
T H E U N I V E R S I T Y O F T U L S A

THE GRADUATE SCHOOL

ENSEMBLE-BASED OPTIMIZATION FOR HISTORY MATCHING,

SURVEILLANCE OPTIMIZATION AND UNCERTAINTY QUANTIFICATION

by
Duc Huu Le

A thesis submitted in partial fulfillment of

the requirements for the degree of Doctor of Philosophy

in the Discipline of Petroleum Engineering

The Graduate School

The University of Tulsa

2015



T H E U N I V E R S I T Y O F T U L S A

THE GRADUATE SCHOOL

ENSEMBLE-BASED OPTIMIZATION FOR HISTORY MATCHING,

SURVEILLANCE OPTIMIZATION AND UNCERTAINTY QUANTIFICATION

by
Duc Huu Le

A THESIS

APPROVED FOR THE DISCIPLINE OF

PETROLEUM ENGINEERING

By Thesis Committee

, Chair
Albert C. Reynolds

Rami Younis

Richard Redner

Fahim Forouzanfar

ii



ABSTRACT

Duc Huu Le (Doctor of Philosophy in Petroleum Engineering)

Ensemble-based Optimization for History Matching, Surveillance Optimization and Uncer-

tainty Quantification

Directed by Albert C. Reynolds

215 pp., Chapter 5: Conclusions

(586 words)

In this work, we develop ensemble-based methods to improve two related processes

in the closed-loop reservoir management framework, history matching and surveillance op-

timization. On the history matching side, Emerick and Reynolds recently introduced the

ensemble smoother with multiple data assimilations (ES-MDA) method. Via computational

examples, they demonstrated that ES-MDA provides both a better data match and a bet-

ter quantification of uncertainty than is obtained with the ensemble Kalman filter (EnKF).

However, like EnKF, ES-MDA can experience near ensemble collapse and can generate too

many extreme values of rock property fields for complex problems. These negative effects

can be avoided by a judicious choice of the ES-MDA inflation factors but, prior to this work,

the optimal inflation factors could only be determined by trial and error. Here, we provide

two automatic procedures for choosing the inflation factor for the next data assimilation step

adaptively as the history match proceeds. We demonstrate that the adaptive ES-MDA algo-

rithms can be superior to the original ES-MDA algorithm in an extreme, difficult synthetic

problem. In more reasonable problems, the adaptive algorithm may still perform better but

performance gap is much smaller.

We propose a procedure based on ES-MDA to history match data from non-Gaussian

reservoir models, with a focus on those generated using multi-point statistics (MPS). ES-
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MDA is applied to update the permeability field in the normal way but during ES-MDA

process, we periodically apply the Expectation-Maximization algorithm to classify the up-

dated permeability fields into channel and non-channel regions. Then we take the average

of the new facies distributions over the whole ensemble to obtain a facies probability map

which is used in the MPS algorithm as the soft data to generate new facies realizations.

Obtaining a reasonable approximation of the correct facies distribution is only half of the

problem; we also wish to obtain a plausible distribution of the permeability within each

facies. This is done by performing a second data assimilation stage where we nearly fix the

facies distribution and only adjust the permeability within each facies. For the examples

considered in this research, the procedure is able to provide good data matches as well as

posterior facies and permeability fields that reflect the main geological features of the true

model.

On the surveillance optimization side, we aim to find an efficient method that can

determine, among a suite of potential surveillance operations, the most beneficial operation

and whether its benefit justifies the cost of collecting the data. The usefulness or the value of

information of the data is defined here as the uncertainty reduction in the reservoir variable

of interest J (e.g. cumulative oil production or net present value) once the reservoir model

is updated by assimilating the data. An exhaustive history matching procedure exists to

provide the answer to this problem but the required computational costs make it unfeasible

for anything other than simple synthetic reservoir models. We propose an alternate procedure

based on information theory where the mutual information between J and the random

observed data vector Dobs is estimated using an ensemble of prior reservoir models. This

mutual information reflects the strength of the relationship between J and the potential

observed data and provides a way to qualitatively rank potential surveillance operations in

terms of their usefulness. The expected uncertainty reduction in J is estimated by calculating

the conditional entropy of J and translating the obtained value to the expected P90 - P10

of J . The proposed method is applied to four different problems and the results are verified

using the exhaustive history matching method.
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CHAPTER 1

INTRODUCTION

Closed-loop reservoir management (Jansen et al., 2009) is a general reservoir man-

agement framework that consists of multiple inter-related tasks. The tasks are performed

sequentially during the life of a reservoir with the aim of maximizing the reservoir’s value.

Fig. 1.1 presents the schematic diagram of the closed-loop reservoir management framework.

Figure 1.1: Schematic diagram of closed-loop reservoir management.

As shown in Fig. 1.1, the loop starts with with the geo-modeling process, where rele-

vant data, e.g., geology, seismics, well logs and fluid properties, are gathered and combined

to build a reservoir model that represents the current knowledge about the reservoir. This

model is then run through a reservoir simulator to estimate the future performance of the

reservoir such as flow rates, and the pressure and fluid distributions. In the next step, either

production optimization or surveillance planning or both can be performed. Production op-

timization refers to the task of optimizing the future production of the reservoir by changing
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the well control parameters such as bottom hole pressures, production rates and valve open-

ing. This is done based on the current best model, so if the current model is significantly

different from the true model, the optimized strategy based on the current model may not be

optimal. Surveillance planning refers to the task of determining if there is a need to measure

additional data to get more information about the reservoir. This is often determined on

a benefit vs. cost basis, where the yet-to-be-measured data are evaluated based on their

expected value in decision making (value of information) and then compared to the cost of

measurement to see if the measurement of the data justify their cost. If they do, then the

optimal surveillance operation will be carried out in the next step. After field applications

of the optimal control strategy and/or the chosen surveillance operation are performed, new

response data (measurements) are obtained from the reservoir. The new measurements are

then integrated into the reservoir model by a process called history matching or data as-

similation, whereby the model parameters are modified so that the simulation matches the

observed data. The new model is then used to predict future reservoir performance and the

loop repeats.

This research deals with two related processes in the closed-loop reservoir manage-

ment, history matching and surveillance optimization, both using ensemble-based methods.

1.1 Literature Review on History Matching

The first focus of this research is on the history matching step, where the observed data

are assimilated into the reservoir model to obtain a posterior model that gives an acceptable

match of the historical data. The importance of this step is that the new model is expected

to have more accurate predictive capability as well as reduce the uncertainty in the reservoir

model parameters, which is vital to devise the most beneficial operating strategy for the field.

History matching is an inverse problem where the number of observed data is generally much

smaller than the number of variables. Hence, an infinite number of combinations of the model

parameters are able to give an acceptable match of the observed data. The observed data is

corrupted by measurement error which also introduces uncertainty into the history-matched
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reservoir model and its prediction of future reservoir performance. Over the last decade,

the main focus of history matching has shifted from finding a model that best matches the

observed data to a set of models that are consistent with the observed data, which allows the

quantification of uncertainty in the posterior model and performance prediction in order to

manage risk. This is usually done based on the theory of Bayesian statistics, which provides

a framework to represent the uncertainty in the model parameters conditioned to inaccurate

observed data. According to Bayes’s theorem, the conditional probability distribution (pdf)

of the model parameters,f(m|dobs), can be written as,

f(m|dobs) =
f(dobs|m)f(m)

f(dobs)
= aL(m|dobs)f(m), (1.1)

where m is the Nm-dimensional vector of model parameters, dobs is the Nd-dimensional

vector of observed data, f(m) is the prior probability density function (pdf) of the model

parameters, f(dobs) is the pdf of the observed data, f(dobs|m) is the conditional pdf of dobs

given m, which corresponds to the likelihood function, L(m|dobs), and a is a normalizing

constant. Assuming the prior pdf is Gaussian with m ∼ N (mpr, CM) and the vector of

measurement errors, ε, is Gaussian with ε ∼ N (0, CD), we can write f(m|dobs) as

f(m|dobs) =a exp

{
−1

2
(m−mpr)

TC−1
M (m−mpr)

}
×{

−1

2
(g(m)− dobs)TC−1

D (g(m)− dobs)
}

=a exp

{
−1

2
(m−mpr)

TC−1
M (m−mpr)−

1

2
(g(m)− dobs)TC−1

D (g(m)− dobs)
}

=a exp{−O(m)},
(1.2)

where CM is the Nm × Nm prior covariance matrix of the model parameters; CD is the

Nd × Nd covariance matrix of measurement errors, g(m) is the vector of predicted data for

a given vector m, generated from a forward model, e.g., a reservoir simulator, and

O(m) =
1

2
(m−mpr)

TC−1
M (m−mpr) +

1

2
(g(m)− dobs)TC−1

D (g(m)− dobs) (1.3)
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is the objective function. We can write

O(m) = Om(m) +Od(m), (1.4)

where

Om(m) =
1

2
(m−mpr)

TC−1
M (m−mpr), (1.5)

and

Od(m) =
1

2
(g(m)− dobs)TC−1

D (g(m)− dobs). (1.6)

In history matching, we typically want to minimize this objective function because minimiz-

ing O(m) is equivalent to maximizing the posterior pdf f(m|dobs), which would result in the

“most probable model.” Note that the objective function consists of the model mismatch

part, Om(m), and the data mismatch part, Od(m). If the posterior model gives a very high

value of Om(m), it indicates a rough model, i.e., the model may contain unrealistically high

or low values of the gridblock properties. If the posterior model has a high value of Od(m),

this indicates a poor data match.

When the relationship between data and model parameters, i.e. g(m), is linear, the

posterior pdf f(m|dobs) is also Gaussian with mean

mMAP = mpr − (C−1
M +GTC−1

D G)−1GTC−1
D (Gmpr − dobs), (1.7)

and covariance

CMAP = CM − CMGT (CD +GTC−1
M G)−1GCM ; (1.8)

see Tarantola (2005).

When the function g(m) is nonlinear, the mean and covariance given by Eqs. 1.7 and

1.8 cannot accurately describe the posterior pdf, especially for ones with multiple nodes. To

solve this problem, Kitanidis (1995) and Oliver et al. (1996) independently introduced the

Randomized Maximize Likelihood (RML) scheme to sample from the posterior model. In
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the application of RML, we replace m by a sample, muc,j, from N(mpr, CM) and replace dobs

by a sample, duc,j, from N(dobs, CD) in the objective function of Eq. 1.3 to obtain

Oj(m) =
1

2
(duc,j − g(m))TC−1

D (duc,j − g(m)) +
1

2
(m−muc,j)

TC−1
M (m−muc,j), (1.9)

and then minimize the modified objective function, Oj(m), to obtain a sample of the poste-

rior pdf. By repeating the process with a set of different samples of muc and duc, we generate

an ensemble of approximate samples of the posterior pdf. RML provides a theoretically rig-

orous sampling of the posterior pdf only in the linear Gaussian case (Oliver et al., 2008) but

often appears to provide a reasonable sampling of the posterior pdf obtained by integrating

production data into a prior geostatistical model (Emerick and Reynolds, 2013c). A disad-

vantage of the RML method is that a computationally efficient implementation requires the

adjoint gradient, which is not supported in most commercial reservoir simulators, so that an

efficient algorithm like the Gauss-Newton method can be utilized. Even then, the compu-

tational cost associated with RML may be high if the minimization problem requires many

iterations to reach convergence. These limitations of RML give rise to a different class of

data assimilation methods where the adjoint gradient is not required and the model uncer-

tainty is represented by an ensemble of realizations. These methods are collectively known as

ensemble-based history matching methods. In the following subsections, we review three of

the most popular ensemble-based methods, namely the ensemble Kalman filter, the ensemble

smoother and the ensemble smoother with multiple data assimilation.

1.1.1 Ensemble Kalman filter

The Ensemble Kalman filter (EnKF) was first introduced by (Evensen, 1994). Since

its introduction, the method has been applied in a large number of fields, including hydrology

(Chen and Zhang, 2006; Liu et al., 2008; Reichle et al., 2002), oceanography (Bertino et al.,

2003; Keppenne and Rienecker, 2003), weather prediction (Houtekamer and Mitchell, 2005;

Szunyogh et al., 2005) and petroleum reservoir history matching (Aanonsen et al., 2009;

Oliver and Chen, 2010). An extensive list of applications of EnKF is presented in Evensen

5



(2007). EnKF was first applied in the oil industry by Lorentzen et al. (2001) to improve

predictions of pressure behavior in a two-phase fluid flow model, and applied to a reservoir

problem by Nævdal et al. (2002) to update permeability fields in near-well reservoir models.

Following these pioneer works, the interest and use of EnKF as a history matching technique

increased significantly (Nævdal et al., 2005; Gu and Oliver, 2005; Liu and Oliver, 2005;

Gao et al., 2006; Dong et al., 2006; Devegowda et al., 2007; Skjervheim et al., 2007; Zafari

and Reynolds, 2007; Thulin et al., 2007; Dovera and Della Rossa, 2007; Lødøen and Omre,

2008; Agbalaka and Oliver, 2008; Sakov and Oke, 2008; Li and Reynolds, 2009; Oliver and

Chen, 2009; Chen and Oliver, 2009; Wang et al., 2010; Emerick and Reynolds, 2012a,b).

Most importantly, it has been successfully used in field applications (Skjervheim et al., 2007;

Bianco et al., 2007; Evensen et al., 2007; Haugen et al., 2008; Emerick and Reynolds, 2011b).

EnKF is a sequential parameter-state estimation problem. At each time step where observed

data are available, the state or primary reservoir variables (e.g., gridblock pressures, fluid

saturations) are updated along with the model parameters (e.g., permeability, porosity). The

reason for updating the primary reservoir variables is to avoid rerunning the simulations from

time zero after every data assimilation step. This is done based on the assumptions that the

updated primary variables are statistically consistent with the ones that would be obtained

if one rerun the simulations with the updated updated model parameters from time zero.

However, this consistency has only been proven in the linear-Gaussian case, where the prior

model parameters follows a Gaussian distribution and the relationship between model and

data is linear. In real petroleum applications, the relationship between model and data

is governed by complex partial differential equations, which are usually highly nonlinear

(Thulin et al., 2007). The inconsistency between the updated primary variables and the

updated model parameters sometimes leads to poor performance of the EnKF method; see,

for example, Wang et al. (2010).

Despite the strong assumption about the consistency between the updated primary

variables and model parameters, EnKF is used in petroleum reservoir history matching due

to the fact that it does not require the availability of the adjoint gradient, which is generally
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unavailable in commercial reservoir simulators. This makes EnKF easy to adapt to different

types of reservoir model parameters, different types of data and different commercial reservoir

simulators. Another advantage is that EnKF does not require the explicit formation of the

prior covariance matrix or the cross-covariance matrix between the model parameter and the

predicted data, making EnKF efficient in terms of memory requirement.

1.1.2 Ensemble smoother

The ensemble smoother (ES) was proposed by van Leeuwen and Evensen (1996). Its

formulation is similar to that of EnKF but it simulates all available data simultaneously

in one single data assimilation step instead of sequentially in time. Because of this, ES

is a parameter estimation method, which means it does not update the primary reservoir

variables during the data assimilation step. As a result, ES is faster and easier to implement

than EnKF and does not suffer from the problem of inconsistency between the updated

primary variables and model parameters. However, when applied to petroleum reservoir

history matching problem, ES often leads to a poorer data match than does EnKF. This

behavior is explained by Reynolds et al. (2006), where it is shown that ES and EnKF are

similar to applying, at each data assimilation step, one Gauss-Newton iteration with the

average sensitivity matrix estimated from ensemble. EnKF is therefore similar to several

small correction steps while ES is similar to a big correction step. Intuitively, for a nonlinear

problem, one single Gauss-Newton step is not adequate to obtain a good data much, which

explains the poor performance of ES.

1.1.3 Ensemble smoother with multiple data assimilation

The ensemble smoother with multiple data assimilation (ES-MDA) was introduced

by Emerick and Reynolds (2012b, 2013a) to improve the ensemble Kalman filter (EnKF)

(Evensen, 1994) for problems where the relation between the model (vector of reservoir

model parameters) and data predicted from the forward model (i.e., the reservoir simulator)

is highly nonlinear. As discussed above, the EnKF has two major shortcomings: (1) it can

introduce inconsistencies between updated reservoir model parameters and updated states
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(primary variables solved for by the simulator) because EnKF updates both model parameter

and states (Thulin et al., 2007; Wang et al., 2010) and (2) it can produce an unacceptable

data match. The ensemble smoother (ES) attempts to fix EnKF’s first issue but exacerbates

the second one, i.e., ES can provide an even worse data match than is obtained with EnKF

(Emerick and Reynolds, 2013c).

ES-MDA was motivated by the analogy between ES and one Gauss-Newton iteration

(Reynolds et al., 2006). Simply put, ES-MDA assimilates the same data set Na times (Na ≥

1) using the same form of the updating (analysis) formula used for the ensemble smoother.

However, at the `th data assimilation step, the measurement error covariance matrix, CD, is

replaced by α`CD where α` > 1. The α`’s are chosen to harmonically sum to one to ensure

that, for the linear Gaussian case, ES-MDA produces a theoretically rigorous sampling of

the posterior probability density function as the ensemble size goes to infinity. Iterative

ensemble-based methods have been used previously to obtain a better data match than

is obtained with EnKF or ES, but at least for the simple reservoir example considered in

Emerick and Reynolds (2013c), the performance of ES-MDA was far superior to the other

iterative ensemble-based methods tested, not only in the data match obtained, but more

importantly, in terms of uncertainty quantification. Specifically, ES-MDA produced the best

approximation of the posterior marginal probability density functions (pdf’s) for the reservoir

model parameters and the best approximation for the posterior probability distribution for

predicted future rates where the correct posterior pdf’s were generated using Markov chain

Monte Carlo (MCMC), which theoretically produces a correct sampling of the posterior pdf

for the vector of model parameters.

Even though ES-MDA works well for the problems considered (Emerick and Reynolds,

2012b, 2013a,c), as well as for field cases (Emerick and Reynolds, 2013b), there still exist

two drawbacks in using ES-MDA. The first drawback is that the users have to determine

the number of data assimilations a priori. In general, four to ten iterations appear to

be sufficient, but there has been no clear guidance on how to choose the optimal number

of iterations (data assimilations). The problem with this approach is that, if the data
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assimilation does not lead to satisfactory results, the whole process has to be repeated with

a different number of iterations. The second drawback is that it is not clear how to choose

the optimal inflation factors. Equal inflation factors were used for most cases (Emerick and

Reynolds, 2012b, 2013a) because this choice worked well. The two drawbacks of ES-MDA

may not be apparent when dealing with relatively easy history-matching problems, including

field cases, where the choice of four equal inflation factors often works well. For certain

“difficult” problems, however, a simple implementation of ES-MDA may result in severe

overshooting, or roughness, in the final permeability and porosity fields. This roughness

arises from the ill conditioning of the matrix that must be inverted at each ES-MDA iteration

and the relatively large step size used at early iterations which leads to a large change (over

correction) in the rock property fields at early iterations. This over correction occurs because

ES is similar to one Gauss-Newton iteration with a full step (unity stepsize) (Reynolds et al.,

2006) whereas a smaller step size should be used at early iterations.

1.2 Literature Review on History Matching Non-Gaussian Facies

Traditionally, the reservoir model is assumed to contain only continuous variables such

as permeability and porosity. In recent years, there has been a growing interest in history-

matching problems where the model contains categorical facies variables. Unlike traditional

reservoir models where petrophysical properties tend to be spatially smooth, multi-facies

model are characterized by an abrupt change in petrophysical properties at facies boundaries.

Multi-facies models are necessary to model channelized or fluvial reservoirs.

There are two main ways in which a multi-facies reservoir model can be generated:

(1) by using object modeling and (2) by using multi-point statistics (MPS). In object mod-

eling, the user defines a background facies (usually shale) and the size, shape and chance

of appearance of the foreground geological bodies to include in the model. The algorithm

would then stochastically generate and populate the reservoir grid with these objects until

the user-specified percentages of all bodies have been reached. The advantage of this method

is that the quality of the final model is often high, i.e. the objects appear exactly as defined
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by the user. The disadvantage is that it is difficult to honor hard data if the number of hard

data is large. In MPS, on the other hand, the user first needs to prepare a training image

that describes the reservoir’s geology. The training image can either be drawn by hand or be

generated using object modeling. A pixel-based algorithm such as snesim (Strebelle, 2002)

is then used to calculate the conditional distributions, or patterns, that describe the proba-

bility of different facies occurring at different positions relative to the position of a gridblock

with known facies. The algorithm will then populate the reservoir model gridblock by grid-

block using the pre-calculated conditional distributions until the facies that occupies each

gridblock has been defined. The advantage of this approach is that, because the algorithm

is pixel-based, it can be conditioned to hard data more easily than is the case for object

modeling. The disadvantage is that the quality of the final model may not be as good as

that obtained by object modeling due to the occasional appearance of stray pixels or stray

groups of pixels that do not seem to belong to any particular geological body. There exists a

third, albeit not so natural, way to generate multi-facies models. First, two Gaussian fields

of the same size as the reservoir model, Y1 and Y2, are generated. Then, a two-dimensional

truncation map, the axes of which represent the values of Y1 and Y2, is created. The map

is divided into multiple regions, each of which corresponds to a particular facies. For each

gridblock, using the values of Y1 and Y2 at that particular gridblock and the truncation

map, the facies value can be determined. Because of the use of multiple Gaussian fields, this

method is named pluri-Gaussian (Galli et al., 1994; Le Loc’h et al., 1994; Le Loc’h and Galli,

1997). The problem with this method is that there is no systematic way to determine the

truncation map needed to reproduce a particular geological feature (Liu and Oliver, 2005).

In fact, many geological features such as channel, which can be readily generated using the

other two methods, cannot be easily obtained with this method (Zhao et al., 2008). In the

pluri-Gaussian approach, the underling parameters are still Gaussian, so history matching

models created with a pluri-Gaussian model is not much different from history matching

regular Gaussian models.

History matching a reservoir with multiple facies has always posed a great challenge
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to researchers. Most traditional history-matching techniques were designed to work with

continuous variables instead of categorical variables like facies. Even though they work

reasonably well for problems where the relationship between data and the model is highly

nonlinear, rarely can they be directly applied to problems that involve more than one facies.

These problems are usually characterized by the abrupt change of petrophysical properties

across facies boundary. The direct application of traditional methods to multi-facies prob-

lems usually results in posterior models that have no clear boundaries between facies so that

the posterior models do not honor the geological description. In an attempt to preserve fa-

cies boundaries while using traditional methods, many researchers use reparameterization to

transform the categorical facies variable into a continuous variable. After history matching,

the variables in the transformed space are transformed back to the original space. Among

many transformation algorithms available, the principle component analysis (PCA) is proba-

bly the most commonly used. Sarma et al. (2008) use a nonlinear extension of PCA, namely

kernel PCA, to account for the non-Gaussian relationship between gridblock facies. Chen

et al. (2015) use the regular PCA transformation but propose a method to determine the

optimal truncation threshold used in back-transforming the variables from the continuous

space to the discrete space. Vo and Durlofsky (2014) propose the Optimization-PCA al-

gorithm where the back-transformation process is framed as an optimization problem with

a penalty term to drive the continuous variable in the transformed space to either 0 or 1

when transforming back. Other transformation algorithms are also used. Jafarpour and

McLaughlin (2009) apply the discrete cosine transformation, and then in a later paper (Li

and Jafarpour, 2010), combine the discrete cosine transformation with a Bayesian sparse

reconstruction algorithm. Hu et al. (2013) use the uniform score transformation. Sebacher

et al. (2015) use a variation of the Gaussian score transformation. While these methods

seem to work well for the problems presented, the transformation and back-transformation

algorithms can be complex, and the determination of the optimal transformation parameters

can be difficult. Note that, for these algorithms, the geological simulation process is only

used to generate prior realizations and never used again during the history-matching process.
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Another approach is to make use of the underlying geological simulation process

during history matching to generate new, better-matched models, which ensure consistency

between the current model and the geological description. For models generated using object

modeling, Bi et al. (2000) and Zhang et al. (2002) explore the idea of modifying the size

and position of the sand channel in a single-channel reservoir along with other petrophysical

properties such as permeability, porosity to match the observed data. It is, however, not

clear how to extend this idea to a model with multiple channels, where the channels are

stochastically positioned. For models generated using MPS, there exists a mechanism to

incorporate soft data (probabilities) into the simulation process in order to modify the chance

of the appearance of facies in the model (Journel, 2002; Zhang and Journel, 2003). Caers

(2003) uses this mechanism to draw new realizations from the training image with the soft

data represented by different perturbations of the current model and then evaluates the

new realizations to find one that results in smaller data mismatch than the current model.

Jafapour and Khodabakhsi (2011) combine this mechanism with the EnKF algorithm, where

the EnKF is used to modify the permeability field as in a regular history-matching problem.

After each EnKF iteration, the facies distributions in the updated models are determined by

a mapping between the permeability variable and the facies variable. A facies probability

map is then calculated by averaging all the models in the ensemble. This is used as soft data

in the MPS algorithm to generate new reservoir models that match the data better while

being consistent with the geological description.

One thing that most papers in the literature do not consider is the variability of the

permeability within each facies; they simply try to get the facies distribution correct while

assuming each facies has a constant, known permeability value. Among the paper mentioned

above, only Chen et al. (2015) and Vo and Durlofsky (2014) attempt to deal with the

permeability variation within facies. Even then, both papers assume the correct permeability

distribution within each facies is known a priori. In Chen et al. (2015), after the gridblock

facies have been determined, the permeability distribution within each facies is mapped

back to the prior distribution which is presumably known. In Vo and Durlofsky (2014), the
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penalty term is designed so that the back-transformed variable has the tendency to get close

to the log permeability mean of each facies. This requires an additional optimization step

to determine the optimal parameters for the penalty term.

1.3 Literature Review on Surveillance Optimization

A different but related focus of this research is on the surveillance optimization step.

The importance of this step surveillance optimization is that, due to the high cost associ-

ated with performing any measurement in the reservoir, the surveillance operations have

to be chosen carefully to maximize the potential benefits as well as avoid spending money

on redundant operations. In other words, we need to evaluate the potential surveillance

operations to determine their potential usefulness. The usefulness of the measurement data

can be related to the strength of the relationship between the data to be collected and the

reservoir variable of interest J ; here, J represents either the net present value or the cu-

mulative oil production of the reservoir. The usefulness or the value of information of the

data is defined here as the uncertainty reduction in J once the reservoir model is updated by

assimilating the data. In the oil industry, it is customary for the uncertainty of a quantity

to be reported as the difference between the P90 case and the P10 case (see, for example,

Haskett (2003)). Therefore, the change in the P90-P10 range of J after data assimilation

represents the uncertainty reduction provided by the surveillance data. The two questions

that we try to answer in surveillance optimization are:

1. What are the best data to collect, i.e., which surveillance operation among those that

are viable, will yield the greatest reduction in uncertainty?

2. What is the expected value of the uncertainty reduction? The answer to this question

will determine if the value of information of data from the surveillance operation is

good enough to justify the cost of collecting the data.

The first question is a qualitative one and there exists methods based on a linear-

Gaussian assumption that can provide reasonable answers in certain cases. If the inverse
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problem, typically ”solved” by history matching, is formulated in the framework of Bayesian

statistics, with the prior model Gaussian and there is a linear relation between predicted data

and the vector of model parameters, m, (linear-Gaussian assumption) then the probability

density function (pdf) conditional to data is Gaussian with covariance matrix denoted by

CMAP ; see, for example, Tarantola (2005). Moreover, the posterior pdf of model parameters

in this linear-Gaussian case is itself Gaussian and the posterior covariance matrix, CMAP ,

and the model resolution matrix, R, depend on the covariance matrix for measurement errors

and the sensitivity of observed data to model parameters, but are independent of the actual

measurement outcome. This allows us to calculate the uncertainty reduction using only

the prior reservoir model without the need to perform any history matching. For weakly

non-linear problems, and when comparing significantly different surveillance scenarios, this

method may provide an acceptable answer. For other cases, however, CMAP and R can

give only a rough characterization of the relative utility of the surveillance operations under

consideration.

History matching is often used to quantify uncertainty reduction after a particular

set of data has been measured. This is different from surveillance planning, where we do

not know the outcome of the measurement until the actual measurement takes place, i.e.,

until a particular surveillance operation has been chosen and implemented to collect data.

It is expected that for a particular surveillance scenario, the uncertainty reduction varies

with the outcome of the measurements. However, history matching can still be adapted to

the surveillance optimization problem. For each surveillance scenario, we need to generate

different plausible reservoir models with different plausible outcomes, then history match

an ensemble of models with each plausible outcome and calculate the average uncertainty

reduction of that surveillance scenario. The procedure has to be repeated for all potential

surveillance scenarios to conclude which scenario is the best to carry out. Although this

is a reasonably rigorous way to solve the problem, the computational cost associated with

history matching is simply too high to make it feasible. In the field, engineers often adopt

a less rigorous way, using a simple risk analysis method. Typically, for each measurement
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scenario, the engineers will define several plausible outcomes and assign a probability to each

plausible outcome. Then the engineers will determine the uncertainty reduction associated

with each plausible outcome, which does not necessarily come from the reservoir model, but

more often from the experience and the intuition of the engineers. The average uncertainty

reduction for a particular measurement scenario is now simply calculated as the weighted

average of the uncertainty reduction associated with all plausible outcomes. This method,

in principle, is based on the same idea as the rigorous history matching method mentioned

above, but the difference lies in the fact that it involves little use of the reservoir model.

The engineers simply tries to assign probabilities so that the uncertainty reduction seems

reasonable and makes sense.

Attempts have been made to develop methods that can quantify the uncertainty

reduction for a general case, without performing history matching. Abellan and Noetinger

(2010), for example, use a concept in information theory called Kullback-Leibler divergence

to calculate the information content provided by a set of measurement data. The information

content is a direct indicator of the uncertainty reduction as more information content in the

measurement data will lead to more uncertainty reduction in the reservoir model. Note that

the particular type of Kullback-Leibler divergence that Abellan and Noetinger (2010) use

is equivalent to the mutual information concept. There is no history matching involved in

using this method, as one simply needs to generate an ensemble of realizations using the prior

reservoir model and collect the vectors of observed data and reservoir variable J associated

with all realizations. The Kullback-Leibler divergence can then be calculated from the cross-

plot of the observed data and reservoir variable J . It reflects the strength of the general

relationship, both linear and nonlinear, between observed data and J . However, the non-

linear advantage of the Kullback-Leibler divergence comes with a big trade-off, that is, there

exists no explicit formula to calculate the Kullback-Leibler divergence for a general case.

Using the linear-Gaussian assumption, Abellan and Noetinger (2010) develop an equation to

calculate the Kullback-Leibler divergence that requires only the covariance and sensitivity

matrices. It is our understanding that, by using this equation, all the non-linear generality
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of the Kullback-Leibler divergence formulation is lost, and we come down to an equation

that can only be proved to be correct for linear cases. The authors present two examples

to demonstrate the effectiveness of this method in choosing the best surveillance scenario.

