p is a unique function of ¢z,p and Cyp during the
infinite-acting period. Note this is the expected result based on Egs. 3.1.70, 3.1.71
and 3.1.72. Based on this result, several authors have presented type curves for ana-
lyzing well-test pressure data obtained at a well intercepted by a finite-conductivity
vertical fracture. In particular, Refs. 20 and 21 presented type curves as log-log
plots of pyp versus t;,p with each curve corresponding to a specific value of Cyp.
(The type curves of Refs. 20 and 21 assume a single-layer reservoir with the fracture
height equal to the formation thickness and the well in the center of the fracture,
but the results of Refs. 68-71 indicate that the type curves are applicable for more
general conditions.) Subsequent to the work of Refs. 20 and 21, Cinco-L. and
Samaniego-V.22 presented the solutions (type-curves) as log-log graphs of Cyppwp
versus Cfpt,,p with each curve corresponding to a specific value of Cyp. Wong
et al.® added the pressure derivative solutions (dashed curves in Fig. 3.1.16) to
these type curves to obtain the complete type curves shown in Fig. 3.1.16 which
are discussed in more detail later. Finally, Rosato et al.3® prepared type curves as
log-log plots of pyp versus tz,p/C7p. The type curves of Ref. 22 (dimensionless
pressure solutions shown as solid curves in Fig. 3.1.16) as well as the type curves

of Ref. 23 correlate solutions for all values of Cyp during bilinear flow.

Superficially, it appears that the type curves of Refs. 20, 21 and 23 have an
advantage if a prefracture estimate of flow capacity, kk, is known since, in this case,
measured Ap data can be converted to dimensionless form using Eq. 2.1.1. A log-
log plot of this p,p versus ¢t data can then be type-curve matched by moving this
data only in the horizontal direction. Such a procedure simplifies the type curve
matching procedure but does not resolve the problem of a nonunique match in all
cases. In fact, one of the significant advantages of the Wong et al.® type curves is
that their method of plotting makes it clear when nonunique results are possible.

The basis for the type curves of Ref. 22 (pressure solutions represented by solid
curves in Fig. 3.1.16 ) caa be seen as follows. Multiplying Eq. 3.1.70 by C;p and
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rearranging the resulting equation gives

x 1/4
= ———(C?pt . 3.1.76
CsDPuwD TG/ \/5( 7D z,D) ( )

By multiplying Eq. 3.1.71 by Cyp, we obtain

T
Cippop = \/ﬂ’c?ptz,p +3 (3.1.77)

Eqgs. 3.1.76 and 3.1.77 indicate that solutions for all values of Cyp can be combined
to obtain a single-curve during both the bilinear and pseudolinear flow regimes
provided that solutions are graphed as Cyppwp versus C7ptz,p.

Taking logarithmic derivatives of Egs. 3.1.76 and 3.1.77 with respect to ¢;,p,
respectively, gives

/
Cspplp = —me—(t=,0C%p ) » 3.1.78
{DPuyD 4\/51‘(5/4)( 4D jD) ( )
during bilinear flow and
1/2
Crota = L (t2,0C8) 7, (3.1.79)

during pseudolinear flow. Note that Egs. 3.1.78 and 3.1.79 indicate that during
both bilinear flow and pseudolinear flow, derivative solutions for all values of Cyp
can be cumbined into a single-curve by plotting these solutions as Cyppl, p versus
tz,0C7p-

Figure 3.1.16 displays the type curves of Wong et al?. In Fig. 3.1.16, the solid
curves and dashed curves, respectively, represent graphs of p,pCysp and p,,,Csp
versus ¢,,pCp. The point on the solid curve labeled with a cross corresponds to
the time at which ¢;,pC7p = 0.1 which corresponds to the approximate time at
which bilinear flow ends for Cyp > 3 according to the results of Ref. 22. (For
Cyp < 3, formulas for the ending time of bilinear flow are more complicated; see
Ref. 22.) According to the results of Ref. 66, pseudolinear flow, Eq. 3.1.71, begins
approximately at the time corresponding to t.,pC7p = 1 which corresponds to the
point labeled with an open triangle in Fig. 3.1.16. Points labeled with solid circles
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in Fig. 3.1.16 correspond to the approximate time at which pseudoradial flow begins
for the various values of Cyp. Note for Cyp > 10x, all p,pCyp solutions correlate
{lie on the same curve) for ¢;,p < 10° and all corresponding p/, ,Cyp solutions lie
on the top dashed curve for ¢;,p < 10? as expected based on the discussion given
previously. This indicates that if Cyp > 107 and all pressure data corresponds to
tz,0Cjp < 102, then it will not be possible to determine Cyp directly from the
type curve match obtained using the type curves of Fig. 3.1.16 even though the
type curve match will be unique. However, if prefracture estimates of k and k are
available, a complete analysis is still possible as discussed later.

If all measured pressure data corresponds to the bilinear flow period, there ex-
ists no reliable procedure to determine fracture half-length. However, if prefracture
estimates of k and k are known, one can obtain fracture conductivity k;b from a
fourth root of time plot and a lower bound for L., and an upper bound for Cyp
can be obtained; see Refs. 9, 22 and 23.

To use the type curves of Fig. 3.1.16, one prepares a log-log plot of Ap and Ap’
versus t on tracing paper using the scales of the type curve, and then simultaneously
matches pressure and pressure derivative data with the type curve of Fig. 3.1.16.
Under ideal circumstances, one obtains a unique match which gives the match point
values: (Ap) ), and (punCyp)u; (A9)as and (pl,pCyp)ae; () and (tz,0Cp)u
and also gives the value of (Cyp)n corresponding to the the Cyp value associated
with the pressure and pressure derivative curves matched. Here, the subscript M
denotes a match point value. The value of flow capacity, kk, can be determined
from the obvious rearrangement of the followirg equation:

kh (PwpCsp)
C = M
141.2¢Bu ( 4 D)“ Ap | (3.1.80)

and then assuming that the reservoir thickness k is known, the permeability k can
be determired. The fracture half-length can be determined by taking square roots
in the following equation:

2 =™ (CJD)L 2.637 x 10~*k
= (tz +D c}p ) M 4’6:#

(3.1.81)
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If a unique type curve match is obtained, but the value of Cyp cannot be determined
from the match as discussed previously, then a complete analysis is still possible
provided prefracture estimates of k and k are available. In this case, one computes
(Cyp) s from the obvious rearrangement of Eq. 3.1.80 and then still computes L.,
with Eq. 3.1.81. After the values of Cyp, k and L., have been determined, one
can estimate the value of ksb from Eq. 3.1.69. Once Cyp has been determined, one
can determine the value of n (see Refs. 67 and 20) and then one can estimate the
value of the skin factor s; due to the existence of the fracture by taking the natural
logarithm of Eq. 3.1.73 and solving the resulting equation for s;. However, this
value of sy is meaningful only at times subsei;uent to the beginning of pseudoradial
flow.
From Egs. 3.1.76 and 3.1.78, it follows that

PuwD
=2 3.1.82
2P'QD ? ( )

during bilinear flow. From Eqgs. 3.1.77 and 3.1.79, it follows easily that

wa
=14+ (3.1.83)
2700 [3, /C}Dt,,p]
during pseudolinear flow. Similarly, during pseudoradial flow,
Pob — pop =1.151 (log(tpz,) +0.351 + log(n?)). (3.1.84)

2Pup

Figure 3.1.17 presents a semilog type curve motivated by the results of Egs.
3.1.82 and 3.1.83. Note that for practical purposes Eq. 3.1.82 appliesfor¢;,p C}D <
10! provided that C;p > 3. The open triangle on Fig. 3.1.17 corresponds to the
time where ¢;,pC7p = 1 which represents the time at which pseudolinear flow
begins for Cyp > 15; see Ref. 66. Note that the term in square braces on the right
side of Eq. 3.1.83 is not negligible at this time; in fact, this term does not ever
become completely negligible unless C;p is very large. Note that the uniform-flux
and infinite-conductivity fracture solutions are also shown on Fig. 3.1.17 where we
have used C;p = 100« for the infinite-conductivity case and Cyp = 4.4 for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65



at=yaln snsiop (9%dg)/a™d uo paseq sainD adAL [[9p PRINIORIT A)ALIONPUOD-DYULY MON - LT'T'E “Bid

05 9% 4NOYS IWIL SSIINOISNIWIA

4Ol 20l _ 20l -0l

220 949 1

XN1d4 WHOJINN --0--

ALINLONANOD 3LINIANI~-0--

(dvz2)/dy=(IMdz)/IMd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



uniform-flux case. The solid circular data points on Fig. 3.1.17 correspond to the
approximate time at which pseudoradial flow (Eq. 3.1.84) begins. The advantages of
the semilog type curve of Fig. 3.1.17 is similar to the advantages of the type curves
of Figs. 3.1.1, 3.1.3, 3.1.5, 3.1.6, 3.1.13 and 3.1.14. Specifically, the type curve
allows us to identify flow regimes, allows us to determiae if measured pressure
data actually does correspond to a finite-conductivity fracture and simplifies the
type curve matching procedure since Ap/(2Ap’) versus ¢ data is moved only in the
horizontal direction in order to obtain a type-curve match using Fig. 3.1.17. From
such a type curve match, one can determine how to complete the analysis. This
type curve match should clearly indicate whether data corresponding to bilinear,
pseudolinear and pseudoradial flow are available. Given sufficient data, this type-
curve match will indicate whether analysis should be based on the uniform-flux
solution, the infinite-conductivity solution, or the finite-conductivity solutions for
a particular value of C;p. The type-curve match will also fix the correspondence
between ¢ and ¢p.,C7p; that is, determine the time match-point values so that data
can then be type-curve matched with the type curves of Fig. 3.1.16 by moving data
only in the vertical direction. In fact, if k and k are known from a prefracture test
and Cyp is determined by type-curve matching with Fig. 3.1.17, then a complete
analysis can be obtained from this match. Here, one would determine L., from Eq.
3.1.81 and then proceed as discussed previously.

Although we prefer the mode of graphing used in Fig. 3.1.16 because it cor-
relates solutions during the bilinear and pseudolinear flow regimes, it is possible to
present type curves in other ways. For example, Figs. 3.1.18 and 3.1.19 present
type curves along the lines of Refs. 20 and 21. Fig. 3.1.18 shows the type curve
where we have added the pressure derivative, pl, , to the original type curves based
on dimensionless pressure, p,p. Similarly, Fig. 3.1.19 shows the type curve where
the pressure/pressure-derivative group, pup/(2p,,p) is plotted against the dimen-
sionless time, t;,p. It is also possible to prepare type curves as log-log plots of
Pwp and pl p, versus tp,; as shown in Fig. 3.1.20. These type curves correlate

all solutions during the pseudoradial flow regime. (To the best of our knowledge,
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the type curves of Figs. 3.1.17, 3.1.18, 3.1.19 and 3.1.20 have not been presented

previously.)

Here, we present new type curves using the basic ideas presented previously

for the case where an unfractured well is located at the center of a close bounded

square reservoir. All results assume constant rate production from a line source
well, and no wellbore storage and skin effects. Type curves were obtained using
the solution based on superposition and the method of images3%:7%:73, Although
we only generate type curves for analyzing weﬂ test data obtained at a well located
in a closed bounded square reservoir, type curves can be constructed for other
geometric shapes and well locations by using the solution procedure described in
Ref. 73. These type curves can then be used to analyze field data along the same
lines presented in the following for a well at the center of a closed square.

As is well known, for an unfractured well in a closed bounded reservoir, there
exist two distinct flow regimes which can be exhibited by the wellbore pressure
response; radial flow and pseudosteady-state flow. During radial flow, the dimen-
sionless pressure drop and its logarithmic derivative are given by the following well

known equations:

Pub = % [in (tp) +0.80907], (3.1.85)
and
, 1
Pop =3 (3.1.86)

During pseudosteady-state_flow period; that is, the time period that the physical
no-flow boundaries of reservoir control the well pressure response, the dimeasionless

well pressure drop and its logarithmic derivative are given, respectively, by

1 44
Pup (tp) = 27tap + Elfl (m) ’ (3.1.87)
and

’ - J— =2 .1,
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where tp and t4p, respectively, denote the dimensionless time based on wellbore
radius r,, (Eq. 2.1.2) and the dimensionless time based on well’s drainage area A
(Eq. 2.1.4). The relation between tp and ¢4p follows directly from Eqs. 2.1.2 and
2.14 as '

tap = (—"'L)2 ip. (3.1.89)

VA
In Eq. 3.1.88, C4 (= 30.8828 for a well at the center of a closed square drainage

region) is the Dietz shape factor®®, and 4 (= 0.57722) is the Euler’s constant.

Type curves based on the pressure derivative for analyzing well test data ob-
tained at a well located in a closed bounded rectangular reservoir were first presented
by Tiab and Chrichlow!. Type curves of Ref. 1 were based on a plot of the Carte-
sian derivative, dp,p/dtp4, versus dimensionless time t,p. Later, Proano and
Lilley”* presented type curves based on both the dimensionless pressure p,,p and
the logarithmic derivative of pressure change, dp,p/dIn(t4p) (= dpup/dintp),
for analyzing well test data obtained at a well influenced by wellbore storage and
skin effects in a closed bounded reservoir. As mentioned earlier, the approach taken
in this work for constructing derivative type curves is different from those of Refs. 1
and 74. Our approach is to use the pressure/pressure-derivative group in generating
type curves which will further simplify interpretation and analysis of well test data
obtained at a well located in a closed bounded reservoir.

The motivation for the new type curves follows. During radial flow; that is,
When Egs. 3.1.85 and 3.1.86 apply, it can be easily shown that

‘;"TI; = Pup = %[ln (tp) + 0.80907]. (3.1.90)

Similarly, during pseudosteady-state flow; that is, when Egs. 3.1.87 and 3.1.88
apply, the following equation holds:

PwD _ _1_
20 2 +a(tap), (3.1.91)
where a(tap) is given by
1 4A
a (tAD) = Sﬂ’tAD In [c"CAr?,,] (3.1.92)
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If t o p is sufficiently large so that a(t4p) is negligible compared to 0.5 in Eq. 3.1.91,
then Eq. 3.1.91 reduces to

Pop _ Op _1 (3.1.93)

Figure 3.1.21 shows new type curves for a well in the center of a closed (no-flow
outer boundaries) square reservoir. The solid curves represent the log-log plots of
Puwp versus tp and the dashed curves represent the log-log plots of pwp/(20%p)
versus tp for various values of the parameter \/Z/r.,. Points labeled with a solid
circle on the dimensionless pressure/pressure-derivative solutions for a given value
of \/z_i/ rw denote the time when pseudosteady-state flow begins according to the
criterion that pseudosteady-state flow begins at the earliest time such that left and
right sides of Eq. 3.1.88 differ no more than 5%. The curve labeled with an infinity
sign on Fig. 3.1.21 represents the infinite-acting solution given by Eq. 3.1.85. Note
that during the infinite-acting period, pwp and pyp/(2p),p) solutions are identical
(see Eq. 3.1.90). Thus, for the infinite-acting solution (solid curve labeled by
infinity sign in Fig. 3.1.20), pup coincides with p,p/(2p,,p) at all times. However,
when no-flow boundaries of the reservoir start to influence the well response, both
the pyp and p,p/(2p.,p) solution diverge from the infinite-acting solution (curve
labeled with an infinity sign). Moreover, for a given particular value of VA/re,
the pop/(2p),p) solution approaches asymptotically the value of 0.5 as predicted
by Eq. 3.1.93. Note that the character (curvature) of curves representing the
Puwp/(29,p) group is very good compared to the character of curves representing
the p,p solution, and thus, adding the p.p/(2p/, p) solutions should enhance one’s
ability to obtain a well-defined match of field data and to identify the flow regimes
exhibited by actual field data.

The procedure using the type curves of Fig. 3.1.21 is identical to procedure
discussed earlier. Once the time match-point, pressure match-point values and the
parameter \/Z/r., are obtained from the type-curve match of field data with a
particular type curve of Fig. 3.1.20,.one can determine the flow capacity using the
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pressure match-point values from

141.29Bp (Pwp) s
(AP) ’

and the porosity-compressibility-thickness product using the time-match point val-

kh =

(3.1.94)

ues from

2.637 x 10~%kh (t),,
h= M
bt w12 (o)

The well’s drainage area can be determined using the value of v/4/r,, obtained from
the specific type curve matched in Fig. 3.1.20 as

3
A= (ﬁ) r2. (3.1.96)

T /e
Note that if all field data corresponds to infinite acting period (radial flow period),
then the value of the parameter \/.71/ rw cannot be determined from the type-curve
match of field data. In this case, one can only obtain a lower bound for well’s
drainage area from Eq. 3.1.96.
As a final remark, we note that the p,p and pup/(2p,,p) solutions shown

(3.1.95)

in Fig. 3.1.21 assume no damage or no stimulation around the wellbore, that is,
assume that the skin factor is zero. However, the type curves of Fig. 3.1.21 can be
used to analyze nonzero skin cases provided the effective wellbore radius concept”™

is used. The effective wellbore radius is defined by

rl, = ry, exp(—s), (3.1.97)

where s is the skin factor due to damage or stimulation around the wellbore. ¥ ¢p
(Eq. 2.1.2) is replaced by tp,s, (Eq. 3.1.75) and vA/ry is replaced by v/A/r.,, then
one can use the type curves of Fig. 3.1.20 to analyze the field data influenced by
skin effect with the same procedure discussed earlier for the case where field data is
not influenced by skin effect. In this case, one will still use Eq. 3.1.94 to determine
the value of flow capacity. However, the effective wellbore radius, rl,, should be
computed from time match-point values, provided that ¢c:k product is known, as

. [2631x 104Kk t),, .
L = ‘/7 doihi (o) (3.1.98)
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After obtaining v/, from Eq. 3.1.98 one can determine both the skin factor s from
the obvious rearrangement of Eq. 3.1.97 and the well’s drainage area from Eq.
3.1.96 with r,, replaced by ..

In this section, we consider the case where a planar (uniform-flux or infinite-
conductivity) fractured well in the center of a closed (no-flow boundaries) square
drainage region as depicted by Fig. 3.1.15 with b = 0. We consider both the case
where the well is produced at a constant rate and the case where the well is produced
at a constant wellbore pressure. The area of the square drainage regior-{see Fig.
3.1.15) is given by

A=4L2, (3.1.99)

where L., represents the distance from the well to the external boundary in both
the z and y directions. The fracture is assumed to lie along the z axis; i.e., the
fracture is parallel to two sides of the square drainage region.

In the discussion of constant pressure production case, gp denotes the dimen-
sionless well rate defined as

['}5] (tz;D) = %’

and ¢}, denotes the logarithmic derivative of dimensionless rate gp with respect to

(3.1.100)

tz,D; ie.,

& dgp dgp _ dop _ dgp (3.1.101)

~dn(t,,p) din(tp) din(tap) dint
Here, ¢(t) is the well production rate measured at the surface as a function of time
in STB/D and p,; is the bottom-hole pressure. The equalities of Eq. 3.1.101 follow
from the results of Chapter II.

3.1.8.1 Constant Rate Production
Figures 3.1.22 and 3.1.23 show uniform-flux and infinite-conductivity type
curves, respectively, for a well in the center of a closed square drainage region.
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The pup versus ¢;,p solutions shown in Figs. 3.1.22 and 3.1.23 were constructed
by use of Gringarten et al.’s'? solution (also see Gringarten'?); that is,

pap =2 [ [1 +2 g ep (-.mz,rzf)]

[1 +2 f: exp (—4n?s%r) 'm'f:ZL‘;I{L") cos (nxzpLe, /L,,)] dr, (3.1.102)
zg [ Lize

n=1

where t4p represents the dimensionless time based on drainage area of square region
and zp denotes the point where the well pressure is computed; zp = 0 for uniform-
flux and zp = 0.732 for infinite-conductivity. The p,p/(2pl,p) solutions were
constructed using Eq. 3.1.102 and its logarithmic derivative; i.e.,

0
Pp=2ntap |1+2) exp (—4n21r’t,w)]
n=1

1+2 i exp (—4n27rzt.u>) Binn(;tng,/, 1/;13:.) cos (rxzpLs, /Lz,)] . (3.1.103)
n=1 Zg] “Ze

The solid curves represent log-log plots of pyp versus t;,p and the dashed
curves represent log-log plots of p,p/(2p),p) versus ¢.,p for various values of the
penetration ratio L., /L.,. Points labeled with a cross on the dimensionless-pressure
solutions of Figs. 3.1.22 and 3.1.23 denote the time at which linear flow ends
according to criterion that linear flow ends at the earliest time such that the left
and right sides of Eq. 3.1.30 differ by 2%. Similarly, points labeled with a cross on
the pup/(2p.,p) solutions denote the time at which linear flow ends according to
the criterion that linear flow ends at the earliest time at which the left and right
terms of Eq. 3.1.31 differ by 2%. Different criteria for the end of linear flow (or
more generally, for the beginning or end of any flow regime) give different times.
Note that linear flow lasts longest when L., /L., = 1 because in this case linear flow
continues until the reservoir boundary influences the wellbore pressure response.

The curves labeled with an infinity sign on Figs. 3.1.22 and 3.1.23 represent
the infinite-acting solutions discussed previously in Section 3.1.3. Pseudoradial flow
(Eq. 3.1.33) begins at the time when the ps,p/(2p],p) solution for a given value of
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L., /L., merges with the associated infinite-acting dimensionless pressure solution.
Note that pseudoradial flow does not exist for all values of the L, /L;,. Given the
solutions for a particular value of L,,/L.,, for practical purposes, pseudosteady-
state flow begins when these solutions diverge from the corresponding infinite-acting
solution. The time at which pseudosteady-state flow begins may be approximated

by t4p = 0.1, or, equivalently, by

L 2
tz,p =04 (—i) . (3.1.104)
L.,

Eq. 3.1.104 follows directly from the relation between t4p and ¢;,p; that is,

A 4I2
tz;p = Et‘qp = —Lg—z"tAp. (3.1.105)
$4 4

When pseudostedy-state flow prevails; that is when t4p > 0.1, it is well known!®
that the following equation applies:

1 4A
PuwD = 27tap + 5 In (-e_,—C}L—gj) s (3.1.106)

where Cy is the fractured well shape factor defined by Gringartenl®. Differentiating
Eq. 3.1.106 with respect to In(¢;,p) and multiplying the resulting equation by 2
gives

2pL,p = 47taD. (3.1.107)

Furihermore, dividing Eq. 3.1.106 by Eg. 3.1.107, we cbtzain

PwD
—— =0.5+ay(t ’ 3.1.108
2 o 1 (tap) ( )
where we define ay(t4p) as
1 44
ay (tap) = 87taD In c_'C!sz] . (3.1.109)

Note that a; is as same as the equation obtained for an unfractured well in a closed
bounded reservoir provided that A/rZ replaced by A/LZ, and C, replaced by C;
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in Eq. 3.1.92. In fact, if the effective wellbore radius concept can be used, then Eq.
3.1.109 can be rewritten as

(3.1.110)

as (tap) = - [ 2

8xtap |e7Ca(rL)*]’

where C, is the unfractured well shape factor for reservoir/well geometry under
consideration and r,, represents the effective wellbore radius which is given by

L= -L—;f- (3.1.111)

It should be noted that when Eqs. 3.1.109 and 3.1.110 are equivalent, there is a
relationship beiween the unfractured well shape factor, C,, and the fractured well
shape factor, C;. This relationship is given by the following equation:

Cr = %, (3.1.112)

where n = e for an uniform-flux fractured well and » = 2 for an infinite-conductivity
fractured well. From the results of Refs. 19 and 65, we expect that Eq. 3.1.111 (or
Eq. 3.1.112) will not be valid for all values of the penetration ratio, L., /L.,. If Eq.
3.1.111 is not valid, then one should use equation Eq. 3.1.109 provided the shape
factor Cy is determined from the tables of Ref. 19 as a function of L., /L.,. As
is established in the previous section on unfractured wells, as time gets sufficiently
large so that a; is negligible compared to 0.5 in Eq. 3.1.108, then Eq. 3.1.108
reduces to Eq. 3.1.93. From results of Figs. 3.1.21 and 3.1.22, it is apparent
that for a given value of L., /L.,, when t;,p > 0.4(L:,/L,)?, the pop/(2p.,p)
solution diverges from the infinite-acting solution and asymptotically approaches
0.5 as dimensionless time ;,p increases, which indicates that asymptotic formula
of Eq. 3.1.93 also applies for the fractured well case.

The procedure using the type curves of Figs. 3.1.22 and 3.1.23 is identical to
the procedure discussed for Fig. 3.1.21. The character of the curves representing the
pressure/pressure-derivative group pup/(2p,p) is quite good, particularly during
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time period 0.05 < t4p < 1. Therefore, one should be able to obtain a good match
of field data with type cnrv.es of Figs. 3.1.22 and 3.1.23.

Finally, we note that it is possible to construct type curves for fractured wells
in the straightforward way; by plotting both pyp and p,, versus t;,p. The type
curves obtained in this way for the uniform-flux and infinite-conductivity fracture
cases are shown in Figs. 3.1.24 and 3.1.25, respectively. The advantage of these
type curves, as mentioned earlier, is that one can perform a simultaneous match of

both Ap and Ap’ versus time ¢ data.

