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ABSTRACT

Mei Han (Doctor of Philosophy in Petroleum Engineering)

Reservoir Characterization Using Dynamic Welltest/Production and Microseismic Data

Directed by Gaoming Li and Albert Reynolds

211 pp., Chapter 5: Conclusions

(500 words)

The goal of this research is to integrate dynamic welltest/production and micro-

seismic data to obtain accurate reservoir characterization, which is necessary for early

stage reservoir development planning. The early time dynamic data may include a few

days of production and subsequent shut-in pressure data. These dynamic data can be

integrated to reduce the uncertainties of the reservoir models. However, it is not possible

to resolve the layer reservoir rock properties with these dynamic data alone. One pos-

sible solution is to collect production logging data, where layer production rates can be

inferred. Here, we also explore another possible solution, namely integration of micro-

seismic data which are available during perforation. Microseismic technology has gained

popularity recently with the development of multi-stage hydraulic fracturing in shale gas

reservoirs, but the application of microseismic technology is mainly limited to fracture

characterization. In this research, we explore the application of microseismic data to

reservoir porosity and permeability field characterization which would be beneficial in

both conventional reservoir and unconventional shale gas reservoirs.

The transient pressure data can resolve the thickness-weighted average permeabil-

ity in a layered reservoir but are sensitive to the log-permeability of the high porosity,

high permeability layers while the microseismic data are more sensitive to the porosities

of the low porosity (high velocity) layers. Therefore, these two types of data are com-

plementary and the integration of both types of data can improve the accuracy of the

reservoir characterization.
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The forward model that is used to calculate the first arrival times is the finite-

difference solution of the Eikonal equation. The forward model that is used to predict

production data is the commercial simulator ECLIPSE 100. We use the ensemble Kalman

filter (EnKF) to assimilate the data. The EnKF does not require computing the gradient

of an objective function, and it can be coupled with any forward model easily. In the pro-

cedure for integrating production/pressure data and microseismic data considered here,

the static geological/geophysical data are assumed to be encapsulated in a multivariate

probability density function characterized by a prior mean and covariance for the joint

distribution of the porosity and permeability fields. The method is tested with synthetic

reservoir models. Excellent data matches are obtained with EnKF and the observed data

fall within the uncertainty bounds of the ensemble data predictions.

In the microseismic event location inversion study, we first present an efficient

gradient-based method. A novel method is devised to obtain the gradient of the first

arrival times to the event location parameters in addition to the first arrival times in one

forward model run. The method is applied to a simple one-stage of hydraulic fracture

and obtained good event location parameter estimation. Since the arrival time is least

sensitive to the event coordinate in the axis where source and receiver are closest, estima-

tion of the coordinate in this direction is least accurate among all coordinates. EnKF is

applied to this same event location inversion case and similar results are obtained. How-

ever, the ensemble-base method is advantageous in capturing uncertainties in velocity

structure.
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CHAPTER 1

INTRODUCTION

1.1 Background and Literature Review

1.1.1 Welltest data assimilation using EnKF

In today’s environment, it is common to make critical reservoir development de-

cisions based on models developed from geological and geophysical data interpretation

prior to obtaining any long-term production data. Although well-testing data are often

available, in most cases well test analysis is customarily interpreted based on analytical

solutions that assume single-phase flow for a homogeneous reservoir model or, at most,

assumes some simple form of heterogeneity, e.g., permeability variation in only the ra-

dial direction [48] or only the linear direction [40], or layered reservoirs with each layer

homogeneous [39, 35, 33, 13, 32, 36, 37]. While the interpretation of pressure transient

data using these analytical solutions are of enormous value, one objective of this work

is to integrate pressure transient data into a complex, highly heterogeneous geological

model. As when development decisions are made, the only dynamic data available may

be those obtained from an extended well test, it is hoped that conditioning a geological

model directly to well testing data may reduce the uncertainty in the original geological

model and aid early development decisions.

To condition reservoir models obtained from a prior geological or geostatistical

model to pressure data, we employ a reservoir simulator (Eclipse 100) as the forward

model. To obtain predicted data of reasonable accuracy, we use a hybrid grid with radial

grid refinement around a vertical well. The general approach considered has been applied

previously to both synthetic data [26, 27, 54, 76] and field data [28]. The procedure

used in these works relied on applying a Gauss-Newton method to minimize an objective
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function to obtain a MAP estimate or to minimize a set of objective functions to generate

an approximate sampling of a probability density function, derived from Bayes theorem,

using the randomized maximum likelihood (RML) method [49]. Unfortunately using the

Gauss-Newton method relies on generating all sensitivity coefficients, which in general,

is not feasible, for large scale problems where the number of data and number of model

parameters are both large. In the examples considered here, the model parameters are

the gridblock horizontal log-permeabilities and porosities and the permeability in the skin

zone(s) where the skin factor is defined by the formula of Hawkins [25]. To condition a set

of realizations of the rock property fields to well test data, we assimilate data sequentially

using the ensemble Kalman filter (EnKF) [17, 46, 19]. The popularity of EnKF for history

matching production or time-lapse seismic data arises from its computational efficiency:

data are assimilated sequentially in time with only one forward simulation run for each

reservoir model, large covariance matrices do not need to be computed or stored, and one

obtains at least an approximate measure of uncertainty in the model estimate (ensemble

mean) and future predicted performance. Moreover, it is easy to couple EnKF with any

commercial reservoir simulator.

Although EnKF often appears to work well for nonlinear problems including real

history matching problems [24, 20, 4], there is always a potential of a consistency issue

arising. Specifically for the problem considered here, at each data assimilation time we not

only update the rock property fields, we also update the pressure field before predicting

forward to the next data assimilation time. The assumption is that the updated dynamic

variables (here the pressure field) has the same mean and covariance as the pressure

fields that would be obtained if we reran the reservoir simulator from time zero using the

updated ensemble of rock property fields. Unfortunately, statistical consistency cannot

be proved unless the dynamical system is linear and predicted data are linearly related

to the model parameters [60]. For a linear dynamical system with appropriate Gaussian

statistics and other reasonable assumptions, it can be shown that EnKF samples the

posterior probability density function for the model and state parameters (rock property

and pressure field) correctly as the ensemble size becomes infinite [20]. In fact under these
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assumptions, EnKF and RML becomes statistically equivalent [72]. Here, the dynamical

system is represented by the reservoir simulation equations which, for single-phase flow,

are not highly nonlinear. Therefore, it is reasonable to expect that for the assimilation

of single-phase flow well test data, statistical consistency may approximately hold, and

the final ensemble of reservoir models may give approximate sampling of the posterior

pdf conditioned to well test data. However, for a layered reservoir, the pressure transient

data cannot resolve the reservoir model parameters of each individual layer. In this

situation, reasonable estimates of layer permeabiltities and skin factors can be obtained

by matching both pressure data and layer rate data from production logging [33, 13, 42].

1.1.2 Microseismic data

Another possible source of data that can help resolve layer reservoir properties

are the microseismic data. During hydraulic fracturing stimulation, microseismic energy

is released along the propagating fracture. Microseismic waves propagate outwards and

the signals are picked up by the receivers placed in the nearby monitor wells or at the

surface. Inversion of the microseismic data can yield the microseismic event source loca-

tions, which coincide with the hydraulic fractures created during stimulation operations

[29, 66]. Microseismic monitoring has become a common practice to characterize the

distribution, orientation and extent of hydraulic fractures in tight/shale gas reservoirs

[56]. The volume of rock stimulated by hydraulic fracturing can be imaged by detecting

and locating the microseismic events [3]. An accurate velocity structure between the

treatment and monitor wells is required to locate the microseismic events from microseis-

mic inversion. Sonic logs from the treatment and monitor wells are used for constructing

the velocity structure, but it may give very different velocity structure from the perfora-

tion timing measurement inversion. Warpinski et al. [67] suggested that the estimated

velocity structure from perforation timing inversion is more accurate, and when it is

applied to invert the fracture locations from microseismic data obtained during fracture

stimulation, it yields a more reasonable fracture location. The velocity structure of the

formation can be related to the reservoir rock properties through rock physical models.
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The travel velocity of P- and S-wave is a function of porosity and rock elastic properties

and the amplitude and its attenuation in microseismic data is related to permeability

[80]. Hence the microseismic data can be used to reduce the uncertainty of rock proper-

ties. On the other hand, production/welltest data can further improve the accuracy of

the velocity model for microseismic event location and give a better hydraulic fracture

characterization. Due to the fact that the production/welltest data can only resolve the

thickness-weighted average properties but are more sensitive to the log-permeability of

the high productive (high porosity, high permeability) layers and the microseismic data

are more sensitive to the high velocity (low porosity, low permeability) regions, these two

types of data are complimentary to each other in resolving the reservoir rock properties.

Microseismic data have been applied to reservoir characterization in other studies.

Rothert and Shapiro [55, 58] developed an approach for 3-D mapping of the permeability

distribution in heterogeneous geothermal reservoirs and aquifers using the seismic emis-

sion (microseismicity) induced in rocks by fluid injections (e.g., borehole hydraulic tests).

The approach, called seismicity-based reservoir characterization (SBRC), is based on the

hypothesis that microseismicity can be activated by perturbations of the pore pressure

caused by fluid injection. The pore-pressure is a function of the tensor of the hydraulic

diffusivity which is proportional to the permeability tensor. In our study, we are going

to resolve the velocity structure, which is a function of porosity, by assimilating the first

arrival time data of microseismic events. The log-permeability, assumed to be correlated

with porosity, can be characterized once the velocity structure is determined.

The inversion of hypocenter (event location) has been extensively investigated in

seismology [38, 2]. A least-squares inverse method is generally used to minimize the

difference between the observed and predicted data assuming the velocity structure is

known. Due to the uncertainty in the velocity structure used in event location inversion,

the joint hypocenter-velocity inversion of local earthquake arrival-time data has been

investigated since the mid-1970s [2]. Fehler et al. [22] first applied the methodology

to a set of hypocenters that were occurred during a hydraulic injection to estimate the

orientations of the major seismically active fracture planes. Eisner et al. [14] highlighted
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several common sources of error related to the location of microseismic events using

both surface and downhole arrays of geophones. However the study of Eisner et al.

[14] is based on the assumption that the medium in which the acoustic wave travels is

isotropic and homogeneous in all directions, even in the vertical direction. Maxwell [44]

demonstrated the influence of velocity model errors on the event location by showing an

example which results in significant mislocation of microseismic events with an incorrect

velocity model. The variation in event location uncertainty associated with different

geophone array locations is demonstrated in Maxwell [44]. The joint hypocenter-velocity

inversion was applied to hydraulic fracturing study with the hypocenter parameters and

the velocity structure either being explicitly coupled, also referred to as separation of

parameters [61, 6] or fully implicitly coupled [12, 71, 7]. However, the joint hypocenter-

velocity inversion is not in the scope of this study.

In our study of microseismic event location inversion, once the first arrival times

are predicted from the source-receiver pairs, an objective function is constructed. The

objective function includes two parts: 1) the mismatch between the predicted data and

the observations; 2) the mismatch between the current estimated parameters and the

prior knowledge of the model parameters. In our case, the prior knowledge of the event

location parameters are the perforation locations. The second part is used to constrain the

optimization problem in case there is not enough information to uniquely determine the

well location parameters [49]. Minimization of the objective function gives the estimated

event locations that are not far from the constraints (perforation locations), but match

the observed first arrival times.

1.1.3 Forward modeling of microseism

The seismic wave traveltime through different media can be calculated in a variety

of ways. The first one is raytracing, which can be divided into shooting raytracing

and bending raytracing. The ray path that the energy travels is computed by using

Snell’s law. Raytracing is based on the concept that the seismic energy of infinitely

high frequency follows a trajectory determined by the raytracing equations. In shooting
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raytracing methods, a fan of rays is shot from the source at many different take-off

angles. The travel time is calculated using the ray that connects the source and receiver

[31, 10]. Bending raytracing methods start with an initial, probably incorrect guess

for the ray path. The ray path is bent by a perturbation method until it satisfies a

minimum traveltime criterion [61, 63, 5]. Although the raytracing technique was applied

to hydraulic fracture mapping, the velocity structure models used in these studies are

assumed to be homogeneous layers [6, 67, 50]. The raytracing methods also have two

disadvantages. First, raytracing cannot handle the strongly varying velocity fields and

the raypath may not be unique. To ascertain the minimum traveltime, all these paths

should be computed and compared, which is time consuming. Second, raytracing can

not deal with the shadow zones, even in a smooth medium. Shadow zones are areas in

which rays cannot be found [64].

To overcome the problems in raytracing, some authors introduced modified ray-

tracing methods or applied the raytracing methods to anisotropic and laterally hetero-

geneous media [75, 69, 70, 8, 68, 11]. But the velocity models used in their papers are

represented by layer or block structures. It is difficult to adapt the method to represent

a complex geologic model. Other authors proposed raytracing methods with a triangular

mesh, which can be used to represent complex geological structures, but it still has the

multi-path problem [9, 62]. In addition, minimum traveltime tree algorithm (MTTT) was

proposed by Nakanishi and Yamaguchi [47], and was developed by Zhao et al. [78]. How-

ever, MTTT needs a large computation cost compared to the finite-difference method,

which will be used in our study.

Finite-difference solution of the Eikonal equation was developed to replace ray

tracing in some applications for the first-arrival time calculation. Vidale [64, 65] first in-

troduced a finite-difference method to solve the Eikonal equation. The improved version

was developed by Qin et al. [52], but it fails to handle media with high velocity con-

trast. Zhao [79] greatly improved the finite-difference method by combining the Eikonal

equation, Fermats principle and Huygens principle. In addition, both the idea (consid-

ering all possible waves) of Podvin and Lecomte [51] and the method based on curved
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wavefront [57] are used in his study. The traveltime calculation in his method [79] avoids

shadow-zone problems and can handle arbitrary velocity variations. In this dissertation,

we will use the finite-difference solution to the Eikonal equation as the forward model

for predicting the microseismic first arrival times for heterogeneous media [74]. Although

the finite-difference method has been applied to the anisotropic media [30, 21, 59, 34], it

is beyond the scope of this study. The velocity of each grid cell can be different and the

velocity is related to the porosity and rock mechanical properties through a functional

form [53, 16]. Considering all possible ray paths (transmission, refraction, and defrac-

tion) and wave mapping directions (four outward wave directions and four reverse wave

directions), there are sixteen traveltimes calculated at each point in the model by the

finite-difference solution to Eikonal equation. The one with the minimum travel time is

the first arrival time.

1.2 Objectives and Research Scope

The goal of this research is to integrate dynamic welltest/production and micro-

seismic data to obtain accurate reservoir characterization. The specific items considered

in the research plan are:

1. To integrate well test data into heterogeneous reservoir models generated from

geological and geophysical data using the ensemble Kalman filter (EnKF). In the

single layer case, to assimilate pressure transient data at active well and interference

pressure data at monitor wells during drawdown and buildup to improve estimation

of the porosity and permeability field. To investigate the effect of an incorrect prior

model on the posterior model with and without considering the uncertainty in the

prior model. In the layered reservoir case, to further reduce the uncertainty in rock

property fields by integration of production log data (layer flow rates).

2. To assimilate both microseismic and dynamic production/welltest data to reduce

the uncertainty of the porosity and permeability fields using the EnKF. The strategy

is to assimilate the microseismic data first to reduce the uncertainty of rock proper-

7



ties in the low porosity layers and then assimilate the dynamic production/welltest

data to reduce the uncertainty of the rock properties of the high porosity layers.

3. To apply gradient-based and ensemble-based methods to determine the microseis-

mic event locations given an accurate velocity profile or uncertain velocity structure.

The microseismic event location parameters may include the event location and its

time of occurrence, which may be used to characterize the fracture propagation and

distribution. Accurate fracture characterization will help reservoir modeling and

hence future reservoir production forecasts.
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CHAPTER 2

ASSIMILATING WELLTEST DATA USING ENKF

2.1 Methodology

2.1.1 EnKF algorithm for data assimilation

The ensemble Kalman filter(EnKF) is introduced by Evensen [17] as an alternative

to extended Kalman filter. The EnKF is a Monte Carlo method in which an ensemble

of states is employed to represent the mean and covariance, which are updated sequen-

tially in time [15]. The EnKF equations are typically introduced by defining the Nm-

dimensional column vector of model parameters denoted by m, which may include reser-

voir gridblock porosities and permeabilities, skin factor etc in reservoir characterization

cases. We let tn, n = 1, 2, · · · , denote the simulation time steps and let Np-dimensional

column vector, pn denote the vector of dynamical variables which are primary variables

of the reservoir simulation equations at time tn, such as reservoir gridblock pressures and

saturations. The vector dn represents the Nn-dimensional column vector of predicted

data at time tn. The reservoir simulator relation between the Nn-dimensional column

vector of predicted data given at the nth data assimilation step is denoted by

dn = gn(m, pn). (2.1)

Define the Ny = Nm +Np-dimensional state vector, yn as

yn =

mn

pn

 , (2.2)

where the state vector at tn contains both the reservoir model parameters and information
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on the state of the reservoir system. Although m contains only static variables, we use

mn in Eq. 2.2 to indicate that the estimation of m changes at every data assimilation

step.

Assuming that measurement errors at any two distinct data assimilation times are

independent, it can be shown using Bayes theorem that the probability density function

(pdf) for yn conditional to all data at times up to and including those at tn is given by

f(yn|dnobs · · · d1
obs) = af(dnobs|yn)f(yn|dn−1

obs · · · d
1
obs), (2.3)

where a is the normalizing constant and throughout the derivation, f always denotes a

pdf. The pdf f(yn|dn−1
obs · · · d1

obs) represents the prior pdf for yn before assimilation data

dnobs. We use a subscript p to represent prior and assume this prior is Gaussian with mean

yn,p and covariance matrix CY n,p . We also assume that the vector of measurement errors

at any tn is Gaussian with mean zero and covariance CDn . With the above assumptions,

Eq. 2.3 can be written as

f(yn|dnobs · · · d1
obs) =

a exp(−1

2
(yn − yn,p)TC−1

Y n,p(y
n − yn,p)− 1

2
(dn − dnobs)TC−1

Dn(dn − dnobs)),
(2.4)

which represents the pdf we wish to sample.

The derivation of EnKF for a nonlinear data functional can be done by conve-

niently adding the predicted data to the original state vector to obtain the augmented

state vector [18] defined by

ỹn =


mn

pn

dn

 , (2.5)

for n = 1, 2, · · · . Letting

H = [O INn ], (2.6)

10



where O is an Nn × (Nm + Np) null matrix and INn is an Nn ×Nn identity matrix. We

see that

dn = Hỹn. (2.7)

So by the trick of adding dn to the state vector, we have a linear relationship between

the data vector dn and the augmented state vector ỹn, making it possible to write down

the formula for the analysis step analytically. However, this trick does not remove the

effect of the nonlinearity. As shown in Li and Reynolds [43], augmenting the state vector

with data results in a correct procedure for sampling the pdf if, and only if, at every data

assimilation time step, the predicted data vector is a linear function of the combined

(unaugmented) state vector [15]. Using the assumptions made in the derivations of

Zafari and Reynolds [72] and Li and Reynolds [43], the pdf in Eq. 2.4 can be written as

f(ỹn|dnobs · · · d1
obs) =

a exp(−1

2
(ỹn − ỹn,p)TC−1

Ỹ n,p
(ỹn − ỹn,p)− 1

2
(Hỹn − dnobs)TC−1

Dn(Hỹn − dnobs)).
(2.8)

The posteriori pdf of Eq. 2.8 can be sampled using the randomized maximum

likelihood (RML) and a corresponding sample is

ỹn,ui = ỹn,pi + CỸ n,pH
T (CDn +HCỸ n,pH

T )−1(dnuc,i −Hỹ
n,p
i ), (2.9)

where ỹn,pi is a sample of the prior Gaussian pdf for ỹn and dnuc,i is a sample of the

Gaussian pdf which has mean dnobs and covariance CDn . The covariance matrix CỸ n,p is

estimated by

CỸ n,p =
1

Ne − 1

Ne∑
i=1

(ỹn,pi − ỹn,p)(ỹ
n,p
i − ỹn,p)T , (2.10)

where

ỹn,p =
1

Ne

Ne∑
i=1

ỹn,pi (2.11)
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and Ne is the number of ensemble members. Define the Kalman gain matrix as

Kn = CỸ n,pH
T (CDn +HCỸ n,pH

T )−1 (2.12)

where

CỸ n,pH
T =

1

Ne − 1

Ne∑
i=1

(ỹn,pi − ỹn,p)(d
n,p
i − dn,p)T , (2.13)

HCỸ n,pH
T =

1

Ne − 1

Ne∑
i=1

(dn,pi − dn,p)(d
n,p
i − dn,p)T . (2.14)

Then, Eq. 2.9 becomes

ỹn,ui = ỹn,pi +Kn(dnuc,i −Hỹ
n,p
i ). (2.15)

One of the advantages that EnKF has is that these covariance matrices do not need

to be explicitly computed or stored as CY is approximated from these set of predictions

[43].

