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ABSTRACT

Emil Nurmammadov (Master of Science in Petroleum Engineering)

Optimization of SAGD Operations using Derivative Free Algorithms

Directed by Gaoming Li

65 pp., Chapter 4: Conclusions

(539 words)

Steam assisted gravity drainage (SAGD) is an effective thermal recovery method

for heavy oil and bitumen extraction. The SAGD process involves many parallel pairs

of horizontal injectors and producers. The vertical spacing between the horizontal

injector and producer within a pair is 5 to 10 m and the horizontal distance between

neighbor wellpairs is 100 to 150 m. After the preheating period, in which steam is

circulated in both wells to mobilize oil around wells through heat conduction, the

upper horizontal well injects steam into the formation and forms a steam chamber. As

the injected steam encounters cold heavy oil and bitumen at the boundary of steam

chamber, it condenses and the released latent heat mobilizes more oil. The mobilized

oil and steam condensate then flow down, due to gravity, to the producer along the

edge of steam chamber.

SAGD is a heat intensive recovery method. Its economic success requires an

effective heat management program that prevents heat loss during steam transportation

through the pipes and wells, heat loss to caprock and base formation, and heat loss due

to idle steam circulation between the injectors and producers. The heat loss in pipes
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and wells is decreased with by better facility design while the injection and production

strategies need to be adjusted to effectively use the injected steam to heat up cold oil

inside the reservoir. To reduce heat loss to caprock, one needs to decrease the steam

injection rate after the steam chamber reaches caprock so that the steam chamber

can grow laterally. In the actual operations, it is impossible to know when the steam

chamber has reached caprock. To prevent direct live steam production, it is necessary

to maintain a liquid pool around the producer such that the injected steam is diverted

up and laterally to contact cold regions of the reservoir. High production rates will

dry up the liquid pool and draw the injected steam directly to the producer. In this

case, the injected steam will be circulated back to surface without touching any cold

oil in the formation. However, if the production rate is too low, then the liquid pool

level might rise even above the injector which leaves a smaller contact area between

the steam and cold oil.

Steam trap control has been applied in the field to deal with steam production.

Using subcool temperature, difference between the injected steam and produced fluids

temperatures is monitored and kept above certain specified value by adjusting the

production schedule. However, the optimal subcool temperature is usually unknown

and even if it is known, it might not be optimal to keep a constant subcool temperature

for the entire production life of the reservoir. In addition, the modeling of subcool used

in the simulator does not change the injection schedule but the production schedule

only, which may result in any sub-optimal solutions.

In this study, the cold water equivalent (CWE) steam injection rate and pro-

ducer bottomhole pressure are divided into some control steps and are adjusted to

maximize the net-present value (NPV) using the simultaneous perturbation stochastic

approximation (SPSA) and ensemble-based optimization (EnOpt). Both algorithms

achieve higher final NPV than the subcool reactive control with smaller cumulative

steam-oil ratio (cSOR), which is consistent with the goal of heat management.
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CHAPTER 1

INTRODUCTION

There are vast deposits of heavy oil and bitumen in the world, which make up

about 70% of the total oil resources [3]. Most of the heavy oil reserves (over 90%) are

found in Canada and Venezuela [39]. There is a great interest in the oil industry to

produce these crudes economically to meet the ever-increasing energy demand in the

world. The biggest challenge to produce heavy oil and bitumen is its high viscosity.

The regular heavy oil has an API gravity less than 22.3 and viscosity greater than

10 cp and up to 1 × 106 cp [1, 2] while bitumen is even more viscous and may not

be able to flow at the reservoir conditions. Except direct surface mining for some

shallow tar sands, all methods to produce heavy oil and bitumen involve some type of

thermal process that reduces oil viscosity by introducing heat to the reservoir [4, 14, 39].

The oil viscosity may decrease from millions of centipoise at reservoir temperature

to 10-20 centipoise when the reservoir temperature is raised to about 200 ◦C with

steam injection [10]. Some of the widely used thermal recovery techniques are steam

flooding and cyclic steam stimulation which have been successfully applied to heavy

oil reservoirs in Venezuela and US [39]. For steam flooding, it is required to have

good communication between the injectors and producers such that the steam can be

injected to push the mobilized oil towards the producer. This type of communication

is difficult to achieve for extra-heavy oil and bitumen reservoirs when the injector-

producer spacing is relatively large. Another problem with steam flooding in heavy oil

reservoirs is that as the oil is displaced away from the steam chamber it cools down

with increasing viscosity, hence lower mobility. Therefore, steam flood can only be used

in regular heavy oil reservoirs. The cyclic steam stimulation process does not require
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interwell communication. Instead it uses the same well for both steam injection and oil

production. After steam is injected for a period of several weeks, there is a soak period

that allows steam chamber to further expand and mobilize more oil. It is followed by

an extended period of oil production. This process is used extensively in California and

Venezuela. There is an increasing application to the bitumen production in Canada

[11]. However, this process has a relatively low oil recovery of about 15-20% [10] due

to a limited chamber size and lack of driving force to move the hot oil to the producer

[11]. Usually a regular heavy oil reservoir starts with cyclic steam stimulation and later

converts to steam flooding.

The steam assisted gravity drainage (SAGD) process was introduced by Butler

et al. [12, 13] in early 1980’s. It proves to be an efficient thermal recovery technique for

extra heavy oil and bitumen reservoirs with reported recovery over 50% [9, 34, 38, 45].

1.1 Literature Review

1.1.1 The SAGD Concept

The conventional SAGD process (Fig. 1.1) consists of many parallel horizontal

wellpairs that are 100-150 m from each other [42] and within each pair, the horizontal

injector is located right above the horizontal producer and the typical vertical spacing

between the two wells in the pair is 5-10 m [38, 45, 48]. The injector and producer

have about the same length (about 500-750 m [34]) and are aligned with each other in

parallel. Fig. 1.1 shows a cross-section that is perpendicular to the horizontal wells for

one pair in the SAGD process. The SAGD process starts with a preheating period which

may take several weeks to months [42]. In this period, the steam is injected through

the tubing and circulated back to surface through the annulus in both wells. The

bitumen around the wells is heated up and becomes mobile oil due to heat conduction

from the circulated steam. Once the steam circulation creates a hydraulic connection

between two wells, the bottom horizontal well is converted to a producer and the upper
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horizontal well becomes a steam injector. Due to gravity force, the injected steam rises

up and forms a steam chamber. When the steam encounters the cold reservoir rock and

bitumen at the boundary of the steam chamber, it condenses and passes on its latent

heat to the surrounding reservoir rock and bitumen. The heated bitumen then becomes

mobile as a result of significant decrease in viscosity [12]. Driven by gravity the heated

oil and condensed water drain down to the bottom of the reservoir where it is produced

through the production well(see Fig. 1.1). As the high temperature oil continues to

drain to the bottom of the reservoir, the injected steam rises up and fills the vacated

pore spaces, which allows continuous steam injection and growing steam chamber [11].

Usually, the steam chamber grows vertically and reaches the top boundary (caprock)

first and then it expands laterally. The SAGD process is terminated when the steam

chambers between nearby wellpairs meet. In the SAGD process, once the oil is heated,

it remains hot as it drains to the producer because its flowing path is next to the high

temperature steam chamber. This makes SAGD applicable to the extra-heavy oil and

bitumen reservoirs.

Figure 1.1: The SAGD Concept [29].
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Due to high temperature within the steam chamber, most bitumen becomes

mobile and is displaced to the producer by the steam. Therefore, the recovery efficiency

of the SAGD process relies heavily on the growth of the steam chamber. Note that the

replacement of oil by steam within the steam chamber also helps maintain the reservoir

pressure and hence the driving force [9]. To have a fast growing steam chamber, one

needs to prevent direct steam production and confine the steam within the chamber so

that the steam latent heat can be passed on to the bitumen surrounding the chamber

when it condenses at the edge of the chamber. The key to make this occur is to

maintain a liquid pool around the producer so that the injected steam is diverted away

from the producer [30].