3.1.8.2 Constant Pressure Production

Here, we consider the case where a planar fractured well located in the center
of a closed bounded square reservoir is produced at a constant wellbore pressure.
All results presented in this section are generated by using the well known result
given by van Everdingen and Hurst!3, that is,

dp () Pup () = ;1,- (3.1.113)

where u is the Laplace transform variable with respect to dimensionless time ¢;,p.
Here, pyp represents the Laplace space solution of the dimensionless pressure for
the constant production rate case, that is, the Laplace space solution of Eq. 3.1.102,
and gp represents the Laplace space solution for the dimensionless rate defined by
Eq. 3.1.100. for constant pressure production case. It follows from Eq. 3.1.113
that the dimensionless flow rate gp can be generated by numerically inverting the

following equation:

1
u?Pup (u) ’
using the Stehfest algorithm provided that the Laplace space solution of dimen-

dp (v) = (3.1.114)

sionless pressure p,p (see Eq. 3.1.102) for the constant rate production case is
available. Recently, the Laplace transform of the dimensionless pressure solution
Pwp (Ea. 3.1.102) was presented by Fraim and Lee®? and is given by

ﬁwD (u) = %[EL:./_L” coth (ﬁLz./Lz,) +
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co rspl 1) 8 (2 e B P )

»; sin(nxL;,/L.,) nvl.,/L,, 2\ /(L[ Lz,)?u + n?77

(3.1.115)

Previously, type curves based on the dimensionless rate gp for an infinite-
conductivity fractured well produced at a constant pressure were presented by Ref.
76. Here, we present type curves which incorporate the logarithmic derivative of
dimensionless rate; g}, and the logarithmic derivative of dimensionless rate divided
by the dimensionless rate; that is, —2¢}, /gp, for analyzing well rate data obtained
at a fractured well produced at a constant wellbore pressure.

For a planar fractured well produced at a constant pressure, the dimension-
less flow rate gp exhibits three distinct flow regimes, namely, linear flow regime
during which the production rate declines linearly with time, pseudoradial flow
regime during which production rate declines semi-logarithmically with time, and
the boundary dominated flow regime during which rate declines exponentially with
time. As shown in Appendix C, during linear flow regime, the dimensionless rate is

given by
1

2
W bern) = 2 e
4

During pseudoradial flow and boundary-dominated flow, respectively, the following
equations for the dimensionless rate apply:

(3.1.116)

1
@ (tz;0) = g5 [In (tz,0) + ]’

where ¢ = 2.80907 for an uniform-flux fracture and ¢ = 2.20 for an infinite-

(3.1.117)

conductivity fracture, and
ap (tz;p) = éf- exp [i::‘—p] R (3.1.118)
where
a; =310 [%:ALT,] (3.1.119)

Differentiating Egs. 3.1.116 througﬁ 3.1.118 with respect to In(t;,p) gives, respec-

tively,
1

—gp= -%«m (tz,0) = s (3.1.120)
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1

, 1
-gp = —= tz = ’ 3.1.121
9 = —3% (t=,0) = o= [In (tz,p) + o ( )
and
2xtsp -29l’t.w]
-gp = . 3.1.122
9 @ |, ( )
From Eq. 3.1.116, it follows that
2¢p
—— =1 3.1.123
b -, (3:0123)
during linear flow. From Egs. 3.1.116 and 3.1.120, it follows easily that
24p 1 (3.1.124)

"o P T 05mG.,0) +e

during pseudoradial flow. From Egs. 3.1.118 and 3.1.122 it follows that during

boundary dominated flow, we obtain

_Mp _ 4ntap (3.1.125)
L'} ) G,

Figures 3.1.26 and 3.1.27 show uniform-flux and infinite-conductivity type
curves, respectively, for a well in the center of a closed square drainage region.
The solid curves represent log-log plots of gp versus ¢;,p and the dashed curves
represent log-log plots of —(2g},)/gp versus ¢, ,p for various values of the penetra-
tion ratio L,,/L.,. As in the case of type curves of Figs. 3.1.22 and 3.1.23, the
curves labeled with infinity sign represent the infinite acting solutions; i.e., the so-
lutions for the time period vjvhen the outer boundaries of reservoir do not influence
the well rate. Points labeled with a solid dot on the dimensionless rate solutions
denote the approximate times at which left and right sides of Eq. 3.1.116 differ by
more than 2%. Similarly, the points labeled with a solid dot on the —(2¢})/gp
solutions denotes the earliest time when linear flow ends based on a criterion that
—(2¢p)/ap differs from one by more than 2%; see Eq. 3.1.123. As in the con-
stant rate production case (see Figs. 3.1.22 and 3.1.23) different ending times are
obtained for the ¢gp and —(2¢})/gp solutions for the end linear flow regime, and
also linear flow lasts longest when L., /L., = 1 case. Pseudoradial flow begins at
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the time when the —(2¢})/gp solutions for a given value of L., /L., merge with
the associated infinite-acting solutions as predicted by Eq. 3.1.124. In fact, this is
the basic motivation of the specific group —(2¢},)/gp chosen to construct the type
curves shown in Figs. 3.1.26 and 3.1.27. From results of Figs. 3.1.26 and 3.1.27, it
is apparent that pseudoradial flow (Eq. 3.1.124) does not hold for all values of the
penetration ratio L., /L.,; more specifically, pseudoradial flow exists only for the
values of L, /L, > 10. Boundary-dominated flow for all practical purposes begins
when both ¢p and —(2¢})/gp solutions diverge from the infinite-acting solutions
for a given value of the penetration ratio L;, /L.,. The time at which boundary-
dominated flow begins can be approximated by £4,p = 0.1 and this approximation
is valid for all values of L., /L., shown in Figs. 3.1.26 and 3.1.27. For values of
tap > 0.1 and a given the value of L., /L;,, the —(2¢7)/gp solutions exhibit a
unit slope line on log-log coordinates as predicted by Eq. 3.1.125.

By comparing the type.curves generated for a well produced at a constant rate
production case (see Figs. 3.1.22 and 3.1.23 in the previous subsection) with the type
curves of Figs. 3.1.26 and 3.1.27 for the constant pressure production case, we note
that linear flow regime ends earlier for the constant pressure production case and
the pseudoradial flow regime exists for values of the penetration ratio L., /L., > 5
for the constant rate production case, whereas pseudoradial flow for the constant
pressure production case applies only for values of L., /L., > 10. However, for
all practical purposes, the boundary dominated flow starts at £4,p = 0.1 for both
modes of production.

The procedure for using the type curves of Figs. 3.1.26 and 3.1.27 is the same as
the procedure using the type curves of Figs. 3.1.22 and 3.1.23. The only difference
is that one makes a log-log plot on tracing paper of ¢ and —(2¢’)/q, where ¢ is
the production rate and ¢’ is the derivative of prcduction rate with respect to Int,
versus ¢ using the basic scales of the type curves of Figs. 3.1.26 and 3.1.27. Then
one proceeds with the standard procedure, as discussed earlier, to obtain a type-
curve match of field data plot with the curves of Figs. 3.1.26 and 3.1.27. After
obtairing time match-point values and rate match-point values, one computes the
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permeability-thickness product from the rate match-point values as
141.2Bp (q)ar

(P — Pos) (9D)ar’

and the fracture-half length from time match-point values using Eq. 3.1.36. If field

data diverges from the infinite-acting solutions, one can determine the value of the

penetration ratio, L, /Ls,, from the type-curve match of field data and then obtain

the well’s drainage area, A, from this value of L., /L., using the following equation:

kh= (3.1.126)

A=arp (L= : . (3.1.127)
i L‘I M

As in the case of consiant rate pradection cpee _we nresent tyne eurves to
perform a simultaneous match of rate data ¢ and its logarithmic derivative —¢' data
for constant pressure production case. Figs. 3.1.28 and 3.1.29 shows, respectively,
uniform-flux and infinite-conductivity type curves based on the dimensionless rate
¢p and its dimensionless logarithmic derivative, —g}, as functions of L,, /L., and

tz,D-

3.2 Identification of Semilog Straight Lines
As shown in Chapter II, for plane radial flow in a homogeneous reservoir, a

semilog plot of Ap/(2Ap') versus ¢ will exhibit a straight line of slope 1.151 (see
Eq. 2.2.7), and this slope will be independent of reservoir properties. Although
Eq. 2.2.7, in general, cannot be used to do computational analysis, the preceding
observation based on Eq. 2.2.7 allows one to identify the time period if the proper
semilog straight line (Eq. 2.2.4) exists. One can then analyze the well pressure
data for this time period using standard semilog analysis methods. The objective of
this section is to illustrate the validity of this semilog line identification method for

nonhomogeneous reservoirs such as composite and naturally fractured reservoirs.

3.2.1 Composite Reservoir
Results are based on the analytical solution for a line source well producing at

a constant rate in a composite infinite-acting reservoir composed of two layers. A
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plan view of the composite reservoir geometry is given in Fig. 3.2.1. The solid circle
in the center represents the well which is produced at a constant rate. Although r,
is used to denote the external reservoir radius, all results presented here are for an
infinite-acting reservoir, that is, r. is infinitely large.

The analytical solution used is identical to the one given by Hurst35. The
subscript j denotes zone j§ with zone 1 representing the inner zone and zone 2
representing the outer zone; specifically, k; and 7, , respectively, represent the per-
meability and diffusivity of the inner zone; k; and 52, respectively, represent the
permeability and diffusivity of the outer zone. The mobility of zone 7 is given by

Aj = -IE’;, for j=1,2. (3.2.1)
Hj

The radius of the inner zone is r, (see Fig. 3.2.1) and r,p denotes its dimensionless
analogue defined by
o0 = —. (3.2.2)

A, and 1, are defined to denote the mobility ratio and the diffusivity ratio, respec-
tively, by

_ M _ (k/y)
A= = /“);, (3.2.3)
and
_Mh _ [k/ (gen)] (3.2.4)

T 0k (Ge)ly
For simplicity, it is assumed that there is no wellbore storage effect and that the
skin factor due to wellbore damage or stimulation is zero; nevertheless, the addition
of a skin factor would not change the semilog slopes. Dimensionless pressure, p,,p2,
and dimensionless time ¢p, are defined in terms of the properties of the outer zone,

respectively, as
_ kah[pi — puy]
p"m - 141.2qB"2 9 (302-5)
and

p 2637 10~4kyt _ 2.637 X 10~*n,t
IR R

(3.2.6)
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Fig. 3.2.1 - Composite Reservoir Geometry - Plan View
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whereas, pyp1 denotes dimensionless pressure defined in terms of inner zone prop-
erties; that is,

kzh[Pi""’pwj] .- (3_2:7) .

PeDl = 1 2¢Bp;

For this classical composite reservoir problem, it is well known that two semilog
straight lines may exist. When the early semilog straight line reflecting the proper-
ties of the inner zone exists, it can be shown easily that the following three equations
hold:

PoD1 = ArPupz = 1.151 [log (netp2) + 0.351] , (3.2.8)
Pup1 = MPyupz = 0.5, (3.2.9)

and
pupy = 22B2 AP _ 445 [log (n+tp2) +o.351] (3.2.10)

where p, ,; and pl, p,, respectively, denote the logarithmic derivative of p,p1 with
respect to tp; and the logarithmic derivative of p,p2 Wwith respect to ¢p2. Note
Eq. 3.2.10 directly follows from Eqgs. 3.2.8 and 3.2.9. During the time period when
the second semilog straight line exists, the following equations apply:

Pup2z = 1151 [log (tpa) + 0.351] + (;—i ~1) In(r,p), (3.2.11)
Pop2 = 0.5, (3.2.12)
and
PuDz = é’fi = 5%;' = 1.151 [log (tpa) + 0.351]
+(;—f - 1) In(r,p)- (3.2.13)

If the inner zone is considered to be a skin zone, then Hawkins’ equation®® for the
skin factor follows from Eq. 3.2.13 without making the steady-state assumption
that Hawkins used in his derivation. To the best of our knowledge, this observation
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has not been presented previously. For completeness, the analytical derivations of
Egs. 3.2.11 through 3.2.13 are presented in Appendix D.

Figure 3.2.2 presents semilog plots of the Ap/(2Ap’) solutions for two different
values of the mobility and diffusivity ratios. Note in both cases semilog straight
lines of slope 1.151 are obtained both at early and late times as predicted by Egs.
3.2.10 and 3.2.13. Given corresponding field data, one would use the Ap/(2Ap')
versus ¢ plot to identify the semilog straight lines and the time periods where they
exist, and then prepare a semilog plot of Ap versus ¢, determine the semilog slopes
during the identified time periods and proceed with standard computations?5~2%

for estimating the reservoir parameters.

3.2.2 Naturally Fractured Reservoir
Here, we first consider naturally fractured reservoir which is based on the the

slab model of Kazemi?® and de Swaan-0%°. This model assumes that matrix is
divided by a set of parallel, equally spaced horizontal fractures and that unsteady-
state fluid transfer occurs from the matrix system to the fracture system. Results
presented here were obtained using the Laplace analytical solution of Serra et al.33
for a well produced at a constant rate in a naturally fractured infinite-reservoir
which is based on the slab model of Refs. 29 and 30. As in the case of a composite
reservoir, for simplicity, we do not consider wellbore storage and skin effects.

Dimensionless pressure, py,p, and dimensionless time, ¢;p, are defined in
terms of the intrinsic properties of the fracture system, respectively, as

krhye |pi — Poy]
= , 3.2.
Pu;D 141.27B5 (3-2.14)

and
2.637 x 10~ %k;t

t =
» (¢c2) 7 br2
Dimensionless matrix storativity, w’, and dimensionless fracture transfer coefficient,
X, are defined, respectively, by

(32.15)

y _ ¢mcmhmt
w'= “dreshys (3.2.16)
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X =12 (":;::‘) ( hm) . (3.2.17)

In Eqgs. 3.2.14 through 3.2.16, the subscripts f and m refer, respectively, to fracture
and matrix properties, and hy; and hy,e represent the total thickness of the matrix

and fracture systems, respectively; see Ref. 33.
For this naturally fractired reservoir model, it is well known that a semilog plot

of wellbore pressure response, Ap, versus ¢ may exhibit three semilog straight lines.
When the early-time semilog straight line reflecting the properties of the fracture
system exists, as is well known?*~3%, the dimensionless well pressure drop ps,p is
given by

Pu,p = 1.151 [log (t7p) +0.351], (3.2.18)
Differentiating Eq. 3.2.18 with respect to In(¢;p) gives

dpw D 1
= ——T - ...
Pm;D T (tf ) (3.2.19)

and dividing Eq. 3.2.18 by Eq 3.2.19 multiplied by 2 gives

_ Pu;D _ﬂ__
Posp =3 p; > = 5a7 1.151[log (¢4p) + 0.351], (3.2.20)

When the intermediate-time semilog straight line reflecting the both the prop-
erties of fracture system and matrix system exists, the well pressure drop, pu,p, is

given by33:77

I '
Po,p = 0.5756 [log(t:D)+0452—log(A3 )] (3.2.21)

Using Eq. 3.2.21, it is trivial to show that the following equations hold:

1
?;;D = z’ (3.222)
and
A
2?;:1; - 2A1; Pu,p = 1.151[log (¢;p)
wy
[
+0.452 — log (A:' )]- (8:2.23)
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Similarly, during the late-time period when the third semilog straight line ex-
ists, the well dimensionless pressure drop p,,p is given by?°~3%,

Pw,p = 1151 [log (t;p) + 0.351 — log (1 + )] . (3.2.24)

It follows directly from Eq. 3.2.24 that when the third semilog straight line exists,
the following equations also apply:

.
Porp =3 (8:2:25)
and
Pop AP _ = 11510kt
+0.351 — log (1 + w')]. (3.2.26)

Figure 3.2.3 shows semilog plots of the p,,p/(29,, ; p)[= Ap/(2Ap’)] solutions
versus t;p for there different values of the fracture transfer coefficient A’ for the
value of w’ = 1000. From results of Fig. 3.2.3, it is apparent that semilog straight
lines of slope 1.151 as pre@icted by Egs. 3.2.20, 3.2.23 and 3.2.26 are obtained
at early, intermediate and late times only for the case where X’ = 10~°. For the
cases where A’ = 10~¢ and N = 1073, only the intermediate-time and late-time
semilog straight lines as given by Egs. 3.2.23 and 3.2.26 are obtained. Therefore, if
given corresponding field data plot of Ap/(2Ap’) versus ¢ identifies semilog straight
lines of slope 1.151 and time periods when they exist, then one can proceed with
the standard procedures described by Ref. 33 for determining fracture and matrix
properties from a conventional semilog plot of Ap versus .

For completeness, we briefly consider naturally fractured reservoir model of
Barenblatt et al.”® and Warren and Root™ in which pseudosteady-state fluid trans-
fer from matrix system to fracture system is assumed. Note that the naturally
fractured reservoir model of Kazemi®® and de Swaan-03° discussed above assumes
unsteady-state fluid transfer from the matrix system to the fracture system.

As is well known"®+%0, for this naturally fractured reservoir model, a semilog
plot of well pressure response, Ap, versus ¢ may exhibit two semilog straight lines,
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namely, the early-time semilog straight line and the late-time semiiog straight line.
When the early-time semilog straight line exists, the dimensionless well pressure
drop, Pu, . its logarithmic derivative, g, p,, and the pressure/pressure-derivative
group, Pw,D /(2p(,,p): respectively, are given by Egs. 3.2.18, 3.2.19 and 3.2.20.
When the late-time semilog straight line exists, py,p, p:er and p.,,p/(2p;,D)
are given, respectively, by Eqs. 3.2.24, 3.2.25 and 3.2.26. We should note that in
this naturally fractured reservoir model, the intermediate-time semilog straight line
which exists for some values of w' in naturally fractured reservoir model of Refs.
29 and 30 wiih slope of 0.5756 (see Egs. 3.2.21-3.2.23) does not exist and this is
the basic difference in wellbore pressure response of the two naturally fractured
reservoir models.

Figure 3.2.4 shows log-log plots of pu,p /(29 ; p)[= Ap/(2Ap")] solutions ver-

101

sus ¢;p for same values of A’ and w’ considered in Fig. 3.2.3. Results shown in .

* Fig. 3.2.4 were generated using the Laplace analytical solution of Bourdet and

Gringarten®® which is based on the naturally fractured resesrvoir model of Refs.
78 and 79. An inspection of the results of Figs. 3.2.3 and 3.2.4 indicate that the
Pw,p/(28,,,p) solutions identify both the early-time and late-time semilog straight
lines of slope 1.151 if ever they exist for given the same values of ' and A’ for both
naturally fractured reservoir models. However, in the intermediate time period,
as clearly seen from results of Figs. 3.2.3 and 3.2.4, the p,,p/(27], , p) solutions
exhibit completely a different behavior for the naturally fractured reservoir model
under consideration. For this time period, in the unsteady-state model (see Fig.
3.2.3), the pu,n/(27, ; p) solutions exhibit a semilog straight line of slope 1.151,
whereas in the pseudosteady-state model (see Fig. 3.2.4) the py,p/(20, ; p) solu-
tions increase to a maximum and then decrease. Therefore, given corresponding
field data plot of Ap/(2Ap’) versus ¢ not only identifies the appropriate naturally
fractured reservoir model (either unsteady-state or pseudosteady-state model) ex-
hibited by the field data but also determines the proper semilog straight lines and
time periods when they exist.

As a final remark, we note that one can use Fig. 3.2.3, Fig. 3.2.4 and similar
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103
figures generated for different values of parameters A’ and w’ for type-curve matching

purposes in analyzing the well test data obtained at a well producing at a constant
rate in a naturally fractured reservoir in the standard way discussed earlier.

3.3 Example Applications
This section considers the analyses of five field test data using the new type
curves presented in the previous chapters. The first two examples considered pertain
to cases where the pressure data are influenced by wellbore storage and skin effects.
The third, fourth and fifth examples are for hydraulically fractured wells.

3.3.1 Wellbore Storage and Skin; Buildup Example

The example presented here is Test 1 of Ref. 6. The relevant reservoir/well
parameters and recorded shut-in pressure change, Ap, and derivative data, Ap’,
were presented, respectively, in Tables 2.3.1 and 2.3.2. Fig. 3.3.1 presents type
curve matches of log-log plots of Ap/(2Ap’) versus At (circular data points) and
Ap/(2Ap') versus Agarwal’s equivalent time ¢, (square data points) obtained using
the type curves of the form shown in Fig. 3.1.3. The solid curves on Fig. 3.3.1 repre-
sent the drawdown type curves with which we matched the two plots of Ap/(2Ap').
It is apparent from Fig. 3.3.1 that as shut-in time increases beyond 10 hours, the
two modes of plotting, Ap/(2Ap')-vs-At and Ap/(2Ap')-vs-t., give different traces.
Recall that in this type curve matching procedure, the data plot is moved only in
the horizontal direction. Thus, the matches shown in Fig. 3.3.1 clearly indicate
that the field data is influenced by wellbore storage and skin effects. The deter-
mined match-point values for the case where Ap/(2Ap’) data plotted versus At are
[Cp exp(2s)]a = 5 x 10°, (tp/Cp)ar = 0.135 and (At)ps = 0.01 hours. Then, by
moving the pressure data (Ap versus At) only in the vertical direction, a type curve
match with the p,,p versus #p /Cp solution corresponding to Cp exp(2s) = 5 x 10°
was obtained giving the following match point values; (pyp)ar = 1.9 and Ap = 100
psi. (This match is shown in Fig. 3.3.2.) By using the standard computational
procedures given in section 3.1.2, the following estimates were obtained from the
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match point values; k = 10.95 md, C = 1.02 x 10~2 RB/psi which yields the dimen-
sionless wellbore storage constant Cp = 965, and 8 = 7.7; whereas using the type
curves of Fig. 3.1.2, the authors of Ref. 6 obtained k = 10.89 md, C = 9.3 x 10~3
RB/psi (Cp = 879) and s = 7.7. Interestingly, when we based our analysis on
the equivalent time plots, we obtained the following values; [Cp exp(2s)]as = 102,
% =12.8 md, C =8.49 x 10~3 (Cp = 803) and s=10.47.

Although the two sets of estimates we obtained do not differ greatly, the ques-
tion is which set is most accurate? Noting that the estimates of Ref. 6 lie between
our two sets of estimates, we used superposition to generate the analytical buildup
solution for the case where Cp = 879, s = 7.7 (Cpezp|2s] = 4 x 10°) with a pro-
ducing time given by tp = 1.99 x 10°. (This value of producing time was computed
based on the value k£ = 10.89 md obtained in Ref. 6.) The results obtained for our
derivative group are shown in Fig. 3.3.3 where the solid curve represents the draw-
down solution; the circular and square data points, respectively, represent analyti-
cal buildup solution Ap/(2Ap’) plotted versus Atp/Cp and t.p/Cp respectively.
Here, Atp represents dimensionless shut-in time and t.p represents dimensionless
equivalent time. Note neither method of plotting correlates the buildup solution
with the corresponding drawdown solution which explains the two sets of answers
we obtained and in fact indicates that the results obtained in Ref. 6 are the most
accurate. Note, however, that the analysis results of Ref. 6 were obtained by re-
fining the initial estimates obtained from type-curve matching with drawdown type
curves by using buildup solutions generated analytically. The same refinement of
our analysis results could be obtained by the same procedure. The most significant
point is that, at least for this example, the use of equivalent time does not eliminate

errors incurred in type curve matching when producing time effects are important.

3.3.2 Wellbore Storage and Skin; Drawdown Example
The drawdown example considered here is taken from Ref. 81. This example

was previously analyzed in Ref. 81 and later analyzed in Ref. 82 using the auto-
mated type-curve matching technique. Table 3.3.1 lists the pertinent reservoir/well
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Table 3.3.1
Wellbore Storage and Skin; Drawdown Example, Ref. 81
Reservoir/Well Parameters
Porosity (fraction) . . . . . . . . . .. ... ... ... 0.039
Thickness (ft) . . . . . . ¢ ¢ ¢ ¢ o i i e e e e e e e e e 69
Wellbore Radius (Ft) . « . o v v v v v v m e e e e e e e 0.2
System Compressibility (1/psi) . . . . . . . . ... . ... ... 6.7E-06
Viscosity of Fluid (cp) . . . . . . « . ¢ o o o 0 o i i oo v v .. 0.9
Formation Volume Factor (RB/STB) . . . . ... .. .. ..... 1.325
ProductionRate (STB/D) . . . . . . . . . i i i v v v v v v v ... 252
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data and Table 3.3.2 presents the pressure and derivative data as functions of flowing
time. Fig. 3.3.4 presents type-curve match of a log-log plot of Ap/(2Ap’) versus
t obtained using the type curves of the form shown in Fig. 3.1.3. The circular
data points represent the field data. The dashed curve on Fig. 3.3.4 represents
the solution corresponding to Cp exp(2s) = 8 x 10® with which the field data was
matched. Clearly, the match shown in Fig. 3.3.4 indicates that early-time part of
the field data, which corresponds to flowing time less than 2 hours, is influenced
by wellbore storage and skin effects and the type curve-match of field data is good.
However, the data beyond 2 hours do not match well to the Cp exp(2s) = 8 x 10®
solution. Therefore, it is expected that field data beyond 2 hours may not represent
the model (wellbore storage and skin) on which the type type curve of Fig. 3.1.2 is
based possibly due to a changing wellbore storage coefficient. As mentioned earlier,
this is one distinct advantage of the type curves based on p,p/(2p,,p) Which give
an indication whether the field data actually is represented by the model chosen for
analysis.

