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ABSTRACT

Rintu Kalita (Master of Science in Petroleum Engineering)

CONDITIONING A THREE DIMENSIONAL RESERVOIR MODEL TO GAS

PRODUCTION DATA

(134 pp.-Chapter V)

Directed by Dr. A. C. Reynolds

(249 words)

In this work, we apply inverse theory techniques to generate either an estimate or

multiple realizations of rock property �elds by conditioning a geostatistical model

to well-test pressure data obtained for the single-phase 
ow of gas. In e�ect, the

procedure for generating estimates and realizations is an automatic history matching

procedure with the prior geostatistical model used as an regularization term. Much

of the previous work done within TUPREP was based on conditioning reservoir mod-

els to pressure data assuming the single-phase 
ow of a slightly compressible liquid

of constant compressibility and viscosity. The objectives of the current work are (i)

to extend the methodology to condition a geostatistical model to pressure data ob-

tained from a gas reservoir under single-phase 
ow conditions and (ii) to explore the

applicability of the conjugate gradient (CG) method as an optimization technique.

The conjugate gradient method is applied to synthetic cases to generate

realizations of porosity and permeability �elds and its performance is compared with

that of Gauss-Newton method. Both the methods result in similar �nal conditioned

models. The convergence rate of the method CG is much slower than the Gauss-

Newton method. However the computational cost per iteration is much less in CG

iii



than in Gauss-Newton. The results suggest that the conjugate gradient method can

be applied as the optimization algorithm for the problem of interest here, but further

gain in eÆciency may be necessary in order to routinely apply the method to large

scale �eld problems.
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CHAPTER I

INTRODUCTION

1.1 Background and Literature Review

In this work, we apply inverse theory techniques to generate realizations or

estimates of rock property �elds (reservoir simulator gridblock porosities and direc-

tional permeabilities) and well skin factors conditioned to geostatistical information

and well-test pressure data for single-phase gas 
ow.

Our approach to the inverse problem is the probabilistic one that has been

consistently used by TUPREP researchers and is grounded in Bayesian statistics. In

this work, the prior model for the rock property �elds is assumed to have a mul-

tivariate Gaussian probability density function (pdf). The a posteriori pdf is the

conditional pdf for the model given the observed data and is the one that we use to

construct either a conditional realization or an estimate of the rock property �elds.

The maximum a posteriori (MAP) estimate is the model which maximizes the a pos-

teriori pdf and for this reason is sometimes referred to as the \most probable model."

Generation of the MAP estimate requires the minimization of an objective function

which includes a weighted sum of squares of data mismatch terms plus a regulariza-

tion term which essentially represents the distance between a particular model and

the mean of the prior model. Realizations are generated by minimizing an objective

function which has a similar structure.

The procedure we use to generate realizations was introduced independently

by Kitanidis [15] and Oliver et al. [19] and is referred to here as the randomized max-

1



2

imum likelihood method. Strictly speaking, the method yields a suite of realizations

which represent a correct sampling of the a posteriori pdf if and only if the mapping

from the model space to the data space represented by the forward model is linear;

see Oliver [18] and Reynolds et al. [21].

In past work, the Gauss-Newton method combined with a restricted-step

procedure has normally been used by TUPREP researchers to minimize the objective

functions of interest; see, for example, Chu et al. [8] or He et al. [11]. Sometimes, the

Gauss-Newton method converges to a local minimum which gives an unacceptable

match of the pressure data unless the change in model parameters are damped at early

iterations. In some cases, these local minima correspond to models which are much

rougher than should be expected from the statistics of the prior model. To avoid these

convergence problems, one may apply either an arti�cial damping of model changes

at early times (Wu et al. [24]) or use the Levenberg-Marquardt algorithm (see, Bi et

al. [2]).

For single-phase liquid 
ow, a highly eÆcient procedure developed by TUPREP

researchers (He at al. [11]) has been used to calculate sensitivity coeÆcients. This pro-

cedure is e�ectively a three-dimensional extension of a method developed by Carter

et al. [4]. For linear problems, the Carter method and the adjoint (or optimal control)

method (Chen at al. [6] and Chavent et al. [5]) for computing sensitivity coeÆcients

are identical; see Carter et al. [3]. However, for nonlinear problems Carter's tech-

nique is not applicable. Thus, we derived and implemented an adjoint procedure to

calculate sensitivity coeÆcients. We have compared these results with corresponding

sensitivities calculated from the �nite-di�erence method and found that results from

the two procedures are in excellent agreement.

For nonlinear problems, computation of sensitivity coeÆcients requires one

adjoint solution for each individual observed data that will be used to condition the

model. In the event, Nd observed data are used, we solve the adjoint system with

Nd right hand sides. Roughly speaking, we expect the computational time required
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in this procedure to be equivalent to 1 + (Nd=10) or more reservoir simulation runs;

see Killough et al. [14]. If the number of data is large, the computational work

required becomes signi�cant. Although, it is clear that solving the adjoint system

with multiple right-hand side would be a more eÆcient computational algorithm, our

current code actually solves Nd right-hand sides to generate sensitivity coeÆcients

for Nd data.

We have also implemented the adjoint method to calculate the sensitivity

of the objective function to the rock property �elds. This sensitivity coeÆcient is

nothing more than the gradient of the objective function and its computation requires

a single adjoint solution. If the conjugate gradient method is applied for optimization

of the objective function, individual sensitivity coeÆcients are not needed; only the

gradient of the objective function is required. Based on the work of Killough et al. [14],

we assume the work required to compute sensitivities for Nd data is equivalent to 1+

(Nd=10) simulation runs. The computational e�ort required to compute the gradient

of the objective function is roughly equivalent to one simulation run. It follows that if

the Gauss-Newton method requiresKc iterations to obtain convergence, the conjugate

gradient method must converge in fewer that [1+(Nd=10)]�Kc iterations to be more

eÆcient. If Nd = 100 and Kc = 7, this means the conjugate gradient method must

converge in fewer than 77 iterations to be more eÆcient than the Gauss-Newton

method. These, of course, are only rough comparisons.

Our initial investigation of the conjugate gradient method indicates that the

method is promising especially if we can generate a better preconditioner than the

one currently used. We hasten to add that the application of the conjugate gradient

method to history matching by optimization is not new. For example, Makhlouf et

al. [16] history matched two-phase (water-oil) data from a 450 cell reservoir model

using a conjugate gradient method. The algorithm they applied converged relatively

slowly, and for one problem, required 6400 CPU seconds on a CRAY X-MP/48 to

obtain a history match.



CHAPTER II

MODEL DESCRIPTION AND INVERSE SOLUTION

2.1 The Prior Model

We assume that principal permeability directions coincide with the axes of

the Cartesian coordinate system used so the permeability tensor is diagonal and

involves only three directional permeabilities, kx; ky and kz, which we assume have

log normal probability distributions with known means and variances given by �2kx; �
2
ky

and �2kz respectively. Porosity is assumed to be normal with known mean and variance

given by �2�: Each rock property attribute is modeled as stationary Gaussian random

function so that covariance functions are directly related to the variograms. Vertical

permeability kz may be either treated as a Gaussian random �eld or we may simply

specify that kz = a
p
kxky, where the multiplier a is independent of position and is

modeled as a Gaussian random variable with speci�ed mean and variance. In the

later case, a is a model parameter. The well skin factors are modeled as uncorrelated

Gaussian random variables with speci�ed means and variances available. Here, we

specify only one skin factor per well, i.e, assume the skin factor at a well does not

vary from layer to layer. The code we use, however, has the option of incorporating

a di�erent skin factor in each layer.

If m denotes the vector of model parameters, then in the most general three-

dimensional anisotropic case, m is given by the M dimensional column vector

4
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m =

26666666664

m�

mkx

mky

mkz

ms

37777777775
; (2.1)

where m� is the column vector representing all the grid block porosities, mkx is the

column vector containing all gridblock x-direction permeabilities and so on. In the

most general case, the vector ms includes the skin factors for all gridblocks penetrated

by the wells. For the examples considered here, ms includes a single skin factor for

each well. Throughout, mprior is the vector containing the prior estimates of these

parameters.

The prior model is assumed to be described by a multivariate Gaussian pdf

with prior covariance matrix CM . In the anisotropic case, the prior covariance matrix

is given by

CM =

26666666664

C� C�kx C�ky C�kz O

Ckx� Ckx Ckxky Ckxkz O

Cky� Ckykx Cky Ckykz O

Ckz� Ckzkx Ckzky Ckz O

O O O O Cs

37777777775
(2.2)

In Eq. 2.2, C� is the covariance matrix for gridblock porosities (derived from the

porosity variogram); Ckx is the covariance matrix for gridblock ln(kx)'s; Cky is the

covariance matrix for gridblock ln(ky)'s and so on; C�kx is the cross covariance matrix

between porosity and ln(kx) at the set of gridblocks; Ckx� is equal to the transpose

of C�kx and the other similar notations bear the similar meanings. Throughout,

submatrices indicated with an O denote null matrices, i.e. matrices with all entries

equal to zero. The cross covariance is obtained using the screening hypothesis of Xu

et al.( [25]).
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2.2 A Posteriori Probability Density Function

The relationship between the vector d of calculated production (pressure or

rate) data and the vector m of reservoir model parameters is written as:

d = g(m); (2.3)

which represents generating d from the reservoir simulator for a given m. If the true

reservoir could be described by discretization into gridblocks, and the entries of m

were exactly equal to the true values of gridblock rock properties, then Eq. 2.3 would

predict the observed production data provided the solution of the �nite di�erence

equations was not e�ected by truncation or round-o� errors and data were measured

exactly. However, the observed data will be corrupted by measurement errors. We let

dobs denote the vector of observed production data that will be used as conditioning

data in the inverse problem. Then, assuming that the prior model is multivariate

Gaussian and that data measurement errors are Gaussian with the data covariance

matrix given by CD, application of Bayes' theorem (see Tarantola [23]) indicates that

the posteriori probability function is given by:

f(m) = ba exp �1

2

h
(m�mprior)

TC�1
M (m�mprior)+(g(m)�dobs)

TC�1
D (g(m)�dobs)

i!
;

(2.4)

where ba is the normalizing constant.

If the pressure measurement errors are independent Gaussian random vari-

ables with zero mean and the variance of the jth measurement error is given by �2d;j,

then the data covariance matrix CD is a Nd�Nd diagonal matrix with its j
th diagonal

element equal to �2d;j.

2.3 The Maximum A Posteriori Estimate

The maximum a posteriori (MAP) estimate refers to the model which max-

imizes the a posteriori probability density function (pdf) given by Eq. 2.4. For the
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obvious reason, this m is sometimes referred to as the most probable model. The

MAP estimate can be obtained by minimizing the following objective function:

O(m) =
1

2

�
(m�mprior)

TC�1
M (m�mprior) + (g(m)� dobs)

TC�1
D (g(m)� dobs)

�
:

(2.5)

If the predicted data are linearly related to the model, i.e.

d = Gm; (2.6)

where G is the Nd�M sensitivity matrix, then Eq. 2.5 has a global minimum which

can be constructed from the following analytical formula:

m1 = mprior �H�1
�
GTC�1

D (Gmprior � dobs)
�
; (2.7)

where H is the M �M Hessian matrix given by

H = C�1
M +GTC�1

D G: (2.8)

In this work, the MAP is generated by minimizing the objective function of

Eq. 2.5 using either the Gauss-Newton method with restricted step or the conjugate

gradient method.

2.4 Sampling the Posteriori Probability Density Function

We need to generate a set of realizations of the model parameters by cor-

rectly sampling the a posteriori probability density function in order to characterize

the uncertainty in reservoir performance. Here, we use the procedure suggested in-

dependently by Kitandis [15] and Oliver [19]. We refer to this procedure as the

randomized maximum likelihood method. It can be shown that this method samples

the a posteriori pdf correctly when the data is linearly related to the model. A proof

of this fact is given in Oliver [18]. An alternate and more general proof which applies

to a partially stochastic model is given in Reynolds [21]. This sampling procedure is

described below.
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First we generate an unconditional realizationmuc of the vector of the model

parameters by sampling the prior pdf. We also generate an unconditional realization

of the data duc. The muc can be generated by using Cholesky or square root decom-

position of the prior covariance matrix or by sequential Gaussian cosimulation (see

Gomez et al. [10]). The unconditional simulation of the data can be obtained from

duc = dobs + C
1=2
D ZD; (2.9)

where ZD is a vector of the independent standard normal deviates. A conditional

realization mc of the model parameters can be generated by minimizing

Or(m) = �
1

2

�
(m�muc)

TC�1
M (m�muc) + (g(m)� duc)

TC�1
D (g(m)� duc)

�
: (2.10)

In order to generate Nr realizations the procedure is repeated Nr times.

2.5 The Gauss-Newton Method

The Gauss-Newton method with restricted step has frequently been applied

to generate the MAP estimate or realizations by minimizing the appropriate objective

function; see, for example Chu and Reynolds [7], He at al. [13] and Reynolds et al. [20].

The gradient of the objective function O(m) with respect to the model parameters is

given by:

rmO(m) = GTC�1
D (g(m)� dobs) + C�1

M (m�mprior); (2.11)

and the Hessian for the Gauss-Newton is given by:

H = GTC�1
D G+ C�1

M ; (2.12)

where G is the sensitivity matrix. In this work, sensitivity coeÆcients are calculated

using the adjoint method.

In the Gauss-Newton procedure, at the lth iteration, we solve for Æml+1 by

applying the following equation

HlÆm
l+1 = �rlO; (2.13)
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where Æml+1 can be calculated from

�
GT
l C

�1
D Gl + C�1

M

�
Æml+1 = �GT

l C
�1
D

�
g(ml)� dobs

�
� C�1

M (ml �mprior) (2.14)

and then compute the updated estimate of the model parameters from

ml+1 = ml + �
l
Æml+1: (2.15)

where �
l
is calculated by the same restricted step procedure used in Chu et al. [7]

and Reynolds et al. [20]. Fletcher et al. [9] provides a detailed discussion of the

restricted step procedure. In the preceding equations l (used either as a subscript

or a superscript) denotes the iteration index. The preceding two equations can be

combined to obtain:

ml+1 = ml � �
l
[GT

l C
�1
D Gl + C�1

M ]�1 �

[GT
l C

�1
D (g(ml)� dobs) + C�1

M (ml �mprior)]: (2.16)

Using matrix inverse lemmas on Eq. 2.14 (see Tarantola [23] or Chu and Reynolds [7]),

the following form of the Gauss- Newton method can be obtained.

ml+1 = �
l
mprior + (1� �

l
)ml � �

l
[CMG

T
l (CD +GlCMG

T
l )
�1 �

(g(m)� dobs �Gl(m
l �mprior)]: (2.17)

Eq. 2.16 and 2.17 are mathematically equivalent, but the computational time for the

two schemes may be quite di�erent. The inverse matrix on the right side of Eq. 2.16

is M �M where M is the number of model parameters. The inverse matrix on the

right side of Eq. 2.17 is Nd �Nd where Nd is the number of conditioning data: Since

we normally have Nd < M , Eq. 2.17 will normally be more eÆcient. For all problems

considered in this work, we apply the form of the Gauss-Newton method given by

2.17. Also we are calculating the full C�1
M while evaluating the objective function,

instead of approximating it with a diagonal matrix whose elements are equal to the

inverse of the diagonal terms of the CM matrix.
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2.6 The Conjugate Gradient Method

To generate the MAP estimate or a realization, the conjugate gradient method

can be applied to minimize the appropriate objective function. Here, we use the

preconditioned conjugate gradient (CG) algorithm for nonlinear problems with the

preconditioning matrix at each iteration given by C�1
M . The CG algorithm described

below was taken directly from Schewchuk [22].

2.6.1 Notation

The following notations are used throughout:

k = CG iteration index.

i = Number of CG iterations since last restart. (Restarting means we ignore all

the previous search directions and set the search direction to the steepest descent

direction.)

� = CG error tolerance for convergence.

rk = residual at the kth iteration of the CG algorithm.

dk = search direction at iteration k.

Mk = preconditioning matrix at the k iteration of the CG algorithm.

Initialization:

Let m0 be the initial guess.

Set i = 0; k = 0.

Set r0 = �rmO(m
0); where the gradient of the objective function evaluated

at m0 is given by

rmO(m
0) = rm

�
1

2
(g(m)� dobs)

TC�1
D (g(m)� dobs)

�
+ C�1

M (m�mprior): (2.18)

The gradient of the term within square brackets can be obtained by the adjoint

method and the second part, C�1
M (m � mprior), is calculated directly and added to

the �rst part.
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Calculate the preconditioning matrixM0 as an approximation to the Hessian.

In this work M0 is approximated by the inverse of the covariance matrix. So at all

iterations, we set M0 = C�1
M so that M�1

0 = CM :

Set s0 =M�1
0 r0 = CMr0.

Set d0 = s0.

Set Ænew = rT0 d0 = rT0M
�1
0 r0.

Set Æ0 = Ænew.

Start CG iteration

Start loop for k.

For k = 0 to kmax the following steps are repeated.

Check for convergence:

If Ænew < �2Æ0, STOP since the CG has converged.