Fig. 1.1 shows that the mobilized oil and steam condensate flow down towards

the producer at the edge of the steam chamber and they are then produced to surface.

When the bottom well produces at high rate, the mobilized oil and steam condensate

can soon be depleted and no liquid pool will be formed. If there is no liquid pool,

some injected steam will flow down to the producer and then be produced directly

without touching any cold bitumen, which hence reduces the energy efficiency of the

SAGD process. However, if the production rate is kept too low compared to the steam

injection rate, the mobilized oil and steam condensate may accumulate so much that the

liquid pool level is even above the injector (Fig. 1.2), which also reduces the steam-cold

bitumen contact area and hence steam chamber growth. A second effect for a large

accumulation of the mobilized bitumen and steam condensate around the producer

is that the temperature around the producer can be cooled down and be much lower

than that of the injected steam. As a result, the oil viscosity may significantly increase,

which reduces the well productivity.

Maintaining an appropriate level for the liquid pool is called steam trap control

in the literature [30]. In order to maintain an appropriate liquid pool level, one needs

to monitor and adjust the pressure differential between the injector and producer. As

the injected steam is at its saturation state, the pressure and temperature are on the
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vapor pressure curve (Fig. 1.3). To maintain a liquid pool around the producer, the

pressure and temperature have to be in the liquid region (i.e. to the left of the vapor

pressure curve in the pressure-temperature diagram, see Fig. 1.3). Due to the gravity

effect, it is possible to have a negative pressure differential between the injector and

producer. However, due to its fluctuation behavior, it is not easy to monitor and control

the bottomhole pressure of the producer. Instead, people usually use the temperature

differential between the injector and producer for steam trap control. This temperature

difference between the injected steam and produced fluids is denoted as subcool. Small

or zero subcool indicates small or no liquid pool. Large subcool indicates large liquid

pool around the producer.

The literature reports that the typical values used in the field practice for the

subcool temperature have been between 20 to 40 ◦C [23, 31]. Even though some

studies [6, 28, 29] used subcool as the main producer well constraint, Das [20] argued

that subcool temperature does not have significant impact on production under certain

conditions due to the complex relationship among the subcool, liquid level, pressure

and cumulative injected steam to produced oil ratio (cSOR) [21]. Edmunds [22, 23]

mentioned that using subcool as an operating control may not be favorable due to the

inaccurate bottomhole temperature measurements for long horizontal wells, and it is

recommended to use production rates as the operating constraint.

1.1.2 SAGD Optimization

As the SAGD process is an energy intensive oil recovery method, its economics

to a large extent depends on effective heat management, i.e. recover more oil with

less steam injection. The aforementioned steam trap control can effectively increase

the steam chamber growth and manage the heat usage if the appropriate liquid pool

level around the producer is properly maintained. Egermann et al. [24] developed a

methodology to optimize the development of steam chamber in the SAGD process for

better oil recovery and heat management. In their method, the steam injection rate
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Figure 1.2: Liquid pool above the injector [29].

Figure 1.3: Pressure-temperature diagram [29].

is calculated based on the reservoir production potential using the analytical model

developed by Butler and Stephens [13] and the oil production rate is adjusted using
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the temperature difference between the injected steam and produced fluids, i.e., subcool

temperature. The method is applied to a synthetic case and a field case, and the authors

argued that it gives optimal results which are in good agreement with Butler’s analytical

model in terms of oil production rate and the shape of steam chamber. However, the

optimal subcool temperature is usually unknown and cannot be easily determined. In

addition, due to the formation heterogeneity, the liquid level varies along the horizontal

wells and the subcool temperature may exhibit complex behavior, which makes subcool

control even more difficult [21]. Most studies on SAGD optimization use cSOR, oil

recovery or net-present-value (NPV) as the objective function.

Gates and Chakrabarty [28] applied a genetic algorithm to minimize cSOR by

adjusting steam injection stategies. They used injection pressure as the control param-

eter and the production is controlled using a fixed subcool temperature of 5 ◦C. Their

results show that steam injection pressure should be kept at high values at early times

of the SAGD process to allow maximum steam injection and steam chamber growth

and injection pressure should be reduced after the steam chamber reaches the top of the

reservoir in order to reduce heat loss to the caprock. After minimization, the algorithm

was able to reduce cSOR from 35% to 50% for the cases in the paper. They concluded

that the genetic algorithm was efficient for SAGD optimization for relatively simple

2D reservoir models, but more efficient algorithms and better computer hardware are

needed for complex 3D reservoir models. Gates et al. [29] extended their study to

a two-wellpair case in a 3D heterogeneous reservoir with a top gas zone. However,

they applied manual production optimization instead of using the genetic algorithm.

Due to high computer run time cost, each wellpair is optimized separately to achieve

a minimum cSOR using injection pressure as the control and fixed subcool of 5 ◦C.

Similar optimal injection strategies to that in [28] are obtained from each wellpair, i.e.,

high injection pressure before the steam chamber contacts the top gas zone and subse-

quently low injection pressure to avoid heat loss to the top gas thief zone. The injection

strategies from each wellpair are then combined after individual optimization. Due to
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steam chamber communication through the top gas zone, only suboptimal injection

strategies can be obtained when the individual wellpairs are optimized separately. Bao

et al. [6] also investigated the optimal operating strategies of the SAGD process with

a top gas thief zone. They first minimized cSOR using CMG’s proprietary DECE

(Designed Exploration and Controlled Evolution) optimization algorithm by adjust-

ing injection pressure. The DECE method used in this study consists of two stages:

exploring the search space to obtain maximum information about the solution space

and improve the given objective function using statistical analysis for the performed

simulation runs. However, it is not clear how the production control was set during

the injection strategy optimization. The SAGD process is then further improved by

adjusting the subcool control along time. The results show that the optimal operating

strategies for injection pressure are similar to that in [28, 29] and the variable subcool

(high subcool at early time and then a decreasing subcool at late time) can further

improve the oil production in the SAGD process. The above papers that use cSOR as

the objective function for minimization, show that the optimization can significantly

reduce the field cumulative steam injection hence cSOR, however, the cumulative oil

production can also be significantly decreased, hence low oil recovery. Another paper

that minimizes cSOR is from Card et al. [15]. In this paper, the authors proposed

an automated global optimization method by constructing response surface of the cost

function, cSOR and the steam injection pressures to optimize the commercial SAGD

operations. However, no results were given in the paper.

As the minimization of cSOR is not always consistent with the maximization of

oil production, Queipo et al. [43] proposed an objective function that uses a weighted

sum of the cumulative oil production and cumulative steam injection. The optimization

is done through a surrogate model constructed with neural network. The algorithm is

denoted as NEGO (neural network based efficient global optimization). The adjusting

parameters during optimization include both the operational controls (injection pres-

sure, injection enthalpy and subcool temperature) and a geometrical design parameter -
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vertical injection-production well spacing. Shin and Polikar [48] did a sensitivity study

of the operational control parameters (preheating period, steam injection pressure,

maximum steam injection rate) and some geometrical parameters (injector-producer

well spacing, reservoir thickness) to cSOR, oil recovery factor, oil production rate and

NPV.

Although the optimization on the weighted sum of the cumulative oil production

and cumulative steam injection considers both the oil recovery and heat management,

the weights on the two terms do not have any physical meaning and are arbitrary in

nature. A more systematic way is to maximize the net-present value (NPV), which

includes three terms: oil production, water production and steam injection and the

weights of these terms are the price of oil, cost for produced water treatment and

steam generation and transportation per unit volume. Yang et al. [54] maximized

NPV for the SAGD process using CMG’s proprietary DECE (Designed Exploration and

Controlled Evolution) method. The controls for optimization in their paper are steam

injection and liquid production rates. Their results show that the NPV maximization

is consistent with steam trap control and the final optimal controls resulted in 35%

increase in NPV and 30 % decrease in cSOR with fully developed steam chamber.

