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ABSTRACT

Ning Liu (Master of Science in Petroleum Engineering)

Assessment of Uncertainty Assessment Methods

(96 pp.-Chapter VIII)

Directed by Dr. Dean S. Oliver

(332 words)

Uncertainty in future reservoir performance is usually evaluated from the simulated

performance of a small sampling of reservoir models. Unfortunately, most of the

methods for generating reservoir models conditional to production data are known

to create distributions of realizations that are only approximately correct. The

adequacy of the approximations is unknown, although several previous investigations

of the approximate algorithms have suggested that the distributions of realizations

could be badly misleading. In this study, I investigated seven sampling algorithms

and evaluated the ability of the various sampling methods to correctly assess the

uncertainty in reservoir predictions by comparing the distribution of realizations

with a standard distribution from a Markov chain Monte Carlo method.

This study compares the ensemble of realizations from seven sampling al-

gorithms for a synthetic, one-dimensional, single-phase flow problem, in order to

establish the best algorithm under controlled conditions. The small test problem

was chosen in order that a large enough number of realizations could be gener-

ated from each method to ensure the statistical validity of the comparisons. The

approximate sampling methods evaluated were linearization about the maximum

a posteriori model (the square-root of the covariance matrix method), randomized
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maximum likelihood, two pilot point methods with six and nine pilot points locations

and gradual deformation method. Five thousand realizations were generated from

each of the approximate sampling algorithms except for the gradual deformation

method. Realizations were also generated by a Markov chain Monte Carlo method

with local perturbations and an attempt was made to generate realizations from a re-

jection sampling algorithm. The distributions of realizations from the approximate

methods were compared to the distributions from the exact methods. While the

approximate sampling methods performed relatively well for evaluating uncertainty

in average reservoir porosity and effective steady-state permeability, most failed to

adequately assess uncertainty in some other function of the reservoir model such

as the distribution of extreme permeability values or the data mismatch. In gen-

eral, the method of randomized maximum likelihood performed better than other

approximate methods.
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CHAPTER I

INTRODUCTION

1.1 Background

Prediction of the reservoir variables is necessary for making appropriate and

successful investments and for reducing risk in the development and construction of

an oilfield. When forecasting production for a given depletion strategy, when apply-

ing an optimization strategy with respect to some recovery criterion, and also when

making decisions concerning infill drilling, the essential requirement is being able to

predict the underground resource distribution. This is accomplished by running a

reservoir simulation program with reservoir models reproducing historic production

data given the same operating conditions. In a petroleum reservoir, the most im-

portant reservoir model parameters for determining production performance are the

gridblock permeabilities and porosities, skin factors, and relative permeabilities of

the fluids. Historic production data typically used in this procedure include wellbore

pressure, gas-oil ratio and water-oil ratio.

As petroleum reservoirs are generally thousands of feet underground, reser-

voir parameters can not be measured directly except at well locations. The means

to derive reservoir parameters based on historic production data is an inverse pro-

cedure. Usually, inverse problems are underdetermined, thus have non-unique solu-

tions. Various algorithms have been developed to estimate the probability density

function (pdf) of reservoir property fields based on historic production data.

The future production performance of a gas and oil reservoir is usually evalu-

1
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ated by generating a series of reservoir realizations conditional to historic production

data and simulating future performance of each. By simulating the future production

from each realization, an empirical distribution of production characteristics is ob-

tained. The validity of the Monte Carlo method for quantifying uncertainty depends

on the quality of the distribution of reservoir models generated. Rigorous methods

for sampling from the a posteriori probability density function (pdf) of reservoir

flow models conditioned to production data have been discussed by Hegstad and

Omre (1996), Oliver et al. (1997), Bonet-Cunha et al. (1998), Hegstad and Omre

(1999), Holden et al. (2001), and Omre (2001). Most other attempts to quantify

uncertainty in reservoir performance are based on approximate sampling algorithms.

The purpose of this study is to evaluate the distribution of samples from several of

these approximate methods.

The methods evaluated here belong to two types: those that are known to

sample correctly and those that are only approximately correct. In the first category,

I consider the rejection algorithm (REJ) and a Markov chain Monte Carlo algorithm

(McMC). The four approximate methods I consider are linearization about the max-

imum a posteriori model (LMAP), randomized maximum likelihood (RML), pilot

point methods (PP) with six and nine pilot points locations, and gradual deforma-

tion method (GD). Each of these methods was used to generate a large number of

reservoir realizations from a single-phase, one-dimensional synthetic problem, where

the observed data were in the form of dynamic pressure and the unknown reservoir

characteristics were the porosity and permeability of each gridblock.

This work contains eight chapters. Chapter 1 provides an overview of the-

oretical development and states the necessity of carrying out this work. Chapter 2

briefly describes the inverse theory. It includes introductions to Bayes theory, the

construction of the MAP estimate, the computation of sensitivity coefficients and the

Gauss-Newton and Levenberg-Marquardt algorithms. Chapter 3 presents two stan-

dard algorithms, Markov chain Monte Carlo (McMC) and rejection (RJ) sampling
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from the posteriori distribution of the objective function. In Chapter 4, I investigate

four of the most popular approximate algorithms, the linearization about the max-

imum a posteriori estimate method, the randomized maximum likelihood method,

the pilot point methods and the gradual deformation method. Chapter 5 describes

the synthetic test problem designed for this research. Realizations are then gener-

ated using each of the sampling methods described in the previous chapter. The

results from each of the methods are shown in Chapter 6. In that chapter, I also

compare the results from approximate methods with those from the rigorous meth-

ods. Chapter 7 presents the analysis of the results based on the methods comparison

in Chapter 6. Conclusions are made in Chapter 8 regarding the sampling validity

and efficiency of each approximate method.

1.2 Literature Review

Characterizing the reservoir variables given well observations and produc-

tion data is an ill-posed inverse problem. Realistic reservoir problems tend to be

quite complex, and the number of parameters is often very large so that methods

for solving small problems may not work well for reservoir characteristic problems.

Moreover, the connection between reservoir variables and observed production data

is highly nonlinear so the partial differential equations can only be solved numeri-

cally.

Most approaches in solving this kind of problem belong to one of two cate-

gories. One category contains approaches that generate a “rough” property field (an

unconditional realization), then add on a smooth correction. Journel and Huijbregts

(1978) described this approach for linear problems without accounting for measure-

ment errors in data. When the observations have errors, the approach is similar,

except the simulation need not honor the data exactly (Oliver, 1996b). These meth-

ods have been applied to nonlinear problems in petroleum engineering and ground
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water hydrology by Chu et al. (1995) and RamaRao et al. (1995) among others.

In the study by Chu et al. (1995), an unconditional realization was generated from

the prior distribution, then a Gauss-Newton procedure was applied to minimize

the difference between observed and calculated data, while still remaining close to

the unconditional realization. The calibration of each realization requires solving a

history matching problem. Justification for the application of this methodology to

nonlinear problems was provided by Oliver et al. (1996) and Kitanidis (1995).

The second category contains methods in which “roughness” is added to a

smooth, optimal property field. The “roughness” is a stochastic component usually

obtained from the square root decomposition of the estimation error covariance. Al-

though the method is quite old (Scheuer and Stoller, 1962), it was first applied to

linear problems in petroleum engineering by Davis (1987) and Alabert (1987). Diet-

rich and Newsam (1995) described a relatively efficient method that uses Chebychev

polynomial approximations to calculate the square root of the covariance matrix

for large reservoir model problems. This kind of method can be very efficient since

only one history matching process is required in the whole process to calculate the

optimal estimate, i.e. the maximum a posteriori (MAP) solution. Clifton and Neu-

man (1982) applied this approach to generate multiple (300) realizations of the 2D

transmissivity field of the Avra Valley in Arizona with the square root of the er-

ror covariance computed by the Cholesky method. The pressure head was assumed

to be linearly related to the transmissivity in this study. Chu et al. (1995) and

Oliver (1996a) applied this approach to the generation of conditional permeability

realizations for nonlinear single-phase problems in petroleum engineering.

The sampling methods can also be categorized another way: those are

known to sample from the true posteriori distribution and those are only approxi-

mately correct. The exact methods I discuss in this work are the rejection method

and Markov chain Monte Carlo. Both of the two standard methods involve a crite-

rion for accepting or rejecting realizations generated from a stochastic process. The
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efficiency of the rejection algorithm depends critically on the ability to find a pro-

posal function that is close to the target probability density function. In practice,

however, the posterior density function is difficult to evaluate and sometimes has

multiple local minima. Hence, the rejection algorithm is generally slow and ineffi-

cient when applied to reservoir history matching problems. General background on

rejection algorithm for conditional simulation can be obtained from Ripley (1987)

and Gilks et al. (1996b). Hegstad and Omre (1999) and Holden et al. (2001) have

applied the rejection algorithm to reservoir characterization problems.

In earlier work, people applied Markov chain Monte Carlo methods by swap-

ping permeability values in two randomly chosen gridblocks (see Farmer (1992),

Deutsch (1992), Sagar et al. (1993)). This is an inefficient algorithm for correlated

property fields and realizations generated were not realistic. Rather than swapping

gridblock values, Oliver et al. (1997) used proposed transitions that were based on

the covariance structure and symmetric, then the acceptance is only based on the

ratio of the probability of being in the adjacent two states. If the proposed transition

is rejected, the old state is repeated in the chain.

In this thesis, I investigate four of the most popular approximate methods:

linearization about the maximum a posteriori model (LMAP), randomized maximum

likelihood (RML), pilot point methods (PP) and gradual deformation (GD) method.

