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ABSTRACT

In this dissertation, two quite different approaches are described to solve the

problem of automatic history matching of facies boundaries to hard data and pro-

duction data. The locations of the geologic facies in a reservoir simulation model are

adjusted in order to make predictions from the simulation model to match production

data from the field. At the same time, the shapes to facies clusters, and the relations

among the facies types must remain consistent with geologic knowledge.

The truncated plurigaussian method for modelling geologic facies is appealing not

only for the wide variety of textures and shapes that can be generated, but also

because of the internal consistency of the stochastic model. This method has not,

however, been widely applied in simulating distributions of reservoir litho-facies or

in automatic history matching. One reason seems to be that it is fairly difficult

to estimate the parameters of the stochastic model that could be used to generate

geological facies maps with the desired properties. The second is that because “facies

type” is a discrete variable, it is not straightforward to apply the efficient gradient-

based minimization method to generate reservoir facies models that honor production

data. Non-gradient methods, however, are too slow for large field-scale simulation and

history matching problems.

There are two stages in solving the problem of history matching of litho-facies. The

first stage has to do with the specification of a prior geostatistical model, the purpose

of which is to ensure plausibility of realizations. This is considerably more complex

for the truncated plurigaussian model than for many geostatistical models because

it is necessary to specify at least two covariance models (types, ranges, variances,
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and orientations), as well as the threshold parameters for the truncation. The second

stage is adjustment of the facies boundaries for a fixed set of geostatistical model

parameters. This requires efficient minimization of an objective function that is not

differentiable due to the discontinuity of the model parameters as well as facies types.

For the first stage of estimating the prior geostatistical parameters, a truncated

bi-Gaussian method is developed that is characterized by intersecting lines as thresh-

olds. Only six parameters are needed to describe the threshold map, and another

six to describe the spacial correlation of the two anisotropic Gaussian random fields.

The two Gaussian random fields are generated from two initially identical indepen-

dent variable fields with size larger than the grids of the facies field. The optimization

process minimizes the difference between the simulated facies map and the given train-

ing image by perturbing the Gaussian random fields as well as the 12 geostatistical

parameters. A gradient minimization method is used to approximate the marginal

PDF of the threshold parameters conditional to a stratigraphic cross-section. These

geostatistical parameters can then be used in a Bayesian scheme for simulation of

facies conditioned to logs or production data.

For the second stage of conditioning the Gaussian fields to the observation data,

two approaches were explored: the gradient method and the ensemble Kalman filter

(EnKF) method. In the gradient approach, the non-differentiable history-matching

problem was replaced with a differentiable problem so that an automatic history

matching technique could be applied to the problem of conditional simulation of

facies boundaries generated from the truncated plurigaussian method. The resulting

realizations are consistent both with the geostatistical model of the observed facies

and the historic production. Application of the method requires efficient computation

of the gradient of the objective function with respect to model variables. An example

five-spot water injection problem is presented with more than 73,000 model variables
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conditioned to pressure data at wells. The gradient was computed using the adjoint

simulator method, and the minimization routine used a quasi-Newton algorithm. The

value of the objective function decreased more than 98% in 13 iterations.

In the EnKF approach, the difficulties that prevented the traditional automatic

history matching tools from being widely available are minimized. First, the gra-

dient does not need to be computed explicitly, the coding for the EnKF algorithm

is easy, and adaptable to any reservoir simulator on a “plug-in” basis. Second, an

approximation to differentiability results from the correlation of variables. Third, the

ensemble Kalman filter (EnKF) method takes one simulation run per reservoir model

realization, and the simulations of the reservoir models in the ensemble are ideal for

multiple-processor parallel computation. The truncated plurigaussian model is used

to generate random facies realizations. The geostatistical model is fully specified

by the threshold truncation map and the covariance models for the two Gaussian

random fields. In the first example, the application of the EnKF to the problem of

generating facies realizations conditional to observations at 18 wells on a 128 × 128

grid is demonstrated. In a second example, realizations of facies on a 50 × 50 grid,

conditional to facies observations at the wells and to production and injection rates,

are generated using the EnKF.

Because of the approximate nature of the EnKF, the realizations from one en-

semble tend to underestimate the uncertainty especially for problems that are highly

nonlinear. Therefore, the distributions of reservoir model realizations from 20 inde-

pendent ensembles are compared with the distributions from 20 randomized maximum

likelihood (RML) realizations for a 2D water-flood model with one injector and four

producers. Despite the nonlinear relationship between data such as production rates

and facies observations, and the model variables, the EnKF was effective at history

matching the production data. We find that the computational effort to generate 20

xx



independent realizations was similar for the two methods, although the complexity of

the code is substantially less for the EnKF.
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CHAPTER I

INTRODUCTION

Researchers have been building tools for automatic history matching of permeability

and porosity distributions to honor production data for many years. The assumption

is almost always made that the rock properties are distributed randomly and that

the randomness can be adequately described by the mean and the spatial covariance

of the property fields. If there is more than one type of rock, region or facies, the

assumption is usually made that the location of the boundaries of these regions is

known. Recent studies have relaxed this restriction by allowing the boundaries of a

three dimensional channel to be adjusted interactively during the history matching

process (Bi et al., 2000; Zhang et al., 2002). While the method worked quite well

for a single channel in a background low-permeability facies, it became apparent that

the extension to a reservoir with geological complexity, such as large numbers of

channels, would be impractically difficult. As a result, the truncated plurigaussian

model is considered for the description of facies boundaries.

The truncated plurigaussian method is attractive for modelling facies distributions

for several reasons.

1. The model is capable of generating a wide variety of facies shapes and neighbor

relations.

2. The model is based on Gaussian random fields, which preserves the internal

consistency of the stochastic model.
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3. The truncation, or threshold maps, can be described by relatively few parame-

ters.

Despite its advantages as a method for simulating facies, application of the trun-

cated plurigaussian method with automatic history matching in characterization of

litho-facies distribution is not trivial. There are several challenges that need to be

tackled to have this automatic history matching technology practical and efficient.

The major challenges are:

1. The truncated plurigaussian method was primarily used as a geostatistical

method for producing geological facies maps conditional to facies proportions

and hard data. The original rectangular truncation threshold scheme has lim-

ited flexibility, and a different truncation scheme has to be designed for more

general history matching problems.

2. Facies type is an indicator variable, which made the problem non-differentiable.

The non-differentiable history-matching problem must be replaced with a dif-

ferentiable problem so that an automatic history matching technique can be

applied to the problem of conditional simulation of facies boundaries generated

from the truncated plurigaussian method. The resulting realizations should be

consistent both with the geostatistical model of the observed facies and the

historic production.

3. Computation of the gradient of the objective function for search direction in the

optimization process requires accurate computation of the sensitivities of the

facies at each gridblock to each of the model parameters, as well as sufficient

processing resources.

4. The random fields as model parameters for generating the Gaussian fields do not
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have physical meanings, which is different with traditional automatic history

matching where the random fields are permeability and/or porosity. When

hard data of porosity and permeability observations at well locations are to be

matched, the simulated facies types have to be right at well locations, but the

Gaussian model parameters that determine the facies types are variable. The

minimization of the squared mismatch between the simulated and the observed

data is more difficult than in the traditional automatic history matching.

In addition to the above problems, the use of the ensemble Kalman filter method

to enhance the computational efficiency was investigated. The main idea with the

Kalman filter is to update model parameters comparing current observations with

predictions from the reservoir simulator. Unlike the traditional history matching

problem for reservoir characterization, the model parameters for the Kalman filter

include not only the reservoir property fields, but also the pressure and saturation

at every grid cell as well as the simulated variables corresponding to data at certain

observation time. The vector storing all the parameters is referred as the state vector.

The differences between the predicted data from the simulation and the observation

data are then used to update the current state vector. It is unnecessary to compute

the gradient of the objective function to model parameters in contrast to traditional

automatic history matching methods.

The Ensemble Kalman filter (EnKF) has great potential in reservoir characteri-

zation for two major reasons. First, any reservoir simulator can be used in the EnKF

history matching system without excessive work. This idea becomes clear after the

illustration of the EnKF formulation in section 8.2. Second, with the increase in

deployment of permanent downhole sensors for monitoring pressure, flow rate and

other variables, large amounts of data become available with small time intervals in

between. Assimilation of these data is a problem of continuous model updating. The
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ensemble Kalman filter method by nature is highly suitable for such a problem.

Several problems regarding the use of the ensemble Kalman filter for history

matching are investigated in this study. The most important is a comparison of the

efficiency with a gradient-based method for a history matching problem with known

facies properties but unknown boundary locations. Secondly, the ensemble Kalman

filter and a gradient-based method are unlikely to give identical estimates of model

variables, so it is also important to know if one method generates better realizations.

Finally, since there is often a desire to use the history matched realizations to quantify

uncertainty, it is important to determine if one of the methods is more efficient at

generating independent realizations.

This work contains ten chapters in total. Chapter 2 introduces the development

and previous applications of the methodologies used in this study. Four major top-

ics of this chapter include: the reason why the truncated plurigaussian method was

chosen; an overview of previous work on automatic history matching of rock prop-

erties; the potential of the sequential continuous model updating using the ensemble

Kalman filter method; and the necessity to evaluate the uncertainty quantification

performance of the gradient and the EnKF approaches on the problem of history

matching on geologic facies. Chapter 3 explains the truncated plurigaussian method

in detail. Chapter 4 describes the geostatistical model variables, and the probability

distributions of the geostatistical model based on Baysesian framework. Chapter 5

presents the moving average method for generating anisotropic Gaussian fields with a

continuously variable covariance. A few examples for generating the Gaussian fields

are given for both constant and variable covariance types. In Chapter 6, the gradient

approach is used to estimate the geostatistical parameters from a given training im-

age. A transition zone is introduced at the facies boundaries such that the gradients

of facies mismatch with respect to the model parameters can be approximated. The
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derivations of the sensitivities are illustrated in detail. The a posteriori probability

density distribution of the geostatistical parameters are analyzed to assist in the se-

lection of the geostatistical parameters for matching hard data and production data.

Chapter 7 presents the gradient approach in matching both hard data and historical

production data. Chapter 8 presents a study on history matching of geologic facies

to hard data and production data using the EnKF approach. Chapter 9 compares

the computational efficiency, applicability, and uncertainty quantification properties

of the gradient based approach and the EnKF approach. Finally, the conclusions and

contributions of the study are summarized in Chapter 10.
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CHAPTER II

LITERATURE REVIEW

Major improvements in the application of the truncated Gaussian method for litho-

facies simulations based on indicators were developed mostly by scholars at the Ecole

des Mines de Paris center of geostatistics. By analyzing the limitations and the po-

tential of the truncated Gaussian method, Galli et al. (1994) found a way to apply

this method to a 3-D problem with vertical non-stationarity in the proportions of

lithofacies. They showed that this method preserved the consistency of the indicator

variograms and cross variograms, and allowed more complex neighbor relations than

the standard truncated Gaussian model. In the same period, Le Loc’h et al. (1994)

showed the flexibility of the truncated plurigaussian method by truncating two Gaus-

sian functions. They pointed out that even if the two underlying Gaussian functions

are independent with each other, the resulting facies maps obtained by truncation

are correlated in vertical and horizontal directions. The correlation depends on the

construction of thresholds of lithotypes. Using uncorrelated Gaussian functions they

found that complex theoretical indicator variograms can be produced in combining

various anisotropies by choosing different Gaussian functions. They suggested that

the choice of a truncation method to the Gaussian functions should be as simple as

possible to have easier control over the problem.

Later, Le Loc’h and Galli (1997) presented an insight to implementing the algo-

rithm both for practical structural analysis and conditional simulations. In demon-

strating the influence of the thresholds chosen for truncation, the partition of facies
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was accomplished using rectangles. But even with this relatively simple threshold-

ing method, it is not at all straightforward to choose appropriate thresholds. The

difficulty in estimating model parameters that will result in the desired facies dis-

tributions has restricted the practical application of this method. An example of a

truncated pluri-gaussian simulation conditional to facies data at well locations was

presented with a very slow convergence. This problem was attributed to the insta-

bility of the Gaussian covariance matrix. Lantuéjoul (2002) discusses the problem of

conditioning truncated plurigaussian models to facies observations extensively. As-

suming known threshold parameters, the truncated plurigaussian simulation scheme

was able to simulate the Gaussian random fields to match given lithofacies observa-

tions. As his simulation problem was small, the Markov chain Monte Carlo sampling

method was applied to evolve Gaussian random fields. While, once again, the great

potential of the truncated plurigaussian method in simulating lithofacies distribution

was revealed, two major problems were left unsolved and seem to be limiting the

application of this method beyond France. First is the difficulty in estimation of

geostatistical parameters, i.e. the geostatiscal quantities such as the range, the vari-

ance, the covariance type (Gaussian, Exponential, Spherical, etc.) and the thresholds

for discrimination of facies. Second, the application of the truncated plurigausian

method in practical conditional simulation problems requires more efficient methods

of sampling to deal with reservoir history matching problems.

Conditional simulation of reservoir facies distributions is of great interest of reser-

voir engineers. Bi et al. (2000) and Zhang et al. (2002) approached the problem of

simulating a channel sand by simulating the location of the centerline, the width, and

thickness of the channel all along the channel length. In both cases, the Levenberg-

Marquardt or Gauss-Newton methods were used for the history matching and the

chain rule was used to compute the derivative of the production data mismatch to
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the values of channel width for example. They were able to do this because many

of the intermediate matrices in the computation of the sensitivities were sparse, and

because the number of sensitivity coefficients to be computed was relatively small.

In the article by Rahon et al. (1996), they considered two problems in simulating

locations of lithofacies conditional to well pressure data. In the first, they attempt

to estimate the permeability of each facies whose locations have been fixed. In the

second problem, they altered the size of facies whose permeabilities have been fixed.

The gradient calculation relating to lithofacies has been successfully implemented in

an implicit single-phase fluid flow model. Rahon et al. (1997) applied similar idea

in the problem of simulating channel sand locations. This paper parameterizes a

channel by triangularization of surface with the nodes of the triangles representing

the parameters. The centerline of the channel is assumed known and fixed and the

permeability and porosity in both the channel and non-channel facies are assumed

to be known. Sensitivities of the well pressure observations with respect to the pa-

rameters of the nodes were computed to adjust the size of the channel. Although the

idea of using the gradient method to adjust parameters deciding the size of lithofacies

was valuable, their work was limited to the kind of problems with known locations

of lithofacies. Landa et al. (2000) integrated well test, logging, and geological data

to obtain a reservoir description using the gradient method (Anterion et al., 1989).

They calculate the sensitivity matrix for permeability by solving the system n times

(where n is the number of parameters or gridblocks) and assume that permeability

and porosity are perfectly correlated. Their method is computationally unaffordable

for problems with large number of model variables.

The method of truncated plurigaussian simulation is very flexible in simulating

the distribution of lithofacies, for instance, the location, width and sinuosity of multi-

channels. However, to obtain a satisfactory resolution in the lithofacies map, the
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Gaussian random fields used need to be large and the method of computing gradients

has to be more efficient.

Gradient-based history matching can be performed several ways (e.g. assimilating

data in batch or sequentially); a variety of minimization algorithms can be used (e.g.

conjugate gradient or quasi-Newton), and several different methods for computing

the gradient are available (e.g. adjoint or sensitivity equations). The most efficient

of the traditional gradient-based methods seems to be an adjoint method to compute

the gradient of the squared data mismatch (Li et al., 2003b) and the limited memory

Broyden-Fletcher-Goldfarb-Shanno method (LBFGS Nocedal, 1980) to compute the

direction of the change (Fletcher, 1987; Deschamps et al., 1998; Zhang and Reynolds,

2002). Although the adjoint method is popular and widely implemented in many areas

(Chen et al. (1974); Chavent et al. (1975); Carter et al. (1974); Li et al. (2003b)),

writing an adjoint system for each reservoir simulator is impossible, because the

detailed knowledge of the numerical schemes used in each individual simulator has to

be known, and the amount of work involved in writing an adjoint system is comparable

to developing the corresponding reservoir simulator. The remaining choice is whether

to incorporate all data at once or to incorporate the data sequentially.

Simultaneous, or batch, inversion of all data is clearly a well-established history

matching procedure. Although data from wells or sensors may arrive nearly contin-

uously, the practice of updating reservoir models as the data arrive is not common.

There are several reasons that make sequential assimilation of data difficult for large,

nonlinear models: (1) the covariance for all model variables must be updated as new

data are assimilated, but the covariance matrix is very large, (2) the covariance may

not be a good measure of uncertainty for nonlinear problems, and (3) the sensitivity

of a datum to changes in values of model variables is expensive to compute. Bayesian

updating in general is described by Woodbury (1989). Modifying a method described
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by Tarantola (1987), Oliver (1994) evaluated the possibility of using a sequential as-

similation approach for transient flow in porous media. He found that the results

from sequential assimilation could be almost as good as from batch assimilation if the

order of the data was carefully selected. The problem was quite small, however, and

an extension to large models was impractical.

The ensemble Kalman filter is a powerful method for sequentially updating es-

timates of model variables and for assimilating various types of data. One of the

problems with the traditional Kalman filter is the difficulty of the computation of the

covariance of the model parameters, which is necessary for ensuring that each adjust-

ment to current model parameters does not destroy the match to previous observa-

tion. The updated covariance matrix needs to be constructed and stored each time

a new set of data are assimilated. A second problem with the traditional Kalman

filter is that it is necessary to compute the sensitivity of data to model variables,

as in many history matching algorithms (see Bissell et al., 1994; Chu et al., 1995;

Omre et al., 1996; He et al., 1997; Gosselin et al., 2001). This computation makes

the traditional Kalman filter impractical for even moderate-sized reservoir problems.

Eisenmann et al. (1994) and Corser et al. (2000) have attempted to apply the tradi-

tional Kalman filter to reservoir characterization problems, but the applications have

been restricted to problems with small number of parameters and the relationships

between observation and model parameters were nearly linear.

In the first paper on the ensemble Kalman filter, Evensen (1994) described how

the evolution of the probability density function for the model variables can be ap-

proximated by the motion of “particles” or ensemble members in phase space. Any

desired statistical quantities can be estimated from the ensemble of points. When the

size of the ensemble is relatively small, however, the approximation of the covariance

from the ensemble almost certainly contains substantial errors.
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The ensemble Kalman filter has been developed and successfully applied mainly

in the fields of physical oceanography and meteorology. Houtekamer and Mitchell

(1998) noted the tendency for reduction in variance due to “inbreeding”. When

the ensemble estimate is used in a Kalman filter, van Leeuwen (1999) explained

how nonlinearity in the covariance update relation causes growth in the error as

additional data are assimilated. Houtekamer and Mitchell (2001) have applied the

EnKF to assimilate over 100,000 weather observations in a simplified weather model

with 409,600 variables. In their study, they introduced a technique for global EnKF

analysis and covariance estimation. Anderson (2001) demonstrated the ability of a

modified ensemble Kalman filter to assimilate data in a problem with a state vector

much larger than the number of ensembles. Evensen (2003) provided a comprehensive

review of the progress on the ensemble Kalman filter since its introduction by Evensen

(1994).

This method is now beginning to be applied in other fields, including groundwater

hydrology (Reichle et al., 2002) and petroleum engineering. Nævdal et al. (2003)

applied ensemble Kalman filter techniques for continuous model updating on two 2-

D 3-phase reservoir problems. One was a synthetic model with two producers and

one injector, the other model was a simplified model of a North Sea oilfield. The

measurements in both cases included well pressure, oil rates, GORs, and water cut.

The reservoir models were updated by assimilating production data at least once

a month and also when a well began production or was shut in. They found that

the prediction of future performance from the ensembles improved with more data

assimilated; the permeability estimation, however, became worse. Gu and Oliver

(2004) applied the EnKF to the PUNQ-S3 reservoir model (Floris et al., 2001). They

found that the method was quite efficient compared to the gradient-based methods

and gave reasonable estimation of uncertainty.
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A secondary objective of history matching is often to assess the uncertainty in the

predictions of future reservoir performance or in the estimates of reservoir properties

such as permeability, porosity or saturation. In general, uncertainty is estimated from

an examination of a moderate number of conditional simulations of the prediction or

properties. Unless the realizations are generated fairly carefully and the sample is

sufficiently large, however, the estimate of uncertainty can be quite poor. Two large

comparative studies of the ability of Monte Carlo methods to quantify uncertainty in

history matching have been carried out, one in groundwater (Zimmerman et al., 1998)

and one in petroleum (Floris et al., 2001). Neither was conclusive, partly because of

the small sample size. Liu and Oliver (2003b) used a smaller reservoir model (fewer

variables), but much larger sample size. They found that the method that minimizes

an objective function containing a model mismatch part and a data mismatch part,

with noise added to observations, created realizations that were distributed nearly

the same as realizations from Markov chain Monte Carlo.

In a later study, the comparison was made using history matching on the trun-

cated plurigaussian model for geologic facies. It provided a difficult history matching

problem with significant nonlinearities (Liu and Oliver, 2004) that made both the

ensemble Kalman filter and the limited memory BFGS method difficult to apply.
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CHAPTER III

THE TRUNCATED GAUSSIAN SIMULATION

METHOD

The distributions of lithofacies in different types of sedimentations exhibit a great

variety of features. The truncated Gaussian simulation method simulates the ran-

domness of the lithofacies distributions by truncating a Gaussian random field into

separate scale regions, with each region representing a facies type. Fig. 1 is a schematic

example showing truncation of a one dimensional random Gaussian field. In this one

dimensional reservoir model of 128 gridblocks, each gridblock is assigned a random

Gaussian variable. Truncation thresholds are set at 0.5 and −0.5. For gridblocks with

Gaussian variables greater than 0.5, they are assigned a facies type as sandstone. For

those with Gaussian variables between 0.5 and −0.5, they are assigned as shale. The

rest with Gaussian variables below −0.5 are assigned as dolomite. Obviously, a slight

perturbation of the thresholds will first change the facies type of the grids at the

boundary of facies regions. A more general application of the truncated Gaussian

method is to simulate facies distributions in a 2-D plane. An example of the trun-

cation of a 2-D Gaussian random field using the same two thresholds is provided in

Fig. 2 to illustrate the resulting facies distributions in a 2-D plane. The figure on

the left is the random Gaussian function distributed on the field. The brighter the

shade, the greater the Gaussian random numbers are in that location. The simulated

facies map of the field is shown on the right. Three shades represent three different

lithotypes. Notice that the black and the white areas cannot be directly adjacent
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to each other. This reflects one of the major drawbacks of the truncated “single”

Gaussian method: the lithofacies represented by non-adjacent scales of Gaussian val-

ues can never be in direct contact with each other in the facies field map unless the

same facies is provided with separate threshold regions. This drawback restricted the

method from simulation problems with only two lithotypes, which is unrealistic for

most of the reservoir stratigraphic cross-section.

As an extension of the truncated Gaussian simulation method, the plurigaussian

simulation allows complex arrangements of several lithofacies to be reproduced. A

second Gaussian random field is assigned to each of the gridblocks in the field and

the two Gaussian fields together simulate the distribution of the lithofacies in the

field. The two random functions can be either correlated or not. For the truncated

plurigaussian method, choosing a threshold scheme is no longer straightforward and

the efficiency and flexibility of the truncated plurigaussian method is largely ruled by

the threshold scheme.
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Figure 1: A schematic example shows the truncation of a one dimensional random
Gaussian field with exponential covariance.