Yang et al. [55] extended their SAGD production optimization to robust optimization,

which takes into account of geological uncertainty. Due to geological uncertainty, the

optimization based on a single but uncertainty geological model (denoted as nominal

optimization) may impose the risk that final optimal controls obtained using this model

may not achieve the highest NPV when they are applied to the actual reservoir. In the

robust optimization, they used a set of geological models to represent the uncertainty

in geology. The objective function they used is the expectation of NPV, which is

approximated by the average NPV obtained from the set of geological models. They

first generated 100 geological models and obtained the NPVs from each geological

model by running the simulator. Then, the NPVs are sorted and ranked from low to

high according to their values. Due to high computational cost for simulation runs,
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they picked out 9 geological models from the 100 uniformly in the NPV distribution

for robust optimization. Their optimization procedure was performed using a second

order polynomial proxy model. The well control parameters are maximum bottom-hole

pressure for the injection wells and maximum steam production rate for production

wells. In the example, the reservoir has both top and bottom water layers, which are

heat thief zones. In this case, the well locations will affect the performance of the SAGD

process. The injector-producer spacing is fixed to 5 m but their location is subject to

optimization in addition to the well control parameters. After robust optimization,

the final optimal controls are then applied to the 100 geological models. Compared

to the nominal optimization, the final controls from robust optimization yields higher

expected NPV and smaller cSOR from the 100 models.

Zhao et al. [56] show that production optimization using the gradient calcu-

lated with adjoint method [8, 7, 16, 35, 46, 47] give the fastest convergence with the

smallest number of reservoir simulation runs. However, the gradient calculation using

adjoint method requires knowledge of the detailed numerics of the reservoir simulator,

so the adjoint option is seldom available in commercial reservoir simulators, especially

the ones dealing with special EOR processes such as SAGD. This study will test two

optimization algorithms that are based on approximate gradients: Simultaneous Per-

turbation and Stochastic Approximation (SPSA) and Ensemble Based Optimization

(EnOpt).

1.1.3 The Simultaneous Perturbation Stochastic Approximation Algorithm-SPSA

The simultaneous perturbation and stochastic approximation (SPSA) algorithm

was introduced by Spall [49, 50] as an improvement to Kiefer-Wolfowitz algorithm

which approximates the gradient using standard finite-difference method [33, 49]. To

approximate the gradient using the finite difference method, one needs to evaluate the

cost function by running the simulator at the current point and at the perturbed points

for each individual control variable, therefore, the number of simulation runs required is
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equal to the problem dimension plus one. When the system is large, i.e., there are many

control variables to adjust in the production optimization problem, the algorithms with

the finite-difference gradient will be very inefficient. The SPSA algorithm mimics the

finite-difference method for gradient calculation. However, instead of perturbing each

control variable at a time, the SPSA algorithm simultaneously perturbs all the variables

in a stochastic way, which requires only two simulation runs if one-sided perturbation

is used or three simulation runs if two-sided perturbation is used. Due to the fact that

the perturbation vector is stochastic, the search direction in the SPSA algorithm seems

to be random. However, Spall [49, 50] shows that the SPSA gradient is always uphill

in the vicinity of the current iterate when the perturbation is sufficiently small and

the expectation of the SPSA gradient is the true gradient when the perturbation size

approaches zero.

The SPSA algorithm was first introduced into the petroleum engineering litera-

ture by Gao et al. [25, 26] for history matching. In their implementation, the elements

in the random perturbation vector are samples from a symmetric ±1 Bernoulli distri-

bution, i.e., each element can take either 1 or -1 and the probability of taking 1 or -1 is

50%. As the reservoir porosity and permeability fields in the examples follow Gaussian

distribution, the estimated reservoir models using this SPSA gradient does not give any

geological realism. The estimated reservoir models was then improved when the SPSA

gradient is smoothed with the prior covariance matrix of the reservoir property fields.

This algorithm was denoted as the simple-second order SPSA [26]. Gao et al. [26] also

tested the adaptive SPSA algorithm [51], which estimates an approximate Hessian ma-

trix with simultaneous approximation as in the SPSA gradient calculation. The results

are worse than that of the simple second-order SPSA algorithm. Li and Reynolds [36]

further improved the SPSA algorithm using the unconditional realizations from the

prior Gaussian probability density function (pdf) as the random perturbation vector.

This algorithm is denoted as SGSD (stochastic Gaussian search direction) algorithm

in Li and Reynolds [36]. For the production optimization problem, Bangerth et al.
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[5] was the first one to use an integer SPSA for well placement optimization in oil

reservoirs. Wang et al. [52] extended the SPSA algorithm developed in Gao et al. [26]

to the optimal well control problem, in which the individual well controls are adjusted

to maximize the net-present-value (NPV). Inspired by the fact that the expectation of

the SPSA gradient is approximately the true gradient, Wang et al. [52] were able to

obtain the same NPV using the an average of 5 SPSA gradients as the one obtained

using the true gradient, although the former took much more simulation runs. Zhao

et al. [56] also applied the SPSA algorithm to the production optimization problem,

the SPSA algorithm gives better results than the particle swarm optimization (PSO),

pattern search method guided by simplex gradient (SID-PSM), but inferior to their

newly developed quadratic interpolation model with approximate gradient (QIM-AG).

Jia et al [32] used the basic SPSA algorithm in the SAGD process for history

matching. Their history matching exercise in the SAGD process was done in a 2D

homogeneous reservoir with single wellpair. They tried to match the production data

by adjusting the permeability and porosity in the reservoir. Results seem to be in

good agreement with the true model. This study will focus on the application of the

newly developed SPSA algorithm with Gaussian perturbation to the SAGD production

optimization.

1.1.4 Ensemble-Based Optimization- EnOpt

The ensemble-based optimization (EnOpt) method for production optimization

derives the approximate gradient using the cross-covariance between NPV and control

vector. This covariance matrix is approximated in a standard statistical way with

an ensemble of NPV values obtained by running the simulator using an ensemble of

random control vectors around the current estimated optimal control. The idea is

conceptually based on the result in Reynolds et al. [44] that the analysis step in the

ensemble Kalman filter (EnKF) method is similar to performing to one Gauss-Newton

iteration using an average gradient (or sensitivity matrix) derived from the ensemble.
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The idea was first used for production optimization in Lorentzen et al. [37] and Nwaozo

[41]. The EnOpt algorithm was then formalized by Chen et al. [18, 19] in the context

of the closed-loop reservoir management. Chen and Oliver [17] applied the EnOpt

method to the closed-loop reservoir management for the realistic Brugge case. In the

EnOpt method, the key is to smooth the approximate gradient using a predefined

covariance matrix. With smoothing, EnOpt is quite efficient and can generate realistic

final optimal controls [56]. However, without any smoothing of the search direction, it

generates final estimated controls which are suboptimal as shown in Wang et al. [52].

