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ABSTRACT

Ruijian Li (Doctor of Philosophy in Petroleum Engineering)

Conditioning Geostatistical Model to Three-Dimensional, Three-Phase Flow

Production Data by Automatic History Matching

(126 pp.-Chapter V)

Co-Directed by Drs. Albert C. Reynolds and Dean S. Oliver

(337 words)

In this work, I describe the development of a general automatic history matching

procedure to generate maximum a posteriori (MAP) estimates and realizations of

reservoir model parameters by conditioning to three-dimensional three-phase produc-

tion data. The algorithm is based on fully implicit, three-dimensional, three-phase,

variable bubble point black oil flow equations. We are able to estimate gridblock per-

meability (both horizontal and vertical) and porosity, well skin factor, and three-phase

relative permeability curves. Several types of model parameters can be estimated si-

multaneously. The observed data can be pressure, gas-oil ratio, water-oil ratio, and

any combination of these three types of data. An adjoint system of equations for

computing the sensitivity coefficients of three-dimensional, three-phase flow produc-

tion data has been developed and implemented. Using the adjoint solution, we are

able to compute the sensitivity of pressure, gas-oil ratio, water-oil ratio to the grid-

block permeability and porosity, well skin factor and parameters used in the relative

permeability curves. I illustrate comparison of results with an alternate method that

the sensitivity coefficients generated by the adjoint method are highly accurate. The

advantage of the adjoint method is that the number of linear system solutions is in-

dependent of the number of model parameters so this method can be used for large
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simulation models. We show that the adjoint equation can be directly constructed

from the Jacobian matrices computed in fully implicit simulator. This approach can

hand the problems with large number of data and highly compressible reservoirs. The

Levenberg-Marquardt method is applied to minimize the objective functions. The

Levenberg-Marquardt method is more robust than regular Gauss-Newton method.

Our results indicate that conditioning to more types of data improve the estimate

results of model parameters and has greater reduction in uncertainty. Gas-oil ratio

data tend more useful than water-oil ratio data in resolve reservoir model parame-

ters. We can estimate three-phase relative by conditioning to production data. It is

possible to estimate the absolute and relative permeability simultaneously.
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CHAPTER I

INTRODUCTION

To optimize oil or gas field development and predict reservoir future perfor-

mance, one first needs to determine the rock property fields of the petroleum reservoir.

Because the reservoir is thousands of feet underground, it is usually impossible to di-

rectly measure the reservoir parameters except at well locations. However, the rock

property fields can be constructed by applying inverse or parameter estimation algo-

rithms using indirect measurements, such as production data. In this research work,

a general procedure, known as automatic history matching, has been developed and

implemented to generate estimates or multiple realizations of model parameters condi-

tioned to three-dimensional, three-phase production data and prior information. The

types of production data that can be used in this procedure include wellbore pressure,

gas-oil ratio and water-oil ratio. In a petroleum reservoir, the gridblock permeabilities

and porosities, skin factors, and relative permeability are the most important model

parameters for determining the performance of the reservoir. This work focuses on

generating estimates and multiple realizations of these reservoir model parameters.

The ultimate objective of this work is to evaluate uncertainty in predicted reservoir

performance under three-phase flow conditions. This uncertainty can be quantified

by generating multiple realizations conditioned to production data (e.g., pressure,

GOR and WOR) and predicting reservoir performance with each realization.

Automatic history matching is an inverse procedure. Usually, inverse prob-

lems are underdetermined and the solutions are non-unique. So generating estimates

or multiple realizations of the model parameters is a difficult problems. The inverse

1
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problems of interest reservoir engineers are even more challenging for several reasons.

First, there are a large number of model parameters to be estimated in a reservoir

model. A reservoir simulation model may use tens of thousands or even a million

gridblocks. The reservoirs are usually heterogeneous and the model parameters are

spatial variables. Each gridblock at least has one model parameter (for example, per-

meability) and often more. Second, the number of data is insufficient. We only can

measure data at the wellbore or on the surface. Today, one can use permanent down-

hole sensors to obtain high frequency data in the time domain. However, the data in

the spatial domain is still very sparse and much of the observed data is redundant.

The third reason is that the solution of the problem is non-unique. There are many

models that give an acceptable match of the data. In our approach, we either find the

most probable model or generate multiple realizations by sampling the a posteriori

probability density function to evaluate the uncertainty. The fourth reason is that

the relationship between model parameters and production data is highly nonlinear

for multi-phase flow problems, especially when a gas phase is present in the model.

This makes estimation and sampling more difficult. If the initial guess is far away

from the true model, the estimated model may never converge to the neighborhood

of the true model.

The inverse procedure presented here is under the framework of Bayesian

inference. The solution of the inverse problem is an a posteriori probability density

function (a posteriori pdf) on the space of the reservoir model. The posteriori pdf

includes two parts. The first part is the priori distribution, which comes from the

static data, such as geologic, core, well logs, and seismic data. The second part

is a likelihood function, which involves the difference between the predicted data

from a given model and the observed data. In this work, the observed data are

production data, also referred to as dynamic data. Through the posteriori pdf, one

can construct a most probable model (maximum a posteriori estimate) or generate

a set of realizations of reservoir parameters by sampling the posteriori pdf. In this
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way, the uncertainties in the observed data and model parameters can be integrated

in the inverse procedure.

Typically, automatic history matching utilizes gradient information and thus

requires a procedure for generating sensitivity coefficients and a procedure for opti-

mizing an objective function which includes a sum of squares of production data

mismatch terms. We use either the Gauss-Newton method with restricted-step or

the Levenberg-Marquardt method for optimization. The experiments that we have

done to date indicate that the Levenberg-Marquardt algorthm is more robust. To

apply the optimization procedures, one needs to calculate sensitivity coefficients. An

efficient adjoint algorithm to calculate sensitivity of three-dimensional three-phase

flow production data to model parameters has been derived and implemented. As we

show in Chapter 3, our implementation of the adjoint method gives highly accurate

sensitivity coefficients.

1.1 Literature Review

Automatic history matching has its origins in the work of Jacquard (1964)

who presented an analytical formula for the sensitivity of pressure to a small per-

turbation in a uniform permeability field and Jacquard and Jain (1965) who derived

and implemented the first numerical procedure to compute sensitivity coefficients.

Using their procedure for computing sensitivity coefficients, Jacquard and Jain con-

structed estimates of two-dimensional permeability fields by history-matching single-

phase flow pressure data by minimizing an objective function equal to the sum of

squared pressure data mismatch terms. They used a combination of zonation (fewer

than twenty zones of different permeability) and a procedure similar in spirit to the

Levenberg-Marquardt algorithm to avoid the numerical instabilities that can arise

when solving an ill-conditioned inverse problem. Jahns (1966) adapted the basic

ideas of Jacquard and Jain (1965) to estimate both permeability and porosity fields
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by matching single-phase flow pressure data. Interestingly, Jahns did not use the

method of Jacquard and Jain (1965) to compute sensitivity coefficients, using instead

a finite difference method. To compute the sensitivity of data to an individual model

parameter with this method requires one simulation run, i.e., one additional simula-

tion run per model parameter for each iteration of the Gauss-Newton procedure which

Jahns applied to minimize the objective function. However, Jahns only considered

on the order of twenty parameters and as noted by him, the finite-difference method

is actually faster than the procedure of Jacquard and Jain (1965) if the number of

model parameters is small. Jahns used a zonation procedure to limit the number of

parameters but applied a sequence of minimization procedures. At each minimization

step, the number of zones was increased.

On the order of ten years after the fundamental work discussed in the pre-

ceding paragraph, a series of interesting papers related to automatic history matching

appeared. The procedure of Jacquard and Jain (1965) was derived using an electric

circuit analogue, but motivated directly by this work, Carter et al. (1974) published

an elegant mathematical derivation of an efficient procedure to calculate sensitivity

coefficients. Carter et al. (1974) considered single-phase flow problems, or more pre-

cisely, assumes the underlying partial differential equation is linear, i.e., rock and

fluid properties must be considered to be independent of pressure. His procedure

technically gives the sensitivity of reservoir simulator gridblock pressures to gridblock

permeabilities and porosities. In finite-difference simulators, well gridblock pressures

are typically related to wellbore pressure by some variation of Peaceman’s method

(Peaceman, 1983). For three-dimensional single-phase flow problems, one could com-

pute the sensitivity of wellbore pressure to model parameters by first computing the

sensitivity of each gridblock pressure penetrated by a well to model parameters using

a straightforward three-dimensional version of the Carter et al method; however, this

would require one simulation run for each such gridblock. He et al. (1997) developed

an approximate procedure to compute directly the sensitivity of wellbore pressures to
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the rock property fields avoiding the necessity to compute the sensitivity coefficients

related to all well gridblock pressures. The He et al. procedure requires one reservoir

simulation run per well to calculate the information needed for all sensitivities. How-

ever, sensitivity coefficients computed by this procedure are only approximate when

significant vertical flow occurs through wells or in gridblocks penetrated by wells.

The methods for computation of sensitivity discussed to this point are rather

specialized; they are only applicable to single-phase flow problems. For multiphase

flow, there are several viable method for computing the sensitivity of data to the

model parameters. The simplest (but least efficient) approach is to perturb the value

of each model parameter, then compute the change due to the perturbation. Beck

and Arnold (1977) used this method to calibrate friction parameters in open channel

flow. This is the method that Jahns (1966) used for single-phase flow. Because it is

so simple, it is used as a basis for comparison with the results from other methods

for multi-phase flow (see Wu (1999)). It is extremely inefficient for a large number

of model parameters, however, as it requires M + 1 simulation runs to compute the

sensitivity of data to M model parameters.

A more efficient method for computation of sensitivity coefficients is based

on the repeated solution of a differential equation for the sensitivity coefficients. A

sensitivity equation is derived by differentiating the flow equations with respect to a

single model parameter. The resulting equations must be solved as many times as

there are model parameters. Because the only difference is in the right hand side, it is

possible to improve the efficiency by use of a solver especially designed for problems

with multiple right hand sides (Killough et al., 1995). Although we are not sure who

originally proposed this method, it is discussed in Yeh’s (1986) review of parameter

identification methods where it is referred to as the sensitivity coefficient method.

It was introduced to the petroleum engineering literature by Anterion et al. (1989),

where it was referred as the gradient simulator method.

Although the gradient simulator method (Anterion et al., 1989) can be used
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to generate sensitivity coefficients for automatic history matching of multiphase flow

data, this is not feasible if the number of model parameters is large. The gradient

simulator method still requires that we solve a matrix problem with multiple right

hand sides at the end of each reservoir simulator time step. The number of right

hand sides is equal to the number of model parameters. If, however, one can jus-

tify describing the reservoir using only a few model parameters, e.g., some form of

zonation makes sense, then the gradient simulator is feasible. In every case for which

the gradient simulator method has been used (Jacquard and Jain, 1965; Tan and

Kalogerakis, 1992; Bissell et al., 1994; Bissell, 1994), the number of parameters was

artificially reduced. However, if the set of model parameters include the porosities

and permeabilities for every grid cell, computation of sensitivity coefficients with the

gradient simulator method is not feasible. If the number of model parameters is large,

the model can often be reparameterized using the subspace method (Reynolds et al.,

1996) and then we can directly compute the sensitivity of the each subspace vector

to the model parameters (Abacioglu et al., 2000).

The only other general method for computation of sensitivity of data to

model parameters is the adjoint method, which was proposed independently by Chen

et al. (1974) and Chavent et al. (1975). The adjoint method can be and has been

applied to multiphase flow problems, see for example Lee and Seinfeld (1987a), Yang

et al. (1988), Makhlouf et al. (1993) and Wu et al. (1999). The adjoint procedure

developed in this disertation allows us to calculate the sensitivity of any individual

production data to the model parameters or simply to compute the objective function

that is to be minimized. (For the examples considered here, the model parameters

are all gridblock permeabilities (x, y and z- directions), porosities, skin factors, and

parameters defined relative permeabilities.) The generation of individual sensitivity

coefficients requires the solution of the adjoint system with Nd right-hand sides (see

Wu et al., 1999), where Nd is the number of observed production data we wish to

history match. Thus, if Nd is large, it may be more efficient to use a method that only
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requires the gradient of the objective function but does not require the calculation of

individual sensitivity coefficients. To calculate the gradient of the objective function,

we need only solve a single adjoint system. For this reason early researchers relied

exclusively on optimization techniques that required no derivative information except

for the gradient of the objective function. See, for example, the papers by Wasserman

et al. (1975), Lee and Seinfeld (1987a), Yang et al. (1988), and Makhlouf et al. (1993)

When Nd is large, it is possible that a preconditioned conjugate gradient method

with an appropriate preconditioning matrix may prove to be more efficient than the

Levenberg-Marquardt method, but we have not investigated this possibility.

Although several others have previously used the adjoint method for mul-

tiphase flow history matching, the computation of the sensitivity of individual data

to model parameters has only been done for oil-water system (Sun, 1994; Wu et al.,

1999). The computation of data sensitivity coefficients (as opposed to only the gra-

dient of the total objective function) has several advantages. First, a great deal of

insight into the information content of various data can be gained from an examina-

tion of sensitivities. The sensitivities of three-phase flow data to model parameters

can be extremely complicated and non-intuitive. This is especially true for gas-oil

ratio data. Second, the computation of individual sensitivities allow us to use the

rapidly convergent Newton-like methods for history matching. Previous researchers

have been limited to the more slowly convergent conjugate gradient (Makhlouf et al.,

1993) or variable metric (Yang et al., 1988) approaches. Third, it is possible to

compute the Hessian when individual sensitivities are available. The inverse of the

Hessian sometimes provides a useful measure of uncertainty in model parameters. In

particular, we often find it useful to examine the normalized a posteriori variance

for model parameters. While this is only an approximation of the actual variance,

and the variance is sometimes a poor measure of uncertainty in problems with highly

correlated parameters, comparison of variance from various types of data can provide

additional insight into the value of data for reducing uncertainty.
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Relative permeability curves have a great impact on reservoir behavior in

reservoir simulation and history matching. However, little work has been done to

improve estimate of relative permeability curves by conditioning to production data.

(Kulkarni and Datta-Gupta, 2000), (Yang and Watson, 1991), (Lee and Seinfeld,

1987a) and (Lee and Seinfeld, 1987b) presented some results for estimating rela-

tive permeability from production data in the water-oil two-phase flow problems.

(Lee and Seinfeld, 1987b) estimated the absolute permeability and the exponents

in the relative permeability expressing for water-oil two-phase reservoir. (Kulkarni

and Datta-Gupta, 2000) presented a streamline approach by using water-oil cut data

to estimate relative permeability curves. To the best of our knowledge, all previ-

ous works estimating relative permeability by conditioning to production data are

limited to water-oil two-phase flow problems. In this work, we present an approach

to estimate relative permeability curves for three-phase flow problems by condition-

ing to production data. We can estimate three-phase relative permeability curves

only or estimate three-phase relative and absolute permeability simultaneously. Our

approach also can be applied to water-oil or gas-oil two phase cases. The relative

permeability models can be conditioned to pressure, gas-oil ratio, water-oil ratio and

any combinations of these three types of data. The results indicate that integrating

more types of data improve estimate results.

1.2 Data Integration and History Matching

Automatic history matching is an inverse procedure for which a numerical

reservoir simulator is required as a forward model. In this work, we use an existing

reservoir simulator, the Chevron Limited Applications Simulation System (CLASS),

as the forward model. CLASS is a three-dimensional, three-phase black-oil reservoir

simulator using a variable bubble-point fluid characterization. As CLASS uses a

fully implicit numerical scheme, our adjoint approach is based on implicit reservoir
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simulation equations.

As we pointed out previously, there is insufficient information for the ac-

curate estimation of gridblock properties from data available in petroleum reservoir

engineering. By using all available non redundant data to estimate the rock property

fields, however, the estimate can be made as accurate as possible. The procedure

presented here can integrate various types of data, including both static data and

dynamic data, to improve the MAP estimate results and reduce the uncertainties

of model parameters. The results will show that integrating more independent data

improves the estimated results, but some types of data are more useful than others

in reducing uncertainty.

If the number of model parameters is very large, there are not sufficient

independent data to resolve all the model parameters. In this case, application of

the Gauss-Newton method to maximum likelihood estimation would fail because the

Hessian would be ill-conditioned unless some form of regularization is applied. In

this work, we use a prior geostatistical model to provide regularization. With this

approach, the history matching problem is equivalent to a Bayesian estimation prob-

lem (Gavalas et al., 1976; Tarantola, 1987; Oliver, 1994; He et al., 1997; Wu et al.,

1999). We calculate sensitivity coefficients with the adjoint method. The availability

of sensitivity coefficients allows the application of the Gauss-Newton and Levenberg-

Marquardt algorithms which exhibit approximate quadratic convergence in a neigh-

borhood of a minimum. Since sensitivity coefficients are calculated, the a posteriori

covariance matrix can be generated; this matrix provides a measure of uncertainty in

the estimates of reservoir model parameters. The adjoint solution and history match-

ing procedure presented here are based on a finite-difference formulation of the flow

equations. As such, the method can be applied to single-phase oil or gas flow, or to

multiphase flow problems; it is not restricted to physical problems where streamline

simulators can used to generate accurate results efficiently.

There are 5 chapters and 3 appendices in this dissertation. Chapter 2 briefly



10

describes the theory of automatic history matching. It includes discussions of Bay-

sesian inversion, the construction of the MAP estimate and multiple realizations,

data measurement errors, and the Gauss-Newton and Levenberg-Marquardt algo-

rithms. Chapter 3 discusses the computation of sensitivity coefficients using the

adjoint method. In Chapter 3, we compare the procedures of two popular meth-

ods for computing sensitivity coefficients, the adjoint method and gradient simulator

method. We also show some examples of sensitivity coefficients and comparison of

sensitivity coefficients from the adjoint method and from the finite difference method.

Chapter 4 presents applications of our history matching procedure. It includes both

2D and 3D examples of three-phase flow problem. Examples include the computation

of maximum a posteriori estimates or realizations of permeability and porosity fields,

skin factors, and relative permeability by conditioning to the pressure, gas-oil ratio,

and water-oil ratio. In Chapter 5, the conclusions and the research contributions of

this work are summarized. In Appendices A, B, and C, the detailed formulations

for the application of history matching to 3D, 3-phase flow problems are presented.

Appendix A discusses the general 3D, 3-phase flow simulation equations and well

constraint equations. Appendix B describes how to calculate the derivatives in the

adjoint system equations. Appendix C discusses how to calculate sensitivity coeffi-

cients for various cases once the adjoint variables are obtained.



CHAPTER II

THE THEORY OF AUTOMATIC HISTORY MATCHING

2.1 Bayesian Inversion

The inverse procedure used in this work is based on Bayesian inversion theory.

In a petroleum reservoir, m denotes the vector of reservoir model parameters that

we want to estimate. The ultimate goal is to predict future performance of the

reservoir and assess the uncertainty in the prediction. For that reason, we focus on the

problem of estimating reservoir properties that affect fluid flow, and more precisely,

the parameters that are required as input to the reservoir simulator. The model

parameters that are estimated include horizontal permeability, vertical permeability

and porosity at each gridblock, a skin factor at each well and parameters which define

the two sets of two phase relative permeability curves. If the model parameters are

horizontal permeability, vertical permeability, and skin, we write m as

m =











mk

mkz

ms











, (2.1)

where mk is the vector of horizontal log-permeability of every gridblock; mkz is the

vector of vertical log-permeability and ms is the vector of skin factor. These reservoir

parameters are modeled as random variables, so m is a random vector. From a

purely history matching point of view, we wish to construct an estimate of m from

production data (dynamic data) and static data (well logging data, geology data,

and seismic data). However, there are an infinite number of models which will give

equally reasonable matches of the data, and it is desirable to define a procedure

11
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for generating a particular estimate or to characterize the uncertainty in reservoir

descriptions. From both the philosophical and practical points of view (see Tarantola

(1987) and Omre et al. (1993)), the most challenging part of the inverse problem is

the determination of a representative pdf for reservoir parameters. Similar to the

recent work on automatic history matching by He et al. (1997) and Wu et al. (1999),

we follow ideas that can be found in Tarantola (1987) and simply assume that a

prior geostatistical model can be adequately represented by a multivariate Gaussian

distribution for m.

The prior pdf for m is then given by

πp(m) = c exp
{

−
1

2
(m−mprior)

TC−1M (m−mprior)
}

, (2.2)

where c is the normalizing constant. Note the model which has the highest probability

based on Eq. 2.2 is m = mprior, thus it is convenient to think of mprior as the best

estimate of the model based on static data.

2.2 Prior Model

The inverse procedure developed in this work is quite general. We can esti-

mate gridblock permeabilities (including horizontal and vertical permeabilities), grid-

block porosities, well skin factors, and relative permeabilities. We also can estimate

several types of model parameters simultaneously. For example, we can estimate

horizontal permeability, vertical permeability, and well skin factors simultaneously.

If semivariograms are available for each type of model parameters, the prior covari-

ance matrix for each type of model parameters can be constructed for a stationary

random field. If one wishes to estimate several model parameters simultaneously,

one can apply the Xu et al. (1992) screening hypothesis to generate cross covariance

matrices.

Here, we show how to generate prior covariance matrix for a reservoir model

where the horizontal log permeability, vertical log permeability, and skin factor in each
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well are estimated simultaneously. For simplicity, we assume an isotropic reservoir so

that k = kx = ky. In this case, the horizontal log-permeability field (gridblock ln(k)’s)

and the vertical log-permeability field (gridblock ln(kz)’s) are modeled as correlated

stationary Gaussian random fields with specified means and covariance matrices Ck

and Ckz , respectively. In the prior model, each well skin factor is treated as an

independent Gaussian variable with specified mean and variance. If the skin factor

was estimated by fitting pressure data with a classical well testing model solution

using nonlinear regression, then the estimate of the skin factor would be its prior

mean and its variance can be constructed directly from the same information used to

construct confidence intervals.

The vector of prior means is given by

mprior =











mk,prior

mkz ,prior

ms,prior











. (2.3)

We let Ck denote the prior covariance matrix for mk, Ckz denote the prior covariance

for kz, Ck,kz denote the cross covariance matrix between k and kz and let Cs denote

the Nw ×Nw model covariance matrix for the vector of well skin factors. Then, the

prior model covariance matrix is given by

CM =











Ck Ck,kz O

Ck,kz Ckz O

O O Cs











, (2.4)

where the O’s denote null submatrices of the appropriate size. If horizontal and

vertical permeability are not correlated, then Ck,kz is also a null matrix.

As mentioned above, the cross covariance matrix Ck,kz is evaluated using the

screening hypothesis of Xu et al. (1992)

Ck,kz = Ckz ,k =
ρk,kzσk
σkz

Ckz , (2.5)
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where ρk,kz is the correlation coefficient between the horizontal log-permeability k

and vertical permeability kz; σk and σkz are the standard deviation of the horizontal

and vertical log-permeability, respectively.

2.3 Construction of Maximum A Posteriori Estimate

For a given model m, d denotes the predicted, true or calculated data cor-

responding to dobs. If m is the true reservoir from which dobs was obtained and there

are no measurement errors, then d = dobs. As d depends on the model, we write

d = g(m), (2.6)

to represent the operation of calculating d given m. In our work, Eq. 2.6 represents

the operation of running the reservoir simulator to calculate d.

Bayes’ theorem (see Tarantola (1987)) indicates that the a posteriori pdf

(conditional to observed data) for the model variables is proportional to the product

of the prior pdf and the likelihood function for the model and is given by

π(m) = c exp{−O(m)}, (2.7)

where

O(m) =
1

2

[

(

m−mprior
)T
C−1M

(

m−mprior
)

+
(

g(m)− dobs
)T
C−1D

(

g(m)− dobs
)

]

. (2.8)

In the Eq. 2.8, CM is the model covariance matrix and CD is the data covariance

matrix. CM defines the relationship among the model parameters. The model covari-

ance matrix CM can be constructed from the prior information, the knowledge about

the model parameters from the static data. In the Newton-like optimization algo-

rithm, the first part of objective function Eq. 2.8, 1/2[(m−mprior)
TC−1M (m−mprior),

also serves as a regularization term. The data covariance matrix CD is based on the
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confidence about the data. If the measurement errors are big, one should use a big

variance. Otherwise, one should choose a small variance. Usually, we assume that

there is no correlation among the data, so the matrix CD is a diagonal matrix.

The maximum a posterior (MAP) estimate is the most probable model of

the posterior pdf, Eq. 2.7, so the MAP estimate is obtained by maximizing the pos-

terior pdf, Eq. 2.7, or minimizing the objective function, Eq. 2.8. For the three-phase

flow examples considered in this work, we condition the geostatistical model to three

types of production data, pressure, gas-oil ratio, water-oil ratio and to combinations

of these three kinds of data. The set of model parameters refers to reservoir simulator

gridblock permeabilities and gridblock porosities. The objective function to be mini-

mized depends on the data used as conditioning data. Let dobs,p denote the vector of

conditioning pressure data, dp = gp(m) denote corresponding predicted pressure data

for a given model m and let CD,p denote the associated data covariance matrix. We

assume that all measurement errors are Gaussian with means equaled to zero. We

also assume all measurement errors are independent so all data covariance matrices

are diagonal. The corresponding notation for gas-oil ratio data are dobs,g, dg = gg(m)

and CD,g. For water-oil ratio data, we use dobs,w, dw = gw(m) and CD,w.

In matching only pressure data, the objective function to be minimized is

Op = Op(m) =
1

2

(

m−mprior

)T
C−1M

(

m−mprior

)

+
1

2

(

gp(m)−dobs,p
)T
C−1D,p

(

gp(m)−dobs,p
)

.

(2.9)

In matching only producing GOR data, the objective function to be minimized is

Og = Og(m) =
1

2

(

m−mprior

)T
C−1M

(

m−mprior

)

+
1

2

(

gg(m)−dobs,g
)T
C−1D,g

(

gg(m)−dobs,g
)

.

(2.10)

In matching only WOR data, the objective function to be minimized is

Ow = Ow(m) =
1

2

(

m−mprior

)T
C−1M

(

m−mprior

)

+
1

2

(

gw(m)−dobs,w
)T
C−1D,w

(

gw(m)−dobs,w
)

.

(2.11)
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We can generate a MAP estimate by matching any combinations of types of

data. For example, if we wish to condition the model to both pressure and gas-oil

ratio, the objective function to be minimized is given by

Opg = Opg(m) =
1

2

(

m−mprior

)T
C−1M

(

m−mprior

)

+
1

2

(

gp(m)− dobs,p
)T
C−1D,p

(

gp(m)− dobs,p
)

+
1

2

(

gg(m)− dobs,g
)T
C−1D,g

(

gg(m)− dobs,g
)

.

(2.12)

If we wish to condition the reservoir model to all three types of data, pressure, gas-oil

ratio and water-oil ratio, the objective function to be minimized is given by

Opgw = Opgw(m) =
1

2

(

m−mprior

)T
C−1M

(

m−mprior

)

+
1

2

(

gp(m)− dobs,p
)T
C−1D,p

(

gp(m)− dobs,p
)

+
1

2

(

gg(m)− dobs,g
)T
C−1D,g

(

gg(m)− dobs,g
)

+
1

2

(

gw(m)− dobs,w
)T
C−1D,w

(

gw(m)− dobs,w
)

. (2.13)

Note that there are no arbitrary weighting terms for the pieces of the objective func-

tion. Relative weighting is determined by the magnitude of the measurement errors

for each type of data.

Eqs. 2.9 to 2.13 can all be written in the form of Eq. 2.8. For example, in

the Eq. 2.13, let

g(m) =











gp(m)

gg(m)

gw(m)











, (2.14)

dobs =











dobs,p

dobs,g

dobs,w











, (2.15)
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and

CM =











CD,p O O

O CD,g O

O O CD,w











, (2.16)

so the Eq. 2.13 can be written as the form of Eq. 2.8.

2.4 Gauss-Newton and Levenberg-Marquardt Algorithms

In this work, the MAP estimate is obtained by minimizing the objective func-

tion of Eq. 2.8 using either the Gauss-Newton method or the Levenberg-Marquardt

method. For cases where the initial production data mismatch is large, the Levenberg-

Marquardt algorithm is more robust and converges faster than the standard Gauss-

Newton method with restricted-step. However, it is likely that this advantage accrues

mainly from choosing a large initial value of the parameter λ and the fact that at

future iterations the Levernberg-Marquardt incorporates an automatic procedure to

control the change in model parameters over an iteration. If a method to damp model

changes at early iterations were introduced into the Gauss-Newton method, it is likely

that its convergence properties would improve; see Wu et al. (1999).

In the Gauss-Newton procedure, the model parameters at iteration l+1 are

updated by

ml+1 = ml + µlδm
l+1, (2.17)

and where µl is calculated by the restricted step procedure and δml+1 is given by

δml+1 = mprior −ml − CMG
T
l (CD +GlCMG

T
l )
−1[(g(ml)− dobs)−Gl(m

l −mprior)],

(2.18)

where the matrix Gl denotes the Nd ×Nm sensitivity coefficient matrix evaluated at

ml. Nd is the number of data and Nm is the number of model parameters. The entry

in the ith row and jth column ofGl represents the sensitivity of the ith calculated data
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gi to the jth model parameter evaluated at ml, i.e., this entry is ∂gi(m
l)/∂mj, where

mj is the jth entry of m. Physically, the sensitivity coefficient ∂gi(m
l)/∂mj gives

a measurement of how much the computed data gi(m
l) will change when the model

parameter mj is changed. So given the mismatch between observed and computed

data, sensitivity coefficients provide an indication of how we should modify the model

parameters in order to match the observed data.

In the Levenberg-Marquardt method, the model parameters are updated by

ml+1 = ml +
mprior −ml

1 + α
− CMG

T
l ((1 + α)CD +GlCMG

T
l )
−1

[(g(ml)− dobs)−
1

1 + α
Gl(m

l −mprior)].

(2.19)

In the preceding equation, α is the damping factor. Note that this is not the standard

LM algorithm but follows the formulation introduced by Bi et al. (1999). When α

is large, the change in the model from iteration l to iteration l + 1 is small. In all

applications we have done to date, we have set the initial value of α equal to 104 or

105. Normally, either 104 or 105 works fine for different cases. If ml+1 computed from

Eq. 2.19 results in a reduction in the objective function, we decrease α by a factor of

ten for the next iteration; if ml+1 computed from Eq. 2.19 results in an increase in

the objective function, we multiply α by ten for the next iteration.

The convergence criteria for the Gauss-Newton and Levenberg-Marquardt

methods are given by
O(ml+1)−O(ml)

O(ml+1) + 10−14
≤ ε1, (2.20)

and
‖ δml+1 ‖

‖ δml ‖ +10−14
≤ ε2, (2.21)

where ε1 and ε2 are set equal to 10−3. For convergence, we require that both criteria

are satisfied.
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2.5 Data Measurement Errors

As in previous TUPREP research (see, for example, Wu (1999)), the produc-

tion data measurement errors are modeled as independent Gaussian random variables.

Specifically, we assume that pressure measurement errors are independent identically

distributed Gaussian random variables with mean zero and constant variance σ2pd.

We assume that gas-oil ratio (GOR) measurement errors are independent identically

distributed Gaussian random variables with mean zero and constant variance σ2gd.

For water-oil ratio, we use the method presented by Wu et al. (1999). With this

model, variance of the water-oil ratio (WOR) is calculated as

V ar[eWOR] = WOR2obsε
2
o +

1

q2o,obs
σ2qw,obs , (2.22)

where

ε2m =
V ar[qm,obs − qm]

q2m,obs
, (2.23)

and

σqw,obs = max[εwqw,obs, σ
min
qw,obs]. (2.24)

Here, qm,obs, m = o, w denotes the observed rate. In the examples shown in this work,

we choose σminqw,obs
= 2STB/D, εo = 0.01 and εw = 0.02. The data measurement error

of WOR is related to the magnitude of the water-oil ratio. When the qw is large,

σqw,obs increases as qw increases; when the qw is small or very close to zero, the water

rate data variance σqw,obs is considered to be a constant, σminqw,obs
.

2.6 Evaluation of Uncertainty

The best way to evaluate uncertainty in reservoir properties would be to con-

struct a large suite of realizations by sampling the pdf of Eq. 2.7; see, for example,

Hegstad and Omre (1997), Omre et al. (1996), He (1997) or Wu (1999). Although

sampling the pdf is preferable, to do so rigorously may be difficult and the compu-

tational expense of generating a large set of realizations can be significant. For the
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case where we simply construct the MAP estimate of the model, the a posteriori

covariance matrix can be used to provide an approximate evaluation of uncertainty

in individual model parameters.

2.6.1 Posterior Covariance

According to Tarantola (1987), the linearized approximation to the posteriori

covariance matrix, CMP , is given by

CMP = CM − CMG
T
∞(G∞CMG

T
∞ + CD)

−1G∞CM . (2.25)

Here, G∞ denotes the sensitivity coefficients matrix evaluated at the MAP estimate

obtained by conditioning to production data. The covariance matrix CM provides a

measurement of the prior uncertainty in the model parameters and the a posterioiri

covariance matrix provides an approximation to the uncertainty after conditioning to

production data. CMP would give an exact representation of the posterior uncertainty

if data were linearly related to the model. Note if the data were completely insensitive

to the model parameters then G∞ would be a null matrix. In this case, Eq. 2.25

reduces to CMP = CM , i.e., as expected, conditioning the model to insensitive data

does not reduce the uncertainty in model parameters. The diagonal entries of CM and

CMP , respectively, represent the prior and a posteriori variances of model parameters.

Here, we simply estimate the reduction in the uncertainty by comparing the ratio of

the a posteriori variance of each model parameter to its prior variance. If the ratio

is unity, the uncertainty in the model parameter is not reduced by conditioning to

production data, if the standard deviation is reduced by a factor of 10, we say the

uncertainty has been reduced by 90 per cent or a factor of 10 and so on.

2.6.2 Multiple Realizations

Except in the case where data are linearly related to the model, the preceding

method is only approximate and for a highly nonlinear problem with a multi-modal
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a posteriori probability density function, the analysis is tenuous. In such cases, it is

possible to evaluate the uncertainty by generating a suite of conditional realizations

which represent a correct sampling of the a posteriori pdf. Unfortunately, sampling

correctly is not computationally efficient for the problems of interest to us; see, Oliver

et al. (1997) and Cunha (1996). Currently, realizations are generated by the random-

ized maximum likelihood method, Kitanidis (1995) and Oliver et al. (1996). In this

procedure, a realization is generated by minimizing the following objective function:

Or(m) =
1

2
(m−muc)

TC−1M (m−muc) +
1

2
(g(m)− duc)

TC−1D (g(m)− duc), (2.26)

where muc is an unconditional simulation of m from prior model and duc is an uncon-

ditional simulation of conditioning production data.

Because we have assumed that the prior pdf for model parameters is multi-

Gaussian, the unconditional realization of m can be generated from

muc = mprior + C
1/2
M ZM , (2.27)

where ZM is a vector of independent normal deviates with zero mean and unit vari-

ance, and C
1/2
M is a square root of the model covariance matrix. C

1/2
M can be generated

by using Cholesky decomposition of prior covariance matrix.

Similarly, the unconditional realization of dobs is generated by,

duc = dobs + C
1/2
D ZD, (2.28)

where ZD is a vector of independent normal deviates with zero mean and unit vari-

ance, and C
1/2
D is a square root of the data covariance matrix.

Using Cholesky decomposition of the prior covariance matrix to generate

unconditional realization is only plausible for small problems. For large problems, we

could use sequential Gaussian cosimulation to generate unconditional realizations.



CHAPTER III

COMPUTATION OF SENSITIVITY COEFFICIENTS FOR 3D, 3-PHASE FLUID

PROBLEMS BY THE ADJOINT METHOD

3.1 Sensitivity Coefficients

In this work, we develop a general adjoint procedure for computing sensitivity

coefficients for three-dimensional, three-phase flow problems. This procedure is based

on the general three-dimensional, three-phase, fully-implicit, black-oil flow simulation

equations. The sensitivity coefficients which can be generated by this procedure

include the sensitivity of wellbore pressure, GOR, WOR or objective function to

simulator gridblock permeabilities, porosities, skin factors, and the parameters used

in relative permeability correlations. We use a Cartesian coordinate system and the

reservoir boundaries are assumed to be no-flow boundaries. The permeability and

porosity fields are heterogeneous. The wellbore constraint conditions could be rate

specified or bottom hole pressure specified.

The adjoint procedure presented in this chapter has been implemented in

Fortran 90 and is fully functional. We have coupled the codes with an existing fully

implicit, black-oil simulator (CLASS) from Chevron. By using an existing simula-

tor, we were able to focus on the calculation of sensitivity coefficients and history

matching, instead of focusing on the development of another simulator. The adjoint

procedure codes we have developed are totally separate from the simulator. It would

not be difficult to modify the adjoint codes to work with other commercial simulators.

Before using the CLASS simulator, we attempted to use BOAST 3, an IM-

PES simulator from DOE, as the forward model. Our adjoint procedure is based

on fully implicit simulation equations. On the other hand, the BOAST 3 is an IM-

22
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PES simulator. After extensive experimentation, we realized that the inconsistency

between the fully implicit simulation equation and the IMPES simulator was caus-

ing significant inaccuracy in sensitivity coefficients for three-phase, three-dimensional

flow problems, even when we used very small time steps for the IMPES simulator.

Only in the water-oil, two-dimensional flow case was the fully implicit adjoint proce-

dure capable of generating accurate sensitivity coefficients by working with an IMPES

simulator. In general, one should use the same formulation in the adjoint equations

to compute sensitivity coefficients as are used in the reservoir simulator.

In this work, individual sensitivity coefficients are evaluated by the adjoint

procedure. We show that the system of adjoint equations can be written in a very

compact form.

3.2 The Reservoir Simulator

For simplicity, the reservoir is assumed to be a rectangular parallelepiped

which occupies the region

Ω = {(x, y, z) | 0 < x < Lx, 0 < y < Ly, 0 < z < Lz}. (3.1)

The simulator used is based on a fully-implicit, finite-difference formulation

of the three-phase flow, black-oil equations expressed in an x–y–z coordinate system

which apply on Ω; see Eq. 3.1. At each of the N gridblocks, three finite difference

equations apply. These 3N equations represent the mass balances for each of the

three components. In addition, a constraint is applied at each of the Nw wells to

yield Nw additional equations. At each well at each time step, either an individual

phase flow rate, the total flow rate or the wellbore pressure may be specified as a

well constraint. In the results considered here, capillary pressures are assumed to be

negligible.

For gridblock i, the primary variables in our formulation are pi, Sw,i and Sg,i.

In addition, the flowing wellbore pressure, pwf,j at the jth well is a primary variable.
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We let yn denote a column vector which contains the set of primary variables at time

step n. At gridblock i, the finite difference equation for component u can be written

as

fu,i(y
n+1, yn,m) = fn+1u,i = 0, (3.2)

for u = o, w, g and i = 1, . . . , N . The well constraints are represented by

fwf,j(y
n+1, yn,m) = fn+1wf,j = 0, (3.3)

for j = 1, 2, . . . , Nw. If the flowing wellbore pressure at well j at time tn+1 is specified

to be equal to pn+1wf,j,0, then Eq. 3.3 is given by

fwf,j(y
n+1, yn,m) = pn+1wf,j − pn+1wf,j,0 = 0. (3.4)

Eqs. 3.2 and 3.3 represent the system of 3N +Nw equations that are solved to obtain

the values of the primary variables at time tn+1 = tn + ∆tn. For wells at which the

flowing bottom hole pressure is specified, phase flow rates at each well are computed

by Peaceman’s equation (Peaceman, 1983). The complete system of equations can

formally be written as

fn+1 = f(yn+1, yn,m) =















































fn+1o,1

fn+1w,1

fn+1g,1

fn+1o,2

...

fn+1g,N

fn+1wf,1

...

fn+1wf,Nw















































= 0, (3.5)
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where

yn+1 =















































pn+11

Sn+1w,1

Sn+1g,1

pn+12

...

Sn+1g,N

pn+1wf,1

...

pn+1wf,Nw




























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and
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
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m1

m2
...

mNm


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. (3.7)

and where Nm is the number of model parameters.

Eq. 3.5 is solved by the Newton-Raphson method (Aziz and Settaari, 1979)

which can be written as

Jνδyν+1 = −f ν (3.8)

yν+1 = yν + δyν+1, (3.9)

where ν is the iteration index and

Jν = [∇yνf
T ]T , (3.10)

is the Jacobian matrix evaluated at yν , which represents the νth approximation for

yn+1.
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3.3 Adjoint Equations

We define a general scalar function by

β = β(y1, ..., yL,m), (3.11)

where L corresponds to the last time tL at which one wishes to compute sensitivity

coefficients. The objective is to compute the sensitivity of β to changes in the model

parameters m. We obtain an adjoint functional J by adjoining Eq. 3.5 to the function

β:

J = β +
L
∑

n=0

(λn+1)Tfn+1, (3.12)

where λn+1 is the vector of adjoint variables at time step n+ 1, and is given by

λn+1 =
[

λn+11 , λn+12 , . . . , λn+13N+Nw

]T

. (3.13)

Taking the total differential of Eq. 3.12, and doing some simple rearranging

gives

dJ = dβ +
L
∑

n=0

{

(λn+1)T [∇yn+1(fn+1)T ]Tdyn+1 + [∇m(f
n+1)T ]Tdm

}

+
L
∑

n=0

(λn+1)T [∇yn(f
n+1)T ]Tdyn

= dβ +BT +
L
∑

n=1

{[(λn)T [∇yn(f
n)T ]T

+ (λn+1)T [∇yn(f
n+1)T ]T ]dyn + (λn)T [∇m(f

n)T ]Tdm},

(3.14)

where

BT = (λL+1)T{[∇yL+1(fL+1)T ]TdyL+1

+ [∇m(f
L+1)T ]Tdm}+ (λ1)T [∇y0(f 1)T ]Tdy0. (3.15)

The total differential of β can be written as

dβ =
L
∑

n=1

[∇ynβ]
Tdyn + [∇mβ]

Tdm. (3.16)
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The initial conditions are fixed, so

dy0 = 0. (3.17)

Choosing

λL+1 = 0, (3.18)

it follows that BT = 0. Using this result and Eq. 3.16 in Eq. 3.14 and rearranging

the resulting equation gives

dJ =
L
∑

n=1

[{

(λn)T [∇yn(f
n)T ]T + (λn+1)T [∇yn(f

n+1)T ]T+

[∇ynβ]
T
}

dyn
]

+ {[∇mβ]
T +

N
∑

n=1

(λn)T [∇m(f
n)T ]T}dm. (3.19)

To obtain the adjoint system, the coefficients multiplying dyn in Eq. 3.19 are set equal

to zero, i.e., we require that the adjoint variables satisfy

(λn)T [∇yn(f
n)T ]T + (λn+1)T [∇yn(f

n+1)T ]T + [∇ynβ]
T = 0. (3.20)

Taking the transpose of Eq. 3.20, gives the adjoint system

[∇yn(f
n)T ]λn = −[∇yn(f

n+1)T ]λn+1 −∇ynβ. (3.21)

where

∇yn [f
n]T =
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, (3.22)
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and

∇ynβ =

















































∂β
∂pn1
∂β

∂Snw,1

∂β
∂Sng,1

∂β
∂pn2
...