Figure 3.3.5 shows a semilog plot of field Ap/(2Ap’) data versus ¢. All data
corresponding to ¢ > 3 hours is approximately on a semilog straight line of slope
exactly equal to 1.151. According to the theory on the identification of semilog
straight lines presented earlier in this work, the field data beyond 3 hours is free of
wellbore storage effects and reflects radial flow, and thus, should be analyzable by
standard semilog methods.

A conventional semilog plot of Ap versus ¢ shown in Fig. 3.3.6 exhibits a well-
defined semilog straight line of slope m = 78 psi/cycle and (Ap)in. = 827 psi.
Using the standard computational procedure, the following estimates are obtained;
k =9.1 md and s = 5.58. Using the match-point values recorded in Fig. 3.3.4 and
the value of the wellbore storage coefficient obtained from unit slope line on a log-log
plot of Ap versus ¢ in the standard way (not shown here) as C = 8.6 x 10~3 RB/psi
(Cp = 1.1 x 10*), one obtains the following estimates; k = 8.67 md and s = 5.59.
Note that these values of permeability and skin factor agree very closely with those
obtained from conventional semilog analysis of the pressure data shown in Fig.
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Pressure and Derivative versus Time Data

Table 3.3.3
Wellbore Storage and Skin; Drawdown Example, Ref. 81

Pressure and Derivative Data
Flowing Time, ¢ Ap Ap Ap/(2Ap")
(Hours) (psi) (psi)
3.3000E-02 5.3000E+01 5.1134E+01 5.1070E-01
5.0000E-02 7.8000E-+01 7.4541E+01 5.2368E-01
1.0000E-01 1.4800E+02 1.3234E+02 5.5746E-01
1.5000E-01 2.1000E+02 1.8165E+02 5.7774E-01
2.0000E-01 2.6700E+02 2.2093E+02 6.0450E-01
3.0000E-01 3.6900E+02 2.7890E+02 6.6218E-01
4.0000E-01 4.5400E+02 3.0400E+02 7.4516E-01
5.0000E-01 5.1900E+02 3.1102E+-02 8.3346E-01
6.0000E-01 5.7200E+02 3.0183E+-02 9.4454E-01
8.0000E-01 6.5400E+02 3.0026E+02 1.0890E+00
1.0000E+00 7.1900E+02 2.7576E+02 1.2887E+00
1.5000E4-00 8.0400E+02 2.1404E+02 1.8786E+400
2.0000E+00 8.4900E+02 1.3800E+02 3.0683E+00
2.5000E+00 8.5900E+02 7.2500E+01 5.9389E+400
3.0000E+00 8.6400E+-02 3.6000E+01 1.2006E+01
3.5000E+00 8.6900E+02 3.2200E+01 1.3496E+01
4.0000E+00 8.7400E+02 3.5200E+01 1.2407E+01
4.5000E+00 8.7700E+02 3.4873E+01 1.2586E+01
5.0000E+00 8.8200E+02 3.3934E+01 1.2983E+01
6.0000E+00 8.8700E+402 3.5184E+01 1.2613E+01
7.0000E+00 8.9300E+02 3.4057E+01 1.3104E+01
8.0COOE+00 8.9700E+02 3.5719E+01 1.2559E+01
1.0000E+01 9.0500E+02 3.4328E+01 1.3183E+01
1.2000E+01 9.1100E+02 2.8810E+01 1.5809E+01
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3.3.6. Therefore, one might think that the type-curve match of field data shown
in Fig. 3.3.4 in which early-time data matches perfectly with wellbore storage-skin
type curve of Cp exp(2s) = 8 x 10® represents an acceptable and a consistent type
curve match.

For this same data, both Refs. 81 and 82 obtained the following estimates (as
the best-fit values): k£ = 15.5 md, s = 14.9, and C = 8.5 x 10~3 RB/psi (Cp =
1.05 x 10*), by automated type-curve matching of the pressure data (Ap versus t)
using the wellbore storage and skin solutions of Agarwal et al.}¢. It is clear that
our estimates of k and s obtained from the type-curve match of Ap/(2Ap’) data as
shown in Fig. 3.3.4 differ significantly from those of Refs. 81 and 82. To investigate
this discrepancy in the two sets of estimates, first we type-curve matched the field
data plot of Ap/(2Ap’) versus t with the type curve corresponding to Cp exp(2s) =
9.2 x 10!® which one would have to match in order to obtain the parameter values
given by Refs. 81 and 82. This match is shown in Fig. 3.3.7. Clearly, this match also
does not represent an acceptable type-curve match for the late-time part of data;
moreover, the estimates of k and s (estimates of Refs. 81 and 82) obtained from
this match are not consistent with the estimates obtained from semilog straight line
shown in Fig. 3.3.6. Second, since their technique is solely based on the automated
type-curve matching of pressure data (Ap versus t), we type-curve matched the Ap
versus ¢ data with the type curve corresponding to Cp exp(2s) = 9.2 x 10'€ (match
of Refs. 81 and 82) and the type curve corresponding to the Cp exp{2s) = 8 x 10%.
Both matches of Ap versus ¢ data are shown in Fig. 3.3.8. The circular data
points correspond to the match obtained with the Cp exp(2s) = 9.2 x 10'¢ solution,
whereas the triangular data points correspond to the match obtained with the
Cp exp(2s) = 8 x 10® solution. It is apparent from Fig. 3.3.8 that visually the
quality of the two corresponding pressure matches is not much different, although
the match based on the parameters obtained in Refs. 81 and 82 looks slightly
superior. However, as shown earlier, both matches gave two significantly different
set of estimates for k and s; thus, at least for this example, this indicates that type-
curve matching of pressure data is difficult and subjective; that is, it can produce
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nonunique results.

As illustrated above, since the type-curve matching cf pressure data may suf-
fer from uniqness problem, the automated type-curve matching of well test data
based on the Ap/(2Ap’) solution could prove invaluable in elimirzting the unigness

‘problem involved in type-curve matching of pressure data alone.

3.3.3 Infinite-Conductivity Fracture; Buildup Exaniple

The buildup field example considered here is the vertical fracture-buildup ex-
ample of Ref. 18 and represents buildup pressure data from a hydraulically frac-
tured well. As is well known, such pressure data can be analyzed with the infinite-
conductivity type curves, provided that the fracture is well propped and that pro-
ducing time effects are not significant. The pertinent reservoir/well data is listed
in Table 3.3.3. Shut-in pressure change, its derivative and the pressure/pressure-
derivative data as functions of shut-in time and equivalent time are summarized
in Table 3.3.4. Because £, >> At for shut-in times considered, producing time
effects are not important; nevertheless, we have chosen to graph the data in terms
of equivalent time, ¢..

Figure 3.3.9 shows a log-log plot of the shut-in pressure change, Ap = py, —
Pwj,s, and the two pressure/pressure derivative groups, Ap/(2Ag') and (2Ap')/Ap
versus equivalent time, .. Recall that two pressure/pressure-derivative groups are
type-curve matched by moving the field data plot only in the horizontal direction.

Figure 3.3.10 shows the match of derivative data obtained by moving the data
plot, which was made on tracing paper, only in the horizontal direction. The
two solid curves traced in Fig. 3.3.10 represent the two drawdown type curves of
Fig. 3.1.6. As recorded in Fig. 3.3.10, the time match-point values obtained by
matching the two sets of derivative data are (¢.)ar = 10 hours and (t.p)ar = 0.6.
Having fixed the correspondence between the time scales with the match of two
pressure/pressure-derivative groups, the data plot was then moved only in the ver-
tical direction to obtain the type-curve match of pressure data (Ap versus ¢.) shown
in Fig. 3.3.11. The solid curve traced in Fig. 3.3.11 represents the dimensionless
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Table 3.3.3
Infinite-Conductivity Fracture; Buildup Example, Ref. 18

Reservoir/Well Parameters
Porosity (fraction) . . . . . . . . . . . L 0ot i e e e 0.12
Thickness (ft) . . . . . . . . . . . e e e e e e 82
Wellbore Radius (ft) . . . . . . . . . . . .. .. o0 oo 0.28
System Compressibility (1/psi) . . . . . . . . . ... .. .. .. 2.1E-05
Viscosity of Fluid {(¢cp) . . . - . . . . ¢ ¢ v vt i i i et e e 0.65
Formation Volume Factor (RB/STB) . - « « « « o v v o v v e e 1.26
Production Rate prior to Shut-in (STB/D) . . . ... .. .. .. .. 419
Producing Time (hours) . . . . . . . . . . . . ... oo 7800
Initial Reservoir Pressure (psi) . . . . . . . . . ... ... ... .. 3770
Flowing Pressure at the Instant of Shut-in (psi) . . . . .. ... ... 3420
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Table 3.3.4

Infinite-Conductivity Fracture; Buildup Example, Ref. 18
Pressure and Derivative versus Time Data

Pressure and Derivative Data
Shut-in Time, At Equivalent Time, ¢, Ap Ay Ap/(2Ap°)
(Hours) (Hours) (psi) (psi)
8.3300E-02 8.3299E-02 1.1000E+01 3.5504E+00 1.5491E+00
1.6700E-01 1.6700E-01 1.5000E+01 6.4357E+00 1.1654E+00
2.5000E-01 2.4999E-01 1.8000E+-01 8.6219E+00 1.0439E+00
5.0000E-01 4.9997E-01 2.4500E+01 1.1363E+01 1.0790E+4-00
7.5000E-01 7.4993E-01 2.9000E+01 1.3275E+01 1.0923E+00
1.0000E+00 9.9987E-01 3.2000E+01 1.3129E+01 1.2186E+400
2.0000E+00 1.9995E+00 4.3000E+01 1.9079E+01 1.1269E+00
3.0000E+4-00 2.9989E+00 5.1000E+01 2.2206E+01 1.1483E+00
4.0000E+00 3.9979E+00 §.7000E+01 2.2809E+01 1.2495E+00
§.0000E+00 4.9968E+00 6.2000E+01 2.3514E+01 1.3184E+00
6.0000E+00 $.9954E+00 6.6000E+01 2.6420E+01 1.2490E+00
7.0000E+00 €.9937E+00 7.0000E+01 2.8725E+01 1.2184E+00
8.0000E+00 7.9918E+00 7.5000E+01 2.8827E+01 1.3009E+-00
9.0000E+00 8.9896E+00 7.8000E+01 2.9338E+01 1.3293E+00
1.0000E+01 9.9872E+00 8.0000E+01 2.7123E+01 1.4784E+00
1.2000E+01 1.1982E+01 8.6000E+01 2.6973E+01 1.5942E+00
2.4000E+01 2.3926E+01 1.0800E+02 3.9317E+01 1.3734E+00
3.6000E+01 3.5835E+01 1.2400E+-02 4.2422E+01 1.4615E+00
4.8000E+01 4.7706E+01 1.3500E+02 4.1391E+01 1.6308E+00
6.0000E+01 5.9542E+01 1.4300E4-02 4.0758E+01 1.7542E+00
7.2000E+01 7.1341E+01 1.5000E+02 4.0679E+-01 1.8437E+00
9.6000E+01 9.4833E+01 1.6200E+02 4.3372E+01 1.8676E+00
1.2000E+02 1.1818E+02 1.7000E+02 4.4867E+01 1.8945E+00
1.4400E+02 1.4139E+02 1.8000E+4-02 4.4241E+01 2.0343E+00
1.9200E+02 1.8739E+02 1.9000E+-02 4.3310E+01 2.1935E+00
2.4000E+02 2.3284E+02 2.0000E+02 3.5000E+01 2.8571E+00
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drawdown pressure drop for an infinite-conductivity fracture; see Fig. 3.1.6. The
pressure match-point values obtained from type-curve match of Fig. 3.3.11 are
(Ap)ar = 100 psi and (F,p)ar = 1.2. Using the pressure match-point values and
data presented in Table 3.3.3 previously, one obtains
kR = 141.2¢Bp (Pap) oy
(Ap)pr

__ [141.2(419 STB/D) (1.26RB/STB) 0.65cp] 1.2 _

= T , ;
therefore, kh = 581.45 md-ft; thus, k = (kk)/kh = 7.09 md. From time match-point
values, the fracture half-length can be computed from the following equation:

_ [2.637 x 10-4k (t),,
L,= \/ o (3.3.2)

Using the value of permeability obtained and data from Table 3.3.3, one obtains
L., = 1379 ft. As is well known, for an infinite-conductivity fracture, one can
estimate the effective wellbore radius from r{, = L.,/2 and the skin factor due
to existence of a vertical fracture from s = In(r, /r.,). Use of the results of our
analysis and given data in these equations gives r{, = 68.95 ft and s = —5.5.

(3.3.1)

Noting that type-curve match of Fig. 3.3.11 indicates that we have pseudoradial
flow pressure data, we also analyzed the data using conventional semilog analysis
(Horner’s method) and obtained k = 7.20 md, s = —5.5, and L;, = 133 ft. The
semilog analysis results are in close agreement with the results obtained with our
type curves. The results are also in close agreement with the results of Ref. 18.

3.3.4 Finite-Conductivity Fracture; Drawdown Example
The drawdown example given here is the drawdown oil well example of Ref. 20.

Relevant reservoir /well data is recorded in Table 3.3.5 and pressure, Ap, logarithmic
pressure derivative, Ap’, and the pressure/pressure-derivative, Ap/(2Ap’), data are
shown in Table 3.3.6.

Figure 3.3.12 shows a type curve match of a semilog plot of Ap/(2Ap’) versus
t with the type curve of Fig. 3.1.17. The type curve match was obtained by moving
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Table 3.3.5
Finite-Conductivity Fracture; Drawdown Example, Ref. 20
Reservoir/Well Parameters

Porosity (fraction) . . . . . . ... ... ... . ... ... 0.18
Thickness (ft) . . . . . . . . . ¢ o i i i i e e e e e e e e 55
Wellbore Radius (ft) . . . . ... ... ... ... ... ..... 0.25
System Compressibility (1/psi) . . . . . . . . . . . . .. ... 1.8E-05
Viscosity of Fluid (¢p) . . . . . . . . . ¢« o 0 v v v v v v v v .. 1.8
Formation Volume Factor (RB/STB) . . . . . . . ... .. ..... 14
ProductionRate (STB/D) . . . . . . . . . . ¢ v v v v v v v v v .. 195
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Pressure and Derivative versus Time Data

Table 3.3.6
Finite-Conductivity Fracture; Drawdown Example, Ref. 20

Pressure and Derivative Data
Flowing Time, ¢ Ap Ap Ap/(2Ap")
(Hours) (psi) (psi)
1.0000E+00 8.1000E+01 2.8129E+01 1.4398E+00
2.0000E+00 1.0900E+-02 4.6829E+01 1.1638E+00
3.0000E+00 1.2800E+02 5.6100E+01 1.1408E+00
4.0000E+00 1.4400E+02 6.0400E+01 1.1921E4-00
5.0000E+00 1.5700E+-02 6.7000E+-01 1.1716E+00
6.0000E+00 1.7000E+02 7.2600E+01 1.1708E+00
7.0000E+00 1.8200E+02 7.7000E+01 1.1818E+00
8.0000E+00 1.9200E+02 7.4400E+01 1.2903E+00
9.0000E+00 2.0100E+02 7.4923E+01 1.3414E+00
1.0000E+01 2.0700E+02 7.5949E+01 1.3628E+00
1.2000E+01 2.2300E+02 8.2684E+01 1.3485E+00
1.4000E+01 2.3600E+02 £.8582E+01 1.3321E+-00
1.6000E+01 2.4700E+02 8.7812E+01 1.4064E+00
2.0000E+01 2.6700E+02 9.2696E+01 1.4402E4-00
2.400E+01 2.8300E+-02 9.8623E+01 1.4348E4-00
3.0000E+01 3.0700E+02 1.0094E+02 1.5207E+00
4.0000E+01 3.3300E+02 1.0654E+-02 1.5629E+00
5.0000E+01 3.5600E+02 1.1150E+02 1.5964E+00
6.0000E+01 3.7800E+02 1.1760E+02 1.6071E+00
7.0000E+-01 3.9600E+02 1.1830E+02 1.6737E+00
8.0000E+-01 4.1100E+02 1.2000E+02 1.7125E4-00
9.0000E+01 4.2400E+02 1.2030E+02 1.7623E+00
1.0000E+02 4.3900E+02 1.2191E+02 1.8005E+00
1.2000E+02 4.5900E+02 1.1929E+402 1.9239E+00
1.5000E+-02 4.8400E+02 1.2345E+02 1.9603E+00
2.0000E+02 5.2200E+02 1.2994E+02 2.0087E+00
2.5000E+02 5.4800E+02 1.2470E+02 2.1973E+00
3.0000E+02 5.7100E+02 1.0437E+02 2.7354E+00
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the data plot only in the horizontal direction since this is the fundamental advantage
of the type curve of Fig. 3.1.17. The solid curves shown in Fig. 3.3.12 represent
the dimensionless drawdown solutions for three values of Cyp, 5w, 107 and 207.
Note that data were matched with the Cyp = 10x solution. (The dashed square
shows the scales of the type curve of Fig. 3.1.17.) Note the match is reasonably
good and yields the time match-point values (tz,0C%p)x = 2.7x 10" and (tar) =1
hour as well as the match point value (Cyp)a = 107. Keeping these match point
values fixed, we then simultaneously matched Ap and Ap’ versus ¢ plots with the
type curves of Fig. 3.1.16 to obtain the match shown in Fig. 3.3.13 which gives
the pressure match-point values; (Cyppwp)s = 1.23 x 102 and (Ap)as = 1000 psi.
Using these match point values, Eqs. 3.1.80, 3.1.81 and 3.1.69 yield the following
results: k = 4.93 md, L, = 90.2 ft and k;b = 1.40 x 10* md-ft. From results of
Barker and Ramey®? or from Fig. 9 of Ref. 20, one can estimate n = 2.1. (The
ordinate variable on Fig. 9 of Ref. 20 is equal to In(r).) Using this values of »,
L., and ry, = 0.25 ft in Eq. 3.1.73 and solving for s; gives s; = —5.14. For this
same example, Cinco-Ley and Samaniego-V.? obtained k = 5.05 md, L., = 83.2
ft, kyb = 1.32 x 10* md-ft and 8y = —5.06 by type curve matching of pressure data
and obtained k = 5.1 md and s; = —5.04 by semilog analysis. Note that all results

are in good agreement.

3.3.5 Finite-Conductivity Fracture; Buildup Example

The following gas well buildup example is from Table 6 of Ref. 83. The well
had received an MHF treatment with a designed fracture length of 2500 ft. Water
saturation is S, = 0.5 but Ref. 83 does not indicate whether the water flow rate
was significant during the time period just prior to buildup. A very small amount
of condensate was produced. The reservoir contains natural fractures and the type
curves of Figs. 3.1.16 and 3.1.17 do not account for natural fractures. Based on the
results of Ref. 84, one should not be able to match the early time data with the type
curves of Figs 3.1.16 and 3.1.17 if the influence of the natural fractures is significant.
From history matching using a reservoir simulator, Kozik and Holditch®® obtained
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k = 0.022 md, L,, = 1500 ft and Cyp = 30.3. Note that this value of Cyp is
close to Cyp = 10x = 31.4; thus, assuming the preceding parameters are correct,
one should be able to match data to the appropriate type curves corresponding to
Cyp = 10x. It is not clear whether their simulator used by Kozik and Holditch®®
accounts for natural fractures but their results do not appear to be unreasonable
based on knowledge of the reservoir and the fracture design.

With knowledge of the inherent difficulties based on the complex reservoir/frac-
ture system, we attempted to analyze the buildup data using real gas pseudopressure

m(p)®°
mi(p) = / "B (3:3.3)
o Bz
and equivalent pseudotime ¢,. where
tAt,
tae = T T AL (3.3.4)

see Refs. 51, 52 and 53. Here, ¢ represents the producing time and At, represents
Agarwal’s pseudotimeS?.

Table 3.3.7 summarizes shut-in pressure change, pseudopressure, and logarith-
mic derivative of pseudopressure and pseudopressure/presudopressure-derivative
versus t,. data. In the results presented in Table 3.3.7, Am(p) is the pseudopressure
change defined by |

Am(p) = m(pws) — M(Puss), (3.3.5)

and Am/(p) is the logarithmic derivative of Am(p) with respect to ¢,.; i.e.,

Am'(p) = %. (3.3.6)

Figure 3.3.14 presents the best type curve match of Am(p)/[2Am'(p)] versus
ts. data obtained using the type curves of Fig. 3.1.17. The solid curve represents
the curve matched and corresponds to the Cyp = 10x solution of Fig. 3.1.17.
The match point values recorded in Fig. 3.3.14 correspond to this type curve
match. The match is not good and leads one to expect that field data may not
represent the reservoir/fracture system on which the type curve of Fig. 3.1.17 is
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Table 3.3.7
Ftnite-Conductivity Fracture; Buildup Example, Ref. 83
Pseudopressure and Derivative versus Time Data

Pseudopressure and Derivative Data
Equivalent
Shut-in Time, At Pseudotime, ¢,, Am(p) Am'(p) Am(p)/[2Am’(p)]
(Hours) (krs psi/ cp) (pei®/ <p) (pei®/cp)
2.5000E-01 3.9153E+04 2.4593E+07 6.0834E+06 2.0197E+00
5.0000E-01 8.0661E+04 3.1844E407 1.0933E+07 1.4563E+00
7.5000E-01 1.2294E+05 3.5723E+07 1.4165E+07 1.2609E+00
1.0000E-+00 1.6583E+05 4.0782E+07 1.5151E+07 1.3459E+00
1.5000E+00 2.5313E+05 4.7266E+07 1.8501E+07 1.2774E+400
2.0000E+00 3.4198E+05 5.2702E+07 1.9610E+07 1.3438E+00
2.5000E+00 4.3212E+05 5.7420E+07 2.1143E+07 1.3581E+00
3.0000E+00 5.2332E+05 6.1215E+07 2.1956E+07 1.3940E+00
4.0000E+00 7.0834E+05 6.8087E+07 2.3791E+07 1.4309E+00
6.0000E+00 1.0867E+06 7.862SE+07 2.8756E+07 1.3671E+00
8.0000E-+-00 1.4742E+06 8.7721E+4+07 3.1693E+07 1.3839E+00
1.0000E+01 1.8691E+06 9.5049E+07 3.4056E+07 1.3955E+00
1.2000E+01 2.2702E+06 1.0161E+08 3.5260E+07 1.4409E+00
1.6000E+-01 3.0873E+06 1.1253E+08 4.0316E4-07 1.3956E+00
2.0000E+01 3.9223E+06 1.2299E+08 4.1956E+07 1.4657E+00
2.4000E+-01 4.7728E+06 1.3156E+-08 3.9642E+07 1.6594E+00
3.3000E+01 6.7174E+08 1.4097E+08 8.1217E4+07 1.3762E+00
4.1000E+01 8.4935E+06 1.6074E+08 6.3244E+07 1.2708E+00
4.9000E+01 1.0320E+07 1.7210E+08 6.9145E+07 1.2445E+00
§.3000E+01 1.1244E+07 1.7735E+08 6.4421E+07 1.3765E+00
6.1000E+01 1.3111E+07 1.8798E+08 6.8876E+07 1.3646E+00
6.9000E+01 1.5005E+07 1.9695E+08 7.3128E+07 1.3467E+00
7.7000E+01 1.6923E+07 2.0603E+08 7.5069E+-07 1.3723E+00
8.5000E+01 1.8865E+07 2.1468E+08 7.9527E+07 1.3497E+00
9.3000E+01 2.0826E+07 2.2183E+08 8.0997E+07 1.3694E+00
1.0100E+02 2.2807E+07 2.3012E+08 8.5616E+-07 1.3439E+00
1.0900E+02 2.4806E+07 2.3659E+-08 8.8865E+07 1.3312E+00
1.1200E+02 2.5560E+07 2.4011E+08 8.8312E+07 1.3594E+00
1.2100E+02 2.7837E+07 2.4748E+08 9.3942E+07 1.3172E+00
1.3300E+-02 3.0904E+07 2.56739E+4-08 9.6627E+07 1.3319E+00
1.4500E+02 3.4004E+-07 2.6713E+-08 1.0010E+-08 1.3343E+00
1.5700E+02 3.7T135E+07 2.7583E+08 1.0257E+08 1.3445E+00
1.6900E+02 4.0293E+07 2.8404E+08 1.0255E+08 1.3848E+00
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Table 3.3.7 (Ccnt’d)
Finite-Conductivity Fracture; Buildup Example, Ref. 83

Pseudopressure and Derivative versus Time Data

Pseudopressure and Derivative Data
Equivalent
Shut-in Time, At Pseudotime, 4, Am(p) Am'(p) Am(p)/[2Am’(p)]
(Hours) (Rrs psi/ <p) (pei®/ <p) (pei®/cp)
1.8100E+02 4.3478E+07 2.9231E+08 1.0399E+-08 1.4054E+00
1.9300E+02 4.6686E+07 2.9920E+08 1.0909E+-08 1.3714E+00
2.0500E+02 4.9915E+07 3.0643E+08 1.1393E+08 1.3449E+00
2.1700E+02 5.3167E+07 3.1458E+08 1.2463E+08 1.2620E+00
2.2900E+02 5.6441E+07 3.2161E+08 1.2825E+08 1.2539E+00
2.4100E+02 5.9738E+07 3.2986E+08 1.2769E+08 1.2917E+00
2.5300E+02 6.3056E+07 3.3609E+08 1.2798E+08 1.3130E+00
2.6500E+02 6.6391E+07 3.4265E+08 1.2757E+08 1.3430E+00
2.7700E+02 6.9743E407 3.4894E+08 1.3400E+-08 1.3020E+00
2.8900E+02 7.3113E+07 3.5556E+08 1.3654E+08 1.3020E+00
3.0100E+02 7.6499E+07 3.8102E+08 1.3670E+08 1.3237E+00
3.1300E+02 7.9901E+07 3.6769E+08 1.3490E+-08 1.3628E+-00
3.2500E+02 8.3317E+07 3.7318E+08 1.4135E+4-08 1.3201E+00
3.3700E+02 8.6745E+07 3.7869E+-08 14177E+08 1.3356E+00
3.4900E+02 9.0189E+07 3.8546E+08 1.9076E+-08 1.0103E+00
3.6000E+02 9.3357E+07 3.8917E+08 1.9564E+08 9.9461E-01
3.7400E+02 9.7423E+07 4.0501E+08 1.5711E+08 1.2889E+00
4.2200E+02 1.1144E+08 4.1033E+08 9.86357E+07 2.1292E+00
4.4600E+02 1.1344E+-08 4.1756E+08 1.1093E+-08 1.8821E+00
4.7000E+02 1.2546E+08 4.2387E+408 1.3200E+-08 - 1.6056E+00
4.9400E+02 1.3251E+08 4.3338E+08 1.3541E+-08 1.6002E+00
5.1800E+02 1.3958E+08 4.3943E+08 1.3780E+08 1.6945E-+-00
5.4200E+-02 1.46668E+08 4.4582E+08 1.2086E+08 1.7166E+-00
5.6600E+02 1.5376E+08 4.5256E+-08 1.3419E+4-08 1.6862E+00
6.0200E+02 1.6443E+08 4.6126E+08 1.4916E4-08 1.5462E+00
6.1400E+02 1.6799E+08 4.6417E+08 1.4414E+08 1.6102E+-00
6.3800E+02 1.7612E+08 4.7162E+08 1.4948E+-08 1.5776E+00
6.6200E-+02 1.8227E+08 4.7650E+-08 1.334E+08 1.7788E+00
6.8600E+02 1.8942E+08 4.8172E+08 1.1670E+08 2.0639E+00
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based possibly due to the presence of natural fractures. The dashed curve of Fig.
3.3.14 corresponds to an earlier time part of the Cyp = 107 solution of Fig. 3.1.17.
The plot of the buildup data compared to this dashed curve represents the type
curve match that one would have to obtain in order to pbta.in the parameter values
obtained by Ref. 80 by history matching. Clearly, this does not represent an
acceptable type curve match.