1.2 Research Scope

The focus of this study is to optimize the SAGD operations using NPV as the

objective function. As there is no adjoint gradient option available in the thermal sim-

ulator (STARS from CMG) that can simulate the SAGD processes, only derivative-free

optimization algorithms can be applied. In this study, the simultaneous perturbation

and stochastic approximation (SPSA) and ensemble-based optimization (EnOpt) de-

veloped in the TUPREP research group will be tested. In this study, the well controls

are steam injection rates and the production well bottomhole pressures. Two examples

with a single wellpair case were considered in this study.
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CHAPTER 2

METHODOLOGY

2.1 Problem Formulation

In the production optimization problem, net-present-value (NPV) is usually

used as the objective function to be maximized by adjusting well controls for the

expected production life of the reservoir. For a given reservoir model, the NPV for the

SAGD process is denoted as J(u) and given by

J(u) =
Nt∑
n=1

[
NPROD∑
j=1

(roq
n
o,j − rwqnw,j)−

NINJ∑
i=1

rcweiq
n
cwei,i

]
∆tn

(1 + b)tn/365
, (2.1)

where u is the control vector which includes the steam injection rate and the producer

bottomhole pressure for each control step; Nt is the total number of simulation time

steps; qno,j and qnw,j, respectively, denote the average oil and water production rates

(STB/D) at the jth production well over the nth time step; ∆tn is the nth simulation

time step (day) and tn is the cumulative time (day) up to the nth simulation time step;

qncwei,i is the average cold water equivalent steam injection rate at the jth injection

well over the nth simulation time step; NPROD is the total number of production wells

and NINJ is the total number of injection wells; ro and rw are the oil revenue and

produced water treatment costs ($/STB); rcwei is the cold water equivalent (CWE)

steam injection cost ($/STB) including the steam generation and transportation; b is

the annual discount rate.

Only bound constraints are considered in this study, so the maximization prob-

lem is defined as

max
u

J(u), (2.2)
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subject to bound constraints

ulow ≤ u ≤ uup, (2.3)

where ulow and uup represent the lower and upper bounds for well controls.

In this work, the log-transformation is applied during optimization to enforce

upper and lower bound constraints [27]. For the ith control variable ui, the transformed

variable si is

si = ln

(
ui − ulow

i

uup
i − ui

)
. (2.4)

With the log-transformation, the constrained optimization problem is converted to

an unconstrained optimization problem; when ui approaches its lower bound ulow, si

approaches −∞ and when ui approaches its upper bound uup, si approaches +∞.

The optimization is done in the transformed domain and the updated variables are

transformed back to the original domain at each iteration before they are given to the

reservoir simulator. The inverse log-transformation is,

ui =
exp(si)u

up
i + ulow

i

1 + exp(si)
for si < 0, (2.5)

and

ui =
uup
i + exp(−si)ulow

i

1 + exp(−si)
for si > 0. (2.6)

Simple truncation may also be used to keep all the control variables within the

bounds, i.e., at each iteration, when a control variable is out of bound with the current

stepsize, that variable is set to the bound value. This truncation is actually the gradient

projection method on the active bound constraints[40]. The tests in Zhao et al.[56] show

that log-transformation yields faster convergence than the simple truncation, so this

study applies the log-transformation.

The following two sections give an account of the two algorithms (SPSA and

EnOpt) used in this study.
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2.2 SPSA Algorithm

The SPSA algorithm is used to iteratively maximize the NPV, J(s(u)) with the

following equation

sl+1 = sl + alĝ(sl), (2.7)

where al is the stepsize. Note that the optimization is done in the log-domain on

transformed vector s. The SPSA gradient with respect to the transformed control

vector s at the lth iteration, ĝ(s) can be calculated using one-sided perturbation

ĝ(sl) =
J(sl + cl∆)− J(sl)

cl
∆−1, (2.8)

or two-sided perturbation

ĝ(sl) =
J(sl + cl∆)− J(sl − cl∆)

2cl
∆−1. (2.9)

Note that the “inverse” of vector ∆ is an element-wise inverse, i.e., ∆−1 = [ 1
∆1
, 1

∆2
, · · · , 1

∆Nc
].

Here, Nc is the number of controls or the dimension of the transformed control vector s.

The above SPSA gradient calculation mimics that of the finite-difference method. The

SPSA gradient requires one additional simulation run for the one-sided perturbation

(Eq. 2.8) to evaluate J(sl + cl∆) except the NPV at the current estimated optimal

point J(sl) or two additional simulation runs for the two-sided perturbation (Eq. 2.9)

to evaluate J(sl + cl∆) and J(sl − cl∆). However, the gradient calculation using the

one-sided finite-difference method requires Nc + 1 number of simulation runs, i.e., each

component of the gradient vector requires one additional simulation run

∂J

∂si
(sl) =

J(sl + cei)− J(sl)

cl
, (2.10)

where ei is a vector whose ith element is 1 and all other elements are zero.

As the SPSA gradient is obtained by simultaneously perturbing all the compo-
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nents once, it does not calculate the true gradient as does the finite-difference method.

However, the following shows that the expectation of the SPSA gradient is approxi-

mately the true gradient as long as the perturbation vector satisfies certain conditions.

Taking the Taylor series expansion of J(sl + cl∆) around sl yields

J(sl + cl∆) = J(sl) + cl∆Tg(sl) +O((cl)2). (2.11)

Substituting Eq. 2.11 into Eq. 2.8 yields

ĝ(sl) = ∆−1∆Tg(sl) +O(cl). (2.12)

The expectation of the SPSA gradient is

E(ĝ(sl)) = E(∆−1∆T )g(sl) +O(cl), (2.13)

where ∆−1∆T is

∆−1∆T =



∆−1
1

∆−1
2

...

∆−1
Nc


[∆1 ∆2 · · · ∆Nc ] =



1 ∆2

∆1
· · · ∆Nc

∆1

∆1

∆2
1 · · · ∆Nc

∆2

...
...

. . .
...

∆1

∆Nc

∆2

∆Nc
· · · 1


. (2.14)

As the components in vector ∆ are independent random variables, there exists E(∆i) =

0 and E( 1
∆j

) = 0 as long as the random variable ∆j is symmetric and does not take

zero values. Therefore, for i 6= j

E(
∆i

∆j

) = E(∆i)E(
1

∆j

) = 0. (2.15)
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Taking the expectation of Eq. 2.14 gives an identity matrix, so Eq. 2.13 becomes

E(ĝ(sl)) = g(sl) +O(cl). (2.16)

Eq. 2.16 shows that the expectation of the SPSA gradient is the true gradient with a

bias of O(cl). The above derivation is done on the one-sided SPSA gradient. Similar

proof can be applied to the two-sided SPSA gradient, in which case the bias is O((cl)2).

When the SPSA algorithm was first introduced into the petroleum engineering

literature, the elements of the random vector ∆ are sampled from the symmetric ±1

Bernoulli distribution, i.e., ∆i takes either 1 or -1 and the probability of taking one of

them is 50%. In this case, ∆−1 = ∆, therefore, the SPSA gradient can be obtained

directly using

ĝ(sl) =
J(sl + cl∆)− J(sl)

cl
∆, (2.17)

or

ĝ(sl) =
J(sl + cl∆)− J(sl − cl∆)

2cl
∆. (2.18)

Motivated from Eqs. 2.17 and 2.18, Li and Reynolds [36] developed a stochas-

tic Gaussian search direction (SGSD) method. In SGSD, the stochastic gradient is

calculated using a perturbation vector sampled from the Gaussian distribution. The

perturbation vector ∆ in Eqs. 2.17 and 2.18 is substituted with Gaussian random

vector Z as

ĝ(sl) =
J(sl + clZ)− J(sl)

cl
Z, (2.19)

or

ĝ(sl) =
J(sl + clZ)− J(sl − clZ)

2cl
Z. (2.20)

It is shown in Li and Reynolds [36] that the expectation of the stochastic gradi-

ent in Eqs. 2.19 and 2.20 is the true gradient with a bias. In this study, all the

examples were run with the one-sided perturbation as in Eq. 2.19, so the follow-
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ing discussion pertains to the stochastic gradient using the one-sided perturbation.

To obtain smooth controls over time, the perturbation vector Z can be sampled

from a Gaussian distribution which bears correlation in time for the controls of each

well. For a production optimization problem with Nw wells, perturbation vector

Z = [(Z1)T , (Z2)T , · · · , (Zk)T , · · · , (ZNw)T ]T , where Zk represents the perturbation

vector corresponding to the kth well. The perturbation vector for the kth well Zk is

calculated by

Zk = C
1
2
skξ

k, (2.21)

where ξk is a vector of standard random normal deviates which has the same dimension

as sk; C
1
2
sk represents the square root of the covariance matrix Csk for the controls of

the kth well obtained using the Cholesky decomposition.