2.1.2 Doubly stochastic data assimilation with uncertainty on prior information

As the prior mean and covariance of the property fields obtained from core, log

and other geological data can sometimes be erroneous, a doubly stochastic model is

applied to account for the uncertainty in the prior information. In the doubly stochastic

model, a correction to the prior mean and covariance matrix is adjusted together with

the heterogeneous field during history matching [42].

Here, we only consider the partially ”doubly-stochastic” model, where the prior

mean is uncertain. We assume that the prior covariance matrix is accurately known.

The Gaussian random column vector mlnk denotes the log-permeability field with mean

mlnk and covariance matrix Cmlnk
. The Gaussian random column vector mφ denotes the

porosity field with mean mφ and covariance matrix Cmφ . As the prior mean is uncertain,

we define θlnk and θφ, respectively, as the Gaussian random correction column vectors

to the prior means of the log-permeability and porosity fields. Note that we may use
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different corrections for each facies or geologic layer. The mean and covariance matrix

of the correction column vector θlnk for log-permeability are θlnk and CΘlnk
, respectively.

The corresponding mean and covariance matrix of the correction column vector θφ for

porosity are θφ and CΘφ .

The complete set of reservoir model parameters is contained in the column vector

defined by

m = [mT
lnk, θ

T
lnk,m

T
φ , θ

T
φ , s

T ]T (2.16)

where s is a Gaussian random vector of well skin factors or the skin zone log-permeabilities.

For simplicity, we define

xln k =

mlnk

θlnk

 , xφ =

mφ

θφ

 (2.17)

and then

m =


xlnk

xφ

s

 . (2.18)

The prior mean of the model parameter vector m is denoted as

m = [mT
lnk, θ

T

lnk,m
T
φ , θ

T

φ , s
T ]T = [xTlnk, x

T
φ , s

T ]T . (2.19)

The prior covariance matrix is given by

CM =



CMlnk
O CMlnk,φ

O O

O CΘlnk
O O O

CMlnk,φ
O CMφ

O O

O O O CΘφ O

O O O O Cs


=


Cxlnk Cxlnk,φ O

Cxlnk,φ Cxφ O

O O Cs

 (2.20)
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where CMlnk,φ
is the cross-covariance between lnk and φ and

Cxlnk =

 CMlnk
O

O CΘlnk

 (2.21)

Cxφ =

 CMφ
O

O CΘφ

 (2.22)

Cxlnk,φ =

 CMlnk,φ
O

O O

 . (2.23)

Here, we assume the corrections to the prior means θφ and θlnk, and s are inde-

pendent of each other and are also independent of the Gaussian random vectors mφ and

mlnk. Under the above assumptions, the prior probability density function (pdf) for m

is,

f(m) = α exp{−1

2
(m−m)TC−1

M (m−m)} =

α exp

{
− 1

2

mlnk −mlnk

mφ −mφ


T  CMlnk

CMlnk,φ

CMlnk,φ
CMlnk


−1 mlnk −mlnk

mφ −mφ

}

exp{−1

2
(θln k − θlnk)

TC−1
Θlnk

(θlnk − θlnk)}

exp{−1

2
(θφ − θφ)TC−1

Θφ
(θφ − θφ)}

exp{−1

2
(s− s)TC−1

s (s− s)}

(2.24)

where α is a normalizing coefficient. To generate the initial ensemble of Ne realizations

of the model parameters, we need to sample from the pdf of Eq. 2.24. In the example

that will be presented in Chapter 2.2.5, the initial ensemble of correlated log-permeability

and porosity fields (mlnk and mφ) are generated using Gaussian co-simulation [23]. The

realizations of the corrections to the prior means θlnk and θφ and skin factors s are

generated by sampling their individual Gaussian prior pdfs.

Note that the reservoir characteristic parameters (log-permeability and porosity
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fields), which are input into the reservoir simulator, are obtained by

lnk = mlnk + Eθlnk = [I E]xlnk (2.25)

and

φ = mφ + Eθφ = [I E]xφ, (2.26)

where E is a matrix whose ith column has a value 1 for every gridblock corresponding to

the prior mean for θlnk,i or θφ,i of the ith geological facies or layer and 0 otherwise, i.e.,

Eθlnk is vector of the same dimension as mlnk with the jth component of Eθlnk equals to

the correction to the prior mean for the jth component of mlnk, and a similar relation

holds for Eθφ. For example, for a two-layer case where we have different prior means for

each layer, the Gaussian random vector for porosity is given by

mφ =



mφ1

...

mφNg

mφNg+1

...

mφ2Ng


(2.27)

where Ng is the number of gridblocks in each layer.

E =



1 0

...
...

1 0

0 1

...
...

0 1


(2.28)
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θφ =

θφ1

θφ2

 (2.29)

where θφ1 and θφ2 are the corrections to the prior means of porosity in the first and

second layers. Then,

φ = mφ + Eθφ =



mφ1 + θφ1

...

mφNg + θφ1

mφNg+1 + θφ2

...

mφ2Ng + θφ2


. (2.30)

2.2 Single layer examples

2.2.1 Single layer heterogeneous case description

First we consider a one-layer synthetic heterogeneous reservoir in this example.

The reservoir consists of a 20 by 20 grid system. For each gridblock, ∆x = ∆y = 200 ft.

The thickness of the reservoir is 20 ft. The reservoir is assumed to be isotropic and the

true horizontal log-permeability is shown in Fig. 2.1(a). There is a long high permeability

channel running from the lower left corner to the upper right corner. The true porosity

is correlated with log-permeability and its distribution is shown in Fig. 2.1(b). There are

five wells drilled in the reservoir, as shown in the log-permeability map (Fig. 2.1(a)). An

active well is located at the center of the reservoir inside the high permeability channel

and four monitor wells are located at the four corners to provide interference test data.

To capture early transient behavior, we use a radial type local grid refinement around

the active well with 20 radial rings. in which first 5 radial rings close to the wellbore are

treated as the skin zone. To simulate the skin effect, we define the first 5 radial rings

close to the wellbore as the skin zone with a radius of 1.1 ft. The true skin factor is
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1.525, calculated using the Hawkin’s formula, i.e.,

s = (
kwG
ks
− 1)ln(

rs
rw

) (2.31)

where kwG is the well gridblock permeability; ks is the skin zone permeability; rs is the

skin zone radius; and rw is the wellbore radius. The reservoir fluid properties are listed in

Table 2.1. The initial reservoir pressure is 5000 psi. The initial water saturation is equal

to irreducible water saturation, Siw = 0.1. In addition, water is slightly compressible

(Table 2.1), so we effectively have only single-phase oil flow in the reservoir during the

well test.
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(a) Horizontal log-permeability
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(b) Porosity

Figure 2.1: True property fields, single layer example

pi, psi 5000
Boi, RB/STB 1.004
Bw, RB/STB 1.0
co, psi−1 1.4× 10−6

cw, psi−1 4.0× 10−6

µo, cp 2.0
µw, cp 1.0

ρo, lbm/ft3 40.0

ρw, lbm/ft3 62.4
Siw 0.1
Swi 0.1

Table 2.1: Reservoir fluid properties, single layer example
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The test consists of a 2-day drawdown period followed by a 2-day buildup period.

In this case, we assimilate pressure drawdown and buildup data of the active well alone

or with the interference pressure data of the monitor wells to estimate log-permeability,

porosity distribution and skin zone log-permeability.

For the single layer example, we consider four cases. In case 1 and case 2, we

assume that the prior means for lnk and φ are known exactly and all the realizations are

generated using the same mean as the one used to generate the true geological field. In

case 1, we only assimilate pressure drawdown and buildup data from the active well while

in case 2 we assimilating pressure drawdown and buildup data from active well and the

interference pressure data of four monitor wells. In case 3, we use incorrect prior means

but do not consider the uncertainty in these prior means, and hence the initial ensemble

of realizations are generated using prior means different from the true geological field. In

case 4, we consider the uncertainty of the prior means using a partially doubly stochastic

model. The measurement error for pressure is 1 psi.

2.2.2 Case 1: assimilating pressure data at the active well

In this case, we assimilate pressure drawdown and buildup data of the active well

only. The ensemble size is 90 and the initial ensemble of porosity and log-permeability

realizations are generated using Gaussian co-simulation with statistical parameters given

in Table 2.2. We assume that the prior means for log permeability and porosity are

known exactly and all the realizations are generated using the same mean as the one

used to generate the true geological field. The ensemble of the skin factor realizations

are generated with a mean equal to 3 and a variance equal to 2.

Fig. 2.2 shows the ensemble mean of the log-permeability distribution after match-

ing the drawdown data (Fig. 2.2(a)) and then buildup data (Fig. 2.2(b)). Compared to

the truth (Fig. 2.1(a)), the estimated log-permeability field after assimilating pressure

drawdown and buildup data gives a reasonable approximation of the true geology. The

channel direction is close to the truth and the estimated channel connects the active well

and well M4 as in the truth. A good estimate of the low permeability zone between
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Mean of lnk 5.0
Mean of φ 0.2

Standard deviation of lnk, σlnk 0.8
Standard deviation of φ, σφ 0.05
Correlation coefficient, ρlnk,φ 0.6

Angle α 30◦

Long range, r1 (ft) 8000
Short range, r2 (ft) 600

Table 2.2: Geostatistical parameters, single layer example

the active well and monitor well M3 was also obtained. The estimated porosity field is

of similar quality compared to the truth as shown in Fig. 2.3. Good estimates of the

porosity are obtained as porosity is fairly strongly correlated with log-permeability as

shown in Table 2.2. Moreover, at the end of the drawdown test, we have reached the

pseudo-steady state flow. Fig. 2.4 shows prior and posterior standard deviation for poros-

ity and log-permeability filed and Fig. 2.5 shows the posterior to prior STD ratio fields

by dividing the posterior STD by prior STD. Standard deviations of both porosity and

log-permeability fields are significantly reduced, especially in log-permeability around the

well region.
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Figure 2.2: The updated ensemble mean of log-permeability field, case 1 of single layer
example
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Figure 2.3: The updated ensemble mean of porosity field, case 1 of single layer example
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Figure 2.4: Prior and posterior standard deviation for φ and lnk field, case 1 of single
layer example

20



5 1 0 1 5 2 0

5

1 0

1 5

2 0

 

 

0

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0

(a) Prior standard deviation of φ

5 1 0 1 5 2 0

5

1 0

1 5

2 0

 

 

0

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0

(b) Prior standard deviation of lnk

Figure 2.5: Posterior to prior standard deviation ratio for φ and lnk field, case 1 of single
layer example
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Fig. 2.6(c) shows the evolution of the estimated well gridblock log-permeability,

skin zone log-permeability and skin factor during data assimilation. The x-axis is the data

assimilation step index. The first 15 steps pertain to the assimilation of the drawdown

pressure data and the second 15 steps pertain to the assimilation of the buildup data.

As mentioned earlier, we use 5 local radial rings to represent the skin zone around the

well. During data assimilation, we estimate the skin zone log-permeability lnks instead of

the skin factor directly. The skin factor is calculated using Hawkin’s formula (Eq. 2.31).

Throughout, in Fig. 2.6(c) and similar figures, a red straight line represents the true

value; a curve through circles is the ensemble mean (the parameter estimate) and the

two curves through triangles are the ensemble mean plus or minus 3 standard deviations

which give a characterization of the uncertainty in the estimated parameters. From

Fig. 2.6(a), we see that the uncertainty in the well gridlock log-permeability is reduced

significantly after the assimilation of the first few pressure drawdown data, and then

does not change substantially until the assimilation of early time buildup data further

reduces the uncertainty. The evolution of the estimate and uncertainty in skin zone log-

permeability (Fig. 2.6(b)) and the skin factor (Fig. 2.6(c)) are similar. Good estimates

of all the well gridblock log-permeability, skin zone log-permeability and the active well

skin factor are obtained. The improved estimates of the active well gridblock lnk that

occurs during buildup may at first seem surprising because standard superposition results

indicate that buildup pressure is not directly influenced by the well skin factor. However,

this appears to be an advantage in the case of a finite skin zone.
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Figure 2.6: Skin when assimilating drawdown and buildup data, case 1 of single layer
example
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Fig. 2.7 shows the predictions of bottomhole pressure during data assimilation and

Fig. 2.8 shows the log-log diagnostic plots of the active well pressure data predictions

obtained from time zero using the updated ensemble of rock property fields and active

well skin factors obtained at the last data assimilation step. In the log-log diagnostic

plots, 4p is the pressure difference from start of test while the effective time which is

also know as Agarwal equivalent time [1] is determined by:

te =
tp∆t

tp + ∆t
. (2.32)

In Fig. 2.7 and similar plots, the pink line represents true, gray lines represent ensemble

members and black dots are observed data. As shown in Fig. 2.7, the pressure prediction

of the ensemble converged in the first several time steps and matched observed data

throughout the remaining time steps. The behavior of the very early-time buildup data

is strongly influenced by the skin zone permeability as can be seen in the derivative plot

of Fig. 2.8(b) and the assimilation of the very first buildup pressure data subsequent

to shutin significantly reduces the uncertainty in the estimate of the skin factor, and

subsequent buildup data reduce the uncertainty in the estimate of lnk in the active well

gridblock. The unit slope in the derivative plot at the end of the drawdown (Fig. 2.8(a))

shows that we have reached pseudo-steady state.
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Figure 2.7: Active well pressure match, case 1 of single layer example
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Figure 2.8: Log-log diagnostic plots of the active well pressure data, case 1 of single layer
example

2.2.3 Case 2: assimilating pressure data at the active and monitor wells

In this case, we assimilate pressure drawdown and buildup data of the active well

and the interference pressure data of the monitor wells. The model is same as case 1 in

previous section, except there are 4 monitor wells in the corners to monitoring interference

pressure.

The ensemble means of the log-permeability and porosity fields are shown in

Fig. 2.9 and Fig. 2.10. The white gridblocks in Fig. 2.9(b) and Fig. 2.10(b) represent

values higher than the maximum value of the scale. The maximum value in the estimated

log-permeability field after matching both drawdown and buildup pressure data is 7.36

(1572 md) compared to the maximum value of 7 (1097 md) in the true log-permeability

field. The ensemble mean and log-permeability in the right bottom corner is higher than

maximum value of the scale because the high permeability area is underestimated, but

the true is still within ensemble uncertainty. The overshooting of porosity in the same

area is due to its correlation with log-permeability that is overcorrected. Similar to the

property field obtained by assimilating only the active well pressure data, the estimated

log-permeability and porosity fields after assimilating pressure data from both active well

and monitor well also gives a reasonable approximation of the true geology.
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Figure 2.9: The updated ensemble mean of log-permeability field, case 2 of single layer
example
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Figure 2.10: The updated ensemble mean of porosity field, case 2 of single layer example
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As shown in Fig. 2.11, the posterior standard deviation for the porosity and log-

permeability filed is further reduced by assimilating interference pressure data of the

monitor wells compared to Fig. 2.4, especially on the top left corner and bottom right

corner that are far from the near well region. Interference pressure data on the monitor

wells help decrease the uncertainty of the properties in the region around the monitor

wells.
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Figure 2.11: Prior and posterior standard deviation for φ and lnk field, case 2 of single
layer example

Similar to the results of assimilating only pressure data only on the active well

as shown in Fig. 2.6(c), reasonable estimate of well gridblock log-permeability, skin zone

permeability and skin factor are obtained as shown in Fig. 2.12.
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Figure 2.12: Skin after assimilating drawdown and buildup data, case 2 of single layer
example
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As shown in Fig. 2.13 and Fig. 2.14, the predicted pressure data on the active

well and the derivative of pressure change during data assimilation and rerun from time

0 are close to the true (the purple line).
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Figure 2.13: Active well pressure match, case 2 of single layer example
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Figure 2.14: Log-log diagnostic plots of the active well pressure data rerun from time 0,
case 2 of single layer example

Fig. 2.15, Fig. 2.16, Fig. 2.17 and Fig. 2.18 show the pressure drawdown, buildup

data prediction during data assimilation and rerun from time 0, respectively, on the 4

monitor wells. Similar to the active well results (Fig. 2.13 and Fig. 2.14), the monitor well

drawdown results are reasonably consistent, but the predicted buildup pressure shows a

substantially larger spread (uncertainty) when rerun from the final estimated ensemble.
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Figure 2.15: Monitor well drawdown pressure data match during data assimilation, case
2 of single layer example

2.2.4 Case 3: assimilating pressure data with wrong prior mean

In the previous case, the initial ensemble of model parameters are generated using

the same statistical parameters (Table 2.2) used to generate the true reservoir properties.

Here, we consider the case where the estimated prior means of the rock property fields are

far from the true means. In this case, the initial ensemble of reservoir porosity and log-

permeability fields are generated using different prior means than those used to generate

the true reservoir property fields. We will investigate the impact of wrong prior means on

data assimilation using EnKF. The initial ensemble of porosity and log-permeability fields

are generated using means of 0.35 and 6.5, respectively. Other statistical parameters of

the prior model are the same as the ones used to generate the truth (Table 2.2). This

means that the initial ensemble of porosity and log-permeability used in this case are

generated by adding 0.15 and 1.5, respectively to the initial ensemble of realizations used

in the previous case. The same initial ensemble of skin factors are used as in the previous
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Figure 2.16: Monitor well buildup pressure data match during data assimilation, case 2
of single layer example

cases.

Fig. 2.19 shows the estimated mean log-permeability distribution after assimilat-

ing the drawdown data (Fig. 2.19(a)) and then the buildup data (Fig. 2.19(b)) from

all wells. Although as in the truth (Fig. 2.1(a)), a high permeability channel running

through the active well and monitor well M4 is exhibited by the estimate of Fig. 2.19,

values of the log-permeability are much higher than that of the truth in the overshoot-

ing area shown as white. The maximum value in the estimated log-permeability field

after assimilating drawdown test data is 8.6 (5442 md) and 7.89 (2671 md) after further

assimilating pressure buildup test data, whereas the maximum value in the true log-

permeability distribution is only 7 (1097 md). In addition to the overshooting problem,

the channel is much wider than the truth and also there is an additional high perme-

ability channel generated passing through monitor well M1, whereas the permeability

in this area is supposed to be low in value according to the truth. Overall, the perme-

ability fields of Fig. 2.19 clearly provide a poor estimate of the truth than was obtained
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Figure 2.17: Monitor well drawdown pressure data match rerun from time 0, case 2 of
single layer example

where the correct means are used to generate the initial ensemble in Fig. 2.9. After

further data assimilation of pressure buildup data, it seems the overshooting is reduced,

but the log-permeability distribution is still much rougher than the truth and the un-

wanted high permeability channel through M1 still remains. Fig. 2.20 shows estimated

porosity fields after assimilating the drawdown and buildup pressure data. Similarly to

the overshooting problem in the log-permeability field, after assimilating drawdown and

buildup data (Fig. 2.20(b)), the top left corner is underestimated and the right bottom

is overestimated. The overall estimation of porosity field is not good.