The choice of the truncation method for the Gaussian variables is important in

applying truncated Gaussian simulation in automatic history matching to generate
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Figure 2: Truncation of a 2-D random Gaussian field to simulate the distribution of
three lithofacies.

reservoir models satisfying geological requirements. Le Loc’h et al. (1994) have ap-

plied rectangular thresholds in truncated Gaussian simulation as shown in Fig. 3. In

their approach, lithofacies Fi is modeled by

Fi = {x ∈ R3; Si
j−1 ≤ Yj(x) < Si

j, j = 1, . . . , p}, (1)

where Yj(x), for j = 1, . . . , p, are Gaussian random functions which can be inde-

pendent or dependent. In practice, two Gaussian random functions were used to

determine lithotypes, i.e. p = 2. The thresholds Si
j−1 and Si

j were decided by the pro-

portion of each lithotypes. Field facies maps with a variety of textures and patterns

were generated by truncating groups of Gaussian functions with different combina-

tions of variogram types. Fig. 4 shows some of their results. Although the rectangular

thresholds approach is useful for geological simulation problems when conditioning to

lithotype proportion data, it does not seem easy to be applicable to the problem of

optimization of lithotype grouping in automatic history matching problems.

Alternatively, Voronoi tessellation could be used to create the thresholds. Given

a set of points in a plane, a Voronoi diagram can be created by dividing the plane
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Figure 3: Partitions defined by rectangles parallel to the axes from Le Loc’h and
Galli (1997).

a: Exponential and spherical variograms.

b: Exponential and Gaussian variograms.

c: Exponential and Gaussian variograms.

Figure 4: Simulation using independent Gaussian functions (Le Loc’h et al., 1994).

into regions, so that every location in the region around one point is closer to that
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point than to any of the other points. Shirriff (1993) described an algorithm for cre-

ating Voronoi diagrams on a set of points to generate fractal patterns which resemble

the randomness in nature. By attributing each region with a lithotype, a threshold

map could be designed from a Voronoi diagram with great flexibility in optimization.

Fig. 5 shows Voronoi diagrams generated by Shirriff (1993). However, the difficulty

in calculating sensitivities of lithotype at any location in the threshold map to the lo-

cations of Voronoi points is the main obstacle in coupling the Voronoi type thresholds

with efficient optimization methods which require computation of gradients.

Figure 5: Example of Voronoi diagrams by Shirriff (1993).

In this dissertation, truncated Gaussian simulation is performed using three in-

tersecting threshold lines. Three randomly generated lines intersecting each other

without all passing through the same point divide the plane into 7 regions. A facies

type can be attributed to each region, so up to 7 different facies types can be included

in the same plane with appropriate relative percentage. This number of facies is gen-

erally enough for geologic maps in petroleum reservoir studies, but if not, another line

could be added. The three lines are thresholds for different rock properties. Given a

rotation angle θ and a distance r, a threshold line could be described by the following
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equation:

y = tan(θ − π

2
)(x− r

cos θ
), (2)

i.e., the threshold line is perpendicular to the line passing through the origin with the

slope θ and intersects the line at a distance r.

Fig. 6 is an example illustrating the truncation scheme of intersecting threshold

lines. The Gaussian random field Y1 has Gaussian type covariance and Y2 has ex-

ponential type covariance. The coordinates of the threshold map (Fig. 6(c)) are Y1

and Y2 respectively. Three kinds of lithotypes, A, B, and C are assigned to the seven

regions in the threshold map. Facies type at any gridblock in the field is decided by

taking the Y1 and Y2 value of that gridblock to the threshold map. For instance, the

gridblock (20, 40) has low values for both its Y1 and Y2. (They both are in areas with

dark shade.) So it corresponds to the area in threshold map assigned facies A. We

can tell from the facies map (Fig. 6(d)) that the gridblock (20, 40) was assigned facies

A. Calculation of the Gaussian fields Y1 and Y2 will be discussed in Chapter 5.
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(a) The Gaussian type random field (Y1).
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(b) The Exponential type random field (Y2).
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(d) Calculated facies field map.

Figure 6: Simulation of lithofacies distribution in the field by truncation of random
Gaussian fields Y1 and Y2 using intersecting line thresholds.
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CHAPTER IV

THE GEOSTATISTICAL MODEL

This chapter discussed the truncated bi-Gaussian method, by which two independent

Gaussian random fields, Y1 and Y2 are used to generate a facies map.

4.1 Continuous variables

We begin by considering the continuous variables. Facies are defined by the truncation

of two continuous random fields. At the basic level, the variables (Z1 and Z2) on the

grid are independent normal deviates with mean 0 and variance 1. These independent

deviates must be transformed to correlated random Gaussian fields (Y1 and Y2) for

truncation. The parameters of the two covariance functions (such as the ranges of the

covariances for the two fields, the principal directions) are variables in the problem

of estimation of geostatistical parameters from a given training image.

The locations of the truncation lines that are chosen to partition the Gaussian

variables Y1 and Y2, are also continuous variables. Let the number of lines be denoted

by Nl. The rotation angle and the distance from the origin for each threshold line

are ri and θi, for i = 1, . . . , Nl.

{Z11, Z12, . . . , Z1Ng} Independent normal deviates with mean 0 and variance 1.
{Z21, Z22, . . . , Z2Ng} Independent normal deviates with mean 0 and variance 1.
{a11, a12, θc1} Ranges of covariance and principal direction of anisotropy.
{a21, a22, θc2} Ranges of covariance and principal direction of anisotropy.

{(r1, θ1), . . . , (rNl
, θNl

)} Locations of truncation lines.

Table 1: Continuous geostatistical variables.
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The variables Z1 and Z2 are assumed to be vectors of standard normal deviates,

so their probability distributions are

P (Z1) ∝ exp
(
−1

2
ZT

1 Z1

)
(3)

P (Z2) ∝ exp
(
−1

2
ZT

2 Z2

)
. (4)

The prior pdfs for the ranges of the two variograms in the principle directions

(a11, a12, a21, a22) might realistically be modelled as a χ-square distributions with 0

means and fairly large variances. Even before a training image is given, a positive prior

estimate of the spatial correlation ranges can be made with reasonable estimation

error. Although the prior estimates of the ranges are always positive, we may want

to truncate the distributions so that only positive ranges are allowed. The same is

true of θc1 and θc2, the orientations for the spatial correlations. Although the prior

distributions are uniform on the interval (0, π), when the training image is given, the

initial estimations are Gaussian with mean at the best estimate of the angle.

The random variable representing distance of the truncation lines from the origin

is assumed to be distributed as N(0, 1), so that the unconditional threshold lines

are close to the origin. It seems plausible to assume that the prior distributions for

the orientation of the partitioning lines θ1, . . . , θNl
should be uniform on the interval

(0, π). In this case, the probability density is a constant and can be ignored (or, more

accurately, absorbed into the overall constant).

The list of continuous model parameters in the truncated plurigaussian problem

is shown in Table 1. The vector of continuous variables, mcG, can then be defined

whose prior distribution is Gaussian and mcU to be the vector of continuous variables
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Nl The number of partitioning lines.
{m1, m2} Covariance models for fields Y1 and Y2.

{F1, F2, . . . , FNr} Facies assignment for each partitioning region.

Table 2: Discontinuous geostatistical variables.

whose prior distribution is uniform, or

mcG =



Z1

Z2

a11

a12

a21

a22

θc1

θc2

r1

...

rNl



and mcU =



θ1

θ2

...

θNl


. (5)

4.2 Discrete variables

There will also be a few parameters or variables that are uncertain but not continuous

(and hence not differentiable). The number of partitioning lines is clearly discrete.

The covariance model (that is, Gaussian, exponential, spherical, Whittles, etc.) to be

used for each of the random fields is not continuous or even numerical. Finally, each

region of the truncation map must be assigned a facies. Like the covariance models,

the facies do not take continuous values so this is also not continuous or numerical.

The group of discontinuous variables is summarized in Table 2.
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The existence of discrete variables in this problem makes it harder to apply gradi-

ent methods in optimization of model parameters. In this stage of our research, the

number of partition lines (Nl) is fixed as 3. The covariance models for the Gaussian

fields are assumed to be a linear combination of the Gaussian and the exponential

type, for which both the Gaussian and the exponential covariance models for a Gaus-

sian field have the same ranges and anisotropy angle. By adding a continuous variable

as the weighting factor between the two covariance types, the covariance type becomes

differentiable. The reason why the Gaussian and the exponential types are chosen,

and how the covariance models are estimated are detailed in Chapter 5.

Chapter 6 will introduce the approach to eliminating the discontinuity of the

facies types. As for the probability for assigning a particular facies type to one of the

partitioning regions in the threshold map: in the absence of any other information

it seems reasonable to assign equal probability to each facies type. As soon as any

information on relative abundance of facies is available, the probabilities will not be

equal.

4.3 Prior probability density

The prior probability for facies distribution map F on a grid is denoted as P (F ). We

can write

P (F ) = P (F |mcG, mcU , md)P (mcG, mcU , md)

∝ P (mcG, mcU , md)

= P (mcG)P (mcU)P (md)

∝ P (mcG)P (md)

(6)

The first term on the right, the conditional probability for the facies map realization

F given values of all the model variables, can be ignored as the relationship is de-

terministic once the variables are given. Independence of the variables in the prior
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distributions has also been assumed, which explains the third line of Eq. 6. The

fourth line is a result of the uniform distribution for some of the variables.

The prior joint probability density for the continuous variables can be written in

a compact form as

P (mcG) ∝ exp
(
−1

2
mT

cGC−1
M mcG

)
, (7)

where CM is the diagonal matrix of variances. For Z1 and Z2 the variances are all

equal to 1.

4.4 Posterior probability density

The goal is to generate samples from the posterior distribution, i.e., the distribution of

F conditioned to observations, dobs. To do this, we need to be able to characterize the

likelihood of the model variables m given the observations, and the prior probability

of model variables. Bayes’ theorem tells us that

P (mcG, mcU , md|dobs) ∝ P (dobs|mcG, mcU , md)P (mcG, mcU , md). (8)

The first term on the right, the likelihood of the model, can be approximated by

the following Gaussian expression,

P (dobs|mcG, mcU , md) ≈ A exp
[
−1

2
(F − Fobs)

T C−1
D (F − Fobs)

]
(9)

where the data or measurement error covariance matrix CD simply reflects the pos-

sibility of error in the identification or modelling of the observed facies. Of course,

the vector F − Fobs must be defined in a reasonable way. Facies have no intrinsic

numerical value and even if they were assigned numerical values for computation, it

might not be reasonable to assume that the difference between Facies 1 and Facies

3 is larger than the difference between Facies 1 and Facies 2. It seems reasonable,

for the purpose of conditional simulation and estimation, to assume that the facies
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are either the same (in which case F − Fobs = 0) or they are different (in which case

F − Fobs = 1).
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CHAPTER V

GENERATING GAUSSIAN FIELDS

5.1 Covariance template construction

Theoretically, the two Gaussian random fields Y1 and Y2 could be generated from the

operation:

Y = µ + LZ, (10)

where µ is the expectation of the Gaussian field Y , and Z is a vector of uncorrelated

random normal deviates, Z ∈ Nm(0, I). The matrix L is the “square root” of the

covariance matrix by decomposition, that is,

C = LLT . (11)

The dimensions of L are Ng ×Ng, where Ng is the total number of grid blocks.

For problems with large number of grids, decomposition of the covariance ma-

trix become unaffordable. In this research, the moving average method proposed by

Oliver (1995) was applied to obtain Gaussian fields by convolution of the uncorrelated

random normal deviates with covariance templates, i.e.

Y = LT ∗ Z, (12)

where ∗ is the convolution operator, and the expectation of the Gaussian field Y is

assumed to be zero for truncated Gaussian simulation of geologic facies. LT is the

covariance template. There are two major advantages with application of moving

average method for simulation of Gaussian random fields. First, the template LT is
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calculated explicitly from the template operator functions, so it is no longer neces-

sary to construct and store the covariance matrix. Second, the dimensions of LT is

generally determined by the correlation range in the field, and is much smaller in size

than the covariance matrix.

The three most popular covariance types are Gaussian, exponential, and spherical.

The spatial correlation of the Gaussian field Y can be a weighted combination of all

three, i.e.

LT = w1L
G
T + w2L

E
T + w3L

S
T , (13)

for w1 + w2 + w3 = 1. The weighting terms are all real values between 0 and 1.

Each of the three templates has identical principle correlation ranges (a1 and a2),

and principle direction (θc). By using the combination of the covariance templates,

the spatial correlation type becomes a continuous function of the weighting terms.

As the features of the exponential covariance and the spherical covariance are similar,

in practice the combination of the Gaussian and the exponential templates are used

for simplicity. By doing so, the optimization problem for the weighting terms reduces

from 2-D to line search. The simplified combination is:

LT = wLG
T + (1− w)LE

T . (14)

The covariance templates are computed from template operators. For simulating

a 2-D Gaussian random field with exponential type covariance,

C(r) = σ2e−3r/a,

the template operator of its square root was derived from the Fourier transform as:

f(r) = σK1/4(27)
1
4 (

3r

a
)(2π2a3r)−

1
4 Γ(

3

4
)−1,

where a is the correlation range, and r is the lag distance. The formulation of the
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Gaussian type covariance and its kernel in 2-D are as follows:

C(r) = σ2e−3r2/a2

, (15)

f(r) = σ(12/a2π)
1
2 exp(−6r2/a2). (16)

f(0) corresponds to the center of the template LE
T or LG

T . The center grid of a template

is computed by numerical integration of f(r) over (−1
2
bx, 1

2
bx) and (−1

2
by, 1

2
by), where

bx and by are the size of each grid in x and y direction respectively. Both the Gaussian

and the exponential templates are central symmetric for isotropic spatial correlation,

thus computation of one eighth of the template is sufficient for construction of the

whole template.

5.1.1 Example

In order to demonstrate the simplicity of the method with fairly large grids, the

moving average method is applied to a 256×256 grid of independent normal deviates

Z as shown in Fig. 7. Two-dimensional filtering arrays (with size 25 × 25) for the

square root of the 2-D Gaussian and the exponential covariance (LG
T and LE

T ) are

plotted in Fig. 8.

Assume the expectations for the Gaussian fields to be zero, the random Gaussian

fields for truncation are computed as Y = LT ∗Z. Fig. 9 shows the 2-D random Gaus-

sian field realizations with Gaussian, exponential, spherical, and Whittle covariance

models respectively. The random Gaussian fields in Fig. 9 (a) and (b) are results

from convolution of the templates in Fig. 8 with the random noise shown in Fig. 7.

The frames of uncorrelated cells surrounding the correlated images are a result of

the fact that smoothing is done only for pixels that are surrounded by a large enough

region for the filter to be applied. The practical consequence is that one would either

have to generate a slightly larger grid than was truly necessary (and then discard the

unwanted part after smoothing) or assume a periodic structure to the reservoir.
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Figure 7: The 2-D uncorrelated Gaussian random field Z ∈ N(0, I).

(a) 2D Gaussian filter (b) 2D exponential filter

Figure 8: The moving average filters for square root of 2D Gaussian and Exponential
covariances.

5.2 Anisotropic Gaussian covariance

For an isotropic Gaussian random field, the covariance of a variable at two locations

is only a function of the distance between the locations, i.e.

cov(x,x′) = f(‖x− x′‖).

But in many cases, the correlation depends on the direction, also. The most obvious

example is a channel deposit where the correlation length is much longer in the along-

channel direction than in the cross-channel direction.

A property field is called geo-anisotropic if the covariance of the property field
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(a) 2D exponential realization (b) 2D Gaussian realization

(c) 2D spherical realization (d) 2D Whittle realization

Figure 9: The unconditional realizations from the moving average method with
different covariance types and mpr = 0.

can an be made isotropic by rotating the coordinate system, then stretching one

of the coordinates. Fig. 10 shows an example of a property field that clearly has a

longer correlation length in the NNW-SSE direction than in the ENE-WSW direction.

Rotation by 30 degree, followed by a factor of 4 stretching in the horizontal direction

results in a field that appears to have the same correlation length in all directions.

The rotation from the x - y coordinate system to the x′ - y′ system is accomplished

by

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ
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Figure 10: Transformation of an anisotropic property field to an isotropic field by
rotation and stretching.

while the subsequent stretching is given by

x′′ = x′

y′′ = αy′.

These transformations can be written as matrix operation form:x′′

y′′

 =

1 0

0 α


 cos θ sin θ

− sin θ cos θ


x

y


= MT

x

y

 .

In the x′′ - y′′ coordinate system, everything is isotropic so we can use regular distance.
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The distance between (x, y) and the origin in the isotropic field is:

r2 = x′′2 + y′′2 =

[
x y

]
TTMTMT

x

y


=

[
x y

]
H

x

y

 .

The matrix H is the transformation factor between the distance in the true coordi-

nates and the distance after transformation.

The filtering array has the largest value at the center where r = 0 and vanishes

at the margins. The value of a Gaussian function f(r) = N(0, 1) reduces with |r| in-

creasing. However, only when |r| approaches to infinite does the value of the Gaussian

function f(r) approach to zero. Therefore to preserve the efficiency of the moving av-

erage method, we truncate the kernel margins with function value less than a cut-off

threshold. In practice, we cut-off the margin pixels when the ratio of the probability

value at a distance |r| to the center value reaches 0.005. The distance |r| is about

3.25 times the Gaussian correlation range.

5.2.1 Example

In this section, an example is presented on generating a Gaussian random field with

anisotropic spatial correlation using the moving average method

The porosity field on a uniform lattice of 128 × 128 gridlocks is assumed to be

multi-variate normal with mean 0.2 and variance 0.01. The covariance is Gaussian

type. The principle correlation is along −60◦ direction and equivalent to the length

of 30 gridblocks. The shortest correlation range in the perpendicular direction has

a length of 15 gridblocks. The covariance matrix in this case has size 1282 × 1282,

which is too large for Cholesky decomposition. An unconditional realization of the
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anisotropic porosity field can be generated by the moving average method following

the steps below.

1. Rotate the coordinate system so that the longest correlation direction is along

a coordinate axis, then stretch an axis to make the spatial correlation isotropic

in the new coordinate system. The coordinate transformation can be written

as: x′′

y′′

 =

1 0

0 2


 cos 120◦ sin 120◦

− sin 120◦ cos 120◦


x

y


in which case the distance measure is

r2 = x′′2 + y′′2 =

[
x y

]3.250 1.299

1.299 1.750


x

y

 .

2. The dimensions of the filtering array in the true coordinate system of (x, y) are

decided in the procedures below.

(a) Let s be a cut-off criterion, s� 1.0.

(b) Evaluate the center kernel grid f(r = 0).

(c) Increase r until f(r=rmax)
f(0)

< s, where rmax is the maximum distance from

the center of the filtering array in the coordinate system (x′′, y′′) within

which f(r) should be computed. With the given parameters, the filtering

array is computed from

f(r) = 0.1(
12

302π
)

1
2 exp(−6r2/302).

(d) The distance r in the coordinate system (x′′, y′′) is equivalent to the length

along the principle direction in the (x, y) space. For Gaussian templates

with the principle direction π/2 or−π/2, the cut-off distance rmax along the
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principle direction corresponds to the dimensions of the template (xmax, ymax)

in the true coordinate system. In this example, the principle direction is

−π/3, but xmax, ymax are approximated from rmax along principle direction.

r2
max =

[
xmax ymax

]3.250 1.299

1.299 1.750


xmax

ymax

 ,

and

ymax = tan(−60◦)xmax.

After substitution, r2
max = x2

max× (1 + sin2 θ + tan2 θ sin2 θ). Therefore the

size of the template corresponds to the cut-off criterion f(r=rmax)
f(0)

< s can

be computed as: xmax = rmax × [1 + sin2(−60◦) + tan2(−60◦) sin2(−60◦)]−
1
2

ymax = tan(−60◦)xmax

For s = 0.02, we obtain xmax = 13 and ymax = 22.5 for this example.

The necessary dimensions of the kernel are (27, 47) after rounding off the

coordinates for the number of grids.

3. Compute the filtering template LT in the necessary dimensions. The pseudo

code for computing the Gaussian template in this example is as follows.

Lx = 27;

Ly = 47;

DO i = 1, Lx

DO j = 1, Ly

x = bx× [i− (Lx + 1)/2];
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y = by × [j − (Ly + 1)/2];

r2(x, y) =

[
x y

]  cos2 θ + α2 sin2 θ cos θ sin θ − α2 cos θ sin θ

cos θ sin θ − α2 cos θ sin θ α2 cos2 θ + sin2 θ


x

y


= (cos2 θ + α2 sin2 θ)x2 + 2 cos θ sin θ(1− α2)xy + (α2 cos2 θ + sin2 θ)y2;

r(x, y) =
√

r2(x, y);

f(i, j) = σ(
12

a2π
)

1
2 exp(

−6r2

a2
);

END DO

END DO

The Gaussian type anisotropic filtering array LT is plotted in Fig. 11(a).

4. Generate a Gaussian random noise field Z ∈ N(0, I). The dimensions of Z are:

(128 + 27− 1, 128 + 47− 1) = (154, 174), such that the convolution of LT and

Z yields a smoothed Gaussian field with 128× 128 gridblocks.

5. Compute the unconditional realization of the porosity field by:

φuc = µφ + LT ∗ Z.

An unconditional realization of the porosity field is shown in Fig. 11(b).
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(a) 2D Gaussian kernel (b) Unconditional realization

Figure 11: The Gaussian type filtering array and the unconditional realization of the
porosity field.

5.3 Gaussian fields for truncation

This section provides the set of procedures used throughout this study in generating

Gaussian fields for truncated pluri-gaussian simulation of facies. The two Gaussian

fields have independent geostatistical parameters, which is carried by the Gaussian

templates L1 and L2. Each covariance template of the Gaussian field is a weighted

combination of a Gaussian template and an exponential template.

L1 = w1L
G
1 + (1− w1)L

E
1

L2 = w2L
G
2 + (1− w2)L

E
2

Denote the dimensions of the grids by nx × ny. The principle direction of the

Gaussian field Y1 is θc1 and the range in the principle direction is a11. The shortest

correlation range in the perpendicular direction has the length of a12. The ratio of

the short principle range over the long principle range is denoted as R1 = a12/a11,

for 0 < R1 ≤ 1. The weighting term between the Gaussian type and the exponential

type for Y1 is w1. So the four parameters {a11, a12, θc1, w1} decide the geostatistical

model for the Gaussian field Y1. Similarly, {a21, a12, θc2, w2} decide the geostatistical

features of Y2.
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The general procedures for generating a Gaussian field is elaborated below:

1. Decide the dimensions of the templates LG
1 and LE

1 . The geostatistical pa-

rameters such as the correlation range, the anisotropy rotation angle, and the

anisotropy ratio are to be estimated with other reservoir parameters in both

the stage of geostatistical model estimation and the stage of history match-

ing to observation data. Z1 and Z2 are reservoir parameters in the truncated

pluri-gaussian simulation, and their size is dependent on the dimensions of the

templates as their convolution with the covariance templates has to yield the

Gaussian fields with the same dimensions as the facies field. To avoid alloca-

tion of Z1 and Z2 after each modification to the geostatistical parameters in

the optimization process, the dimensions of both templates should be fixed.

The principle direction θc1 is also a model parameter to be optimized, therefore

the templates should be square to allow the rotation of the principle direction

without resizing the template or sacrificing accuracy.

Fig. 12 compares the cross-sections of the exponential and the Gaussian tem-

plates along the radius. Although the function of the square root of the ex-

ponential type covariance has a bigger residue for r > 1, the dimensions of

the filtering arrays are decided by the Gaussian type function, which is more

numerically reliable.