There is, however, no discussion of the authors on the accuracy of this method since their

equation is developed for linear cases and the examples are both non-linear cases. They

provide also no comparison between their method and other simple, linear-based methods

such as the model resolution matrix mentioned above.

1.4 Research Objectives and Dissertation Outline

1.4.1 Research Objectives

The primary objective of our research is to develop new practical methods that im-

prove several aspects of the closed-loop reservoir management workflow with particular focus

on history matching and surveillance optimization. Specific elements in our research are as

follows:

1. To develop adaptive ES-MDA algorithms for history matching that do not require a

priori specification of the number of data assimilations, Na, or a priori specification of

the damping factors, αi’s.

2. To develop an ensemble-based history matching procedure that can be used with cat-

egorical variables, so that, for examples, the history matching preserves a distinct

boundary between facies.

3. To develop a surveillance optimization method that can reliably estimate the expected

uncertainty reduction of yet-to-be-measured data and at the same time, is compu-

tationally feasible, i.e. avoids history matching or at least minimizes the number of

history matches required.

1.4.2 Dissertation Outline

There are five chapters in this dissertation. In Chapter 2, we present the derivation of
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the adaptive ES-MDA algorithms, followed by the comparison with other popular methods

when applied to a synthetic 3-D reservoir problem. In Chapter 3, we introduce a history

matching procedure that is based on ES-MDA but adapted to work with reservoir mod-

els with multiple facies. The procedure is applied to three different cases with increasing

degree of difficulty. In Chapter 4, we present our procedure based on information theory

to estimate the uncertainty reduction expected from different surveillance scenarios. The

estimation using our proposed procedure is verified with the results obtained using a rig-

orous history matching procedure. Chapter 5 presents our conclusions and summarizes the

research contributions of this research.
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CHAPTER 2

ADAPTIVE ES-MDA

2.1 Methodology

Based on the analogy between one iteration of ES and one Gauss-Newton iteration

(Reynolds et al., 2006), Emerick and Reynolds (2012b, 2013a) proposed the ES-MDA al-

gorithm, which repeats the ES procedure several times on the same observed data. The

ES-MDA method can be summarized as follows:

1. Choose the number of data assimilations, Na, and the multiplication coefficients of the

data covariance matrix, α`, for ` = 1, 2, . . . , Na. The coefficients α`’s must be selected

such that
∑Na

`=1
1
α`

= 1.

2. FOR ` = 1 to Na:

(a) Run the ensemble from time zero.

(b) For each ensemble member, perturb the observation vector using

duc,j = dobs +
√
α`C

1/2
D Zj, (2.1)

where duc,j is the vector of perturbed observations, dobs is the vector of observed

data, and Zj ∼ N (0, INd).

(c) Update the ensemble using

ma
j = mf

j + C̃f
MD

(
C̃f

DD + α`CD

)−1 (
duc,j − dfj

)
, (2.2)
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where j is the ensemble index, j = 1, ..., Ne; m
a
j is the updated vector of model

parameters; C̃f
MD is the cross-covariance matrix between the vector of model pa-

rameters, mf , and the vector of predicted data, df ; C̃f
DD is the auto-covariance

matrix of predicted data.

END FOR.

Since the ES-MDA algorithm is motivated by the Gauss-Newton algorithm, it is

natural to adopt ideas from previous works on how to control over correction with Gauss-

Newton (Hanke, 1997, 2010; Gao and Reynolds, 2006; Tavakoli and Reynolds, 2010, 2011;

Iglesias and Dawson, 2013) to improve the ES-MDA algorithm. The following subsections

discuss two adaptive ES-MDA algorithms developed using this past knowledge as motivation.

2.1.1 ES-MDA-RS

One important lesson from previous works on Gauss-Newton is that excessive mod-

ification of the model parameters at each iteration is not ideal and often makes the model

susceptible to overshooting (Li et al., 2003; Gao and Reynolds, 2006; Tavakoli and Reynolds,

2010). One way to alleviate this issue is to increase the inflation factor so that the change

in model parameters at each iteration is below a reasonable threshold. We propose to use

two standard deviations of the prior model as the limit of how much the model parameters

can change in one iteration. This choice is motivated by the fact that 95% of the samples

from a Gaussian distribution is within two standard deviations of the mean. In addition,

we believe that the inflation factor should be an increasing function of the data mismatch

because, intuitively, a smaller correction (greater inflation factor) should be used when the

data mismatch is bigger and vice versa. This idea is similar to Gao and Reynolds (2006)

where the authors use the magnitude of the objective function to determine the damping fac-

tor. Combining the two ideas, we propose an adaptive ensemble smoother algorithm called

ES-MDA-RS where RS stands for restricted step. The algorithm is given below.

FOR each iteration:
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1. Run the ensemble from time zero.

2. Calculate the average normalized objective function

ONd =
1

Ne

Ne∑
j=1

ONd,j, (2.3)

where the normalized objective function ONd,j is defined by

ONd,j =
1

2Nd

Ne∑
j=1

(dfj − dobs)TC−1
D (dfj − dobs). (2.4)

3. Set α` = 0.25 ∗ ONd as the initial guess for the inflation factor, where ` is the index

of the current iteration. As discussed above, this choice is motivated by the proposal

that the inflation factor should be based on the value of the objective function. This

serves as the minimum value of the inflation factor for the current iteration.

4. For each ensemble member, perturb the observation vector using

duc, j = dobs +
√
α`C

1/2
D Zj, (2.5)

where Zj ∼ N (0, INd).

5. Update the ensemble using

ma
j = mf

j + C̃f
MD

(
C̃f

DD + α`CD

)−1 (
duc,j − dfj

)
, (2.6)

where C̃f
MD is the cross-covariance matrix between the vector of model parameters, mf ,

and the vector of predicted data, df ; C̃f
DD is the auto-covariance matrix of predicted

data.

6. For each ensemble member j and for each component i of the jth vector of model

parameters:
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• Calculate the change from the previous iteration to the current iteration

δmj,i = |ma
j,i −m

f
j,i|, (2.7)

where the double subscript j, i denotes the ith component of the jth realization.

• Compare δmj,i with the prior standard deviation of the ith model parameter, σi.

• If δmj,i is greater than 2σi for any model component of any ensemble member,

discard the updated ensemble calculated in step 5, double α` and redo steps 4, 5

and 6 until no more violation occurs.

7. Calculate the sum of the inverse inflation factors up to the current iteration,

β` =
∑̀
k=1

1

αk
. (2.8)

• If β` = 1, terminate the algorithm.

• If β` > 1, increase α` to the value that makes β` exactly equal to 1, discard the

updated ensemble calculated in step 5 and redo steps 4 and 5 to calculate the

final model parameters, then terminate the algorithm.

• If β` < 1, the algorithm continues to the next iteration, i.e., we return to step 1.

END FOR

In the standard ES-MDA (Emerick and Reynolds, 2012b, 2013a), the number of

iterations (Na) and the inflation factors (α`’s) are set before doing any computations and

steps 2 and 3 of the algorithm are deleted.

2.1.2 ES-MDA-RLM

Insight on how to improve ES-MDA can also be drawn from the work of Iglesias and

Dawson (2013). Although their work focuses on generating a regularized solution of a pure

least-squares problem, it provides insight of value here. Specifically, Iglesias and Dawson
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(2013) seek to minimize the objective function given by

Od(m) =
1

2
(dobs − g(m))TC−1

D (dobs − g(m)). (2.9)

Note that this objective function is similar to that in Eq. 1.3 except the regularization term

provided by the prior model is missing. Iglesias and Dawson replaced g(m) in Eq. 2.9 by the

approximation

g(m) ≈ g(m`) +G`(m−m`) = g(m`) +G`δm
`+1, (2.10)

where G` is the sensitivity matrix defined above and δm`+1 = m−m` and then replace the

minimization of Od(m) by the following linear inverse problem: find w = m − m` which

minimizes

Odl(m) ≡ Odl(w) =
1

2
(dobs − g(m`)−G`w)TC−1

D (dobs − g(m`)−G`w). (2.11)

Minimizing the objective function in Eq. 2.9 is generally ill-posed, in which case, we require

regularization to define a unique solution. Iglesias and Dawson (2013) used a regularizing

Levenberg-Marquardt scheme, or more specifically, the regularizing scheme of Hanke (1997,

2010), where Tikonov regularization is applied to the linear inverse problem of Eq. 2.11. In

this case, δm`+1 is obtained as

δm`+1(α) = arg min
w

(
1

2
(dobs − g(m`)−G`w)TC−1

D (dobs − g(m`)−G`w) +
1

2
αwTC−1

M w

)
,

(2.12)

where, here, α is the regularization parameter. In essence, the scheme in Eq. 2.12 regularizes

the linear inverse problem of Eq. 2.11 by penalizing the change, δm`+1, in the model param-

eters over the iteration. The solution to the regularized minimization problem of Eq. 2.12

is

m`+1 = m` + CMG
T
` (G`CMG

T
` + αCD)−1(dobs − g(m`)). (2.13)

Eq. 2.13 has the same structure as the ES-MDA update equation (Eq. 2.6). In particu-
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lar, the regularization parameter α in ES-MDA has the same effect as the regularization

parameter α in Eq. 2.13. Therefore, we can adopt Hanke’s recommendation for choosing

the regularizing parameter α to our choice of the ES-MDA inflation factor (also denoted by

α). According to the ideas of Hanke (also see Iglesias and Dawson (2013) on regularizing

Levenberg-Marquardt), α should satisfy

ρ2||C−1/2
D (dobs − g(m`))||2 ≤ α2||C1/2

D (G`CMG
T
` + αCD)−1(dobs − g(m`))||2, (2.14)

for some ρ with 0 < ρ < 1. As discussed later, finding α according to this criterion requires

that we specify a value of ρ and there is no firm theoretical guidance for how to choose

ρ. However, with this choice of α, Iglesias and Dawson (2013) prove that if the noise

level approaches zero, then the regularized least squares solution converges to an m∗ such

that g(mtrue) = g(m∗), where mtrue is the true model which results in dobs. Given the

aforementioned equivalent structure of Eq. 2.13 and the ES-MDA update equation (Eq. 2.6),

we can by simple analogy extend Eq. 2.14 to ES-MDA to obtain a criterion for choosing the

inflation factor at each iteration `. In particular, we propose choosing α` so that

ρ2||C−1/2
D (duc,j − dfj )||2 ≤ α2

` ||C
1/2
D (Cf

DD + α`CD)−1(duc,j − dfj )||2. (2.15)

From Eq. 2.15, we can see that larger ρ requires larger α`, which will lead to more iterations,

but larger α` also invokes more damping, which should reduce overshooting (over correc-

tion) with ES-MDA and result in smoother and more geologically reasonable property fields.

Iglesias and Dawson (2013) performed experiments on a 2D reservoir case with values of ρ

ranging from 0.65 to 0.95 and showed that the final data misfit is smaller for larger values of

ρ but at the cost of more iterations. The authors then suggested using ρ ∈ [0.7, 0.8] for the

best compromise between efficiency and accuracy. However, for our particular example case,

due to the very large difference between the initial simulated data and the observed data,

the value of α required to satisfy the criterion would be unreasonably large (greater than

10100) if we used ρ in the range recommended by Iglesias and Dawson (2013). Because of this
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issue, for the example shown here, we use ρ = 0.2 in our implementation of the new adaptive

ES-MDA method. Here, this adaptive ES-MDA algorithm is denoted by ES-MDA-RLM

where RLM stands for regularizing Levenberg-Marquardt. The algorithm is given below.

FOR each iteration:

1. Run the ensemble from time zero.

2. Calculate the average normalized objective function

ONd =
1

Ne

Ne∑
j=1

ONd,j, (2.16)

where the normalized objective function ONd,j is defined by

ONd,j =
1

2Nd

Ne∑
j=1

(dfj − dobs)TC−1
D (dfj − dobs). (2.17)

3. Set α` = 0.25 ∗ONd as the initial guess for the inflation factor, where ` is the index of

the current iteration.

4. For each ensemble member, perturb the observation vector using

duc, j = dobs +
√
α`C

1/2
D Zj, (2.18)

where Zj ∼ N (0, INd).

5. For each ensemble member j:

• Check the condition in Eq. 2.15, which is repeated below for continuity in presen-

tation:

ρ2||C−1/2
D (duc,j − dfj )||2 ≤ α2

` ||C
1/2
D (Cf

DD + α`CD)−1(duc,j − dfj )||2. (2.19)
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• If the condition is violated for any ensemble member, double α` and redo steps 4

and 5 until no violation occurs.

6. Calculate the sum of the inverse inflation factors up to the current iteration,

β` =
∑̀
k=1

1

αk
. (2.20)

• If β` = 1, the algorithm ends after the completion of step 7 of this iteration.

• If β` > 1, increase α` to the value that makes β` exactly equal to 1. The algorithm

ends after the completion of step 7 of this iteration.

• If β` < 1, the algorithm continues to the next iteration after the completion of

step 7 of this iteration.

7. Update the ensemble using

ma
j = mf

j + C̃f
MD

(
C̃f

DD + α`CD

)−1 (
duc,j − dfj

)
, (2.21)

where C̃f
MD is the cross-covariance matrix between the vector of model parameters, mf ,

and the vector of predicted data, df ; C̃f
DD is the auto-covariance matrix of predicted

data.

END FOR

One advantage of the ES-MDA-RLM method compared to the ES-MDA-RS method

is that we do not have to recompute the analysis equation (Eqs. 2.6 and 2.21) for every new

guess of α. Instead, we only have to recompute the right-hand side of Eq. 2.15, which is

much faster because Nd � Nm in all cases of interest to us. This advantage becomes more

apparent when the number of model parameters is on the order of hundreds of thousands or

more.

2.1.3 ES-MDA-RLM with an Alternate Stopping Rule

Iglesias and Dawson (2013) provide a stopping rule for the regularized Levenberg-
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Marquardt algorithm. The stopping rule is as follows:

||C−1/2
D (dobs − g(m`))|| ≤ τη, (2.22)

where the theory dictates that τ must be chosen so that τ >
1

ρ
and η ≈

√
Nd, where Nd is

the number of observed data. Note introducing τ requires that we have two parameters to

choose a priori, τ and ρ. Iglesias and Dawson (2013) suggest using τ =
1

ρ− 10−3
and we do

so for the results shown in this research. To adapt the stopping rule to our ensemble-based

methods, we replace g(m`) by d̄f =
1

Ne

∑Ne
j=1 d

f
j , which is the average of the predicted data,

so that our choice of the stoping rule is

||C−1/2
D (dobs − d̄f )|| ≤ τη. (2.23)

This stopping rule is hereafter referred to as the RLM stopping rule (RLM-SR) to distinguish

it from the traditional ES-MDA termination criterion which requires we iterate until the sum

of the inverse inflation factors is unity. If we use the RLM stopping rule, the adaptive ES-

MDA procedure can no longer be proven to sample correctly in the linear-Gaussian case.

One test we did on a simple linear Gaussian history matching problem indeed confirms that

the algorithm does not sample correctly and the uncertainty in the posterior model depends

on the value of ρ. With the RLM stopping rule, we introduce an alternate version of the

ES-MDA-RLM algorithm, thereafter referred to as ES-MDA-RLM-SR. The algorithm is as

follows:

FOR each iteration:

1. Run the ensemble from time zero.

2. Check the RLM stopping rule in Eq. 2.23, which is repeated below for continuity in

presentation,

||C−1/2
D (dobs − d̄fj )|| ≤ τη. (2.24)
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If the stopping rule is satisfied, terminate the algorithm without proceeding to subse-

quent steps.

3. Calculate the average normalized objective function,

ONd =
1

Ne

Ne∑
j=1

ONd,j, (2.25)

where the normalized objective function ONd,j is defined by

ONd,j =
1

2Nd

Ne∑
j=1

(dfj − dobs)TC−1
D (dfj − dobs). (2.26)

4. Set α` = 0.25 ∗ ONd, where ` is the index of the current iteration, as the initial guess

for the inflation factor.

5. For each ensemble member, perturb the observation vector using

duc, j = dobs +
√
α`C

1/2
D Zj, (2.27)

where Zj ∼ N (0, INd).

6. For each ensemble member j:

• Check the condition in Eq. 2.15, repeated below for continuity in presentation,

ρ2||C−1/2
D (duc,j − dfj )||2 ≤ α2

` ||C
1/2
D (Cf

DD + α`CD)−1(duc,j − dfj )||2. (2.28)

• If the condition is violated for any ensemble member, double α` and redo steps 5

and 6 until no more violation occurs.

7. Update the ensemble using

ma
j = mf

j + C̃f
MD

(
C̃f

DD + α`CD

)−1 (
duc,j − dfj

)
, (2.29)
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where C̃f
MD is the cross-covariance matrix between the vector of model parameters, mf ,

and the vector of predicted data, df ; C̃f
DD is the auto-covariance matrix of predicted

data.

END FOR

At this point, it is worth mentioning that, independently of our work, Iglesias pur-

sues his own adaptation of the regularizing Levenberg-Marquardt scheme to ensemble-based

methods (Iglesias, 2014, 2015). There are four major differences between our proposed adap-

tive ES-MDA-RLM algorithm and Iglesias’ algorithm:

1. We try two different termination criteria: one that comes directly from ES-MDA and

guarantees that we sample correctly in the linear Gaussian case and one adapted from

the stopping rule in Iglesias and Dawson (2013). (In the latest version of his paper,

Iglesias (2015) also utilizes the stopping rule of Iglesias and Dawson (2013).)

2. We check the regularization criteria based on the worst-case ensemble member (Eq. 2.19)

instead of based on the ensemble average as is done by Iglesias (2014, 2015).

3. At each `th ES-MDA data assimilation, we generate new perturbed data, duc,j’s, by

sampling N (dobs, α`CD) whereas Iglesias (2015) generates the duc,j’s only at the first

iteration. With this perturbation scheme and the requirement that the sum of inverse

inflation factors is equal to unity, our method is guaranteed to sample correctly in the

linear-Gaussian case. Proposition 2 of Iglesias (2015) states conditions under which

it is guaranteed that his IR-ES algorithm samples correctly. However, the conditions

require that ρ is small enough and τ is large enough so that IR-ES terminates after one

iteration with an initial damping factor chosen equal to unity whereas these conditions

are not part of the stated IR-ES (Algorithm II of Iglesias (2015)) which only requires

0 ≤ ρ < 1. By choosing an initial factor equal to unity, IR-ES reduces to the ES

which is known to sample correctly as the ensemble size goes to infinity. Enforcing the

conditions of Proposition 2 of Iglesias (2015) requires that it is known a priori that
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we have a linear-Gaussian problem and that the sensitivity matrix in the data-model

relationship is known.

4. Iglesias (2015) uses ρ between 0.7 and 0.9, consistent with the suggestion in Iglesias

and Dawson (2013) but violates the theoretical condition that τ > 1/ρ by using τ =

1 regardless of the choice of ρ. Note that Iglesias (2015) presents arguments for not

enforcing τ > 1/ρ in the context of the Bayesian inverse problem and compares the

sampling properties of his algorithm for an example where the correct posterior pdf is

estimated by a Markov chain Monte Carlo simulation.

2.2 Case Study 1

2.2.1 Case description

We consider the three-phase (oil, gas and water), three-dimensional PUNQS3 reservoir

model (Floris et al., 2001; Barker et al., 2001; Gao et al., 2006). The reservoir grid is

19× 28× 5; the size of each gridblock is 590.55 ft × 590.55 ft in the x and y directions but

the thicknesses of the gridblocks vary. There are 1761 active gridblocks in the model. There

are six producers with the locations and perforated intervals the same as in the original

model (Floris et al., 2001; Barker et al., 2001); see Fig. 2.1. All production wells are under

oil rate control. The reservoir is supported by a strong analytical aquifer on the west and

south sides. The production consists of a first year of extended well testing, followed by a

3-year shut-in period and then 12.5 years of production. The oil production rates for each

well during the first year of well testing for each of the four 3-month periods are specified

as 628.98, 1257.96, 628.98 and 314.49 STB/D. Subsequent to the 3-year shut-in period, the

oil production rate at each well is set equal to 943.47 STB/D. The history-matching period

consists of the first 11.5 years. The forecast period makes up the remaining 5.5 years. The

data to be matched include bottomhole pressure (BHP), gas/oil ratio (GOR) and water cut

(WCT). To generate the observed data, we add Gaussian noise to the true production data

obtained from the reservoir simulator. The standard deviations for the measurement error
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(noise) are specified as 10 psi for BHP and 3% of the true values for GOR and WCT data,

where CD, the data or measurement error covariance matrix, is assumed to be diagonal.

The model parameters to be matched are the horizontal and vertical permeability,

the porosity, the fluid contact depths and the parameters of the relative permeability curves.

The true horizontal log-permeability field is shown in Fig. 2.2. The unconditional log per-

meability and porosity fields are generated using sequential Gaussian co-simulation based

on the geostatistical parameters given in Gao et al. (2006), where no hard data are used.

The lack of hard data at wells makes this a challenging problem because almost none of the

prior realizations have the high permeability streaks passing through the production wells,

making the predicted well data dramatically different from the observed data.

(a) Layer 3 (b) Layer 4 (c) Layer 5

Figure 2.1: Locations of perforations in layers 3, 4 and 5. There is no perforation in layers
1 and 2.

The true GOC and OWC depths are 7726.4 ft and 7857.6 ft, respectively. In the prior

realizations of GOC and OWC depths, we deliberately introduce a bias in the prior means,

setting these means equal to 7746.4 ft and 7877.6 ft, respectively. The standard deviation

of the GOC and OWC depths in the prior realizations are both 20 ft.

To generate realizations of the relative permeability curves, we slightly modify the

power law model used in Wang et al. (2010) to better fit the requirements of the simulator.

For example, Eclipse 100 requires that the relative permeability data for water, krw, are
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(a) Layer 1 (b) Layer 2 (c) Layer 3 (d) Layer 4 (e) Layer 5

Figure 2.2: True horizontal permeability field (ln k)

available from Sw = Siw to Sw= 1, but the krw model used in Wang et al. (2010),

krw = k∗rw

(
Sw − Siw

1.0− Siw − Sorw

)ew
, (2.30)

can only generate krw from Sw = Siw to Sw = 1− Sorw. Eclipse will accept this incomplete

input data and will then extrapolate to obtain the missing data. The power law relative

permeability models that we use are given by

krw = k∗rw

(
Sw − Siw
1.0− Siw

)ew
, (2.31)

krow = k∗ro

(
1.0− Sw − Sorw
1.0− Siw − Sorw

)eow
, (2.32)

krg = k∗rg

(
Sg − Sgc

1.0− Siw − Sgc

)eg
, (2.33)

krog = k∗ro

(
1.0− Sg − Siw − Sorg

1.0− Siw − Sorg

)eog
, (2.34)

where the Stone Model I (Aziz and Settari, 1979) is used to calculate the three-phase relative

permeability from the sets of two-phase relative permeability functions.

The parameters used to generate the prior realizations of the relative permeability
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curves are shown in Table 2.1. Note that the values of the end-point saturations are fixed;

we only try to match the exponents and the coefficients.

Table 2.1: Specifications of relative permeability paramaters

Mean Stdev Min Max
k∗rw 1.0 0.0 1.0 1.0
k∗ro 0.85 0.05 0.7 1.0
k∗rg 0.25 0.05 0.1 0.4

ew 4.75 0.9 2.5 7.0
eow 2.25 0.3 1.5 3.0
eg 7.0 1.2 4.0 10.0
eog 2.35 0.46 1.2 3.5

The prior predicted data are shown in Fig. 2.3 for 3 wells, PRO-1, PRO-11 and

PRO-15. These three wells are chosen because they represents different speeds of pressure

drops and water break through. As can be seen from the figure, the initial ensemble has

an unreasonably large spread with the observed data barely within the spread of ensemble

predictions. This case can therefore be considered an extreme case to illustrate the advantage

of our proposed method. A more reasonable case will be considered in example 2.

2.2.2 Results

We perform history matching on 10 different ensembles where each ensemble has 100

ensemble members. Note that we repeat the history matching with multiple ensembles in

order to investigate the consistency of the proposed methods, all of which are stochastic. We

do not intend to imply that doing history matching with 10 ensembles of size 100 yields a

better characterization of the posterior pdf than doing history matching with one ensemble

of size 1000. In fact, using one ensemble of size 1000 seems to be give better results for

this particular problem (Le and Reynolds, 2013). We test and compare the results of five

methods:

• ES-MDA 8x: equal inflation factors of 8.

• ES-MDA 16x: equal inflation factors of 16.
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(a) PRO-1 BHP (b) PRO-1 GOR (c) PRO-1 WCT

(d) PRO-11 BHP (e) PRO-11 GOR (f) PRO-11 WCT

(g) PRO-15 BHP (h) PRO-15 GOR (i) PRO-15 WCT

Figure 2.3: Prior ensemble of predicted data

• ES-MDA-RS: model change restriction of 2 standard deviations. On average, this

algorithm finishes in 20 iterations.

• ES-MDA-RLM: ρ = 0.2. On average, ES-MDA-RLM finishes in 16 iterations using

traditional ES-MDA stopping rule and finishes in 12 iterations using the RLM stopping

rule.

• LM-EnRML (Chen and Oliver, 2013). On average, this algorithm finishes in 25 itera-

tions. The LM-EnRML algorithm is given in Appendix A.1.

In the LM-EnRML method, the initial value of the multiplier λ, λini, is chosen to be 100,000,

which, by the recommendation of Chen and Oliver (2013), is on the same order of magnitude

as the average data mismatch calculated using Eq. 2.4. The parameter γ, which dictates
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how much λ is changed from one iteration to the next, is 10 as recommended by Chen and

Oliver (2013). Later, we see that the λini = 100, 000 does not work well, so we repeat the

LM-EnRML runs with λini = 10, 000 and λini = 1, 000.

Fig. 2.4 shows the evolution of the inflation factor for the two adaptive ES-MDA

algorithms, ES-MDA-RS and ES-MDA-RLM, with the traditional ES-MDA stopping rule.

It can be seen that the initial inflation factor needs to be very high in order to satisfy the

regularization conditions but it decreases to a much smaller value after a few iterations.

This result is consistent with previous works of Gao and Reynolds (2006) and Tavakoli and

Reynolds (2010) which show that controlling the change in parameters during the first few

iterations is critical in order to avoid over correction of model parameters and unrealistically

rough property fields.
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(b) ES-MDA-RLM

Figure 2.4: Evolution of the inflation factors in the adaptive ES-MDA methods.

Figs. 2.5, 2.6 and 2.7, respectively, show the third, fourth and fifth layers’ log horizon-

tal permeability for the first realization of each posterior ensemble. The true log horizontal

permeability is also plotted in the same figure for the convenience of the reader. It can be

seen that the problem of overshooting due to ill conditioning is quite severe in the result
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obtained with ES-MDA 8x, i.e. we obtain a very rough permeability field which contains

mostly very high and very low permeability values. The problem is alleviated somewhat

with ES-MDA 16x but is still serious. The two adaptive ES-MDA methods show much less

overshooting than is obtained with the two standard ES-MDA methods. Using the RLM

stopping rule, the ES-MDA-RLM algorithm completes earlier, which results in slightly less

overshooting than the other two adaptive ES-MDA methods, even though we can no longer

prove that this modified ES-MDA-RLM algorithm samples correctly for the linear Gaus-

sian case. The LM-EnRML method with λini = 1, 000 shows much more overshooting and

undershooting than with λini = 10, 000 and 100, 000. As we will show later, the reduced

overshooting in LM-EnRML with λini = 100, 000 is partly because the algorithm does not

significantly modify the initial values of the model so that the posterior models are similar to

the prior models, and consequently we have virtually no overshooting. On the other hand,

λini = 10, 000 seems to be the optimal choice among the three initial inflation factors, where

the overshooting and undershooting is as light as λini = 100, 000 and, as will be shown later,

the data match is as good as λini = 1, 000.

Fig. 2.8 shows the ratio of the posterior standard deviation to the prior standard

deviation for the gridblock log-horizontal permeabilities of layer 3. Note that the standard

deviation values are calculated for each individual ensemble. Without a rigorous sampling

method like MCMC, it is not possible to know the correct values of the standard deviation.

All the ensemble smoother methods, including ES-MDA 8x, ES-MDA 16x, ES-MDA-RS and

ES-MDA-RLM, give standard deviations that do not vary significantly across ensembles,

which shows that these methods are quite consistent. For ES-MDA-RLM with the RLM

stopping rule, the values of posterior standard deviations are generally much greater than the

values obtained with other ensemble smoother methods, which is expected because the data

assimilation is terminated earlier. It is interesting to observe that the standard deviations

obtained by LM-EnRML with λini = 100, 000 vary significantly from one ensemble to another.

For ensembles #3, 7, 8 and 10, the posterior standard deviations obtained with LM-EnRML

are not much smaller than the prior standard deviations. As shown later, this is because the
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8x
ES-MDA

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

16x
ES-MDA

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

λini = 100000
LM-EnRML

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

λini = 10, 000
LM-EnRML

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

λini = 1, 000
LM-EnRML

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

2 stdev
ES-MDA-RS

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

ρ = 0.2
-RLM

ES-MDA

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

stop rule
/w RLM
ρ = 0.2
-RLM

ES-MDA

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

Figure 2.5: Layer 3 log horizontal permeability of the first realization of each ensemble.

algorithm is unable to obtain a good data match for these ensembles and is thus unable to

reduce the uncertainty.

