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ABSTRACT

Javad Rafiee (Doctor of Philosophy in Petroleum Engineering)

Data Assimilation and Uncertainty Quantification with Ensemble Methods and Markov

Chain Monte Carlo

Directed by Albert C. Reynolds

146 pp., Chapter 5: Conclusions

(555 words)

The ensemble smoother with multiple data assimilation (ES-MDA) has proved to

be a powerful assisted history-matching method. The only drawback of ES-MDA is that

the inflation factors for damping the changes in model parameters have to be determined

before starting the history-match. Although various authors have provided suggestions for

determining the inflation factors adaptively as the history-match proceeds, these methods

often result in a large number of data assimilation steps which can make ES-MDA too

computationally inefficient for practical application to large-scale field problems. Here, we

provide a theoretical procedure to determine exactly the minimum inflation factor at each

data assimilation step that ensures the discrepancy principle is satisfied. Like previous

adaptive ES-MDA methods, this theoretical method does not allow one to specify a priori

the number of data assimilation steps to be done. Thus, using the exact theoretical procedure

as a guide, we provide a practical efficient method for determining the inflation factors which

allows one to specify a priori the number of data assimilation steps to be done with ES-MDA

which still ensures that the initial inflation factor is chosen so that the discrepancy principle

is approximately satisfied. Based on the number of data assimilation steps that the user

has specified, the subsequent inflation factors are chosen so they decrease geometrically

with data assimilation step in a way such that the sum of the inverse inflation factors is
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equal to unity. We refer to our proposed practical method as ES-MDA-GEO. To illustrate

the performance of this method, we compare the history matching results of our proposed

method with ES-MDA with equal inflation factors as well as other forms of adaptive ES-MDA

for three synthetic examples. The results of history matching for three numerical examples

show that our new method for choosing inflation factors is computationally efficient and

provides a good data match while maintaining a seemingly reasonable degree of uncertainty

in the posterior realizations of reservoir model and preserving the features of the assumed

geological model.

Ensemble-based methods such as ES, EnKF, or ES-MDA provide a reasonably well

approximation of the posterior uncertainty, but they fail when applied to multimodal poste-

riors arising from nonlinear forward model operators. A full characterization of multimodal

posterior distribution is only possible with Markov chain Monte Carlo (MCMC) methods.

However, the proposal distribution for MCMC need to be able to generate samples from dif-

ferent modes while it should result in a reasonable acceptance rate to avoid computationally

prohibitive long chains. Evaluating the acceptance probability using Metropolis-Hastings cri-

teria requires one forward model run (a reservoir simulation in this work) for each proposed

state, and MCMC application is only feasible if the chain start sampling from the target

pdf quickly. We introduce a two-level MCMC which is able to sample multimodal posteriors

efficiently. In first step, we use distributed Gauss-Newton (DGN) method to generate many

modes of the posterior pdf in parallel without the need for an adjoint solution. A Gaussian

mixture model (GMM) is then constructed based on the distinct modes that we find in the

first step. In the second step, the constructed GMM is used as the proposal distribution for

our MCMC algorithm. The application of our method to the test problems shows that this

proposed two-level MCMC is much more efficient than the random walk MCMC, however

its application to high dimensional problems needs further improvements.
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Chapter 1

INTRODUCTION

1.1 Literature Review

An important aspect of reservoir management is the quantification of the uncertainty

in the predictions of the future performance of a field for different development scenarios.

The risk associated with decisions for field development depends on the level of uncertainty

in the reservoir models and in the associated predicted reservoir performances. History

matching (data assimilation) refers to the process of adjusting reservoir model parameters

until the predicted data from the simulator is in satisfactory agreement with the inaccurate

observed data. To be acceptable, history-matched models should reflect the basic features

of the reservoir description developed by geologists. The history-matched models are used

for well placement and/or well control optimization in a closed-loop reservoir management

framework to find an optimum field development scenario. The history matching problem is

an ill-posed inverse problem in the sense that there exist infinite number of solutions which

give acceptable data matches due to the high dimension of the parameter space, inaccuracy

of the data, the limited number of independent data, and the existence of parameters which

have little or no influence on the predicted data. Bayesian statistics provides an elegant

framework to formulate the history matching problem. According to Bayes’ theorem, the

posterior probability density function (pdf) for the model parameters conditional to the

observed data can be defined up to a normalizing constant as the product of the prior pdf

and the likelihood function. Therefore, the uncertainty quantification problem reduces to

sampling this posterior pdf [71]. The set of samples from the posterior pdf (conditional

realizations of the model parameters) can be used to quantify the uncertainty in the future

performance of the reservoir model and determine the risk associated with field development
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decisions.

1.1.1 Markov Chain Monte Carlo

The most common rigorous method available for sampling a target pdf is Markov

chain Monte Carlo (MCMC). The goal of MCMC is to approximate a target pdf by generating

a Markov chain (the probability of a new state depends only on the last state in the chain)

with its stationary distribution equal to the target pdf which we wish to sample. It has

been theoretically proved that a well designed MCMC will sample the target posterior pdf

correctly as the number of states in the chain approaches infinity [44]. However, it might be

necessary to generate millions of states in order for the Markov chain to get to the stationary

state where the samples in the chain represent samples from the correct pdf [24, 59]. A

complete characterization of the posterior pdf using MCMC for a large scale problem can be

computationally infeasible, because a forward model run is required for each proposed state

to calculate the likelihood of the proposed state. To improve the performance of MCMC one

can improve the computational efficiency by reducing the cost of running the forward model.

One idea is to build a fast proxy model to serve as the forward model [10, 46], but these

methods introduce modeling error into the uncertainty quantification process. Ma et al. [61]

proposed a two-stage sampling method for sampling the permeability field conditional to the

production data. In their two-stage method for estimation of permeability field of a fine-

grid model, the data mismatch of each new proposal is estimated from the results obtained

using a coarse-grid model with upscaled permeability field. If the data mismatch decreases

for a proposal, the fine-grid is run for that proposal and the proposed state is accepted or

rejected based on Metropolis-Hastings acceptance criteria. Another option to enhance the

performance of MCMC method is to improve the proposal distribution such that the chain

starts sampling from the target pdf faster. In the ideal case, if the proposal distribution is

the same as the target pdf, based on Metropolis-Hastings acceptance criteria any proposed

state will be accepted in the chain. Oliver et al. [70] used the Metropolis-Hastings MCMC

to sample the posterior log-permeability field conditional to the pressure data in a two-
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dimensional single phase problem. In addition to using global and local perturbation methods

to propose from the prior Gaussian pdf, they built a Gaussian pdf with the mean of the

maximum a posteriori (MAP) estimate and the covariance matrix equal to the inverse of the

Hessian matrix evaluated at the MAP estimate. The latter proposal distribution resulted

in a higher acceptance rate. Emerick and Reynolds [23] proposed a method combining the

EnKF with MCMC which targets improving the MCMC performance by using the EnKF

results for the proposal procedure and the calculation of the probability of the new proposed

states.

If the relationship between parameters and observations is nonlinear (which is the case

in most of the reservoir engineering problems), even with Gaussian prior and measurement

errors the posterior pdf may have multiple local modes and sampling a multimodal pdf

using MCMC is a difficult task, especially if the modes of the posterior are separated by

low probability regions. In this case, the states in the MCMC chain will be sampled around

a local mode for a large number of iterations as it is very difficult to make a transition

through the low probability region between the modes of the posterior at least using any

random walk type of algorithm. Different approaches have been taken to sample such a

multimodal posterior. Liang and Wong [57] proposed an evolutionary Monte Carlo (also

called population MCMC) based on the conceptual ideas borrowed from simulated annealing

and genetic algorithm which can be used to sample a multimodal posterior [63]. Gao et al.

[32] used the distributed Gauss-Newton (DGN) method [33] to find multiple minima of the

objective function. DGN provides multiple minima as well as the Hessian of the objective

function around each minima. After averaging the local minima that are close to each

other, a Gaussian mixture model is built to approximate the posterior pdf, where the mean

and the covariance of each Gaussian are set to the average local minimum and the inverse

of the Hessian at that minimum. Note that Gao et al. [32] did not sample the GMM for

uncertainty quantification and assumed that the GMM is the posterior pdf. Li and Reynolds

[56] proposed a two-level MCMC method where in the first step, they find many local minima

of the objective function using an optimization method starting from different initial guesses.
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Then, the set of minima corresponding to a mode are clustered and a Gaussian mixture model

(GMM) is constructed to serve as the proposal distribution of the MCMC method. The mean

of each Gaussian is set to the local minimum representative of the mean of the cluster and

its covariance matrix is defined as inverse of the Hessian evaluated at that minimum. The

numerical examples show that their two-level MCMC method requires far less computational

cost compared to random-walk MCMC or population MCMC. Note that minimization of the

objective function in the first step is usually done with a gradient based method which needs

the computation of the sensitivity (or at least the gradient of the objective function) which

is only feasible if the adjoint method is available. Unfortunately, the adjoint solution cannot

be computed with most commercial simulators.

1.1.2 Randomized Maximum Likelihood

Kitanidis [51] and Oliver et al. [69] independently proposed the randomized maximum

likelihood (RML) for generating samples from the posterior pdf defined in a Beysian setting.

However, Kitanidis [51] called the algorithm “quasi-linear estimation method”. In RML,

it is assumed that the distribution of the prior and the measurement error are Gaussian.