Linearization about the maximum a posteriori model is a typical method of

adding a “rough” correction to the MAP model. Oliver (1996a) used models which

are linearized about the maximum likelihood point, to generate multiple realiza-

tions of the permeability field that are approximately conditioned to well test data,

point measurements of permeability, and the variogram. Chu et al. (2000) used the

LMAP method to generate conditional realizations, while improving the method for

computing the square root of the a posteriori covariance matrix. Later investiga-

tions showed that very few of the approximate realizations from LMAP actually

honored the pressure data. The method has also been used to generate candidate
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models for Markov chain Monte Carlo algorithms, in which case the candidates with

poor pressure matches are rejected. Oliver et al. (1997) found, however, that when

the permeability variation is large, the method can be very inefficient for nonlinear

problems related to fluid flow in porous media.

The randomized maximum likelihood (RML) method was proposed inde-

pendently by Kitanidis (1995) and Oliver et al. (1996) for conditional reservoir sim-

ulation. It is an approximate algorithm in the general case but can be shown to be

rigorous for Gaussian random fields when the data are linearly related to the model

parameters and when the errors in the data are normally distributed (Oliver, 1996b).

Oliver et al. (1996) originally suggested that this method be used to generate trial

states for an McMC algorithm but, because the acceptance criterion was difficult

to evaluate and the acceptance rate was very high (approximately 95% for a small

highly nonlinear problem), they suggested that the acceptance test be ignored and

all trials accepted. Although Oliver et al. (1996) showed that RML did a reasonably

good job of sampling a multimodal univariate distribution, the sampling properties

for multivariate nonlinear problems was largely unknown. Because the method seeks

to minimize the data mismatch and the distance from the unconditional realization,

the realizations almost surely honor the data and appear to be from the correct

distribution. Similar methods have also been used by RamaRao et al. (1995) and

Gómez-Hernández et al. (1997) to condition permeability fields to pressure data.

Although the distribution of realizations has been questioned by Floris et al. (2001),

the method has been shown to do a good job of sampling from the a posteriori

distribution for a highly nonlinear low dimensional problem (Liu et al., 2001).

The pilot point methods are actually methods of parameterization of the

reservoir property field. They were developed in order to reduce the dimension of the

history matching problem. In pilot point methods, reservoir properties are calculated

in a small number of locations and then interpolation is used to assign values to the

remaining grid blocks. RamaRao et al. (1995) applied kriging as the interpolation
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method. Gómez-Hernández et al. (1997) discussed the method of generating “equally

likely” realizations of the transmissivity field that are conditional to transmissivity

and head measurements. They used the method of “master points” which, except for

the location of pilot points, seems to be identical to the pilot point method described

in the RamaRao et al. (1995) papers. They generate a realization that is conditional

to transmissivity, then use a kriged interpolation through the pilot points to correct

the surface. Using this method, they attempted to find the transmissivity field that

is closest to the original and honors the data.

It is not known whether or not the recently developed method of gradual

deformation (Roggero and Hu, 1998) is an approximate method or if it actually

generates realizations that are distributed correctly. It is a method for gradually

deforming continuous geostatistical models to generate reservoir models which honor

historic production data. This algorithm has been used by Hu et al. (1999) to

incorporate historic production data to reduce uncertainty in production forecasts.

Because the gradual deformation algorithm preserves the geostatistical parameters

(covariance model and range) while deforming the model to honor the data, it seems

intuitive that it might generate realizations from the probability density function

(pdf) for model variables conditioned to data.

In addition to the methods described above, several other optimization

methods such as simulated annealing and the genetic algorithm have been used

to generate conditional realizations. The simulated annealing method has been

discussed by Alabert (1989), Deutsch (1993), Hird and Kelkar (1992) and Holden

et al. (1995). The genetic algorithm has been discussed by Sen et al. (1992) and

Romero et al. (2000) among others. Unfortunately, these methods can be very

computationally expensive. They often converge very slowly and require a large

number of iterations to achieve an acceptable realization matching production data.

Four comparative investigations of the validity of sampling algorithms for

quantifying uncertainty of reservoir performance conditional to flow data have been
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reported in the literature. Zimmerman et al. (1998) compared several geostatisti-

cal inverse techniques to determine which is better suited for making probabilistic

forecasts of solute transport in an aquifer. The comparison criteria were the pre-

dicted travel times and the travel paths taken by conservative radioactive tracers if

accidentally released from storage at the Waste Isolation Pilot Plant (WIPP) site

in New Mexico. The main conclusion achieved by this study was the importance of

the appropriate selection of the variogram and “the time and experience devoted by

the user of the method.”

In a large investigation of uncertainty quantification supported by the Eu-

ropean Commission, Floris et al. (2001) applied several methods of evaluating un-

certainty to a synthetic reservoir characterization study based on a real field case.

Participants received reservoir parameters only at well locations, ‘historic’ produc-

tion data (with noise), and a general geologic description of the reservoir. Nine

different techniques for conditioning of the reservoir models to the production data

were evaluated, and results (production forecast for a certain period) were compared

in the form of a cumulative distribution function. Variation in the parameterization

of the problem was identified as the main discriminating factor in this study. The

differences in the quality of the history matching and the production forecast caused

by the distinct approaches to the problem also resulted in major differences in the

resulting cumulative distribution functions.

Barker et al. (2001) used the same synthetic test problem as Floris et al.

(2001), but focused their investigation of sampling on three methods: history-

matching of multiple realizations using a pilot-point approach, rejection sampling,

and Markov chain Monte Carlo. They obtained very different distributions of real-

izations from rejection and Markov chain Monte Carlo methods. The difference was

attributed to variations in the prior information used by the participants, but this

made evaluation of the results difficult.

Holden et al. (2001) provided an overview of sampling algorithms for Bayesian
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history matching. In this paper, the sampling algorithms were divided into three

groups; optimization algorithms, rejection algorithms, and Markov chain Monte

Carlo algorithms. The theoretical properties for the algorithms were described.

1.3 Objective Statement

A test problem is regarded as a linear problem when the relationships be-

tween model parameters and conditioning data are linear. We know that for linear

test problems, some of these approximate sampling methods, such as LMAP, samples

from the true model distribution, thus give similar results about reservoir future per-

formance with those from exact methods. This may make people mistakenly trust

the validity of these approximate methods for more realistic nonlinear problems.

Unfortunately, this underlying problem was generally ignored in previous research

in designing a synthetic test problem. Moreover, we need to be able to generate a

large number of realizations. For one thing, the distribution of reservoir realizations

should not depend significantly on the random seed. For another, because of the

lack of independence of realizations, the Markov chain Monte Carlo method requires

a large number of realizations of the model to be generated. Because most of the

previous studies are based on complicated synthetic models, they could not afford

the huge processing demands required to run the fluid flow simulator millions of

times. So a biased conclusion could be made due to lack of sufficient samples. The

test problem has to be small enough to reduce the cost of running a large number

of numerical fluid flow simulations. One more problem lies in the fact that though

sampling from the same reservoir problem, differences in fluid flow simulators and

differences in assumptions made by different research groups almost certainly influ-

enced the distributions of future performance from the various algorithms.

In this work, I present our research in evaluating and comparing the abil-

ities of various methods to correctly assess uncertainty in production forecasting.
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For each of the methods, a large number of model realizations were generated from

a single-phase transient flow problem with highly accurate pressure measurements,

fairly large uncertainty in the property field, and a short correlation length. Fu-

ture production performance of each realization was calculated using the same fluid

flow simulator. By comparing realization distributions from these methods, the re-

sults indicate that RML is a practical approximate sampling method and produces

acceptable results.



CHAPTER II

MODEL DEFINITION

The Monte Carlo solution to predict future reservoir performance is to gen-

erate many possible reservoir models and to use the ensemble of results to infer the

uncertainty in future performance. The uncertainty in prediction depends on the

available reservoir observation and production data. Exact simulation algorithms

generate reservoirs according to the probability density distribution of the reservoir

model.

2.1 Bayes Theorem

The conditional probability density for the model variables m, given the

pressure data dobs, is provided by Bayes rule,

fM|D(m|dobs) = fD|M(dobs|m)fM(m)/
∫
fD|M(dobs|m)fM(m) dm, (2.1)

where fM(m) is the prior probability density for m before incorporating the obser-

vations. fD|M(dobs|m) is the probability of dobs given the model variables m. For

convenience, I will denote the conditional probability density fM|D(m|dobs) as f(m),

understanding that it is conditional to the data. When the prior pdf for m is Gaus-

sian and the errors in the data (and modeling errors) are Gaussian, the a posteriori

pdf for m is

f(m) ∝ exp
(
−1
2
(g(m)− dobs)

TC−1
D (g(m)− dobs)

)

× exp
(
−1
2
(m− µ)TC−1

M (m− µ)
)
,

(2.2)

where g(m) is the vector of theoretical pressure data obtained by running the simu-

lator with log-permeability and porosity values given by the vector m. CD and CM

11
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are the data error covariance and the prior model parameter covariance respectively.

Both of these matrices are assumed to be known.

2.2 The Prior Model

The reservoir model parameters that can be estimated using inverse pro-

cedures include gridblock permeabilities, gridblock porosities, well skin factors, and

relative permeabilities (see Li (2001) for details). In the prior model, the parameter

variables are assumed to be correlated Gaussian variables with specified mean and

covariance. The prior pdf for model parameters m is given by

πp(m) = c exp
{
−1
2
(m−mprior)

TC−1
M (m−mprior)

}
, (2.3)

where c is the normalizing constant. CM is the model covariance matrix. It defines

the relationship among the model parameters and can be constructed from the prior

information, mainly the variogram model. Eq. 2.4 shows the structure of CM for a

model with only permeability and porosity.