We propose the following metric to measure how close the posterior model is to the
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8x
ES-MDA

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

16x
ES-MDA

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

λini = 100000
LM-EnRML

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

λini = 10, 000
LM-EnRML

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

λini = 1, 000
LM-EnRML

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

2 stdev
ES-MDA-RS

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

ρ = 0.2
-RLM

ES-MDA

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

stop rule
/w RLM
ρ = 0.2
-RLM

ES-MDA

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

Figure 2.6: Layer 4 log horizontal permeability of the first realization of each ensemble.

true model:

R =
1

Nm

||C−1/2
M (m−mtrue)||1, (2.35)

where CM is the prior covariance matrix of model parameters and || ∗ ||1 denotes the L1
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8x
ES-MDA

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

16x
ES-MDA

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

λini = 100000
LM-EnRML

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

λini = 10, 000
LM-EnRML

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

λini = 1, 000
LM-EnRML

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

2 stdev
ES-MDA-RS

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

ρ = 0.2
-RLM

ES-MDA

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

stop rule
/w RLM
ρ = 0.2
-RLM

ES-MDA

TRUE E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

Figure 2.7: Layer 5 log horizontal permeability of the first realization of each ensemble.

norm. R can be interpreted as the average difference between the value of a posterior model

parameter and its true value in terms of the prior standard deviations. If mtrue is generated

from the same distribution as the prior models it can be shown that the expected difference

between a prior realization and the true model is 2/
√
π ≈ 1.13 (see Appendix A.2). In
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ES-MDA

E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

16x
ES-MDA

E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

λini = 100000
LM-EnRML

E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

λini = 10, 000
LM-EnRML

0
E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

λini = 1, 000
LM-EnRML

E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

2 stdev
ES-MDA-RS

E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

ρ = 0.2
-RLM

ES-MDA

E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

stopping rule
/w RLM
ρ = 0.2
-RLM

ES-MDA

E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10

Figure 2.8: Standard deviation of the third layer’s log horizontal permeability.

practice, because the prior covariance matrix of model parameters can be excessively large,

we replace C
1/2
M by DM , which is a diagonal matrix whose diagonal elements are the prior
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standard deviations of the model parameters. Eq. 2.35 then becomes

R =
1

Nm

||D−1
M (m−mtrue)||1, (2.36)

The plot of R calculated using Eq. 2.36 for different history-matching methods is shown in

Fig. 2.9. The difference between the prior realizations and the true model has the mean (and

median) of 1.10, which is very close to expected value of 1.13. It is interesting to note that

the two regular ES-MDA methods lead to higher values of R than the prior model. This is

most likely due to the excessive overshooting exhibited by these two methods. For the same

reason, LM-EnRML with λini = 1, 000 results in higher value of R compared to LM-EnRML

with λini = 10, 000 and 100, 000. The adaptive ES-MDA methods are able to alleviate this

problem, resulting in smaller values of R than are obtained with the prior model.
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Figure 2.9: Difference between posterior models and the true model based on Eq. 2.36

Fig. 2.10 shows the box plot of the normalized objective function, which is created by

combining all 10 ensembles. Overall, the two adaptive ES-MDA methods, ES-MDA-RS and

ES-MDA-RLM with the traditional ES-MDA stopping rule, result in the best data match

although this does not mean that these methods necessarily give a good approximation of

the posterior pdf. On the other hand, a large value of the objective function suggests that
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the corresponding model pertains to a high value of the posterior pdf which often means

that this model is from a low probability region. Note that the range of the objective

function values obtained from LM-EnRML with λini = 100, 000 is relatively large. A careful

investigation of the objective function for each ensemble obtained with LM-EnRML reveals

that the method is not consistent for this example problem; it performs very well for some

ensembles but performs badly for others. Reducing the initial value of λ to 10,000 gives a

better overall data match but further reduction to 1,000 leads to more severe overshooting.

The ES-MDA-RLM algorithm with the RLM stopping rule results in a bigger data mismatch

than is obtained without using this rule; this is the expected result because this stopping rule

trades a tight data match for more variation in the posterior ensemble. In fact, the stopping

rule is designed to avoid over matching the data, based on a discrepancy rule (Hanke, 1997,

2010; Iglesias and Dawson, 2013; Iglesias, 2015).
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Figure 2.10: Normalized objective function.

The predicted well data from 10 ensembles for three wells PRO-1, PRO-11 and PRO-

15 are shown in Fig. 2.11, 2.12 and 2.13. The results for the other wells are similar. Note

that the history period consists of the first 4,000 days while the forecast period consists of

the remaining 2,000 days. For the history period, the two adaptive ES-MDA methods clearly

give better data matches than are obtained with the other methods. For the forecast period,
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it is interesting to see that the history-matched ensembles can sometimes lead to poor and

biased predictions even though the corresponding history-match is good.
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8x
ES-MDA

16x
ES-MDA

λini = 100000
LM-EnRML

λini = 10, 000
LM-EnRML

λini = 1, 000
LM-EnRML

2 stdev
ES-MDA-RS

ρ = 0.2
-RLM

ES-MDA

stopping rule
/w RLM
ρ = 0.2
-RLM

ES-MDA

PRO-15 BHP PRO-1 GOR PRO-11 WCT

Figure 2.11: Posterior production data at PRO-1 obtained with different history-matching
methods.
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λini = 10, 000
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PRO-15 BHP PRO-1 GOR PRO-11 WCT

Figure 2.12: Posterior production data at PRO-11 obtained with different history-matching
methods.
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Figure 2.13: Posterior production data at PRO-15 obtained with different history-matching
methods.
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2.2.3 Further investigation

In this section, we consider in more detail one of the cases where the history match is

good but the future prediction is poor and biased. It is important to note that the reservoir

is a dome-shaped reservoir so the layers are not horizontal; a reservoir cross section along the

East-West direction is shown in Fig. 2.14. We investigate two ensembles obtained with the

ES-MDA-RS method, namely ensemble 1 and ensemble 3. First, we investigate ensemble 3,

which displays the most discrepancy between the ensemble prediction and the prediction of

the true reservoir model. Fig. 2.15 shows the GOR of well PRO-1 for both the history and

forecast perior. The rapid increase in GOR which begins at around day 1600 is due to the

free gas from the gas cap starting to enter the well.

Figure 2.14: A reservoir cross section.

Figure 2.15: PRO-1 GOR in ensemble 3.
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The posterior GOC depths in this ensemble have a mean of 7725.1 ft which is very

close to the true value of 7726.4 ft, so posterior realizations of the GOC are unlikely to be

the reason that the GOR prediction is biased. To investigate this bahavior, we perform the

following modifications:

1. Replace the wrong GOC in the posterior models by the true GOC value to obtain the

results of Fig. 2.16. As expected, this has a minor effect on the prediction since the

posterior GOC values are already very close to the true GOC value.

Figure 2.16: PRO-1 GOR in ensemble 3 when posterior GOC is replaced by true GOC.

2. Replace the posterior horizontal permeability by the true horizontal permeability to

generate the results of Fig. 2.17. This has a major impact on the prediction, making

the prediction much closer to the true data.

3. Replace the posterior vertical permeability by the true vertical permeability to obtain

the results of Fig. 2.18. This has a small impact on the prediction, making the GOR

prediction go down slightly at the end of the forecast period compared to the results

of Fig. 2.15.

4. Replace the posterior porosity by the true porosity to obtain the results of Fig. 2.19.

This changes the shape of the prediction significantly, making it higher in the middle

but lower in the end.
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Figure 2.17: PRO-1 GOR in ensemble 3 when posterior horizontal permeability is replaced
by true horizontal permeability.

Figure 2.18: PRO-1 GOR in ensemble 3 when posterior vertical permeability is replaced by
true vertical permeability.

5. Replace the posterior porosity, horizontal and vertical permeability by the true values

to obtain the results of Fig. 2.20. This makes the prediction very close to the prediction

from the true model.

From the above experiments, it seems that the horizontal permeability field has the

highest impact on the PRO-1 GOR prediction. It is therefore useful to compare the posterior

permeability and the true permeability to understand what causes the difference. Since well

PRO-1 is perforated in layers 4 and 5, we compare the horizontal permeability in these two

layers between one posterior realization and the true model (Fig. 2.21). It can be seen that
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Figure 2.19: PRO-1 GOR in ensemble 3 when posterior porosity is replaced by true porosity.

Figure 2.20: PRO-1 GOR in ensemble 3 when posterior porosity, horizontal and vertical
permeability are replaced by true values.

the high permeability streak in layer 5 of the true model is not replicated in the posterior

model. Because the well is under oil rate control, the pressure at well PRO-1 drops much

faster in the posterior model than in the true model, causing more gas to come out of the

solution, which leads to a higher GOR. This is further verified by noting that the solution

GOR (dissolved gas-oil ratio, Rs) near well PRO-1 at late times is much lower in the posterior

model than in the true model.

Another ensemble we investigate is ensemble 1. In this ensemble, the posterior GOC

depths are vastly different from the true value. The mean posterior GOC depth is 7710 ft

compared to the true value of 7726.4 ft. However, the GOR match is still fairly reasonable,
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(a) Layer 4 - True (b) Layer 4 - Posterior (c) Layer 5 - True (d) Layer 5 - Posterior

Figure 2.21: Horizontal permeability field (ln k). The black dot is the location of well PRO-1.

so there must be another “wrong” model parameter to compensate for the GOC. Fig. 2.22

shows the GOR of well PRO-1 after history matching.

Figure 2.22: PRO-1 GOR in ensemble 1.

We perform the following experiments:

1. Replace the wrong GOC in the posterior models by the true GOC value to obtain the

results of Fig. 2.23. As expected, because the true GOC is deeper, the GOR increases

significantly.

2. Replace the posterior horizontal permeability by the true horizontal permeability to

obtain the results of Fig. 2.24; note the reduction of GOR values and the delay of the
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Figure 2.23: PRO-1 GOR in ensemble 1 when posterior GOC is replaced by true GOC.

breakthrough time.

Figure 2.24: PRO-1 GOR in ensemble 1 when posterior horizontal permeability is replaced
by true horizontal permeability.

3. Replace both the posterior GOC and the posterior horizontal permeability by the true

values to obtain the results of Fig. 2.25. We can see that the two types of model

parameters compensate for each other and lead to a GOR match that is almost as

good as that in the unchanged posterior model. Also note how the GOR in the forecast

period differs between Fig. 2.22 and Fig. 2.25.

4. Replace the posterior vertical permeability by the true vertical permeability. We don’t

show a figure here because this does not significantly alter the GOR data.
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Figure 2.25: PRO-1 GOR in ensemble 1 when posterior GOC and horizontal permeability
are replaced by true values.

Now, it is interesting to find out what difference between the posterior permeability

and the true permeability leads to the difference in GOR values. Since well PRO-1 is

perforated in layers 4 and 5, we compare the horizontal permeability in these two layers

between one posterior realization and the true model (Fig. 2.26). It is most likely that

the higher permeability in the posterior model allows gas breakthrough to happen faster

at well PRO-1, leading to higher GOR prediction compared to the true model, provided

that everything else is the same. This is compensated by the shallower GOC depth in the

posterior model so that the data match is still good.

(a) Layer 4 - True (b) Layer 4 - Posterior (c) Layer 5 - True (d) Layer 5 - Posterior

Figure 2.26: Horizontal permeability field (ln k). The black dot is well PRO-1 location.

52



2.3 Case Study 2

This case is similar to the first case except that hard data are used to generate the

prior realizations. The prior ensembles of predicted data of three wells PRO-1, PRO-11 and

PRO-15 are shown in Fig. 2.27. Compared to the first case, the prediction now shows better

behavior as the ensemble of pressure predictions spread more evenly around the observed

data.

(a) PRO-1 BHP (b) PRO-1 GOR (c) PRO-1 WCT

(d) PRO-11 BHP (e) PRO-11 GOR (f) PRO-11 WCT

(g) PRO-15 BHP (h) PRO-15 GOR (i) PRO-15 WCT

Figure 2.27: Predicted data of prior realizations for case study 2.

We apply ES-MDA 8x, ES-MDA 16x, LM-EnRML, ES-MDA-RS and ES-MDA-RLM

to assimilate the data. For the LM-EnRML method, since the prior data mismatch is now

smaller, we use smaller initial values of λ, namely 10,000, 1,000 and 100. Similar to the

first case, each history matching method is performed on 10 ensembles, each of size 100.
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The bottom three layers’ permeability fields obtained after history matching are shown in

Fig. 2.28, 2.29 and 2.30. For the regular ES-MDA methods, the overshooting and under-

shooting problems are now less severe compare to example 1, even though they still exist.

Compared to the regular ES-MDA methods, the adaptive ensemble smoother methods re-

sult in less overshooting and undershooting, even though the difference is not as large as

in the first example. The LM-EnRML method shows similarly degree of overshooting and

undershooting as the adaptive ES-MDA methods when the initial λ value of 10,000 is used

but exhibits more overshooting and undershooting when the initial λ is reduced to 1,000 and

100.

The degree of overshooting and undershooting associated with each method can be

verified by calculating the difference between the posterior models and the true model using

Eq. 2.35. The result is plotted in Fig. 2.31. The two regular ES-MDA methods and the

LM-EnRML method with λini = 100 are the three methods that exhibit the most severe

overshooting and undershooting problems in Fig. 2.28 and expectedly, they are the three

methods that increase the values of R after data assimilation.

The predicted data for wells PRO-1, PRO-11 and PRO-15, respectively, are shown in

Figs. 2.32, 2.33 and 2.34 for different history matching methods. We can see that most meth-

ods except LM-EnRML with λini = 10,000 perform quite well and result in good agreement

with the observed data. This is different from the case where no hard data are available,

where the regular ES-MDA methods do not result in good data matches. The performance

of the methods are confirmed in the plot of objective function (Fig. 2.35); note how the

posterior values of the objective function are generally smaller than the those in the first

example.
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Figure 2.28: Layer 3 log horizontal permeability of the first realization of each ensemble.
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Figure 2.29: Layer 4 log horizontal permeability of the first realization of each ensemble.
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Figure 2.30: Layer 5 log horizontal permeability of the first realization of each ensemble.
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Figure 2.31: Difference between a posterior model and the true model based on Eq. 2.36
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Figure 2.32: Posterior production data at PRO-1 obtained with different history-matching
methods. 59
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Figure 2.33: Posterior production data at PRO-11 obtained with different history-matching
methods. 60
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Figure 2.34: Posterior production data of well PRO-15 obtained with different history-
matching methods. 61
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Figure 2.35: Normalized objective function.

62



2.4 Case Study 3

The third case is the Brugge field (Peters et al., 2010). This is a counter example

where we demonstrate that sometimes the adaptive ES-MDA methods do not offer much

improvement over the regular ES-MDA method. The Brugge field is a synthetic reservoir

designed as a benchmark problem for evaluating the combination of different history match-

ing and production optimization methods. The reservoir grid is 139× 48× 9. There are 20

producers and 10 injectors in the model. The production wells are under total rate control

while the injection wells are under water injection rate control. Approximately 10 years

(3651 days) of production history are available, which include the oil and water rates at

production wells and the bottom hole pressure at both production and injection wells.

In the original Brugge data set, there are 104 realizations of the unknown properties,

which consists of porosity, horizontal and vertical permeabilities and net-to-gross ratio. The

true model has not been made available. The first realization of the permeability fields are

shown in Fig. 2.36. We use the first 2500 days of data for history matching, the remaining

data are used to evaluate the forecast capability of our data assimilation methods. We

assume that the noise levels for the oil rates and water rates, respectively, are 3% and 5% of

the observed values and the noise level for the bottom hold pressure is 0.5 bars (7.25 psi).

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9

Figure 2.36: The first prior realization of the permeability field (case 3)

We assimilate data using ES-MDA 4x, ES-MDA 8x, ES-MDA-RS, ES-MDA-RLM. It

takes the ES-MDA-RS 17 iterations to finish. For the ES-MDA-RLM algorithm, we use ρ

equal to 0.2. For this choice of ρ, the condition of Eq. 2.19 is satisfied with the initial guess
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of the inflation factor at all iterations and the data assimilation completes in 6 iterations.

The first realizations of the posterior permeability fields are shown in Fig. 2.37. We can see

that there seems to be some slight overshooting in the first two layers but without the true

model, we can not be certain. However, the problem is not too severe and increasing the

number of iterations has little effect on the problem.

The data matches obtained with four different methods are also quite similar. Fig.2.38

shows the plot of the objective function, where the values of final objective function corre-

sponding to four methods are almost the same. Figs.2.39, 2.40, 2.41 and 2.42, respectively,

show the predicted data obtained using ES-MDA 4x, ES-MDA 8x, ES-MDA-RS and ES-

MDA-RLM. For each figure, the plots are organized into four rows. In the first three rows,

we plot the bottom hole pressures, the oil rates and the water rates of some representative

production wells. In the last row, we plot the bottom hole pressures of some representative

injection wells. It can be seen that the data matches are very similar among different meth-

ods and are fairly reasonable for most wells. Only in well P-10 does the data match differs

from the observed data, where the predicted oil rate is higher than the observed data and,

accordingly, the predicted water rate is lower than the observed data.
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Figure 2.37: The first posterior realization of the permeability field (case 3)
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Figure 2.38: Normalized objective function (case 3).
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Figure 2.39: Ensembles of well data obtained with ES-MDA 4x
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Figure 2.40: Ensembles of well data obtained with ES-MDA 8x
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Figure 2.41: Ensembles of well data obtained with ES-MDA-RS
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Figure 2.42: Ensembles of well data obtained with ES-MDA-RLM
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CHAPTER 3

HISTORY MATCHING NON-GAUSSIAN FACIES

In this chapter, we develop a history matching procedure based on ES-MDA that

can be used with multi-facies reservoir models, so that, for examples, the history matching

preserves a distinct boundary between facies. Our adaptation of the ES-MDA algorithm is

similar to the approach being used by Jafapour and Khodabakhsi (2011). The ES-MDA

algorithm is used to modify the reservoir permeability, from which a facies probability map

can be calculated and used in the MPS simulation algorithm. To illustrate our method, we

design a channelized reservoir problem that is more difficult to resolve by history-matching

than most cases that appear in the literature. First, the channel system is more complex

with a relatively high number of channels while the number of wells remains modest at thir-

teen. Secondly, unlike most previous examples where the permeability within each facies is

assumed to be a constant, known value, we assume significant variability for the permeability

within a facies and show that obtaining a reasonable approximation of the true permeability

distribution is necessary to obtain a good data match. We also try to address the problem

where the prior means of the permeabilities are unknown. This chapter of the dissertation is

organized as follows: in the next section, we explain the methodology. Then, we apply the

proposed method to three test cases with increasing degrees of complexity.

3.1 Methodology

We consider the history-matching problem in which the reservoir model consists of M

facies with πj, j = 1, ...,M, being the probability of appearance of each facies;
∑M

j=1 πj = 1.

We assume that the petrophysical properties within each facies follow a Gaussian distribu-

tion. For the purpose of updating the probability for the distribution of facies, the reservoir
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model for the petrophysical properties is represented by a Gaussian mixture model (GMM);

Θ = (πj, fj), j = 1, ...,M, (3.1)

where M is the number of facies, i.e., number of Gaussian models; fj denotes the j-th

Gaussian probability density function (pdf), and πj denotes the probability of each facies

or each Gaussian distribution, i.e. the probability that a gridblock is occupied by facies j.

Note that the only petrophysical property we consider in this dissertation is permeability

even though the method can be extended to include more properties.

The generation of the prior reservoir model, which consists of the facies F and the

vector of gridblock permeabilities m, is done based on the following equation:

f(m,F ) = f(m|F )f(F ), (3.2)

where throughout, f is used to denote a probability density function (pdf). We first sample

the facies distribution, f(F ), using the MPS algorithm implemented in Petrel 2010 (Schlum-

berger, 2010), and then we sample the permeability distribution within each facies, f(m|F ),

by applying the sequential Gaussian simulation algorithm. Note that this is different from

sampling directly from the Gaussian mixture model.

In our examples, both the facies and gridblock permeabilities are unknown. Given the

observed data D, we update the facies and permeabilities in two stages. In the first stage,

we try to obtain a good approximation of the correct facies distribution. In the second stage,

we focus on updating the permeabilities to obtain a good data match. Mathematically, this

can be written as

f(m,F |D) = f(m|F,D)f(F |D), (3.3)

where f(F |D), the pdf for F conditional to the data, is sampled in stage I of the algorithm

described below.

All examples in this research use the training image shown in Fig. 3.1. We first list the
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steps of the procedure, then discuss in details the implications of each step. The procedure

is as follows:

Figure 3.1: Channel training image (Caers and Zhang, 2004)

I. Stage 1

This stage consists of multiple iterations (data assimilation steps), the number of which

is selected to be divisible by four. Each iteration has two steps. Step 1 is performed ev-

ery iteration while step 2 is only performed every four iterations, hence the requirement

that the total number of data assimilations be divisible by four.

FOR ` = 1, 2, ...Na:

1. Step 1 : Apply the ES-MDA update equation (Eq. 2.2) to update the permeability

field.

2. Step 2 (only performed when ` is divisible by 4): regenerate the distribution of facies

and permeability.

(a) Apply the Neighborhood Expectation-Maximization (NEM) algorithm (Han et al.,

2011) to assign each gridblock to the most likely facies based on the updated

permeability from step 1.

(b) Calculate the average probability that a facies appears at each gridblock by av-

eraging the facies distributions obtained in step 2(a) across the whole ensemble.
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(c) Use the probability map in combination with the MPS algorithm to generate

new facies distributions. There are two possibilities:

• ` is not the last iteration. In this case, we directly incorporate the probability

map into the MPS algorithm using the Tau model (Journel, 2002; Zhang and

Journel, 2003).

• ` is the last iteration. In this case, we “enhance” the probability map before

incorporating it into the MPS algorithm. See the discussion below for details.

(d) Populate the facies distribution from step 2(c) with random permeability values

generated using sequential Gaussian simulation with the means and variances of

the two prior Gaussian distributions for channel and non-channel permeability

field.

At the end of stage I, we have generated an approximate sampling of f(F |D).

II. Stage 2

In this stage, we apply a regular ES-MDA data assimilation procedure to the ensemble

of realizations obtained at the end of stage 1. As required by ES-MDA, the number

of iterations and the inflation factors have to be defined before the data assimilation

starts, and the sum of the inverse inflation factors has to be equal to unity. At the

end of this stage, we have generated an approximate sampling of the joint distribution,

f(m,F |D) = f(m|F,D)f(F |D).

3.1.1 Stage 1

Step 1: In stage 1, any inflation factors can be used in the ES-MDA update equation;

they can either be the same or vary between ES-MDA iterations and they do not have to

follow any rule. In addition, the users do not need to specify the number of iterations at

the beginning but can perform as many as needed, as long as it is divisible by four. As

discussed later, this does not impact our sampling correctness if our procedure is applied

to a linear-Gaussian problem. In our implementation, we simply make the inflation factors
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equal to the number of iterations we intend to use. For example, if we anticipate stage 1

would take 24 iterations to complete, we would use the inflation factors equal to 24 for all

iterations.

Step 2: After the application of ES-MDA in step 1, the facies boundaries become

smeared, i.e., the boundary between facies will become less clear due to the introduction of

permeability values that are highly improbable based on the prior Gaussian mixture model

of Eq. 3.1. Fig. 3.2 illustrates how the facies boundaries may become smeared after one

iteration (one data assimilation step) of ES-MDA.

(a) Realz 1 (prior) (b) Realz 2 (prior) (d) Realz 1 (after ES-
MDA)

(e) Realz 2 (after
ES-MDA)

Figure 3.2: Facies boundary become smeared after one data assimilation step with ES-MDA.

After several iterations, the facies boundaries become so badly smeared that new

realizations have to be generated to keep the realizations consistent with the geostatistical

features prescribed by the training image. This step is similar to what is done in Jafapour

and Khodabakhsi (2011) except that Jafapour and Khodabakhsi (2011) used EnKF instead

of ES-MDA to update the permeability. We recognize from our experience that we do not

have to regenerate the facies distribution at every iteration of ES-MDA. For the examples

considered in this paper, regenerating the facies every four ES-MDA iterations seem to be the

optimal choice. Performing step 2 too often does not allow ES-MDA enough time to remove

the incorrect large scale continuities in the prior realizations and create new continuities that

reflect the true model. On the other hand, waiting longer than four iterations to perform

step 2 generally leads to a longer history matching process where more iterations are needed

to obtain a similar result. It is possible that a different choice of the inflation factors in
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step 1 can allow ES-MDA to update the model faster, thus allowing step 2 to be performed

more regularly and reducing the number of iterations needed but at the moment, we have

not investigated this issue. The detailed explanation of each sub-step is as follows:

• Step 2(a): The Neighborhood Expectation-Maximization (NEM) algorithm Han et al.

(2011) is an extension of the Expectation-Maximization (EM) algorithm (Hartley, 1958;

Dempster et al., 1977; Meng, 1993, 1994; Kung et al., 2004; Zhao et al., 2007); see Ap-

pendix B.1 for a quick summary of how the NEM algorithm is implemented. The

EM algorithm iteratively calculates the probability of each gridblock belonging to each

facies while updating the mean, covariance and proportion of each Gaussian distribu-

tion. The output of the algorithm is the facies classification of each gridblock and the

updated mean, covariance and proportion of each Gaussian distribution. We, however,

only make use of the facies classification to calculate the probability map in step 2(b).

The updated mean, variance and proportion are usually inconsistent with the known

values or misleading (Le et al., 2015) so we choose to keep the prior values instead.

This is appropriate because in stage 1, we concentrate on obtaining a reasonably correct

sampling of the facies distribution, sampling the permeability will be the focus of stage

2. The improvement of the NEM algorithm over the standard EM algorithm is that the

user can define a neighborhood around each gridblock to promote facies continuity in

the vicinity of that gridblock. This is particularly useful because the training image in

our research has its major continuity direction in the east-west direction, so it is better

that we define a non-square neighborhood instead of a square one. Fig. 3.3 shows the

facies classifications using different neighborhood sizes for the same permeability field.

It can be seen that a neighborhood size of 9×3 seems to eliminate most of the stray

pixels and promote more continuity in the East-West direction. This improvement will

later translate to further improvement in the probability map in step 2(b).

• Step 2(b): From step 2(a), we have Ne facies fields, where Ne is the ensemble size. In

this step, we assign a value of 0 to shale gridblock and a value of 1 to gridblocks occupied
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(a) Permeability (b) Neighbor 3x3 (c) Neighbor 5x3 (d) Neighbor 9x3 (e) Neighbor 21x3

Figure 3.3: Facies classification using different neighborhood sizes.

by channel and calculate the average of the Ne facies fields. The result is a probability

map that dictates the probability that a gridblock is occupied by the channel facies

as well as the probability that a gridblock is filled with shale. Fig. 3.4 compares a

probability map obtained with this procedure using two different neighborhood sizes.

The true model is plotted in the same figure for the reader’s convenience. It can be

easily seen that the quality of the probability map obtained with a 9×3 neighborhood

is superior to the one obtained with a 3×3 neighborhood.

(a) True model (b) Neighbor 3x3 (c) Neighbor 9x3

Figure 3.4: Probability map obtained using different neighborhood sizes.

• Step 2(c): For iterations that are not the last iteration, we directly incorporate the

probability map (soft data) into the MPS simulation algorithm using the Tau model

(Journel, 2002; Zhang and Journel, 2003) similar to Jafapour and Khodabakhsi (2011);

see Appendix B.2 for theoretical details of the procedure. From our experience, the

influence of the probability map on the simulation result is not too strong, except when
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the probability is very close to 0 or 1. Fig. 3.5 shows three different facies realizations

generated using the same probability map.

(a) Probability map (c) Realization 1 (d) Realization 2 (e) Realization 3

Figure 3.5: Generation of new facies distribution using the probability map.

From Fig. 3.5, we can see that even though we can perceive clear channel connections

from the probability map, the realizations do not quite reproduce those connections.

This is acceptable and probably desired for early iterations where we want to explore

different channel configurations. However, for the last iteration, we need a well-defined

facies distribution that is going to be used in stage 2, so some modifications are needed

to make the MPS algorithm better honor the probability map. We have experimented

with several ways of doing so and these procedures are discussed below:

– The least intrusive method is to directly use the probability map in the MPS

algorithm as in early iterations, but apply a rejection algorithm to keep only the

realizations that are consistent with the probability map. To do so, we can apply

an algorithm in computer vision that detects and labels connected regions in a

binary image. The algorithm is generally referred to as Connected Component

Labeling (Samet and Tamminen, 1988). Fig. 3.6 schematically illustrates how

this algorithm works. In this figure, there are two foreground black bodies (e.g.

sand channels) on a white background (e.g. shale). The algorithm is able to

detect and assign label 1 to grid cells that make up the first body and assign

label 2 to grid cells that make up the second body. In the history-matching

context, gridblocks of the same sand channel would receive the same label while
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gridblocks of different channels would receive different labels. By checking if two

wells are located in two gridblocks of the same label, we are able to determine

if they are connected by a sand channel or not; see Fig. 3.7. The Connected

Component Labeling algorithm is applied to both the probability map and the

facies realizations to make sure that the well connections are consistent. Note

that, for the probability map, we have to convert from the continuous image to

a binary image; gridblocks with sand probability above some certain threshold

become foreground; everything else is defined as background. There are many

different ways to implement this algorithm. We do not implement it ourself but

use an open source implementation based on a contour tracing technique (Chang

et al., 2004). In our experience, this method only works when the probability map

is very clear, i.e., when most area (gridblocks) having a 100% probability of being

sand or a 100% probability of being shale; otherwise, most of the realization

generated by MPS would be rejected and it would take a long time to obtain

enough realizations. As will be shown later, the probability maps obtained in

our examples are not clear enough, so this method is actually not used in our

examples.

Figure 3.6: Connected component labeling illustration, reproduced from Wikipedia.

– A more intrusive way to enhance the probability map is to convert it into a hard

data map and use the hard data map in the MPS algorithm instead. Here, by

hard data, we mean specifying the facies of certain gridblocks. We can do so by

using a threshold to separate the probability map into sand, shale and undefined

regions. Fig. 3.8 shows the hard data generated from the same probability map
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(a) Connected (b) Unconnected

Figure 3.7: Connected component labeling algorithm applied to detect well connectivity.

using different truncation thresholds. A 70% threshold means that gridblocks with

values of 0.7 or higher on the probability map are assigned to sand while gridblocks

with values of 0.3 or lower on the probability map are assigned to shale. Note

that the white region corresponds to the remaining gridblocks where the facies is

not assigned to either sand or shale. Which facies will occupy these gridblocks are

determined by the MPS algorithm. As we can see from Fig. 3.8b, for a smaller

threshold value, there is not much freedom left for the MPS algorithm and the

realizations are dictated primarily by the hard data map. When we increase

the threshold, fewer hard data will be generated, so we give more freedom to

the MPS algorithm but the connections between wells may be less well-honored.

For example, the connection between wells P5 and P6 in Fig. 3.8c is broken

while they are connected by a continuous sand streak in Fig. 3.8b. Therefore,

one disadvantage of using this approach is that we have to choose a reasonable

threshold value so that there are not too many hard data but the connections

between wells are still captured.

– Perhaps, a better method of converting the probability map into a hard data map

is to sparsely draw the sand facies between wells based on the connections we

perceive from the probability map. This is done manually at the moment but for

practical application it will be necessary to implement an automatic algorithm.
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(a) Probability map (b) Hard data map using 70% threshold(c) Hard data map using 80% threshold

Figure 3.8: Hard data map generated using different truncation threshold.

If we use this approach instead of the threshold approach, the resulting hard

data map would be similar to Fig. 3.9. Note that in Fig. 3.9b, the connections

representing the continuity of the channel facies between wells are colored red

instead of yellow. Fig. 3.10 compares the realizations generated from the hard

data maps obtained using different approaches. It can be seen that using the hard

data obtained with the sparse drawing method in MPS results in realizations that

are slightly more consistent with the training image (Fig. 3.1) than those obtained

using the threshold method in terms of the channel width.

(a) Probability map (b) Hard data map obtained by sparse
drawing

Figure 3.9: Hard data map generated using different truncation threshold.