Step size calculation:

Determine step size � by minimizing g(�) = O
�
mk + �dk

�
: This minimiza-

tion can be done by using the Newton-Raphson algorithm to �nd a zero of f(�);

where

f(�) =
dO(mk + �dk)

d�
=
�
rO(mk + �dk)

�T
dk: (2.19)

Also

f 0(�) =
df(�)

d�
= dTkr

h�
rO(mk + �dk)

�Ti
dk = dTkH(mk + �dk)dk: (2.20)

Note since the Hessian is positive de�nite, f(�) is an increasing function of � and can

have only one zero. Moreover this zero must be a minimum of g(�) since the second

derivative of g(�) is positive. The Newton-Raphson iteration for �nding a zero of

f(�) is

�j+1 = �j �
f(�j)

f 0(�j)

= �j �

�
rO(mk + �dk)

�T
dk

dTkH(mk + �dk)dk:
(2.21)
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The Newton-Raphson iteration is stopped when a suitable convergence criteria is

reached. In our procedure we use the convergence criteria (��j)
2dTk dk < 
2, where


 = 10�6; or, as discussed later, we simply do one iteration.

The exact line search method given by Eq. 2.21 can be expensive because

the evaluation of the term dTkH(mk+�dk)dk requires one simulation run (shown later

in this section). We attempt to gain eÆciency by doing only one Newton-Raphson

iteration. In that case, taking �0 = 0; we �nd,

� = �

�
rO(mk)

�T
dk

dTkH(mk)dk
: (2.22)

If an inexact line search leads to the construction of a search direction that is not

a descent direction (see Schewchuk [22]), we simply restart the CG iteration using

steepest descent. To check if dk is a descent direction, we evaluate rTk dk and restart

if rTk dk � 0.

Update parameters:

Set mk+1 = mk + �kdk.

Set rk+1 = �rmO(m
k+1).

Set Æ0 = Ænew = rTkM
�1
k rk.

Set Æmid = rTk+1sk = rTk+1M
�1
k rk.

Calculate the new preconditionerMk+1. (In our application,Mk+1 = C�1
M at

all iterations.)

Set sk+1 =M�1
k+1rk+1.

Set Ænew = rTk+1sk+1.

Calculation of �:

The parameter � can be calculated either by the Fletcher-Reeves formula or

Polak-Ribiere method.

Fletcher-Reeves gives:

�k+1 =
rTk+1sk+1

rTk sk
=
rTk+1M

�1
k+1rk+1

rTkM
�1
k rk

=
Ænew
Æ0

: (2.23)
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Polak-Ribiere gives:

�k+1 =
rTk+1(sk+1 � sk)

rTk sk
=
rTk+1M

�1
k+1rk+1 � rTk+1M

�1
k rk

rTkM
�1
k rk

=
Ænew � Æmid

Æ0
: (2.24)

We use the later formula since the convergence of Polak-Ribiere can be guar-

anteed by selecting � = maxf�PR; 0g ( Schewchuk [22]). Using this value is equivalent

to restarting CG when �PR < 0: To restart the CG means we ignore the previous

search directions, and begin CG iteration again where the �rst conjugate vector is in

the direction of steepest descent.

Restart:

If i = n (n is the maximum number of iteration allowed before restart) or

�k+1 � 0;

Set �k+1 = 0

Set dk+1 = sk+1 and set i = 0

Else

dk+1 = sk+1 + �k+1dk

Endif

Set i = i + 1

Finish CG iteration (End of loop on k)

Calculation of dTkH(mk)dk in step size determination:

The above term can be approximated without actually calculating the Hes-

sian. We know that at the kth iteration, the Hessian is given by

Hk = GT
kC

�1
D Gk + C�1

M ; (2.25)

so,

dTkHkdk = dTk
�
GT
kC

�1
D Gk + C�1

M

�
dk

= dTk
�
GT
kC

�1
D Gk

�
dk + dTkC

�1
M dk

= (Gkdk)
T C�1

D (Gkdk) + dTkC
�1
M dk: (2.26)
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Thus, we do not need to compute the sensitivity coeÆcient matrix G directly; we

only need to compute Gdk. Note that here dk is the search direction at the kth

conjugate gradient iteration. Also we know the relationship between data d and

model parameters m given by d = g(m). Thus, the sensitivity coeÆcient matrix G

can be represented by

G = fgi;jg where gi;j =
@di
@mj

=
@gi
@mj

; i = 1; :::; Nd and j = 1; :::;M: (2.27)

Now consider the directional derivative of g, i.e,�
dg

d�

�
�=0

=

�
dg(m+ �dk)

d�

�
�=0

, where dk is the search direction.

Letting u be the unit vector de�ned by u = dk=kdkk, it is well known that the ith

component of this directional derivative is�
dgi
d�

�
�=0

= [rgi(m)]T u

=
1

kdkk
[rgi(m)]T dk: (2.28)

The ith component of Gdk is given by,h
Gdk

i
i

=
MX
j=1

@gi
@mj

dk;j

= [rgi(m)]T dk; (2.29)

where dk;j is the jth component of dk. From Eqs. 2.28 and 2.29, it follows that

Gdk = kdkk
� dg
d�

�
�=0

� kdkk
g(m+ �dk)� g(m)

�kdkk

=
g(m+ �dk)� g(m)

�
; (2.30)

where � is a small number. In our calculation, we choose � based on the in�nity norm

of dk so that � satis�es �kdkk1 = 10�3. Once Gdk is approximated as shown above,

dTkH(mk)dk can be determined from Eq. 2.26.
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We can calculate
�
rO(mk + �dk)

�T
dk in a similar fashion (or otherwise cal-

culate it by adjoint method). Let bmk = mk + �jdk, we have

�
rO(bmk)

�T
dk =

MX
j=1

@O(bmk)

@mj
dk;j: (2.31)

Again,  
dO(bmk)

d�

!
�=0

=
�
rO(bmk)

�T dk
kdkk

: (2.32)

So

�
rO(bmk)

�T
dk = kdkk

�
dO(bmk)

d�

�
�=0

� kdkk
O(bmk + �dk)� O(bmk)

�kdkk

=
O(bmk + �dk)� O(bmk)

�
: (2.33)

The term � is calculated in the same way as described previously. Note that if we

do one inner iteration with the Newton-Raphson method, i.e, calculate � by Eq. 2.22

we do not have to calculate
�
rO(mk)

�T
dk by Eq. 2.33, because

�
rO(mk)

�
is already

evaluated while constructing the residual rk for the kth iteration of the conjugate

gradient iteration. Eq 2.33 comes into play only when we do multiple inner iterations

in the Newton-Raphson method.

Important Remarks:

1. As discussed previously, if we apply an exact line search method in the step size

calculation, we must run the simulator once for each Newton-Raphson iteration (see

Eq. 2.21). As this is computationally expensive, we conducted some experiments

to investigate whether an exact line search is needed. We found that in the initial

stages of the Newton-Raphson iteration, one Newton-Raphson iteration is suÆcient to

obtain a step size which reduces the objective function in the direction of dk. For the

cases we have considered, this did not result in additional restarts of the algorithm.
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We also found that when the objective function is relatively 
at, the zero of

f(�) = dg(�)=d� computed by the Newton-Raphson iteration does not necessarily

correspond to the minimum of g(�). At this point, we are not sure whether this

discrepancy is due to inaccuracy in the computation of the gradient of the objective

function using the adjoint method or other numerical errors. In any case, to gain ef-

�ciency, we do only one iteration to determine the step size. In the rare case that the

new model (mk +�dk) gives an increase in the objective function (which can happen

if g(�) is relatively 
at in the neighborhood of the desired minimum), we continually

cut the step size by a factor of 2 until we obtain a decrease in the objective function.

It some cases this procedure cuts the step size so much that we make only a very

small change in our estimate of m. However, this occurs only when the only current

estimate of m approximately minimizes the objective function in the direction dk.

2. In the basic CG algorithm, we restart the procedure with a steepest descent vector

whenever � < 0 or the maximum allowable number of iteration without a restart is

reached. However, if as in our case, an exact line search is not done, then at the next

iteration, we may end up with a conjugate direction which is not a descent direc-

tion. The standard procedure for dealing with this problem is to restart conjugate

gradient whenever rTk dk � 0. This control and the control, � < 0, can be referred to

as implicit control. In addition, we can explicitly specify the maximum number of

iterations allowed before restarting the CG in an attempt to ensure the orthogonality

of the search directions. This can be referred to as explicit control. We have experi-

mented with the number of explicit controls and the results are discussed in Chapter

IV.

3. We have also tried CG without preconditioning. Our results indicate that this pro-

cedure results in very localized changes in the model, i.e., only the rock properties at

gridblocks containing wells are changed (see the results in Chapter IV, MAP estima-

tion). Because such results are unreasonable, we abandoned the non-preconditioned
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conjugate gradient methods without extensive testing. Using C�1
M as a preconditioner

e�ectively uses the correlation between gridblock parameters inherent in the covari-

ance functions to cause a modi�cation in the model parameters near the well. Also

we have seen the change in the convergence rate using CG with preconditioning and

without preconditioning (see results in Chapter IV). Preconditioning de�nitely im-

proves the convergence rate, which perhaps can be further improved by choosing a

more appropriate preconditioning matrix.



CHAPTER III

GENERATION OF SENSITIVITY COEFFICIENTS BY ADJOINT METHOD

In this section, we present the derivation of the adjoint method used to

generate the sensitivity coeÆcients for wellbore pressure (in the case of constant rate

production) and sensitivity of 
ow rate (in the case of constant pressure production)

with respect to the rock property �elds and skin factors. The single phase oil simulator

developed by He et. al. [12] is adapted to take account of the gas phase and has been

used to solve the forward problem in this work.

We present the derivation of the discrete adjoint equations. The adjoint vari-

ables obtained by solving this system of equations are used to calculate the sensitivity

coeÆcients related to production data.

3.1 Flow Equation and Reservoir Simulator

The 
ow equation is written as,

C1r:(
1

�gBg
[k]rp(x; y; z; t)) =

�ct
C2Bg

@p

@t
+ bq(x; y; z; t): (3.1)

The constants C1 and C2 are de�ned as:

C1 = 1:127� 10�3; (3.2)

and

C2 = 5:615: (3.3)

The term [k] denote the permeability tensor, Bg is the gas formation volume factor in

RB/scf and �g is the gas viscosity in cp. Bg and �g are calculated based on standard

18
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correlations for a particular pressure (see Appendix A). The term bq(x; y; z; t) is a
source/sink term with units scf/ft3-day, which is positive for a producing well and

negative for an injection well. This term is nonzero only if the point (x; y; z) is

intersected by the well where the rate is nonzero. We assume that the coordinate

directions are aligned with the principal permeability directions so that

[k] =

26664
kx 0 0

0 ky 0

0 0 kz

37775 : (3.4)

We assume a rectangular parallelopoid reservoir, i.e. Eq. 3.1 applies for all t > 0 on


 = f(x; y; z)j0 < x < Lx; 0 < y < Ly; 0 < z < Lzg: (3.5)

The boundary of 
 is denoted by @
 . We assume no 
ow boundary conditions. The

initial conditions are given by

p(x; y; z; t) = p0(x; y; z): (3.6)

We discretize the region 
 into gridblocks using a standard block-centered grid

and let the gridblock center be denoted by (xi; yj; zk) where i = 1; 2; :::; Nx; j =

1; 2; :::; Ny; k = 1; 2; :::; Nz. Considering Eq. 3.1 at (xi; yj; zk), we use a standard �nite

di�erence procedure to approximate the spatial derivatives and multiply the resulting

equation by �xi�yj�zk to obtain the following equation:

Tx;i+1=2;j;k(t)(pi+1;j;k(t)� pi;j;k(t))� Tx;i�1=2;j;k(t)(pi;j;k(t)� pi�1;j;k(t)) +

Ty;i;j+1=2;k(t)(pi;j+1;k(t)� pi;j;k(t))� Ty;i;j�1=2;k(t)(pi;j;k(t)� pi;j�1=2;k(t)) +

Tz;i;j;k+1=2(t)(pi;j;k+1(t)� pi;j;k(t))� Ty;i;j;k�1=2(t)(pi;j;k(t)� pi;j;k�1=2(t))

= (
�xi�yj�zk�i;j;kct;i;j;k

C2Bg;i;j;k
)(
@pi;j;k
@t

) + qi;j;k(t): (3.7)

The modi�ed source/sink term is given by

qi;j;k(t) = �xi�yj�zkbq(xi; yj; zk; t); (3.8)
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and has the units of scf/day. The terms �xi;�yj;�zk are the dimensions of the

grid block centered at (xi; yj; zk): The x-direction boundaries of the gridblock are

xi+1=2;j;k and xi�1=2;j;k so that �xi = xi+1=2;j;k � xi�1=2;j;k: Similar notation applies at

the gridblock boundaries in the other directions. Transmissibilities are de�ned at the

gridblock interfaces and are given below: The x-direction transmissibilities are

Tx;i+1=2;j;k(t) =
C1�yj�zkkx;i+1=2;j;k

xi+1 � xi

�
1

�g(t)Bg(t)

�
i+1=2;j;k

; (3.9)

for all i = 1; 2; :::; Nx � 1: To incorporate no 
ow boundaries, we set

Tx;1=2;j;k(t) = Tx;Nx+1=2;j;k(t) = 0: (3.10)

Similarly,

Ty;i;j+1=2;k(t) =
C1�xi�zkky;i;j+1=2;k

yj+1 � yj

�
1

�g(t)Bg(t)

�
i;j+1=2;k

; (3.11)

for all j = 1; 2; :::; Ny � 1: To incorporate no 
ow boundaries, we set

Ty;i;1=2;k(t) = Tx;i;Ny+1=2;k(t) = 0: (3.12)

Finally,

Tz;i;j;k+1=2(t) =
C1�xi�yjkz;i;j;k+1=2

zk+1 � zk

�
1

�g(t)Bg(t)

�
i;j;k+1=2

; (3.13)

for all k = 1; 2; :::; Nz � 1: To incorporate no 
ow boundaries, we set

Tz;i;j;1=2(t) = Tz;i;j;Nz+1=2(t) = 0: (3.14)

Note that the transmissibilities are not independent of time since the terms contain

pressure dependent terms. The pressure dependent parameters in the transmissibility

term are calculated at the block interface corresponding to the interpolated pressure at

the interface. The pressure at the block interface is evaluated by linearly interpolating

the corresponding gridblock pressures.
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Permeabilities at the grid block interfaces are calculated as the harmonic

average of the grid block permeabilities with suitable modi�cation for the boundary

cases. So we have

kx;i+1=2;j;k =
(�xi +�xi+1)kx;i;j;kkx;i+1;j;k
�xikx;i+1;j;k +�xi+1kx;i;j;k

; (3.15)

for i = 1; 2; :::; Nx � 1, j = 1; 2; :::; Ny, k = 1; 2; :::; Nz,

kx;1=2;j;k = kx;1;j;k and kx;Nx+1=2;j;k = kx;Nx;j;k: (3.16)

Similarly,

ky;i;j+1=2;k =
(�yj +�yj+1)ky;i;j;kky;i;j+1;k
�yjky;i;j+1;k +�yj+1ky;i;j;k

; (3.17)

for j = 1; 2; :::; Ny � 1, i = 1; 2; :::; Nx, k = 1; 2; :::; Nz,

ky;i;1=2;k = ky;i;1;k and ky;i;Ny+1=2;k = ky;i;Ny;k: (3.18)

Similarly,

kz;i;j;k+1=2 =
(�zk +�zk+1)kz;i;j;kkz;i;j;k+1
�zkkz;i;j;k+1 +�zk+1kz;i;j;k

; (3.19)

for k = 1; 2; :::; Nz � 1, i = 1; 2; :::; Nx, j = 1; 2; :::; Ny,

kz;i;j;1=2 = kz;i;j;1 and kz;i;j;Nz+1=2 = kz;i;jNz: (3.20)

For a two-dimensional x� y problem, we simply use one gridblock in the z direction

and replace �zk by the reservoir thickness and set all the z direction permeabilities

to zero.

3.2 Well Constraints

The simulator and the subsequent code for sensitivity coeÆcient generation,

can handle single or multiple producing wells. We can also consider completely pene-

trating or partially penetrating wells. The wellbore constraints can be either constant


ow rate, a sequence of constant 
ow rates or a constant 
owing bottom hole pressure.
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In the case of 
ow rate, we specify the total 
ow rate of the well. The relationship

between a gridblock source or sink term, the gridblock pressure and the 
owing bot-

tom hole pressure is speci�ed by Peaceman's equation. Speci�c source/sink terms in a

grid block penetrated by a well must be computed from the speci�ed well constraints.

Assume a well is located in a grid block centered at (xi; yj; zk): At time t, the 
ow rate

(qi;j;k(t)) for a well is related to grid block pressure, pi;j;k(t) and the 
owing bottom

hole pressure pwf;i;j(t) by

qi;j;k(t) = WIi;j;k(t)(pi;j;k(t)� pwf;i;j(t)): (3.21)

The well index terms WIi;j;k(t) is de�ned as,

WIi;j;k(t) =
C3h

p
kx;i;j;kky;i;j;k

ln(ro;i;j;k=rw;i;j) + si;j;k

�
1

�i;j;k(t)Bg;i;j;k(t)

�
(3.22)

where

C3 = (2�)1:127� 10�3; (3.23)

and

ro;i;j;k =
0:28073�xi

q
1 +

kx;i;j;k�y2

ky;i;j;k�x2

1 +
q

kx;i;j;k
ky;i;j;k

: (3.24)

Here rw;i;j is the wellbore radius and si;j;k is the skin factor of the well at model

layer k. Note that the WIi;j;k(t); the well index term for the gridblock (xi; yj; zk),

is time dependent by its dependence on pressure, since it involves gas viscosity (�g)

and formation volume factor (Bg). The pressure dependent terms are evaluated at

the corresponding gridblock pressure.