To generate a sample from the posterior defined in a Bayesian setting, RML minimizes an

objective function, which is composed of a model mismatch term and a data mismatch term,

using an optimization method, such as Gauss-Newton (GN) or Levenberg-Marquardt (LM),

starting from unconditional random realizations of the vector of model parameters drawn

from the prior distribution. The observation vector for each minimization is obtained by

adding a realization of the measurement error to the observed data. Using two completely

different proofs, Oliver [67] and Reynolds et al. [74] showed that for a linear-Gaussian case

where the prior model is Gaussian and the forward model is a linear function, RML will

sample the posterior pdf correctly. The proof of Reynolds et al. [74] was generalized to the

case where the prior mean may be uncertain. Furthermore, it has been shown that RML

is able to sample from multiple modes of a multimodal posterior arising from nonlinear toy

problems [69, 89, 97]. For the problems where the forward model operator is nonlinear,
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although RML samples are from the regions of high probabilities of the target pdf, RML

is not guaranteed to generate the correct sampling. In an effort to enhance the sampling

performance of RML for nonlinear problems, Stordal and Nævdal [85] presented a generalized

version of RML where they multiplied the model mismatch (prior) term of the objective

function by a positive weighting factor. Although they provided some theoretical justification

for the weighting factor, for real problems, the user need to tune this parameter to obtain

a desired sampling performance. As the minimization of the RML objective function at

least requires the gradient of the objective function, an ensemble version of RML, which is

known as EnRML, was proposed which does not need any gradient computations [14]. Chen

and Oliver [14] proposed approximate version of EnRML where the model mismatch term

is dropped in the update equation as its calculation requires the inversion of the low rank

ensemble representation of the model covariance matrix. Since the number measurements is

commonly smaller than the number of model parameters, Stordal and Nævdal [85] proposed

a modification of EnRML where the parameter space is mapped to the measurement space

to avoid the need for the prior covariance matrix. In this version of EnRML there is no

need to drop the model mismatch term, and they showed for toy problems and a synthetic

reservoir model, this method with a proper choice of the weighting factor can perform as well

as the original EnRML and slightly better than approximate version of EnRML. Oliver [68]

suggested an augmented variable RML approach which, if tuned properly, is able to sample

multimodal distributions which arise from nonlinear forward models. The methodology is

tested for few toy problems however it seems impractical for real applications as it requires

the determinant of a Jacobian matrix.

1.1.3 Ensemble Smoother

Among the history matching methods, ensemble-based methods such as ensemble

Kalman filter [27, 28] and ensemble smoother [93] have attracted particular attention in the

field of petroleum engineering in the last decade. By approximating the first two moments

of a target probability density function (pdf), commonly referred to as posterior pdf, with
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an ensemble of limited samples of the vector of model parameters, EnKF and ES attempt to

characterize the target pdf. The final ensemble of reservoir model parameters after a success-

ful history-match with EnKF or ES provides an approximate quantification of the posterior

pdf of reservoir model parameters as well as the uncertainty in production forecasts. EnKF

updates the model parameters and state variables (e.g., primary variables of the reservoir

simulator) sequentially in time. EnKF assumes that the updated (analyzed) states at a data

assimilation step are statistically consistent with the updated states that would be obtained

by running the forward model from time zero with the updated realizations of the vector

of model parameters. Although EnKF often appears to perform well even in field cases

[1, 7, 21, 45], this statistical consistency can only be proved in the linear-Gaussian case [90].

Moreover, in the cases where the structural features [78] or initial depths of fluid contacts

[96] are included as reservoir model parameters, this statistical consistency does not hold and

the only way to obtain reliable results is by rerunning the forward model from time zero with

each updated vector of model parameters. The ensemble smoother (ES), on the other hand,

is a pure parameter estimation algorithm which does not update the state variables; the ES

assimilates all available data simultaneously and only updates the model parameters. Al-

though ES does not suffer from the inconsistency problem, its final data match is usually not

as good as the data match obtained with EnKF. To further improve the performance of ES in

terms of the data match, Chen and Oliver [14], Emerick and Reynolds [25, 26] and Luo et al.

[60] proposed iterative forms of ES where the iterations are performed similar to those done

with iterative optimization algorithms, e.g., Gauss-Newton or Levenberg-Marquardt (LM).

A popular iterative form of ES is the ensemble smoother with multiple data assimilation

(ES-MDA) [22, 25]. The development of ES-MDA was motivated by the work of Reynolds

et al. [75] who showed that the ES update is similar to taking a full-step Gauss-Newton iter-

ation using the same average sensitivity matrix to update each ensemble member. ES-MDA

is also a logical generalization of a result presented in Rommelse [77] for a one-parameter,

one-datum example. The update equation of ES-MDA is similar to the update equation of

ES except that the measurement error covariance is multiplied by an inflation factor at each
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update. Emerick and Reynolds [25] showed that ES-MDA will sample the posterior correctly

for the linear-Gaussian case as the ensemble size approaches infinity if the sum of the inverse

of the inflation factors is equal to one. Although ES-MDA has proved to be a promising

method for history matching synthetic and field cases [24, 25, 26], the main drawback of

ES-MDA is that the number of assimilation steps and the inflation factors for each data

assimilation step have to be specified before starting data assimilation (history-matching).

A simple choice of inflation factors is to set all of them equal to Na where Na is the number

of data assimilation steps and is defined prior to beginning data assimilation. Although this

choice of inflation factors often seemingly works well even in field cases, it can cause over-

correction of model parameters and lead to unreasonably rough rock property fields [52]. To

avoid such issues with ES-MDA, Le et al. [52] proposed two adaptive ES-MDA algorithms in

which the inflation factors are selected adaptively during the data-assimilation process. The

first method (ES-MDA-RS) determines the inflation factor at each iteration to ensure that

the change in the model parameters at each assimilation step is less than a predetermined

level (e.g., two prior standard deviations). The second method (ES-MDA-RLM) was inspired

by the works of Hanke [41] and Iglesias and Dawson [49] in which the inflation factors were

selected based on the discrepancy principle and is conceptually similar to a method proposed

earlier by Iglesias [48]. Although the proposed adaptive methods improve the performance

of ES-MDA [52], they often require a large number of assimilation steps which may not be

feasible for real large-scale field problems. Emerick [20] also proposed an adaptive ES-MDA

algorithm where the inflation factor in each data assimilation step is determined as the min-

imum of the normalized objective function times a heuristical factor (a factor of 0.25 is used

in the examples) and a predefined maximum allowable value of each inflation factor (a max-

imum value of 1000 was used). The iterations end when the summation of inverse inflation

factors is equal to one. Chen and Oliver [14] started from the Levenberg-Marquardt (LM)

algorithm and derived an iterative ES algorithm which they called LM-ensemble randomized

likelihood (LM-EnRML). They avoided the explicit computation of the sensitivity matrix

by modifying the approximate Hessian which makes the computations simpler and promotes
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stability of the scheme. They used standard suggestions for updating the LM parameter, λ,

in LM-EnRML and their iterative process stops based on the magnitude of the data mis-

match. As shown in this dissertation, the update equation for the approximate version of

EnRML proposed by Chen and Oliver [14], where the model mismatch term of the objective

function is dropped is similar to the update equation of ES-MDA. Le et al. [52] compared

LM-EnRML with their adaptive ES-MDA schemes for a synthetic three-phase model and

found that LM-EnRML results in slightly rougher property maps (overshooting and under-

shooting) and higher values of the normalized objective function (poorer data match) than

those obtained with a Le et al. [52] adaptive ES-MDA algorithm. More importantly, Le

et al. [52] found that the performance of LM-EnRML can be highly dependent on the initial

choice of λ and for some choices, the algorithm fails to give an acceptable history match.

Motivated by the works of Hanke [41] and Iglesias and Dawson [49], Iglesias [48] proposed

iterative regularizing ES (IR-ES) as an iterative ensemble smoother. The update equation

of the IR-ES is the same as ES-MDA update equation, but the discrepancy principle for

iterative regularization is utilized for the choice of the regularizing parameters (or inflation

factors) and is also used as the stopping criterion of the algorithm.

1.2 Research Overview

The main objectives of this research are as follows: (i) propose theoretical and efficient

practical methods for determining the inflation factors for ES-MDA to improve its perfor-

mance; (ii) propose a practical methodology to find multiples modes of the posterior pdf

when the adjoint solution is not available and use these modes to design an efficient MCMC.

This second objective is motivated by the fact that ES-MDA only provides an approximate

characterization of uncertainty.

1.3 Dissertation Organization

This dissertation is organized into five chapters, including the Introduction and Con-

clusions. Chapter 2 presents the theoretical framework for history matching in Bayesian
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framework. In this chapter, the formulation of gradient-based history matching, ensemble

smoother, and Markov chain Monte Carlo are discussed in detail and connections between

between different methods are established. In Chapter 3, a theoretical procedure for choosing

the inflation factors for ES-MDA is discussed. Using this theoretical procedure as a guide, a

practical efficient method for choosing the inflation factor for ES-MDA is proposed. Chapter

4 presents an efficient two-level MCMC algorithm for sampling multimodal posterior distri-

butions which does not require the availability of the adjoint solution. Chapter 5 presents

the conclusions.
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Chapter 2

BAYESIAN FRAMEWORK FOR HISTORY MATCHING AND

UNCERTAINTY QUANTIFICATION

2.1 Notation and Bayesian Viewpoint

Even though observed data comes from a true model mtrue, due to the uncertain noise

in measurements, the uncertain relationship between data and the fact that, for practical

problems, even noise free data and a perfectly known relationship between data cannot

resolve the true model, it is convenient to view the inverse problem of estimating a model

consistent with observed data in a Bayesian framework [71, 87]. In the Bayesian setting,

there generally exist an infinite number of models that are consistent with the data and the

prior model and the objectives are to generate some type of estimate of the true model and

to quantify the uncertainty in the estimate. Ensemble-based data assimilation methods can

be conveniently embedded in this Bayesian framework.