• Step 2(d): This step is done using sequential Gaussian simulation conditioned to the

facies distributions generated in step 2(c). As discussed in step 2(a), we do not use
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(a) 70% threshold (b) 80% threshold (c) Sparse drawing

Figure 3.10: Random realizations of the facies distribution generated using the hard data
map generated using various methods.

the updated means and covariances obtained from EM but simply use the prior means

and covariances to generate new permeability field.

3.1.2 Stage 2

In this research, we use ES-MDA 8x with decreasing inflation factors (1000, 100, 50,

20, 7, 5, 4, 3). Note that the the inflation factors are chosen so that their inverses sum to

unity.

3.1.3 Notes on Sampling Correctness in the Linear Gaussian Case

Even though we develop the procedure in this chapter specifically to history match

models with multiple facies, there are certain situations when the problem may revert to a

linear-Gaussian problem or become almost equivalent to one. These situations include the

following:

• There is only one facies.

• The Gaussian distributions within each facies are very similar and there is little corre-

lation between gridblocks. The second requirement is necessary to avoid discontinuities

in the correlation between gridblocks.

Because these situations are unpredictable, it is important to consider whether our procedure
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is guaranteed to sample correctly should the problem revert to a linear-Gaussian one. In

stage 1 of our procedure, after every 4 iterations, we generate new facies and permeability

realizations based on the prior distributions. This it is equivalent to generating a new prior

ensemble when applied to a linear-Gaussian problem. Note that, even though we indirectly

update the facies pdf by using the probability map in the MPS algorithm, the updated facies

pdf does not affect the newly generated permeability field when there is only one facies or

the distributions of permeability within each facies are identical. Because the number of

iterations in stage 1 has to be divisible by four, stage 1 is concluded with a newly generated

ensemble. Then, what we use for the inflation factors in stage 1 does not affect the sampling

correctness. Stage 2 is where the inflation factors matter and our procedure requires that the

inverse inflation factors in stage 2 have to sum to unity, which guarantees that our method

samples correctly in the linear Gaussian case.

3.2 Case Study 1

We define a 2D water-flooding problem with the following properties:

• 100× 100× 1 gridblocks, each of which is of size 100 ft × 100 ft × 50 ft.

• Constant porosity of 0.20.

• The model consists of two facies, “shale” and “sand,” in a channelized reservoir. The

facies at well locations are assumed to be all sand.

• The means and covariances of the permeability distributions used to generate the prior

realizations are the same as those used to generate the true model

• The permeability within each facies follows a log-normal distribution with the standard

deviations equal to 0.5 in log domain, i.e., the mean of ln k = 0.5, for both facies. The

geometric means of the permeability distributions are equal to 10 md and 2000 md for

the shale and sand facies, respectively. This is the same as saying the means of the

log permeability are equal to 2.3 and 7.6, respectively. Note that all history matching
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operations on the permeability are done in the log domain even though we report

permeability values in the regular domain for the reader’s convenience. The variogram

is defined with an exponential covariance function, and the major and minor correlation

lengths both are equal to 5000 ft.

• Four injectors and nine producers arranged in a 5-spot pattern, all under constant

pressure control.

• Observed data consist of the water injection rates at the injectors and the oil and water

production rates at the producers.

• The history-matching period is 20 years, followed by a 10-year forecast period.

The true model and three unconditional realizations are shown in Fig. 3.11. The correspond-

ing prior ensembles of predicted data are shown in Fig. 3.12.

(a) True model (b) Prior realization 1 (c) Prior realization 2 (d) Prior realization 3

Figure 3.11: True model and three prior realizations (case 1)

The proposed procedure is applied using an ensemble of size 400 to attempt to min-

imize sampling error and the need of covariance localization. The number of iterations in

stage 1 is 24 with inflation factors equal to 24 at all data assimilation steps. The objective

function evolution and the probability map evolution in stage 1 are shown in Figs. 3.13 and

3.14, respectively. Looking at the objective function evolution, we realize that the objective

function goes down each time we apply ES-MDA, but jumps up to the initial value when

we generate new facies distributions and populate them with permeability values sampled

from the prior distributions. The main reason for this behavior is that the probability maps
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Figure 3.12: Prior ensembles of simulated well data (case 1)

(Fig. 3.14) are not clear enough for the MPS algorithm to generate facies distributions that

are very close to the true model. This means that every time the facies is generated, we

obtain essentially random facies distributions again. This behavior is different from what

was reported in Jafapour and Khodabakhsi (2011), where very clear probability maps could

be obtained. This is probably due to the higher complexity of our channel system where

the the number of channels is higher, which leads to more complex interaction between the

wells. This also highlights one limitation of the Tau model (at least with the current im-

plementation in Petrel), where very high probability values are needed to significantly affect

the MPS process.

On the positive side, the probability map becomes a little clearer with each iteration;

enough for us to analyze maps and determine the continuity between wells. Even though
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Figure 3.13: Average normalized objective function (case 1)

(a) At iteration 4 (b) At iteration 8 (c) At iteration 12

(e) At iteration 16 (f) At iteration 20 (g) At iteration 24

Figure 3.14: Probability maps obtained in stage 1 (case 1)

there are still some unclear connections, by logical deduction, we can make the following

statement:
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• I2 is connected to P3 by channel facies, otherwise there is no water supply to P3 and

subsequently to P2 and P1.

• I3 is connected to P5, otherwise there is no water supply to P5.

• I4 may or may not connect to I3.

Using the sparse drawing method (see step 2(c)), we convert the final probability map at

iteration 24 to a hard data map, which is shown in Fig. 3.15. Note that we do not either

explicitly create or block the connections between I3 and I4, which allows the MPS algorithm

to generate realizations with either channel or shale between I3 and I4. Fig. 3.16 shows

the realizations obtained by using the hard data map and we can observe both channel

configurations as expected.

Figure 3.15: Hard data map (case 1)

Before we continue with stage 2, we want to point out that, even though realizations

1 and 2 in Fig. 3.16 and many other realizations look very similar to the true model, the data

match is still poor. Fig. 3.17 shows the well data predictions at the end of stage 1, where a

large discrepancy between the observed data and the simulated data can be observed. This

happens for two reasons. First, we miss the channel curvatures between P5 and P6, between

P7 and P8 and between P8 and P9. This is probably subtly reflected in the probability

maps by the low uncertainty of the channel connections between these three pairs of wells
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(a) Realization 1 (b) Realization 2 (c) Realization 3

Figure 3.16: Realizations at the end of stage 1 (case 1)

but it is difficult to recognize this because we do not expect connections between pairs of two

producers to be strongly resolved. The lack of the channel curvature in our models makes

the water break through much faster at P6, P7 and P9, which leads to poor data match.

The second reason for the poor data match is that we have not resolved the permeability

distributions within each facies. Both of these problems will be addressed in stage 2.

In stage 2, we simply apply ES-MDA 8x to the ensemble of realizations obtained at the

end of stage 1. Figs. 3.18 and 3.19, respectively, show three realizations obtained at the end

of stage 2 and the predicted data for all the wells at the end of stage 2. Comparing Figs. 3.16

and 3.18, we can observe some notable changes. First, the connections between I3 and I4

has been completely erased. Secondly, the lack of channel curvature has been accounted

for by the use of lower permeability values. Thirdly, the distribution of permeability within

each facies has been adjusted. For example, the permeability to the left of P3 and P5 is now

higher than in other areas, which is consistent with the true model (Fig. 3.11a). Overall,

the adjustments made during stage 2 have resulted in a very good data match as shown in

Fig. 3.19. We also get most of the future forecast right except for the water rates at P6,

P7 and P9, where the future forecast is either biased (P9) or highly uncertain (P6, P7).

These poor predictions occur because we are not able to capture the sinuosity of the channel

between P5 and P6, between P7 and P8 and between P8 and P9. To illustrate this point,

we plot the water saturation profiles of the true model and the first posterior model at the
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Figure 3.17: Ensembles of well data at the end of stage 1 (case 1)

end of the history matching period and the end of the prediction period in Fig. 3.20. It can

be seen that even though, at the end of history matching period, water has not reached P7

in both the first posterior realization and the true model, at the end of prediction period,

water has already passed P7 in the first posterior realization while it has just barely reached

P7 in the true model.
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(a) Realization 1 (b) Realization 2 (c) Realization 3

Figure 3.18: Realizations at the end of stage 2 (case 1)
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Figure 3.19: Ensembles of well data at the end of stage 2 (case 1)
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(a) True - end of history (b) True - end of prediction

(c) Realz 1 - end of history (d) Realz 1 - end of prediction

Figure 3.20: Water saturation profiles for the true model and the first posterior realization
(case 1).
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3.3 Case Study 2

This case is similar to the first case except for the following modifications:

• To generate the prior realizations, we estimate the geometric mean of the sand per-

meability from the hard data at the well locations. The result is 2200 md, which is

reasonably close to the mean in the true model, which is 2000 md.

• The geometric mean of the shale facies is unknown, but we assume the value of 4 md

in the prior model, whereas the true model was generated with a value of 10 md.

The true model, which is the same as in case 1, and three prior realizations are shown in

Fig. 3.21. It can be clearly seen that the shale permeability in the prior realizations is

lower than the shale permeability in the true model. The corresponding prior ensembles of

predicted data are shown in Fig. 3.22.

(a) True model (b) Prior realization 1 (c) Prior realization 2 (d) Prior realization 3

Figure 3.21: True model and three prior realizations (case 2)

Similar to case 1, in stage 1, we use an ensemble size of 400 and perform 24 data

assimilation steps with inflation factors equal to 24 for all iterations. The objective function

evolution and the probability map evolution are shown in Figs. 3.23 and 3.24, respectively.

From the two figures, it can be seen that the objective function in case 2 behaves in a similar

manner as in case 1 but the probability map obtained in this case is less clear than that in

the previous case. For example, in case 1, we can be quite certain that there is no connection

between I4 and P5 because probability of channel occurrence between the two wells is only

about 10% (Fig. 3.14g) but in case 2, the probability of channel occurrence between the two
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Figure 3.22: Prior ensembles of simulated well data (case 2)

wells is about 50% (Fig. 3.24g). The probability map also does not get better after iteration

12. Again, by logical deduction, we can make the following statements:

• I2 is connected to P3, otherwise there is no water supply to P3 and subsequently P2

and P1.

• I4 is at least connected to P8, otherwise there is no water supply to P8 and subsequently

P7 and P9.

• I4 may or may not connect to I3 and P5.

Base on the above deductions, we investigate two possible scenarios: (1) I4 is con-

nected to only P8 and (2) I4 is connected to both P5 and P8 with a possible connection to

I5. For each scenario, we draw a hard data map, which is shown in Fig. 3.32. Then we use
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Figure 3.23: Average normalized objective function (case 2)

(a) At iteration 4 (b) At iteration 8 (c) At iteration 12

(e) At iteration 16 (f) At iteration 20 (g) At iteration 24

Figure 3.24: Probability maps obtained in stage 1 (case 2)

the hard data map in combination the MPS algorithm to generate 400 realizations of the

facies distribution and populate these facies distributions with permeability values drawn
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(a) Scenario 1 (b) Scenario 2

Figure 3.25: Hard data map for two scenarios (case 2)

from the prior permeability distributions, which gives us the final ensemble of realizations

of stage 1, which will be used as the prior for stage 2. For case 2, we do not show the data

match at the end of stage 1 but they are similar to that in case 1.

For scenario 1, Figs. 3.26, 3.27, and 3.28, respectively, show three realizations at the

end of stage 1, three realizations at the end of stage 2 and the predicted data for all the wells

at the end of stage 2. Comparing Figs. 3.26 and 3.27, we can see that the shale permeabilities

have been increased to roughly the same values as in the true model (Fig. 3.21a). The overall

data match is very good even though some wells suffer from poor predictions for the same

reason as mentioned in case 1.

(a) Realization 1 (b) Realization 2 (c) Realization 3

Figure 3.26: Realizations at the end of stage 1 (scenario 1, case 2)

For scenario 2, Figs. 3.29, 3.30, and 3.31, respectively, show three realizations at the

end of stage 1, three realizations at the end of stage 2 and the predicted data for all the
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(a) Realization 1 (b) Realization 2 (c) Realization 3

Figure 3.27: Realizations at the end of stage 2 (scenario 1, case 2)
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Figure 3.28: Ensembles of well data at the end of stage 2 (scenario 1, case 2)

wells at the end of stage 2. It is interesting to note that the connections between I4 and P5

and between I4 and I3 have been effectively erased in the posterior models, which means the

first scenario is most likely the correct scenario. With the redundant connections erased, the
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data match for this scenario is also very good even though the forecast is somewhat worse

than scenario 1.

(a) Realization 1 (b) Realization 2 (c) Realization 3

Figure 3.29: Realizations at the end of stage 1 (scenario 2, case 2)

(a) Realization 1 (b) Realization 2 (c) Realization 3

Figure 3.30: Realizations at the end of stage 2 (scenario 2, case 2)

3.3.1 A slightly different approach

Here, we investigate what happens if, in step 2(c) of stage 1, instead of using the

probability map directly in the MPS algorithm at iterations that are not the final iteration,

we first convert it to a hard data map. Note that we are redoing everything thing from the

beginning of stage 1, so it is not related to either of the scenarios above. We use the threshold

method with a 85% threshold to transform from the probability map to a hard data map.

Fig. 3.32 shows the probability maps and the corresponding hard data maps at the end of

iterations 4 and 8 of stage 1. It can be seen that the model converges very quickly when the
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Figure 3.31: Ensembles of well data at the end of stage 2 (scenario 2, case 2)

hard data map is used instead of the probability map; at iteration 8, the probability map is

mostly dominated by 100% shale and 100% sand regions. However, the channel configuration

in the probability map is inverted compared to the true model (Fig. 3.21a); I4 now supplies

water to P5, P4 and P6 while I3 supplies water to P8, P7, P9. The reason this happens is

because at iteration 4, a small bias is introduced in the probability map where I4 has high

chance of being connected to P5. If we use the probability map instead of the hard data

map in the MPS algorithm, this bias is corrected at iteration 8; see Fig. 3.24b. However, by

using the hard data map, we force the bias to be carried over to subsequent iterations.

Nevertheless, the well configuration we obtain using hard data maps is still reasonable

since I3 and I4 still supply water to the same number of producers, so we end stage 1 after

iteration 8 and move to stage 2. In stage 2, we apply ES-MDA 8x to the ensemble of
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(a) Probability map at iter 4 (b) Hard data map at iter 4 (c) Probability map at iter 8 (d) Hard data map at iter 8

Figure 3.32: Probability maps and hard data maps obtained in stage 1 (a slightly different
approach, case 2)

realizations obtained at the end of stage 1, and the data match at the end of stage 2 is

shown in Fig. 3.33. It can be seen that even though most of the data matches are good,

we cannot match the water rates at well P4 due to the inverted well configuration. In this

configuration, P4’s water production is provided by I4 instead of I3 but because I4 is much

farther from P4 than I3 is, it cannot provide enough water to match the observed data.
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Figure 3.33: Ensembles of well data at the end of stage 2 (a slightly different approach, case
2)
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3.4 Case Study 3

Case 3 is identical to case 2 except that we assume the permeability hard data at the

well locations are not available and the best guess of the geometric mean of the permeability is

700 md as opposed to the true value of 2,000 md. The true model and three prior realizations

are shown in Fig. 3.34. It can be seen that both the shale and sand permeability in the prior

realizations are lower than those in the true model.

(a) True model (b) Prior realization 1 (c) Prior realization 2 (d) Prior realization 3

Figure 3.34: True model and three prior realizations (case 3)

In stage 1, similar to the previous cases, we use an ensemble size of 400 and perform

24 data assimilation steps with inflation factors equal to 24 for all iterations. The objective

function evolution is shown in Fig. 3.35. What happens here is similar to cases 1 and 2; every

four iterations when new realizations are regenerated, the data mismatch increases sharply

and the algorithm falls into an endless cycle. The probability map evolution is shown in

Fig. 3.36. An unexpected observation is that the final probability map obtained in case 3

(Fig. 3.36g) is clearer than the final probability maps obtained in case 1 (Fig. 3.14g) and

case 2 (Fig. 3.24g). We currently do not have a explanation for this phenomenon.

From the final probability map, we create a hard data map using the sparse drawing

method (step 2(c) of final iteration), which is shown in Fig. 3.37. Then we use the hard data

map in the MPS algorithm to create 400 realizations of the facies field and populate them

with permeability values sampled from the prior Gaussian distributions. Fig. 3.38 shows the

first three realizations of the permeability field obtained at the end of stage 1.

In stage 2, we apply ES-MDA 8x to the ensemble of realizations obtained at the end

of stage 1. Figs. 3.39 and 3.40, respectively, show three realizations at the end of stage 2 and
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Figure 3.35: Average normalized objective function (case 3)

(a) At iteration 4 (b) At iteration 8 (c) At iteration 12

(d) At iteration 16 (e) At iteration 20 (f) At iteration 24

Figure 3.36: Probability maps (case 3)

the predicted data for all the wells at the end of stage 2. It can be seen that despite starting

with the wrong permeability values in both shale and sand, stage 2 is able to increase the
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Figure 3.37: Hard data map (case 3)

(a) Realization 1 (b) Realization 2 (c) Realization 3

Figure 3.38: Permeability realizations at the end of stage 1 (case 3)

permeability in both regions to get a good data match.

(a) Realization 1 (b) Realization 2 (c) Realization 3

Figure 3.39: Permeability realizations at the end of stage 2 (case 3)
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Figure 3.40: Ensembles of well data at the end of stage 2 (case 3)

3.4.1 A modified procedure

Here, we try modifying our procedure to adjust the means of the permeability dis-

tributions in stage 1, as opposed to waiting until stage 2 as in the original procedure. Even

though our modified procedure does not work as expected, for research purposes, we still

present our modifications and explain why they do not work. Our modifications are as

follows:

1. In step 2(d), when generating a new permeability field, we add one random param-

eter to the mean of the shale and sand permeability to account for the uncertainty

in the mean. In other words, in the log domain, the shale and sand permeability

distributions are, respectively, N(shale mean + N(0, 1.21), 0.25) and N(sand mean +

N(0, 1.21), 0.25).
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2. Also in step 2(d), we use the updated means of the permeability distributions obtained

from EM in step 2(b) to populate the gridblocks with new permeability values. We

do this with the hope that our ES-MDA iterations will drive the overall permeability

means closer to the their true values. This, however, does not work well due to the

complexity of the channels and will be explained later.

3. Since the idea of updating the permeability means through EM above does not work,

we try adding a screening step to find the correct permeability means near the end of

stage 1. To do this, between steps 2(c) and 2(d) of the final iteration of stage 1, we

take a single facies distribution among the ensemble obtained at step 2(c) and populate

the sand and shale facies with different but constant permeability values. Then we run

simulations for these realizations and pick the pair of permeability values that result in

the best data match and consider them to be the correct means of the shale and sand

permeability. Then we continue step 2(d) of the last iteration of stage 1 but, instead

of using the prior means, we use the means obtained in the screening step. This again

does not work and the permeability values we obtain are very far away from the true

permeability means.

In stage 1, we again use an ensemble size of 400 and perform 24 data assimilation steps

with inflation factors equal to 24 for all iterations. All three modifications are incorporated

in the procedure at their respective steps. With modification #2, every four iterations

we use the updated means of the distributions from EM to populate gridblocks with new

permeability values. Fig. 3.41 shows the evolution of the geometric means of the sand and

shale permeability. After 24 iterations, the geometric sand mean decreases from 1000 to

around 700 mD while the shale mean, after some fluctuation, ends up essentially at the same

4 mD value. This result is different from what we expect. Because both the prior means

for sand and shale are smaller than the true means, we expect them to increase instead of

decreasing.

After some investigation into this issue, we find that this happens because the water
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Figure 3.41: The evolution of the permeability means (a modified procedure, case 3)

breaks through at some wells much earlier than it should due to an incorrect channel con-

figuration in the prior ensemble. To correct for this, the ES-MDA algorithm, which is based

on the linear-Gaussian assumption, decreases the overall permeability in the reservoir. To

prove this point, we try redoing stage 1 using larger measurement errors for the water rates.

In the original problem, the standard deviation of the measurement error for the water rates

is at a minimum of 0.1 STB/D when there is no water production. We redo the problem

using minimum values of 1.0 STB/D and 10.0 STB/D for the standard deviation of water

rate measurement error. The results are shown in Fig. 3.42 and 3.43. From these figures,

it can be seen that the permeability means are updated much better when the water rate

measurement error is 10 STB/D, where estimates of the geometric sand and shale means

are 1,000 mD and 9 mD, respectively. There is a reason why the sand permeability mean

cannot increase to the correct value of 2,000 mD. This is because our procedure cannot

capture the channel sinuosity between wells, so it has to make the permeability at those

locations smaller, thus decreasing the overall sand permeability mean. We will experience

this phenomenon again when we try to find the correct permeability means using screening;

see the description of the third modification we make to the procedure.

Back to the original problem where the minimum water rate measurement error is 0.1

STB/D, the objective function and the probability map evolutions of stage 1 are, respectively,
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Figure 3.42: The evolution of the permeability means when minimum water rate measure-
ment error is 1.0 STB/D (a modified procedure, case 3)
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Figure 3.43: The evolution of the permeability means when minimum water rate measure-
ment error is 10.0 STB/D (a modified procedure, case 3)

shown in Figs. 3.44 and 3.45. One interesting thing we observe from the plot of the objective

function is that the data mismatch at the end of iteration 4 is higher than the initial data

mismatch. This happens due to the first modification. Instead of generating the shale and

sand permeability from the prior Gaussian distributions, we add a random parameter to

account for the uncertainty in the means. This helps create a new ensemble with a larger

range of permeability than the range based on the prior ensemble. Unfortunately, some

ensemble members have extreme permeability values, which results in a very poor data
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match and leads to a higher data mismatch. On the other hand, despite not being able to

improve the data match, the probability map is still able to capture all important connections

in the true model. From the final probability map, we create a hard data map using the

sparse drawing method (step 2(c)), which is shown in Fig. 3.46, then we use the hard data

map in the MPS algorithm to create 400 realizations of the facies field (still step 2(c)). Note

that we have not performed step 2(d) of the final iteration yet. Before doing so we have have

to perform the third modification where a screening step is inserted between steps 2(c) and

2(d) of the final iteration.
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Figure 3.44: Average normalized objective function (a modified procedure, case 3)

As mentioned earlier, the purpose of the screening step is to try to determine the

best means for the sand and shale permeability. From the ensemble of facies distributions

generated at the end of stage 1, we pick one representative facies distribution (in this case,

facies realization #2), and then assign different, constant permeability values to the sand and

shale facies. We create a total of 1,000 realizations of the sand-shale permeabilities for the

single fixed facies distribution where the sand and shale log-permeability values generated,

respectively, from N(1.39, 1.21) and N(6.55, 1.21). Three such realizations are shown in

Fig. 3.47. We run simulations for these realizations and pick the one with the best data

match. We would hope that the one with the best data match would have the shale and

sand permeabilities closest to the true permeability means. However, the best data match is
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(a) At iteration 4 (b) At iteration 8 (c) At iteration 12

(d) At iteration 16 (e) At iteration 20 (f) At iteration 24

Figure 3.45: Probability maps (a modified procedure, case 3)

Figure 3.46: Hard data map (a modified procedure, case 3)

obtained by realization 88 that has the permeabilities for the shale and sand, respectively,

being 6.4 md and 590 md, which are much smaller than the true permeability means, which

are 10 md for shale and 2000 md for sand. Realization 24, which has the permeability
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values closest to the true means, ranks very low in term of the data match. To explain this

behavior, recall that we have mentioned several times that our procedure does not capture

the sinuosity of the channels between P5 and P6, between P7 an P8 and between P8 and P9.

These sinuosities delay the time at which the water reaches P6, P7 and P9 in the true model,

i.e. water production at these wells remains zero for most of the history period. Since the

standard deviation of measurement errors is based on the observed value, the measurement

error is very small for the water rates at these wells, thus putting a significant weight on these

water rates in the data mismatch calculation. Therefore, the permeability value that gives

the best data match is one that is significantly smaller than the true permeability in order

to slow down the water production at P6, P7 and P9 in the absence of channel sinuosity.

(a) Realization 1 (b) Realization 3 (c) Realization 24 (d) Realization 88

Figure 3.47: Realizations created for screening process (a modified procedure, case 3)

At this point, we realize that all modifications we make to the stage 1 of the procedure

do not give the desirable results. Therefore, we stop here and do not proceed further. At

this point in the research, it is recommended that the unmodified procedure is used instead.
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CHAPTER 4

SURVEILLANCE OPTIMIZATION

As mentioned in the Introduction section, even though the exhaustive history match-

ing procedure is a reasonably rigorous way to estimate the expected uncertainty reduction

associated with a given surveillance scenario, the required computational cost makes it un-

suitable for real problems. In this chapter, we pursuit a more efficient way to answer the two

questions pertaining to surveillance optimization: (1) What are the best data to collect, i.e.,

which surveillance operation among those that are viable, will yield the greatest reduction

in uncertainty? and (2) What is the expected value of the uncertainty reduction? We use a

concept in information theory, namely mutual information (Shannon, 1948), to quantify the

strength of the relationship between observed data and the reservoir variable J of interest.

To estimate mutual information, we experiment with two different methods. The first one

is a rigorous method based on the nearest neighbor distance (Kraskov et al., 2004). This

method works well for the first two problems where the number of observed data is small.

However, when applied to problems with large number of observed data (problems 3 and

4), the nearest neighbor method shows its limitation. For these problems, we adopt a less

rigorous but more efficient method based on the linear-Gaussian assumption. The value of

the mutual information provides a direct answer to the first question. To answer the second

question, we develop a procedure to calculate an approximation of the expected value of

P90-P10 of J (the difference between the 90th and the 10th percentiles of the pdf of J)

conditional to observed data from the estimated value of mutual information. This chapter

is organized as follows: first we present some basic concepts in information theory. Then

we present the methodology, followed by the application of the proposed method to four

examples.
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4.1 Basic Concepts in Information Theory

4.1.1 Discrete Form

Consider a discrete random variable X, with the set of all possible realizations of X

given by

{xi, i = 1, 2, ..., N}. (4.1)

Let PX(xi) denote the probability of X = xi, we must have
∑N

i=1 PX(xi) = 1.

The information content of xi is defined as

I(xi) ≡ log

(
1

PX(xi)

)
= − logPX(xi), (4.2)

and may be thought of as a measure of one’s surprise at the outcome of an experiment that

produces the sample xi. Note that the base of the logarithm can be any real number greater

than 1; the information content has different units depending on what base is used. Most

commonly, log2 and natural logarithm are used and the corresponding units are bits and

nats. We use the natural logarithm throughout this research.

There are some appealing properties of the above definition. First, this definition is

intuitive because when the probability of xi is high, observing xi does not provide as much

information as when the probability of xi is low. In the extreme case, the information content

of xi is 0 if PX(xi) = 1; the receiver of a message knows that the message will be xi, he does

not get any information when he receives the message. Secondly, the information is always

nonnegative. It is not possible to lose information by receiving a message.

The information measure considers each outcome of the random variable X but does

not say anything about the random variable itself. This can be accomplished by calculating

the average information of the random variable X which is given by

H(X) ≡
N∑
i=1

PX(xi)I(xi) = −
N∑
i=1

PX(xi) logPX(xi). (4.3)
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H(X) is called the entropy of X and is a measure of uncertainty about X. It is a real number

that represents the average information content one is missing when one does not know the

value of the random variable X. H(X) may also be thought of as the expected information

gain one will obtain by conducting an experiment to sample X.

Now we introduce a second discrete random variable Y , which, for example, can be

an output signal from the same system as X. We assume the set of all possible realizations

of Y is given by

{yj, j = 1, 2, ...,M}, (4.4)

where
∑M

j=1 PY (yj) = 1.

Suppose that we can measure the value of Y and use that measurement to make an

inference about the value of X. This means once the value of Y is known, say Y = yj, the

probability of each xi, i = 1, 2, ..., N , will change, often in a way that will cause several xi’s to

have much a higher probability than the rest. The posterior distribution of X conditioned to

yj will have a new entropy value, which is called the posterior entropy or specific conditional

entropy of X conditioned to Y = yj and denoted by H(X|Y = yj) or H(X|yj). H(X|Y = yj)

is given by

H(X|Y = yj) = −
N∑
i=1

PX|Y (xi|yj) logPX|Y (xi|yj). (4.5)

Note that, for each plausible measurement outcome of Y , the probability distribution

of X may change in a different way, which means the specific conditional entropy H(X|Y =

yj) varies depending on which yj is observed, j = 1, 2, ...,M . The average of H(X|yj) for

different yj’s, j = 1, 2, ...,M , is called the conditional entropy of X given Y . It is calculated

as

H(X|Y ) ≡
M∑
j=1

H(X|Y = yj)PY (yj)

= −
M∑
j=1

PY (yj)

(
N∑
i=1

PX|Y (xi|yj) logPX|Y (xi|yj)

)

= −
N∑
i=1

M∑
j=1

PX,Y (xi, yj) logPX|Y (xi|yj).

(4.6)
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Conditional entropy is a measure of the average information in X given that Y is known. In

other words, it is the average remaining uncertainty of X after observing Y .

The difference between H(X) and H(X|Y ) is called mutual information and denoted

by I(X;Y ). It represents the average information about X gained when observing Y , or, a

representation of how much knowledge of one of the random variables reduces the uncertainty

in the other,

I(X;Y ) = H(X)−H(X|Y ). (4.7)

As shown in Appendix C.1, mutual information can be expressed as:

I(X;Y ) =
M∑
i=1

N∑
j=1

PX,Y (xi, yj) log
PX,Y (xi, yj)

PX(xi)PY (yj)
, (4.8)

so I(X;Y ) = I(Y ;X).

As its name implies, mutual information is a representation of the common informa-

tion between the two variables. I(X;Y ) quantifies the dependence between X and Y , e.g.,

if X and Y are independent, then P (X|Y ) = P (X), so H(X|Y ) = H(X) and Eq. 4.7 gives

I(X;Y ) = 0, which is the minimum value of I(X;Y ).

The relationship between different quantities in information theory can be summa-

rized by the Venn diagram in Fig. 4.1. The area contained by the left circle (red and violet)

is the entropy H(X). The area contained by the right circle (blue and violet) is the entropy

H(Y ). The intersection of two circles is I(X, Y ). The union of two circles is H(X, Y ), which

is the entropy of the bivariate random variable, (X, Y). The red and blue areas, respectively,

are H(X|Y ) and H(Y |X).

4.1.2 Differential Form

When X is a continuous random variable, the differential entropy of X can be written

as

h(X) = −
∫
R

pX(x) log pX(x)dx, (4.9)
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Figure 4.1: Venn diagram representing the relationship between different quantities in infor-
mation theory.

where pX(x) is the probability density function of X. Throughout, small h is used for

differential entropy while capital H is used for discrete entropy.