The procedures for determining the dimensions of the Gaussian template LG
T are

similar to what was introduced in the example of generating an unconditional

realization of an anisotropic porosity field.

(a) Let s be a cut-off criterion, s� 1.0.
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Figure 12: The Gaussian and the exponential templates along the radius. Both
functions have the same correlation range and unit variance.

(b) Evaluate the central grid of the Gaussian template: f1,G(r = 0), where

f1,G(r) = (
12

a2
11π

)
1
2 exp(

−6r2

a2
11

).

(c) Increase r until
f1,G(r)

f1,G(0)
< s, the distance rmax = r in the coordinate system

(x′′, y′′) is equivalent to the length along the principle direction in the (x, y)

space. So the dimensions of the templates are

L1,x = L1,y = 2rmax − 1.

2. Compute the Gaussian and the exponential type templates, LG
T and LE

T , with

the dimensions L1,x by L1,y. The formula for the exponential type template is

f1,E(r) = K1/4(
3r

a11

)(27)
1
4 (2π2a3

11r)
− 1

4 Γ(
3

4
)−1,

where r is to be substituted with the pixel indices in the (x, y) space using the

relationship:

r2(x, y) = (cos2 θc1+R2
1 sin2 θc1)x

2+2 cos θc1 sin θc1(1−R2
1)xy+(R2

1 cos2 θc1+sin2 θc1)y
2.

3. Compute the filtering array for the Gaussian field Y1 using Eq. 14.

4. The other Gaussian field Y2 are computed following the same procedures.
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CHAPTER VI

ESTIMATION OF THE GEOSTATISTICAL

MODEL

Although it is not possible to directly observe the facies distributions in a reservoir

formation, the deposition environment mostly decides the geostatistical features of

the formation. Traditional history matching adjusts the rock property fields to match

the observation data, and the results sometimes are not approved by geologists for

being non-realistic. Thus the reservoir realizations for history matching should honor

not only the observation data, but also the geostatistical features for that certain

deposition type.

Geologists study formation outcrops and sedimentary petrography to develop a

training image of a formation, which does not contain any local accuracy but carries

geostatistical features about the formation from its deposition environment should

have. In this chapter, the geostatistical parameters for a reservoir deposition are

estimated by matching to a given training image from a sedimentary cross-section.

The estimated geostatistical parameters are then fixed or assumed to have small

variances in history matching to observation data.

Five major topics are investigated in this chapter. First, to generate a simulated

facies map that matches the training image, an effective algorithm is developed that

constructs the gradient of the facies mismatch. The facies mismatch is the difference

between the simulated facies map from the estimated geostatistical model parameters
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and the training image. The original types of facies are not continuous or even numer-

ical. But with a narrow transition zone added to the threshold map, the computation

of gradients of the facies mismatch with respect to the geostatistical mode parame-

ters is practical. The second topic deals with the derivation of the gradients, which

is illustrated in the section for gradient formulation. The third topic is computation

of sensitivities, which are the elements in the arrays of gradients. The fourth topic is

a discussion about the problems the optimization process might encounter when the

threshold angle takes special values. Finally the work on optimization of threshold

lines and analysis of the conditional PDF of the threshold line parameters as well as

the covariance parameters is shown.

6.1 Continuous gradient of the facies mismatch

Before history matching to observation data, a prior geostatistical model is required to

ensure plausibility of facies realizations. At this stage, homogeneity of rock properties

within facies is assumed, i.e. both the permeability and the porosity are constant for

the same facies type. The property fields are discontinuous at the facies boundaries.

The difference between the simulated facies type and the facies training image at the

ith gridblock is defined as

fi =


0 if Fi = Ftr,i

1 if Fi 6= Ftr,i ,

for i ∈ {1, 2, . . . , Ng}, where Ng is the total number of gridblocks, Ftr is the vector of

the facies from the training image, Ftr = {Ftr,i, i = 1, 2, . . . , Ng}, and f is the facies

mismatch vector, f = {fi, i = 1, 2, . . . , Ng}.

The objective of this stage of the study is to estimate the geostatistical parameters

that are appropriate to reproduce the training image. The general objective function

for minimization contains the squared facies mismatch part and the squared model
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mismatch part:

O(m) =
1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs) +

1

2
(m−mpr)

T C−1
M (m−mpr). (17)

We need to adjust model parameters to match the training image by minimizing the

objective function of the summation of the facies mismatch and the model mismatch:

OF (m) =
1

2
(F (m)− Ftr)

T C−1
D (F (m)− Ftr) +

1

2
(m−mpr)

T C−1
M (m−mpr)

=
1

2
f(m)T C−1

DF f(m) +
1

2
(m−mpr)

T C−1
M (m−mpr), (18)

where m is the vector of model parameters to be estimated for generating reservoir

models that honor the training image. The f(m) term is the simulated facies mis-

match vector with the model m. In general, this should be as small as possible since

in that case a match is achieved between the training image and the geostatistical

simulation. The problem is that this function is not differentiable so we cannot use

gradient-based methods to find a minimum. The CDF term is the covariance matrix

of the facies observation and is treated as an identity matrix. The variance of the

error in facies observation is very small in most cases, therefore the weighting of the

model mismatch is much smaller than the data mismatch, and the model mismatch

part is negligible in the objective function.

One solution is to redefine the function fi so that it is differentiable with the

locations on the threshold map (only for the purpose of computing the gradient of

the squared data mismatch to do minimization). Consider the situation for which the

facies observed at some location is F1, and the objective is to estimate the Gaussian

variable x by minimizing the difference f 2
i (x) = 1

2σ2
F
[Fi(x) − F1]

2. In this case, the

threshold plot might appear as in Fig. 13. A method for converting the predicted

facies to the true facies if the two did not agree would be sought. For now, let us

assume that a match will be obtained by moving the truncation lines that separate
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(f = 0)
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Y1

Y2

(f = 1)

(f = 1)

(f = 1)

(f = 0)

(a) Without transition zone (b) With transition zone

Figure 13: A schematic example showing adding transition zone on threshold map
to make the facies mismatch continuous.

the facies on the threshold plot. In this case, the derivative of the objective function

with respect to the location of the threshold lines must be computed. To make the

objective function differentiable, a small transition region from fi = 0 to fi = 1 can

be added as shown in the plot on the right of Fig. 13. Considering this problem with

multi-facies assignment to different regions, when both sides of a threshold line are

attributed to facies different from the observed facies, fi = 1 in both regions. There

is no transition zone along this section of the threshold line.

This is probably easier to understand if the problem is first considered in 1-D. Let

the location of the threshold be at x = x0, that is for x < x0 the facies is the same

as the observed facies, so fi = 0. For x > x0 the facies is different from the observed

facies, so fi = 1. The function fi(x) can be made differentiable if a narrow transition

zone is added from x0 to x0 + ε, such that f(x0) = 0 and f(x0 + ε) = 1. The simplest

transition zone is made by a linear interpolation as shown in Fig. 14.
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1

0

x0 + ε

x0

Figure 14: A schematic 1-D example demonstrating a linear interpolation for facies
mismatch.

Mathematically, this is written as

fi(x) =


0 for x < x0

1
ε
(x− x0) for x0 ≤ x < x0 + ε

1 for x ≥ x0 + ε.

(19)

The derivative of the squared facies mismatch at the gridblock i, OFi
with respect to

x is

dOFi

dx
=

dfi

σ2
F dx

fi =


0 for x < x0

x−x0

σ2
F ε2

for x0 ≤ x < x0 + ε

0 for x ≥ x0 + ε ,

(20)

which has the disadvantage that the derivative grows larger with increasing distance

from the actual boundary of the facies. Instead, fi(x) can be defined as

fi(x) =


0 for x < x0√

x−x0

ε
for x0 ≤ x < x0 + ε

1 for x ≥ x0 + ε ,

(21)

for which the derivative of the squared facies mismatch with respect to x is

dOFi

dx
=

dfi

σ2
F dx

fi =


0 for x < x0

1/(2σ2
F ε) for x0 ≤ x < x0 + ε

0 for x ≥ x0 + ε .
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When a truncated plurigaussian method with two Gaussian fields is used, each

grid is assigned two Gaussian variables to decide the facies type. The truncation map

needs to be 2-D instead of 1-D. The definition of a differentiable objective function

becomes more complicated. The distance from the line that separates the two facies

regions needs to be computed. Consider one of the truncation lines characterized by

distance from the origin r and angle θ. Let the shortest vector from the origin to the

truncation line be denoted by ~u, where

~u = (r cos θ, r sin θ). (22)

For a given point ~v = (x, y), the distance from the point ~v to the line ~u is clearly

given by

d(~v, ~u) = |~u| − ~u · ~v
|~u|

=
tan(θ − π

2
)x− y − tan(θ − π

2
) r

cos θ√
1 + tan2(θ − π

2
)

= sin(θ − π

2
)x− cos(θ − π

2
)y + r. (23)

Still assuming the facies observation at point ~v = (x, y) is F1 and the point (x, y) is

the ith node, the facies mismatch fi(x, y) is determined by:

fi =


0 for F (x, y) = F1√

|d|
ε

for F (x, y) 6= F1 and |d| ≤ ε

1 for F (x, y) 6= F1 and |d| > ε .

(24)

The gradient of the squared facies mismatch at (x, y) in the two axis directions are
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derived as:

dOFi

dx
= fi

dfi

σ2
F dd(x, y)

∂d(x, y)

∂x
=


0 for F (x, y) = F1

1
2σ2

F ε
sin(θ − π

2
) for F (x, y) 6= F1 and |d| ≤ ε

0 for F (x, y) 6= F1 and |d| > ε

(25)

and

dOFi

dy
= fi

dfi

σ2
F dd(x, y)

∂d(x, y)

∂y
=


0 for F (x, y) = F1

− 1
2σ2

F ε
cos(θ − π

2
) for F (x, y) 6= F1 and |d| ≤ ε

0 for F (x, y) 6= F1 and |d| > ε .

(26)

6.2 Gradient formulation

The gradient of the field-wide squared facies mismatch about the model variables is

∇mOF (m) = G(m)T f(m), where the model variables are in three categories: con-

tinuous Gaussian distributed, continuous uniform distributed, and discrete, m =

(mcG, mcU , md)
T . The array G(m) is called the sensitivity coefficient matrix, which

is the sensitivity of the data to perturbations of model parameters. The relation be-

tween the facies type at a grid node and its relative location to the facies transition

zone is nonlinear, so G(m) varies with model parameters.

G(m) = {∇mcG
f(m)T ,∇mcU

f(m)T ,∇md
f(m)T}

Both ∇mcG
f(m)T and ∇mcU

f(m)T are relatively straightforward to derive. The md

terms include the number of threshold lines and the facies assignment to the regions

in the threshold map. The computation of ∇md
fT is discussed in this section.

The gradient of the facies mismatch f(m) about the continuous Gaussian type
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model variables is:

∇mcG
fT =



∇Z1,1f
T

...

∇Z1,Ng
fT

∇Z2,1f
T

...

∇Z2,Ng
fT

∇a11f
T

∇a12f
T

∇θc1f
T

∇a21f
T

∇a22f
T

∇θc2f
T

∇r1f
T

...

∇rNl
fT



. (27)

The elements in the sensitivity coefficient matrix can be derived by chain rule. For

instance, let f1 be the facies difference f at gridblock 1, Y1,i and Y2,i be the Gaussian

field Y1 and Y2 at gridblock i, for i = 1, . . . , Ng, and Z1,1 be the model random field

Z1 at gridblock 1, the sensitivity of f1 with respect to Z1,1 is

∂f1

∂Z1,1

=
∂f1

∂Y1,1

∂Y1,1

∂Z1,1

+
∂f1

∂Y1,2

∂Y1,2

∂Z1,1

+ . . . +
∂f1

∂Y1,Ng

∂Y1,Ng

∂Z1,1

= ∇Y1f1 ·
∂Y1

∂Z1,1

. (28)

Applying chain rule to each of the sensitivity elements, the gradient of f about Z1
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can be expressed as:

∇Z1,1f
T

∇Z1,2f
T

...

∇Z1,Ng
fT


=



∂Y1,1

∂Z1,1

∂Y1,2

∂Z1,1
. . .

∂Y1,Ng

∂Z1,1

∂Y1,1

∂Z1,2

∂Y1,2

∂Z1,2
. . .

∂Y1,Ng

∂Z1,2

...
. . .

∂Y1,1

∂Z1,Ng

∂Y1,2

∂Z1,Ng
. . .

∂Y1,Ng

∂Z1,Ng





∇Y1,1f
T

∇Y1,2f
T

...

∇Y1,Ng
fT


= ∇Z1Y

T
1 · ∇Y1f

T

= L1 · ∇Y1f
T . (29)

Similarly the gradient of f about Z2 is:

∇Z2,1f
T

∇Z2,2f
T

...

∇Z2,Ng
fT


= L2 · ∇Y2f

T . (30)

L1 and L2 are the square root of the covariance matrices for the Gaussian fields Y1

and Y2. In practice, because the dimensions of the model are so large, a convolution

of a single row is used as described in the section about moving average. Notice that

f is a vector of Ng elements, so ∇Y1f and ∇Y2f are both Ng ×Ng matrices.

To derive the term for the sensitivity of f to Y1 in Eq. 29, we first consider the

gradient of the facies mismatch vector to Y1,1:

∇Y1,1f =



∂f1

∂Y1,1

0

...

0


. (31)

The facies mismatch at a gridblock is only sensitive to the perturbation to Y1 at that

gridblock. So the gradient of the array f about the Gaussian field Yi is a diagonal
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matrix:

∇Yi
fT =



∂f1

∂Yi,1
0 . . . 0

0 ∂f2

∂Yi,2
. . . 0

...
. . .

0 0 . . .
∂fNg

∂Yi,Ng


, (32)

for i = 1, 2.

The geostatistical parameters {a11, a12, θc1, a21, a22, θc2} impact the facies mis-

match vector through the covariance templates L1 and L2. The gradients of f about

this group of parameters are derived by chain rule:

∇a1i
fT = ∇Y1f

T∇a1i
Y1

= ∇Y1f
T∇a1i

(L1Z1)

= ∇Y1f
T (∇a1i

L1)Z1 (33)

for i = 1, 2,

∇θc1f
T = ∇Y1f

T (∇θc1L1)Z1, (34)

∇a2i
fT = ∇Y2f

T (∇a2i
L2)Z2 (35)

for i = 1, 2, and

∇θc2f
T = ∇Y2f

T (∇θc2L2)Z2. (36)

The square roots of the two covariance matrices L1 and L2 are too large in size

for Cholesky decomposition, therefore the moving average algorithm is used and the

multiplication operations of LiZi become convolutions of Zi with a template LiT ,

for i = 1, 2. The template is a linear combination of a Gaussian template and an

exponential template:

LiT = wiL
G
iT + (1− wi)L

E
iT .

The computation of the gradients of the template Li with respect to the contin-

uous Gaussian type geostatistical parameters, {ai1, ai2, θci}, for i = 1, 2, is discussed
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below. First the derivation of ∇ai1
LiT will be shown in detail. As LiT is a weighted

combination of two terms, both of which are functions about ai1,

∇ai1
LiT = wi∇ai1

LG
iT + (1− wi)∇ai1

LE
iT ,

we need to derive the gradients of the two templates with respect to the parameter

of the principle range: ∇ai1
LG

iT and ∇ai1
LE

iT .

∇ai1
LG

iT =



dLG
iT (1,1)

dai1

dLG
iT (1,2)

dai1
. . .

dLG
iT (1,li,x)

dai1

dLG
iT (2,1)

dai1

dLG
iT (2,2)

dai1
. . .

dLG
iT (2,li,x)

dai1

...
. . .

dLG
iT (Li,y ,1)

dai1

dLG
iT (Li,y ,2)

dai1
. . .

dLG
iT (li,y ,li,x)

dai1



∇ai1
LE

iT =



dLE
iT (1,1)

dai1

dLE
iT (1,2)

dai1
. . .

dLE
iT (1,li,x)

dai1

dLE
iT (2,1)

dai1

dLE
iT (2,2)

dai1
. . .

dLE
iT (2,li,x)

dai1

...
. . .

dLE
iT (Li,y ,1)

dai1

dLE
iT (Li,y ,2)

dai1
. . .

dLE
iT (li,y ,li,x)

dai1


The gradients of the templates to a12, a22, θc1, and θc2 take similar form. The elements

in the matrices are discussed in the next section on the sensitivity computation.

The gradients of f about the threshold lines {r1, r2, . . . , rNl
} are expanded into

matrix form as: 

∇r1f
T

∇r2f
T

...

∇rNl
fT


=



∂f1

∂r1

∂f2

∂r1
. . .

∂fNg

∂r1

∂f1

∂r2

∂f2

∂r2
. . .

∂fNg

∂r2

...
. . .

∂f1

∂rNl

∂f2

∂rNl

. . .
∂fNg

∂rNl


(37)

The gradient of the facies mismatch vector about the uniformly distributed model
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variables mcU = {θ1, θ2, . . . , θNl
} is:

∇mcU
fT =



∇θ1f
T

∇θ2f
T

...

∇θNl
fT



=



∂f1

∂θ1

∂f2

∂θ1
. . .

∂fNg

∂θ1

∂f1

∂θ2

∂f2

∂θ2
. . .

∂fNg

∂θ2

...
. . .

∂f1

∂θNl

∂f2

∂θNl

. . .
∂fNg

∂θNl


. (38)

The discontinuous model parameters md include the number of threshold lines Nl,

the covariance types of the two Gaussian fields, and the facies arrangement in the

threshold map. The number of threshold lines is set to 3 throughout this study. If

there are too many facies to be simulated in a reservoir formation, more threshold

lines can be added on a case to case basis. The covariance types have been converted

to continuous variables as weighting terms w1 and w2. The gradient of the facies

mismatch vector f with respect to wi, for i = 1, 2, is:

∇wi
fT = ∇Yi

fT (∇wi
Li)Zi

= ∇Yi
fT (∇wi

LiT ) ∗ Zi

= ∇Yi
fT (LG

iT − LE
iT ) ∗ Zi. (39)

If there are up to three facies to be simulated in a reservoir model, the total number

of probable facies assignments to a threshold map with seven regions is 37 = 2187. A

method to make the facies assignments differentiable has not been determined. The

selection of the facies assignment on the threshold map is based on the Monte Carlo

method. If the chosen facies assignment does not allow the adjustments of other model
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parameters to generate facies realizations that match the training image, the facies

assignment is abandoned and another will be randomly chosen for the optimization.

6.3 Sensitivity calculation

The model variables for simulating the facies distributions fall into two categories:

those that decide the relative locations of the Gaussian variables at a grid to the

threshold lines, and those that impact the templates for generating the Gaussian

fields. The calculation of the sensitivities of the facies type at one location to a

slight perturbation to any of the parameters characterizing the threshold lines will be

discussed.

Calculations of ∂fi

∂Y1,i
, ∂fi

∂Y2,i
, ∂fi

∂rm
and ∂fi

∂θm
, for i = 1, 2, . . . , Ng and m = 1, 2, . . . , Nl,

are illustrated under different conditions.

1. Fi = Fobs,i.

In this case, fi = 0, and the sensitivities should all be zero so that the facies

type does not change by perturbing threshold lines, i.e.

∂fi

∂Y1,i

= 0;

∂fi

∂Y2,i

= 0;

∂fi

∂rm

= 0;

∂fi

∂θm

= 0.

2. Fi 6= Fobs,i.

For fi = 1, first we need to find out the distance of the ith location to each of

the threshold lines. For points not in the transition zone of a threshold line, the

sensitivities of facies to the parameters describing this line are all zero. Given
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an angle θ and a distance r, a line is described by the following equation:

y = tan(θ − π

2
)(x− r

cos θ
), (40)

i.e. the threshold line is perpendicular to the line passing through the origin

with the slope θ and intersects the line at a distance r. The distance of point

(Y1,i, Y2,i) to the mth threshold line is calculated as:

dm =
tan(θm − π

2
)Y1,i − Y2,i − tan(θm − π

2
) rm

cos θm√
1 + tan2(θm − π

2
)

= sin(θm −
π

2
)Y1,i − cos(θm −

π

2
)Y2,i + rm (41)

where m = 1, 2, . . . , Nl. As θm ∈ (0, π), cos(θm− π
2
) is always greater than zero.

The distance can be positive or negative depending on the location of (Y1,i, Y2,i)

relative to the threshold line. Let yi be the y coordinate of the point on the

threshold line with x coordinate Y1,i:

yi = tan(θm −
π

2
)(Y1,i −

rm

cos θm

).

When Y2,i < yi, the distance of point (Y1,i, Y2,i) to the threshold line dm is

greater than zero, otherwise, it is less than zero. Fig. 15 is a schematic diagram

showing the distance of a point to one of the threshold lines. In this figure, dm

is negative and d′m is positive.

Assume the width of the transition region stated before is ε, which may also

vary with the given facies data. There are two possibilities: (Y1,i, Y2,i) is within a

distance of ε to threshold line m, or (Y1,i, Y2,i) is outside of its transition region.

(a) min(|d1|, |d2|, . . . , |dNl
|) ≥ ε:

The point (Y1,i, Y2,i) is more than ε away from the threshold line m, so the

sensitivities of the facies type at this point are zero to all the parameters
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Figure 15: The distance dm is negative and d′m is positive.

of line m.

∂fi

∂Y1,i

= 0;

∂fi

∂Y2,i

= 0;

∂fi

∂rm

= 0;

∂fi

∂θm

= 0.

(b) |dm| < ε:

The distance to one or more threshold lines is less than ε. In this case, we

must check whether both sides of the threshold lines are the wrong facies

types. If both sides are incorrect, there is no transition area along this

section of the threshold line, so the gradient should be zero. The method

of checking facies types on both sides is illustrated as follows. Assume a

point (a, b) is on a line perpendicular to lm through the point (Y1,i, Y2,i),

and the squared distance between the point (a, b) and the threshold line
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lm is:

d =
tan(θm − π

2
)a− b− tan(θm − π

2
) rm

cos θm√
1 + tan2(θm − π

2
)

= sin(θm −
π

2
)a− cos(θm −

π

2
)b + rm

= ±δ (42)

where δ is a very small positive number so that (a, b) is very close to lm

and right on the other side of the line to point (Y1,i, Y2,i). d takes the

opposite sign with dm, i.e. in Eq. 42, the result takes a positive sign when

dm is less than zero and otherwise takes a negative sign. As for two lines

perpendicular to each other, the product of their slopes is −1, the other

necessary equation for determining a and b is:

(b− Y2,i)

(a− Y1,i)
tan(θ − π

2
) = −1, (43)

The coordinate of the probe point on the other side of the threshold line

can be obtained from Eq. 42 and 43. Thus the facies type corresponding

to the probe point is decided by the facies distribution in the threshold

map.

i. If the other side of the threshold line lm does not have the correct

facies type, then again, all the gradients are zero.

∂fi

∂Y1,i

= 0;

∂fi

∂Y2,i

= 0;

∂fi

∂rm

= 0;

∂fi

∂θm

= 0.
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ii. Otherwise, the sensitivities of facies type at each gridblock to all the

parameters deciding the facies type can be calculated as follows. Here

the chain rule was applied in the derivation.