Although the estimated log-permeability fields are far from the truth, the esti-

mates of the skin zone log-permeability (4.53) is reasonable compared to the truth (4.62)

as is estimated well gridblock log-permeability (5.41) compared to the truth (5.24) as

shown in Fig. 2.21. However, the true skin factor is out of range of the estimated ensem-

ble of skin factor as shown in Fig. 2.21(c).
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Figure 2.18: Monitor well buildup pressure data match rerun from time 0, case 2 of single
layer example
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Figure 2.19: The updated ensemble mean of log-permeability field, case 3 of single layer
example
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Figure 2.20: The updated ensemble mean of porosity field, case 3 of single layer example
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Figure 2.21: Skin after assimilating drawdown and buildup data, case 3 of single layer
example
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As shown in Fig. 2.22 and Fig. 2.23, EnKF managed to obtain a relatively good

match on the active well pressure data during data assimilation and during rerun from

time 0. However, the derivative of pressure change match is not as good during the

late time of drawdown and buildup tests. Fig. 2.24 and Fig. 2.25 show the data match

at all monitor wells during data assimilation for the 2-day pressure drawdown and 2-

day buildup tests. The data match at well M1 is poor and the data matches at the

other monitor wells are relatively better. The drawdown pressure on monitor well 1 is

overestimated indicates that permeability region around monitor well 1 is overestimated.

1 E - 4 1 E - 3 0 . 0 1 0 . 1 1
4 5 0 0

4 6 0 0

4 7 0 0

4 8 0 0

4 9 0 0

5 0 0 0

p wf (p
sia

)

T i m e  ( d a y )

 E n s e m b l e
 O b s e r v a t i o n
 T r u e

(a) Drawdown

1 0 0 0 0 1 0 0 0 1 0 0 1 0 1
4 8 0 0

4 8 5 0

4 9 0 0

4 9 5 0

5 0 0 0

P ws
 (p

sia
)

( t p + d t ) / d t

 E n s e m b l e
 O b s e r v a t i o n
 T r u e

(b) Buildup

Figure 2.22: Active well pressure match, case 3 of single layer example
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Figure 2.23: : Log-log diagnostic plots of the active well pressure data, case 3 of single
layer example

34



0 . 0 1 0 . 1 1
4 9 5 0

4 9 6 0

4 9 7 0

4 9 8 0

4 9 9 0

5 0 0 0

BH
P1

 (p
sia

)
T i m e  ( d a y )

 E n s e m b l e
 O b s e r v a t i o n
 T r u e

(a) Monitor well 1

0 . 0 1 0 . 1 1
4 9 5 0

4 9 6 0

4 9 7 0

4 9 8 0

4 9 9 0

5 0 0 0

BH
P2

 (p
sia

)

T i m e  ( d a y )

 E n s e m b l e
 O b s e r v a t i o n
 T r u e

(b) Monitor well 2

0 . 0 1 0 . 1 1
4 9 5 0

4 9 6 0

4 9 7 0

4 9 8 0

4 9 9 0

5 0 0 0

BH
P3

 (p
sia

)

T i m e  ( d a y )

 E n s e m b l e
 O b s e r v a t i o n
 T r u e

(c) Monitor well 3

0 . 0 1 0 . 1 1
4 9 5 0

4 9 6 0

4 9 7 0

4 9 8 0

4 9 9 0

5 0 0 0

BH
P4

 (p
sia

)

T i m e  ( d a y )

 E n s e m b l e
 O b s e r v a t i o n
 T r u e

(d) Monitor well 4

Figure 2.24: Monitor well drawdown pressure data match during data assimilation, case
3 of single layer example

2.2.5 Case 4: doubly stochastic data assimilation

In the previous case, we showed that when the initial ensemble of model param-

eters are generated using incorrect prior means far from the true means, EnKF fails to

yield a reasonable estimate of the rock property fields. In case 4, we apply a partially

doubly-stochastic process which includes uncertainty in the prior means, and thus allows

us to make corrections to the “wrong” prior means. In this case, we generate the initial

ensemble of porosity and log-permeability fields by adding corrections to the set of real-

izations used in case 3. Given a particular realization of (mT
lnk,m

T
φ )T , we add a realization

of θlnk to each entry of mlnk and a realization of θφ to each entry of mφ, where θlnk is

Gaussian with mean zero and variance 2 and θφ is Gaussian with mean zero and variance

equal to 0.01. From this process, we generate an initial ensemble of the log-permeability

and porosity fields. Because of the uncertainty in the prior means, the initial variations

in gridblock porosities and log-permeabilities are much higher than when using the en-
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Figure 2.25: Monitor well buildup pressure data match during data assimilation, case 3
of single layer example

semble of initial models generated from the “wrong” prior mean in case 3. The same

initial ensemble of skin factors is used.

The estimated ensemble means of the log-permeability and porosity fields in the

doubly-stochastic case are shown in Fig. 2.26 and Fig. 2.27, and the estimates of the rock

property fields are of very similar quality to those obtained using correct prior means in

case 2; see Fig. 2.9 and Fig. 2.10.

Fig. 2.28(a) and Fig. 2.28(b) show the evolution of the estimated mean log-

permeability and porosity, which is the prior mean plus the estimated correction to the

mean at each data assimilation step. The true prior mean for the log-permeability is 5 as

shown in Fig. 2.28(a) in red. After assimilating the 2-day pressure drawdown data (the

first 15 steps of data assimilation), the estimated mean of log-permeability gets reason-

ably close to its true value of 5 and the uncertainty decreases during data assimilation.

When we assimilate the pressure buildup data (the second 15 data assimilation steps),

estimates of the mean of lnk and the mean of φ do not change appreciably. However, as
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Figure 2.26: The updated ensemble mean of log-permeability field, case 4 of single layer
example
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Figure 2.27: The updated ensemble mean of porosity field, case 4 of single layer example

shown in Fig. 2.29, the skin estimate is improved by assimilating early time buildup data

as in case 2.
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(b) Porosity

Figure 2.28: Ensemble mean of log-permeability and porosity after assimilating drawdown
and buildup data, case 4 of single layer example
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(a) Well gridblock lnk
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(c) Skin factor

Figure 2.29: Skin after assimilating drawdown and buildup data, case 4 of single layer
example
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Fig. 2.30 shows the pressure data match at the active well during data assimi-

lation which shows a better data match in late buildup (Fig. 2.30(b)) than in case 3

(Fig. 2.22(b)). Fig. 2.31 shows the ensemble predictions of active wellbore pressure and

corresponding pressure derivatives obtained when rerunning from time zero using the fi-

nal ensemble of model parameters. Note that even though we do not assimilate pressure

derivative “data”, the derivatives of the ensemble predictions match the true prediction.

A much better data match in the prediction of the monitor well pressure data, especially

of monitor well 1, is obtained by the doubly stochastic process (Fig. 2.32 and Fig. 2.33)

than that from case 3 where the “wrong” prior means were used but we did not include

uncertainty in these means (Fig. 2.24 and Fig. 2.25).

1 E - 4 1 E - 3 0 . 0 1 0 . 1 1
4 5 0 0

4 6 0 0

4 7 0 0

4 8 0 0

4 9 0 0

5 0 0 0

p wf (p
sia

)

T i m e  ( d a y )

 E n s e m b l e
 O b s e r v a t i o n
 T r u e

(a) Drawdown

1 0 0 0 0 1 0 0 0 1 0 0 1 0 1
4 8 0 0

4 8 5 0

4 9 0 0

4 9 5 0

5 0 0 0

P ws
 (p

sia
)

( t p + d t ) / d t

 E n s e m b l e
 O b s e r v a t i o n
 T r u e

(b) Buildup

Figure 2.30: Active well pressure match, case 4 of single layer example
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Figure 2.31: Log-log diagnostic plots of the active well pressure data, case 4 of single
layer example
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Figure 2.32: Monitor well drawdown pressure data match during data assimilation, case
4 of single layer example
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Figure 2.33: Monitor well buildup pressure data match during data assimilation, case 4
of single layer example
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In summary, EnKF is applied to assimilate pressure transient data in a one-layer

heterogeneous reservoir example of different scenarios. In the 1st case, assuming the prior

information of the log-permeability and porosity fields are known, the pressure data at the

active well are assimilated. In the 2nd case, we place 4 monitor wells in the reservoir and

assimilate the interference pressure data observed at the monitor wells together with that

from the active well. In both cases, reasonable data matches are obtained. The estimate

of the property fields (log-permeability and porosity) obtained after assimilating the

pressure transient data (drawdown and buildup) using EnKF captures the true geological

structure and spatial geological features. However, matching interference pressure data,

the geological feature in the regions that are far from the active well is improved.

In the 3rd case, where we use incorrect prior means and do not consider the

uncertainty in these means, we obtain erroneous estimate of log-permeability and porosity

fields with serious overshooting problems. The estimated skin factor is biased compared

the truth. Even though EnKF managed to obtain a relatively good match on the active

well pressure data, the match on the derivative of pressure change on the active well and

pressure of monitor well 1 is not good. In the 4th case that the prior means of the rock

property fields are erroneous as in 3rd case, we have applied a partially doubly stochastic

model in the EnKF methodology, which results in significantly better estimate of the

rock property fields and good data matches.

2.3 Two-layer heterogeneous examples

2.3.1 Case description

In this section, we consider a two-layer reservoir example. The grid system is

20 × 20 × 2 and the size of each gridblock is the same as the single layer case. The

thickness of each layer is 20 ft. The true log-permeability and porosity fields are shown

in Fig. 2.34 and Fig. 2.35. The prior mean and variance of porosity are 0.2 and 0.0025,

respectively for both layers. The prior mean and variance of log-permeability are 6 and

1 for layer 1, and 4 and 1 for layer 2. The direction of long correlation range for layer
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1 is the same as in the single layer case in the previous section and the direction of

long correlation range of layer 2 is perpendicular to that of layer 1. All other statistical

parameters are the same as in the single layer case; see Table 2.2. The true initial reservoir

pressure is 5000 psi and the initial water saturation is 0.1 which is equal to the irreducible

water saturation. As in the single layer case, one active well is located at the center and

four monitor wells are at the corners. All wells fully penetrate both layers. Although the

reservoir has a vertical permeability of zero, the two layers can communicate through the

monitor wells. We have applied local grid refinement around the active well in the same

way as in the single layer case. The true skin factors of the first and second layer are 2

and 8, respectively. In this case, we added uncertainty to the initial reservoir pressure,

i.e., we generated samples of white noise with mean of zero and standard deviation of 5

psi and added it to the true initial pressure to obtain an ensemble of initial pressures.
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Figure 2.34: True horizontal log-permeability field, two-layer heterogenous example

The active well at the center of the reservoir produces at a constant oil rate of

600 STB/D for the first two days (referred to as drawdown 1) and 300 STB/D for the

next two-day period (referred to as drawdown 2), i.e., we consider a two-step drawdown

test. The bottomhole pressure of the active well and monitor wells are recorded and

assimilated using EnKF.

Our objective is to show that the assimilation of layer rate production logging

data, specifically individual layer flow rates, improves estimates of layer properties and
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Figure 2.35: True porosity field, two-layer heterogenous example

well skin factors. The initial realizations for the layer skin factors are generated with

prior means of 6 and 4, respectively for the first and second layer with a variance of 2 for

both layers. The realizations of initial pressure are drawn from a Gaussian distribution

with mean 5,000 psi and a standard deviation of 5 psi. There are 60 data assimilation

time steps, 30 steps in the first 48 hours when the production rate is 600 STB/D and 30

steps in the next 48 hours when the production rate is 300 STB/D. The measurement

error for pressure and layer rate data are 1 psi and 5 STB/D, respectively.

2.3.2 Case 1: assimilating pressure data only

In the first case, the property fields and skin parameters are updated by assimilat-

ing pressure data from the active and monitor wells. Fig. 2.36 shows the ensemble mean

log-permeability fields obtained by assimilating the BHP data of the active and monitor

wells with EnKF but without assimilating layer rate data. The major geological features

of the truth (high permeability channels) of layer 1 are captured in the estimated ensem-

ble mean, but the estimated log-permeability field for layer 2 differs fairly significantly

from the truth. Estimates of roughly similar quality are obtained for the porosity fields

of both layers, as shown in Fig. 2.37.
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Figure 2.36: The updated ensemble mean of log-permeability field, case 1 of two-layer
heterogeneous example
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Figure 2.37: The updated ensemble mean of porosity field, case 1 of two-layer heteroge-
neous example
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Figure 2.38: Ratio of posterior to prior STD of porosity and log-permeability, case 1 of
two-layer heterogeneous example
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Fig. 2.39 and Fig. 2.40 show the estimated well gridblock log-permeability, skin

zone log-permeability and skin factor with uncertainty for layer 1 and 2, respectively. It

can be seen that for both layers, the true well gridblock log-permeability stays within the

uncertainty bound; skin zone log-permeability is somewhat biased; the true skin factors

are totally outside the uncertainty bound. However, the well “effective skin factor” stays

within the uncertainty bound as shown in Fig. 2.41. Here the well effective skin factor is

defined by using the thickness-averaged permeability in the skin zone and the thickness-

averaged well gridblock permeability using Hawkin’s formula (Eq. 2.31). The results

show that pressure transient data alone cannot resolve individual layer skin factors in a

multi-layer reservoir, even though the pressure data match is reasonably good (Fig. 2.42

and Fig. 2.43). Fig. 2.42 and Fig. 2.43 show only the data match of the active well for

the first 48-hour drawdown during data assimilation and the associated data match when

rerunning from time zero using the final estimated rock property fields and skin factors.

The monitor well pressure data match during data assimilation are shown in Fig. 2.44

and Fig. 2.45 and the corresponding pressure data match when rerunning from time 0

are shown in Fig. 2.46 and Fig. 2.47. Rerunning from time zero with final ensemble

yields a substantially larger spread (uncertainty) in the predicted pressure, which may

be due to the fact that we did not adjust the initial pressure during data assimilation.

As indicated in Fig. 2.42(b) and similar plots, a few realizations failed during simulation

run; the failure is indicated by a sudden drop in pressure to zero.

0 1 0 2 0 3 0 4 0 5 0 6 0
2

4

6

8

 M e a n - 3 S T D
 M e a n
 M e a n + 3 S T D
 T r u eWe

ll G
rid

blo
ck 

Ln
k

T i m e  S t e p

(a) Well gridblock lnk

1 0 2 0 3 0 4 0 5 0 6 0
2

4

6

8
 M e a n - 3 S T D
 M e a n
 M e a n + 3 S T D
 T r u e

Ln
ks

T i m e  S t e p

(b) Skin zone lnk

0 1 0 2 0 3 0 4 0 5 0 6 0
- 5

0

5

1 0

 M e a n - 3 S T D
 M e a n
 M e a n + 3 S T D
 T r u e

Sk
in 

Fa
cto

r

T i m e  S t e p

(c) Skin factor

Figure 2.39: Skin of layer 1 when assimilating multi-rate drawdown data, case 1 of two-
layer heterogeneous example
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(b) Skin zone lnk
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Figure 2.40: Skin of layer 2 when assimilating multi-rate drawdown data, case 1 of two-
layer heterogeneous example
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Figure 2.41: Effective skin when assimilating multi-rate drawdown data, case 1 of two-
layer heterogeneous example

(a) Drawdown 1 (b) Drawdown 2

Figure 2.42: Active well drawdown pressure match during data assimilation, case 1 of
two-layer heterogeneous example
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(a) Drawdown 1 (b) Drawdown 2

Figure 2.43: Active well drawdown pressure match rerun from time 0, case 1 of two-layer
heterogeneous example

(a) Monitor well 1 (b) Monitor well 2

(c) Monitor well 3 (d) Monitor well 4

Figure 2.44: Monitor well pressure data match during drawdown 1 data assimilation,
case 1 of two-layer heterogeneous example
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(a) Monitor well 1 (b) Monitor well 2

(c) Monitor well 3 (d) Monitor well 4

Figure 2.45: Monitor well pressure data match during drawdown 2 data assimilation,
case 1 of two-layer heterogeneous example

(a) Monitor well 1 (b) Monitor well 2

(c) Monitor well 3 (d) Monitor well 4

Figure 2.46: Monitor well drawdown 1 pressure data match rerun from time 0, case 1 of
two-layer heterogeneous example
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(a) Monitor well 1 (b) Monitor well 2

(c) Monitor well 3 (d) Monitor well 4

Figure 2.47: Monitor well drawdown 2 pressure data match rerun from time 0, case 1 of
two-layer heterogeneous example
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Fig. 2.48 and Fig. 2.49 show the layer rate predictions during data assimilation

and rerun from time 0, respectively, for layer 1. The pink curve shows the prediction

with the true model and black circles are the observed layer rate data. Note that in this

case, we do not assimilate layer rate data. The production rate from layer 1 tends to

be underestimated especially during the first flow period. An erroneously low layer rate

is consistent with an over estimate of the skin factor of layer 1. Although we do not

assimilate the layer rate data, the uncertainty of the ensemble predictions decreases as

we assimilate more and more pressure data due to the fact that uncertainty in the skin

factors and rock property fields decreases. The layer rate predictions from layer 2 are

complementary to that of layer 1 because the total production rate is constant during

each flow period.

(a) Drawdown 1 (b) Drawdown 2

Figure 2.48: Layer rate of layer 1 data match during data assimilation, case 1 of two-layer
heterogeneous example

2.3.3 Case 2: assimilating pressure and layer rate data

In this case, both the pressure data from the active well and monitor wells and

the layer rate data are assimilated to update the property fields and skin zone log-

permeability. Fig. 2.50 shows the ensemble mean of the estimated log-permeability fields

for both layers for the case where we assimilate both pressure data and layer rate data.