The conditional entropy of X given Y , where both X and Y are continuous random

variables, is given by

h(X|Y ) =

∫
R

∫
R

pXY (x, y) log pX|Y (x|y)dxdy, (4.10)

where pXY (x, y) is the joint pdf of X and Y and pX|Y (x|y) is the conditional pdf of X given

Y = y.

The mutual information between continuous random variables X and Y is then

I(X;Y ) = h(X)− h(X|Y ) =

∫
R

∫
R

pXY (x, y) log

(
pXY (x, y)

pX(x)pY (y)

)
dxdy. (4.11)

For the case where X and Y are vectors of dimensions N and M , respectively, the

mutual information can be written in the same way:

I(X;Y ) =

∫
RN

∫
RM

pXY (x, y) log

(
pXY (x, y)

pX(x)pY (y)

)
dxdy, (4.12)
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where the integral takes place over all dimensions of X and Y .

Consider the special case where X and Y are Gaussian random vectors, with means

µX and µY and covariances CXX and CY Y . The probability density function for X is:

pX(x) =
1

(2π)N/2
1√

det(CXX)
exp(−1

2
(x− µX)TC−1

XX(x− µX)). (4.13)

Substituting the above equation into Eq. 4.9, we obtain the expression for the differential

entropy of X (Cover and Thomas, 1991, Table 16.1):

h(X) =
1

2
log((2πe)N |CXX |), (4.14)

where | ∗ | denotes the determinant of a matrix. Similarly, the expressions for h(X) and

h(X, Y ), respectively, are

h(Y ) =
1

2
log((2πe)M |CY Y |), (4.15)

and

h(X, Y ) =
1

2
log((2πe)N+M |C|), (4.16)

where

C =

 CXX CXY

CY X CY Y

 , (4.17)

and CY X = CT
XY is the cross-covariance matrix between X and Y .

Using the above expressions and the relationship depicted by Fig. 4.1, the mutual

information between two Gaussian vectors X and Y is then

I(X;Y ) = h(X) + h(Y )− h(X, Y )

=
1

2
log((2πe)N |CXX |) +

1

2
log((2πe)M |CY Y |)−

1

2
log((2πe)N+M |C|)

=
1

2
log

(
|CXX ||CY Y |
|C|

)
.

(4.18)

4.1.3 Properties of Entropy and Mutual Information
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Entropy is the measurement of the uncertainty of a variable which qualitatively re-

flects the shape of its probability density function. Because the definition of entropy is

h(x) =
∫
p(x) log( 1

p(x)
)dx, the entropy is equal to the expectation of log( 1

p(x)
).

As shown in Cover and Thomas (1991, Chapter 11), among all pdf’s of a random

variable x such that the support of each pdf is [a, b], the uniform distribution of x is the pdf

of maximum entropy. Fig. 4.2 shows two pdf’s defined on [0, 4]. The red one is a uniform

distribution and it has higher entropy than the green one. Also shown in Cover and Thomas

(1991, Chapter 11), among all distributions with the same standard deviation σ, the normal

distribution has the highest entropy. Or, to put it another way, among all distributions with

the same entropy, the normal distribution has the lowest standard deviation.

0 1 2 3 4
0 . 0

0 . 4

0 . 8

1 . 2

1 . 6

f(x
)

x

 h i g h  e n t r o p y
 l o w  e n t r o p y

Figure 4.2: High and low entropies

The definition of entropy, Eq. 4.3 or Eq. 4.9, indicates that entropy does not depend

on the actual value of X but only on the distribution of X. For a multi-modal distribution,

entropy depends on the relative height of the modes, not on the distance between the modes

(Fig. 4.3). This is an important property of entropy that makes it different from the popular

standard deviation approach.

4.1.4 Mutual Information as Uncertainty Reduction in a Linear Inverse Problem

We start by defining a typical linear inverse problem where the vector of model

parameters m is an Nm-dimensional Gaussian random vector, m ∼ N(mprior, CM). In a

linear inverse problem, the vector of predicted data is a linear transformation of m, i.e.
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Figure 4.3: Two Gaussian mixture distributions having almost the same entropy even though
distances between the modes are not the same. They are not exactly equal
because the values of the pdf between the modes are not exactly zero.

D = Gm, where G is a [ND × Nm] matrix. We assume that the noise εD in the observed

data vector has a Gaussian distribution, εD = N(0, CD) and that εD is independent of m.

The random observed data Dobs is a function of both the model parameter and the noise,

Dobs = Gm + εd. An inverse problem is the problem of determining the posterior pdf of

m conditioned to a realization dobs of the vector of observed data, Dobs. Note that Dobs is

used to denote a random vector whereas dobs represents a realization of Dobs. An inverse

problem does not usually have a unique solution but an infinite number of equally good

solutions. Therefore, in solving an inverse problem, we are interested in quantifying the

uncertainty of m conditioned to the observed data, which in practice is usually done by

generating a sample set of realizations {mj}Nej=1 which represent an (approximate) sampling

of p(m|dobs). For a general (non-linear) inverse problem, the posterior uncertainty (pdf)

of m is dependent on the actual measurement (that is, different realizations of Dobs will

lead to different posterior pdf’s for m). However, for a linear inverse problem, the posterior

uncertainty of m is independent of the value of dobs. As shown in Oliver et al. (2008), for the

linear case, the probability distribution of m conditional to dobs is a multivariate Gaussian

distribution with mean m∞ and covariance matrix CMAP . Even though the expression for

CMAP is derived using a specific realization dobs of Dobs, it does not contain dobs and therefore
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is independent of the actual realization.

It can be shown (see Appendix C.2) that the mutual information between m and

Dobs, I(m,Dobs) is related to the MAP estimate of m by the following equation:

I(m,Dobs) =
1

2
log

(
|CM |
|CMAP |

)
. (4.19)

Note that mutual information defines the relationship two random variables or vectors (not

between, say, a random variable and a realization of the other) and it takes into account all

possible realizations of both variables/vectors. Therefore, although mutual information is

related to CMAP in the linear-Gaussian case, its nature is very different from that of CMAP ,

which is the covariance of the posterior model when a particular realization of the vector of

observed data is assimilated.

The relationship of Eq. 4.19 also applies to any variable that is a linear function of m.

Suppose J is a reservoir variable that we want to investigate and J is also a linear transfor-

mation of m, J = GJm, where GJ is a [NJ×Nm] matrix. Let CJ denote the prior covariance

of J and Cu
J be the posterior covariance of J . It can be shown (see Appendix C.2) that

the mutual information between J and Dobs, I(J,Dobs) is related to the posterior covariance

matrix of J by the following equation:

I(J,Dobs) =
1

2
log

(
|CJ |
|Cu

J |

)
. (4.20)

Again, for the linear-Gaussian case, Cu
J is independent of the actual realization (dobs) of Dobs.

When J is a scalar variable, e.g. net present value or cumulative water production,

the above equation reduces to

I(J, dobs) = log

(
σJ
σuJ

)
, (4.21)

where σJ and σuJ are the prior and posterior standard deviation of J .
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4.2 Proposed Method to Quantify Uncertainty Reduction

Let J be the reservoir variable of interest. This method is primarily applicable for the

cases where J is an 1-dimensional variable, e.g. cumulative oil production or net present value

at the time of interest. If, for example, we are interested in the cumulative oil production

at several different times, the procedure can be repeated for the cumulative oil production

at each time. Let µJ , σJ and P90 - P10 be the mean, standard deviation and the difference

between the 90th and the 10th percentiles of the pdf of J . Now suppose that we are going

to perform a surveillance operation to obtain the vector of observed data Dobs. The mean of

the posterior pdf of J depends on the outcome of the measurement (a realization of Dobs),

even for the linear-Gaussian case. However, it can be shown that the average of the means

of J conditioned to different plausible measurement outcomes is still equal to the mean of

the prior model (Appendix C.3), for both linear and nonlinear cases. Therefore we are not

interested in investigating the change in the mean of J from the prior model to the posterior

model. We will instead try to quantify the average change in the standard deviation (or the

change in P90 - P10) of J . Our proposed method can be outlined as follows:

1. Generate Ne realizations from the prior reservoir model and run the simulation for

each of those realizations

2. Let Nd be the number of observed data that we would collect for a certain surveillance

scenario. From the simulation results, extract the values of the predicted data and add

noise to each vector of predicted data by sampling N(0, CD) to obtain Ne realizations

of Dobs. Then, arrange these realizations into a matrix X of size Ne×Nd. Each column

of this matrix this matrix represents one of the Ne realizations of the vector of observed

data Dobs. Also extract the values of the reservoir variable J from the Ne simulation

outputs and arrange these values in a matrix Y of size Ne × 1. It is important to note

that this procedure generates Ne specific pairs of (J, dobs), each of which corresponds

to a specific realization of m.

3. Calculate the prior entropy of J , h(J), from Y as discussed later.
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4. Calculate the mutual information between J and Dobs, I(J,Dobs), using Ne associated

(J , dobs) pairs in X and Y using one of the procedures discussed later. Note that

I(J,Dobs) is the mutual information between a random variable and a random vector

and we only obtain a single scalar value by using Ne pairs of (J , dobs). The more (J ,

dobs) pairs we have, the more accurate the mutual information estimate is expected to

be.

Then, calculate the conditional entropy of J given Dobs, h(J |Dobs), by

h(J |Dobs) = h(J)− I(J,Dobs). (4.22)

5. Reconstruct the posterior pdf of J under the condition that it has an entropy equal to

h(J |Dobs). This pdf represents the average uncertainty of J if Dobs is measured. As

shown in details later, we propose three different ways of doing this, with increasing

degrees of accuracy and complexity.

6. Using the methodology discussed later, calculate the standard deviation (or P90 - P10)

of the reconstructed posterior pdf of J conditional to Dobs. Multiply this result by a

correction factor between 1.0 and 1.359 (Appendix C.4) to obtain an estimate for the

expectation of the posterior standard deviation (or P90 - P10) of J . This correction

factor is empirical and as discussed later, the extent of its general applicability is not

known.

In the following subsections, we show how each step is performed.

4.2.1 Step 1: Generate realizations

To generate realizations of the prior reservoir model, we first require a description

of the prior reservoir model. Here, we assume that the prior pdf for the vector of model

variables generally has a Gaussian probability density function

m ∼ N(mpr, CM), (4.23)
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where mpr is the Nm-dimensional mean of the vector of model variables, m, and CM is the

prior covariance matrix.

For reservoir problems of interest, CM specifies the correlation between reservoir

model variables. For example, in a problem where we consider ln k, φ and ln kz as model

variables, the covariance matrix can be written as:

CM =


Cln k Cln k,φ Cln k,ln kz

Cln k,φ Cφ Cφ,ln kz

Cln k,ln kz Cφ,ln kz Cln kz

 , (4.24)

If we let L denote the lower triangular part of the Cholesky decomposition of CM ,

i.e., CM = LLT , then the realizations of m can be created using

mj = mprior + LZj, j = 1, 2, ..., Ne, (4.25)

where Zj is a vector of independent identically distributed (i.i.d.) standard random normal

deviates.

It is important to note that if the prior model is not Gaussian, our overall procedure

still applies but requires some form of the prior distribution that lets us generate a set of Ne

realizations.

4.2.2 Step 2: Obtain values of observed data and reservoir variable J

To obtain the observed data, we need to extract the predicted data from simulation

results and add noise to them. For the predicted data that are directly output by the

simulator such as water rate, oil rate and cumulative oil production, we simply read off the

values from the simulator output files (Eclipse in this research). For the data type that is not

a direct output of the simulator, post-processing of the simulator results is often required.

Here, the only such type of data considered is the location of the water front in a 1-D water

flooding problem (which is assumed to be measurable using nano-tracers). It is calculated
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as follows:

• At the simulation time of interest, output water saturation values at all gridblocks

between the injector and producer. For a one-dimensional problem where water is

injected at the left and produced at the right, the water saturations will gradually

change from 1 - Sor at the leftmost gridblock to Swi at the rightmost gridblock, where

Sor and Swi are the residual oil saturation and the initial water saturation, respectively.

• Define a threshold value for the water saturation at the water front. In our case, we

use 0.5 as the threshold value

• Proceed from the rightmost block to the leftmost block to determine the index of the

first gridblock whose water saturation exceeds 0.5. Interpolate between this gridblock

and the gridblock to its right to determine the position where the water saturation is

exactly 0.5 (we treat the position of the water front as a floating point value). Record

this value as the location of the water front.

Values of reservoir variable J are obtained directly from the simulation results with

no noise being added.

4.2.3 Step 3: Calculate the prior entropy of J

There are multiple methods to calculate the entropy from an ensemble of data points.

The methods range from simple methods such as binning to more sophisticated methods

such as sample spacing. Based on the comments of Kraskov et al. (2004), the most reliable

method is seemingly based on sample spacings (Beirlant et al., 1997). This method takes into

account the distance between sample points. It is expected that for a pdf of low entropy,

the distance between sample points will be small and for a variable of high entropy, the

distance between sample points will be large. Although this method is only applicable to

one dimensional data, it is applies for the problems considered here because the reservoir

variable J is only one-dimensional. The method is outlined as follows:

• Sort all values of J from low to high.
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• Calculate the entropy using the estimator

h(J) =
1

n

n−k∑
i=1

ln
(n
k

(Ji+k − Ji)
)
− ψ(k) + ln(k), (4.26)

where n is the total number of values of J , k is the order of spacing and ψ(x) is the

digamma function, ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
, where Γ(x) is the gamma function

(generalized factorial function). Fig. 4.4 shows plot of ψ(x) versus x.
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Figure 4.4: Plot of ψ(x) versus x

It is not generally clear how to choose the optimal value of k as it is dependent on the

probability distribution of J and the number of values of J in the ensemble. Small values

of k will lead to low bias (also called systematic error, which is the difference between the

true value of h(J) and the expectation of the estimator of Eq. 4.26) but high variance (also

called statistical error, which is the variance of the estimated values over different data sets)

and vice versa. Here, we do not delve into investigating this issue but simply choose k = 1

to maintain a low bias.

Before applying our estimator to a real problem, we test its reliability by calculating

the entropies of 10,000 data sets (ensembles) of size 100 each. The data sets are all sampled

from the standard Gaussian distribution N(0, 1). Note that one data set gives one entropy

value and 10,000 data sets give 10,000 entropy values. The bias of the method is defined
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as difference between the average of the 10,000 calculated entropy values and the analytical

entropy value of the standard Gaussian distribution. The variance (or standard deviation) of

the method is defined as the variance (or standard deviation) of the 10,000 entropy values.

We then repeat the test using 10,000 data sets of size 1,000 and 10,000 data sets of size

10,000. Table 4.1 shows the results of our test. While the bias is quite small regardless

of the ensemble size, the standard deviation is quite high for small ensemble sizes. For

ensembles of size 100, the standard deviation of the estimate is 7.4% of the analytical value,

which means the entropy estimate using a single ensemble of size 100 can be quite different

from the analytical value. Therefore, we recommend using an ensemble size of at least 1,000

to estimate the entropy.

Table 4.1: Performance of entropy estimation (h) using sample spacing. The analytical en-
tropy of a standard normal distribution is calculated using Eq. 4.14 and has a
value of 1.419.

E[h] bias stdev[h]
Ne = 100 1.376 -0.043 0.106
Ne = 1,000 1.412 -0.007 0.034
Ne = 10,000 1.418 -0.001 0.011

4.2.4 Step 4: Calculate mutual information between J and Dobs

Obtaining a good estimate of the estimate of mutual information is a crucial step

in our procedure. Many papers exist (Roulston, 1999; Darbellay and Vajda, 1999; Cellucci

et al., 2005; Kraskov et al., 2004) which focus on the estimation of mutual information.

However, because mutual information represents the general relationship between variables,

there is no explicit expression to calculate mutual information, and the estimation of mutual

information is prone to errors. Even for the most simple case involving one dimensional data,

i.e. estimating I(X, Y ) where X and Y are both real random variables, the estimation error

may be significant and many papers have been devoted to the development of correction

terms or alternate methods to reduce the error (see, for example, Roulston (1999); Cellucci

et al. (2005); Darbellay and Vajda (1999)). Most of these methods only apply for the
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one dimensional case. Several methods exist to estimate mutual information for the high

dimensional case but they are not without their limitations. Because of the complexity

involved, we devote a separate section (Section 4.3) to review the available methods and

discuss their applicability.

4.2.5 Step 5: Reconstruct the posterior pdf of J

Recall that the conditional entropy, h(J |Dobs), calculated in the previous step is

the expectation of the posterior entropy of J conditioned to different realizations of Dobs.

Although the conditional entropy by itself is a measure of uncertainty, it is desirable that

other formulations to quantify uncertainty, e.g. standard deviation or P90 - P10, can be

estimated. We propose a method that can relate the value of conditional entropy to the

average value of the posterior standard deviation (or P90 - P10). This involves reconstructing

a pdf that represents the average of all plausible posterior pdf’s of J . We require that the pdf

we are about to construct satisfies two conditions: (1) Its entropy is equal to the conditional

entropy of J , h(J |Dobs), and (2) It has a shape similar to the shapes of the plausible posterior

pdf’s of J . The reason we need to impose the second condition is because pdf’s of different

shapes can have different standard deviation (or P90 - P10) values even though they all have

the same entropy. Note that, in this context, “shape” does not refer to the actual height and

spread of the pdf, only the the relative height of one part of the pdf to others. Rigorously,

two pdf’s are said to have the same shape if the ratio of the heights at any two percentiles of

one pdf is equal to that at the same two percentiles of the other pdf. Intuitively, two pdf’s

are said to have the same shape if they can be stretched/compressed and translated to look

the same as the other. For example, any two Gaussian pdf’s have the same shape (Fig. 4.5)

How to determine a reasonable shape is a difficult question for two reasons: (1) The

shapes of the posterior pdf’s are often not Gaussian and (2) Different plausible posterior

pdf’s can have different shapes. There are several methods to tackle this problem, given J

is an 1-dimensional variable:

1. Use a Gaussian shape for the posterior pdf. This is the easiest but is not accurate if
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Figure 4.5: Two Gaussian distributions have the same shape but different standard deviation
and mean

the posterior pdf is far away from a Gaussian distribution.

2. Assume the posterior shape of the pdf of J does not change from its prior shape. This

can lead to a high error if the posterior shape deviates significantly from the prior

shape.

3. For each potential surveillance scenario, perform history matching 3 times, each time

with a different prior ensemble and a different realization of Dobs. The shapes of the

three posterior ensembles are then used to construct three pdf’s that have entropy

equal to the conditional entropy calculated in step 4; see below for details how to do

this. In our experience, this is the most accurate method to tackle this problem.

For the first method, since we can directly calculate the standard deviation (or P90

- P10) of the Gaussian distribution given a specific entropy (see Eq. 4.14), there is nothing

else we need to do. For the other two methods, we either have one prior ensemble of values

of J (method 2) or 3 posterior ensembles of values of J (method 3), where the histogram

of each ensemble represents a plausible shape of the posterior pdf of J . We need to modify

the values in each ensemble so that its entropy is equal to the conditional entropy h(J |Dobs).

This can be thought of as stretching the histogram so that its entropy reaches our desired

value. This can be performed as follows:

1. From the ensemble of values, calculate the ensemble mean µ.
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2. Move all points closer to or farther from the ensemble mean, µ, by replacing their

current values with new values:

Ji → k(Ji − µ) + µ, (4.27)

where k is the stretching factor. Ideally, k should be equal to the ratio of the standard

deviation of the target distribution to the current distribution, i.e. k =
σtarget

σcurrent

, then

this step only needs to be performed once. In reality, since we do not know how

calculate the standard deviation of the target distribution from its entropy unless it is

a Gaussian, we have to perform the “stretching” iteratively, each time with a value of k

that is approximately equal to
σtarget

σcurrent

. The value of k at each iteration is calculated by

assuming the distribution is Gaussian and by making use of Eq. 4.14. From Eq. 4.14,

the current and target standard deviations, respectively, are approximated as

σcurrent ≈
√

exp(2 ∗ hcurrent)

2πe
, (4.28)

and

σtarget ≈
√

exp(2 ∗ htarget)

2πe
, (4.29)

where hcurrent and htarget, respectively, are the current and the target entropies of the

distribution. Taking the ratio of σtarget to σcurrent gives us the value of k:

k =
√

exp (htarget − hcurrent) ∗ 2. (4.30)

3. Repeat step 2 until we obtain a pdf with entropy equal to our target entropy.

At the end of this procedure, we obtain 1 or 3 ensembles of values of J , each of which

approximate the expectation of the pdf of J conditional to Dobs and, in step 6, statistical

analysis can be done on these pdf’s to obtain metrics such as standard deviation or P90 -

P10. In the case there are 3 ensembles, we calculate the standard deviation or P90 - P10 of
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all of them, and then average the results.

4.2.6 Step 6: Calculate standard deviation and P90 - P10

If we have more than 1 ensemble that represent the expected posterior pdf, we cal-

culate the standard deviation or P90 - P10 for each ensemble, and then average the results.

The estimator for calculating standard deviation is well-known and can be found in most

statistics books, so it will not be repeated here. To calculate P90 - P10 from a set of samples,

we simply calculate the values of the 90th and 10th percentiles and then subtract P10 from

P90. The procedure we use to calculate the value of the pth percentile of a list of N values

is identical to the one used in Microsoft Excel R©. Suppose we have an ensemble of Ne values

of J , the procedure is as follows:

• Sort the values of J in ascending order, J1 ≤ J2 ≤ · · · ≤ JNe

• Calculate the rank:

n =
p

100
(Ne − 1) + 1. (4.31)

• If n is an integer then the pth percentile is simply the nth value of the ordered list. If

n is a floating point value, let k be the integer part and and d be the decimal part of

n. The pth percentile is calculated using interpolation between the kth and (k + 1)th

values of the ordered list:

J (pth percentile) = Jk + d(Jk+1 − Jk). (4.32)

There is one last issue, that is, our computational experiments show that the values

of σJ and P90 - P10 calculated from our reconstructed pdf are usually smaller than the

actual average values of σJ and P90 - P10. We found that a correction factor from 1.0 to

1.359 should be used to bring our estimated value closer to the true value. Appendix C.4

shows how this correction factor is developed. This correction factor is calculated based on

the value of the mutual information, so each scenario has one correction factor, regardless
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of how many ensembles (1 or 3) are used to estimate the shape of the posterior pdf in that

scenario.

4.3 Estimating Mutual Information

4.3.1 The straightforward binning method

We will first show how this method is done for the case where X and Y are both

1-D variables, i.e. scalars, then show how the method can be extended to higher dimen-

sional cases. This method is directly based on the definition of the mutual information for

continuous variables which is given by

I(X;Y ) =

∫
R

∫
R

pXY (x, y) log

(
pXY (x, y)

pX(x)pY (y)

)
dxdy. (4.33)

The values of X and Y can be partitioned into bins of finite sizes. Let kX and kY re-

spectively be the number of bins for X and Y . The mutual information can be approximated

by the finite sum

Ibinning(X;Y ) =

kX∑
i=1

kY∑
j=1

PXY (i, j) log

(
PXY (i, j)

PX(i)PY (j)

)
, (4.34)

where PXY (i, j) =
∫
i

∫
j
pXY (x, y)dxdy, PX(i) =

∫
i
pX(x)dx, PY (j) =

∫
j
pY (Y )dy and

∫
i

is

the integral over bin i. These integrals are approximated as discussed in the next paragraph.

Let n be the total number of sample points of (X, Y ). Let nX(i) be the number of

points falling into the ith bin of X, nY (j) be the number of points falling into the jth bin of

Y , and nXY (i, j) be the number of points that belong to both the ith bin of X and the jth

bin of Y . The value of PXY (i, j), PX(i), and PY (j) can simply be approximated as:

PXY (i, j) = nXY (i, j)/n,

PX(i) = nX(i)/n,

PY (j) = nY (j)/n.

(4.35)
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The value of this estimate is dependent on the binning scheme and is expected to

converge to the true value when n → ∞. Choosing an appropriate number of bins is

important as it can significantly impact the value of the estimate. Cellucci et al. (2005)

summarize available formulas to calculate an appropriate number of bins. However, even

when the proper number of bins is used, the method still suffers from systematic error.

Roulston (1999) and Steur et al. (2002) presented procedures to partially correct for these

errors.

Although the aforementioned issues with the binning method are not negligible, the

biggest shortfall of this method is actually its inability to accurately estimate mutual in-

formation when X and Y are multi-dimensional vectors. Theoretically, we can still apply

the same principle to estimate mutual information, except now each dimension of X will be

partitioned into kXi bins, i = 1, 2, ..., N and each dimension of Y will be partitioned into kYi

bins, i = 1, 2, ...,M , where N and M , respectively, are the dimensions of X and Y . We can

easily see that this method is not practical unless N and M are small or we generate a very

large number of sample points. For example, consider the case where X is 5 dimensional and

Y is 1 dimensional. If we partition each dimension of X and Y into 2 bins (the minimum

possible number of bins), it would result in a total of 25+1 = 64 hyper-rectangles in the 6-D

space. Calculating mutual information requires the estimate of the probability that (X, Y )

is within each of these 64 hyper-rectangles. Because of the exponential relationship, the

number of possible hyper-rectangles increases sharply as the number of dimensions increases

and there would be too few points in each hyper-rectangle for the calculated probability to

be representative unless n, the number of samples of (X, Y ), is impractically large.

4.3.2 The kth nearest neighbor method

The kth nearest neighbor algorithm (Kraskov et al., 2004) is a nonparametric method

to estimate mutual information. The procedure of this method is summarized as follows:

• Let X and Y be N -dimensional and M -dimensional data, respectively and let Z =

(X, Y ).
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• For the the ith sample of Z, find the kth closest point to this ith point. Here the distance

between two points is defined as ||z− z′|| = max{||x− x′||, ||y− y′||}, where any norm

can be used for ||x− x′|| and ||y − y′|| (the norms do not need to be the same).

• Let ε(i)/2 be the distance from the ith point, zi, to its kth nearest neighbor. Using

this distance, draw horizonal and vertical bands around the ith point as illustrated

in Fig. 4.6. More generally, we would form a hypersquare centered at zi with each

dimension equal to ε(i)/2.

(i)ε

(i)ε

a

i

Figure 4.6: Estimation of mutual information using kth nearest neighbor for k = 1. In this
example, nx = 5 and ny = 3

• Count nx and ny, which respectively represent the number of points that strictly lie

inside the vertical and horizontal bands, respectively. It is expected that the value of

nx and ny will be small for high mutual information and will be large for low mutual

information. For example, consider the case where X and Y are 1-dimensional and

perfectly correlated, i.e. the points on the cross-plot of X and Y follow a line. The

band drawn around the ith point based on the distance to the nearest neighbor point

will contain only the nearest neighbor point (excluding the ith point). On the other

hand, when X and Y have little correlation, the band drawn in the same way will

contain significantly more points as the points are more scattered.

• Repeat the above steps for all points in the cross plot and apply the following formula

132



to calculate mutual information:

I(X, Y ) = ψ(k)− 〈ψ(nx + 1) + ψ(ny + 1)〉+ ψ(n), (4.36)

where 〈...〉 denotes the average over all the points, k is the order of neighborhood, n is

the number of points and ψ(x) is the digamma function, ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
,

where Γ(x) is the gamma function (generalized factorial function).

The accuracy of this algorithm is somewhat dependent of the choice of k. Small

values of k will lead to low bias but high variance and vice versa. The optimal choice of

k varies with the number of data points and the nature of the problem. Here, we simply

choose k = 1 to try to minimize the bias.

4.3.3 Using PCA to Improve Estimate of Mutual Information

Even though the nearest neighbor method is applicable to cases of any number of

dimensions and, in our experience, it performs better than other methods given the same

ensemble size, the estimate can still be inaccurate if the number of dimensions is too high

for the number of realizations available. One way to partially remedy this problem is to use

the Principal Component Analysis (PCA) to reduce the number of dimensions. The general

concepts and a standard procedure to perform PCA can be found in Appendix C.5.

For high dimensional problems, even though we have no theoretical result that shows

the nearest neighbor algorithm underestimates the value of mutual information, all compu-

tational experience we have to date indicates that this is the case. Intuitively, we believe

this is due to the fact that for large dimensional problems, we can never generate enough

samples of the probability density function (pdf) for (J , Dobs) to determine the nonlinear

relationship between J and Dobs. We apply PCA with the hope that, by reducing the num-

ber of dimensions, it will make the relationship between J and Dobs easier to be recognized,

thus increase the mutual information estimate. However, we have to be careful when using

PCA because we could lose information when using PCA for two reasons: (1) PCA elimi-
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nates the principle components that have the lowest variances and (2) PCA cannot preserve

non-linear relationship. When this happens, some relationship between J and Dobs is lost

and our estimate of mutual information is reduced, which is the exact opposite of what we

wish to achieve.

When PCA is applied to the right problem, the error due to loss of information

is expected to be negligible compared to the error caused by including non-informative

dimensions. Here, we compare the mutual information estimate before and after PCA. If the

mutual information estimate increases after applying PCA, it suggests that applying PCA

is appropriate, otherwise we discard the mutual information estimate using PCA and keep

the one obtained without PCA. There are also some other precautions that we should pay

attention to when applying PCA:

1. Only apply PCA to the case where there is significant difference between the magni-

tudes of the greatest and the smallest singular values and only abandon the dimensions

corresponding to the smallest singular values; we only want to abandon the dimensions

of little significant so that we do not lose much information. If all singular values are

roughly the same, this indicates the information contained in all dimensions are sig-

nificant. In this case, abandoning even one dimension can lead to significant loss of

information. Therefore, this case is not suitable for PCA.

2. One must be careful when applying PCA to a data set consisting of different observation

types, e.g. a data set that contains both water cut data and grid block pressures. One

major problem arises because of the difference in units and magnitudes of measurement

values, although we can generally ameliorate this problem by normalization of data to

generate dimensionless data which are all roughly on the same scale. We do this by

dividing the data values in each dimension by the standard deviation of that dimension.

A more important issue that occurs when reducing the number of data by PCA is that

PCA is applied directly to the data set and does not account for the relationship

between data and the reservoir variable J . Suppose that we have a data set that
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contains 4 water rate measurements and 8 pressure measurements so that data vector

is 12-dimensional, and that after PCA, the data vector is reduced to 3 dimensional,

1 of which comes from water rate measurements and 2 of which come from pressure

measurements. Now suppose that when we estimate mutual information between our

reduced data set and J , we find that the 2 pressure dimensions contribute little to

the estimate of mutual information, i.e. there is no relation between pressures and J .

Therefore it turns out that keeping 2 measurements of pressure is not useful and it

would be better if we keep 3 dimensions from water rate instead. This illustrates the

difficulty in trying to keep only the data that is most relevant using PCA.

3. There are also times when abandoning even one dimension leads to a significant un-

derestimation of mutual information even though the singular value corresponding to

that dimension is small. This can happen when each individual dimension does not

provide useful information but the combination of all dimensions provide significant

information about J .