CM =


 Cφ Cφ,k

Ck,φ Ck


 (2.4)

Matrices Cφ and Ck are the porosity covariance and permeability covariance among

gridblocks respectively. Cφ,k is the cross-covariance between the porosity and the

permeability fields.

From Eq. 2.3, the model has the highest probability when m = mprior, so

in that sense mprior is the best estimate of the model based on static data. mprior is

generally set as the expectation of reservoir variables based on the prior knowledge

about the reservoir.
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2.3 The Maximum A Posteriori Estimate

The maximum a posterior (MAP) estimate is the most probable model of

the posterior pdf (Eq. 2.2), i.e. it corresponds to the minimum value of the objective

function:

O(m) =
1

2
(g(m)− dobs)

TC−1
D (g(m)− dobs) +

1

2
(m−mprior)

TC−1
M (m−mprior). (2.5)

The data covariance matrix CD is based on the accuracy of the data. If the measure-

ment error is small, the data variance should also be small and vice versa. Usually,

I assume that all measurement errors are Gaussian with means equal to zero. I

also assume all measurement errors are independent so the data covariance matrix

is diagonal.

If the relationship of data to model parameters, d = g(m), is not linear, the

objective function (Eq. 2.5) may have several local minima. An algorithm that uses

derivatives to find a downhill direction will most likely end up getting “stuck” in a

local minima.

2.3.1 Gauss-Newton and Levenberg-Marquardt Algorithms

If the objective function has continuous second derivatives, the Gauss-

Newton and Levenberg–Marquardt algorithms could be used for minimization of

the objective function.

In the Gauss-Newton procedure, the model parameters at iteration l + 1

are updated by

ml+1 = ml + µlδm
l+1, (2.6)

where 0 < µl ≤ 1 is a scalar which controls the size of the step in the direction

δml+1 and is calculated by the restricted step procedure (see He (1997)). When the

number of model variables is not too large, δml+1 is computed by

(C−1
M +GT

l C
−1
D Gl)δm

l+1 = −C−1
M (ml −muc)−GT

l C
−1
D (g(ml)− duc). (2.7)
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The term (C−1
M + GT

l C
−1
D Gl) is called the “Hessian” matrix for the Gauss-Newton

algorithm.

The Levenberg-Marquardt algorithm can be thought of as modification of

the Gauss-Newton algorithm with an extra weighting term in the Hessian:

Hl = H(ml) = (1 + λ)C−1
M +GT

l C
−1
D Gl, (2.8)

where λ is a positive number. In Bi (1999), λ is initially a large value, and is divided

by a factor after each successful iteration in which the value of the objective function

is reduced. It is multiplied by the factor if the new parameters lead to an increased

value of the objective function. A big value for λ indicates a small step along the

negative gradient direction. The model changes smoother from the beginning of the

algorithm when the λ value is big than in the later iterations. For ill-conditioned

matrix problems, the Levenberg-Marquardt algorithm is more robust and converges

faster than the standard Gauss-Newton method with restricted-step. In this work,

the MAP estimate is obtained by running the Levenberg-Marquardt method until

the objective function is reduced below a certain criterion. The final reservoir model

from the iterations is noted as m∞, i.e. mmap = m∞.

2.3.2 Posteriori Covariance

After calculating mmap, the a posteriori covariance matrix CM ′ of the model

can be estimated as:

CM ′ = (GT
∞C

−1
D G∞ + C−1

M )−1, (2.9)

where G∞ is the sensitivity coefficient matrix corresponding to the MAP solution,

mmap.
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2.3.3 Posteriori Distribution

Assuming that the relation between the observed data and the model pa-

rameters can be linearized around the MAP solution, i.e.

g(m) ≈ g(m∞) +G∞(m−m∞), (2.10)

then an approximation to the pdf can be written as:

π(m) ∝ exp
[
−1
2
(g(m)− dobs)

TC−1
D (g(m)− dobs)

]

× exp
[
−1
2
(m−mprior)

TC−1
M (m−mprior)

]

≈ exp
[
−1
2

(
g(m∞) +G∞(m−m∞)− dobs

)T

C−1
D

(
g(m∞) +G∞(m−m∞)− dobs

)

− 1

2
(m−mprior)

TC−1
M (m−mprior)

]

∝ exp
[
−1
2
(m−m∞)T[C−1

M +GT
∞C

−1
D G∞](m−m∞)

]
.

(2.11)

2.4 Computation of Sensitivity Coefficients

The computation of the gradient and the approximate Hessian in the Levenberg-

Marquardt algorithm requires the sensitivity coefficients matrix G. G represents the

Fréchet derivative of production data with respect to model parameters. As we

know, the relation between data dobs and model parameters m can be expressed as

a function,

dobs = g(m) + ε, (2.12)

where ε is measurement error. When the model is changed by a small amount, the

resulting change in the data is

g(m+ δm)− g(m) = (G, δm) +R(δm), (2.13)

where R(δm) is the remainder and equals to zero when g(m) is a linear function. If

lim
‖δm‖→0

R(δm)

‖δm‖ = 0, (2.14)
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then g(m) is said to be Fréchet differentiable.

A sensitivity coefficient Gi,j indicates how much the datum di is affected by

changing a model parameter mj .

Gi,j =
∂gi(m)

∂mj
, for 1 ≤ i ≤ N and 1 ≤ j ≤M, (2.15)

where N is the number of data and M is the number of model parameters. The

dimension of G is N ×M . From Eq. 2.15, it is clear that the Fréchet derivative of

“data” can be obtained simply by observing the resulting change of data from model

perturbation.

This method of calculating sensitivity coefficient matrix is called the finite

difference method or direct method. Given the small size of the test problem in this

work, I used the finite difference method to calculate sensitivity coefficients.



CHAPTER III

ESTABLISHMENT OF A STANDARD DISTRIBUTION FOR COMPARISON

In order to establish the quality of the distributions of realizations from the

approximate methods, it is necessary to establish a standard distribution from a

method that samples correctly. Rejection sampling and Markov chain Monte Carlo

both satisfy this criterion.

3.1 Acceptance-Rejection Sampling

The main idea in acceptance-rejection sampling is to propose samples from

some relatively simple distribution, then apply a test to decide whether or not to

accept it. In this respect it is similar to the McMC method. One important differ-

ence, however, is that in rejection sampling, the test does not depend on the most

recent sample, so all accepted samples are truly independent.

To generate samples (realizations) from the target probability density π(m) =

f(m)/K where f(m) is the un-normalized density (i.e.
∫
f(m) dm �= 1) and K is

the unknown normalizing constant, let h(m) be a probability density that can be

easily sampled (e.g. multivariate Gaussian) and suppose that there is some constant

c such that f(m) ≤ c h(m) for all m.
Random samples from π(m) can be obtained in the following procedure

(Ripley, 1987):

1. Generate a candidate sample m∗ from pdf h(·).

2. Generate a decision variable u from the uniform distribution on (0, 1).

17
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3. If u ≤ f(m∗)/(c h(m∗)) then accept the proposal and return m = m∗, else

reject m = m∗.

4. Return to step 1.

The key to the efficiency of the rejection algorithm is selecting a proposal

density that is a close approximation to the target density, in which case the accep-

tance rate is close to one. Unfortunately, it can be very difficult to find a simple

distribution for the proposal of trial realizations that leads to an efficient algorithm,

especially when the number of model variables is large. In this study, I tried propos-

ing from several Gaussian pdfs centered on the maximum a posteriori model. The

proposal pdfs were of the form

h(m) = B exp
[
−1
2
(m−mmap)

TA−1(m−mmap)
]

(3.1)

and A was either chosen to be proportional to the prior covariance or to be the model

covariance based on the linearization of the simulator relationship at the maximum

a posteriori model, see Eq. 2.10.

3.2 Markov chain Monte Carlo

Markov chain Monte Carlo methods also are capable of generating sequences

of realizations that are samples from a target probability density. One advantage

of the McMC methods is that it is unnecessary to know the normalization constant

to have a valid sampling algorithm. The algorithm that I used to obtain random

samples from f(m) is quite simple:

1. Initialize the chain with m1 and i = 1.

2. Generate a candidate sample m∗ from pdf q(·|mi).

3. Generate a decision variable u from U(0, 1).
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4. If u ≤ α(m∗, mi) then set mi+1 = m
∗, else set mi+1 = mi.

5. i→ i+ 1, return to step 2.

Numerous possibilities are available for the acceptance criterion. I chose to use the

Metropolis-Hastings criterion,

α(x, y) = min
[
1,
f(x)q(y|x)
f(y)q(x|y)

]
. (3.2)

Aside from some fairly general requirements on q(·|·) that are easy to satisfy (Chib

and Greenberg, 1995), the primary concern with the choice of the proposal distri-

bution q(·|·) is that the chain mix rapidly and have a relatively high acceptance

rate (Gilks et al., 1996a). Previous experiments with the use of McMC for reservoir

characterization from pressure data (Oliver et al., 1997) led to the conclusion that

for highly nonlinear problems it is more effective to make local perturbations to the

model parameters than to perturb all parameters at once. In that study, it was also

concluded that perturbations that were based on linearization of the data relation-

ship improved the efficiency substantially. The characterization problem that I treat

in this paper is more highly nonlinear than that treated by Oliver et al. (1997), so

not all of the conclusions of that paper were valid for our current problem.