Note in this case, a more geologically reasonable estimate of the log-permeability for

layer 2 is obtained but the main channel of layer 1 is wider than in the true case as the
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(a) Drawdown 1 (b) Drawdown 2

Figure 2.49: Layer rate of layer 1 data match rerun from time 0, case 1 of two-layer
heterogeneous example

estimate is essentially a combination of the two high permeability channels in layer 1 of

the truth. Similar to the log-permeability field, reasonable estimate on the porosity field

are obtained as shown in Fig. 2.51. Comparing Fig. 2.52 to Fig. 2.38, we obtained overall

more uncertainty reduction by integrating layer rate data.
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Figure 2.50: The updated ensemble mean of log-permeability field, case 2 of two-layer
heterogeneous example
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Figure 2.51: The updated ensemble mean of porosity field, case 2 of two-layer heteroge-
neous example
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Figure 2.52: Ratio of posterior to prior STD of porosity and log-permeability, case 2 of
two-layer heterogeneous example
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Fig. 2.53 and Fig. 2.54 show the evolution of the skin parameters during data

assimilation in the case where we assimilate not only pressure data but also layer rate

data. In both layers, the well gridblock and skin zone log-permeability changed drastically

in the first few time steps and remain relatively constant in the later time steps, except for

layer 2 well gridblock log-permeability, the uncertainty keep fluctuating and decreasing

and the mean is getting close to true in first 30 time steps. The skin factor of the first

layer had a dramatic change and shift towards the truth in the first 8 data assimilation

time steps and then remains relatively constant. The second layer skin factor gradually

increases towards the truth in the first 30 data assimilation steps, which corresponds

to the first 48 hours (drawdown 1). At the end of drawdown 1, the mean estimate

of layer 2 skin factor is close to the truth. During drawdown 2, it remains relatively

constant. Compared to the case where we did not assimilate layer rate data (Fig. 2.39

and Fig. 2.40), we obtain a much better estimate on the individual layer skin factor when

the layer rates are assimilated (Fig. 2.53 and Fig. 2.54). However, the estimate of the

well effective skin factor in Fig. 2.55 is of similar quality to that obtained assimilating no

layer rates in Fig. 2.41, and the uncertainty bounds the truth for all data assimilation

steps.
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(c) Skin factor

Figure 2.53: Skin of layer 1 when assimilating multi-rate drawdown data, case 2 of two-
layer heterogeneous example
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(c) Skin factor

Figure 2.54: Skin of layer 2 when assimilating multi-rate drawdown data, case 2 of two-
layer heterogeneous example
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Figure 2.55: Effective skin when assimilating multi-rate drawdown data, case 2 of two-
layer heterogeneous example
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The pressure data match of the active and monitor wells during data assimilation

are shown in Fig. 2.56, Fig. 2.58 and Fig. 2.59. The pressure data matches is reasonably

well as in the previous cases. The layer rate data match for the first layer during data

assimilation is shown in Fig. 2.57. The ensemble predictions (grey curves) start with a

large uncertainty shown as a big spread (from 80 to 550 STB/D) compared to the true

layer 1 rate of about 500 STB/D. This large uncertainty is reduced dramatically in the

first 3 data assimilation steps and all the realizations give layer rate prediction close to

the truth during the rest of data assimilation steps. Rerun from time 0, the layer rates

match the true very well as shown in Fig. 2.61. As shown in Fig. 2.60, Fig. 2.62 and

Fig. 2.63, the data match when rerunning from time 0 are as good as the pressure data

match in the previous case without assimilating the layer rates.

(a) Drawdown 1 (b) Drawdown 2

Figure 2.56: Active well drawdown pressure match during data assimilation, case 2 of
two-layer heterogeneous example

In summary, for a two-layer reservoir, the pressure data alone cannot resolve the

layer skin factors and log-permeability field. However, the pressure data alone is able to

resolve effective skin factor. Assimilating both layer rate and pressure data gives good

estimates of the individual layer skin factors as well as geologically reasonable estimates

of the rock property fields.
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(a) Drawdown 1 (b) Drawdown 2

Figure 2.57: Layer rate of layer 1 data match during data assimilation, case 2 of two-layer
heterogeneous example

(a) Monitor well 1 (b) Monitor well 2

(c) Monitor well 3 (d) Monitor well 4

Figure 2.58: Monitor well pressure data match during drawdown 1 data assimilation,
case 2 of two-layer heterogeneous example
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(a) Monitor well 1 (b) Monitor well 2

(c) Monitor well 3 (d) Monitor well 4

Figure 2.59: Monitor well pressure data match during drawdown 2 data assimilation,
case 2 of two-layer heterogeneous example

(a) Drawdown 1 (b) Drawdown 2

Figure 2.60: Active well drawdown pressure match rerun from time 0, case 2 of two-layer
heterogeneous example
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(a) Drawdown 1 (b) Drawdown 2

Figure 2.61: Layer rate of layer 1 data match during data assimilation, case 2 of two-layer
heterogeneous example

(a) Monitor well 1 (b) Monitor well 2

(c) Monitor well 3 (d) Monitor well 4

Figure 2.62: Monitor well drawdown 1 pressure data match rerun from time 0, case 2 of
two-layer heterogeneous example
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(a) Monitor well 1 (b) Monitor well 2

(c) Monitor well 3 (d) Monitor well 4

Figure 2.63: Monitor well drawdown 2 pressure data match rerun from time 0, case 2 of
two-layer heterogeneous example
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CHAPTER 3

ASSIMILATING WELLTEST/MICROSEISMIC

DATA FOR LAYERED RESERVOIRS

3.1 Microseismic data

3.1.1 Overview

During hydraulic fracturing of a hydrocarbon well, many microseismic events oc-

cur along the propagating fracture. The first arrival times of the microseismic wave are

picked up at the geophones placed in nearby wells as a common microseismic monitoring

practice to characterize the distribution, orientation and extent of hydraulic fractures in

tight/shale gas reservoirs. The first arrival time depends on the location of the microseis-

mic events as well as the velocity of the formation in its path. The current application

of the microseismic measurements is mostly limited to qualitative characterization of the

hydraulic fracture by evaluating the microseismic spatial event distribution. The velocity

structure that is used in event location inversion is either estimated directly from sonic

logs or calibrated from perforation timing microseismic measurements. In the perforation

timing procedure, the velocity structure is calibrated by assimilating the arrival time of

microseism caused by the perforation shots where the event location is known. As sonic

logs reflect the vertical velocity while microseismic wave travel is heavily affected by

horizontal velocity, Warpinski et al. [67] suggested that the estimated velocity structure

from perforation timing inversion is more accurate in an anisotropic environment and

it yielded more reasonable fracture locations when this velocity structure is applied to

invert the fracture locations from the microseismic data obtained during fracture stim-

ulation. The velocity structure of the formation can be related to the reservoir rock

properties through rock physical models. The travel velocity of microseismic waves can
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be calculated as a function of porosity and rock elastic properties. Normally porosity

is assumed to be correlated with log-permeability. Hence the microseismic data can be

used to improve the formation characterization and reduce the uncertainty of the rock

properties.

3.1.2 Forward model for first arrival time calculation

Seismic traveltime through different media have been calculated in a variety of

ways, but raytracing and finite-difference solution to the Eikonal equation are most com-

monly used. Raytracing is better suited to homogenous or layered velocity fields, while

the Eikonal method can be applied to a more complex heterogenous field. Thus, the

Eikonal method is used in this study with heterogeneous model in reservoir characteri-

zation.

The propagation of two-dimensional geometric rays and therefore the propagation

of two-dimensional wavefronts is guided by the Eikonal equation in 2D isotropic media

that is described by (
∂t

∂x

)2

+

(
∂t

∂z

)2

= s(x, z)2 (3.1)

where t is traveltime, s denotes slowness which is the inverse of velocity, x and z are the

coordinate axes [64]. For the ease of explanation, we use the 2D Eikonal equation in the

plane as shown in Fig. 3.1, where t0, t1 and t2 are known arrival time at left bottom,

left top and right bottom grid point in the square cell, respectively, h is the uniform grid

spacing, s is the slowness in the block.

The two differential terms in Eq. 3.1 can be approximated with the finite difference

form as

∂t

∂x
=

1

2h
(t1 + t3 − t0 − t2), (3.2)

∂t

∂z
=

1

2h
(t2 + t3 − t0 − t1). (3.3)

Substituting Eq. 3.2 and Eq. 3.3 into Eq. 3.1, we obtain t3 with superscript “(1)”
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Figure 3.1: 2D Eikonal equation model

representing the calculated travel time in one way, which is,

t
(1)
3 = t0 +

√
2(hs)2 − (t2 − t1)2. (3.4)

As shown in Fig. 3.2, the travel time can also be calculated using Eq. 3.5 and

Eq. 3.6 considering waves can be transmitted from left top and right bottom grid point

as head waves [77]. The scattering wave from left bottom point are considered in Eq. 3.7.

The first arrival time is the minimum of travel times among all possible mechanisms

(directions) as shown in Eq. 3.8.

Figure 3.2: Travel time calculation in the 2D Eikonal equation model

67



t
(2)
3 = t1 + hs (3.5)

t
(3)
3 = t2 + hs (3.6)

t
(4)
3 = t0 +

√
2hs (3.7)

t3 = min(t
(1)
3 , t

(2)
3 , t

(3)
3 , t

(4)
3 ) (3.8)

Figure 3.3: 2D Eikonal equation model of local minimum

As shown in Fig. 3.3, when t2 < t0 and t2 < t4, t2 is considered as the local

minimum among t0, t2 and t4. The two differential terms in Eq. 3.1 can be approximated

with the finite difference form as

∂t

∂x
=

1

h
(t3 − t2), (3.9)

∂t

∂z
=

1

2h
(t4 − t0). (3.10)
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Substituting Eq. 3.9 and Eq. 3.10 into Eq. 3.1, we obtain t
(1)
3 using Eq. 3.11 as,

t
(1)
3 = t2 +

√
(hs̄)2 − 0.25(t4 − t0)2, (3.11)

where

s̄ =
s1 + s2

2
. (3.12)

When calculating t
(1)
3 , Eq. 3.11 is only used when t2 < t0 and t2 < t4, otherwise Eq. 3.4

is used.

The following steps are used to obtain the minimum traveltime (first arrival time)

at each point of the whole computational domain from the source.

• First, we calculate the traveltimes of all grid points on the same row and column as

the source using the velocity at each grid block assuming a straight raypath using

equations such as Eq. 3.5 and Eq. 3.6. These traveltimes are considered as initial

values of first arrival time.

• Second, we calculate the traveltimes for the points on the left side of the source,

column by column, from right to left. For each column, the traveltime at each grid

point is calculated from bottom to top grid point by grid point using the above

mentioned stencils (Eq. 3.4-Eq. 3.11), and then we recalculate the grid points from

top to bottom in the same column using the stencils.

• Third, we calculate the traveltimes for the points on the right side of the source,

column by column, from left to right. For each column, the traveltime at each

grid point is calculated from bottom to top using the above mentioned stencils

(Eq. 3.4-Eq. 3.11), and then recalculate the grid points from top to bottom in the

same column. At this point, all grid points are assigned with first arrival time in

the whole domain.

• Fourth, the first arrival time at each grid point is calculated again, column by

column from left to right, from bottom to top in each column, for the whole com-
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putational domain.

• Fifth, the first arrival time at each grid point is calculated using reversal direction

mentioned in fourth step, which is column by column from right to left, from top

to bottom in each column.

For steps 2-5, after calculation of each grid point, the new first arrival time is compared

with the previous value and the smaller value will be saved and used for calculation of

other grid points.

Fig. 3.4 shows an example of the 2D traveltime calculation scheme with source at

the left bottom corner. The arrowed lines illustrate the sequence of grids that are going

to be calculated. The blue gridblock represents the gridblock that has been calculated

and assigned an arrival time while the white gridblock represents the gridblock that

has not been calculated. The top left subfigure represents step 1 when grid points on

the same row and column are calculated first assuming direct wave raypath. As there

is no grid points on the left of source, step 2 is skipped. The top right and bottom

left subfigures represent step 3 when the grid points on the right side of the source are

calculated column by column.The bottom right subfigure represents the step 4-5 that

each grid point is recalculated using the forward and backward directions after all grid

points are calculated.

The method is outlined in 2D for ease of illustration. The Eikonal equation of ray

tracing in 3D isotropic media is described by

(
∂t

∂x

)2

+

(
∂t

∂y

)2

+

(
∂t

∂z

)2

= s(x, y, z)2. (3.13)

Similar to a 2D first arrival time calculation, the calculation of 3D begins with calculation

of traveltimes to grid points that are nearest to the source assuming a straight raypath.

The next step is to calculate the traveltimes in a bigger box by applying finite difference to

Eq. 3.13 in three different schemes [65]. The iterative process which is directly analogous

to the process for 2D is continued until all the grid points are calculated. More details of
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Figure 3.4: 2D traveltime calculation scheme

the finite difference calculation of traveltimes in 3D are shown in Vidale [65]. The details

of the forward model can be found in the open source program [73].

3.1.3 Assimilating microseismic and welltest data

In this study, we hypothesize that the dynamic hydrocarbon reservoir produc-

tion/welltest data are available and complementary to the microseismic data. If this

is verified to be true, the perforation timing measurement together with the produc-

tion/welltest data will yield a better velocity structure and hence more accurate charac-

terization of the fracture development from microseismic inversion. On the other hand,

the microseismic data will help the production/welltest data to resolve or quantify the

rock property fields far from wells.

The pressure data during pressure transient test are sensitive to the thickness-
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weighted average permeability. As log-permeability is used as the model parameter in-

stead of the absolute permeability, the pressure data are more sensitive to the permeabil-

ity in the high permeability layer in a multi-layer reservoir when the layer thicknesses are

approximately equal and much smaller than the horizonal distance between microseismic

event source and receivers. According to Snell’s law, the seismic raypath is longer in the

low porosity/high velocity layer, the first arrival time is more sensitive to porosity in the

low porosity layer. Due to the fact that the production/welltest data are more sensitive to

the high productive (high porosity, high permeability) layers and the microseismic data

are more sensitive to the high velocity (low porosity, low permeability) layers, these two

types of data are complimentary to each other in resolving the reservoir rock properties.

We will first apply microseismic and welltest data assimilation to a two-layer ho-

mogenous reservoir example and then to a two-layer heterogenous reservoir example.

Since EnKF is a stochastic process, we run each case with 10 different ensembles gener-

ated using the same mean and covariance. At the end, we will apply the microseismic

and welltest data assimilation to a ten-layer homogenous reservoir model. Detailed in-

formation for each case will be listed in the case description of each section.

3.2 Two-layer homogeneous case

3.2.1 Case description

Figure 3.5: Microseismic measurement diagram

We first consider a two-layer homogeneous reservoir in this example. As shown in
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Fig. 3.5, the reservoir consists of a 21× 21× 2 grid system with a grid size of 200 ft×200

ft×50 ft. The bottom layer is denoted as layer 1, the top reservoir layer is denoted as

layer 2. The cap rock above the reservoir is 200 ft thick. The reservoir fluid properties

is the same as the ones in Chapter 2 (Table 2.1). The initial reservoir pressure is 5000

psi. The initial water saturation is equal to irreducible water saturation, Siw = 0.1, so

we have single-phase oil flow in the reservoir during the well test. The skin factor is set

as zero and will not be considered here, because microseismic data are not expected to

improve the estimation of permeability near the wellbore very well.

There is an active well in the middle of reservoir at grid (11,11) and perforated in

both layers. Local grid refinement is applied around the active well to capture the early

time pressure transient with 20 rings, but we did not put any skinzone. A monitor well is

drilled (3000 ft away from the active well). Twelve microseismic receivers are set in the

monitor well and they are 20 ft apart from each other. Since each layer is homogenous,

the model for calculating the first arrival time is a 2D cross section between the active

well and the monitor well, which consists of 300 × 3000 gridblocks with a grid size of 1

ft × 1 ft for first arrival time calculation using the Eikonal equation.

The cap rock is assumed to be homogenous. The seismic velocity of the cap rock

is 3000 m·s−1 for P-wave and 2000 m·s−1 for S-wave. The Raymer model [53, 45] is used

to calculate the velocity for a medium composed of a porous dry matrix filled with fluids:

Vp = (1− φ)2 · Vsolid + φ · Vfluid (3.14)
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with

Vsolid =

√
Ksolid + 4

3
· µsolid

ρsolid
for P-wave, (3.15)

Vsolid =

√
µsolid
ρsolid

for S-wave, (3.16)

Vfluid =

√
Kfluid

ρfluid
, (3.17)

Kfluid = Kw · Sw +Ko · So +Kg · Sg, Ksolid =

Nsolid∑
i=1

fi ·Ki, µsolid =

Nsolid∑
i=1

fi · µi,

(3.18)

ρsolid =

Nsolid∑
i=1

fi · ρi, ρfluid = ρw · Sw + ρo · So + ρg · Sg. (3.19)

Throughout, φ is porosity, K is bulk modulus (pa), µ is shear modulus (pa), ρ is

density (kg/m3), fi is the fractional volume of the ith solid component, and Sm is the

fluid saturation of phase m. The subscript i refers to the ith solid component, o to oil,

w to water, and g to gas. The difference in P- and S-wave velocity calculation is only in

the calculation of Vsolid.

In the example, we assume there is only one solid component (sandstone) and two

liquid phases, water and oil. The physical properties of liquid and sandstone are listed

in Table 3.1 and Table 3.2.

Table 3.1: Fluid Properties

Ko(Pa) Kw(Pa) ρo (kg/m3) ρw (kg/m3)
6.71× 108 2.39× 109 800 1000

Table 3.2: Sandstone Properties

Ks(Pa) µs(Pa) ρs (kg/m3)
3.80× 1010 4.40× 1010 2.65× 103

Once the velocity structure is calculated using Eq. 3.14 to Eq. ?? with the poros-

74



ity distribution, the first arrival time at each receiver can be obtained by solving the

Eikonal equation [65], which was discussed in section 3.1.2. The true porosity and log-

permeability of the two reservoir layers are shown in Table 3.3. The velocity profile of

the P-wave and S-wave are shown in Fig. 3.6 for both the reservoir rock and the cap

rock. As shown in Fig. 3.6, the bottom layer has smaller porosity and higher velocity

value. Lower porosity indicates more solid content and because solid velocity is much

higher than liquid velocity, the overall velocity in a low porosity layer is higher than in a

high porosity layer. The first arrival time maps from perforation shots in both layers are

shown in Fig. 3.7 and Fig. 3.8. The perforation coordinates in layer 1 and layer 2 are (0,

25) and (0, 75), respectively. As shown in Fig. 3.7 and Fig. 3.8, the P-wave first arrival

time is smaller than the S-wave first arrival time as P-wave velocity is much higher than

S-wave velocity. The wave path is perpendicular to arrival time contour lines. The wave

path can be calculated using reversibility of the wave travel [77]. As wave propagates

into a different media, the raypath follows Snell’s law and it bends as it goes into another

layer. As the P-wave and S-wave are strongly related (Eq. 3.14), the P-wave and S-wave

wave paths are very similar. Since seismic wave travels fastest in the high velocity layer,

the waves are transmitted mostly in the high velocity layer, layer 1, from both perforation

shots, as shown in Fig. 3.7(a) and Fig. 3.8(a) where the black line represent the raypath

to one of the receivers.

Table 3.3: True porosity and log-permeability

Layer 1 Layer 2
Porosity 0.125 0.235

log-permeability 2.403 5.501
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Figure 3.6: Velocity structure of the two-layer homogeneous example
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Figure 3.7: Simulated first arrival time map from perforation shot at the bottom reservoir
layer, two-layer homogeneous example
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Figure 3.8: Simulated first arrival time map from perforation shot at the top reservoir
layer, two-layer homogeneous example
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The porosity and permeability are assumed to be Gaussian with the geostatistical

parameters listed in Table 3.4. The initial ensemble of porosity and log-permeability is

generated using Eq. 3.20, where zi is a random normal deviate.

 φ

lnk

 =

 φ

lnk

+

 Cφ Cφlnk

Cφlnk Clnk


1
2
 z1

z2

 , (3.20)

where Cφ = σ2
φ, Clnk = σ2

lnk and Cφlnk = ρσφσlnk. Fig. 3.9 shows the log-permeability

vs. porosity of the initial ensemble members. The black stars represent the true log-

permeability and porosity of the two layers. The red and lavender dots represent ensemble

members of layer 1 and layer 2, respectively. There are totally 100 ensemble members.

As shown in Fig. 3.9, the log-permeability and porosity are correlated with a correlation

coefficient of 0.8. The porosity and log-permeability in these two layers are distinct in

values, and they have minimal overlap in the initial ensemble. The microseismic data

(first arrival times) are directly related to the layer porosities through Eq. 3.14. not log-

permeability, The log-permeabilities are updated during data assimilation using EnKF

through correlation.

Table 3.4: Porosity and log-permeability

Layer 1 Layer 2
Porosity

True 0.125 0.235

Mean, φ 0.15 0.25
STD, σφ 0.025 0.025

lnk
True 2.403 5.501

Mean, lnk 3 5
STD, σlnk 0.6 0.6

Correlation coefficient, ρ 0.8 0.8

The synthetic microseismic data (first arrival times at 12 receivers) are generated

by assuming the perforation at each layer is shot in the middle of the layer (25 ft from

the base of the layer.) Once the well is completed, it is put on production at 1500 STB/D
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Figure 3.9: Prior lnk vs. φ, two-layer homogeneous example

liquid rate for 2 days and shut in for another 2 days for buildup. The measurement error

for pressure, microseismic and layer rate data are 1 psi, 1 ms and 5 STB/D, respectively.