For completeness, keeping the time match point-values recorded in Fig. 3.3.14
fixed, we simultaneously matched Am(p) and Am’(p) versus ¢, plots with the type
curves of Fig. 3.1.16. This match is shown in Fig. 3.3.15 and represented by solid
curves. As recorded in Fig. 3.3.15, this match determines the following pressure
match-point values; (Cyppwp)ar = 100 and (Am(p))ar = 10° psi?/cp. Using these
pressure match-point values and time match-point values recorded in Fig. 3.3.14,
one obtains k = 0.181 md and L., = 525 ft. For comparison purposes, the type

133

curve match that one would obtain using the estimates of Ref. 83; £ = 0.022 md

and L., = 1500 ft, is also shown in Fig. 3.3.15 by the dashed curves. Note that
these results are not in good agreement because of the fact that field data plot may
not represent the reservoir/fracture system on which type curves of Fig. 3.1.17 is
based.

This example is intended to illustrate one of the advantages of the new type
curves based on the p,p/(2p), ) pressure/pressure derivative group. Since type
curve matching is accomplished by moving the data only in the horizontal direction,
one should be able to use the type curves to obtain an indication of whether the
field data actually represents the model assumed by the type curves.
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CHAPTER IV
ANALYSIS OF PRESSURE BUILDUP DATA
USING THE PRESSURE DERIVATIVE

The purpose of this chapter is to present new applications of the pressure
derivative for analyzing the pressure buildup data obtained at a well located in a
system of welis draining a closed bounded reservoir. Both unfractured and fractured
wells are considered. ’

The well known Miller-Dyes-Hutchinson3* and Matthews-Brons-Hazebroek3>
methods can be used to compute the volumetric average reservoir pressure from
a buildup test under the following conditions: (i) permeability can be determined
by semilog analysis; (ii) the drainage area of the well is known; and (iii) the well’s
location in the drainage area and the shape of the drainage area are known; i.e.,
the Dietz%® shape factor is known. One of the primary contributions of this work is
the presentation of a new method for determining the well’s drainage area directly
from the derivative of pressure buildup data.

The buildup response of a single well in a closed drainage area has been inves-
tigated by many researchers; see, for example, Refs. 34-37 and 85-90. For the most
part, these references focus on the existence and duration of the Horner or MDH
semilog straight lines and on methods for computing average reservoir pressure.
For cases where pseudosteady-state flow exists at the instant of shut-in, the results
of Ramey and Cobb%®®, and Larsen®® indicate that the duration of the Horner and
MDH semilog straight lines are essentially identical. In this work, it is shown that
one can obtain a longer semilog straight line by using a modified MDH plot. This
modified MDH plot is identical to one suggested by Codreanu® and also is concep-
tually similar to a method suggested by Slider®”. However, Codreanu suggested a
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trial and error procedure for determining the corrected shut-in pressure to use in
the modified MDH plot. Our work removes this restriction. In addition, Ref. 90
considered only a single unfractured well in a closed drainage area whereas we con-
sider general multi-well systems and also consider both fractured and unfractured
wells.

It is worthwhile to note that Larsen®® showed that the duration of Horner
semilog straight line can be increased by replacing the actual producing time, ¢,,
by # in the Horner time ratio, where ' corresponds to the time such that ¢/, , = 0.08.
In order to obtain ¢/, one must have a priori knowledge of the reservoir drainage
area at the instant of shut-in and the permeability. Our method for computing
drainage area and permeability directly from buildup data enables one to compute
the value of ¢’ necessary to apply Larsen’s suggestion.

By using a method of analysis based on pressure derivatives, it is shown that
the drainage area and permeability-thickness product can be obtained directly from
a given pressure buildup test. The method uses the derivative of the shut-in pressure
and does not require a priori knowledge of initial pressure, p;, or the wellbore flowing
pressure at the instant of shut-in, p,s,,. Moreover, our method does not rely on
the existence of the semilog straight line on a Horner or MDH plot. The method is
applicable to botk unfractured and fractured wells. The analysis procedure can be
used to analyze the buildup pressures at a well located in any one of the following
three systems: (i) a single well in a closed drainage area; (ii) a system of producing
wells in a closed bounded reservoir; (iil) an infinite multi-well pattern. The basic
assumption is that the buildup surveyed well has established a unique drainage
area prior to shut-in. For the closed bounded reservoir cases (cases (i) and (ii)),
this means pseudosteady-state flow is established throughout the reservoir prior to
shut-in. For case (iii), our assumption is that prior to shut-in, pseudosteady-state
flow has been established in the drainage area of the well under consideration. A
method for determining the average reservoir pressure is also given. The method
requires only the knowledge of the Dietz shape factor and is not highly sensitive to
the estimate of the Dietz shape factor.
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We also present a second method for estimating a well’s drainage area from
pressure buildup data. The second method relies on the fact that during buildup,
the shut-in pressure of a well located in an infinite multi-well pattern or in 2 multi-
well closed bounded reservoir increases to 8 maximum and then decreases when
nearby producing wells start to affect the shut-in pressure of buildup surveyed well.
When the maximum in the shut-in pressure is observed, it is shown that the drainage
area (at the instant of shut-in) and the average pressure in this drainage area can
be calculated from the maximum shut-in pressure and the shut-in time at which it
occurs.

At end of this chapter, we investigate the validity of new analysis methods
mentioned above to analyze pressure buildup data influenced by wellbore storage
and skin effects. Moreover, we include the analysis of an actual field pressure
buildup test to illustrate the use of new pressure derivative methods in estimating

reservoir/well parameters.

4.1 Assumptions and Definitjons
Throughout this chapter, we assume single-phase flow of a slightly compressible
fluid of constant viscosity in a homogeneous reservoir. Moreover, we assume that all
wells in an infinite multi-well pattern and in 2 closed bounded system produce with
a constant rate, but the production rate may vary from well to well. We define the
dimensionless variables in the standard way and oil field units are used throughout.

The dimensionless wellbore pressure drop is defined by

PuD = _____kl;i;;.- ;q;‘;’ ] (4.1.1)
It is important to note that throughout this chapter p,p represents the dimen-
sionless drawdown wellbore pressure solution for the well under consideration. The
expression for p,p depends on the well location in the drainage area, whether the
well is fractured or unfractured and the flow regime under consideration (linear,
radial, pseudosteady-state, etc.).
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The dimensionless wellbore shut-in pressure, p,p, is defined by

_kk [ps = Pwa)
p‘D - 141.2q,_Bp . (4.1.2)

Because we consider muiti-well systems, well one and the subscript 1 refer to the
buildup surveyed well.

The gjmensionless times based on wellbore radius, ry, fracture half length, L.,
well 1’s drainage area, A;, and the total reservoir drainage area, A, are defined,

respectively, by .
2.637 x 10~*kt
tp = —————————— 4.1.3
? ¢eprs (4.1.3)
2.637 x 10~ %kt
te,p = —Eﬁ?,,_’ (4.14)
2.637 X 10~ 4kt
t = — 4.1.5
4D decpd; (4.15)
and .
2.637 x 10™*kt
t = — 4.1.6
4D derpAe (4.1.6)
It follows from Eqgs. 4.1.3, 4.1.4, 4.1.5 and 4.1.6 that
L2 A
3 _W —3 —zi — —i .
tAgD At tp Ag tz,D At tA;D, (4 1.7)

where A; always represents the drainage area of well 1 at the instant of shut-in,
and A, represents the total reservoir drainage area for the closed bounded reservoir
cases considered. For the case of a single well in a closed drainage area, A, = A;.

Throughout, ¢, denotes the producing time in hours and the corresponding
dimensionless values of ¢, are defined as ¢,p, ¢;z,D, tpa, D, and ¢p4,p. They are
obtained, respectively, by replacing ¢ on the right hand sides of Egs. 4.1.3, 4.1.4,
4.1.5 and 4.1.6 by ¢,. Similarly, At denotes the shut-in t{ime in hours and the
corresponding dimensionless values of At are defined, respectively, as Atp, At.,p,
At,,p, and Aty,p which are obtained by replacing ¢ by At in Eqgs. 4.1.3 through
4.1.6. Throughout, ¢,,, denotes the time at which pseudosteady-state low begins.
Ry denotes the well known Horner’? time ratio and is defined as

_t,+ At t,p+Atp _ tp:,p + Atz .p

At Atp At, +D (4.1.8)

Ry
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The dimensionless distance based on wellbore radius, r,,, is defined by

r

rp = ;. (4.1.9)

Throughout r is the radial distance measured from well 1 and z and y are the
distances in z and y directions. The relationship between the radial coordinate

system and the z — y coordinate system is given by

3 =22 4+, (4.1.10)

4.2 General Buildup Sclution
The geometry for a system of producing wells completed in a z, by y. closed
bounded rectangular reservoir is depicted in Fig. 4.2.1. The z—y coordinate system
is centered at well 1 shown in Fig. 4.2.1 and (zy, yi) represents the coordinate of well
k. In Fig. 4.2.1, the solid circles represent the producing wells. The relative location
of well k in the closed rectangular reservoir shown in Fig. 4.2.1 is determined by
two parameters a; and f; which are defined, respectively, by

_ Zuk
&% ==, (4.2.1)
and
B = L2k (4.2.2)
Ye

where z,,; denotes the distance (in the z direction) between well k and the right
boundary of the reservoir, and y,x denotes the distance (in the y direction) between
well & and the bottom boundary of the reservoir. For example, o = ;. = 0.5
indicates that well k is located at the center of the closed bounded rectangular
Teservoir.

For the system of Fig. 4.2.1, we assume that well k (2 < k < m) produces at a
rate g; for all times and well 1 produces at a rate ¢; for 0 < ¢ < ¢, and then is shut-
in for pressure buildup. Here, m denotes the number of wells in the closed bounded
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Fig. 4.2.1 - System of Producing Wells in a Closed Bounded Reservoir
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system. Using the method of images and superposition, as shown in Appendix E,

the dimensionless shut-in pressure at well 1 can be given by

pup = H2 (B =Pu(A1) _
«D 141.2¢: Bg

(- -]
[Pn (z1,91,tp + AL) + 3P (217, y1srtp + At) + 8]
=2

- [ [pp (21,91, A8) + i Pp (215,115, At) + s] ]

y=2

m o \
+ E_;%pp (Zrs Vi tp + AY) }

m oo
+ o3 & pp (21 urinto + A1). (4.2.3)
k=23=2 9
In Eq. 4.2.3, (Zi;,yx;) represents the coordinate of the jth image well of well k.

The term pp represents the dimensionless pressure drop that would be obtained at
a single producing well with a zero skin factor in an infinite reservoir. We have used
the standard assumption that skin factors associated with well k, 2 < k < m, do
not affect the pressure change at well 1. Only the skin factor of the well 1 influences
the pressure drop at well 1. Throughout, s denotes the skin factor of well 1. Note
that skin factor can be canceled from Eq. 4.2.3 but we have chosen to include it
for later reference. The first sum on the right hand side of Eq. 4.2.3 represents the
pressure drop due to the image wells associated with well 1 and the double sum
represents the pressure drop due to the image wells of well 2 through m. The sum
in parentheses represents the pressure drop observed at well 1 due to production
at wells 2 through m. The group of terms enclosed within double square brackets
represents the pressure change caused by the shut-in of well 1. For all reservoir
systems considered, we use the algorithms suggested by Larsen? to generate the
buildup solution given by Eq. 4.2.3.

If we let p,p be the dimensionless drawdown pressure drop associated with

well 1 and its image wells, then Eq. 4.2.3 can be rewritten as

_ kh (55 — pua(A1)
PsD 141.2¢, By

= PwD (tp + At) = PwD (At)
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m
+ Z;%PD(-‘B&, Ykstp + At))

” oo
+ Z Z 2 op (zk5s Yxsstp + Al). (4.2.4)
k=2j=2 **
For a single well system, m = 1 and Eq. 4.2.4 reduces to the standard superposition
equation; i.e.,
2.0 = D ([t, + At]p) — pup(AtD). (4.2.5)

Equations 4.2.3 through 4.2.5 apply to both fractured and unfractured wells.
For unfractured wells, we use the line source solution to represent each pp term in
Egs. 4.2.3 and 4.2.4, whereas for fractured wells we use the appropriate infinite-
acting solutions of Refs. 17 and 19.

Assuming for simplicity that all wells produce at the same rate, it is easy to
show that the buildup response at a well located in an infinite multi-well pattern is
given by

_ khips — pus(At)] _
141.2¢; Bu

(-]
[pp (21,918 + A) + D pp (25,45t + At)]
I=2

—pp (21,41, A1), (4.2.6)

D.D

where (z;,y;) denotes the location of well j. Fig. 4.2.2 depicts one possible infinite
multi-well pattern. In Fig.- 4.2.2, the solid circles denote wells which are on pro-
duction for all times and the cross denotes the location of well 1 which produces at
a rate ¢, for 0 < ¢t < ¢, and then is shut-in. The closed square represents well 1’s
drainage area at the instant of shut-in. During buildup, thé pressure at well 1 will
initially increase but will eventually decline due to production at nearby producing
wells.

4.3 Unfractured Wells
For an unfractured completely-penetrating well, all pp terms in Egs. 4.2.3
and 4.2.4 are given by the line source solution. Here, three cases are considered:

the buildup response at a single well in a closed bounded reservoir; the buildup
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response at a well in a multi-well system located in a closed bounded reservoir and
the buildup response at a well located in an infinite multi-well pattern.

4.3.1 Single Well in a Closed Reservoir
In this subsection, we consider a single line source well located in a closed

(bounded) rectangular drainage area. The well is produced at a rate g; untilz =t¢,
and is then shut-in for pressure buildup. For this system, well 1’s dimensionless
shut-in pressure, p,p, can be obtained from Eq. 4.2.3 with both the double sum-
mation term and the summation term enclosed in parentheses deleted. Alternately,
the dimensionless buildup pressure can be obtained from Eq. 4.2.5 by using the ap-
propriate flow regime representation for p,p. During transient flow, pyp is given

by
=1, (%
Pup(tp) = 31n ( = ) +8, (4.3.1)
and during pseudosteady-state flow, p.,p is given by
_ 1 44,
Pup(tD) = 27ta,p + 2 In (e" CarZ ) +s. (4.3.2)

Here, A; denotes the drainage area of the well under consideration and C4, denotes
the associated Dietz shape factor.

K t, > tp,,; ie., if pseudosteady-state flow (see Eq. 4.3.2) exists at the instant
of shut-in and At is sufficiently small so that p,p(Atp) is given by its semilog
approximation (see Eq. 4.3.1), then Eq. 4.2.4 can be rewritten as .

1
P = 21r(t, + At)A;D - 5 In (AtA1DCA;) . (4.3.3)

Eq. 4.3.3 holds for shut-in times such that Atp < t..sp Where ¢.,q p denotes
the ending time of the semilog approximation; i.e., the time when the semilog
approximation for p,p(Atp) no longer applies. Taking the logarithmic derivative
of p,p given by Eq. 4.3.3 with respect to At4, p gives

dPnD dPDc 1
—+FD __ _ A: = t -=, 3.
dnAtsp  AtmDga, - =204 — 5 (434)
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where the first equality of Eq. 4.3.4 follows from the chain rule. Note that Eq. 4.3.4
is independent of the producing time, ¢,,, and applies for all shut-in times such that
Atp < te,op provided that ¢, > tp,,.

Eq. 4.3.4 was established previously in Ref. 91 (also see Ref. 388). However,
both Refs. 88 and 91 focused on the case where Eq. 4.3.4 can be approximated by
—1/2; i.e., the case where the 2xAt4,p term in Egs. 4.3.3 and 4.3.4 is negligible.
In fact, when this approximation holds, for all practical purposes, a semilog straight
line on a MDH or a Horner plot exists. As shown later, the right side of Eq. 4.3.4
is well approximated by —1/2 only at very early shut-in times.

Here, we show that when Eq. 4.3.4 is used directly, it provides a way to com-
pute the drainage area of the well (at the instant of shut-in) and the permeability-
thickness product. In dimensional variables, Eq. 4.3.4 is equivalent to

dpws
JmAL = miAt - b, (4.3.5)

where m; and b are given, respectively, as

_ 02340¢, B

m; = W, (4.3.6)

and
_ 141.2¢: By

b=t

Eq. 4.3.5 indicates that a Cartesian plot of —dp,,,/dIn At vs. At will yield a
straight line with slope equal to m; and intercept equal to b. The drainage area of
the well can be obtained from the value of slope m; by the obvious rearrangement of
Eq. 4.3.6, provided we know the compressibility-porosity-thickness product, ¢c:h.
The flow capacity kk can be obtained from the intercept b by the obvious rearrange-
ment of Eq.. 4.3.7. Assuming that the reservoir thickness A is known, the value of
permeability, k, can then be computed. This analysis procedure does not require
knowledge of the initial pressure, p;, the pressure at the instant of shut-in, p,.,,

. (4.3.7)

or the producing time, ¢,.
Figure 4.3.1 shows a Cartesian plot of dp,p/dIn At4,p vs. At,,p for a well
off center (a; = 0.25,8;, = 0.5) in a 2 : 1 closed rectangular reservoir; see insert
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in Fig. 4.3.1. For this system, the time to reach pseudosteady-state flow period
i8 £pss,4, 0 = 0.61. This value is based on a 5 percent difference between 27 and
the drawdown slope, dpyp/dt4,p. In Fig. 4.3.1, the solid straight line with slope
equal to 27 and intercept equal to —1/2 represents Eq. 4.3.4. Note that as we
have predicted theoretically, dp,p/dInAt,,p follows Eq. 4.34 until Aty,p =
tesa A ,b = 0.028 for all dimensionless producing times such that tp4,p > 0.6. Note
that the short producing time case (p4,p = 0.05) shown in Fig. 4.3.1 does not
follow the straight line predicted by Eq. 4.3.4. For producing and shut-in times
such that both p,p terms in Eq. 4.2.4 are given by the semilog approximations
(see Eq. 4.3.1), it is easy show that

dp,p _ 1 tp
dinAts,p 2 (t,+At) ) (43.8)

Eq. 4.3.4 can be rewritten as

_ dp,p
dlnAty,p

Figure 4.3.2 illustrates the existence and the duration of the straight line predicted
by Eq. 4.3.4, or, equivalently, the validity of Eq. 4.3.9, for three different well

(4.3.9)

N.I (=

+2xAts,p =

locations in a 2 : 1 rectangular drainage area. The geometries of the rectangular
systems are depicted on Fig. 4.3.2. The dimensionless producing time ist,4,p = 3
for all results shown in Fig. 4.3.2. Note that Fig. 4.3.2 presents a log-log plot of
—(dp,p/dInAt,,p) +2xAt,,p vs. Aty,p. The solid dots in Fig. 4.3.2 denote
the ending time of Eq. 4.3.9 (equivalently, the ending time of Eq. 4.3.4) for the
three cases based on a 5 percent difference between the two sides of Eq. 4.3.9.
It is apparent from Fig. 4.3.2 that Eqs. 4.3.9 and 4.3.4 apply longer for cases 2
and 3 than for case 1. This is the expected theoretical result since Eqs. 4.3.4 and
4.3.9 cease to apply when the shut-in pressure is influenced by the closest reservoir
boundary; i.e., when p,p(Atp) is no longer given by its semilog approximation.
For long producing times (tpa,p > tpes,4,p) 2nd shut-in times such that .

Aty,p < Atepa 4,0, Eq. 4.3.3 applies. As is well known MDH semilog analy-
sis assumes shut-in times sufficiently small so that ¢, + At can be replaced by ¢, in
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Eq. 4.3.3. In this case a semilog plot of p,p vs. Atp will exhibit a semilog straight
line of slope —1.151, or equivalently,

dp,p ___dpp _ 1
dnAtp  dmAtap 2 (43.10)

The MDH semilog straight line will end when the approximation ¢, + At = ¢, is no
longer valid. On the other hand, Eq. 4.3.3 can be rearranged to yield

1
Pep — 2xAt4,p = 27tpp, D — -E ln(AtA,pCA,) . (4.3.11)

Taking the logarithmic derivative of Eq. 4.3.11 yields Eq. 4.3.9. These results
suggest that the “modified” MDH semilog plot of p,p —27At4,p vs. At4, p should
yield a longer semilog straight line than the conventional MDH plot. The modified
MDH plot will end when A4, p > Ateyq,4,p and does not assume that ¢, +At =~ £,,.

The point labeled with a cross in Fig. 4.3.2 denotes the time at which the
MDH slope (—dp,p/dIn At4,p) would deviate from 1/2 by more than 5 percent.
This time corresponds to At,,p = 0.004. The solid circles represent the time at
which the semilog straight line ends on the modified MDH plot. It is clear from
Fig. 4.3.2 that Eq. 4.3.9 applies for a longer period of time than Eq. 4.3.10 does.