∂fi

∂Y1,i

=
dfi

d(dm)

∂dm

∂Y1,i

=
dm

|dm|
1

2
√

εdm

sin(θm −
π

2
) (44)

∂fi

∂Y2,i

=
dfi

d(dm)

∂dm

∂Y2,i

= − dm

|dm|
1

2
√

εdm

cos(θm −
π

2
) (45)

∂fi

∂rm

=
dfi

d(dm)

∂dm

∂rm

=
dm

|dm|
1

2
√

εdm

(46)

∂fi

∂θm

=
dfi

d(dm)

d(dm)

dθm

=
dm

|dm|
1

2
√

εdm

[cos(θm −
π

2
)Y1,i + sin(θm −

π

2
)Y2,i] (47)

The second category of variables are those that characterize the templates L1T

and L2T . Each of the templates is a weighted combination of a Gaussian and an

exponential type template. The sensitivities are first derived by pieces, then are put

together to obtain the elements for the gradients. The sensitivity of the Gaussian

template value at the pixel (i, j) is denoted as LG
kT , for k = 1, 2, and its gradient
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about the range in the principle direction is:

dLG
kT (i, j)

dak1

=
d

dak1

[σ(
12

a2
k1π

)0.5 exp(−
6r2

ij

a2
k1

)]

= σ exp(−
6r2

ij

a2
k1

)(
24
√

3r2
ij

a4
k1π

0.5
− 2

√
3

a2
k1π

0.5
)

=
2
√

3σ

a2
k1π

0.5
exp(−

6r2
ij

a2
k1

)(
12r2

ij

a2
k1

− 1),

where rij is the distance of the pixel (i, j) to the center of the template in an isotropic

coordinate space. The gradient of the exponential template about the principle range

ak1 is

dLE
kT (i, j)

dak1

=
d

dak1

[σK 1
4
(
3rij

ak1

)(
2

27
π2a3

k1rij)
−0.25Γ(

3

4
)−1]

= σ(
2

27
π2rij)

−0.25Γ(
3

4
)−1 d

dak1

[K 1
4
(
3rij

ak1

)a
− 3

4
k1 ],

where the gradient
dK 1

4
(x)

dx
= −1

2
(K− 3

4
(x) + K 5

4
(x)).

So the gradient
dLE

kT (i,j)

dak1
is:

dLE
kT (i, j)

dak1

= σ(
2

27
π2rij)

−0.25Γ(
3

4
)−1[

3

2
a
− 11

4
k1 rij(K− 3

4
(
3rij

ak1

)+K 5
4
(
3rij

ak1

))−3

4
a
− 7

4
k1 K 1

4
(
3rij

ak1

)].

The secondary ranges ak2 and the anisotropy angles θck, for k = 1, 2, relate with

the templates through the distance r. Using the chain rule,

dLG
kT (i, j)

dak2

=
dLG

kT (i, j)

dak1Rk

=
1

ak1

dLG
kT (i, j)

drij

drij

dRk

=
1

ak1

d

drij

[σ(
12

a2
k1π

)0.5 exp(−
6r2

ij

a2
k1

)]
1

2rij

dr2
ij

dRk

= −σ(
12rij

a3
k1

)(
12

a2
k1π

)
1
2 exp(−

6r2
ij

a2
k1

)
Rk

rij

(sin θc1i− cos θc1j)
2

= −σ(
24
√

3Rk

a4
k1

√
π

) exp(−
6r2

ij

a2
k1

)(sin θc1i− cos θc1j)
2.
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dLE
kT (i, j)

dak2

=
dLE

kT (i, j)

dak1Rk

=
1

ak1

dLE
kT (i, j)

drij

drij
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=
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dLG
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(1−Rk)
2

rij

(cos θcki + sin θckj)(cos θckj − sin θcki).

for k = 1, 2.

An experiment on the impact of the weighting term w to the features of the facies

realizations is shown in Fig. 16. The w term adjusts the roughness of the facies

boundaries and has no obvious impact on the distribution of the facies clusters on

the large scale. Some geological features may require larger w, but this makes the

matching process difficult. As the facies shapes on the large scale do not seem affected

by w, w = 0 is first assumed and a match to the training image is performed using
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w = 0.0 w = 0.2

w = 0.4 w = 0.6

Figure 16: The facies boundaries are getting more jagged with increasing of the
weighting term w of the exponential type covariance.

a smooth model. After all other parameters have been decided by minimizing the

facies mismatch, a w value is estimated based on the roughness of facies boundaries

in the training image.

6.4 Exploration on optimization of threshold lines

The gradient of the facies mismatch to model parameters has shown that the objective

function for facies mismatch is far more sensitive to the parameters deciding threshold

lines than to those deciding random Gaussian fields, which indicates that adjustment

of θs and rs mostly controls the optimization process. So the first step towards a
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complete optimization of all parameters can be taken by fixing the two Gaussian

random fields as the “true” and leaving the threshold parameters as the only set

of variables to be optimized. Another purpose for leaving the Gaussian random

field fixed is to be able to test the validity of the gradient of the objective function

about threshold parameters. By fixing the Gaussian random fields, the optimization

problem becomes fairly small (with only 6 variable parameters) and it is affordable to

calculate the inverse of the Hessian directly, such that the Levenberg-Marquardt(LM)

algorithm could be used instead of L-BFGS.

6.4.1 Case 1: using true Z1 and Z2

The optimization problem was applied on a fine grid field of 128× 128. Prior experi-

ence with this research has proven that a coarse grid, such as 10×10, would make the

optimization rather difficult. The objective function is the squared difference between

the facies realization map and a given training image with facies observations at each

grid. A set of threshold lines was generated randomly as a prior model, and thus con-

tains no prior knowledge about the truth. By truncating the “true” Gaussian random

fields with this prior threshold model, the objective function and a search direction

were calculated. After 10 steps of LM iterations, the objective function was reduced

from the prior 7383 to 68. The total number of gridblocks is 128× 128 = 16384, and

it is reasonable to accept the convergence when less than 1% of the total gridblocks

have facies type different from the truth.

The reduction of the objective function with LM iterations is shown in Fig. 17. In

Fig. 18, the threshold model after the tenth step and its corresponding facies distri-

bution were compared with the truth case. The data mismatch of 68 is small enough

that the difference between the calculated and the truth can hardly be recognized.

Three sets of threshold lines, the random prior, the posterior and the true are shown

59



Figure 17: The reduction of the objective function with LM iterations.

in Fig. 19. A slight mismatch of the posterior threshold and the truth could be ob-

served and the lines in the posterior model have been shifted far from their prior

location.

6.4.2 Case 2: unknown true Z1 and Z2

Given a map of lithofacies distribution, either from a geologist’s experience, or from

an outcrop, a set of geosatistical parameters which would generate a lithofacies re-

alization with similar features and appearance can be estimated by the LBFGS op-

timization iterations. Unfortunately, a single estimate of the parameters is unlikely

to provide a reasonable characterization of the uncertainty. Simple reasoning, for

example, tells us that there are some symmetries to the threshold map. Because the

variability in the geostatistical parameters is expected to be large (and non-Gaussian),

the pdf of the threshold line parameters can be characterized using the method of

randomized maximum likelihood. In this method, unconditional realizations of model

parameters Z1, Z2, R, Θ are generated, and the model parameters are adjusted to min-

imize the difference between the true (or training) facies map and the predicted facies

map from the current model. If this is done a large number of times, an empirical

estimate of the pdf for threshold line parameters conditional to the training image

can be developed.
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(a) The true threshold map. (b) The true facies field.

(c) Calculated threshold map. (d) Calculated facies field.

Figure 18: The comparison of an optimized estimation after 10 LM iterations with
the ”true” threshold map and facies field.

(a) The prior threshold model. (b) Comparison between calculated and
the truth.

Figure 19: Comparison of the prior, the posterior and the true threshold map. Solid
lines are stochastic model estimations and dashed lines are the truth.
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The objective function for this problem contains both the squared data mismatch

term and the squared model mismatch term, as shown in Eq. 17. The model mismatch

part was used to prevent singularity of the inverse problem. As the mean or any prior

knowledge of the model parameters are unavailable, the initial guess of model param-

eters was used as a constraint, consistent with application of Randomized Maximum

Likelihood,

O(mk) =
1

2
(mk−mpr)

T C−1
M (mk−mpr)+

1

2
(F (mk)−Fobs)

T C−1
D (F (mk)−Fobs). (48)

There is little information of a reasonable magnitude of the error in a facies obser-

vation, especially for a map created by the experience of a geologist. Therefore, we

simply assumed the covariance matrix of the facies observations CD = 1 and seemed

to obtain reasonable answers.

As an example synthetic problem, the reservoir model is two dimensional and

heterogeneous, with the size 300 ft ×300 ft. It is discretized into 128×128 gridblocks.

Three threshold lines are used for truncation and three lithotypes were assigned to

the threshold map. Both y1 and y2 have isotropic Gaussian type covariance with

same range of 90 ft. The model variables were defined on an augmented grid whose

dimensions were 192× 192. Because two of these grids are need for truncation there

are approximately 73,000 variables and 16,000 data in the problem.

Three threshold lines were used for truncation and three lithotypes were assigned

to the threshold map. Fig. 20 shows the facies distribution from the initial guess of

model parameters. The initial facies mismatch is 12525, i.e. 76% of the gridblocks

have the wrong facies types compared to the training image [Fig. 23 (left)].

This problem is far too large for Levenberg-Marquardt, so the limited memory

version of the BFGS (L-BFGS) algorithm (Nocedal, 1980) was used for the mini-

mization of the objective function because it requires storage of only a small set of
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Figure 20: The initial facies map (left) and the gradient of the objective function
with respect to the field evaluated at the initial map (right).

vectors instead of the whole inverse Hessian matrix. The inverse Hessian is iteratively

updated based on computations of the gradient, for which an adjoint method with

automatic code generation (Corliss et al., 2001) was used.

The LBFGS algorithm is one of the most popular quasi-Newton methods. It is

based on generating an approximation of the inverse of Hessian matrix from compu-

tations of the gradient. For problems with large number of model parameters, like

the problem this section is dealing with, it becomes impossible to even store the Hes-

sian matrix. The LBFGS algorithm stores only a set of vectors instead of the whole

Hessian matrix, and produces search direction with great convergence efficiency.

Let gk be the kth step gradient calculated from the adjoint method, L be the

maximum number of vectors to be stored, which has to be fixed as constant, and k

be the current iteration number. The Nocedal LBFGS algorithm is as follows.

1. If k ≤ L, set incr = 0 and bound = k; else set incr = k − L and bound = L

2. qbound = gk
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3. For i = bound− 1, . . . , 0 
j = i + incr

αi = ρjs
T
j qi+1

qi = qi+1 − αiyj

r0 = H̃−1
0 × q0

4. For i = 0, 1, . . . , bound− 1
j = i + incr

βj = ρjy
T
j ri

ri+1 = ri + sj(αi − βi)

5. dk = −rbound

where

sj = mj+1 −mj

yj = gj+1 − gj

ρj = 1/(yT
j sj)

dk is the search direction given by −H̃−1
k × gk if Newton’s method is used.

Fig. 20 (right) shows the gradient of the objective function with respect to Y1.

The gradient of the objective function to Y1 clearly reflects the regions of high sensi-

tivity. Comparing the right and left sub-figures in Fig. 20, it may concluded that the

mismatch function is most sensitive to changes in the values of the random variables

that are near facies boundaries. The width of the region of sensitivity depends on the

width of the transition region and its choice affects the rate of convergence.

Fig. 21(a) is the output gradient of the objective function with respect to the

Gaussian random field Z1. Because the scheme of list convolution was used, the
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Gaussian random fields Z1 and Z2 both have greater dimensions than the true grid-

blocks. From Eq. 28, the gradient of the objective function with respect to Z1 can also

be calculated by convolution of the Gaussian template with the gradient of objective

function to Y1. So the field in Fig. 20(right) was convolved with the Gaussian tem-

plate and the result is plotted in Fig. 21(b). As expected, Fig. 21(a) and Fig. 21(b)

have very similar values. The difference of the two plots is in the frame areas, which

are largely due to numerical error brought by the difference in the list convolution

routine and its adjoint routine. The plot with sensitivity values in the frame area is

more reasonable.

(a) Gradient of objective function to Z1

field from adjoint code.
(b) Gradient of objective function to Z1

field from chain rule.

Figure 21: The resulting gradient field of Z1 from convolution of the Gaussian tem-
plate with the gradient of objective function to Y1 field.

In applying the LBFGS method, the method would frequently become stuck at a

fairly large value of the objective function, and that the line search implementation

was not trivial. After experimenting with several methods, a simple investigation of

the behavior of the objective function in the descent direction for the first iteration

was performed. The reduction of the objective function in the first search direction

is shown in Fig. 22. The discontinuous reduction in the objective function curve

is due to a switching of lithotypes in different regions of the threshold map, when
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the modification on the threshold line parameters caused the lines to intersect in a

different way.

Figure 22: Shape of initial objective function in first search direction.

Finally the training image is shown together with the final facies map in Fig. 23.

The facies in 95.6% of the gridblocks in the final result matched the facies in the

training image.

The minimization procedure was reported 200 times; each procedure started with

unconditional realizations of the parameters describing locations of the threshold lines

and unconditional realizations of the random variables on the grid. The Randomized

Maximum Likelihood (RML) method was used for the sampling, as it seems to do a

relatively good job of sampling for this type of problem (see Liu and Oliver, 2003a).

Figure 23: Comparison of the facies map generated from the minimization of the
objective function (right) with the training image (left).
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In approximately half of the cases the resulting value of the objective function seemed

satisfactory (less than 2000). Fig. 24 summarizes the distribution of realizations of

the orientations of the first two threshold lines.

Although the orientation of the threshold lines were sampled randomly from a uni-

form distribution, the facies were assigned in a non-random and non-uniform manner.

As a result, it was necessary to arrange the threshold lines in the order θ1 < θ2 < θ3.

Once this is done, the distributions of orientations are no longer uniform. It would

be unlikely, for example, for the smallest of the three angles (θ1) to be close to π, and

this is seen in Fig. 24. From the two plots, it is not apparent that the estimate of

the posterior distribution for θ1 or θ2 (indicated by the black squares) is significantly

different from the prior distribution (indicated by the black triangles). If there had

been rotational symmetry to the threshold plots, the orientations to cluster along

lines in cross-plots of variables should be expected. Cross-plots of the threshold line

parameters from the 109 accepted conditional samples failed, however, to show any

obvious patterns. In order to honor the proportions of facies correctly, there must be

some fairly strong constraints on the relationships among the threshold line param-

eters, but they are not obvious from the conditional realizations. 2500 conditional

threshold models were generated in addition to the 109 models, and the cross-plots

are presented in Fig. 25. Again, no obvious patterns are revealed. It would be easy,

however, to use the realizations generated in this procedure in a Monte Carlo method,

in which case the true sampling space of model parameters does not have to be known.

6.4.3 Experiment with automatic adjoint system generator

Among the methods of optimization of large number of model parameters, the ad-

joint method is one of the most powerful methods for computing the gradient of the
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Figure 24: Comparison of the estimated pdf (squares) for θ1 (left) and θ2 (right) to
the prior pdf (triangles) The width of the gray bars indicates the variability due to
limited sample size of 109 ordered sets of 3 orientations from a uniform distribution.
10% are higher and 10% are lower.
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Figure 25: Cross-plots of the conditional threshold line models.
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objective function with respect to model parameters. However, construction of the

adjoint system for large history matching problems is not trivial.

Software tools for automatic generation of code to compute derivatives using the

adjoint method have been developed at several national laboratories in the U.S. and

in France (Corliss et al., 2001). Among these software tools, TAPENADE1 was

designed for “reverse mode AD”, i.e. computation of gradient of the objective function

with respect to model parameters based on adjoint method. Providing a Fortran

source program, the name of the top routine to be differentiated, the dependent

output variables whose derivatives are required and the independent input variables

with respect to which it must differentiate, this tool returns the reverse (adjoint)

differentiated program. TAPENADE can be either utilized as a server (JAVA servlet)

or be installed locally as a set of JAVA classes (JAR archive). In that case it is run

by a simple command line, which can be included into a Makefile.

Here, an example of generating reverse mode of a Fortran 77 subroutine by the

TAPENADE online server is presented. The subroutine CNVLVE does array convo-

lution by list convolving an input template named MASK with the input array, AR-

RAY. The input variables M and N are the number of rows and number of columns

of ARRAY respectively. MMASK and NMASK are the dimensions of the MASK.

OUTPUT is the result from convolution with the same dimensions as ARRAY.

1Available at www-sop.inria.fr/tropics/tapenade.html
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!—- List Convolve Code —————————————————*

SUBROUTINE CNVLVE( ARRAY, M, N, MASK, MMASK, NMASK, OUTPUT

)

INTEGER M, N, MMASK, NMASK REAL ARRAY(M,N),

MASK(MMASK,NMASK), OUTPUT(M,N) INTEGER I, J, IM, JM, MOFF,

NOFF REAL SUM

! Calculate MOFF and NOFF. These offsets into the image are used

! to leave an edge around the output image. We leave them alone;

! the user must explicitly do something about it, either setting

! it to zero, to the mean of the image, or whatever.

MOFF = (MMASK-1) / 2

NOFF = (NMASK-1) / 2

! Scan through ARRAY. At each position, evaluate the sum of the

! products of array pixels with the mask. When we’ve looked at

! all the pixels, put this sum into the output array.

DO J = NOFF+1, N-NOFF

DO I = MOFF+1, M-MOFF

SUM = 0.0

DO JM = 1, NMASK

DO IM = 1, MMASK

SUM = SUM + ARRAY(I+IM-(MOFF+1),J+JM-(NOFF+1))

* MASK(IM,JM)

END DO !IM

END DO !JM

OUTPUT(I,J) = SUM
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(cont’d)

END DO ! I

END DO ! J

RETURN

END

The adjoint code generated from TAPENADE first repeats the programs in the

source code CNVLVE and pushes intermediate computation results into a memory

stack. In the second part of the adjoint code, it pops out those intermediate variables

from the memory stack. Though some of the stack memory “pushes” and “pops”

are unnecessary for obtaining the desired gradients, some are vital information and

had to be saved from the forward computation. The memory stack operation subrou-

tines such as PUSHINTEGER4, POPINTEGER4 etc., are provided by TAPENADE

together with the generated adjoint code. However, these stack operation subrou-

tines are in the C language. This brought two problems to WINDOWS system users.

First, they have to own both Fortran and C compilers to possibly compile their For-

tran source code and C package. Second, the visual Fortran platforms for WINDOWS

system, such as COMPAQ VISUAL STUDIO and MICROSOFT VISUAL STUDIO,

are good at calling Fortran subroutines by C, but not the other way around. In this

research, all the computations using adjoint code from TAPENADE were achieved

on IBM Regatta high performance computers.
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! Generated by TAPENADE (INRIA, Tropics team)

! Version 2.0.2 -(Id: 1.11 vmp Stable - Tue Mar 11 10:35:48 MET 2003)

! Differentiation of adjoint in reverse (adjoint) mode:

! gradient, with respect to input variables: array mask

! of linear combination of output variables: output

! ——————————————————

SUBROUTINE CNVLVE B(array, arrayb, m, n, mask, mmask, nmask, output,

outputb)

INTEGER m, mmask, n, nmask

REAL array(m, n), arrayb(m, n), mask(mmask, nmask), output(m, n),outputb(m,

n)

INTEGER adfrom, adfrom0, adto, i, ii, ii0, im, j, jm, moff, noff REAL sum, sumb

moff = (mmask-1)/2

noff = (nmask-1)/2

adFrom0 = noff + 1

DO j=adFrom0,n-noff

adFrom = moff + 1

DO i=adFrom,m-moff

sum = 0.0

DO jm=1,nmask

DO im=1,mmask

sum = sum + array(i+im-(moff+1), j+jm-(noff+1))*mask(im,jm)

ENDDO

CALL PUSHINTEGER4(im - 1)

ENDDO

72



(cont’d)

CALL PUSHINTEGER4(jm - 1)

output(i, j) = sum

ENDDO

CALL PUSHINTEGER4(i - 1)

CALL PUSHINTEGER4(adFrom)

ENDDO

CALL PUSHINTEGER4(j - 1)

CALL PUSHINTEGER4(adFrom0)

DO ii0=1,n

DO ii=1,m

arrayb(ii, ii0) = 0.0

ENDDO

ENDDO

CALL POPINTEGER4(adFrom0)

CALL POPINTEGER4(adTo)

DO j=adTo,adFrom0,-1

CALL POPINTEGER4(adFrom)

CALL POPINTEGER4(adTo)

DO i=adTo,adFrom,-1

sumb = outputb(i, j)

outputb(i, j) = 0.0

CALL POPINTEGER4(adTo)

DO jm=adTo,1,-1

CALL POPINTEGER4(adTo)
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(cont’d)

DO im=adTo,1,-1

arrayb(i+im-(moff+1), j+jm-(noff+1)) = arrayb(i+im-(moff+1

), j+jm-(noff+1)) + mask(im, jm)*sumb

ENDDO

ENDDO

ENDDO

ENDDO

END

In reservoir history matching problems, construction of the adjoint system for

obtaining the gradient of the objective function with respect to model parameters

always takes great effort. To minimize the effort required for generation of the adjoint

code, the automatic gradient generator, TAPENADE, was applied to this problem.

It managed to calculate the gradient of facies mismatch with respect to all the model

paramters (Z1, Z2, R and Θ). Because TAPENADE is designed as a very general tool

for differentiation of any kind of Fortran statements, the adjoint code it generated is

not “plug and play” and needs to be edited carefully before use. Thus for complicated

problems, it still takes a lot of work to understand its adjoint computation. Later

application of the adjoint code generator for computing the gradient of the production

rate mismatch with respect to the random Gaussian fields was not successful.

6.4.4 Limitations on perturbation of threshold slope angles

There are some potential problems here with the way the threshold lines are defined.

The initial set of the slope angles are generated from a uniform distribution U(0, π)

and defined as double precision numbers, so it is highly unlikely for any two of the

slope angles to have the same value, or for any of them to exactly equal to π
2
. During
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perturbation, however, the threshold lines need to be freely rotated and sometimes

problems may occur in calculation.

1. Parallel: When any of the two threshold lines are parallel, there will be only six

areas in the threshold map, and the coordinates of one of the intersections will

become extremely large. This problem can be avoided by checking the values

of θ and δθ when updating model parameters. If |θi − θj| < ε′, then

θi = θi + Sign(δθi)ε
′ (49)

θj = θj + Sign(δθj)ε
′ (50)

where ε′ should not be greater than 10−8.

However, associated with thresholds getting parallel, there is a facies switching

problem as illustrated in Fig. 26. The threshold map on the left is before

perturbation and the one on the right is after one threshold took an exaggerated

slope angle increase. By adjusting one slope angle to be greater than another, at

least 4 areas have been dramatically shifted (area 2, 3, 6 and 7). Consequently,

the facies assigned to the gridblocks mapped in these area were changed and the

objective function soared abruptly. The gradient based optimization process

usually does not accept increasing of the objective function, this caused the

threshold line sticking in the position of nearly parallel with another.

2. θi = π
2
: From the definition of threshold lines in Eq. 40, the cos θ term in the

denominator can not equal to zero, i.e. θi should avoid being equal to π
2

in

double precision. The solution to this problem is the same as in Eq. 49. No

facies switching problem is involved here.

3. θi ≤ 0 or θi ≥ π: The equations for sensitivity calculations in the last section

requires θ ∈ (0, π). So another check should be applied besides those mentioned
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Figure 26: Facies switching caused by changing relative value of the slope angles.

in the previous two items. After updating the model parameters,

θi =



θi + π if θi < 0

π − ε′ if θi = 0

ε′ if θi = π

θi − π if θi > π.