In this chapter, we consider 4 scenarios:

1. Porosity and log-permeability fields are updated by assimilating pressure transient

data only. In the pressure transient test, there are 10 drawdown and 10 buildup

pressure data which are logarithmically spaced in time. In the heterogeneous case,

interference pressure data measured at the monitor wells are also assimilated.

2. Porosity and log-permeability fields are updated by assimilating microseismic data

only. The microseismic data are the P- and S-wave first arrival times at the receivers

of a nearby monitor well for homogeneous case or receivers of 4 monitor wells for

heterogenous case.

3. Porosity and log-permeability fields are updated using both pressure and micro-

seismic data.

4. The porosity and log-permeability fields are updated by assimilating the pressure

transient data and layer rate data as in the previous chapter.
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3.2.2 Assimilating pressure transient data only

In this case, we assimilate pressure transient data with only 10 drawdown and 10

buildup data points. Fig. 3.10 shows the estimated log-permeability vs. porosity of all

ensemble members after assimilating pressure data. Log-permeability in layer 2 (higher

permeability layer) is well resolved by assimilating pressure transient data only. The

final estimated log-permeability is around the true (5.5), as indicated by the fact that

all points of layer 2 on a relatively horizontal line. Uncertainties of other parameters,

porosity of both layers and log-permeability of layer 1, are reduced compared to the prior

in Fig. 3.9. Fig. 3.11 shows the estimated porosity and log-permeability of two layers at

each assimilation step. In this and similar plots, the red line represents the true, the top,

middle and bottom black lines represent mean plus 3 times standard deviation, mean

and mean minus 3 times standard deviation of the ensemble, respectively. The first 10

steps are drawdown and the second 10 steps are buildup. Similar conclusions can be

drawn from Fig. 3.11 as from Fig. 3.10. Large uncertainty decrease is observed for the

log-permeability in layer 2 - the high permeability layer. The porosity of layer 2 has some

uncertainty reduction after assimilating the first few data points during drawdown and

buildup. The uncertainty decreased for layer 1 is minimal during assimilating drawdown

data, but more significant with buildup data.
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Figure 3.10: lnk vs. φ, after assimilating pressure data only, two layer homogeneous
example
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Figure 3.11: Porosity and log-permeability in layer 1 and layer 2 during pressure data
assimilation, two layer homogeneous example
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The pressure data match during data assimilation and rerun from time zero are

shown in Fig. 3.12. Similar to results shown in Chapter 2, the uncertainty of data

prediction decreases significantly in the first several data assimilation steps and remains

small for the rest of the data assimilation steps. The pressure and its derivative match

the true after rerunning from time zero. Note that during data assimilation, we match

pressure data only, not the pressure derivatives.

(a) Drawdown, during data assimilation (b) Buildup, during data assimilation

(c) Drawdown, rerun (d) Buildup, rerun

Figure 3.12: Active well pressure data match assimilating pressure data only, two layer
homogeneous example

3.2.3 Assimilating microseismic data only

In this case, the ensemble of porosity and log-permeability in both reservoir layers

are updated by assimilating the first arrival times of P-wave and S-wave at 12 receivers

on the top of reservoir layer using EnKF. We first assimilate the 12 first arrival times of

P-wave and 12 first arrival times of S-wave from the perforation shot of layer 1 which is

82



located in the center of layer 1; then assimilate the 12 first arrival times of P-wave and

S-wave from the perforation shot at layer 2 which is located in the center of layer 2.

Fig. 3.13 and Fig. 3.14 show the histogram of the initial ensemble and final es-

timates of porosity and log-permeability after assimilating the microseismic data of the

perforation shot of layer 1. The black vertical line in the figure is the true. Compar-

ing Fig. 3.13(a) and Fig. 3.13(b) indicates that a large uncertainty decrease in layer

1 porosity. In contrast, the uncertainty reduction for layer 2 porosity is insignificant

(Fig. 3.13(c), Fig. 3.13(d)). As shown in Fig. 3.14(b) and Fig. 3.14(d), the uncertainty

in log-permeability of layer 1 is reduced, however the mean of ensemble is slightly larger

than the true; the estimate of log-permeability of layer 2 is not improved.

Both porosity and log-permeability are updated by assimilating microseismic data.

However, only porosity is related to the first arrival time in a functional form and re-

flected in the model. The permeability is updated by EnKF through correlation in the

cross-covariance matrix. Due to the fact that the raypath of P- and S-wave between the

source and receiver has a large proportion in the low porosity layer (high velocity) to

satisfy minimum travel time, the first arrival time are more sensitive to the low perme-

ability/porosity layer. Thus, the uncertainty reduction in the low porosity/permeability

layer is larger compared to the high porosity/permeability layer.
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Figure 3.13: Prior and posterior porosity in layer 1 and layer 2 after assimilating first
arrival time of perforation shot of layer 1, two layer homogeneous example
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Figure 3.14: Prior and posterior lnk in layer 1 and layer 2 after assimilating first arrival
time of perforation shot in layer 1, two layer homogeneous example
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Fig. 3.15(a) and Fig. 3.15(b) show the predicted first arrival times recorded at the

12 receivers using the initial ensemble and final ensemble after assimilating first arrival

time data using EnKF. Note that R1-R12 on the x-axis are P-wave first arrival times and

R13-R24 are the S-wave first arrival times in a box plot. The black dots are the observed

data. Fig. 3.16 explains the box plot. The prior prediction has a big uncertainty and

also the mean is larger than the observed data as shown in Fig. 3.15(a). The posterior

prediction after assimilating microseismic data has very small uncertainty and matches

the observed data as shown in Fig. 3.15(b).
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Figure 3.15: Prediction assimilating first arrival time of perforation shot in layer 1, two
layer homogeneous example
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Figure 3.16: Box plot schematic
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The crossplot of the updated permeability vs. porosity is shown in Fig. 3.17.

As indicated in Fig. 3.13 and Fig. 3.14, the uncertainty of porosity in the low porosity

layer (layer 1) decreased significantly and the estimated porosity is almost the same

as the truth as all points for layer 1 are on a vertical line close to the truth. The

uncertainty of permeability in layer 1 has also decreased due to its strong correlation

with porosity. The final ensemble of porosity and log-permeability for in layer 2 is similar

to the prior ensemble (Fig. 3.9), i.e., conditioning to microseismic data has not reduced

the uncertainty in porosity and log-permeability for layer 2.
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Figure 3.17: lnk vs. φ, after assimilating first arrival times from perforation shot at layer
1, two layer homogeneous example
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Fig. 3.18 and Fig. 3.19 show the histograms of the final estimated porosity and

log-permeability after assimilating the microseismic data from the perforation shot of

both layers. The posterior ensemble after assimilating perforation shot of layer 1 is used

as the prior for assimilating first arrival time of the wave from the perforation shot of

layer 2. Fig. 3.20 is the cross-plot of the final estimated porosity and log-permeability.

Due to large velocity contract between the two layers, the raypath from the perforation

shots in both layers has the largest proportion in the low porosity (high velocity) layer

(Fig. 3.8(a)). Therefore, the first arrival times from both perforation shots are more

sensitive to the properties in the low porosity layer (layer 1). Therefore, the porosity

of layer is accurately estimated and the log-permeability of layer 1 also has significant

uncertainty reduction because it is correlated with layer 1 porosity. Due to low sensitiv-

ity, matching the first arrival times yields insignificant uncertainty reduction in layer 2

porosity and log-permeability. As porosity in lower porosity layer is already resolved after

assimilating perforation shot of layer 1, assimilating perforation shot of layer 2 has not

further improved porosity and permeability estimation as shown in Fig. 3.18, Fig. 3.19

and Fig. 3.20. Fig. 3.21 shows reasonable first-arrival data match from the perforation

shot of layer 2.

3.2.4 Assimilating both microseismic and pressure data

In this section, the porosity and log-permeability fields are updated by assimilating

both microseismic and pressure transient data using EnKF. The pressure transient data

are the same as that in section 3.2.2 with 10 pressure points during drawdown and 10

pressure points during buildup. The microseismic data are the same as the ones used in

section 3.2.3.

The results of assimilating microseismic data are shown in the previous section.

Fig. 3.22 shows the evolution of layer porosity and log-permeability values during assim-

ilating the pressure transient data. Note that the initial ensemble are the final estimate

after assimilating the microseismic data in the previous section. The estimate of porosity

in layer 1 is accurate after assimilating microseismic data and does not change when
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Figure 3.18: Porosity in layer 1 and layer 2 after assimilating first arrival time of both
perforation shots, two-layer homogeneous example

assimilating pressure data as shown in Fig. 3.22(a). As shown in Fig. 3.22(c), the es-

timated log-permeability in layer 1 changes gradually during drawdown pressure data

assimilation and remains about the same in the buildup assimilation steps. The mean

of final ensemble of log-permeability in layer 1 is around 2.54, which is slightly higher

than the true 2.4. The uncertainty in the log-permeability of the high permeability layer

(layer 2) is reduced significantly by assimilating the pressure transient data as shown in

Fig. 3.22(d) and the uncertainty in porosity from the same layer is reduced somewhat as

shown in Fig. 3.22(b). The true values of the layer porosities and log-permeabilities are

within the uncertainty bounds of the final estimates.

Same conclusions can be drawn from the crossplot of log-permeability vs. poros-
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Figure 3.19: lnk in layer 1 and layer 2 after assimilating first arrival time of both perfo-
ration shots, two-layer homogeneous example

ity after assimilating both microseismic data and pressure transient data as shown in

Fig. 3.23. The uncertainty in log-permeability of the high permeability layer decreased

significantly, while the uncertainties in the log-permeability of the low permeability layer

and the porosity in high porosity layer are reduced somewhat compared to Fig. 3.20 after

further data assimilation on the microseismic data. After assimilating both microseismic

and pressure data, the porosity in low porosity layer and log-permeability in high per-

meability layer are resolved, while uncertainty of the porosity in high porosity layer and

log-permeability in low permeability layer is reduced.

91



0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 51
2
3
4
5
6
7

 

 

 L a y e r  1
 L a y e r  2
 T r u e

Ln
k

P o r o s i t y

Figure 3.20: lnk vs. φ, after assimilating microseismic data, two-layer homogeneous
example
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Figure 3.21: First arrival time data match from perforation shot at layer 2, two-layer
homogeneous example
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Figure 3.22: Porosity and log-permeability in layer 1 and layer 2 during pressure data
assimilation after assimilating microseismic data, two-layer homogeneous example
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Figure 3.23: lnk vs. φ, after assimilating microseismic and pressure data, two-layer
homogeneous example
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The pressure and its derivative data match is shown in Fig. 3.24. Due to the

fact that uncertainty in log-permeability of the high permeability layer did not decrease

much from microseismic data assimilation, the predicted pwf during early pressure data

assimilation steps show a large spread, i.e., behave similar to the corresponding predicts

obtained without assimilating microseismic data (Fig. 3.12(a)). After assimilating both

microseismic and pressure transient data, we rerun both dynamic reservoir simulator and

microseismic forward model (Eikonal equation) with the final estimated rock properties.

The predicted pressure transient data and its derivatives during drawdown and buildup

as shown in Fig. 3.24(c) and Fig. 3.24(d). Compared to Fig. 3.12 (assimilating pressure

data only), the predicted pressure and the corresponding microseismic data result in

lower uncertainty. Fig. 3.25 shows the predicted first arrival times predicted by the final

estimates after assimilating both pressure and microseismic data.

(a) Drawdown, during data assimilation (b) Buildup, during data assimilation

(c) Drawdown, rerun (d) Buildup, rerun

Figure 3.24: Pressure data match during data assimilation and rerun from time zero,
microseismic + pressure data, two-layer homogeneous example
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(b) 2nd perforation

Figure 3.25: First arrival time data match after assimilating microseismic and pressure
data, two-layer homogeneous example

Fig. 3.26 shows the evolution of the thickness-weighted average permeability dur-

ing pressure transient data assimilation for two cases: a) assimilating pressure data only,

b) assimilating microseismic data first before assimilating pressure transient data. Com-

paring Fig. 3.26(a) and Fig. 3.26(b) indicates that assimilating microseismic data did not

yield significant uncertainty reduction in the thickness-weighted average permeability due

to the fact that it is more sensitive to the tighter low permeability/porosity layer. In

both cases, there is a significant decrease in the uncertainty for the thickness-weighted

permeability average in the first few data assimilation steps. After the 5th data assim-

ilation steps, the change in the uncertainty is negligible for the case which assimilates

both microseismic and pressure data. However, there is a slight uncertainty increase after

assimilating pressure buildup data without assimilating microseismic data.
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(b) microseismic+pressure

Figure 3.26: Thickness-weighted average permeability
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As EnKF is a stochastic process, we run the data assimilation with 10 different

initial ensembles which are generated using the same mean and covariance for testing.

Fig. 3.27 and Fig. 3.28 show the final estimates of log-permeability in layer 1 and layer

2 for 10 different ensembles by assimilating pressure data only and by assimilating both

microseismic and pressure data, respectively. The black horizontal line represents the

true value. As shown in Fig. 3.27(a), by assimilating pressure data only , the estimated

log-permeability in the low permeability layer is quite different for different ensembles.

Most of ensembles have an estimated mean higher than the truth and several of them

have biased estimates with the truth falling below the 5th percentile. The uncertainty

of most final ensembles is quite large and different from each other. By assimilating

both microseismic and pressure data as shown in Fig. 3.27(b), the ensemble mean and

variance are relatively close to each other. The majority of the posterior means are

close to the truth and the uncertainty is smaller than when assimilating only pressure

data in most of the cases. The 1st ensemble happened to be good log-permeability

estimate by assimilating pressure data only. If we judge the results by only looking

at the first ensemble, wrong conclusions may be made. As the pressure data are more

sensitive to the log-permeability of the high permeability layer, the log-permeability in

the higher permeability layer is well resolved in both cases as shown in Fig. 3.28, though

assimilating both pressure and microseismic data yields more accurate log-permeability

estimates than the case assimilating pressure data only. Similar results are obtained

for the predicted layer rate of layer 2 at the end time day 2, when we rerun the final

estimated ensembles from time 0 comparing assimilating only pressure data in Fig. 3.29(b)

and assimilating both pressure and microseismic data in Fig. 3.29(c). Prediction in both

cases are improved compared to the prediction with the initial ensembles (Fig. 3.29(a)).

Prediction after assimilating both microseismic and pressure data is overall better than

assimilating pressure data only. In general, including information of microseismic data

in data assimilation improves permeability field estimate and production data prediction

in the 2-layer homogenous case.
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(b) Microseismic + pressure

Figure 3.27: Layer 1 log-permeability of 10 different ensembles, two-layer homogeneous
example

3.2.5 Assimilating pressure and layer rate data

As shown in Chapter 2, assimilating both layer rates and pressure data gives accu-

rate estimates of the individual layer skin factors and rock property fields (porosity and

log-permeability). Results after assimilating pressure and layer rate data are shown in

this section for comparison with assimilating microseismic and pressure data. As shown

in Fig. 3.30 and Fig. 3.31, the log-permeability of both layers are well resolved after assim-

ilating the layer rate and pressure data. The porosity in layer 1 did not change much after

initial uncertainty reduction in the first several data assimilation steps. The uncertainty

reduction of porosity in layer 2 is similar to layer 1 during assimilating drawdown pressure

data, then changes significantly when assimilating pressure buildup data. Note that the

pressure drawdown test reaches pseudo-steady state at the end of the drawdown test as

indicated by a unit slope in the derivative plot (Fig. 3.32). There is a slight uncertainty

reduction when assimilating the last few drawdown pressure data points corresponding to

pseudo-steady state, as the pressure at pseudo-steady state is most sensitive to porosity.

The predicted pressure during data assimilation (Fig. 3.32(a) and Fig. 3.32(b)) shows

a good data match. Rerunning with final estimated rock properties resulted in a very

good data match as shown in the log-log diagnostic plot (Fig. 3.32(c) and Fig. 3.32(d)).

Although we do not assimilate the pressure derivative data, the match is almost perfect.
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(b) Microseismic + pressure

Figure 3.28: Layer 2 log-permeability of 10 different ensembles, two-layer homogeneous
example

Fig. 3.33 shows the predicted layer rate data during data assimilation and rerun from

time zero with the final estimated properties and a good match is obtained.
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(b) Pressure
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(c) Microseismic + pressure

Figure 3.29: Prediction of Layer rate in layer 1 at time day 2 rerunning from time 0 of
all ensembles, two-layer homogeneous example
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(d) lnk2

Figure 3.30: Porosity and log-permeability when assimilating pressure and layer rate
data, two-layer homogeneous example
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Figure 3.31: lnk vs. φ, after assimilating pressure and layer rate data, two-layer homo-
geneous example
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(a) Drawdown, during data assimilation (b) Buildup, during data assimilation

(c) Drawdown, rerun (d) Buildup, rerun

Figure 3.32: pressure prediction after assimilating microseismic and pressure data, two-
layer homogeneous example

(a) During data assimilation (b) Rerun

Figure 3.33: Layer rate prediction after assimilating microseismic and pressure data,
two-layer homogeneous example
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3.3 Two-layer heterogeneous case

3.3.1 Case description

Figure 3.34: Reservoir and well schematic, two-layer heterogeneous example

In this section, we consider a synthetic two-layer heterogeneous example. As

shown in Fig. 3.34, we have 20 × 20 × 2 grid system with grid size of 200 ft × 200 ft×

50 ft. The active well is in the middle of the reservoir at grid (10, 10) and perforated

in both layers. Cap rock is on top of the reservoir layers and its velocity is assumed

known. The reservoir fluid properties and other model parameters are the same as in the

homogeneous case. Four monitor wells that are located at the corner gridblocks (2, 2),

(2, 19), (19, 2) and (19, 19). Each monitor well has 11 microseismic receivers above the

reservoir and 20 ft apart from each other with the first receiver right on the top of the

reservoir. The model for calculating the first arrival time is 400× 400× 40 3-D grid with

5 ft×5 ft×5 ft as the grid size.

Similar to the two-layer homogeneous case, perforations are shot in the middle of

both layers and the first arrival time data of P-wave and S-wave are recorded at receivers

in the 4 monitor wells. The well is produced at 1500 STB/D liquid rate for 2 days and

shut in for another 2 days. The pressure data are recorded during the 2-day drawdown
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and 2-day buildup at the active well and the four monitor wells. In the following cases,

4×11 first arrival time data of P-wave and S-wave, 10 pressure drawdown and 10 pressure

buildup data (logarithmically spaced) at the active and monitor wells, and layer rate data

are assimilated to update porosity and log-permeability fields.

The true case is a realization generated using GCOSIM3D [23] with the geostatis-

tical parameters listed in Table 3.5 and Fig. 3.35 shows the true porosity and permeability

distribution of two layers. Layer 1 has lower porosity and permeability than layer 2. The

active well and 2 monitor wells are located is a high permeability channel in layer 1. The

high permeability channel in layer 1 has a trend from the lower left corner to the upper

right corner.

(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.35: True porosity and log-permeability distributions, two-layer heterogeneous
example

The cross section of velocity structure between the active well and the monitor

well at the lower left corner is shown in Fig. 3.36. The black line approximates a ray
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path from the perforation to the receiver just above the top reservoir layer. As layer 2

(top layer) has higher travel velocity (lower porosity) than layer 1, the ray path stays

mostly in layer 2 to satisfy the minimum travel time requirement.
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1 0 0

2 0 0

3 0 0

X

Z 2 0 0 0
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(a) P-wave

1 0 0 0 2 0 0 0

1 0 0

2 0 0

3 0 0

X

Z 2 0 0 0
2 5 4 0
3 0 8 0
3 6 2 0
4 1 6 0
4 7 0 0

(b) S-wave

Figure 3.36: A cross-section of the velocity structure, two-layer heterogeneous example
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Porosity and permeability of prior ensemble members are generated by GSCOSIM3D

using parameters in Table 3.5. Prior mean and standard devidation of 100 ensemble

members are shown in Fig. 3.37 and Fig. 3.38.