In this paper, all proposed transitions are of the form

m∗ = mi + LZ
∗ (3.3)

where L is a “square root” of the prior model covariance matrix (that is LLT = CM)

and mi is the current state of the model. At each iteration, I set all elements of Z
∗ to

zero, then randomly selected one element to perturb. The value of the perturbation

is chosen from the normal distribution with mean 0 and variance 1.

There is some debate in the literature concerning the relative desirability of

running one long Markov chain versus several shorter sequences. Gelman and Rubin

(1992) argue that generating multiple independent Markov chains reduces the risk of
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basing conclusions on a slowly mixing chain whose variability is less than the actual

variability. Geyer (1992) argues that all inference should instead be based on one

long run of the Markov chain, that doing so reduces the dependence on the starting

value.

Although McMC sampling results will be shown in Chapter 6, I present

preliminary results here, as they impacted choices in the implementation of the

McMC algorithm. My first analyses were based on multiple “short” chains, each of

which contained one million iterations. Fig. 3.1 shows every 1000th realization of

Sm = 0.5(m − µ)TC−1
M (m − µ) from the total sequence. The 20 short chains have

been placed in sequence. It is disconcerting to observe large differences in mean

values between the individual chains. In particular, note that the mean for the third

chain is approximately 17, while the mean for the twentieth chain is approximately

27. Clearly, these chains of one million realizations are too short for the distributions

to be independent of the starting values.

It is often difficult or impossible to tell by looking at the sequence of real-

izations from the Markov chain whether or not the chain is mixing well. Fig. 3.2

shows two sequences of functionals of the model realizations from the same Markov

chain of one million realizations. Examination of the sequence of values of effective

permeability seems to indicate that the sequence is mixing rapidly, i.e. that the re-

alizations that are separated by 1000 iterations are independent. The sequence of

values of S(m), on the other hand, shows a correlation range that is at least 200

thousand in length.

Unfortunately, when larger chains were run, it was observed that the mix-

ing is much slower even than indicated by Fig. 3.2. The sequence of 320 million

realizations shown in Fig. 3.3 shows some correlation of values of Sm over distances

as large as 100 million iterations.

Several alternative proposal mechanisms were tried in order to increase the

efficiency of sampling, but none were more successful than the local perturbations
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Figure 3.1: Every 1000th model from the first “short chain” of 106 models was used

to generate f1 and Sm (distance from the prior). The chain of values of Sm shows

quite long correlation lengths although this might not be guessed from the chain of

values of f1. Neither, however, seem to show evidence of a transition period at the

beginning of the chain.
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(b) Squared distance from the prior model.

Figure 3.2: The realizations of keff in (a) and of S(m) in (b) are from the same chain.

The mixing seems to be rapid in (a) but (b) shows a long correlation range.
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Figure 3.3: A very long sequence of realizations of S(m) showing slow mixing and

an apparent correlation length on the order of 100 million iterations.

from the prior covariance, so all McMC results in this paper used local perturbations.



CHAPTER IV

APPROXIMATE METHODS OF SAMPLING

Here I describe the sampling algorithms for which the distribution of re-

alizations generated are known to be only approximately correct when the data

relationship is nonlinear.

4.1 Linearization about the MAP.

For variables that are multivariate Gaussian, it is possible to generate re-

alizations from the square root of the covariance (Rao, 1973). This method has

been applied to the problem of generating realizations of Gaussian random fields in

petroleum engineering by Davis (1987) and Alabert (1987). Even when the data

relationship is not linear, it is possible to use the square-root method for generating

conditional realizations by computing an approximation to the a posteriori covari-

ance based on linearization of the data relationship at the maximum a posteriori

point. Once the most probable model mmap is computed, the a posteriori covariance

matrix CM′ of the model can be estimated as:

CM′ =
(
GT

∞C
−1
D G∞ + C−1

M

)−1
(4.1)

where G∞ is the sensitivity coefficient matrix corresponding to the MAP solution.

From a square root of CM′ = LLT, it is possible to generate models that approxi-

mately honor the production data as

mi = m∞ + LZi. (4.2)

Zi is a vector of independent normal random deviates Zi → N [0, 1] and L is the

square root of CM′ obtained with the Cholesky method.

23
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The following are the steps of calculation in LMAP code.

1. Read geostatistical parameters and other data.

2. Read the observed pressure data dobs from the given file d observ.

3. Read the MAP model, mmap, from the file map model. This is the best esti-

mate of φ and lnk in every grid block.

4. Generate the vector mprior by:

m prior[1 : n grid] = φ̄ (4.3)

m prior[n grid : 2× n grid] = ln k (4.4)

5. Compute the sensitivity matrix of pressure to model parameters G∞ by calling

the subroutine senscoef.

6. Generate the transpose of G∞ as GT
∞.

7. Generate the prior model covariance matrix, CM , by calling the subroutine

covmat, which need input the value of δx, variance of φ, variance of ln k,

correlation coefficient for porosity and ln k, and the range of the variogram.

8. Compute the inverse of the posteriori covariance model by

C−1
M ′ = (C−1

M +GT
∞G∞/σ2

D) (4.5)

(We might see this as C−1
M +GT

∞C
−1
D G∞.) σ2

D in this equation is the variance

of the observed data.

9. Then compute CM ′ = (C−1
M ′)−1, the corresponding command is CALL matin-

verse .
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10. Compute Cholesky decomposition of CM ′ = LpL
T
p . Here we get Lp as output.

11. By now, both mmap and Lp are known, the rest work is to generate zi and

produce a series of realizations (samples) in a loop. In my fortran code, i = 1

to 5000.

• Generate random normal deviates to construct the vector zi.

• Compute mi = mmap + Lp · zi .

• Compute the functionals of the sample generated (f1, f2, . . . , f5, Sm1i, Sm2i,

and Sd1i). And write out the results.

This algorithm requires not much computer resources once L is computed.

The advantage of this method over the following two approximate sampling methods

is that only one minimization (i.e. one history match) is required.

4.2 Randomized Maximum Likelihood.

Kitanidis (1995) and Oliver, He, and Reynolds (1996) proposed that un-

conditional realizations from a Gaussian random field could be used to generate

realizations conditional to nonlinear data by a process of minimization. If the prior

covariance of the model parameters and the variance of the observed data are known,

samples can be generated in the following way:

1. Generate an unconditional realization of the model parameters,mu ← N [mpr, CM].

2. Generate a realization of the data, du ← N [dobs, CD].

3. Compute the set of model variables, m, that minimizes the function:

S(m) =
1

2
(m−mu)

TC−1
M (m−mu) +

1

2
(g(m)− du)

TC−1
D (g(m)− du) (4.6)
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The minimization step is similar to the computation of the maximum a

posteriori estimate, with the difference that the regularization is with respect to

unconditional realizations of the model and the data instead of the prior model and

the observed data. This method requires much more computation than the LMAP

method as a minimization problem must be solved for each realization.

4.3 Pilot Point Methods.

The pilot point method can be considered an approximation to the RML

method, in which perturbations to the model parameters are made only at selected

locations (the pilot points). The system of equations to be solved in a Newton

iteration step for minimization is typically smaller than in the randomized maximum

likelihood method because the number of parameters is reduced. In the pilot point

method, the columns of CM, associated with pilot point locations, are used as basis

vectors for computation of corrections to the model parameters. One widely used

implementation of the algorithm is as follows:

1. Generate an unconditional realization of the model parameters,mu ← N [mpr, CM].

2. Generate an unconditional realization of the data, du ← N [dobs, CD].

3. Minimize the function:

JD(δm) =
(
du − g(mu + δm)

)T
C−1

D

(
du − g(mu + δm)

)
(4.7)

where δm =
∑
CM,iαi and the summation is only over the values of i corre-

sponding to gridblocks containing pilot points.

Pilot points, and the related master points, have been used in history match-

ing by de Marsily et al. (1984), Bréfort and Pelcé (1990), and LaVenue and Pickens

(1992). The application to conditional simulation was made by RamaRao et al.
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(1995) and Gómez-Hernández et al. (1997) among others. In practice, it is usually

unclear how many pilot points should be used to represent the correction in the

property fields. For our study, the PP algorithm was evaluated with six and nine

pilot point locations (33% and 45% of the model parameters) distributed nearly

uniformly over the study region. As Oliver et al. (2001) point out, the use of Eq. 4.7

seems to be based on a mistaken belief that the regularization term (model mis-

match squared) is not necessary when using the pilot point method. In a Bayesian

context, the correct alternative is to minimize

J(δm) =
(
du − g(mu + δm)

)T
C−1

D

(
du − g(mu + δm)

)
+ (δm)TC−1

M δm. (4.8)

I evaluated the distribution of conditional realizations for both formulations of the

pilot point method.

4.4 Gradual Deformation Method.

The principal idea of the gradual deformation method is that new realiza-

tions of a random field Z with mean µ and covariance CZ can be written as the

linear combination of a set of independent random Gaussian fields with expected

mean µ and covariance CZ , i.e.

Z(K) =

n∑
i=1

ki(Zi − µ) + µ (4.9)

If the coefficients ki satisfy:

n∑
i=1

k2
i = 1 (4.10)

then it is easy to show that the expected mean and covariance of the random vector

Z is also µ and CZ . In this study, each of the Zi is a vector of independent deviates

from the same Gaussian distribution with expectation 0 and variance 1.
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I tested the most basic form of the gradual deformation algorithm in which

pairs of vectors are combined:

Z(ρ) = Z1 cos(πρ) + Z2 sin(πρ) (4.11)

where ρ is the deformation parameter with the range from 0 to 2. The procedure

for generating a realization conditional to dobs is as follows:

1. Generate an initial vector Z1 of independent normal deviates.

2. Generate a second vector of independent normal deviates Z2.

3. Search the optimum ρ value which gives a reservoir realization minimizing the

objective function Sd of Equation (4.14).