3.3 Generation of Sensitivity CoeÆcients by Adjoint Method

De�ne the term

Vi;j;k =
�xi;j;k�yi;j;k�zi;j;k�i;j;k

C2
: (3.25)
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Using the above term and incorporating Peaceman's relation to account for the

source/sink term, the semidiscrete 
ow equation can be written as

Tx;i+1=2;j;k(t)(pi+1;j;k(t)� pi;j;k(t))� Tx;i�1=2;j;k(t)(pi;j;k(t)� pi�1;j;k(t)) +

Ty;i;j+1=2;k(t)(pi;j+1;k(t)� pi;j;k(t))� Ty;i;j�1=2;k(t)(pi;j;k(t)� pi;j�1=2;k(t)) +

Tz;i;j;k+1=2(t)(pi;j;k+1(t)� pi;j;k(t))� Ty;i;j;k�1=2(t)(pi;j;k(t)� pi;j;k�1=2(t))

�WIi;j;k(t)(pi;j;k(t)� pwf;i;j(t)) = Vi;j;k

�
ct
Bg

�
p(t)i;j;k

@p(t)i;j;k
@t

(3.26)

which is equivalent to Eq. 3.7. For each gridblock (i; j; k) the total transmissibility

can be de�ned as

Tt;i;j;k(t) = Tx;i+1=2;j;k(t) + Tx;i�1=2;j;k(t) + Ty;i;j+1=2;k(t) + Ty;i;j�1=2;k(t) +

Tz;i;j;k+1=2(t) + Tz;i;j;k�1=2(t): (3.27)

Now Eq. 3.26 can be written as

Tz;i;j;k+1=2(t)pi;j;k+1(t) + Ty;i;j+1=2;k(t)pi;j+1;k(t) + Tx;i+1=2;j;k(t)pi+1;j;k(t)

� [Tt;i;j;k(t) +WIi;j;k(t)] pi;j;k(t) + Tx;i�1=2;j;k(t)pi�1;j;k(t) + Ty;i;j�1=2;k(t)pi;j�1;k(t)

+Tz;i;j;k�1=2(t)pi;j;k�1(t) +WIi;j;k(t)pwf;i;j(t) = Vi;j;k

�
ct
Bg

�
p(t)i;j;k

@p(t)i;j;k
@t

:

(3.28)

Assuming that the total 
ow rate is speci�ed at each well as function of time, the

rate at a well located at (xi; yj) and penetrating layers k = l1; ::::; l2; is given by

qi;j(t) =
l2X

k=l1

WIi;j;k(t) [pi;j;k(t)� pwf;i;j(t)] ; (3.29)

where the sum is all over the gridblocks penetrated by the well. In the simulator we

approximate the time derivative to get the �nal system of �nite di�erence equations.

We let �tn; n = 1; ::: denote the time steps with �tn = tn+1 � tn and denote t0 = 0.

Also let bV n
i;j;k = Vi;j;k

1

�tn
: (3.30)
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So the implicit scheme for the simulator equations can be written as

Tz;i;j;k+1=2(t)pi;j;k+1(t) + Ty;i;j+1=2;k(t)pi;j+1;k(t) + Tx;i+1=2;j;k(t)pi+1;j;k(t)

�(Tt;i;j;k(t) +WIi;j;k(t))pi;j;k(t) + Tx;i�1=2;j;k(t)pi�1;j;k(t) + Ty;i;j�1=2;k(t)pi;j�1;k(t)

+Tz;i;j;k�1=2(t)pi;j;k�1(t) +WIi;j;k(t)pwf;i;j(t) = bV n
i;j;k

�
ct
Bg

�
pi;j;k

(pni;j;k � pn�1i;j;k);

(3.31)

and

qni;j =
l2X

k=l1

WIni;j;k(p
n
i;j;k � pnwf;i;j): (3.32)

Substituting Bn
i;j;k for

�
ct
Bg

�n
i;j;k

in Eq. 3.31, we can write the simulator equa-

tions as

An
1;1p

n + An
1;2p

n
wf = bV n

�
Bn
�
pn � pn�1

��
; (3.33)

and

An
2;1p

n + An
2;2p

n
wf = Qn: (3.34)

where An
1;1 is the N �N matrix with diagonal elements given by terms �(Tt;i;j;k(t) +

WIi;j;k(t)) and the other 6 nonzero diagonals are given by the gridblock transmisi-

bilities. Throughout, Nw denotes the number of wells and N = Nx �Ny �Nz is the

total number of gridblocks. The matrix An
1;2 is the N �Nw matrix whose entries are

either zero or equal to the well index term. The matrix V n is N �N diagonal matrix

with the diagonal elements given by the eV n
i;j;k terms. The matrix A

n
2;1 is Nw�N and

An
2;1 = (An

1;2)
T . The matrix An

2;2 is the Nw � Nw diagonal matrix with a particular

diagonal entry corresponding to the sum of well index terms corresponding to a par-

ticular well. In Eq. 3.33, Bn (pn � pn�1) is a N � 1 dimensional matrix de�ned in

Eq. 3.35 given below. The matrix Bn is a diagonal matrix of size N � N with each
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diagonal element being equal to
�

cnt
Bn
g

�
i;j;k

. So we have

Bn(pn � pn�1) =

26666664
Bn(pn � pn�1)1

Bn(pn � pn�1)2
...

Bn(pn � pn�1)N

37777775

=

266666664

�
cnt
Bn
g

�
1 �

cnt
Bn
g

�
2

. . . �
cnt
Bn
g

�
N

377777775

26666664
(pn � pn�1)1

(pn � pn�1)2
...

(pn � pn�1)N

37777775 :(3.35)

3.4 The Adjoint Functional

We formulate the adjoint solution based on the Eqs. 3.33 and 3.34. We de�ne

vectors of gridblock porosities and permeabilities as follows.

kx =
h
kx1; kx1; � � � kxM

iT
; (3.36)

ky =
h
ky1; ky1; � � � kyM

iT
; (3.37)

kz =
h
kz1; kz1; � � � kzM

iT
; (3.38)

and

� =
h
�1; �2; � � � �M

iT
: (3.39)

We can also de�ne the skin variable vector by

sskin =
h
sskin1; sskin2; � � � ssskinM0

iT
; (3.40)
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where M 0 = Nw �Nz if we specify skin factors layerwise for each well or M 0 = Nz if

we specify one skin factor for each well. In the later case, the skin factors for each

layer in a particular well are assumed to be equal.

We denote the di�erential of these variables by

dkx =
h
dkx1; dkx1; � � � dkxM

iT
; (3.41)

dky =
h
dky1; dky1; � � � dkyM

iT
; (3.42)

dkz =
h
dkz1; dkz1; � � � dkzM

iT
; (3.43)

d� =
h
d�1; d�2; � � � d�M

iT
; (3.44)

and

dsskin =
h
dsskin1; dsskin2; � � � dsskinM 0

iT
: (3.45)

Assume we wish to compute the sensitivity of some real valued function g

with respect to the vectorm of model parameters. We also assume that the functional

form of g is such that it depends only on p; pwf ; kx; ky; kz and sskin. So g can be de�ned

as

g = g(p1; :::; pL; p1wf ; :::; p
L
wf ; kx; ky; kz; �; sskin): (3.46)

The function is arbitrary, but the choice is dictated by the sensitivity coeÆcient we

wish to compute. In fact, the adjoint method is formulated so that we can calculate

the sensitivity of g. Our choice of g is dictated by our desire to �nd out sensitivity

of pwf(t) and q(t). For the case where the 
ow rate is speci�ed, we have two types of

adjoint equations; see Eqs. 3.33 and 3.34. So we de�ne two sets of adjoint variables,

one M dimensional and the other Nw dimensional, as follows:

�lf =
h
�lf1 �lf2 � � � �lfM

iT
; (3.47)
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and

�ls =
h
�ls1 �ls2 � � � �lsM

iT
: (3.48)

We now adjoin Eqs. 3.33 and 3.34 to the function g to obtain the functional J given

by

J = g +
LX

n=1

� �
�nf
�T �

An
1;1p

n + An
1;2p

n
wf � bV n

�
Bnpn �Bnpn�1

��
+

(�ns )
T �An

2;1p
n + An

2;2p
n
wf �Qn

� �
: (3.49)

Given gridblock and wellbore pressures that satisfy �nite di�erence equations, all the

terms in the sum are zero for any values of the adjoint variables. For the sake of

simplicity in calculating the total di�erential, we use the notation,

F n
1;1 = An

1;1p
n and F n

1;2 = An
1;2p

n
wf ; (3.50)

where F n
1;1 and F n

1;2 are both (N � 1) matrices. Similarly, let

F n
2;1 = An

2;1p
n and F n

2;2 = An
2;2p

n
wf ; (3.51)

where F n
2;1 and F n

2;2 are both (Nw � 1) matrices. So J can be rewritten as

J = g +
LX

n=1

� �
�nf
�T

(F n
1;1 + F n

1;2)� bV n
�
Bnpn � Bnpn�1

�
+

(�ns )
T �F n

2;1 + F n
2;2 �Qn

� �
: (3.52)

From the point of view of computing the total di�erential, we consider the F n
1;1; F

n
2;1; F

n
2;1;

F n
2;2 as functions of permeability, gridblock pressure, 
owing wellbore pressure and

skin factors. So the total di�erential of the ith component of F n
1;1 is given by

dF n
1;1;i =

NX
j=1

�
@F n

1;1;i

@pnj
dpnj +

@F n
1;1;i

@kx;j
dkx;j +

@F n
1;1;i

@ky;j
dky;j +

@F n
1;1;i

@kz;j
dkz;j +

@F n
1;1;i

@sskin;j
dsskin;j

�
:

(3.53)
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De�ning the gradient operator in the standard way, we have

rpnF
n
1;1;i =

26666664

@Fn
1;1;i

@pn
1

@Fn
1;1;i

@pn
2

...
@Fn

1;1;i

@pnN

37777775 : (3.54)

Similarly,

rkxF
n
1;1;i =

26666664

@Fn
1;1;i

@kx;1
@Fn

1;1;i

@kx;2
...

@Fn
1;1;i

@kx;N

37777775 : (3.55)

Similar notation can be used with the N -dimensional vectors ky; kz, and the M 0-

dimensional vector sskin. So we can write Eq. 3.53 as

dF n
1;1;i = (rpnF

n
1;1;i)

Tdpn + (rkxF
n
1;1;i)

Tdkx + (rkyF
n
1;1;i)

Tdky +

(rkzF
n
1;1;i)

Tdkz + (rsskinF
n
1;1;i)

Tdsskin; (3.56)

where dkx; dky; dkz and dsskin are given by Eq. 3.41, 3.42, 3.43 and 3.45 respectively

and

dpn =
h
dpn1 dpn2 � � � dpnN

i
: (3.57)

Using gradient notation, we can also see that
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rkx[(F
n
1;1)

T ] =

26666664
@

@kx;1

@
@kx;2
...

@
@kx;N

37777775 [(F
n
1;1)

T ] =

26666664
@

@kx;1

@
@kx;2
...

@
@kx;N

37777775
h
(F n

1;1;1) (F n
1;1;2) : : : (F n

1;1;N)
iT

=
h
rkxF

n
1;1;1 rkxF

n
1;1;2 � � � rkxF

n
1;1;N

i

=

26666664

@Fn
1;1;1

@kx;1

@Fn
1;1;2

@kx;1
� � �

@Fn
1;1;N

@kx;1
@Fn

1;1;1

@kx;2

@Fn
1;1;2

@kx;2
� � �

@Fn
1;1;N

@kx;2
...

...
. . .

...
@Fn

1;1;1

@kx;N

@Fn
1;1;2

@kx;N
� � �

@Fn
1;1;N

@kx;N

37777775 : (3.58)

A similar expression can be derived for the gradient of F n
1;1 with respect to other

variables. Then the total di�erential of F n
1;1can be written as
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dF n
1;1 =

26666664
dF n

1;1;1

dF n
1;1;2

...

dF n
1;1;N

37777775

=

26666664
(rpnF

n
1;1;1)

Tdpn + (rkxF
n
1;1;1)

Tdkx + (rkyF
n
1;1;1)

Tdky

(rpnF
n
1;1;2)

Tdpn + (rkxF
n
1;1;2)

Tdkx + (rkyF
n
1;1;2)

Tdky
...

(rpnF
n
1;1;N)

Tdpn + (rkxF
n
1;1;N)

Tdkx + (rkyF
n
1;1;N)

Tdky

37777775+
26666664

(rkzF
n
1;1;1)

Tdkz + (rsskinF
n
1;1;1)

Tdsskin

(rkzF
n
1;1;2)

Tdkz + (rsskinF
n
1;1;2)

Tdsskin
...

(rkzF
n
1;1;N)

Tdkz + (rsskinF
n
1;1;N)

Tdsskin

37777775

=

26666664
(rpnF

n
1;1;1)

T

(rpnF
n
1;1;2)

T

...

(rpnF
n
1;1;N)

T

37777775 dp
n +

26666664
(rkxF

n
1;1;1)

T

(rkxF
n
1;1;2)

T

...

(rkxF
n
1;1;N)

T

37777775 dkx +
26666664

(rkyF
n
1;1;1)

T

(rkyF
n
1;1;2)

T

...

(rkyF
n
1;1;N)

T

37777775 dky+
26666664

(rkzF
n
1;1;1)

T

(rkzF
n
1;1;2)

T

...

(rkzF
n
1;1;N)

T

37777775 dkz +
26666664

(rsskinF
n
1;1;1)

T

(rsskinF
n
1;1;2)

T

...

(rsskinF
n
1;1;N)

T

37777775 dsskin

=
h
(rpnF

n
1;1;1)

T � � � (rpnF
n
1;1;N )

T

iT
dpn +

h
(rkxF

n
1;1;1)

T � � � (rkxF
n
1;1;N)

T

iT
dkx+h

(rkyF
n
1;1;1)

T � � � (rkyF
n
1;1;N)

T

iT
dky +

h
(rkzF

n
1;1;1)

T � � � (rkzF
n
1;1;N)

T

iT
dkz+h

(rsskinF
n
1;1;1)

T � � � (rsskinF
n
1;1;N)

T

iT
dsskin;

(3.59)
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or,

dF n
1;1 = (rpn (F

n
1;1)

T )Tdpn + (rkx(F
n
1;1)

T )Tdkx + (rky(F
n
1;1)

T )Tdky+

(rkz(F
n
1;1)

T )Tdkz + (rsskin(F
n
1;1)

T )Tdsskin: (3.60)

Similarly F n
1;2 is a function of pn; pnwf ; kx; ky; sskin and hence we can �nd the

total derivative as

dF n
1;2 = (rpn (F

n
1;2)

T )Tdpn + (rpnwf
(F n

1;2)
T )Tdpnwf + (rkx(F

n
1;2)

T )Tdkx+

(rky(F
n
1;2)

T )Tdky + (rsskin(F
n
1;2)

T )Tdsskin: (3.61)

The vector F n
2;1 is a function only of pn; kx; ky and sskin and the total di�er-

ential can be written as

dF n
2;1 = (rpn (F

n
2;1)

T )Tdpn + (rkx(F
n
2;1)

T )Tdkx+

(rky(F
n
2;1)

T )Tdky + (rsskin(F
n
2;1)

T )Tdsskin: (3.62)

The vector F n
2;2 is a function only of pn; pnwf ; kx; ky and sskin and the total

derivative can be written as

dF n
2;2 = (rpn (F

n
2;2)

T )Tdpn + (rpnwf
(F n

2;2)
T )Tdpnwf + (rkx(F

n
2;2)

T )Tdkx+

(rky(F
n
2;2)

T )Tdky + (rsskin(F
n
2;2)

T )Tdsskin: (3.63)
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Using the above notation, the total di�erential of J given by 3.52 can be written as,

dJ = dg +
LX

n=1

n
(�nf )

T
h
(rpn (F

n
1;1)

T )Tdpn + (rkx(F
n
1;1)

T )Tdkx + (rky(F
n
1;1)

T )Tdky+

(rkz(F
n
1;1)

T )Tdkz + (rsskin(F
n
1;1)

T )Tdsskin+

(rpn (F
n
1;2)

T )Tdpn + (rpnwf
(F n

1;2)
T )Tdpnwf + (rkx(F

n
1;2)

T )Tdkx+

(rky(F
n
1;2)

T )Tdky + (rsskin(F
n
1;2)

T )Tdsskin��
rpn

hbV n(Bn
�
pn � pn�1

�iT�T

dpn +

�
rpn�1

hbV n
�
Bnpn�1

�iT�T

dpn�1��
r�

hbV n
�
Bnpn � Bnpn�1

�iT�T

d�
i

+(�ns )
T
h
(rpn (F

n
2;1)

T )Tdpn + (rkx(F
n
2;1)

T )Tdkx + (rky(F
n
2;1)

T )Tdky+

(rsskin(F
n
2;1)

T )Tdsskin + (rpn (F
n
2;2)

T )Tdpn + (rpnwf
(F n

2;2)
T )Tdpnwf+

(rkx(F
n
2;2)

T )Tdkx + (rky(F
n
2;2)

T )Tdky + (rsskin(F
n
2;2)

T )Tdsskin

io
(3.64)

In this case dQ = 0 since we are considering constant rate production.
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After rearranging the terms, we get

dJ = dg +
LX

n=1

(
(�nf )

T
h
(rpn (F

n
1;1)

T )Tdpn + (rpn (F
n
1;2)

T )Tdpn��
r

pn

�bV n
�
Bn(pn � pn�1)

��T�T

dpn +

�
rpn�1

�bV n (Bnpn)
�T�T

dpn�1
i
+

(�ns )
T
�
(rpn (F

n
2;1)