There is also a facies switching problem related with a slight rotation passing

through the slope angle 0 or π, which is illustrated in Fig. 27. The slope angle

of one of the threshold lines was a little less than π in the figure on the left, and

was increased to be greater than π as shown on the right. Though the value

of the slope angle can be fixed by subtracting π, the labelled regions from 1 to

6 are altered. Again, this causes an increase in the objective function and the

minimization process will be stuck in this situation. However, the solution is

more obvious here than in item 1. If the line passes through 0 or π from positive

direction, i.e. θi increases, the labels are switched on facies areas clockwise, and

vice versa.
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Figure 27: Rotation of facies assignment due to one slope angle increased greater
than π.

6.5 Estimation of covariance parameters

This section presents the study on estimation of the probability distribution of the co-

variance parameters from a given training image. Although most of the softwares on

geostatistical analysis and simulation provides functions for estimation of the covari-

ance parameters, such as the covariance type, the principle ranges, and the anisotropy

angle, it is an unusual problem to estimate the covariance parameters for the under-

lying Gaussian fields in truncated plurigaussian approach. The uniqueness of the

problem lies in two aspects:

1. The direct measurement in the training image is the facies type, which is a dis-

continuous indicator variable. It is straightforward to generate the experimental

variogram from the training image for the facies, however, the facies types do

not relate to any of the Gaussian fields linearly because of the facies assignment

scheme in the threshold map.

2. The facies type at each location is decided by two or more Gaussian variables

in the truncated plurigaussian approach. The idea of estimation of the spatial
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correlation of the Gaussian fields is to solve an underdetermined problem.

Therefore, the training image barely provides a qualitative spatial correlation of the

Gaussian fields.

This study takes the Baysian approach in estimation of the geostatistical param-

eters for the Gaussian fields. The a posteriori PDF of the model parameters are

generated using the randomized maximum likelihood (RML) algorithm by minimiza-

tion of the objective function as shown in Eq. 48. The objective function is composed

of the squared model mismatch and the squared data mismatch. Unlike the previous

study on estimation of the threshold line parameters, the covariance parameters are

unknown and are to be estimated in this section.

6.5.1 Known threshold map

Previous experience in estimation of the threshold parameters has shown that the

diagonal elements of the model covariance term in the objective function cannot just

be the variance of the prior distribution of the model parameters. The random vari-

ables deciding the Gaussian fields, Z1 and Z2, are not in the same category with the

threshold line parameters, and have much less impact on the objective function. The

prior distributions of the underlying random variables Z1 and Z2 both are Gaussian

with mean 0 and variance 1. Although the prior distribution of the distances of the

threshold lines to the origin ({r1, r2, r3}) is the positive half of N(0, 1), their corre-

sponding weighting term in the prior model covariance matrix was set as 1000. When

the weighting terms for the threshold parameters are low (1 – 500) in the prior model

covariance matrix, the perturbations to model parameters in the optimization pro-

cess were exclusively made on the threshold line parameters, and the modifications to

the random variables Z1 and Z2 are too small to take any effect within a reasonable

number of optimization iterations.
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(a) The training image (b) The “true” threshold map

Figure 28: The given training image for estimation of covariance parameters, and
the threshold map that used to generated the training image.

When the geostatistical parameters of the covariances of the Gaussian fields are

considered, the relative weighting of the covariance parameters to the threshold pa-

rameters becomes an issue to investigate. So the study for estimation of the covariance

parameters starts with the assumption that the threshold map used for generating

the training image (“true threshold map”) is known.

Fig. 28(a) shows the training image, in which the black area represents facies 1,

grey for facies 2, and white for facies 3. The dimensions of the training image are

128 × 128, with each gridblock size 40 ft × 40 ft. Both the Gaussian fields Y1 and

Y2 for generating the training image have isotropic Gaussian type covariance and a

range of 1536 feet. The correlation ranges for both Gaussian fields are 30% of the

facies map width, such that there is enough periodicity for the spatial correlation of

the Gaussian fields, while avoiding generation of small facies clusters that are difficult

to match. The “true threshold map” is shown in Fig. 28(b).

From the observation of a training image, prior estimations of the covariance

parameters become available. Assume the prior estimations of the principle ranges

are in Gaussian distributions with the mean the same as the true ranges (1536 ft)

and the standard deviations as 10% of the range distances. The prior estimation of
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the anisotropy angles of both the Gaussian fields are also in Gaussian distributions

with the same mean as the true angle (0 degrees for isotropic Gaussian fields), and 5

degrees standard deviation.

Although the dimensions of the Gaussian fields Y1 and Y2 are 128 × 128, the

dimensions of the underlying model fields Z1 and Z2 are much larger (204 × 204)

because of the correlation length of the covariances and the moving average algorithm

used for generating Gaussian fields. The correlation ranges and the anisotropy angles

are changing in the optimization process. However, the dimensions of Z1 and Z2 have

to be fixed throughout the matching process, as Z1 and Z2 are model parameters

to be carried through and estimated. Therefore the dimensions of the covariance

templates L1
T and L2

T for the moving average have to be large enough to allow possible

overestimation of the ranges without losing much accuracy for simulation of the facies

map. For every iteration, the model parameters are updated and L1
T and L2

T are

recomputed.

The number of model parameters is 83,238 ({Z1, Z2, a11, a12, θc1, a21, a22, θc2}), and

the number of data is 16,384 (128× 128). For minimization of the objective function,

the adjoint method is used for computation of the gradient of the objective function

to the model parameters, and the LBFGS algorithm is used for computation of the

search direction. Fig. 29(a) shows a facies map realization simulated from a set of

prior model parameters. The initial number of gridblocks that has the facies type

different from the training image (facies mismatch) is 11,500, which is 70.2% of the

total gridblocks. After 57 iterations, the facies mismatch reduced to 738 (4.5%).

The final facies map simulated from the conditioned model parameters is shown in

Fig. 29(b).

Comparing Fig. 29(b) with the training image in Fig. 28(a), the major features

and most of the small features in the training image are reproduced in the final facies
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(a) The facies map from the
prior model

(b) The final facies map realization

Figure 29: The facies map realizations from the prior model estimation and from
the final model conditioned to the training image.

Parameters a11 a12 θc1 a21 a22 θc2

Prior 1530.2 1180.6 0.10173 1289.4 1384.2 -0.10913
Final 1240.2 862.4 -1.09170 1148.6 1222.8 -1.43212

Table 3: The covariance parameters before and after matching to the training image.

map. However, the final covariance model parameters reflect increased uncertainty

from the prior model PDF. The prior and the final covariance parameters are listed

in Table 3. All of the correlation ranges from the conditioned realization are smaller

than their prior value, and the anisotropy for both Gaussian fields has increased.

To observe the a posteriori distribution of the covariance parameters, 200 sets of

the prior model parameters {Z1, Z2, a11, a12, a21, a22, θc1, θc2} are generated from the

same prior PDF as the previous prior realization, and optimized to match the training

image in Fig. 28(a). Although some sets of the initial model parameters are more

difficult to be adjusted than others to match the training image, all the 200 final

covariance parameters are used for analysis of the a posteriori distributions of the

covariance parameters, regardless of the final facies mismatch value. Fig. 30 shows

the histograms of the 200 sets of the covariance parameters. All the distributions of
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the ranges are biased to values lower than those that generated the training image,

and the spreads are wider than the prior distributions. The distributions for the

anisotropy angles seem to center at 0 degrees, but also have much wider spread than

the priors.

Figure 31 shows the cross-plots of the conditional covariance parameters. Each

sub-figure contains 200 points, and the size of each point is decided by the quality

of the match. For conditional parameters that are optimized to yield lower objective

function values, the dots are larger, and vice versa. These plots indicate not only the

conditional parameter distributions, but also the scale of the final objective function.

From the cross-plots, the clusters of bigger dots generally coincide with the mode

in the histograms of the ranges. Although the histogram of θc1 has the mode value

at 0 degrees, the bigger dots seem to be uniformly distributed from −π to π. The

histogram of θc2 indicates the mode at 1.3, but the cross-plots show that the bigger

dots are clustered at -2.

This case study revealed that it is difficult to accurately estimate the covariance

parameters, at least for this scale of problem where the size of the field is about three

times the correlation range in each direction. The patterns of facies distribution in

the training image are relatively insensitive to the covariance parameters, such that a

training image generated from two isotropic Gaussian fields is sufficiently duplicated

by facies maps that are from anisotropic Gaussian fields with much smaller correlation

ranges.

6.5.2 Impact of correlation ranges to facies patterns

The example for estimation of the covariance parameters of the two Gaussian fields

from a training image demonstrated the wide conditional distribution of the ranges

when the correlation ranges are large in comparison to the field size (30%). On the
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Figure 30: Histograms of the 200 conditioned covariance models.
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(a) a11 vs a12 (b) a21 vs a22

(c) θc1 vs θc2 (d) a11 vs θc1

(e) a12 vs θc1 (f) a21 vs θc2

(g) a22 vs θc2 (h) a11 vs a21

Figure 31: Cross-plots of the conditional covariance parameters. The size of the dots
is proportional to the matching quality to the training image.
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(a) (b)

Figure 32: Two unconditional facies realizations generated from two isotropic Gaus-
sian fields. The ranges of both Gaussian fields are 1536 ft.

other hand, the patterns in the facies distribution do not depend much on the spatial

correlations of the Gaussian fields. The same set of covariance parameters yields a

great variety of facies patterns. The two unconditional facies realizations shown in

Fig. 32 both are generated from isotropic Gaussian fields with range 1536, and the

only difference is the random variables Z1 and Z2. The field size is 5120 ft × 5120

ft. Without knowing the actual covariance parameters used in each facies map, it

is easy to conclude that the two facies maps have distinct spatial correlations. The

proportion of facies 1 (in black) is significantly greater in Fig. 32(a) than in Fig. 32(b).

Fig. 33 shows two facies realizations from the same set of Z1 and Z2 with those

in Fig. 32(b). The Gaussian field Y1 for Fig. 33(a) is anisotropic with the principle

ranges in the horizontal direction (0 degree) 1536 ft, and vertical direction (90 degree)

768 ft. The Gaussian field Y2 for Fig. 33(a) is isotropic with range 1536 ft. Although

the Gaussian field Y1 for Fig. 33(a) has anisotropy ratio of 2, it does not make the

spatial structure in the facies map distinct from Fig. 32(b).

Shrinking the horizontal correlation range of Y2 (a21) from 1536 to 768, the facies
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(a) (b)

Figure 33: Two unconditional facies realizations generated from anisotropic co-
variance fields. For the facies map on the left: a11 = 1536, a12 = 768, θc1 = 0,
a21 = a22 = 1536. For the facies map on the right: a11 = 1536, a12 = 768, θc1 = 0,
a21 = 768, a22 = 1536, θc1 = π/2.

map in Fig. 33(a) is rearranged as shown in Fig. 33(b). Both of the Gaussian fields

lying behind the facies map have anisotropic ratio of 2. Moreover, as Y2 is the

vertical coordinate in the threshold map, it extends horizontally along the coordinate

of Y1, and the anisotropy features are expected to be enhanced. However, comparing

Fig. 33(b) and Fig. 32(a) without knowing their actual covariance parameters, it is

hard to tell which one is more anisotropic.

The anisotropy becomes observable in the facies maps when the anisotropy ratios

are significantly larger than 1. The two facies maps in Fig. 34 have the same set

of covariance parameters: a11 = 1536 ft, a12 = 384 ft, θc1 = π/6, a21 = 1536 ft,

a22 = 384 ft, and θc2 = π/4, but they still appear to be different in spatial structure.

The proportion of facies 1 (in black) is greater in Fig. 34(a) than in Fig. 34(b).

The reason seems to be that the principle range of 1536 ft for both Gaussian fields

is too large in comparison to the field size (30%), such that the features of spatial

correlation are not repeated sufficiently. Reducing the principle range from 1536 to
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(a) (b)

Figure 34: Two unconditional facies realizations generated from highly anisotropic
Gaussian fields. a11 = 1536 ft, a12 = 384 ft, θc1 = π/6, a21 = 1536 ft, a22 = 384 ft,
and θc2 = π/4.

1280, and keeping all other parameters as in Fig. 34, the spatial structures of the two

unconditional facies realizations in Fig. 35 seem a lot more similar.

6.5.3 Experiments on training images with shorter correlation lengths

The facies map in Fig. 35(a) is used as a training image to examine the uncertainty

distribution of the estimated covariance parameters. The correlation range of facies in

Fig. 35(a) should be small enough to allow sufficient periodicity to be observed. The

truncation scheme for generating the training image is assumed to be known, which is

shown in Fig. 28(b). The unconditional ranges for the Gaussian fields are generated

from the Gaussian prior PDFs with the “true” mean and the standard deviation of

10% of the mean. The prior distribution of the unconditional anisotropy angles are

Gaussian with mean at the truth and the standard deviation of 5 degrees.

The mismatches of the 200 final facies maps to the training image are plotted in

the histogram as shown in Fig. 36. The mode of the histogram is around 10% of the

total number of grid blocks, and the optimization process seemed to be more difficult
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(a) (b)

Figure 35: Two unconditional facies realizations generated from highly anisotropic
Gaussian fields. a11 = 1280 ft, a12 = 384 ft, θc1 = π/6, a21 = 1280 ft, a22 = 384 ft,
and θc2 = π/4

than in the case with larger correlation ranges. Figure 37 shows the histograms of the

final 200 covariance parameters. The distribution of a11 is multi-modal with modes

around 300 ft and 900 ft. The distribution of a12 has the mode around 300 ft. The

distribution of a21 is similar with that of a11, but the greater mode is around 1000 ft.

The distribution of a22 is much narrower than other ranges. Although the distribution

of the 200 conditioned a22 appears to have two modes, the value difference between

the two modes is small. So the multi-modal appearance can be attributed to the

insufficient number of samples. The real mode is around 300 ft. The smaller mode

in the histograms of the principle ranges, a11 and a21, could be attributed to the

switching of the longer and shorter ranges. However, the distributions of the shorter

ranges, a12 and a22, do not appear to have peaks around 1000 ft, which indicates that

isotropic covariance fields with ranges around 300 ft could also reproduce the training

image. This might be feasible as the features of the facies distributions also depend

on the truncation schemes.

The histograms of both the anisotropy angles are multi-modal. The mode with
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Figure 36: The distribution of the facies mismatch from the final 200 facies realiza-
tions.

higher frequency for θc1 is at 0.6, and the other mode is at 2.3. The two modes are

π/2 apart, which should be the result of principle range reduced below the secondary

range. The mode with higher frequency for θc2 is at 0.8, and the other mode is at

2.4, which is also about π/2 apart.

Figure 38 shows the cross-plots of the geostatistical parameters, in which the dots

indicate the final values of the facies mismatch. The bigger the size of the dot, the

better match its corresponding geostatistical parameters achieved. The size of the

dots shown in Fig. 38 are comparable in size with the ones in Fig. 31. It appears to

have less good matches with highly anisotropic and shorter correlated Gaussian fields,

but more features are revealed instead of just blobs as in Fig. 31. All the good matches

in Fig. 38(c) are clustered around the true values, with the uncertainty distribution

wider than the prior. The distributions of the estimated ranges represented by the

bigger dots are also wider than the prior, and shifted to lower values.

In practice, the prior estimations of the geostatistical parameters from the given

training image may have larger uncertainties than in the case studied above. When

the initial estimation is far away from the truth, it is often harder to minimize the

facies mismatch in the optimization process. Therefore, when the uncertainties in the
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Figure 37: Histograms of the 200 conditioned covariance models estimated from the
training image with shorter correlation range. The prior PDFs of the correlation
ranges are Gaussian with the mean at the “truth” and standard deviation of 10% of
the mean. The prior PDFs of the anisotropy angles are Gaussian with the mean at
the “truth” and standard deviation of 5 degrees.
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(a) a11 vs a12 (b) a21 vs a22

(c) θc1 vs θc2 (d) a11 vs θc1

(e) a12 vs θc1 (f) a21 vs θc2

(g) a22 vs θc2 (h) a11 vs a21

Figure 38: Cross-plots of the conditional covariance parameters from the training
image with shorter correlation range. The size of the dots is proportional to the
quality of the match to the training image.
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Figure 39: Histograms of the 200 conditioned covariance models estimated from the
training image with shorter correlation range. The prior PDFs of the correlation
ranges are Gaussian with the mean at the “truth” and standard deviation of 50% of
the mean. The prior PDFs of the anisotropy angles are Gaussian with the mean at
the “truth” and standard deviation of 45 degrees.

prior estimations are increased, fewer sets of conditional geostatistical model param-

eters could be obtained with low facies mismatch, but the conditional realizations of

the geostatistical model parameters from the wider prior PDFs should be a better

representation of the true a posteriori PDFs.

The unconditional realizations of the correlation ranges are generated from the

truncated Gaussian distributions with the mode at the “truth” and the standard

deviation of 50% of the mode values. As there is about 19.7% of the possibility that

the prior ranges could be negative, the negative values generated were abandoned and

new samples were drawn from the positive part of the prior Gaussian distributions.

The prior distributions of the anisotropy angles are Gaussian with modes at the

“truth” (π/6 and π/4, respectively) and standard deviation of π/4. The covariance

parameters generated from the prior PDFs with greater uncertainties are optimized

to match the training image in Fig. 35(a).

Figure 39 shows the histograms of the conditioned anisotropy angles. There are
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(a) a11 vs a12 (b) a21 vs a22

(c) a11 vs θc1 (d) a21 vs θc2

Figure 40: Cross-plots of the conditional covariance parameters from the training
image with shorter correlation range. The prior covariance parameters are generated
from wide uncertainty distributions.

again two peaks that separated by π/2 in each histogram. The experimental a pos-

teriori distributions are centered at the true anisotropy angles with less uncertainties

than in the prior distributions.

The difficulty in matching the training image using the prior geostatistical pa-

rameters from wide uncertainty distributions is reflected by the sparsity of bigger

dots in the cross plots shown in Fig. 40. The conditioned estimates of the Gaussian

correlation ranges are biased to much lower values than the truth.

93



CHAPTER VII

GRADIENT METHOD IN MATCHING

PRODUCTION DATA

The only locations in the reservoir at which facies can actually be observed are the

well bores with coring operations. A training image from geologists can be used to

describe expected facies distribution patterns and features based on the sedimentary

environment and formation outcrops, but does not carry any local accuracy. In the

previous study, probability density functions for the geostatistical parameters, such

as the ones deciding truncation schemes and the ones deciding the covariance of

the Gaussian fields, were estimated from a given training image. The geostatistical

parameters were then sampled from the PDFs in a Bayesian scheme for simulation of

facies conditional to logs and/or production data.

When the geostatistical parameters are fixed, realizations of the facies distribu-

tion map can be generated by minimizing the objective function with respect to the

random fields Z1 and Z2. The objective function in this case is:

O(m) =
1

2
[P (m)− Pobs]

T C−1
P [P (m)− Pobs] +

1

2
[F (m)− Fobs]

T C−1
F [F (m)− Fobs]

+
1

2
(m−mpr)

T C−1
M (m−mpr)

=
1

2
[d(m)− dobs]

T C−1
D [d(m)− dobs] +

1

2
(m−mpr)

T C−1
M (m−mpr), (51)

where the prior model mpr = {Z1,pr, Z2,pr} is composed of random deviates with mean

0 and variance 1, so the prior model covariance matrix CM is an identity matrix. Pobs is

the observed production data, such as the bottom-hole pressures, the water-oil ratios

(WORs), the gas-oil ratios (GORs), and the production rates. P (m) is the simulated
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production data. Fobs is the facies observation at a few cored locations. Both CP and

CF are diagonal covariance matrices of the data observations for independent data

errors, and its diagonal elements are the variances of measurement errors. The facies

observations are very accurate so its variance is much smaller than that of production

data. The mismatch to the facies data dominates the objective function before all the

facies observations are matched, so that the facies type at well locations are forced to

exactly honor the facies observations. The production data and the facies data are

combined and denoted as dobs.

7.1 Gradient derivation

The variation of rock properties within a facies is assumed to be negligible in com-

parison with that between different facies types, so the porosity and the permeability

values at each gridblock are determined by the facies type. The gradient of the

objective function O(m) with respect to the model parameters is:

g = ∇mO(m)

= GP (m)T C−1
P [P (m)− Pobs] + GF (m)T C−1

F [F (m)− Fobs] + C−1
M (m−mpr)

= gP + gF + gm

= ∇mOd(m) +∇mOm(m). (52)

When the geostatistical model has been chosen, generating a facies realization that

matches the production data and logging data requires optimization with respect to

the random fields Z1 and Z2.

The gradient of the data mismatch with respect to Z1 and Z2 can be derived by
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the chain rule as:

∇Z1Od(m) = ∇Z1 [OP (m) + OF (m)]

= L1 · [∇Y1K(m) · ∇KOP (m) +∇Y1φ(m) · ∇φOP (m)

+∇Y1OF (m)], (53)

∇Z2Od(m) = ∇Z2 [OP (m) + OF (m)]

= L2 · [∇Y2K(m) · ∇KOP (m) +∇Y2φ(m) · ∇φOP (m)

+∇Y2OF (m)], (54)

where L1 and L2 are square roots of the covariance matrices CY 1 and CY 2. In practice,

because the dimensions of the model are so large, we use convolution of a single row

as described by Oliver (1995). K(m) is the permeability field and φ(m) is the porosity

field. The gradients of the objective function with respect to the permeability and the

porosity fields, ∇KOP (m) and ∇φOP (m), were obtained from the adjoint method for

general automatic history matching of reservoir property fields (see Li et al., 2003b).

As the permeability field K(m) is a vector of Ng elements, where Ng is the number

of gridblocks, ∇Y1K
T and ∇Y2K

T are both Ng ×Ng matrices. Sensitivity of K to Y1

at the ith gridblock, Y1,i, is a vector of all zeros but the ith element. Equation 55

shows the gradient of K about Y1,1:

∇Y1,1K =



∂K1

∂Y1,1

0

...

0


, (55)

which indicates that a perturbation to the Gaussian random field Y1 at gridblock

1 only impacts the permeability at the gridblock 1. Consequently, the gradients of
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the property fields with respect to the Gaussian fields, ∇Yj
K(m) and ∇Yj

φ(m) for

j = 1, 2, are diagonal matrices:

∇Yj
KT =



∂K1

∂Yj,1
0 · · · 0

0 ∂K2

∂Yj,2
· · · 0

...
. . .

0 0 · · · ∂KNg

∂Yj,Ng


,

∇Yj
φT =



∂φ1

∂Yj,1
0 · · · 0

0 ∂φ2

∂Yj,2
· · · 0

...
. . .

0 0 · · · ∂φNg

∂Yj,Ng


.

The diagonal elements are computed by chain rule:

∂Ki(m)

∂Y1,i

=
dKi

ddl

∂dl

∂Y1,i

, (56)

∂φi(m)

∂Y1,i

=
dφi

ddl

∂dl

∂Y1,i

,

∂Ki(m)

∂Y2,i

=
dKi

ddl

∂dl

∂Y2,i

,

∂φi(m)

∂Y2,i

=
dφi

ddl

∂dl

∂Y2,i

,

for i = 1, . . . , Ng. The dl terms are the distance of (Y1,i, Y2,i) to the closest threshold

line, which is computed in Eq. 23.

The property fields K and φ are regarded as homogenous within a facies region, but

the values are discontinuous across the facies boundaries. To compute the gradient of

the property fields with respect to the Gaussian fields, the property fields have to be

differentiable. As the facies observations are only available at a few cored locations, it

is not possible to tell whether the facies type corresponding to any (Y1,i, Y2,i) is correct.