∂β
∂Sng,N

∂β
∂pnwf,1
...

∂β
∂pnwf,Nw

















































. (3.24)

Eq. 3.21 with initial condition 3.18 is solved backwards in time for n = L,L−1, . . . , 1.

In the above equations, ∇yn(f
n)T and ∇yn(f

n+1)T are 3N+Nw by 3N+Nw matrices,

and ∇ynβ is a 3N +Nw dimensional column vector.

The matrix multiplying λn+1 in Eq. 3.21 is a diagonal band matrix which is

only related to the accumulation terms in the reservoir simulation equations. Note

that the coefficient matrix (∇yn(f
n)T ) in the adjoint system is simply the transpose

of the Jacobian matrix of Eq. 3.10 evaluated at yn. This is an important result as

it means that one can extract the matrices involved in the adjoint equations directly
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from the Jacobian matrices used in the simulator. This avoids the tedious process

of directly deriving the individual adjoint equations. In this sense, our derivation

shows that the adjoint method is somewhat similar to the gradient simulator method

Anterion et al. (1989) in that the coefficient matrices that appear in both problems

can be formed directly from Jacobian matrices used in solving the finite-difference

equations by the Newton-Raphson method. As the adjoint system is solved backwards

in time, information needed to compute the transpose of the Jacobian matrices must

be saved from the simulation run, whereas, in the gradient simulator method, the

desired sensitivity coefficients are computed at each time step during the simulation

run.

The detailed equations for computing the derivatives ∇yn(f
n)T , ∇yn(f

n+1)T ,

and ∇ynβ in the adjoint equation Eq. 3.21 are given in the appendix A.

Considering J as a function of m , we can write its total differential as

dJ = (∇mJ)
Tdm. (3.25)

By comparing Eq. 3.19 and Eq. 3.25, it follows that the desired sensitivity coefficients

for J , or equivalently, β, are given by

∇mJ = ∇mβ +
L
∑

n=1

[∇m(f
n)T ](λn) (3.26)

where
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(3.27)
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and

∇mβ =

















∂β
∂m1

∂β
∂m2

...

∂β
∂mNm

















. (3.28)

The matrix ∇m[f
n]T is a Nm by 3N + Nw sparse matrix and ∇mβ is a Nm

dimensional column vector.

In Eq. 3.26, the gradient ∇mβ involves the partial derivatives of β with

respect to the model parameters. If the jth model parameter does not explicitly

appear in the expression for β, then ∂β/∂mj = 0. For example, if β = pnwf , then we

set ∇mβ = 0 in Eq. 3.26.

For the results considered here, the choices of β are restricted to the wellbore

pressure, GOR and WOR at time steps where observed data for these variables are

used as conditioning data. If one wishes to use a conjugate gradient (Makhlouf

et al., 1993) or variable metric method (Yang and Watson, 1988), then one need

only compute the gradient of the objective function and this can be done by setting

β = O(m) in the adjoint procedure. In this case, one only need solve the adjoint

system Eq. 3.21 once to obtain the gradient.

From the formula given in Eq. 3.26, it is easy to write down the equations

to calculate the sensitivity coefficients for various cases. For example, to calculate

sensitivity of pwf , GOR and WOR to permeabilities (kx, ky and kz) and porosity (φ),

define vectors of model parameters kx, ky, kz and φ are defined by

mkx = kx = [ kx,1 kx,2 · · · kx,M ]T , (3.29)

mky = ky = [ ky,1 ky,2 · · · ky,M ]T , (3.30)

mkz = kz = [ kz,1 kz,2 · · · kz,M ]T , (3.31)

and

mφ = φ = [ φ1 φ2 · · · φM ]T . (3.32)
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From Eq. 3.21, we obtain the equation to calculate sensitivity to kx, ky, kz and φ,

∇kxJ = ∇kxβ +
L
∑

n=1

[∇kx(f
n)T ](λn), (3.33)

∇kyJ = ∇kyβ +
L
∑

n=1

[∇ky(f
n)T ](λn), (3.34)

∇kzJ = ∇kzβ +
L
∑

n=1

[∇kz(f
n)T ](λn), (3.35)

and

∇φJ = ∇φβ +
L
∑

n=1

[∇φ(f
n)T ](λn), (3.36)

where J is pwf , GOR or WOR at some specified time step L.

3.4 Comparison of Adjoint Method and Gradient Simulator Method

In the gradient simulator method, one takes the derivative of Eq. 3.5 with

respect to a component of m, say mi. This gives

0 =
df(yn+1, yn,m)

dmi

=
dfn+1

dmi

= [∇yn+1 [fn+1]T ]T
∂yn+1

∂mi

+ [∇yn [f
n+1]T ]T

∂yn

∂mi

+
∂fn+1

∂mi

.

(3.37)

It follows that the equation for sensitivity coefficients can be written as

[∇yn+1 [fn+1]T ]T
∂yn+1

∂mi

= −[∇yn [f
n+1]T ]T

∂yn

∂mi

−
∂fn+1

∂mi

. (3.38)

Eq. 3.38 is the formulation used to calculate the sensitivity coefficients in the gradient

simulator method.

The coefficient matrix ( [∇yn+1 [fn+1]T ]T ) on the left hand side in Eq. 3.38

is the Jacobian matrix. It is the same as the one used to solve flow equations in
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the simulator. This matrix can be directly extracted from the last Newton iteration

at each time step provided a fully implicit simulator is used. In the adjoint system,

Eq. 3.21, the coefficient matrix ([∇yn(f
n)T ]) on the left hand side is the transpose of

Jacobian matrix. The right hand side of Eq. 3.21 and Eq. 3.38 are very similar. One

can expect that it takes about the same amount of CPU time to solve Eq. 3.21 and

Eq. 3.38 once. Consider an inverse problem with Nm model parameters and Nd data

for which sensitivities are desired. Using the adjoint method, one needs to solve the

adjoint system of Eq. 3.21 Nd times. Using the gradient simulator method, one needs

to solve Eq. 3.38 Nm times. If the number of observed data is far fewer than the

number of model parameters (Nd << Nm), the adjoint method is much more efficient

than the gradient simulator method.

If a conjugate gradient method is used instead of a Newton-like method to

minimize the objective function, one only needs the gradient of the objective function

and does not need the sensitivity of the data to the model parameters. In this case,

the adjoint system Eq. 3.21 only needs to be solved once. However, the conjugate

gradient method usually takes many more iterations to converge comparing with

Newton-like method (Makhlouf et al. (1993)). If one can find good preconditioner

to improve the convergence of the conjugate gradient method, an automatic history

procedure using the conjugate gradient method to minimize the objective function

and the adjoint method to calculate the gradient could be efficient.
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3.5 Examples of Sensitivity Coefficients

Several examples are chosen to illustrate that our implementation of the ad-

joint method yields accurate compute sensitivity coefficients for three-phase, three-

dimensional flow problems. In some cases, comparison with the finite difference

method is conducted to check the accuracy.

The particular examples presented here would be a challenge for some meth-

ods that rely on assumptions of small compressibility and unchanging flow directions.

The first example is a 3-D, three-phase flow problem with water injection. This

example provides insight into the complexity offered by a three dimensional prob-

lem under three-phase flow conditions. In this example, the sensitivity coefficients

computed from the adjoint method are compared with the sensitivity coefficients

computed from the finite difference method. The results show that the agreement of

sensitivity coefficients between the two methods is nearly perfect. Second presents a

2-D solution-gas drive example that illustrates the complex behavior of the sensitivity

of GOR, even when gravity can be ignored. The third example is a two-dimensional

vertical cross-section for which gravity segregation is important. In this case, we

are able to obtain insight on whether one can estimate vertical permeability from

production data from a restricted entry well in a solution-gas drive reservoir.

3.5.1 A 3D, Three-Phase Example to Compare Sensitivity from Adjoint Method

and Finite Difference Method

We created a synthetic, three-dimensional, three-phase reservoir model to

compare the sensitivity coefficients generated from the adjoint method with those

generated from the finite difference method. The reservoir is homogeneous with

uniform horizontal permeability (kx = ky = 40 mD) and uniform vertical permeability

(kz = 4 mD). The porosity is 0.22 throughout the reservoir. The simulation grid

is 11 by 11 by 3. An injection well is located at areal gridblock (8,8) with water
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Figure 3.1: Bottom-hole pressure at producing well.

injection at rate 900 STB/d only into the bottom layer (layer 3). A well at areal

gridblock (3,3) produces a total flow rate of 1000 RB/d from the top two layers, layer

1 and 2. This results in strong cross flow in the reservoir, allowing us to explore the

possibility of estimating vertical permeability from production data. The reservoir is a

oil reservoir with initial reservoir pressure 4511 psi at the center layer and the initial

bubble point pressure 4417 psi. The production rate is greater than the injection

rate under reservoir conditions, so the reservoir pressure and bottom hole pressure

(Fig. 3.1) decrease with time. The reservoir pressure drops below the bubble point

soon after the begining of simulation. There is water break through in the producing

well at about 180 days (Fig. 3.2) and the simulation continues to 300 days.

The equation for computing the sensitivity of predicted data g(m) to the jth

model parameter mj (
∂g(m)
∂mj

) using the finite difference method is
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Figure 3.2: Gas-oil ratio and water-oil ratio at producing well.

∂g(m)

∂mj

=
g(m+ δmjej)− g(m)

δmj

, (3.39)

where ej is a unit column vector with its jth entry equal to unity and all other entries

equal to zero, δmj is the perturbation of mj. Here, g(m) may be any data, e.g., pwfm

GOR or WOR.

In the finite-difference method for calculating sensitivity coefficients, we per-

turb the permeability or porosity in each gridblock and compute the changes in

pressure, gas-oil ratio and water-oil ratio. The magnitude of the perturbation in

properties would seem to be critical for the accuracy of the finite difference method.

If the perturbation is too small, the results will be effected by roundoff errors. If the

perturbation is too large, the quadratic term which has been neglected in the Taylor

expansion may become important. Extensive experimentation with the magnitude of
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the perturbation showed that the calculated sensitivity coefficients are fairly stable,

i.e., the same sensitivity results were obtained for a certain range of the perturbation.

Based on our experiment, we chose the magnitude of the perturbation to be around

0.01% of the values of the parameters to be perturbed. This choice always resulted in

accurate sensitivity coefficients as long as each simulator run in the finite-difference

method used the exactly same time step sequence, i.e., the time step sequences in the

simulator run for computing g(m+ δmjej) and g(m) in Eq. 3.39 should be identical.

Otherwise, it some inaccuracy mat be introduced.
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Figure 3.3: The total mobility in the producing well gridblocks as a function of time.

Fig. 3.3 shows the total mobility in the producing well gridblocks changes

as a function of time. It is easy to see that the total mobilities, in both layer 1 and

layer 2, decrease with time.

Fig. 3.4, 3.5, and 3.6 present, respectively, the water, oil, and gas saturation
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Figure 3.4: The water saturation distribution at 300 days.

distribution at 300 days. From these figures, we can see the saturation distributions

in each layer. We also can see the gravity segregation effect.

Because the convergence rate in history matching depends on the accuracy

of the gradients, we have extensively tested the accuracy of the sensitivity coefficients

computed from the adjoint method. The comparison of sensitivity coefficients from

the adjoint method and from the finite difference method has been done for various

cases, including 2D and 3D solution-gas drive, water-oil two phase flow, and three-

phase flow reservoirs. In all cases, the agreement between sensitivity coefficients from

the adjoint method and from the finite different method is nearly perfect (see, for

example, Figs. 3.7-3.15). In most cases, the results from the two methods agree to 3

or 4 significant digits. In all cases, the mismatch is less than 1%.

Fig. 3.7 shows the sensitivity of pwf to horizontal permeability at 300 days.

Just as expected, the bottom hole pressure is extremely sensitive to the horizontal
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Figure 3.5: The oil saturation distribution at 300 days.

permeability of wellbore gridblocks. The producing well is only completed in the

top two layers, so the magnitude of sensitivity is high only for the top two layers.

Fig. 3.8 shows the sensitivity of pwf to vertical permeability kz at 300 days. Unlike

horizontal permeability, the vertical permeability is not involved in the wellbore model

(Peaceman equation), so ∂pwf/∂kz is not extremely high at the wellbore gridblock.

Actually, it could be even lower than the sensitivity to vertical permeability at a

gridblock without a well. Because water is injected into the bottom layer, increasing

kz will result in more water flow to the top layers and decrease total mobility, resulting

in a larger pressure drop and lower pressure. This is why in the area between wells the

sensitivity of pwf to vertical permeability is negative. Fig. 3.9 presents the sensitivity

of pwf to porosity at 300 days of production. Increasing the porosity in a gridblock

delays the water advance. So the total mobility will be higher and the pressure drop

smaller. This results in a higher pressure and thus the sensitivity of pwf to porosity
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Figure 3.6: The gas saturation distribution at 300 days.

is positive. The pwf is very sensitive to the porosity at the water front.

Fig. 3.10, 3.11, and 3.12 show the sensitivity of WOR to horizontal perme-

ability, vertical permeability and porosity at 300 days respectively. An increase in

horizontal permeability causes the water to move faster from the injection well to the

producing well, and the WOR to be higher. This is the reason that ∂WOR/∂k is

positive in the region between wells (Fig. 3.10). Similarly, more water moves from the

bottom layer to top layers as vertical permeability increases, so ∂WOR/∂kz is also

positive between wells (Fig. 3.11). On the other hand, an increase in porosity will

delay water moving to producing well. Sensitivity of WOR to porosity is negative in

the swept region (Fig. 3.12).

Sensitivity of the gas-oil ratio is more complicated and very difficult to un-

derstand. The GOR includes two sources. One source is dissolved gas, which is

increased as pressure increases. The other part is free gas, and the amount of free gas
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production decreases as pressure increases. If dissolved gas dominates in the GOR,

we expect GOR to increase as pressure increases. If free gas dominates in the GOR,

the GOR will decrease as pressure increases. The critical gas saturation (Sgc) for this

reservoir is about 0.05. Fig. 3.14 shows the sensitivity of GOR to vertical permeabil-

ity kz. In this example, we know that the pressure decreases as kz increases. At 300

days (Fig. 3.14), free gas is the primary contributor to gas production at the well,

so ∂GOR/∂kz is positive between the wells. Fig. 3.15 shows the sensitivity of GOR

to the porosity. As we discussed in the previous section, an increase in porosity, φ,

causes the pressure to increase in the reservoir. At 300 days (Fig. 3.15), free gas is

dominant in most areas, so the ∂GOR/∂φ is negative.
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(a) Adjoint method.
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(b) Finite difference method.

Figure 3.7: Sensitivity of bottom-hole pressure at producing well to horizontal per-

meability at 300 days.
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(b) Finite difference method.

Figure 3.8: Sensitivity of bottom-hole pressure at producing well to vertical perme-

ability at 300 days.



43

10 25 40 55 70 85

(a) Adjoint method.

10 25 40 55 70 85
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Figure 3.9: Sensitivity of bottom-hole pressure at producing well to porosity at 300

days.
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Figure 3.10: Sensitivity of water-oil ratio at producing well to horizontal permeability

at 300 days.
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(a) Adjoint method.
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(b) Finite difference method.

Figure 3.11: Sensitivity of water-oil ratio at producing well to vertical permeability

at 300 days.



46

-0.20 -0.15 -0.10 -0.05
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Figure 3.12: Sensitivity of water-oil ratio at producing well to porosity at 300 days.
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(b) Finite difference method.

Figure 3.13: Sensitivity of gas-oil ratio at producing well to horizontal permeability

at 300 days.
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(a) Adjoint method.
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(b) Finite difference method.

Figure 3.14: Sensitivity of gas-oil ratio at producing well to vertical permeability at

300 days.
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Figure 3.15: Sensitivity of gas-oil ratio at producing well to porosity at 300 days.
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3.5.2 A 2D Solution Gas Drive Example

The grid of the reservoir model is 21 by 21 with 40 feet by 40 feet gridblocks.

The reservoir is a homogeneous reservoir. The permeability and porosity are 40 mD

and 0.22, respectively, in each gridblock. The initial reservoir pressure is 4500 psi and

the bubble point pressure is 4417 psi. There is a single producing well at gridblock

(1,1) which is produced at a constant oil rate of 200 STB/d. The reservoir pressure

drops below the bubble point pressure very soon after the reservoir starts producing

oil.
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Figure 3.16: Producing gas-oil ratio.

Fig. 3.16 shows the producing gas-oil ratio as a function of time. From 1

to 5 days, the GOR decreases with the time. The reservoir pressure also drops with

time. Lower pressure will result in a lower solution gas-oil ratio as gas comes out

of solution. During this period, the gas saturation in all gridblocks is below the
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critical gas saturation (Sgc=0.05) and no free gas is produced, so the GOR decreases

with time. From about 5 days, free gas begins to flow in the reservoir, so the GOR

increases with time.

In this example, we investigate the behavior of sensitivity coefficients at 4

days, 80 days, and 170 days. At 4 days, all gridblock pressures are just below the

bubble point pressure. However, the gas saturation in all gridblocks is less than

critical gas saturation 0.05. There is therefore no free gas flowing in the reservoir at 4

days. At 80 days, the gas saturation ranges from about 0.055 to 0.09. All gridblocks

have mobile free gas. At 170 days, the gas saturation is between 0.119 to 0.137, and

the relative permeability to gas is moderately high.

Figs. 3.17 to 3.20 show the sensitivity coefficients for flowing well bore pres-

sure and producing GOR with respect to permeability and porosity along a row of

gridblocks in the x-direction. A distance equal to zero pertains to the well bore

gridblock (1,1). The distance 800 feet pertains to the gridblock (1,21).
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Sensitivity of pwf to Permeability
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Figure 3.17: Sensitivity of bottom hole pressure to permeability.

Fig. 3.17 shows the sensitivity of pwf to permeability at three different times.

Just as expected, the bottom hole pressure is extremely sensitive to the permeability

of the well bore gridblock. Note that a log scale is used for the ordinate axis. As the

distance away from the well increases, the sensitivities decrease very fast. Comparing

the sensitivities at 4 days, 80 days, and 170 days, we can see that at the later time,

pressures are more sensitive to outside gridblocks. All the values of the sensitivities to

permeability are positive. This makes sense. As the permeability increases, the pres-

sure drop will decrease. So the pressure will be higher and the sensitivity coefficient

is positive.
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Figure 3.18: Sensitivity of GOR to permeability.

Sensitivity of GOR to Permeability

Unlike the sensitivity of pressure, the GOR is not always highly sensitive to

the wellbore gridblock (Fig 3.18). At the early time (4 days), GOR is more sensitive to

permeability around well bore. However, at the later times (for example, at 80 days),

the GOR could be more sensitive to the permeabilities of the gridblock far from the

wellbore than to these near the well-bore. At 4 days, there is no free gas flowing in the

reservoir. As we discussed previously, the pressure increases with the permeability.

The increase in pressure will result in more dissolved gas, and the GOR will increase.

So the sensitivity of GOR to permeability is positive. At 80 days and 170 days, there

is a lot of mobile free gas in the reservoir. As the pressure increases due to an increase

in permeability, more free gas will be dissolved, and the gas saturation will decrease.

At this stage, free gas dominates the reservoir production and the gas production rate
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will decrease with increasing permeability, so the sensitivity coefficients are negative.

Sensitivity of pwf to Porosity
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Figure 3.19: Sensitivity of bottom hole pressure to porosity.

Fig 3.19 shows the sensitivity of pwf to the porosity along the same row

of gridblocks introduced in the previous two figures. The values of these sensitivity

coefficients are always positive. This is because an increase in the porosity provides

pressure support and results in higher pressure. It is very clear that pwf becomes

more sensitive to the porosity of gridblocks far from the well at the later times.

Sensitivity of GOR to Porosity

Fig 3.20 presents the sensitivity of GOR to porosity. An increase in the

porosity will result in an increase in pressure. At 4 days, there is no free gas flowing
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Figure 3.20: Sensitivity of GOR to porosity.

in the reservoir, an increase in the pressure will increase the gas production rate. So

the sensitivity is positive. At the 170 days, the free gas is dominant, so the sensitivity

is negative.
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3.5.3 A Cross Section Example

In this section, we consider a vertical cross section solution gas drive reser-

voir. The number of gridblocks is 15 in the x-direction, 8 in the z-direction (vertical

direction) and 1 in the y-direction. The size of gridblocks is 40 feet in the x and

y-direction, and 30 feet in the z-direction. The horizontal and vertical permeabilities

are 40 mD and 4 mD in each gridblock, respectively. The porosity field is uniformly

distributed with a value of 0.22. The single producing well is located at the bottom

center (gridblock (8,1,8)) of the reservoir and produced at a constant oil rate of 50

STB/d. This reservoir is an oil reservoir and the initial oil saturation is 0.8. The

initial water saturation is 0.2, which is equal to the irreducible water saturation Swc.

The initial reservoir pressure is 4500 psi at the bottom layer of the reservoir and the

bubble point pressure is 4417 psi. The reservoir pressure drops below bubble point

very soon after the beginning of simulation run. The simulation is run from 0 to 400

days. The average reservoir pressure drops to about 1650 psi at 400 days.
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Figure 3.21: Pressure distribution.

Fig. 3.21 shows the pressure distribution in the reservoir at 30 days, 200

days, and 400 days. At 30 days, we still can see the gravity effect on the pressure
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distribution. From the top layer to the next 3 layers, the gridblock pressures increase

gradually with depth. The reservoir pressure clearly decreases with time. The lowest

pressure is always in the well bore gridblock.
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Figure 3.22: Oil saturation distribution.

Fig. 3.22 presents the oil saturation distribution at 30 days, 200 days, and

400 days. At 30 days, a lot of oil has been withdrawn from the wellbore gridblock, so

the lowest oil saturation is in the wellbore gridblock, gridblock (8,1,8). At the later

times (200 and 400 days), because of the gravity effect, the oil moves down to the

lower layers and gas moves up to the upper layers. The lowest gridblock oil saturation

is in the top layer.

Fig. 3.23 is the gas saturation distribution at different time steps. At 30 days,

the biggest gas saturation is about 0.032. It is smaller than the critical gas saturation

0.05. So there is no free gas in the reservoir at this time step. Because the lowest

pressure is in the wellbore gridblock, the highest gas saturation is in this gridblock.

At later time (200 and 400 days), we can see the effect of gravity segregation in the

reservoir. The gas moves to the top layers, so gas saturation is higher in the upper

layers.

The producing gas-oil ratio decreases from 1410 scf/STB (the initial dissolved
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Figure 3.23: Gas saturation distribution.

gas-oil ratio) to 1292 scf/STB at 50 days. From 50 days onward, GOR increases with

time. It reaches 11,600 scf/stb at 400 days.

Sensitivities of pwf and GOR to horizontal and vertical permeability, and

porosity computed using the adjoint method are shown in Figs. 3.24 through 3.29. All

these sensitivities have been compared with those computed from the finite difference

method. We found that the match between the two methods was nearly perfect. The

difference was less than 1 percent in all cases.

Sensitivity of pwf to Horizontal Permeability

Fig. 3.24 shows the sensitivities of pwf to the horizontal permeability. Similar

to the previous example, the pressure is strongly sensitive to the horizontal permeabil-

ity at the well bore gridblock. It is also quite sensitive to the horizontal permeability

of other gridblocks in the bottom layer (layer 8). The pressure is much less sensitive

to the horizontal permeability of other layers. At later time, the bottom hole pressure

is more sensitive to the permeability of outside gridblocks and the magnitudes are

bigger.
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Figure 3.24: Sensitivity of bottom-hole pressure to horizontal permeability.

Sensitivity of pwf to Vertical Permeability
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Figure 3.25: Sensitivity of bottom-hole pressure to vertical permeability.

Fig. 3.25 presents the sensitivity of bottom-hole pressure to the vertical per-

meability at 30 days, 200 days, and 400 days. Since there is strong cross flow in this

reservoir, vertical permeability plays an important role in the reservoir behavior. The

pressure is most sensitive to the vertical permeability of the gridblock just above the

wellbore gridblock. This is because most of fluid that flows to the wellbore gridblock
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must pass through this gridblock. At early time (30 days), pressure is only sensitive

to vertical permeability in the gridblocks near the well. At later time (200 and 400

days), it is more sensitive to vertical permeability in gridblocks far away from the

well. An increase in the vertical permeability allows fluid to flow more easily to the

wellbore and thus results in less pressure drop, so the sensitivity of pressure to vertical

permeability is positive.

Sensitivity of pwf to Porosity
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Figure 3.26: Sensitivity of bottom-hole pressure to porosity.

Higher porosity provides additional pressure support. The pressure increases

as porosity increases, so the the sensitivity of pressure to porosity is positive (Fig: 3.26).

At 30 days, pressure is most sensitive to the porosity in the gridblocks near the

wellbore. At later times (200 and 400 days), the pressure is more sensitive to the

gridblocks far away from the wellbore gridblock.

Sensitivity of GOR to horizontal permeability

Sensitivity of the producing gas-oil ratio is more difficult to understand.

Fig. 3.27 shows the sensitivity of GOR to horizontal permeability. At 30 days, there
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Figure 3.27: Sensitivity of GOR to horizontal permeability.

is no free gas in the reservoir. All produced gas comes from the dissolved gas in

the oil phase. An increase in the horizontal permeability results in higher pressure

and more gas dissolved in the oil. As a result, more gas will be produced, so the

sensitivity of GOR is positive. At later time (200 and 400 days), free gas is dominant

in the reservoir, so the sensitivity of GOR to horizontal permeability is negative in

the gridblocks of the bottom layer (layer 8).

Sensitivity of GOR to vertical permeability

Fig. 3.28 presents the sensitivity of gas-oil ratio to the vertical permeability.

At 30 days, there is no free gas flowing, so the sensitivity to the vertical permeability

is positive. At 200 days, there is mobile free gas in every gridblock, so the sensitivity

to vertical permeability is negative for all gridblocks except the well gridblock.

Sensitivity of GOR to Porosity

Fig. 3.29 presents the sensitivity of gas-oil ratio to the porosity. As we

discussed previously, the pressure increases as the porosity increases. At 30 days,

there is no free mobile gas, so the sensitivity of GOR to porosity is positive. At later
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Figure 3.28: Sensitivity of GOR to vertical permeability.
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Figure 3.29: Sensitivity of GOR to porosity.

time, free gas is dominant in the reservoir, so the sensitivity of GOR to porosity is

negative.



CHAPTER IV

APPLICATIONS OF AUTOMATIC HISTORY MATCHING PROCEDURE

In this chapter, we show some computational examples of automatic history

matching.

4.1 A 2D Three-Phase Reservoir

Here, we consider some simple examples to illustrate that our procedures

for constructing the MAP estimate give reasonable results. We also investigate the

reduction in uncertainty obtained by conditioning to various types of data.

4.1.1 The True Model and Observed Data

The true model for the 2D example is shown in Fig. 4.1. It represents a

three zone reservoir. The value of log-permeability is 3.7 (40.4 mD) in the lower left

quadrant, 4.3 (73.7 mD) in the lower right quadrant and 3.9 (49.4 mD) in the upper

part. The porosity is constant throughout the reservoir with φ = 0.22. A 21× 21× 1

grid is used for reservoir simulation. A uniform grid is used with ∆x = ∆y = 60

ft and ∆z = h = 20 ft, where throughout, h denotes reservoir thickness. There are

five fully-penetrating wells completed in the reservoir. Well 5 is a water injection

well which is located at the center of the reservoir i.e. in gridblock (11,11). Wells

1 through 4 are producing wells and are located, respectively, in gridblocks (4, 4),

(18, 4), (18, 18) and (4, 18). At well 5, water is injected at a rate of 2100 STB/D.

Each producing well produces at total fluid rate of 600 RB/D. The initial reservoir

pressure is 4500 psi and the initial bubble point pressure is 4415 psi. The initial oil

saturation is 0.8 and the initial water saturation is equal to the irreducible water

63
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Figure 4.1: True log-permeability fields, well locations and well numbers; 2D three-

phase flow.

saturation Swc=0.2. In RB, the injection rate is smaller than the producing rate so

the average reservoir pressure declines with time.

The observed data, pwf , GOR and WOR, are generated by running the

simulator with the true model rock property fields for a total time of 240 days. No

noise was added to the data. The bottom-hole pressure, gas-oil ratio, and water-oil

ratio, respectively, are shown in the Figs. 4.2, 4.3, and 4.4. Pressures drop at similar

rates at all wells until about 140 days (Fig. 4.2) when water first breaks through

at well 2 (Fig. 4.4), which is in the high permeability region. For each well, just

after water breaks through, the bottom hole pressure drops sharply. GOR’s begin

increasing in all wells after about 80 days (Fig. 4.3). The increase is slowest in well

2, presumably because of the greater pressure support.

We selected 8 data points for each type of data at each producing well. Thus,

we have 96 total data points that may be used as conditioning data. The data are

uniformly distributed in the zero to 240 day time period. For the example considered
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Figure 4.2: Bottom-hole pressure response of the true model.
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Figure 4.3: Gas-oil ratio response of the true model.
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Figure 4.4: Water-oil ratio response of the true model.

here, the prior variance for bottom hole pressure measurement errors is set equal to

1.0 and the prior variance for GOR measurement errors is set equal to 10.0. (This

is a small variance for GOR measurement errors. Increasing the value to 100 does

not significantly alter the results presented below.) The prior variance for WOR

is calculated by Eq. 2.22. we chose σminqw,obs
= 2STB/D, εo = 0.01 and εw = 0.02.

The prior variance for the ln(k) field is 0.5 and the prior mean is 4.0. An isotropic

spherical semivariogram with a range of 250 feet was used to generate the covariance

matrix. Note this means that correlation range for log-permeability field is about 4

gridblocks. In generating the MAP estimate, the initial guess of log-permeability is

equal to the prior mean of 4.0 throughout the reservoir.
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4.1.2 MAP Estimate Results and Normalized A Posterior Variance

Fig. 4.5 shows MAP estimates of log-permeability obtained by conditioning

to various data sets, (a) only wellbore pressures, (b) only to GOR data, (c) only to

WOR data, (d) to both pwf and GOR, (e) to both pwf and WOR and (f) to all data,

i.e., all wellbore pressure data, all GOR data and all WOR data. In all cases, the

MAP estimate results are qualitatively correct in the sense that they give a rough

approximation of the true permeability field. It is important to note that in generating

the MAP estimates, we are not simply estimating three values of permeability — we

are estimating the value of log-permeability at all simulator gridblocks.

Comparing Fig. 4.5(d)–4.5(f), which are conditioned to more than one type

of data, to Fig. 4.5(a)–4.5(c), which are only conditioned to one type of data, we can

see that the MAP estimates generated by conditioning to more that one data type

give values closer to the true values (Fig. 4.1) over a broader range. However, in the

case of WOR data, the resolution of the permeability field obtained by conditioning

to both wellbore pressure data and WOR ratio data is about the same as that ob-

tained by conditioning only to pwf data. The best results (closest to the truth) are

obtained by conditioning to all types of data. Recalling that the true log-permeability

for the lower right part is 4.3 (yellow in the Fig. 4.5), we see that the MAP estimates

generated by conditioning only to one type of data (Fig. 4.5(a)-4.5(c)) exhibit some

ln(k) values higher than 4.3 (overshoot, red color), but the MAP estimated gener-

ated by conditioning to all three types of data or to pressure and GOR exhibit less

overshoot. In this regard, conditioning to both pwf and GOR data (Fig. 4.5(d)) gives

better results than are obtained by conditioning only to pressure data (Fig. 4.5(a)) or

only to GOR data (Fig. 4.5(b)). As noted previously, the MAP estimate obtained by

conditioning to both pwf and WOR is very similar to the MAP estimate obtained by

conditioning only to pwf . Similarly, the inversion result conditioned to all three types

of data (Fig. 4.5(f)) is not significantly different from the inversion result conditioned
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(c) Conditioned only to WOR data.
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(e) Conditioned to both pwf and WOR

data.
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(f) Conditioned to all pwf , GOR and

WOR data.
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Figure 4.5: Maximum a posteriori estimate of log-permeability conditioned to pwf ,

GOR and WOR data and their combinations.
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to pwf and GOR data (Fig. 4.5(d)). From above discussion, we conclude that (i)

adding either pwf or GOR data as conditioning data can significantly improve the

inversion results. (ii) Similar to previous comments made by Landa (1997) and Wu

et al. (1999) adding WOR data to another data type does not significantly improve

the MAP estimate. Although results are not shown, increasing the variance of the

GOR measurement error to 100 (scf/STB)2 does not change these conclusions. Ad-

ditional support for these two conclusions can be obtained by examination of the a

posteriori variances. This aspect is considered next.

The normalized a posteriori variance can be used to estimate the reduction

in uncertainty obtained by conditioning to production data, see Tarantola (1987) and

He et al. (1997) and the discussion of Eq. 2.25. Fig. 4.6 shows the normalized a pos-

teriori variance of log-permeability obtained by conditioning to pwf , GOR and WOR

data and various combinations. The a posteriori variance has been normalized by

the prior variance. Thus, if the normalized a posteriori variance is equal to 1.0, the

uncertainty has not been reduced by conditioning to production data. If the normal-

ized variance is smaller than 1.0, the uncertainty has been reduced by conditioning to

production data, and the smaller the normalized a posteriori variance, the greater the

reduction in uncertainty. In all cases, the uncertainty has been significantly reduced

around producing wells by conditioning to production data, but close to the reservoir

boundary, especially in the four corners, the normalized a posteriori variance is close

to 1.0. The results of Fig. 4.6(a) indicate that the a posteriori variance for ln(k) is

extremely small in the producing well gridblocks. This is because pwf is extremely

sensitive to the permeability in completed wellbore gridblocks, and thus, these per-

meabilities are resolved well by matching wellbore pressure data. (We should note,

however, that well skin factors are fixed at zero for all results presented here.) Note

if we condition only to one type of data, the smallest reduction in uncertainty is

obtained by conditioning to WOR. Again conditioning to both wellbore pressure and

WOR (Fig. 4.6(e)) does not give a significantly greater reduction in uncertainty than
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Figure 4.6: Normalized a posteriori variance of log-permeability conditioned to pwf ,

GOR and WOR data and their combinations.
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Figure 4.7: Comparison of the rate of convergence of the objective functions when

conditioning to pwf , GOR, WOR and their combinations.

is obtained by conditioning only to pwf (Fig. 4.6(a)). However conditioning to both

pressure and GOR data (Fig. 4.6(d)) yields a markedly greater reduction in uncer-

tainty than is obtained by conditioning to only pressure data (Fig. 4.6(a)) or only to

GOR data (Fig. 4.6(b)).

Each of the MAP estimates presented above was generated by minimizing

the appropriate objective functions using the Levenberg-Marquardt method with ini-

tial damping factor equal to 105. Fig. 4.7 shows the rate of convergence of the

Levenberg-Marquardt algorithm for different objectives functions, i.e., for different

sets of conditioning production data. The rate of convergence is very fast requiring

about six to eight iterations to obtain convergence in each case. The convergence

tolerance ε1 and ε2 in Eq. 2.20 and 2.21 are equal to 10−3.

Fig. 4.8, 4.9 and 4.10 show the matches obtained for the various types
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Figure 4.8: Bottom-hole pressure match after conditioning to pwf , GOR and WOR

data.

of conditioning data. The dashed line in each figure is the pressure, GOR, and

WOR responses of the initial guess model. The MAP estimate is started from a

homogeneous model, so the pressure, GOR, and WOR for the initial model are the

same in all four wells. Data points represent observed data and solid curves represent

production data predicted from the MAP estimates. Note we obtained an excellent

history match in all cases.

4.1.3 Optimization Algorithm

As noted before, the MAP estimate that was presented was obtained using

a Levenberg-Marquardt algorithm. A limited set of experiments indicates that the

Levenberg-Marquardt method has better convergence properties than the standard

Gauss-Newton method especially for cases where the initial data mismatch is large.
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Figure 4.9: Gas-oil ratio match after conditioning to pwf , GOR and WOR data.
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Figure 4.10: Water-oil ratio match after conditioning to pwf , GOR and WOR data.



74

Here, we compare these two algorithms for a two-dimensional, two-phase (oil-water)

flow problem. The true permeability field (Fig. 4.1), porosity, fluid properties, the

prior model, the simulation grid, well constraints and well locations are the same as

considered in the previous example. Each of the four producing wells produces at total

rate 200 RB/d. The injection well injects water at rate 785 STB/d. We generate eight

pwf observed data for each producing well in a 320 days period. The MAP estimates

are conditioned to the pwf data only. Fig. 4.11 compares the rate of convergence of the

Levenberg-Marquardt and Gauss-Newton algorithms. Note that the Gauss-Newton

method converges very slowly and converges to local minimum which give a higher

value of the objective function. Fig. 4.12 shows the MAP estimates. Using Levenberg-

Marquardt method (Fig. 4.12(b)), we obtained a reasonable estimate of the true

log-permeability field (Fig. 4.1). The MAP estimate generated from Gauss-Newton

method (Fig. 4.12(a)) is very rough and far from the the true model Fig. 4.1. For

example, in the lower left quadrant of the reservoir, the true value of log-permeability

is 3.7, but in the results obtained from the Gauss-Newton method, gridblock values

of log-pemeability range from from 2.5 to 5.0 in this quadrant.
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Gauss-Newton and Levenberg-Marquardt algorithms.
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Figure 4.12: Comparison of MAP estimate of log-permeability conditioned to pwf

data using Gauss-Newton and Levenberg-Marquardt algorithms.
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4.2 3D, Three-Phase Example

The example presented here is one which is sufficiently complex to be in-

structive but small enough so that we were able to check the sensitivity coefficients

computed by the adjoint method with those computed by the finite-difference method.

Although some of the sensitivity coefficient results presented are not easy to explain

from a purely physical viewpoint, all of them have been compared with results gen-

erated with the finite-difference method. (In some previous publications, the finite-

difference method was referred to as the direct method, see, for example, Chu and

Reynolds (1995) or He et al. (1997).) For all cases considered example, the adjoint

method and finite-difference method gave results that agreed to two significant digits.

The areal extent of the reservoir is 600 feet by 600 feet and contains two layers. Layer

1 refers to the top layer and layer 2 refers to the bottom layer. The thickness of each

layer is uniform and equal to 30 feet. A uniform 15×15×2 finite difference grid with

∆x = ∆y = 40 ft and ∆z = 30 ft is used in all reservoir simulation runs.
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(a) True model, layer 1.
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(b) True model, layer 2.

Figure 4.13: True model of horizontal log-permeability, layer 1 (left) and layer 2

(right).
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Each layer of the true model consists of three permeability regions. Fig. 4.13(a)

and 4.13(b) shows the distribution of values of horizontal log-permeability in layer

1 and layer 2, respectively. For layer 1, ln(k) = 5.2 (k = 181 md) in the lower left

quadrant, ln(k) = 5.8 (k = 330 md) in the lower right quadrant and ln(k) = 5.5

(k = 245 md) in the upper half. For layer 2, ln(k) = 3.7 (k = 40 md) in the lower

left quadrant, ln(k) = 4.3 (k = 74 md) in the lower right quadrant and ln(k) = 4.0

(k = 55 md) in the upper half. In the truth case, vertical permeability is equal to

one-tenth horizontal permeability in the top layer and is equal to two-tenths of hori-

zontal permeability in the bottom layer. Thus, for layer 1, ln(kz) = 2.9 (kz = 18 md)

in the lower left quadrant, ln(kz) = 3.5 (kz = 33 md) in the lower right quadrant and

ln(kz) = 3.2 (kz = 24.5 md) in the upper half. For layer 2, ln(kz) = 2.1 (kz = 8 md)

in the lower left quadrant, ln(kz) = 2.7 (kz = 15 md) in the lower right quadrant and

ln(kz) = 2.4 (kz = 11) in the upper half. Here reservoir porosity is assumed to be

known and uniformly distributed with φ = 0.22. Even though the truth case consists

of zones, permeabilities of each grid cell are estimated. The simplicity of the example

chosen allows one to easily visualize the quality of estimates.

Capillary effects are not included. Initial reservoir pressure at the depth

corresponding to the center of the top layer is specified as pi = 4500 psi. Initial

bubble point pressure is set equal to 4515 psi. Initial water saturation is equal to

irreducible water saturation which is equal to 0.2. Initial oil saturation is So,i =

0.8. As mentioned previously, Stone’s second model is used to calculate the relative

permeability to oil from the two sets of two-phase relative permeability curves. For

the two-phase oil-water system, residual oil saturation is 0.2. For the two-phase

gas-oil system, residual oil saturation is 0.3 and critical gas saturation is equal to

0.05.