Reservoir model realizations are calculated by:

m(ρ) = mprior + LZ(ρ) (4.12)

where

LLT = CM . (4.13)

Note that the objective function to be minimized contains squared data mis-

match only:

Sd(ρ) =
1

2
[g(m(ρ))− dobs]

TC−1
D [g(m(ρ))− dobs]. (4.14)

4. If the minimum value of the objective function is sufficiently small, then stop

the procedure. Otherwise, replace Z1 with the optimal Z(ρ) and return to step

2.

Because the gradual deformation algorithm involves minimization, the con-

vergence or stopping criterion is important. Hu et al. (1999) refer to a convergence

criterion, Sd ≤ nd, where nd is the number of data used for matching. In this study,

we were unable to attain that value in a reasonable number of iterations (10,000),

so I used Sd = 1.6nd as a stopping criterion in step 3.
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Local Perturbation

When the historic production data are scattered spatially in the reservoir,

adding an independent vector Z is likely to improve the fit in some gridblocks while

deteriorating the fit in other locations. This led Hu et al. (1999) to develop a

procedure for modifying the values of Z only within a limited region for which the

data mismatch was large. Because it is not clear how to choose a limited region

for interference tests, I examined the extreme case in which the region of change

was limited to a single gridblock. The location of the gridblock to be modified was

randomly chosen in each iteration. In this case, the Z vector in Equation (4.12) is

calculated as:

zi(ρ) =



z1,k for i �= k,

cos(πρ)z1,i + sin(πρ)z2,i for i = k.

(4.15)

where k is a randomly selected perturbation location. z2,i is a realization of a random

variable sampled from the Gaussian distribution with mean 0 and variance 1. z1,i is

the ith element of the vector Z1.



CHAPTER V

EXPERIMENTAL DESIGN

Because my objective is to compare the distribution of the realizations of

reservoir predictions generated by approximate sampling methods with the distri-

bution generated by methods that are known to assess uncertainty correctly, it was

important to choose the test problem carefully — it is known that some of the

approximate methods sample correctly when the relationships between the condi-

tioning data and the model parameters are linear, so I designed the test problem to

be highly nonlinear. I also needed to be able to generate large numbers of realizations

so that the resulting distributions do not depend significantly on the random seed.

By choosing a single-phase transient flow problem with highly accurate pressure

measurements, fairly large uncertainty in the property field, and a short correlation

length, I was able to obtain a problem with multiple local maxima in the likelihood

function, yet for which a flow simulation required only 0.02 seconds.

My test problem is a one-dimensional heterogeneous reservoir whose perme-

ability and porosity fields are shown in Fig. 5.1. The reservoir is discretized into 20

gridblocks, each of which is 50 feet in length. Both the log-permeability (ln k) and

porosity fields were assumed to be multivariate Gaussian with exponential covari-

ance and a range of 175 ft. The prior means for porosity and log-permeability are

0.25 and 4.5, respectively. The standard deviation of the porosity field is 0.05 and

the standard deviation of the log-permeability field is 1.0. The correlation coefficient

between porosity and log-permeability is 0.5. The flow is single phase with an oil

viscosity of 2 cp and a total compressibility of 4× 10−6 psi−1. The initial reservoir

pressure is 3500 psi.

30
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Figure 5.1: The true synthetic permeability and porosity fields used to generate

pressure data to test the sampling algorithms. Well locations are shown by solid

bars along the base of the figure.

The well located in gridblock 13 produces at a constant rate. Observation

wells are located in gridblocks 7 and 18. Gaussian random noise with a standard

deviation of 0.5 psi has been added to the data generated from the true reservoir

model. The observed pressure data for all three wells are shown in (Fig. 5.2). Al-

though there are 10 measurements of pressure drop at each well, the first three

measurements at the observation wells are below the noise level. Porosity measure-

ments at well locations were not included in this study as their introduction would

have made the posteriori (conditional) pdf for model variables more nearly Gaussian.

The model that maximizes the probability density for model parameters

conditional to pressure data, f(m), is shown in Fig. 5.3. It is clearly much smoother

than the true model but matches the observed pressure data better than the true

model.
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Figure 5.2: The observed pressure drop data at all wells. Random noise added to

the true pressure drop causes the nonphysical appearance at low values of ∆p.
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Figure 5.3: The maximum a posteriori estimates of permeability and porosity.



CHAPTER VI

RESULTS

I calculated eight properties of each conditional reservoir realization. His-

togram plots were used to show the distributions of those properties from different

methods. By comparing the distributions of reservoir realizations from approximate

methods with those from the standard methods, we are able to evaluate the valid-

ity of each approximate method. The average porosity and effective permeability

(keff = 20(
∑20

i=1 k
−1
i )−1) for each realization were then computed as prediction of

the uncertainty in these quantities would be important for assessing oil-in-place and

recovery. I computed the water front travel time in the reservoir, i.e. the break-

through time because it is an important parameter to predict future production. I

also computed the maximum permeability and the minimum permeability for each

realization because it had been argued previously (Oliver et al., 2001) that the pilot

point method tends to produce extreme values in the property fields, and this would

provide a check on the validity of that conjecture. Finally, I computed the squared

data (pressure) mismatch, the squared model mismatch about the prior model and

the squared model mismatch about the MAP estimate. The model mismatch about

the prior model provides an indication of the probability that the realization could

be a sample from the prior distribution (a Gaussian random field with known co-

variance). The model mismatch about the MAP estimate indicates the probability

that the realization could be a sample from the local Gaussian approximation to the

a posteriori distribution. The data mismatch provides a measure of the likelihood of

the model given the data. If the realizations do not approximately honor the data,

they are unlikely to be valid samples from the conditional distribution and little

33
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confidence could be placed in predictions of future performance.

For simplicity, the properties are denoted as follows:

• f1 —— Effective permeability ( 1
20

∑
( 1

Ki
))−1

• f2 —— Average porosity

• f3 —— Travel time

• f4 —— Maximum permeability

• f5 —— Minimum permeability

• Sd1 —– 1
2
[g(m)− dobs]

TC−1
D [g(m)− dobs]

• Sm1 —– 1
2
(m−mprior)

TC−1
M (m−mprior)

• Sm2 —– 1
2
(m−mMAP)

TC−1
M ′(m−mMAP)

6.1 Rejection

Proposals were made from several Gaussian pdfs centered on the maximum

a posteriori model. The form of proposal pdfs is repeated here:

h(m) = B exp
[
−1
2
(m−mmap)

TA−1(m−mmap)
]
. (6.1)

A was either chosen to be proportional to the prior covariance or to be the model

covariance based on the linearization of the simulator relationship at the maximum

a posteriori model. Despite considerable experimentation, I was unable to obtain an

acceptable number of valid samples using rejection.

In the first and the second case, I chose A = 1.2CM and A = 0.8CM re-

spectively, and selected c such that the ratio f(mmap)/(c h(mmap)) = 1. In the first
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case, only one realization was accepted among 0.4 million proposals. Three out of

0.4 million proposals were accepted in the second case.

In the third case, I chose A = 0.01CM and selected c such that the ratio

f(mmap)/(c h(mmap)) = 1. Preliminary experimentation had shown that if we did

not reduce the covariance significantly, we obtained very few acceptances. Even

with A = 0.01CM we accepted only 152 of the first 5 million proposals. In each case,

however, the requirement that f(m) ≤ c h(m) was violated so the sampling was not

from the correct distribution.

In the final case, I chose A = CM′ and selected c such that the ratio

f(mmap)/(c h(mmap)) = 1. With this proposal function, we accepted approximately

400 of the first 240 million proposals. In approximately half of the cases, the require-

ment that f(m) ≤ c h(m) was violated. Fig. 6.1 shows the property distributions

of all the 419 realizations accepted in this case. Although we could create a valid

sampling algorithm by increasing the value of c, the efficiency was already so low

that this approach seemed unlikely to succeed in generating a sufficient number of

valid samples.

6.2 McMC-algorithm

Since there has been debate about the benefits of several short chains versus

one long chain (Gelman and Rubin, 1992; Geyer, 1992), investigations were made in

both cases.

Case 1: I elected to run 20 independent chains to reduce the possibility of

remaining stuck in one region. Three different chain lengths, 1 million, 2 million and

4 million iterations in each chain, have been applied to investigate the chain-length

effect in McMC sampling. The initial element of each chain was a model realization

generated using the method of randomized maximum likelihood, so I did not expect

a transition period at the beginning of the chain. I confirmed the lack of a transition
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Figure 6.1: Histograms for properties of 419 realizations from rejection method with

A = CM′ and f(mmap)/(c h(mmap)) = 1
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period by examining plots of the eight McMC sequences of the 40 million realizations

Markov chain (see Appendix A, Fig. A.1– A.4). Eight properties of each realization

from the three chains with different lengths were calculated, and the distributions of

these properties from each sequence are shown in Fig. 6.2, 6.3 and 6.4. The number

of realizations included is labeled in each histogram, for example, 20E6 means twenty

million realizations. All of the three figures look similar, though differences do exist

in values of local maxima and the ranges of distributions.

Case 2: As a contrast with the first case, we ran single long chains with

lengths of 40 million and 80 million iterations each. For the 40 million iterations

single long chain, the first and second realizations of RML method were used individ-

ually as the initial element, as shown in Figs. 6.5 and 6.6. The label “2nd” on each

histogram in Fig. 6.6 indicates that the initial element is the second RML realization.