T )Tdpn + (rpn (F
n
2;2)

T )Tdpn
�
+

(�nf )
T
h
(rpnwf

(F n
1;2)

T )Tdpnwf

i
+ (�ns )

T
h
(rpnwf

(F n
2;2)

T )Tdpnwf

i
+

(�nf )
T
�
(rkx(F

n
1;1)

T )Tdkx + (rkx(F
n
1;2)

T )Tdkx
�
+

(�ns )
T
�
(rkx(F

n
2;1)

T )Tdkx + (rkx(F
n
2;2)

T )Tdkx
�
+

(�nf )
T
�
(rky(F

n
1;1)

T )Tdky + (rky(F
n
1;2)

T )Tdky
�
+

(�ns )
T
�
(rky(F

n
2;1)

T )Tdky + (rky(F
n
2;2)

T )Tdky
�
+

(�nf )
T
�
(rsskin(F

n
1;1)

T )Tdsskin + (rsskin(F
n
1;2)

T )Tdsskin
�
+

(�ns )
T
�
(rsskin

(F n
2;1)

T )Tdsskin + (rsskin(F
n
2;2)

T )Tdsskin
�
+

(�nf )
T

"
(rkz(F

n
1;1)

T )Tdkz]� (�nf )
T [

�
r�

�bV n
�
Bnpn � Bnpn�1

��T�T

d�

#)
(3.65)

Also in all cases of interest to us, the function g will be chosen so that it

depends explicitly on one or more of the pn and pnwf vectors, n = 0; 1; ::::; L and

possibly kx; ky; kz; � and sskin: Hence the total di�erential of g can be written as,

dg =
LX

n=1

[(rpng)
Tdpn + (rpnwf

g)Tdpnwf ] + [rkxg]
Tdkx + [rkyg]

Tdky+

[rkzg]
Tdkz + [r�g]

Td�+ [rssking]
Tdsskin: (3.66)
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Using Eq. 3.66 in Eq. 3.65 and rearranging the terms, we get

dJ =
LX

n=1

"n
(�nf )

T [(rpn (F
n
1;1)

T )T + (rpn (F
n
1;2)

T )T �

�
rpn

hbV n
�
Bn(pn � pn�1)

�iT�T

]+

(�ns )
T [(rpn (F

n
2;1)

T )T + (rpn (F
n
2;2)

T )T ] + (rpng)
T
o
dpn+

(�nf )
T

�
rpn�1

hbV n
�
Bnpn�1

�iT�T

dpn�1

#
+

LX
n=1

" h
(�nf )

T
h
(rpnwf

(F n
1;2)

T )T
i
+ (�ns )

T
h
(rpnwf

(F n
2;2)

T )T
i
+ (rpnwf

g)T
i
dpnwf

#
+

LX
n=1

"h
(�nf )

T
�
(rkx(F

n
1;1)

T )T + (rkx(F
n
1;2)

T )T
�
+

(�ns )
T
�
(rkx(F

n
2;1)

T )T + (rkx(F
n
2;2)

T )T
�
+ (rkxg)

T
i
dkx

#
+

LX
n=1

"h
(�nf )

T
�
(rky(F

n
1;1)

T )T + (rky(F
n
1;2)

T )T
�
+

(�ns )
T
�
(rky(F

n
2;1)

T )T + (rky(F
n
2;2)

T )T
�
+ (rkyg)

T
i
dky

#
+

LX
n=1

h
(�nf )

T
�
(rkz(F

n
1;1)

T )T
�
+ [rkzg]

T
i
dkz�

LX
n=1

"(
(�nf )

T

"�
r�

hbV n
�
Bnpn �Bnpn�1

�iT�T
#
+ [r�g]

T

)
d�

#

+
LX

n=1

"h
(�nf )

T
�
(rsskin(F

n
1;1)

T )T + (rsskin(F
n
1;2)

T )T
�
+

(�ns )
T
�
(rsskin(F

n
2;1)

T )T + (rsskin(F
n
2;2)

T )T
�
+ (rssking)

T
i
dsskin

#
: (3.67)

3.5 Discrete Adjoint Equations

Next we choose the adjoint variables to ensure that the coeÆcients multiply-

ing by dpn and dpnwf in Eq. 3.67 vanishes for n = 1; 2; :::; L. Considering only the dp

and dpwf part of dJ we have,
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d bJ =
LX

n=1

hn
(�nf )

T [(rpn(F
n
1;1)

T )T + (rpn(F
n
1;2)

T )T �

�
rpn

hbV n
�
Bn(pn � pn�1)

�iT�T

] +

(�ns )
T [(rpn(F

n
2;1)

T )T + (rpn(F
n
2;2)

T )T ] + (rpng)
T
o
dpn +

(�nf )
T

�
rpn�1

hbV n
�
Bnpn�1

�iT�T

dpn�1
i

+
LX

n=1

h h
(�nf )

T [(rpnwf
(F n

1;2)
T )T ] + (�ns )

T [(rpnwf
(F n

2;2)
T )T ] + (rpnwf

g)T
i
dpnwf

i
: (3.68)

Since the initial conditions are independent of model parameters dp0 = 0: Thus,

LX
n=1

"
(�nf )

T

�
rpn�1

hbV n
�
Bnpn�1

�iT�T

dpn�1

#

=
L�1X
n=0

"
(�n+1f )T

�
rpn

hbV n+1
�
Bn+1pn

�iT�T

dpn

#

=
L�1X
n=1

"
(�n+1f )T

�
rpn

hbV n+1
�
Bn+1pn

�iT�T

dpn

#
+

"
(�1f)

T

�
rp0

hbV 1
�
B1p0

�iT�T

dp0

#

=
L�1X
n=1

"
(�n+1f )T

�
rpn

hbV n+1
�
Bn+1pn

�iT�T

dpn

#
: (3.69)

Substituting Eq. 3.69, into Eq. 3.68 and rearranging we obtain,

d bJ =
LX

n=1

"n
(�nf )

T

"
(rpn(F

n
1;1)

T )T + (rpn(F
n
1;2)

T )T �

�
rpn

�bV n
�
Bn(pn � pn�1)

��T�T
#
+

(�ns )
T
�
(rpn(F

n
2;1)

T )T + (rpn(F
n
2;2)

T )T
�
+ (rpng)

T
o
dpn

#
+

L�1X
n=1

"
(�n+1f )T

�
rpn

�bV n+1
�
Bn+1pn

��T�T

dpn

#
+

LX
n=1

h
(�nf )

T [(rpnwf
(F n

1;2)
T )T ] + (�ns )

T [(rpnwf
(F n

2;2)
T )T ] + (rpnwf

g)T
i
dpnwf : (3.70)
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If we de�ne �L+1f = 0, then the above equation can be written as,

d bJ =
LX

n=1

"n
(�nf )

T

"
(rpn(F

n
1;1)

T )T + (rpn(F
n
1;2)

T )T �

�
rpn

�bV n (Bnpn)
�T�T

#
+

(�ns )
T
�
(rpn(F

n
2;1)

T )T + (rpn(F
n
2;2)

T )T
�
+ (rpng)

T
o
dpn

#
+

LX
n=1

"
(�n+1f )T

�
rpn

�bV n+1
�
Bn+1pl

��T�T

dpn

#
+

LX
n=1

"h
(�nf )

T [(rpnwf
(F n

1;2)
T )T ] + (�ns )

T [(rpnwf
(F n

2;2)
T )T ] +

(rpnwf
g)T
i
dpnwf

#
: (3.71)

The adjoint equations are obtained by setting the coeÆcients of dp and dpwf

to zero. Thus we must have,

(�nf )
T
h
(rpn(F

n
1;1)

T )T + (rpn(F
n
1;2)

T )T � (rpn(bV n(Bn(pn � pn�1)))T )T
i
+

(�n+1f )T
h
(rpn(bV n+1(Bn+1))T )T

i
+ (�ns )

T
�
(rpn(F

n
2;1)

T )T + (rpn(F
n
2;2)

T )T
�
+

(rpng)
T = 0; (3.72)

and

(�nf )
T
h
(rpnwf

(F n
1;2)

T )T
i
+ (�ns )

T
h
(rpnwf

(F n
2;2)

T )T
i
+ (rpnwf

g)T = 0; (3.73)

for n = L; L� 1; :::1. with the additional constraints given by,

�L+1f = 0 and �L+1s = 0: (3.74)

Taking transpose of Eqs. 3.72 and 3.73 we get,h
(rpn(F

n
1;1)

T ) + (rpn(F
n
1;2)

T )� (rpn(bV n(Bn(pn � pn�1)))T )
i
(�nf )+h

(rpn(bV n+1(Bn+1))T )
i
(�n+1f ) +

�
(rpn(F

n
2;1)

T ) + (rpn(F
n
2;2)

T )
�
(�ns )+

(rpng) = 0; (3.75)
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and h
(rpnwf

(F n
1;2)

T )
i
(�nf ) +

h
(rpnwf

(F n
2;2)

T )
i
(�ns ) + (rpnwf

g) = 0: (3.76)

Eqs. 3.75 and 3.76 are the adjoint equations need to be solved.

With the selection of the proper source function, we can evaluate the set of

adjoint variables and solve the set of equations backward in time starting from n = L:

3.6 Matrix Structure Involved in the Adjoint Equations

The structure of the matrices involved in the adjoint equations are the same

as the simulator equations and hence the same sparse matrix solver can be used to

solve the adjoint system of equations. Consider the following matrix appearing in

Eq. 3.75,

�
rpn(F

n
1;1)

T
�
=

26666664

@Fn
1;1;1

@pn
1

@Fn
1;1;2

@pn
1

� � �
@Fn

1;1N

@pn
1

@Fn
1;1;1

@pn
2

@Fn
1;1;2

@pn
2

� � �
@Fn

1;1N

@pn
2

...
...

. . .
...

@Fn
1;1;1

@pnN

@Fn
1;1;2

@pnN
� � �

@Fn
1;1;N

@pnN

37777775 (3.77)

where F n
1;1;1 is the �rst element of the column matrix F

n
1;1; F

n
1;1;2 is the second element

and so on. The element pn1 denotes the �rst term of the column vector pn i.e. pn1 is

the gridblock pressure of the grid block (1; 1; 1); pn2 is the gridblock pressure of the

grid block (2; 1; 1) and so on. If m represents the (i; j; k) cell, then mth element of

the column matrix F n
1;1 will be

F n
1;1;m = T n

z;i;j;k�1=2p
n
i;j;k�1 + T n

y;i;j�1=2;kp
n
i;j�1;k + T n

x;i�1=2;j;kp
n
i�1;j;k+

�(T n
t;i;j;k +WIni;j;k)p

n
i;j;k + T n

x;i+1=2;j;kp
n
i+1;j;k+

T n
y;i;j+1=2;kp

n
i;j+1;k + T n

z;i;j;k+1=2p
n
i;j;k+1; (3.78)

where the terms bear the usual meaning. The term WIni;j;k appears if the cell m is

intersected by a well and if not, then this term disappears. The element pnm or pni;j;k is

associated with the transmissibility terms T n
z;i;j;k�1=2; T

n
y;i;j�1=2;k; T

n
x;i�1=2;j;k; T

n
x;i+1=2;j;k;
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T n
y;i;j+1=2;k and T

n
z;i;j;k+1=2 since the transmissibility terms contain the pressure depen-

dent gas properties �g and Bg: So the derivative of F
n
1;1;l for l = 1; 2; ::::; m; ::::; N with

respect to pni;j;k will assume a nonzero value only when F n
1;1;l contains either p

n
i;j;k ex-

plicitly or one of the above six transmissibility terms and otherwise zero. Considering

the mth row of the
�
rpn(F

n
1;1)

T
�
matrix, the nonzero terms will be

�
rpn(F

n
1;1)

T
�
mth row

= � � �
@F1;1;m�Nx�Ny

@pnm
� � �

@F1;1;m�Nx
@pnm

� � �

@F1;1;m�1
@pnm

@F1;1;m
@pnm

@F1;1;m+1

@pnm

� � �
@F1;1;m+Nx

@pnm
� � �

@F1;1;m+Nx�Ny

@pnm
� � �

(3.79)

and the rest of the terms will be zero. Similarly, considering the mth element of the

column matrix F n
1;2,

F n
1;2;m =

8<: WIni;j;kp
n
wf;i;j if m is intersected by a well

0 if m is not intersected by a well
(3.80)

So the derivative of F n
1;2;l for l = 1; 2; :::; m; :::; N with respect to pnm will assume a

nonzero value only when l = m and otherwise zero. So considering the whole matrix,

�
rpn(F

n
1;2)

T
�
=

26666664

@Fn
1;2;1

@pn
1

0 � � � 0

0
@Fn

1;2;2

@pn
2

� � � 0
...

...
. . .

...

0 0 � � �
@Fn

1;2;N

@pnN

37777775 ; (3.81)

is a diagonal matrix where the diagonal elements will be nonzero only if the corre-

sponding cell is intersected by a well. The matrix
�
rpn(bV n(Bn(pn � pn�1)))T

�
is also

a diagonal matrix. Hence
h
(rpn(F n

1;1)
T ) + (rpn(F n

1;2)
T )� (rpn(bV n(Bn(pn � pn�1)))T )

i
will have the same structure as A1;1 de�ned earlier in the simulator equation.
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Now in Eq. 3.75, (F n
2;1) = A2;1pn is an Nw � 1 matrix. It assumes the form

(F n
2;1) =

266666664

P�
WIn

i0 ;j0 ;k0
pn
i0 ;j0 ;k0

�
1P�

WIn
i0 ;j0 ;k0

pn
i0 ;j0 ;k0

�
2

...P�
WIn

i0 ;j0 ;k0
pn
i0 ;j0 ;k0

�
Nw

377777775
; (3.82)

whereX
(WIn

i
0
;j
0
;k
0pn
i
0
;j
0
;k
0 )i =

riX
k0=li

(WIn
i
0
;j
0
;k
0pn
i
0
;j
0
;k
0 ) for well number i; i = 1; :::; Nw

(3.83)

denote the appropriate terms involved with the well constraints equation given by

Eq. 3.32 and ri,..,li denote the perforated intervals for well i. The matrix
�
rpn(F

n
2;1)

T
�

can be expanded as

�
rpn(F

n
2;1)

T
�
=

266666666664

@
P�

WIn
i
0
;j
0
;k
0
pn
i
0
;j
0
;k
0

�
1

@pn
1

@
P�

WIn
i
0
;j
0
;k
0
pn
i
0
;j
0
;k
0

�
2

@pn
1

� � �
@
P�

WIn
i
0
;j
0
;k
0
pn
i
0
;j
0
;k
0

�
Nw

@pn
1

@
P�

WIn
i
0
;j
0
;k
0
pn
i
0
;j
0
;k
0

�
1

@pn
2

@
P�

WIn
i
0
;j
0
;k
0
pn
i
0
;j
0
;k
0

�
2

@pn
2

� � �
@
P�

WIn
i
0
;j
0
;k
0
pn
i
0
;j
0
;k
0

�
Nw

@pn
2

...
...

. . .
...

@
P�

WIn
i
0
;j
0
;k
0
pn
i
0
;j
0
;k
0

�
1

@pnN

@
P�

WIn
i
0
;j
0
;k
0
pn
i
0
;j
0
;k
0

�
2

@pnN
� � �

@
P�

WIn
i
0
;j
0
;k
0
pn
i
0
;j
0
;k
0

�
Nw

@pnN

377777777775
(3.84)

Considering row m of the above matrix, the derivatives are nonzero only if the

(i
0

; j
0

; k
0

) within the summation term coincides with m, i.e., (i; j; k). This will give

Nz nonzero terms in each column of the above matrix if all wells are completely

penetrating. Similarly,
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�
rpn(F

n
2;2)

T
�
=

266666666664

@
P��

WIn
i
0
;j
0
;k
0

�
pnwf

�
1

@pn
1

@
P��

WIn
i
0
;j
0
;k
0

�
pnwf

�
2

@pn
1

� � �
@
P��

WIn
i
0
;j
0
;k
0

�
pnwf

�
Nw

@pn
1

@
P��

WIn
i
0
;j
0
;k
0

�
pnwf

�
1

@pn
2

@
P��

WIn
i
0
;j
0
;k
0

�
pnwf

�
2

@pn
2

� � �
@
P��

WIn
i
0
;j
0
;k
0

�
pnwf

�
Nw

@pn
2

...
...

. . .
...

@
P��

WIn
i
0
;j
0
;k
0

�
pnwf

�
1

@pnN

@
P��

WIn
i
0
;j
0
;k
0

�
pnwf

�
2

@pnN
� � �

@
P��

WIn
i
0
;j
0
;k
0

�
pnwf

�
Nw

@pnN

377777777775
(3.85)

and considering the mth row, the derivative term will be nonzero only if (i
0

; j
0

; k
0

)

within the summation term coincides withm. So
�
rpn(F

n
2;1)

T
�
and

�
rpn(F

n
2;1)

T
�
have

the same structure and their nonzero structure is the same as that of A1;2 de�ned in

the simulator equation. The
�
rpnw(F

n
1;2)

T
�
appearing in Eq. 3.76 can be expanded as

�
rpnw(F

n
1;2)

T
�
=

266666664

@Fn
1;2;1

@pnwf;1

@Fn
1;2;2

@pnwf;1
� � �

@Fn
1;2;N

@pnwf;1
@Fn

1;2;1

@pnwf;2

@Fn
1;2;2

@pnwf;2
� � �

@Fn
1;2;N

@pnwf;2
...