Throughout m denotes an Nm-dimensional random column vector of model param-

eters which is referred to simply as the model m. The Nd-dimensional column vector dobs

denotes a vector of observations and for any given m,

df = df (m) = g(m), (2.1)

denotes the Nd-dimensional column vector of predicted data corresponding to dobs where

df (m) is evaluated using the forward model. Here, we temporarily introduce the standard but

superfluous notation g(m) to denote the forward model (for example, a numerical reservoir

simulator) that enables the computation of df (m) given m. We assume that the probability

density function (pdf) for ξ, which denotes theNd-dimensional column vector of measurement
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errors, is N (0, CD), i.e., is a multivariate Gaussian distribution with zero mean and Nd×Nd

covariance matrix CD. The relationship between dobs and the true model can be represented

by

dobs = df (mtrue) + ξ = g(mtrue) + ξ, (2.2)

where ξ is a specific sample of the random vector of measurement errors generated by sam-

pling N (0, CD). A common approach is to assume there is a prior pdf for m so the posterior

pdf (pdf conditional to dobs), denoted by f(m | dobs), is proportional to the prior pdf times

the likelihood of the model given dobs. From a Bayesian inverse theory viewpoint, we wish to

sample this posterior pdf to characterize the posterior uncertainty in the model and the un-

certainty in future predictions generated from the forward model g(m). The linear-Gaussian

case refers to the scenario where the prior pdf is Gaussian with mean mpr and covariance

matrix CM and g(m) is linear, e.g., g(m) = Gm. In the linear-Gaussian case, the ensemble

smoother (ES) and ES-MDA generate a theoretically correct sampling of the posterior pdf as

the ensemble size goes to infinity. In the nonlinear case, no such theory exists; nevertheless,

ES, ES-MDA and EnKF, have proven to generate useful results for many synthetic and field

cases [7, 15, 20, 21, 26, 45, 82], even though one can construct simple synthetic multimodal

cases where the ensemble-based methods give a poor representation of the posterior pdf [97].

In the Bayesian viewpoint, a common approach is to assume there is a prior pdf for m so

the posterior pdf (pdf conditional to dobs), denoted by f(m|dobs) or π(m), is given by

π(m) ≡ f(m|dobs) = af(m)L(m|dobs), (2.3)

where f(m) is the prior pdf, L(m|dobs) is the likelihood of the model given dobs, and a is

a normalizing constant. From a Bayesian inverse theory viewpoint, we wish to sample this

posterior pdf to characterize the posterior uncertainty in the model and the uncertainty in

future predictions generated from the forward model g(m). Assuming a Gaussian prior pdf

with mean mpr and covariance matrix CM and Gaussian measurement errors, the posterior
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pdf can be written as

π(m) = a exp{−O(m)}, (2.4)

where

O(m) =
1

2
(m−mpr)

T C−1M (m−mpr) +
1

2
(g(m)− dobs)T C−1D (g(m)− dobs) . (2.5)

In Eq. 2.5, O(m) is called the objective function is composed of two terms: a

model mismatch term and a data mismatch term. Instead of maximizing the posterior

pdf f(m|dobs), one can minimize the objective function. In other words, the aim of minimiz-

ing the objective function is to find models which are close to the prior mean (to preserve

the geological features of the prior) and match the observed data (low value of data mis-

match term). In typical history matching problems, the number of independent data is lower

than the number of parameters which leads to an ill-posed inverse problem. Note that the

model mismatch term can be regarded as a regularization term which helps alleviate the

ill-posedness of the problem. To characterize the posterior uncertainty in m, we wish to

generate multiple samples of π(m) = f(m|dobs), i.e., multiple (posterior) realizations of m.

One method to generate approximate conditional realizations of the posterior pdf is

called Randomized Maximum Likelihood (RML) which was independently introduced by

Kitanidis [51] and Oliver et al. [69]. In the first step of RML, an ensemble of unconditional

realizations of the model parameters are generated using the prior distribution, i.e., muc,j ∼

N (mpr, CM) for j = 1, 2, . . . , Ne. We also generate realizations of the observed data by

adding random realizations of the measurement error to dobs, i.e., duc,j ∼ N (dobs, CD) for

j = 1, 2, . . . , Ne. In the second step of RML, the conditional samples of the posterior pdf are

obtained by minimizing the following stochastic objective function

Oj(m) =
1

2
(m−muc,j)

T C−1M (m−muc,j) +
1

2
(g(m)− duc,j)T C−1D (g(m)− duc,j) , (2.6)

which results in generating Ne conditional samples of the model parameters. Although RML

12



can be used to generate approximate samples of the posterior pdf in general, RML samples

the posterior pdf correctly only in the case where prior model and measurement errors are

Gaussian and the forward model is linear [71]. The strength of RML rests on the fact that

it generates samples distributed around the modes of the posterior pdf.

2.2 Maximum Likelihood Estimate

Although the ultimate goal is to characterize the posterior pdf by sampling the pdf,

this section is devoted to the viability of optimization methods to minimize the objective

function O(m). The minimizer of O(m) is called the maximum a posteriori (MAP) estimate

which is the mean of the posterior pdf in the linear Gaussian case. Let’s assume that the

forward model is linear, i.e., g(m) = Gm, where G is a Nd × Nm matrix mapping the

parameter space onto the data space. In order to find the MAP estimate, we have to set the

gradient of the objective function with respect to the model parameters equal to zero. The

gradient of O(m) is given by

∇O = C−1M (m−mpr) +GTC−1D (Gm− dobs) , (2.7)

and it is straightforward to show that the Hessian matrix is

H = ∇
[
(∇O)T

]
= C−1M +GTC−1D G. (2.8)

It can be shown that the Hessian matrix, H, is positive definite; therefore the objective

function for the linear case has a unique global minimum which is found by setting the

gradient equal to zero. Setting the gradient equal to zero and adding G(mpr −mpr) to the

data mismatch term in Eq. 2.7, we obtain

C−1M (m−mpr) +GTC−1D (Gm− dobs +G(mpr −mpr)) = 0, (2.9)
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or equivalently,

(
C−1M +GTC−1D G

)
(m−mpr) +GTC−1D (Gmpr − dobs) = 0. (2.10)

We solve Eq. 2.10 for m and denote the result as mMAP to obtain

mMAP = mpr +
(
C−1M +GTC−1D G

)−1
GTC−1D (dobs −Gmpr) . (2.11)

In large scale problems where the number of model parameters, Nm, is much larger than

the number of data, Nd, the inversion of Nm ×Nm matrix is prohibitive. The following two

matrix inversion lemmas are extensively employed to find equivalent forms of the solution

of the inverse problems in order to facilitate an efficient computation of the inverse. The

proofs can be found in Oliver et al. [71, Chap. 7].

Lemma 2.1 (First matrix inversion identity). Assume the Nm × Nm matrix CM and the

Nd×Nd matrix CD are both positive definite. Then for any Nd×Nm matrix G, the following

matrix identity holds:

(
C−1M +GTC−1D G

)−1
GTC−1D = CMG

T
(
CD +GCMG

T
)−1

. (2.12)

Lemma 2.2 (Second matrix inversion identity). Assume the Nm ×Nm matrix CM and the

Nd×Nd matrix CD are both positive definite. Then for any Nd×Nm matrix G, the following

matrix identity holds:

(
C−1M +GTC−1D G

)−1
= CM − CMGT

(
CD +GCMG

T
)−1

GCM . (2.13)

Note that according to the second matrix inversion identity, the inversion of an Nm×

Nm matrix given on the left-hand side of Eq. 2.13 can be calculated by inverting an Nd×Nd

matrix which is computationally more efficient to perform compared to the direct inversion

of the Nm ×Nm matrix if Nd is much smaller than Nm.
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Using the first matrix inversion identity given by Eq. 2.12, one can rewrite the ex-

pression for the MAP estimate (Eq. 2.11) as

mMAP = mpr + CMG
T
(
GCMG

T + C−1D
)−1

(dobs −Gmpr) . (2.14)

For the linear case, it can be shown [71, 87] that the posterior pdf can be written as

π(m) = â exp

(
−1

2
(m−mMAP)T C−1MAP (m−mMAP)

)
, (2.15)

where CMAP is called the posterior covariance matrix and it is equal to the inverse of the

Hessian matrix, i.e.,

CMAP = H−1

=
(
C−1M +GTC−1D G

)−1
= CM − CMGT

(
CD +GCMG

T
)−1

GCM , (2.16)

where the last equality is obtained using the second matrix inversion identity (Eq. 2.13).

For the case where the forward operator, g(m), is nonlinear, one can use a gradient-

based algorithm to minimize the objective function. However, due to the nonlinearity of the

forward model, the posterior pdf may have multiple modes (or equivalently the objective

function has multiple local minima) and in such cases, the minimum found using gradient-

based algorithms depends on the initial guess. In the next subsection, three gradient-based

algorithms which can be used for minimization of the objective function defined in Eq. 2.5

are introduced. The same methods can be used to minimize the objective function given by

Eq. 2.6 in an RML setting.