In this study, the covariance matrix Csk is obtained using the spherical covari-

ance function defined as

cov(sk,i, sk,j) =

 0 , if |i− j| ≥ T

σ2
[
1− 3

2
|i−j|
T

+ 1
2
|i−j|3
T 3

]
, if |i− j| < T

, (2.22)

where T is the number of control steps over which control variables are correlated in

time and σ is the standard deviation.

For a correlated perturbation vector, the expectation of the stochastic gradient

in Eq. 2.19 is approximately equal to the covariance matrix (Cs) times the true gradient

(g(s)), i.e.,

E(ĝ(sl)) ≈ Csg(sl), (2.23)

where Cs is

Cs =



Cs1

Cs2
. . .

CsNw


. (2.24)
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Due to this property, the search direction ĝ(sl) in Eq. 2.7 is replaced with an

average of several stochastic gradients ĝ.

ĝ =
1

N

N∑
k=1

ĝk(s), (2.25)

where N is the number of stochastic gradients. In this study, N = 6. Then Eq. 2.7

becomes

sl+1 = sl + alĝ(sl). (2.26)

The convergence proof for the original SPSA algorithm requires the perturbation

size cl and the stepsize al to go to zero as l→∞ [49] in a such way that

∞∑
l=0

al =∞ and
∞∑
l=0

(al
cl

)2

<∞. (2.27)

Spall [49, 50] suggested that al and cl are calculated as

al =
a

(l + 1 + A)α
, (2.28)

and

cl =
c0

(l + 1)γ
. (2.29)

With this formulation, the convergence proof [49] also requires α− 2γ > 0 and

3γ − 0.5α ≥ 0. The values used in this study are α = 0.602 and γ = 0.101, which are

the same as the default values suggested by Spall [49, 50]. The values for parameters c0,

a and A are case dependent. The value for c0 can be calculated based on the maximum

number of iterations and the minimum value for the perturbation cmin as

c0 = cmin(NMaxIt + 1)γ. (2.30)

Spall [49, 50] suggests that the value for A is five to ten percent of the maximum
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number of iterations. The average stochastic gradient ĝ is multiplied by the covariance

matrix Cs to obtain additional smoothness for the updated control vector. To better

determine the stepsize al, this study uses the normalized average stochastic gradient

as the search direction, i.e.,

sl+1 = sl + al
Csĝ(sl)∥∥∥Csĝ(sl)

∥∥∥
∞

. (2.31)

With the normalized search direction, the value for parameter a is estimated by solving

a0 =
a

(1 + A)α
, (2.32)

where a0 is set as

a0 = βmin
i

{
sup
i − s0

i , s
0
i − slow

i

}
, where β ≈ 0.5. (2.33)

This study suggests that sup
i should take a value between 5 and 7, and slow

i should take

a value between -7 and -5. The algorithm is terminated when the relative increase in

the objective function is less than some specified threshold ε value , i.e.,

|J(sl+1)− J(sl)|
J(sl)

≤ ε, (2.34)

or when it reaches the defined maximum number of iterations.

2.3 EnOpt Algorithm

The basic EnOpt algorithm uses an estimated covariance matrix between NPV,

J(s) and transformed control vector s as the search direction, i.e.,

sl+1 = sl + αlC
l+1
s,J . (2.35)
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The covariance matrix C l+1
s,J is approximated by

C l+1
s,J ≈

1

N − 1

N∑
j=1

(slj − sl)
(
J(slj)− J(sl)

)T
, (2.36)

where slj’s for j = 1, · · · , N are the perturbed transformed control vectors around sl,

i.e.,

slj = sl + C
1
2
s ξ, j = 1, · · · , N. (2.37)

Here ξ is a vector of standard random normal deviates with dimension Nc. In Eq. 2.36,

sl represents the average of the perturbed control vectors, i.e.,

sl =
1

N

N∑
j=1

slj ≈ sl, (2.38)

and J(sl) represents the average of NPV evaluated at the perturbed control vectors,

i.e.,

J(sl) =
1

N

N∑
j=1

J(slj). (2.39)

Taking the Taylor series expansion of J(slj) around sl yields

J(slj) = J(sl) + g(sl)T (slj − sl) +O(‖slj − sl‖2). (2.40)

Substituting Eq. 2.40 into Eq. 2.36 yeilds

C l+1
s,J ≈

1

N − 1

N∑
j=1

(slj − sl)
(
slj − sl

)T
g(sl). (2.41)

Note that to arrive at Eq. 2.41, it is assumed that J(sl) = J(sl) and the residual term

in the Taylor series expansion of Eq. 2.40 is neglected.

Additional smoothness for the updated control vector can be obtained by mul-
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tiplying the search direction by the covariance matrix Cs,

sl+1 = sl + αlCsC
l+1
s,J ≈ sl + αlC

2
sg(sl). (2.42)

To better determine the stepsize, the search direction is normalized using its

infinity norm, i.e.

sl+1 = sl + αl
CsC

l
s,J∥∥CsC l
s,J

∥∥
∞

. (2.43)

The initial stepsize is chosen as 1/10 of the smallest bound interval of the control vector

[56], i.e.,

α0
l = βmin

i

{
sup
i − slow

i

}
where β =

1

10
. (2.44)

The search direction in Eq. 2.43 of the EnOpt method is not necessarily an uphill

direction. If J(sl+1,k) > J(sl), then the control vector is updated and the process goes

to the next iteration. If J(sl+1,k) ≤ J(sl), the stepsize is cut by half, i.e., αk+1
l = αkl /2

and the control vector is updated using the new stepsize. If it does not improve the

NPV after cutting stepsize 5 times, a new set of perturbed control vectors and hence a

new search direction are generated around sl. The algorithm is terminated in the same

way as the SPSA algorithm, based on the number of iteration and the relative change

of the objective function.
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CHAPTER 3

SAGD WITH SINGLE WELLPAIR

3.1 Model Description

The model in this chapter pertains to SAGD operations with a single wellpair,

which involves one horizontal injector and one horizontal producer. This reservoir

model is constructed based on the standard SAGD model provided by CMG and it is

tested by CMOST optimization tool for production optimization. The reservoir has

50 simulation layers. The permeability is assumed to be homogeneous within each

layer but is different from layer to layer. The layer permeability is shown in Fig. 3.1.

The bottom 31 layers have a horizontal permeability of 4000 md and the horizontal

permeability of the top layers decreases as depth decreases. The lowest permeability at

the top 5 layers is 1000 md. The vertical permeability is different than the horizontal

permeability, but it follows the same trend as the horizontal permeability. The detailed

permeability values of the reservoir are given in Table 3.1. To save simulation run time

during optimization, only a cross-section that is perpendicular to the horizontal wells

is simulated, and the 2D simulation gridblock system is 101 × 1 × 50. The size of

each gridblock is 1 m×10 m×1 m. The top depth of the reservoir is 500 m, which is

considered to be realistic for the tar sands in Canada [53].

The initial reservoir pressure at the reference depth (500 m), which is the top of

the reservoir, is 2000 kPa and the initial temperature of the reservoir 10 ◦C throughout

the reservoir. The producer is located at gridblock (51,1,49), which is close to the

bottom of the reservoir and the injector is located at gridblock (51,1,45), which is 4

gridblocks (or 4 m) above the producer (Fig. 3.1).
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Table 3.1: Layer permeabilities.

Layers kx = ky, mD kz, mD kz/kx
1-10 1000 500 0.50
6-10 1500 700 0.47
11-15 1500 900 0.60
16-19 3000 1500 0.50
20-50 4000 2200 0.55

Figure 3.1: Horizontal permeability of the reservoir model.