...
. . .

...
@Fn

1;2;1

@pnwf;Nw

@Fn
1;2;2

@pnwf;Nw
� � �

@Fn
1;2;N

@pnwf;Nw

377777775
(3.86)

The derivatives
@Fn

1;2;m

@pnwf;w
for m = 1; 2; :::; N and w = 1; :::; Nw will be nonzero if F n

1;2;m

contains the term pwf;w i.e. the areal location of the grid block m coincides with the

areal location of the well w. So, we will get exactly Nz nonzero elements in each row

of the above matrix if all the wells are completely penetrating. The structure of this

matrix is same as the structure of A2;1 de�ned in the simulator equation.

The matrix
�
rpnwf

(F n
2;2)

T
�
can be expanded as

�
rpnwf

(F n
2;2)

T
�
=

266666664

@
P
((WIni;j;k)pwf)1

@pnwf;1

@
P
((WIni;j;k)pwf)2

@pnwf;1
� � �

@
P
((WIni;j;k)pwf)Nw

@pnwf;1

@
P
((WIni;j;k)pwf)1

@pnwf;2

@
P
((WIni;j;k)pwf)2

@pnwf;2
� � �

@
P
((WIni;j;k)pwf)Nw

@pnwf;2
...

...
. . .

...

@
P
((WIni;j;k)pwf)1
@pwf;Nw

@
P
((WIni;j;k)pwf)2
@pnwf;Nw

� � �
@
P
((WIni;j;k)pwf)Nw

@pnwf;Nw

377777775
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=

266666664

@
P
((WIni;j;k)pwf)1

@pnwf;1
0 � � � 0

0
@
P
((WIni;j;k)pwf)2

@pnwf;2
� � � 0

...
...

. . .
...

0 0 � � �
@
P
((WIni;j;k)pwf)Nw

@pnwf;Nw

377777775
(3.87)

So we get a diagonal matrix whose structure is same as that of A2;2 of the simulator

equation. Thus in simple matrix notations, the adjoint equations can be represented

as

M1;1(�
n
f ) +M1;2(�

n
s ) = �(rpng)�

h
(rpn(bV n+1(Bn+1))T )

i
(�n+1f ); (3.88)

and

M2;1(�
n
f ) +M2;2(�

n
s ) = �(rpnwf

g); (3.89)

where

M1;1 =
h
(rpn(F n

1;1)
T ) + (rpn(F n

1;2)
T )� (rpn(bV n(Bn(pn � pn�1)))T )

i
; (3.90)

M1;2 =
�
(rpn(F n

2;1)
T ) + (rpn(F n

2;2)
T )
�
; (3.91)

M2;1 =
�
(rpnwf(F

n
1;2)

T )
�
; (3.92)

and

M2;2 =
�
(rpnwf(F

n
2;2)

T )
�
: (3.93)

The structure of M1;1; M1;2; M2;1 and M2;2 in Eqs. 3.88 and 3.89 are same as A1;1,

A1;2, A2;1 and A2;2 in Eqs. 3.33 and 3.34 respectively.

3.7 General Equations for Calculating the Sensitivity CoeÆcients

Considering J as a function of �; kx; ky; kz and sskin, we can write its total

di�erential as

dJ = (rkxJ)
Tdkx+(rkyJ)

Tdky+(rkzJ)
Tdkz+(r�J)

Td�+(rsskinJ)
Tdsskin: (3.94)
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So by comparing Eq. 3.67 and Eq. 3.94 we see that,

(rkxJ)
T =

LX
n=1

h
(�nf )

T [(rkx(F
n
1;1)

T )T + (rkx(F
n
1;2)

T )T ] + (�ns )
T [(rkx(F

n
2;1)

T )T +

(rkx(F
n
2;2)

T )T ] + [rkxg]
T
i
; (3.95)

(rkyJ)
T =

LX
n=1

h
(�nf )

T [(rky(F
n
1;1)

T )T + (rky(F
n
1;2)

T )T ] + (�ns )
T [(rky(F

n
2;1)

T )T +

(rky(F
n
2;2)

T )T ] + [rkyg]
T
i
; (3.96)

(rkzJ)
T =

LX
n=1

h
(�nf )

T [(rkz(F
n
1;1)

T )T + [rkzg]
T
i
; (3.97)

(r�J)
T =

LX
n=1

h
(�nf )

T [(r�

hbV n(Bnpn �Bnpn�1)T
iT

+ [r�g]
T
i
; (3.98)

and

(rsskinJ)
T =

LX
n=1

h
(�nf )

T
�
(rsskin(F

n
1;1)

T )T + (rsskin(F
n
1;2)

T )T
�
+

(�ns )
T
�
(rsskin(F

n
2;1)

T )T + (rsskin(F
n
2;2)

T )T
�
+ [rssking]

T
i
: (3.99)

3.8 Di�erentiation Involved in the Process

We have to �nd out many derivatives at each time step to evaluate the

gradient of the terms that appear in the 
ow equation. Expressions for the derivatives

needed to formulate the adjoint equations are given in this section.
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3.8.1 Di�erentiation of Pressure Dependent Terms

@

@pi;j;k

�
1

�Bg

�
i+1=2;j;k

=
@

@pi+1=2;j;k

�
1

�Bg

�
i+1=2;j;k

@pi+1=2;j;k
@pi;j;k

=

"�
1

Bg

�
i+1=2;j;k

@

@pi+1=2;j;k

�
1

�

�
i+1=2;j;k

+

�
1

�

�
i+1=2;j;k

@

@pi+1=2;j;k

�
1

Bg

�
i+1=2;j;k

#
@pi+1=2;j;k
@pi;j;k

=

24 1

Bg

�
�@�

@p

�
�2

+
1

�

�
�@Bg

@p

�
B2
g

35
pi+1=2;j;k

@pi+1=2;j;k
@pi;j;k

: (3.100)

Based on linear interpolation, we have

pi+1=2;j;k =

�
pi;j;k +

(pi+1;j;k � pi;j;k)�Xi

�Xi +�Xi+1

�
: (3.101)

Hence,
@pi+1=2;j;k
@pi;j;k

=

�
1�

�Xi

�Xi +�Xi+1

�
: (3.102)

Substituting Eq. 3.102 in 3.100 we have,

@

@pi;j;k

�
1

�Bg

�
i+1=2;j;k

=

24 1

Bg

�
�@�

@p

�
�2

+
1

�

�
�@Bg

@p

�
B2
g

35
pi+1=2;j;k

�
1�

�Xi

�Xi +�Xi+1

�
:

(3.103)

Similarly,

@

@pi;j;k

�
1

�Bg

�
i�1=2;j;k

=

24 1

Bg

�
�@�

@p

�
�2

+
1

�

�
�@Bg

@p

�
B2
g

35
pi�1=2;j;k

@pi�1=2;j;k
@pi;j;k

(3.104)

The term
@pi�1=2;j;k
@pi;j;k

can be evaluated in the similar way as shown above.
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3.8.2 Di�erentiation of Transmissibility Terms

We need to evaluate,

@Tx;i+1=2;;j;k
@kx;i;j;k

=
@

@kx;i;j;k

�
1:127� 10�3�yj�zkkx+1=2;j;k
Bg;i+1=2;j;k �i+1=2;j;k(xi+1 � xi)

�
=

�
1:127� 10�3�yj�zk

Bg;i+1=2;j;k �i+1=2;j;k(xi+1 � xi)

��
@kx+1=2;j;k
@kx;i;j;k

�
: (3.105)

The term kx+1=2;j;k is given by

kx+1=2;j;k =
(�xi +�xi+1)kx;i;j;kkx;i+1;j;k
�xikx;i+1;j;k +�xi+1kx;i;j;k

: (3.106)

Hence,

@kx+1=2;j;k
@kx;i;j;k

=
1

(�xi+1kx;i;j;k +�xikx;i+1;j;k)2h
(�xi+1kx;i;j;k +�xikx;i+1;j;k)(�xi+1 +�xi)kx;i+1;j;k �

(�xi+1 +�xi)kx;i;j;kkx;i+1;j;k�xi+1

i
: (3.107)

Substituting Eq. 3.107 in Eq. 3.105 we have,

@Tx;i+1=2;;j;k
@kx;i;j;k

=

�
1:127� 10�3�yj�zk

Bg;i+1=2;j;k�i+1=2;j;k(xi+1 � xi)

�
�

1

(�xi+1kx;i;j;k +�xikx;i+1;j;k)2h
(�xi+1kx;i;j;k +�xikx;i+1;j;k)(�xi+1 +�xi)kx;i+1;j;k�

(�xi+1 +�xi)kx;i;j;kkx;i+1;j;k�xi+1
i
: (3.108)

Similarly, we can show that

@Tx;i�1=2;;j;k
@kx;i;j;k

=
@

@kx;i;j;k

�
1:127� 10�3�yj�zkkx�1=2;j;k
Bg;i�1=2;j;k �i�1=2;j;k(xi � xi�1)

�
=

�
1:127� 10�3�yj�zk

Bg;i�1=2;j;k �i�1=2;j;k(xi � xi�1)

��
@kx�1=2;j;k
@kx;i;j;k

�
=

�
1:127� 10�3�yj�zk

Bg;i�1=2;j;k�i�1=2;j;k(xi � xi�1)

�
�

1

(�xikx;i�1;j;k +�xi�1kx;i;j;k)2h
(�xikx;i�1;j;k +�xi�1kx;i;j;k)(�xi +�xi�1)kx;i�1;j;k+

(�xi +�xi�1)kx;i�1;j;kkx;i;j;k�xi�1

i
: (3.109)
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It is easy to see that similar expression can be derived for the di�erential of

Ty;i;j�1=2;k; Ty;i;j+1=2;k; Tz;i;j;k�1=2; Tz;i;j;k+1=2 with respect to ky;i;j;k and kz;i;j;k:

3.8.3 Di�erentiation of Well-Index Terms

We need to �nd out the di�erential of WIi;j;k(t) with respect to kx;i;j;k and

ky;i;j;k. These relevant derivatives are

@WIi;j;k(t)

@kx;i;j;k
=

�
1

�i;j;k(t)Bg;i;j;k(t)

��
C3h

2[ln(ro;i;j;k=rw;i;j) + si;j;k]

�
�"s

ky;i;j;k
kx;i;j;k

�

�
1

ln(ro;i;j;k=rw;i;j) + si;j;k

�
� 

�y2i;j;k
p
kx;i;j;kky;i;j;k

�x2i;j;kky;i;j;k +�y2i;j;kkx;i;j;k
�

p
ky;i;j;kp

kx;i;j;k +
p
ky;i;j;k

!#
;

(3.110)

@WIi;j;k(t)

@ky;i;j;k
=

�
1

�i;j;k(t)Bg;i;j;k(t)

��
C3h

2[ln(ro;i;j;k=rw;i;j) + si;j;k]

�
�"s

kx;i;j;k
ky;i;j;k

�

�
1

ln(ro;i;j;k=rw;i;j) + si;j;k

�
� 

�y2i;j;kkx;i;j;k
p
kx;i;j;k

�x2i;j;kky;i;j;k
p
ky;i;j;k +�y2i;j;kkx;i;j;k

p
ky;i;j;k

�

p
ky;i;j;kp

kx;i;j;k +
p
kx;i;j;kky;i;j;k

!#
;

(3.111)

and,
@WIi;j;k(t)

@sskin;i;j;k
= �

�
WIi;j;k(t)

ln(ro;i;j;k=rw;i;j) + si;j;k

�
: (3.112)

The above equations have been taken from previous work done within TUPREP.
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3.9 Sensitivity of Flowing Bottomhole Pressure

We wish to calculate the sensitivity of the 
owing bottomhole pressure when

the well is producing at a speci�ed 
ow rate i.e., the well constraint is given by

Q(t) =constant.

Let pobswf;i;j(t
r) denote the measured wellbore pressure at the time tr and for the

well completed in cells (i; j; k) k = l1; :::; l2. Now let us call this cell m and assume we

wish to compute the sensitivity coeÆcients related to the calculated pressure pwf;m(t
r)

that will be predicted by the simulator for a given set of porosities, permeabilities

and skin factors. So we choose

g = prwf;m: (3.113)

Then for all l,

rpl(g) = 0: (3.114)

For all l 6= r,

rplwf
(g) = 0; (3.115)

and for l = r,

rplwf
(g) = rplwf

(prwf;m) = rplwf
(plwf;m) = em; (3.116)

where the ith component of em is given by emi = Æim where Æim is the delta function

given by

Æim =

8<: 1 if i = m;

0 if i 6= m:
(3.117)

Eqs. 3.114-3.116 give the source functions to be used in Eqs. 3.75 and 3.76 while

solving for the adjoint variables. As shown by Eq. 3.114 and 3.116 we put a unit

source in the mth component of the right hand side of Eq. 3.76 at the time tl = tr. So

to put the source time at the exact time step, we put the adjoint variables equal to zero

at time step (l+1) = (r+1) and then solve the adjoint system for l = r; r�1; :::; 1; 0.

Similarly, if we want to compute the sensitivity coeÆcients of pswf;n (i.e. 
owing
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pressure of a well at di�erent location, say in gridblock n, and di�erent time step ts)

then we choose,

g = pswf;n: (3.118)

Then for all l,

rpl(g) = 0: (3.119)

For all l 6= s,

rplwf
(g) = 0; (3.120)

and for l = s,

rplwf
(g) = rplwf

(pswf;n) = rplwf
(plwf;n) = en; (3.121)

where the ith component of en is given by

eni = Æin: (3.122)

Using these source terms, we solve the adjoint equations backward in time for

l = s; s� 1; :::; 1; 0: This shows that we have to solve one adjoint system of equations

for each data point. This is the procedure currently being used in the code, but we

could make it more eÆcient. In particular, only the right hand side of the adjoint

equations depends on the data. So e�ectively we have to solve one matrix with Nd

right hand sides where Nd is the number of conditioning data.

Once the adjoint variables are calculated, the sensitivity of well bore pressure

to kx;i;j;k, ky;i;j;k, kz;i;j;k, �i;j;k and sskin;i;j;k can be computed using Eq. 3.95, 3.96, 3.97, 3.98

and 3.99 respectively.

3.10 Sensitivity of Layer Flow Rate or Total Flow Rate

If the wellbore pressure is speci�ed at a well, we would like to condition the

rock property �eld to rate data. So we are interested in the sensitivity of the rate

data to porosity, permeability and skin factor.
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If the wellbore pressure is speci�ed, it is no longer an unknown. So in the

simulator, we solve only for pi;j;k(t). After solving for gridblock pressures, the layer


ow rate can be calculated using Eq. 3.21 and the total 
ow at the well can be

calculated by using Eq. 3.29 for t = tn. So the simulator equation becomes only

An
1;1p

n + An
1;2p

n
wf = bV n

�
Bn
�
pn � pn�1

��
: (3.123)

Since in this case pwf is speci�ed, d(pwf(t)) = 0: So instead of solving two

adjoint systems, we have only one adjoint system and the adjoint equations are given

by

(�nf )
T
h
(rpn(F n

1;1)
T )T + (rpn(F n

1;2)
T )T � (rpn

hbV n(Bn(pn � pn�1))
iT
)T
i
+

(�n+1f )T
h
(rpn

hbV n+1(Bn+1pn)
iT
)T
i
+ (rpng)

T = 0; (3.124)

where F n
1;1 and similar terms are still de�ned by Eqs. 3.50 and 3.51.

Similarly, the sensitivity equations will take the form

(rkxJ)
T =

LX
n=1

�
(�nf )

T [(rkx(F
n
1;1)

T )T + (rkx(F
n
1;2)

T )T ] + [rkxg]
T
�
; (3.125)

(rkyJ)
T =

LX
n=1

�
(�nf )

T [(rky(F
n
1;1)

T )T + (rky(F
n
1;2)

T )T ] + [rkyg]
T
�
; (3.126)

(rkzJ)
T =

LX
n=1

�
(�nf )

T [(rkz(F
n
1;1)

T )T + [rkzg]
T
�
; (3.127)

(r�J)
T =

LX
n=1

h
(�nf )

T [(r�(bV n(Bnpn �Bnpn�1)T )T + [r�g]
T
i
; (3.128)

and

(r
Sskin

J)T =
LX

n=1

�
(�nf )

T [(rsskin(F
n
1;1)

T )T + (rsskin(F
n
1;2)

T )T ] + [rssking]
T
�
: (3.129)

The 
ow rate sensitivity can be calculated by two methods.
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3.10.1 Method 1

In this method, we �rst calculate the sensitivity of the gridblock pressure

and then translate it to the sensitivity of 
owrate. Let qni;j;k denote the layer 
ow

rate at t = tn for a well completed in the gridblock centered at (xi; yj; zk) and let �

denote a reservoir parameter, i.e., a gridblock porosity or permeability. We wish to

calculate @
@�
(qni;j;k).