2.2.1 Gauss-Newton

Gauss-Newton method is an iterative algorithm which can be used to minimize the

objective function given in Eq. 2.5. Starting from an initial guess, m0, the search direction
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of the Gauss-Newton method to find a minimum of the objective function is

δmi+1 = −H−1i ∇O(mi), (2.17)

where∇O(mi) andHi, respectively, are the gradient of the objective function and the Hessian

evaluated at mi (the vector of model parameters at ith iteration). The gradient vector and

Hessian matrix are, respectively, given by

∇O(mi) = C−1M
(
mi −mpr

)
+GT

i C
−1
D

(
g(mi)− dobs

)
, (2.18)

and

Hi = C−1M +GT
i C
−1
D Gi, (2.19)

where here we have used the Gauss-Newton Hessian. In Eqs. 2.18 and 2.19, Gi, is called the

sensitivity matrix evaluated at mi and is defined as

Gi =
[
∇mg(m)T

]T
m=mi . (2.20)

The sensitivity matrix, Gi, is a Nd ×Nm matrix which has the partial derivative of the `th

data with respect to the jth model parameter as the entry in the `th row and jth column.

The most efficient method for generation of the entire sensitivity matrix is using an adjoint

formulation. To compute each row of the sensitivity matrix, one adjoint solution is required;

so obtaining the entire sensitivity matrix requires Nd adjoint solutions [54]. Once we find

the search direction, δmi+1, then we update the model parameters using

mi+1 = mi + µiδm
i+1, (2.21)

to obtain the vector of model parameter at the next iteration. In Eq. 2.21 µi is the step

size and it can be calculated using a line search method (see Oliver et al. [71, Chap. 8]).

Alternatively, we can use a trust region algorithm, which will be discussed later in this
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chapter, instead of a line search. One can consider multiple stopping criteria to end Gauss-

Newton iterative procedure: the norm of δmi+1 is less than a threshold, the change in the

value of the objective function in two consecutive iteration is less than a threshold, the value

of the objective function is less than a threshold, or the norm of the gradient is less than a

threshold. The iterations will continue until one of these stopping criteria is satisfied.

The vector of model parameters in the petroleum engineering inverse problems can

include different grid properties (e.g., permeability, porosity at grid blocks) which have dif-

ferent scales. One way to normalize the vector of model parameters is to use the following

change of parameters

m̂i = C
−1/2
M (mi −mpr), (2.22)

where C
−1/2
M denotes the inverse of the square root of the prior covariance matrix. The cal-

culation of C
−1/2
M is computationally expensive for large-scale problems. Dickstein et al. [17]

proposed Gauss-Newton and nonlinear conjugate gradient algorithms that avoid computa-

tion of this square root matrix but their procedure requires the formation and multiplication

by CM at each iteration. Similarly, we can use the following transformation for the vector

of data

d̂i = C
−1/2
D

(
g(mi)− dobs

)
, (2.23)

where C
−1/2
D is called the inverse square root of the measurement error covariance matrix.

Since CD is commonly assumed diagonal (measurements are independent), computation of

C
−1/2
D is straightforward. With these changes of variables, the objective function of Eq. 2.5

can be written as

O(m̂) =
1

2
m̂T m̂+

1

2
d̂T d̂. (2.24)

Note that for a givenm and its corresponding m̂, the value ofO(m) , which is given by Eq. 2.5,

is equal to the value of O(m̂), which is given by Eq. 2.24. Therefore, in the optimization

algorithms, we do not need to distinguish between O(m) and O(m̂) when the algorithm

requires checking the decrease in the objective function. The gradient of objective function,
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O(m̂), with respect to m̂ evaluated at m̂i and the Hessian , respectively, are given by

∇m̂O(m̂i) = m̂i +GT
D,id̂

i, (2.25)

and

Ĥi = INm +GT
D,iGD,i, (2.26)

where INm is the Nm × Nm identity matrix and GD,i is called the dimensionless sensitivity

matrix at the ith iteration and is defined as

GD =
[
∇m̂(d̂)T

]T
, (2.27)

where we temporally drop the subscript i for simplicity. Applying the chain rule we can

write Eq. 2.27 as

GD =
[
∇m(d̂)T

]T [
∇m̂m

T
]T

=

[
∇m

(
C
−1/2
D (g(m)− dobs)

)T]T [
∇m̂

(
mpr + C

1/2
M m̂

)T]T
=
[
GTC

−1/2
D

]T
C

1/2
M

= C
−1/2
D GC

1/2
M . (2.28)

If we put the subscript i back, the final expression for the dimensionless sensitivity matrix

is given by

GD,i = C
−1/2
D GiC

1/2
M . (2.29)

The dimensionless sensitivity matrix given in Eq. 2.29 was first introduced by Zhang

et al. [98] for gradient-based history matching. Tavakoli and Reynolds [88, 89] showed that

the dimensionless sensitivity given by Eq. 2.29 controls how much the parameters will be

changed to match the data during history matching. Moreover, the truncated singular value

decomposition (TSVD) of the dimensionless sensitivity has been used to reparameterize the

Gauss-Newton or Levenberg-Marquardt algorithms [79, 80, 81, 88, 89]. Similar to Eq. 2.17,
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the search direction of the Gauss-Newton method is

δm̂i+1 = −
(
INm +GT

D,iGD,i

)−1 (
m̂i +GT

D,id̂
i
)
. (2.30)

To obtain the updated vector of model parameter, mi+1, we have

mi+1 = mi + µiC
1/2
M δm̂i+1. (2.31)

2.2.2 Levenberg-Marquardt

For the Levenberg-Marquardt algorithm, we first describe the method for minimizing

the objective function given in Eq. 2.24 based on the normalized vector of model parameters

and observed data. Then, we show that we can apply the method to find the minimizer

of the objective function given in Eq. 2.5 based on the original vector of model parameters

and observations. In the most common Levenberg-Marquardt formulation for minimizing

the objective function of Eq. 2.24, the Hessian matrix at the ith iteration, Hi, is replaced by

Hi + λiINm , to obtain

δm̂i+1 = −
[
(λi + 1)INm +GT

D,iGD,i

]−1 (
m̂i +GT

D,id̂
i
)
, (2.32)

where λi is a positive number and is called Levenberg-Marquardt parameter. The Levenberg-

Marquardt parameter controls both the search direction and the step size, so the algorithm

does not require a line search anymore. A larger value of λi will result in more damping

of the update in the model parameters and therefore a smaller step size and a very small

value of λi brings the algorithm closer to the Gauss-Newton iteration with a full step size

(µi = 1). Algorithm 2.1 describes the LM method for minimizing the objective function. In

Algorithm 2.1, ζ > 1 is used to increase or decrease the LM parameter and the convergence

criteria described in Gauss-Newton method can be used to terminate the algorithm.

From Eqs. 2.31 and 2.32, we can see that the update for the original model parameters,
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Algorithm 2.1: Pseudo-code for Levenberg-Marquardt method

� Given m0, λ0, λmax, and ζ > 1.

� Run the forward model to obtain g(m0) and G0.

� Calculate the objective function O(m0).

� While(Not Converged)

1. Calculate m̂i and d̂i using Eqs. 2.22 and 2.23 respectively.

2. Calculate ∇m̂O(m̂i) and Ĥi using Eqs. 2.25 and 2.26 respectively.

3. Calculate δm̂i+1 = −(Ĥi + λiINm)−1∇m̂O(m̂i) (equivalent to Eq. 2.32).

4. Set mtmp = mi + C
1/2
M δm̂i+1.

5. Run the forward model to obtain g(mtmp) and Gtmp and calculate O(mtmp).

6. If (O(mtmp) < O(mi))

• Set mi+1 = mtmp, g(mi+1) = g(mtmp), Gi+1 = Gtmp and O(mi+1) = O(mtmp).
• Set λi+1 = λi/ζ.

7. Else

• Reject mtmp and set λi = ζλi.
• If λi > λmax stop; otherwise go to step 3.

8. EndIf

9. Set i = i+ 1.

� EndWhile

δmi+1 ≡ mi+1 −mi, can be written as

δmi+1 = C
1/2
M δm̂i+1 = −C1/2

M

[
(λi + 1)INm +GT

D,iGD,i

]−1 (
m̂i +GT

D,id̂
i
)
. (2.33)

Using the definitions of the m̂, d̂, and GD,i, respectively, given by Eqs. 2.22, 2.23, and 2.29

in Eq. 2.33, we obtain

δmi+1 = −C1/2
M

[
(λi + 1)INm + C

1/2
M GTi C

−1
D GiC

1/2
M

]−1
(
C
−1/2
M (mi −mpr) + C

1/2
M GTi C

−1
D (g(mi)− dobs)

)
= −C1/2

M

[
C

1/2
M

(
(λi + 1)C−1M +GTi C

−1
D Gi

)
C

1/2
M

]−1
(
C
−1/2
M (mi −mpr) + C

1/2
M GTi C

−1
D (g(mi)− dobs)

)
. (2.34)
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Factoring out C
1/2
M from both sides of the inverse matrix in the squre brackets on the right-

hand side of Eq. 2.34, we obtain the following equation for the search direction of the original

model parameters using LM algorithm:

δmi+1 = −
[
(λi + 1)C−1M +GTi C

−1
D Gi

]−1 (
C−1M (mi −mpr) +GTi C

−1
D (g(mi)− dobs)

)
. (2.35)

Algorithm 2.2 describes the non-standard LM method applied to the objective function based

on the original vector of model parameters and an advantage of this algorithm is that it avoids

switching from m to m̂ and vice versa. Comparing Eq. 2.35 with the update equation of

Gauss-Newton method (given by Eq. 2.17), we find that the Hessian matrix is modified by

adding λiC
−1
M to the Gauss-Newton Hessian given by Eq. 2.19. The non-standard form of

LM algorithm given by Eq. 2.35, which was first proposed in Bi [6], has been used in the

history matching literature [14, 71, 81, 85]. Note we showed that it can be derived from

the standard LM algorithm applied to objective function based on the normalized vector of

model parameters, which is a result not previously reported in the literature.