One of the most important aspects in the SAGD operations is that the viscosity

is a strong function of temperature. Fig. 3.2 shows this function used in this study.

The viscosity has a wide range from 1.6 × 106 cp at the initial reservoir temperature

down to about 20 cp at the injected steam temperature of 235 ◦C.

The SAGD process starts with a preheating period. During this period, the

steam is injected into both wells through the tubing and then circulated back to sur-

face through the annulus until communication is established between two horizontal

wells. Assuming the steam quality and temperature do not change with time during

this period, the formation around the wells should have the same temperature as the

injected steam. In the simulator (CMG STARS), the preheating period can be mod-

eled using “AUTOHEATER” option. With this option, one may set the well gridblock

temperature to a constant using the keyword “TMPSET”. In this case, a constant heat

transfer rate is assigned using the “HEATR” option in STARS. The heater is turned
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Figure 3.2: Oil viscosity as a function of temperature at 2000 kPa.

off automatically when the gridblock temperature exceeds the specified temperature.

In this study, the “TMPSET” specified temperature is 225 ◦C for the well gridblocks.

Note that once the well gridblock temperature drops below the “TMPSET” specified

temperature, the heater is turned back on automatically. This can occur during late

time when small steam injection rate is used. However, in this study, the “AUTO-

HEATER” option is turned off after the preheating period of 400 days to avoid the

frequent switches between heater on and off options. The model also considers the heat

losses to the caprock and base formation using the “HLOSSPROP” option.

The injected steam temperature is 235 ◦C and the steam quality is 0.95 and

both are kept constant through the entire reservoir production life. The total reservoir

production life is 4383 days, which is divided into 22 control steps. The control stepsize
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is 200 days for the first 21 control steps and the last control step is 183 days. With two

wells, there are 44 control variables to be adjusted for production optimization. The

oil revenue (ro) per unit volume, produced water treatment cost (rw) per unit volume,

steam injection cost (rcwei) per unit cold water equivalent (CWE) volume and annual

discount rate (b) values used in Eq. 2.1 for NPV calculation are 50 $/STB, 0.25 $/STB,

10 $/STB and 10%, respectively. The controls in this study are CWE steam injection

rate for the injector and bottomhole pressure for the producer. The lower and upper

bounds for the CWE steam injection rate are 0 m3/day and 8 m3/day, respectively

and the maximum allowable bottomhole pressure for the injector is 10000 kPa. The

production well bottomhole pressure has upper and lower bounds of 5000 kPa and 300

kPa.

3.2 Example 1

The controls for the first base case are constant 4 m3/day CWE steam injec-

tion rate for injector and 1000 kPa bottomhole pressure for producer. The final oil

saturation distribution at the end of the production life for the base case is shown in

Fig. 3.3. The oil recovery factor for this base case is about 10.5% with a negative NPV

of -$4.36× 105. As the displacement efficiency is quite high within the steam chamber

and the oil saturation outside of the steam chamber is close to the initial value, the oil

saturation distribution in Fig. 3.3 can actually give an indication of the steam chamber

development. In this base case, the steam chamber at the end of the reservoir life

is not fully developed and it does not reach the caprock. The major reason for this

under-developed steam chamber is that live steam production occurs shortly after the

production starts due to high pressure differential between the injector and producer.

This high pressure differential resulted in higher initial production rate hence no liquid

pool, which forms the barrier that prevents steam production. Without the liquid pool,

most injected steam will go directly to the producer and circulate back to the surface

without even touching the cold tar sands. From heat management point view, this
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is a waste of energy. The steam circulation through the producer is also indicated in

the well gridblock temperature plot in Fig. 3.4. The temperature difference between

the injector well gridblock (51,1, 45) and the producer well gridblock (51,1,45) is only

about 3 to 4 ◦C after about day 500, which clearly indicates steam production. The

cumulative steam oil ratio (cSOR) for the base case is about 17.4, which is another

indicator of the inefficient energy usage in the base case.

Figure 3.3: Remaining oil saturation distribution of the base case, Example 1.

Figure 3.4: The temperature profile for the well gridblocks, base case of Example 1.

To improve heat management, usually the SAGD process applies the steam trap

control using subcool, in which the temperature difference between the injected steam
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and the produced fluids is kept above a certain value. This can also be viewed as a

reactive control. Due to large pressure differential between the injector and producer

in the base case, the producer produces at high rate at the beginning, which tends to

drain the steam condensate and mobilized oil. With a small or no liquid pool between

the injector and producer, some injected steam will flow directly to the producer and

hence results in a decreasing subcool temperature. When this subcool is lower than the

specified value, the production well bottomhole pressure is increased and the production

rate is decreased to ensure that the subcool is kept at or above the specified value. As

long as the specified value for subcool is large enough, no steam can be produced

directly. In the simulator (STARS), the subcool control is enforced with keyword

“STEAMTRAP” as a secondary constraint to the production well. In this study, the

subcool reactive control is used as the reference case, which is compared with the final

optimal controls obtained using SPSA and EnOpt.

Fig. 3.5 presents the NPV and cSOR obtained using different subcool temper-

atures as a secondary constraint. The NPV increases with increasing subcool up to 30

◦C as more heat is retained in the reservoir to mobilize more oil. When the subcool

further increases more liquid (steam condensate and mobilized oil) accumulates around

the producer that reduces the productivity as oil cools down and slows down the steam

chamber growth with less contact area (see Figs. 1.1 and 1.2). In order to avoid the

problem of determining the optimum subcool value to be used through the production

life of the reservoir, bottomhole pressure can be used as the production well operating

control. Summary of the effect of the subcool value on the production performance is

given in Table 3.2.

The subcool temperature for the reactive control in this study is chosen to be

20 ◦C based on the literature and typical values used in the field practice [23, 31]. The

temperature profile of the well gridblocks of the injector and producer for the reactive

control is shown in Fig. 3.6.

The SPSA and EnOpt algorithms are applied to optimize NPV in this study
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Figure 3.5: Effect of the subcool temperature on the production performance.

Table 3.2: Summary of the subcool value effect on the production.

Subcool, ◦C Cum. Oil Prod., m3 Cum. Steam Inj. (CWE), m3 cSOR
5 35478 110263 3.12
10 36046 110263 3.06
20 37161 110263 2.97
30 37677 110263 2.93
40 36848 110263 2.99

using the base case as the initial guess of controls. For both optimization algorithms,

log-transformation is applied to ensure the controls are within bounds and the controls

of each well has a correlation time lag of 5, i.e., T = 5 in Eq. 2.22 with spherical

correlation function. The SPSA algorithm uses an average of 6 SPSA gradients, i.e.,

N = 6 in Eq. 2.25. The ensemble size for the EnOpt algorithm is 10, i.e., N = 10 in

Eq. 2.36. Therefore, the SPSA algorithm requires 7 simulation runs at each iteration:

6 for the stochastic gradient calculation and 1 simulation run for the objective function

evaluation. The EnOpt algorithm requires 11 simulation runs if no stepsize cut is

required: 10 simulation runs for the cross-covariance CU,J matrix approximation and

1 simulation run for the NPV evaluation. However, if the cross-covariance is not an

uphill direction, stepsize cuts may be applied, which may in turn require as many as

30



Figure 3.6: The temperature profile for the well gridblocks, reactive control of Example
1.

5 more simulation runs. The values for the parameters in the SPSA algorithm are

A = 5.0 (Eq. 2.28), a = 5.0 (Eq. 2.28) and c0 = 0.1 (Eq. 2.29). The initial stepsize for

the EnOpt algorithm is a0 = 1.0 (Eq. 2.44).