We know that

qi;j;k(t) = WIi;j;k(t)(pi;j;k(t)� pwf;i;j(t)): (3.130)

Let us denote dWI i;j;k =
C3h

p
kx;i;j;kky;i;j;k

ln(ro;i;j;k=rw;i;j) + si;j;k
: (3.131)

So WIi;j;k(t) can be denoted by

WIi;j;k(t) = dWI i;j;k

�
1

�i;j;k(t)Bg;i;j;k(t)

�
:

Then we can write Eq. 3.130 as

qi;j;k(t) = dWI i;j;k(t)
1

�i;j;k(t)Bg;i;j;k(t)
(pi;j;k(t)� pwf;i;j(t)): (3.132)

Taking the derivative of the last equation, we �nd

@

@�
qi;j;k(t) =

�
@

@�
WIi;j;k(t)

�
[pi;j;k(t)� pwf;i;j(t)] +WIi;j;k(t)

@

@�
[pi;j;k(t)� pwf;i;j(t)]

=

"dWI i;j;k(t)
@

@�

�
1

�i;j;k(t)Bg;i;j;k(t)

�
+

1

�i;j;k(t)Bg;i;j;k(t)

@dWI i;j;k(t)

@�

#
�h

pi;j;k(t)� pwf;i;j(t)
i
+WIi;j;k(t)

@

@�
[pi;j;k(t)� pwf;i;j(t)]

=

"dWIi;j;k(t)
d

dpi;j;k(t)

�
1

�i;j;k(t)Bg;i;j;k(t)

�
@pi;j;k(t)

@�
+

1

�i;j;k(t)Bg;i;j;k(t)

@dWI i;j;k(t)

@�

#
�h

pi;j;k(t)� pwf;i;j(t)
i
+WIi;j;k(t)

@

@�
(pi;j;k(t)): (3.133)

So if we calculate @
@�
(pi;j;k(t)), we can evaluate

@
@�
qi;j;k(t) since the other terms involved

can be computed easily. So we choose the source term accordingly. To compute
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sensitivity of pi;j;k(t) (when t = tn) to the parameters, assume cell (i; j; k) is the mth

cell and choose

g = pni;j;k = pnm: (3.134)

Then for l 6= n,

rpl(g) = 0; (3.135)

and for l = n,

rpl(g) = rpl(p
n
m) = em; (3.136)

where em denotes the vector whose mth component is equal to unity and all other

terms are equal to zero. Thus the source term takes the value of 1 only at the

position corresponding to the gridblock m. Now we can solve the adjoint equation

given by Eq. 3.124 for l = n; n � 1; :::; 1; 0 to obtain the adjoint variables. Then

it is straightforward to calculate the desired sensitivity coeÆcients by Eq. 3.125,

3.126, 3.127, 3.128 and 3.129.

However this method su�ers from the drawback that to calculate the sensi-

tivity of the total 
ow rate at a well i.e.,
Pl2

k=l1
qi;j;k(t), we have to solve the adjoint

system with a source term corresponding to each pi;j;k(t), k = l1; :::; l2. So even for

a single well this leads to the computation of (l2 � l1 + 1) adjoint solutions. This is

not computationally eÆcient unless we wish to compute the sensitivity of individual

qi;j;k. Hence, we seek an alternative procedure.

3.10.2 Method 2

To overcome the shortcoming of the procedure described above, we treat the


ow rate term directly as the source term and solve the adjoint equations. Let us

consider the total rate at a well. Then we choose

g = qni;;j =
l2X

k=l1

WIni;j;k(p
n
i;j;k � pnwf;i;j): (3.137)
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So

rpn(g) = rpn

"
l2X

k=l1

WIni;j;k(p
n
i;j;k � pnwf;i;j)

#
: (3.138)

Now unless (i
0

; j
0

) = (i; j) and k
0

= k for some k with l1 � k � l2, we have

@

@pn
i0 ;j0 ;k0

"
l2X

k=l1

WIni;j;k(p
n
i;j;k � pnwf;i;j)

#
= 0: (3.139)

If i
0

= i, j
0

= j and k
0

= k for some k with l1 � k � l2;

@

@pn
i
0
;j
0
;k
0

"
l2X

k=l1

WIni;j;k(p
n
i;j;k � pnwf;i;j)

#

=
@

@pni;j;k

�
WIni;j;k(p

n
i;j;k � pnwf;i;j)

�
=

@

@pni;j;k
(WIni;j;k) +WIni;j;k

@

@pni;j;k
(pni;j;k � pnwf;i;j)

=
@

@pni;j;k
(WIni;j;k) +WIni;j;k: (3.140)

Note that the source term will assume a nonzero value only at cell positions where

the well is completed and otherwise is zero. Using this modi�ed source function we

can solve for the adjoint variables and compute the sensitivity coeÆcients.

Note that if g is speci�ed by Eq. 3.137, then g involves kx;i;j;k; ky;i;j;k and

sskin;i;j;k. So (rkxg); (rkyg); (rssking) are not equal to the zero vector. These gradient

terms must be included in the corresponding sensitivity Eqs. 3.125, 3.126, 3.129. Note,

however (rkzg)and (r�g) are identically zero. When g is given by Eq. 3.137,

(rkxg) = rkx

"
l2X

k=l1

WIni;j;k(p
n
i;j;k � pnwf;i;j)

#
: (3.141)

Unless (i
0

; j
0

) = (i; j) and k
0

= k for some k with l1 � k � l2, we have

@

@kx;i0 ;j0 ;k0

l2X
k=l1

WIni;j;k(p
n
i;j;k � pnwf;i;j) = 0: (3.142)
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If i
0

= i, j
0

= j and k
0

= k for some k with l1 � k � l2;

@

@kx;i0 ;j0 ;k0

l2X
k=l1

WIni;j;k(p
n
i;j;k � pnwf;i;j)

=
@

@kx;i;j;k

�
WIni;j;k(p

n
i;j;k � pnwf;i;j)

�
= (pni;j;k � pnwf;i;j)

@

@kx;i;j;k
(WIni;j;k); (3.143)

where @
@kx;i;j;k

(WIi;j;k) can be calculated using Eq. 3.110.

Similarly, if i
0

= i, j
0

= j and k
0

= k for some k with l1 � k � l2

@

@sskin;i0 ;j0 ;k0

l2X
k=l1

WIni;j;k(p
n
i;j;k � pnwf;i;j)

= (pni;j;k � pnwf;i;j)
@

@sskin;i;j;k
(WIi;j;k) (3.144)

where @
@sskin;i;j;k

(WIi;j;k) can be calculated using Eq. 3.112.
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3.11 Sensitivity Examples

In this section, we compare the sensitivity of wellbore pressure to the rock

property �elds for a number of cases. We consider both 2D and 3D cases for homo-

geneous and heterogeneous rock property �elds and compare the results obtained by

the adjoint method to those obtained by the direct (�nite-di�erence) method.

3.11.1 Case one:

We consider a two-dimensional case with a 11 � 11 grid. An active well

located at (3; 6) is produced at a constant rate of 940,000 scf/day. The second well is

an observation well located at (9; 6). The areal dimensions of the reservoir are 1100

ft � 1100 ft and we assume uniform thickness with h = 10 ft. Since sensitivities are

more diÆcult to interpret physically when the reservoir properties are non-uniform,

we consider uniform isotropic permeability and uniform porosity. The mean value

of ln(k) is 4.0 (k=54.5) and mean porosity is 0.25. The initial reservoir pressure is

assumed to be 3,230 psi and speci�c gravity of gas is 0.75.

3.11.2 Sensitivity to Permeability Field:

We compare the sensitivity of pressure at the observation well with respect to

permeability k at two di�erent times. The �rst time corresponds to t = 0:15 days and

the second time to t = 1:00 days. Fig. 3.1 shows the sensitivity coeÆcients obtained by

the two methods. We see the results from adjoint method are in excellent agreement

with those obtained from the direct method. Since the reservoir is homogeneous

in this case, the sensitivity coeÆcients are quite symmetric around the wells. We

can also see that as time increases the wellbore pressure becomes more sensitive

to permeabilities at a greater distance from the well. Between the two wells, the

sensitivity coeÆcients are negative. This means that an increase in the permeability

at one of these gridblocks will cause a decrease in the pressure at the observation well.



54

1 3 5 7 9

1

3

5

7

9

X axis

Y
a
x
i
s

-0.00005 0.00000

Time=0.15 days

(a) Direct Method

1 3 5 7 9

1

3

5

7

9

X axis

Y
a
x
i
s

-0.00005 0.00000

Time =0.15 days

(b) Adjoint Method

1 3 5 7 9

1

3

5

7

9

X axis

Y
a
x
i
s

-0.00030 -0.00010 0.00010

Time=1.00 days

(c) Direct Method

1 3 5 7 9

1

3

5

7

9

X axis

Y
a
x
i
s

-0.00030 -0.00010 0.00010

Time =1.00 days

(d) Adjoint Method

Figure 3.1: Comparison of observation well pressure sensitivity to homogeneous per-

meability �eld.
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Physically, a higher permeability in the interwell region causes the pressure to drop

sooner at the observation well, thus resulting in a lower pressure at a given time.

3.11.3 Sensitivity to Porosity Field:

In this we compare the sensitivity of the observation pressure well obtained

by adjoint method to those obtained by the direct method; Fig. 3.2 shows the com-

parison. We can see that the two results are in excellent agreement. Also, as expected

the sensitivities are quite symmetric around the wells. Note that all porosity sensitiv-

ity coeÆcients are positive. Increasing the porosity at any gridblock means there is

more 
uid in the system for pressure support which results in an increase in pressure.
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Figure 3.2: Comparison of observation well pressure sensitivity to homogeneous poros-

ity �eld.
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3.11.4 Case Two:

This case pertains to a 3D heterogeneous reservoir with a 11� 11� 4 grid.

The areal grid sizes are 100 ft � 100 ft and each �z is equal to 10 ft. We consider

an anisotropic heterogeneous permeability �eld and non-uniform porosity �eld. The

mean value of ln(k) is 4.0 and mean porosity value is 0.25. We assume a variogram

range (correlation length) of six gridblocks in the x direction, 4 gridblocks in the y

direction and 2 gridblocks in the z direction. The \true" permeability and porosity

�elds are obtained by generating an unconditional realization from an exponential

anisotropic variogram. For the simplicity of interpreting the results, we consider two

wells. An active well is located at areal gridblock (3; 6) and an observation well is

located at (9; 6).

3.11.5 Sensitivity to Horizontal Permeability Field:

In this case, all the layers are perforated to produce. We compare two cases

one at t = 0:25 days and the other at t =1.00 days. Fig. 3.3 shows the comparison

of observation wellbore pressure sensitivity to the heterogeneous permeability �eld

obtained by adjoint method and the direct (�nite-di�erence) method. The sensitivity

coeÆcients follow the same trend as in the homogeneous case, the only di�erence

being that they are no longer symmetric around the well. The results plotted are for

the �rst layer of a four layer model. In this case, the two sets of result are also in

excellent agreement.

3.11.6 Sensitivity to Porosity Field:

Fig. 3.4 shows the comparison of observation wellbore pressure sensitivity to

the heterogeneous porosity �eld obtained by adjoint method and the direct (�nite-

di�erence) method. The sensitivity coeÆcients are positive as in the homogeneous

case for the same reason. The results plotted are for a the �rst layer of a four layer
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Figure 3.3: Comparison of observation well pressure sensitivity to heterogeneous

permeability �eld.
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Figure 3.4: Comparison of observation well pressure sensitivity to heterogeneous

porosity �eld.
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model. In this case, the two sets of result are also in excellent agreement.

3.11.7 Sensitivity to Vertical Permeability Field:

In this case, we compare the sensitivity of wellbore pressure to the vertical

permeability �eld. We consider the same model as in the previous case. The sen-

sitivity of the wellbore pressure to the vertical permeability �eld is nonzero only if

there is vertical 
ow in the reservoir. So to ensure vertical 
ow in the reservoir the

producing well is completed as a restricted-entry well with only the top layer open to


ow and the other three layers closed. The observation well is also completed only

with the top layer open.

The results shown in Fig. 3.5 are for the time t = 1:00 days for the top layer

and the second layer. The vertical 
ow is controlled by the vertical transmissibilty

between the layers. The transmissibility term contains the harmonic average of in-

dividual layer kz and this makes the pressure �eld sensitive to individual layer kz in

the reservoir. We see that the observation well pressure is much more sensitive to the

kz �eld around the wells in layer 1. Also note that the sensitivities are positive. This

means that if vertical permeability increases, there will be more 
uid 
ow to the top

layer thereby increasing the pressure support. In layer 2, the observation well pres-

sure is more sensitive to a region between the two wells. In this case, the results from

adjoint method are also in excellent agreement with those from the direct method.

Fig. 3.6 shows the sensitivity of the active well pressure to the vertical �eld

for layer 1 and layer 2. In this case also the results are in very good agreement.

3.11.8 Sensitivity to Skin Factor:

We also compare the sensitivity of the wellbore pressures to the layer skin

factors for the above case. Since only the top layer is perforated, the active wellbore

pressure should be sensitive only to the skin value of layer 1 and insensitive to the
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Figure 3.5: Comparison of observation well pressure sensitivity to vertical permeabil-
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other layer skin values, because in reality, there is no skin value when a layer is not

perforated. The sensitivity of the active well pressure at 1.00 days to skin of layer 1,

well 1 is -142.73 by direct method and the corresponding value by adjoint method is

-143.75. The observation wellbore pressure sensitivity to the layer 1, well 1 skin value

is essentially zero by both the methods. The negative sensitivity means that increase

in the skin factor value will decrease the wellbore pressure which is physically true

because greater pressure drop will occur to overcome the bigger skin.

3.11.9 Case Three:

This case models a 2D homogeneous reservoir with 11 � 11 areal grid with

a single producing well. We compare the sensitivity of 
ow rate to the permeability

�eld. The permeability �eld is considered as isotropic and homogeneous with the

mean ln(k) equal to 4.00 and porosity �eld is considered as uniform with mean value

equal to 0.25.

We put the well in constant pressure production at pwf = 2500 psi. The

sensitivity of 
ow rate is calculated at two di�erent times, t = 0:015 days and t = 1:00

days. Fig. 3.7 compares the sensitivity of the well rate to the uniform kx �eld. As

shown, the two results are in excellent agreement. In the case of the adjoint method,

the sensitivity has been calculated by both method 1 and method 2. The two methods

give identical results.

Fig. 3.8 shows the corresponding �gures for the uniform porosity �eld.
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CHAPTER IV

CONDITIONING ROCK PROPERTY FIELDS TO PRODUCTION DATA:

COMPUTATIONAL EXAMPLES

Here, the inverse method discussed in Chapter II is applied to generate the

maximum a posteriori (MAP) reservoir model and to generate realizations of poros-

ity and permeability �elds that are conditional to the well-test pressure data for a

single-phase 
ow gas reservoir. In this chapter, we present computational examples

for generating the MAP estimate for a two-dimensional reservoir model and for gen-

erating realizations of rock property �elds for a three-dimensional reservoir model

conditional to production data. We apply both the Gauss-Newton and the conjugate

gradient optimization technique in the two examples and analyze the performance of

the two methods as optimization algorithms.

4.1 Generating the MAP Estimate

The maximum a posteriori estimate is the model, which is the \most proba-

ble", although it is generally too smooth to be a \plausible model". The MAP model

looks like a smoothed version of the true reservoir model and is found by minimizing

the objective function of Eq. 2.5 which is repeated here as

O(m) = �
1

2

�
(m�mprior)

TC�1
M (m�mprior) + (g(m)� dobs)

TC�1
D (g(m)� dobs)

�
;

(4.1)

wherem is the vector of model parameters (gridblock porosities and log-permeabilities),

dobs is the vector of observed pressure data, and g(m) is the vector of data that are

calculated using m in the reservoir simulator. As discussed in Chapter II, both the

66
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Gauss-Newton and conjugate gradient methods are used to minimize the above objec-

tive function. In the case of the Gauss-Newton method, since the number of unknowns

is much larger than the number of conditioning data, we use the form given by

Æml+1 = �ml +mprior � CMG
T
l (CD +GlCMG

T
l )
�1

�
�
g(m)� dobs �Gl

�
ml �mprior

��
(4.2)

and

ml+1 = ml + �
l
Æml+1: (4.3)

In the case of the conjugate gradient algorithm, we use both the precondi-

tioned algorithm (with inverse of the prior covariance matrix as the preconditioning

matrix) and the method without preconditioning. The objective is to compare the

�nal model estimate obtained by these two methods. Also the e�ect of restarting on

convergence of the conjugate gradient method is studied and presented in the context

of this example.

4.1.1 Three-zone Reservoir

The true model in this example, from which the wellbore pressure data is

generated is composed of a reservoir of three constant permeability zones constructed

on a 20 � 20 � 1 grid. We consider a two-dimensional case for the simplicity of

interpreting the results of the a posteriori model in terms of capturing the true rock

property �eld attributes. The true permeability and porosity �elds are shown in

Fig. 4.1. The log permeability is 3.7 (40.44 md) in the upper left quadrant, 4.3 (73.7

md) in the upper right quadrant and 4.0 (54.59 md) in the lower two quadrants. The

porosity �eld is uniform with � = 0:25. We consider three wells located at (5,5),

(15,5) and (10,15) in the reservoir. Each of the wells is produced at 6,000,000 scf/day

for a period of three days to generate the true pressure data. These pressure data

are used as the conditioning data after adding measurement errors with mean zero
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problem.



69

and variance equal to 1:00 psi2. The prior mean of ln(k) is 4:0 and the prior mean

of porosity is 0.25. The prior covariance matrix is generated using the variogram

information. An anisotropic exponential variogram for ln(k) is used with the range

in the x-direction equal to 600 ft and the range in the y-direction equal to 400 ft.

The variance of ln(k) (sill of the variogram) is speci�ed as �2k = 0:5. The anisotropic

variogram for porosity is identical to the one for ln(k) except the variance for porosity

is speci�ed as �2� = 0:0025. We assume a strong prior correlation between porosity

and permeability with the correlation coeÆcient (�k;�) equal to 0.70. The skin factors

are assumed to have very small prior variance equal to 0.001, since at this time we are

not aiming at resolving the skin factors. (But skin factors can also be estimated.) The

reservoir parameters and well speci�cations used in this example are summarized in

table Table 4.1. Starting with this prior model we estimate the most probable model

(MAP) conditioned to the observed pressure data. Features in the MAP estimate from

the prior model result from the process of conditioning the model to the observed

pressure data.