As shown in the next two sections, the combination of the nearest neighbor method

and PCA works well for the toy problem and the 1-D water flooding problem. However, the

accuracy of the nearest neighbor method tends to decrease as the dimension of the observed

data vector increases because the method relies on obtaining an accurate representation of

the distribution of the observation vectors in a RNd+1 space, where Nd is the dimension of

the observed data vector and J is a real random variable. Therefore, the estimate is prone

to error when the number of dimensions is so high that it is not computationally feasible

to generate enough samples of the joint distribution of J and Dobs to fully represent the

relationship between J and Dobs. For the last two problems, the number of dimensions

can be as high as a few hundred so the applicability of the nearest neighbor algorithm is

tenuous. For this reason, an alternative, more efficient method is needed to estimate the

mutual information between J and Dobs.
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4.3.4 Estimate Mutual Information Using Linear-Gaussian Assumption

In addition to the nearest neighbor algorithm, we explore a simple method based on

the linear-Gaussian assumption. We refer to the resulting procedure for estimating mutual

information as the linear-Gaussian method. Using Eq. 4.18, the mutual information between

X and Y , where X ⊂ RNX and Y ⊂ RNY , can be calculated as follows,

I(X;Y ) =
1

2
log

(
|CXX ||CY Y |
|C|

)
, (4.37)

where

C =

 CXX CXY

CY X CY Y

 . (4.38)

Here, CXX and CY Y , respectively, are the auto-covariance of X and Y , CY X = CT
XY is the

cross-covariance matrix between X and Y and the vertical bars around a matrix denote the

determinant of the matrix.

For a linear-Gaussian problem, the calculation of mutual information using Eq. 4.37 is

exact. It can also be shown that, for the linear-Gaussian case, the mutual information is equal

to the natural logarithm of the ratio of the prior standard deviation to the posterior standard

deviation of the random variable J of interest (see Appendix C.2), thus the value of mutual

information provides one way to quantify uncertainty reduction. For a general problem,

however, Eq. 4.37 essentially ignores the non-linear relationship in the data. Therefore,

we expect this method to underestimate the mutual information if there is a nonlinear

relationship present in the data. This is actually what we experienced in the 1D water

flooding problem discussed later, where the linear-Gaussian estimator gave a much lower

estimate compared to the nearest neighbor estimator. However, our experience indicates

that the nearest neighbor algorithm tends to significantly underestimate mutual information

for large-dimensional problems. Thus, it is possible that Eq. 4.37 will be more accurate than

the nearest neighbor algorithm when Nd is on the order of 50 or larger. We should note that

Eq. 4.37 will underestimate mutual information whenever the relationship between J and
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Dobs is dominated by nonlinearities.

The use of Eq. 4.37 requires the calculation of several matrices’s determinants, which

can be difficult if the matrices are large in size. Note that, in our problems, CXX , CY Y and C

are all symmetric and positive definite. The procedure we use to calculate the determinant

of a symmetric, positive definite matrix C of size n× n is as follow:

1. Calculate the singular value decomposition (SVD) of C.

C = UΛV T , (4.39)

where Λ is a diagonal matrix whose diagonal elements, λi, i = 1, ..., N , are the singular

values of C. The singular values of C are sorted from largest to smallest with λ1 being

the largest and λn being the smallest. Because C is symmetric and positive definite,

the diagonal elements of Λ are also C’s eigenvalues and are all positive.

2. Calculate the determinant of C by taking the product of all eigenvalues (singular

values) of C in the following order:

|C| = λ1λnλ2λn−1..., (4.40)

which is done to prevent the immediate value of the product from going over the

maximum value representable by the double-precision floating-point format (about

10308) at any point during the calculation.

4.4 Toy Problem

The toy problem is a simple analytical problem where the model parameter m is a

real variable, m ∼ N(2.4, 0.1). The ith component of the vector of observed data, (Dobs)i, is

a nonlinear function of m and i, with measurement error εD ∼ N(0, 0.01);

(Dobs)i = ĝ(m, i) + εD = 1− 9

2

(
m− 2

π

3

)2

+ (i− 1) sin(m) + εD, (4.41)
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where ĝ(m, i) = 1− 9
2

(
m− 2π

3

)2
+ (i− 1) sin(m). Note that Dobs is a function of m only:

Dobs = g(m) =



ĝ(m, 1) + εD

ĝ(m, 2) + εD

...

ĝ(m,Nd) + εD


, (4.42)

where Nd is the number of dimensions of Dobs. In this example, we perform experiments

using Nd = 1, 2, ..., 5.

The variable J is also a nonlinear function of m and is given by

J = h(m) = m3. (4.43)

Our objective is to quantify the average uncertainty reduction in J when Dobs is

obtained. Following our proposed procedure (section 4.2), in step 1, we generate 10,000

realizations of m from our prior model. Then, in step 2, we calculate the corresponding Dobs

and J for each realization using Eqs. 4.42 and 4.43. In step 3, the prior entropy of J , h(J) is

calculated using the sample spacing method; see section 4.2.3. The result of our estimate is

3.090 nats. To validate this result, we calculate the prior entropy of J using a more rigorous

method, using the definition of entropy, i.e.,

h(J) = −
∫
R

fJ(J) log fJ(J)dJ. (4.44)

To perform this integration, the analytical expression of fJ(J) is needed. Note that because

J is a monotonic function of m, each value of m corresponds to exactly one value of J .

Furthermore, all values of m between two arbitrary numbers a and b correspond to all values

of J between h(a) = a3 and h(b) = b3. Therefore, the probability that m falls between a

and b is equal to the probability that J falls between h(a) and h(b). In other words, the

area under the curve of fM(m) from m to m + dm must be equal the area under the curve
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of fJ(J) from J to J + dJ , where J = h(m) and dJ = h(m + dm) − h(m). We can write

this as

|fJ(J)dJ | = |fM(m)dm| , (4.45)

or

fJ(J) =

∣∣∣∣dmdJ
∣∣∣∣ fM(m) =

∣∣∣∣ 1

h′(m)

∣∣∣∣ fM(m), (4.46)

where m = h−1(J). After obtaining the pdf of J , numerical integration using the iterative

trapezoidal rule is used to obtain the value of h(J). The result of the numerical integration

is 3.099 nats. Compared to the result obtained with the sample spacings method of 3.090

nats, we have good agreement between the two results.

In step 4 of our procedure, the mutual information between J and Dobs, I(J,Dobs),

is calculated using the kth nearest neighbor method with k = 1; see section 4.3.2. Then,

the conditional entropy of J given Dobs, h(J |Dobs) is calculated by subtracting the value

of mutual information from the value of the prior entropy. We estimate the conditional

entropy for 5 cases, where the number of observed data, i.e. the number of dimensions of

Dobs, varies from 1 to 5. The results are shown in Table 4.2 but before discussing the results,

we show how we validate the results. The conditional entropy of J given Dobs can also be

calculated using numerical integration. Recalling that the conditional entropy is simply the

expectation of the posterior entropy of J conditioned to Dobs, we can calculate the posterior

entropy for different realizations of Dobs and take the average value. For this purpose, we

use the 10,000 realizations of the vector of Dobs that we generated earlier as our plausible

measurement outcomes. The pdf of m conditional to a realization of the Nd-dimensional

vector of observed data, dobs, is expressed as:

fM(m|dobs) = a exp(−1

2
(m− 2.4)TC−1

M (m− 2.4)− 1

2
(g(m)− dobs)TC−1

D (g(m)− dobs)) (4.47)

where a is a normalizing constant and the expression for g(m) is defined by Eq. 4.42. The

posterior pdf of J conditioned to the ith plausible measurement outcome can be calculated
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using an equation similar to Eq. 4.46 :

fJ(J |dobs) =

∣∣∣∣ 1

h′(m)

∣∣∣∣ fM(m|dobs). (4.48)

We can now perform numerical integration to obtain the entropy of each plausible

posterior pdf of J and then average the results to obtain the conditional entropy h(J |Dobs).

We consider the estimates of h(J |Dobs) obtained from this rigorous procedure as the true

values and are shown in Table 4.2 along with the estimates using the kth nearest neighbor

method we obtained earlier.

Table 4.2: Comparison of h(J |Dobs) using 2 different methods

I(J ;Dobs) h(J |Dobs) h(J |Dobs)
estimate estimate rigorous

Nd = 1 1.926 1.164 1.200
Nd = 2 2.389 0.701 0.689
Nd = 3 2.748 0.342 0.326
Nd = 4 2.991 0.099 0.060
Nd = 5 3.110 -0.02 n/a*

*numerical integration subroutine did not give reliable results because the slope of the pdf of
f(J |Dobs,i) is too steep.

When the number of dimensions is small (Nd = 1 or 2), our estimation of h(J |Dobs)

agrees very well with the true values. When the dimension of the problem is higher (Nd =

3 or higher), our estimation of h(J |Dobs) over-predicts the true values, which is the direct

result of our mutual information estimation under-predicting the true values. This illus-

trates a major problem with any method that estimates the mutual information; the mutual

information is often underestimated when the dimension of the problem is high. Overall, the

comparison is good which verifies that our estimation of mutual information is reasonably

accurate. Because h(J |Dobs) represents the average uncertainty in J given Dobs, the trend of

h(J |Dobs) in the table also agrees with our expectation; as more observed data is obtained,

the conditional entropy of J is further reduced. Note that the entropy can take on both pos-

itive and negative values, so the negative value of the estimated conditional entropy using 5
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observed data is not an indicator of estimation error.

Next, in step 5 of our proposed procedure, we want to translate the conditional en-

tropy into the expected value of the standard deviation of J conditional to Dobs. This is

not an easy task because the posterior pdf of J for the toy problem under consideration

can be either unimodal or bimodal depending on the value of dobs, which is a realization of

Dobs. Fig. 4.7 shows the posterior pdf’s obtained using Eq. 4.48 and with different values

of dobs for the case where Nd = 1. Note that the three posterior pdf’s shown in Fig. 4.7

have distinctively different shapes and the pdf corresponding to dobs = 0.58 has two modes.

Also as we mentioned earlier, the entropy value does not carry information about the dis-

tance between the nodes. Therefore, we cannot use conditional entropy to estimate average

standard deviation of a multi-modal distribution. By examining the posterior pdf of J , we

found that when using 3 or more observed data (Nd = 3 or higher), the posterior pdf’s of J

conditioned to Dobs are mostly unimodal and in that case, we can translate from conditional

entropy into average standard deviation using our proposed method.
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0 . 6
0 . 8
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Figure 4.7: Plot of the posterior pdf’s of J conditional to three realizations of Dobs for the
case Nd = 1.

Despite the problems when the observed data vector is one or two dimensional, we

will use a Gaussian shape to reconstruct our posterior pdf of J . Because we use a Gaussian

shape, there is actually no reconstruction necessary. Instead, the standard deviation of our

reconstructed pdf can be calculated directly using Eq. 4.14. We then multiply the estimated

standard deviation with the correction factor between 1.0 and 1.359; see Step 6 of our pro-
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posed method. We compare the resulting estimates to the average of the posterior standard

deviations of J conditioned to 1000 random truth cases (rigorous method). Table 4.3 shows

the result of this comparison.

Table 4.3: The expected standard deviation of J obtained with our proposed procedure and
with the rigorous method.

σJ σJ σJ ,i/σJ ,i−1 σJ ,i/σJ ,i−1 Ratio difference
estimate rigorous estimate rigorous

Nd = 1 1.053 2.258 n/a n/a
Nd = 2 0.663 0.967 0.630 0.428 0.202
Nd = 3 0.463 0.540 0.698 0.558 0.140
Nd = 4 0.363 0.348 0.784 0.644 0.140
Nd = 5 0.322 0.257 0.887 0.738 0.149

We can make three observations from the result of Table 4.3:

• For Nd = 1 or 2, the average standard deviation estimated by our proposed method

is significantly smaller than that calculated from the rigorous method. This can be

explained using the fact that the posterior pdf of J often has two modes for 1 and 2

observed data, so we underestimate the standard deviation if we assume the posterior

pdf is Gaussian with a single mode. This means our Gaussian assumption for the

posterior pdf of J is not good enough, which leads to a high difference between the

estimated σJ and the value computed with the rigorous method.

• For Nd = 3 to 5, the comparison is much closer. This is because the posterior pdf of J

is, in most case, unimodal and thus can be approximated by a Gaussian distribution.

For Nd = 5, we observe a reverse trend in the comparison, where our estimated value

of σJ is greater than the value calculated rigorously. This is because our mutual

information estimator underestimates the true value, which leads to an erroneously

high value of conditional entropy which automatically results in an erroneously high

value of the average standard deviation (for a Gaussian pdf, standard deviation is

directly proportional to the entropy according to Eq. 4.14).
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• The third observation is that the estimated σJ values mimic the qualitative behavior

of the values of σJ computed from the rigorous method in the sense that in both cases

σJ decreases as the number of observed data increases as it obviously should. The

fourth and fifth columns of Table 4.3 show the values of σJ ,i/σJ ,i−1, i = 2, 3, 4, 5

obtained from the two methods, i.e., the average standard deviation obtained when

assimilating i data divided by the average standard deviation obtained assimilating

i−1 data. The trends of this standard deviation ratio for the two procedures are again

the same but the values of this ratio obtained from the approximate method is always

greater than the corresponding value obtained from the rigorous method. Column six

of Table 4.3 records the value in column four minus the value in column five. Note this

value ranges only from 0.14 to 0.20 and the values in the last three rows are all very

close to 0.14. A value of 0.14 means that the rigorous method indicates a 14% greater

reduction in uncertainty (σJ) by adding one more measurement than is indicated by

the approximate method.

4.5 One-dimensional Water Flooding Problem

We define a simple 1D water flooding problem with the following properties:

• 21× 1× 1 grid blocks, each of which is of size 100 ft × 20 ft × 20 ft.

• All grid blocks have porosity equal to 0.18. The permeability follows a log-normal

distribution with mean equal to 5 and standard deviation equal to 0.5. The spherical

covariance function with prior correlation length of 10 grid blocks is used to generate

realizations from the prior Gaussian pdf.

• One water injector is placed on the left in grid block (1, 1, 1), with constant injection

pressure of 5500 psi.

• One producer is placed on the right in grid block (21, 1, 1), with constant production

pressure of 4500 psi.
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• One observation well is placed in the middle in grid block (11, 1, 1).

• The simulation time is 8 years.

Our objective is to quantify the uncertainty reduction in cumulative oil production at

the end of simulation time (8 years) using observed data that can be obtained from various

surveillance operations. From now on, whenever we mention cumulative oil production

without specifying measurement time, we mean the value obtained at the end of year 8. The

data types we consider in this research are water front location, water production rate at the

production well, water saturation measured at the observation well, and pressure measured

at the observation well. Specifications of each type of data are shown in Table 4.4.

Table 4.4: Specifications of measurement data

Measurement Freq. Units Measurement Error
Water front location Every 12 months gridblock index N(0, 0.3)
Water production rate Every 3 months STB/D N(0, 1.0)
Water saturation Every 3 months dimensionless N(0, 0.02)
Pressure Every 3 months psi N(0, 5.0)

In step 1, we generate 10,000 realizations of the prior model, the first four of which

are shown in Fig. 4.8. In step 2, we run simulations (using Eclipse) to obtain observed data

and cumulative oil production for all realizations. Figs. 4.9 and 4.10, respectively, show the

pressure and water saturation profiles after one month, one year and three years for the

first 4 realizations. Fig. 4.11 shows the water rates at the production well for the first 4

realizations. From Figs. 4.10 and 4.11, we can see that, among the first 4 realizations, no

realization experiences water breakthrough after 1 year and only one realization experiences

water breakthrough after 3 years, which means that the water front location should provide

valuable information about the water movement when we measure it at the end of the first

year and at the end of 3 years.

In step 3, we calculate the prior entropy of cumulative oil production. For the water

flooding problem defined at the beginning of this section, the prior distribution of cumulative
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Figure 4.8: First four realizations of the log permeability field.
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Figure 4.9: Pressure profiles of the first four realizations.

oil production at the end of year 8 is similar to a Gaussian distribution but skewed to the right

with a long tail at the left (Fig. 4.12). The prior uncertainty of cumulative oil production, in

term of P90 - P10, is 6134 STB. The estimation of prior entropy based on sample spacings
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Figure 4.10: Water saturation profiles of the first four realizations.
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Figure 4.11: The water production rates of the first four realizations.

give us a result of 8.94. We consider this result reliable because it is estimated from a set of

10,000 values.
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Figure 4.12: Histogram of prior knowledge of cumulative oil production

In step 4, using the kth nearest neighbor method (Kraskov et al., 2004), we calculate

the mutual information between cumulative oil production and each type of observed data.

We consider 2 cases: (1) data are observed in the first year, and (2) data are observed in

the first 3 years. This means that we will have either 1 or 3 observed data for the water

front location, and either 4 or 12 observed data for the water rate at the production well, 4

or 12 observed data for the water saturation at the observation well and 4 or 12 observed

data for the pressure at the observation well. Note that, even though other types of data

are also available, such as the pressures at the production well, they are not considered in

this research. Also, in this example, we only consider the effect of each type of observed

data separately. In example 3 and 4, we will consider the combined effect of different types

of observed data. The results are shown in Table 4.5.

Table 4.5: Mutual information between cumulative oil production and different types of ob-
served data. The superscript * denotes that PCA has been applied to improve
the estimation of mutual information.

1 year data 3 year data
Water front location 1.63 2.21
Water production rate 0.02* 1.10*
Water saturation 0.53* 1.82*
Pressure 0.59 1.90

From Table 4.5, it can be seen that the information content carried in the water front
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locations are greatest among 4 types of observed data. The water production rate provides

the least amount of information, especially if we use only the data for the first year. This

is easy to understand as there is almost no water production for most realizations during

the first year (see the plots above for the first four realizations) and even when there is, the

production rate is too small compared to the noise level. The information content carried

in the pressure and water saturation are roughly equal and fall between those of the water

front location and the water production rate.

The conditional entropy of cumulative oil production conditioned to observed data

is calculated as the difference of prior entropy and mutual information. These results are

shown in Table 4.6. Note that the sum of any cell of Table 4.6 with the cell of the same row

and column indices in Table 4.5 is equal to 8.94, which is the value of the prior entropy.

Table 4.6: Conditional entropy of cumulative oil production given different types of observed
data.

1 year data 3 year data
Water front location 7.31 6.73
Water production rate 8.92 7.84
Water saturation 8.41 7.12
Pressure 8.35 7.04

Now we want to cross-check the above results with another method, similar to what

we did in the toy problem. We cannot use the numerical integration approach because there

is no explicit expression for J as a function of m. Instead we will use history matching

to update the prior model with different plausible measurement outcomes to obtain the

posterior pdf’s of J . Our choice of history matching method for this problem is Ensemble

Smoother with Multiple Data Assimilation (ES-MDA) (Emerick and Reynolds, 2013c) as it

has been shown to give the most accurate uncertainty quantification among ensemble-based

methods (Emerick and Reynolds, 2013c) for a similar 1-D water flooding problem. The steps

are outlined below:

1. Divide our 10,000 realizations we created earlier into 100 ensembles of 100 realizations
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each.

2. Generate another 100 independent realizations, which represents 100 plausible truth

cases. For each of these truth cases we generate a vector of plausible observed data by

running the reservoir simulator and adding noise.

3. Match each of the 100 ensembles generated in step 1 with one vector of observed data

generated in step 2 to obtain the updated ensemble. Each updated ensemble of 100

models approximately represents one plausible posterior probability density function

(pdf).

4. For each updated ensemble, calculate the posterior entropy using the sample spacing

method (Beirlant et al., 1997).

5. Average the posterior entropies over the 100 ensembles to obtain the conditional en-

tropy. Compare this value with our estimated value.

When applying the ES-MDA algorithm to our problem, we do not use covariance

localization because the ensemble size (100) is considerably larger than the number of model

parameters (21), so spurious correlations are expected to be insignificant. The number

of data assimilations in ES-MDA method is chosen so that the final objective function is

smallest. We found that 3-6 data assimilations are the optimal value for our problems. The

first 4 plausible posterior distributions of J conditioned to each type of observed data are

shown in Fig. 4.13-4.16.

The conditional entropy of cumulative oil production given different types of observed

data calculated through rigorous history matching are shown in Table 4.7. Comparing the

results of Tables 4.6 and 4.7, we see that the two estimates of conditional entropy agree

quite well. The difference can be the consequence of any of the following: (1) error in esti-

mating mutual information (2) error in estimating entropy (3) error in sampling of posterior

distributions using ES-MDA.

Next, we would like to estimate the average P90 - P10 of J (steps 5 and 6) and
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Figure 4.13: The plausible posterior distributions of cumulative oil production conditioned
to 3 years of water front data.
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Figure 4.14: The plausible posterior distributions of cumulative oil production conditioned
to 3 years of water production rates.

compare it with the true value. For each type of observed data, the average P90 - P10 over

100 posterior ensembles of J obtained using ES-MDA is considered to be the true value.

These values are shown in Table 4.8. It can be seen from Table 4.8 that using the water

front location gives us the smallest posterior uncertainty while using the water rate gives us

the highest degree of uncertainty.

To obtain a reliable estimate of the average P90 - P10 of J from our estimates of
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Figure 4.15: The plausible posterior distributions of cumulative oil production conditioned
to 3 years of water saturation data.
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Figure 4.16: The plausible posterior distributions of cumulative oil production conditioned
to 3 years of pressure data.

conditional entropy, we need information about the shape of the posterior pdf’s. Using a

Gaussian shape will not work for this case because, based on our history matching results,

the posterior pdf’s are far from Gaussian. The most simple alternative is to assume that the

shapes of the posterior pdf’s do not deviate significantly from the prior shape (Fig. 4.12) and

reconstruct our posterior pdf based on the prior shape; see the discussion in section 4.2.5.

By making this assumption, we can completely avoid history matching and our procedure
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Table 4.7: Conditional entropy of cumulative oil production given different types of observed
data, calculated using rigorous history matching.

1 year data 3 year data
Water front location 7.40 7.00
Water production rate 8.78 7.96
Water saturation 8.25 7.13
Pressure 8.24 6.77

Table 4.8: The true average value of P90 - P10 of cumulative oil production obtained using
history matching. The unit of measurement is STB.

1 year data 3 year data
Water front location 1447 904
Water production rate 5587 4789
Water saturation 4525 1259
Pressure 4112 1178

requires little computational cost other than the cost of generating the initial ensembles. Our

estimation of average P90 - P10 of J is shown in Table 4.9. Note that in this table, we have

already multiplied our estimates with the appropriate correction factor (between 1.0 and

1.359) calculated using the procedure shown in Appendix C.4. Because the determination of

the correction factor is based on the value of the mutual information and each surveillance

scenario has a different value of the mutual information, a different correction factor is

applied to each surveillance scenario.

Table 4.9: The estimated average value of P90 - P10 of cumulative oil production obtained
assuming the shapes of posterior pdf’s are the same as the prior shape. The unit
of measurement is STB.

1 year data 3 year data
Water front location 1546 936
Water production rate 6007 2434
Water saturation 3936 1313
Pressure 3743 1225

As we can see by comparing the results of Table 4.9 with the “true” values of Table 4.8,
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most of our estimates are in good agreement with the true values except when we use 3 years

of water production rate data. This difference is most likely due to the deviations of the

posterior shapes from the prior shape; we can see there is a big difference in the shapes of

the pdf’s in Fig. 4.14 and the shape of the prior pdf in Fig. 4.12.

A seemingly more reliable method to estimate the shape of the posterior pdf is to

do so through history matching. This may sound like defeating the purpose of what we are

trying to accomplish, that is, estimating uncertainty reduction without history matching.

However, we argue that we may not need as many as 100 different posterior ensembles to

obtain information about the shape of the posterior distribution and use only 3 ensembles.

Using information about the shape of these ensembles combined with the conditional entropy

calculated earlier, we can expect to obtain much more reliable estimate of the average P90

- P10 of J than by simply calculating the average of P90 - P10 of J over 3 ensembles. Note

that the rigorous result is obtained by averaging the P90 - P10 of all 100 ensembles. Based on

this reasoning, we randomly choose 3 posterior ensembles from the 100 posterior ensembles

we obtained in history matching. Here, for simplicity, the first 3 ensembles are used. We

then construct three new pdf’s, each of which is based on one chosen ensemble and with

entropy equal to our calculated conditional entropy. For each of the reconstructed pdf’s we

calculate P90 - P10 and take the average value. Table 4.10 shows the estimate using our

proposed method.

Table 4.10: The estimated average value of P90 - P10 of cumulative oil production obtained
using 3 history matches for each surveillance scenario. The unit of measurement
is STB.

1 year data 3 year data
Water front location 1302 847
Water production rate 6947 3891
Water saturation 4746 1281
Pressure 4092 1540

Comparing the estimates in Table 4.10 to the estimates in Table 4.9, we can see that

some estimates are improved (bold text), some are worse (italic text) and some are roughly
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the same (regular text). The case with biggest improvement is the case of 3 years of water

production rate data, where the estimation error is reduced from 49% to 19%. It seems like

having knowledge about the shape of the posterior pdf’s helps us improve our estimates in

this case. The case with the worst degradation is the case of 3 years of pressure data, where

the estimation error increases from 4% to 31%. One possible reason is that the shapes of

the three posterior ensembles obtained with history matching is not representative of the

overall shape. If we look at the first 3 histograms of Fig. 4.16, which are the ones we actually

use to estimate value of P90 - P10 in Table 4.10, we can see that the second and the third

histograms are highly irregular. While most of the histogram concentrates in the high value

region, there are some outliers scattered near 0, which greatly increases the estimated P90

- P10. This illustrates the difficulty to obtain a good estimate of P90 - P10 even when we

have a good estimate of the conditional entropy.

For comparison, we obtain another estimate of average P90 - P10 by simply calcu-

lating the average of P90 - P10 of the first 3 posterior ensembles, without using conditional

entropy. This is the same way we calculated the true value of average P90 - P10 in Table 4.8,

with the only difference being that we now use only 3 ensembles instead of 100 ensembles.

The results of this simple method are shown in Table 4.11.

Table 4.11: The estimated average value of P90 - P10 of cumulative oil production obtained
by calculating the average P90 - P10 of 3 ensembles. The unit of measurement
is STB.

1 year data 3 year data
Water front location 2869 2170
Water production rate 6032 7142
Water saturation 5351 3140
Pressure 5102 2997

It can be seen that the values in Table 4.11 are very poor estimates of the true average

P90 - P10 in Table 4.8. This means that 3 posterior pdf’s are not sufficient to estimate the

value of average P90 - P10, unless we combine the information provided 3 posterior pdf’s

(here the shape of the pdf’s) with our calculated conditional entropy value.
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4.6 Two-dimensional Water Flooding Problem

We now consider a two-dimensional, two-phase flow (oil and water) problem. The

model is defined as follows:

• 15× 15× 1 grid with all gridblocks of size 400 ft × 400 ft × 20 ft.

• One water injector is placed in the center grid block and operated with a constant

injection pressure of 5500 psi. The injector is surrounded by four production wells,

each of which is produced at a constant flowing bottom hole pressure equal to 2000

psi. Fig. 4.17a shows the locations of the injector and four producers. The blue lines

through the injector are drawn for a purpose that will be explained later.

• The porosity field is homogeneous and with porosity equal to 0.18.

• The permeability field is isotropic. We assume that we have noisy measurements of

horizontal permeability at gridblocks penetrated by wells, and in terms of ln(k), these

measurements are 5.5 at well INJ-01 and are, respectively, 6.0, 5.0, 5.0, 6.0 at wells

PRO-01 to PRO-04. The standard deviation of the measurement error of the hard

data is assumed to be 0.1.

• The grid permeabilities follow a log-normal distribution with the mean equal to 5.0 and

standard deviation equal to 1.0. The permeability field is generated conditional to the

measured permeabilities at the well locations using randomized maximum likelihood

(RML). A spherical covariance with a correlation length of 30 gridblocks in the major

direction and 7 gridblocks in the minor direction and an angle of maximum continuity

of 30 degree is used to generate the covariance matrix CM . Note that the covariance

matrix is in terms of the natural logarithm of the permeability. One realization of the

permeability field is shown in Fig. 4.17b.

• The initial reservoir pressure is 5000 psi.

• Only two-phase flow occurs with irreducible water saturation and residual oil saturation

given, respectively, by Siw = 0.1 and Sor = 0.1
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• The simulation time is 8 years.

(a) Well locations (b) Permeability of realization #1

Figure 4.17: Well locations and permeability of the first realization.

Our objective is to quantify the uncertainty reduction in cumulative oil production

at the end of the simulation time (8 years) using the observed data that could be obtained

from various surveillance operations during the first year. Throughout, whenever we mention

cumulative oil production without specifying measurement time, we mean the value obtained

at the end of year 8. The data we consider are water rate, oil rate, water front location,

build-up pressure and several combinations of these data. The first two types of data are self-

explanatory as they are simply the output of the reservoir simulator with some noise added,

but we will need some clarification on the other two. The water front location is an advanced

type of observed data that are presumably measurable using a new class of nano-sensors

currently under development (Ullo, 2008; Chapman and Thomas, 2010). In this research, the

water front locations are modeled deterministically. From the simulation results, we extract

the water saturations at all gridblocks along the eight directions indicated by the blue lines in

Fig. 4.17a. The water front locations are then calculated as the distances from the injector to

the points where the water saturation is exactly 0.5 along the 8 directions. Finally, Gaussian

random noise is added to these distances to obtain observed data for front locations. To

obtain the build-up pressure, at the end of each year, we shut in the producers for 2 days

while still keeping the injector open. The build-up pressure is modeled as the gridblock
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pressure during this shut-in period. We use build-up measurements that are logarithmically

distributed over the two-day shut-in period, i.e. the measured data are denser near the

instance of shut-in and sparser later on, for a total of 10 pressure data per well during the

two day shut-in period. Specifications of each type of data, including measurement frequency,

number of observed data per year (for all wells), units of measurement and measurement

error, are shown in Table 4.12. Measurement error refers to the standard deviation of the

random variables and each measurement error is assumed to be Gaussian with mean zero.

Table 4.12: Specifications of measurement data.

Measurement Freq. # of data/year Units Measurement Error
Oil rate Every 3 months 16 STB/D 3% measured value
Water rate Every 3 months 16 STB/D 10% measured value
Front location Every 12 months 8 gridblock 0.1 grid block
Pressure 2 days per year 40 psi 10 psi

We generate 10,000 realizations of the prior model and run simulations (using Eclipse)

to obtain the observed data and cumulative oil production for all realizations. Fig. 4.18 shows

the water saturation distribution after two years for the first 2 realizations. Fig. 4.19a shows

the cumulative oil production as a function of time for the first 100 realizations. The prior

distribution of cumulative oil production at the end of year 8 is very similar to a Gaussian

distribution (Fig. 4.19b). The prior P90 - P10 and the prior entropy of cumulative oil

production are 821,800 STB and 14.085, respectively.