Table 3.5: Prior geostatistical parameters, two-layer heterogeneous example

Layer 1 Layer 2

φ 0.10 0.25

lnk 2 5
σφ 0.025 0.025
σlnk 0.6 0.6
ρφ,lnk 0.8

Angle α 30◦ 0◦

Long range, r1 (ft) 3800 1112
short range, r2 (ft) 2800 2800

3.3.2 Assimilating pressure data only

The porosity and log-permeability fields are first updated by assimilating pressure

transient data of the active and monitor wells during drawdown and buildup test. The

updated ensemble mean of porosity and log-permeability after assimilating pressure data

only are shown in Fig. 3.39. As shown in Fig. 3.39(a) and Fig. 3.39(c), the mean porosity

and log-permeability in the low permeability layer (layer 1) are increased compared to the

initial (Fig. 3.37). Compared to the true rock property field (Fig. 3.35), the estimated

mean porosity and log-permeability are lower than the true values and the long high

permeability/porosity channel is not captured. The mean of estimated porosity and log-

permeability for high-permeability layer (layer 2) is increased by matching the pressure

data compared to the prior mean (Fig. 3.37). Fig. 3.40 shows the standard deviation

of the porosity and log-permeability fields calculated using 100 final estimated ensemble

members. As can be seen from the figure, significant uncertainty reduction in the high

permeability layer (layer 2) is observed around the active well when it is compared to the

prior STD distribution in Fig. 3.38. The uncertainty reduction in layer 1 and other area

of layer 2 close to monitor wells are also observed but not significant. This observation

108



(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.37: Prior mean of porosity and log-permeability fields calculated from the 100
initial ensemble members, two-layer heterogeneous example

can also be seen in Fig. 3.41, which shows the ratio of the standard deviation between the

final and initial ensemble. In the figure, the red color (close to a value of 1) indicates low

uncertainty reduction, while the blue color (a value close to 0) indicates large uncertainty

reduction. Fig. 3.42 to Fig. 3.45 are examples of porosity and log-permeability fields of

individual ensemble member before and after assimilating pressure transient data.
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.38: Prior STD of porosity and log-permeability calculated from the 100 initial
ensemble members, two-layer heterogeneous example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.39: Porosity and log-permeability posterior mean after assimilating pressure
data only, two-layer heterogeneous example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.40: Porosity and log-permeability posterior STD after assimilating pressure data
only, two-layer heterogeneous example

112



(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.41: Posterior to prior STD ratio of porosity and log-permeability assimilating
pressure data only, two-layer heterogeneous example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.42: Porosity and log-permeability field of the 43rd initial ensemble member,
two-layer heterogeneous example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.43: Porosity and log-permeability field of the 43rd ensemble member after as-
similating pressure data only, two-layer heterogeneous example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.44: Porosity and log-permeability field of the 78th initial ensemble member,
two-layer heterogeneous example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.45: Porosity and log-permeability field of the 78th ensemble member after as-
similating pressure data only, two-layer heterogeneous example

117



The data match of the active well is shown in Fig. 3.46. Fig. 3.46(a) and Fig. 3.46(b)

show the pressure data match during assimilating the pressure drawdown and buildup

data, respectively. Fig. 3.46(c) and Fig. 3.46(d) are the log-log diagnostic plots of pres-

sure and pressure derivative obtained after rerunning the updated ensemble from time

0 for drawdown and buildup, respectively. All the ensemble members after assimilating

pressure data predict pressure close to the truth with very small spread (uncertainty).

The data match of monitor well 1 is shown in Fig. 3.47. Other monitor wells have sim-

ilar data matches. Fig. 3.47(a) and Fig. 3.47(b) show the pressure match during data

assimilation for drawdown and buildup, and Fig. 3.47(c) and Fig. 3.47(d) shows the data

match at this monitor well when rerunning the estimated ensemble from time 0. Note

that no significant change is observed in the predicted pressure at the monitor well dur-

ing data assimilation and rerun from time zero. In Fig. 3.46(b) and Fig. 3.47(b), the

predicted pressure dropped to zero due to simulator license failure. During rerun, these

two ensemble members were removed.

3.3.3 Assimilating microseismic data only

In this section, the porosity and log-permeability fields are updated by assimilat-

ing the first arrival time data recorded at the receivers placed in the four monitor wells

during perforation of the bottom and top reservoir layers. Fig. 3.48 shows the updated

ensemble mean of porosity and permeability distribution after assimilating microseismic

data from the perforation shot in the bottom layer using standard EnKF. Since the first

arrival time is sensitive the porosity along the ray path between source and receivers, the

high porosity and permeability channel in layer 1 between the active well and monitor

well 1 and 4 is captured by assimilating microseismic data as shown in Fig. 3.48. How-

ever, the high permeability/porosity channel is narrower than the truth (Fig. 3.35), due

to to fact that microseismic data only resolves the average porosity along its path. The

angle of the channel is also different from the truth. Porosity and log-permeability in

layer 2 was increased after assimilating the microseismic data as shown in Fig. 3.48(b)

and Fig. 3.48(d). Fig. 3.49 shows the standard deviation of the final estimated ensemble
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(a) Drawdown, during data assimilation (b) Buildup, during data assimilation

(c) Drawdown, rerun (d) Buildup, rerun

Figure 3.46: Pressure data match of the active well after assimilating pressure data only,
two-layer heterogeneous example

after assimilating the microseismic data. Fig. 3.50 shows the ratio of the standard devi-

ation between the final and initial ensemble. Large uncertainty reduction (as indicated

by lighter color) is observed in layer 1 between monitor wells 1 and 4. Virtually no

uncertainty reduction is observed for layer 2.
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(a) Drawdown, during data assimilation (b) Buildup, during data assimilation

(c) Drawdown, rerun (d) Buildup, rerun

Figure 3.47: Pressure data match of monitor well 1 after assimilating pressure data only,
two-layer heterogeneous example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.48: Porosity and log-permeability posterior mean after assimilating microseismic
data from perforation shot of layer 1, two-layer heterogeneous example

121



(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.49: Porosity and log-permeability posterior STD after assimilating microseismic
data from perforation shot of layer 1, two-layer heterogeneous example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.50: Posterior /prior STD ratio of porosity and log-permeability after assimilating
microseismic data from perforation shot of layer 1, two-layer heterogeneous example

123



Fig. 3.51 shows the prediction of first arrival times from the perforation shot of

layer 1 at receivers placed in monitor well 1. The black dots are the prediction with the

true rock property fields while the box plots represent the prediction from the initial and

final ensemble. As indicated in Fig. 3.51(a), the truth prediction falls out the uncertainty

range of the initial ensemble. This indicates that all initial ensemble members have lower

porosity (higher velocity) between the active well and monitor well 1 than the truth.

After data assimilation, the predicted first arrival times match the truth as shown in

Fig. 3.51(b).
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(b) Prediction, Posterior

Figure 3.51: The first arrival time data match at receivers in monitor well 1 from perfo-
ration shot of layer 1, two-layer heterogeneous example

Since the porosity in the low porosity layer has already been adjusted to match first

arrival time data after assimilating the microseismic data from perforation shot of layer 1

(bottom layer), the mean and standard deviation of the porosity and permeability has not

changed much when assimilating microseismic data from the top layer perforation shot

as shown in Fig. 3.52 and Fig. 3.53 compared to Fig. 3.48 and Fig. 3.49. Assimilating

microseismic data from the perforation shot of layer 2 did not result in much further

uncertainty reduction comparing Fig. 3.54 and Fig. 3.55 to Fig. 3.49 and Fig. 3.50. In

summary, assimilating the first arrival time data improves reservoir characterization in

the region in the wave travel path.
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.52: Porosity and log-permeability posterior mean after assimilating microseismic
data from perforation shot of layer 2, two-layer heterogeneous example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.53: Porosity and log-permeability posterior STD of layer 1 and 2 after assimilat-
ing microseismic data from perforation shot of layer 2, two-layer heterogeneous example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.54: Posterior STD ratio of porosity and log-permeability before and after assimi-
lating the microseismic data from the perforation shot of layer 2, two-layer heterogeneous
example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.55: Posterior to prior STD ratio of porosity and log-permeability after assimilat-
ing the microseismic data from perforation shots of both layers, two-layer heterogeneous
example
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Fig. 3.56 shows the prediction of the first arrival times obtained at receivers in

monitor well 1 after assimilating the microseismic data from perforation shots of both

layers. Note that first group of 11 first arrival times are from P-wave and the other 11

are from S-wave. Since the porosity along the wave path has already been corrected

after assimilating microseismic data from the perforation shot of layer 1, the predicted

prior ensemble before assimilating the microseismic data from the perforation shot of

layer 1 matches the observed data with very small uncertainty as shown in Fig. 3.56(a).

After data assimilation, the uncertainty in the prediction is further decreased as shown

in Fig. 3.56(b). The data match of the first arrival times at other monitor wells is similar

to monitor well 1 and not shown here.
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Figure 3.56: First arrival time data match at receivers in monitor well 1 when assimilating
microseismic data from perforation shot of layer 2, two-layer heterogeneous example

3.3.4 Assimilating both microseismic and pressure data

As shown in the previous two sections, the pressure transient data resolves prop-

erties in the high porosity and permeability layer while the microseismic data help resolve

properties in the low porosity and permeability layer. In this case, we assume both mi-

croseismic and pressure data are available and they are complementary to each other in

data assimilation. We assimilate the microseismic data first and then the pressure tran-

sient data. As shown in section 3.3.3, the porosity and log-permeability fields in layer
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1 (low porosity and log-permeability layer) is improved by assimilating the microseismic

data while that of layer 2 did not change much from the initial ensemble. The ensemble

of updated porosity and log-permeability fields after assimilating microseismic data are

used as the initial ensemble in assimilating pressure transient data in this section. After

assimilating the microseismic and pressure data, the estimated mean porosity and log-

permeability fields are significantly improved as shown in Fig. 3.57 compared to Fig. 3.52

and the truth (Fig. 3.35). The uncertainty in layer 1 and layer 2 (especially around the

active well) is further reduced as shown in Fig. 3.58 compared to Fig. 3.53 after assim-

ilating microseismic data only. This is verified by the standard deviation ratio plots in

Fig. 3.59, which shows the standard deviation ratio between assimilating both micro-

seismic and well test data and assimilating microseismic data only. As clearly shown in

Fig. 3.59, the uncertainty of log-permeability in the region around the active well has

some reduction in layer 1 and significant reduction in layer 2. The average uncertainty

reduction in layer 2 log-permeability field is around 50% (Fig. 3.59(d)). Fig. 3.60 shows

the overall uncertainty reduction after assimilating both microseismic and well test data

by plotting the standard deviation ratio of the final ensemble after assimilating both

microseismic and well test to the prior standard deviation. As shown in Fig. 3.60, the

uncertainty in both layer 1 and layer 2 is greatly reduced. Assimilating both pressure

and microseismic data yields lower uncertainty in layer 1 (Fig. 3.60(a) and Fig. 3.60(c))

than the one from assimilating microseismic data only (Fig. 3.55(a) and Fig. 3.55(c)); and

lower uncertainty in layer 2 (Fig. 3.60(b) and Fig. 3.60(d)) than the one from assimilating

pressure data only (Fig. 3.41(b) and Fig. 3.41(d)).

130



(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.57: Porosity and log-permeability posterior mean after assimilating microseismic
and pressure data, two-layer heterogeneous example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.58: Porosity and log-permeability posterior STD after assimilating microseismic
and pressure data, two-layer heterogeneous example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.59: Posterior STD ratio of porosity and log-permeability between assimilating
both pressure and microseismic data and assimilating microseismic data only, two-layer
heterogeneous example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.60: Posterior to prior STD ratio of porosity and log-permeability after assimi-
lating both microseismic and pressure data, two-layer heterogeneous example
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Fig. 3.61 and Fig. 3.62 show the pressure data match at the active and monitor

wells during data assimilation and rerun from time zero. The large spread during early

data assimilation time steps indicates large uncertainty in the ensemble even after as-

similating the microseismic data. However, this is lower than the prior uncertainty in

Fig. 3.46(a) before assimilating the microseismic data. This also confirms that microseis-

mic data help on reservoir characterization.

(a) Drawdown, during data assimilation (b) Buildup, during data assimilation

(c) Drawdown, rerun (d) Buildup, rerun

Figure 3.61: Active well pressure data match after assimilating microseismic and pressure
data during data assimilation and rerun from time 0, two-layer heterogeneous example
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(a) Drawdown, during data assimilation (b) Buildup, during data assimilation

(c) Drawdown, rerun (d) Buildup, rerun

Figure 3.62: Monitor well 1 pressure data match after assimilating microseismic and
pressure data during data assimilation and rerun from time 0, two-layer heterogeneous
example
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Fig. 3.63 compares the predicted layer rate in layer 2 with the final ensemble after

assimilating both microseismic and pressure data and assimilating pressure data only.

The well was producing at a constant liquid rate of 1500 STB/D during drawdown test

and the calculated layer rate for the high permeability layer (layer 2) is around 1420

STB/D from the truth model. Note that the layer rates are not assimilated in the two

cases. By assimilating pressure data only, the permeability in the high permeability layer

(layer 2) is well resolved while the permeability in the low permeability layer (layer 1) is

not resolved. The estimated permeability values in layer 1 is lower than the truth, which

results in lower layer production rate in layer 1 and high layer production rate in layer

2 from the ensemble as shown in Fig. 3.63(a). The truth layer rate prediction is out of

the uncertainty bound of the ensemble. It is hoped that assimilating both pressure and

microseismic data would result in better layer rate prediction. However, the predicted

layer rates from the final ensemble after assimilating both pressure and microseismic

data underpredict the layer production rate for layer 2 as shown in Fig. 3.63(b), but

with a larger uncertainty later, we will show the results from 9 other ensembles, which

indicates that assimilating both microseismic and pressure data results in better layer

rate prediction than assimilating pressure data only.

(a) Pressure data only (b) Microseismic + pressure

Figure 3.63: Prediction of rate of layer 2 with/without assimilating microseismic data,
two-layer heterogeneous example
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As EnKF is a stochastic process, we evaluate its the performance with 10 different

initial ensembles generated using the same prior information given in Table 3.5. The en-

semble mean of log-permeability field in both layers after assimilating pressure data only

and after assimilating both microseismic and pressure data are shown from Fig. 3.64-

Fig. 3.67. The updated ensemble mean varies from ensemble to ensemble. Comparing

Fig. 3.64 and Fig. 3.65, we see that assimilating microseismic data improved the esti-

mation of the log-permeability field and helps resolve the high permeability channel in

layer 1. There is not much difference in layer 2 log-permeability field after assimilating

pressure data only (Fig. 3.66) and after assimilating both microseismic and pressure data

(Fig. 3.67).

(a) Ensemble 1 (b) Ensemble 2 (c) Ensemble 3 (d) Ensemble 4

(e) Ensemble 5 (f) Ensemble 6 (g) Ensemble 7 (h) Ensemble 8

(i) Ensemble 9 (j) Ensemble 10

Figure 3.64: Ensemble mean of log-permeability field in layer 1 after assimilating pressure
data only

The prior well gridblock log-permeability of 10 ensembles in both layers is shown

in Fig. 3.68. The figure shows that the prior well gridblock log-permeability of most

realizations in the 10 ensembles is lower than the true, even though they all have large

uncertainty. Fig. 3.69 and Fig. 3.70 show the estimated of well gridblock log-permeability

in layer 1 and layer 2, respectively. Assimilating the pressure transient data resolved only
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(a) Ensemble 1 (b) Ensemble 2 (c) Ensemble 3 (d) Ensemble 4

(e) Ensemble 5 (f) Ensemble 6 (g) Ensemble 7 (h) Ensemble 8

(i) Ensemble 9 (j) Ensemble 10

Figure 3.65: Ensemble mean of log-permeability field in layer 1 after assimilating micro-
seismic and pressure data

the well gridblock permeability for layer 2 (the high permeability layer) as indicated in

Fig. 3.70(a), with small final uncertainty, although a few realizations have very low log-

permeability values as indicated in the plot. However, the pressure transient data are

not able to resolve the well gridblock permeability for layer 1 (the low permeability layer)

as indicated in Fig. 3.69(a). Compared to the prior, some estimated ensembles are even

further away from the true value (Fig. 3.68(a) and Fig. 3.69(a)). After assimilating

microseismic and pressure data, the estimated well gridblock permeability for layer 2

is slightly better than that obtained by assimilating the pressure data only. This is

indicated by the fact that some ensemble means are above the truth and some are below

with smaller uncertainty, while all the ensemble means after assimilating pressure data

only are above the true (Fig. 3.70(a)). The well gridblock log-permeability for layer 1 after

assimilating the microseismic and pressure data has large uncertainty, but they bound the

true (Fig. 3.69(b)), which indicates that the mean estimate of well gridblock permeability

in the low permeability layer after assimilating both microseismic and pressure data is

better than assimilating pressure data only.
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(a) Ensemble 1 (b) Ensemble 2 (c) Ensemble 3 (d) Ensemble 4

(e) Ensemble 5 (f) Ensemble 6 (g) Ensemble 7 (h) Ensemble 8

(i) Ensemble 9 (j) Ensemble 10

Figure 3.66: Ensemble mean of log-permeability field in layer 2 after assimilating pressure
data only

(a) Ensemble 1 (b) Ensemble 2 (c) Ensemble 3 (d) Ensemble 4

(e) Ensemble 5 (f) Ensemble 6 (g) Ensemble 7 (h) Ensemble 8

(i) Ensemble 9 (j) Ensemble 10

Figure 3.67: Ensemble mean of log-permeability field in layer 2 after assimilating micro-
seismic and pressure data
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(a) Layer 1
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(b) Layer 2

Figure 3.68: Prior well gridblock log-permeability of all ensembles, two-layer heteroge-
neous example
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(a) Pressure
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(b) Microseismic + pressure

Figure 3.69: Layer 1 well gridblock log-permeability of all ensembles after data assimila-
tion, two-layer heterogeneous example
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(a) Pressure
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(b) Microseismic + pressure

Figure 3.70: Layer 2 well gridblock log-permeability of all ensembles after data assimila-
tion, two-layer heterogeneous example
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Fig. 3.71 shows the predicted layer rate in layer 2 at the end of day 2 running

from time 0 using the prior ensembles, ensembles after assimilating pressure data only,

ensembles after assimilating both microseismic and pressure data. As shown in Fig. 3.63,

the layer rate remains almost constant during the drawdown test, so the layer rate at the

end of day 2 is representative of layer rates during the entire drawdown test. As shown

in Fig. 3.71(a), the predicted layer rate from the prior ensembles has large uncertainty.

Although the prior well gridblock log-permeability in both layers are lower than the true,

the well gridblock permeability ratio between the two layers is close to the true, so the

average layer rate prediction is actually close to the true. By assimilating pressure data

only (Fig. 3.71(b)), the log-permeability in layer 1 is underestimated while the estimated

log-permeability in layer 2 is close to the truth, so the layer rate in layer 1 is overestimated.

By assimilating both microseismic and pressure data, the predicted layer rate from all

ensembles has more uncertainty compared to the case assimilating pressure data only.

However, the true prediction is within the uncertainty bound characterized by different

ensembles (Fig. 3.71(c)). This figure indicates that predictions from EnKF results based

on single ensemble can overpredict or underpredict the layer rates.