The final well controls obtained by the SPSA and EnOpt algorithms are shown

in Figs. 3.7 and 3.8 compared with that of the subcool reactive control. The steam

injection rates from the final optimal controls of the SPSA and EnOpt algorithms

show similar behaviors: gradually increasing injection rate during early time and then

a gradual decreasing steam injection rate after full development of the steam chamber.

This complies with the results in the literature [6, 28, 29]. During the first 200 days,

no steam is injected into the reservoir with the final controls of both SPSA and EnOpt.

This time corresponds to the preheating period. Once there is mobilized oil around

the wells and communication between the injector and producer is established, the

steam injection rate is gradually increased in both cases till it reaches its highest point

between day 1200 and 1400. At this point, the steam chamber has reached the caprock

at the top of the reservoir and the SAGD process starts losing energy to the caprock

through conduction. To reduce energy loss, the injection rate is gradually decreased
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allowing the steam chamber to grow in the lateral direction.

Figure 3.7: Final controls: CWE steam injection rate, Example 1.

Figure 3.8: Final controls: producer bottomhole pressure, Example 1.

The production well bottomhole pressure control from SPSA and EnOpt (Fig. 3.8)

show also similar behavior. The bottomhole pressure starts with a low value trying to

produce as much oil as it can. Then it increases to its upper bound of 5000 psi and

gradually decreases at the end of the process. Compared with SPSA, EnOpt bottom-
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hole pressure has relatively high values at the beginning of the process and reaches

its upper bound faster than SPSA. The bottomhole pressure control is somewhat syn-

chronized with the corresponding steam injection rates: low steam injection rate to

low production well bottomhole pressure and high steam injection rate to high produc-

tion well bottomhole pressure. The change in the production well bottomhole pressure

can prevent live steam production as in the subcool control. However, different than

the subcool control, the steam injection rate is also adjusted to maximize the NPV

with SPSA or EnOpt. In addition, there is no need to monitor the production fluid

temperature and keep a constant subcool temperature during the production life of

the reservoir. Figs. 3.9 and 3.10 show the temperature at the well gridblocks and the

difference between these two gridblocks is the subcool. The figures show that the sub-

cool temperature resulted from the optimized controls in both SPSA and Enopt varies

between 13 ◦C and 60 ◦C. The reactive control forces constant cold water equivalent

(CWE) steam injection rate of 4 m3/day during the reservoir production life (Fig. 3.7).

To minimize steam production, production well bottomhole pressure is adjusted to

maintain a liquid pool around the producer. However, due to high steam injection rate

during the early time of the production life, the oil production rate at early time is

also higher than the optimized case from both SPSA and EnOpt, which can be seen

from the cumulative oil production plots in Fig. 3.11. Therefore, the reactive control

produces oil faster than the optimized cases. However, it might not be possible to

inject at high steam rate before communication is established between the injector and

producer without fracturing the reservoir, which will form a direct path for the steam

to go directly to the producer and be detrimental to the SAGD process.

Fig. 3.12 shows the remaining oil saturation distribution at the end of the reser-

voir production life obtained by running the simulator with the final optimal controls

from SPSA and EnOpt compared with the reactive control. The green area is the steam

chamber while the red region is not yet touched by the injected steam. The subcool

reactive control and the final optimal control obtained by the SPSA algorithm have
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Figure 3.9: Well gridblock temperature, SPSA of Example 1.

Figure 3.10: Well gridblock temperature, EnOpt of Example 1.

a steam chamber of similar size and oil recovery (about 64%), but the final optimal

controls obtained by EnOpt gives the largest steam chamber growth, hence the high

oil recovery of 74.21%.

The NPV as a function of iteration for SPSA (pink curve) and EnOpt (blue

curve) is shown in Fig. 3.13 together with the NPV of the reactive control (green line).

Note that the initial control from the base case gives a negative NPV due to limited

34



Figure 3.11: Cumulative oil production, Example 1.

steam chamber growth (Fig. 3.3). Starting with this negative NPV, SPSA improved

the NPV to $5.60 × 105 and EnOPt improved the NPV to $6.30 × 105. While the

reference case with the reactive control only gives about $4.68 × 105. Even though

EnOpt required only 23 iterations and 288 simulation runs, it resulted in better NPV

than SPSA, which required 51 iterations and 363 simulation runs. The summary of

the performance of the algorithms is given in Table 3.3.

Table 3.3: Performance summary of the different algorithms, Example 1.

Algorithm Iterations Simulation Runs NPV, $
SPSA 51 363 5.60×105

EnOpt 23 283 6.30×105

Reactive - - 4.68×105

The oil production rate along with the production well bottomhole pressures

obtained with the final optimal controls from SPSA and EnOpt are given in Figs. 3.14

and 3.15. In both cases, the oil rate gradually increases at early time and then it

gradually declines once the production bottomhole pressure reaches it plateau. At the

beginning of control steps 3-5 in Fig. 3.14, there is a short shut-in period shown as
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(a) Reactive case (RF:64.35%).

(b) SPSA (RF:64.79%).

(c) EnOpt (RF:74.21%).

Figure 3.12: The remaining oil saturation distribution, Example 1.

zero oil rate as a result of the sudden increase in the bottomhole pressure from the

control. While the final controls of EnOpt resulted in much smoother oil production

rate during early time. At the end of the production life, the oil rate of both SPSA and

EnOpt show some spiking high values at the beginning of each control step as a result

of the abrupt bottomhole pressure drops. More control steps are needed to avoid such

unrealistic abrupt changes.
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Figure 3.13: Resulting NPV for the SPSA, EnOpt and the reactive cases, Example 1.

Figure 3.14: Oil rate and bottomhole pressure, SPSA of Example 1.

Fig. 3.16 presents the cumulative steam-oil ratio (cSOR) obtained by the final

controls of SPSA, EnOPt and the reactive control. The cSOR trend is opposite during

early time between the optimized cases from SPSA and EnOpt and the subcool reactive
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Figure 3.15: Oil rate and bottomhole pressure, EnOpt of Example 1.

control. The reactive control starts with a very high value of cSOR and gradually

decreases while the cSOR from the optimal controls in SPSA and EnOpt is zero during

the first 200 day of preheating period and increases gradually to a high value of about

3 to 4. The cSOR behavior after day 1000 is about the same for all three cases, but

the reactive control gives the highest final cSOR. Summary of the cSOR values can be

found in Table 3.4. Recall that the oil recovery with the reactive control is about the

same as that of the optimized case obtained with SPSA, but the final NPV obtained

with the optimal control from SPSA is about 20% higher than that of the reactive

control as shown in Fig. 3.13 and Table 3.3. This is mainly because the final optimal

control from SPSA injects less steam compared with the reactive control as shown in

Table 3.4.

Table 3.4: cSOR summary, Example 1.

Algorithm Cum. Oil Prod., m3 Cum. Steam Inj. (CWE), m3 cSOR
SPSA 37414 90548 2.42
EnOpt 42853 111596 2.60

Reactive 37160 110263 2.97
Base case 6058 105241 17.37
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Figure 3.16: cSOR for SPSA, EnOpt and the reactive control, Example 1.

3.3 Example 2

In Example 1, the production optimization using SPSA and EnOpt started with

a base case that has a constant CWE steam injection rate of 4 m3/day and production

well bottomhole pressure of 1000 psi, which resulted in a negative NPV. The reactive

control with a subcool temperature of 20 ◦C gives a much higher NPV than the base

case. As the simulation run for the SAGD process is very computationally expensive,

Example 2 starts production optimization with a set of better initial well controls for

SPSA and EnOpt. The initial well control for the CWE steam injection rate is 4 m3/day

and it is the same as the reactive control except for the first control step, which has

a zero steam injection rate to mimic the preheating period with “AUTOHEATER”

option on. The initial well controls on the production well bottomhole pressure are

discretized from the reactive control as shown in Fig. 3.17. Using these controls as the

base case, the subcool temperature is not constant any more, but varies with time as

shown in Fig. 3.18. The comparison of the oil production rate and the cumulative oil

production between this base case and the reactive control with subcool of 20 ◦C is

shown in Figs. 3.19 and 3.20. Due to the discretization on the production well control
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and zero injection rate during the first control step, the NPV dropped from $4.68×105

for reactive control to $4.18 × 105 for base case. It is also noticeable that there are

some short shut-in period at the beginning of some control steps due to sudden increase

of production well bottomhole pressure in the base case (Fig. 3.19), whereas reactive

control gives a very smooth oil production rate.