Using both the nearest neighbor and the linear-Gaussian methods, we estimate the

mutual information between cumulative oil production at the end of year 8 and the data

obtained during the first year under different surveillance scenarios. The results are shown

in Table 4.13. Note that these results are estimated from the initial ensemble of 10,000

realizations with no history matching involved.

As we can see from the results of Table 4.13, the mutual information estimates using

the two methods are comparable when the number of observed data is small (see rows

1, 2 and 4 of Table 4.13). Since we know from the results of sections 4.4 and 4.5 that the
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(a) Realization 1 (b) Realization 2

Figure 4.18: Water saturation distribution after two years for the first 2 realizations.
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Figure 4.19: Cumulative oil production based on realization from the prior pdf, example 1.

nearest neighbor estimator tends to work fairly well for a small number of observed data, the

close agreement between the two methods gives us the confidence that our linear-Gaussian

estimator may be reliable for this problem. This could be because the relationship between

cumulative oil production and the observed data in this problem is reasonably linear.

The comparison between the two estimators when the number of observed data is

high, however, tells a different story (rows 3, 5, 6, 7 of Table 4.13). This time, the estimates

obtained using the nearest neighbor method are consistently smaller than the estimates

obtained using the linear-Gaussian method. As we have previously discussed, the highest
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Table 4.13: Estimates of mutual information between cumulative oil production and ob-
served data during year 1.

Row Data Linear-Gaussian Nearest neighbor
method method

1 Water rate (16 data) 0.397 0.389
2 Water front (8 data) 0.507 0.491
3 Build-up pressure (40 data) 0.630 0.358
4 Oil rate (16 data) 0.445 0.449
5 Oil rate + water rate (32 data) 0.457 0.392
6 Oil rate + water front (24 data) 0.569 0.500
7 Oil rate + pressure (56 data) 0.658 0.462

estimates of mutual information are likely to be more accurate as both methods tend to

underestimate mutual information. The results in Table 4.13 therefore suggests that the

linear-Gaussian estimator tends to be more reliable than the nearest neighbor estimator for

high-dimensional problems. If we take a closer look at the estimates using the nearest neigh-

bor method, certain results seem to be clearly wrong. For example, when we combine the oil

rate data with the water rate data, we would expect a higher value of mutual information

compared to using only oil rate data. However, the results in rows 4 and 5 of Table 4.13

are the opposite of what we expect. This incorrect result may occur because the high di-

mensionality of the problem renders the nearest neighbor estimator much less accurate. To

confirm the ineffectiveness of the nearest neighbor estimator in high-dimensional problems,

we produce results similar to those of Table 4.13 but using three years of observed data

instead of one, which effectively triples the number of observed data in all scenarios. The

results are shown in Table 4.14, where we observe that the nearest neighbor estimator un-

derestimates mutual information in all cases and many of the estimates are clearly wrong,

e.g. the calculated mutual information between J and oil rate and water rate data combined

is smaller than the calculated mutual information between J and water rate data alone.

This again leads to the conclusion that the nearest neighbor method is inaccurate for high

dimensional problems. It is also important to note that we tried to improve the estimates

of the nearest neighbor method using PCA as in the previous example. However, the PCA
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cannot accomplish the dual tasks of reducing the data set from more that 50 dimensions to

10 or so dimensions so that the nearest neighborhood algorithm may give a somewhat rea-

sonably accurate estimate of mutual information while at the same time obtaining a reduced

data set which includes the essential information content of the original data. Thus, for the

remaining discussion and calculations in this research, we exclusively use the linear-Gaussian

estimator to calculate mutual information.

Table 4.14: Estimates of mutual information between cumulative oil production and ob-
served data during the first 3 years.

Row Data Linear-Gaussian Nearest neighbor
method method

1 Water rate (48 data) 0.567 0.380
2 Water front (24 data) 0.848 0.554
3 Build-up pressure (120 data) 0.968 0.534
4 Oil rate (48 data) 1.311 0.653
5 Oil rate + water rate (96 data) 1.327 0.459
6 Oil rate + water front (72 data) 1.442 0.497
7 Oil rate + pressure (168 data) 1.462 0.567

The relative importance of different types of data can be qualitatively interpreted

from the values of mutual information in Table 4.13 and Table 4.14. Here we concentrate

our discussion on the results in Table 4.14, i.e. with 3 years of observed data because they

provide better contrast among different types of data. It appears that the water rate provides

the least information about the cumulative oil production and the oil rate provides the most

information (rows 1 and 4). The information provided by the water front and build-up

pressure falls somewhere in between (rows 2 and 3). It is interesting to note that, in the

industry, oil rate is usually measured, so the question of real interest is how much additional

information the water rate, water front or build-up pressure can provide. The results in rows

5, 6 and 7 of Table 4.14 suggest that the answer seems to be “not much,” as 1.327, 1.442 and

1.462 are not much greater than 1.311. In the later part of the section, we will consider this

issue in greater details as the most important goal of acquiring data is to reduce uncertainty.

In the next step, using the estimated values of mutual information, we calculate the
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conditional entropy of cumulative oil production for different surveillance scenarios. The

conditional entropy of cumulative oil production conditional to data that could be measured

is denoted by h(J |Dobs) and is simply the difference between prior entropy and mutual

information. As discussed in section 4.1, h(J |Dobs) is a measure of the average remaining

uncertainty that will exist in J after observing Dobs. Thus, the lower the value of h(J |Dobs),

the greater the expected reduction in uncertainty that will be obtained by conducting the

surveillance operation to obtain Dobs and then conditioning the reservoir model to Dobs. The

results are shown in Table 4.15.

Table 4.15: Estimates of conditional entropy of cumulative oil production given observed
data during the first 3 years.

Row Data Conditional entropy
1 Water rate (48 obs data) 13.518
2 Water front (24 obs data) 13.237
3 Build-up pressure (120 obs data) 13.117
4 Oil rate (48 obs data) 12.774
5 Oil rate + water rate (96 obs data) 12.758
6 Oil rate + water front (72 obs data) 12.643
7 Oil rate + pressure (168 obs data) 12.623

The conditional entropy itself provides only a qualitative measure of the uncertainty

in the posterior model after data assimilation. To get a better quantification of the uncer-

tainty, we still need to translate the estimated value of conditional entropy into the expected

P90 - P10 of the cumulative oil production in the posterior model. Before doing so, we

would first like to verify the accuracy of our conditional entropy estimates by using the

exhaustive-history matching procedure discussed below. Estimation of the conditional en-

tropy by exhaustive history matching is performed by the following five step procedure:

1. From the prior model, generate 100 ensembles with each ensemble consisting of Ne

independent realizations.

2. Generate 100 plausible truth cases and run simulations to obtain the plausible vectors

of observed data.
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3. History match each ensemble generated in step 1 with one truth case from step 2 (using

ES-MDA 4x (Emerick and Reynolds, 2013c,a)) to obtain 100 plausible pdf’s of J .

4. Calculate the entropy of each of the 100 pdf’s of J generated in the previous step using

the sample spacings method (Beirlant et al., 1997) and calculate the average entropy

value. The result is our conditional entropy.

5. Repeat the process to obtain the conditional entropy for all other surveillance scenarios.

To apply the exhaustive-history matching procedure with an ensemble-based method,

we must decide how to choose an appropriate ensemble size Ne; see Evensen (2003, 2007);

Aanonsen et al. (2009). Emerick and Reynolds (2013c) compared several ensemble-based

history-matching methods for a 1D water flooding problem and found that ES-MDA provided

the most accurate quantification of the uncertainty in the posterior model. However, for the

2D water flooding problem considered in this research, we are not certain that the uncertainty

quantification obtained using ES-MDA is accurate. From our experience, different values of

Ne will lead to different uncertainty in the posterior model, with higher values of Ne generally

leading to higher values P90 - P10. Therefore, to account for the error in estimating the

posterior model uncertainty using ES-MDA, we perform the exhaustive history-matching

procedure two times, first with an ensemble size of 100, and then repeat the procedure for

an ensemble size of 1000. The first 4 plausible posterior distributions of J conditional to

each type of observed data based on an ensemble size of 1,000 are shown in Figs. 4.20-

4.24. Note that the posterior distributions of J in all cases are very similar to a Gaussian

distribution, which partly explains why our linear-Gaussian estimator for mutual information

works reasonably well.

The conditional entropy of cumulative oil production calculated using the exhaustive

history-matching procedure is shown in Table 4.16. From the results of this table, we see

that the conditional entropies calculated using the exhaustive history matching procedure

are slightly different for the two ensemble sizes. Since we have no reliable method to correctly

sample the posterior pdf, except for the Markov Chain Monte Carlo method, which is not
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Figure 4.20: Four plausible posterior distributions of cumulative oil production conditional
to water rate data.
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Figure 4.21: Four plausible posterior distributions of cumulative oil production conditional
to water front data.

generally computationally feasible, we have to rely on the result of ES-MDA to verify our

conditional entropy estimates. Here, we assume that the results with an ensemble size of

1000 are more accurate, but it may important to note that it is possible to over-estimate the

uncertainty in future reservoir performance predictions when using results from an ensemble-

based history-matching procedure (Emerick and Reynolds, 2012a). We therefore assume that

the correct value of conditional entropy is not less than the results generated with an ensemble
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Figure 4.22: Four plausible posterior distributions of cumulative oil production conditional
to pressure data.
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Figure 4.23: Four plausible posterior distributions of cumulative oil production conditional
to oil rate data.

size of 100 and not much larger than those generated with an ensemble size of 1000.

Comparing each conditional entropy in Table 4.15 with the corresponding conditional

entropy estimate in Table 4.16, we observe reasonable agreements between our estimates

shown in Table 4.15 and those obtained using the exhaustive history-matching procedure.

Our estimates for the first, second, fifth, sixth and seventh scenarios lie between the two

extreme values obtained from exhaustive history matching, which suggests that they are
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Figure 4.24: The plausible posterior distributions of cumulative oil production conditional
to oil rate and water front data.

Table 4.16: Conditional entropy (given 3-year observed data) calculated using exhaustive
history matching procedure.

Row Data Ensemble size 100 Ensemble size 1000
1 Water rate (48 obs data) 13.450 13.717
2 Water front (24 obs data) 13.174 13.382
3 Build-up pressure (120 obs data) 12.831 13.072
4 Oil rate (48 obs data) 12.869 12.996
5 Oil rate + water rate (96 obs data) 12.750 12.917
6 Oil rate + water front (72 obs data) 12.641 12.872
7 Oil rate + pressure (168 obs data) 12.611 12.667

reasonably good estimates. For the third scenario, our conditional entropy estimate is slightly

higher than the history-matching result with an ensemble size of 1000. For the fourth

surveillance scenario (oil rate data), our conditional entropy estimate is slightly smaller than

value obtained using Ne = 100. However, as we have previously discussed, we do not expect

the linear-Gaussian estimator to overestimate the mutual information, i.e., underestimate the

conditional entropy, so one possible explanation here is that the exhaustive history matching

does not match the data well enough and results in an overestimation of the conditional

entropy value.

The final step in our proposed procedure is to translate the conditional entropy into
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the expected P90 - P10. To do so, we “stretch” or “compress” the histogram of the prior

distribution of cumulative oil production until its entropy is equal to the estimated condi-

tional entropy; see section 4.2.5. The estimates of the expected P90 - P10 obtained from the

reconstructed pdf’s are shown in column 2 of Table 4.17. In the same table, we also show the

average P90 - P10 obtained using the exhaustive history-matching procedure (column 3).

Here we only use the results obtained from history matching with an ensemble size of 1,000

for comparison because a bigger ensemble size usually means a more accurate uncertainty

characterization. Note that, with the exhaustive history-matching procedure, we are able to

obtain one extra parameter that cannot be obtained with our proposed procedure, namely

the standard deviation of the P90-P10 corresponding to 100 different truth cases. This stan-

dard deviation is shown inside the parentheses in column 3 of Table 4.17. It characterizes

how much the uncertainty in the posterior model can be affected by different measurement

outcomes. For a linear-Gaussian case, the uncertainty in the posterior model, CMAP , does

not depend on the measurement outcomes.

Table 4.17: Expected P90 - P10 of cumulative oil production (in thousands STB).

Row Data Proposed method Exhaustive history
matching (Ne = 1000)

1 Water rate (48 obs data) 481 578 (±34)
2 Water front (24 obs data) 354 409 (±19)
3 Build-up pressure (120 obs data) 314 301 (±30)
4 Oil rate (48 obs data) 223 280 (±15)
5 Oil rate + water rate (96 obs data) 219 258 (±14)
6 Oil rate + water front (72 obs data) 195 246 (±12)
7 Oil rate + pressure (168 obs data) 191 222 (±17)

From the results of Table 4.17, we can see that our estimates of expected P90 - P10

are fairly close to, although slightly smaller than, the values calculated from the exhaustive

history matching procedure. This difference can be explained by noting that our estimated

value of conditional entropy is also slightly smaller than the corresponding value obtained

from history matching (column 2 of Table 4.15 versus column 3 of Table 4.16). This directly

translates into smaller values of P90 - P10 using our proposed method. The small difference
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in conditional entropy can be the cumulative effect of many factors, including the error in

estimating mutual information as well as the possible error in quantifying uncertainty using

an ensemble-based history-matching method. However, if we look at the big picture, the

difference is small, and our proposed method is able to determine which type of observed

data leads to the highest uncertainty reduction. More importantly, our method provides a

reasonable quantification of the uncertainty in the posterior pdf for cumulative oil recovery.

It is also important to note that our proposed method only requires 10,000 simulation runs

for all seven surveillance scenarios while the exhaustive history matching method requires

2.8 million simulation runs to obtain the same result.

The expected values of P90 - P10 in Table 4.17, either using our proposed method or

the exhaustive history-matching procedure, also confirms our comment earlier that obtaining

additional data besides the oil rate does not result in a significant reduction in the uncertainty

in cumulative oil recovery. In retrospect, it is not surprising that the measured oil rate

would be the most useful data for predicting future oil rate. However, if our objective

were to estimate which type of data would be most useful for estimating the uncertainty

in the estimated net present value of future production data or the optimal location of an

infill well, the relative value of data from different potential surveillance operations could be

considerably different. To demonstrate one such case, we use our proposed method to obtain

the estimates for the case where the reservoir variable J is the net present value instead of

the cumulative oil production. In calculating the net present value, we use $90/STB for the

oil price, $15/STB for the water disposal cost and $10/STB for the water injection cost. The

annual discount factor is 10%. The prior entropy and prior P90 - P10 for the net present

value, respectively, are 18.107 and $45.4 million. Table 4.18 shows the mutual information,

conditional entropy and expected P90 - P10 of net present value conditional to 1 year of

observed data.

From the results of Table 4.18, we see that the oil rate data are not the best type

of data that we could collect during the first year of production. In fact, the water front

and pressure build-up data now lead to lower uncertainty in the posterior net present value.
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Table 4.18: Estimates of mutual information between net present value and observed data
obtained during the first year, and conditional entropy and expected P90 - P10
of net present value (in millions of dollars) conditional to the observed data.

Row Data MI Con. Entropy Expected P90 - P10
($million)

1 Water rate (16 data) 0.124 17.982 40.0
2 Water front (8 data) 0.225 17.881 36.2
3 Build-up pressure (40 data) 0.273 17.833 34.5
4 Oil rate (16 data) 0.137 17.970 39.6
5 Oil rate + water rate (32 data) 0.160 16.947 38.7
6 Oil rate + water front (24 data) 0.306 17.801 33.4
7 Oil rate + pressure (56 data) 0.334 17.773 32.5

When the oil rate data are combined with either water front or pressure build-up data, we

obtain a much greater reduction in the uncertainty of the net present value than is obtained

by using the oil rate data alone. Note that the choice of using only observed data in the

first year has an impact on the relative importance of each surveillance scenario. During the

first year, for most realizations of the permeability field, the injected water has not broken

through at producers for most realizations of the permeability field and thus, the location

of the water front is relatively more useful as it provides information on how much water

will be produced in the future. After the water breakthrough, the usefulness of the water

front location diminishes, and the oil production rate will have the dominant impact on the

uncertainty reduction in net present value.

4.7 Three-dimensional Water Flooding Problem

The last problem we consider is the three-phase (oil, gas and water), three-dimensional

PUNQS3 reservoir model (Floris et al., 2001; Barker et al., 2001; Gao et al., 2006). The

pertinent details of this model are as follows:

• 19 × 28 × 5 gridblocks; the size of each gridblock is 590.55 ft × 590.55 ft in the “x-y

direction” but the thicknesses of the gridblocks vary. There are 1761 active gridblocks

in the model.
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• There are six producers with the locations and perforated intervals the same as in the

original model (Floris et al., 2001; Barker et al., 2001). Fig. 4.25 shows the location

of these wells. All production wells are produced at a constant flowing bottom hole

pressure of 2000 psi.

• There is a strong analytical aquifer in the original model, but here, we replace the

aquifer by six water injection wells along the periphery of the reservoir (Fig. 4.25). All

injectors operate at a constant injection pressure equal to 4500 psi.

• The unconditional permeability and porosity fields are generated using sequential Gaus-

sian co-simulation based on the geostatistical parameters given in Gao et al. (2006).

One realization of the property fields is shown Fig. 4.26.

• The initial reservoir pressure is approximately equal to 3500 psi.

• The simulation time is 30 years.

Figure 4.25: Well locations in the PUNQ case.

In this example, our reservoir variable of interest is again the cumulative oil produc-

tion at the end of the total reservoir simulation time (30 years). We will use the surveillance
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(a) Porosity (b) Horizontal permeability (c) Vertical permeability

Figure 4.26: Porosity and permeability distribution in layer 1 of a realization.

data that can be obtained during the first 10 years to quantify the potential uncertainty re-

duction in cumulative oil production. Similar to the previous example, we consider the water

rate, water front location, oil rate, build-up pressure and several combinations of these data.

Due to the presence of multiple water injection wells, we cannot use the procedure in exam-

ple 1 to model the water front because the water from different injectors can intermingle.

Instead, we associate the water injected from each injector with one different type of tracer

and calculate the water front location as the position where the tracer concentration from

a particular well exceeds 0.01. These values are calculated along the 19 directions indicated

by the blue lines in Fig. 4.25. We obtain the build-up pressure using the same procedure as

in the first example, but this time, we shut-in the producers every two years instead of every

year, and we also reduce the measurement error from 10 psi to 1 psi. The measurement

frequency of other types of data has also been changed. The detailed specifications for each

type of data are shown in Table 4.19.

Table 4.19: Specifications of measurement data.

Measurement Freq. # of data Units Measurement Error
Oil rate Every 6 months 12 per year STB/D 3% measured value
Water rate Every 6 months 12 per year STB/D 10% measured value
pressure 2 days per 2 years 60 per 2 years psi 1 psi
Front location Every 12 months 19 per year gridblock 0.1 grid block
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We generate 10,000 realizations of the prior model and run simulations (using Eclipse)

to obtain the cumulative oil production for all realizations. Fig. 4.27a shows the cumulative

oil production as a function of time for the first 100 realizations. The associated prior

distribution of cumulative oil production at the end of year 30 is shown in Fig. 4.27b. The

prior P90 - P10 and the prior entropy of cumulative oil production are 22.6 MMSTB and

17.379, respectively.
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Figure 4.27: Cumulative oil production based on realization from the prior pdf, example 2.

In this example, we only use the linear-Gaussian method to estimate mutual in-

formation. Following the same procedure as above, we estimate the mutual information,

conditional entropy and expected P90 - P10 of the cumulative oil production, conditional

to 10 years of observed data. The results are shown in Table 4.20. The result of this table

again shows that oil rate is the most useful data to obtain in order to reduce the uncertainty

in cumulative oil production. Other types of data, such as water rate and pressure, when

combined with oil rate can increase the reduction in uncertainty but not by a significant

amount.

Next, we will attempt to verify the estimates of Table 4.20 using the exhaustive

history-matching procedure. For this example, however, it may be more difficult to obtain an

accurate quantification of the uncertainty in the posterior model because the number of model

parameters (7980) is significantly greater than our computationally affordable ensemble size
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Table 4.20: Estimates of the mutual information between cumulative oil production and 10
years of observed data, and the corresponding conditional entropy and expected
P90 - P10 using the proposed procedure.

Row Data MI Con. Entropy Expected P90 - P10
(MMSTB)

1 Water rate (120 data) 0.496 16.883 13.75
2 Build-up pressure (300 data) 0.624 16.755 12.10
3 Water front (190 data) 0.301 17.077 16.70
4 Oil rate (120 data) 1.778 15.601 3.81
5 Oil rate + water rate (240 data) 1.808 15.571 3.74
6 Oil rate + pressure (420 data) 1.867 15.511 3.49
7 Oil rate + water front (310 data) 1.820 15.558 3.66

(maximum of 1000). We first test our history matching method (ES-MDA 4x (Emerick and

Reynolds, 2013c,a)) for the first plausible truth case for two different ensemble sizes with

and without covariance localization. In the cases where localization is used, we follow the

distance-based approach described in Emerick and Reynolds (2011a). The histograms of the

posterior distribution of cumulative oil production conditional to water rate are shown in

Fig. 4.28. The results of Fig. 4.28 pertain to a single ensemble. We assume the histograms

obtained using an ensemble size of 1000 are more accurate than those obtained using an

ensemble size of 100. With this assumption, the history-matching result using an ensemble

size of 100 without localization seems to exhibit the worst performance; specifically, the

location of the mode is wrong and the spread is too small when compared to the results

obtained using an ensemble size of 1000. Using localization with an ensemble size of 100,

the location of the mode becomes more accurate but the spread is still too small. For

ensemble sizes of 1000, we obtain similar results regardless of whether we use localization

or not. Motivated by the results of Fig. 4.28, we carry out the exhaustive history matching

procedure with an ensemble size of 1000 without localization. It is important to note that it

is possible that a larger ensemble size can lead to a greater spread in the posterior histogram,

but an ensemble size of 1000 is our computational limit in this study because we need to

repeat the history-matching process for multiple plausible truth cases and then multiple
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surveillance scenarios.
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Figure 4.28: Histogram of cumulative oil production conditional to water rate (MMSTB).

The conditional entropy and average P90 - P10 calculated from the exhaustive history-

matching procedure are shown in Table 4.21. For this example, the exhaustive history-

matching method requires 2.8 million simulation runs compared to 10,000 simulations re-

quired by our proposed method. Comparing the results of Tables 4.20 and 4.21, our proposed

method qualitatively agrees with the exhaustive history-matching procedure in ranking the

five surveillance scenarios according to their posterior uncertainty, where the water rate data

alone leads to the highest posterior uncertainty while the oil rate combined with pressure data

leads to the smallest posterior uncertainty. Quantitatively, however, our proposed method

agrees only approximately with the exhaustive history-matching procedure. The main issue

here is that our conditional entropy estimates are greater than those calculated from the

exhaustive history-matching procedure in several scenarios, and higher values of conditional

entropy translate directly into greater expected values of P90 - P10. We have no provable

explanation of this discrepancy. On the one hand, it is possible that computing mutual

information using Eq. 4.37, which is based on the linear-Gaussian, tends to underestimate

mutual information and thus overestimates conditional entropy and expected P90 - P10.
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On the other hand, given dobs, it can not be proved that ES-MDA samples the posterior

conditional pdf correctly except in the linear case and ES-MDA often underestimate the

posterior uncertainty. We believe the correct results may be somewhere between the results

of Table 4.20 and Table 4.21.

Table 4.21: Estimates using exhaustive history matching (10 years of data).

Row Data Conditional Entropy Expected P90 - P10
(MMSTB)

1 Water rate (120 data) 16.677 11.08 (±1.15)
2 Build-up pressure (300 data) 16.438 8.72 (±0.76)
3 Water front (190 data) 16.701 11.74 (±1.85)
4 Oil rate (120 daa) 15.645 3.92 (±0.61)
5 Oil rate + water rate (240 data) 15.532 3.50 (±0.51)
6 Oil rate + pressure (420 data) 15.215 2.56 (±0.35)
7 Oil rate + water front (310 data) 15.263 2.80 (±0.49)
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CHAPTER 5

CONCLUSIONS

5.1 Adaptive ES-MDA

The adaptive ES-MDA algorithms developed here yield an improvement over the

original ES-MDA algorithm in the sense that they provide sufficient damping to avoid over

corrections to the property fields and improve the conditioning of the matrix that must be

inverted in ES-MDA algorithms. The adaptive ES-MDA methods trade a preselection of

the number of data assimilation and damping factors of the original ES-MDA algorithm

for a preselection of a single parameter ρ, or a preselection of the number of standard

deviations that we allow model parameters to change over an iteration. Although we believe

the selection of a single parameter instead of several is desirable, how to choose ρ is not clear.

Choosing ρ close to unity may cause the algorithms to require so many iterations that their

application becomes computationally infeasible for large scale problems. Thus, it may still

require some trial and error where we try a few iterations with ρ = 0.5 and then increase

or decrease it based on the results. On the other hand, restricting the change in model

parameters over an iteration to two standard deviations seems to work well in examples that

we have tried but can sometime lead to more iterations than are necessary to obtain a good

data match and smooth property fields.

Based on the example provided as well as computations not shown, the following

conclusions are warranted:

1. The adaptive ES-MDA algorithms are more robust than the original ES-MDA in that

they prevent over correction of the initial guesses and result in good data matches with

reasonable rock property fields.
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2. At early iterations, an exceeding large damping factor may be required. These damping

factors are much larger than any we imagined when we developed and tested the original

ES-MDA algorithm.

3. A good data match does not imply good or unbiased future predictions, although with

the adaptive ES-MDA algorithms, most ensembles result in an ensemble with small

bias in future predictions.

4. The adaptive ES-MDA algorithms show most advantages over the regular ES-MDA

algorithms in the more difficult case with no hard data. In the more reasonable case

with hard data, the regular ES-MDA algorithms work almost as well as the adaptive

ES-MDA algorithms.

5. With the optimal choice of λini, LM-EnRML can achieve a relatively decent data match

while keeping the posterior relatively smooth. However, it still does not perform as

well as the adaptive ES-MDA algorithms in the examples considered.

5.2 History Matching Non-Gaussian Facies

We proposed a two-stage procedure based on ES-MDA to history match data from

non-Gaussian reservoir models, specifically those generated using multi-point statistics. In

the first stage, a combination of the ES-MDA and MPS algorithms is used to obtained an

approximation of the true facies distribution. In the second stage, ES-MDA is used to adjust

the permeability within the facies to obtain a good data match. The proposed procedure

was applied to three examples in a 2D channelized reservoir with different degrees of known

information. After stage 1, we are able to obtain very good agreement between the facies

distribution and the true model. The data match, however, is still poor after stage 1 due

to the incorrect permeability distribution within each facies. After stage 2 is performed,

the data match is greatly improved. We experimented with various ideas to modify the

permeability means of the facies in stage 1, but found that it did not work well due to the

incorrect channel configuration and the inability of our procedure to resolve the sinuosity of
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the channels.

5.3 Surveillance Optimization

We proposed a procedure based on information theory to quantify the expected un-

certainty reduction in a reservoir variable J , e.g., predicted cumulative oil production, that

can be obtained by matching possible measured data from a reservoir surveillance operation

before the actual measurement takes place. In this procedure, we estimated the conditional

entropy of the reservoir variable of interest, J , by calculating the difference between its prior

entropy and the mutual information between J and the vector of observed data, Dobs. Then

we reconstructed the expected posterior pdf of J using the calculated conditional entropy

and the assumed or calculated information about the shape of the posterior pdf of J . Metrics

about the posterior uncertainty of J such as standard deviation or P90 - P10 were obtained

directly from this reconstructed pdf. The proposed method is simple to implement and fast

to execute as it only requires simulation runs for an ensemble of prior model realizations. The

results obtained by our proposed method were verified with an exhaustive history-matching

procedure. Based on theoretical arguments and results from the example problems, the

following conclusions are warranted:

1. Our proposed method correctly ranks the potential surveillance scenarios according to

the expected posterior uncertainty in cumulative oil recovery if the actual measurement

takes place.

2. The estimates of our proposed method agree reasonably well with the exhaustive

history-matching procedure in terms of the expected value of P90 - P10 of the cu-

mulative oil production, but the information-theory-based procedure requires more

than an order of magnitude less computational time.

3. The relative importance of each surveillance scenario is dependent on many factors,

for example, the choice of reservoir variable J or the duration of data collection. Our

proposed method provides an easy way to screen the possible surveillance scenarios to
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determine the best one.

4. The computational cost of our proposed method is small and fixed regardless of the

number of potential surveillance scenarios considered.
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APPENDIX A

APPENDIX ON ADAPTIVE ES-MDA

A.1 LM-EnRML

To derive the LM-EnRML equation, we first start with the standard Gauss-Newton

update equation:

δm`+1 = −(C−1
M +GT

` C
−1
D G`)

−1
[
C−1
M (m` −muc,j) +GT

` C
−1
D (g(m`)− duc,j)

]
. (A.1)

where δm`+1 is the change in the vector model parameters, CM is the prior covariance matrix

of model parameters, G` is the sensitivity matrix, CD is the covariance matrix of measurement

error, m` is the current vector of model parameters, muc,j is the vector of perturbed prior

model parameters, g is the forward model, duc,j is the vector of perturbed observed data.

Chen and Oliver (2013) replace C−1
M in the Hessian term by (C`

M)−1,

δm` = −
[
(C`

M)−1 +GT
` C
−1
D G`

]−1 [
C−1
M (m` −muc,j) +GT

` C
−1
D (g(m`)− duc,j)

]
. (A.2)

The equation is then transformed to Levenberg-Marquardt form by the addition of an infla-

tion factor,

δm` = −
[
(1 + λ`)(C

`
M)−1 +GT

` C
−1
D G`

]−1 [
C−1
M (m` −muc,j) +GT

` C
−1
D (g(m`)− duc,j)

]
.