3.3.5 Assimilating pressure and layer rate data

This section presents the results of assimilating the pressure and layer rate for the

heterogeneous case. The results are compared with the cases in the previous section that

assimilate both microseismic data and pressure data. As shown in Fig. 3.72, by assimi-

lating both pressure and layer rate data, the high permeability region around the well in

layer 1 is well captured. However, the long high permeability channel connecting monitor

well 1 to monitor well 4 is not continuous as in the case of assimilating microseismic and

pressure data in Fig. 3.57. As shown in Fig. 3.73 and Fig. 3.74, the uncertainty is reduced

mainly in the near wellbore region in layer 1. Data match on the active well pressure,

monitor well pressure and layer rate in layer 1 during data assimilation and rerun from

time zero are reasonable as shown in Fig. 3.75, Fig. 3.76 and Fig. 3.77.
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(c) Microseismic + pressure

Figure 3.71: Predicted layer rate of layer 1 at end of day 2 rerunning from time 0 of all
ensembles after data assimilation, two-layer heterogeneous example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.72: Porosity and log-permeability posterior mean after assimilating pressure
and layer rate data, two-layer heterogeneous example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.73: Porosity and log-permeability posterior STD after assimilating pressure and
layer rate data, two-layer heterogeneous example
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(a) φ1 (b) φ2

(c) lnk1 (d) lnk2

Figure 3.74: Posterior to prior STD ratio of porosity and log-permeability after assimi-
lating pressure and layer rate data, two-layer heterogeneous example
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(a) Drawdown, during data assimilation (b) Buildup, during data assimilation

(c) Drawdown, rerun (d) Buildup, rerun

Figure 3.75: Active well pressure data match after assimilating pressure and layer rate
data, two-layer heterogeneous example
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(a) Drawdown, during data assimilation (b) Buildup, during data assimilation

(c) Drawdown, rerun (d) Buildup, rerun

Figure 3.76: Pressure data match at monitor well 1 after assimilating pressure and layer
rate data, two-layer heterogeneous example

(a) Drawdown, during data assimilation (b) Drawdown, rerun

Figure 3.77: Layer rate data match in layer 1 after assimilating pressure and layer rate
data, two-layer heterogeneous example
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The same 10 initial ensembles used to assimilate microseismic and pressure data

are run to assimilate pressure and layer rate data. The prior well gridblock log-permeability

in layer 1 which are lower than the true is shown in Fig. 3.68(a). Fig. 3.78 shows well

gridblock log permeability estimates in layer 1 of all ensembles. Well gridblock log-

permeability are better resolved by assimilating the layer rate data than assimilating

pressure and microseismic data.
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(b) Pressure + layer rate

Figure 3.78: Layer 1 well gridblock log-permeability of all ensembles after data assimila-
tion, two-layer heterogeneous example

Here, we quantify the data assimilation performance using mean square error

between the true and estimated porosity and log-permeability with different types of

data. The mean square error E is defined in Eq. 3.21, where Nm is the total number of

model parameters. This is calculated for each ensemble and the average value of all 10

ensemble is listed in Table 4.8. Overall, assimilating pressure and layer rate data and

pressure plus microseismic data give better estimates of the rock properties fields, i.e.

microseismic and layer rate data improve the estimated rock property fields. As indicated

earlier, layer rate data contains only near wellbore information while microseismic data

contain information along its wave path, which covers more spatial area. Therefore,

assimilating microseismic and pressure gives the overall best rock properties estimate as

indicated by the smallest mean square error of all cases.
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E =
1

Nm

Nm∑
i=1

(mi,est −mi,true)
2

σ2
m,prior

(3.21)

Table 3.6: Mean square error between estimated and true, two-layer heterogeneous ex-
ample

Layer 1 Layer 2
φ lnk φ lnk

prior 4.73 4.32 2.06 3.73
pressure 5.62 5.64 2.27 0.84

microseismic 1.21 1.36 2.38 3.84
microseismic+pressure 1.41 1.60 1.46 0.90

pressure+layer rate 3.13 2.57 1.73 1.02

3.4 Ten-layer homogeneous case

Here, we test the same scheme on a 10-layer case with each homogenous. We

perforate in the middle of each layer and the receivers are located on the top of reservoir.

The true, prior mean and prior standard deviation are shown in Table 3.7. The first

arrival time data of the P-wave and S-wave of all 12 receivers of each perforation shot are

assimilated sequentially by EnKF. The P-wave and S-wave velocity structures are shown

Fig. 3.79. The approximate raypaths from each perforation to the lowest receiver are

shown in Fig. 3.79(a). As in a two layer homogenous case, the first arrival waves travel

mostly in high velocity layers, especially in layer 6, in this ten layer homogenous case.

The measurement error for first arrival time data is 1 ms.
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Table 3.7: True and prior of porosity and permeability

True Prior Mean Prior STD Correlation
φ ln k φ ln k φ ln k

Layer 1 0.1718 3.15 0.15 3 0.025 0.5 0.8
Layer 2 0.1787 4.29 0.20 5 0.025 0.5 0.8
Layer 3 0.1534 3.46 0.15 3 0.025 0.5 0.8
Layer 4 0.2672 5.46 0.25 5.5 0.025 0.5 0.8
Layer 5 0.2284 5.25 0.25 5.5 0.025 0.5 0.8
Layer 6 0.1527 3.31 0.15 3 0.025 0.5 0.8
Layer 7 0.2207 5.61 0.20 5 0.025 0.5 0.8
Layer 8 0.2398 5.22 0.25 5.5 0.025 0.5 0.8
Layer 9 0.2392 5.90 0.20 5 0.025 0.5 0.8
Layer 10 0.2667 6.06 0.25 5.5 0.025 0.5 0.8
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(a) P-wave velocity
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(b) S-wave velocity

Figure 3.79: first arrival time and velocity
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As shown in Fig. 3.80, by assimilating microseismic data, uncertainties of the

porosities in the layers of lower porosity, e.g. layers 1, 3, 6 are reduced significantly.

The uncertainty in permeability decreases some correspondingly to its layer porosity

uncertainty reduction. The black dots in Fig. 3.80 and Fig. 3.81 represent the true

porosity or log-permeability values.
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Figure 3.80: Prior and posterior porosity and ln k distribution before and after assimi-
lating microseismic data
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Fig. 3.81 compares the posterior porosity and permeability after assimilating both

microseismic and pressure data to the posterior after assimilating only pressure data. In-

cluding microseismic data helps reduce the uncertainty in true porosity and permeability

of some layers.
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(d) ln k, only pressure

Figure 3.81: Posterior porosity and ln k by assimilating pressure data and/or microseismic
data

Fig. 3.82 shows the standard deviation reduction ratio calculated by dividing pos-

terior standard deviation by the prior standard deviation of each layer, with red dots as

porosity and blue dots as log permeability. For instance, Fig. 3.82(a) shows the values

of standard deviation after assimilating microseismic data divided by standard deviation

of prior; Fig. 3.82(b) shows the values of standard deviation after assimilating micro-

seismic and well test data sequentially divided by standard deviation after assimilating
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only microseismic data. So Fig. 3.82(a) shows the uncertainty reduction by assimilating

microseismic data from prior and Fig. 3.82(b) shows the uncertainty reduction by assimi-

lating well test data after microseismic data are assimilated. Fig. 3.82(c) and Fig. 3.82(d)

show the uncertainty reduction by assimilating well test data first and then microseis-

mic data. The black line in the plots represents reduction ratio equal to 1 which means

uncertainty is not changing; and the lower the value, the more uncertainty reduction

is achieved. As shown in Fig. 3.82(a),the same conclusions are drawn as from previous

plots, by assimilating microseismic data, uncertainty of the porosity in lower porosity

layers, e.g., layer 1, 3, 6, is reduced a lot and the uncertainty in permeability decreases

some correspondingly within the same layer. As shown in Fig. 3.82(b), by assimilating

well test data, uncertainty of the permeability in higher permeability layers, e.g., layer

4, 5, 10, is reduced more than permeability in lower permeability layers, and porosity

are reduce correspondingly due to the correlation between porosity and log-permeability.

Reversibly, similar phenomenon are observed by assimilating well test data first and then

microseismic data as shown in Fig. 3.82(c) and Fig. 3.82(d).
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(b) microseismic+well test/microseismic
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(c) well test/prior
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(d) well test+microseismic/well test

Figure 3.82: Posterior porosity and ln k uncertainty reduction by assimilating pressure
data and/or microseismic data
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As shown in Fig. 3.83(a), by assimilating only well test data, the uncertainty in

the thickness averaged permeability is greatly reduced even though the uncertainty in

the permeability of each layer has not changed significantly as shown in Fig. 3.82(c). By

assimilating both microseismic and well test data, the uncertainty in thickness averaged

permeability increased after assimilating buildup data which may be due to the non-

linearity of the problem.
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(b) microseismic+well test

Figure 3.83: Thickness average permeability

Data prediction during assimilation and rerun from time 0 with and without

assimilating microseismic data are shown in Figs. 3.84 and Figs. 3.85 respectively. Data

matches are reasonably good in both cases.
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(a) Drawdown, Prediction during data assimila-
tion

(b) Buildup, Prediction during data assimilation

(c) Drawdown, Rerun (d) Buildup, Rerun

Figure 3.84: Prediction after assimilating microseismic and pressure data
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(a) Drawdown, Prediction during data assimila-
tion

(b) Buildup, Prediction during data assimilation

(c) Drawdown, Rerun (d) Buildup, Rerun

Figure 3.85: Prediction after assimilating pressure data only
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CHAPTER 4

MICROSEISMIC EVENT LOCATION

4.1 Overview

From the microseismic data collected during multi-stage hydraulic fracturing, we

may pick out the first arrival times for both P- and S-waves for each event and at each

geophone. The P- and S-wave arrival times contain the distance information from the

event location to the geophones as well as the event initiating time. Inverting these

interpreted microseismic data yields the event location parameters, which can be used to

characterize the hydraulic fractures for reservoir modeling. An efficient gradient-based

and an ensemble-based microseismic event location inversion method are presented in this

Chapter. A novel method is devised to obtain the gradient of the first arrival times to the

event location parameters in addition to the first arrival times in one forward model run in

the gradient-based method. The forward model that is used to calculate the first arrival

times is the finite-difference solution to the Eikonal equation. The method is applied to

a multi-layer reservoir with a vertical well and one hydraulic fracture. Application to a

more realistic multi-layer shale gas reservoir with a horizontal well and several stages of

hydraulic fractures is presented in [41], and will not be shown here.

4.2 Event location inversion methodology

4.2.1 Gauss-Newton algorithm

The Gauss-Newton algorithm is a gradient-based method used to solve non-linear

least squares problems. It can be viewed as a modification to the Newton’s method

for finding a minimum of a function. However, the Gauss-Newton algorithm avoids the

calculation of second-order derivatives.
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The parameters to be determined are the event location (x, y, z) and the event

occurrence time (t0). The current code solves for the event locations one at a time.

Therefore, the parameter vector is X = [x, y, z, t0]T . Here we use the vector dobs to

represent the measurement data vector, which includes the noisy first arrival times for

each event at each receiver (geophone) for both P- and S-wave. Therefore for each event,

the maximum number of measurements at each geophone is 2. The objective function of

the optimization problem is defined as

O(X) =
1

2
(X −XP )TC−1

X (X −XP ) +
1

2
(dobs − dcalc)TC−1

D (dobs − dcalc). (4.1)

The first term in Eq. 4.1 is a regularization term based on the prior information where

XP is the prior mean and the CX is the prior covariance matrix. The second term in

Eq. 4.1 is the mismatch of the observed (dobs) and calculated (dcalc) data and CD is the

measurement error covariance matrix, which provides the weight to different data entries

in the objective function.

To minimize the objective function of Eq. 4.1, the gradient and Hessian of the

objective function are given, respectively, by

∇O(X) = C−1
X (X −XP ) +GTC−1

D (dcalc − dobs) (4.2)

and

H = C−1
X +GTC−1

D G+ (∇GT )C−1
D (dcalc − dobs). (4.3)

Here, G is the sensitivity matrix defined by

G =



(∇Xdcalc,1)T

(∇Xdcalc,2)T

...

(∇Xdcalc,Nd)
T


= (∇Xd

T
calc)

T (4.4)
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or

GT = [∇Xdcalc,1 ∇Xdcalc,1 · · · ∇Xdcalc,Nd ] = ∇X(dTcalc). (4.5)

The (i, j) element of the sensitivity matrix is

dij(X) =
∂di
∂Xj

, (4.6)

for i = 1, 2, . . . , Nd and j = 1, 2, . . . , NX . The dij(X)’s are referred to as the sensitivities

or sensitivity coefficients. Note from the first-order Taylor expansion, dij(X) gives the

sensitivity of the ith (predicted or calculated) data dcalc,i, to the jth model parameter

Xj at a particular X and gives a measure of the change in the ith predicted data that

results from a unit change in Xj keeping all other entries of X fixed.

In Gauss-Newton method, we simply ignore the term involving the second deriva-

tives in Eq. 4.3 and replace the Hessian matrix with

H = C−1
X +GTC−1

D G. (4.7)

At each iteration l, we solve the following linear system of equations:

(C−1
X +GT

l C
−1
D Gl)δX

l+1 = −C−1
X (X l −XP )−GT

l C
−1
D (dlcalc − dobs), (4.8)

where the term in the parenthesis on left hand side is the Gauss-Newton Hessian matrix

and the right hand side is the negative gradient of the objective function of Eq. 4.2.

After solving the linear system of equations for δX l+1, we update the parameter

vector X as

X l+1 = X l + αl+1δX l+1, (4.9)

where α is the step size. We set the step size to 1.0 and if the objective function does

not decrease, we cut it by half and re-evaluate the objective function. We stop cutting

the step size once a smaller objective function is reached.
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The convergence criteria for the algorithm are:

‖X l+1 −X l‖
‖X l‖+ 10−5

= εx, (4.10)

‖O(X l+1)−O(X l)‖
‖O(X l)‖+ 10−5

= εo. (4.11)

εx and εo are are prescribed values given in the input file. εx = 10−3 and εo = 10−5 is

used in the example. We also limit the number iteration to a maximum number (5 used

in the example).

4.2.2 Sensitivity matrix calculation

One of the key steps in the Gauss-Newton algorithm is to efficiently obtain the

sensitivity matrix G, which is either derived analytically or calculated using the finite-

difference method. With the numerical solution to the Eikonal equation, it is not easy

to obtain an analytical form of the sensitivity. Therefore, we have to rely on the finite-

difference method to calculate the sensitivity. With finite-difference method, we would

have to perturb one parameter at a time to obtain the gradient. Fig. 4.1 shows a simple

2D grid in the x-y direction, in which the source location is at (i, j) and the receiver

location is at (m,n). To calculate the derivative of the first arrival time t from source to

receiver with respect to x and y, we need three forward Eikonal solution runs with the

source locations at (i, j), (i+ 1, j) and (i, j + 1). The first arrival times from these three

different source locations are ti,j, ti+1,j and ti,j+1. The derivatives of the first arrival time

with respect to x and y are then calculated as

∂t

∂x
=
ti+1,j − ti,j

h
, (4.12)

∂t

∂y
=
ti,j+1 − ti,j

h
. (4.13)

In the 3D setting, we calculate the derivative with respect to z in a similar way, so we

need 4 forward runs to calculate all the derivatives for one event. This can be time-
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consuming when there are many events. Here, we devise a more efficient finite-difference

method to calculate all the derivatives for one event location in one forward simulation

run [41]. Note that in each forward run when the Eikonal equation is solved, it calculates

the first arrival time from source to all other grid points, but only the first arrival time

to the receiver location is used. In the new method, we treat the receiver as the source

and the source as the receiver. With point R as the source location, we may calculate the

first arrival time from R(m,n) to grid point S(i, j) and its two neighbour points (i+ 1, j)

and (i, j + 1). Due to its reversibility, these first arrival times are ti,j, ti+1,j and ti,j+1.

Applying Eq. 4.12 and Eq. 4.13 yields the derivatives.

Figure 4.1: Schematic of the first arrival time gradient calculation using Eikonal equation

4.3 Case study

4.3.1 Case description

In this case, we have a vertical well with one hydraulic fracture in the middle

of the reservoir and four monitor wells at the corners. The reservoir has a thickness

of 160 ft. The velocity structure of the reservoir is shown in Table 4.1. Layer 1 is the

cap rock. The fracture dimension is listed in Table 4.2. The perforation location is in

layer 6 at (1000, 1000, 4328) as shown in Table 4.3. There are 6 receivers placed in each
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monitor well and the receiver locations are given in Table 4.4 to Table 4.7. There are

totally 60 microseismic events. The location of the true microseismic events and receiver

locations are shown in Fig. 4.2 in 3D, X-Y and X-Z crossplots. As shown in these plots,

the blue line is the trajectory of the vertical well, the red dots are receivers and the black

circles are microseismic events. The receivers are intentionally set at four corners and at

different depths to capture as much event location information as possible. The distance

between events and receivers is around 1000 ft in the x and y direction and, 100 to 500

ft in the z direction.

In the following applications, the first arrival times obtained at the receivers are

assimilated to estimate the microseismic event location for each event. The parameters

are the x, y and z coordinates (event location) and the time t0 at which the event occurs.

The origin time t0 is included as a parameter because the arrival time measured at

receivers is equal to the origin time t0 plus the time it takes for the P- or S-wave to travel

from the event location to the receiver. Both the Gauss-Newton and EnKF methods

are tested to invert the microseismic event location. For the Gauss-Newton method,

the initial guess of the location parameters is at the perforation location. For the EnKF

method, the initial ensemble is generated using the perforation location as the prior mean

and 1/3 of total fracture length as the standard deviation. For occurrence time, half of

total fracture time is used as the prior mean and 1/3 of total fracture time is used as the

standard deviation. For both inversion methods, we test the impact of receiver location

on the microseismic event location inversion by adding the receivers from one monitor

well at a time. The measurement error for first arrival time data is 1 ms.
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Table 4.1: Velocity structure for microseismic event location inversion

Layer No. Top depth (ft) P-wave Velocity(ft/s) S-wave Velocity(ft/s)
1 0 12500 8333
2 4236 11271 7967
3 4256 11702 8100
4 4276 12168 8238
5 4296 11555 8055
6 4316 12009 8192
7 4336 11853 8145
8 4356 11412 8011
9 4376 12009 8192
10 4396 12500 8333

Table 4.2: Fracture dimension

Length (x) Width(y) Height(z) time
600 ft 200 ft 200 ft 600 s

Table 4.3: Perforation location

x y z
1000 1000 4328

Table 4.4: Receiver location in monitor well 1

receiver x y z
1 2000 2000 4100
2 2000 2000 4120
3 2000 2000 4140
4 2000 2000 4160
5 2000 2000 4180
6 2000 2000 4200
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Table 4.5: Receiver location in monitor well 2

receiver x y z
1 0 2000 4000
2 0 2000 4020
3 0 2000 4040
4 0 2000 4060
5 0 2000 4080
6 0 2000 4100

Table 4.6: Receiver location in monitor well 3

receiver x y z
1 2000 0 3900
2 2000 0 3920
3 2000 0 3940
4 2000 0 3960
5 2000 0 3980
6 2000 0 4000

Table 4.7: Receiver location in monitor well 4

receiver x y z
1 0 0 3800
2 0 0 3820
3 0 0 3840
4 0 0 3860
5 0 0 3880
6 0 0 3900

167



(a) 3D

(b) X-Y

(c) X-Z

Figure 4.2: True microseismic event location in 3D, X-Y and X-Z plots
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4.3.2 Microseismic event location obtained with Gauss-Newton method

This section presents the results of microseismic event location inversion using

Gauss-Newton method by assimilating the first arrival times from the receivers placed

in all 4 monitor wells. Fig. 4.3 compares the estimated event location on the right

column to the true event location on the left column in 3D, X-Y and X-Z crossplots

by assimilating the first arrival times from monitor well 1. The black dots represent

microseismic events. By visual inspection, the estimated fracture width (y-direction)

and height (z-direction) are much smaller than the true, but the estimated length along

x-direction is close to the true. The Sensitivity of the first arrival times at monitor

well 1 (2000, 2000) to x and y-coordinates are the same at the initial guess (1000,1000)

(APPENDIX A). To show the quantitative comparison between the true and estimated

event locations, the crossplots of the event location coordinates and origin time between

the true and estimated are presented in Fig. 4.4. As shown in Fig. 4.4, the event origin

time is the parameter that is estimated most accurately because the arrival times are

more sensitive to the origin time than to the event location (APPENDIX A), in fact the

estimated arrival time is almost exact; the x-coordinate of the event location is also well

resolved by the data; but the y- and z-coordinates of the event are close to the initial

guesses as the arrival time is relatively insensitive to these two parameters of the event

location. By assimilating the first arrival times at two monitor wells (monitor wells 1 and

2), good width estimates are obtained and the height is slightly underestimated as shown

in Fig. 4.5. As shown in Fig. 4.6, assimilating first arrival times from two monitor wells

improves the estimates on x and y-coordinates of the microseismic event location while

the estimated z-coordinates show almost no correlation with the true. By adding the

3rd monitor well, the estimated fracture length, width and height are further improved

as shown in Fig. 4.7. Fig. 4.8 shows that the estimated y-coordinates are very close to

the true and the estimated z-coordinates start showing some correlation with the true.