The difference between the two figures confirms our suspicion that the sequence of 40

million realizations is not long enough to have the distributions independent of the

initial state. Fig. 6.7 shows the properties of the single 80-million-iteration McMC

sequence. The histograms for functionals 4, 5 and Sm2 have distinct difference with

those in Fig. 6.5 and 6.6. Finally, we ran a very long chain consisting of 320 million

iterations. The histograms of this long chain are shown in Fig. 6.8. To make better

comparison, histograms of the maximum permeability, the minimum permeability,

the model mismatch about the prior model and the model mismatch about the MAP

estimate from each of the six Markov chains are put together for comparison (see

Appendix B).

To make a clear comparison on the effect of chain length and starting model

to the resulting distributions, histograms of the values of the properties from each

case are shown in Fig B.1, B.2, B.3 and B.4. Where 20E6, 40E6 and 80E6 stand

for the number of the total iterations in 20 chains, and 4E7 means one chain with

40 million iterations. “4E7 2nd” means start from the second realization of RML

method.
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Because of the apparent dependence on the starting model, even for fairly

long chains (compare Fig. 6.5 and 6.6), I decided to run another long chain starting

from the second RML realization. The histograms for the second 320 million real-

izations long chain are shown in Fig. 6.9. Although most of the histograms from the

two very long chains are similar, obvious difference still exist in the distribution of

maximum permeability and the model mismatch about the MAP estimate.

6.3 Linearization about the MAP

The first 10 realizations of the permeability field and the porosity field

conditioned to pressure data are plotted together with the true permeability field

and the true porosity field, as shown in Fig. 6.10. The spread of LMAP realizations

of permeability at the producer seems reasonable. Although the LMAP realizations

also seem to reproduce the true porosity at the producer location, the scatter is

large at two observation well locations as the data is not sensitive to observation

well porosity. Analysis of the LMAP realizations reveals that LMAP realizations do

not honor production data. Histograms for the properties of 5000 LMAP realizations

sampled from the test problem are shown in Appendix C Fig. C.1. Though other

distributions of properties seem similar with McMC distributions, the histogram of

squared data mismatch is severely skewed and most of the squared data mismatch

values are over 10,000.

6.4 Randomized Maximum Likelihood

As the randomized maximum likelihood method seeks to minimize both

the data mismatch and the distance from the unconditional realization, the realiza-

tions almost surely honor the data and appear to be from the correct distribution.

Fig. 6.11 shows 10 realizations of the permeability field generated using the ran-

domized maximum likelihood method together with the true permeability model.
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Figure 6.2: Histograms for properties of 20 one-million-iteration McMC sequences.
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Figure 6.3: Histograms for properties of 20 two-million-iteration McMC sequences.
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Figure 6.4: Histograms for properties of 20 four-million-iteration McMC sequences.
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Figure 6.5: Histograms for properties of the single forty-million-iteration McMC

sequences. The first realization of RML method was used individually as the initial

element.
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Figure 6.6: Histograms for properties of the single forty-million-iteration McMC

sequences. The second realization of RML method was used individually as the

initial element.



44

20 30 40 50 60 70 80 90 100 110 120 130
0

500

1000

1500

2000

McMC80MM

Fu
nc

tio
na

l #
1

0.20 0.22 0.24 0.26 0.28 0.30
0

500

1000

1500

2000

2500

McMC80MM

Fu
nc

tio
na

l #
2

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0

500

1000

1500

2000

2500

3000

McMC80MM

Fu
nc

tio
na

l #
3

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

500

1000

1500

2000

2500

McMC80MM

Fu
nc

tio
na

l #
4

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

McMC80MM

Fu
nc

tio
na

l #
5

10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

McMC80MM

Fu
nc

tio
na

l S
m

1

100000 200000 300000 400000 500000
0

250

500

750

1000

1250

1500

McMC80MM

Fu
nc

tio
na

l S
m

2

15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

3500

4000

McMC80MM

Fu
nc

tio
na

l S
d1

Figure 6.7: Histograms for properties of the single eighty-million-iteration McMC

sequences.
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Figure 6.8: Histograms for functionals in McMC with 320 million iterations in one

chain. The first realization of RML method was used individually as the initial

element.
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Figure 6.9: Histograms for functionals in McMC with 320 million iterations in one

chain. The second realization of RML method was used individually as the initial

element.



47

Figure 6.10: The first 10 realizations of the permeability field and porosity field

conditioned to pressure data and the true permeability field and porosity field (heavy

black line).

All of the RML models have similar shape with the “true” model, and seem to be
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distributed appropriately. Histograms for the properties of 5000 RML realizations

sampled from the test problem are shown in Appendix C Fig. C.2. They are very

similar to histograms from McMC methods.
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Figure 6.11: The first 10 realizations of the permeability field conditioned to pressure

data and the true permeability field (heavy black line).

6.5 Pilot Point methods

There are many varieties of pilot point methods in application. The number

of pilot points used is adjustable, so I evaluated the performance with pilot points

at 6 locations and at 9 locations. When six locations are used, the pilot points are

located at gridblocks 4, 7, 10, 13, 15, and 18. When nine locations are used, the pilot

points are located at gridblocks 1, 4, 7, 10, 11, 13, 15, 18, and 20. Because there are

two model variables per gridblock, we actually use 12 and 18 pilot points: two in

gridblock 4, two in gridblock 7, etc. For each pilot point number, we evaluated the

distribution of realizations using the whole objective function and the distribution of

realizations using only squared data mismatch in the objective function. Histograms

of all the eight properties of the 5000 realizations generated from the test problem
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by each of the four pilot point methods are shown in Fig C.4, Fig C.3, Fig C.6 and

Fig C.5.

Comparing the four sets of histograms, distributions of realizations using 6

pilot points generally have a wider span than those using 9 pilot points, especially in

the case based on the objective function with only squared data mismatch and using

6 pilot points, the histograms are obviously flatter than those from other cases. But

the results from the pilot point method with 9 pilot points and incomplete objective

function were surprisingly similar to those obtained when the prior pdf was used.

The histograms in Fig. C.5 were not substantially different from the his-

tograms in Fig. C.6 although it seems apparent that the maximum likelihood method

should give rise to an ill-posed problem. I believe that the explanation for the sim-

ilarity is that we used Levenberg-Marquardt to find the minimum and, even at the

final iteration, the regularization term was sufficiently large to prevent the problem

from being ill-posed or even much different from the full problem. In fact, the value

of λ in Eq. 6.2 at the final iteration was never smaller than 0.4 and in most cases

it was 1.5 or greater. It is likely that most papers that report results for maximum

likelihood methods actually use some type of regularization in the minimization so

that the result is often similar to that obtained by minimizing the full objective

function.

[AT (λC−1
M +GTC−1

D G)A]α = −ATGTC−1
D [g(muc)− duc] (6.2)

6.6 Gradual Deformation

In this study, we ran the gradual deformation algorithm until the objec-

tive function (see Eq. 4.14) was reduced to 50 or less. If the objective function

was not reduced to 50 by the 10,000th iteration, it was discarded. For comparison,

over 99% of the McMC realizations have squared data mismatch values less than
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50, so 50 is a relatively loose tolerance on the data mismatch. In each iteration,

a line search is required to find the optimum ρ value, so 10,000 is a sensible max-

imum number of iterations. For the global perturbation method, 86 realizations

were generated out of 1000 gradual deformation sequences. The local perturbation

method performed slightly better with 11% of the sequences reaching the conver-

gence criterion before the 10,000th iteration. Histograms for the properties of the

86 realizations sampled from the test problem by the gradual deformation method

with global perturbation are shown in Fig. C.7. Instead of showing functional Sm2,

i.e. 1
2
(m−mMAP)

TC−1
M ′(m−mMAP), I show the number of iterations taken by each

accepted realizations before reaching the acceptance criterion. The histogram of

iteration numbers indicates that most of the realizations generated from the gradual

deformation method with global perturbation reached the acceptance criterion after

more than 6000 iterations. The histogram of the squared data mismatch Sd1 is like

a δ function in that 90% of the values fall between 49 and 50.

The gradual deformation method we applied is very inefficient. Figures 6.12

and 6.13 show the log-permeability value in the 3rd, 7th and 15th gridblock after

every 100th perturbation for global and local perturbation respectively. From these

two figures, the squared data mismatch is seen to decrease even slower by local

perturbation than by global perturbation. Part of the reason is that some of the

local perturbations are applied in regions for which a change in property values has

no effect on the data mismatch.

6.7 Comparison

The distributions of realizations are summarized in the form of box plots.

A key for interpreting the box plots is shown in Fig. 6.14. The method of generation

of realizations is identified by an acronym along the bottom axis beneath each box.

The meaning of the acronyms should be obvious with the possible exception that the
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Figure 6.12: The Z values at the 3rd, the 7th and the 15th gridblocks change with

the number of iterations using gradual deformation with global perturbation.

several pilot point methods (PP) are identified by number of pilot point locations (6

or 9) and by the objective function that was minimized (D if the objective function

minimized the data mismatch only). The two very long Markov chains starting from

the first and the second RML realizations are combined to create a better estimate

of the true distribution, and the resulting distributions of the properties are labeled

as “McMC”. The true value of each property and the distribution of realizations

unconditional to production data are shown for comparison.

Fig. 6.15 shows comparisons of the distributions of summary reservoir prop-

erties from each of the methods. All of the approximate methods in this case seem to

generate reservoir realizations whose effective permeability distributions have been

shifted to lower values than the distribution obtained from McMC (top of Fig. 6.15).