Figure 4.3.3 compares the duration of the conventional MDH slope of 0.5 (Eq.
4.3.10) with the modified MDH slope of 0.5 predicted by Eq. 4.3.9 for a case where
the well is located off center (a; = 0.25,8, = 0.5) of a 2 : 1 closed rectangular
drainage area. The dimensionless producing time is #,4,p = 3 for all results shown
in Fig. 4.3.3. Both —dp,p/dInAt,,p (MDH slope) and —(dp.n/dIn At,.p) +
2xAt,,p (modified MDH slope) are plotted as a function of the dimensionless
shut-in time, At4,p in Fig. 4.3.3. The cross denotes the earliest time where the
left side of Eq. 4.3.10 differs from 0.5 by more than 5 percent and the solid circle
indicates the earliest time such that the left side of Eq. 4.3.9 differs from 0.5 by
more than 5 percent. An inspection of the results of Fig. 4.3.3 indicates that the
left hand side of Eq. 4.3.9 agrees with 0.5 longer (about a log cycle more) than the
MDH slope. Note the derivative response (MDH slope) decreases and then increases
due to non-symmetry of the well location in the drainage area.
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The drainage area of the well (at the instant of shut-in) and the permeability-
thickness product can be obtained from the derivative analysis procedure suggested

by Egs. 4.3.5 through 4.3.7. Rearranging Eq. 4.3.11 gives

kh [p - ch]

= = — 2xt
PDMDH 141.2¢, Bg PsD pAy D

1
= 2xAt,4,p — 2 In(Ats,pCa,), (4.3.12)

where the first equality of Eq. 4.3.12 defines the dimensionless MDH function and
the 27ty 4, p term is given by the material balance equation; i.e.,

_ khipi—p] _ (4.3.13)

— — 2“ -
Pp = {0 24:Bu pA1D

Using Eq. 4.3.13 and the definition of p,p in Eq. 4.3.12, and rearranging the

resulting equation gives

kR [B — puw,)
- t = e — 14
PDMDE — 28Atyp 14120 By 2xAt,,p

1
=—3 In(Ats,pCa,). (4.3.14)

Multiplying Eq. 4.3.14 by 141.2g; Bu/(kh) and rearranging the resulting equation,
we obtain

Puwe + MAt = p+mlog (AtA‘DC,h)

= p+m [log (A1) + log (1-C, )], (4.3.15)

where C,, is the Dietz shape factor, m; is given by Eq. 4.3.6, and m is given by

m= }%}:B“ = 2.303b, (4.3.16)

where b is given by Eq. 4.3.7.
Figure 4.3.4 is used to compare the existence and the duration of semilog

straight lines predicted by Eqs. 4.3.12 and 4.3.14. Fig. 4.3.4 is a semilog plot of
ppoupr (conventional MDH plot) and ppaypr — 27At,,p (modified MDH plot)

vs. At,,p for the same cases considered in Fig. 4.3.2. A cross represents the
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ending time of the semilog straight line on the conventional MDH plot, whereas the
inverted solid triangles are used to denote the ending time of the semilog straight
line on the modified MDH plots for each case. Fig. 4.3.4 shows that the modified
MDH plot yields a longer semilog straight line than the conventional MDH plot
does. For cases 2 and 3 the modified MDH semilog straight line is on the order of

one log cycle ionger.

4.3.2 Analysis Procedure

Equation 4.3.15 indicates that a semilog plot of py, + m;At vs. At will yield
a semilog straight line with slope equal to m. This plot is referred to as a modified
MDH plot. Note that preparation of this semilog plot requires that m; can be deter-
mined as the slope of the straight line obtained on a Cartesian plot of —dp,,,/d In At
vs. At. Codreanu’s™ analysis procedure is based on Eq. 4.3.15. However, his anal-
ysis is based on a trial and error procedure. In essence, his procedure requires
that we guess values of m; (or equivalently the drainage area A,) and then prepare
semilog plots of py, +m; At vs. Af for verious values of m;. The procedure assumes
that the value of m; which gives the best (longest) semilog straight line represents
the correct value of m; or A; (see Eq. 4.3.6). Our derivative analysis based on
Eqs. 4.3.5 through 4.3.7 eliminates the trial and error procedure and gives a direct
estimate of the well’s drainage area as well as the flow capacity, kh. Since kk can
also be determined from the slope m (see Eq. 4.3.16) of the semilog straight line
obtained on a modified MDH plot suggested by Eq. 4.3.15, computation of kh from
Eq. 4.3.15 provides a check for the value of kk computed from b by the obvious
rearrangement of Eq. 4.3.7. We can also determine the average reservoir pressure
from the semilog straight line predicted by Eq. 4.3.15. Extrapolating the semilog
straight line obtained to the shut-in time of one hour and rearranging Eq. 4.3.15
gives

B = (Pus + M8 gy yhone = [108 (T5Cs )| - (4.3.17)

‘The determination of the average pressure, §, from Eq. 4.3.17 does not require
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knowledge of the initial pressure and the producing time. It does, however, require
an estimate of the Dietz shape factor, C4,. However, since C4, appears in the log
term of Eq. 4.3.17, a highly accurate estimate of Cj4, is not required to obtain an
accurate estimate of average reservoir pressure.

Results of Figs. 4.3.1 and 4.3.2 and other computational results not shown here
indicate that the existence and the duration of the straight line on a Cartesian plot
of dp,p/dIn Aty,p vs. Aty,p depend on the shape of the closed drainage region
and the well’s location in the closed drainage region. Therefore, it should be possible
to estimate the Dietz shape factor from Table 4.3.1 which, for various well locations
and drainage shapes, gives t,,, 4, D, the starting time of pseudosteady-steady state
flow, and At,,q,4,D, the ending time of Cartesian straight line (Eq. 4.3.4), which
is referred as the dimensionless departure time. In Table 4.3.1, these times are
given for both 1% and 5% deviations, that is, the value of At,s 4,p represents the
earliest shut-in time at which the left side of Eq. 4.3.9 differs from 0.5 by more
than 5 percent (or more than 1 percent). The dimensionless starting times for
pseudosteady-state flow, ¢,,, 4, p are based on a criterion that the drawdown slope,
dp,p/dta,p, differs from 2x by more than 5 percent (or more than 1 percent).
Shape factors are given for all the rectangular drainage/well geometries presented
by Earlougher3* (see Table C-1 of Ref. 54). In Table 4.3.1, the departure times
are denoted by ¢.,4,4,p 2nd the starting times for the pseudosteady-state flow are
denoted by 2,,,,4, 0. Note that ¢.,4,4,p also represent the time when the semiiog
approximation of Eq. 4.3.3 no longer applies; i.e., when p,,p(At4,p) is no longer
given by its semilog approximation. If a straight line is obtained on a Cartesian plot
of —dpw,/dIn At versus At and the derivative response departs from this straight
line, one first computes corresponding dimensionless values of the producing time
and the departure time; ie., ¢4, p and At 4,0 using the values of m; and b
obtained from our derivative analysis procedure discussed earlier, and by comparing
these dimensionless time values with times presented in Table 3.4.1, one can obtain
an estimate of the shape factor.

I the initial pressure, p;, is known, one can determine the average pressure
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155

Departure Times and Starting Times of PseudoSteady-State Flow For Various

Closed Single-Well Drainage Shapes
. toss,a,p
Well/Reservoir Ca pas, &,
Configuration 1 1% 5%
1
1 30.883 0.152 0.113
1
- 1 12.985 0.467 0.304
1
L J
1 4.513 0.511 0.378
1
1 3.335 0.526 0.35%
2
1 21.837 0.265 0.188
2
¢
1 10.837 0.285 0.209
2

%—} 1 4.514

0.890 0.608

tesa,a;p

1%

0.0420

0.0135

0.0120

0.0052

0.0240

0.0068

0.0240

5%

0.057

0.021

0.017

0.0034

0.0340

0.0110

0.0340
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Table 4.3.1 (Cont'd)

Departure Times and Starting Times of PseudoSteady-State Flow For Various
Closed Single-Well Drainage Shapes

Well/Reservoir Ca
Configuration 1
2
il 2.077
2
- 1 0.583
2
C
1 3.157
2
L1t it i
EEEEEE] 1 0.111
4
1 5.379
4
®
1 2.699

tpss,hin tesa,a;,p
1% 5% 1% 5%
0.890 0.608 0.0068 0.011

1.140

0.300

1.100

0.525

0.525

0.717 0.0068 0.011

0.219 0.0017 0.0026

0.741  0.0017 0.0026

0377 0.0120 0.0170

0377  0.0035 0.0053
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Table 4.3.1 (Cont'd)

Departure Times and Starting Times of PseudoSteady-State Flow For Various

Closed Single-Well Drainage Shapes
t t
Well/Reservoir Ca P3s,A,D ¢s3a,A,0
Configuration 1 1% 5% 1% 5%
4
° 1 0.232 1.850 1.218 0.0120 0.0170
4
A 0.116 1.850 1.218  0.0035 0.0053
5
1 2.361 0.660 0.469 0.0095 0.0135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157



158

directly from the material balance equation (Eq. 4.3.13) after computing #p4,p
from
toaD = %t,, (4.3.18)
where 2, is the actual producing time. After computing the average reservoir pres-
_sure, one can then obtain the shape factor, C,,, from Eq. 4.3.17.
The skin factor, s, can be obtained by extrapolating the semilog straight line
(obtained on a plot py, + miAt vs. At) to the shut-in time of one hour; i.e.,

s= 1151 [Mﬂ@‘_ﬁlﬁ_
m
—log ( k ) + 3.23], (4.3.19)
decurd

where p, s , is the wellbore flowing pressure at the instant of shut-in and m is the
slope of a semilog straight line represented by Eq. 4.3.15. It should be noted that
Eq. 4.3.19 assumes that ¢, > ¢,,,. The derivation of Eq. 4.3.19 can be obtained
from Eq. 4.3.15 and Eq. 4.3.2 (with ¢ replaced by ¢,) by the standard procedure.

4.3.3 Well Located in an Infinite Multi-Well Pattern

Figure 4.2.2 shows one possible geometry for an infinite multi-well pattern. We
consider a specific well (line source well) located in a multi-well pattern and this
well (denoted by a cross in Fig. 4.2.2) produces at a rate g; until time ¢, and then
is shut-in for a buildup test, whereas the other wells in the pattern continue to
produce. Here, for simplicity, we consider the case where all wells produce with the
same constant rate g;. Our objective is to investigate the effect of interference due
to continuous production of the offset wells on the buildup response of a specific
well, well 1 in our notation.

As shown previously, the dimensionless shut-in pressure, p,p, of a specific well
(well 1) located in an infinite multi-well pattern is given by Eq. 4.2.6 where each
pp term is given by the exponential-integral solution (see Eq. 3.1.1).

For sufficiently short producing times such that the infinite sum in Eq. 4.2.6
is negligible and for sufficiently short shut-in times such that both pp (¢, + At) and
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pp(At) terms in Eq. 4.2.5 are given by their log approximations, Eq. 4.2.5 reduces
to the standard Horner equation; that is,

Pp = ; In Ry. (4.3.20)

Note that when Eq. 4.3.20 holds, as is well known®?'®, one can only obtain the
flow capacity and the skin factor by using a semilog plot of the shut-in pressure,
Pwas, Versus Horner time ratio, Ry, in the conventional manner.

Here, we assume ¢, > t,,, so that the term in square brackets in Eq. 4.2.5 is
given by its pseudosteady-state approximation (see Eq. 4.3.2). Replacing pp(At) in
Eq. 4.2.5 by its semilog approximation and the group of terms in square brackets by
the pseudosteady-state equation, and rearranging the resulting equation, we obtain

1
PD = 21I’(tp + At)A;D - 5 In (AtA;DCAl) . (4.3.21)

Note that Eq. 4.3.21 is the same as the buildup response equation of a single well
in a closed system (see Eq. 4.3.3). The only difference between the two cases is
that Eq. 4.3.21 represents the buildup solution at all shut-in times for an infinite
multi-well pattern case, whereas, for the case of a single well in a closed system, Eq.
4.3.3 is valid only for shut-in times Atp < {.,4,p. However, both equations assume
that ¢, + At > ¢,,,. The difference in a physical sense can be explained as follows.
After shutting-in well 1 in an infinite multi-well pattern, continued production at
other wells causes well 1 to lose its drainage area. However, for a cingle well in
a closed reservoir, the drainage area of the well is preserved because there is no
interference effect due to other wells.

Taking the logarithmic derivative of Eq. 4.3.21 with respect to the dimension-
less shut-in time At,, p gives

dp.p _ 1
dnAtsp =2xAt4,p > (4.3.22)

Equating the right hand side of Eq. 4.3.22 to zero gives

Aty p = (4.3.23)

1
4r°
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Since it can be shown that d®p,p/dAts,p? > 0 at At,,p = 1/4x, then p,p has a
minimum at At,4,p = 1/4x. Thus, interference effect on the buildup response of a
specific well can be characterized by a maximum peak in the shut-in pressure, py,-
This result is valid for all geometric shapes and well locations. It follows from Egs.
4.3.13, 4.3.21 and 4.3.23 that the minimum of p,p is given by

(PeD)min =PD + 5 [ (C“‘ )] (4.3.24)

It follows from Eq. 4.3.23 that the drainage area of the well at the instant of
shut-in can be obtained as

3.3138 x 10~3k
oo

where At ;. denotes the time at which the shut-in pressure, py,, has a maximum

A= Atpgs. (4.3.25)

(psp has a minimum).
Using the definition of p,p given by Eq. 4.1.2, and replacing fp in Eq. 4.3.24
by its definition (see Eq. 4.3.13) and solving the resulting equation for the average

pressure, P, gives

5= (Pws) pag + b[l -In (C‘;‘ )], (4.3.26)

where b is given by Eq. 4.3.7 and (pw,)maz represents the maximum shut-in pressure
which occurs at the value of At (Atnaz) corresponding to Aty,p = 1/47.

Figure 4.3.5 shows a semilog plot of the dimensionless shut-in pressure, p,p,
versus At,, p for well off center (a; = 0.25,8; = 0.75) in a 2 : 1 closed rectangular
drainage region which is created due to production of nearby producing wells in
the infinite multi-well pattern. In Fig. 4.3.5, we consider three values of produc-
ing times, t,4,p, 0.6, 2.0, 5.0. For this system, the producing time to reach to
pseudosteady-state flow period prior to shut-in is ¢,,, 4,0 = 0.61 (see Table 4.3.1).
It is apparent from the results of Fig. 4.3.5 that, for a given value of producing time,
the dimensionless pressure decreases to 2 minimum and then increases as the shut-in
time increases, and the minimum dimensionless shut-in pressure occurs at a shut-in
time, At4,p = 1/(47) as expected from our analytical observations. Computations
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also indicate that the the minimum of p,p is given by Eq. 4.3.24 for a given value
of the producing time. For example, the value of (p,p)min = 14 for t4,p = 2 in
Fig. 4.3.5, whereas Eq. 4.3.24 predicts (p,p)min = 13.97 for this geometry and
the producing time. They are in excellent agreement. Thus, the results of Fig.
4.3.5 and Eqgs. 4.3.25 and 4.3.26 suggest that when the interference effect of the
offset wells influences the buildup response of a specific well in an infinite multi-well
pattern, the drainage area and the average reservoir pressure in this drainage area
can be determined from the maximum shut-in pressure and from the time at which
it occurs. As shown previously, the maximum of the shut-in pressure will occur if
there are interference effects on the buildup response from the nearby producing
welis. For shui-in times such that Ats,p < 1/(47), Eqs. 4.3.21 and 4.3.22 hold.
Hence, the analysis procedure suggested in the previous subsection (single well in
a closed reservoir) to obtain the well’s drainage area, the permeability-thickness
product, the average reservoir pressure and the skin factor applies for a specific well
located in an infinite multi-well pattern.

The determination of average pressure in the well’s drainage area at the instant
of shut-in from Eq. 4.3.26 requires knowledge of the shape factor C4, and the
parameter b given by Eq. 4.3.7. Recall that b can be easily determined from the
intercept of a Cartesian plot of —dp,,/dIn At vs. At. Note that only a rough
estimate of the shape factor, C,,, is necessary for determining the average pressure
from Eq. 4.3.26.

The above conclusion that the average pressure, P, is related to the maximum
shut-in pressure, (Py,)maz, has been observed empirically by Stein®? for planar
fractures in a multi-well pattern. His claim that (py,)maz is close to p was based
purely on the numerical observations. He did not present Eq. 4.3.26 or derive the
time at which the maximum of p,, occurs. As can be seen from Eq. 4.3.24, the
minimum of the dimensionless shut-in pressure, (p,p)min, is always greater than
the dimensionless average pressure, p, for all geometric shapes (or, equivalently
(Pws)maz < 7 see Eq. 4.3.26) and the difference between the dimensionless average

pressure, fp, and the dimensionless minimum shut-in pressure, (p,p)min, increases
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as the shape factor, C,,, decreases.

4.3.4 Multi-Well System in a Closed Bounded Reservoir
In this subsection, we examine the buildup response of a specific well located

in a system of producing wells completed in a closed bounded reservoir. Well 1 is
the specific well where the buildup test is conducted, while the other wells continue
to produce; see Fig. 4.2.1. For simplicity, we restrict our attention to the case
where all wells start to produce at the same time. Our objective is to investigate
the interference effects of nearby producing wells on the buildup response of well 1.

As shown previously, the dimensionless shut-in pressure, p,p, at a well in a
system of producing wells contained in a closed bounded reservoir is given by Eq.
4.2.3 where each pp term is given by the exponential-integral solution (see Eq.
3.1.1). We again assume ¢, > ¢,,, 8o that pseudosteady-state flow exists at the
instant of shut-in. When pseudosteady-state flow exists, each of the m wells in the
closed reservoir of Fig. 4.2.1 has its own drainage area. The drainage area of well
1is A; which is related to the total reservoir area® by

A__o (4.3.27)

During pseudosteady-state flow, well 1 behaves as if it were a single well in the
closed reservoir with drainage area A4;. Thus, the sum of all pp(t, + At)p terms
in Eq. 4.2.3 is equal to the. pseudostcady-state equation for well 1 in its drainage
area, A;, 50 Eq. 4.2.3 ca be reduced to

Pup =27 (tP + At)A;D +3 ]n(ech '2 )

A m[- 2 ]-Sw (4.3.28)
2 ! 4Atp ’,= 4Atp -

where r;p represents ihe radial distance (based on wellbore radius) between well 1
and its image well j; i.e., rjp = r;/ry, where r; is the distance between well 1 and
well j. Note that in deriving Eq. 4.3.28 from Eq. 4.2.3, we have also replaced each
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pp(Atp) term in Eq. 4.2.3 by the appropriate exponential-integral solution given
by Eq. 3.1.1.

For early shut-in times (Atp > 25), the first exponential integral term in Eq.
4.3.28 is given by its semilog approximation (see Eq. 4.3.1), then Eq. 4.3.28 can be
written as

P> =27 (1, + Af) , p — -1- In (Ata,pCa,)

Afn] b -
- j|——"1, 3.
2’,=3 4At,,p

where a;p is the dimensionless radial distance (based on well 1’s drainage area, A;)
between well 1 and its image well j; i.e.,

a;p = \/__- = ‘/__._ D (4.3.30)
Except for the appearance of the infinite sum of the exponential terms, Eq. 4.3.30
is identical to the basic equation derived for a single well in a closed system (Eq.
4.3.3) and for a well in an infinite multi-well pattern (Eq. 4.3.21). The infinite
sum of exponential-integral functions is due to the existence of physical (no flow)
boundaries of the closed bounded reservoir.

Differentiating Eq. 4.3.29 with respect to natural log of At4,p gives

9D _nns —11+i (__ai,_,_ (4.3.31)
YW A T AT WY | o

Since Eq. 4.3.31 holds for all shut-in times provided that ¢, + At > ¢,,,, equating
Eq. 4.3.31 to zero gives

1 2
Aty,p = o 1+ Eexp(-m ] (4.3.32)

Note that the minimum of p, p occurs at the shut-in time such that At 4, p > 1/(4x).

Here, we investigate the influence of infinite sum in Eq. 4.3.31 on the derivative
response. We define 2d to be the distance between the buildup surveyed well (well
1) and its nearest image well. Thus, d is the distance to the nearest reservoir
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boundary. I in Eq. 4.3.31, the exponential term due to well 1's nearest image
well is negligible compared to one, then from a physical viewpoint, it is reasonable
to expect that the infinite sum of exponentials is negligible compared to one. I
this is the case, then Eqs. 4.3.29 and 4.3.31 can be approximated by Eqgs. 4.3.3
and 4.3.4, respectively. In this case, pressure buildup data obtained at well 1 can
be analyzed by application of Eqs. 4.3.5-4.3.7, 4.3.17 and 4.3.19. Moreover, if the
buildup test is run long enough to observe (pu;)maz, Eas. 4.3.25 and 4.3.26 also
can be applied to estimate the well’s drainage area, A;, and the average pressure
in the well’s drainage area at the instant of shut-in provided that the summation
term in Eq. 4.3.32 is negligible at the time at which (py,)maz 0ccurs.

Retaining only the exponential term due to the nearest image well of the
buildup surveyed well and neglecting the other exponertial terms in the infinite
sum in Eq. 4.3.31 gives the following approximation;

dpsp 1
m =27At4,p 2 [1 + 5], (4.3.33)
where
6 =exp (——:‘z'—) (4.3.34)
AtA,_ D

In Eq. 4.3.34, d,, is the dimensionless distance (based on the drainage area of the
buildup surveyed well) between the buildup surveyed well and the nearest physical
(no flow) boundary of the reservoir; i.e., d4, = d/v/A;.

Equation 4.3.33 can be approximated by 2xAt,, p —1/2, which is the derivative
response of a buildup surveyed well in an infinite multi-well pattern, provided that
é is negligible compared to the other terms on the right side of Eq. 4.3.33. If we
assume that the effect of 6§ in Eq. 4.3.33 is negligible whenever § < 0.0189, it follows
from Eq. 4.3.34 that the effect of é is negligible for

1 1
Aty,p < zd?h = Z%di" (4.3.35)

where A, represents the total reservoir area.

When Aty,p > (1/4)d%, (or Ata,p > (1/4)d%,), the derivative response given
by Eq. 4.3.33 will deviate from the derivative response of a well in an infinite multi-
well pattern (see Eq. 4.3.22). If well 1 is the only well in a closed bounded reservoir
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so that A; = A;, then the condition on the dimensionless shut-in time given by Eq.
4.3.35 should represent the ending time of the semilog approximation of p.p(Atp)
and hence the ending time of Eq. 4.3.3 for a well in a closed drainage area.

If we want Eq. 4.3.33 to be approximately equal to the derivative response of a
buildup surveyed weil in an infinite multi-well pattern (see Eq. 4.3.22) at a shut-in
time At,4,p = 1/(4x), then the preceding discussion indicates that we must have
1/(47) < (1/4)d5, which is equivalent to

Ae

da, = (4.3.36)

dA, \/_

When Eq. 4.3.36 holds, the derivative response given by Eq. 4.3.33 is approxi-
mately equal to the one for a well in an infinite multi-well pattern for shut-in times
such that At4,p < 1/(47), and hence the minimum of the dimensionless shut-
in pressure occurs at a dimensionless shut-in time approximately equal to 1/(4x).
Thus, A; and P, respectively, can be computed from Egs. 4.3.25 and 4.3.26. If the
inequality of Eq. 4.3.36 is not satisfied, then the derivative response given approx-
imately by Eq. 4.3.33 (or, exactly, by Eq. 4.3.31) will depart from the derivative
response given by Eq. 4.3.22 at a shut-in time, At,,p = (1/4)d%, < 1/(47), and
hence, the minimum of the dimensionless shut-in pressure will occur at a shut-in
time, At4,p > 1/(47). In this case, if the value of At,4, p at which (p,p)min occurs
is much greater than 1/4x(= 0.08), Eqs. 4.3.25 and 4.3.26 will not yield accurate
estimates of A; and p.

If all physical no-flow boundaries of the closed drainage area influence the
buildup response at the well of interest (well 1), that is, “pseudosteady-state” flow
prevails during buildup, from a semi-theoretical viewpoint, one expects that the
term in braces, that is, the. term containing exponential-integral functions, in Eq.
4.3.28 can be approximated by the following equation:

i [ 1 :
_5[—E1[—E —gEn ]] 2xAtap + = ln( =c, r2) (4.3.37)

because of the fact that left hand side of Eq. 4.3.37 represents the pressure drops
due to well 1 and its image wells necessary to keep no-flow boundaries for the whole
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reservoir drainage area. Extensive numerical computations indicate that indeed the
relation given by Eq. 4.3.37 is true. Using the relation given by Eq. 4.3.37 in
Eq. 4.3.28, it can be easily shown that the buildup pressure change, p,p, and its
logarithmic derivative, dp,p/dIn At4,p, are given, respectively, by the following

equations:
A
Psp =21 (tpA,_p + Aty [1 - Il])
¢
1. [AiCa,
i (A:CAg , (4.3.38)
and
dpoD - Al
dmAtap =27xAt,,p (1 At)
= 27Ats,p (1— o ) . (4.3.39)
)radiy

In Eq. 4.3.38, C,, represents the shape factor of well 1 with respect to its location
in total closed reservoir drainage area, whereas C4, represents the shape factor of
well 1 with respect to its drainage area existed at the moment of shut-in created by
the production of other wells in the reservoir. It should be noted that Eqgs. 4.3.38
and 4.3.39 apply only for shut-in times such that At > ¢,,,. Moreover, it should
be noted that if there is only a single well in the reservoir drainage area, that is,
A; = A; and Cy, = Cj,,, then Eqgs. 4.3.38 and 4.3.39, respectively, reduce to the
corresponding equations for a single well in a closed dra.inage‘ area; i.e.,

PeD = 27tp4, D, (4.3.40)
and
dpcD _
T =" (4.3.41)

Although Egs. 4.3.38 and 4.3.39 are not of practical interest because they may
require extremely long shut-in times to apply, they are very useful for verifying
numerical simulators.

Figure 4.3.6 shows a two-well system in a closed square reservoir. In Fig. 4.3.6,
the buildup surveyed well, which is shown by a cross, is located at the center of
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the closed square; i.e., @1 = f; = 0.5, whereas the producing well (well 2), which
is shown by a solid dot, is located at az = 0.75,8; = 0.5. Fig. 4.3.7 shows results
obtained for the reservoir/well geometry of Fig. 4.3.6 for various ratios of g;/g2.
The dimensionless producing time is ¢,4, p = 2 for all results shown in Fig. 4.3.7.
The top solid curve represents Eq. 4.3.22. Note that the derivative response for
all cases correlates with Eq. 4.3.22 for shut-in times such that At,,p < 0.05.
Thus, the analysis procedure based on Eqs. 4.3.5-4.3.7, 4.3.17 and 4.3.19 can be
applied to analyze corresponding field data. For all cases, dp,p/dIn Aty,p = 0
at Aty,p &~ 1/4x = 0.08. Thus, A; and $ could also be determined from the
maximum shut-in pressure and the shut-in time at which it occurs; see Egs. 4.3.25
and 4.3.26.