2.2.3 Trust Region

In the trust region Newton or Gauss-Newton, the objective function given by Eq. 2.24

is approximated by the following quadratic model at the ith iteration

qi(s) = gTi s+
1

2
sT Ĥis, (2.36)

where s is the search direction and is equivalent to δm̂, gTi is the gradient of the objective

function evaluated at m̂i, i.e., is equal to ∇m̂O(m̂i), which is given by Eq. 2.25, and Ĥi is

the Hessian given by Eq. 2.26. Unlike the line search method where the search direction

is determined first and then an appropriate distance to move in that direction (step size)

is determined, in a trust region, we first estimate the maximum distance from the current

iterate, m̂i, that we are allowed to move and then determine a step that minimizes qi subject

to the distance constraint ∆i which is referred to as the trust region radius (the radius of
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Algorithm 2.2: Pseudo-code for modified (non-standard) Levenberg-Marquardt method

� Given m0, λ0, λmax, and ζ > 1.

� Run the forward model to obtain g(m0) and G0.

� Calculate the objective function O(m0).

� While(Not Converged)

1. Calculate ∇O(mi) and Hi using Eqs. 2.18 and 2.19 respectively.

2. Calculate δmi+1 = −(Hi + λiC
−1
M )−1∇O(mi) (equivalent to Eq. 2.35).

3. Set mtmp = mi + δmi+1.

4. Run the forward model to obtain g(mtmp) and Gtmp and calculate O(mtmp).

5. If (O(mtmp) < O(mi))

• Set mi+1 = mtmp, g(mi+1) = g(mtmp), Gi+1 = Gtmp and O(mi+1) = O(mtmp).
• Set λi+1 = λi/ζ.

6. Else

• Reject mtmp and λi = ζλi.
• If λi > λmax stop; otherwise go to step 2.

7. EndIf

8. Set i = i+ 1.

� EndWhile

a ball-shaped region around the current estimate of the model parameter vector). The step

denoted by si+1 is the solution of the following constrained minimization problem:

si+1 = arg min
s
qi(s) (2.37)

subject to ‖s‖ ≤ ∆i, (2.38)

If the step si+1 provides a sufficient decrease in the objective function, then we set

mi+1 = mi + C
1/2
M si+1, (2.39)

otherwise we reduce the trust region radius and resolve Eqs. 2.37 and 2.38. If the Hessian

matrix is positive definite, then the quadratic approximation of the objective function, qi(s),
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has a unique minimum given by

si+1 = −Ĥ−1i gi. (2.40)

If the constraint of Eq. 2.38 is satisfied for the si+1 obtained with Eq. 2.40, then we update

the model parameters according to Eq. 2.39, otherwise the minimizer of Eq. 2.37 has to

satisfy ‖s‖ = ∆i, i.e., the solution is at the boundary of the trust region. When Ĥi is

real symmetric positive definite, we use the method of Lagrange multipliers [65] to find the

solution of Eq. 2.37 subject to the equality constraint of ‖s‖ = ∆i . Following Sorensen [84],

we define a Lagrange function as

L(s, λ) = gTi s+
1

2
sT Ĥis+

1

2
λ(sT s− (∆i)2), (2.41)

where λ ≥ 0 is called the Lagrange multiplier. Note that λ = 0 is equivalent to the case

where the si+1 obtained with Eq. 2.40 satisfies ‖s‖ ≤ ∆i. Then, we need to find λ and

s minimizing the Lagrange function, L. The minimizer of Eq. 2.41 needs to satisfy the

following two conditions:

∂L(s, λ)

∂s
= 0, (2.42)

and

∂L(s, λ)

∂λ
= 0, (2.43)

which, respectively, result in (
Ĥi + λINm

)
s = −gi, (2.44)

and

sT s = (∆i)2. (2.45)

The trust region sub-problem is defined by Eqs. 2.44 and 2.45 which have to be solved simul-

taneously for λ and s. One way to solve the trust region sub-problem is to use singular value

decomposition (SVD) of the positive definite Hessian matrix, Ĥi. Since Ĥi is symmetric, we
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can write its singular value decomposition (spectral decomposition) as

Ĥi = UWUT , (2.46)

where U is the matrix of singular vectors and W is a diagonal matrix with the kth singular

value, wk, as its kth diagonal element. With simple algebraic operations we can show that,

if s satisfies Eq. 2.44, then

f(λ) ≡ sT s =
Nm∑
k=1

(
uTk gi
wk + λ

)2

, (2.47)

where uk is the kth column of U. The derivative of f(λ) is given by

f ′(λ) = −2
Nm∑
k=1

(
uTk gi

)2
(wk + λ)3

. (2.48)

To obtain the value of λ, we can solve

θ(λ) ≡ f(λ)− (∆i)2 = 0, (2.49)

iteratively using Newton-Raphson method. Note that for λ = 0, the solution of Eq. 2.44

reduces to Eq. 2.40 and we have assumed that this solution violates the constraint given

by Eq. 2.38, i.e., ‖si+1‖ > ∆i. Therefore, it is clear that θ(λ = 0) > 0 and since f ′(λ)

(and consequently θ′) is always negative, Eq. 2.49 has a unique solution. Morê and Sorensen

[64] showed a fasted convergence of Newton-Raphson method is achieved if it is applied to

1/
√
f(λ)−1/∆i = 0 instead of Eq. 2.49. Gould et al. [38] generalized the suggestion of Morê

and Sorensen [64] and proposed to solve [f(λ)]β/2 − (∆i)β = 0 where β should be selected

such that the function behaves linearly as a function of λ. Gao et al. [34] proposed the

following power law transformation:

θ(λ) ≡

(√
f(λ)

∆i

)β

− 1 = 0. (2.50)
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To solve θ(λ) = 0 using Newton-Raphson method, we need the derivative of θ(λ) with respect

to λ which is given by

θ′(λ) =
1

2(∆i)β
β [f(λ)]β/2−1 f ′(λ). (2.51)

The convergence of the Newton-Raphson method is faster if θ(λ) behaves linearly which

requires the second derivative of θ(λ) to be equal to zero. Gao et al. [34] proposed a method

to estimate the optimum value of β which uses cubic interpolation formulation to estimate

the second derivative of θ(λ), however we found that β = −1.5 results in a fast convergence

of the Newton-Raphson method for our problems.

Once we find λ, we solve Eq. 2.44 to obtain si+1. Using the definitions of gi and Ĥi,

respectively given by Eqs. 2.25 and 2.26, Eq. 2.44 can be written as

si+1 = −
[
Ĥi + λINm

]−1
gi

= −
[
GT
D,iGD,i + INm + λINm

]−1 (
m̂i +GT

D,id̂
i
)

= −
[
(λ+ 1)INm +GT

D,iGD,i

]−1 (
m̂i +GT

D,id̂
i
)
. (2.52)

Note that si+1 is equivalent to δm̂i+1 in the LM method of Eq. 2.32. Comparing Eq. 2.52,

which is obtained for trust region method, to Eq. 2.32 for the LM algorithm we can see that

the Lagrange multiplier in the trust region method is equivalent to the LM parameter (λi).

However, in the LM algorithm we assume a value λi at each iteration, while in the trust region

method the Lagrange multiplier is found to minimize L(s, λ). It should be noted that if si+1

obtained from Eq. 2.40 (which is equivalent to setting λ equal to zero in Eq. 2.44) satisfies

the constraint of Eq. 2.38 there is no need to solve the trust region sub-problem. Although

the preceding observations are not related to the discussion, to the best of our knowledge

no one has reported this exact connection between the Levenberg-Marquardt algorithm and

the trust region method.

The trust region solver that we described here includes inversion and spectral de-

composition of the Hessian matrix which is Nm × Nm. For the large scale problems it is
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impractical to to do so, therefore Gao et al. [34] introduced a trust region solver for the cases

where Nd < Nm that uses the second matrix inversion lemma to avoid inverting the Hessian

matrix (or solving the linear system of Nm equation given by Ĥis = −gi directly). If we use

the expression for Ĥi from Eq. 2.26, we can rewrite Eq. 2.44 as

s = −
[
Ĥi + λINm

]−1
gi

= −
[
GT
D,iGD,i + (λ+ 1)INm

]−1
gi

= −

(
1

λ+ 1
INm −

1

(λ+ 1)2
GT
D,i

[
INd

+
1

λ+ 1
GD,iG

T
D,i

]−1
GD,i

)
gi

= − 1

λ+ 1
gi +

1

(λ+ 1)2
GT
D,i

[
INd

+
1

λ+ 1
GD,iG

T
D,i

]−1
GD,igi, (2.53)

where the third equality is obtained using the second matrix inversion identity given in

Eq. 2.13. We define ỹ and z(λ) are, respectively, as

ỹ = GD,igi, (2.54)

and

z(λ) =

(
INd

+
1

λ+ 1
GD,iG

T
D,i

)−1
ỹ. (2.55)

Note that to find z(λ), we only need to invert an Nd × Nd matrix or solve the following

system of Nd equations: (
INd

+
1

λ+ 1
GD,iG

T
D,i

)
z(λ) = ỹ. (2.56)

From Eq. 2.56 it follows that

GD,iG
T
D,iz(λ)

λ+ 1
= ỹ − z(λ). (2.57)

Using the definitions of ỹ and z(λ), we can write Eq. 2.53 as

s = − 1

λ+ 1
gi +

1

(λ+ 1)2
GT
D,iz(λ). (2.58)
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Starting from f(λ) ≡ sT s (similar to Eq. 2.47) and using Eq. 2.57, we can write

f(λ) =
gTi gi

(λ+ 1)2
− 2

(λ+ 1)3
ỹT z(λ) +

1

(λ+ 1)4
z(λ)TGD,iG

T
D,iz(λ)