The reservoir contains four producing wells which are completed only in

the top layer. The white gridblocks in Fig. 4.13(a) and 4.13(b) show the location

of the gridblocks that contain wells. These wells are located near the four corners
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of the reservoir. Well 1 is completed in gridblock (3, 3, 1), well 2 is completed is

gridblock (13, 3, 1), well 3 is completed in gridblock (13, 13, 1) and well 4 is completed

in gridblock (3, 13, 1). Each of the wells is produced at total flow rate of 350 RB/D.

A single water injection well (well 5) completed in gridblock (8, 8, 2) is used to inject

water into the bottom layer at a rate of 1100 STB/D. At initial reservoir pressure,

this is equivalent to an injection rate of 1107 RB/D. Note that the injection well

(well 5) is located in the lower right quadrant of the bottom layer, which corresponds

to the highest permeability zone (ln(k) = 4.3) of the bottom layer. The true skins

factors at wells 1 through 5, respectively, are specified as 3.0, 4.0, 5.0, 2.0 and 0.0.

By running the simulator using data from the truth case as input, the pro-

duction response shown in Figs. 4.14 and 4.15 were obtained. No noise was added

to the data generated by the simulation. the prior variance for bottom hole pressure

measurement errors is set equal to 1.0 and the prior variance for GOR measurement

errors is set equal to 100. The prior variance for WOR is calculated by Eq. 2.22. As

the injection rate in RB/D is less than the producing rate, the pressure at all four

producing wells (not shown) continually decreases with time. Except at very early

times, the pressure at the injection well also decreases with time.

Using the adjoint method, we computed the sensitivity of pressure, GOR,

WOR to model parameters. Note that even though the true reservoir consists of

zones, we generate the sensitivity to each gridblock permeability individually. The

results we show indicate that physical intuition and an understanding of reservoir

physics does not always enable one to understand how changing permeabilities will

affect production data. Because of this, sensitivity coefficients can be useful even if

one does not wish to fully automate the history matching process.

For the example considered, wells produce from only one gridblock so the

water-oil ratio and gas-oil ratio, respectively, are given by

WOR =
krwµoBo

kroµwBw

, (4.1)
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and

GOR = Rs +
krgµoBo

kroµgBg

. (4.2)

These equations are applied at each producing well and are evaluated using the pres-

sure and saturations of the gridblock containing the well.
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Figure 4.14: The gas-oil ratio.
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Figure 4.15: The water-oil ratio.

Fig. 4.14 shows the GOR as a function of time. The initial GOR is equal to

1400 scf/STB. As the pressure in gridblocks near producing wells drops below bubble-

point pressure immediately after beginning production, a free gas phase immediately

begins to form in the reservoir and Rs decreases. As gas saturation is below critical,

the GOR goes down. Gas saturation first exceeds critical gas saturation at about

70 days. From about this time onwards, the ratio krg/kro increases rapidly and the

contribution of this term to the producing GOR more than makes up for the decrease

in Rs. Up to 140 days (the time of breakthrough in well 3) the GOR is essentially

identical at all wells, but from about 165 days onward, the GOR’s at the wells are

somewhat different.

As shown in Fig. 4.15, water breakthrough first occurs in well 3. This is

the expected result because well 3 is located in the lower right quadrant; horizontal
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permeability and vertical permeability is highest is this quadrant. The fact that well

4 breaks through last is also obvious since this well is located in a quadrant of the

reservoir where horizontal and vertical permeabilities are the lowest.

4.2.1 Dimensionless Sensitivity Coefficients

For three-dimensional multiphase flow problems, sensitivity coefficients are

difficult to understand physically. If one wishes to perform history matching by

manually adjusting parameters instead of using a fully automated procedure, the

availability of a procedure to compute sensitivity coefficients should prove valuable in

those cases where we are unable to apply physical intuition to predict how a change

in a model parameter will change production data. The sensitivity of GOR to the

permeability field is particularly hard to predict. The reason for this difficulty is

that the gas production rate consists of two parts, gas dissolved in the oil phase

(reflected by Rs) and the free gas flow rate which is largely controlled by gas relative

permeability. If, as should be expected, an increase in permeability in the well’s

gridblock results in an increase in gridblock pressure, then Rs increases, but gas

saturation will typically decrease resulting in a decrease in the production rate of free

gas. If the incremental increase in the production rate of dissolved gas is greater than

the incremental decrease in the rate of production of free gas, then the increase in

permeability will result in an increase in GOR so the sensitivity of GOR to gridblock

permeability is positive. On other hand if the incremental decrease in the production

rate of free gas is greater than the increase in the production rate of dissolved gas,

then the sensitivity will be negative. The interpretation of sensitivity coefficients is

further complicated when injected water is displacing both oil and gas and flow occurs

in both the horizontal and vertical directions. In this case, the sensitivity of WOR or

GOR to a gridblock permeability depend on gridblock pressure, water saturation and

gas saturation and changes in these variables depend on how a change in permeability

affects flow of each phase in all three directions.
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To understand the effect that data will have on the reduction in different

types of model parameters, one should construct dimensionless sensitivity coefficients.

Following F. Zhang and Oliver (2000), the dimensionless sensitivity of the ith data,

gi, to the jth model parameter is defined by

si,j =
∂gi
∂mj

σmj

σd,i
, (4.3)

where σmj
denotes the prior variance in model parameter mj and σd,i denotes the

variance of the measurement error for the ith observed data.

Sensitivity to Horizontal Permeability.

Fig. 4.16 shows a plot of the dimensionless sensitivity of the flowing wellbore

pressure to the horizontal log-permeability field of layer 1 at four different times.

In this figure, and in similar ones presented later, sensitivities are shown along a

diagonal line of gridblocks from the upper left corner to the lower right corner of the

reservoir as oriented in Fig. 4.13. Thus, gridblock 3 pertains to the areal location

of well 1 and gridblock 8 pertains to the areal location of the injection well. As

has been shown in previous work (see, for example, Wu et al. (1999)), the pressure

is most sensitive to permeability in the gridblock containing the well. Increasing

k in this gridblock decreases the pressure drop necessary to maintain the specified

total flow rate (350 RB/D). Thus increasing k results in an increase in the flowing

bottomhole pressure. It is interesting to note that sensitivities corresponding to

gridblock log-permeabilities between well 1 and the injection well are negative at 210

days. From a careful examination of the simulation results, we find that increasing

k in this region increases the velocity of water in this interwell region and leads to

higher water saturation and lower oil and gas saturations in the gridblock containing

well 1. Oil and gas saturation both decrease but these changes are such that (i)

total mobility decreases (ii) krg/kro increases, (iii) krw/kro increases. Because of the

decrease in total mobility, a lower flowing wellbore pressure is needed to maintain the
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specified production rate so the sensitivity of pwf to horizontal log permeability in

this interwell region is negative. Observations (ii) and (iii) explain why the sensitivity

of the water-oil ratio (Fig. 4.17) and the producing gas-oil ratio (Fig. 4.18) to each

gridblock log-permeability in this interwell region of layer 1 are positive.

At 300 days, the wellbore pressure at well 1 is largely insensitive to the layer 1

gridblock log-permeabilities between well 1 and the areal location of the injection well.

By this time, an increase in one of these gridblock permeabilities results in a small

change in total mobility. More specifically, the resulting decrease in gas mobility is

small, and the increase in water mobility essentially offsets the decrease is oil mobility

so that total mobility changes very little. However, the mobility ratios krg/kro and

krw/kro still increase if horizontal permeability is increased and the sensitivity of the

water-oil ratio (Fig. 4.17) and the producing gas-oil ratio (Fig. 4.18) to each gridblock

log-permeability in this interwell region of layer 1 is still positive.

As shown in Fig. 4.17, the sensitivity of the water-oil ratio to layer 1 hori-
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Figure 4.19: Dimensionless sensitivity

of GOR at well 1 to horizontal log-

permeability of layer 2.

zontal log-permeability is negative at gridblocks that are near the injection well and

between well 3 and the injection well. This makes sense because increasing these per-

meabilities causes more of the injected water to flow towards well 3 thus decreasing

the WOR at well 1. On the other hand increasing the permeability in the interwell re-

gion between well 1 and the injector causes more of the injected water to flow towards

well 1 and increases the velocity of flow. Thus, the water saturation and WOR at well

1 increases. The sensitivity of the producing GOR to these permeabilities (Fig. 4.18)

is not so easily explained and the behavior of the dimensionless sensitivity of GOR

to horizontal log-permeability in layer 2 (Fig. 4.19) would be extremely difficult to

predict a priori solely from physical intuition. The results shown in Fig. 4.19 pertain

to the diagonal row of gridblocks in layer 2 that correspond to the layer 1 diagonal

row of gridblocks shown in Fig. 4.18.

Figures 4.19, 4.20 and 4.21 show plots of the dimensionless sensitivity of

well 1’s producing GOR, WOR and flowing bottomhole pressure to layer 2 horizontal
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ity of pwf at well 1 to horizontal log-

permeability of layer 2.

permeability at the same times considered in previous sensitivity coefficient plots.

For the most part, we are unable to give a clear physical interpretation of the results.

It is interesting to note that the WOR sensitivities at 210 days and at 300

days are approximately a negative constant times the pressure sensitivity coefficients

at the corresponding times. This occurs because in this specific situation, a change

in a permeability that results in an increase in WOR, results in a decrease in total

mobility and a decrease in the pwf needed to make the specified total production rate

at well 1. Similarly, a decrease in WOR due to a change in permeability corresponds

to an increase in pwf .

Since Eq. 2.18 indicates that the change in model parameters over a Levenberg-

Marquardt iteration is determined by a linear combination of CM ĝi where ĝi denotes

the ith column of GT
l , this suggests that the reduction in uncertainty in layer 2 hor-

izontal log-permeability obtained by conditioning the model to pressure plus WOR

data may be essentially the same as the reduction in uncertainty obtained by condi-
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tioning only to pressure.

Sensitivity to Vertical Permeability.

Figures 4.22 and 4.23 show plots of the dimensionless sensitivity of well 1’s

flowing bottomhole pressure and producing GOR to layer 2 vertical permeability at

the same times considered in previous sensitivity coefficient plots. Increasing kz in

gridblock 3 of Fig. 4.22 increases flow from layer 2 to layer 1 at the areal location of

well 1 which produces only from layer 1. This provides pressure support, or from a

well test analysis viewpoint decreases the pseudoskin factor due to restricted-entry.

This effect by itself tends to result in a higher bottomhole pressure. Moreover, as

this gridblock vertical permeability is increased, a greater precentage of the fluid

flowing into the layer 1 gridblock containing the well comes from layer 2. At times

after breakthrough, this results in a lower water saturation and higher wellblock total

mobility. The higher total mobility also results in an increase in flowing bottomhole

pressure. After breakthrough, which occurs at about 165 days, this second effect

contributes significantly and results in a higher value of the sensitivity coefficient. A

clear complete explanation of other features in Figs. 4.22 and 4.23 eludes us.

The reservoir model under consideration contains only two layers and the

layer thicknesses coincide with the height of the two vertical gridblocks used in the

finite-difference model. Thus, the reservoir simulator involves only the value of the

harmonic average vertical permeability at the boundary between layers. Thus, even

though we later present results on the estimates of layer vertical permeabilities, one

should recognize that any two sets of layer vertical permeabilities that result in the

same value of the harmonic average vertical permeability will yield the same produc-

tion data.
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ity of GOR at well 1 to vertical log-

permeability of layer 2.

Sensitivity to Skin Factor.

The flowing wellbore pressure of producing well j is highly sensitive to the

skin factor for well j but is insensitive to the skin factor at all other producing wells.

Increasing the skin factor at a flowing well results in a decreased wellbore pressure

(∂pwf,j/∂sj < 0), but has a negligible effect on the well’s gridblock pressure. Since

producing GOR and WOR are based on the well’s gridblock pressure, GOR and WOR

are insensitive to the wells skin factor. This indicates that history matching only to

GOR or only to WOR data can not resolve well skin factors. Reasonable estimates

of well skin factors can be obtained only by history matching pressure data.

Since the injection rate is fixed at the water injection well, the flow rate at

the water injection well is insensitive to the skin factor at the injection well. It follows

that the wellbore pressure at each producing well is insensitive to the skin factor at

the injection well. (This would not be the case if the wellbore pressure was specified

as the well constraint at the injection well.)
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The injection wellbore pressure is highly sensitive to the skin factor at the in-

jection well. This sensitivity coefficient is positive because as the skin factor increases,

a higher wellbore pressure is required to maintain the specified injection rate. The

injection well pressure is insensitive to the skin factors of all producing wells because

the total flow rate is specified as a well constraint at the producing wells.

Comments.

The sensitivity of a specific production data (e.g., GOR at a specified time)

to a particular model parameter (e.g., layer 1 vertical log-permeability for a grid-

block containing a producing well) gives a measure of the magnitude of the change

in this data that will result from a change in this model parameter. If this sensitivity

is small, then we expect that the particular model parameter will not be reliably

determined by the particular observed data, i.e., we expect the uncertainty in the

model parameter will be not be significantly reduced by history matching the model

to this single data point. However, to compare how different types of data affect the

estimates of different model parameters, sensitivity results must be scaled properly.

If the measurement error is very small, then the range of values of the model pa-

rameter that yield an acceptable match of the single observed data will be smaller

and we expect the uncertainty in the model parameter to be smaller. Also if the

prior variance is very small, then the model parameter is resolved well before his-

tory matching the data. Thus, even if the particular data is highly sensitive to the

model parameter, we should not expect history matching to yield a big reduction in

the uncertainty. The dimensionless sensitivity coefficients introduced by F. Zhang

and Oliver (2000)(see Eq. 4.3) attempts to scale sensitivity coefficients to account for

measurement errors and the prior variances in model parameters. Qualitatively, we

expect that the higher dimensionless sensitivity coefficients correspond to a greater

reduction in the uncertainty in model parameters. This simple concept ignores the

correlation between model parameters, however. For example, if vertical permeability



89

were nonzero, but no vertical flow occurred in a particular region of the reservoir, pro-

duction data would be insensitive to kz in that region. If, however, kz were strongly

correlated to k in that region and the data reduced the uncertainty of k, we would

expect the uncertainty in kz to be reduced also.

4.2.2 Automatic History Matching Result

The Truth Case.

The truth case is the same one for which sensitivity coefficients were just pre-

sented. The true horizontal log permeability field is shown in Fig. 4.24(a) and 4.24(b)

and the true vertical log-permeability field is shown in Fig. 4.25(a) and 4.25(b). The

true skin factors at well 1 to 5, respectively, are 3.0, 4.0, 5.0, 2.0, and 0.0. The ob-

served data consists of data obtained by running the reservoir simulator for the truth

case to predict reservoir perfomance for a 300 day time period. At each producing

well, we selected 10 WOR data, 10 GOR data and 10 pressure data to use as condi-

tioning data. At the injection well, we selected 10 pressure data to use as conditioning

data. The data are uniformly distributed throughout the 300 day time period with

the earliest time conditioning data corresponding to t = 30 days. We assumed pres-

sure measurement errors to be independent, identically-distributed, normal random

variables with mean zero and variance equal to 1 psi2. GOR measurement errors were

modeled similarly except the variance was set equal to 100 (scf/STB)2. The variances

of WOR measurement errors were specified by Eq. 2.22 with σminqw,obs
= 2.0 STB/STB,

εo = 0.01 and εw = 0.02.

For the top layer, the prior means for ln(k) and ln(kz), respectively, were

specified as 5.5 and 3.2 with the variances of both random variable equal to 0.5. For

the second layer, the prior means for ln(k) and ln(kz), respectively, were specified as

4.0 and 2.4 with the variances of both random variable equal to 0.5. The same semi-

variogram was used for each of the four log-permeability fields. The semivariogram
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is an isotropic spherical semivariogram with range equal to 160 ft and sill equal to

0.5. As the areal dimensions of simulation gridblocks are ∆x = ∆y = 40 feet, if the

distance between the centers of two gridblocks at the same elevation is greater than

or equal to 4∆x, permeabilities at the two gridblock are uncorrelated. There is no

correlation between layer 1 permeabilities and layer 2 permeabilities. In each layer,

the correlation coefficient between ln(k) and ln(kz) is set equal to 0.7. Each well skin

factor is modeled as an independent random variable with mean equal to 2.0 and

variance equal to 25.

The MAP Estimate

As discussed previously, the MAP estimate was generated using the Levenberg-

Marquardt algorithm to minimize the objective function of Eq. 2.8. The initial dump-

ing factor λ is set to equal 105. The vector of prior means was used as the initial

guess. Note even though each layer actually consists of three zones, horizontal and

vertical log-permeability are estimated at each gridblock. This simple model is used

only because it makes it easy to evaluate the quality of the estimate. We consider

results obtained by history matching only pressure data, pressure plus WOR data,

pressure plus GOR data and all three types of data.

Fig. 4.24(c) and Fig. 4.24(d) show the MAP estimate of horizontal log-

permeability obtained by history-matching only pressure data and Fig. 4.24(e) and

Fig. 4.24(f) show results obtained by conditioning to pressure, GOR and WOR data.

Comparing results to the truth case shown in Fig. 4.24(a) and Fig. 4.24(b), we see

that the MAP estimate obtained by conditioning to all three types of data is closer to

the truth case. In Fig. 4.25, we can see that conditioning to pressure, WOR and GOR

data gave a better estimate of the vertical log-permeability field than was obtained

by conditioning only to pressure.

Fig. 4.26 confirms the preceding results and also shows results obtained by

conditioning to pressure and WOR data only and pressure and GOR data only. The
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Figure 4.24: True model and maximum a posteriori estimate of horizontal log-

permeability, layer 1 (left column) and layer 2 (right column ).
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Figure 4.26: MAP estimate of horizontal log-permeability along the line from well 4

to 3.

results in Fig. 4.26 pertain to results along the line of gridblocks in layer 1 that pass

through wells 3 and 4, and along the corresponding line of gridblocks in layer 2.

Fig. 4.27 shows the corresponding estimates of ln(kz). In Figs. 4.26 and 4.27 and in

similar figures, curves through solid triangular data points refer to results obtained by

conditioning only to pressure data, curves through data points denoted by an asterisk

refer to results obtained by conditioning only to pressure and WOR data, curves

through solid circular data points refer to results obtained by conditioning only to

pressure and GOR data and curves through solid square data points represent results

obtained by conditioning to all observed data, pressure, GOR and WOR. Considering

the overall results, it is clear the worst estimates of the true permeability fields are

obtained when only pressure data is history-matched and the best estimates are

obtained when the estimate is obtained by history-matching all the pressure, WOR

and GOR data. History matching only GOR data plus pressure data gives better
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Figure 4.27: MAP estimate of vertical log-permeability along the line from well 4 to

3.

estimates of vertical permeability than history matching pressure and WOR data.

On a visual basis, it does not appear that history matching pressure plus water-oil

ratio data gives significantly better results than matching only pressure data. This

conclusion is similar to one reported by Landa and Horne (1997) and Wu et al. (1999).

One might guess that the reasonably good estimates of ln(kz) obtained (see

Fig. 4.27) are partially due to a high correlation between the random functions ln(k)

and ln(kz) (correlation coefficient equal to 0.7) and the fact that horizontal log-

permeability is fairly well resolved by the data. However, in dimensionless form,

the sensitivity of production data to horizontal log-permeability and the sensitiv-

ity of production data to vertical log-permeability variables show peaks of similar

magnitude; compare, for example Fig. 4.19 with Fig. 4.23. Thus, it is reasonable

to conjecture that the good estimates of ln(kz) obtained in Fig. 4.27 are not solely

due to the correlation between ln(k) and ln(kz). To investigate this conjecture, we
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Figure 4.28: MAP estimate of vertical log-permeability along the line from well 4 to

3; no correlation between horizontal and vertical permeability.

generated the MAP estimate assuming that horizontal and vertical permeability are

not correlated in the prior model (Fig. 4.28). The results obtained are shown in

Fig. 4.28 are similar to the ones showed in Fig. 4.27, where the vertical permeability

and horizontal permeability are correlated.

Figs. 4.29 and 4.30 show MAP estimates of horizontal and vertical log-

permeability, respectively, along a diagonal line of gridblocks in layer 1 that passes

through wells 1, 5 and 3 and the corresponding diagonal row of gridblocks in layer

2. The results from Figs. 4.29 and 4.30 are qualitatively similar to those shown in

Figs. 4.26 and 4.27. The best estimates are obtained by history-matching all the pres-

sure, WOR and GOR data. Figs. 4.31 and 4.32 show the corresponding normalized a

posteriori variances constructed from the a posteriori covariance matrix, CMP . These

variances pertain to the same diagonal rows of gridblocks considered in the sensitivity

coefficient plots of Figs. 4.16–4.23. In these figures, gridblock 3 pertains to the areal
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Figure 4.29: MAP estimate of horizontal log-permeability along the line from well 1

to 3.

location of well 1, gridblock 8 pertains to the areal location of well 5 and gridblock

13 represents the areal location of well 3. The normalized variances at well locations

are roughly equal to 0.2 which may be interpreted to mean that we have reduced the

uncertainty of these log-permeabilities by eighty percent. Except at the areal loca-

tion of the injection well (gridblock 8) history matching WOR and/or GOR data plus

pressure data reduced the uncertainty (as measured by the normalized a posteriori

variance) below the uncertainty obtained by history matching only to pressure data.

Note this occurs even at layer 1 gridblock 3 which contains well 1 (see Fig. 4.31(a))

even though the pressure at well 1 is highly sensitive to this gridblock permeability

and largely insensitive to other layer 1 ln(k) values. Note, however, well gridblock

ln(k) and the well skin factor are both unknown and must be resolved by the data.

We believe that the fact that both the WOR (Fig. 4.17) and the GOR (Fig. 4.18) at

well are highly sensitive to this gridblock ln(k) at certain times but insensitive to the
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Figure 4.30: MAP estimate of vertical log-permeability along the line from well 1 to

3.

well skin factor explains why adding observed GOR and WOR data as conditioning

data reduces the uncertainty in ln(k) at the gridblock containing well 1.

As the WOR and GOR at well (Figs. 4.17 and 4.18) are almost completely

insensitive to the horizontal gridblock permeability for gridblock 8 of layer 1, it is not

completely surprising that conditioning to WOR and/or GOR plus wellbore pressures

does not significantly reduce the uncertainty below that obtained by conditioning

only to pressure data. Any additional reduction in uncertainty in ln(k) obtained

at this gridblock by adding WOR and/or GOR as conditioning data must come

from the correlation between this ln(k) random variable and the log-permeabilities

in neighboring gridblocks where the GOR and WOR sensitivity coefficients are non-

negligible. It is interesting to note, however, that even though at later times, the

GOR (Fig. 4.19) and WOR (Fig. 4.20) at well are relatively sensitive to ln(k) for

gridblock 8 of layer 2, the reduction in uncertainty in this horizontal log-permeability
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Figure 4.31: The normalized a posteriori variance of horizontal log-permeability along

diagonal line, well 1-3.
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Figure 4.32: The normalized a posteriori variance of vertical log-permeability along

diagonal line, well 1-3.

is essentially independent of which type of data is history matched as long as pressure

data is included as conditioning data. This is because the injection wellbore pressures

(not shown) and flowing wellbore pressures at all producing wells are quite sensitive

to this gridblock permeability but flowing wellbore pressures are insensitive to the

skin factor at the injection well. Thus, using GOR and WOR data in addition to
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Table 4.1: The true and estimated skin factors

Well No. 1 2 3 4 5

True skin factors 3.00 4.00 5.00 2.00 0.00

Initial guess 2.00 2.00 2.00 2.00 2.00

Conditioned to pwf data 2.60 3.30 2.97 2.61 -0.19

Conditioned to pwf+WOR data 2.67 3.39 3.18 2.22 0.24

Conditioned to pwf+GOR data 2.73 3.39 3.54 2.07 0.00

Conditioned to pwf+GOR+WOR data 2.83 3.65 4.37 1.96 -0.27

pressure data as conditioning data does not reduce the uncertainty in this gridblock

ln(k) below the level obtained by conditioning only to pressure data.

Estimates of well skin factors obtained by matching various combinations of

production data are shown in Table 4.1. Note that, except at the injection well, the

best estimates are obtained by history matching pressure, WOR and GOR data.

The history matches of some of the observed GOR and WOR data are shown

in Fig. 4.33. Solid circular and triangular data points represent the observed data

used as conditioning data. Curves through the cross data points indicate the data

predicted from the initial guess (mprior) of the model parameters. (Some initial pres-

sure mismatches exceeded 400 psi.) The predicted data shown is based on the model

obtained by simultaneously matching pressure, WOR and GOR data. Matches of

similar quality were obtained for all wells for all pressure, WOR and GOR observed

data.

Fig. 4.34 shows the rate of convergence of the objective functions when con-

ditioning to different combinations of the data. The Objective functions decrease

very fast in the first 5 or 6 iterations. It is clear that it is more difficult for the

objective functions to converge in a three-dimensional three-phase problem than in a
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two-dimensional three-phase problem (Fig. 4.7).
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three-phase reservoir.
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Remarks.

The results and discussion of this history matching example serves to il-

lustrate the the following observations. If particular production data are completely

insensitive to a model parameter, changing this model parameter does not change the

values of production data predicted by reservoir simulation. (i) Thus, conditioning

to these data can reduce the uncertainty in this model parameter only by reducing

the uncertainty in the parameters which are correlated with this model parameter.

The reduction in uncertainty due to either a prior correlation (determined by CM)

or a posterior correlation (determined by CMP ) can not be predicted by examining

sensitivity coefficients. (ii) If a set of model parameters is well resolved by a given

data set, adding a second set of conditioning data to the first may not give an ad-

ditional reduction in uncertainty even if the second set of data is highly sensitive to

the model parameters.

4.2.3 Conditional Realization of a Heterogeneous Reservoir

We present an example of a conditional realization of a 3D heterogeneous

reservoir obtained by conditioning to pressure, gas-oil ratio and water-oil ratio data.

The simulation grid, prior model, data measurement errors, well locations, well con-

straints and production rates at each well are the same as one described in the first

part of section 4.2. The well skin factors in all five wells are assumed known and

equal to zero. We estimate the horizontal and vertical permeability in each grid-

block simultaneously. The true horizontal log-permeability field of layer 1 is shown in

fig. 4.38(a). The unconditional realization (the initial model) is generated by using a

Cholesky decomposition of prior covariance matrix. Fig. 4.38(b) shows the uncondi-

tional realization of horizontal log-permeability field in layer 1. We use the algorithm

presented in the section 2.6.2 to generate the conditional realization by conditioning

the unconditional model to pwf , GOR, and WOR data. The observed data were
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generated from the true model. Random noise was added to the observed data.

Figs. 4.35 to 4.37 show the data match between the observed data and the

predicted data obtained by running simulator on the conditional realization model.

The observed pressure data match the predicted data very well. The predicted GOR

and WOR data also match the observed data reasonably well, even though it is not

perfectly.
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Figure 4.35: Bottom hole pressure match after conditioning to pwf , GOR, and WOR

Data.

Fig. 4.38 to 4.41 show the true models, unconditional and conditional real-

izations of horizontal and vertical permeability in both layer 1 and layer 2. In the

layer 1 (Fig. 4.38 and 4.40) , we can see that the conditional realizations of both hor-

izontal and vertical log permeability have similar feature as the true model and are

significantly different from the unconditional realizations. However, it is hard to see

the similarity between the true models and the conditional realizations of horizontal

and vertical log permeability in the layer 2 (Fig. 4.39 and 4.41), even though the
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Figure 4.37: Water-oil ratio match after conditioning to pwf , GOR, and WOR Data.

predicted data from the conditional realization match observed data reasonably well

(Figs. 4.35 to 4.37). From the above results, we can see that even though the data
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match very well, the estimated models or conditional realizations may not be similar

to the true models.
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Figure 4.38: The conditional realization of horizontal log-permeability conditioned to

pwf , GOR, and WOR data, layer 1.

Figs. 4.42 shows the convergence behavior of the Levenberg-Marquardt al-

gorithm used for this heterogeneous example. The initial damping factor λ is 105.

Note the Levenberg-Marquardt optimization algorithm converge relatively slowly and

the final value of the objective function is relatively large. We also tried to estimate

well skin factors along with horizontal and vertical permeability simultaneously. Un-

fortunately, some of the skin factors approach big negative values and the inverse

procedure failed. Clearly, additional research on optimizing the optimization algo-

rithm is needed.
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Figure 4.39: The conditional realization of horizontal log-permeability conditioned to

pwf , GOR, and WOR data, layer 2.
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Figure 4.40: The conditional realization of vertical log-permeability conditioned to

pwf , GOR, and WOR data, layer 1.
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Figure 4.41: The conditional realization of vertical log-permeability conditioned to

pwf , GOR, and WOR data, layer 2.
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Figure 4.42: The rate of convergence of the objective function in the three-dimensional

three-phase heterogeneous reservoir.
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4.3 Estimation of Three-Phase Relative Permeability

4.3.1 Relative Permeability

In many cases, the relative permeability curves can be approximated by

analytical functions. We can predict the relative permeability curves by estimating

the parameters of the analytical function. In our approach, the three-phase relative

permeability is calculated by the second model of Stone (Stone, 1973). We establish

the models for two-phase water-oil and gas-oil systems, and then use the adjoint

method to compute the sensitivity of production data to the parameters of the three-

phase relative permeability model. Once we estimate the sensitivity coefficients, we

can estimate the parameters of relative permeability model and other reservoir model

parameters (kx, ky, kz and φ) simultaneously by conditioning to production data.

For the oil-water system, we assume that relative water permeability and

relative oil permeability can be modeled by the following exponential equations. If

Sw ≤ Swc then

krw = 0, (4.4)

otherwise

krw = krwcw

(

Sw − Swc
1− Sorw − Swc

)nrw

. (4.5)

If Sw ≥ 1− Sorw then

krow = 0, (4.6)

otherwise

krow = krocw

(

1− Sorw − Sw
1− Sorw − Swc

)nrow

. (4.7)

In these equations, Swc is the critical water saturation, Sorw is residual oil saturation

to waterflooding, krw is the relative water permeability when water saturation is Sw,

krow is the relative oil permeability in the oil-water system when water saturation

is Sw, krwcw and krocw are the end points of the water and oil relative permeability

curves, respectively, and nrw and nrow are constants.
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The six parameters that could be estimated for water-oil relative permeability

are krwcw, krocw, nrw, nrow, Swc and Sorw.

Similarly, in the oil-gas system, we assume the relative gas permeability and

relative oil permeability can be modeled by the exponential equations given below.

If Sw ≤ Sgc then

krg = 0, (4.8)

otherwise

krg = krgcw

(

Sg − Sgc
1− Sorg − Swc − Sgc

)nrg

. (4.9)

If Sg ≥ 1− Swc − Sorg then

krog = 0, (4.10)

otherwise

krog = krocw

(

1− Sorg − Swc − Sg
1− Sorg − Swc

)nrog

. (4.11)

Here, Sgc is the critical gas saturation, Sorg is residual oil saturation to gasflooding,

krg is the relative gas permeability when gas saturation is Sg, krog is the relative oil

permeability in the oil-gas system when gas saturation is Sg, krgcw and krocw are the

end points of gas and oil relative permeability curves, respectively. The exponential

nrg and nrog are constants that determine the curvature. As discussed in Appendix

A, see Eq. A–12, the following equation is required when using the Stone 2 model:

krocw = krow(Sw = Swc) = krog(Sg = 0). (4.12)

This is why the coefficients in the Eq. 4.7 and Eq. 4.11 are the same. The constraint

of Eq. 4.12 reduces the number of parameters by 1.

Similar to the oil-water system, we wish to estimate the parameters krgcw,

krocw, nrg, nrog, Swc, Sgc and Sorg. As discussed in Appendix A, three-phase oil relative

permeability is given by

kro = krocw [([krow/krocw] + krw)([krog/krocw] + krg)− (krw + krg)] . (4.13)
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Thus, the parameters for relative permeability model under three-phase flow condi-

tions are

kr = [ nrw, krwcw, nrg, krgcw, nrow, krocw, nrog, Swc, Sorw, Sgc, Sorg ]T .

(4.14)

In this work, we assume the parameters Swc, Sorw, Sgc, and Sorg are known and only

estimate the following 7 relative permeability parameters,

kr = [ nrw, krwcw, nrg, krgcw, nrow, krocw, nrog ]T . (4.15)

We assume that prior information on the parameters can be obtained from

relative permeability curves determined by laboratory experiments. By conditioning

the prior model to the production data, we integrate experimental laboratory data

with production data.

In all examples presented, we estimate some or all of the parameters included

in Eq. 4.15. The relative permeability curves obtained using these estimates are

referred to as the estimated relative permeabilities. The objective functions are always

minimized by using Levenberg-Marquardt method. The initial dumping factor α is

set to 105. If the objective function decreases, α will be decreased by a factor of 10.

Otherwise, α will be multiplied by 10. In all cases, the prior variances for pressure

and GOR measurement errors are set to 1.0 and 25.0, respectively. The variance

for measurement errors for WOR is calculated by Eq. 2.22. We chose σminqw,obs
=

2STB/D, εo = 0.01 and εw = 0.02 in the Eq. 2.22. The prior variance for absolute

log permeability is 0.5. The prior variance of exponential terms (nrw, nrg, nrow, nrog)

is 1.0 and the variance of end point values (krwcw, krgcw, krocw) is 0.04. A spherical

variogram model is used to generate the covariance matrix. The porosity in each

gridblock is fixed at 0.22. In each case, the observed production data (pwf , GOR,

and WOR) are generated by running reservoir simulation on the true models. We

condition the initial guess model to the production data to generate MAP estimates

and realizations. The initial guesses of model parameters are always set equal to the
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prior means. In all examples, Sorw=0.2, Swc=0.2, Sorg=0.1, and Sgc=0.05. When

the pressure data are used in the examples shown in this section, the injection well

pressure data are always part of the observed data.

4.3.2 Two Phase Reservoirs

We first consider a one dimensional reservoir to investigate the water-oil and

gas-oil two phase flow problems. The reservoir is 11 by 1 by 1. The gridblock sizes in

x, y and z direction are 40 feet, 40 feet and 30 feet, respectively. This is a homogenous

reservoir with absolute log permeability in each gridblock equal to 4.61 (100 mD).

The true values and initial guesses of the parameters of relative permeability are given

in the second and fourth columns of table 4.2.
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Figure 4.43: The gas saturation distribution of 1D gas injection reservoir.

In the first case, we simulate an oil reservoir with gas injection. There is a

producing well at gridblock (3,1,1) produced at constant total rate 35 rb/day. An

injection well is located at (8,1,1) with gas injection rate 20 scf/d. The initial reservoir
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Figure 4.44: Estimated relative permeability in the gas-oil, two-phase reservoir con-

ditioned to both pwf and GOR data; estimate relative permeability only.

pressure is 4500 psi and the initial bubble point pressure is 4417. We generate 10

pressure and 10 GOR data in the production well, and 10 pressure data in the injection

well by running the simulator on the true model. The data are uniformly distributed

in 0 to 300 day period. There is no noise added to the observed data. The reservoir

pressure declines with time. At 300 days, the bottom hole pressure at the producing

well is 2665. Fig. 4.43 shows the gas saturation distribution at 30 (lower curve) and

300 (upper curve)days. Reservoir pressure drops below the bubble point pressure

soon after start of the simulation run.

Fig. 4.44 shows the estimated relative permeability conditioned to both pres-

sure and GOR data. We assume that the absolute permeability field is known and

estimate relative permeability only. Here we estimate the exponential terms (nrg and

nrog) and the end points (krgcw and krocw) in the Eqs. 4.9 and 4.11. From Fig. 4.44,

we can see the estimated relative permeability curves match the true relative perme-
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Table 4.2: The true and estimated parameters of relative permeability in a gas-oil

two-phase reservoir.

Initial Estimated Estimated Estimated

True Variance Guess Rel perm only Rel+Abs Perm Rel+Abs Perm

4 parameters 4 parameters 3 parameters

nrg 2.4 1.0 2.795 2.396 2.396 2.395

krgcw 0.9 0.04 0.586 0.887 0.574 0.891

nrog 1.7 1.0 2.514 1.711 1.712 1.712

krocw 0.8 0.04 0.488 0.795 0.515 -

ability curves very well when the model is conditioned to both pressure and GOR

data. The fifth column in the table 4.2 shows the estimated values of the relative

model parameters. We can see that the estimated values are very close to the true

values.

In the case when absolute permeabilities are unknown, we need to estimate

absolute permeability and relative permeability simultaneously. However, if all rela-

tive permeability parameters (krgcw, nrg, krocw, and nrog ) are unknown, we only can

estimate effective permeability kkrm (m = g, o) in the two phase flow cases. In fact,

we can create two reservoir models with different values of absolute permeability,

100 and 200, but keep effective permeability kkr constant. The pressure and GOR

responses from the two different reservoirs are identical. This means that one can

not resolve absolute and relative permeability simultaneously for this case. Fig. 4.45

shows the estimated relative permeability curves obtained by inversing absolute and

relative permeability simultaneously. The estimated relative permeability model does

not match the true model. The initial guess and prior mean on the absolute log per-

meability is equal to 5.00. The maximum value estimated was 5.055 at gridblock 4
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Figure 4.45: Estimated relative permeability in the gas-oil, two-phase reservoir con-

ditioned to both pwf and GOR data; estimate four relative permeability parameters

(krgcw, nrg, krocw, and nrog ) and absolute permeability at each gridblock simultane-

ously.

and the minimum value estimated was 5.002 at gridblock 11. The estimated absolute

log permeability (5.05) at wellbore gridblock do not match the true log permeability

(4.61) either, even though the predicted data match the observed data perfectly.

If the end point value krocw is known, we can separate the effect of relative and

absolute permeability and estimate them simultaneously. Fig. 4.46 presents the result

by estimating relative permeability (only estimate krgcw, nrg, and nrog) and absolute

permeability simultaneously. We can see that the estimated results and the true

values agree almost perfectly. At the same time, the estimated absolute permeability

(4.62 at the wellbore gridblock)also matches the true absolute permeability (4.61)

very well. The maximum value estimated was 4.96 at gridblock 11 and the minimum

value estimated was 4.56 at gridblock 5. The estimated values of relative permeability
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Figure 4.46: Estimated relative permeability in the gas-oil, two-phase reservoir con-

ditioned to both pwf and GOR data; estimate three relative permeability parameters

(krgcw, nrg, and nrog) and absolute permeability at each gridblock simultaneously.

curves are shown in the table 4.2.

In the second case, we investigate a water flooding oil reservoir. The geom-

etry in this case is the same as in the previous example. There is no free gas in the

reservoir. The producing well is located at (3,1,1) with total liquid production rate

35 rb/day. The injection well is located at (8,1,1) with water injection rate equal to

34.5 stb/day. The water breaks through at about 100 days in the producing well.

Fig. 4.47 shows the water saturation distribuation at 30 and 300 days.

We find that the water-oil relative permeability can be estimated very well

(Fig. 4.48) if we know the absolute permeability and condition the model to both

pressure and WOR data. In this case, if the model is conditioned only to pressure

data, the estimated result is still very good (Fig. 4.49). However, if we only use WOR

data to estimate the relative permeability curves, the estimated result is very poor
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Figure 4.47: The water saturation distribution of 1D water injection reservoir.
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Figure 4.48: Estimated relative permeability in the water-oil, two-phase reservoir

conditioned to both pwf and WOR data; estimate relative permeability only.
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Figure 4.49: Estimated relative permeability in the water-oil, two-phase reservoir

conditioned only to pwf data; estimate relative permeability only.
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Figure 4.50: Estimated relative permeability in the water-oil, two-phase reservoir

conditioned only to WOR data; estimate relative permeability only.
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Figure 4.51: Estimated relative permeability in the water-oil, two-phase reservoir con-

ditioned to both pwf and WOR data; estimate three relative permeability parameters

(krwcw, nrw, and nrow) and absolute permeability at each gridblock simultaneously.

Table 4.3: The true and estimated parameters of relative permeability in a water-oil

two-phase reservoir.

Initial Estimated Estimated Estimated

True Variance Guess Rel perm only Rel+Abs Perm Rel+Abs Perm

4 parameters 4 parameters 3 parameters

nrw 1.9 1.0 1.536 1.900 1.901 1.901

krwcw 0.4 0.04 0.681 0.400 0.364 0.400

nrow 2.6 1.0 1.602 2.598 2.600 2.600

krocw 0.8 0.04 0.488 0.799 0.731 -
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Figure 4.52: Estimated relative permeability in the water-oil, two-phase reservoir con-

ditioned to both pwf and WOR data; estimate four relative permeability parameters

(krwcw, nrw, krocw, and nrow ) and absolute permeability at each gridblock simultane-

ously.

(Fig. 4.50). This is consistent with Watson et al. (1984).