Therefore the transition zone of the permeability and porosity values is made on both
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Figure 41: The gradient of the permeability is derived from this linear interpolation
model. K1 and K2 are permeability values assigned to two adjacent regions in the
threshold map. Point O is the cross-section with the threshold line, which is also the
middle point of the transition zone in this 1-D plot.

sides along the closest threshold line to point (Y1,i, Y2,i). If the property fields in the

transition zone were defined by the square root of the distance to the threshold line

as:

K(dl) =
K1 + K2

2
+ Sign(dl)

K2 −K1

2

√
|dl|
ε

, for |dl| ≤ ε ,

and K1 and K2 are permeability values assigned to each facies, then the gradient dKi

ddl

goes to infinite when the distance to the threshold line approaches to zero. Therefore

linear interpolation was chosen for the transition zone of the property fields.

Let the width of the transition zone on each side of the threshold line be ε, the

permeability along the direction perpendicular to a threshold line is:

K(dl) = K1 −
1

2
(K1 −K2)(1−

|dl|
ε

), for |dl| ≤ ε (57)

where K1 is the assigned facies permeability at the same side of the threshold line with

(Y1,i, Y2,i), and K2 is the assigned permeability on the other side. ε is the absolute

distance to the threshold line. In Fig. 41, the permeability at point B can be computed

by Eq. 57, and KA should be computed by:

KA = K2 −
1

2
(K2 −K1)(1−

|dl,a|
ε

), (58)

as A is on the same side with K2.
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The gradient dKi

d|dl|
in the linear interpolation case is:

dKi

d|dl|
=


K1−K2

2ε
for |dl| ≤ ε

0 for |dl| > ε.

(59)

Substituting Eq. 59 into Eq. 56, the gradient of the permeability at the ith grid with

respect to Y1 at the ith grid is:

∂Ki(m)

∂Y1,i

=
dKi

d|dl|
d|dl|
ddl

∂dl

∂Y1,i

= Sign(dl)
K1 −K2

2ε
sin(θl −

π

2
). (60)

Similarly,

∂φi(m)

∂Y1,i

=
dφi

d|dl|
d|dl|
ddl

∂dl

∂Y1,i

= Sign(dl)
φ1 − φ2

2ε
sin(θl −

π

2
),

∂Ki(m)

∂Y2,i

=
dKi

d|dl|
d|dl|
ddl

∂dl

∂Y1,2

= −Sign(dl)
K1 −K2

2ε
cos(θl −

π

2
),

∂φi(m)

∂Y1,i

=
dφi

d|dl|
d|dl|
ddl

∂dl

∂Y1,i

= −Sign(dl)
φ1 − φ2

2ε
cos(θl −

π

2
).

The third term of∇Z1Od(m) in the Eq. 53 is the gradient of facies mismatch about

Z1. The computation of ∇Y1OF (m) is similar with the case where a training image is

given. OF is the squared difference between the simulated facies and facies observa-

tions. When the simulated and the observed facies are the same type, the difference

factor fi = 0, otherwise fi = 1. As the gradient ∇Y1OF (m) = GF,Y1(m)T C−1
F f , the

key is to compute the sensitivity of the facies mismatch to Y1: GF,Y1 , which is an
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NF ×Ng sparse matrix with maximum one non-zero element in each row. The non-

zero elements are the sensitivities of the facies difference f at the facies observation

locations with respect to Y1 at the corresponding grid. The following pseudo code

describes the computation of dfi

dY1,i
.
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DO l = 1, Nl

d(l) =
tan(θl − π

2
)Y1,i − Y2,i − tan(θl − π

2
) rl

cos θl√
1 + tan2(θl − π

2
)

= sin(θl −
π

2
)Y1,i − cos(θl −

π

2
)Y2,i + rl

END DO.

dl = min(d)

IF Fi = Fobs,i THEN

dfi

dY1,i
= 0

ELSE

IF |dl| > ε THEN

dfi

dY1,i
= 0

ELSE

IF (Fab,i = Fobs,i) THEN

dfi

dY1,i

=
dl

|dl|
1

2
√

ε|dl|
sin(θl −

π

2
)

ELSE

dfi

dY1,i
= 0

END IF

END IF

END IF

Fab,i is the facies type on the other side of the closest threshold line. When the

facies at grid i decided by (Y1,i, Y2,i) does not match the facies observation at that

location, but the other side of the threshold line has the correct facies type, i.e.

Fab,i = Fobs,i, then there exists a transition zone on the side of the threshold line

that is closer to (Y1,i, Y2,i).
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The non-zero terms in ∇Y1OF (m) = GF,Y1(m)T C−1
F f are computed as:

∂OF (m)

∂Y1,i

=
dl

|dl|
1

2σ2
F ε

sin(θl −
π

2
).

Similarly, the gradient of the facies mismatch with respect to Y2: ∇Y2OF (m), is a

very sparse vector with a maximum of NF non-zero elements. The non-zero elements

are computed as:

∂OF (m)

∂Y2,i

=
dl

|dl|
1

2σ2
F ε

sin(θl −
π

2
).

7.2 Generate initial model

If the initial model for history matching of production data does not honor the facies

observations, the production data mismatch is enormous and difficult to minimize.

Knowing the geological and geostatistical model, the initial model set Z1 and Z2 can

be generated in the following procedures.

1. Generate two multivariate Gaussian deviates Z1 and Z2 from N(0, I).

2. Simulate the facies map from Z1 and Z2, and check whether the simulated facies

at observation locations match all the facies observations.

3. For simulated facies that do not honor the facies observations, generate new

random variables Z1 and Z2 in patches of appropriate size (proportional to

the correlation ranges of the Gaussian fields) and replace the patches to the

variables centered at the observation locations that do not match.

4. Run the simulation again and check the matching of the facies observation. If

there is still a facies mismatch, repeat step 3. If not, output the random fields

Z1, Z2 as a set of initial model.
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Figure 42: Twelve initial facies maps that honor the facies observations. The initial
models are then used for matching the production data, while preserving the correct
facies at observation locations.

103



Twelve initial models were generated and the initial facies maps are shown in Fig. 42.

As the assignment of facies to the seven regions in the threshold map is ad hoc and

non-differentiable at this stage, the true facies arrangement is assumed to be known

as a part of the geostatistical model. The history matching process then uses the true

threshold map to do the truncation. One potential problem with fixing the threshold

map and the facies assignment is that the grids with Gaussian random variables far

from threshold lines may be difficult to be modified to the correct facies. To make

this point clear, the true threshold map is shown in Fig. 43 with the pairs of Gaussian

variables (Y1, Y2) at the observation locations of the true facies map. The regions in

the threshold map are assigned three types of facies: F = 1, 2, or 3. Both the facies

observations with facies F = 1 can be close to facies 2 and 3 in the true facies map.

An initial map can be very possibly generated matching the facies observations, but

with the pairs of Gaussian variables in a different region of the threshold map. For

instance, if either of the two pairs of (Y1, Y2) giving facies 1 is in the top region where

Y2 has large positive value, the observation location will be difficult to be adjusted to

facies 2, as it is not likely for that point to move around the corner with the facies 3

region and get down to the lower facies 1 region. When there are production data at

this facies observation location, it has small chance for convergence to the production

data because the facies types at the near well grids are difficult to correct.

Therefore the initial model should honor the threshold regions at facies observation

locations to make the convergence easier. The procedures for generating the initial

models that not only match the facies observations, but match the threshold regions

of the facies observations are shown as follows:

1. Generate two multivariate Gaussian deviates Z1 and Z2 from N(0, I).
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Figure 43: The true facies map and the true threshold map with the Gaussian
variables (Y1, Y2) at each facies observation of the true facies map.

2. Simulate the facies map from Z1 and Z2, then check whether the pairs of the

Gaussian variables (Y1, Y2) at observation locations are in the correct region.

3. For Gaussian pairs at observation locations that are not in the correct region

in the threshold map, generate new random variables in patches of appropriate

size (proportional to the correlation ranges of the Gaussian fields) and replace

the patches to the variables centered at the observation locations that do not

match.

4. Run the simulation again and check the matching of the Gaussian variable

region. If there is mismatch, repeat step 3. If not, output the random fields Z1,

Z2 as a set of initial model.

7.3 Investigation on convergence

The convergence of the objective function is largely dependent on the transition zone

width chosen for the optimization process. Each grid has two Gaussian variables

(Y1, Y2), and it has non-zero gradients of the objective function with respect to both

Gaussian variables only if it is in the transition zone. When the transition zone is wide,

grids that are far from the boundaries of facies regions respond to the perturbation to
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model parameters Z1 and Z2. The advantage of wide transition zone might be that

modifications to more grids can be made in each iteration. However, as the transition

is just made to compute the gradient and the objective function does not consider

the transition zone, gradients with a narrower width should provide a more accurate

adjustment direction. Fig. 44 shows the objective function along the search direction

in the first optimization iteration. The top row is with the transition width of 0.2,

and the bottom row is for a transition width of 1.0. The two figures in the left column

include points with non-zero facies mismatch at facies observations. As all five facies

observations are at well locations, a facies mismatch causes great production data

mismatch from the wells. The objective function increases by a factor of 20 when the

step size is slightly too large.

The reduction of the objective function before the facies alteration is small relative

to its magnitude when the facies at well locations are different from the observed

facies. Therefore the plot of objective function vs the number of iterations appears

flat. Looking closely at the trend of the objective function with respect to the step

size along the search direction, the flat parts are plotted out as shown in the right

column of Fig. 44. Comparing the two figures with transition widths of 0.2 and 1.0

respectively, the maximum possible reduction of the objective function in the first

step is greater for the case with wider transition width.

When the proposed model does not satisfy both Wolfe conditions (see Kolda et al.,

1998) at the same time, a quadratic fit will be made to reduce the objective function

by optimizing the step size. The quadratic function is of the form:

q(α) = aα2 + bα + c, (61)
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(a) (b)

(c) (d)

Figure 44: All four figures are the objective function along the first search direction.
The transition zone width in (a) and (b) is 0.2, in (c) and (d) is 1.0. The figures on
the right column are amplifications of the flat region in the figures on the left column.
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Figure 45: A schematic plot of the quadratic fit to an objective function curve with
the typical shape for this minimization problem. The quadratic fit gives a higher
objective function value than that from the Newton-Raphson iteration.

where the coefficients a, b, and c are computed as:

a =
O(mk + α̂kdk)−∇O(mk)α̂k −O(mk)

α̂2
k

,

b = ∇O(mk),

c = O(mk). (62)

The step size α̂k is computed from the Newton-Raphson iteration right before the

quadratic fit. dk is the search direction along which we try to find a minimum of

the objective function. mk is the current model from which the search direction is

computed. O(mk) is the objective function at the current model mk. ∇O(mk) is the

gradient of the objective function about model parameters at mk. Minimizing q(α)

gives

αk = − ∇O(mk)α̂
2
k

2[O(α̂kdk)−∇O(mk)α̂k −O(mk)]
, (63)

Both curves of the objective function with different transition zone width are

nearly linear before abrupt jumps. Figure 45 is a schematic plot showing the typical

shape of the objective function along the search direction for this type of minimization

problem. Point A represents the starting model mk, and B is the temporary model

by Newton-Raphson search. Although the objective function has been reduced from
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point A to point B, the change in the model parameters might not be large enough to

satisfy the second Wolfe condition. Therefore a quadratic fit is made through points

A and B. The step size corresponding to point C is at the minimum point in the

quadratic fit function q(α), but gives a higher objective function than both point A

and B. In this case, the new model at point C is not acceptable. Instead the step size

from the quadratic fit is repeatedly cut by a factor of 10 until the objective function

from the proposed model become less than O(mk).

The process of optimization is fairly complicated. A flow chart (Fig. 46) is provided

to give a better illustration of the structure of the code developed along this study.

7.4 Constrained optimization

There are two types of data available in the history matching problem for geologic

facies. One type is the production data, such as the pressure, the rates, the WOR,

the GOR, and the logging interpretations. The other type is the facies observation

data from cores, which are regarded as hard data. The process of optimizing the

facies model to match the production data is similar to common automatic history

matching problems. The hard data in our problem, however, are not the same type as

the model parameters. The hard data are the facies observations, and the underlying

model parameters Z1 and Z2 have to be constrained to the facies observations while

matching the production data.

There are two aspects to consider on matching the facies observations. One is in

generating initial models, which have been discussed in one of the previous sections.

The other is in maintaining the facies types at observation locations in the process of

optimization.

In the line search for the optimized step size, one Newton-Raphson iteration is
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Figure 46: Flow chart for the automatic history matching process.
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taken as:

α1 = −(∇O(mk))
T dk

dT
k H(mk)dk

, (64)

where the computation of the denominator dT
k H(mk)dk requires calculation of Gkdk.

The term Gkdk is computed in this project by the finite difference method:

Gdk = ‖dk‖
dO(mk)

dα

≈ ‖dk‖
O(mk + εdk)−O(mk)

ε‖dk‖

=
O(mk + εdk)−O(mk)

ε
, (65)

where ε is a small constant chosen based on the infinity norm of dk:

ε =
10−3

‖dk‖∞
. (66)

The model mk + εdk may not match the facies observation, which makes it meaning-

less and impractical to compute the objective function knowing it will be discarded.

Therefore the facies mismatch is checked for the model mk + εdk. If it is non-zero,

then ε is reduced: ε = ε/10; otherwise, the model is put into the simulator to compute

the objective function O(mk + εdk).

After the step size is computed from the line search, again the facies mismatch is

checked or the model mk + α1dk. If it is non-zero, then α1 = α1/10, otherwise, the

new model mk + α1dk is put into the simulator to compute the objective function

O(mk + α1dk). The procedure for checking facies mismatch is much more efficient

than running the reservoir simulation.

7.5 A case study

This truncated pluri-gaussian simulation scheme was tested on a synthetic 2-D field

history matching problem with three facies on 128 by 128 gridblocks. Both Gaussian

fields are assigned Gaussian type covariance and have the same range of 30% of the
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index Facies 1 Facies 2 Facies 3
Litho-type dolomite shale sand

Permeability (md) 74 6 372
Porosity 0.18 0.146 0.25

Table 4: Properties for each of the litho-facies in the synthetic problem.

Well name Well 1 Well 2 Well 3 Well 4 Well 5
Well type producer producer producer producer injector

Well location (30,30) (30,90) (100,30) (100,100) (65,65)
Facies type 1 2 1 3 3

Constant rate 2000 250 2000 2000 4000
(STB/day)

Table 5: Production conditions for all five wells in the field.

field width. Three lithofacies, dolomite, shale, and sand, are distributed throughout

the field and have very distinct properties. Table 4 lists the permeability and porosity

values for each of the facies types. Table 5 describes the production conditions for all

five wells in this field. In Fig. 47, the true facies field is shown with well locations. The

darkest area represents facies 1, light grey area for facies 2 and white area for facies

3. Draw-down tests are simulated at the four producing wells which last three days

and where 20 bottom hole pressure data were collected from each well. Besides the

bottom hole pressure data, it is also assumed the facies at well locations are observed.

Figure 47: The “true” facies map with well locations.
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Figure 48: The initial facies map and the final facies map after convergence. The
objective function reduced to 2% of the original objective function at the final model.

In this problem, the total number of pressure data is 100, and the total number

of model parameters is 73734. The number of model parameters is more than twice

the number of gridlocks because the moving average method required a margin of Z1

and Z2 fields outside of the facies grid. The width of the margins is determined by

the range of the correlation of Y1 and Y2. For such a large scale problem, we chose

the adjoint method to compute the gradient of pressure mismatch with respect to the

model parameters Z1 and Z2. The limited memory BFGS method (Nocedal, 1980)

(L-BFGS) is a quasi-Newton method used in computing the search direction. The L-

BFGS method was found to be the most efficient minimization method for automatic

history matching in terms of saving computational time and memory (Zhang and

Reynolds, 2002).

An initial model has been generated matching the regions of facies observations.

The initial facies map is shown on the left of Fig. 48. After 13 LBFGS iterations,

the objective function reduced to 2% of the initial value. The facies map for the

converged model is shown on the right of Fig. 48. The production data is from the

true case shown in Fig. 23.

The intermediate results for computing the gradient of the squared data mismatch
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Figure 49: The gradient of the objective function with respect to intermediate pa-
rameters. The first row are output from the normal adjoint computation. The second
row is the gradient of the objective function with respect to each of the two Gaussian
fields Y1 and Y2.

Od with respect to model parameters Z1 and Z2 are shown in Fig. 49. The gradient

of the squared data mismatch with respect to the permeability and the porosity fields

are computed from the adjoint code of Li (2001). Then the chain rule is applied

to compute the gradient of the squared data mismatch with respect to each of the

Gaussian fields. As well 4 at the upper right corner is surrounded by facies 3, which

has very high permeability, the sensitivity of rock properties to production data is

relatively small.

The final matching of production data for each well is shown in Fig. 50. The

production data for well 2 has the best match, mostly because the gradient is large in

the low permeability region. The final simulated data from well 4 is further away from
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the observation data, in comparison with the simulated data from the initial model.

The reason might be that the magnitude of the gradient around well 4 is relatively

small compared to the magnitude in the neighborhood of other wells, thus the facies

modification close to well 4 is dominated by the gradients from other wells. If the

objective function can be further reduced, the gradients from the data mismatch at

well 4 will finally dominate, and the facies distribution around well 4 will be improved,

leading to reductions of data mismatch of well 4.
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Figure 50: Comparison of the production data from the initial and the final model
with the observation data.

116



CHAPTER VIII

ENSEMBLE KALMAN FILTER FOR HISTORY

MATCHING

In this chapter, the potential of the ensemble Kalman filter (EnKF) method to the

problem of estimation of reservoir facies distributions is investigated. Traditional au-

tomatic history matching tools such as described in previous chapters are not widely

available, largely because of the high computational cost in minimization of the ob-

jective function (which represents the weighted mismatch of the estimated reservoir

property model to the observed data, and to the empirical initial model), and because

of the complexity of the algorithms. The ensemble Kalman filter method takes only

one simulation run for each ensemble member, and the simulations can be run simul-

taneously on parallel processors. After the last data are assimilated, the ensemble

contains reservoir models that are not identical but all honor given observation data.

This chapter first presents a comprehensive review of important results from pre-

vious studies on applications of EnKF. Then it focuses on the algorithm formulations

and the theoretical framework. Two experimental case studies have been done to in-

vestigate the feasibility of applying EnKF with the truncated pluri-gaussian method

in automatic history matching. The data in the first case are the facies observations

at five well locations, where the wells are drilled one-at-a-time. A reservoir flow sim-

ulator is not required for matching facies observations. A 1-D water flood model is

used in the second case with one injector, one producer, and one observation well.

An ensemble of 41 reservoir models with unknown facies boundaries was generated
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matching frequent production data observations.

The ensemble Kalman filter method was first introduced by Evensen (1994). It

begins with an ensemble of initial models (typically 40-100) consistent with prior

knowledge of the initial state and its probability distribution (uncertainty). After

running a simulation on each of the models up to the next observation time, the

covariance update is computed directly from the ensemble of states, i.e.,

Cp
y,k =

1

Ne − 1

Ne∑
i=1

(yp
k,i − ȳp

k)(y
p
k,i − ȳp

k)
T , (67)

where the subscript k indicates the number of observation time points the simula-

tions have been run to, the index i is for numbering of the ensemble members, the

superscript p means present and u means updated. Ne is the total number of state

vectors in the ensemble. ȳp
k is the mean of the Ne ensemble members at the kth step.

Although the covariance update is still too large to store in computer memory, it

is never necessary to be computed explicitly as only a few columns are needed for

computation of Kalman gain.

EnKF has great potential in reservoir characterization for two major reasons.

First, any reservoir simulator can be used in the EnKF history matching system

without excessive work. This idea becomes clear after the illustration of the EnKF

formulation in section 8.2. Second, with the increase in deployment of permanent

downhole sensors for monitoring pressure, flow rate and other variables, large amounts

of data become available with small time intervals in between. Assimilation of these

data is a problem of continuous model updating. The Ensemble Kalman filter is by

nature well suited to solving such a problem.
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8.1 Theoretical framework

8.1.1 The standard Kalman filter

The Kalman filter method consists of two sequential steps. One is a forecast based

on solution of the dynamical equations for flow and transport in the reservoir. The

other is data assimilation to update the model by correcting the variables describing

the state of the system to honor the observations. The model for the Kalman filter is

referred to as the state vector, which contains all the uncertain and dynamic variables

that define the state of the system. At a certain time step i, the state vector for the

reservoir model is expressed as:

yi = [(mi)T , d(mi)T ]T , (68)

where mi consists of variables for rock properties and flow system in every gridblock,

d(mi) is the simulated data from the previous simulation run. The size of d(mi) does

not have to be constant and it depends on the number of observation data at time

step i.

In the standard Kalman filter, the updated state vector after each observation

assimilation is a linear combination of the measurement and the predicted model

state vector:

yu = yp + K(dobs −Hyp), (69)

where yp is the present state vector, yu is the updated state vector, the weighting

term K is called the Kalman gain. H is the measurement operator that extracts the

simulated data from the state vector yp. Therefore it has 1s corresponding to data

and 0s elsewhere. The state vector in the true model gives the true data, i.e.

dobs = Gmtrue + ε = Hytrue + ε, (70)

where ε is a vector of unknown observation errors, and E[εεT ] = CD. mtrue is the true

reservoir property field, and G is the sensitivity matrix between reservoir model and
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observation data. Traditional automatic history matching estimates mtrue knowing

dobs. Computation of the sensitivity matrix G required the greatest computational

effort. The Kalman gain is computed as:

K = CyH
T (HCyH

T + CD)−1, (71)

where Cy is the covariance matrix for the state vector y:

Cy =

 CM CMGT

GCM GCMGT

 . (72)

The best estimate of y at each step of data assimilation is the state vector that

minimizes the objective function

S(y) =
1

2
(Hy − dobs)

T C−1
D (Hy − dobs) +

1

2
(y − yp)T C−1

y (y − yp). (73)

Taking the derivative of S(y) with respect to y, and let it equal to zero, the best

estimate of y is obtained.

< y >= yp + CyH
T (HCyH

T + CD)−1(dobs −Hyp) (74)

Comparing Eq. 71 with Eq. 74, it is clear that the Kalman filer estimation minimizes

the objective function. Because

CyH
T =

 GCM

GCMGT

 , (75)

and HCyH
T = GCMGT , the best estimate of a reservoir model in terms of CM and

G is

< m >= mp + CMGT (GCMGT + CD)−1(dobs −Gmp). (76)

Traditional history matching normally matches all the observation data at the

same time. Therefore dobs contains all observations, and CD is the covariance matrix
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for all the data. The posteriori model covariance after all data assimilation is

CM ′ = (C−1
M + GT C−1

D G)−1

= CM − CMGT (CD + GCMGT )−1GCM . (77)

In Kalman filter, the posteriori covariance needs to be computed for each model up-

date. The covariance matrix is typically very large and involves large matrix inversion

computation. The sensitivity G is also large and expensive to compute for nonlinear

problems.

8.1.2 Extended Kalman filter

For nonlinear problems, the relation between the model and the data can be expressed

as a function of the model

dm = g(m) + ε, (78)

where g(·) is a nonlinear function. The sensitivity G can be approximated by the

tangent linear operator (Jacobian) of g(m). Therefore the extended Kalman filter is

an approximate method that samples from the linearized model space.

yu = yp + K(dobs −Hyp),

where the Kalman gain is computed from

K = CyH
T (HCyH

T + CD)−1.

The state covariance matrix Cy has to be computed from

Cy =

 CM CMGT

GCM GCMGT

 .