=
gTi gi

(λ+ 1)2
− 1

(λ+ 1)3

[
2ỹT z(λ)− z(λ)T

GD,iG
T
D,iz(λ)

λ+ 1

]

=
gTi gi

(λ+ 1)2
− 1

(λ+ 1)3
[
2ỹT z(λ)− z(λ)T (ỹ − z(λ))

]
, (2.59)

or simplifying

f(λ) =
gTi gi

(λ+ 1)2
− ỹT z(λ) + z(λ)T z(λ)

(λ+ 1)3
(2.60)

Recall that λ is the root of θ(λ) which is given by Eq. 2.49 (or Eq. 2.47) where f(λ) was

defined in Eq. 2.47. Equivalently, we can use f(λ) from Eq. 2.60 in Eq. 2.49 (or Eq. 2.50)

and solve for λ. In order to use Newton-Raphson method, we need to find the expression

for the derivative of f(λ) given in Eq. 2.60 with respect to λ. To do so, we first find the

derivative of z(λ) with respect to λ. If we take the derivative of both sides of Eq. 2.56 with

respect to λ we will have

(
INd

+
1

1 + λ
GD,iG

T
D,i

)
z′(λ)− 1

(1 + λ)2
GD,iG

T
D,iz(λ), (2.61)

then solving for z′(λ), we obtain

z′(λ) =

(
INd

+
1

1 + λ
GD,iG

T
D,i

)−1 GD,iG
T
D,iz(λ)

(1 + λ)2

=
1

1 + λ

(
INd

+
1

1 + λ
GD,iG

T
D,i

)−1
(ỹ − z(λ))

=
z(λ)− w̃(λ)

λ+ 1
, (2.62)

where we have used given Eqs. 2.55 and 2.57 and w̃(λ) is given by

w̃(λ) =

(
INd

+
1

λ+ 1
GD,iG

T
D,i

)−1
z(λ), (2.63)
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or equivalently, (
INd

+
1

λ+ 1
GD,iG

T
D,i

)
w̃(λ) = z(λ). (2.64)

Differentiation of f(λ) given by Eq. 2.60 with respect to λ gives

f ′(λ) = − 2gTi gi
(λ+ 1)3

−
[
ỹT z′(λ) + 2z(λ)T z′(λ)

]
(λ+ 1)3 − 3(λ+ 1)2

[
ỹT z(λ) + z(λ)T z(λ)

]
(λ+ 1)6

= − 2gTi gi
(λ+ 1)3

− ỹT [(λ+ 1)z′(λ)− 3z(λ)] + z(λ)T [2(λ+ 1)z′(λ)− 3z(λ)]

(λ+ 1)4

= − 2gTi gi
(λ+ 1)3

− ỹT [(z(λ)− w̃(λ))− 3z(λ)] + z(λ)T [2 (z(λ)− w̃(λ))− 3z(λ)]

(λ+ 1)4

= − 2gTi gi
(λ+ 1)3

+
ỹT [w̃(λ) + 2z(λ)] + z(λ)T [2w̃(λ) + z(λ)]

(λ+ 1)4
, (2.65)

where we have used (λ + 1)z′(λ) = (z(λ) − w̃(λ)), which is a direct result of Eq. 2.62, to

obtain the third equality. Now that we have an expression for f ′(λ) we can use the Newton-

Raphson method to find λ. Note at each iteration of the Newton-Raphson method, the trust

region solver of Gao et al. [34] requires the solution of two Nd×Nd linear systems (Eqs. 2.56

and 2.64), which is a great advantage for large scale problems where the number of data,

Nd, is much smaller than the number of model parameters, Nm.

The trust region radius, ∆i, determines the region around m̂i where there is a high

level of confidence that the constructed quadratic model provides a good approximation to

the objective function which we wish to minimize. A large value of ∆i is used when our

quadratic function approximates the objective function well over a large region around m̂i,

and if the approximation is only good over a small region around m̂i, a smaller value of

∆i should be used. Therefore, it is reasonable to update the trust region radius at each

iteration. Before describing the algorithm for updating ∆i, we define ρi as

ρi ≡
O(m̂i)−O(m̂i + si+1)

qi(0)− qi(si+1)
=
O(m̂i + si+1)−O(m̂i)

qi(si+1)
, (2.66)

which is the ratio of the actual change of the objective function over the predicted change

using the quadratic approximation. Based on the value of ρi we update the trust region

radius at each iteration following Algorithm 2.3, which is from Gao et al. [35].
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Algorithm 2.3: Pseudo-code for trust region method

� Given m0, ∆min, ∆max, ∆0 ∈ (∆min,∆max), and 0 < η1 < η2 < 1.

� Run the forward model to obtain g(m0).

� For i=0,1,2,...

• Calculate m̂i and d̂i using Eqs. 2.22 and 2.23 respectively.

• Solve the constrained minimization problem given in Eqs. 2.37 and 2.38 for si+1.

• Set mtmp = mi + C
1/2
M si+1 and obtain g(mtmp).

• Calculate ρi from Eq. 2.66, where O(m̂i + si+1) = O(mtmp).

• If (ρi > η2 and ‖si+1‖ > 0.5∆i)

– Set ∆i+1 = min{2∆i,∆max}
– Set mi+1 = mtmp.

• ElseIf (ρi > η1 or ρi > η2)

– Set mi+1 = mtmp.

• Else

– Set ∆i+1 = 0.5∆i

– Set mi+1 = mi.

• EndIf

� EndFor

2.3 Ensemble Smoother

As discussed in the previous chapter, the ensemble smoother (ES), which was pro-

posed by van Leeuwen and Evensen [93], is a parameter estimation method that assimilates

all the available data once. Following a similar procedure to that of Reynolds et al. [75], we

show that the ES update equation is similar to applying a single Gauss-Newton iteration

with a full step to minimize the RML objective function of Eq. 2.6 where an average sensi-

tivity matrix approximated from the ensemble is used to update all the ensemble members.

If we apply a full step Gauss-Newton iteration (Eq. 2.17 with µi = 1) to minimize Eq. 2.6,

for the jth unconditional realization (ensemble member), we have

mi+1
j = mi

j −
[
C−1M +GT

i,jC
−1
D Gi,j

]−1(
C−1M

(
mi
j −muc,j

)
+GT

i,jC
−1
D

(
g(mi

j)− duc,j
))

. (2.67)
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For a single iteration with i = 0, if choose m0
j = muc,j, and introduce the notation ma

j ≡ m1
j ,

mf
j = m0

j , so dfj = g(m0
j) = g(mf

j ) (based on Eq. 2.1), then Eq. 2.67 reduces to

ma
j = mf

j −
[
C−1M +GT

0,jC
−1
D G0,j

]−1
GT

0,jC
−1
D

(
dfj − duc,j

)
. (2.68)

Using the first matrix inversion identity (Eq. 2.12), we can rewrite Eq. 2.68 as

ma
j = mf

j + CMG
T
0,j

[
G0,jCMG

T
0,j + CD

]−1 (
duc,j − dfj

)
. (2.69)

For an ensemble of Ne realizations, we define the Nm ×Ne matrix ∆M , which is referred to

here somewhat loosely as the model square root, as

∆M =
1√

Ne − 1

[
mf

1 − m̄
f , ...,mf

Ne
− m̄f

]
, (2.70)

where

m̄f =
1

Ne

Ne∑
j=1

mf
j . (2.71)

We also define the Nd ×Ne matrix ∆D which we call here the data square root as

∆D =
1√

Ne − 1

[
df1 − d̄f , ..., d

f
Ne
− d̄f

]
, (2.72)

where

d̄f =
1

Ne

Ne∑
j=1

dfj . (2.73)

If we assume that d̄f = g(m̄f ), then using a first-order Taylor series expansion around the

mean model, m̄f , we can write

dfj − d̄f = g(mf
j )− g(m̄f ) = Ḡ

(
mf
j − m̄f

)
, (2.74)

where Ḡ denotes the sensitivity matrix evaluated at m̄f . Using the last equality of Eq. 2.74
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and the definitions of ∆M and ∆D given by Eqs. 2.70 and 2.72, respectively, we can write

∆M(∆D)T =
1

Ne − 1

Ne∑
j=1

(
mf
j − m̄f

)(
dfj − d̄f

)T
=

[
1

Ne − 1

Ne∑
j=1

(
mf
j − m̄f

)(
mf
j − m̄f

)T]
ḠT

≈ CMḠ
T , (2.75)

where the last expression is obtained assuming that the term in square brackets of Eq. 2.75

is the ensemble approximate of the prior covariance matrix, CM . More specifically, if mf
j =

muc,j ∼ N (mpr, CM), then the expectation of the term in square brackets of Eq. 2.75 is equal

to CM . With a similar approximation, we can show that

∆D(∆D)T =
1

Ne − 1

Ne∑
j=1

(
dfj − d̄f

)(
dfj − d̄f

)T
=

1

Ne − 1

Ne∑
j=1

Ḡ
(
mf
j − m̄f

)(
mf
j − m̄f

)T
ḠT

≈ ḠCMḠ
T . (2.76)

If we replace G0,j by Ḡ in Eq. 2.69 and use the approximation we obtained in Eqs. 2.75 and

2.76, we obtain

ma
j = mf

j + ∆M(∆D)T
[
∆D(∆D)T + CD

]−1 (
duc,j − dfj

)
, (2.77)

which is the update equation for the ensemble smoother. Thus, as was previously done im-

plicitly by Reynolds et al. [75], we have shown that the ensemble smoother is approximately

similar to performing one Gauss-Newton iteration with a full step and using the same av-

erage sensitivity matrix for updating all realizations. Because one Gauss-Newton iteration

generally does not lead to a sufficiently good data match (unless the problem is linear where

the Gauss-Newton method converges in one iteration), we cannot expect to obtain a good
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data match with a single ES update. Note that in the linear case, the first-order Taylor

series approximation that we used in Eq. 2.74 is correct and in this case, ES is equivalent to

RML as the ensemble size approaches infinity.