The differences among the methods do not seem to be large, except that the pilot

point methods that used 6 locations tend to predict greater uncertainty in effective
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Figure 6.13: The Z values at the 3rd, the 7th and the 15th gridblocks change with

the number of iterations using gradual deformation with local perturbation.

Max

P99

P90

P75
Mean
P50

P25

P10

P1

Min

Figure 6.14: Key for interpretation of box plots. P values are percentiles.

permeability than the other methods. All sampling methods also gave similar results

for the distribution of average reservoir porosity. Interestingly, the average reservoir
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porosity of the true reservoir was 25.8%, while the median values from the ensembles

of realizations were all between 24.5 and 25.0% (middle of Fig. 6.15). One might be

tempted to conclude that any method would be acceptable for assessing uncertainty

in average porosity, but the good agreement between methods seen here may be

due to the fact that the conditional mean is nearly the same as the unconditional

mean. Again, the pilot point methods with small numbers of pilot points tend to

substantially overestimate the uncertainty in average reservoir porosity.

The distributions of maximum reservoir permeability in the bottom plot of

Fig. 6.15 show considerably greater variability. Randomized maximum likelihood

and linearization about the MAP both give distributions of realizations that are

wider and slightly shifted, but otherwise similar, compared to McMC. The pilot

point methods, on the other hand, generate reservoir realizations for which very

large permeability values occur frequently. This tendency to produce realizations

with extreme values has been one of the primary objections to the use of pilot points

in reservoir characterization (Oliver, 1999).

Because the square of the mismatch between data computed from a reser-

voir model and the observed data is an indication of the likelihood of a model being

correct, it is extremely important that the squared data mismatch values be rela-

tively small. The upper plot in Fig. 6.16 shows that realizations generated by the

LMAP method have very large data mismatch values and are thus unlikely to be

realizations conditioned to the observed data. At the bottom of Fig. 6.16, the model

mismatch distributions appear similar to the distributions of maximum permeability,

reflecting the frequent occurrence of extreme values in the property fields generated

by the pilot point methods.
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Figure 6.15: Distributions of conditional realizations of effective permeability, aver-

age porosity, and maximum permeability from the approximate sampling algorithms

and from the two very long Markov chains starting from the first and the second

RML realizations. The unconditional distribution and the true values are shown for

comparison.



55

Figure 6.16: Distributions of conditional realizations of squared data mismatch and

squared model mismatch from the approximate sampling algorithms and from the

two very long Markov chains starting from the first and the second RML realizations.

Note that the unconditional realizations of the data mismatch are too large to appear

on this plot.



CHAPTER VII

DISCUSSION

It is difficult to rectify some of the results that we observed in this study

with published results by other authors. Barker et al. (2001) reported accepting 15

of 700 trial realizations from the prior distribution in the rejection algorithm for a

reservoir characterization problem with multiphase production data. In contrast, we

were unable to obtain any valid realizations using rejection sampling in our problem.

Although Barker et al. (2001) do not state the details of their McMC application,

they appear to have based their results on the final realizations from 10 chains

each of which was 1000 iterations in length. We were unable to obtain any useful

information from chains that were that short. The high acceptance rate of proposals

obtained from the prior distribution seems to imply that the conditional pdf for the

PUNQ-S3 problem is nearly Gaussian. If this is the case, it is difficult to explain

the large differences in distributions from the various methods, unless each method

was sampling from a different target distribution because of differences in the prior

models.

As only around nine realizations were generated from the huge PUNQ-S3

model by each method, and distributions were drawn based on the several realiza-

tions, the values of individual samples have great impact on the conclusions. To

quantify the effect of small sample size, we randomly drew 9 realizations each time

from the 320 million realizations long Markov chain for 1000 times, and saved the

maximum, the minimum and the median values among the nine realizations as P90,

P10 and P50 respectively. The distributions of P90, P10 and P50 values are shown

in the form of box plots in Fig. 7.1. The same experiment was repeated with the 5000

56
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RML realizations, and results are shown in Fig. 7.2. As the 80% confidence intervals

for P90, P10 and P50 are larger than the differences between sampling methods,

we can conclude that the differences between RML and McMC are insignificant if

uncertainty estimates are based on nine Monte Carlo samples. Unfortunately, be-

cause of the computational expense of generating the realizations, it seems unlikely

that the number of independent conditional realizations will be greater than nine or

ten for at least the next few years.

In this work, we chose a highly nonlinear problem to ensure that the condi-

tional pdf was not approximately Gaussian. Even with fairly careful investigation, it

is difficult to understand the shape of the pdf (or the objective function). Previous

studies have many local minima, especially for problems with discontinues material

properties (Zhang et al., 2000). In our synthetic problem, it has been shown by Oliver

(2000) that the objective function contains a long curved valley (see Fig. 7.3), as

well as multiple local minima. We tested several approximate methods under strictly

controlled conditions so that the same assumptions were used for all methods. We

also generated enough realizations that we are confident that our conclusions are not

affected by the size of our sample. Although the method that we call linearization

about the MAP is a valid sampling technique for Gaussian distributions (resulting

from linear data relationships), the LMAP realizations produced for this problem

did not even approximately honor the data. The failure of the LMAP method in this

example is almost certainly related to the poor fit of the pdf to a Gaussian (Fig. 7.4).

The pilot point methods performed somewhat better, but they tended to produce

realizations with property values much larger and smaller than expected. Increasing

the number of pilot points reduces the frequency of occurrence of extreme values.

The PP9 examples, for which 45% of the gridblocks are occupied by pilot points, still

show a clear excess of extreme values, however, so the potential for computational

savings with the pilot point method seem small.

The distributions of the squared model mismatch about the MAP estimate
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(function Sm2) for the two very long chains were quite different. It seems that

even 320 million realizations is not long enough to generate distributions that are

independent of the starting point. As Sm2 measures the distance from the MAP

model to the current realization, it seems to be a good indicator of the tendency for

the chain to remain trapped in a region of the model space. The second very long

chain (McMCVL2) shows indications of better mixing than the first chain. So even

though McMC is a valid method of generating realizations, and these chains were

extremely long, conclusions based on distribution from an individual chain could

be questionable. For this problem, it seems that the recommendation to assess

uncertainty with multiple short chains (Gelman and Rubin, 1992) is reasonable,

although multiple long chains would be better. For the properties I evaluated in

this research, the distributions were not very sensitive to the starting point (except

for Sm2 and, to a lesser extent, maximum permeability). So it is reasonable to

use the distributions from McMC as a basis for comparison with the approximate

methods.

The method of randomized maximum likelihood produced distributions of

reservoir properties that were generally quite similar to the presumably correct dis-

tributions from McMC (see Figs. 6.15 and 6.16). In Fig. 7.5, distributions of condi-

tional realizations of squared data mismatch from the five different Markov chains

are shown together with the distribution from RML. The RML method seems to

have overestimated uncertainty of the squared data mismatch. The reason lies in

the fact that realizations could be accepted when the changing in the value of the

objective function was less than 1%, which was a loose acceptance criterion. If

we tighten the criterion, the distribution of the squared data mismatch would cer-

tainly be narrowed down. Figs. 7.6 and 7.7 show distributions of the maximum

permeability and the squared model mismatch from the five different Markov chains

together with the distribution from RML. The first very long chain appears to be

stuck in a region of model space. RML realizations give distributions of maximum
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permeability and squared model mismatch about the MAP estimate very similar to

McMCVL2. The significance of the difference between the RML distribution and the

McMC distributions is difficult to evaluate, but it appears to be very small. If it was

necessary to limit the results of a study to a small number of realizations, the RML

method would probably provide better results than the McMC method for highly

nonlinear problems because of the correlation among McMC realizations. From this

study, it appears that, of the methods considered here, generating realizations using

the Randomized Maximum Likelihood method is the only practical alternative that

provides acceptable assessment of uncertainty.

The gradual deformation algorithm also does an excellent job of sampling

the squared model mismatch distribution (shown in Figure 6.16), even though this

algorithm does not have squared model mismatch term in the objective function.

The only distribution from gradual deformation that is poor is the squared data

mismatch. Instead of being distributed approximately as χ2, it is nearly a delta

function at Sd = 50. The fact that the mean of the squared data mismatch distri-

bution from the gradual deformation algorithm is larger than expected is simply a

result of our choice of stopping criterion. If we had chosen a smaller criterion, such

as that suggested by Hu et al. (1999), we would have had better agreement in the

mean with the correct distribution. Estimates of uncertainty in near future pressure

predictions would be in error, however, and it is unclear how that aspect could be

corrected.

Although our focus was not on efficiency, it was clear that the gradual

deformation method is inefficient compared, for example, to the method of random-

ized maximum likelihood. One reason for the inefficiency is that the new vector in

each iteration of the gradual deformation method provides a random direction for

minimization, instead of a downhill direction. At early iterations, a reduction in

the mismatch can be achieved in almost any direction, but at later iterations, the

likelihood that a reduction in the mismatch can be obtained in a randomly chosen
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direction is small. Figure 7.8 shows the data objective function as a function of ρ for

the first and the 1000th iterations. In the first iteration, a large reduction is obtained

by choosing ρ = 0.88. At the 1000th iteration, on the other hand, no reduction was

possible. From the squared data mismatch curve in Figures 6.12 and 6.13, it is clear

that the rate of improvement in the data match is slow at late iterations. It does

seem very likely that the rate of convergence would improve dramatically if multiple

independent realizations were used at each step in the deformation. Instead of a

line search for an optimal ρ, it would be necessary to perform a multidimensional

search for the coefficients of the expansion. It appears that the objective function

to be minimized for Gradual Deformation can be multimodal, even when the data

constraints are linear, so gradient-based search methods may not be effective for

gradual deformation.
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Figure 7.1: Distributions of P10, P50 and P90 of the 320 million McMC realizations.