There is not much difference in the x-, y-coordinates and origin time estimates by adding

the 4th monitor well compared with the case using 3 monitor wells as shown in Fig. 4.9

and Fig. 4.10. However, the estimated z-coordinates are further improved by adding the
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4th monitor well. As receivers are closer to the events in the vertical direction than in

the horizontal direction, the arrival time is least sensitive to the z-coordinate in the event

location, thus z-coordinate estimation is least accurate (Appendix A).
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(a) True 3D (b) 3D

(c) True X-Y (d) X-Y

(e) True X-Z (f) X-Z

Figure 4.3: True vs estimated microseismic location after assimilating first arrival times
from monitor well 1 (Gauss-Newton)
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(a)

Figure 4.4: The cross-plot of the microseismic event location (x, y, z) and event occurrence
time between the true and the estimated after assimilating first arrival times at monitor
well 1 (Gauss-Newton)
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(a) True 3D (b) 3D

(c) True X-Y (d) X-Y

(e) True X-Z (f) X-Z

Figure 4.5: True vs estimated microseismic location after assimilating first arrival times
from monitor wells 1 and 2 (Gauss-Newton)
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(a)

Figure 4.6: The cross-plot of the microseismic event location (x, y, z) and event occurrence
time between the true and the estimated after assimilating first arrival times from monitor
wells 1 and 2 (Gauss-Newton)
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(a) True 3D (b) 3D

(c) True X-Y (d) X-Y

(e) True X-Z (f) X-Z

Figure 4.7: True vs estimated microseismic location after assimilating first arrival times
from monitor wells 1 to 3 (Gauss-Newton)
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(a)

Figure 4.8: The cross-plot of the microseismic event location (x, y, z) and event occurrence
time between the true and the estimated after assimilating first arrival times from monitor
wells 1 to 3 (Gauss-Newton)

4.3.3 Microseismic event location obtained with EnKF method

This section presents the event location results obtained using EnKF by adding

one monitor well at a time. The number of ensemble members is 30. The mean of

the updated ensemble is used to make analysis plots. By assimilating the first arrival

times from monitor well 1 as shown in Fig. 4.11, the estimated fracture width and height

obtained using EnKF look more reasonable than that from Gauss-Newton method shown

in Fig. 4.3 by visual inspection. This is because we add noise to the initial ensemble.

However the estimated event location parameters are not better than those obtained from

the Gauss-Newton method in the crossplot between the estimated and true as shown in

Fig. 4.12. We obtained results using EnKF very close to those obtained from Gauss-

Newton when we use the first arrival times obtained from two, three or four monitor

wells as shown from Fig. 4.13 to Fig. 4.18.

In summary, 1)The microseismic event occurring time is estimated with good

accuracy; 2) The coordinate of event location along the fracture direction (x-coordinate
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in this example) can be estimated with good accuracy even with first arrival times from

one monitor well. However more first arrival times from other monitor wells further

improve the estimate; 3) The coordinates perpendicular to the fracture direction (y-

coordinate in this example) require first arrival times in wells from different directions to

yield good estimates. 4) It is difficult to obtain a accurate estimate of the z-coordinate

of the event location due to smaller sensitivity compared to other coordinates. This is

mainly due to the fact that the distance between receiver and source in the z direction is

much smaller than in the x and y directions when geophones are placed in the monitor

wells.
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(a) True 3D (b) 3D

(c) True X-Y (d) X-Y

(e) True X-Z (f) X-Z

Figure 4.9: True vs estimated microseismic location after assimilating first arrival times
from all 4 monitor wells (Gauss-Newton)
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(a)

Figure 4.10: The cross-plot of the microseismic event location (x, y, z) and event occur-
rence time between the true and the estimated after assimilating first arrival times from
all 4 monitor wells (Gauss-Newton)

179



(a) True 3D (b) 3D

(c) True X-Y (d) X-Y

(e) True X-Z (f) X-Z

Figure 4.11: True vs estimated microseismic location after assimilating first arrival times
from monitor well 1 (EnKF)
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(a)

Figure 4.12: The cross-plot of the microseismic event location (x, y, z) and event oc-
currence time between the true and the estimated assimilating first arrival times from
monitor well 1 (EnKF)
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(a) True 3D (b) 3D

(c) True X-Y (d) X-Y

(e) True X-Z (f) X-Z

Figure 4.13: True vs estimated microseismic location after assimilating first arrival times
from monitor wells 1 and 2 (EnKF)
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(a)

Figure 4.14: The cross-plot of the microseismic event location (x, y, z) and event occur-
rence time between the true and the estimated after assimilating first arrival times from
monitor wells 1 and 2 (EnKF)
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(a) True 3D (b) 3D

(c) True X-Y (d) X-Y

(e) True X-Z (f) X-Z

Figure 4.15: True vs estimated microseismic location with 3 monitor wells after assimi-
lating first arrival times from monitor wells 1 to 3 (EnKF)
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(a)

Figure 4.16: The cross-plot of the microseismic event location (x, y, z) and event occur-
rence time between the true and the estimated after assimilating first arrival times from
monitor wells 1 to 3 (EnKF)
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(a) True 3D (b) 3D

(c) True X-Y (d) X-Y

(e) True X-Z (f) X-Z

Figure 4.17: True vs estimated microseismic location estimation after assimilating first
arrival times from all 4 monitor wells (EnKF)
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(a)

Figure 4.18: The cross-plot of the microseismic event location (x, y, z) and event occur-
rence time between the true and the estimated after assimilating first arrival times from
all 4 monitor wells (EnKF)
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4.4 Event location inversion with uncertain velocity structure

4.4.1 Case description

In this case, we have a vertical well with one hydraulic fracture in the bottom

reservoir layer and three monitor wells in north, southwest and southeast directions. The

reservoir has 10 layers. The true and initial ensemble of porosity is shown in Table 4.8.

The true velocity structures of the P- and S-waves are shown in Fig. 4.19. The velocity

and top depth are listed in Table 4.9. Note that the layers are numbered from bottom

to top. The cap rock P- and S-wave velocities are 9842 ft/s and 6562 ft/s, respectively.

The fracture dimension is the same as for the case considered in the previous section; see

Table 4.2. The perforation location is (1000, 1000, 8128) which is at the bottom layer.

There are 6 receivers placed in each monitor well and the receiver locations are given in

Table 4.10 to Table 4.12. There are total 60 microseismic events. The location of true

microseismic events and receivers location are shown in Fig. 4.20 in 3D, X-Y and X-Z

crossplots. The measurement error for first arrival time data is 1 ms.

Table 4.8: True and prior of porosity and permeability

True Prior Mean Prior STD Correlation
φ lnk φ lnk φ lnk

Layer 1 0.1718 3.15 0.15 3 0.025 0.5 0.8
Layer 2 0.1787 4.29 0.20 5 0.025 0.5 0.8
Layer 3 0.1534 3.46 0.15 3 0.025 0.5 0.8
Layer 4 0.2672 5.46 0.25 5.5 0.025 0.5 0.8
Layer 5 0.2284 5.25 0.25 5.5 0.025 0.5 0.8
Layer 6 0.1527 3.31 0.15 3 0.025 0.5 0.8
Layer 7 0.2207 5.61 0.20 5 0.025 0.5 0.8
Layer 8 0.2398 5.22 0.25 5.5 0.025 0.5 0.8
Layer 9 0.2392 5.90 0.20 5 0.025 0.5 0.8
Layer 10 0.2667 6.06 0.25 5.5 0.025 0.5 0.8
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(a) P-wave velocity
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(b) S-wave velocity

Figure 4.19: Velocity structure

Table 4.9: The true velocity structure

Layer No. Top depth (ft) P-wave Velocity(ft/s) S-wave Velocity(ft/s)
10 7200 11683 8216
9 7300 12391 8660
8 7400 12375 8650
7 7500 12884 8969
6 7600 14814 10186
5 7700 12677 8840
4 7800 11670 8209
3 7900 14793 10173
2 8000 14054 9706
1 8100 14253 9832

Table 4.10: Receiver location in monitor well 1

receiver x y z
1 1000 2000 7100
2 1000 2000 7120
3 1000 2000 7140
4 1000 2000 7160
5 1000 2000 7180
6 1000 2000 7200
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Table 4.11: Receiver location in monitor well 2

receiver x y z
1 0 0 7100
2 0 0 7120
3 0 0 7140
4 0 0 7160
5 0 0 7180
6 0 0 7200

Table 4.12: Receiver location in monitor well 3

receiver x y z
1 2000 0 7000
2 2000 0 7020
3 2000 0 7040
4 2000 0 7060
5 2000 0 7080
6 2000 0 7100
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In the following sections, we test the impact of uncertainty in velocity structure

on the microseismic event location inversion using the EnKF method by considering 4

scenarios:

1. The correct velocity structure is used in inversion.

2. The incorrect velocity structure is used in inversion.

3. An ensemble of velocity structures is used in inversion in order to capture uncer-

tainty in the velocity field.

4. The ensemble of velocity structures that are updated by assimilating the first arrival

times from perforation shots is used in inversion.

In all examples, 100 ensemble members are used. The cap rock velocity is known

and fixed in all scenarios. The mean absolute error between the true and estimated

parameters, i.e., x, y and z coordinates for each event is calculated using,

E =
1

Nevent

Nevent∑
i=1

| mi,est −mi,true | . (4.14)

4.4.2 Microseismic event location estimated using correct, incorrect and an ensemble of

velocity structures

The initial ensemble of the velocity profile is shown in Fig. 4.21 with each boxchart

representing the P-wave velocity of each layer. The black squares are the true velocity

profile used to generate the observed first arrival times. The red dots are the layer

velocities used in scenario 2 and denoted as “wrong” velocity profile.

The cross-plot of the microseismic event location (x, y, z) and the event occur-

rence time between the true and the estimated using the true velocity structure, using

incorrect velocity structure and using an initial ensemble of velocity structure are shown

in Fig. 4.22, Fig. 4.23 and Fig. 4.24, respectively. We obtained good estimates on x-

, y-coordinates and occurrence time in these cases. Estimation of the z-coordinate is

close to true but there is some noise. Fig. 4.25 compares the z-coordinate estimation in
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these 3 scenarios by adding a blue line of unit slope for reference. The closer the dots

are to the blue line, the more accurate the estimates are. As shown in Fig. 4.25, the

estimated z-coordinate is biased from true when using the incorrect velocity structure

with a large mean absolute error (E = 32.3), and is improved by using an ensemble of

velocity structures which considers the uncertainty in velocity. The mean absolute error

is reduced to 21.0. Among these three scenarios, estimates obtained using the correct

velocity structure is the best of all with the smallest mean absolute error of 15.2.

4.4.3 Microseismic event location estimated using velocity structure updated from as-

similating perforation shot microseismic data

The layer porosities are updated by first assimilating the first arrival times from

perforation shots in each layer, and then assimilating pressure transient data. The cor-

responding velocity structure is then calculated from the updated layer porosity values

and shown in Fig. 4.27. As uncertainty of porosity is reduced in most layers (Fig. 4.26),

the uncertainty of velocity is significantly reduced correspondingly as shown in Fig. 4.27.

The cross-plot of the microseismic event location (x, y, z) and event occurrence

time between the true and the estimated using the updated velocity structure are shown

in the various plots of Fig. 4.28. We obtained very close results to those obtained in the

previous scenarios. As shown in Fig. 4.29, the z-coordinate estimation using the ensemble

of updated velocity updated is very close to the one obtained using the correct velocity.

In summary, in event location inversion, using the incorrect velocity may result

in biased estimates. Considering the uncertainty in velocity by using an ensemble of

velocity structures improves the estimates. Calibrating the velocity by assimilating the

first arrival times from perforation shots further improves the estimates. The EnKF

method is advantageous for capturing velocity uncertainty in an efficient way.
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(a) 3D

(b) X-Y

(c) X-Z

Figure 4.20: True microseismic event location in 3D, X-Y and X-Z plots
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Figure 4.21: Initial ensemble of velocity structure model for scenario 3

(a)

Figure 4.22: The cross-plot of the microseismic event location (x, y, z) and event occur-
rence time between the true and the estimated using correct velocity structure

194



(a)

Figure 4.23: The cross-plot of the microseismic event location (x, y, z) and event occur-
rence time between the true and the estimated using incorrect velocity structure

(a)

Figure 4.24: The cross-plot of the microseismic event location (x, y, z) and event occur-
rence time between the true and the estimated using an ensemble of velocity structure

195



(a) Correct (E=15.2)

(b) Incorrect (E=32.3)

(c) Ensemble (E=21.0)

Figure 4.25: The cross-plot of z-coordinate between the true and the estimated using
correct, incorrect and an ensemble of velocity
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Figure 4.26: Prior and posterior porosity and lnk assimilating microseismic data
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Figure 4.27: Ensemble of velocity structures updated from assimilating first arrival times
of the perforation shots
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(a)

Figure 4.28: The cross-plot of the microseismic event location (x, y, z) and event occur-
rence time between the true and the estimated using the updated velocity structure after
assimilating first arrival time from perforation shots

(a) correct (E=15.2)

(b) updated velocity structure (E=17.8)

Figure 4.29: The cross-plot of z-coordinate between the true and the estimated using
correct and updated velocity structure
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CHAPTER 5

CONCLUSIONS

The following conclusions can be made from this study:

1. EnKF can be applied to assimilate pressure transient data in a heterogeneous reser-

voir environment. Reasonable data matches are obtained. The estimates of prop-

erty fields (log-permeability and porosity) obtained after assimilating the pressure

transient data (drawdown and buildup) at a fully-penetrating vertical well using

EnKF capture the true geological structure and spatial geological features. In the

case that the prior means of the rock property fields are erroneous, we can apply a

partially doubly stochastic model in the EnKF methodology to obtain significantly

better estimates of the rock property fields.

2. For a single layer reservoir, the skin factor can be obtained reasonably well by

assimilating the pressure data. However, for a two-layer reservoir, the pressure

data alone can not resolve the layer skin factors. Assimilating both layer rates and

pressure data gives good estimates of the individual layer skin factors as well as

geologically reasonable estimates of the rock property fields.

3. The first arrival times of the P- and S-wave in the microseismic data reflect the av-

erage velocity along its raypath. The velocity is related to porosity in a functional

form, so the microseismic data (arrival times) can resolve the average porosity in

the seismic wave path, but these data are most sensitive to the low porosity (high

velocity) layers. The pressure transient data can resolve the thickness-weighted

average permeability in a layered reservoir. When log-permeability is used as the

model parameters, the pressure is most sensitive to the log-permeability of the

high permeability layer when the layer thickness is the same. In case that the
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porosity and log-permeability are strongly correlated, the microseismic data and

the pressure transient data are complementary in resolving the layer properties of

the reservoir. In the two-layer homogeneous example, assimilating microseismic

and pressure transient data using EnkF resulted in good data match and large

uncertainty reduction in the estimated layer porosities and log-permeabilities. The

estimated property values are comparable to those estimated by assimilating the

layer rate and pressure data. Assimilating layer rate and pressure data gives accu-

rate estimates of the layer log-permeabilities but less accurate estimates of the layer

porosities compared to the case where we assimilate both microseismic and pres-

sure data. In the two-layer heterogeneous example, assimilating microseismic and

pressure data yields layer properties that can capture the main geological structure

(high permeability channels), while assimilating layer rate and pressure data yields

less accurate geological features, as layer rate data reflect rock properties in the

region close to the wellbore. On the other hand, microseismic data are sensitive

to rock properties in a much larger region between the source in the active well

and the receivers in the monitor wells and hence yields more accurate rock prop-

erty estimates and much smaller mean square error between the true and estimated

rock property fields. Assimilating microseismic and pressure data using EnKF with

one ensemble may lead to erroneous conclusions, while data assimilation using 10

different initial ensembles yield more accurate characterization of the uncertainty

in the rock property fields.

4. Both Gauss-Newton method and EnKF method are applied to microseismic event

location inversion. A novel method is devised to calculate the sensitivity of the

first arrival times to the event location parameters for the Gauss-Newton method,

which uses the reversibility of the wave travel. Accurate estimates can be made

to the microseismic event locations using both Gauss-Newton and EnKF methods

when the first arrival times are collected from monitor wells of different directions

and the velocity structure is known. As the geophones placed in the monitor wells
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are usually close the event locations in the z-direction, less accurate estimates of

the z-coordinate of the event are obtained, since the gradient of the first arrival

times to the event coordinates is proportional to the distance in that direction.

Using an incorrect velocity structure yields less accurate event location estimation,

while considering the uncertainty using an ensemble of velocity structures can yield

more accurate estimated event location parameters. Using an ensemble of velocity

structures updated by assimilating the first arrival times from the perforation shots

can further improve the accuracy of the estimated event locations and the mean

absolute error between the true and estimated event location parameters is similar

to that obtained using the true velocity structure.
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APPENDIX A

SENSITIVITY ANALYSIS ON EVENT LOCATION

We assume a microseismic event is occurred at (x, y, z) and its first arrival time

is recorded at a receiver (xr, yr, zr) in a 3-D homogenous velocity model with velocity v.

The origin time of the microseismic event is t0. The first arrival time at the receiver can

be calculated as

t = t0 +

√
(x− xr)2 + (y − yr)2 + (z − zr)2

v
. (A.1)

The derivatives of first arrival time respect to event location parameters (x, y, z, t0) are

∂t

∂x
=

x− xr
v
√

(x− xr)2 + (y − yr)2 + (z − zr)2
, (A.2)

∂t

∂y
=

y − yr
v
√

(x− xr)2 + (y − yr)2 + (z − zr)2
, (A.3)

∂t

∂z
=

z − zr
v
√

(x− xr)2 + (y − yr)2 + (z − zr)2
, (A.4)

∂t

∂t0
= 1. (A.5)

As the magnitude of velocity is usually on the order of 105 ft/s, the derivatives of the first

arrival time respect to location parameters (x, y, z) are usually on the order of 10−5 which

is much smaller than the derivative of first arrival time with respect to event occurring

time which is 1. Thus, the even initiation time is always estimated with good accuracy by

assimilating first arrival times. Among the derivatives of first arrival time with respect

to the location parameters (x, y, z), the difference is only in the numerator, which is

the distance between event and receiver in its axis. Thus, the accuracy of coordinate

estimates depend on the distance in that axis direction.
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