Just like gas-oil two phase case, if one wants to estimate relative and absolute

permeability simultaneously, one needs to know the end point krocw. Fig. 4.51 show

the relative permeability estimates when krocw is fixed with the value of 0.8. In this

case, we also estimated gridblock absolute log-permeabilities giving a initial guess of

5.00 which is equal to the prior mean. The estimated absolute permeability at the

wellbore gridblock is 4.61, the same as the true value. The maximum value estimated

was 4.91 at gridblock 11 and the minimum value estimated was 4.59 at gridblock

7. Otherwise, when krocw is not known, the estimated relative permeability may not

match the true model (Fig. 4.52). Here, the estimated absolute log permeability

at producing well gridblock is 4.71. It does not match the true value either. The

maximum value estimated was 4.93 at gridblock 11 and the minimum value estimated
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was 4.68 at gridblock 7. The true and estimated parameters of relative permeabilities

are presented in the Table 4.3.
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4.3.3 Three Phase Reservoirs

The grid used of the three phase reservoir example is 15 by 15 by 1. The

gridblock sizes in x, y, and z-direction are 40 ft, 40 ft, and 30 ft, respectively. The

true log-permeability field is a three zone reservoir as shown in the Fig. 4.53(a). The

log-permeability is 3.7 at the lower left corner, 4.3 at the lower right corner and 3.9

at the upper part. There is one water injection well located at the center of the

reservoir (gridblock(8,8,1), well 5). The water injection rate is 550 stb/day. There

are four producing wells, well 1 to well 4, located at (3,3,1), (13,3,1), (13,13,1), and

(3,13,1). All four wells are produced at a constant total rates of 220 rb/day. The

well locations are shown in Fig. 4.53(a). The initial reservoir pressure is 4500 psi.

The bubble point pressure is 4417 psi. We ran the simulation on the true model to

generate the observed data. The simulation is run from 0 to 300 days. The reservoir

pressure declines with time. The earliest water breakthrough happened at about 150

days in well 2 where the permeability is the highest. The last water breakthrough

is at about 200 days in well 1 where the permeability is the lowest. Fig. 4.54 shows

the water and gas saturation at 300 days. At 300 days, the water saturation has

increased in most parts of reservoir. The producing water oil ratio at well 2 is as high

as 7. There is no noise added to the observed data.

Sensitivity of Production Data to the Parameters of Relative Permeability Curves

In this work, we use the adjoint method to compute the sensitivity of the

production data to absolute permeability. The sensitivity of the production data to

the parameters defining relative permeability curves is also generated by the adjoint

method. Fig. 4.55, 4.56, and 4.57 show the sensitivity of pwf , GOR, and WOR data,

respectively, at well 1 to the seven parameters of relative permeability curves at each

data point. The sensitivity coefficients shown in the figures have been compared

against the sensitivities generated by the finite different method. The agreement
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Figure 4.53: True and MAP estimate of absolute log-permeability field; estimate

absolute and relative permeability simultaneously.

between two sets of sensitivity coefficients is excellent.

At well 1, the water breaks through at about 200 days. The sensitivity

coefficients have a dramatic change around the breakthrough time, so we discuss the

behavior of the sensitivity in the period before and after breakthrough. Before the

breakthrough (200 days), increasing krwcw will increase the water mobility and thus

increase the total mobility. We know that increasing total mobility would decrease the

pressure drop across the reservoir, so the pressure is higher. This is why ∂pwf/∂krwcw

is positive (Fig. 4.55). On the other hand, an increase in nrw will decrease the

water mobility at low saturation, so ∂pwf/∂nrw is negative. For the gas phase, an

increase in krgcw will increase the gas mobility and more gas will be produced, so

∂GOR/∂krgcw is positive. More highly expandable free gas around the wellbore also

provides more pressure support and thus ∂pwf/∂krgcw is positive. However, if nrg

increases, the gas mobility will decrease and the result is low gas production rate
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Figure 4.54: Water and gas saturation at 300 days.

(so ∂GOR/∂nrg is negative) and less pressure support (∂pwf/∂nrg is negative). For

the oil phase, an increase in krocw will increase the oil mobility and provides more

pressure support, thus ∂pwf/∂krocw is positive. When the oil mobility increases, more

oil will be produced. So the gas-oil ratio is lower. This explains why ∂GOR/∂krocw

is negative. The effect of the exponential terms nrog and nrow is quite similar. They

have opposite effect on pwf and GOR. Increasing nrog or nrow will reduce the oil

mobility and decrease the oil rate. Thus ∂pwf/∂nrow and ∂pwf/∂nrog are negative

and ∂GOR/∂nrow and ∂GOR/∂nrog are positive.

After 200 days, water appears in well 1. Water-oil ratio begins to become

sensitive to the model parameters. The explanation of sensitivity of WOR to param-

eters of relative permeability curves (Fig. 4.57) is quite straight forward. An increase

in krwcw will increase the water mobility and result in greater water production. The



123

-150

-100

-50

0

50

100

30 60 90 120 150 180 210 240 270 300

Time, days

d
P

w
f/

d
K

r

dPwf/dNrw
dPwf/dKrwcw
dPwf/dNrg
dPwf/dKrgcw
dPwf/dNrow
dPwf/dNrog
dPwf/dKrocw

Figure 4.55: Dimensionless sensitivity of bottom hole pressure data at well 1 to the

parameters of relative permeability curves.

water-oil ratio will be higher, so ∂WOR/∂krwcw is positive. Similarly, ∂WOR/∂nrw

is negative. If krocw or krgcw increases, the oil or gas rate will be high. Thus less

water will be produced in this total rate constraint well. Thus ∂WOR/∂krocw and

∂WOR/∂krgcw are negative. For similar reason, ∂WOR/∂nrow, ∂WOR/∂nrog and

∂WOR/∂nrg are positive. After breakthrough, the sensitivities of pwf and GOR be-

come more complex. Some of them still can be explained by the arguments used for

the period before breakthrough. Others are more difficult to explain.

MAP Estimate of Relative and Absolute Permeability

First, we assume that the absolute permeability field is known and only

estimate the relative permeability. All 7 relative permeability parameters (nrw, krwcw,

nrg, krgcw, nrow,, krocw, nrog) are assumed unknown. The second and fourth columns

of table 4.4 show the true values and initial guess, respectively, of the parameters of
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Figure 4.56: Dimensionless sensitivity of gas-oil ratio data at well 1 to the parameters

of relative permeability curves.

Table 4.4: The true and estimated parameters of relative permeability in a three-

phase three-zone reservoir; estimate relative permeability only.

Initial Estimated Estimated Estimated Estimated

True Variance Guess pwf GOR WOR pwf+GOR+WOR

nrw 1.9 1.0 2.174 1.909 1.907 1.954 1.900

krwcw 0.4 0.04 0.580 0.401 0.392 0.342 0.400

nrg 2.4 1.0 2.135 2.380 2.395 2.327 2.399

krgcw 0.9 0.04 0.492 0.862 0.870 0.544 0.899

nrow 2.6 1.0 2.050 2.606 2.609 2.658 2.600

nrog 1.7 1.0 1.744 1.691 1.726 1.749 1.700

krocw 0.8 0.04 0.492 0.799 0.786 0.679 0.800
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Figure 4.57: Dimensionless sensitivity of water-oil ratio data at well 1 to the param-

eters of relative permeability curves.
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Figure 4.58: Estimated relative permeability of the gas-oil system in a three-phase

reservoir conditioned only to GOR data; estimate relative permeability only.
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Figure 4.59: Estimated relative permeability of the gas-oil system in a three-phase

reservoir conditioned only to pwf data; estimate relative permeability only.
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Figure 4.60: Estimated relative permeability of the gas-oil system in a three-phase

reservoir conditioned only to WOR data; estimate relative permeability only.
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Figure 4.61: Estimated relative permeability of the gas-oil system in a three-phase

reservoir conditioned to pwf , GOR, and WOR data; estimate relative permeability

only.

relative permeability. Figs. 4.58, 4.59, 4.60, and 4.61 show the MAP estimates of

the two-phase gas-oil relative permeabilities by conditioning only to GOR, only to

pressure, only to WOR, and that to all pressure, GOR and WOR data, respectively.

The pressure data from the injection well are also include in the pressure data set.

We can see, in this case, when conditioning only to pressure (Fig. 4.58) or only to

GOR (Fig. 4.59), the estimated curves match the true curves well, but not perfectly.

When conditioning only to WOR data (Fig. 4.60), the estimated curves math the

true case very poorly . When conditioning to all three types of data (Fig. 4.61), the

estimated model matches the true model nearly perfectly.

If the relative permeability model is only conditioned to WOR data, the

MAP estimated model does not match the true model (Fig. 4.62) for the two-phase

water-oil relative permeability curves. However, when conditioning only to pressure

data (Fig. 4.63) or only to GOR data (Fig. 4.64), the MAP estimate matches the true
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Figure 4.62: Estimated relative permeability of the water-oil system in a three-phase

reservoir conditioned only to WOR data; estimate relative permeability only.
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Figure 4.63: Estimated relative permeability of the water-oil system in a three-phase

reservoir conditioned only to pwf data; estimate relative permeability only.



129

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sw

K
rw

 &
 K

ro
w

Krw, true
Krow, true
Krw, initial
Krow, initial
Krw, GOR
Krow, GOR

Figure 4.64: Estimated relative permeability of the water-oil system in a three-phase

reservoir conditioned only to GOR data; estimate relative permeability only.

model well. Conditioning to all three types of data (Fig. 4.65) always yield the best

result. Table. 4.4 gives the values of the estimated parameters of relative permeability

curves. Conditioning to all three types of data yields the best results. It seems that

conditioning to only WOR data always generate the worst results.

In a two-phase reservoir, an increase in absolute permeability by a factor of α

os exact;u equivalent to an increase in kkocw and krwcw by factors of α. Here, for two-

phase reservoirs, production data can be matched by modifying either the relative

permeability endpoints or the absolute permeability. When Stone 2 model for three-

phase relative permeability is used to compute relative permeability, however, the

effect of increasing k is not the same as increasing kkocw, krwcw, and krgcw. In fact, the

product of the three end points occurs in Stone’s model. Because the effects are not

equivalent, it is possible to estimate them separately. In another word, it is possible

to estimate all 7 relative permeability parameters (nrw, krwcw, nrg, krgcw, nrow,, krocw,

nrog) and absolute permeability simultaneously in the three phase problems.
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Figure 4.65: Estimated relative permeability of the water-oil system in a three-phase

reservoir conditioned to pwf , GOR, and WOR data; estimate relative permeability

only.

Figs. 4.53(c), 4.66 and 4.67 show the MAP estimate of absolute and relative

permeability obtained when estimating relative and absolute permeability simulta-

neously, by conditioning to all three types of data. The MAP estimate of absolute

log-permeability (Fig. 4.53(c)) is quite similar to the true model. The estimated rela-

tive permeabilities in both gas-oil system (Fig. 4.66) and water-oil system (Fig. 4.67)

are very close to the true model. If the model is only conditioned to pressure data

(Figs. 4.53(b), 4.68 and 4.69), the estimated relative permeabilities do not match the

true model (Fig. 4.68 and 4.69)). The estimated absolute log-permeability field is

too high (Figs. 4.53) and the estimated relative permeability (Fig. 4.68 and 4.69)) is

too low. Table 4.5 gives the true, initial and estimated values of parameters for rel-

ative permeability curves when the absolute and relative permeability are estimated

simultaneously. The predicted bottom hole pressure, gas-oil ratio, and water-oil ra-

tio computing from the MAP estimated model match the observed data very well
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Figure 4.66: Estimated relative permeability of the gas-oil system in a three-phase

reservoir conditioned to pwf , GOR, and WOR data; estimate relative permeability

and absolute permeability simultaneously.

(Fig. 4.70, 4.71, and 4.72). Fig. 4.73 shows the rate of the convergence of the objec-

tive functions in the 3-zone reservoir. They converge pretty fast.



132

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sw

K
rw

 &
 K

ro
w

Krw, true
Krow, true
Krw, initial
Krow, initial
Krw, Pwf+GOR+WOR
Krow, Pwf+GOR+WOR

Figure 4.67: Estimated relative permeability of the water-oil system in a three phase

reservoir conditioned to pwf , GOR, and WOR data; estimate relative permeability

and absolute permeability simultaneously.

4.3.4 Heterogeneous Reservoirs

Here, we show a conditional realization example. It is a 15 by 15 by 1

reservoir. The well location and rate constraints are the same as in the three-phase

reservoir example just considered. The absolute log-permeability field of the true

model is shown in Fig. 4.74(a). The mean of the realizations is 4.0. The variance

of absolute log permeability field is 0.5. A spherical variogram model is used for

generating the covariance matrix. The correlation range is 6 gridblock, 240 feet.

Random noise has been added to the observed data based on the variance of the

data. We condition the unconditional realization of absolute log permeability model

(Fig. 4.74(b)) and relative permeability models to the pressure, GOR, and WOR data.

The results are shown in Figs. 4.74, 4.75 and 4.76. In Fig. 4.74, the unconditional

realization is quite far from the true model. However, the conditional realization is
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Figure 4.68: Estimated relative permeability of the gas-oil system in a three-phase

reservoir conditioned only to pwf data; estimate relative permeability and absolute

permeability simultaneously.

very similar to the true model. The estimated relative permeability field also matches

the true relative permeability model quite well. Table 4.6 shows the true, initial guess,

and estimated values of the parameters for relative permeability curves.

Fig. 4.77 to 4.79 show the mismatch between the observed data and initial

predicted data computed from the simulation run on the initial guess model. We see

that the mismatches of all types of observed data to the predicted data generated

from the unconditional realization model are very large before conditioning to the

production data. After conditioning to the production data, the predicted data com-

puting from the conditional realization model matches the observed data very well

(Fig. 4.80 to 4.82).

Fig. 4.83 shows the convergence behavior of the Levenberg-Marquardt al-

gorithm in the three-phase heterogenous reservoir. In the heterogenous cases, the

objective functions normally converge relatively slowly and converge to a relative
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Figure 4.69: Estimated relative permeability of the water-oil system in a three-phase

reservoir conditioned only to pwf data; estimate relative permeability and absolute

permeability simultaneously.

bigger final values of the objective functions.
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Table 4.5: The true and estimated parameters of relative permeability in a three-

phase three-zone reservoir; estimate relative permeability and absolute permeability

simultaneously.

Initial Estimated Estimated

True Variance Guess pwf pwf+GOR+WOR

nrw 1.9 1.0 2.174 1.908 1.912

krwcw 0.4 0.04 0.580 0.350 0.389

nrg 2.4 1.0 2.135 2.355 2.399

krgcw 0.9 0.04 0.492 0.722 0.871

nrow 2.6 1.0 2.050 2.678 2.618

nrog 1.7 1.0 1.744 1.642 1.704

krocw 0.8 0.04 0.492 0.713 0.776
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Figure 4.70: Bottom hole pressure match after conditioning to pwf , GOR, and WOR

in a three-phase reservoir; estimate relative permeability and absolute permeability

simultaneously.
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Figure 4.71: Gas-oil ratio match after conditioning to pwf , GOR, and WOR in a

three-phase reservoir; estimate relative permeability and absolute permeability si-

multaneously.

Table 4.6: The true and estimated parameters of relative permeability in a three-phase

heterogeneous reservoir; estimate relative permeability and absolute permeability si-

multaneously.

Initial Estimated Perm

True Variance Guess pwf+GOR+WOR

nrw 1.9 1.0 2.174 1.839

krwcw 0.4 0.04 0.580 0.404

nrg 2.4 1.0 2.135 2.404

krgcw 0.9 0.04 0.492 0.963

nrow 2.6 1.0 2.050 2.593

nrog 1.7 1.0 1.744 1.690

krocw 0.8 0.04 0.492 0.843
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Figure 4.72: Water-oil ratio match after conditioning to pwf , GOR, and WOR in a

three-phase reservoir; estimate relative permeability and absolute permeability simul-

taneously.
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Figure 4.73: The rate of convergence of the objective functions in a three-phase

reservoir.
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Figure 4.74: The conditional realization of horizontal log-permeability conditioned to

pwf , GOR, and WOR data, layer 1.
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Figure 4.75: Estimated relative permeability of the water-oil system in a heterogenous

reservoir conditioned to pwf , GOR, and WOR data; estimate relative permeability

and absolute permeability simultaneously.
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Figure 4.76: Estimated relative permeability of the gas-oil system in a heterogenous

reservoir conditioned to pwf , GOR, and WOR data; estimate relative permeability

and absolute permeability simultaneously.
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Figure 4.77: Bottom hole pressure match before conditioning to pwf , GOR, and WOR

in a heterogenous three-phase reservoir; estimate relative permeability and absolute

permeability simultaneously.
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Figure 4.78: Gas-oil ratio match before conditioning to pwf , GOR, and WOR in

a heterogenous three-phase reservoir; estimate relative permeability and absolute

permeability simultaneously.
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Figure 4.79: Water-oil ratio match before conditioning to pwf , GOR, and WOR

in a heterogenous three-phase reservoir; estimate relative permeability and absolute

permeability simultaneously.
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Figure 4.80: Bottom hole pressure match after conditioning to pwf , GOR, and WOR

in a heterogenous three-phase reservoir; estimate relative permeability and absolute

permeability simultaneously.
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Figure 4.81: Gas-oil ratio match after conditioning to pwf , GOR, and WOR in a

heterogenous three-phase reservoir; estimate relative permeability and absolute per-

meability simultaneously.
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Figure 4.82: Water-oil ratio match after conditioning to pwf , GOR, and WOR in

a heterogenous three-phase reservoir; estimate relative permeability and absolute

permeability simultaneously.
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Figure 4.83: The rate of convergence of the objective functions in a three-phase

heterogenous reservoir.
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4.4 Estimation of porosity

In this example, we assume the absolute and relative permeabilities are

known. The only unknown model parameters are porosities in each gridblock. We

use production data to inverse the porosity field. The log-permeability is equal to

4.0 in each gridblock. The true porosity field is shown in the Fig. 4.84(a). The grid

for reservoir simulation is 15 by 15 by 1. The gridblock sizes are 40 feet in the x-

and y-directions and 30 feet in the z-direction. There is one injection well at the cen-

ter (8,8,1) of the reservoir with water injection rate of 700 STB/d. Four producing

wells are located at (3,3,1), (13,3,1), (13,13,1), (3,13), and (3,13,1), respectively. All

four producing wells are produced with constant total reservoir volume 200 RB/d.

The initial reservoir pressure is 4500 psi and the bubble point pressure is 4417 psi.

The reservoir pressure decreases over the time. Fig. 4.84(b) shows the initial guess

(unconditional realization). The unconditional realization is generated by Cholesky

decomposition of the prior covariance matrix. The prior mean of the porosity is 0.22.

The variance is 0.0016. The correlation range is 6 gridblocks (240 feet). A set of

pressure, GOR, and WOR observed data were generated by running simulation on

the true model. Random noise has been added to the data. Fig. 4.84(c) shows the

conditional realization of the porosity field by conditioning to pressure, GOR and

WOR data. The conditional realization is very close to the true porosity field. The

data match is very well.
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Figure 4.84: The conditional realization of porosity conditioned to pwf , GOR, and

WOR data.



CHAPTER V

CONCLUSIONS

In this dissertation, we have described the development and implementation

of a general procedure to generate maximum a posterior (MAP) estimates and real-

izations of reservoir model parameters conditioned to three-dimensional three-phase

flow production data and prior information from static data. Using this procedure,

we are able to estimate model parameters which include gridblock permeability (both

horizontal and vertical permeability), gridblock porosity, well skin factors, and the

parameters that describe relative permeability curves. We can condition the reservoir

model to pressure, gas-oil ratio, water-oil ratio data and any combination of these

three types of data. Unlike some other methods, this history matching process is ap-

plicable for problems with large numbers of model parameters and for problems with

large fluid compressibility. The method presented here is quite general, however, and

can also be applied to single-phase oil or gas flow or two phase flow problems. The

MAP estimates or realizations are obtained by minimizing an appropriate objective

function which includes both a data mismatch part and prior model part. To apply

optimization procedures to minimize the objective function, one needs to calculate

the sensitivity coefficients or the gradient of the objective function with respect to

the model parameters. In this work, a general adjoint formulation for computing sen-

sitivity coefficients, compatible with a fully implicit, finite-difference solution of the

three-phase flow black-oil equations, has been derived and implemented in Fortran

90. The formulation given here allows one to construct the adjoint equations directly

from the Jacobian matrices computed in solving the finite-difference equations us-

ing Newton-Raphson algorithm. This avoids the tedious process of directly deriving

145
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the individual adjoint equations. Computation of sensitivity coefficients allow one to

perform history matching using Newton-like methods (such as Levenberg-Marquardt

or Gauss-Newton methods) which are approximately quadratically convergent as op-

posed to more slowly converging conjugate gradient or variable metric methods. In

many cases, even in the complex two-dimensional, three-phase problems, our history

matching algorithm converges whin 10 iterations. However, in some cases, especially

in three-dimensional, three-phase, heterogeneous problems the history matching algo-

rithm required 20 or more iterations to converge and given a somewhat higher value

of the objective function than is expected. Clearly more work need to be done on the

optimization algorithm.

The advantage of the adjoint method is that the number of matrix solu-

tion required to compute the sensitivity coefficients is independent of the number

of model parameters to be estimated, so adjoint method can handle the problems

with large number of model parameters. The the adjoint method is very efficient to

compute sensitivity coefficients when the number of observed data is small. If only

the gradient of the objective function is required to perform optimization, the adjoint

method is always the best choice. The sensitivity coefficients which can be generated

by this procedure include the sensitivity of wellbore pressure, GOR, WOR or any

objective functions to simulator gridblock permeability and porosity, skin factor and

parameters used in relative permeability curves. Because the convergence proper-

ties of the history matching procedure dependent on the accuracy of the sensitivity

coefficients or gradients, it is important to obtain accurate sensitivity coefficients.

We have compared the sensitivity coefficients generated by the adjoint method with

these generated by the finite difference methods in various cases. The agreement is

excellent. In all cases, the mismatch is less than 1%. Based on earlier experience with

an IMPES simulator and a fully implicit formulation of the adjoint system, we con-

cluded that one should always use the same flow formulation in the adjoint equations

to compute sensitivity coefficients or gradients as are used in the reservoir simulator,
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especially in the case where the gas phase is appear in the reservoir. Otherwise, the

inconsistence of flow equations in the adjoint system and in reservoir simulator could

cause significant errors in computation of sensitivity coefficients.

We have applied the history matching procedure to several 2D and 3D cases

with two-phase and three-phase flow to generate MAP estimates or realizations. The

results indicate that integrating more types of data improves the quality of the re-

sulting estimate. Gas-oil ratio data tend to more useful than water-oil ratio data in

resolving reservoir model parameters. With the sensitivity coefficients generated by

adjoint method, we computed the approximate a posterior covariance matrix based

on the Hessian. The normalized a posterior variance gives a measure of the reduction

in uncertainty obtained by conditioning to production data and prior model. Based

on this measure of uncertainty, conditioning to all production data (pressure, GOR

and WOR) gives a greater reduction in uncertainty than is obtained by conditioning

to only one or two types of data. One should bear in mind, however, that these

a posterior variances only provide an approximation of the uncertainty. The best

way to evaluate uncertainty is to generate a large number of realizations. However,

generating multiple realizations is very expensive in computation.

For complex problems with big initial mismatch in the data, one needs to

damp the updated step size of the early iterations in a history matching procedure

to generate a reasonable estimate. The Levenberg-Marquardt provides a simple and

efficient way to damp the step size in the first few iterations. From the examples in this

work, the Levenberg-Marquardt method is more robust than regular Gauss-Newton

method in term of obtaining estimates of model parameters which give acceptable

matches of observed production data.

In this work, I showed that the relative permeability curves could be esti-

mated by from observations of production data. We are have the ability to estimate

the relative permeability by itself or estimate relative and absolute permeability si-

multaneously. Estimating absolute and relative permeability is more difficult than
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estimating relative permeability only. In this work, a power law model was used to

represent the relative permeability curves in the oil-gas and water-oil systems. If one

only wishes to estimate relative permeability curves, one can accurately estimate both

end points and exponential terms in the power law model. However, if one wants to

estimate both absolute and relative permeability in a gas-oil or water-oil two phase

flow problem, it was necessary to fix one end point (krocw) to obtain the reasonable

estimates. Interestingly, in three-phase flow cases, it was possible to estimate absolute

and relative permeability simultaneously without fixing the end points. We showed

that this is a result of the use of the three-phase Stone 2 model and would not be

true in general.



APPENDIX A

THE GENERAL 3D, THREE-PHASE BLACK OIL FLOW EQUATIONS

In this appendix, we present the general 3D, three-phase black oil flow equa-

tions on which the adjoint system is based.

A.1 Darcy’s Law

In field units, the Darcy’s Law can be written for the velocity,

vm = −C1
krm[k]

µm
(∇pm −

ρmg

144gc
∇D), (A–1)

where m = o, w, g, D points toward the center of the earth, and C1 = 1.127 × 10−3.

Throughout, we use Cartesian coordinate system so

vm =


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, (A–2)

and we assume that the coordinate system is aligned with the principal permeability

directions so that k is a diagonal tensor given by

[k] =











kx 0 0

0 ky 0

0 0 kz











. (A–3)

The components of the velocity vector vm are in units of RB/ft2 − day. The fluid

density ρm is in units of lbm/ft3. We define the specific weight γm by

γm =
ρmg

144gc
, (A–4)

149



150

where m = o, w, g and γm is in units of psi/ft. Then Darcy’s Law can be written as

vm = −C1
krm[k]

µm
(∇pm − γm∇D). (A–5)

A.2 Three-Phase Relative Permeability

In our approach, we use the second model of Stone (1973) to calculate three-

phase relative permeabilities. The oil relative permeability for three-phase flow is

estimated from two sets of two-phase relative permeability data, relative permeability

in an water-oil system and in an gas-oil system.

In a water-oil system, the water relative permeability krw and the oil relative

permeability krow only depend on water saturation Sw, i.e.,

krw = f(Sw), (A–6)

and

krow = f(Sw). (A–7)

In a gas-oil system, the gas relative permeability krg and the oil relative permeability

krog only depend on gas saturation Sg, i.e.,

krg = f(Sg), (A–8)

and

krog = f(Sg). (A–9)

For three-phase flow, the oil relative permeability is a function of Sw and Sg, i.e.,

kro = f(Sw, Sg); (A–10)

whereas krw and Krg, respectively, are still given by Eqs. A–6 and A–8. The three-

phase relative oil permeability is given by the second modified Stone model,

kro = krocw[(krow/krocw + krw)(krog/krocw + krg)− (krw + krg)] (A–11)
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We assume that the relative permeability data in a gas-oil system are measured in

the presence of irreducible water. The term krocw in Eq. A–11 is defined by

krocw = krow(Swc) = krog(SL = 1), (A–12)

where SL = 1− Sg = So + Swc for the oil-gas system.

A.3 General Flow Equations

The adjoint procedure is based on a black-oil model. For this model, the gas

component may be dissolved in oil but no oil component exists in the gas phase. In

our formulation, we also assume that no gas dissolved in the water phase. However

we neglect rock compressibility. From the law of mass conservation and Darcy’s Law,

we can obtain the following flow equations: Oil:

C1∇

(

kro
µoBo

[k](∇po(x, y, z, t)− γo∇D(x, y, z))

)

=
φ

C2

∂

∂t

(

So
Bo

)

+ q̂o(x, y, z, t);

(A–13)

Water:

C1∇

(

krw
µwBw

[k](∇pw(x, y, z, t)− γw∇D(x, y, z))

)

=
φ

C2

∂

∂t

(

Sw
Bw

)

+ q̂w(x, y, z, t);

(A–14)

Gas:

C1∇

(

krg
µgBg

[k](∇pg(x, y, z, t)− γg∇D(x, y, z))

+
Rsokro
µoBo

[k](∇po(x, y, z, t)− γo∇D(x, y, z))

)

=
φ

C2

∂

∂t

(

Sg
Bg

+
RsoSo
Bo

)

+ q̂g(x, y, z, t).

(A–15)

Throughout, C2 = 5.615, the oil and water formation volume factor (Bo and Bw)

are in units of RB/STB, the gas FVF (Bg) is in RB/scf , and Rso is the dissolved

gas-oil ratio in units of scf/STB. The oil and water source/sink terms, q̂o(x, y, z, t)

and q̂w(x, y, z, t), are in units STB/ft3 − day, whereas the corresponding gas term,
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q̂g(x, y, z, t), is in units of scf/ft3 − day. The equations are given in the form where

q̂m > 0 corresponds to the production of phase m and q̂m < 0 corresponds to the

injection of phase m.

The oil saturation So, water saturation Sw and gas saturation Sg satisfy the

following constraint condition:

Sg + So + Sw = 1. (A–16)

The two independent capillary pressure are defined by

pcow = po − pw, (A–17)

and

pcgo = pg − po. (A–18)

Note this means in the presence of oil and water, water is the wetting phase, whereas,

in the presence of oil and gas, oil is the wetting phase. We assume that

pcow = f(Sw), (A–19)

and

pcgo = f(Sg). (A–20)

By using Eqs. A–17 and A–18, we can write Eqs. A–13 to A–15 as

Oil:

C1∇

(

kro
µoBo

[k](∇po(x, y, z, t)− γo∇D(x, y, z))

)

=
φ

C2

∂

∂t

(

So
Bo

)

+ q̂o(x, y, z, t);

(A–21)

Water:

C1∇

(

krw
µwBw

[k](∇po(x, y, z, t)−∇pcow(x, y, z, t)− γw∇D(x, y, z))

)

=
φ

C2

∂

∂t

(

Sw
Bw

)

+ q̂w(x, y, z, t); (A–22)
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Gas:

C1∇

(

krg
µgBg

[k](∇po(x, y, z, t) +∇pcgo(x, y, z, t)− γg∇D(x, y, z))

+
Rsokro
µoBo

[k](∇po(x, y, z, t)− γo∇D(x, y, z))

)

=
φ

C2

∂

∂t

(

Sg
Bg

+
RsoSo
Bo

)

+ q̂g(x, y, z, t).

(A–23)

If we neglect capillarity effects, the flow equations can be written as

Oil:

C1∇

(

kro
µoBo

[k](∇p(x, y, z, t)− γo∇D(x, y, z))

)

=
φ

C2

∂

∂t

(

So
Bo

)

+ q̂o(x, y, z, t);

(A–24)

Water:

C1∇

(

krw
µwBw

[k](∇p(x, y, z, t)− γw∇D(x, y, z))

)

=
φ

C2

∂

∂t

(

Sw
Bw

)

+ q̂w(x, y, z, t);

(A–25)

Gas:

C1∇

(

krg
µgBg

[k](∇p(x, y, z, t)− γg∇D(x, y, z))

+
Rsokro
µoBo

[k](∇p(x, y, z, t)− γo∇D(x, y, z))

)

=
φ

C2

∂

∂t

(

Sg
Bg

+
RsoSo
Bo

)

+ q̂g(x, y, z, t).

(A–26)

A.4 Discrete Flow Equations

We use a block-centered grid with gridblock centers at (xi, yj, zk), i = 1, 2, . . . , nx,

j = 1, 2, . . . , ny, k = 1, 2, . . . , nz. By using a fully implicit procedure to approx-

imate spatial and time derivatives in Eqs. A–24 to A–26 multiplying the result by

Vi,j,k = ∆xi∆yj∆zk and let time ∆tn+1 = tn+1−tn , we obtain the following equations

in discrete form
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Oil:

T n+1
ox,i+1/2,j,k[p

n+1
i+1,j,k − pn+1i,j,k − γn+1o,i+1/2,j,k(Di+1,j,k −Di,j,k)]

− T n+1
ox,i−1/2,j,k[p

n+1
i,j,k − pn+1i−1,j,k − γn+1o,i−1/2,j,k(Di,j,k −Di−1,j,k)]

+ T n+1
oy,i,j+1/2,k[p

n+1
i,j+1,k − pn+1i,j,k − γn+1o,i,j+1/2,k(Di,j+1,k −Di,j,k)]

− T n+1
oy,i,j−1/2,k[p

n+1
i,j,k − pn+1i,j−1,k − γn+1o,i,j−1/2,k(Di,j,k −Di,j−1,k)]

+ T n+1
oz,i,,j,k+1/2[p

n+1
i,j,k+1 − pn+1i,j,k − γn+1o,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

− T n+1
oz,i,j,k−1/2[p

n+1
i,j,k − pn+1i,j,k−1 − γn+1o,i,j,k−1/2(Di,j,k −Di,j,k−1)]

=
Vi,j,kφi,j,k
C2∆tn+1

[

(

So
Bo

)n+1

i,j,k

−

(

So
Bo

)n

i,j,k

]

+ qn+1o,i,j,k; (A–27)

Water:

T n+1
wx,i+1/2,j,k[p

n+1
i+1,j,k − pn+1i,j,k − γn+1w,i+1/2,j,k(Di+1,j,k −Di,j,k)]

− T n+1
wx,i−1/2,j,k[p

n+1
i,j,k − pn+1i−1,j,k − γn+1w,i−1/2,j,k(Di,j,k −Di−1,j,k)]

+ T n+1
wy,i,j+1/2,k[p

n+1
i,j+1,k − pn+1i,j,k − γn+1w,i,j+1/2,k(Di,j+1,k −Di,j,k)]

− T n+1
wy,i,j−1/2,k[p

n+1
i,j,k − pn+1i,j−1,k − γn+1w,i,j−1/2,k(Di,j,k −Di,j−1,k)]

+ T n+1
wz,i,,j,k+1/2[p

n+1
i,j,k+1 − pn+1i,j,k − γn+1w,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

− T n+1
wz,i,j,k−1/2[p

n+1
i,j,k − pn+1i,j,k−1 − γn+1w,i,j,k−1/2(Di,j,k −Di,j,k−1)]

=
Vi,j,kφi,j,k
C2∆tn+1

[

(

Sw
Bw

)n+1

i,j,k

−

(

Sw
Bw

)n

i,j,k

]

+ qn+1w,i,j,k; (A–28)
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Gas:

T n+1
gx,i+1/2,j,k[p

n+1
i+1,j,k − pn+1i,j,k − γn+1g,i+1/2,j,k(Di+1,j,k −Di,j,k)]

− T n+1
gx,i−1/2,j,k[p

n+1
i,j,k − pn+1i−1,j,k − γn+1g,i−1/2,j,k(Di,j,k −Di−1,j,k)]

+Rn+1
so,i+1/2,j,kT

n+1
ox,i+1/2,j,k[p

n+1
i+1,j,k − pn+1i,j,k − γn+1o,i+1/2,j,k(Di+1,j,k −Di,j,k)]

−Rn+1
so,i−1/2,j,kT

n+1
ox,i−1/2,j,k[p

n+1
i,j,k − pn+1i−1,j,k − γn+1o,i−1/2,j,k(Di,j,k −Di−1,j,k)]

+ T n+1
gy,i,j+1/2,k[p

n+1
i,j+1,k − pn+1i,j,k − γn+1g,i,j+1/2,k(Di,j+1,k −Di,j,k)]

− T n+1
gy,i,j−1/2,k[p

n+1
i,j,k − pn+1i,j−1,k − γn+1g,i,j−1/2,k(Di,j,k −Di,j−1,k)]

+Rn+1
so,i,j+1/2,kT

n+1
oy,i,j+1/2,k[p

n+1
i,j+1,k − pn+1i,j,k − γn+1o,i,j+1/2,k(Di,j+1,k −Di,j,k)]

−Rn+1
so,i,j−1/2,kT

n+1
oy,i,j−1/2,k[p

n+1
i,j,k − pn+1i,j−1,k − γn+1o,i,j−1/2,k(Di,j,k −Di,j−1,k)]

+ T n+1
gz,i,j,k+1/2[p

n+1
i,j,k+1 − pn+1i,j,k − γn+1g,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

− T n+1
gz,i,j,k−1/2[p

n+1
i,j,k − pn+1i,j,k−1 − γn+1g,i,j,k−1/2(Di,j,k −Di,j,k−1)]

+Rn+1
so,i,j,k+1/2T

n+1
oz,i,j,k+1/2[p

n+1
i,j,k+1 − pn+1i,j,k − γn+1o,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

−Rn+1
so,i,j,k−1/2T

n+1
oz,i,j,k−1/2[p

n+1
o,i,j,k − pn+1o,i,j,k−1 − γn+1o,i,j,k−1/2(Di,j,k −Di,j,k−1)]

=
Vi,j,kφi,j,k
C2∆tn+1

[

(

Sg
Bg

+Rso
So
Bo

)n+1

i,j,k

−

(

Sg
Bg

+Rso
So
Bo

)n

i,j,k

]

+ qn+1g,i,j,k, (A–29)

for i = 1, 2, . . . , nx, j = 1, 2, . . . , ny, and k = 1, 2, . . . , nz. In the preceding three

equations, the qm,i,j,k(t)’s are defined by

qn+1m,i,j,k = ∆xi∆yj∆zkq̂m,i,j,k(t), (A–30)

for m = o, w, g and Vi,j,k = ∆xi∆yj∆zk. Note that the qn+1o,i,j,k and qn+1w,i,j,k are in units

of STB/day and qn+1g,i,j,k is in units scf/day.

The transmissibilities are given by the following equations.

T n+1
mx,i+1/2,j,k =

C1∆yj∆zkkx,i+1/2,j,k
xi+1 − xi

(

krm
µmBm

)n+1

i+1/2,j,k

, (A–31)

for m = o, w, g and all i = 1, 2, . . . , nx − 1. The outer boundaries are no-flow, so the

transmissibilities at the edges are given by

T n+1
mx,1/2,j,k = T n+1

mx,nx+1/2,j,k
= 0. (A–32)
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Similarly,

T n+1
my,i,j+1/2,k =

C1∆xi∆zkky,i,j+1/2,k
yj+1 − yj

(

krm
µmBm

)n+1

i,j+1/2,k

, (A–33)

for m = o, w, g and all j = 1, 2, . . . , ny − 1, and

T n+1
my,i,1/2,k = T n+1

my,i,ny+1/2,k
= 0, (A–34)

T n+1
mz,i,j,k+1/2 =

C1∆xi∆yjkz,i,j,k+1/2
zk+1 − zk

(

krm
µmBm

)

i,j,k+1/2

, (A–35)

for m = o, w, g and all i = 1, 2, . . . , ny − 1, and

T n+1
mz,i,j,1/2 = T n+1

mz,i,j,nz+1/2
= 0. (A–36)

The terms krm, µm, Bm, and Rso are evaluated by using upstream weightings. The

specific weights γn+1m are defined as

γn+1m,i±1/2,j,k =
g

144gc

(ρn+1m,i,j,k + ρn+1m,i±1,j,k)

2
, (A–37)

γn+1m,i,j±1/2,k =
g

144gc

(ρn+1m,i,j,k + ρn+1m,i,j±1,k)

2
, (A–38)

γn+1m,i,j,k±1/2 =
g

144gc

(ρn+1m,i,j,k + ρn+1m,i,j,k±1)

2
. (A–39)

The phase density ρn+1m,i,j,k terms are given by

ρn+1o,i,j,k =
1

Bn+1
o

(ρosc +
1

5.615
Rn+1
so,i,j,kρgsc), (A–40)

ρn+1w,i,j,k =
ρwsc
Bn+1
w

, (A–41)

ρn+1g,i,j,k =
ρgsc

5.615Bn+1
g

. (A–42)

The terms ρosc, ρwsc and ρgsc, respectively, represent oil, water and gas density at the

standard conditions. The units are in lbm/ft3.