To improve the performance of the ensemble smoother, Emerick and Reynolds [22, 25]

proposed to assimilate all the observed data multiple time with an inflated measurement er-

ror covariance matrix and called their proposed method the ensemble smoother with multiple

data assimilation (ES-MDA). In ES-MDA (and other ensemble-based methods), it is nec-

essary to provide an initial ensemble of Ne models which is denoted by {m0
j}Ne
j=1 where the

superscript 0 refers to an initial model. Generation of this initial ensemble of models requires

the existence of a prior geological model, or more theoretically, a prior pdf for m. As ES-

MDA involves assimilation of the observed data Na times, mf,i
j and ma,i

j are used to denote

the forecast and analysis of the jth realization at the ith assimilation of the observed data

(ith data assimilation step) for j = 1, 2, · · ·Ne and i = 1, 2, · · ·Na where Na denotes the total

number of data assimilation steps. Similarly, df,ij = df (mf,i
j ) denotes the predicted (forecast)

data obtained from the forward model evaluated at mf,i
j . Starting from ma,0

j = m0
j , before

each data assimilation step we set mf,i
j = ma,i−1

j ; then the update or analysis step at the ith

data assimilation step (ith iteration) of ES-MDA is given

ma,i
j = mf,i

j + ∆M i(∆Di)T
[
∆Di(∆Di)T + αiCD

]−1 (
duc,j − df,ij

)
(2.78)

for j = 1, 2, · · ·Ne and i = 1, 2, · · ·Na, where αi is the measurement error inflation factor

at the ith iteration and duc,j is a sample from the normal distribution N (dobs, αiCD). This

addition of noise to dobs to form duc,j is one of the conditions required in order to show that a

correct sampling of a posterior distribution can be obtained in the linear-Gaussian case; see

Emerick and Reynolds [22, 25]. Emerick and Reynolds [25] showed that ES-MDA samples

correctly in the linear-Gaussian case as the ensemble size approaches infinity if the following

condition holds:
Na∑
i=1

1

αi
= 1. (2.79)
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The linear-Gaussian case refers to the scenario where the prior pdf is Gaussian and g(m)

is linear. In the linear-Gaussian case, the ensemble smoother (ES), EnKF and ES-MDA

generate a theoretically correct sampling of the posterior pdf as the ensemble size goes to

infinity. EnKF also needs the forecast equation to be linear (see Thulin et al. [90]). In the

nonlinear case, no such theory exists; nevertheless, ES, ES-MDA and EnKF, have proven

to generate useful results for many synthetic and field cases [7, 15, 20, 21, 26, 45, 82], even

though one can construct simple synthetic multimodal cases where the ensemble methods

give a poor representation of the posterior pdf [97].

Note that a simple choice for the inflation factors that will satisfy Eq. 2.79 is αi = Na

for i = 1, ..., Na, however, this can result in rough property maps of permeability and porosity

fields at the end of history matching [52].

2.4 Ensemble Randomized Maximum Likelihood

Chen and Oliver [14] proposed an iterative formula for minimizing the RML objective

function using the Levenberg-Marquardt (LM) algorithm which is called LM-EnRML. In

LM-EnRML, the sensitivity matrix is approximated using an ensemble of models. Due to

the similarity between the update equation of LM-EnRML, this method can be regarded as

an iterative ensemble smoother. To derive the LM-EnRML equation, we start by applying

the non-standard Levenberg-Marquardt formula of Bi [6] (Eq. 2.35) to minimize the RML

objective function given in Eq. 2.6, which results in the following update equation for the

jth unconditional realization (ensemble member):

mi+1
j = mi

j −
[
(λi + 1)C−1M +GTi C

−1
D Gi

]−1 (
C−1M (mi

j −muc,j) +GTi C
−1
D (g(mi

j)− duc,j)
)
, (2.80)

provided that mi+1
j decreases the objective function; otherwise λi is increased and mi+1

j is

recomputed as discussed in Algorithm 2.2. To improve the computational efficiency, Chen

and Oliver [14] replaced the covariance matrix in the Hessian term by a positive semi-definite

matrix Pi which changes for each iteration. If we replace CM in the Hessian term of Eq. 2.80
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with Pi and set dij = g(mi
j) (based on Eq. 2.1), we obtain

mi+1
j = mi

j −
[
(λi + 1)P−1i +GT

i C
−1
D Gi

]−1 (
C−1M (mi

j −muc,j)
)

−
[
(λi + 1)P−1i +GT

i C
−1
D Gi

]−1
GT
i C
−1
D (dij − duc,j). (2.81)

Using the first matrix inversion identity given in Eq. 2.12 only for the second matrix inverse

in Eq. 2.81, we can write

mi+1
j = mi

j −
[
(λi + 1)P−1i +GT

i C
−1
D Gi

]−1 (
C−1M (mi

j −muc,j)
)

+PiG
T
i

[
(λi + 1)CD +GiPiG

T
i

]−1
(duc,j − dij), (2.82)

To take advantage of the representation of the covariance matrix of model parameters and

the sensitivity matrix using standard ensemble-based approximations, Chen and Oliver [14]

defined Pi as

Pi = ∆M i(∆M i)T , (2.83)

where ∆M i is given by Eq. 2.70 calculated using the ensemble of model at ith iteration. If

we define ∆Di as given by Eq. 2.72, similar to Eqs. 2.75 and 2.76, we can show that

PiG
T
i ≈ CMG

T
i ≈ ∆M i(∆Di)T , (2.84)

and

GiPiG
T
i ≈ GiCMG

T
i ≈ ∆Di(∆Di)T . (2.85)

Note that ∆M i is non-square Nm×Ne and its rank is less than or equal to the minimum of
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Nm and Ne. Therefore, Pi in Eq. 2.83 is not insertable and we define its inverse as

P−1i =
(
∆M i(∆M i)T

)+
, (2.86)

where the superscript “+” is used to denote the pseudo-inverse of the matrix. Substituting

Eqs. 2.84, 2.85, and 2.86 into Eq. 2.82, we have

mi+1
j = mi

j −
[
(λi + 1)

(
∆M i(∆M i)T

)+
+GT

i C
−1
D Gi

]−1 (
C−1M (mi

j −muc,j)
)

+∆M i(∆Di)T
[
(λi + 1)CD + ∆Di(∆Di)T

]−1
(duc,j − dij). (2.87)

Factoring out (∆M i) and (∆M i)T from both sides of the first inverse matrix on the right-

hand side of Eq. 2.87, and using Gi∆M
i ≈ ∆Di (which can be derived from Eqs. 2.83 and

2.84), Eq. 2.87 becomes

mi+1
j = mi

j −∆M i
[
(λi + 1)INe + (∆Di)TC−1D ∆Di

]−1
(∆M i)T

(
C−1M (mi

j −muc,j)
)

+∆M i(∆Di)T
[
(λi + 1)CD + ∆Di(∆Di)T

]−1
(duc,j − dij). (2.88)

In Eq. 2.88, the covariance matrix of the model parameters, CM , is approximated using the

initial ensemble of model parameters and it does not change with iterations. Inverting the

ensemble representation of the prior covariance matrix has its own difficulties, since it is rank

deficient. As an approximate method, which avoid inversion of this low rank representation

of the covariance matrix, Chen and Oliver [14] proposed to discard the term multiplied by

(mi
j −muc,j) to obtain

mi+1
j = mi

j + ∆M i(∆Di)T
[
(λi + 1)CD + ∆Di(∆Di)T

]−1
(duc,j − dij). (2.89)

Comparing Eq. 2.89 which is the approximate update equation of LM-EnRML (which ignores

the model mismatch term) with the update equation of ES-MDA given by Eq. 2.78 reveals

that both equations become essentially identical if (1 + λi) in Eq. 2.89 is replaced by αi.
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However, the perturbations of the vector of observed data for ES-MDA are obtained from

N (dobs, αiCD) while in LM-EnRML the perturbed vector of observations are samples from

N (dobs, CD).

2.5 Markov Chain Monte Carlo

In Markov chain Monte Carlo (MCMC) methods, a target probability distribution

function (pdf) is sampled by constructing a Markov chain which has the target pdf as

its equilibrium distribution. A Markov chain is a sequence of random vectors denoted by

{M(0),M(1), · · · } such that the probability of M(n) only depends on M(n−1), i.e.,

P
(
M(n)|M(n−1), · · · ,M(0)

)
= P

(
M(n)|M(n−1)) (2.90)

Assume that we would like to sample π(m) defined by Eq. 2.4 and that, in order to use

standard simple expressions, we have a countable number of states denoted by S ≡ {mj}∞j=1

where the random vector, M, can only take any mj from S and nothing else. We define

Pij as the homogeneous transition probability which shows the probability that the Markov

process goes from the ith state, mi, to the jth state, mj, independent of the trial index. A

Markov chain is called stationary if

π(mj) =
∑
i

π(mi)Pij, (2.91)

which means that at some point in the Markov chain, we will start sampling from the target

pdf, π(m), and all states from that point on will represent samples from the target pdf.