The whole distribution is shown for comparison.
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Figure 7.2: Distributions of P10, P50 and P90 of the 5000 RML realizations. The

whole distribution is shown for comparison.
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Figure 7.3: The posteriori pdf for the single-phase flow problem appears to have a

plateau instead of a single peak. The minima shown as black dots are connected by

a valley.
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Figure 7.4: The posteriori pdf for the single-phase flow problem appears to have a

plateau instead of a single peak. The minima shown as black dots are connected by

a valley.
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Figure 7.5: Distributions of conditional realizations of squared data mismatch from

five different Markov chains. The distribution from randomized maximum likelihood

is shown for comparison. McMCVL1 is the very long chain (320 million iterations)

starting from the first RML realization; McMCVL2 is the 320 million iterations

long chain starting from the second RML realization; McMCMS means multiple

short chains (each of which is 2 million iterations in length); McMC80M means one

chain of 80 million iterations; McMC40M means one chain of 40 million iterations.
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Figure 7.6: Distributions of conditional realizations of the maximum permeability

from five different Markov chains. The distribution from randomized maximum

likelihood is shown for comparison. McMCVL1 is the very long chain (320 million

iterations) starting from the first RML realization; McMCVL2 is the 320 million

iterations long chain starting from the second RML realization; McMCMS means

multiple short chains (each of which is 2 million iterations in length); McMC80M

means one chain of 80 million iterations; McMC40M means one chain of 40 million

iterations.
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Figure 7.7: Distributions of conditional realizations of the squared model mismatch

about the MAP estimate from five different Markov chains. The distribution from

randomized maximum likelihood is shown for comparison. McMCVL1 is the very

long chain (320 million iterations) starting from the first RML realization; McM-

CVL2 is the 320 million iterations long chain starting from the second RML real-

ization; McMCMS means multiple short chains (each of which is 2 million iterations

in length); McMC80M means one chain of 80 million iterations; McMC40M means

one chain of 40 million iterations.
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Figure 7.8: The shape of squared data mismatch function at the 1st (left) and 1000th

(right) iteration by gradual deformation algorithm.



CHAPTER VIII

CONCLUSIONS

Two standard sampling methods and five approximate methods were evalu-

ated in this work. The rejection algorithm was too inefficient for this highly nonlinear

problem, as no relatively simple proposal distribution could be found with an ac-

ceptable acceptance rate. An extremely large number of realizations is required by

the Markov chain Monte Carlo algorithm to be confident with the validity of the re-

sulting distribution. Unfortunately, this is usually computationally inapplicable for

most test problems. LMAP realizations do not honor production data, so we could

not use it to predict future production. The method of gradual deformation provides

acceptable sample distributions for uncertainty estimation. Although efficiency was

not the primary focus of this investigation, it was clear that the method of grad-

ual deformation was less efficient for generating realizations than other approximate

methods. The method of randomized maximum likelihood produced distributions

of reservoir properties that were compatible to the distributions from McMC, which

is known to reflect the true distribution with sufficient number of realizations. From

this study, it appears that, of the methods considered here, generating realizations

using the randomized maximum likelihood method is the only practical alternative

that provides acceptable assessment of uncertainty.
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block True Model MAP Model

lnk, md φ lnk, md φ

1 3.54 0.247 4.673 0.256

2 3.17 0.150 4.862 0.263

3 4.14 0.207 5.137 0.272

4 5.76 0.175 5.424 0.281

5 4.69 0.234 5.609 0.287

6 4.14 0.280 5.588 0.281

7 4.47 0.277 5.558 0.274

8 5.10 0.265 5.466 0.264

9 4.19 0.265 4.850 0.238

10 2.88 0.172 3.719 0.198

11 2.30 0.143 3.428 0.183

12 5.10 0.235 4.643 0.192

13 5.24 0.252 6.063 0.254

14 3.99 0.255 5.680 0.226

15 4.78 0.248 4.419 0.215

16 3.48 0.198 4.534 0.223

17 3.66 0.222 4.212 0.219

18 4.85 0.229 3.928 0.225

19 2.99 0.284 4.146 0.251

20 5.02 0.310 4.542 0.266

Table 8.1: The true permeability and porosity fields.



71

Time (Days) True Pressure (psia) Observation Pressure (psia)

well location 7 13 18 7 13 18

0.0004 3500.0 3462.3 3500.0 3500.6 3462.5 3500.2

0.0012 3500.0 3404.9 3500.0 3500.3 3404.6 3500.0

0.0020 3500.0 3361.1 3500.0 3499.8 3361.3 3499.3

0.0040 3500.0 3276.2 3500.0 3498.8 3275.0 3498.4

0.0080 3500.0 3142.2 3499.3 3498.4 3142.0 3498.6

0.0120 3499.7 3028.5 3496.8 3499.1 3028.6 3497.3

0.0200 3497.7 2834.6 3482.8 3498.3 2835.0 3483.5

0.0360 3484.6 2516.1 3420.2 3485.1 2517.0 3421.0

0.0600 3445.0 2128.3 3273.2 3446.7 2130.1 3275.0

0.1016 3341.7 1595.0 2954.2 3344.0 1598.2 2956.7

Table 8.2: True Pressure data and observed pressure.
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APPENDIX A

Plots in this appendix show all the property sequences from the chain of 40

million models. The initial model was a RML realization. Among the eight property

sequences, no evidence of a transition period is shown at the beginning of the chain.
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Figure A.1: Every 40,000th model from the chain of 40 million models was used to

generate effective permeability and average porosity. The initial model was a RML

realization. No evidence of a transition period is shown at the beginning of the

chain.
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Figure A.2: Every 40,000th model from the chain of 40 million models was used

to generate the maximum permeability and the minimum permeability. The initial

model was a RML realization. No evidence of a transition period is shown at the

beginning of the chain.
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Figure A.3: Every 40,000th model from the chain of 40 million models was used

to generate travel time and squared data mismatch. The initial model was a RML

realization. No evidence of a transition period is shown at the beginning of the

chain.
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Figure A.4: Every 40,000th model from the chain of 40 million models was used to

generate the squared model mismatch about the prior model and about the MAP

estimate. The initial model was a RML realization. No evidence of a transition

period is shown at the beginning of the chain.



APPENDIX B

In this appendix, histograms of the maximum permeability, the minimum

permeability, the model mismatch about the prior model and the model mismatch

about the MAP estimate from each of the six Markov chains are put together for

comparison. “McMC 40E6” indicates that the sequence is composed with 20 Markov

chains, and each of which has 2 million iterations. ”McMC 4E7” is the sequence of 40

million realizations in a single chain. “McMC 4E7 2nd” used the second realization

of RML method as the initial element. Here the “320MM1ch” is the very long chain

starting from the first realization of RML method.
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Figure B.1: The comparison of histograms of maximum permeability from a variety

of McMC sequences with different length and number of chains.
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Figure B.2: The comparison of histograms of minimum permeability from a variety

of McMC sequences with different length and number of chains.
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Figure B.3: The comparison of histograms of squared model mismatch about the

prior model from a variety of McMC sequences with different length and number of

chains.
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Figure B.4: The comparison of histograms of squared model mismatch about the

MAP estimate from a variety of McMC sequences with different length and number

of chains.



APPENDIX C

Histograms of the realizations from all the approximate methods are shown

in this appendix. Four pilot point methods have been applied in the test problem

to generate model realizations. “PP6” is the pilot point method with full objective

function and 33% pilot point density. “PP9D” indicates the method with only

squared data mismatch in the objective function and 45% pilot point density.
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Figure C.1: Histograms for the properties of 5000 LMAP realizations sampled from

the test problem.
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Figure C.2: Histograms for the properties of 5000 RML realizations sampled from

the test problem.
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Figure C.3: Histograms for the properties of 5000 realizations sampled from the test

problem by the pilot point method with six pilot point locations in the field and

using a full objective function.



93

Figure C.4: Histograms for the properties of 5000 realizations sampled from the test

problem by the pilot point method with six pilot point locations in the field and

using the objective function with only squared data mismatch part.
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Figure C.5: Histograms for the properties of 5000 realizations sampled from the test

problem by the pilot point method with nine pilot point locations in the field and

using a full objective function.
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Figure C.6: Histograms for the properties of 5000 realizations sampled from the test

problem by the pilot point method with nine pilot point locations in the field and

using the objective function with only squared data mismatch part.
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Figure C.7: Histograms for the properties of realizations sampled from the test

problem by the gradual deformation method with global perturbation.



APPENDIX D

Histograms of the realizations from all the approximate methods for each

of the property are shown in this appendix together with the distribution from the

second very long Markov chain for a better comparison of the sampling ability of

each approximate method.
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Figure D.1: The comparison of histograms of effective permeability from a variety

of sampling methods.
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Figure D.2: The comparison of histograms of average porosity from a variety of

sampling methods.
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Figure D.3: The comparison of histograms of travel time from a variety of sampling

methods.
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Figure D.4: The comparison of histograms of maximum permeability from a variety

of sampling methods.
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Figure D.5: The comparison of histograms of minimum permeability from a variety

of sampling methods.
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Figure D.6: The comparison of histograms of squared model mismatch about the

prior model from a variety of sampling methods.
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Figure D.7: The comparison of histograms of squared model mismatch about the

MAP estimate from a variety of sampling methods.
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Figure D.8: The comparison of histograms of squared data mismatch from a variety

of sampling methods.