Eqs. A–27 to A–29, respectively, can be rewritten for the three phases as

follows.
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Oil:

fn+1o,i,j,k = T n+1
ox,i+1/2,j,k[p

n+1
i+1,j,k − pn+1i,j,k − γn+1o,i+1/2,j,k(Di+1,j,k −Di,j,k)]

− T n+1
ox,i−1/2,j,k[p

n+1
i,j,k − pn+1i−1,j,k − γn+1o,i−1/2,j,k(Di,j,k −Di−1,j,k)]

+ T n+1
oy,i,j+1/2,k[p

n+1
i,j+1,k − pn+1i,j,k − γn+1o,i,j+1/2,k(Di,j+1,k −Di,j,k)]

− T n+1
oy,i,j−1/2,k[p

n+1
i,j,k − pn+1i,j−1,k − γn+1o,i,j−1/2,k(Di,j,k −Di,j−1,k)]

+ T n+1
oz,i,j,k+1/2[p

n+1
i,j,k+1 − pn+1i,j,k − γn+1o,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

− T n+1
oz,i,j,k−1/2[p

n+1
i,j,k − pn+1i,j,k−1 − γn+1o,i,j,k−1/2(Di,j,k −Di,j,k−1)]

−
Vi,j,kφi,j,k
C2∆tn+1

[

(

So
Bo

)n+1

i,j,k

−

(

So
Bo

)n

i,j,k

]

− qn+1o,i,j,k = 0, (A–43)

Water:

fn+1w,i,j,k = T n+1
wx,i+1/2,j,k[p

n+1
i+1,j,k − pn+1i,j,k − γn+1w,i+1/2,j,k(Di+1,j,k −Di,j,k)]

− T n+1
wx,i−1/2,j,k[p

n+1
i,j,k − pn+1i−1,j,k − γn+1w,i−1/2,j,k(Di,j,k −Di−1,j,k)]

+ T n+1
wy,i,j+1/2,k[p

n+1
i,j+1,k − pn+1i,j,k − γn+1w,i,j+1/2,k(Di,j+1,k −Di,j,k)]

− T n+1
wy,i,j−1/2,k[p

n+1
i,j,k − pn+1i,j−1,k − γn+1w,i,j−1/2,k(Di,j,k −Di,j−1,k)]

+ T n+1
wz,i,j,k+1/2[p

n+1
i,j,k+1 − pn+1i,j,k − γn+1w,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

− T n+1
wz,i,j,k−1/2[p

n+1
i,j,k − pn+1i,j,k−1 − γn+1w,i,j,k−1/2(Di,j,k −Di,j,k−1)]

−
Vi,j,kφi,j,k
C2∆tn+1

[

(

Sw
Bw

)n+1

i,j,k

−

(

Sw
Bw

)n

i,j,k

]

− qn+1w,i,j,k = 0, (A–44)
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Gas:

fn+1g,i,j,k = T n+1
gx,i+1/2,j,k[p

n+1
i+1,j,k − pn+1i,j,k − γn+1g,i+1/2,j,k(Di+1,j,k −Di,j,k)]

− T n+1
gx,i−1/2,j,k[p

n+1
i,j,k − pn+1i−1,j,k − γn+1g,i−1/2,j,k(Di,j,k −Di−1,j,k)]

+Rn+1
so,i+1/2,j,kT

n+1
ox,i+1/2,j,k[p

n+1
i+1,j,k − pn+1i,j,k − γn+1o,i+1/2,j,k(Di+1,j,k −Di,j,k)]

−Rn+1
so,i−1/2,j,kT

n+1
ox,i−1/2,j,k[p

n+1
i,j,k − pn+1i−1,j,k − γn+1o,i−1/2,j,k(Di,j,k −Di−1,j,k)]

+ T n+1
gy,i,j+1/2,k[p

n+1
i,j+1,k − pn+1i,j,k − γn+1g,i,j+1/2,k(Di,j+1,k −Di,j,k)]

− T n+1
gy,i,j−1/2,k[p

n+1
i,j,k − pn+1i,j−1,k − γn+1g,i,j−1/2,k(Di,j,k −Di,j−1,k)]

+Rn+1
so,i,j+1/2,kT

n+1
oy,i,j+1/2,k[p

n+1
i,j+1,k − pn+1i,j,k − γn+1o,i,j+1/2,k(Di,j+1,k −Di,j,k)]

−Rn+1
so,i,j−1/2,kT

n+1
oy,i,j−1/2,k[p

n+1
i,j,k − pn+1i,j−1,k − γn+1o,i,j−1/2,k(Di,j,k −Di,j−1,k)]

+ T n+1
gz,i,j,k+1/2[p

n+1
i,j,k+1 − pn+1i,j,k − γn+1g,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

− T n+1
gz,i,j,k−1/2[p

n+1
i,j,k − pn+1i,j,k−1 − γn+1g,i,j,k−1/2(Di,j,k −Di,j,k−1)]

+Rn+1
so,i,j,k+1/2T

n+1
oz,i,j,k+1/2[p

n+1
i,j,k+1 − pn+1i,j,k − γn+1o,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

−Rn+1
so,i,j,k−1/2T

n+1
oz,i,j,k−1/2[p

n+1
i,j,k − pn+1i,j,k−1 − γn+1o,i,j,k−1/2(Di,j,k −Di,j,k−1)]

−
Vi,j,kφi,j,k
C2∆tn+1

[

(

Sg
Bg

+Rso
So
Bo

)n+1

i,j,k

−

(

Sg
Bg

+Rso
So
Bo

)n

i,j,k

]

− qn+1g,i,j,k = 0, (A–45)

where the first equality in the preceding three equations serve to define the f n+1m,i,j,k

terms. Let

fn+1f =
[

fn+1o,1,1,1, fn+1w,1,1,1, fn+1g,1,1,1, fn+1o,2,1,1, . . . , fn+1g,nx,ny ,nz

]T

. (A–46)

Then the linear system of Eqs. A–43 to A–45 can be written in vector form as

fn+1f = 0. (A–47)

A.5 Well Constraint Equations

In this section, we give the well constraint equations for various wellbore

boundary conditions. For the producing wells, we can specify oil rate, total rate
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at reservoir conditions and bottom hole pressure. For the injection wells, water or

gas injection rate specified is used. The well constraints can change with time. For

example, we can use a sequence of rates for the producing wells. An injection well

can be changed to a producing well during the simulation run.

A.5.1 Wellbore Models

We use Peaceman’s equation (Peaceman, 1983) to model the relation be-

tween wellbore pressure and gridblock pressure. The component flow rates from the

perforated layer k of well l (at gridblock (i, j, k)) at time step n+1 can be evaluated

as

qn+1o,l,k = WIl,k

(

kro
Boµo

)n+1

l,k

(pn+1l,k − pn+1wf,l,k), (A–48)

qn+1w,l,k = WIl,k

(

krw
Bwµw

)n+1

l,k

(pn+1l,k − pn+1wf,l,k), (A–49)

and

qn+1g,l,k = WIl,k

(

krg
Bgµg

)n+1

l,k

(pn+1l,k − pn+1wf,l,k) +Rn+1
so,l,kq

n+1
o,l,k

= WIl,k

(

krg
Bgµg

+Rso
kro
Boµo

)n+1

l,k

(pn+1l,k − pn+1wf,l,k).

(A–50)

The qn+1o,l,k and qn+1w,l,k are in units of STB/d, and the qn+1g,l,k is in units of scf/d. Here

layer k means the well-bore gridblock with z-direction gridblock index equal to k. The

well index term WIl,k is the geometry part of productivity index and it is defined by

WIl,k =
0.007084zk

√

kx,i,j,kky,i,j,k

ln(ro,l,k/rw,l,k) + sl,k
, (A–51)

and ro,l,k is defined

ro,l,k =
0.280734xi

√

1 +
kx,i,j,k
ky,i,j,k

(

4yj
4xi

)2

1 +
√

kx,i,j,k/ky,i,j,k
. (A–52)

Here, rw,l,k is the wellbore radius of the well l at the layer k and the sl,k is the skin

factor for well l at layer k.
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To simplify notation, let

T n+1
o,l,k = WIl,k

(

kro
Boµo

)n+1

l,k

, (A–53)

T n+1
w,l,k = WIl,k

(

krw
Bwµw

)n+1

l,k

, (A–54)

and

T n+1
g,l,k = WIl,k

(

krg
Bgµg

+Rso
kro
Boµo

)n+1

l,k

. (A–55)

Then, Eqs. A–48-A–50 can be rewritten as

qn+1o,l,k = T n+1
o,l,k (p

n+1
l,k − pn+1wf,l,k), (A–56)

qn+1w,l,k = T n+1
w,l,k(p

n+1
l,k − pn+1wf,l,k), (A–57)

and

qn+1g,l,k = T n+1
g,l,k (p

n+1
l,k − pn+1wf,l,k). (A–58)

Let the pn+1wf,l be the reference well pressure at the depthDl,0. Assume the gravitational

pressure gradient is constant (γ l), then the pn+1wf,l,k at the depth Dl,k can be expressed

as

pn+1wf,l,k = pn+1wf,l + γl(Dl,k −Dl,0) = pn+1wf,l + dpn+1wf,l,k, (A–59)

where

dpn+1wf,l,k = γl(Dl,k −Dl,0). (A–60)

The gradient γl is evaluated from flow rates

γl =

∑

k(
∑

m γl,kq
n+1
m,l,k)

∑

k(
∑

m qn+1m,l,k)
. (A–61)

So the production rates at surface conditions for each completion gridblock can be

computed by

qn+1o,l,k = T n+1
o,l,k [p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k], (A–62)

qn+1w,l,k = T n+1
w,l,k[p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k], (A–63)

and

qn+1g,l,k = T n+1
g,l,k [p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k]. (A–64)
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A.5.2 Well Constraints - pwf Specified

Suppose the bottom hole pressure at well l, pn+1wf,l, is specified to equal pn+1wf,l,0.

The well constraint equation is then simply

fn+1wf,l = pn+1wf,l,0 − pn+1wf,l = 0. (A–65)

It is necessary to Include Eq. A–65 in the reservoir simulation system equation.

Through this way, the number of well constraints are always equal to the number

of wells in the model. Otherwise, when the types of well constraints change, the

number of well equations will change.

The production rates for each completion at surface conditions are calculated

by Eqs. A–62 to A–64.

A.5.3 Well Constraints - Qo Specified

Have qn+1o,l denotes the oil production rate from well l at time tn+1 in STB/D,if

we specify oil rate for well l as qo,l, we have oil rate constraint

qn+1o,l =
∑

k

qn+1o,l,k =
∑

k

T n+1
o,l,k (p

n+1
l,k − pn+1wf,l,k). (A–66)

Substitute Eq. A–59 into Eq. A–66, and it follows that

qn+1o,l =
∑

k

T n+1
o,l,k (p

n+1
l,k − pn+1wf,l − γl(Dl,k −Dl,0))

=
∑

k

T n+1
o,l,k (p

n+1
l,k − dpn+1wf,l,k)−

∑

k

T n+1
o,l,k p

n+1
wf,l,

(A–67)

so the well l constraint equation is

fn+1wf,l =
∑

k

T n+1
o,l,k [p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k]− qn+1o,l = 0. (A–68)

Similarly, the production rates for each completion at surface conditions are calculated

by Eqs. A–62 to A–64.
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A.5.4 Well Constraints - Total Rate Qt Specified at Reservoir Conditions

qn+1t,l denotes the total production rate from well l at time tn+1 in RB/D. If

we specify the total rate specified at reservoir conditions for well l , the total rate at

reservoir conditions are given by

qn+1t,l =
∑

k

qn+1t,l,k =
∑

k

T n+1
t,l,k (p

n+1
l,k − pn+1wf,l,k), (A–69)

where

T n+1
t,l,k = WIl,k

(

kro
µo

+
krw
µw

+
krg
µg

)n+1

l,k

, (A–70)

so the constraint equation for the well l is

fn+1wf,l =
∑

k

T n+1
t,l,k [p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k]− qn+1t,l = 0. (A–71)

The production rates at surface conditions are calculated by Eqs. A–62 to A–64.

A.5.5 Well Constraints - Water or Gas Injection

For the injection wells, the relative permeability of the injected phase in the

Peaceman’s equation is set to one. Let qn+1m,l,k denote the injection rate of phase m at

time tn+1. For a water or gas injection well, the water or gas phase rate in the layer

k is given by:

qn+1m,l,k = T n+1
inj,m,l,k[p

n+1
l,k − pn+1wf,l,k] = T n+1

inj,m,l,k[p
n+1
l,k − pn+1wf,l − dpn+1wf,l,k], (A–72)

where m = w, g, qn+1m,l,k < 0, and

T n+1
inj,m,l,k =

WIl,k

(µmBm)
n+1
l,k

. (A–73)

WIl,k is defined by Eq. A–51. So the well l constraint is given by

fn+1wf,l =
∑

k

T n+1
inj,m,l,k(p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k)− qn+1m,l = 0. (A–74)
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For water injection wells, the oil and gas rates in each completion layer are set to

zero, i.e.,

qn+1g,l,k = qn+1o,l,k = 0. (A–75)

Similarly, for gas injection wells, the water and oil rates in each completion layer are

set to zero,

qn+1w,l,k = qn+1o,l,k = 0. (A–76)

A.6 Fully Implicit Simulator

Recall that N = nxnynz denotes the total number of gridblocks and Nw

denotes the number of wells. In this work, we solve 3N flow equations plus Nw well

constraint equations simultaneously to get the solutions of reservoir simulation. The

discrete nonlinear simulation equations can be written in the general form,

f(yn+1, yn,m) = 0, (A–77)

where yn+1 is the vector of primary variables, p, Sw, Sg, and pwf,l at time step n+1; yn

is the vector of primary variables, at time step n; m is the vector of model parameters;

f is a vector of flow equations and well constraint equations. The N gridblocks are

numbered from 1, 2, ..., to N . Normally, the gridblocks are ordered with increasing

x-direction index first, then increasing y-direction index, and finally increasing z-

direction index. Actually, in our code, the order is flexible. One can increases any

directions of index first. In gridblock i, the primary variables are pi, Sw,i, Sg,i; All

wellbore pressure are also primary variables. For three phase flow, we have three

equations, water, gas and oil, in the gridblock i, which are represented in vector form

by

fo,i(y
n+1, yn,m) = fn+1o,i = 0, (A–78)

fw,i(y
n+1, yn,m) = fn+1w,i = 0, (A–79)
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and

fg,i(y
n+1, yn,m) = fn+1g,i = 0, (A–80)

for i = 1, 2, ..., N . In each gridblock, we always put the oil equation first, and then

the water equation, finally the gas equation.

The well constraints are represented by

fwf,j(y
n+1, yn,m) = fn+1wf,j = 0, (A–81)

for j = 1, 2, ..., Nw, where Nw is the number of wells. So the simulation system,

Eq. A–77, is a 3N +Nw dimensional vector which has the form

f(yn+1, yn,m) = fn+1 =















































fn+1o,1

fn+1w,1

fn+1g,1

fn+1o,2

...

fn+1g,N

fn+1wf,1

...

fn+1wf,Nw















































= 0. (A–82)

In Eq. A–82,

yn+1 =















































pn+11

Sn+1w,1

Sn+1g,1

pn+12

...

Sn+1g,N

pn+1wf,1

...

pn+1wf,Nw















































, yn =















































pn1

Snw,1

Sng,1

pn2
...

Sng,N

pnwf,1
...

pnwf,Nw















































, (A–83)
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and

m =

















m1

m2
...

mNm

















, (A–84)

where Nm is the number of model parameters.

In the fully implicit simulator, we apply the Newton-Raphson method (Aziz,

1994) to solve the nonlinear system given by Eq. A–82. At each time step, Newton’s

method is applied to solve

Jνδyν+1 = −f ν , (A–85)

for δyν+1, where, ν is the iteration index and J ν = [∇yνf
T ]T is the Jacobian matrix.

Then the equation

yν+1 = yν + δyν+1 (A–86)

is used to update y (p, Sw, Sg and pwf ) until the procedure converges so that Eq. A–82

is satisfied to a given tolerance.

The Jacobian matrix is a 3N +Nw by 3N +Nw matrix. At time step n+1,

it is given by,

Jn+1 = [∇yn+1 [fn+1]T ]T =







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


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1
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· · ·
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APPENDIX B

COMPUTATION OF DERIVATIVES IN THE ADJOINT SYSTEM

In chapter 3, we showed that the adjoint system of equations for our general

flow equations can be written as

[∇yn(f
n)T ]λn = −[∇yn(f

n+1)T ]λn+1 −∇ynβ. (B–1)

In this appendix, we will evaluate the derivatives in Eq. B–1 for the implicit black-oil

system. Recall that the state variables of the nth time step are

yn = [ pn1 Snw,1 Sng,1 pn2 · · · Sng,N pnwf,1 · · · pnwf,Nw
]T . (B–2)

So we write the gradient of the flow equation of at time n with respect to yn as (the

transpose of Jacobian matrix)

∇yn [f
n]T =
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
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. (B–3)
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A similar equation results for the gradient of the flow equations at n+ 1;

∇yn [f
n+1]T =
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...

∂fn+1
o,1

∂pnwf,Nw

∂fn+1
w,1

∂pnwf,Nw

· · ·
∂fn+1

g,N

∂pnwf,Nw

∂fn+1
wf,1

∂pnwf,Nw

· · ·
∂fn+1

wf,Nw

∂pnwf,Nw

















































. (B–4)

Finally, we must compute the gradient of the “objective function” with respect to

the primary variables,

∇ynβ =

















































∂β
∂pn1
∂β

∂Snw,1

∂β
∂Sng,1

∂β
∂pn2
...

∂β
∂Sng,N

∂β
∂pnwf,1
...

∂β
∂pnwf,Nw

















































. (B–5)

In order to solve the adjoint system Eq. B–1, we need to evaluate the matri-

ces, [∇yn(f
n)T ], [∇yn(f

n+1)T ] and ∇ynβ. In the following sections, we give detailed

formulations for computing these derivatives. The computation of the transpose of

the Jacobian matrix [∇yn(f
n)T ] (Eq. B–3) is given in the section B.1 and B.2, the

computation of diagonal band matrix [∇yn(f
n+1)T ] (Eq. B–4) is given in section B.3.

In section B.4, we describe how to calculate the source terms ∇ynβ in the adjoint
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system.

B.1 Derivatives of Flow Equations

In this section, we compute the derivatives of flow equations Eqs. A–43 to

A–45 with respect to the primary variables yn+1 (p, Sw, Sg, and pwf,l).

To simplify the notation, we separate the flow equations to three parts: the

flow term (F n
m,i,j,k), the accumulation term (An+1

m,i,j,k) and the sink term (qn+1m,i,j,k). The

flow equations (Eqs. A–43 to A–45) can be written

fn+1m,i,j,k = F n+1
m,i,j,k − An+1

m,i,j,k − qn+1m,i,j,k = 0, (B–6)

where m = o, w, g. The flow terms (F n+1
m,i,j,k), accumulation terms (An+1

m,i,j,k), and the

sink terms qn+1m,i,j,k can be obtained from Eqs. A–43 to A–45. The flow terms are given

by,

F n+1
o,i,j,k = T n+1

ox,i+1/2,j,k[p
n+1
i+1,j,k − pn+1i,j,k − γn+1o,i+1/2,j,k(Di+1,j,k −Di,j,k)]

− T n+1
ox,i−1/2,j,k[p

n+1
i,j,k − pn+1i−1,j,k − γn+1o,i−1/2,j,k(Di,j,k −Di−1,j,k)]

+ T n+1
oy,i,j+1/2,k[p

n+1
i,j+1,k − pn+1i,j,k − γn+1o,i,j+1/2,k(Di,j+1,k −Di,j,k)]

− T n+1
oy,i,j−1/2,k[p

n+1
i,j,k − pn+1i,j−1,k − γn+1o,i,j−1/2,k(Di,j,k −Di,j−1,k)]

+ T n+1
oz,i,j,k+1/2[p

n+1
i,j,k+1 − pn+1i,j,k − γn+1o,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

− T n+1
oz,i,j,k−1/2[p

n+1
i,j,k − pn+1i,j,k−1 − γn+1o,i,j,k−1/2(Di,j,k −Di,j,k−1)], (B–7)

F n+1
w,i,j,k = T n+1

wx,i+1/2,j,k[p
n+1
i+1,j,k − pn+1i,j,k − γn+1w,i+1/2,j,k(Di+1,j,k −Di,j,k)]

− T n+1
wx,i−1/2,j,k[p

n+1
i,j,k − pn+1i−1,j,k − γn+1w,i−1/2,j,k(Di,j,k −Di−1,j,k)]

+ T n+1
wy,i,j+1/2,k[p

n+1
i,j+1,k − pn+1i,j,k − γn+1w,i,j+1/2,k(Di,j+1,k −Di,j,k)]

− T n+1
wy,i,j−1/2,k[p

n+1
i,j,k − pn+1i,j−1,k − γn+1w,i,j−1/2,k(Di,j,k −Di,j−1,k)]

+ T n+1
wz,i,j,k+1/2[p

n+1
i,j,k+1 − pn+1i,j,k − γn+1w,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

− T n+1
wz,i,j,k−1/2[p

n+1
i,j,k − pn+1i,j,k−1 − γn+1w,i,j,k−1/2(Di,j,k −Di,j,k−1)], (B–8)
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and

F n+1
g,i,j,k = T n+1

gx,i+1/2,j,k[p
n+1
i+1,j,k − pn+1i,j,k − γn+1g,i+1/2,j,k(Di+1,j,k −Di,j,k)]

− T n+1
gx,i−1/2,j,k[p

n+1
i,j,k − pn+1i−1,j,k − γn+1g,i−1/2,j,k(Di,j,k −Di−1,j,k)]

+Rn+1
so,i+1/2,j,kT

n+1
ox,i+1/2,j,k[p

n+1
i+1,j,k − pn+1i,j,k − γn+1o,i+1/2,j,k(Di+1,j,k −Di,j,k)]

−Rn+1
so,i−1/2,j,kT

n+1
ox,i−1/2,j,k[p

n+1
i,j,k − pn+1i−1,j,k − γn+1o,i−1/2,j,k(Di,j,k −Di−1,j,k)]

+ T n+1
gy,i,j+1/2,k[p

n+1
i,j+1,k − pn+1i,j,k − γn+1g,i,j+1/2,k(Di,j+1,k −Di,j,k)]

− T n+1
gy,i,j−1/2,k[p

n+1
i,j,k − pn+1i,j−1,k − γn+1g,i,j−1/2,k(Di,j,k −Di,j−1,k)]

+Rn+1
so,i,j+1/2,kT

n+1
oy,i,j+1/2,k[p

n+1
i,j+1,k − pn+1i,j,k − γn+1o,i,j+1/2,k(Di,j+1,k −Di,j,k)]

−Rn+1
so,i,j−1/2,kT

n+1
oy,i,j−1/2,k[p

n+1
i,j,k − pn+1i,j−1,k − γn+1o,i,j−1/2,k(Di,j,k −Di,j−1,k)]

+ T n+1
gz,i,,j,k+1/2[p

n+1
i,j,k+1 − pn+1i,j,k − γn+1g,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

− T n+1
gz,i,j,k−1/2[p

n+1
i,j,k − pn+1i,j,k−1 − γn+1g,i,j,k−1/2(Di,j,k −Di,j,k−1)]

+Rn+1
so,i,j,k+1/2T

n+1
oz,i,,j,k+1/2[p

n+1
i,j,k+1 − pn+1i,j,k − γn+1o,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

−Rn+1
so,i,j,k−1/2T

n+1
oz,i,j,k−1/2[p

n+1
i,j,k − pn+1i,j,k−1 − γn+1o,i,j,k−1/2(Di,j,k −Di,j,k−1)]. (B–9)

The accumulation terms are also obtained from A–43 to A–45:

An+1
o,i,j,k =

Vi,j,kφi,j,k
C2∆tn+1

[

(

So
Bo

)n+1

i,j,k

−

(

So
Bo

)n

i,j,k

]

=
Vi,j,kφi,j,k
C2∆tn+1

[

(

1− Sw − Sg
Bo

)n+1

i,j,k

−

(

1− Sw − Sg
Bo

)n

i,j,k

]

, (B–10)

An+1
w,i,j,k =

Vi,j,kφi,j,k
C2∆tn+1

[

(

Sw
Bw

)n+1

i,j,k

−

(

Sw
Bw

)n

i,j,k

]

, (B–11)

and

An+1
g,i,j,k =

Vi,j,kφi,j,k
C2∆tn+1

[

(

Sg
Bg

+Rso
So
Bo

)n+1

i,j,k

−

(

Sg
Bg

+Rso
So
Bo

)n

i,j,k

]

=
Vi,j,kφi,j,k
C2∆tn+1

[

(

Sg
Bg

+Rso

(

1− Sw − Sg
Bo

))n+1

i,j,k

−

(

Sg
Bg

+Rso

(

1− Sw − Sg
Bo

))n

i,j,k

]

.

(B–12)
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The sink terms for oil, water and gas equations are

qn+1o,l,k = WIl,k

(

kro
Boµo

)n+1

l,k

(pn+1l,k − pn+1wf,l,k), (B–13)

qn+1w,l,k = WIl,k

(

krw
Bwµw

)n+1

l,k

(pn+1l,k − pn+1wf,l,k), (B–14)

and

qn+1g,l,k = WIl,k

(

krg
Bgµg

)n+1

l,k

(pn+1lj,k − pn+1wf,l,k) +Rn+1
so,l,kq

n+1
o,l,k

= WIl,k

(

krg
Bgµg

+Rso
kro
Boµo

)n+1

l,k

(pn+1i,j,k − pn+1wf,l,k).

(B–15)

The derivative of the flow equation for component m in gridblock i, j, k with respect

to an element of primary variables yn+1l is

∂fn+1m,i,j,k

∂yn+1l

=
∂F n+1

m,i,j,k

∂yn+1l

−
∂An+1

m,i,j,k

∂yn+1l

−
∂qn+1m,i,j,k

∂yn+1l

, (B–16)

where m = o, w, g. Most of elements in the matrix [∇yn(f
n)T ] are zero. For the

primary variables pi,j,k, Sw,i,j,k and Sg,i,j,k in gridblock (i, j, k), only the flow equations

in gridblock (i − 1, j, k),(i + 1, j, k), (i, j − 1, k),(i, j + 1, k),(i, j, k − 1),(i, j, k + 1)

and (i, j, k) depend on yi,j,k. So the only components of fn+1m that have an nonzero

derivatives with respect to yn+1i,j,k are fn+1m,i−1,j,k, f
n+1
m,i+1,j,k, f

n+1
m,i,j−1k, f

n+1
m,i,j+1,k, f

n+1
m,i,j,k−1,

fn+1m,i,j,k+1 and fn+1m,i,j,k.

For the primary variables pwf,l, only sink terms depend on pwf,l, so we have

∂fn+1m,i,j,k

∂pn+1wf,l

= −
∂qn+1m,i,j,k

∂pn+1wf,l

. (B–17)

Thus, the matrix [∇yn(f
n)T ] is sparse.

B.1.1 Derivatives of Flow Terms

Here, we calculate the derivatives of flow terms with respect to the primary

variables pi,j,k, Sw,i,j,k and Sg,i,j,k in gridblock (i, j, k).



171

Derivatives of flow terms in gridblock (i± 1, j, k)

We begin by considering the derivatives of flow terms at gridblock (i±1, j, k)

with respect to pni,j,k (for m = o, w)which both have the same form,

∂F n
m,i±1,j,k

∂pni,j,k
=
∂T n

mx,i±1/2,j,k

∂pni,j,k
[pni,j,k − pni±1,j,k + γnm,i±1/2,j,k(Di±1,j,k −Di,j,k)]

+ T n
mx,i±1/2,j,k

[

1 +
∂γnm,i±1/2,j,k

∂pni,j,k
(Di±1,j,k −Di,j,k)

]

, (B–18)

for m = o, w. The derivatives of gas flow equation F n
g,i±1,j,k with respect to pni,j,k is

∂F n
g,i±1,j,k

∂pni,j,k
=
∂T n

gx,i±1/2,j,k

∂pni,j,k
[pni,j,k − pni±1,j,k + γng,i±1/2,j,k(Di±1,j,k −Di,j,k)]

+ T n
gx,i±1/2,j,k[1 +

∂γng,i±1/2,j,k
∂pni,j,k

(Di±1,j,k −Di,j,k)]

+
∂(Rn

so,i±1/2,j,kT
n
ox,i±1/2,j,k)

∂pni,j,k
[pni,j,k − pni±1,j,k + γno,i±1/2,j,k(Di±1,j,k −Di,j,k)]

+Rn
so,i±1/2,j,kT

n
ox,i±1/2,j,k[1 +

∂

∂pni,j,k
γno,i±1/2,j,k(Di±1,j,k −Di,j,k)]. (B–19)

Similarly, we evaluate the derivatives of F n
m,i±1,j,k with respect to Snw,i,j,k (form = o, w)

∂F n
m,i±1,j,k

∂Snw,i,j,k
=
∂T n

mx,i±1/2,j,k

∂Snw,i,j,k
[pni,j,k − pni±1,j,k + γnm,i±1/2,j,k(Di±1,j,k −Di,j,k)], (B–20)

for m = o, w. The derivatives of F n
g,i±1,j,k with respect to Snw,i,j,k

∂F n
g,i±1,j,k

∂Snw,i,j,k
=
∂T n

ox,i±1/2,j,k

∂Snw,i,j,k
Rn
so,i±1/2,j,k[p

n
i,j,k − pni±1,j,k + γno,i±1/2,j,k(Di±1,j,k −Di,j,k)].

(B–21)

The derivatives of F n
o,i±1,j,k with respect to Sng,i,j,k are given by

∂F n
o,i±1,j,k

∂Sng,i,j,k
=
∂T n

ox,i±1/2,j,k

∂Sng,i,j,k
[pni,j,k − pni±1,j,k + γno,i±1/2,j,k(Di±1,j,k −Di,j,k)], (B–22)

while the water equation does not depend on gas saturation, so

∂F n
w,i±1,j,k

∂Sng,i,j,k
= 0. (B–23)



172

The derivatives of F n
g,i±1,j,k with respect to Sng,i,j,k are

∂F n
g,i±1,j,k

∂Sng,i,j,k
=
∂T n

gx,i±1/2,j,k

∂Sng,i,j,k
[pni,j,k − pni±1,j,k + γng,i±1/2,j,k(Di±1,j,k −Di,j,k)]

+
∂T n

ox,i±1/2,j,k

∂Sng,i,j,k
Rn
so,i±1/2,j,k[p

n
i,j,k − pni±1,j,k + γno,i±1/2,j,k(Di±1,j,k −Di,j,k)]. (B–24)

Derivatives of flow terms in gridblock i, j ± 1, k

The derivatives of oil and water flow terms, F n
m,i,j±1,k with respect to pni,j,k

(for m = o, w), are

∂F n
m,i,j±1,k

∂pni,j,k
=
∂T n

my,i,j±1/2,k

∂pni,j,k
[pni,j,k − pni,j±1,k + γnm,i,j±1/2,k(Di,j±1,k −Di,j,k)]

+ T n
my,i,j±1/2,k[1 +

∂γnm,i,j±1/2,k
∂pni,j,k

(Di,j±1,k −Di,j,k)] (B–25)

for m = o, w. The derivatives of the gas flow terms F n
g,i,j±1,k with respect to pni,j,k are

∂F n
g,i,j±1,k

∂pni,j,k
=
∂T n

gy,i,j±1/2,k

∂pni,j,k
[pni,j,k − pni,j±1,k + γng,i,j±1/2,k(Di,j±1,k −Di,j,k)]

+ T n
gy,i,j±1/2,k[1 +

∂γng,i,j±1/2,k
∂pni,j,k

(Di,j±1,k −Di,j,k)]

+
∂(Rn

so,i,j±1/2,kT
n
oy,i,j±1/2,k)

∂pni,j,k
[pni,j,k − pni,j±1,k + γno,i,j±1/2,k(Di,j±1,k −Di,j,k)]

+Rn
so,i,j±1/2,kT

n
oy,i,j±1/2,k[1 +

∂γno,i,j±1/2,k
∂pni,j,k

(Di,j±1,k −Di,j,k)]. (B–26)

The derivatives of F n
m,i,j±1,k with respect to Snw,i,j,k (for m = o, w) are

∂F n
m,i,j±1,k

∂Snw,i,j,k
=
∂T n

my,i,j±1/2,k

∂Snw,i,j,k
[pni,j,k − pni,j±1,k + γnm,i,j±1/2,k(Di,j±1,k −Di,j,k)], (B–27)

for m = o, w. The derivatives of F n
g,i,j±1,k with respect to Snw,i,j,k are

∂F n
g,i,j±1,k

∂Snw,i,j,k
=
∂T n

oy,i,j±1/2,k

∂Snw,i,j,k
Rn
so,i,j±1/2,k[p

n
i,j,k − pni,j±1,k + γno,i,j±1/2,k(Di,j±1,k −Di,j,k)].

(B–28)
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The derivatives of the oil flow terms, F n
o,i,j±1,k with respect to Sng,i,j,k are

∂F n
o,i,j±1,k

∂Sng,i,j,k
=
∂T n

oy,i,j±1/2,k

∂Sng,i,j,k
[pni,j,k − pni,j±1,k + γno,i,j±1/2,k(Di,j±1,k −Di,j,k)]. (B–29)

The water flow term does not depend on the gas saturation, so the derivatives of

F n
w,i,j±1,k with respect to Sng,i,j,k are

∂F n
w,i,j±1,k

∂Sng,i,j,k
= 0. (B–30)

The gas saturation affects the oil and gas transmissibility, so the derivatives of

F n
g,i,j±1,k with respect to Sng,i,j,k are

∂F n
g,i,j±1,k

∂Sng,i,j,k
=
∂T n

gy,i,j±1/2,k

∂Sng,i,j,k
[pni,j,k − pni,j±1,k + γng,i,j±1/2,k(Di,j±1,k −Di,j,k)]

+
∂T n

oy,i,j±1/2,k

∂Sng,i,j,k
Rn
so,i,j±1/2,k[p

n
i,j,k − pni,j±1,k + γno,i,j±1/2,k(Di,j±1,k −Di,j,k)]. (B–31)

Derivatives of flow terms in gridblock (i, j, k ± 1)

In this subsection, we compute the derivatives of flow terms at gridblock

(i, j, k ± 1). The derivatives of F n
m,i,j,k±1 with respect to pni,j,k (for m = o, w) are

∂F n
m,i,j,k±1

∂pni,j,k
=
∂T n

mz,i,j,k±1/2

∂pni,j,k
[pni,j,k − pni,j,k±1 + γnm,i,j,k±1/2(Di,j,k±1 −Di,j,k)]

+ T n
mz,i,j,k±1/2

[

1 +
∂γnm,i,j,k±1/2

∂pni,j,k
(Di,j,k±1 −Di,j,k)

]

, (B–32)

for m = o, w, while the derivatives of F n
g,i,j,k±1 with respect to pni,j,k are

∂F n
g,i,j,k±1

∂pni,j,k
=
∂T n

gz,i,j,k±1/2

∂pni,j,k
[pni,j,k − pni,j,k±1 + γng,i,j,k±1/2(Di,j,k±1 −Di,j,k)]

+ T n
gz,i,j,k±1/2[1 +

∂γng,i,j,k±1/2
∂pni,j,k

(Di,j,k±1 −Di,j,k)]

+
∂(Rn

so,i,j,k±1/2T
n
oz,i,j,k±1/2)

∂pni,j,k
[pni,j,k − pni,j,k±1 + γno,i,j,k±1/2(Di,j,k±1 −Di,j,k)]

+Rn
so,i,j,k±1/2T

n
oz,i,j,k±1/2[1 +

∂γno,i,j,k±1/2
∂pni,j,k

(Di,j,k±1 −Di,j,k)]. (B–33)
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The derivatives of oil and water flow terms F n
m,i,j,k±1 with respect to water saturation

Snw,i,j,k are

∂F n
m,i,j,k±1

∂Snw,i,j,k
=
∂T n

mz,i,j,k±1/2

∂Snw,i,j,k
[pni,j,k − pni,j,k±1 + γnm,i,j,k±1/2(Di,j,k±1 −Di,j,k)], (B–34)

for m = o, w. For gas, the derivatives of F n
g,i,j,k±1 with respect to Snw,i,j,k are

∂F n
g,i,j,k±1

∂Snw,i,j,k
=
∂T n

oz,i,j,k±1/2

∂Snw,i,j,k
Rn
so,i,j,k±1/2[p

n
i,j,k − pni,j,k±1 + γno,i,j,k±1/2(Di,j,k±1 −Di,j,k)].

(B–35)

The derivatives of the oil flow terms F n
o,i,j,k±1 with respect to gas saturation, Sn

g,i,j,k,

are

∂F n
o,i,j,k±1

∂Sng,i,j,k
=
∂T n

oz,i,j,k±1/2

∂Sng,i,j,k
[pni,j,k − pni,j,k±1 + γno,i,j,k±1/2(Di,j,k±1 −Di,j,k)]. (B–36)

Again, the water flow terms do not depend on gas saturation, so the derivatives of

F n
w,i,j,k±1 with respect to Sng,i,j,k are

∂F n
w,i,j,k±1

∂Sng,i,j,k
= 0. (B–37)

Finally, the derivatives of F n
g,i,j,k±1 with respect to Sng,i,j,k are

∂F n
g,i,j,k±1

∂Sng,i,j,k
=
∂T n

gz,i,j,k±1/2

∂Sng,i,j,k
[pni,j,k − pni,j,k±1 + γng,i,j,k±1/2(Di,j,k±1 −Di,j,k)]

+
∂T n

oz,i,j,k±1/2

∂Sngw,i,j,k
Rn
so,i,j,k±1/2[p

n
i,j,k − pni,j,k±1 + γno,i,j,k±1/2(Di,j,k±1 −Di,j,k)]. (B–38)

Derivatives of flow terms in gridblock (i, j, k)

The flow terms at gridblock (i, j, k) have the derivatives,

∂F n
m,i,j,k

∂pni,j,k
= −

(

∂F n
m,i+1,j,k

∂pni,j,k
+
∂F n

m,i−1,j,k

∂pni,j,k
+
∂F n

m,i,j+1,k

∂pni,j,k
+
∂F n

m,i,j−1,k

∂pni,j,k
+
∂F n

m,i,j,k+1

∂pni,j,k
+
∂F n

m,i,j,k−1

∂pni,j,k

)

,

(B–39)
∂F n

m,i,j,k

∂Snw,i,j,k
= −

(

∂F n
m,i+1,j,k

∂Snw,i,j,k
+
∂F n

m,i−1,j,k

∂Snw,i,j,k
+
∂F n

m,i,j+1,k

∂Snw,i,j,k
+
∂F n

m,i,j−1,k

∂Snw,i,j,k
+
∂F n

m,i,j,k+1

∂Snw,i,j,k
+
∂F n

m,i,j,k−1

∂Snw,i,j,k

)

,

(B–40)
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and

∂F n
m,i,j,k

∂Sng,i,j,k
= −

(

∂F n
m,i+1,j,k

∂Sng,i,j,k
+
∂F n

m,i−1,j,k

∂Sng,i,j,k
+
∂F n

m,i,j+1,k

∂Sng,i,j,k
+
∂F n

m,i,j−1,k

∂Sng,i,j,k
+
∂F n

m,i,j,k+1

∂Sng,i,j,k
+
∂F n

m,i,j,k−1

∂Sng,i,j,k

)

.

(B–41)

for m = o, w, g.

To calculate the derivatives of flow terms F with respect to primary vari-

ables, pi,j,k, Sw,i,j,k, and Sg,i,j,k (Eqs. B–18 to Eqs. B–41), one needs to calculate the

derivatives of transmissibility terms (T ) and gravity terms (γ) with respect to these

primary variables. The following subsections provide the details of the calculation of

these derivatives.

Derivatives of Transmissibility T Recall the transmissibilities can be written as

T n
mx,i+1/2,j,k =

C1∆yj∆zkkx,i+1/2,j,k
xi+1 − xi

knrm,i+1/2,j,k
µnm,i+1/2,j,kB

n
m,i+1/2,j,k

, (B–42)

for m = o, w, g and i = 1, 2, . . . , nx − 1, For no-flow boundary conditions, the trans-

missibilities at the boundaries are

T n
mx,1/2,j,k = T n

mx,nx+1/2,j,k = 0. (B–43)

Similarly,

T n
my,i,j+1/2,k =

C1∆xi∆zkky,i,j+1/2,k
yj+1 − yj

knrm,i,j+1/2,k
µnm,i,j+1/2,kB

n
m,i,j+1/2,k

, (B–44)

for m = o, w, g and j = 1, 2, . . . , ny − 1 and

T n
my,i,1/2,k = T n

my,i,ny+1/2,k = 0. (B–45)

Finally, transmissibilities in the vertical direction are given by

T n
mz,i,j,k+1/2 =

C1∆yj∆xikz,i,j,k+1/2
zk+1 − zk

knrm,i,j,k+1/2
µnm,i,j,k+1/2B

n
m,i,j,k+1/2

, (B–46)

for m = o, w, g and k = 1, 2, . . . , nz − 1 and

T n
mz,i,j,1/2 = T n

my,i,j,nz+1/2 = 0. (B–47)
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In this work , the knrm,i+1/2,j,k, k
n
rm,i,j+1/2,k, k

n
rm,i,j,k+1/2, (Bm)i+1/2,j,k , (Bm)i,j+1/2,k,

(Bm)i,j,k+1/2, (µm)i+1/2,j,k, (µm)i,j+1/2,k and (µm)i,j,k+1/2 are evaluated by upstream

weighting. For example, for knrm,

knrm,i+1/2,j,k =











knrm,i+1,j,k if (i+ 1, j, k) is upstream

knrm,i,j,k if (i, j, k) is upstream

(B–48)

knrm,i,j+1/2,k =











knrm,i,j+1,k if (i, j + 1, k) is upstream

knrm,i,j,k if (i, j, k) is upstream

(B–49)

and

knrm,i,j,k+1/2 =











knrm,i,j,k+1 if (i, j, k + 1) is upstream

knrm,i,j,k if (i, j, k) is upstream

(B–50)

The derivatives of the transmissibilities with respect to pressure are

∂T n
mx,i+1/2,j,k

∂pni,j,k
= −

C1∆yj∆zkkx,i+1/2,j,k
xi+1 − xi

×
knrm,i+1/2,j,k

(µnm,i+1/2,j,kB
n
m,i+1/2,j,k)

2

{

∂Bn
m,i+1/2,j,k

∂pni,j,k
µnm,i+1/2,j,k +

∂µnm,i+1/2,j,k
∂pni,j,k

Bn
m,i+1/2,j,k

}

= −
T n
mx,i+1/2,j,k

µnm,i+1/2,j,kB
n
m,i+1/2,j,k

{

∂Bn
m,i+1/2,j,k

∂pni,j,k
µnm,i+1/2,j,k +

∂µnm,i+1/2,j,k
∂pni,j,k

Bn
m,i+1/2,j,k

}

, (B–51)

∂T n
my,i,j+1/2,k

∂pni,j,k
= −

C1∆xi∆zkky,i,j+1/2,k
yj+1 − yj

×
knrm,i,j+1/2,k

(µnm,i,j+1/2,kB
n
m,i,j+1/2,k)

2

{

∂Bn
m,i,j+1/2,k

∂pni,j,k
µnm,i,j+1/2,k +

∂µnm,i,j+1/2,k
∂pni,j,k

Bn
m,i,j+1/2,k

}

= −
T n
my,i,j+1/2,k

µnm,i,j+1/2,kB
n
m,i,j+1/2,k

{

∂Bn
m,i,j+1/2,k

∂pni,j,k
µnm,i,j+1/2,k +

∂µnm,i,j+1/2,k
∂pni,j,k

Bn
m,i,j+1/2,k

}

, (B–52)
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and

∂T n
mz,i,j,k+1/2

∂pni,j,k
= −

C1∆xi∆yjkz,i,j,k+1/2
zk+1 − zk

×
knrm,i,j,k+1/2

(µnm,i,j,k+1/2B
n
m,i,j,k+1/2)

2

{

∂Bn
m,i,j,k+1/2

∂pni,j,k
µnm,i,j,k+1/2 +

∂µnm,i,j,k+1/2
∂pni,j,k

Bn
m,i,j,k+1/2

}

= −
T n
mz,i,j,k+1/2

µnm,i,j,k+1/2B
n
m,i,j,k+1/2

{

∂Bn
m,i,j,k+1/2

∂pni,j,k
µnm,i,j,k+1/2 +

∂µnm,i,j,k+1/2
∂pni,j,k

Bn
m,i,j,k+1/2

}

(B–53)

for m = o, w, g. The derivatives of transmissibilities at boundaries are all equal to 0.