(A.3)

At early iterations, we want λ to be large so that the model update is highly influenced

by the prior model. As the data assimilation progresses, we want to gradually reduce λ`

to increase the relative influence of the observed data on the model update. To change λ,
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we multiple or divide it by a factor γ between iterations. The choice of the initial λ and

the factor γ can affect performance of the algorithm. Using matrix inversion formula, the

equation can be rewritten as

δm` = −
[
(1 + λ`)(C

`
M)−1 +GT

` C
−1
D G`

]−1
C−1
M (m` −muc,j)

− C`
MG

T
`

[
(1 + λ`)CD +G`C

`
MG

T
`

]−1
(g(m`)− duc,j). (A.4)

Finally, we apply standard ensemble-based approximation for the covariance matrix of model

parameters and the sensitivity matrix,

δm` = −
[
(1 + λ`)(∆M

`∆M `T )−1 + (∆M `)−T∆D`TC−1
D ∆D`(∆M `)−1

]−1

C−1
M (m`−muc,j)

− C`
MD

[
(1 + λ`)CD + C`

DD

]−1
(g(m`)− duc,j). (A.5)

A.2 Measurement of Model Difference

We consider the special case when the prior realizations and the true model, mtrue

are generated from the same Gaussian distribution, N(mpr, CM), i.e.,

mj = mpr + C
1/2
M zj, (A.1)

and

mtrue = mpr + C
1/2
M ztrue, (A.2)

where mj is an unconditional prior realization; zj is the vector of standard normal deviates

used to generate mj; ztrue is the vector of standard normal deviates used to generate mtrue. In

general, we only generate one true model for each history matching problem versus multiple

prior realizations, so ztrue can be considered constant in comparison to zj. Following the

192



definition of Eq. 2.35, the model difference between mj and mtrue can be written as

Rj =
1

Nm

||C−1/2
M (mj −mtrue)||1

=
1

Nm

||C−1/2
M ((mj −mpr)− (mtrue −mpr)) ||1

=
1

Nm

||C−1/2
M

(
C

1/2
M zj − C1/2

M ztrue

)
||1

=
1

Nm

||(zj − ztrue)||1

=
1

Nm

Nm∑
i=1

|zj,i − ztrue,i|,

(A.3)

where Nm is the number of model parameters, zj,i and ztrue,i are respectively the ith compo-

nents of zj and ztrue. The average model difference over the whole ensemble, R̄, is,

R̄ ≈ E[Rj] = E

[
1

Nm

Nm∑
i=1

|zj,i − ztrue,i|

]
=

1

Nm

Nm∑
i=1

E [|zj,i − ztrue,i|] , (A.4)

where E[∗] is the expectation operator. Since zj,i follows the standard normal distribution

N(0, 1), |zj,i − ztrue,i| follows the folded normal distribution (Leone et al., 1961) with mean

−ztrue,i and unit standard deviation. Its expectation, E[|zj,i − ztrue,i|], is dependent on the

value of ztrue,i and equal to

E[|zj,i − ztrue,i|] =

√
2

π
exp

(−z2
true,i

2

)
− (−ztrue,i)erf

(
ztrue,i√

2

)
, (A.5)

so

R̄ ≈ 1

Nm

Nm∑
i=1

[√
2

π
exp

(−z2
true,i

2

)
− (−ztrue,i)erf

(
ztrue,i√

2

)]
. (A.6)

For a large value of Nm, which is generally true for most history matching problems of
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interest, we have

R̄ ≈ E

[√
2

π
exp

(−z2
true,i

2

)
− (−ztrue,i)erf

(
ztrue,i√

2

)]

= E

[√
2

π
exp

(−z2
true,i

2

)]
+ E

[
ztrue,ierf

(
ztrue,i√

2

)]
.

(A.7)

For conciseness, we replace ztrue,i by z since each ztrue,i is independently sampled from the

standard Gaussian distribution,

R̄ ≈ E

[√
2

π
exp

(
−z2

2

)]
+ E

[
zerf

(
z√
2

)]
. (A.8)

By noting that z follows the standard normal distribution with the probability density

function fZ(z) and the cumulative density function FZ(z), the first term can be rewritten

as,

E

[√
2

π
exp

(
−z2

2

)]
=

√
2

π

∫ ∞
−∞

exp

(
−z2

2

)
fZ(z)dz

=

√
2

π

∫ ∞
−∞

exp

(
−z2

2

)
1√
2π

exp

(
−z2

2

)
dz

=
1

π

∫ ∞
−∞

exp
(
−z2

)
dz

=
1

π

√
π

=
1√
π
. (A.9)

The second term can be rewritten as

E

[
zerf

(
z√
2

)]
=

∫ ∞
−∞

zerf

(
z√
2

)
fZ(z)dz

= 2

∫ ∞
−∞

z

[
1

2

(
1 + erf

(
z√
2

))]
fZ(z)dz −

∫ ∞
−∞

zfZ(z)dz

= 2

∫ ∞
−∞

zFZ(z)fZ(z)dz − 0,

(A.10)
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where FZ(z) =
1

2

(
1 + erf

(
z√
2

))
is the cumulative distribution function (cdf) for fZ(z).

We continue the derivation:

E

[
zerf

(
z√
2

)]
= 2

∫ ∞
−∞

zFZ(z)
1√
2π

exp

(
−z2

2

)
dz

=

√
2√
π

∫ ∞
−∞

FZ(z) exp

(
−z2

2

)
d

(
−z2

2

)
(−1)

= −
√

2√
π

∫ ∞
−∞

FZ(z)d

(
exp

(
−z2

2

))
= −
√

2√
π

{
FZ(z) exp

(
−z2

2

) ∣∣∣∣∞
−∞
−
∫ ∞
−∞

exp

(
−z2

2

)
fZ(z)dz

}
=

√
2√
π

{
0− 0 +

∫ ∞
−∞

exp

(
−z2

2

)
1√
2π

exp

(
−z2

2

)
dz

}
=

1

π

∫ ∞
−∞

exp
(
−z2

)
dz

=
1

π

√
π

=
1√
π
. (A.11)

Using Eqs. A.9 and A.11 in A.8, we have

R̄ ≈ 2√
π
. (A.12)
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APPENDIX B

APPENDIX ON HISTORY MATCHING NON-GAUSSIAN FACIES

B.1 Neighborhood Expectation-Maximization Algorithm

Before listing steps in the algorithm, it is useful to recap some notations. The Gaus-

sian mixture model is defined as

Θ = (πj, fj), j = 1, ...,M, (B.13)

where M is the number of facies, i.e., number of Gaussian models; fj denotes the jth

Gaussian probability density function (pdf), and πj denotes the probability of each facies or

each Gaussian distribution, i.e. the probability that a gridblock is occupied by facies j. The

jth Gaussian distribution, fj, has mean µj and covariance matrix Cj. The dimension of µj

is equal to the number of petrophysical properties. In our case, we only have permeability,

so µj is a real number. The covariance matrix Cj in our case is also a real number, which

is equal to the variance of the permeability within each facies. Let N be the number of

gridblocks and mi, i = 1, 2, ..., N, be the permeability value at gridblock i. The steps of the

algorithm are as follows:

1. Set the initial guess for the facies classification of each gridblock. This is done based

on the gridblock permeability values, where facies 1 is assigned to the N/M lowest per-

meability gridblocks, facies 2 is assigned the next N/M lowest permeability gridblocks

and so on.

2. Calculate the initial facies proportion πj, mean µj and variance Cj of each Gaussian

distribution based on the initial guess of the facies classification.
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3. Set the initial value of the membership matrix h, which is of size N ×M : if, in the

initial guess, facies j is assigned to gridblock i, then set hji = 1, otherwise set hji = 0.

Here, hji denotes the element at the ith row and jth column of h; hji dictates how likely

gridblock i belongs to facies j and has the value from 0 to 1. The sum of all elements

in one row has to be equal to 1, i.e.
∑M

j=1 h
j
i = 1 for all i’s. Let h0 denote the initial

value of h.

4. OUTER LOOP - FOR ` = 1 TO `max:

(a) Calculate a new value for h, h`. This is called the expectation step and requires an

iterative procedure. The starting value for h` is denoted by h`,0 and is set equal

to the value of h obtained at the previous iteration, h`−1. h` is then updated

iteratively as follows:

INNER LOOP - FOR m = 1 TO mmax:

i. Update each of component of h individually:

(hji )`,m =
πjfj(mi) exp(β

∑N
k=1(hjk)`,m−1vik)∑M

j′=1

{
πj′fj′(mi) exp(β

∑N
k=1(hj

′

k )`,m−1vik)
} (B.14)

where vik defines the neighborhood, i.e.,

vik =


1, if i and k are the indices of two neighbor gridblocks

and i 6= k,

0, otherwise.

(B.15)

Note that fj(mi) are evaluated using the current value of µj and Cj.

ii. Calculate the change in h.

δh =
N∑
i=1

M∑
j=1

{
(hji )`,m − (hji )`,m−1

}
. (B.16)
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If δh is smaller than 0.01, we break out of the inner loop before mmax is

reached.

END OF INNER LOOP.

(b) Calculate new parameters for the Gaussian mixture model. This is called the

maximization step.

(µj)` =

∑N
i=1(hji )`mi∑N
i=1(hji )`

, (B.17)

(Cj)` =

∑N
i=1(hji )`(mi − (µj)`)(mi − (µj)`)

T∑N
i=1(hji )`

, (B.18)

(πj)` =
1

N

N∑
i=1

(hji )`. (B.19)

END OF OUTER LOOP.

5. Determine the facies classification of each gridblock using a stochastic process. For

each gridblock i, we sample a number u from the uniform distribution U(0, 1). For the

problems in this research where there are only two facies, if u < h1
i , we assign facies 1

to gridblock i, otherwise we assign facies 2 to gridblock j.

B.2 Tau Model

Originally, the multi-point statistics algorithm (Strebelle, 2002) calculated the prob-

ability of a facies entirely based on the training image using multi-point statistics. With

the need to incorporate different sources of data, Journel (2002); Zhang and Journel (2003)

propose the Tau model which allows the calculation of the facies probability based on both

the training image and user-specified soft data (probabilities). In addition, the users can

specify the relative weight of the probability calculated from the training image and from

soft data by changing the τ parameters, hence the name Tau model. Let p be the probability

that facies i occupies gridblock j; p can be determined using the following implicit equation:

p =
1

1 + f 1−τ1−τ2
p f τ1p1 f

τ2
p2

, (B.1)
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where

• p1 = probability that facies i occupies gridblock j as calculated from the training image

using multi-point statistics,

• p2 = probability that facies i occupies gridblock j as specified by the probability map

(soft probability),

• τ1 = weight of p1,

• τ2 = weight of p2,

• fp = 1
p
− 1,

• fp1 = 1
p1
− 1,

• fp2 = 1
p2
− 1.

Note that in the above equation, p appears on both side of the equation. The relative weight

of the soft data increases as τ1 decreases and τ2 increases. To illustrate the effect of τ1 and

τ2 on the value of p, we performed a few experiments:

• If either p1 or p2 is 1, p is 1 regardless of the value of τ1 and τ2.

• Suppose p1 = 0.1, p2 = 0.8:

– If τ1 = τ2 = 1, p = 0.4, which is about the midway between 0.1 and 0.8.

– If τ1 = τ2 = 2 or τ1 = τ2 = 3, p is still equal to 0.4.

– If τ1 = 1 and τ2 = 3, p = 0.62, which is closer to the value specified by the

probability map.

– If τ1 = 1 and τ2 = 9, p = 0.73, which is even closer to the value specified by the

probability map.

– If τ1 = 3 and τ2 = 1, p = 0.21, which is closer to the value calculated from the

training image.
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In this research, we use τ1 = 1 and τ2 = 9 so that the new realizations honor the probability

map better.
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APPENDIX C

APPENDIX ON SURVEILLANCE OPTIMIZATION

C.1 Derivation of Expression for Mutual Information

We start from the definition

H(X|Y ) ≡
M∑
j=1

P (Yj)H(X|Y = Yj)

= −
M∑
j=1

P (Yj)
N∑
i=1

P (Xi|Yj) logP (Xi|Yj)

= −
M∑
j=1

N∑
i=1

P (Yj)P (Xi|Yj) logP (Xi|Yj)

= −
M∑
j=1

N∑
i=1

P (Xi, Yj) logP (Xi|Yj)

= −
M∑
j=1

N∑
i=1

P (Xi, Yj) log
P (Xi, Yj)

P (Yj)

= −
N∑
i=1

M∑
j=1

P (Xi, Yj) log
P (Xi, Yj)

P (Yj)
.

(C.1)
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The expression for mutual information can be written as

I(X;Y ) = H(X)−H(X|Y )

= −
N∑
i=1

P (Xi) logP (Xi) +
N∑
i=1

M∑
j=1

P (Xi, Yj) log
P (Xi, Yj)

P (Yj)

= −
N∑
i=1

(
M∑
j=1

P (Xi, Yj)

)
logP (Xi) +

N∑
i=1

M∑
j=1

P (Xi, Yj) log
P (Xi, Yj)

P (Yj)

=
N∑
i=1

M∑
j=1

(
−P (Xi, Yj) logP (Xi) + P (Xi, Yj) log

P (Xi, Yj)

P (Yj)

)

=
N∑
i=1

M∑
j=1

(
P (Xi, Yj) log

1

P (Xi)
+ P (Xi, Yj) log

P (Xi, Yj)

P (Yj)

)

=
M∑
i=1

N∑
j=1

P (Xi, Yj) log
P (Xi, Yj)

P (Xi)P (Yj)
.

(C.2)

The derivation is complete.

C.2 Derivation of Expressions for Mutual Information in Linear Gaussian

Case

First we derive the expression for I(m,Dobs). Note that Dobs is not the traditional

dobs, which is Gmtrue + εd, but a random vector of plausible observed data. In other words,

dobs is a realization of the random vector Dobs. Because m and Dobs are both Gaussian,

following the derivation of Eq. 4.18, the mutual information between m and Dobs can be

written as:

I(m,Dobs) =
1

2
log

(
|CM ||CDobs|
|C|

)
, (C.3)

where

C =

 CM CMDobs

CDobsM CDobs

 . (C.4)

Assuming that the random vectors εd and m are independent, the expression for CDobs
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are easy to find. First,

Dobs = Gm+ εd ∼ N(Gmprior, GCMG
T ) +N(0, CD), (C.5)

which implies that

CDobs = GCMG
T + CD. (C.6)

The expression for CMDobs can be derived as follows:

CMDobs = cov(m,Dobs)

= cov(m,Gm) + cov(m, εd)

= cov(m,Gm) + 0

= E[(m− E[m])(Gm− E[Gm])T ]

= E[(m−mprior)(Gm−Gmprior)
T ]

= E[(m−mprior)(m−mprior)
TGT ]

= CMG
T .

(C.7)

The expression for |C| becomes

|C| =

∣∣∣∣∣∣∣
 CM CMDobs

CDobsM CDobs


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
 CM CMG

T

GCM CD +GCMG
T


∣∣∣∣∣∣∣ .

(C.8)

Using the formula for the determinant of a block matrix,

∣∣∣∣∣∣∣
A B

C D


∣∣∣∣∣∣∣ = |D||A−BD−1C|), (C.9)
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we have

|C| =
∣∣CD +GCMG

T
∣∣ ∣∣CM − (CMG

T )(CD +GCMG
T )−1(GCM)

∣∣ . (C.10)

For the linear inverse problem, Oliver et al. (2008) show that the posterior covariance

of m after conditioned to a realization dobs of Dobs is always

CMAP = CM − CMGT (CD +GCMG
T )−1GCM , (C.11)

regardless of the true value of m and the realization dobs.

Therefore,

|C| =
∣∣CD +GCMG

T
∣∣ |CMAP | . (C.12)

Using the above result, the expression of I(m,Dobs) in Equation C.3 becomes

I(m,Dobs) =
1

2
log

(
|CM ||GCMGT + CD|
|CD +GCMGT | |CMAP |

)
=

1

2
log

(
|CM |
|CMAP |

)
.

(C.13)

The expression for I(J,Dobs) can be derived in a similar manner. If J and Dobs are

both Gaussian, the mutual information between J and Dobs can be written as:

I(J,Dobs) =
1

2
log

(
|CJ ||CDobs|
|C|

)
, (C.14)

where

C =

 CJ CJDobs

CDobsJ CDobs

 . (C.15)

Because we assume that J = GJm, the covariance matrix CJ is given by

CJ = GJCMG
T
J . (C.16)
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The expression for CJDobs can be derived as follows:

CJDobs = cov(J,Dobs)

= cov(J,Gm) + cov(J, εd)

= cov(J,Gm) + 0

= E[(J − E[J ])(Gm− E[Gm])T ]

= E[(GJm−GJmprior)(Gm−Gmprior)
T ]

= E[GJ(m−mprior)(m−mprior)
TGT ]

= GJCMG
T .

(C.17)

The expression for |C| becomes:

|C| =

∣∣∣∣∣∣∣
 CJ CJDobs

CDobsJ CDobs


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
GJCMG

T
J GJCMG

T

GCMG
T
J CD +GCMG

T


∣∣∣∣∣∣∣ .

(C.18)

Again, using the formula for the determinant of a block matrix, we have

|C| =
∣∣CD +GCMG

T
∣∣ ∣∣GJCMG

T
J − (GJCMG

T )(CD +GCMG
T )−1(GCMG

T
J )
∣∣

=
∣∣CD +GCMG

T
∣∣ ∣∣GJ

(
CM − CMGT (CD +GCMG

T )−1GCM)GT
J

)∣∣
=
∣∣CD +GCMG

T
∣∣ ∣∣GJCMAPG

T
J

∣∣ .
(C.19)

Using the above result, the expression for I(J,Dobs) in Equation C.14 becomes

I(J,Dobs) =
1

2
log

(
|CJ ||GCMGT + CD|

|CD +GCMGT | |GJCMAPGT
J |

)
=

1

2
log

(
|CJ |

|GJCMAPGT
J |

)
.

(C.20)

The denominator inside the logarithm is the expression for |Cu
J | (similar to Equa-
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tion C.16) but for the posterior model instead of the prior model), thus

I(J,Dobs) =
1

2
log

(
|CJ |
|Cu

J |

)
. (C.21)

We have completed our derivations.

C.3 Average of Means of J

The average (expectation) of the means of J over all conditioned posterior distribu-

tions is defined as

µuJ = E(E(J |dobs)) (C.22)

where the superscript u stands for updated. The inner expectation sign is with respect to

J for a particular value dobs. The outer expectation sign is with respect to Dobs, which is a

random vector, of which dobs is a realization. For continuous random vectors, the definition

of µuJ is

µuJ =

∫
E(J |dobs)f(dobs)ddobs

=

∫ (∫
Jf(J |dobs)dJ

)
f(dobs)ddobs

(C.23)

Using Bayes theorem, f(J |dobs) =
f(dobs|J)f(J)

f(dobs)
, we have:

µuJ =

∫ (∫
J
f(dobs|J)f(J)

f(dobs)
dJ

)
f(dobs)ddobs

=

∫ ∫
Jf(dobs|J)f(J)dJddobs

=

∫ (∫
f(dobs|J)ddobs

)
Jf(J)dJ

=

∫
(1)Jf(J)dJ

= µJprior

(C.24)

This completes our proof that the average of the expectation of J over all plausible posterior

distributions is equal to the prior mean.
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C.4 Correction Factor for Estimating Standard Deviation and P90 - P10

In this section, we evaluate the relationship between the standard deviation calculated

using our proposed method and the value calculated using the rigorous history matching

method. To make everything simple, we assume all the plausible posterior pdf’s of J are

Gaussian. Because for Gaussian distribution, P90 - P10 is directly proportional to standard

deviation, we will assume our result can be extended to P90 - P10 as well.

Recall the two approaches to quantify uncertainty reduction are as follows:

1. Rigorous approach:

• History matching the prior models with Nt plausible vectors of observed data to

obtain Nt posterior pdf’s.

• Calculate the standard deviation of each posterior pdf.

• Calculate the arithmetic average σ̄ of Nt standard deviations.

2. Information theory approach:

• Calculate the prior entropy of J , h(J).

• Calculate the mutual information between J and Dobs, I(J,Dobs).

• Calculate the conditional entropy of J given Dobs is known, h(J |Dobs). This should

be equal to the average of the entropies of the posterior pdf’s obtained with the

rigorous approach.

• Construct a pdf with entropy equal to h(J |Dobs) and with a reasonable shape.

• Calculate the standard deviation σ∗ of the pdf constructed in the previous step.

We wish to use this σ∗ as an estimate for the average standard deviation σ̄.

Because all the pdf’s obtained from history matching are assumed to be Gaussian,

for the information theory approach, it is reasonable to construct a Gaussian distribution

with the estimated conditional entropy. The problem is, even for this simplified situation,

there is a difference between the value of σ∗ and σ̄. We will explore why this happens.
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Suppose fΣ(σ) is the pdf of the standard deviation of all posterior pdf’s. In approach

1, the average standard deviation can be calculated as

σ̄ =

∫ ∞
−∞

σfΣ(σ)dσ. (C.25)

In approach 2, because posterior pdf’s are all Gaussian, the entropy of each posterior

pdf’s is calculated as

h(J |dobs,i) =
1

2
ln(2πeσ2

i ), (C.26)

where dobs,i is the ith realization of the random vector Dobs

The conditional entropy h(J |Dobs), which is the average of the entropies of all posterior

pdf’s, can be calculated as:

h(J |Dobs) =
1

Nt

Nt∑
i=1

h(J |dobs,i)

=
1

Nt

Nt∑
i=1

1

2
ln(2πeσ2

i )

≈
∫ ∞
−∞

1

2
ln(2πeσ2)fΣ(σ)dσ.

(C.27)

The standard deviation of the reconstructed pdf at the end of method 2 is:

σ∗ =

√
e2h(J|Dobs)

2πe

≈

√
e2
∫∞
−∞

1
2

ln(2πeσ2)fΣ(σ)dσ

2πe
.

(C.28)

At this point, there is no way to argue that σ∗ ≈ σ̄ because the equations representing

them are totally different. The question is how different they can be. This can be quantified

by taking the ratio of σ̄ to σ∗ to obtain

σ̄

σ∗
=

∫∞
−∞ σfΣ(σ)dσ√

exp(2
∫∞
−∞

1
2

ln(2πeσ2)fΣ(σ)dσ)

2πe

. (C.29)
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The ratio of σ̄ to σ∗ is a function of σ alone but to evaluate it we need an explicit expression

for fΣ(σ). We will consider two cases for fΣ(σ), a uniform distribution and a Gaussian

distribution, although we have no way to show that either expression is correct.

a. fΣ(σ) is a uniform distribution.

Suppose fΣ(σ) is a uniform distribution between σmin and σmax, so that the expression

for fΣ(σ) can be written as

fΣ(σ) =
1

σmax − σmin
, (C.30)

and σ̄ becomes

σ̄ =

∫ σmax

σmin

σ
1

σmax − σmin
dσ =

σmax + σmin
2

. (C.31)

h(J |Dobs) becomes

h(J |Dobs) =

∫ σmax

σmin

1

2
ln(2πeσ2)

1

σmax − σmin
dσ

=
σmin − σmax + σmax ln(2πσ2

max)− σmin ln(2πσ2
min)

2(σmax − σmin)
.

(C.32)

The ratio of σ̄ to σ∗ can be written as

σ̄

σ∗
=

σmax+σmin
2√

exp

(
σmin−σmax+σmax ln(2πσ2

max)−σmin ln(2πσ2
min

)

σmax−σmin

)
2πe

. (C.33)

It can be shown that the above expression is a function of
σmin
σmax

only. It can also be shown

that
σ̄

σ∗
achieves maximum value of approximately 1.359 when

σmin
σmax

→ 0 and minimum

value of 1 when
σmin
σmax

= 1.

b. fΣ(σ) is a Gaussian distribution.

Suppose fΣ(σ) is a Gaussian distribution with mean σ̄ and standard deviation s, the
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expression for fΣ(σ) can be written as

fΣ(σ) =
1√
2πs

exp

(
−(σ − σ̄)2

2s2

)
. (C.34)

Then h(J |Dobs) becomes

h(J |Dobs) =

∫ ∞
−∞

1

2
ln(2πeσ2)

1√
2πs

exp

(
−(σ − σ̄)2

2s2

)
dσ

= −1

2

(
−1 + γ − ln(πs2) +1 F

(1,0,0)
1 (0,

1

2
,− σ̄2

2s2
)

)
,

(C.35)

where γ is the Euler’s constant (γ ≈ 0.577), 1F
(1,0,0)
1 (a, b, z) is the first-order derivative of

the Kummer confluent hypergeometric function 1F1(a, b, z) (Wolfram, 1999, Section 3.2)

with respect to the first variable a.

The ratio of σ̄ to σ∗ can be written as:

σ̄

σ∗
=

σ̄√
exp
(
−
(
−1+γ−ln(πs2)+1F

(1,0,0)
1 (0, 1

2
,− σ̄2

2s2
)
))

2πe

=
σ̄√

exp
(

1−γ+ln(πs2)−1F
(1,0,0)
1 (0, 1

2
,− σ̄2

2s2
)
)

2πe

.

(C.36)

Again it can be shown that the above expression is a function of the ratio s/σ̄ only. Note

that, because σ follows a Gaussian distribution with mean σ̄ and standard deviation s,

the practical minimum value of σ is σ̄ − 2s ( assuming σ can spread up to 2 standard

deviations away from σ̄). Also note that, because σ represents the standard deviation of

a plausible posterior pdf of J , it has to be greater that 0, which mean

σ̄ − 2s > 0, (C.37)

or

s

σ̄
< 0.5. (C.38)
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Figure C.1 shows the plot of σ̄/σ∗ as a function of s/σ̄. It can be seen from the figure

that σ̄/σ∗ is an increasing function of s/σ̄ on the interval [0, 0.5], with σ̄/σ∗ = 1 at s/σ̄

= 0 and σ̄/σ∗ = 1.189 at s/σ̄ = 0.5

0.2 0.4 0.6 0.8

s

Σ

1.05

1.10

1.15

1.20

1.25

Σ

Σ
*

Figure C.1: The plot of σ̄/σ∗ as a function of s/σ̄

The trends of σ̄/σ∗ in both the uniform and the Gaussian cases above are consistent

with our expectation. We expect the ratio σ̄/σ∗ to approach 1 when all plausible posterior

pdf’s are the same, i.e. have the same standard deviation. This is intuitive because when all

posterior pdf’s are identical, there is no difference whether we calculate the average standard

deviation directly or calculate the standard deviation of a reconstructed pdf. As the standard

deviations of the posterior pdf’s become more different, we expect the ratio σ̄/σ∗ to deviate

from 1. The development above does not only confirm this expectation that but also shows

that the ratio σ̄/σ∗ is always greater than 1.

Using the results above, it is reasonable to say that we should apply a correction factor

from 1 to 1.359 to bring our estimate σ∗ closer to σ̄. The question now is how much correction

we should apply. Recall from the previous paragraph, when the differences between the

standard deviations of the plausible posterior pdf’s are big, the ratio σ̄/σ∗ is higher than

when the differences are small, so the correction factor should be based on differences between

plausible posterior pdf’s. Note that when the mutual information between observed data

and the reservoir variable J is small, each plausible posterior pdf will not change much from

the prior pdf and therefore the differences between the plausible posterior pdf are small.
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On the other hand, when the mutual information is high, each plausible posterior pdf will

deviate significantly from the prior pdf and we expect their differences are big. Based on

these arguments, we use the following simple rule to determine the correction factor:

• When mutual information is zero, use correction factor equal to 1.0

• When mutual information is equal or greater than 2.0, use correction factor equal to

1.359

• When mutual information is greater than 0 and smaller than 2.0, use linear interpola-

tion to determine the correction factor, i.e.

correction factor = 1.0 +
1.359− 1.0

2.0
(mutual information) (C.39)

The limit of 2.0 is based on our experience in working with mutual information. We have

observed from the computational experiments done to date that when the mutual information

is greater than or equal to 2.0, there are enough differences in plausible posterior pdf’s so

that the maximum value of the correction factor should be used.

We hypothesize that the relationship developed above approximately applies when

the posterior distributions are not Gaussian, that is, as long as we reconstruct the pdf in the

information theory approach based on some reasonable assumption about the shape of the

posterior pdf’s, we should still use a value between 1.0 and 1.359 as the correction factor to

predict the average of the standard deviations of the posterior pdf’s. We also hypothesize

that the above relationship also applies when we want to estimate the difference between

P90 and P10. It seems plausible that, for non-Gaussian distributions, this correction factor

approach will hold better when applied to estimate P90 - P10 than when applied to estimate

the standard deviation because P90 - P10 is not as heavily affected by the skewness of the

distribution as the standard deviation is.
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C.5 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a mathematical procedure that uses an or-

thogonal transformation to convert a set of observations of possibly correlated variables into

a set of values of uncorrelated variables called principal components. The number of princi-

pal components is less than or equal to the number of original variables. This transformation

is defined in such a way that the first principal component has as high a variance as possi-

ble, i.e, accounts for as much of the variability in the data as possible, and each succeeding

component in turn has the highest variance possible under the constraint that it be orthog-

onal to (uncorrelated with) the preceding components. PCA is very sensitive to the relative

scaling of the original variables, i.e., variables with big values will dominate variables with

small values. Thorough understanding of the method can be achieved by reading in Jolliffe

(2002). In this appendix, we only present the procedure to perform PCA using SVD for a

set of data.

Let X be a Nm × Ne matrix of data, where each row of X represents one random

variable and consists of Ne observations of that random variable. There are a total of Nm

variables. Now assume that the data in each row are centered, i.e., the mean of all values

in each row is 0. If it is not zero, the mean of the observations of each variable should be

subtracted from the data set for that variable. There is also a possibility that we can divide

the values in each row by their variance or standard deviation but, since this changes the

relative magnitudes of the variables, it is uncertain if this is a good thing to do. In our

current implementation of PCA, we do not divide the data in each rows by their variance or

standard deviation. We decompose X using SVD

X = UΛV T , (C.40)

where U is an Nm ×Nm matrix, Λ is an Nm ×Ne matrix and V T is an Ne ×Ne matrix The

PCA transformation that preserves dimensionality (same number of variables as the original
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data set) is given as

Y = UTX

= UTUΛV T

= ΛV T .

(C.41)

The resulting data set is essentially the original data set except that all the points have been

rotated around the origin so that the first few principal directions contain as much variance

as possible (Figure C.2).
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(a) Original data set with 2 variables (2 dimen-
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(b) Same data set after applying PCA but keeping
same number of dimensions

Figure C.2: Illustration of PCA being applied to a 2-dimensional data set without reduction
of dimensions

If dimension reduction is desired, we can project X to the reduced space by using the

first L singular vectors in U , i.e.,

Y = UT
LX

= UT
LUΛV T

= ΛLV
T ,

(C.42)

where UL is an Nm×NL matrix whose columns corresponds to the first L columns of U , ΛL

is an NL ×Nm rectangular diagonal matrix whose diagonal elements correspond to the first

L diagonal elements of Λ (the first L singular values). When we use this equation to reduce

the number of dimensions of the data set in Figure C.2 to 1, we would obtain the new data

set shown in Figure C.3.
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(a) Original data set with 2 variables (2 dimen-
sions)
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(b) Same data set after applying PCA and reduc-
ing number of dimensions

Figure C.3: Illustration of PCA being applied to a 2-dimensional data set with reduction of
dimensions

The procedure above is called linear PCA. It can only discover linear correlations

between variables in a data set. A more advanced method to discover non-linear correlations

between variables exists and is called kernel PCA. In this research, when necessary, we apply

linear PCA to reduce the dimension of the matrix of plausible realizations of the observed

data and then calculate the mutual information between the dimension-reduced matrix of

plausible observed data and the reservoir variable J . All history matching works are still

performed using the original plausible observed data before PCA.
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