Table 4.3.2 presents the multi-well cases considered to generate results shown in
Figs. 4.3.8 and 4.3.9. Table 4.3.2 shows reservoir/well geometry of a closed square
drainage region for six different cases. In Table 4.3.2, a solid dot is used to represent
the producing well, whereas a cross mark is used to represent the buildup surveyed
well. Here we assume that all wells produce at a same rate; that is, ¢;/¢; = 1
for 1 = 2,---,m where m dc;.notes the total number of wells in the closed reservoir
drainage area. Fig. 4.3.8 shows a semilog plot of the dimensionless shut-in pressure,
P.D, versus the shut-in time, At,, p, for the six different reservoir/well geometries
of Table 4.3.2. Similarly, Fig. 4.3.9 presents a semilog plot of dp,p/dlnAt,,p
versus At,,p. For comparison purposes, the solid curve through open circular
data points which represents the derivative response of a well located in an infinite
multi-well pattern; i.e., Eq. 4.3.22, is also shown in Fig. 4.3.9. In Fig. 4.3.9, a solid
circular data point denotes the time at which the derivative response deviates form
the derivative response of a well in an infinite multi-well pattern. It is apparent that
increasing the number of producing wells while keeping the position of the buildup
surveyed well in the closed drainage area fixed makes the derivative response of
buildup surveyed well agree longer with the derivative response for a well in an
infinite multi-well pattern (shown by the solid curve through circular data points)
and makes the derivative response become zero at a shut-in time closer to 1/(4x).
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Table 4.3.2

Well/Reservoir Cases Considered for Results of
Figs. 4.3.8 and 4.3.9

Well/Resexvoir Case Number of (a1,81)
Configuration Wells s
L] )
1 5 c.5,0.3
( J [

o | o
4 4 0.2 .
o | x 5,0.25
o}l o
5 3 0.25,0.25
X
° .
6 2 0.25,0.25
X
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For cases 1, 2 and 3, the derivative response, dp,p /dIn At,4, p, departs from Eg.
4.3.22 at a shut-in time At,4,p > 1/(4x) and dp,p/din At4,p = 0, that is, the
minimum of shut-in pressure p,p occurs (see Fig. 4.3.8) at At4, p = 1/(4x) because
of the fact that the nearest distance between the buildup surveyed well and the
physical boundary of the reservoir, dy,, is same and equals 0.5, and this value of
d,, satisfies the criterion given by Eq. 4.3.36. However, for cases 4, 5, and 6, the
derivative response departs from Eq. 4.3.22 at a shut-in time At,,p < 1/(47)
and the derivative become equal to zero (or, the shut-in pressure is minimum; see
Fig. 4.3.8) (due to interference effect of nearby producing wells) at a shut-in time
Aty,p > 1/(4x). This is not surprising because of the fact that for cases 4, 5 and 6,
da, = 0.25 and this value of d4, does not satisfy the criterion given by Eq. 4.3.36.

Figure 4.3.10 shows the geometry of a two-well (¢, = ¢2) systemin a2 2: 1
closed rectangle. The location of the producing well (a; = 0.75, 82 = 0.5) is fixed
in the rectangle whereas the location of the buildup surveyed well denoted by a cross
is fixed only in the y-direction; i.e., f; = 0.5 and «; is the parameter of interest.
Fig. 4.3.11 is a semilog plot of dp,p/dInAt,,p versus At,,p as a function of
the parameter a;. It is apparent that the shorter the distance between the buildup
surveyed well and the right hand boundary of the rectangle, the earlier the derivative
response deviates from the derivative response of a well in an infinite mulii-well
pattern (solid curve through circular data points in Fig. 4.3.11). It should be noted
that for cases 1 and 2 where a; = 0.5 and a; = 0.25, respectively, the derivative
response departs from the infinite multi-well derivative response at the same shut-in
time. This is not surprising because, in both cases, the nearest distance between
the buildup surveyed well and the physical boundary of the reservoir is the same;
i.e., ds, = 0.25v/2. For cases 3 and 4, the dp,p /dlnAt4, p = 0 at shut-in times
such that At,,p >> 1/4x; ie., the minimum of p,p (maximum of p,,) occurs
at a shut-in time significantly different than At,,p = 1/4x. Thus, Eqs. 4.3.25
and 4.3.26 cannot be applied to compute well’s drainage area, 4;, and the average
pressure in the well’s drainage area, p. However, in all cases, Eq. 4.3.22 applies for
sufficiently small values of At,,p. Thus, Egs. 4.3.5-4.3.7, 4.3.17 and 4.3.19 can be
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applied.

4.4 Fractured Wells
Here, the basic results obtained for unfractured wells are extended to fractured

wells. Only infinite-conductivity and uniform-flux fractures are considered in this
section. Relevant equations to determine well’s drainage area and well /reservoir pa-
rameters for finite-conductivity vertically fractured wells are presented in Appendix
F. In the following, we investigate the buildup response at a fractured well located
in a closed one-well rectangular reservoir and in an infinite multi-well pattern of

fractured wells.
4.4.1 Single Weli in a Closed Reservoir

For a single well in a closed drainage area, the dimensionless buildup pressure,
PaD, is given by Eq. 4.2.5. If ¢, + At > ¢,,,, the first term in Eq. 4.2.5 is given by
its pseudosteady-state equation and Eq. 4.2.5 can be written as

1 44,
PeD = 21r(tp + At)A;D + 2 h(m) - p.,p(Atzlp), (4.4.1)

where Cj, is the shape factor of a fractured well®.

For early shut-in times such that p,p(At;,p) term is given by its well known
iinear flow approximation'? (also see Eq. 3.1.30), using the linear flow approxima-
tion for pup(Atz,p) and the relation between At;,p and Aty,p (Eq. 4.1.7), Eq.

4.4.1 can be rewritten as

_ 1 4A1 Al
Pop =2x(t, + At)A,D +3 ln(W) - "’l’AtA;DE’- (4.4.2)

Taking the derivative of Eq. 4.4.2 with respect to \/At4, p, we obtain

chD
= 47/ At " 44.3
d\/AtAip 4 41D~ 8! ( 4 )

Using the definitions of p,p and At,,p in Eq. 4.4.3 and rearranging the resulting

equation gives

—T = men/— bei, (4.4.4)
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where my and by are given, respectively, by

0.46790¢, B
dechAy

. _40641B [
ba = 7 dock Lﬁ, . (4.4.6)

Here, my; is given by Eq. 4.3.6.

Equation 4.4.4 suggests that during linear flow period, a Cartesian plot of
—dpw, /d\/A_t' vs. VAt will yield a straight line with a slope, my, and an intercept,
bei. From the slope, my, the drainage area of the well at the instant of shut-in can
be obtained as

My =2m = (4.4.5)

and

4. - 0467900,

and from the intercept at At = 0, by, the product of permeability-fracture half-
length, kL2 , can be obtained as

(4.4.7)

2 _ (406410:B\* &
kL?, _( o o (4.4.8)

When pop(At:,p) term in Eq. 4.4.1 is given by its well known pseudoradial
flow approximation'? (also se2 Eq. 3.1.33), Eq. 4.4.1 becomes

_ 1 44, 1
PeD = 2t(tp + At)A;D + 2 h(m) -3 (lnAt,,p +¢), (4.4.9)

where ¢ = 2.80907 for an uniform-flux fracture and ¢ = 2.200 for an infinite-
conductivity fracture. Note that when Eq. 4.4.9 holds, we can use the effective
wellbore radius concept. By using the effective wellbore radius, we can show that
Eq. 4.4.9 can be written as

1
D =27 (i, + At)A;D - -2-111 (AtAxpCA‘) s (4.4.10)

where C,4, is the shape factor of an unfractured well for the reservoir/well geometry

under consideration.
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Differentiating Eq. 4.4.10 with respect to In At,, p gives

dp,p _ 1
dnAtsp = 2xAts,p 2 (4.4.12)

Equations 4.4.10 and 4.4.11 are exactly the same as the equations for a single
unfractured well (see Egs. 4.3.3 and 4.3.4) in a closed drainage area. If Egs. 4.4.10
and 4.4.11 hold, the analysis procedure (see Eqs. 4.3.5-4.3.7, 4.3.17 and 4.3.19)
described for a single unfractured well in a closed drainage area can be used to
obtain the well’s drainage area, the permeability-thickness product, the average
reservoir pressure and the skin factor, sy, due to the existence of the fracture. The
fracture half-length then can be estimated from

L, = nrye™*, (4.4.12)

where n = e for a uniform-flux fracture and » = 2 for an infinite-conductivity

fracture.
When the p,,p(At;,p) term in Eq. 4.4.1 is given by the pseudosteady-state
approximation, that is, when At > ¢,,,, Eq. 4.2.5 simplifies to p,p = 27t ,4,p so

that
dp,p
Tt 0. . (44.13)
Equation 4.4.3 can be rewritten as
d?oD Al
—— [ = 4x\/Aly,D. 4.4.14
d\/AtAl D Lﬁ, t ( )

Eq. 4.4.14 suggests that a log-log plot of (dp,p/d\/At4,D) + /(rA1)/LZ, vs.
v/Ata,p will yield a straight line with a slope equal to unity.

Figures 4.4.1 a.na 4.4.2, respectively, are used to illustrate the validity of Eq.
4.4.14 (or equivalently of Eq. 4.4.3) for an uniform-flux and an infinite-conductivity
fractured well at the center of a closed square. L., /v/A; is the parameter of interest
in Figs. 4.4.1 and 4.4.2 and varies from 0.025 to 0.5. The dimensionless producing
time #,4,p = 1 was used to generate all results shown in Figs. 4.4.1 and 4.4.2.
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Figs. 4.4.1 and 4.4.2 show log-log plots of (dp,p/d\/At4,p) + +/(x41)/L2 , VB.
Vi

Figure 4.4.1 shows that when the fracture half-length increases; i.e., L;, /v/A;
increases toward tLe value of 0.5, the duration of Eq. 4.4.14 increases substantially.
This is the expected result based on the work of Ref. 17. The bottom curve of Figs.
4.4.1 and 4.4.2, respectively, represent the uniform-flux and infinite-conductivity
solutions for the case where L.,/v/A; = 0.5, ie., L;,/L;, = 1. Fig. 4.4.1 also
shows that when v/Ata,p = fpesa,D = 0.32, Eq. 4.4.13 holds. When Eq. 4.4.13
holds, the left hand side of Eq. 4.4.13 is equal to /{74,)/LZ,.

Figure 4.4.2 shows the duration of Eq. 4.4.14 for an infinite-conductivity frac-
tured well at the center of a closed square for the same values of L.,/v/A;(=
L., /2L.,) considered in Fig. 4.4.1. Comparing the results of Fig. 4.4.2 with the
results of Fig. 4.4.1, it is apparent that for each value of L.,/vA; < 0.5, the
duration of the unit slope line for an infinite-conductivity fracture is shorter than
the duration of the unit slope line for a uniform-flux fracture. Again, this is the
expected result based on the results of Ref. 17.

Equations 4.4.3, 4.4.11 and 4.4.13, respectively, can be rearranged to obtain

the following equations:
dPoD —_ l ﬁl’. )
VY +278t4,p = 34 /zAtA‘D z, (4.4.15)

dpoD _ 1
YT +27At4,0 = 3, (4.4.16)
and

dP.D —- 2
dmAtsp +27At4,p = 2xAta, p. (4.4.17)

Eq. 4.4.15 applies during linear flow, ie., when py,p(At;,p) = \/ﬂm. Eq.
4.4.16 applies during pseudoradial flow, i.., p,p(At;,p) is given by its pseudo-
radial flow approximation. Eq. 4.4.17 applies when p,p(At;,p) is given by its
pseudosteady-state flow approximation, i.e., when At,,p > ¢5,,.4,D-

When Eq. 4.4.15 holds, a log-log plot of the left hand side of Eq. 4.4.15 vs.
At,, p will yield a 1/2 slope line. When Eq. 4.4.16 holds, the left hand side of Eq.
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4.4.16 will be equal to 0.5 and the log-log plot will show a horizontal line. Finally,
when Eq. 4.4.17 holds, a log=log plot of the left hand side of Eq. 4.4.17 versus
At,, p will be a unit slope line.

Figure 4.4.3 presents results for an uniform-flux fractured well located at the
center of a closed square drainage region. In Fig. 4.4.3, L, /VA; = L., /(2L,,) is
the parameter of interest. Fig. 4.4.3 represents a log-log plot —(dp,p/dIn At4,p)+
2xAis, p V8. Aty,p. It is clear from the results of Fig. 4.4.3 thay; (i) for all values
of L., /\/A1, the 1/2 slope line (linear flow) exists. The points labeled with a solid
circle represent the time at which linear flow ends. Note that the duration of the
1/2 slope line (linear flow period) decreases as L.,/+/A; decreases. The duration
of linear flow is the longest for a value of L.,/vA; = 0.5 which corresponds to
L., /L., = 1; (ii) the 0.5 line (pseudo-radial flow) exists when L., /v/A; < 0.1 which
corresponds to L., /L., > 5. Note that the duration of 0.5 line is almost 2 half log
cycle for a value of L., /L., = 5; and (iii) the unit slope line (pseudosteady-state)
starts at A, p = ¢pas,a,p = 0.11 for all values of L.,/v/A;. The point labeled
with a cross denotes the beginning of pseudosteady-state flow; i.e., At4,p = 0.11.

4.4.2 Analysis Procedure
Here, we present procedures for analyzing buildup data at a well located at

the center of an uniform-flux or infinite-conductivity vertical fracture. The possible
analysis procedures depend on the flow regimes exhibited by the data.

As noted previously, when the buildup data exhibits linear flow, Eq. 4.4.4
applies and the well’s drainage area, A;, and kL2 , can be computed from Egs.
4.4.7 and 4.4.8, respectively. Eq. 4.4.2 can be rearranged to obtain the following

equation:

1 44 / A
DPeD — 21[(tp+Ai)A‘D = Eln c"Chle ) - a’AtAlp-L—gl!. (4.4.18)

Using the left hand side of material balance equation (Eq. 4.3.13) in Eq. 4.4.18,
and rewriting the resulting equation in the dimensional form gives

L2,Cy 07
Puwe + %At =p+bln (—’14A—’1‘—) +baVAt, (4.4.19)
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where p,, is the shut-in pressure, p is the average pressure at the instant of shut-in,
and A; (= 4L, L,,) is the drainage area of the well at the instant of shut-in. In
Eq. 4.4.19, b is given by Eq. 4.3.7, and by is given by Eq. 4.4.6. During linear flow,
my can be computed from the +/At plot suggested by Eq. 4.4.4. To determine the
average reservoir pressure at the instant of shut-in, we extrapolate the straight line
obtained in a Cartesian plot of py, + ZfLAt vs. At to At = 0. From Eqgs. 4.4.19
and 4.3.7, it follows that the intercept at At = 0 is given by

Cre
(oo ), =p ML20BR [ 160, (4420

The determination of the average pressure from Eq. 4.4.20 requires the knowledge of
three parameters, the permeability, k, the fracture half-length, L., and, the shape
factor, Cy,. If the buildup data also exhibits pseudo-radial flow, then the drainage
area and the permeability-thickness product can be obtained from a Cartesian plot
of —dp,,/dIn At vs. At; see Egs. 4.3.5 through 4.3.7. Using this estimate of
k and the value of IcLz! obtained from the linear flow analysis, (see Eqs. 4.4.4
through 4.4.8), one can estimate the fracture half-length, L;,. In this case, the
determination of average reservoir pressure from Eq. 4.4.20 requires only that the
shape factor is known. _

If A; can be determi;edvby the derivative analysis of linear flow (Eqs. 4.4.4
through 4.4.8) or pseudo-radial flow (Eqs. 4.3.5 through 4.3.7), then a modified
pressure change plot can be used to improve the reliability of type curve matching.
The theoretical basis for this modified type curve matching procedure follows. From
standard superposition results, it is well known that

= kh [Puu pw!"]
PaD 141.2¢, B

= —pwp|(tp + At)s,p] + Pup (tpz,0) + Pup (At,D) .

(4.4.21)
If t, > tp.,, then pyp|(t, + At):,p] and pup(tpz,p) are both given by the appro-
priate pseudosteady-state approximations and Eq. 4.4.21 reduces to

PsD = 14;:2q1;“ = = —2xAts,p + Pup (Atz,D). (4.4.22)
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Defining Ap. by
Ap: = Pus — Pt + milt, (4.4.23)
Eq. 4.4.22 can be written as

_ khAp,
PesD = 141 20:Bu

where the first equality of Eq. 4.4.24 serves to define p.,p. Since py,p(At:,p)
represents the drawdown solution, Eq. 4.4.24 indicates that a log-log plot of Ap.
vs. At can be type curve matched with the appropriate drawdown type curves for
all values of shut-in time.

Figure 4.4.4 illustrates tke validity of this type curve matching procedure based
on the p.,p plot. In Fig. 4.4.4, solid curves represent the infinite-conductivity draw-

= pun(Ate,p), (4.4.24)

down solution for a well at the center of a closed square reservoir for the specified
values of L., /VA;. The modified buildup pressure change, p.,p, for the case
L.,/vA; = 0.25 iz plotted versus At,,p (circular data points). In addition, the
buildup pressure change, p,p, for the same penetration ratio is zraphed versus both
Agarwal’s equivalent time*3, At p (square data points) and At,,p (triangular
data points). The dimensionless producing time ¢p,4,p = 1 was used to generate
the buildup pressure changes; p.,p and p,p. As can be seen from Fig. 4.4.4, the
PesD Vs. Atg,p plot correlates with the drawdown solution for all shut-in times as
expected from Eq. 4.4.24. On the other hand, the p,p vs. At.;,p, and the §,p vs.
At p plots fail to correlate with drawdown solution except at early shut-in times.
Before closing this subsection, we note that one can also use the drawdown type
curves based on pressure/pressure-derivative presented in Chapter IIl to analyze
the entire buildup data provided the buildup data is plotted as Ap./(2Ap.) versus
At where Ap,. is given by Eq. 4.4.23 and Ap! denotes the derivative of Ap. with

respect to In At.

4.4.3 Well Located in an Infinite Multi-Well Pattern
In this subsection, we investigate the buildup response of a planar (uniform-
flux or infinite-conductivity) fractured well located in an infinite multi-well pattern.
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Stein®? has investigated type curve analysis of buildup pressure change at a specific
well in an infinite multi-well pattern. He generated the buildup response of a specific
fractured well by using superposition and the method of images in which the closed
drainage area of the fractured well at the moment of shut-in is created by using line
source offset wells. Based on the work of Ref. 17 and computational results not
shown here, the procedure used by Ref. 92 is a good approximation provided that
the parameter L., /v/4; is sufficiently small. We do not pursue this procedure to
generate the buildup response of a specific well. Instead we use the procedure in
which all the offset wells are considered to be fractured so that the superposition
and method of images principle can be used without any approximation. Note
that in our procedure, all producing wells (offset wells) shown by solid dots and
the buildup surveyed well shown by a cross mark in Fig. 4.2.2 are fractured wells,
whereas in the procedure used by Stein only the btildup surveyed well is considered
to be a fractured well and all the producing weils (offset wells) are considered to
be line source wells. As shown previously, the dimensionless buildup pressure, p,p,
of specific well (well 1 in our notation) located in an infinite multi-well pattern
depicted by Fig. 4.2.2 is given by Eq. 4.2.6 where each pp term is given by the
infinite acting solution of Ref. 17 (also see Eq. 3.1.22).

~

Since we are interested in long producing times, ¢, > {,,,, the term in square
brackets in Eq. 4.2.6 is given by its pseudosteady-state approximation. Moreover,
for sufficiently short shut-in times, the pp(At) term in Eq. 4.2.6 can be approxi-
mated by linear flow equation (see Eq. 3.1.30). Under these conditions, one obtains
Egs. 4.4.2 and 4.4.3. Therefore, one can apply Eqs. 4.4.4 through 4.4.6 and Eq.
4.4.19 to obtain estimates of A, and kL2, by the standard procedure described for
a single fractured well in a closed drainage area during linear flow. For shut-in times
such that pp(At) term in Eq. 4.2.6 is given by pseudo-radial flow approximation
(Eq. 3.1.33), one obtains Egs. 4.4.10 and 4.4.11. Therefore, during the pseudora-
dial flow equation, one can use the analysis procedure given for a single fractured
well in the previous subsection to analyze the buildup response of a specific well
located in an infinite multi-well pattern. As shown for a single unfractured well
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located in an infinite multi-well pattern, Eqs. 4.4.10 and 4.4.11 will be valid for
all shut-in times because of the interference effect of nearby producing offset wells,
and the dimensionless buildup pressure p,p will have a minimum which is given
by Eq. 4.3.24 at Aty,p = 1/(4x). Therefore, by using Eqs. 4.3.25 and 4.3.26,
respectively, one can compute well’s drainage area at the instant of shut-in and
the average reservoir pressure in this drainage area. However, as shown later by
results of Fig. 4.4.5, the minimum of p,p will not occur at At,,p = 1/(4x) for
all values of the penetration ratio L., /v/A;. Specifically, the minimum of p,p will
occur at At4,p = 1/(47x) if and only if the pseudo-radial flow prevails at a shut-in
time Ats,p < 1/(4x), that is, Eq. 4.4.10 (or Eq. 4.4.11) holds at a shut-in time
At,p < 1/(4x). The condition on L., /v/A; so that the minimum of p,p occurs
at Aty,p = 1/(47) can be derived using the fact that for all practical purposes,
the pseudo-radial flow holds for shut-in times At,p > ¢(L2,/A,) where ¢ = 3 for
an uniform-flux fracture and ¢ = 7 for an infinite-conductivity fracture. Using this
fact, one can show that Eq. 4.4.10 holds at a shut-in time At4,p < 1/(4x) if and
only if L., /v/A; < 0.16 for an uniform-flux fracture and L., /+/A; < 0.11 for an
infinite-conductivity fracture.

Figure 4.4.5 presents results for an uniform-flux fractured well with a closed
square drainage area created by the production of nearby producing wells. Fig. 4.4.5
shows a semilog plot of the derivative response, dp,p /d\/m versus Aty,p as
a function of the penetration ratio L.,/ V/A;. Note that when linear flow prevails
during buildup, dp,p /d\/At,, p is given by Eq. 4.4.3; i.e.,

dPJD
= 4n/At 4.4.25
d\/ Ats,p TV = v LZ, ( )

A cross mark shown in Fig. 4.4.5 is used to denote the ending time of Eq. 4.4.25
for a given value of L.,/v/A;. When pseudoradial flow prevails during buildup,
dp,p [d\/At4,p is given by the following equation:

dPJD
= 4n\/Ats,p - 4.4.26
d\/At,.,D ' ,/At,hp ( )
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Eq. 4.4.26 follows from Eq. 4.4.11 using the chain rule. Eq. 4.4.26 holds at an
earliest time when At,,p > ¢(LZ,/A;) where ¢ = 3 and L7 /A; = 0.0025, that
is, when At4,p = 0.0075. Thus, the bottom curve in Fig. 4.4.5 represents Eq.
4.4.26, or equivalently, Eq. 4.4.11. It is apparent from results of Fig. 4.4.5 that
for values of L.,/v/A; < 0.5, Eq. 4.4.11 holds for all values of shut-in time when
Aty,p > 3(L2 . [A;:) and dp.p/d\/m is zero for all practical purposes at the
shut-in time At4,p = 1/(47). For the case where L., //A; = 0.5, dp,p/d\/Ats,p
is zero at shut-in time At,,p = 0.058 which is earlier than 1/(4x) and Eq. 4.4.26
does not hold unless At,4,p > 0.15.

Fiﬁa.lly, we note that one can use the drawdown type curves to analyze the
buildup pressure change obtained at a specific well in a multi-well pattern provided
a modified buildup pressure change plot is used as shown in the previous subsection
for a single fractured well in a closed drainage area. In this case, due to interference
effect of nearby producing offset wells, the modified buildup pressure change will
correlate with the infinite-acting solution (see curve lebeled with L.,/v/A; =0 in
Fig. 4.4.4) for all shut-in times, whereas for a single well in a closed drainage area,
the modified buildup pressure change will deviate from infinite-acting solution when
no-flow boundaries of the closed drainage region are felt during buildup; see Fig.
4.44.