The formation volume factor(B), viscosity(µ), and solution gas oil ratio (Rso)

are all evaluated by upstream weighting. So the derivatives these terms are given by

∂Bn
m,i+1/2,j,k

∂pi,j,k
=
∂Bn

m,i,j+1/2,k

∂pi,j,k
=
∂Bn

m,i,j,k+1/2

∂pi,j,k
=











∂Bn
m,i,j,k

∂pi,j,k
if (i, j, k) is upstream

0 if (i, j, k) is not upstream

(B–54)

∂µnm,i+1/2,j,k
∂pi,j,k

=
∂µnm,i,j+1/2,k

∂pi,j,k
=
∂µnm,i,j,k+1/2

∂pi,j,k
=











∂µnm,i,j,k

∂pi,j,k
if (i, j, k) is upstream

0 if (i, j, k) is not upstream

(B–55)

and

∂Rn
so,i+1/2,j,k

∂pi,j,k
=
∂Rn

so,i,j+1/2,k

∂pi,j,k
=
∂Rn

so,i,j,k+1/2

∂pi,j,k
=











∂Rn
so,i,j,k

∂pi,j,k
if (i, j, k) is upstream

0 if (i, j, k) is not upstream

(B–56)

The derivatives,
∂Bn

m,i,j,k

∂pi,j,k
,
∂µnm,i,j,k

∂pi,j,k
, and

∂Rn
so,i,j,k

∂pi,j,k
can be evaluated from the PVT tables.

Derivatives of Three Phase Relative Permeability To calculate the deriva-

tives of transmissibility terms (T ) with respect to water saturation (Sw) or gas satu-

ration (Sg), one needs to calculate the derivatives of three-phase relative permeability
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with respect to Sw and Sg. Recall that

krw = krw(Sw), (B–57)

krg = krg(Sg), (B–58)

and

kro = kro(Sw, Sg)

= krocw[([krow/krocw] + krw)([krog/krocw] + krg)− (krw + krg)].
(B–59)

where krow is the oil relative permeability in the oil-water system, with

krow = krow(Sw). (B–60)

and the krog is the gas relative permeability in the oil-gas system

krog = krog(Sg). (B–61)

We also have

So = 1− Sg − Sw. (B–62)

It is easy to see that only two of the variables Sg, So and Sw are independent. The

third one can be calculated from Eq. B–62. In the adjoint system, we assume that Sg

and Sw are independent variables. From Eq. B–57 and B–60 in the oil-water system,

the derivatives of krw and krow with respect to Sw and Sg are given by

∂krw
∂Sw

=
∂krw(Sw)

∂Sw
, (B–63)

∂krw
∂Sg

= 0, (B–64)

∂krow
∂Sw

=
∂krow(Sw)

∂Sw
, (B–65)

and,
∂krow
∂Sg

= 0. (B–66)
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Similarly, in the gas-oil system, from Eq. B–58 and B–61, the derivatives of krg and

krog with respect to Sw and Sg are given by

∂krg
∂Sw

= 0, (B–67)

∂krg
∂Sg

=
∂krg(Sg)

∂Sg
, (B–68)

∂krog
∂Sw

= 0, (B–69)

and,
∂krog
∂Sg

=
∂krog(Sg)

∂Sg
. (B–70)

From Eq. B–59, we obtain derivatives of the three-phase oil relative perme-

ability kro with respect to Sw and Sg

∂kro
∂Sw

= krocw

{(

1

krocw

∂krow
∂Sw

+
∂krw
∂Sw

)(

1

krocw
krog + krg

)

−
∂krw
∂Sw

}

, (B–71)

and

∂kro
∂Sg

= krocw

{(

1

krocw
krow + krw

)(

1

krocw

∂krog
∂Sg

+
∂krg
∂Sg

)

−
∂krg
∂Sg

}

. (B–72)

The terms (knrm)i±1/2,j and (knrm)i,j±1/2 are calculated by upstream weighting.

Thus, the derivative of transmissibility with respect to water saturation Sw and gas

saturation Sg are

∂T n
mx,i+1/2,j,k

∂Snm1,i,j,k
=











C1∆yj∆zkkx,i+1/2,j,k

xi+1−xi

1
(Bµ)n

m,i+1/2,j,k

∂(knrm)i,j,k
∂Snm1,i,j,k

if (i, j, k) is upstream

0 if (i, j, k) is not upstream

(B–73)

∂T n
my,i,j+1/2,k

∂Snm1,i,j,k
=











C1∆xi∆zkky,i,j+1/2,k

yj+1−yj

1
(Bµ)n

m,i,j+1/2,k

∂(knrm)i,j,k
∂Snm1,i,j,k

if (i, j, k) is upstream

0 if (i, j, k) is not upstream

(B–74)

∂T n
mz,i,j,k+1/2

∂Snm1,i,j,k
=











C1∆xi∆yjkz,i,j,k+1/2

zj+1−zj

1
(Bµ)n

m,i,j,k+1/2

∂(knrm)i,j,k
∂Snm1,i,j,k

if (i, j, k) is upstream

0 if (i, j, k) is not upstream

(B–75)
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m = o, w, g and m1 = w, g.

The derivatives of ∂krw
∂Sw

and ∂krow
∂Sw

are computed by using the water-oil relative

permeability table. The derivatives of ∂krg
∂Sg

and ∂krog
∂Sg

are computed by using the gas-oil

relative permeability table.

Derivatives of Gravity Terms

From Eqs. A–38 to A–39, we see that the derivatives of specific weight terms

are given by
∂γn+1m,i±1/2,j,k

∂pn+1i,j,k

=
g

288gc

∂ρn+1m,i,j,k

∂pn+1i,j,k

, (B–76)

∂γn+1m,i,j±1/2,k

∂pn+1i,j,k

=
g

288gc

∂ρn+1m,i,j,k

∂pn+1i,j,k

, (B–77)

and
∂γn+1m,i,j,k±1/2

∂pn+1i,j,k

=
g

288gc

∂ρn+1m,i,j,k

∂pn+1i,j,k

, (B–78)

where

∂ρn+1o,i,j,k

∂pn+1i,j,k

= −
1

(Bn+1
o )2

∂Bn+1
o

∂pn+1i,j,k

(ρosc +
1

5.615
Rn+1
so,i,j,kρgsc) +

ρgsc
5.615Bn+1

o

∂Rn+1
so,i,j,k

∂pn+1i,j,k

, (B–79)

∂ρn+1w,i,j,k

∂pn+1i,j,k

= −
ρwsc

(Bn+1
w )2

∂Bn+1
w

∂pn+1i,j,k

, (B–80)

and
∂ρn+1g,i,j,k

∂pn+1i,j,k

= −
ρgsc

5.615(Bn+1
g )2

∂Bn+1
g

∂pn+1i,j,k

. (B–81)

The derivatives of formation volume factors and the solution gas-oil ratio are

calculated from the PVT table.

B.1.2 Derivatives of Accumulation Terms

From the definition of accumulation terms in Eqs. B–10 to B–12, the deriva-

tives of An+1
o,i,j,k are

∂An+1
o,i,j,k

∂pn+1i,j,k

= −
Vi,j,kφi,j,kS

n+1
o,i,j,k

C2∆tn+1(B
n+1
o,i,j,k)

2

∂Bn+1
o,i,j,k

∂pn+1i,j,k

, (B–82)
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∂An+1
o,i,j,k

∂Sn+1w,i,j,k

= −
Vi,j,kφi,j,k

C2∆tn+1B
n+1
o,i,j,k

, (B–83)

and
∂An+1

o,i,j,k

∂Sn+1g,i,j,k

= −
Vi,j,kφi,j,k

C2∆tn+1B
n+1
o,i,j,k

. (B–84)

The derivatives of An+1
w,i,j,k are

∂An+1
w,i,j,k

∂pn+1i,j,k

= −
Vi,j,kφi,j,kS

n+1
w,i,j,k

C2∆tn+1(B
n+1
w,i,j,k)

2

∂Bn+1
w,i,j,k

∂pn+1i,j,k

, (B–85)

∂An+1
w,i,j,k

∂Sn+1w,i,j,k

=
Vi,j,kφi,j,k

C2∆tn+1B
n+1
w,i,j,k

, (B–86)

and
∂An+1

w,i,j,k

∂Sn+1g,i,j,k

= 0. (B–87)

The derivatives of An+1
g,i,j,k are

∂An+1
g,i,j,k

∂pn+1i,j,k

=
Vi,j,kφi,j,k
C2∆tn+1

(

−
Sg

(Bg)2
∂Bg

∂p
+
∂Rso

∂p

So
Bo

−
RsoSo
(Bo)2

∂Bo

∂p

)n+1

i,j,k

, (B–88)

∂An+1
g,i,j,k

∂Sn+1w,i,j,k

= −
Vi,j,kφi,j,k
C2∆tn+1

(

Rso

Bo

)n+1

i,j,k

, (B–89)

and
∂An+1

g,i,j,k

∂Sn+1g,i,j,k

=
Vi,j,kφi,j,k
C2∆tn+1

(

1

Bg

−
Rso

Bo

)n+1

i,j,k

. (B–90)

For Eq. B-1, we aslo need the derivatives of sink term with respect to primary

variables.

B.1.3 Derivatives of Sink Terms

In this section, we compute the derivatives of sink/source terms in the flow

equations with respect to the primary variables, p, Sw, Sg, and pwf,l.
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Producing Wells (Qo,Qt, or pwf Specified)

For the producing wells, Eqs. A–62 to A–64 indicate that production rates

at layer k0 of well l are

qn+1m,l,k0 = T n+1
m,l,k0[p

n+1
l,k0 − pn+1wf,l − dpn+1wf,l,k0], (B–91)

for m = o, w, g, where,

T n+1
o,l,k = WIl,k

(

kro
Boµo

)n+1

l,k

, (B–92)

T n+1
w,l,k = WIl,k

(

krw
Bwµw

)n+1

l,k

, (B–93)

and

T n+1
g,l,k = WIl,k

(

krg
Bgµg

+Rso
kro
Boµo

)n+1

l,k

. (B–94)

When k = k0, we have the derivatives

∂qn+1m,l,k0

∂pn+1l,k

=
∂

∂pn+1l,k0

{T n+1
m,l,k0[p

n+1
l,k0 − pn+1wf,l − dpn+1wf,l,k]}

= T n+1
m,l,k0 +

∂T n+1
m,l,k0

∂pn+1l,k0

[pn+1l,k0 − pn+1wf,l − dpn+1wf,l,k],

(B–95)

and
∂qn+1m,l,k0

∂Sn+1m1,l,k

=
∂qn+1m,l,k0

∂Sn+1m1,l,k0

=
∂T n+1

m,l,k0

∂Sn+1m1,l,k0

[pn+1l,k0 − pn+1wf,l − dpn+1wf,l,k], (B–96)

for m = o, w, g; and m1 = w, g.

For k 6= k0,
∂qn+1m,l,k0

∂pn+1l,k

=
∂qn+1m,l,k0

∂Sn+1m1,l,k

= 0, (B–97)

for m = o, w, g; m1 = w, g.

The derivatives of qn+1m,l,k0 with respect to bottom hole pressure pn+1wf,l are given

by
∂qn+1m,l,k0

∂pn+1wf,l

= −T n+1
m,l,k0. (B–98)
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From the definition of terms T n+1
m,l,k in Eqs. B–92 to B–94, the derivatives of

T n+1
m,l,k to pn+1l,k are

∂T n+1
o,l,k

∂pn+1l,k

= −WIl,k

[

kro
(Boµo)2

(

µo
∂Bo

∂p
+Bo

∂µo
∂p

)]n+1

l,k

, (B–99)

∂T n+1
w,l,k

∂pn+1l,k

= −WIl,k

[

krw
(Bwµw)2

(

µw
∂Bw

∂p
+Bw

∂µw
∂p

)]n+1

l,k

, (B–100)

and

∂T n+1
g,l,k

∂pn+1l,k

= WIl,k

[

−
krg

(Bgµg)2

(

µg
∂Bg

∂p
+Bg

∂µg
∂p

)

+
kro

(Boµo)2

(

Boµo
∂Rso

∂p
−Rsoµo

∂Bo

∂p
−RsoBo

∂µo
∂p

)]n+1

l,k

. (B–101)

The derivatives of T n+1
m,l,k to Sn+1w,l,k are

∂T n+1
o,l,k

∂Sn+1w,l,k

= WIl,k

(

1

Boµo

∂kro
∂Sw

)n+1

l,k

, (B–102)

∂T n+1
w,l,k

∂Sn+1w,l,k

= WIl,k

(

1

Bwµw

∂krw
∂Sw

)n+1

l,k

, (B–103)

and
∂T n+1

g,l,k

∂Sn+1w,l,k

= WIl,k

(

Rso

Boµo

∂kro
∂Sw

)n+1

l,k

. (B–104)

Similarly, the derivatives of T n+1
m,l,k to Sn+1g,l,k are

∂T n+1
o,l,k

∂Sn+1g,l,k

= WIl,k

(

1

Boµo

∂kro
∂Sg

)n+1

l,k

, (B–105)

∂T n+1
w,l,k

∂Sn+1g,l,k

= 0, (B–106)

and
∂T n+1

g,l,k

∂Sn+1g,l,k

= WIl,k

(

1

Bgµg

∂krg
∂Sg

+Rso
1

Boµo

∂kro
∂Sg

)n+1

l,k

. (B–107)
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Injection Wells (Water or Gas Injection)

For water or gas injection wells, the injection rates at layer k0 of well l are

qn+1m,l,k0 = T n+1
inj,m,l,k0[p

n+1
l,k0 − pn+1wf,l − dpn+1wf,l,k], (B–108)

where

T n+1
inj,m,l,k =

WIl,k

(µmBm)
n+1
l,k

, (B–109)

for m = w, g.

When k = k0, the derivatives of qn+1m,l,k0 with respect to pn+1l,k , Sn+1w,l,k, and S
n+1
g,l,k

are

∂qn+1m,l,k0

∂pn+1l,k

=
∂qn+1m,l,k0

∂pn+1l,k0

= T n+1
inj,m,l,k +

∂T n+1
inj,m,l,k0

∂pn+1l,k0

[pn+1l,k0 − pn+1wf,l − dpn+1wf,l,k], (B–110)

and
∂qn+1m,l,k0

∂Sn+1w,l,k

=
∂qn+1m,l,k0

∂Sn+1g,l,k

= 0. (B–111)

When k 6= k0, the derivatives of qn+1m,l,k0 to p
n+1
l,k , Sn+1w,l,k, S

n+1
g,l,k are

∂qn+1m,l,k0

∂pn+1l,k

=
∂qn+1m,l,k0

∂Sn+1w,l,k

=
∂qn+1m,l,k0

∂Sn+1g,l,k

= 0. (B–112)

The derivatives of qn+1m,l,k0 to bottom hole pressure pn+1wf,l,k are

∂qn+1m,l,k0

∂pn+1wf,l

= −Tinj,m,l,k0. (B–113)

The derivatives of T n+1
inj,m,l,k in Eq. B–110 are given by

∂T n+1
inj,m,l,k

∂pn+1l,k

= −
WIl,k

(µn+1m,l,kB
n+1
m,l,k)

2

(

Bn+1
m,l,k

∂µn+1m,l,k

∂pn+1l,k

+ µn+1m,l,k

∂Bn+1
m,l,k

∂pn+1l,k

)

. (B–114)

For water injection wells, the oil and gas rates are set to zero. Thus

∂qn+1o,l,k0

∂pn+1l,k

=
∂qn+1g,l,k0

∂pn+1l,k

=
∂qn+1o,l,k0

∂Sn+1w,l,k

=
∂qn+1g,l,k0

∂Sn+1w,l,k

=
∂qn+1o,l,k0

∂Sn+1g,l,k

=
∂qn+1g,l,k0

∂Sn+1g,l,k

= 0. (B–115)

Similarly, for gas injection wells, the water and oil rates are set to zero. So

we have

∂qn+1o,l,k0

∂pn+1l,k

=
∂qn+1w,l,k0

∂pn+1l,k

=
∂qn+1o,l,k0

∂Sn+1w,l,k

=
∂qn+1w,l,k0

∂Sn+1w,l,k

=
∂qn+1o,l,k0

∂Sn+1g,l,k

=
∂qn+1w,l,k0

∂Sn+1g,l,k

= 0. (B–116)
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B.2 Derivatives of Well Equations

In this section, we compute the derivatives of well constraint equations given

in the section A.6 of Appendix A. For the producing wells, we consider oil rate

specified, total rate specified at the reservoir conditions, and bottom hole pressure

specified cases. For the injection wells, we consider both water injection and gas

injection cases.

B.2.1 Qo Specified

As shown by Eq.A–68,the well equation at well l is given by

fn+1wf,l =
∑

k1

T n+1
o,l,k1[p

n+1
l,k1 − pn+1wf,l − dpn+1wf,l,k1]− qn+1o,l = 0, (B–117)

for m = o, w, g, where

T n+1
o,l,k = WIl,k

(

kro
Boµo

)n+1

l,k

. (B–118)

The derivatives of the well constraint equations to the primary variables, p,

Sw, Sg, and pwf,l, are given by

∂fn+1wf,l

∂pn+1l,k

= T n+1
o,l,k +

∂T n+1
o,l,k

∂pn+1l,k

[pn+1l,k − pn+1wf,l − dpn+1wf,l,k], (B–119)

∂fn+1wf,l

∂pn+1wf,l

= −
∑

k1

T n+1
o,l,k1, (B–120)

∂fn+1wf,l

∂Sn+1w,l,k

=
∂T n+1

o,l,k

∂Sn+1w,l,k

[pn+1l,k − pn+1wf,l − dpn+1wf,l,k], (B–121)

and
∂fn+1wf,l

∂Sn+1g,l,k

=
∂T n+1

o,l,k

∂Sn+1g,l,k

[pn+1l,k − pn+1wf,l − dpn+1wf,l,k], (B–122)

respectively.
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B.2.2 Qt Specified at Reservoir Conditions

As indicated in Eq. A–71, when the total flow rate is specified, the well

equation at well l is

fn+1wf,l =
∑

k1

T n+1
t,l,k1[p

n+1
l,k1 − pn+1wf,l − dpn+1wf,l,k1]− qn+1t,l = 0, (B–123)

for m = o, w, g, where the “total transmissibility” is

T n+1
t,l,k = WIl,k

(

kro
µo

+
krw
µw

+
krg
µg

)n+1

l,k

. (B–124)

The derivatives of the well constraint equations to the primary variables, p,

Sw, Sg, and pwf,l, are given by

∂fn+1wf,l

∂pn+1l,k

= T n+1
t,l,k +

∂T n+1
t,l,k

∂pn+1l,k

[pn+1l,k − pn+1wf,l − dpn+1wf,l,k], (B–125)

∂fn+1wf,l

∂pn+1wf,l

= −
∑

k1

T n+1
t,l,k1, (B–126)

∂fn+1wf,l

∂Sn+1w,l,k

=
∂T n+1

t,l,k

∂Sn+1w,l,k

[pn+1l,k − pn+1wf,l − dpn+1wf,l,k], (B–127)

and
∂fn+1wf,l

∂Sn+1g,l,k

=
∂T n+1

t,l,k

∂Sn+1g,l,k

[pn+1l,k − pn+1wf,l − dpn+1wf,l,k]. (B–128)

Here, the derivatives of T n+1
t,l,k in Eqs. B–125 to B–128 are computed by

∂T n+1
t,l,k

∂pn+1l,k

= −WIl,k

(

kro
µ2o

∂µo
∂p

+
krw
µ2w

∂µw
∂p

+
krg
µ2g

∂µg
∂p

)n+1

l,k

, (B–129)

∂T n+1
t,l,k

∂Sn+1w,l,k

= WIl,k

(

1

µo

∂kro
∂Sw

+
1

µw

∂krw
∂Sw

)n+1

l,k

, (B–130)

and
∂T n+1

t,l,k

∂Sn+1g,l,k

= WIl,k

(

1

µo

∂kro
∂Sg

+
1

µg

∂krg
∂Sg

)n+1

l,k

. (B–131)
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B.2.3 pwf Specified

When the flowing pressure at the well is specified, the well equation is very

simple (Eq. A–65),

fn+1wf,l = pn+1wf,l,0 − pn+1wf,l = 0. (B–132)

For the derivatives, we obtain

∂fn+1wf,l

∂pn+1l,k

=
∂fn+1wf,l

∂Sn+1w,l,k

=
∂fn+1wf,l

∂Sn+1g,l,k

= 0, (B–133)

and
∂fn+1wf,l

∂pn+1wf,l

= −1. (B–134)

B.2.4 Water or Gas Injection

For the water or gas injection well, the well equation at well l is given by

fn+1wf,l =
∑

k1

T n+1
inj,m,l,k1[p

n+1
l,k1 − pn+1wf,l − dpn+1wf,l,k1]− qn+1m,l = 0, (B–135)

for m = w, g, where qn+1m,l < 0 in the specified injection rate and

T n+1
inj,m,l,k =

WIl,k

(Bmµm)
n+1
l,k

. (B–136)

The derivatives of well constraint equations with respect to primary variables,

p, Sw, Sg, and pwf,l, are given by

∂fn+1wf,l

∂pn+1l,k

= T n+1
inj,m,l,k +

∂T n+1
inj,m,l,k

∂pn+1l,k

[pn+1l,k − pn+1wf,l − dpn+1wf,l,k], (B–137)

∂fn+1wf,l

∂pn+1wf,l

= −
∑

k1

T n+1
inj,m,l,k1, (B–138)

and
∂fn+1wf,l

∂Sn+1w,l,k

=
∂fn+1wf,l

∂Sn+1g,l,k

= 0. (B–139)
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B.3 Computation of [∇yn(f
n+1)T ] in the Adjoint System

In this section, we compute the coefficient matrix [∇yn(f
n+1)T ] of the λn+1

term which appear in the adjoint equation B–1. From the definition of f n+1 in

Eqs. A–43 to A–45, it is to see that the matrix [∇yn(f
n+1)T ] only depends on the

accumulation terms of the flow equations. Thus, [∇yn(f
n+1)T ] is a diagonal band

matrix with band width equaling to 5 in the three-phase case.

For the primary variables pni,j,k, S
n
w,i,j,k and Sng,i,j,k in gridblock (i, j, k), only

the flow equations in gridblock (i, j, k) depend on these variables. So the only com-

ponents of fn+1m that have an nonzero derivatives are fn+1m,i,j,k. The fn+1m,i,j,k do not

dependent on the primary variable pnwf,l, so all the derivatives of fn+1m,i,j,k to pnwf,l are

equal to zero.

From the definition of flow equations in the Eqs. A–43 to A–45, the deriva-

tives of the oil equation fn+1o,i,j,k are given by

∂fn+1o,i,j,k

∂pni,j,k
= −

Vi,j,kφi,j,kS
n
o,i,j,k

C2∆tn+1(Bn
o,i,j,k)

2

∂Bn
o,i,j,k

∂pni,j,k
, (B–140)

∂fn+1o,i,j,k

∂Snw,i,j,k
= −

Vi,j,kφi,j,k
C2∆tn+1Bn

o,i,j,k

, (B–141)

and
∂fn+1o,i,j,k

∂Sng,i,j,k
= −

Vi,j,kφi,j,k
C2∆tn+1Bn

o,i,j,k

. (B–142)

The derivatives of the water equation, fn+1w,i,j,k with respect to the primary

variables are
∂fn+1w,i,j,k

∂pni,j,k
= −

Vi,j,kφi,j,kS
n+1
w,i,j,k

C2∆tn+1(Bn
w,i,j,k)

2

∂Bn
w,i,j,k

∂pni,j,k
, (B–143)

∂fn+1w,i,j,k

∂Snw,i,j,k
=

Vi,j,kφi,j,k
C2∆tn+1Bn

w,i,j,k

, (B–144)

and
∂fn+1w,i,j,k

∂Sng,i,j,k
= 0. (B–145)
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The derivatives of the gas equation, fn+1g,i,j,k, are

∂fn+1g,i,j,k

∂pni,j,k
=
Vi,j,kφi,j,k
C2∆tn+1

(

−
Sg

(Bg)2
∂Bg

∂p
+
∂Rso

∂p

So
Bo

−
RsoSo
(Bo)2

∂Bo

∂p

)n

i,j,k

, (B–146)

∂fn+1g,i,j,k

∂Snw,i,j,k
= −

Vi,j,kφi,j,k
C2∆tn+1

(

Rso

Bo

)n

i,j,k

, (B–147)

and
∂fn+1g,i,j,k

∂Sng,i,j,k
=
Vi,j,kφi,j,k
C2∆tn+1

(

1

Bg

−
Rso

Bo

)n

i,j,k

. (B–148)

B.4 Adjoint System Source Terms ∇ynβ

To solve the adjoint system Eq. B–1, one needs to evaluate the source term

∇ynβ in the equation. If one wants to compute the sensitivity of pwf , GOR and

WOR, the β will be set equal to pwf , GOR and WOR, respectively.

B.4.1 Sensitivity of pwf (Qo or Qt Specified)

If we want to compute the sensitivity of prwf,l at time tr with respect to model

parameters, then let

β = prwf,l, (B–149)

and we have

∇ynβ = ∇ynp
r
wf,l. (B–150)

Recall that

yn =
[

pn1 Snw,1 Sng,1 pn2 · · · Sng,N pnwf,1 · · · pnwf,Nw

]

. (B–151)
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We obtain the source term

∇ynβ = ∇ynp
r
wf,l =

















































∂prwf,l
∂pn1
∂prwf,l
∂Snw,1
∂prwf,l
∂Sng,1
∂prwf,l
∂pn2

...
∂prwf,l
∂Sng,N
∂prwf,l
∂pnwf,1
...
∂prwf,l
∂pnwf,Nw

















































=



































0
...

0
∂prwf,l
∂pnwf,l

0
...

0



































, (B–152)

It follows that, for n 6= r,

∇yng = 0, (B–153)

and for n = r,
∂prwf,l
∂pnwf,l

= 1. (B–154)

B.4.2 Sensitivity of GOR

In the case where we want to compute the sensitivity of GORr
l at time tr,

then

β = GORr
l . (B–155)
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We have

∇ynβ = ∇ynGOR
r
l =

















































∂GORr
l

∂pn1
∂GORr

l

∂Snw,1
∂GORr

l

∂Sng,1
∂GORr

l

∂pn2
...

∂GORr
l

∂Sng,N
∂GORr

l

∂pnwf,1
...

∂GORr
l

∂pnwf,Nw

















































, (B–156)

we see that

∇yng = ∇ynGOR
r
l = 0, (B–157)

for n 6= r. If n = r in the Eq. B–156, only the elements containing derivatives with

respect to the primary variables (pn, Snw, S
n
g , p

n
wf ) in the gridblocks where the well

l is completed are nonzero. These nonzero terms are calculated by the equations

presented below.

Qo Specified In the case that oil rate is specified for well l, the gas rate at tn is

qng,l =
∑

k

T n
g,l,k(p

n
l,k − pnwf,l,k). (B–158)

So we obtain gas-oil ratio

GORr
l =

qrg,l
qro,l

=
1

qro,l

∑

k

T r
g,l,k(p

r
l,k − prwf,l,k)

=
1

qro,l

∑

k

T r
g,l,k(p

r
l,k − prwf,l − dprwf,l,k).

(B–159)
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The derivatives of GORr
l to the primary variables, prl,k, p

r
wf,l, S

r
w,l,k and S

r
g,l,k are given

by

∂GORr
l

∂prl,k
=

1

qro,l

∂

∂prl,k

∑

k1

T r
g,l,k1(p

r
l,k1 − prwf,l − dprwf,l,k)

=
1

qro,l

[

∂T r
g,l,k

∂prl,k
(prl,k − prwf,l − dprwf,l,k) + T r

g,l,k

]

,

(B–160)

∂GORr
l

∂prwf,l
= −

∑

k1 T
r
g,l,k1

qro,l
, (B–161)

∂GORr
l

∂Srw,l,k
=

1

qro,l

∂

∂Srw,l,k

∑

k1

T r
g,l,k1(p

r
l,k1 − prwf,l − dprwf,l,k)

=
1

qro,l

∂T r
g,l,k

∂Srw,l,k
(prl,k − prwf,l − dprwf,l,k),

(B–162)

and

∂GORr
l

∂Srg,l,k
=

1

qro,l

∂

∂Srg,l,k

∑

k1

T r
g,l,k1(p

r
l,k1 − prwf,l,0 − dprwf,l,k)

=
1

qro,l

∂T r
g,l,k

∂Srg,l,k
(prl,k − prwf,l,0 − dprwf,l,k).

(B–163)

Qt Specified When the total rate is specified for well l , we have (for r = n)

qng,l =
∑

k

T n
g,l,k(p

n
l,k − pnwf,l,k), (B–164)

qno,l =
∑

k

T n
o,l,k(p

n
l,k − pnwf,l,k), (B–165)

and

GORr
l =

qrg,l
qro,l

. (B–166)

Thus the derivative of GORr
l to the variables pnl,k is

∂GORr
l

∂prl,k
=

∂

∂prl,k
(
qrg,l
qro,l

) =
1

qro,l

∂qrg,l
∂prl,k

−
qrg,l

(qro,l)
2

∂qro,l
∂prl,k

=
1

qro,l
{
∂T r

g,l,k

∂prl,k
(prl,k − prwf,l − dprwf,l,k) + T r

g,l,k}

−
qrg,l

(qro,l)
2
{
∂T r

o,l,k

∂prl,k
(prl,k − prwf,l − dprwf,l,k) + T r

o,l,k}. (B–167)
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Similarly, the derivatives of GORr
l to the primary variables, prwf,l, S

r
w,l,k and Srg,l,k are

given by

∂GORr
l

∂prwf,l
=

1

qro,l

∂qrg,l
∂prwf,l

−
qrg,l

(qro,l)
2

∂qro,l
∂prwf,l

= −

∑

k1 T
r
g,l,k1

qro,l
+

qrg,l
(qro,l)

2

∑

k1

T r
o,l,k1,

(B–168)

∂GORr
l

∂Srw,l,k
=

1

qro,l

∂qrg,l
∂Srw,l,k

−
qrg,l

(qro,l)
2

∂qro,l
∂Srw,l,k

=
1

qro,l
{
∂T r

g,l,k

∂Srw,l,k
(prl,k − prwf,l − dprwf,l,k)} −

qrg,l
(qro,l)

2
{
∂T r

o,l,k

∂Srw,l,k
(prl,k − prwf,l − dprwf,l,k)},

(B–169)

and

∂GORr
l

∂Srg,l,k
=

1

qro,l

∂qrg,l
∂Srg,l,k

−
qrg,l

(qro,l)
2

∂qro,l
∂Srw,l,k

=
1

qro,l

∂T r
g,l,k

∂Srg,l,k
(prl,k − prwf,l − dprwf,l,k)−

qrg,l
(qro,l)

2
{
∂T r

o,l,k

∂Srg,l,k
(prl,k − prwf,l − dprwf,l,k)}.

(B–170)

B.4.3 Sensitivity of WOR

If we want to compute the sensitivity of WORr
l at time tr, then

β = WORr
l . (B–171)
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We have

∇ynβ = ∇ynWORr
l =

















































∂WORr
l

∂pn1
∂WORr

l

∂Snw,1
∂WORr

l

∂Sng,1
∂WORr

l

∂pn2
...

∂WORr
l

∂Sng,N
∂WORr

l

∂pnwf,1
...

∂WORr
l

∂pnwf,Nw

















































. (B–172)

It follows that for n 6= r ,

∇ynβ = ∇ynWORr
l = 0. (B–173)

For n = r, only the elements containing derivatives with respect to the primary

variables (pn, Snw, S
n
g , p

n
wf ) in the gridblocks where the well l is completed are nonzero.

These nonzero terms are calculated by the equations presented below.

Qo Specified If we use oil rate specified for well l , we have

qnw,l =
∑

k

T n
w,l,k(p

n
l,k − pnwf,l,k). (B–174)

So the water-oil ratio is

WORr =
qrw,l
qro,l

=
1

qro,l

∑

k

T r
w,l,k(p

r
l,k − prwf,l,k)

=
1

qro,l

∑

k

T r
w,l,k(p

r
l,k − prwf,l − dprwf,l,k).

(B–175)

The derivatives of WOR to (pr, prwf , S
r
w, S

r
g) are

∂WORr

∂prl,k
=

1

qro,l

∂

∂prl,k

∑

k1

T r
w,l,k1(p

r
l,k1 − prwf,l − dprwf,l,k)

=
1

qro,l

[

∂T r
w,l,k1

∂prl,k
(prl,k − prwf,l − dprwf,l,k) + T r

w,l,k1

]

,

(B–176)
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∂WORr

∂prwf,l
= −

∑

k1 T
r
w,l,k1

qro,l
, (B–177)

∂WORr

∂Srw,l,k
=

1

qro,l

∂

∂Srw,l,k

∑

k1

T r
w,l,k1(p

r
l,k1 − prwf,l − dprwf,l,k)

=
1

qro,l

∂T r
w,l,k

∂Srw,l,k
(prl,k − prwf,l − dprwf,l,k),

(B–178)

and

∂WORr

∂Srg,l,k
=

1

qro,l

∂

∂Srg,l,k

∑

k1

T r
w,l,k1(p

r
l,k1 − prwf,l − dprwf,l,k)

=
1

qro,l

∂T r
w,l,k

∂Srg,l,k
(prl,k − prwf,l − dprwf,l,k).

(B–179)

Qt or pwf Specified If we use total rate specified for well l , we have the water

rate given by

qnw,l =
∑

k

T n
w,l,k(p

n
l,k − pnwf,l,k), (B–180)

and the oil rate by

qno,l =
∑

k

T n
o,l,k(p

n
l,k − pnwf,l,k). (B–181)

So the water-oil ratio is

WORr =
qrw,l
qro,l

. (B–182)

The derivatives of WOR are

∂WORr

∂prl,k
=

∂

∂prl,k
(
qrw,l
qro,l

)

=
1

qro,l

∂qrw,l
∂prl,k

−
qrw,l
(qro,l)

2

∂qro,l
∂prl,k

=
1

qro,l

[

∂T r
w,l,k

∂prl,k
(prl,k − prwf,l − dprwf,l,k) + T r

w,l,k

]

−
qrw,l
(qro,l)

2

[

∂T r
o,l,k

∂prl,k
(prl,k − prwf,l − dprwf,l,k) + T r

o,l,k

]

,

(B–183)
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Similarly,

∂WORr

∂prwf,l
=

1

qro,l

∂qrw,l
∂prwf,l

−
qrw,l
(qro,l)

2

∂qro,l
∂prwf,l

= −

∑

k1 T
r
w,l,k1

qro,l
+

qrw,l
(qro,l)

2

∑

k1

T r
o,l,k1,

(B–184)

∂WORr

∂Srw,l,k
=

1

qro,l

∂qrw,l
∂Srw,l,k

−
qrw,l
(qro,l)

2

∂qro,l
∂Srw,l,k

=
1

qro,l

[

∂T r
w,l,k

∂Srw,l,k
(prl,k − prwf,l − dprwf,l,k)

]

−
qrw,l
(qro,l)

2

[

∂T r
o,l,k

∂Srw,l,k
(prl,k − prwf,l − dprwf,l,k)

]

,

(B–185)

and

∂WORr

∂Srg,l,k
=

1

qro,l

∂qrw,l
∂Srg,l,k

−
qrw,l
(qro,l)

2

∂qro,l
∂Srw,l,k

=
1

qro,l

[

∂T r
w,l,k

∂Srg,l,k
(prl,k − prwf,l − dprwf,l,k)

]

−
qrw,l
(qro,l)

2

[

∂T r
o,l,k

∂Srg,l,k
(prl,k − prwf,l − dprwf,l,k)

]

= −
qrw,l
(qro,l)

2

[

∂T r
o,l,k

∂Srg,l,k
(prl,k − prwf,l − dprwf,l,k)

]

.

(B–186)



APPENDIX C

COMPUTATION OF SENSITIVITY COEFFICIENTS

The sensitivity of some function J to the model parameters m can be com-

puted using Eq. 3.26, which is repeated here,

∇mJ = ∇mβ +
L
∑

n=1

[∇m(f
n)T ](λn) (C–1)

where

∇m[f
n]T =

















∂fno,1
∂m1

∂fnw,1
∂m1

∂fng,1
∂m1

∂fno,2
∂m1

· · ·
∂fng,N
∂m1

∂fnwf,1
∂m1

· · ·
∂fnwf,Nw

∂m1

∂fno,1
∂m2

∂fnw,1
∂m2

∂fno,1
∂m2

∂fno,2
∂m2

· · ·
∂fng,N
∂m2

∂fnwf,1
∂m2

· · ·
∂fnwf,Nw

∂m2

...
...

...
...

...
...

...
...

...
∂fno,1
∂mNm

∂fnw,1
∂mNm

∂fno,1
∂mNm

∂fno,2
∂mNm

· · ·
∂fng,N
∂mNm

∂fnwf,1
∂mNm

· · ·
∂fnwf,Nw

∂mNm

















,

(C–2)

and

∇mβ =

















∂β
∂m1

∂β
∂m2

...

∂β
∂mNm

















. (C–3)

Once we obtain the solution for adjoint variables λ from the adjoint Eq. 3.21,

we can use the formula given in Eq. C–1 to calculate sensitivity coefficients. In

this appendix, we give the details of equations for computing the matrix ∇m(f
n)T

(Eq. C–2) and the vector ∇mβ (Eq. C–3) which appear in Eq. C–1 for various cases.

The specific cases considered here include the sensitivities of pwf , GOR and WOR

to horizontal and vertical permeability, porosity (Section C.1 and C.2), skin factor

(Section C.3), and relative permeability (Section C.4). In the section C.5, we briefly
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describe how to compute the gradient of the total objective function by using the

adjoint method.

C.1 Sensitivity of pwf , GOR and WOR to Permeabilities and Porosity

From Eq. C–1, the sensitivity to x-direction permeability(kx), y-direction

permeability (ky), and z-direction permeability (kz) and porosity (φ) are given by

∇kxJ = ∇kxβ +
L
∑

n=1

[∇kx(f
n)T ](λn), (C–4)

∇kyJ = ∇kyβ +
L
∑

n=1

[∇ky(f
n)T ](λn), (C–5)

∇kzJ = ∇kzβ +
L
∑

n=1

[∇kz(f
n)T ](λn), (C–6)

and

∇φJ = ∇φβ +
L
∑

n=1

[∇φ(f
n)T ](λn). (C–7)

where J may be pwf , GOR or WOR at time step tL. Here, the vectors kx, ky, kz and

φ are defined by

kx = [ kx,1 kx,2 · · · kx,M ]T , (C–8)

ky = [ ky,1 ky,2 · · · ky,M ]T , (C–9)

kz = [ kz,1 kz,2 · · · kz,M ]T , (C–10)

and

φ = [ φ1 φ2 · · · φM ]T . (C–11)

To calculate sensitivity coefficients, we need to evaluate the matrix ∇m[f
n]T and

vector ∇mβ (m = kx, ky, kz and φ) in Eqs. C–4 to C–7. In this part, we use the

definition in Eqs. B–7 to B–12. Only flow terms and sink/source terms depend on

permeability k (kx, ky or kz), so we have

∂fn+1m,i,j,k

∂k
=
∂F n+1

m,i,j,k

∂k
−
∂qn+1m,i,j,k

∂k
. (C–12)
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For calculating sensitivity to porosity, only accumulation terms in the flow equations

depend on φ, so
∂fn+1m,i,j,k

∂φ
= −

∂An+1
m,i,j,k

∂φ
. (C–13)

If the horizontal permeability is isotropic, i.e. kx = ky, the sensitivity to

horizontal permeability kh can be evaluated by

∇khJ = ∇kxJ +∇kyJ. (C–14)

C.1.1 Derivatives of Flow Terms

We calculate the derivatives of flow terms with respect to the model pa-

rameters kx, ky, kz and φ at gridblock (i, j, k). Only the flow terms at gridblocks

(i + 1, j, k), (i, j, k) and (i − 1, j, k) depend on kx,i,j,k; only the flow terms at grid-

blocks (i, j + 1, k), (i, j, k) and (i, j − 1, k) depend on ky,i,j,k; and only the flow terms

at gridblocks (i, j, k + 1), (i, j, k) and (i, j, k − 1) depend on kz,i,j,k.

The derivatives of flow terms at gridblock (i± 1, j, k) with respect to kx,i,j,k:

∂F n
o,i±1,j,k

∂kx,i,j,k
=
∂T n

ox,i±1/2,j,k

∂kx,i,j,k
[pni,j,k − pni±1,j,k + γno,i±1/2,j,k(Di±1,j,k −Di,j,k)], (C–15)

∂F n
w,i±1,j,k

∂kx,i,j,k
=
∂T n

wx,i±1/2,j,k

∂kx,i,j,k
[pni,j,k − pni±1,j,k + γnw,i±1/2,j,k(Di±1,j,k −Di,j,k)], (C–16)

∂F n
g,i±1,j,k

∂kx,i,j,k
=
∂T n

gx,i±1/2,j,k

∂kx,i,j,k
[pni,j,k − pni±1,j,k + γng,i±1/2,j,k(Di±1,j,k −Di,j,k)]

+Rn
so,i±1/2,j,k

∂T n
ox,i±1/2,j,k

∂kx,i,j,k
[pni,j,k − pni±1,j,k + γno,i±1/2,j,k(Di±1,j,k −Di,j,k)], (C–17)

and

∂F n
o,i±1,j,k

∂ky,i,j,k
=
∂F n

o,i±1,j,k

∂kz,i,j,k
=
∂F n

w,i±1,j,k

∂ky,i,j,k
=
∂F n

w,i±1,j,k

∂kz,i,j,k
=
∂F n

g,i±1,j,k

∂ky,i,j,k
=
∂F n

g,i±1,j,k

∂kz,i,j,k
= 0.