When the size of the state vectors is Ny, the dimensions of the state covariance matrix

Cy is Ny ×Ny. Therefore this approach is limited to very small problems.
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8.1.3 Ensemble Kalman filter

The idea of the ensemble Kalman filter for continuous model updating is propagating

an ensemble of initial reservoir models along time to assimilate data, and the statisti-

cal information carried among the models at each observation time is used to update

the model covariance. The ensemble of state vectors is denoted by Ψ:

Ψ = {y1, y2, . . . , yNe},

where Ne is the number of ensemble members; yi for i = 1, . . . , Ne are state vectors.

Each of the state vectors in the ensemble Kalman filter contains all the uncertain and

dynamic variables that define the state of the system. At a certain time step tk for

k = 1, . . . , Nt, the state vector for the reservoir model is expressed as:

yk = [(mk)
T , d(mk)

T ]T ,

where mk consists of variables for rock properties and flow system in every gridblock,

d(mk) is the simulated data from the model state mk. The number of simulated data

in the vector d(mk) does not have to be constant since it depends on the number of

observation data at time step tk.

The methodology of ensemble Kalman filter for data assimilation consists of two

sequential steps. One is the forecast forward in time based on solution of the dynam-

ical equations for flow and transport in the reservoir:

yp
k,j = f(yu

k−1,j), for j = 1, Ne,

where f(·) is the reservoir simulator. The superscript p indicates the “predicted”

state. This step does not modify the rock properties, but replaces the pressure,

saturation, and simulated data in the predicted state vector. The initial ensemble for

k = 1 refers to the collection of initial state vectors, which are sampled from the prior

probability density function of the state vector before any data assimilation.
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The second step is model updating by correcting the variables describing the state

of the system to honor the observations. The update to each ensemble member is

made using the Kalman update formula:

yu
j = yp

j + Ke(dj −Hyp
j ), for j = 1, . . . , Ne

where the superscript u denotes “updated”, and Ke is the ensemble Kalman gain. H

is the measurement operator that extracts the simulated data from the state vector

yp:

Hk =

[
0 I

]
.

dj is the observation data at current time plus random error that has the same

distribution with the measurement error:

dj = dobs + εj, for j = 1, . . . , Ne.

The ensemble Kalman gain is computed as:

Ke = CΨ,eH
T (HCΨ,eH

T + CD)−1,

where the covariance matrix of the state vectors CΨ,e at any time can be estimated

from the ensemble members by the standard statistical definition:

CΨ,e =
1

Ne − 1

Ne∑
i,j=1

(yp
i − ȳp)(yp

j − ȳp)T ,

where the indices i and j are for numbering of the ensemble members. ȳp is the mean

of the Ne ensemble members at the current data assimilation step. If the size of each

state vector is Ny, the covariance matrix CΨ,e is Ny×Ny. It is not possible to compute

or store CΨ,e except for problems that are quite small. Fortunately, the formulation

of the ensemble Kalman gain allows the computation of HCΨ,e instead of CΨ,e itself.

HCΨ,e is the last Nd rows of CΨ,e.
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8.2 Application of the ensemble Kalman filter

This section is intended to provide a general idea of the application of EnKF to the

history matching of the facies distributions. In the truncated pluri-gaussian method

for simulation of a facies map, the static reservoir variables to be estimated are the

Gaussian fields that define the facies. Observation data can be facies at well locations,

and/or production data such as production/injection rate, down-hole pressure, GOR,

WOR, etc. As the idea is identical for either hard data or production data, in the

following explanation the simulated data are denoted dsim.

In this study, all the geostatistical models for generating the two Gaussian fields

are assumed to be known, and the static variables to be modified in history matching

are the random Gaussian fields Y1 and Y2. As the hard data measurements do not

depend on the dynamic states of the reservoir fluid flow, the state vector for cases

with only facies measurements is yj = {Y1, Y2, dsim}. The facies measurements can

be assimilated one-at-a-time to simulate the process of sequential well placement, in

which case dsim is the facies type of the simulated facies field at the current observation

location. When there are production data in dsim, the state vector includes the pres-

sure and the saturation in every gridblock, yj = {Y1, Y2, P, S, dsim}. Both Gaussian

fields have the same size as the reservoir grid, therefore the size of the state vector

is Ny = 4× ngrid + nd, where nd is the number of data obtained at each observation

time.

8.2.1 The initial ensemble

The initial state vector contains the Gaussian fields from the prior PDF that is de-

cided by geostatistical information, the pressure and the saturation at the earliest

measurement time, and the observation data. The procedures for generating the

initial ensemble are listed below.
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• Compute the covariance templates L1 and L2 from the given geostatistical pa-

rameters, such as the types of the covariance, the ranges, the principle direc-

tions, and so on. Here denote the dimensions of L1 are nL1x and nL1y. Similarly,

the dimensions of L2 are nL2x and nL2y. More details on construction of the co-

variance templates have been provided in the previous section on covariance

template construction.

• Generate an ensemble of 40 independent random multivariate Gaussian vectors

{Z1, Z2} ⊂ N(0, I). The size of Z1 is (nx + nL1x − 1) × (ny + nL1y − 1), and

the size of Z2 is (nx + nL2x − 1) × (ny + nL2y − 1), for reservoir models with

dimensions nx × ny.

• For index = 1, Ne

1. Choose the vectors Z1 and Z2 that both ranked index in their ensemble

group.

2. Convolve L1 with Z1 in the ensemble to generate the initial Y1 field using

the moving average method as described in Eq. 12. Convolve L2 with Z2

to generate the initial Y2 field.

3. Truncate the Gaussian fields {Y1, Y2} to generate an initial facies map.

The thresholds and facies assignment on the threshold map are also geo-

statistical parameters that have been decided before history matching.

4. Assign the permeability and the porosity fields to the facies map. In this

study, the permeability and the porosity are assumed homogenous within

each facies region, but distinct among the facies.

5. Set the initial pressure P0 and the initial saturation S0 to each gridblock.
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6. Run reservoir simulation until the first observation time. Output the pres-

sure and the saturation at every gridblock. Record the simulated data

dsim.

7. Merge the variables to form a state vector yindex = {Y1, Y2, P, S, dsim}

8.2.2 Computation of the ensemble Kalman gain

The ensemble Kalman gain works as a weighting term for assimilation of the obser-

vation data in the model updating. As the number of data at each observation time

Nd is normally small, the computation of the inversion term (HCΨ,eH
T + CD)−1 is

fast. The covariance of the state vectors can also be written in matrix form as

CΨ,e =
1

Ne − 1
[∆y1, ∆y2, . . . , ∆yNe ] ·



∆y1

∆y2

...

∆yNe


, (79)

but in fact only the product HCΨ,e is required. So we define

A = H[∆y1, ∆y2, . . . , ∆yNe ]

= H∆Ψ. (80)

Because of the structure of H, the matrix A consists of the last Nd rows of ∆Ψ.

Express the ensemble Kalman gain in terms of A:

Ke =
1

Ne − 1
∆ΨAT (

1

Ne − 1
AAT + CD)−1. (81)

8.2.3 Update the ensemble of states

Burgers et al. (1998) suggested that without adding measurement error to the ob-

servation, the resulting model variance is too low. Thus a vector of random error
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ε ⊂ N(0, CD) is added to the observations for each state vector update. The H ma-

trix does not really need to be constructed, because Hyp
j is just the simulated data

dsim,j. The updated state vectors are computed as

yu
j = yp

j + Ke(dobs + εj − dsim,j). (82)

Equation 82 is applied to each of the state vectors.

8.3 Matching facies observations

One concern with the application of the ensemble Kalman filter to problems of history

matching of facies is that the facies type is a discontinuous indicator variable, but

the Kalman filter method has an underlying assumption of Gaussian distributed con-

tinuous state variables. In this preliminary study, experiments with the application

of the ensemble Kalman filter on a 2-D field with five wells drilled in sequence are

performed. One facies observation is assimilated to improve the reservoir model after

each well is drilled. The key issue in this case is to account for the difference between

the observed facies and the simulated facies when updating the states. In a second

problem, the spatial correlation for one Gaussian field is anisotropic with the ratio of

correlation lengths in two principle directions is 2.0. Eighteen facies observations are

made over the field. The objective is to test the sampling capacity of the EnKF with

larger number of hard data constraints with general geostatistical features.

8.3.1 Five facies observations

The reservoir model is 128×128. Both Gaussian fields used to generate the facies are

known to be isotropic with the variogram range of about the width of 20 gridblocks.

Three facies are present in the field, which are denoted as facies 1, facies 2, and facies

3. In the computation of the difference between the observed and the simulated facies,

the facies are assigned values 1, 2, and 3 respectively according to their notations.
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Figure 51: The true threshold map used for generation of the true facies map and
all the facies realizations for the case of matching five facies observations.

Well 1 2 3 4 5
x 30 30 100 100 65
y 30 90 30 100 65

facies 3 1 3 1 1

Table 6: Facies observations from each of the five wells.

Prior facies maps are generated by truncating two prior Gaussian fields Y1 and Y2

using the threshold map shown in Fig. 56. Although the observation data are facies,

and no reservoir simulation is needed in this example, it is assumed that the wells are

drilled one-by-one such that the facies data are assimilated one-at-a-time. The facies

observations are listed in Table 9 with the well number and locations.

In this problem, the state vectors are formulated as {Y1, Y2, Fsim}. The size of the

state vectors is 2× nGrid + 1, where nGrid is the total number of gridblocks in the

reservoir model. Generation of the initial states here is simpler than introduced in the

last section. After computing the ensemble of Gaussian fields, truncation is applied to

generate facies maps for each ensemble state. The Fsim is then read from each facies

map corresponding to the location of current facies observation. As the facies is an

indicator variable, no observation error is considered in this case study. As a result,

the updated data in the state vectors always match facies observations. But, because
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the relation between the Gaussian fields and the facies map is not linear; the model

variables are not always consistent with the observation after updating. Modifications

to the Gaussian variables in the update step is a linear approximation to the prediction

of simulated facies. Multiple iterations on assimilation of the same data are necessary

to have the state vectors match the observation. The nonlinearity is mainly because

the facies arrangement in the truncation threshold map is discontinuous. Increasing or

decreasing of the Gaussian variables Y1 and Y2 may not necessarily increase/decrease

the values assigned to each facies type.

For the same reason, updating the Gaussian fields to match the current facies

observation may quite possibly destroy the match to the previous facies observations.

Thus after assimilating all the data, the state vectors are checked to see if all the

state vectors match the facies data. If not, the ensemble Kalman filter is applied to

the state vectors to assimilate the data once again. The flow chart in Fig. 52 provides

a detailed structure of the ensemble Kalman filter application to this test problem.

The ensemble in this example contains 41 state vectors. After the assimilation

of all the facies observations at the first time, five state vectors do not honor all the

data, thus the assimilation was applied once again to all the current 41 state vectors.

After assimilating the data twice, all the states honor the data. In Figs. 53 and 54,

the facies maps are shown from the first six states in the ensemble. The black regions

indicate facies 1, gray for facies 2, and white for facies 3. The columns on the left

show the initial facies maps, and the columns on the right show the final facies maps.

Well locations are marked by round dots in each facies map. Although none of the

facies maps from different state vectors seems alike, all the final facies maps have

facies types at well locations that agree with the observation data. Comparing the

initial facies maps with the corresponding final ones on their right, the facies around

wells were shifted to match the data while preserving some of the initial features.
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Figure 52: The flow chart for history matching of facies map using ensemble Kalman
filter.
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One of the popular methods for risk analysis in reservoir engineering is to look

at the statistics of an ensemble of possible reservoir models. Although the facies are

discontinuous variables, for the purpose of statistics, all 41 final states were taken

and the average, median, and variance of the facies maps were computed, which are

plotted in Fig. 55. The darkest shade is facies 1 and the lightest shade is facies 3. The

top figure is the average facies map. The shades at well locations are either black or

white as the facies data are either 1 or 3. To some extent, the darkness of the regions

provides information on the possibility of certain facies. The figure in the middle

shows the median facies type at every location. The facies type in each gridblock is

decided by the median of the facies from the corresponding gridblocks of the 41 facies

map. It should be the most probable facies map. The bottom figure is the variance

of the facies maps. The variance is zero at well locations.

131



Initial model No. 1 Conditioned model No. 1

Initial model No. 2 Conditioned model No. 2

Initial model No. 3 Conditioned model No. 3

Figure 53: Facies maps from the first three states in the ensemble. The column on
the left shows the initial facies maps, and the column on the right shows the final
facies maps. Well locations are marked by round dots in each facies map.
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Initial model No. 4 Conditioned model No. 4

Initial model No. 5 Conditioned model No. 5

Initial model No. 6 Conditioned model No. 6

Figure 54: Facies maps from the 4th, 5th, and 6th states in the ensemble. The
column on the left shows the initial facies maps, and the column on the right shows
the final facies maps. Well locations are marked by round dots in each facies map.
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Well 1 2 3 4 5 6 7 8 9
x 17 49 81 113 33 65 97 17 49
y 25 25 25 25 45 45 45 65 65

facies 1 2 1 3 2 3 3 1 2

Well 10 11 12 13 14 15 16 17 18
x 81 113 33 65 97 17 49 81 113
y 65 65 85 85 85 105 105 105 105

facies 1 3 3 1 1 1 3 1 1

Table 7: Facies observations from each of the 18 wells for the second case of matching
facies observations.

8.3.2 Eighteen facies observations

The second case is also based on a 128×128 grid. The Gaussian field Y1 is anisotropic

with the principle direction in NW 30◦. The range in the principle direction is about

the width of 20 gridblocks, which is twice the range in the perpendicular direction.

The second Gaussian field Y2 is isotropic with range of about the width of 20 grid-

blocks. The locations and facies types of the 18 facies observations are shown in

Table 7, and the true facies field is shown in Fig. 57.

In this case, the facies observations contain all three types of facies. The facies

assignment to the regions in the threshold map has been nonlinear, which made

it difficult to correct the Gaussian variables (Y1, Y2) of a grid to match the facies

observation at that location. In the second case of matching facies observations,

the threshold map is divided into three regions by the assignment of facies types.

The upper left regions are assigned to facies 1, the bottom regions are assigned to

facies 2, and the upper right regions are assigned to facies 3. The algorithm of

ensemble Kalman filter modifies the Gaussian variables Y1 and Y2 based on a linear

approximation of the relation of the Gaussian variables with the facies mismatch.

In the instance where the observation is facies 2 and the simulated facies from the

ensembles contain facies 1 and 3, the corrections to the Gaussian variables lead to
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Figure 55: The average, median, and variance of the 41 final facies maps.
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Figure 56: The true threshold map used for generation of the true facies map and
all the facies realizations.

Figure 57: The true facies map with all the well locations denoted by black dots.
The wells are numbered 1 through 18 from the lower-left corner to upper-right corner
by rows.
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the area between the facies 1 regions and facies 3 regions. Unfortunately, there is

no facies 2 region transition between the facies 1 region and facies 3 region, so the

Gaussian variables oscillate at the threshold line between facies 1 and facies 3 without

finding the correct region.

The solution to this problem is to define the facies mismatch f instead of the

simulated facies in the state vectors. The facies mismatch is defined as:

f =


0, Fsim = Fobs

1, Fsim 6= Fobs.

Consequently, the state vector update step becomes:

yu
j = yp

j + Ke(0− f)

= yp
j −Kef,

where the zero in the first line results from taking the difference between the observed

facies and itself. The first plot in Fig. 58 shows the modification in the first iteration

to the Gaussian variables at well 2 from each of the ensemble members that does not

match the observed facies. The facies assigned to each region has been labeled as F1,

F2, and F3. The threshold map shows there is less probability for the unconditional

pdf of the Gaussian variables to fall into facies 2 regions as they are further from the

origin. 45 of the 50 initial ensemble members have non-zero facies mismatch. In the

first step of model update, 31 ensemble members are corrected to simulate facies 2

at the observation grid (49, 25). Three iterations are required for all the ensemble

members to simulate facies 2 at grid (49, 25). The bottom right plot shows the final

locations of the Gaussian variables at grid (49, 25).

It was not possible to match all facies observations using 50 ensemble members, the

size of the ensemble was increased to 120. 112 final facies maps are obtained matching
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step 1 step 2

step 3 final

Figure 58: After replacing the simulated facies Fsim with the facies mismatch f in
the state vectors, the problem of facies assignment nonlinearity in the threshold map
is solved. The second facies observation is matched by all 50 ensemble members in
three update steps. The thick lines in each plot are the threshold lines. The arrows
point from the starting locations of the Gaussian variables before update to the end
locations after update.
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all 18 facies observations. Some of the ensemble members contain pairs of Gaussian

variables that are too difficult to be modified to the regions with correct facies type in

the threshold map, and they are deleted during the assimilation iterations. Figures 60

and 61 show the first 12 facies maps from the initial ensemble of 120. Figures 62 and

63 show the corresponding final facies maps that matched all 18 facies observations.

Figure 59: The first 4 facies maps from the 50 ensemble members. As the number
of ensemble members is too small for the number of variables in the state vectors in
order to honor the 18 facies observations, only the facies at wells 1-10 are matched.
The wells are denoted by black dots, and numbered 1-18 by rows from the bottom-left
corner.
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Figure 60: The initial facies map realizations 1-6. The black dots are well locations.
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Figure 61: The initial facies map realizations 7-12. The black dots are well locations.
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Figure 62: The facies map realizations 1-6 that match the facies observations from
all 18 wells.
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Figure 63: The facies map realizations 7-12 that match the facies observations from
all 18 wells.
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8.4 Matching production data

The purpose of this section is to test the ensemble Kalman filter method on a history

matching problem with discontinuous and distinct porosity and permeability fields.

As a preliminary experiment, a 1-D reservoir model with an injector at one end and

a producer at the other was chosen. One permeability and one porosity are assigned

to each facies. The reservoir model has 32 gridblocks in length. Water is injected in

gridblock 1 at a constant bottom-hole pressure of 4500 psig. A producer is in gridblock

32 with constant bottom-hole pressure of 1900 psig. An observation well is located in

the 20th gridblock to measure the water saturation at that location. Measurements

were recorded every 10 days until WOR exceeded 50, at which time the wells are shut-

in. Four data are observed at each time step including water injection rate, saturation

observation, oil production rate, and water rate. The state vectors are constructed as

Y1, Y2, P, S, dsim. 41 ensemble members are used to estimate the covariance between

the state parameters.

The Gaussian fields used to define the facies both have the same Gaussian-type

covariance and an effective correlation range of about the length of 13 grids. Figure 64

shows the truncation to the Gaussian fields. Most of the gridblocks have (Y1, Y2)

values that fall into regions assigned facies 1, a few fall into the region assigned to

facies 2, and even fewer fall into the region assigned to facies 3. Each facies has

distinct rock properties. Facies 1 is assigned a permeability of 74 md and a porosity

of 0.18. Facies 2 has permeability 20 md and porosity 0.146. Facies 3 has permeability

of 372 md and porosity 0.25. The property fields are decided once the facies type for

every grid is obtained.

In traditional history matching, the reservoir properties that describe the reservoir

model are modified to match data. In this case, the reservoir parameters are the
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Figure 64: The truncation threshold map with the true Gaussian fields, from which
the observed production data are generated. The Gaussian fields (Y1, Y2) are shown
as a dotted curve.

Figure 65: The initial ensemble of Gaussian fields. The plot on the left shows all 41
initial Y1, and the plot on the right shows all 41 initial Y2. Both Gaussian fields seem
to scattered in the correct distribution N(0, I).

Gaussian fields Y1, Y2. They determine the facies map as well as the rock properties.

Figure 65 shows the ensembles of both initial Gaussian fields. The plot on the left

shows all 41 initial Y1, and the plot on the right shows all 41 initial Y2. Both ensembles

seem to have correct mean and standard deviation.

One of the advantages of the ensemble Kalman filter over traditional history

matching is that it is only necessary to run the simulation once for each ensemble

member. At early time of history matching when not many data have been assimi-

lated, the simulated data from the ensemble are distributed widely, reflecting a large
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(a) injection rate (b) observed saturation

(c) oil rate (d) water rate

Figure 66: The production data from 41 states are compared with the observation
data, which is in thick line. The x-axes is the time in days.

uncertainty of reservoir models. The uncertainty decreases as more data are assim-

ilated. Figure 66 shows the evolution of the distribution of each type of production

data from all the states. The injection rate and the oil production rate both have wide

distribution in the first 100 days. The uncertainty is significantly reduced after 200

days for both plots. The saturation profile from the observation well at grid 20 does

not show much uncertainty, largely because the water front moves to the 20th grid

after at least 250 days, when all the states become similar. The same thing happens

with the water production rate. All the states have water breakthrough almost at

the same time.

Figure 67 shows the Gaussian fields after data assimilation. Comparing with

Fig. 65, the uncertainty has reduced significantly. It is not clear why the final states

in the ensemble do not come closer to matching the true Gaussian fields. The plot on
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Figure 67: The ensemble of 41 final Gaussian fields Y1 and Y2. The thick line in each
plot is the true Gaussian field.

the left of Fig. 68 shows the final facies maps with the true facies map in thick line.

There is larger uncertainty at the injection end of the reservoir as well as at facies

boundaries. All the states have correct facies type away from facies boundaries. The

plot on the right compares the median of the ensemble facies maps with the truth.

There are two grids out of 32 that do not have the correct facies types. To have

a better statistical view of the 41 ensemble states, the variance of the facies maps

were also computed, which is shown in Fig. 69. For the grids near the injector, the

pressure and the saturation reach about constant when the grids become behind the

water front in early days of simulation. Insufficient number of data are assimilated

by then, and the covariance of pressure and saturation is small in these grids among

the states. Therefore there is more uncertainty in grids near the injector. Grids 6,

14, and 30 are the facies boundary locations in the true case, and they have variance

peaks for the states. The peak at grid 30 is about four times as large as the other

two at facies boundaries. That is simply because the difference between facies 1 and

3 is regarded as 2, however, the difference between facies 1 and 2 is regarded as 1. In

fact, the difference should all be 1 if they are not same facies types. So the variance

is actually not much higher around grid 30 than around the other two peaks.

Finally, the saturation profiles of the states along the 1-D reservoir model are

shown. Saturations at the 200th, 400th, 600th, and 820th day are output from the
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Figure 68: Comparison of the final facies maps from all the states with the truth.

Figure 69: The variance of the final facies maps from all 41 states.

simulation to illustrate the propagation of water fronts from all states. The spread at

the water front has been reduced at the 200th day, and is further reduced at the 400th

day. At the 600th day the water fronts from the states reached a facies boundary from

facies 1 to 3, and the spread increased. After water front breakthrough, saturation

profiles are nearly all identical.

Although the ensemble Kalman filter is designed for linear problems, it worked

satisfactorily for the simple test problem largely because of the frequent data assimila-

tion from the early production period. The small corrections to the state vector made

at any time step can be adequately approximated as a linear system. Therefore, this

method is ideally suited for the assimilation of time series of data from permanent

sensors.

The results from the 1-D water flood problem have shown underestimation of

uncertainty in the final distribution of realizations. The ensemble members of the two
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(a) 200 days (b) 400 days

(c) 600 days (d) 820 days

Figure 70: The saturation profile at the 200th, 400th, 600th, and 820th day.

Gaussian fields are in close agreement with each other and in a narrower distribution

than the variability of the true Gaussian fields. It seems that the ensemble converges

to a small subspace of the correct probability distribution.