4.5 Wellbore Storage and Skin Effects
Here, we consider wellbore storage and skin effects on the buildup response of
a single unfractured well in a closed drainage area. It is assumed that no wellbore
storage and skin effects exist prior to shut-in and the well is produced long enough
so that pseudosteady-state flow is established prior to shut-in. The results presented
here are generated by using Eq. 4.2.5 where each p,p term is computed in Laplace
space using the well known superposition result!34, i.e.,

_ ufpp (v) + 8
Pob = o Cou? fupan (&) T3 (45.9)

and then inverted numerically using the Stehfest algorithm. In Eq. 4.5.1, u rep-
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resents the Laplace iransform variable with respect to appropriate dimensionless
time based on wellbore radius in Eq. 4.2.5, Cp represents the dimensionless well-
bore atorage coefficient as defined by Eq. 3.1.13, s represents the skin factor and
Pup represents the Laplace space solution for a line source well producing at a con-
stant rate in a closed bounded reservoir without wellbore storage and skin effects,
that is,

(- -]
70 (rp = L,tp) =pp (rp = L,tp) + 3_ pp(rps»tp), (4.52)
=2

where rp; is the dimensionless radial distance defined by Eq. 4.1.9 between the
procucing well and its image well 5 and pp represents the dimensionless pressure
drop obtained due to a line source weil produced at constant rate in an infinite
reservoir, that is, the exponential integral solution (see Eq. 3.1.1). Eq. 4.5.2 can
be obtained using superposition and the method of images principle.

Previously, the buildup response of a single unfractured well (line source well)
in a closed square drainage area under wellbore storage and skin effects was inves-
tigated by Chen and Brigham®. They investigated the existence and the duration
of a semilog straight line on a conventional Horner and MDH plot of the dimension-
less buildup pressure, p,p, influenced by wellbore storage and skin effects during
buildup. Our objective is to investigate the effect of wellbore storage and skin on
the existence and duration of a straight line on a Cartesian plot of dp,p /dIn At4, p
versus At,,p and to delineate the conditions under which the analysis procedure
given by Eqs. 4.3.5 through 4.3.7, Eq. 4.3.17 and 4.3.19 can be applied.

Here, we are only interested in long producing times such that ¢, > ¢,,,. For
small valuer of shut-in time, the buildup response is controlled by wellbore storage
effects, that is, the p,p(At) term in Eq. 4.2.5 is equal to Atp/Cp. In this case,
Eq. 4.2.5 is given by the following equation:

] Atp (4.5.3)

Pep =27 (tp + At)A D + ln [e-,crl‘1

Differentiating Eq. 4.5.3 with respect to In At 4, p gives

dp.p _ dpp . A ( i_i)
dinAts,p dlnAtp (2” r2Cp )At“n =\2r 4, Cop Atp. (4.5.4)
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For a 40 acre drainage area and r, = 0.35 ft, 2x(r2 /A;) = 4.4 x 10~7, whereas
values of Cp are in the range of 0 < Cp < 10°. Thus, for most practical situations,
1/Cp >> 2x(r3 /A,), and Eq. 4.5.4 can be approximated well by the following

equation:
dinAts,p dlnAtp Cp r2 Cp ’ -
Eq. 4.5.5 can be written in dimensional form as
dpes _ 9B ,,. (4.5.6)

dinAt 24C° "
that is, during wellbore storage dominated flow, one can determine the wellbore stor-
age coefficient, C, from the slope of a straight line on a Cartesian plot of dp,,,/dIn At
versus At in the conventional manner.

If wellbore storage effects become negligible so that the p,p(Atp) term in Eq.
4.2.5 can be replaced by the radial flow equation (see Eq. 4.3.1), then the dimen-
sionless buildup pressure change, p,p, and its derivative with respect to In At,, p
are given, respectively, by the following equations:

1
and
dpcD — 1
dmat g = Ao - (4.5.8)

Note that Eqs. 4.5.4 and 4.5.8 can be rearranged, respectively, to obtain the fol-

lowing equations:

dp,p A; Ay, p

_m + ZI’AtA‘D = :2; o ’ (4.5.9)
and
dp.p _1
dlnAtAﬂ) +2xAt,y,p = 2 (4.5.10)

Figure 4.5.1 illustrates the existence and the duration of the straight line pre-
dicted by Eq. 4.5.8, or, equivalently, the validity of Eq. 4.5.10, for a well located
at the center of a closed square drainage area with wellbore storage effects. The
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dimensionless wellbore coefficient, Cp, is the parameter of interest. For the re-
sults of Fig. 4.5.1, tps,p0 = 1, A1/r3 = 1.6 x 107 and s = 0. Fig. 4.5.1 shows
a log-log plot of —(dp,p/dInAt,s,p) + 2xAts,p versus Aty,p. The solid curve
corresponds to a case where the dimensionless wellbore storage coefficient is zero.
Note for this case, as noted in Section 4.3.1, the derivative response equals 0.5 for
all shut-in times such that At,,p < 0.05 and displays a unit-slope line for shut-in
times At4,p > 0.1; that is, pseudosteady-state flow is reached during buildup. It
is apparent from results of Fig. 4.5.1 that the larger the value of Cp, the shorter
the duration of Eq. 4.5.10. Note for values of Cp > 10*, Eq. 4.5.10 never applies
and for Cp = 103, the duration of Eq. 4.5.10 is only about one-half of a log cycle.
For sufficiently small values of the shut-in time, the derivative response displays a
unit-slope line as predicted by Eq. 4.5.9 during wellbore storage dominated flow.
Note that for the cases where Cp < 10°, Eq. 4.5.10 holds and thus, for these cases,
Eqs. 4.3.5 through 4.3.7 and Eq. 4.3.17 can be applied to determine the well’s
drainage, the permeability, and the average reservoir pressure.

Figure 4.5.2 shows the effect of skin on the duration of Eq. 4.5.10 for a well at
the center of a closed square drainage area for a case where t,4,p = 1, A, /12 =
4 x 10® and Cp = 103. In Fig. 4.5.2, the solid curve through circular data points
represents the case where Cp = 0. It is apparent that increasing the magnitude
of the skin factor delays thé starting time of Eq. 4.5.10. However, for all practical
purposes, for the cases considered in Fig. 4.5.2, Eq. 4.5.10 applies for shut-in times
such that 0.003 < At4,p < 0.05. Therefore, one can apply the analysis procedure
described earlier for a well with no wellbore storage effects to determine the well’s
drainage area, the permeability, the average reservoir pressure and the skin factor.
Note that if the dimensionless wellbore storage coefficient is zero, Eq. 4.5.10 applies
for all shut-in times prior to pseudosteady-state flow and the skin factor plays no
role on the duration and the existence of Eq. 4.5.10.

Next, we examine the effect of drainage area on the derivative response obtained
at a well with wellbore storage effects in a closed square reservoir. Fig. 4.5.3 shows
a log-log plot of —(dp,p/dIn At,,p) + 2xAt4,p versus At,, p. For the results of
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Fig. 4.5.3, tpa,p = 0.5, Cp = 1000 and A;/r2 is the parameter of interest. It
is important to note that increasing the drainage area of the well at the instant
of shut-in increases the duration of Eq. 4.5.10. For example, for the case where
Ay /r2 = 4x107, Eq. 4.5.10 applies for shut-in times 0.01 < At,, p < 0.05, whereas
for the case where A, /r3 = 4 x 10%, Eq. 4.5.10 does not hold because of the fact
that when the wellbore storage effects no longer control the derivative response,
pseudosteady-state is reached during buildup.

As far as the determination of beginning of a straight line on a Cartesian plot
of —dpy,/dIn At versus At under wellbore storage effects is concerned, one can use
the tabulated values of Ref. 94 (see Table 2 of Ref. 94). Strictly speaking, tabu-
lated values given by Ref. 94 are based on the infinite-acting drawdown solutions.
Therefore, it is reasonable to expect that these beginning times do not hold for some
values of the dimensionless wellbore storage coefficient, Cp, and A, /r2. Moreover,
it should be noted in order to use these tabulated values to determine the beginning
of a straight line on a Cartesian plot, a priori knowledge of the wellbore storage
coefficient C, the skin factor s, and the value of permeability k is required. One
may be able to determine these parameters from a preliminary type-curve match of
buildup pressure change Ap (= pws — Puwy,s) and Ap/(2Ap') data using the draw-
down wellbore storage and skin type curves presented in Chapter III. If these values
cannot be determined from such a type curve matching, one can apply the well
known 1 1/2-cycle rule. As far as the ending time of the straight line on a Carte-
sian plot of the derivative response is concerned, one can use ine vaiues presenied
in Table 4.3.1.

Before closing this section, we note that even though results concerning the
buildup response of a specific well with wellbore storage and skin effects in an infinite
multi-well pattern are not presented, one can expect that the buildup response of a
well in a closed drainage area differ from the buildup response of a well in an infinite
multi-well pattern at late shut-in times. For a well in an infinite multi-well pattern,
when the effect of wellbore storage storage coefficient is negligible on the brildup
response, Eq. 4.5.10 holds for all shut-in times due to depletion of the well’s drainage
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area by nearby producing wells. Therefore, one can apply the analysis procedure
discussed above based on Egs. 4.5.6 and 4.5.8 for a well with wellbore storage and
skin effects for the infinite multi-well pattern case in the straightforward way.

4.6 Field Example

Here, a field buildup test for an unfractured well in a closed drainage area is
presented to show how one can use the anealysis procedures given in this work. The
data for the example considered is from Ref. 95. Relevant reservoir/well data is
recorded in Table 4.6.1. The buildup pressure change and its derivative as functions
of shut-in time are presented in Table 4.6.2.

Figure 4.6.1 shows a preliminary type-curve match of Ap/(2Ap’) versus At
obtained using the drawdown wellbore storage and skin type curves infinite-acting
reservoirs presented in Fig. 3.1.3. Here, Ap denote the buildup pressure change,
that is, Ap = py, — Puwy,, and Ap’ is the derivative of Ap with respect to In At. The
solid curves shown in Fig 4.6.1 represent the drawdown solutions for three values of
Cp exp(2s), 10°, 107 and 10'°. Note that data were matched with Cp exp(2s) = 107
solution. By using the standard computational procedures given in Chapter III, the
following estimates were obtained from the match point values recorded in Fig.
4.6.1; k = 3.85 md, C = 2.15 x 10~3 (Cp = 1126) RB/psi, and s = 4.55. Here,
we determined the wellbore storage coefficient C from a unit slope on a log-log
plot of Ap versus At (not shown here) in the conventional manner. Figure 4.6.2
is a Cartesian plot of the logarithmic derivative of shut-in pressure, —dp,,, /dIn At,
vs. the shut-in time, At. As shown by results of Fig. 4.6.1, the early-time data
reflect wellbore storage effects. Therefore, in order to determine a beginning time
for the straight line, we used Table 2 of Ref. 93 for a tolerance of 10% using the
value of Cp exp(2s) = 107 obtained from the preliminary type-curve match shown
in Fig. 4.6.1. This time corresponds to a shut-in of At > 25. The solid straight
line shown on Fig. 4.6.2 shows the best straight line fitted through the data points
beyond At > 25 using a least-squares procedure. This straight line has a slope,
m; = 0.205 psi/hr, and an intercept at At = 0 of —b = —71.2 psi. Using the slope
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Table 4.6.1

Reservoir/Well Parameters; Field Example

Porosity (percent) . . . . . . . . . i i i i e e e e e e e e e e e 0.13
Thickness (ft) . . . . . . . .. . . ¢ i i i e e ... 15
Wellbore Radius (ft) . . . . .. .. ... .. ... ... ..... 0.25
System Compressibility (1/psi) . . . . . . . . . .. .. ... ... 14E-06
Viscosityof Fluid (cp) . . . . . . . . . . v v v o v v it v oL 0.72
Formation Volume Factor (RB/STB) . . . . . ... . ... .. ... 1.30
Production Rate Prior to Shut-in (STB/D) . . . .. . ... .. .... 60
Flowing Pressure at the Instant of Shut-in (psi) . . . . ... .. ... 1203
ProducingTime (hrs) . . . . . . . . . . . . . ..o v v v 1730+
Permeability (From Core Data) (md) . . . . . . ... ... .. ... 2-8
Estimated Well’s Drainage area (acres) . . . . ... .. .. .. .... 80
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Table 4.6.2
Pressure and Derivative versus Time Data; Field Example

Pressure and Derivative Data
Shut-in Time, At Ap Ay Ap/(2Ap")
(Hours) (psi) (psi)

1.0800E-01 1.6900E+02 1.6418E+02 5.1466E-01
1.3000E-01 2.0100E+02 1.9058E+02 5.2733E-01
1.7300E-01 2.6200E+02 2.3529E+02 5.5676E-01
2.1600E-01 3.1900E+02 2.7474E+02 5.8054E-01
2.6000E-01 3.7100E+02 3.0737E+02 6.0350E-01
3.4600E-01 4.6700E+02 3.6299E+02 6.4327E-01
4.3200E-01 5.5100E+02 4.0412E+02 6.8173E-01
6.5000E-01 7.2700E+02 4.8658E+02 7.4705E-01
8.6000E-01 8.7300E+02 5.0981E+02 8.5620E-01
1.0800E+00 9.8200E+02 4.9926E+02 9.8346E-01
1.3000E+00 1.0610E+03 4.4486E+02 1.1925E+00
1.7300E+00 1.1700E+03 3.9184E+02 1.4930E+00
2.1600E+00 1.2420E+03 3.2024E+02 1.9392E+00
3.4600E+00 1.3570E+-03 2.4722E+02 2.7446E+00
5.4100E+00 1.4260E+03 1.8784E+02 3.7959E+00
8.6500E+00 1.4640E+03 1.1869E+02 6.1673E+00
1.1670E+01 1.4880E+03 8.7273E+01 8.5250E+00
1.7300E+01 1.5170E+03 7.5194E+01 1.0087E+01
1.9500E+01 1.5150E+03 7.2586E+01 1.0505E+01
2.2900E+01 1.5340E+03 6.9020E+01 1.1127E+01
2.5900E+01 1.5440E+03 6.8186E+01 1.1322E+01
2.8500E+01 1.5490E+03 6.5992E+01 1.1751E+01
3.5500E+01 1.5640E+03 6.5042E+91 1.2023E+01
3.9800E+01 1.5720E+03 6.2464E+-01 1.2583E+01
4.3200E+01 1.5770E+03 6.2015E+01 1.2715E+01
5.1900E+01 1.5870E+03 5.8267E+01 | 1.3618E+01
6.0500E+01 1.5960E+-03 5.8702E+01 1.3504E+01
6.9200E+01 1.6040E+03 5.8186E+01 1.3783E+01
8.6500E+01 1.6160E+03 5.3158E+01 1.5200E+01
1.0380E+02 1.6240E+03 4.7824E+01 1.6979E+01
1.3000E+02 1.6340E+03 3.4983E+01 2.3354E+01
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-b=-71.2 psi

o’ SLOPE=m,=0.205psi/hr

DERIVATIVE OF SHUT-IN PRESSURE
~-dpys 7d In(At), psi
o
3

- l ] 5 1 | 1 ] |
0 20 40 60 80 100 120

SHUT-IN TIME, At, hours

Fig. 4.6.2 - Cartesian Plot of Derivative of Shut-in Pressure; Field Example
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and the intercept values in Eqs. 4.3.6 and 4.3.7, the drainage area of the well and
the permeability-thickness product were obtained, respectively, as A = 75 acres,
and kk = 55.7 md-ft (k= 3.71 md.).

Figure 4.6.3 shows a semilog plot of the shut-in pressure, p,, (MDH plot)
and py, + myAt (modified MDH plot), where m; was obtained from the slope of
the straight line shown on Fig. 4.6.2, versus the shut-in time, At. It is apparent
from Fig. 4.6.3 that the plot of py, + m;At versus At yields a well-defined semilog
straight line for At > 25 hours, whereas the conventional MDH plot of data shows
no weli-defined semilog straight line. The slope of modified MDH semilog straight
line is m = 160 psi/log cycle. From Eqgs. 4.3.16 and 4.3.19, respectively, we find
kh = §7.1 md-ft (k = 3.81 md.) and the skin factor, s = 4.42. Note that the kk
value obtained from the intercept at At = 0 on Fig. 4.6.2 is in good agreement with
the kh value obtained from the slope of the modified MDH semilog straight line
in Fig. 4.6.3. Also note that the values of permeability ard skin factor obtained
from our new procedure are in good agreement with the values obtained from type
curve analysis. Because neither the initial pressure nor the geometry of the system
is known, an estimate of a shape factor is needed to compute the average pressure
from Eq. 4.3.17. As can be seen from the results of Figs. 4.6.2 and 4.6.3, all points
corresponding to At > 25 hours lie on the appropriate straight line. Thus, the
shut-in pressure is not influenced by the drainage area boundary or the reservoir
boundary. Thus, the final shut-in time must correspond to Ats,p < fe4a,4,D
and moreover, we must have ¢p4,p > tps,,4,0. Using the estimates of A; and k
obtained, the dimensionless values of the last shut-in time and the producing time
correspond, respectively, to Aty, p = 0.03 and ¢p4.p = 0.396. Since we must have
0.03 < te4q,4,0 and 0.396 > tp,,, 4,0, Table 4.3.1 indicates that C4, = 30.88 is
a good candidate. Using this value in Eq. 4.3.17, Eq. 4.3.17 predicts an average
pressure of § = 2879.5 psi.
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CHAPTER V
CONCLUSIONS

The major objectives of this work were to develop new procedures for construct-
ing type curves utilizing the pressure derivative, which simplify the interpretation
and the analysis of well-test data, and to present new analysis procedures based on
the pressure derivative, which can be used to analyze well-test data even in cases
where type-curve analysis and conventional semilog analysis of well pressure data
are not appropriate.

A new general method for constructing type curves based on both pressure
and its logarithmic derivative has been presented. The type curves involve graphs
of the dimensionless pressure and a new pressure/pressure-derivative group which
is equal to dimensionless pressure divided by its logarithmic derivative. By us-
ing this pressure/pressure-derivative group, new type curves have been presented
for the following well/reservoir problems: classical line source solution, wellbore
storage and skin, fractured wells (either planar or finite-conductivity), naturally
fractured reservoirs, and composite reservoirs. Type curves were presented for both
infinite-acting reservoirs and closed bounded reservoirs. It has been shown that the
drawdown type curves based on the pressure/pressure-derivative group can be used
to analyze buildup data prior to the time when producing times become important.
If producing time effects become important, we showed that the use of equivalent
time does not always eliminate the errors incurred in type-curve matching buildup
data with the new drawdown type curves presented in this work. In these cases,
we showed that new buildup type curves utilizing the buildup pressure/pressure
derivative group can be constructed to analyze such buildup data. The major ad-

vantage of the new type curves presented in this work over previous derivative type
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curves is that the the dimensionless pressure/pressure-derivative group used can be
constructed exactly from actual field data. Thus, type-curve matching of the field
pressure/pressure-derivative data can be accomplished by moving the field data plot
only in the horizontal direction and the new derivative type curves give an excel-
lent indication of whether the field case actually represents the well /reservoir model
assumed by the type-curve solution.

It has also been shown that the basic idea of plotting the pressure change
over its logarithmic derivative can be used effectively to identify proper semilog
straight lines, that is, to determine time periods where pressure data can be an-
alyzed by conventional semilog methods. We have shown that a semilog plot of
the pressure/pressure-derivative group versus time will always exhibit a 1.151 slope
during plane radial flow in a homogeneous reservoir and this slope will be indepen-
dent of reservoir properties. Moreover, we showed that this semilog identification
method can be also used for nonhomogeneous reservoir such as composite and nat-
urally fractured reservoirs.

Finally, we investigated the buildup response of a well (either fractured or un-
fractured) located in a system of producing wells completed in a closed bounded
reservoir. We have presented new analysis procedures based on the pressure deriva-
tive to determine well/reservoir parameters. Specifically, we showed that a well’s
drainage area can be directly determined from buildup tests by using the pressure
derivative and we showed that this observation is applicable to both fractured and
unfractured wells.

From the results of this work, the following conclusions are warranted:

(i) Type curves based on the pressure/pressure-derivative not only simplify interpre-
tation of well-test data but also are advantageous in identifying whether given field
data are representative of the solution assumed by a particular type-curve solution.
(ii) A semilog plot of pressure/pressure-derivative data versus time can be used
to identify proper semilog straight lines and to determine time periods where con-
ventional semilog analysis methods can be applied with conﬁdence.to determine

well /reservoir parameters.
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(iii) Using an appropriate plot of the pressure derivative, the well’s drainage area
at the instant of shut-in and the permeability-thickness product can be obtained
from a build test for a well producing to pseudosteady-state prior to shut-in. The
determination of the drainage area does not require the knowledge of initial pressure,
the producing time or the ﬂowmg wellbore pressure at the instant of shut-in.
(iv) For a well located in a system of producing wells in an infinite multi-well
pattern or in a2 closed bounded reservoir, the shut-in pressure reaches a maximum
'~ at a dimensionless shut-in time (based on the well’s drainage area) of 1/(4x) due
to depletion of the weil’s drainage region by nearby producing wells. From the
maximum shut-in time and the shut-in time at which the maximum shut-in pressure
occurs, both the well’s drainage area and the average reservoir pressure in this
drainage area can be computed.
(v) In cases where the buildup response is influenced by wellbore storage and skin
effects, the well’s drainage area and the permeability-thickness product can be com-
puted from a Cartesian plot of the derivative of shut-in pressure versus time provided
the wellbore storage coefficient is sufficiently small, and/or the well’s drainage area
is sufficiently large so that a Cartesian plot of the derivative of shut-in pressure
versus time exhibits a straight line.
(vi) Once the well’s drainage area is obtained from the btﬁldup pressure-derivative
analysis (see Conclusions (iv) and (v)), the shut-in pressure and its derivative can be
corrected to analyze the entire buildup response by using a modified MDH semilog
plot, which provides estimates of the skin factor and average reservoir pressure and
a check on the permeability-thickness product obtained from derivative analysis, or
by using drawdown type curves. The determination of the drainage area requires
a priori knowledge of the shape factor but a highly accurate estimate of the shape
factor is not required to obtain an accurate estimate of average reservoir pressure
from a modified MDH semilog plot.
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NOMENCLATURE

Symbol

A = reservoir drainage area, ft2

A = well’s drainage area, ft?

b = intercept defined by Eq. 4.3.7, psi/hr

bes = intercept defined by Eq. F-5, psi/hrl/4

bt = intercept defined by Eq. 4.4.6, psi/hr!/?

B = formation volume factor, RB/STB

c = compressibility factor, psi—!

C = wellbore storage constant, RB/psi

Ca = Dietz shape factor for an unfractured well

Cp = dimensionless wellbore storage constant

Cy = shape factor for a vertically fractured well

Cyp = dimensionless fracture conductivity

C:,p = dimensionless wellbore storage constant defined by Eq. 3.1.64
k = total reservoir thickness, ft

hye = total thickness of fracture system, ft

Rt = toctal thickness of matrix system, ft

k = reservoir permeability, md

k; = fracture absolute permeability, md

L., = distance to the external boundary in x direction, ft
L;, = fracture half-length, ft

L,, = distance to the external boundary in y direction, ft
m = slope defined by Eq. 4.3.16, psi/log cycle

m(p) = real gas pseudopressure defined by Eq. 3.3.3, psi?/cp

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



210

my = slope defined by Eq. 4.3.6, psi/hr

My = slope defined by Eq. F-4, psi/hr

my = slope defined by Eq. 4.4.5, psi/hr

Am(p) = pseudopressure change defined by Eq. 3.3.5, psi*/cp
Am/(p) = logarithmic derivative of Am(p), psi?/cp

) 4 = pressure, psi

P = average reservoir pressure, psi

i = initial pressure, psi

PD = dimensionless pressure defined by Eq. 3.1.3

P:D = dimensionless shut-in pressure drop defined by Eq. 2
Pwp = dimensionless wellbore pressure drop

Puwj = flowing wellbore pressure, psi

Pws = sghut-in pressure, psi

Pcep = corrected dimensionless shut-in pressure, Eq. 4.4.24

Pw,p = dimensionless pressure based on fracture properties, Eq. 3.2.14
Pwse = Wwellbore pressure at the instant of shut-in, psi

PsD = dimensionless shut-in pressure defined by Eq. 4.4.21

#,p = logarithmic derivative of p,p defined Eq. 2.1.5

P.p = logarithmic derivative of g,p defined by Eq. 3.1.44

Ap = change in wellbore pressure during a drawdown or buildup test, psi
Ap. = corrected shut-in pressure defined by Eq. 4.4.23, psi

Ay’ = logarithmic derivative of Ap, psi

Ap., = logarithmic derivative of Ap., psi

q = flow rate, STB/Day

gp = dimensionless flow rate defined Eq. 3.1.100

'd = logarithmic derivative of flow rate, STB/day

9 = logarithmic derivative of ¢p
r = radial distance, ft .
D = dimensionless radial distance

Te = external reservoir radius, ft
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r, = radius of inner zone; composite reservoir, ft

Tw = wellbore radius, ft

Ry = Horner time ratio defined by Eq. 4.1.8

vl = effective wellbore radius, ft

s = gkin factor due to damage or stimulation

8y = skin factor due to the existence of a fracture

t = time, hours

tp = dimensionless time based on wellbore radius

te = equivalent time defined by Eq. 2.3.8, hours

t, = producing time, hours

tae = equivalent pseudotime defined by Eq. 3.3.4, psi-hr/cp

tap = dimensionless time based on reservoir drainage area

tp2 = dimensionless time based on outer zone; composite reservoir
teD = dimensionless equivalent time defined by Eq. 3.1.42

typ = dimensionless time based on fracture properties; fractured reservoir
tz,p = dimensionless time based on fracture half-length

tp,;, = dimensionless time based on effective wellbore radius

tpz,p = dimensionless producing time based on fracture half-length
At = shut-in time, hcurs

At, = pseudotime, psi-hr/cp

Atp = dimensionless shut-in time based on wellbore radius

At,p = dimensionless shut-in time based on reservoir drainage area
At;,p = dimensionless shut-in time based on fracture half-length

= dimensionless parameter defined by Eq. 4.2.1

a
B = dimensionless parameter defined by Eq. 4.2.2
é = Dirac delta function

v = gradient operator

n = diffusivity

i/ = diffusivity ratio defined by Eq. 3.2.4

A = mobility defined by Eq. 3.2.1
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Ar = mobility ratio defined by Eq. 3.2.3

w = matrix storativity defined by Eq. 3.2.16
X = fracture transfer coefficient defibed by Eq. 3.2.17
7 = viscosity, cp

5 = Euler’s constant

é = porosity, fraction

Subscripts

e = external

J = fracture

m = matrix

t = total

w = wellbore

A = drainage area

D = dimensionless
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Here, we derive short and long time approximations for the dimensionless pres-
sure drop p,p (Eq. 3.1.22) and its logarithmic derivative p., , (Eq. 3.1.25) for a
planar (either uniform-flux or infinite-conductivity) fractured well. ’

Recalling Egs. 3.1.22 and 3.1.25, respectively, give

o i o (372) o (52

1-zp_. [ @=2p)?] 1+2zp_. [ (1+2p)*]
4 E’[ 4t,.p e 4.0 |’ (4-1)
and
1-2zp ) ( 1+2zp ).
wD = \/wt erf 4erf | ——=]]|, A-2
P D z!D[ ( tz,D 2 ,tz_!D ] ( )
where zp = 0.0 for an uniform-flux fracture and zp = 0.732 for an infinite-
conductivity fracture.