(C–18)

The derivatives of flow terms at gridblock (i, j ± 1, k) with respect to ky,i,j,k:

∂F n
o,i,j±1,k

∂ky,i,j,k
=
∂T n

oy,i,j±1/2,k

∂ky,i,j,k
[pni,j,k − pni,j±1,k + γno,i,j±1/2,k(Di,j±1,k −Di,j,k)], (C–19)
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∂F n
w,i,j±1,k

∂ky,i,j,k
=
∂T n

wy,i,j±1/2,k

∂ky,i,j,k
[pni,j,k − pni,j±1,k + γnw,i,j±1/2,k(Di,j±1,k −Di,j,k)], (C–20)

and

∂F n
g,i,j±1,k

∂ky,i,j,k
=
∂T n

gy,i,j±1/2,k

∂ky,i,j,k
[pni,j,k − pni,j±1,k + γng,i,j±1/2,k(Di,j±1,k −Di,j,k)]

+
∂T n

oy,i,j±1/2,k

∂ky,i,j,k
Rn
so,i,j±1/2,k[p

n
i,j,k − pni,j±1,k + γno,i,j±1/2,k(Di,j±1,k −Di,j,k)]. (C–21)

The derivatives of flow terms at gridblock (i, j, k ± 1) with respect to kz,i,j,k:

∂F n
o,i,j,k±1

∂kz,i,j,k
=
∂T n

oz,i,j,k±1/2

∂kz,i,j,k
[pni,j,k − pni,j,k±1 + γno,i,j,k±1/2(Di,j,k±1 −Di,j,k)], (C–22)

∂F n
w,i,j,k±1

∂kz,i,j,k
=
∂T n

wz,i,j,k±1/2

∂kz,i,j,k
[pni,j,k − pni,j,k±1 + γnw,i,j,k±1/2(Di,j,k±1 −Di,j,k)], (C–23)

and

∂F n
g,i,j,k±1

∂kz,i,j,k
=
∂T n

gz,i,j,k±1/2

∂kz,i,j,k
[pni,j,k − pni,j,k±1 + γng,i,j,k±1/2(Di,j,k±1 −Di,j,k)]

+
∂T n

oz,i,j,k±1/2

∂kz,i,j,k
Rn
so,i,j,k±1/2[p

n
i,j,k − pni,j,k±1 + γno,i,j,k±1/2(Di,j,k±1 −Di,j,k)]. (C–24)

The derivatives of flow terms at gridblock (i, j, k) with respect to kx,i,j,k, ky,i,j,k, kz,i,j,k:

∂F n
m,i,j,k

∂kx,i,j,k
= −

(

∂F n
m,i+1,j,k

∂kx,i,j,k
+
∂F n

m,i−1,j,k

∂kx,i,j,k

)

, (C–25)

∂F n
m,i,j,k

∂ky,i,j,k
= −

(

∂F n
m,i,j+1,k

∂ky,i,j,k
+
∂F n

m,i,j−1,k

∂ky,i,j,k

)

, (C–26)

and
∂F n

m,i,j,k

∂kz,i,j,k
= −

(

∂F n
m,i,j,k+1

∂kz,i,j,k
+
∂F n

m,i,j,k−1

∂kz,i,j,k

)

. (C–27)

for m = o, w, g.

The derivatives of transmissibility T to permeabilities are given in the next

subsection.

Because only accumulation terms involve porosity φ, it is easy to see that

the derivatives of oil, water and gas flow equations with respect to porosity are given



201

by
∂fn+1o,i,j,k

∂φi,j,k
= −

Vi,j,k
C2∆tn+1

[

(

So
Bo

)n+1

i,j,k

−

(

So
Bo

)n

i,j,k

]

, (C–28)

∂fn+1w,i,j,k

∂φi,j,k
= −

Vi,j,k
C2∆tn+1

[

(

Sw
Bw

)n+1

i,j,k

−

(

Sw
Bw

)n

i,j,k

]

, (C–29)

and

∂fn+1g,i,j,k

∂φi,j,k
= −

Vi,j,k
C2∆tn+1

[

(

Sg
Bg

+Rso
So
Bo

)n+1

i,j,k

−

(

Sg
Bg

+Rso
So
Bo

)n

i,j,k

]

, (C–30)

respectively.

Computing the Partial Derivatives of Transmissibility T

Recall the transmissibilities can be written as

T n
mx,i+1/2,j,k =

C1∆yj∆zkkx,i+1/2,j,k
xi+1 − xi

knrm,i+1/2,j,k
µnm,i+1/2,j,kB

n
m,i+1/2,j,k

, (C–31)

for m = o, w, g and i = 1, 2, . . . , nx − 1, and

T n
mx,1/2,j,k = T n

mx,nx+1/2,j,k = 0. (C–32)

Similarly,

T n
my,i,j+1/2,k =

C1∆xi∆zkky,i,j+1/2,k
yj+1 − yj

knrm,i,j+1/2,k
µnm,i,j+1/2,kB

n
m,i,j+1/2,k

, (C–33)

for m = o, w, g and j = 1, 2, . . . , ny − 1, and

T n
my,i,1/2,k = T n

my,i,ny+1/2,k = 0. (C–34)

Finally,

T n
mz,i,j,k+1/2 =

C1∆yj∆xikz,i,j,k+1/2
zk+1 − zk

knrm,i,j,k+1/2
µnm,i,j,k+1/2B

n
m,i,j,k+1/2

, (C–35)

for m = o, w, g and k = 1, 2, . . . , nz − 1. and

T n
mz,i,j,1/2 = T n

mz,i,j,nz+1/2 = 0. (C–36)
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The permeabilities at gridblock interfaces are computed as harmonic averages. For

all j and k such that 1 ≤ j ≤ ny and 1 ≤ k ≤ nz,

kx,i+1/2,j,k =
(4xi +4xi+1)kx,i,j,kkx,i+1,j,k
4xikx,i+1,j,k +4xi+1kx,i,j,k

, (C–37)

for i = 1, 2, . . . , nx − 1,

kx,1/2,j,k = kx,1,j,k, (C–38)

and

kx,nx+1/2,j,k = kx,nx,j,k. (C–39)

It follows that

∂kx,i+1/2,j,k
∂kx,i,j,k

=
(4xi +4xi+1)kx,i+1,j,k(4xikx,i+1,j,k +4xi+1kx,i,j,k)− (4xi +4xi+1)kx,i,j,kkx,i+1,j,k4xi+1

(4xikx,i+1,j,k +4xi+1kx,i,j,k)2

=
(4xi +4xi+1)4xik

2
x,i+1,j,k

(4xikx,i+1,j,k +4xi+1kx,i,j,k)2

=
4xikx,i+1,j,k

kx,i,j,k(4xikx,i+1,j,k +4xi+1kx,i,j,k)
kx,i+1/2,j,k,

(C–40)

for i = 1, 2, . . . , nx − 1, and

∂kx,1/2,j,k
∂kx,1,j,k

=
∂kx,nx+1/2,j,k
∂kx,nx,j,k

= 1. (C–41)

The derivative of the term

kx,i−1/2,j,k =
(4xi−1 +4xi)kx,i−1,j,kkx,i,j,k
4xi−1kx,i,j,k +4xikx,i−1,j,k

, (C–42)
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for i = 2, 3, ..., nx, is given by

∂kx,i−1/2,j,k
∂kx,i,j,k

=
(4xi−1 +4xi)kx,i−1,j,k(4xi−1kx,i,j,k +4xikx,i−1,j,k)− (4xi−1 +4xi)kx,i−1,j,kkx,i,j,k4xi−1

(4xi−1kx,i,j,k +4xikx,i−1,j,k)2

=
(4xi−1 +4xi)4xik

2
x,i−1,j,k

(4xi−1kx,i,j,k +4xikx,i−1,j,k)2

=
4xikx,i−1,j,k

kx,i,j,k(4xi−1kx,i,j,k +4xikx,i−1,j,k)
kx,i−1/2,j,k.

(C–43)

Similarly, the derivatives of ky,i,j+1/2,k and ky,i,j−1/2,k with respect to ky,i,j,k are

∂ky,i,j+1/2,k
∂ky,i,j,k

=
4yjky,i,j+1,k

ky,i,j,k(4yjky,i,j+1,k +4yj+1ky,i,j,k)
ky,i,j+1/2,k, (C–44)

and
∂ky,i,j−1/2,k
∂ky,i,j,k

=
4yjky,i,j−1,k

ky,i,j,k(4yj−1ky,i,j,k +4yjky,i,j−1,k)
ky,i,j−1/2,k. (C–45)

The derivatives of kz,i,j,k+1/2 and kz,i,j,k−1/2 with respect to kz,i,j,k are

∂kz,i,j,k+1/2
∂kz,i,j,k

=
4zkkz,i,j,k+1

kz,i,j,k(4zkkz,i,j,k+1 +4zk+1kz,i,j,k)
kz,i,j,k+1/2, (C–46)

and
∂kz,i,j,k−1/2
∂kz,i,j,k

=
4zkkz,i,j,k−1

kz,i,j,k(4zk−1kz,i,j,k +4zkkz,i,j,k−1)
kz,i,j,k−1/2. (C–47)

The derivative of the x-direction transmissibility can now be obtained as

follows,

∂T n
mx,i+1/2,j,k

∂kx,i,j,k
=
∂kx,i+1/2,j,k
∂kx,i,j,k

C1∆yj∆zk
xi+1 − xi

knrm,i+1/2,j,k
(Bµ)nm,i+1/2,j,k

=
4xikx,i+1,j,k

kx,i,j,k(4xikx,i+1,j,k +4xi+1kx,i,j,k)

C1∆yj∆zkkx,i+1/2,j,k
xi+1 − xi

knrm,i+1/2,j,k
(Bµ)nm,i+1/2,j,k

=
4xikx,i+1,j,k

kx,i,j,k(4xikx,i+1,j,k +4xi+1kx,i,j,k)
T n
mx,i+1/2,j,k,

(C–48)

∂T n
mx,i−1/2,j,k

∂kx,i,j,k
=

4xikx,i−1,j,k
kx,i,j,k(4xi−1kx,i,j,k +4xikx,i−1,j,k)

T n
mx,i−1/2,j,k. (C–49)
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Similar results are obtained from the y and z direction transmissibility derivatives,

∂T n
my,i,j+1/2,k

∂ky,i,j,k
=

4yjky,i,j+1,k
ky,i,j,k(4yjky,i,j+1,k +4yj+1ky,i,j,k)

T n
my,i,j+1/2,k, (C–50)

∂T n
my,i,j−1/2,k

∂ky,i,j,k
=

4yjky,i,j−1,k
kx,i,j,k(4yj−1ky,i,j,k +4yjky,i,j−1,k)

T n
my,i,j−1/2,k, (C–51)

∂T n
mz,i,j,k+1/2

∂kz,i,j,k
=

4zkkz,i,j,k+1
kz,i,j,k(4zkkz,i,j,k+1 +4zk+1kz,i,j,k)

T n
mz,i,j,k+1/2, (C–52)

and

∂T n
mz,i,j,k−1/2

∂kz,i,j,k
=

4zkkz,i,j,k−1
kz,i,j,k(4zk−1kz,i,j,k +4zkkz,i,j,k−1)

T n
mz,i,j,k−1/2, (C–53)

for m = o, w, g. At the boundaries, transmissibilities are zero, so the derivatives of

transmissibility are equal to zero, i.e.,

∂T n
mx,1/2,j,k

∂kni,j,k
=
∂T n

mx,nx+1/2,j,k

∂kni,j,k
=
∂T n

my,i,1/2,k

∂kni,j,k

=
∂T n

my,i,ny+1/2,k

∂kni,j,k
=
∂T n

mz,i,j,1/2

∂kni,j,k
=
∂T n

mz,i,j,nz+1/2

∂kni,j,k
= 0.

(C–54)

C.1.2 Derivatives of Sink Terms

In this section, we calculate the derivatives of sink/source terms in Eq. C–

12,i.e., we present formulas for ∂qn+1m,i,j,k/∂k.

Producing wells (Qo, Qt or pwf Specified)

In the producing wells, the production rates from layer k0 at well l are given

by

qn+1m,l,k0 = T n+1
m,l,k0[p

n+1
l,k0 − pn+1wf,l − dpn+1wf,l,k0], (C–55)

for m = o, w, g, where,

T n+1
o,l,k = WIl,k

(

kro
Boµo

)n+1

l,k

, (C–56)

T n+1
w,l,k = WIl,k

(

krw
Bwµw

)n+1

l,k

, (C–57)
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and

T n+1
g,l,k = WIl,k

(

krg
Bgµg

+Rso
kro
Boµo

)n+1

l,k

. (C–58)

The layer production rates, qn+1m,l,k0, do not explicitly dependent on the vertical

permeability kz, so the derivatives of qn+1m,l,k0 with respect to kz are equal to zero,i.e.,

∂qn+1m,l,k0

∂kz
= 0, (C–59)

for k = k0 and all gridblock kz’s, we have

∂qn+1m,l,k0

∂kx,l,k
=
∂T n+1

m,l,k

∂kx,l,k
[pn+1l,k − pn+1wf,l − dpn+1wf,l,k], (C–60)

∂qn+1m,l,k0

∂ky,l,k
=
∂T n+1

m,l,k

∂ky,l,k
[pn+1l,k − pn+1wf,l − dpn+1wf,l,k], (C–61)

for m = o, w, g. For k 6= k0

∂qn+1m,l,k0

∂kx,l,k
=
∂qn+1m,l,k0

∂ky,l,k
= 0, (C–62)

for m = o, w, g.

The derivatives of T n+1
m,l,k with respect to kx,l,k can be calculated as

∂T n+1
o,l,k

∂kx,l,k
=
∂WIl,k
∂kx,l,k

(

kro
Boµo

)n+1

l,k

, (C–63)

∂T n+1
w,l,k

∂kx,l,k
=
∂WIl,k
∂kx,l,k

(

krw
Bwµw

)n+1

l,k

, (C–64)

and
∂T n+1

g,l,k

∂kx,l,k
=
∂WIl,k
∂kx,l,k

(

krg
Bgµg

+Rso
kro
Boµo

)n+1

l,k

. (C–65)

The derivatives of T n+1
m,l,k with respect to ky,l,k can be calculated as

∂T n+1
o,l,k

∂ky,l,k
=
∂WIl,k
∂ky,l,k

(

kro
Boµo

)n+1

l,k

, (C–66)

∂T n+1
w,l,k

∂ky,l,k
=
∂WIl,k
∂ky,l,k

(

krw
Bwµw

)n+1

l,k

, (C–67)
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and
∂T n+1

g,l,k

∂ky,l,k
=
∂WIl,k
∂ky,l,k

(

krg
Bgµg

+Rso
kro
Boµo

)n+1

l,k

. (C–68)

From a previous TUPREP report,

∂WIl,k
∂kx,l,k

=
0.007084z

2[ln(ro,l,k/rw,l,k) + sl,k]
×

[

√

ky,l,k
√

kx,l,k
−

(

1

ln(ro,l,k/rw,l,k) + sl,k

)

(

4y2l,k
√

kx,l,kky,l,k

4x2l,kky,l,k +4y
2
l,kkx,l,k

−

√

ky,l,k
√

kx,l,k +
√

ky,l,k

)]

, (C–69)

and

∂WIl,k
∂ky,l,k

=
0.007084z

2[ln(ro,l,k/rw,l,k) + sl,k]
×

[

√

kx,l,k
√

ky,l,k
+

(

1

ln(ro,l,k/rw,l,k) + sl,k

)

×

(

4y2l,kkx,l,k
√

kx,l,k

4x2l,kky,l,k
√

ky,l,k +4y2l,kkx,l,k
√

ky,l,k
−

kx,l,k

ky,l,k +
√

ky,l,kkx,l,k

)]

. (C–70)

Injection Wells (Water or Gas injection)

For water or gas injection wells, the injection rates at layer k0 of well l are

qn+1m,l,k0 = T n+1
inj,m,l,k0[p

n+1
l,k0 − pn+1wf,l − dpn+1wf,l,k0], (C–71)

for m = w, g, where

T n+1
inj,m,l,k =

WIl,k

µn+1m,l,kB
n+1
m,l,k

. (C–72)

For k = k0, the derivatives of qn+1m,l,k0 with respect to horizontal permeabilities are

∂qn+1m,l,k0

∂kx,l,k
=
∂T n+1

inj,m,l,k

∂kx,l,k
[pn+1l,k − pn+1wf,l − dpn+1wf,l,k], (C–73)

and
∂qn+1m,l,k0

∂ky,l,k
=
∂T n+1

inj,m,l,k

∂ky,l,k
[pn+1l,k − pn+1wf,l − dpn+1wf,l,k]. (C–74)

For k 6= k0, it is easy to see that

∂qn+1m,l,k0

∂kx,l,k
=
∂qn+1m,l,k0

∂ky,l,k
= 0. (C–75)
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For k = k0, the derivatives of T n+1
inj,m,l,k can be calculated as

∂T n+1
inj,m,l,k

∂kx,l,k
=
∂WIl,k
∂kx,l,k

1

µn+1m,l,kB
n+1
m,l,k

, (C–76)

and
∂T n+1

inj,m,l,k

∂ky,l,k
=
∂WIl,k
∂ky,l,k

1

µn+1m,l,kB
n+1
m,l,k

. (C–77)

The term qn+1m,l,k0 does not explicitly depend on kz or φ, so the derivatives of

qn+1m,l,k0 with respect to these two model parameters are equal to zero, i.e.

∂qn+1m,l,k0

∂kz
=
∂qn+1m,l,k0

∂φ
= 0, (C–78)

for m = o, w, g and all gridblock kz’s and φ’s.

In the water injection wells, the gas and oil rates are set to zero. So the

derivatives of these rates are zero,i.e.,

∂qn+1o,l,k0

∂kx
=
∂qn+1o,l,k0

∂ky
=
∂qn+1g,l,k0

∂kx
=
∂qn+1g,l,k0

∂ky
= 0. (C–79)

In the gas injection wells, the water and oil rates are set to zero. So the

derivatives of water or oil rates are equal to zero,i.e.,

∂qn+1o,l,k0

∂kx
=
∂qn+1o,l,k0

∂ky
=
∂qn+1w,l,k0

∂kx
=
∂qn+1w,l,k0

∂ky
= 0. (C–80)

C.1.3 Derivatives of Well Equations

Here, we give the details how to compute the derivatives of well constraint

equation fn+1wf,l with respect to permeabilities and porosity.

Qo Specified

In the case where oil rate is specified, the well equation at well l is

fn+1wf,l =
∑

k1

T n+1
o,l,k1[p

n+1
l,k1 − pn+1wf,l − dpn+1wf,l,k1]− qn+1o,l = 0, (C–81)
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for m = o, w, g, where

T n+1
o,l,k = WIl,k

(

kro
Boµo

)n+1

l,k

. (C–82)

Thus, the derivatives of well equations are

∂fn+1wf,l

∂kx,l,k
=
∂T n+1

o,l,k

∂kx,l,k
[pn+1l,k − pn+1wf,l − dpn+1wf,l,k], (C–83)

∂fn+1wf,l

∂ky,l,k
=
∂T n+1

o,l,k

∂ky,l,k
[pn+1l,k − pn+1wf,l − dpn+1wf,l,k], (C–84)

and
∂fn+1wf,l

∂kz,l,k
=
∂fn+1wf,l

∂φ
= 0. (C–85)

The derivatives
∂Tn+1

o,l,k

∂kx,l,k
and

∂Tn+1
o,l,k

∂ky,l,k
are given by Eqs. C–63 and C–66.

Qt Specified

In the case where the total rate is specified at reservoir conditions, the well

equation at well l is

fn+1wf,l =
∑

k1

T n+1
t,l,k1[p

n+1
l,k1 − pn+1wf,l − dpn+1wf,l,k1]− qn+1t,l = 0, (C–86)

for m = o, w, g, where,

T n+1
t,l,k = WIl,k

(

kro
µo

+
krw
µw

+
krg
µg

)n+1

l,k

. (C–87)

We obtain
∂fn+1wf,l

∂kx,l,k
=
∂T n+1

t,l,k

∂kx,l,k
[pn+1l,k − pn+1wf,l − dpn+1wf,l,k], (C–88)

∂fn+1wf,l

∂ky,l,k
=
∂T n+1

t,l,k

∂ky,l,k
[pn+1l,k − pn+1wf,l − dpn+1wf,l,k], (C–89)

and
∂fn+1wf,l

∂kz,l,k
=
∂fn+1wf,l

∂φ
= 0, (C–90)
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where the derivative of T n+1
t,l,k are computed by

∂T n+1
t,l,k

∂kx,l,k
=
∂WIl,k
∂kx,l,k

(

kro
µo

+
krw
µw

+
krg
µg

)n+1

l,k

, (C–91)

and
∂T n+1

t,l,k

∂ky,l,k
=
∂WIl,k
∂ky,l,k

(

kro
µo

+
krw
µw

+
krg
µg

)n+1

l,k

. (C–92)

pwf Specified

In the pwf specified case, the well equation at well l is (Eq. A–65)

fn+1wf,l = pn+1wf,l,0 − pn+1wf,l = 0. (C–93)

There is no kx, ky, kz, and φ appearing in Eq. C–93, so the derivatives of the well

equations are zero. We have

∂fn+1wf,l

∂kx,l,k
=
∂fn+1wf,l

∂ky,l,k
=
∂fn+1wf,l

∂kz,l,k
=
∂fn+1wf,l

∂φ
= 0. (C–94)

Water or Gas Injection

In the injection wells, the well equation at well l is

fn+1wf,l =
∑

k1

T n+1
inlm,l,k1[p

n+1
l,k1 − pn+1wf,l − dpn+1wf,l,k1]− qn+1m,l = 0, (C–95)

for m = w, g, where

T n+1
inj,m,l,k =

WIl,k

(Bmµm)
n+1
l,k

. (C–96)

We obtain the derivatives of fn+1wf,l with respect to model parameters as

∂fn+1wf,l

∂kx,l,k
=
∂T n+1

inj,m,l,k

∂kx,l,k
[pn+1l,k − pn+1wf,l − dpn+1wf,l,k], (C–97)

∂fn+1wf,l

∂ky,l,k
=
∂T n+1

inj,m,l,k

∂ky,l,k
[pn+1l,k − pn+1wf,l − dpn+1wf,l,k], (C–98)
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and
∂fn+1wf,l

∂kz,l,k
=
∂fn+1wf,l

∂φl,k
= 0. (C–99)

The derivatives ∂T n+1
inj,m,l,k/∂kx,l,k and ∂T n+1

inj,m,l,k/∂ky,l,k are given in Eqs. C–76 and

C–77.

C.1.4 The Vector ∇mβ in Equations for Sensitivity Coefficients

In this section, the model parameters (m) we want to estimate are

kx = [ kx,1 kx,2 · · · kx,M ]T , (C–100)

ky = [ ky,1 ky,2 · · · ky,M ]T , (C–101)

kz = [ kz,1 kz,2 · · · kz,M ]T , (C–102)

and

φ = [ φ1 φ2 · · · φM ]T . (C–103)

Here, we give the equations for computing ∇mβ in the sensitivity equation

(Eq. C-1) for various cases. We wish to calculate the sensitivity of pwf , GOR, and

WOR, so we set β equal to pwf , GOR, and WOR and compute the gradient of pwf ,

GOR, and WOR. Gradient ∇mβ are nonzero only when the model parameter m

explicitly appear in the expression of β.

Gradient of pwf

In this case,

β = prwf . (C–104)

Because prwf does not explicitly dependent on the model parameters, kx, ky, kz, or φ,

we have

∇mβ = ∇mp
r
wf = 0. (C–105)
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Derivatives of GOR

The gradient of GOR with respect to m at well l at time step tr is formally

given by the expression,

∇mβ = ∇mGOR
r
l =

















∂GORr
l

∂m1

∂GORr
l

∂m2

...

∂GORr
l

∂mM

















. (C–106)

In all cases (Qo, Qt, or pwf specified), we have for porosity

∇φβ = ∇φGOR
r
l = 0. (C–107)

Qo Specified If the oil rate is specified for well l , the gas rate is given by

qrg,l =
∑

k1

T r
g,l,k1(p

r
l,k1 − prwf,l,k1), (C–108)

so the gas-oil ratio is

GORr
l =

qrg,l
qro,l

=
1

qro,l

∑

k1

T r
g,l,k(p

r
l,k1 − prwf,l,k1)

=
1

qro,l

∑

k1

T r
g,l,k1(p

r
l,k1 − prwf,l − dprwf,l,k1).

(C–109)

The relevant derivatives are

∂GORr
l

∂kx,l,k
=

1

qro,l

∂

∂kx,l,k

∑

k1

T r
g,l,k1(p

r
l,k1 − prwf,l − dprwf,l,k1)

=
1

qro,l

∂T r
g,l,k

∂kx,l,k
(prl,k − prwf,l − dprwf,l,k),

(C–110)

∂GORr
l

∂ky,l,k
=

1

qro,l

∂

∂ky,l,k

∑

k1

T r
g,l,k1(p

r
l,k1 − prwf,l − dprwf,l,k1)

=
1

qro,l

∂T r
g,l,k

∂ky,l,k
(prl,k − prwf,l − dprwf,l,k),

(C–111)
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and
∂GORr

l

∂kz,l,k
= 0. (C–112)

Qt or pwf Specified In the case where the total rate is specified or bottom hole

pressure is specified at well l, the gas rate and oil rate are computed by

qrg,l =
∑

k1

T r
g,l,k1(p

r
l,k1 − prwf,l,k1), (C–113)

and

qro,l =
∑

k1

T r
o,l,k1(p

r
l,k1 − prwf,l,k1), (C–114)

respectively, and the gas-oil ratio is defined as

GORr
l =

qrg,l
qro,l

. (C–115)

The derivatives of GOR with respect to permeabilities are given by

∂GORr
l

∂kx,l,k
=

1

qro,l

∂qrg,l
∂kx,l,k

−
qrg,l

(qro,l)
2

∂qro,l
∂kx,l,k

=
1

qro,l

∂T r
g,l,k

∂kx,l,k
(prl,k − prwf,l − dprwf,l,k)−

qrg,l
(qro,l)

2

∂T r
o,l,k

∂kx,l,k
(prl,k − prwf,l − dprwf,l,k),

(C–116)

∂GORr
l

∂ky,l,k
=

1

qro,l

∂qrg,l
∂ky,l,k

−
qrg,l

(qro,l)
2

∂qro,l
∂ky,l,k

=
1

qro,l

∂T r
g,l,k

∂ky,l,k
(prl,k − prwf,l − dprwf,l,k)−

qrg,l
(qro,l)

2

∂T r
o,l,k

∂ky,l,k
(prl,k − prwf,l − dprwf,l,k),

(C–117)

and
∂GORr

l

∂kz,l,k
= 0. (C–118)
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derivatives of WOR

The gradient of WOR at well l at time step tr is given by

∇mβ = ∇mWORr
l =

















∂WORr
l

∂m1

∂WORr
l

∂m2

...

∂WORr
l

∂mM

















. (C–119)

The WOR does not depend explicitly on porosity, so

∇φβ = ∇φWORr
l = 0. (C–120)

Qo specified If the oil rate is specified for well l, we have

qrw,l =
∑

k1

T r
w,l,k1(p

r
l,k1 − prwf,l,k1). (C–121)

so the water-oil ratio is given by

WORr
l =

qrw,l
qro,l

=
1

qro,l

∑

k1

T r
w,l,k1(p

r
l,k1 − prwf,l,k1)

=
1

qro,l

∑

k1

T r
w,l,k1(p

r
l,k1 − prwf,l − dprwf,l,k1).

(C–122)

The derivatives with respect to permeability are

∂WORr
l

∂kx,l,k
=

1

qro,l

∂

∂kx,l,k

∑

k1

T r
w,l,k1(p

r
l,k1 − prwf,l − dprwf,l,k1)

=
1

qro,l

∂T r
w,l,k

∂kx,l,k
(prl,k − prwf,l − dprwf,l,k),

(C–123)

∂WORr
l

∂ky,l,k
=

1

qro,l

∂

∂ky,l,k

∑

k1

T r
w,l,k1(p

r
l,k1 − prwf,l − dprwf,l,k1)

=
1

qro,l

∂T r
w,l,k

∂ky,l,k
(prl,k − prwf,l − dprwf,l,k),

(C–124)

and
∂WORr

l

∂kz,l,k
= 0. (C–125)
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Qt or pwf Specified In the case where the total rate or bottom hole pressure is

specified for well l, the water rate and oil rate are given by

qrw,l =
∑

k

T r
w,l,k(p

r
l,k − prwf,l,k), (C–126)

and

qro,l =
∑

k

T r
o,l,k(p

r
l,k − prwf,l,k), (C–127)

and the water-oil ratio is defined as

WORr
l =

qrw,l
qro,l

. (C–128)

We have

∂WORr
l

∂kx,l,k
=

1

qro,l

∂qrw,l
∂kx,l,k

−
qrw,l
(qro,l)

2

∂qro,l
∂kx,l,k

=
1

qro,l

∂T r
w,l,k

∂kx,l,k
(prl,k − prwf,l − dprwf,l,k)−

qrw,l
(qro,l)

2

∂T r
o,l,k

∂kx,l,k
(prl,k − prwf,l − dprwf,l,k),

(C–129)

∂WORr
l

∂ky,l,k
=

1

qro,l

∂qrw,l
∂ky,l,k

−
qrw,l
(qro,l)

2

∂qro,l
∂ky,l,k

=
1

qro,l

∂T r
w,l,k

∂ky,l,k
(prl,k − prwf,l − dprwf,l,k)−

qrw,l
(qro,l)

2

∂T r
o,l,k

∂ky,l,k
(prl,k − prwf,l − dprwf,l,k),

(C–130)

and
∂WORr

l

∂kz,l,k
= 0. (C–131)

C.2 Sensitivity for Case kz = a
√

kxky

For some reservoirs, we may wish to assume that

kz = a
√

kxky, (C–132)

where a is a constant scalar value for the reservoir. In this case, the independent

variables of permeability fields are kx, ky and a (instead of kx, ky and kz). The
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computation of the derivatives for the adjoint equation (Eq. C–1) is very similar to

what we presented in section C.1. The only difference is in the derivatives of the flow

terms. Here we give details how to calculate derivatives of flow terms for this case.

The transmissibilities are given by

T n+1
mx,i+1/2,j,k =

C1∆yj∆zkkx,i+1/2,j,k
xi+1 − xi

(

krm
µmBm

)n+1

i+1/2,j,k

, (C–133)

T n+1
my,i,j+1/2,k =

C1∆xi∆zkky,i,j+1/2,k
yj+1 − yj

(

krm
µmBm

)n+1

i,j+1/2,k

, (C–134)

and

T n+1
mz,i,j,k+1/2 =

C1∆xi∆yjkz,i,j,k+1/2
zk+1 − zk

(

krm
µmBm

)

i,j,k+1/2

, (C–135)

where

kz,i,j,k+1/2 =
(4zk +4zk+1)kz,i,j,kkz,i,j,k+1
4zkkz,i,j,k+1 +4zk+1kz,i,j,k

=
a(4zk +4zk+1)

√

kx,i,j,kky,i,j,k
√

kx,i,j,k+1ky,i,j,k+1

4zk
√

kx,i,j,k+1ky,i,j,k+1 +4zk+1
√

kx,i,j,kky,i,j,k
.

(C–136)

Normally, the transmissibility in z-direction, T n+1
mz,i,j,k+1/2, dependents only on the kz.

However, in this case, it is easy to see that T n+1
mz,i,j,k+1/2 is a function of kx, ky, and a.

We need to calculate the derivatives of T n+1
mz,i,j,k+1/2 with respect to kx, ky, and a.

C.2.1 The Derivatives of Flow Terms

We calculate the derivatives of flow terms with respect to the model param-

eters at gridblock (i, j, k). For the flow terms at gridblock (i + 1, j, k), (i − 1, j, k),

(i, j + 1, k) and (i, j − 1, k), we use Eqs. C–15 to C–21 to calculate derivatives. The

derivatives of flow terms at gridblock (i, j, k ± 1) to permeability are

∂F n
o,i,j,k±1

∂ki,j,k
=
∂T n

oz,i,j,k±1/2

∂ki,j,k
[pni,j,k − pni,j,k±1 + γno,i,j,k±1/2(Di,j,k±1 −Di,j,k)], (C–137)

∂F n
w,i,j,k±1

∂ki,j,k
=
∂T n

wz,i,j,k±1/2

∂ki,j,k
[pni,j,k − pni,j,k±1 + γnw,i,j,k±1/2(Di,j,k±1 −Di,j,k)], (C–138)
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and

∂F n
g,i,j,k±1

∂ki,j,k
=
∂T n

gz,i,j,k±1/2

∂ki,j,k
[pni,j,k − pni,j,k±1 + γng,i,j,k±1/2(Di,j,k±1 −Di,j,k)]

+
∂T n

oz,i,j,k±1/2

∂ki,j,k
Rn
so,i,j,k±1/2[p

n
i,j,k − pni,j,k±1 + γno,i,j,k±1/2(Di,j,k±1 −Di,j,k)], (C–139)

where ki,j,k = kx,i,j,k or ky,i,j,k.

The derivatives of flow terms at gridblock (i, j, k) are given by

∂F n
m,i,j,k

∂kx,i,j,k
= −

(

∂F n
m,i+1,j,k

∂kx,i,j,k
+
∂F n

m,i−1,j,k

∂kx,i,j,k
+
∂F n

m,i,j,k±1

∂kx,i,j,k
+
∂F n

m,i,j,k−1

∂kx,i,j,k

)

, (C–140)

and

∂F n
m,i,j,k

∂ky,i,j,k
= −

(

∂F n
m,i,j+1,k

∂ky,i,j,k
+
∂F n

m,i,j−1,k

∂ky,i,j,k
+
∂F n

m,i,j,k±1

∂ky,i,j,k
+
∂F n

m,i,j,k−1

∂ky,i,j,k

)

. (C–141)

Because all flow terms, F n
m,i,j,k, involve the z-direction transmissibility T n

mz,i,j,k±1/2,

all F n
m,i,j,k’s are functions of a. The derivatives of flow terms with respect to the pa-

rameter a are given by

∂F n
o,i,j,k

∂a
= −

∂T n
oz,i,j,k+1/2

∂a
[pni,j,k − pni,j,k+1 + γno,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

−
∂T n

oz,i,j,k−1/2

∂a
[pni,j,k − pni,j,k−1 + γno,i,j,k−1/2(Di,j,k−1 −Di,j,k)], (C–142)

∂F n
w,i,j,k

∂a
= −

∂T n
wz,i,j,k+1/2

∂a
[pni,j,k − pni,j,k+1 + γnw,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

−
∂T n

wz,i,j,k−1/2

∂a
[pni,j,k − pni,j,k−1 + γnw,i,j,k−1/2(Di,j,k−1 −Di,j,k)], (C–143)

and

∂F n
g,i,j,k

∂a
= −

∂T n
gz,i,j,k+1/2

∂a
[pni,j,k − pni,j,k+1 + γng,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

−
∂T n

gz,i,j,k−1/2

∂a
[pni,j,k − pni,j,k−1 + γng,i,j,k−1/2(Di,j,k−1 −Di,j,k)]

−
∂T n

oz,i,j,k+1/2

∂a
Rn
so,i,j,k+1/2[p

n
i,j,k − pni,j,k+1 + γno,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

−
∂T n

oz,i,j,k−1/2

∂a
Rn
so,i,j,k−1/2[p

n
i,j,k − pni,j,k−1 + γno,i,j,k−1/2(Di,j,k−1 −Di,j,k)]. (C–144)
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Compute Partial Derivatives of Transmissibility T

From section B.1, we have

∂T n
mx,i+1/2,j,k

∂kx,i,j,k
=

4xikx,i+1,j,k
kx,i,j,k(4xikx,i+1,j,k +4xi+1kx,i,j,k)

T n
mx,i+1/2,j,k, (C–145)

∂T n
mx,i−1/2,j,k

∂kx,i,j,k
=

4xikx,i−1,j,k
kx,i,j,k(4xi−1kx,i,j,k +4xikx,i−1,j,k)

T n
mx,i−1/2,j,k, (C–146)

∂T n
my,i,j+1/2,k

∂ky,i,j,k
=

4yjky,i,j+1,k
ky,i,j,k(4yjky,i,j+1,k +4yj+1ky,i,j,k)

T n
my,i,j+1/2,k, (C–147)

and

∂T n
my,i,j−1/2,k

∂ky,i,j,k
=

4yjky,i−1,j,k
ky,i,j,k(4yj−1ky,i,j,k +4yjky,i,j−1,k)

T n
my,i,j−1/2,k, (C–148)

for m = ow, g.

In this case, the model parameters are kx, ky, and a instead of kx, ky, and

kz in the regular cases. kz depends on kx, ky, and a. We need to compute derivatives

of kz with respect to kx, ky, and a and use chain rule to find the derivatives of

transmissibilities. From Eq. C–136, the term kz,i,j,k+1/2 is

kz,i,j,k+1/2 =
(4zk +4zk+1)kz,i,j,kkz,i,j,k+1
4zkkz,i,j,k+1 +4zk+1kz,i,j,k

=
a(4zk +4zk+1)

√

kx,i,j,kky,i,j,k
√

kx,i,j,k+1ky,i,j,k+1

4zk
√

kx,i,j,k+1ky,i,j,k+1 +4zk+1
√

kx,i,j,kky,i,j,k
,

(C–149)
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so the derivatives of kz,i,j,k+1/2 with respect to kx,i,j,k are

∂kz,i,j,k+1/2
∂kx,i,j,k

=
a(4zk +4zk+1)

2(4zk
√

kx,i,j,k+1ky,i,j,k+1 +4zk+1
√

kx,i,j,kky,i,j,k)2
×

[

(4zk
√

kx,i,j,k+1ky,i,j,k+1 +4zk+1
√

kx,i,j,kky,i,j,k)

√

ky,i,j,k
kx,i,j,k

√

kx,i,j,k+1ky,i,j,k+1

−4zk+1

√

ky,i,j,k
kx,i,j,k

√

kx,i,j,kky,i,j,k
√

kx,i,j,k+1ky,i,j,k+1

]

=
a(4zk +4zk+1)

2(4zk
√

kx,i,j,k+1ky,i,j,k+1 +4zk+1
√

kx,i,j,kky,i,j,k)2
×

(4zk
√

kx,i,j,k+1ky,i,j,k+1

√

ky,i,j,k
kx,i,j,k

√

kx,i,j,k+1ky,i,j,k+1

=
1

2

√

ky,i,j,k
kx,i,j,k

4zk
√

kx,i,j,k+1ky,i,j,k+1
√

kx,i,j,kky,i,j,k(4zk
√

kx,i,j,k+1ky,i,j,k+1 +4zk+1
√

kx,i,j,kky,i,j,k)

a(4zk +4zk+1)
√

kx,i,j,kky,i,j,k
√

kx,i,j,k+1ky,i,j,k+1

(4zk
√

kx,i,j,k+1ky,i,j,k+1 +4zk+1
√

kx,i,j,kky,i,j,k)

=
4zk

√

kx,i,j,k+1ky,i,j,k+1

2kx,i,j,k(4zk
√

kx,i,j,k+1ky,i,j,k+1 +4zk+1
√

kx,i,j,kky,i,j,k)
kz,i,j,k+1/2.

(C–150)

Similarly, we obtain the other derivatives

∂kz,i,j,k−1/2
∂kx,i,j,k

=
4zk

√

kx,i,j,k−1ky,i,j,k−1

2kx,i,j,k(4zk
√

kx,i,j,k−1ky,i,j,k−1 +4zk−1
√

kx,i,j,kky,i,j,k)
kz,i,j,k−1/2,

(C–151)

and

∂kz,i,j,k±1/2
∂ky,i,j,k

=
4zk

√

kx,i,j,k±1ky,i,j,k±1

2ky,i,j,k(4zk
√

kx,i,j,k±1ky,i,j,k±1 +4zk±1
√

kx,i,j,kky,i,j,k)
kz,i,j,k±1/2.

(C–152)
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The derivatives of transmissibilities with respect to permeability are

∂T n
mz,i,j,k±1/2

∂kx,i,j,k
=
∂T n

mz,i,j,k±1/2

∂kz,i,j,k±1/2

∂knz,i,j,k±1/2
∂kx,i,j,k

=
T n
mz,i,j,k±1/2

2kx,i,j,k(1 + (4zk±1/4zk)
√

(kx,i,j,kky,i,j,k)/(kx,i,j,k±1ky,i,j,k±1))

=
T n
mz,i,j,k±1/2

2kx,i,j,k(1 + (4zk±1/4zk)(kz,i,j,k/kz,i,j,k±1))
,

(C–153)

and

∂T n
mz,i,j,k±1/2

∂ky,i,j,k
=
∂T n

mz,i,j,k±1/2

∂kz,i,j,k±1/2

∂knz,i,j,k±1/2
∂ky,i,j,k

=
T n
mz,i,j,k±1/2

2ky,i,j,k(1 + (4zk±1/4zk)
√

(kx,i,j,kky,i,j,k)/(kx,i,j,k±1ky,i,j,k±1))

=
T n
mz,i,j,k±1/2

2ky,i,j,k(1 + (4zk±1/4zk)(kz,i,j,k/kz,i,j,k±1))
.

(C–154)

From Eq. C–136,

∂kz,i,j,k±1/2
∂a

=
(4zk +4zk±1)

√

kx,i,j,kky,i,j,k
√

kx,i,j,k±1ky,i,j,k±1

4zk
√

kx,i,j,k±1ky,i,j,k±1 +4zk±1
√

kx,i,j,kky,i,j,k

=
1

a
kz,i,j,k±1/2.