Fig. 4.2 shows the MAP estimates for the ln(k) and porosity �elds obtained

by the CG and Gauss-Newton optimization algorithms. In all the cases, the maxi-

mum a posteriori estimates give smooth estimates of the model parameters. Also we

can see that around the well locations in all quadrants, the estimates shows the value

of the model parameters closer to the true value. At the exact well locations, the

estimated values of porosity and permeability obtained by both the CG and Gauss-

Newton method are essentially identical to the true values. Since in the third and

fourth quadrant, the prior mean value is equal to the true value of ln(k) and poros-

ity, we do not see much change made to the prior model in these areas during the

conditioning process. But signi�cant correction is made in the �rst (upper left) and

second (upper right) quadrant during the conditioning process. Also because of the

strong correlation assumed between the porosity and permeability in the gridblocks,

we can see correlated changes in the grid block values of porosity and permeability.
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Mean Porosity 0.25

Mean Permeability 4.0

Porosity Variance 0.0025

Permeability Variance 0.5

Variogram Range in x-direction 600 ft

Variogram Range in x-direction 400 ft

Correlation coeÆcient between ln(k) and � 0.70

Well 1, Location (5,5) 6 MMscf/day

Well 2, Location (15,5) 6 MMscf/day

Well 3, Location (10,15) 6 MMscf/day

Initial Reservoir Pressure 3230 psia

Speci�c Gravity of Gas 0.75

Reservoir temperature 700 0R

Table 4.1: Rock and 
uid properties for three-zone reservoir.
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Figure 4.2: Comparison of MAP estimates obtained by CG and Gauss-Newton.
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By comparing the MAP estimates we can see that both optimization algo-

rithms give similar MAP models. However the correction to the prior model seems

to be slightly more spread out in the case of Gauss-Newton method. However the

slight di�erence in two models does not seem to a�ect the pressure match obtained.

Fig. 4.3 shows the pressure match obtained with MAP estimation obtained from the

two algorithms. It can be seen that the pressure match obtained is quite satisfactory.

The data mismatch, de�ned by

ed =
� 1

Nd

NdX
i=1

(di � duc;i)
�1=2

; (4.4)

is 0:5899 psi based on the Gauss-Newton results and 0:5504 psi based on the CG

results.

4.1.2 Convergence Comparison Between Gauss-Newton and CG

In this section the convergence rate between the two algorithms is compared.

The convergence criteria in both the algorithms is de�ned as O(ml)�O(ml+1)
O(ml)+10�14

� 10�5;

where O(ml) and O(ml+1) are the values of the objective function at the previous and

current iterations, respectively. Fig. 4.4 compares the convergence rate of the Gauss-

Newton and the conjugate gradient algorithms. Note that Gauss-Newton method

converged rapidly, whereas conjugate gradient converged much more slowly. Precise

comparisons are given in Table 4.2. Initially the conjugate gradient was restarted

after every �ve iterations. In this case, a detailed examination of the results showed

that CG was restarted by this explicit control (see section 2.6, Important remarks) 20

times. So in the next exercise, we set the maximum number of iteration allowed before

restarting to 50 and this resulted in a signi�cant improvement in the convergence

rate; see Table 4.2. Restarting with a fewer number of number of iterations makes

the conjugate gradient method behave more like the steepest descent algorithm and

hence the convergence becomes slower. We further increased the maximum number of

iterations allowed before restarting to 100 and it yielded almost the same result as in
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Optimization

Method

Number of Iterations

required for conver-

gence

Minimum value of

the Objective Func-

tion

Gauss Newton 7 10.9080

CG with restarting

after 5 iterations

149 7.5853

CG with restarting

after 50 iterations

97 7.1912

CG with restarting

after 100 iterations

95 7.1936

Table 4.2: Performance Evaluation of Gauss-Newton and CG.
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case of 50 maximum iterations. The convergence summary is given in Table 4.2. The

convergence properties are not highly sensitive to the number of iterations allowed

before restarting. Also note that in the last trial (where maximum iteration allowed

is 100), the CG did not get restarted by the explicit control at all, i.e., it converged

before reaching the maximum iteration limit.

For this particular example, the Gauss Newton converges in far fewer itera-

tions than the conjugate gradient method. This behavior is typical although, as we

will see later, there exist cases where the conjugate gradient method also converges

quite rapidly. Although Gauss-Newton converges faster, the computational work per

iteration is much greater than in the conjugate gradient method. This is because of

the fact that in the Gauss-Newton algorithm we have to �nd the sensitivity of each

conditioning data to each model parameter. So we have to solve Nd adjoint systems

where Nd is the number of conditioning data being used. In this case Nd is equal to

36. But in case of the conjugate gradient method, we have to �nd only the gradient of

the whole objective function, which requires the solution of only one adjoint system

of equations.

4.1.3 Computational Comparison Between Gauss-Newton and CG

Here we present a comparison of the computational expense involved for the

two methods in this exercise. We assume that since the size of the matrix system

involved in the adjoint system is same as the simulator equations, so solving one

adjoint system of equations is roughly equivalent to one simulation run. (Because

we are actually solving the adjoint system with Nd right hand sides.) Gauss-Newton

requires one simulation run to solve for the pressure �eld, Nd adjoint solutions to

construct the sensitivity matrix and one simulation run to evaluate the objective

function for each iteration and extra simulation runs for the reduced step size (if

it occurs in any of the iterations). In the conjugate gradient method we need one

simulation run to solve for the pressure �eld, one simulation run and one adjoint
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solution to get the step size and one simulation run to calculate the objective function

for each iteration and then extra simulation runs for reduced step size whenever

applicable.

In this example the Gauss-Newton took 7 iterations with 4 step reductions in

the �nal iteration. So the equivalent number of simulation run will be (1 + 36 + 1)�

7 + 4 = 270. The conjugate gradient method took 95 iterations without any step

cut (we consider the best performance by the CG). So the equivalent number of

simulation run in this case will be (1 + 1 + 1 + 1) � 95 + 0 = 380. This comparison

shows more computational e�ort involved in case of the CG method.

4.1.4 Comparison of CG With and Without Preconditioning

Preconditioning is the technique for improving the convergence of the CG.

The nonlinear CG method can be preconditioned by choosing a preconditioner M

that approximates the Hessian matrix and has the property thatM�1r is easy to cal-

culate (see the detailed algorithm discussed in chapter II). As mentioned earlier in our

work, we use the inverse of the prior covariance matrix as the preconditioning matrix

in all the iterations. Fig 4.5 shows the convergence rate for the same example consid-

ered above by CG with preconditioning and without preconditioning. The restarting

option is set at 50 maximum iterations. It is clear that CG with preconditioning has

a faster convergence rate. It is likely that the convergence rate could be further en-

hanced if we could easily generate a preconditioning matrix which approximates the

Hessian more accurately. Here, CG without preconditioning did not converge even

after 300 iterations. Fig 4.6 shows the MAP estimate obtained by the CG without

preconditioning. Comparing it with the results of CG with preconditioning Fig 4.2,

it can be seen that the corrections are more localized around the well in case when

no preconditioning is used (more clear in the ln(k) estimate). Preconditioning with

the inverse of the CM makes the correction more smoother.
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4.2 Generating Conditional Realizations of Heterogeneous Reservoir

We consider three synthetic examples to investigate the implementation de-

tails of the conjugate gradient algorithm and to compare its performance with that

of Gauss-Newton method. In each example, we use the two optimization algorithms

to compute realizations of permeability and porosity �elds conditioned to gas-well

pressure data at the wells. In the �rst example, we consider fully-penetrating wells

and in the second example, we consider a restricted-entry well. The third example

deals with a �ve well system.

4.2.1 3D Case with Fully Penetrating Wells

This example pertains to a square reservoir with 20 grid blocks in the x

and y directions and 4 grid blocks in the z direction. Each z block is referred to as

individual layer while discussing the results. The areal grid is 100 ft by 100 ft and

all grid blocks in the z direction have thickness (height) equal to 10 ft. The reservoir

thickness is uniform and equal to 40 ft. The reservoir contains two wells. Well 1

is located at areal gridblock (5; 5) and well 2 is located at areal gridblock (15; 15).

We consider data obtained from a four day test, during which, each well is either

produced at a constant rate or shut-in as shown in Table 4.3. Note that well 1 is

shut-in for the �rst two days and then produced at a rate of 35 MMscf/D. Well 2 is

produced at of 40 MMscf/D and then shut-in for a two day buildup test.

The reservoir is areally isotropic i.e., kx = ky = k: The vertical permeability

�eld kz is assumed to be uncorrelated with the horizontal permeability �eld and we

generate a realization of all gridblock kz's. The true distributions of porosity and log

permeability �elds from which the synthetic production data are generated, repre-

sent unconditional realizations of correlated Gaussian random �elds with anisotropic

spherical variograms. The range of the variogram for ln(k) is 600 ft in the x-direction

and 400 ft in the y-direction. The variance of ln(k) (sill of the variogram) is speci�ed
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Well No. Location Flow rate(MM scf/D) Duration(days)

1 5,5 0 2

1 5,5 35 2

2 15,15 40 2

2 15,15 0 2

Table 4.3: Well 
ow rates

as �2k = 0:50: The anisotropic variogram for porosity is identical to the one for ln(k)

except the variance for porosity is speci�ed as �2� = 0:002. The variance for ln(kz) is

assumed to be �2z = 0:50. The correlation coeÆcient between log-permeability and

porosity is speci�ed as 0:70. The true ln(k) and porosity distributions were obtained

by unconditional simulation using a prior mean of 4:0 for ln(k) and a prior mean

of 0:25 for porosity. (The value ln(k) = 4 corresponds to k = 55 md). The true

ln(kz) was obtained by a similar procedure except that we specify the prior mean for

ln(kz) as �2:9. (The value ln(kz) = �2:9 corresponds to kz = 0:055 md). The prior

mean for all well skin factors is set equal to 4:0, which is the true value of skin factor

used when generating synthetic production data. We specify the variance for well

skin factors as 0:1. At this point in time, our investigation is not oriented towards

the resolution of skin factors. He et al. [12] has given a detailed discussion on the

simultaneous estimation of skin factors and rock property �eld from well-test pressure

data. The relevant reservoir and 
uid propertiesy are summarized in Table 4.4.

As mentioned previously, \true" synthetic well-test pressure data were gen-

erated using the true rock property �elds and well skin factors as simulator input data

and then producing according to the rate sequence shown in Table 4.3. The observed

well-test pressure data were then obtained by adding noise to these true values. In

generating these observed data, we assumed that pressure measurement errors were

independent identically distributed Gaussian random variables with mean zero and
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Mean porosity 0.25

Mean permeability, ln(k) 4.0

Mean skin factor 4.0

Porosity variance 0.002

Permeability variance 0.5

Skin variance 0.1

Correlation coeÆcient between ln(k) and � 0.70

Variogram range in x-direction (ft) 600

Variogram range in y-direction (ft) 400

Initial pressure (psi) 3230

Gas speci�c gravity 0.75

Reservoir temperature (0R) 700

Wellbore radius (ft) 0.3

Table 4.4: Well/reservoir data.

variance equal to 1 psi2. For observed data, we used 22 pressure data at each well.

Starting from unconditional realizations, we generated conditional realiza-

tions using the randomized maximum likelihood method. Each conditional realiza-

tions requires that we minimize the objective function of Eq. 2.10. For each (muc, duc)

pair, we minimized the objective function both by the conjugate gradient method and

the Gauss-Newton method with restricted step. Fig. 4.7 shows the typical behavior

observed for this particular problem. For the case shown in Fig. 4.7, the Gauss-

Newton method required 9 iterations to obtain convergence whereas, the conjugate

gradient method required 12 iterations. In generating 20 conditional realizations, the

number of iterations required to obtain convergence in the conjugate gradient method

varied from 12 to 20.
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As discussed previously, the conjugate gradient method avoids the need to

compute individual sensitivity coeÆcients, and thus, requires signi�cantly less compu-

tational work per iteration unless the number of conditioning data is relatively small.

Note however, the conjugate gradient method converges to a higher value of the ob-

jective function than does the Gauss-Newton method. Although this is troubling,

both methods give reasonable matches of the pressure data. The data mismatch,

de�ned by

ed =
� 1

Nd

NdX
i=1

(di � duc;i)
�1=2

; (4.5)

is 0:952 psi based on the Gauss-Newton results and 1:65 psi based on the CG results.

The data mismatch, de�ned by

ed =
� 1

Nd

NdX
i=1

(di � dobs;i)
�1=2

; (4.6)

is 0:77 psi based on the Gauss-Newton results and 1:31 psi based on the CG results.

In the preceding equations, Nd is the total number of conditioning data, di is the

ith component of the pressure data calculated from conditional realization, and duc;i

denotes the ith component of the unconditional realization of the data.

Fig. 4.8 compares the pressure data calculated from the conditional realiza-

tion generated using the CG method for optimization compared with the uncondi-

tional realization of the observed data. Note that the agreement is good.

Fig. 4.9(a) shows the true horizontal log-permeability �eld for layer 1, Fig. 4.9(b)

shows the realization obtained from the Gauss-Newton method and Fig. 4.9(c) shows

the realization obtained from the conjugate gradient method. At least on this scale,

conditional realizations obtained from the two optimization procedures look similar

and re
ect the same heterogeneity pattern displayed by the true log-permeability

�eld. (Results for porosity and for the other three layers are similar.) The conver-

gence results displayed in Fig. 4.7, however, as well as a more careful examination of

results indicates that the two optimization procedures are not converging to exactly
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Figure 4.8: Pressure match obtained by conjugate gradient method.

the same minimum. For example, Fig. 4.10(a) shows the layer 3 correction to the

unconditional permeability �eld that was made during the history matching process

using the Gauss-Newton method. The largest permeability modi�cation (about 92

md) was made at the gridblock that contains well 2 and changes in permeability tend

to decay as the distance from the well increases and changes more than 4 gridblocks

away from the well tend to be small. (There are exceptions to the later statement;

see gridblock (10; 16) where the change in permeability is about 30 md). Fig. 4.10(b)

shows the corresponding changes made to layer 3 gridblock permeabilities when using

the conjugate gradient method for optimization. Here the modi�cation to the well 2

gridblock permeability is only about 28:4 md and the change at gridblock (13; 11) is

actually slightly larger, about 29:0 md.

In the example under consideration, all the layers are perforated and vertical


ow is negligible. Thus, pressure data is insensitive to vertical permeability and no
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Figure 4.9: True permeability �eld and comparison of conditional realization obtained

by Gauss-Newton and conjugate gradient method (for layer 1).
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3).



87

correction to the vertical permeability �eld was made during the optimization process.

4.2.2 Computational Comparison Between Gauss-Newton and CG

In this example the Gauss-Newton took 9 iterations and 3 step reductions

in the �nal iteration. So as discussed in Section 4.3.1, the equivalent number of

simulation run is (1 + 44 + 1)�9+3 = 417. The conjugate gradient took 12 iterations

and 4 step reductions in the �nal iteration. So the number of equivalent simulation

run is (1 + 1 + 1 + 1)� 12 + 4 = 52. This shows the far less computational expense

required in the conjugate-gradient method.

4.2.3 Restricted-Entry Case:

In this case, only the top layer is open to 
ow. The production pro�les for

the two wells are as shown in Table 4.5.

As in the previous example, 22 synthetic pressure data were generated at

each well to represent the set of observed data. Except for the change in the speci�ed


ow rates and pressure data, all other data and prior information is identical to the

case considered in previous example.

Fig. 4.11 shows the behavior of both the Gauss-Newton method and the CG

algorithm. The results refer to matching the same unconditional realization of the

pressure data (duc) using the same unconditional realization (muc) of the model as

the initial guess when minimizing the objective function of Eq. 2.10. In this case, the

Gauss-Newton method converges in 6 iterations, whereas, the CG method requires

97 iterations and again converges to a higher value of the objective function. We

implemented CG with a di�erent number of maximum iterations before restart and

in this case, we tried 50 and 100 iterations. However in both the cases the results

were practically the same.

Although the results of Fig. 4.11 indicate that the CG method converges to



88

Well No. Location Flow rate(MM scf/D) Duration(days)

1 5,5 0 2

1 5,5 10 2

2 15,15 15 2

2 15,15 0 2

Table 4.5: Speci�ed production rates, restricted-entry example.
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Figure 4.11: Objective function minimization by conjugate gradient and Gauss-

Newton method.
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a higher value of the objective function than does the Gauss-Newton algorithm, as

shown in Fig. 4.12, the pressure calculated from the realization generated with the

CG algorithm is in good agreement with the unconditional realization of the pressure

data, duc. The data mismatch, given by Eq. 4.5, is 1:15 psi based on the Gauss-

Newton results and is 2:20 psi based on the CG results. Based on Eq. 4.6, the data

mismatch is 0:812 psi for the Gauss-Newton results and is 1:90 psi for the CG results.