Short Time Approximations
Dividing both sides of Egs. A-1 and A-2 by {/xZ;,p give, respectively,

s =3 | )+ (s ) -
1-2p p _(l—zp)’] _ 1t o _(1+3D)2]’ 43

4\/ ntz s D 4t 2D

i (572) = (57|
—= == lef| ——— | t+ef | ——=} | . A—4
nte,p 4 2\/tz;D 2./tz;p ( )
Taking the limits of Egs. A-? and A-4 as t;,p approaches zero, we obtain
. Pup 1 .. [ (1 zD) (1+zp)]
lim ——=—=< lim |ef +ef | ——
‘.,D‘-’o Vﬂng 2 ‘I’D"‘o 2\/tz:p 2\/t,!p

. 1-zp (1-zp)® —zp)? 1+zp .| (1+zp)° zp)?
lim E - ———=Fi }, (A-5
+t-,p-'0 [ 4t,! D 4«%,, D 4t¢, ( )

and

et Lin ) ) o
i.}ﬁ“’ #tz,D —4ts}l£'0 erf 2/tz,p +erd 24/tz;D ) (4 €)
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Since,

2ds
: 1%2p Woets exp (—
‘.’lglloerf (2 7_¢,D) 7 ‘.:p_o / ( 1‘2) dr

2 (- <)
=7 exp (-7%) dr=1, (A-17)
for 0 < zp < 1, it follows that
. l1—-2zp 14 2zp
lim |[erf +erf 2. A-8
‘.ID-’O [ (2V zz,D) (2‘V i‘:D )] ( )

Since,

=L, (A-9)

by taking the limit of Eq. A-9 as ¢;,p approaches zero and applying I'Hépital’s

rule, we obtain

exp [-C2=22] (1., p)

lim —i2
el T B )
or
2 (1/ \/E, D’
=— A-10
lt.’p-.o [ “I!D ( )

Since Eq. A-10 is in indeterminate form of co/co, applying I'Hépital’s rule once

more, it can be shown that

. 4 . (1 zp)?
im L=————— |lim +/{: —1 =0 A-11
t.,D-’o ﬁ (1 + 39)2 ‘.’D-’o 1D P 4tng ( )
thus, it follows that
B[
—L Y2 ) 0. -
- oo 0 (A-12)

It follows easily from Eq. A-12 that

. 1-zp _.| (1-2zp)? 1+zp .| (1+zp)?
Iim {-——=FEj|-———]| ———=—Ei|—>——}|}=0. (A-13
t.!p-'o{ 4\/1I’tz!_p 4tz,p 4\/2’!:’1) 4t;,p } ( )
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Using Egs. A-8 and A-13 in Eq. A-5 gives
o _PeD  _ _
‘.ﬂl@i Ry 1, (A-14)
and similarly using Eq. A-8 in Eq. A-6, we obtain

. Pop 1
lim X0 ==, A-15
tayp—0 \/Eg,p 2 ( )
or
2P,p
2 =1 A-16
‘l!D-'o Vﬂg,D ( )
Long Time Approximations
As is well known, the exponential-integral function, —~Ei(—z), is weil approxi-
mated by

-Ei(-z)=-1In(e"z) (A-17)

provided that z is sufficiently small. Thus it follows directly from Eq. A-17 that
for sufficiently large values of ¢;,p, the following holds

(1 + 3D)2 4t 1D _
—Ei 4t;,p ] [c‘l 1+ zp)z] (4-18)

Replacing each exponential-integral function in Eq. A-1 with its appropriate loga-
rithmic approximation given by the right side of Eq. A-18, Eq. A-1 can be written

o= T o (522 1 (2] e,
(4 —-19)

where o(zp) is given by

o(zp) = L2 (1 - 2p) -“—’;‘D—)m(uzp) +0404544. (A —20)

Lei(x) _foexp(-r?)dr

z - 4

R, (A-21)
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by taking the limit of Eq. A-21 as z approaches zero and applying I’'Hopital’s rule,
it can be shown that

lim12=1imi."‘1’_(.‘.ﬂ=1; (A-22)
20 =0 1

thus, for sufficiently small values of z, the following approximation holds:
\/T;etf (z) = =. (A-23)
For sufficiently large values of ¢,,p, it follows directly from Eq. A-23 that

ﬁerf(l:lzzp (1+zp) (4 - 24)

T 2\/i¢t_p = 2V zz;D ’
or
l1+zp
\Y; “z;Derf (z\ﬁ;,_p) ~ (1 - SD) . (A - 25)
Using the approximation given by Eq. A-23, Eq. A-16 can be approximated
by
1
PuD =3 [ln(¢z,0) + 2 (o(zp) +1)], (A - 26)
or defining ¢ by
c¢=2[o(zp) +1], (A-27)
1
PuwD = ‘2‘ []n (tz;D) + c] ’ (A - 28)

where ¢ = 2.80907 for zp = O (uniform-flux fracture), and ¢ = 2.2 for zp = 0.732
(infinite-conductivity fracture).
Finally, it follows from Eq. A-28 that

. PwD
Bm =1, -
- Y oy s (4 - 29)

and replacing each /#t;,p erf term in Eq. A-2 by the approximation given by Eq.
A-23, and taking the limits of the resulting equation as ¢;,p — co, one can easily
establish the following long time approximation for p{, ,:

lim 2pLp=1. (A -30)

t.,p-’a
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The purpose of this appendix is to present the derivations of short and long time
asymptotic formulas reported in Section 3.1.4 for the dimensionless buildup pressure
change, p,p, and its logarithmic derivative with respect to Agarwal’s equivalent
time*s, 5/ . The results presented apply to uniform-flux and infinite-conductivity
fractures.

As noted in Section 3.1.4, from a well known superposition result, the dimen-
sionless buildup pressure change, p,p, can expressed in terms of the dimensionless
drawdown pressure change, pyp, a8

PaD = pup (Atz,;p) + [~PuD (tpz;p + Atz,D) + Pup (Alz,D)], (B-1)

and the logarithmic derivative of Eq. B-1 with respect to Agarwal’s dimensionless
equivalent time*8, t.p (Eq. 3.1.42) is given by

_}.,_:D__(_A&:D_)z[_@[ﬁ(l_-zn_)a,eﬁ(ﬂ)]

Vatep  4Vteptep ' Alz,p 2./At_p 2y/At,,p
_ VzpzzD +A%L,p
(tpz,p + Atz,p)

= )+ ()| @2

where zp = 0.0 for an uniform-flux fracture and zp = 0.732 for an infinite-

conductivity fracture.

Short Time Approximations
K At;,p << tpe,p 80 that t.p = Al p, and the terms within the square
brackets of Eq. B-1 can be neglected, then Eq. B-1 can be well approximated by
the following equation:

PoD = Pup (Atz,p) = Pup (teD)- (B-3)

For sufficiently small values of time t.p = tpz,pA:,p/(Atz,D +tpz,p) = At;,p

and pyp(At:,p) = pup(tep) = v7tep. Thus,
PeD . PwD (teD) =1. (B — 4)

tclgﬁo Vv*tep " tep—0 Vv*teD
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Applying the same underlying assumptions stated above to Eq. B-2 and taking
the limits of the resulting equation as f.p approaches gzero, one can establish the
following equation:

7 ( 1- zp) (1 +zp )]
:.‘.i’-“.o e 7Jm, ["f e ) T\
ﬂ.l’_) .l.erf(ﬂ)] lim vip. (B -5)

erf
4\/ zpc:D [ (2\/!”_:17 2\/1;:3 tep—0
Since the first limit on the right side of Eq. B-4 is equal to 2 (see Appendix A) and

the second limit is zero, it follows that

o Pp_ _1 -
‘aléeo V&teD 2 (B 6)
or
o 2 _ _
1.13-30 Tt = 1. (B-17)
Note that Eq. 3.1.55 (or Eq. 3.1.56) can be obtained directly from Eqs. B-4 and
B-7.
Long Tize A mati

For sufficiently large values of shut-in time, At;,p, so that drawdown terms
PuD(Atz,p) and pup(tpz, D + Ats,p) can be replaced by their logarithmic approx-
imations as given by Eq. A-21, Eq. B-1 can be approximated by the following
equation:

Fi = 3 18(te0) + Pu (fpe;D) — 18 (pey0)- (B-9)
Taking limits as At;,p — co; that is, t.p approaches ¢;;,p (see Eq. 3.1.42), we
can establish the following equation:

PsD = PuD (tpz,D)- (B-9)

tw-l-i'rtE-,p

For sufficiently large values of At.,p so that the approximation given by the

right side of Eq. A-20 can be applied to each “erf” function term on the right side
of Eq. B-2, the following equation for |, applies:

At +D tpz ¢D ] B
’ - 10
tep |(tpz,p + At:,D) ( )

25,p =
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or
2529 =1. (B— 11) .

Taking the limits in both sides of Eq. B-11 as ¢,p approaches #;;,p, one obtains
Eq. 3.1.58. Moreover, dividing Eq. B-9 by Eq. 3.1.58 gives Eq. 3.1.59.
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DERIVATIONS OF EQS. 3.1.116 THROUGH 3.1.118
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In this appendix, we derive the dimensionless rate expressions given by Egs.
3.1.116, 3.1.117 and 3.1.118 for a planar fractured (eit:er uniform-flux or infinite-
conductivity) well produced at a corstant wellbore pressure in a closed square reser-
voir.

For a planar fractured well produced at a constant rate in a closed square
reservoir, we have noted that there exist three distinct flow regimes exhibited by
the dimensionless well pressure drop p,p. These are linear flow period at which
the dimensionless pressure drop, p.p is given by

puD = /7D, (c-1)
pseudoradial flow period at which p,p is given by
PuD = % [In(t:,p) +¢], (c-2)
and pseudosteady-state flow period at which p,p is given by
PuD = 27t7D + ¢y, (C-3)

where a, is defined by Eq. 3.1.118.
The Laplace space solutions of Eqs. C-1, C-2 and C-3 with respect to dimen-
siorless time ¢,,p are given, respectively, by the following equations:

s o_r 1 -
PQD— 21&\/17’ (C 4)
1
ﬁwD—'z_u["ln(u)"'c-"]’ (C—5)
and .
Lz, 1 1
Pwp = Zﬂ'—ALF + ;Gc!. (C - 6)

Here p,,p denotes the Laplace transform of the dimensionless pressure drop, p,p,
defined by Eq. 2.1.1, u denotes the Laplace transform variable with respect to ¢, D>
and «(=0.57722) is the Euler’s constant.
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From the well known superposition result of van Everdingen and Hurst!S, It
follows that the Laplace space solution of dimensionless pressure for the constant
Tate case; i.e., Py p is related to the Laplace space solution of the dimensionless rate
for the constant wellbore pressure case by the following relation:

I (4)Pop (8) = 5, (-1

where gp is the dimensionless well rate defined by Eq. 3.1.100. Thus, using Egs.
C-4, C-5 and C-6 in Eq. C-7, the following Laplace space solutions for the dimen-
sionless rate gp, respectively, can be obtained:

21 -
d (v) = 7’ (C-9)
(7} -1
qp(u)=[§(—lnu+c—1)] . (C-9)
and . -
 (v) = [211’1'—_:‘ + uac,] . (C - 10)

Inverting Eq. C-7 gives
2 1

-9 (o) = 2
which applies during linear flow period. Inversion of Eq. C-9 can be accomplished

(€ -11)

by using the Schapery®® approximation as modified by Najurieta®!; i.e., the inverse
Laplace transform of §p can be approximated by

Applying Eq. C-12 to Eq. C-9, we obtain

1
9 (¢s0) = 55 in (¢z,0) + ]’

(C-13)

which applies during pseudoradial flow period. Finally inverting Eq. C-10, we

obtain

which applies during pseudosteady-state flow period.
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DERIVATIONS OF EQS. 3.2.11 THROUGH 3.2.13
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In this appendix, we derive Eqs. 3.2.11 through 3.2.13. The Laplace space
analytical solution of dimensionless well pressure drop due to a line source well
producing at a constant rate in a composite infinite-acting reservoir was given by
Hurst3 as

P (4) = 2 [Ko (V) + 1o (V) A (u)], (-1
where A(u) is given by

A =2 (rap/7ir8) K1 (rapv/u) — (Viir/2r) Ko (rap /) Ki (rap /717%)
Ko (ch\/ﬂr_u) I, (foD\/;) + (ﬁ/Ar) I (ch\/;) K, ('uD\/'TtTE)D )

2)
Here p,p1 denotes the Laplace transform of dimensionless well pressure drop de-
fined in terms of the properties of inner zone (see Eq. 3.2.7), v denotes the Laplace
transform variable with respect to dimensionless time ¢p; defined in terms of the
properties of inner zone, and r,p, A, and n,, respectively, denote the dimensionless
radius of inner zone defined by Eq. 3.2.2, the mobility ratio defined by Eq. 3.2.3
and the diffusivity ratio defined by Eq. 3.2.4. In Egs. D-1 and D-2, Iy and K,
denote, respectively, the modified Bessel’s functions of the first and second kind of
order zero, and I; and K; denote, respectively, the modified Bessel’s functions of
the first and second kind of order one.

The long time approximation to Eq. D-1 can be obtained by assuming that
Laplace variable u is sufficiently small so that various Bessel’s functions in Eq. D-1
can be approximated by their following asymptotic formulas:

Ko(s) -l (5Z), (D-3)
2K, (2) ~ 1, (D-4)
Lz)=~1, (D-5)
and
I (z) ~ 0. (D-6)
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Using the limiting forms of Bessel’s functions given above in Eq. D-1 and simplifying
the resulting equation, one obtains

Popr =1 [—m("f) +(1-A,)1n(°—"£‘§‘/—'7) --’;lln(n,)]. (D-7)

Inverting Eq. D-7 to real space gives

1, (4t (1=->). [ 4 A
Py =3 (42) - L5Mi (28) Zng).  @-9
Eq. D-8 further can be reduced to
o 1 4 -
Pebt _ L (421) 4 UM i), (D-9)

Since (pwD1/Ar) = Pwb2, (tD1/0r) = tp2, and A, = (1:/A2), Eq. D-9 can be
written as
Pep2=3 1h (4:1:2) + (:\\—: - 1) In (r.p)
= 1.151[log (tp2) + 0.351] + (;\—: - 1) In(r,p), (D -10)
which is Eq. 3.2.11. Differentiating Eq. D-10 with respect to In(tp2) and then

multiplying the resulting equation by 2 gives

dem
! = ———=], -

Furthermore, dividing Eq. D-10 by Eq. D-11 gives Eq. 3.2.13.
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The purpose of this appendix is to provide a rigorous derivation of the buildup
pressure equation given in Chapter IV for a well located in a system of producing
wells completed in a closed bounded reservoir, i.e., Eq. 4.2.3.

A typical multi-well system in a closed bounded rectangular reservoir is shown

_ in Fig. 4.2.1. For the system of Fig. 4.2.1, it is assumed that well k (2 < k < m,
where m denotes the total number of wells in a closed bounded reservoir) is produced
at a constant rate g; for all times and well 1, the well of interest, is produced at
a constant rate g; for times 0 < ¢ < ¢, and a constant rate go for times ¢ > ¢,.
The diffusivity equation for a three dimensional flow of a slightly compressible,
single phase fluid of constant viscosity in a homogeneous, isotropic, closed bounded

reservoir containing m wells, produced at the rates specified above, can be given as

goe_Op _ s k =
se15B 3 ~ M1 X 1075 Vi —e() 62— 2) g::zqd @-z), (E-1)

where
_Ja, for0<t<t,;
q(t) = {qo, fort >t,.

Here, §(z—z;) is the Dirac-Delta function located at z, = (zx,yx, 2:), that is,

(E -2)

b(z—2)=6(z—z) 6 (y—w)6(2— 2x), (E-3)

V denotes the gradient operator in a Cartesian coordiante system and V2p is given

by
_ 3% &p 3

=5 T o Yo
Note that in Eq. E-1, the Dirac-Delta function, &, is in 1/f¢>, the production rate,
g, is in STB/DAY and the rate is positive for production.

We wish to solve Eq. E-1 subject to following initial and boundary conditions:

\4&- (E-4)

?(z:.t =0) =g, (E-3)

and
Vp-n=0. (E—é6)
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Here, p; is the initial pressure and g is the unit outward normal vector to the
reservoir boundary. Note that the boundary condition specified by Eq. E-6 is the
Neumann condition; that is, there is no flux across the boundary surfaces of the
Teservoir.
Defining Ap by

Ap = pi - p(z1-t) (E-17)
and dividing both sides of Eq E-1 by the flow rafe ¢1, We can rewrite the IBVP
(initial boundary value problem) specified by Eqs. E-1, E-5 and E-6, respectively,

as
__$e:  9Ap -3 2
Setse Bt = M X107 V2 (4p)
t m
256 2)+ 3 Boz-z,), (E-8
% =
Ap(z,t=0)=0, (E-9)
V(Ap)-n=0; t>0. (E - 10)

Note that the units in Eq. E-8 are 1/ft3.
Letting A; be some characteristic area, 2 be the total reservoir thickness and
introducing the following dimensionless variables:

20 = 2= = (e/VAL9/VAr,2/ VA1), (B-1)
P01 = 1o o 4;’;:?3“, (E-12)

and s
6.33 x 10~°kt (E - 13)

tpy = —————,
b1 dcep Ay
the IBVP specified by Eqs. E-8 through E-10, respectively, can be written in the

dimensionless form as

= A ibn (2n — 2,p) + =ép(zp —z:p), E—-14
T o P (zp - z1p) Z:z P (zp — z:p) ( )

pp1(zpstp1 =0) =0, (E —15)
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V(pp1) -5 =0; tp1 >0. (E - 16)

In Eq. E-14, V3pp, is given by

pm—%’-;‘—’-’-+é::£‘+az’m (B-17)
and
6p (zp — zxp) = 27 A1hS (zp — zip) - (E -18)

Let pp be the solution of the following IBVP:

o _gay W = Gk
= V*pp + =4 - + =4 - . E—19
atpl Q1 p (zp — Z1p) ’;::2 a: D (ID Z:p) ( )
b (zpstp1 =0) =0, (E - 20)
V(pp)-2=0; tp, >0, (B —21)

and let §p be the solution of the following IBVP:

9pp 2 A (90"91"

——V é - s tp1 > E —22

Btp, D + o )D(.&D Z1p); tp1 > top1 ( )
p =0; tp1 <tppa (E —23)
V(#p)-n=0. (E —24)

Since pp = 0 for tpy < ¢pp1, then it can be easily shown that pp, = pp + p
satisfies

aPDl 2 q1 0%
ot L D1 ) D(ﬁp £p],) 22: ) D(!’.D Ek.o) ( )

for 0 < tp; < tpp1, and satisfies

9Pp1 _ o2 (90 91)
atpl D1 a D (—D LD) ( )

for tp; > tpp;. Therefore, pp; = P + pp is the solution of the IBVP specified by
Egs. E-14, E-15 and E-16.
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By using superposition and method of images, one can obtain the solution to

the IBVP given by Eqs. E-19, E-20 and E-21 as

Po(t)= [PD (zip,t) + i?p (z1jp»t) + a]

=2

m m 0
+ 2 ﬁpD (&Dst) + Zq_k ZPD (&jDQt) ’
k=2 &t k=29 j=

(E-27)

where z;;p denotes the location of the j*® image well for well k for 1 < k < m.
Similarly, the solution of the IBVP specified by Eqs. E-22, E-23 and E-24 can be

given as .
Po(t—1t) = (“ ‘91),,, (2105t —tp) + (—"°""‘) s
q q
go— Q1 -
@ =2

(E - 28)

In Eqs. E-27 and E-28, s éenotes the skin factor associated with well 1, and the pp
term represents the dimensionless pressure drop that would be obtained at a single

producing well with zero skin factor in an infinite reservoir.

As shown previously, pp1 = Pp +Pp is the solution of the IBVP given by Egs.

E-14 through E-16. Thus, it follows from Eqs. E-27 and E-28 that

PD1 = [PD (Em’t) + iPD (zljD’t) + 8]

I=2

”m m - -]
+) %PD (zxpot) + 22{5 >_vp (z4;p:t)
=2 fawrg

=2
go—q1 Go—q1
+ d-t)+ ( —2
[(B52) o ot -+ (222 o
- go—q1
+3 (222) 5o (zagpt-1)-
J=2 Q
If we let At be
At=t-t,

(£ -29)

(E - 30)
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If well 1 is shut-in at a time ¢ = ¢, for a buildup test; i.e., go = 0, then pp) = p.p,
the dimensionless shut-in pressure, and Eq. E-29 can be written as

D = [pp (z1pstp + At) + Y Pp (Z15p0tp + At) + s]
=2

= [PD (z1p, A) + i?p (z1500A2) + s]

I=2
+ o (zxp,tp + At) '*'z _EPD (zxjp0te + AL) (E -32)
k=2 k=2 =2

which is Eq. 4.2.3 of the text and applies for any well/reservoir model.
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BUILDUP RESPONSE OF A FINITE-CONDUCTIVITY
VERTICALLY FRACTURED WELL DURING
BILINEAR FLOW REGIME
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Here, we show that the analysis procedures given in Chapter IV can be ex-
tended to finite-conductivity vertically fractured wells. Specificially, we consider
the buildup response of a finite-conductivity fractured well which is produced long
enough to reach pseudosteady-state prior to shut-in and consider only the bilinear
flow regime during buildup. A

If the pseudosteady-state is reached prior to shut-in, then Eq. 4.2.4 can be

written as,

1

44
Pcp=21r(t,+At)A‘D+§ln( 1

m‘) - pwp (At), (F-1)

where C,4, is the shape factor and r., is the effective wellbore radius as defined by

Eq. 3.1.73.
For sufficiently small values of shut-in time such that the drawdown term,

Pwp(Al), is a.pproxima.ted well by the bilinear flow equation (see Eq. 3.1.76), Eq.

F-1 becomes

44, ) x(Ata,p)* (Al)‘/‘

1
.D = 27 (t, + At +=In - —_—
DsD ( P )AI.D 2 (e.’CAl (r:,)z r (5/4) ’2C!D Li!
(F-2)
where Cyp represents fracture conductivity and is given by Eq. 3.1.69.
Differentiating Eq. F-2 with respect to (At,, p)!/4 and rearranging the result-

ing equation in a dimensional form gives

dpw,
-d(Z:)u=mu(At)a/‘-bu (F-3)
where
0.9340¢B
- = 4 = — F—4
s = my = — = (F-4)
and
0
b = L (F-5)

T (5/4) ($cer)™”™ (k)% b (ks0)"T°
In Eq. F4, m; is given by Eq. 4.3.6.
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Equation F-3 suggests that during bilinear flow period, a Cartesian plot of
—dp,, /d(At1/4) versus At®/4 will yield a straight line with slope equal to mg:
given by Eq. F-4 from which the well’s drainage at the instant of shut-in can be
obtained. The intercept at At = 0 is given by Eq. F-5 from which the product
k1/4h(ksb)2/2 can be obtained.

Using the left hand side of material balance equation in Eq. F-2 and rewriting
the resulting equation in the dimensional form gives

chc" (":r)2

i, ) + b At (F-e6)

p..,.+-"%At=f+bln(

where b is given by Eq. 4.3.7. During bilinear flow, m;; can be computed from
the analysis procedure of Eq. F-3 described above; Egs. F-3 through F-5. To
determine the average reservoir pressure, we extrapolate the straight line obtained
in a Cartesian plot of pw, + (ms:/4)At versus (At)1/4 to At = 0. The intercept at
At = 0 is given by the following equation:

(o ), =psom (S g

that is, the average pressure § can be determined from Eq. F-7 provided that we
know the shape factor, the permeability and the fracture half-length.
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