Figure 3.17: Bottomhole pressure of the base and reactive cases, Example 2.

Figure 3.18: The base case subcool behavior, Example 2.
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Figure 3.19: Oil production rates of the base and reactive cases, Example 2.

Figure 3.20: Cumulative oil production of the base and reactive cases, Example 2.

Both the SPSA and EnOpt algorithms are used for the production optimization.

All the parameters used in this example are the same as those of Example 1, except

that in SPSA a = 2.0 (Eq. 2.28), which is changed in order to achieve smaller stepsize

as the given initial well controls are much closer to the bounds in this example.

The remaining oil saturation distribution obtained with the final optimal con-

trols from SPSA and EnOpt is given in Fig. 3.21 compared to that of the base case.
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SPSA and EnOpt improved the base case oil recovery factor from 61.37% to 77.02%

and 76.43%, respectively. The final oil saturation distribution shows that the steam

chamber is fully developed in both the vertical and lateral directions with the final

optimal controls. The final optimal controls result in much higher final oil recovery in

this case compared to Example 1 (Fig. 3.12).

(a) Base case (RF:61.37%).

(b) SPSA (RF:77.02%).

(c) EnOpt (RF:76.43%).

Figure 3.21: Remaining oil saturation distribution and RF for the SPSA, EnOpt and
the base case, Example 2.

The well controls obtained by optimization and those of the base case are given
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in Figs. 3.22 and 3.23. Both SPSA and EnOpt obtain a similar steam injection strategy

as that of Example 1: preheating period with zero steam injection rate, then gradual

increasing steam injection rate and then gradual declining steam injection rate. The

production well bottomhole pressure controls of SPSA and EnOpt are similar, but they

are very different than those of the base case. As the steam injection rate during early

time was increased from the base case value of 4 m3/day to a much higher level by

optimization, the corresponding production well bottomhole pressure is also increased

to prevent live steam production.

The oil production rate for both SPSA and EnOpt together with the base case

are given in Fig. 3.24. Note that the oil production rate from the SPSA and EnOpt

final optimal controls follow each other except for the spikes at the beginning of each

control step. These spikes are due to sudden increase or decrease of the production

well bottomhole pressure. The cumulative oil production is given in Fig. 3.25. The

final optimal controls from SPSA and EnOpt give very close values of cumulative oil

production which are much higher than that of the base case.

Figure 3.22: Final controls: CWE steam injection rates, Example 2.

Fig. 3.26 shows the NPV as a function of iterations for SPSA (blue curve) and
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Figure 3.23: Final controls: producer bottomhole pressure, Example 2.

Figure 3.24: Oil production rates, Example 2.

EnOpt (pink curve). Note that the black straight line at the bottom is the NPV of

the base case, which is the initial guess for the production optimization of both SPSA

and EnOpt. Both SPSA and EnOpt improved NPV in the first 10 iterations. EnOpt

failed to further improve NPV after it reaches a value of $5.88 × 105 in 14 iterations

with 190 simulation runs while SPSA continued to improve the NPV to a value of

$6.48×105 after 89 iterations (624 simulation runs). The summary of the performance
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Figure 3.25: Cumulative oil production, Example 2.

of the algorithms is given in the Table 3.5. Recall that the cumulative oil production

obtain by the final controls of SPSA and EnOpt is about the same (see Fig. 3.20). The

significant difference in NPV is due to difference in the steam injection rates. Table 3.6

shows the cumulative steam injection in SPSA is significantly smaller than that in

EnOpt. Similar behavior is also observed in cSOR. Fig. 3.27 presents the cSOR values

for SPSA, EnOpt and the base case. All controls share similar behavior in cSOR, i.e.,

cSOR starts with a high value and gradually decreases.

Table 3.5: Performance summary of the different algorithms, Example 2.

Algorithm Iterations Simulation Runs NPV, $
SPSA 89 624 6.48×105

EnOpt 14 190 5.88×105

Reactive - - 4.18×105

The well gridblock temperature from the final controls in SPSA and EnOpt is

given in Figs. 3.28 and 3.29. The subcool in the final controls of SPSA (Fig. 3.28)

maintains a relatively constant value of about 60 ◦C over the production life while the

subcool in EnOpt varies significantly with time. From day 2000 to 2500 and after day

45



0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
4 x 1 0 5

5 x 1 0 5

6 x 1 0 5

7 x 1 0 5

NP
V, 

$

I t e r a t i o n s

 S P S A
 E n O p t
 B a s e  C a s e

Figure 3.26: NPV of SPSA, EnOpt and the base case, Example 2.

Figure 3.27: cSOR of SPSA, EnOpt and the base case, Example 2.

3300, the subcool in EnOpt is zero, which indicate that there is live steam production

within these time periods. This is consistent with the cSOR behavior: SPSA has the

smallest cSOR while the cSOR in EnOpt is much higher.
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Table 3.6: cSOR summary, Example 2.

Algorithm Cum. Oil Prod., m3 Cum. Steam Inj. (CWE), m3 cSOR
SPSA 44478 116052 2.61
EnOpt 44134 127027 2.88

Base Case 35439 105241 2.97

Figure 3.28: Well gridblock temperature, SPSA of Example 2.

Figure 3.29: Well gridblock temperature, EnOpt of Example 2.
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CHAPTER 4

CONCLUSIONS

Production optimization of the SAGD operations was performed using the SPSA

and EnOpt algorithms. The well control vector includes the CWE steam injection rate

for the injector at each control step and bottomhole pressure for the producer at each

control step. The control vector is adjusted to maximize the net present value (NPV).

For a single horizontal injector/producer wellpair, SPSA and EnOpt are able to find

controls that yield higher NPV than the base case and the subcool reactive control

(steam trap).

The cSOR values obtained using the SPSA algorithm were lower than the EnOpt

algorithm in both Example 1 and Example 2. However, having a low cSOR value did

not result in higher NPV value in Example 1. This implies that cSOR may not be a

good choice as the objective function for the production optimization, but NPV as the

objective function can achieve both better thermal efficiency and higher cumulative oil

production.

The base case without steam trap control using a constant steam injection rate

and a constant production well bottomhole pressure results in an under-developed

steam chamber and obtains a negative NPV. This is mainly due to live steam produc-

tion caused by large pressure differential between the injector and producer without a

liquid pool. The base case has a cumulative steam-oil ratio (cSOR) higher than 17.

The subcool reactive control maintains a constant temperature difference be-

tween the injected steam and the produced fluids and hence prevents live steam pro-

duction. It yields realistic cSOR value below 4. However, the subcool reactive control

only adjusts the production well bottomhole pressure to maintain a constant subcool
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temperature. The given steam injection rate can be unrealistically high such that the

injection well bottomhole pressure may fracture the reservoir and cause SAGD process

failure.

The final controls obtained from SPSA and EnOpt follow similar behavior. The

optimized SAGD process starts with a preheating period without any steam injection

and during this period the heater option is turned on to heat oil around the wells.

Following the preheating period is a period with an increasing injection rate. The

injection rate decreases at late time when the steam chamber reaches caprock. The

final production well bottomhole pressure controls increase at early time and maintain

a plateau for a certain period of time and then it decreases. The behavior of final

controls is consistent with that from the literature.
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