The purpose of this second example is to demonstrate the application of the

ensemble Kalman filter to the problem of history matching production data for a

reservoir with unknown facies boundaries. The true reservoir model is 50 × 50 with

four producers and one injector as shown in Fig. 71. The facies in dark grey is facies 1,

the light grey areas are facies 2, and the white areas are facies 3. The rock properties

for each facies are shown in Table 10. Bottom hole pressures are fixed at 5000 psia

for well 1 and at 1500 psia for producers. The field is produced for 195 days and

the rates are recorded every 15 days from day 15. Well 3 has water breakthrough on

day 183. In this case, there are 14 data for each assimilation step, which includes 1

injection rate, 8 production rates, and 5 facies observations. Every member of the
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Figure 71: The true facies map for the 2-D case study of matching both the facies
observations and the production data. This facies map is a 50×50 square taken from
the 128× 128 true facies map in the case study of matching 18 facies observations.

index Facies 1 Facies 2 Facies 3
Permeability (md) 174.0 80.0 372.0

Porosity 0.18 0.146 0.25

Table 8: Properties of the litho-facies in the synthetic problem.

initial ensemble honors facies observations at the well locations. Six out of 100 initial

facies fields for matching production data are shown in Fig. 72.

The facies observations in the ensemble states are kept, because updating of the

Gaussian fields from matching production data may change the facies type at well

locations. Once the facies type at a well location is wrong, the Kalman correction to

the Gaussian fields can be large, and may cause over-shoot of the Gaussian variables.

An iteration step over the facies observations is made after each model update to

ensure the rock properties at well locations are always correct.

Figure 73 shows 6 out of the 100 facies maps from the final ensemble members after

assimilating all the production data. Each of the final facies maps shown has kept

some features from the initial state, but in general has developed common features

among the ensemble members. Some of the common features do not exist in the true

facies map.
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Figure 72: The initial facies maps from the ensemble members 1, 20, 40, 60, 80, and
100 that matched the facies observations in the previous case study. Well locations
are denoted by the black dots.

Figure 73: The final facies maps from the ensemble members 1, 20, 40, 60, 80,
and 100 after matched both the production data and the facies observations. Well
locations are denoted by the black dots.
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Figure 74: The averaged variance of the Gaussian fields vs. the number of data
assimilations.

The variability of the final ensemble has obviously been reduced and the subspace

spanned by the ensemble members does not seem to include the true facies map. The

variance of the Gaussian variables can be used to quantify the reduction in variabil-

ity due to data assimilation. At every gridblock, the variance over the ensemble is

computed, then the average variance over all grids is computed, and the results are

plotted as shown in Fig. 74. The unconditional PDF for both Gaussian fields should

have variance close to 1. After matching the facies observations, the average variances

for the two Gaussian fields have decreased from 1 to less that 0.4, and 0.7, respec-

tively. After assimilating the production data, the variances decreased to less than

0.3. The reduction of the average variance for both Gaussian fields in all the ensemble

members indicate that the variability among the ensemble members has reduced and

the ensemble members become more and more similar with data assimilations.

The mean of the 100 ensemble Gaussian fields Y1 and Y2 should contain numbers

close to zero without obvious patterns if the ensembles are not correlated. The first

row of Fig. 75 shows the mean of the 100 initial Gaussian fields Y1 (left) and Y2 right.

Areas with mean values greater than 1.5 are shown in white, and less than -1.5 in

black.
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Figure 75: The ensemble means of the 100 Y1 (left) and Y2 (right) for initial (top),
first (second row), fourth (third row), 12th (fourth row), and 13th (bottom) data
assimilation.
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Figure 76: Key for interpretation of box plots. The square in the center of the box
indicates the mean value.

Box plots are used to represent the distribution of the simulated production data

from all the 100 ensemble members over the 195 days of production. Figure 76 shows

the key for interpretation of box plots. The simulated rates and the observed data are

plotted together in Figs. 77 through 82. The box plot on the left of Fig. 77 shows the

injection rates from the initial ensemble conditional only to facies observations. The

observed injection rate is plotted as the thick line. The distribution of injection rates

from the 100 final reservoir models is much narrower than the initial distribution and

almost centered at the observed data (Fig. 77, right).

The distributions of the oil rates from the final ensemble are shown in Figs. 78

to 82; they are all much narrower and closer to the observed data. Figure 82 shows the

water rate of well 3 over the 195 days production history from both the initial and the

final ensembles. Only a few of the initial 100 states have water breakthrough within

195 days. After data assimilation, almost all the reservoir models have breakthrough

in 195 days.

The histograms in Fig. 83 compare the squared data mismatch from the initial

ensemble with that from the final ensemble. On average, the squared data mismatch
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Figure 77: The injection rate over the 195 days production history from the initial
ensemble (left) and the final ensemble (right). The thick line shows the observed
data.

Figure 78: The oil rate of well 2 over the 195 days production history from the initial
ensemble (left) and the final ensemble (right). The thick line shows the observed data.

Figure 79: The oil rate of well 3 over the 195 days production history from the initial
ensemble (left) and the final ensemble (right). The thick line shows the observed data.
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Figure 80: The oil rate of well 4 over the 195 days production history from the initial
ensemble (left) and the final ensemble (right). The thick line shows the observed data.

Figure 81: The oil rate of well 5 over the 195 days production history from the initial
ensemble (left) and the final ensemble (right). The thick line shows the observed data.

Figure 82: The water rate of well 3 over the 195 days production history from the
final ensemble. The thick line shows the observed data. There is no breakthrough
from any of the 100 initial ensemble member within 195 days.
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Figure 83: The histograms of squared data mismatch from the 100 initial ensemble
states (left) and the final ensemble states (right).

Figure 84: The histogram of squared model mismatch from the 100 initial ensemble
states (left) and the final ensemble states (right).
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in average has been reduced to 16.5% of the initial values. The best reduction is to

4.9% and the worst is to 49.2%.
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CHAPTER IX

COMPARISON OF ENKF WITH GRADIENT

METHODS ON HISTORY MATCHING

PROBLEMS

The objective of this chapter is to compare the performance of the ensemble

Kalman filter (EnKF) to the performance of a gradient-based minimization method

for the problem of estimation of facies boundaries in history matching. Because of

the approximate nature of the EnKF, the realizations from one ensemble tend to un-

derestimate the uncertainty especially for problems that are highly nonlinear. In this

study, the distributions of reservoir model realizations from 20 independent ensembles

are compared with the distributions from 20 randomized maximum likelihood (RML)

realizations for a 2D water-flood model with one injector and four producers.

9.1 Review of the Randomized Maximum Likeli-

hood.

A standard method for quantifying the uncertainty in reservoir simulation predic-

tions is to generate multiple conditional reservoir model realizations, and predict

future performance of each. The Randomized Maximum Likelihood (RML) method

generates realizations conditional to nonlinear data from unconditional realizations

in a Gaussian random field by a process of minimization. It has been shown to have

good sampling properties for history matching problems with highly nonlinear rela-

tionship between the data and the model parameters (see Liu and Oliver, 2003b). If
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the prior covariance of the model parameters and the variance of the observed data

are known, matched models can be generated as follows:

1. Generate an unconditional realization of the model parameters, mu ← N [mpr, CM ].

2. Generate a realization of the data, du ← N [dobs, CD].

3. Compute the set of model variables, m, that minimizes the function:

O(m) =
1

2
(m−mu)

T C−1
M (m−mu)

+
1

2
(g(m)− du)

T C−1
D (g(m)− du)

Solving a minimization problem is required to generate each matched model. In

this study, the limited memory BFGS method is used in computing the search di-

rection, and the gradients of the objective function with respect to the permeability

and the porosity fields, ∇kO and ∇φO, were obtained from the adjoint method for

general automatic history matching of reservoir property fields (see Li et al., 2003a).

9.2 Matching hard data and production data

The test case is a reservoir model on a 50 × 50 × 1 grid. The dimensions of each

gridblock is 30 ft×30 ft×20 ft. The covariance of the random Gaussian field Y1 is

Gaussian type with the principle direction 60◦ east of north. The range in the principle

direction is one third of the field width, and twice the range in the perpendicular

direction. The covariance of the random Gaussian field Y2 is same with that of Y1

except that the anisotropy angle is 45◦ east of north. Figs. 85(a) and 85(b) show a

pair of unconditional Gaussian fields (Y1, Y2) with the specified covariances. Three

facies are present in the field, which are denoted as facies 1, facies 2, and facies 3. An

unconditional facies map as shown in Fig. 85(d) is generated by truncating the two

unconditional Gaussian fields Y1 and Y2 using a truncation scheme in Fig. 85(c). The

160



facies in dark grey is facies 1, in light grey is facies 2, and in white is facies 3. The

covariances of the two Gaussian fields and the truncation scheme are assumed to be

known during history matching, and used to simulate all the facies realizations.

The true facies field is shown in Fig. 86. There is one injector near the center and

four producers at the corners. The facies observations are listed in Table 9 with the

well number and locations. The rock properties are constant within a facies type,

but distinct among the facies. Table 10 presents the permeability and the porosity

for each facies type. The injection rate is fixed at 4600 rb/day for well 1, and the

production rates are fixed at 1300 reservoir barrel of total fluid per day for wells 2,

3, and 4, respectively. Well 5 is in a low productivity region, and the production rate

is fixed at 600 rb/day. The initial reservoir pressure is 3800 psia, which is far above

the bubble point of 500 psia. The field is produced for 80 days and the bottom-hole-

pressure at all wells are recorded at day 2, and every 10 days beginning at day 10.

There are 45 bottom-hole-pressure measurement and 5 facies observations from all

wells. The measurement error for pressure data is assumed to be distributed normally

with mean 0 and standard deviation of 3 psi. The facies observations are assumed

to be exact. The same reservoir model was used to evaluate both the RML and the

EnKF methods. Because of small differences in the way dates are entered for the

two reservoir simulators CLASS and ECLIPSE, the “observed” data from the two

simulators are only compared with the “true” data from the same simulator.

9.2.1 Gradient approach.

The traditional approaches to history matching assimilate all the data at the same

time. Because the simulation of the process is so expensive, an efficient method

of modifying the model parameters to match the observations is required. In this

work, the adjoint method is used to compute the gradient of the objective function
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with respect to the model variables Y1 and Y2. The adjoint system is complicated

in development, and dependent on the specific reservoir simulator for which it was

developed. The adjoint system used was built for the Chevron Limited Application

Simulation System (CLASS) (Li et al., 2003a; Zhang and Reynolds, 2002).

The history matching starts with the initial models having the correct facies types

at well locations. The matching of facies data is done efficiently using the ensemble

Kalman filter method. During the process of history matching to production data,

the step-size of the modifications to the model parameters is restricted to ensure that

the facies at well locations are maintained to be correct.

Figure 87 uses box plots to compare the distributions of the simulated BHP data

from the 20 accepted RML realizations to the observed data. The “boxes” includes

the range from P25 to P75, while the lines include the range from P10 to P90. The

distributions of the simulated bottom-hole pressure from the 20 RML models are

much wider than expected, based on the assumption that the magnitude of the noise

is about 3 psi. As the facies type is an indicator variable, in order to compute the

gradient of the objective function with respect to the facies, a transition zone was

added at facies boundaries. This transition zone is only for the purpose of gradient

approximation, and does not exist in the simulation process. Unlike history matching

of permeability and porosity, the minimization of the objective function for history

matching of the discontinuous facies often stops at a relatively high objective function

value, because the gradient is only approximately correct. A typical minimization

required approximately 11 iterations. One hundred initial models were generated,

but only the 20 models with the lowest final objective function value were used.
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9.2.2 EnKF for history matching.

The states variables in the Kalman filter consist of two Gaussian fields for facies

description, pressure and saturation fields, simulated bottom-hole pressure data from

each well, and simulated facies at each well location: {Y1, Y2, P, S, Pwf,sim, Fsim}. 40

state vectors are included in an ensemble. The initial ensemble of state vectors are

conditional to the facies observations using EnKF. Unless care is taken, updating of

the Gaussian fields from matching production data may change the facies type at well

locations. Once the facies type at a well location is wrong, the Kalman correction

to the Gaussian fields can become large, and may cause over-shoot of the Gaussian

variables. An EnKF iteration for facies observations is made after each model update

to ensure the updated rock properties at well locations are always correct.

The first row of Fig. 88 shows 4 out of the 40 initial facies maps, and the second

row shows the corresponding facies maps simulated from the final ensemble members

after assimilating all the production data. The initial facies maps all have unique

local structures, and the final facies maps have developed common features among

the ensemble members. Some of the common features do not exist in the true facies

map.

Box plots are used to represent the distributions of the simulated production data

from all the 40 ensemble members over the 80 days of production. The reservoir

simulator ECLIPSE is used in the EnKF approach for adaption to supercomputers.

The simulated bottom-hole pressure and the observed data are plotted together in

Fig. 89. The box plots in the first column show the bottom-hole pressure from the

initial ensemble conditional only to facies observations. The box plots in the second

column show bottom-hole pressure after assimilation to pressure data. The observed

injection rate is plotted in the thick line. In the second column of Fig. 89, the
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distributions of the bottom-hole pressure from the 40 final reservoir models are much

narrower than the initial distributions and are centered at the observed data.

A single ensemble of 800 state members was also generated and assimilated to the

observed data. Column 3 of Fig. 89 shows the distributions of the simulated BHP

from all the 800 matched final models. The matching quality is clearly at least as

good as that using 40 ensemble members, as the width of the boxes is very narrow.

9.3 Discussions

This test problem is somewhat unusual in that the objective function for the problem,

which includes facies data mismatch, is not differentiable, so it was necessary to

introduce an approximate objective function with a transition between facies. The

quasi-Newton minimization method should have converged fairly quickly near the

minimum, but did not do so in this case. The final values of the objective function

were also larger than expected. The 20 best realizations from 100 minimizations are

elected. A typical history matching minimization required 11 iterations, with each

iteration requiring CPU time equivalent to approximately 5 forward simulation runs.

The effort required to generate the 20 independent realizations using LBFGS was

approximately 100 starting models × 11 iterations per model × 5 simulations per

iterations giving 5500 simulations, or 275 simulations per history matched model.

The ensemble Kalman filter method with 40 members in an ensemble required 40

simulation runs to generate 40 history matched models, but it is clear from Fig. 88 that

the variance within an ensemble is too small, so the 40 models are not independent

realizations. Realizations from the EnKF method, as judged by the median value of

the objective function (6220), are much better than those from the LBFGS method

which gave a larger median value for the objective function (21,300).

The tendency for the variance within an ensemble to reduce to a level that is
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smaller than required by the data has been previously noted for the EnKF method

(Houtekamer and Mitchell, 1998). Although the quality of the matching to the ob-

servations is satisfactory for all the 40 ensemble members, the significant reduction

of the variations among the ensemble of matched facies models lead us to investigate

the capability of EnKF in uncertainty quantification.

In practice, the number of state members in an ensemble is empirically chosen

between 40 and 100. When the number is too small, the variation carried from the

initial ensemble is not sufficient in approximation of the state covariances for each

model updating. Consequently, the matched models may become highly correlated,

and clustered at a small subspace of the real model probability distribution. In that

case, the 40 final models from the same ensemble are equivalent to one well matched

RML realization for uncertainty quantification. On the other hand, each ensemble

member requires one reservoir simulation run plus some computational overhead for

data assimilation. The EnKF approach becomes more computationally expensive the

more ensemble members are included.

Twenty ensembles were also generated with 40 state members in each, such that

the total number of states was 800. Each of the matched models in the 20 small

ensembles and the large ensemble of 800 members was simulated in ECLIPSE for

water cut prediction from each of the four producers at day 140. The distributions

of the predicted water cut from each ensemble are plotted in box-plots as shown in

Fig. 90. The boxes numbered from 1 to 20 are distributions from the ensembles with

40 members. The last box in each plot at number 21 is the distribution from the

800 member ensemble. The thick lines are predicted water cut from the true model,

where the 80 days production data were generated. None of the distributions of the

20 small ensembles covers the predicted water cut for all four producers. Some of

the ensembles predicted very small uncertainties, such as number 3 and 18. And
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none of the small ensembles yields distributions that are large enough to represent

the distributions from all other small ensembles.

The water cut predictions from the large ensemble of 800 state members cover

the true water cut from each well. They also largely cover the distributions from

the small ensembles. However, except for Well 4, the truth is far from the center of

the distributions and the predictions are heavily biased. Well 5 does not have water

breakthrough in the true model, and only 2 out of the 800 predictions are correct.

Not all of the history matched realizations are of equivalent quality — with quality

in this case measured by the magnitude of the data mismatches after data assimila-

tion. The higher quality realizations have smaller sums of squared mismatch between

predicted and observed data. The limited memory BFGS method to history match

pressure data for 100 reservoir models is used, but only retained the 20 with the lowest

value of the objective function after minimization. The median value of the objective

function from the best 20 was 21,300. The median value of the final objective func-

tion from the ensemble Kalman filter method with 40 members in an ensemble was

6220. The median value from EnKF using a single ensemble of 800 was 4780. It is

not surprising that better matches to the data are obtained from the larger ensemble,

simply because there are more degrees of freedom. It is somewhat surprising that

the minimization method that used the adjoint to compute the gradient achieved

the poorest matches to data. This has not been the typical experience with other

history matching problems, and may be attributed in this case to the necessity of

introducing a transition region between facies so that the gradient is computed from

an approximation to the actual objective function.
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Well 1 2 3 4 5
x 25 9 9 41 41
y 25 5 45 45 5

facies 3 1 1 3 2

Table 9: Facies observations from each of the five wells.

index Facies 1 Facies 2 Facies 3
Permeability (md) 174.0 80.0 372.0

Porosity 0.18 0.146 0.25

Table 10: Properties of each the litho-facies in the synthetic problem.

(a) Gaussian field (Y1). (b) Gaussian field (Y2).

(c) Threshold map. (d) Calculated facies field map.

Figure 85: Simulation of lithofacies distribution in the field by truncation of random
Gaussian fields Y1 and Y2 using intersecting line thresholds.
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Figure 86: The true facies field of the synthetic model contains three facies types.
The five dots are well locations.

Well 1 Well 2 Well 3

Well 4 Well 5

Figure 87: The box plots present the distributions of the simulated bottom hole
pressure from 20 history matched models. The thick lines are the observed bottom
pressure data from each well.
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Figure 88: The first four initial facies map in an ensemble of 40 members (top row),
and the corresponding final facies map after history matched to production data and
hard data (bottom row). The dots in each facies map are well locations.
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Figure 89: Distributions of the simulated bottom hole pressure from the initial
ensemble of 40 (first row), and from the history matched ensemble (second row). The
observed data from each well is plotted in a thick line for comparison. The box plots
shown are for well 1 through 4.
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Well 2 Well 3

Well 4 Well 5

Figure 90: Distributions of water cut prediction on day 140 from 20 ensemble groups.
The straight lines are water cut predicted from the true model.
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CHAPTER X

CONCLUSIONS

This study is devoted to history matching of geologic facies distributions to produc-

tion data and facies observations. The history matching problem was solved in two

steps. In the first step, the geostatistical parameters, such as the parameters decid-

ing the threshold lines, the ranges and the anisotropy angles of the Gaussian fields,

were estimated from an empirical training image based on the formation sedimenta-

tion environment. A gradient based method was used for minimization of the facies

mismatch, and the gradient is approximated by adding a transition zone to facies

boundaries. As certain combinations of the geostatistical parameters are more likely

to reproduce some geological structures than others, the randomized maximum like-

lihood method was used to generate a large number of realizations of geostatistical

parameters for the probability distributions. In the second step, the geostatistical

parameters were sampled from the a posteriori probability distributions and fixed.

The Gaussian random fields were optimized to match the facies and production data

observations in two distinct approaches: the gradient method and the EnKF method.

The truncated pluri-Gaussian method for simulation of geologic facies boundaries

proved to be very useful for history matching facies locations and ensuring that the

shapes honored production data. On the facies map, the boundaries between different

facies are the most sensitive region to changes in model parameters. Using intersecting

lines as thresholds, the facies map can be easily adjusted if the optimal direction

for change is known. The adjoint method was useful in computing the gradient of

the facies mismatch. In a case study of estimating the Gaussian random fields and
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the truncation line parameters to match the training image, approximately 73,000

variables were adjusted to match over 16,000 facies observations. 95.6% of the final

facies map matched the training image. The Gaussian covariance parameters, such

as the ranges and the anisotropy angles, were also estimated from the training image

using the adjoint approach. In the study, the number of model parameters was 83,238

({Z1, Z2, a11, a12, θc1, a21, a22, θc2}), and the number of data was 16,384 (128 × 128).

After 57 iterations, the facies mismatch reduced to 738 (4.5% of the total gridblocks)

from the initial number of 11,500 (70.2%).

The traditional approach for history matching to production data and facies ob-

servations modifies the model parameters to assimilate all data at once. The adjoint

system is developed to compute the gradient of the objective function with respect to

the Gaussian random fields. A 2-D, 2-phase flow case study was made using the sim-

ulator CLASS and the adjoint system developed for CLASS. The cost of reducing the

objective function by 98% was 13 LBFGS iterations, or approximately 65 simulation

runs.

This study also investigated the applicability of the ensemble Kalman filter to the

problem of history matching of facies locations. Facies are indicator variables, and

hence not differentiable or Gaussian. By a proper choice of state variables, however,

for instance using the Gaussian fields instead of the facies and using an appropriate

definition of facies mismatch instead of facies type, history matching of facies locations

is possible with EnKF. The results from both case studies are satisfactory, which

establishes the usefulness of EnKF in solving reservoir history matching problems

with geologic facies.

The relationships between the data and the state variables are nonlinear in both

the history matching and the facies matching examples. When matching facies ob-

servations, it was necessary to enforce the data constraints iteratively. Fortunately,
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there was no need to compute the gradient or the state covariance explicitly, so the

cost of the iterations was negligible.

In the history matching problem, the 2-D facies maps at the end of data assimi-

lation are much different from the initial facies maps, while consistent with the rates

assimilated in early time. This fact is encouraging for the use of the ensemble Kalman

filter method in reservoir history matching. When the early production data need to

be reinforced to the ensemble states, it may be necessary to iterate on the data assim-

ilation with the final states which would require rerunning the reservoir simulations

from early time.

The squared data mismatch for history matching was on average reduced to 16%

of its initial value after assimilating production data. The uncertainty of the model

variables conditional to data appears to be underestimated, as the subspace spanned

by the final states does not include the true facies map.

The EnKF algorithm was highly efficient from the standpoint of computational

cost and software development. Once the algorithm is fully understood, it only takes a

few days to write the EnKF code for data assimilation. The amount of computation

time for generating 100 reservoir facies models conditional to production data is

the time required for 100 reservoir simulations plus some overhead for the update

of Kalman states after each data assimilation. Although the uncertainty from a

single ensemble appears to have been underestimated, comparison of uncertainty

estimation between the EnKF and the gradient based history matching algorithms

should probably be based on the distributions from multiple ensembles.

The ensemble Kalman filter method outperformed the gradient-based minimiza-

tion method in both computational efficiency and applicability for the problem of

estimation of facies boundaries in history matching. It took approximately 5500

equivalent simulation runs to obtain the 20 accepted RML model realizations, and
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only 800 simulation runs for the 20 independent EnKF model realizations. The qual-

ity of the matching from the EnKF model realizations are better than those from the

gradient approach. The number of 40 state vectors in an ensemble is insufficient for

uncertainty quantification, as obvious correlations have been developed among the

state vectors during data assimilation.

Better quality matches were obtained from the larger ensemble, where 800 simula-

tion runs were made, than the 20 independent ensembles with 40 state vectors in each.

Based on the experience in this problem, it appears that it might be more efficient to

use one large ensemble to access uncertainty, than to use many small ensembles.
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