For this example, vertical 
ow does occur, so the pressure data is sensitive to

vertical permeability. We compare the correction made to the unconditional model

during the optimization process because the �nal conditional realizations obtained by

both the methods are similar. Figs. 4.13(a) and 4.13(b), show the correction to the

vertical permeability of layer 1 made during the history matching process. Fig. 4.13(a)

pertains to results from the Gauss-Newton procedure and Fig. 4.13(b) pertains to

the conjugate gradient method. Note that the correction is localized to a relatively

small region around the two well blocks which is where we expect vertical 
ow to

be more signi�cant. With the Gauss-Newton method, the maximum correction to kz

is only about 0:06 md but this represents a large percentage change in the kz value

of 0:055 md which corresponds to the prior mean for ln(kz). Note the corrections

made to the kz �eld in the CG case is more localized. The two methods give similar

change to vertical permeability in the region around well 1, but Gauss-Newton also

gives a signi�cant correction to the region around well 2, whereas, for the conjugate

gradient results, the perturbations in vertical permeability in the region around well

2 is small. This suggests that the CG method converged to a di�erent local minimum

and explains the higher root mean squared pressure mismatch obtained from the CG

results. Fig. 4.14 shows the results for layer 3 and layer 4 of (kz) �eld. Note that as

compared to layer 1 and 2, the corrections are less in the other two layers. In the

plots corrections seem to be zero because of the scale, though numerically they are

not. But the magnitude is very small for both the optimization methods.

Fig. 4.15 shows the corrections made to the horizontal k �eld by the two
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Figure 4.13: Correction to vertical permeability �eld by the two methods (layer 1

and 2).
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Figure 4.14: Correction to vertical permeability �eld by the two methods (layer 3

and 4).
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algorithms. The Gauss-Newton shows higher correction in all the layers. The scales

are di�erent in the plots just to show the corrections more distinctly. Also corrections

in layer 3 and 4 are almost negligible as compared to layer 1 and 2 and hence are not

shown here. The corresponding �gures for porosity �elds are shown in Fig. 4.16.

4.2.4 Computational Comparison Between Gauss-Newton and CG

In this example the gauss-Newton took 6 iterations with 10 step cut in the

�nal iteration. So as discussed in Section 4.1.3, the equivalent number of simulation

run is (1 + 44 + 1)�6+10 = 286. The conjugate gradient method took 97 iterations

and 9 step cut. So the equivalent number of simulation run is (1 + 1 + 1 + 1)� 97 +

10 = 398. This shows higher computational expense involved with the conjugate

gradient method.
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Figure 4.15: Correction to horizontal permeability �eld by the two methods (layer 1

and 2).
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Figure 4.16: Correction to porosity �eld by the two methods (layer 1 and 2).
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4.2.5 MAP Estimate for the Restricted-Entry Case:

Here we show the MAP estimate for the restricted entry case considered

in the previous section. Recall the prior mean for ln(k) is 4.0, the prior mean for

ln(kz) is -2.9 and the prior mean for porosity is 0.25. Fig. 4.17 shows the MAP

estimate of the kz �eld obtained by the conjugate gradient method. As expected,

the MAP estimate is a smooth one with modi�cation to the prior model around the

wells. Also the correction to the prior model is signi�cant in the �rst and second

layer as compared to the other two layers. The fourth layer shows the minimum

correction and is almost negligible. Fig. 4.18 and Fig. 4.19 show the MAP estimate of

the horizontal permeability (k) and porosity �eld respectively obtained by conjugate

gradient method. The �rst layer results are plotted in a di�erent scale to highlight

the changes made to the prior model. Both the results show signi�cant modi�cation

from the prior model in the �rst layer only. This is because the producing well is

perforated only in the �rst layer and so the horizontal movement of 
uid will be

prominent only in the �rst layer. This makes the pressure data more sensitive to the

top layer k and porosity �elds.

Fig. 4.20, Fig. 4.21 and Fig. 4.22 show the results obtained by the Gauss-

Newton method for the same problem. The results are very similar as compared to

the conjugate gradient method.

Fig. 4.23 shows the convergence rate for Gauss-Newton and conjugate gra-

dient method. Gauss-Newton works remarkably well in this problem and converges

in only seven iterations, whereas conjugate gradient takes 220 iterations to converge.

The maximum number of iterations allowed before restart was set to 50 and the CG

got restarted by the criteria (� � 0) before it ever reached 50 iterations. In total CG

got restarted 20 times by this criteria.

Fig. 4.24 shows the pressure matched obtained for the MAP estimate. The

root mean squared data mismatch for the actual observed data is 1.66 by the conjugate
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gradient and 0.83 by the Gauss-Newton method.

4.2.6 Computational Comparison Between Gauss-Newton and CG

In this example, the Gauss-Newton took 7 iterations without any step re-

ductions. So the equivalent number of simulation run is (1 + 44 + 1)� 7 + 0 = 322.

The conjugate gradient method took 220 iterations without any step reductions. This

gives equivalent number of simulation run as (1 + 1 + 1 + 1) � 220 + 0 = 880. (See

Section 4.1.3 for details of this calculation). This shows much higher computational

e�ort involved in case of the conjugate gradient method.
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Figure 4.17: MAP estimate of ln(kz) �eld by conjugate gradient method.
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Figure 4.18: MAP estimate of horizontal ln(k) �eld by conjugate gradient method.
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Figure 4.19: MAP estimate of porosity �eld by conjugate gradient method.



101

1 5 9 12 16

1

5

9

12

16

X axis

Y
a
x
i
s

-3.250 -3.097 -2.943 -2.790

(a) ln(kz) �eld (layer 1) .

1 5 9 12 16

1

5

9

12

16

X axis

Y
a
x
i
s

-3.250 -3.097 -2.943 -2.790

(b) ln(kz) �eld (layer 2) .

1 5 9 12 16

1

5

9

12

16

Y axis

Y
a
x
i
s

-3.250 -3.097 -2.943 -2.790

(c) ln(kz) �eld (layer 3) .

1 5 9 12 16

1

5

9

12

16

Y axis

Y
a
x
i
s

-3.250 -3.097 -2.943 -2.790

(d) ln(kz) �eld (layer 4) .

Figure 4.20: MAP estimate of ln(kz) �eld by Gauss-Newton method.
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Figure 4.21: MAP estimate of horizontal ln(k) �eld by Gauss-Newton method.
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Figure 4.22: MAP estimate of porosity �eld by Gauss-Newton method.
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Well Location Flowrate (MMscf/day) Duration (days)

1 5,5 30.0 2.00

2 15,5 0.00 2.00

3 10,10 25.0 1.00

3 10,10 0.00 1.00

4 5,15 0.00 2.00

5 15,15 35.0 2.00

Table 4.6: Speci�ed production rates, �ve well case.

4.2.7 3D Case with Five Fully Penetrating Wells:

In this section, we consider a more complicated production pro�le with more

wells and di�erent 
ow schemes. The reservoir data and the model parameters de-

tails remain the same as in the previous cases shown in Table 4.3. We consider �ve

wells, three of them producing and two observation wells. Two of the wells are put

on constant rate production, whereas the third one is produced �rst at constant pro-

duction rate and then shut in for a build-up test. The production scheme is given

in Table 4.6. We generate 20 data points for each well and so the total number of

conditioning data used is 100. The true pressure data is perturbed with measurement

errors with variance 1psi2. The results obtained are similar as to the previous cases.

Fig 4.25 shows the behavior of the Gauss-Newton and CG in minimizing the objec-

tive function. As compared to the Gauss-Newton method, the CG takes far more

iterations to achieve convergence. Gauss Newton converges to a value of 106 in 15 it-

erations, whereas CG took 95 iterations to reach the minimum value of 155. Thus, as

in the previous cases, CG converges to a somewhat higher value than Gauss-Newton.

From experimentation of the convergence performance of CG, we found that CG is

restarted within the optimization procedure 35 times by the criteria number two as
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Figure 4.25: Objective function minimization by conjugate gradient and Gauss-

Newton method.

discussed in important remarks in chapter I (i.e. restart CG whenever rTk dk � 0).

Also most of these restarting takes place within the \
at portion" of the convergence

curve. This means that our inexact line search method is not accurate enough to give

a descent direction in the next iteration and CG gets restarted to solve this problem.

This frequent restarting reduces the convergence rate of CG considerably. Fig 4.26

shows the pressure match obtained by the conjugate gradient method. Based on

Eq. 4.5, the root mean squared pressure mismatch upon convergence was 1.90 by CG

and 1.10 by Gauss-Newton. The corresponding data mismatch based on Eq. 4.6 is

1.61 for CG and 0.64 for Gauss-Newton respectively.

Fig 4.27 shows the true porosity �eld used to generate the true pressure

data and the conditional realization obtained by CG and Gauss-Newton method for
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Figure 4.27: True porosity �eld and comparison of conditional realization obtained

by Gauss-Newton and conjugate gradient method (for layer 1) .
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the layer 1. It can be seen that the conditional realizations are similar by both

the methods. However, when we look at the correction made to the porosity �elds

during the conditioning process, we observe that the corrections obtained from the

two processes are not the same, though they result in similar realizations. Fig 4.28

shows the correction done to layer 1 and layer 4 porosity by the two methods during

the conditioning process. In the layer 1, maximum correction has been made at the

location of well 5 by both the methods. CG makes a correction of about 0.03 and

Gauss-Newton makes a correction of about 0.04. Also in both the pictures there is a

region of signi�cant porosity change around the location of well number 3. However

Gauss-Newton seems to make porosity changes on a wider area than the CG (see

the regions away from the well). Similarly for layer 4, in both the models, major

correction has been made at the location of well number 1. The correction by CG

is about 0.065 and by Gauss-Newton is 0.09. Also note that both methods result in

changes around well number 5 and well number 3. Thus even though the magnitude

of the changes di�er from method to method, qualitatively the two methods yield

similar corrections. The results for the other layers are not shown but yield results

consistent with the preceding statement.

Similarly, Fig 4.29 shows the modi�cation to the individual layer permeabil-

ity �elds from the two optimization algorithms. We compare results for the layer 1

and layer 2 where the changes are the largest. For layer 1, both the methods make

the highest correction at location of well number 1. The correction is about 53.9 in

CG and 66.0 in Gauss-Newton. Also note the regions of correction around the wells

number 3 and 5. But in the Gauss-Newton results the region between well number

3 and well number 5 shows a more correction as compared to CG. Comparing the

results for layer 2, we also observe similar results. Both the methods make highest

correction at the location of well number 1. The change is 171.71 in CG and 102.33 in

Gauss-Newton. We can also see correction around well number 3 and well number 5

in both the methods. Again the corrections in CG looks more localized as compared



111

to Gauss-Newton.

4.2.8 Computational Comparison Between Gauss-Newton and CG

In this example, the gauss-Newton took 15 iterations with 16 step reductions

spread over all the iterations. This gives the roughly equivalent number of simulation

run as (1 + 100 + 1) � 15 + 16 = 1546. On the other hand, the conjugate gradient

took 95 iterations with 31 step reductions spread over the iterations. This gives the

number of simulation runs as (1 + 1 + 1 + 1)� 95 + 31 = 419. (See Section 4.1.3 for

details of these calculations).



112

1 5 9 12 16

1

5

9

12

16

X axis

Y
a
x
i
s

0.000 0.010 0.021 0.031

(a) Correction by CG (layer 1 ).

1 5 9 12 16

1

5

9

12

16

X axis

Y
a
x
i
s

0.000 0.012 0.024 0.036

(b) Correction by G-N (layer 1).

1 5 9 12 16

1

5

9

12

16

X axis

Y
a
x
i
s

0.000 0.020 0.040 0.060

(c) Correction by CG (layer 4).

1 6 11 15

1

5

9

12

16

X axis

Y
a
x
i
s

0.0000 0.0304 0.0609 0.0913

(d) Correction by G-N (layer 4).

Figure 4.28: Comparison of correction to the porosity �eld by CG and Gauss-Newton

(layer 1 and layer 4).
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Figure 4.29: Comparison of correction to the permeability �eld (k) by CG and Gauss-

Newton (layer1 and layer 2).



CHAPTER V

CONCLUSIONS

In this work, we have considered the problem of generating the maximum

a posteriori estimate and realizations of log-permeability and porosity �elds condi-

tioned to pressure data for single-phase 
ow of gas for both two-dimensional and

three-dimensional cases. This exercise also focuses on the issue of using conjugate

gradient method as the optimization algorithm as an alternative to Gauss-Newton

method with restricted step. We must calculate the sensitivity of each pressure data

(in case of the Gauss-Newton) or gradient of the objective function (in case of the con-

jugate gradient) with respect to the model parameters while running the optimization

algorithm and we have presented an eÆcient algorithm to calculate these sensitivi-

ties. The Gauss-Newton algorithm involves solving an adjoint system of equations

Nd times (Nd is the number of conditioning data being used) to generate the whole

sensitivity matrix, while the conjugate gradient requires solving the adjoint system of

equation only once to calculate the gradient of the objective function. The sensitivity

results obtained by the adjoint method have been checked with the �nite-di�erence

(direct) method for a variety of cases and the agreement between the two sets of

results is excellent. Also note that in the examples we are conditioning the reservoir

model only to pressure data, but the methodology to condition to rate data has been

implemented.

The performance of Gauss-Newton and conjugate gradient algorithm has

been compared and analyzed for a number of cases. The two methods result in reser-

voir models that satisfy the pressure data very well. On a larger scale, the �nal models

obtained by the two methods are similar, but the magnitude of corrections incorpo-
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rated in the �nal model on a gridblock to gridblock basis is not exactly same. Also

the correction caused by Gauss-Newton is more spread out; whereas the correction by

conjugate gradient is more localized around the wells. In most of the cases considered

here, the conjugate gradient converges to a somewhat higher value of the objective

function corresponding to some local minimum; whereas, Gauss-Newton converges

to a lower value. This results in somewhat di�erent models by the two methods.

However the pressure match obtained by both the methods is quite satisfactory.

In most cases considered, the Gauss-Newton method required far fewer iter-

ations than the conjugate gradient algorithm to obtain convergence. Although one

iteration in Gauss-Newton is much more time consuming than one iteration in con-

jugate gradient, the high number of iterations required in conjugate gradient pose a

threat to its implementation in the current form for a large scale problem. Neverthe-

less, we have found some interesting facts about the conjugate gradient itself while

analyzing its convergence rate. The conjugate gradient method without precondition-

ing takes far more iterations to converge compared to the one with preconditioning.

Also the results obtained without preconditioning is very localized around the wells.

We are using the inverse of the prior covariance matrix as the preconditioning matrix

and since, this is a poor approximation to the actual Hessian, we are of the belief

that a preconditioner approximating the Hessian closely will improve the convergence

rate of the conjugate gradient algorithm. How to generate such an approximation in

a computationally eÆcient way is unclear at this point. We have also addressed the

issue whether to use an exact line search method to calculate the step size in the con-

jugate gradient method. We found that during the initial stages when the gradient of

the objective function is high, inexact line search can achieve a fast convergence rate.

But when the gradient of the objective function is small, which suggests a 
at region

in the objective function, inexact line search may result in restarting of the conju-

gate gradient algorithm. But since each iteration within the inner Newton-Raphson

method is almost computationally equivalent to one full iteration of the conjugate
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gradient (with a single step in Newton-Raphson iteration), exact line search does not

o�er any signi�cant bene�ts. Hence, we believe it is preferable to do just one Newton

iteration for step size calculation.

Finally, we have applied the computational technique to several synthetic

cases implementing both the Gauss-Newton and the conjugate gradient algorithm.

The results give estimates of log-permeability (both horizontal and vertical) and

porosity �elds which honor the pressure data. The process can be applied to generate

reservoir models following the principle of automatic history matching.
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APPENDIX A

CALCULATION OF GAS PROPERTY

A.1 Calculation of Gas Viscosity (�g)

Viscosity of gas is calculated based on the Lee et al. [1] correlation. This

equation can be presented as,

�g = 10�4K exp

�
X
� �g
62:4

�Y �
; (A.1)

where,

K =
(9:4 + 0:02Mg)T

1:5

(209 + 19Mg + T )
; (A.2)

and

X = 3:5 + (986=T ) + 0:01Mg; (A.3)

and

Y = 2:4� 0:2X; (A.4)

The term �g is the gas density at reservoir pressure and temperature in unit of lbm/ft
3;

T is the reservoir temperature in 0R; and Mg is the apparent molecular weight of the

gas.
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A.2 Gas Density Calculation (�g)

Gas density can be calculated from

�g = 2:7
g
p

zT
; (A.5)

where �g is the gas density in lbm/ft3; 
g is the gas speci�c gravity; p is pressure of

gas in psia; T is absolute temperature of gas in 0R; and z is the real-gas deviation

factor.

A.3 Calculation of Gas Deviation Factor (z)

Calculate the pseudo-critical pressure (ppc) in psia and temperature (Tpc) in

0R using the following formula.

ppc = 756:8� 131
g � 3:6
2g ; (A.6)

and

Tpc = 169:2 + 349:5
g � 74
2g : (A.7)

Calculate reduced pressure (ppr) and temperature (Tpr) as

ppr =
p

ppc
and Tpr =

T

Tpc
(A.8)

Finally the z-factor is obtained from

z =
0:06125pprt exp (�1:2(1� t)2)

y
(A.9)

where t = 1=Tpr and y is the real solution of the equation

F (y) = 0 = �0:06125pprt exp
�
�1:2(1� t)2

�
+

y + y2 + y3 � y4

(1� y)3
� (14:76� 9:76t2 + 4:58t3)y2

+(90:7t� 242:2t2 + 42:2t3)y(2:18+2:82t): (A.10)

The above equation is solved by Newton-Raphson method.
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A.4 Calculation of Gas Formation Volume Factor (Bg)

Bg can be calculated as

Bg = 0:00504
zT

p
; (A.11)

where Bg is in bbl/scf; p is in psia; T is in 0R and z is the real gas deviation factor.