(C–155)

So we have the derivatives of transmissibility with respect to the parameter

a,

∂T n
mz,i,j,k±1/2

∂a
=
∂T n

mz,i,j,k±1/2

∂kz,i,j,k±1/2

∂kz,i,j,k±1/2
∂a

=
1

a
T n
mz,i,j,k±1/2,

(C–156)

for m = o, w, g.

At the boundaries, the derivatives of the transmissibility are zero, i.e.,

∂T n
mx,1/2,j,k

∂kni,j,k
=
∂T n

mx,nx+1/2,j,k

∂kni,j,k
=
∂T n

my,i,1/2,k

∂kni,j,k

=
∂T n

my,i,ny+1/2,k

∂kni,j,k
=
∂T n

mz,i,j,1/2

∂kni,j,k
=
∂T n

mz,i,j,nz+1/2

∂kni,j,k
= 0

(C–157)
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C.3 Derivatives with respect to Skin Factors

In order to estimate the skin factors, one need compute the sensitivities to

skin factors. Therefore, one need calculate the derivatives with respect to skin factors

in Eq. C-1. Because only the sink terms in the flow equations involve skin factors,

the derivatives of flow terms and accumulation terms with respect to the skin factor

are zero. Only the derivatives of sink terms in flow equations and well equations have

nonzero derivatives with respect to skin factors.

In this section, we give the formulas to compute the sensitivities to the skin

factors in each completion. If one wishes to use one skin factor per well, one only

need to simply add up the sensitivity coefficients of all completion in the given well.

For example, the skin factor at layer k of well l is sl,k and the sensitivity coefficient

is ∂J/∂sl,k. Assume that all skin factors in well l are equal to sl, i.e., sl = sl,k, for all

k, we have

∂J

∂sl
=
∑

k1

∂J

∂sl,k1
. (C–158)

C.3.1 Derivatives of Sink Terms in the Flow Equations

Producing Wells (Qo, Qt, or pwf Specified)

For a producing well, the layer k0 production rates at well l are

qn+1m,l,k0 = T n+1
m,l,k0[p

n+1
l,k0 − pn+1wf,l − dpn+1wf,l,k0], (C–159)

for m = o, w, g, where

T n+1
o,l,k0 = WIl,k0

(

kro
Boµo

)n+1

l,k0

, (C–160)

T n+1
w,l,k0 = WIl,k0

(

krw
Bwµw

)n+1

l,k0

, (C–161)
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and

T n+1
g,l,k0 = WIl,k0

(

krg
Bgµg

+Rso
kro
Boµo

)n+1

l,k0

. (C–162)

It is easy to see that for k = k0

∂qn+1m,l,k0

∂sl,k
=
∂qn+1m,l,k0

∂sl,k0
=
∂T n+1

m,l,k0

∂sl,k0
[pn+1l,k0 − pn+1wf,l − dpn+1wf,l,k0], (C–163)

for m = o, w, g. For k 6= k0
∂qn+1m,l,k0

∂sl,k
= 0, (C–164)

for all three phases.

Recall that

WIl,k0 =
0.007084z

√

kx,l,k0ky,l,k0

ln(ro,l,k0/rw,l,k0) + sl,k0
, (C–165)

and

ro,l,k0 =
0.280734xi

√

1 +
kx,l,k0

ky,l,k0

(

4yj
4xi

)2

1 +
√

kx,l,k0/ky,l,k0
. (C–166)

So we have

∂WIl,k0
∂sl,k0

=
∂

∂sl,k0

(

0.007084z
√

kx,l,k0ky,l,k0

ln(ro,l,k0/rw,l,k0) + sl,k0

)

= −
0.007084z

√

kx,l,k0ky,l,k0

(ln(ro,l,k0/rw,l,k0) + sl,k0)2

= −
WIl,k0

ln(ro,l,k0/rw,l,k0) + sl,k0
.

(C–167)

The derivatives of T n+1
m,l,k0 with respect to skin factor sl,k0 are

∂T n+1
m,l,k0

∂sl,k0
= −

T n+1
m,l,k0

ln(ro,l,k0/rw,l,k0) + sl,k0
, (C–168)

where m = o, w, g. So the derivatives of the sink/source terms with respect to the

skin factor sl,k0 are
∂qn+1m,l,k00

∂sl,k0
= −

qn+1m,l,k0

ln(ro,l,k0/rw,l,k0) + sl,k0
, (C–169)

for each of the three phases.
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Injection Wells (Water or Gas Injection)

For the injection wells, the water or gas injection rates at layer k0 of well l

are given by

qn+1m,l,k0 = T n+1
inj,m,l,k0[p

n+1
l,k0 − pn+1wf,l − dpn+1wf,l,k0], (C–170)

for m = w, g, where

T n+1
inj,m,l,k0 =

WIl,k0

µn+1m,l,k0B
n+1
m,l,k0

. (C–171)

For k = k0, the derivatives are

∂qn+1m,l,k0

∂sl,k
=
∂qn+1m,l,k0

∂sl,k0
= −

qn+1m,l,k0

ln(ro,l,k0/rw,l,k0) + sl,k0
(C–172)

for m = o, w, g.

In the water injection case, the oil rates and gas rates are set to zero, so the

derivatives are
∂qn+1o,l,k0

∂sl,k
=
∂qn+1g,l,k0

∂sl,k
= 0, (C–173)

and in the gas injection case, the oil rates and water rates are set to zero, so the

derivatives are
∂qn+1o,l,k0

∂sl,k
=
∂qn+1w,l,k0

∂sl,k
= 0, (C–174)

for all k.

If pwf is specified, all the equations are still the same.

C.3.2 Derivatives of Well Equations

In this section, we compute the derivatives of well constraint equations to

the skin factors.

Qo Specified

In the case that oil rate is specified, the well equation at well l is

fn+1wf,l =
∑

k1

T n+1
o,l,k1[p

n+1
l,k1 − pn+1wf,l − dpn+1wf,l,k1]− qn+1o,l = 0, (C–175)
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where

T n+1
o,l,k1 = WIl,k1

(

kro
Boµo

)n+1

l,k1

. (C–176)

We obtain the derivatives

∂fn+1wf,l

∂sl,k
=
∂T n+1

o,l,k

∂sl,k
[pn+1l,k − pn+1wf,l − dpn+1wf,l,k]

= −
T n+1
o,l,k [p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k]

ln(ro,l,k/rw,l,k) + sl,k

= −
qn+1o,l,k

ln(ro,l,k/rw,l,k) + sl,k
.

(C–177)

Qt Specified

In the case where total rate is specified at reservoir condition, the well equa-

tion at well l is

fn+1wf,l =
∑

k1

T n+1
t,l,k1[p

n+1
l,k1 − pn+1wf,l − dpn+1wf,l,k1]− qn+1t,l = 0, (C–178)

where

T n+1
t,l,k1 = WIl,k

(

kro
µo

+
krw
µw

+
krg
µg

)n+1

l,k1

. (C–179)

We obtain the derivatives.

∂fn+1wf,l

∂sl,k
=
∂T n+1

t,l,k

∂sl,k
[pn+1l,k − pn+1wf,l − dpn+1wf,l,k]

= −
T n+1
t,l,k [p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k]

ln(ro,l,k/rw,l,k) + sl,k
.

(C–180)

Water or Gas Injection

In the water or gas injection case, the well equation for well l is

fn+1wf,l =
∑

k1

T n+1
inj,m,l,k1[p

n+1
l,k1 − pn+1wf,l − dpn+1wf,l,k1]− qn+1m,l = 0, (C–181)

for m = w, g, where

T n+1
inj,m,l,k1 =

WIl,k1

(Bmµm)
n+1
l,k1

. (C–182)
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The derivatives of the flow equations are then

∂fn+1wf,l

∂sl,k
=
∂T n+1

inj,m,l,k

∂sl,k
[pn+1l,k − pn+1wf,l − dpn+1wf,l,k]

= −
T n+1
inj,m,l,k[p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k]

ln(ro,l,k/rw,l,k) + sl,k
.

(C–183)

For the pwf specified cases, we also use the same equations presented above.

C.3.3 Computation of the Vector ∇mβ

In this part, we compute the vector ∇mβ in the sensitivity equation.

Derivatives of pwf

If one wants to compute the sensitivity of pwf to model parameter m, we set

β = pwf . Since pwf does not explicitly dependent on skin factors, we have

∇mβ = 0. (C–184)

Derivatives of GOR

Qo Specified In the case where the oil rate is specified at well l, the gas rate is

qn+1g,l =
∑

k1

T n+1
g,l,k1(p

n+1
l,k1 − pn+1wf,l,k1), (C–185)

so the gas oil-ratio is

GORn+1
l =

qn+1g,l

qn+1o,l

=
1

qn+1o,l

∑

k1

T n+1
g,l,k (p

n+1
l,k1 − pn+1wf,l,k1)

=
1

qn+1o,l

∑

k1

T n+1
g,l,k1(p

n+1
l,k1 − pn+1wf,l − dpn+1wf,l,k1).

(C–186)
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The derivatives of gas-oil ratio with respect to skin are

∂GORn+1
l

∂sl,k
=

1

qn+1o,l

∂

∂sl,k

∑

k1

T n+1
g,l,k1(p

n+1
l,k1 − pn+1wf,l − dpn+1wf,l,k)

=
1

qn+1o,l

∂T n+1
g,l,k

∂sl,k
(pn+1l,k − pn+1wf,l − dpn+1wf,l,k)

= −
1

qn+1o,l

T n+1
g,l,k (p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k)

ln(ro,l,k/rw,l,k) + sl,k

= −
1

qn+1o,l

qn+1g,l,k

ln(ro,l,k/rw,l,k) + sl,k
.

(C–187)

Qt or pwf Specified When the total rate is specified for well l , the gas rate and

oil rate are given by

qn+1g,l =
∑

k1

T n+1
g,l,k1(p

n+1
l,k1 − pn+1wf,l,k1), (C–188)

qn+1o,l =
∑

k1

T n+1
o,l,k1(p

n+1
l,k1 − pn+1wf,l,k1), (C–189)

and the gas-oil ratio is

GORn+1
l =

qn+1g,l

qn+1o,l

. (C–190)

We therefore have the derivatives

∂GOR

∂sl,k
=

1

qn+1o,l

∂qn+1g,l

∂sl,k
−

qn+1g,l

(qn+1o,l )2
∂qn+1o,l

∂sl,k

=
1

qn+1o,l

∂T n+1
g,l,k

∂sl,k
(pn+1l,k − pn+1wf,l − dpn+1wf,l,k)−

qn+1g,l

(qn+1o,l )2
∂T n+1

o,l,k

∂sl,k
(pn+1l,k − pn+1wf,l − dpn+1wf,l,k)

= −
1

(ln(ro,l,k/rw,l,k) + sl,k)

[

1

qn+1o,l

T n+1
g,l,k (p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k)

−
qn+1g,l

(qn+1o,l )2
T n+1
o,l,k (p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k)

]

= −
1

qn+1o,l

qn+1g,l,k

(ln(ro,l,k/rw,l,k) + sl,k)
+

qn+1g,l

(qn+1o,l )2
qn+1o,l,k

(ln(ro,l,k/rw,l,k) + sl,k)
.

(C–191)
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Derivatives of WOR

Qo Specified If the oil rate is specified at well l, the water rate is

qn+1w,l =
∑

k1

T n+1
w,l,k1(p

n+1
l,k1 − pn+1wf,l,k1), (C–192)

and water-oil ratio is

WORn+1
l =

qn+1w,l

qn+1o,l

=
1

qn+1o,l

∑

k1

T n+1
w,l,k(p

n+1
l,k1 − pn+1wf,l,k1)

=
1

qn+1o,l

∑

k1

T n+1
w,l,k1(p

n+1
l,k1 − pn+1wf,l − dpn+1wf,l,k1).

(C–193)

The derivatives are

∂WORn+1
l

∂sl,k
=

1

qn+1o,l

∂

∂sl,k

∑

k1

T n+1
w,l,k1(p

n+1
l,k1 − pn+1wf,l − dpn+1wf,l,k)

=
1

qn+1o,l

∂T n+1
w,l,k

∂sl,k
(pn+1l,k − pn+1wf,l − dpn+1wf,l,k)

= −
1

qn+1o,l

T n+1
w,l,k(p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k)

ln(ro,l,k/rw,l,k) + sl,k

= −
1

qn+1o,l

qn+1w,l,k

ln(ro,l,k/rw,l,k) + sl,k
.

(C–194)

Qt or pwf Specified When the total rate is specified at well l, the water and oil

rates are given by

qn+1w,l =
∑

k1

T n+1
w,l,k(p

n+1
l,k1 − pn+1wf,l,k1), (C–195)

qn+1o,l =
∑

k1

T n+1
o,l,k (p

n+1
l,k1 − pn+1wf,l,k1), (C–196)

and the water oil ratio is

WOR =
qn+1w,l

qn+1o,l

. (C–197)
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We have the derivatives

∂WORn+1
l

∂sl,k
=

1

qn+1o,l

∂qn+1w,l

∂sl,k
−

qn+1w,l

(qn+1o,l )2
∂qn+1o,l

∂sl,k

=
1

qn+1o,l

∂T n+1
w,l,k

∂sl,k
(pn+1l,k − pn+1wf,l − dpn+1wf,l,k)

−
qn+1w,l

(qn+1o,l )2
∂T n+1

o,l,k

∂sl,k
(pn+1l,k − pn+1wf,l − dpn+1wf,l,k)

= −
1

ln(ro,l,k/rw,l,k) + sl,k

[

1

qn+1o,l

T n+1
w,l,k(p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k)

−
qn+1w,l

(qn+1o,l )2
T n+1
o,l,k (p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k)

]

= −
1

qn+1o,l

qn+1w,l,k

ln(ro,l,k/rw,l,k) + sl,k
+

qn+1w,l

(qn+1o,l )2
qn+1o,l,k

ln(ro,l,k/rw,l,k) + sl,k
.

(C–198)

C.4 Computation of Sensitivity to the Parameters of Relative Permeability

Recall that the parameters for relative permeability model in the three-phase

flow are

kr = [ nrw, krwcw, nrg, krgcw, nrow, krocw, nrog, Swc, Sorw, Sgc, Sorg ]T .

(C–199)

We use the adjoint equation to calculate the adjoint variables λ. The formu-

lation to calculate sensitivity of β to relative permeability parameters is

∇krJ = ∇krβ +
N
∑

n=1

[∇kr(f
n)T ](λn). (C–200)

The ∇m[f
n]T matrix is defined by

∇m[f
n]T =

















∂fno,1
∂m1

∂fnw,1
∂m1

∂fng,1
∂m1

∂fno,2
∂m1

· · ·
∂fng,N
∂m1

∂fnwf,1
∂m1

· · ·
∂fnwf,Nw

∂m1

∂fno,1
∂m2

∂fnw,1
∂m2

∂fno,1
∂m2

∂fno,2
∂m2

· · ·
∂fng,N
∂m2

∂fnwf,1
∂m2

· · ·
∂fnwf,Nw

∂m2

...
...

...
...

...
...

...
...

...
∂fno,1
∂mM

∂fnw,1
∂mM

∂fno,1
∂mM

∂fno,2
∂mM

· · ·
∂fng,N
∂mM

∂fnwf,1
∂mM

· · ·
∂fnwf,Nw

∂mM

















.

(C–201)
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where m = kr. Actually, we do not have to use the functions shown above to model

relative permeability curves. We can use any other appropriate analytical functions

to approximate the relative permeability curves.

C.4.1 The Derivatives of Relative Permeability

Here, we present formulas to compute the derivatives of relative permeability

with respect to any of the model parameters which define relative permeability. Here,

I simply list the derivatives of the relative permeability for each phase with respect

to the eleven model parameters.

The derivatives of krw with respect to kr

∂krw
∂nrw

= krwcw

(

Sw − Swc
1− Sorw − Swc

)nrw

ln

(

Sw − Swc
1− Sorw − Swc

)

= krw ln

(

Sw − Swc
1− Sorw − Swc

)

,

(C–202)

∂krw
∂krwcw

=

(

Sw − Swc
1− Sorw − Swc

)nrw

=
krw
krwcw

, (C–203)

∂krw
∂Swc

= nrwkrwcw

(

Sw − Swc
1− Sorw − Swc

)nrw−1 (Sw − 1 + Sorw)

(1− Sorw − Swc)2

= krw
nrw(Sw − 1 + Sorw)

(1− Sorw − Swc)(Sw − Swc)
,

(C–204)

∂krw
∂Sorw

= nrwkrwcw

(

Sw − Swc
1− Sorw − Swc

)nrw−1 (Sw − Swc)

(1− Sorw − Swc)2

= krw
nrw

(1− Sorw − Swc)
,

(C–205)

and

∂krw
∂nrow

=
∂krw
∂nrg

=
∂krw
∂nrog

=
∂krw
∂krocw

=
∂krw
∂krgcw

=
∂krw
∂Sgc

=
∂krw
∂Sorg

= 0. (C–206)
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The derivatives of krow with respect to kr

∂krow
∂nrow

= krocw

(

1− Sorw − Sw
1− Sorw − Swc

)nrow

ln

(

1− Sorw − Sw
1− Sorw − Swc

)

= krow ln

(

1− Sorw − Sw
1− Sorw − Swc

)

,

(C–207)

∂krow
∂krocw

=

(

1− Sorw − Sw
1− Sorw − Swc

)nrow

=
krow
krocw

, (C–208)

∂krow
∂Swc

= nrowkrocw

(

1− Sorw − Sw
1− Sorw − Swc

)nrow−1 (1− Sorw − Sw)

(1− Sorw − Swc)2

=
krownrow

(1− Sorw − Swc)
,

(C–209)

∂krow
∂Sorw

= −nrowkrocw

(

1− Sorw − Sw
1− Sorw − Swc

)nrow−1 (Sw − Swc)

(1− Sorw − Swc)2

= −krow
nrow(Sw − Swc)

(1− Sorw − Swc)(1− Sorw − Sw)
,

(C–210)

and

∂krow
∂nrw

=
∂krow
∂nrg

=
∂krw
∂nrog

=
∂krow
∂krwcw

=
∂krow
∂krgcw

=
∂krow
∂Sgc

=
∂krow
∂Sorg

= 0. (C–211)

The derivatives of krg with respect to kr

∂krg
∂nrg

= krgcw

(

Sg − Sgc
1− Sorg − Swc − Sgc

)nrg

ln

(

Sg − Sgc
1− Sorg − Swc − Sgc

)

= krg ln

(

Sg − Sgc
1− Sorg − Swc − Sgc

)

,

(C–212)

∂krg
∂krgcw

=

(

Sg − Sgc
1− Sorg − Swc − Sgc

)nrg

=
krg
krgcw

, (C–213)

∂krg
∂Sgc

= nrgkrgcw

(

Sg − Sgc
1− Sorg − Swc − Sgc

)nrg−1 Sg − (1− Sorg − Swc)

(1− Sorg − Swc − Sgc)2

= krg
nrg(Sg − (1− Sorg − Swc))

(1− Sorg − Swc − Sgc)(Sg − Sgc)
,

(C–214)
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∂krg
∂Sorg

= nrgkrgcw

(

Sg − Sgc
1− Sorg − Swc − Sgc

)nrg−1 (Sg − Sgc)

(1− Sorg − Swc − Sgc)2

= krg
nrg

(1− Sorg − Swc − Sgc)

(C–215)

∂krg
∂Swc

= nrgkrgcw

(

Sg − Sgc
1− Sorg − Swc − Sgc

)nrg−1 (Sg − Sgc)

(1− Sorg − Swc − Sgc)2

= krg
nrg

(1− Sorg − Swc − Sgc)
,

(C–216)

and
∂krg
∂nrow

=
∂krg
∂nrw

=
∂krg
∂nrog

=
∂krg
∂krocw

=
∂krg
∂krwcw

=
∂krg
∂Sorw

= 0. (C–217)

The derivatives of krog with respect to kr

∂krog
∂nrog

= krgcw

(

1− Sorg − Swc − Sg
1− Sorg − Swc

)nrog

ln

(

1− Sorg − Swc − Sg
1− Sorg − Swc

)

= krog ln

(

1− Sorg − Swc − Sg
1− Sorg − Swc

)

,

(C–218)

∂krog
∂krocw

=

(

1− Sorg − Swc − Sg
1− Sorg − Swc

)nrog

=
krog
krocw

, (C–219)

∂krog
∂Sorg

= nrogkrgcw

(

1− Sorg − Swc − Sg
1− Sorg − Swc

)nrog−1 −Sg
(1− Sorg − Swc)2

= −krog
nrogSg

(1− Sorg − Swc)(1− Sorg − Swc − Sg)
,

(C–220)

∂krog
∂Swc

= nrogkrgcw

(

1− Sorg − Swc − Sg
1− Sorg − Swc

)nrog−1 −Sg
(1− Sorg − Swc)2

= −krog
nrogSg

(1− Sorg − Swc)(1− Sorg − Swc − Sg)
,

(C–221)

and

∂krog
∂nrow

=
∂krog
∂nrg

=
∂krog
∂nrw

=
∂krog
∂krwcw

=
∂krog
∂krgcw

=
∂krog
∂Sgc

=
∂krog
∂Sorw

= 0. (C–222)
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The derivatives of kro with respect to kr

From Stone’s equation (Eq. ??), we have

∂kro
∂kr

= krocw

[

(

∂krow
∂kr

1

krocw
+
∂krw
∂kr

)(

krog
krocw

+ krg

)

+

(

krow
krocw

+ krw

)(

∂krog
∂kr

1

krocw
+
∂krg
∂kr

)

−

(

∂krw
∂kr

+
∂krg
∂kr

)

]

,

(C–223)

for kr 6= krocw, and for kr = krocw

∂kro
∂kr

=
∂kro
∂krocw

=
kro
krocw

. (C–224)

C.4.2 The Derivatives of Flow Equations

The derivatives of the flow terms with respect to the parameter kr are

∂F n
o,i,j,k

∂kr
=
∂T n

ox,i+1/2,j,k

∂kr
[pni+1,j,k − pni,j,k − γno,i+1/2,j,k(Di+1,j,k −Di,j,k)]

−
∂T n

ox,i−1/2,j,k

∂kr
[pni,j,k − pni−1,j,k − γno,i−1/2,j,k(Di,j,k −Di−1,j,k)]

+
∂T n

oy,i,j+1/2,k

∂kr
[pni,j+1,k − pni,j,k − γno,i,j+1/2,k(Di,j+1,k −Di,j,k)]

−
∂T n

oy,i,j−1/2,k

∂kr
[pni,j,k − pni,j−1,k − γno,i,j−1/2,k(Di,j,k −Di,j−1,k)]

+
∂T n

oz,i,,j,k+1/2

∂kr
[pni,j,k+1 − pni,j,k − γno,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

−
∂T n

oz,i,j,k−1/2

∂kr
[pni,j,k − pni,j,k−1 − γno,i,j,k−1/2(Di,j,k −Di,j,k−1)], (C–225)



232

∂F n
w,i,j,k

∂kr
=
∂T n

wx,i+1/2,j,k

∂kr
[pni+1,j,k − pni,j,k − γnw,i+1/2,j,k(Di+1,j,k −Di,j,k)]

−
∂T n

wx,i−1/2,j,k

∂kr
[pni,j,k − pni−1,j,k − γnw,i−1/2,j,k(Di,j,k −Di−1,j,k)]

+
∂T n

wy,i,j+1/2,k

∂kr
[pni,j+1,k − pni,j,k − γnw,i,j+1/2,k(Di,j+1,k −Di,j,k)]

−
∂T n

wy,i,j−1/2,k

∂kr
[pni,j,k − pni,j−1,k − γnw,i,j−1/2,k(Di,j,k −Di,j−1,k)]

+
∂T n

wz,i,,j,k+1/2

∂kr
[pni,j,k+1 − pni,j,k − γnw,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

−
∂T n

wz,i,j,k−1/2

∂kr
[pni,j,k − pni,j,k−1 − γnw,i,j,k−1/2(Di,j,k −Di,j,k−1)], (C–226)
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and

∂F n
g,i,j,k

∂kr
=
∂T n

gx,i+1/2,j,k

∂kr
[pni+1,j,k − pni,j,k − γng,i+1/2,j,k(Di+1,j,k −Di,j,k)]

−
∂T n

gx,i−1/2,j,k

∂kr
[pni,j,k − pni−1,j,k − γng,i−1/2,j,k(Di,j,k −Di−1,j,k)]

+Rn
so,i+1/2,j,k

∂T n
ox,i+1/2,j,k

∂kr
[pni+1,j,k − pni,j,k − γno,i+1/2,j,k(Di+1,j,k −Di,j,k)]

−Rn
so,i−1/2,j,k

∂T n
ox,i−1/2,j,k

∂kr
[pni,j,k − pni−1,j,k − γno,i−1/2,j,k(Di,j,k −Di−1,j,k)]

+
T n
gy,i,j+1/2,k∂

∂kr
[pni,j+1,k − pni,j,k − γng,i,j+1/2,k(Di,j+1,k −Di,j,k)]

−
∂T n

gy,i,j−1/2,k

∂kr
[pni,j,k − pni,j−1,k − γng,i,j−1/2,k(Di,j,k −Di,j−1,k)]

+Rn
so,i,j+1/2,k

∂T n
oy,i,j+1/2,k

∂kr
[pni,j+1,k − pni,j,k − γno,i,j+1/2,k(Di,j+1,k −Di,j,k)]

−Rn
so,i,j−1/2,k

∂T n
oy,i,j−1/2,k

∂kr
[pni,j,k − pni,j−1,k − γno,i,j−1/2,k(Di,j,k −Di,j−1,k)]

+
∂T n

gz,i,,j,k+1/2

∂kr
[pni,j,k+1 − pni,j,k − γng,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

−
∂T n

gz,i,j,k−1/2

∂kr
[pni,j,k − pni,j,k−1 − γng,i,j,k−1/2(Di,j,k −Di,j,k−1)]

+Rn
so,i,j,k+1/2

∂T n
oz,i,,j,k+1/2

∂kr
[pni,j,k+1 − pni,j,k − γno,i,j,k+1/2(Di,j,k+1 −Di,j,k)]

−Rn
so,i,j,k−1/2

∂T n
oz,i,j,k−1/2

∂kr
[pni,j,k − pni,j,k−1 − γno,i,j,k−1/2(Di,j,k −Di,j,k−1)]. (C–227)

Compute Partial Derivatives of Transmissibility T

The transmissibilities can be written as

T n
mx,i+1/2,j,k =

C1∆yj∆zkkx,i+1/2,j,k
xi+1 − xi

knrm,i+1/2,j,k
µnm,i+1/2,j,kB

n
m,i+1/2,j,k

, (C–228)

for m = o, w, g and all i = 1, 2, . . . , nx − 1, and

T n
mx,1/2,j,k = T n

mx,nx+1/2,j,k = 0. (C–229)
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Similarly,

T n
my,i,j+1/2,k =

C1∆xi∆zkky,i,j+1/2,k
yj+1 − yj

knrm,i,j+1/2,k
µnm,i,j+1/2,kB

n
m,i,j+1/2,k

, (C–230)

for m = o, w, g and all j = 1, 2, . . . , ny − 1 and

T n
my,i,1/2,k = T n

my,i,ny+1/2,k = 0. (C–231)

Finally,

T n
mz,i,j,k+1/2 =

C1∆yj∆xikz,i,j,k+1/2
zk+1 − zk

knrm,i,j,k+1/2
µnm,i,j,k+1/2B

n
m,i,j,k+1/2

, (C–232)

for m = o, w, g and all k = 1, 2, . . . , nz − 1 and

T n
mz,i,j,1/2 = T n

my,i,j,nz+1/2 = 0. (C–233)

In this work, the knrm,i,j,k+1/2, (Bm)i+1/2,j,k and (µm)i+1/2,j,k are evaluated by the

upstream weighting, i.e.

knrm,i,j,k+1/2 =











knrm,i,j,k+1 if (i, j, k + 1) is upstream

knrm,i,j,k if (i, j, k) is upstream

(C–234)

Bn
m,i,j,k+1/2 =











Bn
m,i,j,k+1 if (i, j, k + 1) is upstream

Bn
m,i,j,k if (i, j, k) is upstream

(C–235)

and

µnm,i,j,k+1/2 =











µnm,i,j,k+1 if (i, j, k + 1) is upstream

µnm,i,j,k if (i, j, k) is upstream

(C–236)

The derivatives required to estimate the parameters kr are given by

∂T n
mx,i+1/2,j,k

∂kr
=
C1∆yj∆zkkx,i+1/2,j,k

xi+1 − xi

1

µnm,i+1/2,j,kB
n
m,i+1/2,j,k

∂knrm,i+1/2,j,k
∂kr

, (C–237)

∂T n
my,i,j+1/2,k

∂kr
=
C1∆xi∆zkky,i,j+1/2,k

yj+1 − yj

1

µnm,i,j+1/2,kB
n
m,i,j+1/2,k

∂knrm,i,j+1/2,k
∂kr

, (C–238)
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and

∂T n
mz,i,j,k+1/2

∂kr
=
C1∆yj∆xikz,i,j,k+1/2

zk+1 − zk

1

µnm,i,j,k+1/2B
n
m,i,j,k+1/2

∂knrm,i,j,k+1/2
∂kr

. (C–239)

The derivatives of relative permeabilities with respect to the parameters kr

are computed by the Eqs. C–202 to C–224.

C.4.3 Derivatives of Sink Terms of Flow Equations

Production Wells (Qo, Qt or pwf Specified)

In the producing wells, the layer k production rates at well l are given by

qn+1m,l,k = T n+1
m,l,k[p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k], (C–240)

for m = o, w, g, where

T n+1
o,l,k = WIl,k

(

kro
Boµo

)n+1

l,k

, (C–241)

T n+1
w,l,k = WIl,k

(

krw
Bwµw

)n+1

l,k

, (C–242)

and

T n+1
g,l,k = WIl,k

(

krg
Bgµg

+Rso
kro
Boµo

)n+1

l,k

. (C–243)

The derivatives of flow rates to the parameter of relative permeability kr are

∂qn+1m,l,k

∂kr
=
∂T n+1

m,l,k

∂kr
[pn+1l,k − pn+1wf,l − dpn+1wf,l,k], (C–244)

for m = o, w, g.

The derivatives of T n+1
m,l,k can be calculated as

∂T n+1
o,l,k

∂kr
= WIl,k

(

1

Boµo

∂kro
∂kr

)n+1

l,k

, (C–245)

∂T n+1
w,l,k

∂kr
= WIl,k

(

1

Bwµw

∂krw
∂kr

)n+1

l,k

, (C–246)

and
∂T n+1

g,l,k

∂kr
= WIl,k

(

1

Bgµg

∂krg
∂kr

+Rso
1

Boµo

∂kro
∂kr

)n+1

l,k

. (C–247)
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Injection Wells (Water or Gas Injection)

For water or gas injection wells, the water or gas injection rate at layer k of

well l is given by

qn+1m,l,k = T n+1
inj,m,l,k[p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k], (C–248)

for m = w, g, where

T n+1
inj,m,l,k =

WIl,k

µn+1w,l,kB
n+1
w,l,k

. (C–249)

There is no kr in the qn+1m,l,k, so the derivative of qn+1m,l,k to kr is zero, i.e.

∂qn+1m,l,k

∂kr
= 0. (C–250)

C.4.4 Derivatives of Well Equations

Qo specified

In the oil rate specified case, the well equation at well l is

fn+1wf,l =
∑

k1

T n+1
o,l,k1[p

n+1
l,k1 − pn+1wf,l − dpn+1wf,l,k1]− qn+1o,l = 0, (C–251)

where

T n+1
o,l,k1 = WIl,k1

(

kro
Boµo

)n+1

l,k1

. (C–252)

We obtain the derivative

∂fn+1wf,l

∂kr
=
∑

k1

∂T n+1
o,l,k1

∂kr
[pn+1l,k1 − pn+1wf,l − dpn+1wf,l,k1]. (C–253)

Qt Specified

In the case the total rate is specified at reservoir conditions, the well equation

at well l is

fn+1wf,l =
∑

k1

T n+1
t,l,k1[p

n+1
l,k1 − pn+1wf,l − dpn+1wf,l,k1]− qn+1t,l = 0, (C–254)
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where

T n+1
t,l,k1 = WIl,k1

(

kro
µo

+
krw
µw

+
krg
µg

)n+1

l,k1

. (C–255)

We obtain the derivative

∂fn+1wf,l

∂kr
=
∑

k1

∂T n+1
t,l,k1

∂kr
[pn+1l,k1 − pn+1wf,l − dpn+1wf,l,k1]. (C–256)

It is easy to see

∂T n+1
t,l,k

∂kr
= WIl,k

(

1

µo

∂kro
∂kr

+
1

µw

∂krw
∂kr

+
1

µg

∂krg
∂kr

)n+1

l,k

. (C–257)

Water or Gas Injection

In the water or gas injection case, the well equation at well l is

fn+1wf,l =
∑

k1

T n+1
inj,m,l,k1[p

n+1
l,k1 − pn+1wf,l − dpn+1wf,l,k1]− qn+1o,l = 0, (C–258)

where

T n+1
o,l,k =

WIl,k

(Bwµw)
n+1
l,k

. (C–259)

We obtain
∂fn+1wf,l

∂kr
= 0. (C–260)

C.4.5 Computation of ∇krβ

In this part, we compute the vector ∇krβ for the cases β = pwf , β = GOR,

and β = WOR.

Gradient of pwf

Since pwf does not explicitly depend on the parameters kr, it is clear that

∇krβ = ∇krpwf = 0. (C–261)
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Gradient of GOR

Qo Specified When the oil rate is specified for well l, the gas rate is

qn+1g,l =
∑

k

T n+1
g,l,k (p

n+1
l,k − pn+1wf,l,k). (C–262)

The gas-oil ratio is therefore:

GORn+1
l =

qn+1g,l

qn+1o,l

=
1

qn+1o,l

∑

k

T n+1
g,l,k (p

n+1
l,k − pn+1wf,l,k)

=
1

qn+1o,l

∑

k

T n+1
g,l,k (p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k),

(C–263)

The derivatives of this expression is

∂GORn+1
l

∂kr
=

1

qn+1o,l

∑

k

∂T n+1
g,l,k

∂kr
(pn+1l,k − pn+1wf,l − dpn+1wf,l,k). (C–264)

Qt or pwf Specified. When the total rate is specified for well l, the gas rate and

oil rate are

qn+1g,l =
∑

k

T n+1
g,l,k (p

n+1
l,k − pn+1wf,l,k), (C–265)

qn+1o,l =
∑

k

T n+1
o,l,k (p

n+1
l,k − pn+1wf,l,k), (C–266)

and gas-oil ratio is

GORn+1
l =

qn+1g,l

qn+1o,l

. (C–267)

We have the derivatives

∂GORn+1
l

∂kr
=

1

qn+1o,l

∂qn+1g,l

∂kr
−

qn+1g,l

(qn+1o,l )2
∂qn+1o,l

∂kr

=
1

qn+1o,l

∑

k

∂T n+1
g,l,k

∂kr
(pn+1l,k − pn+1wf,l − dpn+1wf,l,k)

−
qn+1g,l

(qn+1o,l )2

∑

k

∂T n+1
o,l,k

∂kr
(pn+1l,k − pn+1wf,l − dpn+1wf,l,k).

(C–268)
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Gradient of WOR

Qo Specified When the oil rate is specified at well l, we have

qn+1w,l =
∑

k

T n+1
w,l,k(p

n+1
l,k − pn+1wf,l,k), (C–269)

so

WORn+1
l =

qn+1w,l

qn+1o,l

=
1

qn+1o,l

∑

k

T n+1
w,l,k(p

n+1
l,k − pn+1wf,l,k)

=
1

qn+1o,l

∑

k

T n+1
w,l,k(p

n+1
l,k − pn+1wf,l − dpn+1wf,l,k).

(C–270)

The derivatives are

∂WORn+1
l

∂kr
=

1

qn+1o,l

∑

k

∂T n+1
w,l,k

∂kr
(pn+1l,k − pn+1wf,l − dpn+1wf,l,k). (C–271)

Qt or pwf Specified When total rate is specified for well l, we have

qn+1w,l =
∑

k

T n+1
w,l,k(p

n+1
l,k − pn+1wf,l,k), (C–272)

qn+1o,l =
∑

k

T n+1
o,l,k (p

n+1
l,k − pn+1wf,l,k), (C–273)

and

WORn+1
l =

qn+1w,l

qn+1o,l

. (C–274)

We have

∂WORn+1
l

∂kr
=

1

qn+1o,l

∂qn+1w,l

∂kr
−

qn+1w,l

(qn+1o,l )2
∂qn+1o,l

∂kr

=
1

qn+1o,l

∑

k

∂T n+1
w,l,k

∂kr
(pn+1l,k − pn+1wf,l − dpn+1wf,l,k)

−
qn+1w,l

(qn+1o,l )2

∑

k

∂T n+1
o,l,k

∂kr
(pn+1l,k − pn+1wf,l − dpn+1wf,l,k).

(C–275)
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C.5 Sensitivity of Objective Function

In some practical problems, both the number of observed data and number

of model parameters are large. It is computationally expensive to use the adjoint

method to calculate sensitivity coefficients for problems that have large amounts of

data. In this case, one can consider using a preconditioned conjugate gradient method

to minimize the objective function. To apply the conjugate gradient algorithm, one

only needs to calculate the gradient of the objective function and does not need to

calculate sensitivity coefficients. It is very fast to use the adjoint method to calculate

the gradient of a objective function. One only need solve the adjoint system equation

once to get the gradient, regardless of the number of data and parameters. Even

though the conjugate gradient method tends to converge slower than the Gauss-

Newton method, the whole automatic history matching procedure could be efficient

because one does not need to calculate sensitivity coefficients. Moreover, if an efficient

preconditioner can be found, convergence could be significantly accelerated. Assume

the objective function is

O(m) =
1

2
(m−mprior)

TC−1M (m−mprior)+
1

2
(g(m)−dobs)

TC−1D (g(m)−dobs), (C–276)

wherem is the vector of model parameters; mprior is prior means of model parameters;

C−1M is the prior covariance matrix computed from the prior covariance function (or

variogram); CD is the data covariance matrix; dobs is observed production data vector

that are used to condition the model; and g(m) is the calculated production data

based on the model parameter m. The g(m) vector is given by

g(m) =
[

g1 g2 · · · gNd

]T

. (C–277)

To apply the adjoint method to calculate the gradient of the objective function, we

need to evaluate the source term ∇ynβ in the adjoint Eq. 3.21 and the derivative

term ∇mβ in the sensitivity Eq. C–1.
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C.5.1 Compute Source Term ∇ynβ

Here we choose

β = O(m) =
1

2
(m−mprior)

TC−1M (m−mprior) +
1

2
(g(m)− dobs)

TC−1D (g(m)− dobs),

(C–278)

thus

∇ynβ = ∇ynO(m) = ∇yn{
1

2
(m−mprior)

TC−1M (m−mprior)+
1

2
(g(m)−dobs)

TC−1D (g(m)−dobs)}

=
1

2
∇yn{(g(m)− dobs)

TC−1D (g(m)− dobs)}

= [∇yn(g(m)− dobs)
T ]C−1D (g(m)− dobs). (C–279)

So we obtain

∇ynβ = ∇yn [g(m)]TC−1D (g(m)− dobs). (C–280)

The matrix ∇yn [g(m)]T is a 3NM +Nw by Nd matrix and defined as

∇yn [g(m)]T =

















































∂g1
∂pn1

∂g2
∂pn1

· · ·
∂gNd

∂pn1
∂g1
∂Snw,1

∂g2
∂Snw,1

· · ·
∂gNd

∂Snw,1

∂g1
∂Sng,1

∂g2
∂Sng,1

· · ·
∂gNd

∂Sng,N

∂g1
∂pn2

∂g2
∂pn2

· · ·
∂gNd

∂pn2
...

... · · ·
...

∂g1
∂Sng,N

∂g2
∂Sng,N

· · ·
∂gNd

∂Sng,N

∂g1
∂pnwf,1

∂g2
∂pnwf,1

· · ·
∂gNd

∂pnwf,1
...

... · · ·
...

∂g1
∂pnwf,Nw

∂g2
∂pnwf,Nw

· · ·
∂gNd

∂pnwf,Nw

















































. (C–281)

The g(m) is production data vector. It could be pwf , GOR and WOR or any com-

bination of these three kinds of production data. The matrix ∇yn [g(m)]T can be

calculated by using the formulas in appendix B.
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C.5.2 Compute Derivative ∇mβ

From the definition of the objective function, we have

∇mβ = ∇mO(m)

= ∇m

{

1

2
(m−mprior)

TC−1M (m−mprior) +
1

2
(g(m)− dobs)

TC−1D (g(m)− dobs)

}

= C−1M (m−mprior) + [∇m(g(m)− dobs)
T ]C−1D (g(m)− dobs)

(C–282)

So we obtain

∇mβ = C−1M (m−mprior) +∇m[g(m)]TC−1D (g(m)− dobs) (C–283)

The matrix ∇m[g(m)]T is a M by Nd matrix and defined as

∇m[g(m)]T =

















∂g1
∂m1

∂g2
∂m1

· · ·
∂gNd

∂m1

∂g1
∂m2

∂g2
∂m2

· · ·
∂gNd

∂m2

...
... · · ·

...

∂g1
∂mM

∂g2
∂mM

· · ·
∂gNd

∂mM

















(C–284)

The vector g(m) is the calculated production data vector. It could be pwf , GOR and

WOR or any combination of these three kinds of production data. The elements

in matrix ∇m[g(m)]T can be calculated by using the formulations in appendix C.

For example, if one wants to use the pwf , GOR, and/or WOR data to estimate the

permeability and/or porosity field, one can use the equations in the section C.1.4 to

compute the elements in the matrix ∇m[g(m)]T .
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