A Markov chain is called irreducible if every state in the chain can be reached from every

other state. For a stationary chain, if the chain is irreducible and aperiodic (has no periodic

states), it is called ergodic. The detailed balance condition introduced by Metropolis et al.

[62] is given by

π(mi)Pij = π(mj)Pji, (2.92)
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which is also referred to as the reversibility condition, and is a stronger condition than the

stationary condition given in Eq. 2.91 thus if Eq. 2.92 holds, the chain is stationary. It can be

easily proved that the stationary condition of Eq. 2.91 holds if the chain is reversible by simply

summing Eq. 2.92 over i and using
∑

i Pji = 1. Metropolis et al. [62] suggested partitioning

the transition probability into a proposal probability and a probability of accepting the

proposal, i.e., as

Pij = α(mi,mj)q(mi,mj), (2.93)

where q(mi,mj) is the probability of proposing a transition from the state mi to the state

mj and α(mi,mj) is the probability of accepting that proposed transition. Hastings [44]

proposed using

α(mi,mj) = min

{
1,
π(mj)q(mj,mi)

π(mi)q(mi,mj)

}
, (2.94)

and showed that with this choice of α(mi,mj), Pij given by Eq. 2.93 will satisfy the detailed

balance condition. Note that since Eq. 2.94 contains the ratio of the values of the target

pdf, we only need to know the target pdf up to a normalizing constant to evaluate the

probability of accepting a proposed state which is a great advantage in the case where Bayes’

theorem is used to define the conditional pdf up to a normalizing constant (see Eq. 2.4). The

Metropolis-Hastings MCMC algorithm [44, 62], which is the most popular MCMC method

for sampling the posterior pdf given by Eq. 2.4, is presented here. Algorithm 2.4 describes

the Metropolis-Hastings MCMC method in details.

Algorithm 2.4: Pseudo-code for Metropolis-Hastings MCMC algorithm

1. Initialize i = 0, and mi = m0, where i is the proposal index.

2. Draw a new model, mj, from the proposal distribution q(mi,mj).

3. Run the forward model (reservoir simulator in this work) to evaluate π(mj) up to its
normalizing constant and then evaluate the probability of accepting the new proposal
with Eq. 2.94.

4. Sample u from a uniform distribution on [0, 1]. If u ≤ α(mi,mj), accept the proposal
and set mi+1 = mj. Otherwise, reject the proposal and set mi+1 = mi.

5. Set i = i+ 1 and goto step 2.
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The simplest procedure for the proposal mechanism is called global perturbation in

which the prior pdf is used for the proposal distribution. In this case, the proposed states

are independent of the current state in the chain and the new proposals can be obtained

using

mj = mpr + C
1/2
M ZNm , (2.95)

where ZNm is a random vector generated from N (0, INm). Then, the probability of the

proposed state can be calculated as

q(mi,mj) = b

(
−1

2
(mj −mpr)

TC−1M (mj −mpr)

)
= b

(
−1

2
ZT
Nm
ZNm

)
, (2.96)

where b is a normalizing constant which is equal to
(
(2π)Nm|CM |

)−1/2
, but there is no need

to compute it because we only need the ratio of q(mj,mi) to q(mi,mj) based on Eq. 2.94.

The global perturbation algorithm leads to a very low acceptance rate for high-dimensional

problems, and most of proposed states will be rejected specially if the observed data are

accurate [70]. To improve the acceptance rate, Oliver et al. [70] proposed a local perturbation

procedure in which at each iteration of MCMC a random component of ZNm associated

with the last state in the chain is selected and replaced with random number drawn from

N (0, 1). Gelman et al. [36] proposed using the current state of the chain as the mean of

the proposal distribution and also replaced the prior covariance with σ2CM , where σ is a

scaling factor less than unity which should be tuned to obtain a chain with an acceptance

rate on the order of 25%. Although a small value of σ tends to increase the acceptance

rate of the chain, it will result in poorly mixed chain where the states mi+k, k = 1, 2, .., K

are strongly correlated for large values of K. Furthermore, a large value of σ will result

in a low acceptance rate. An important aspect of this proposal distribution is that it is

symmetric, i.e., q(mi,mj) = q(mj,mi); therefore, the probability of accepting a proposed

state will reduce to

α(mi,mj) = min

{
1,
π(mj)

π(mi)

}
, (2.97)
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which is independent of the proposal distribution, q.

It is important to note that if the proposal distribution is the same as the target

distribution, any proposed state will be accepted based on Eq. 2.94. Therefore, if we design

a proposal distribution which is fairly close the target pdf, we should improve the acceptance

rate of the MCMC. In an effort to build a proposal distribution that is close to the posterior

pdf, Li and Reynolds [56] proposed to find many local minimums using a gradient-based

algorithm and then build a Gaussian mixture model which is used as the proposal distribution

in the second step of their two-level MCMC algorithm. Their MCMC algorithm showed

promising results for a number of problem they tested, however their first step requires

the availability of the adjoint solution to compute the gradient of the objective function.

In Chapter 4 we try to eliminate this requirement by using the distributed Gauss-Newton

(DGN) which was first introduced in Gao et al. [32]. In DGN we try to find multiple

minimizer of the objective function in parallel while the sensitivity matrix is estimated using

a simplex gradient approximation.
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Chapter 3

GENERATION OF INFLATION FACTORS FOR ES-MDA

Supplemental to comments in Chapter 1, we note that one disadvantage of the it-

erative ensemble-based data assimilation schemes of IR-ES [48] and ES-MDA-RLM [52] is

that the number of iterations required to satisfy their stopping criteria is not known a priori

and in some cases the methods require 20 or more iterations to converge. (Later in this

chapter, we discuss a case where IR-ES, which is based directly on the discrepancy principle

does not converge in 200 iterations.) As each iteration of IR-ES or an adaptive ES-MDA

algorithm requires one run of the forward model (numerical reservoir simulator in our ex-

amples) for each ensemble member, it is important to minimize the number of iterations

to promote computational efficiency. The main contributions of the work presented in this

chapter are twofold. First, we derive an analytical equation for the minimum value of the

inflation factor that satisfies the discrepancy principle. Unlike IR-ES formulation of Iglesias

[48], this equation can be easily solved at each iteration to provide the minimum inflation

factor that satisfies the discrepancy principle. Secondly and more importantly, we use this

theoretical result to provide a practical way to derive reasonable inflation factors for prac-

tical application which allows the user to specify a priori the number of data assimilation

steps (iterations) that will be used in ES-MDA. In this practical approach, given the initial

ensemble and associated initial data match, the ES-MDA inflation factor at the first data

assimilation step is determined using the discrepancy principle. Based on the number of

data assimilation steps that the user has specified, the subsequent inflation factors are cho-

sen so they decrease geometrically with iteration number (data assimilation step) in a way

such that the sum of the inverse inflation factors is equal to unity. This restriction on the

sum ensures that, for the linear-Gaussian case, the resulting ES-MDA algorithm samples the

40



posterior distribution correctly as the ensemble size goes to infinity. The main advantage of

the second method based on geometric factors is that it allows one to specify a priori the

number of data assimilation steps that will be used which allows the user to consider the

computational resources required.

3.1 Methodology

An analytical formula for calculating the ES-MDA inflation factors based on the

discrepancy principle is provided in the next subsection. This theoretical result generates

distinct ES-MDA procedures ranging from a strict requirement that the discrepancy principle

is satisfied at each iteration to methods for choosing the inflation factors that do not strictly

enforce the discrepancy principle at every data assimilation step. Among the latter method is

a procedure which approximately enforces the discrepancy principle only at the first iteration

but allows the user to specify a priori the number (Na) of data assimilation steps to be

performed, whereas with strict enforcement of the discrepancy principle, there is no control

over the number of iterations.

3.1.1 Analytical procedure for calculating inflation factors from the discrepancy principle

The truncated singular value decomposition (TSVD) of the standard dimensionless

sensitivity matrix has been used to parameterize the gradient-based history matching meth-

ods [79, 80, 81, 88, 89]. At any particular model, m, the sensitivity matrix for df (m) is

denoted by G(m) and is defined as the Nd × Nm matrix which has ∂dfi (m)/∂mj as the en-

try in the ith row and jth column where, here and only here, dfi denotes the ith entry of

the vector df and mj denotes the jth component of m. If m̄ denotes the mean of m, then

following Reynolds et al. [75],

df (m)− df (m̄) ≈ G(m̄)(m− m̄). (3.1)

Invoking the approximation df (m̄) = d̄f,i, Eq. 3.1 indicates that at the ith data assimilation
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step (Eq. 2.78),

df,ij − d̄f,i ≈ G(m̄f,i)(mf,i
j − m̄f,i), (3.2)

for j = 1, 2, · · ·Ne. It follows that

Gi
D ≡ C

−1/2
D ∆Di ≈ C

−1/2
D G(m̄f,i)∆M i, (3.3)

where C
−1/2
D is the inverse of the square root of CD. Because ∆M i is the analogue of the

square root of a model covariance matrix, e.g., an analogue of C
1/2
M , Eq. 3.3 is the direct

analogue of the standard dimensionless sensitivity matrix for gradient-based history matching

which was defined by Zhang et al. [98] as given in Eq. 2.29. For completeness, we repeat

that the standard dimensionless sensitivity matrix in [98] is given by

GD,i = C
−1/2
D GiC

1/2
M . (3.4)

Note that the original dimensionless sensitivity matrix of Eq. 3.4 is Nd × Nm and

its evaluation requires the calculation of the partial derivatives of each data with respect

to all of the model parameters whereas the ensemble-based dimensionless sensitivity matrix

used here (Eq. 3.3) is Nd × Ne and does not require the calculation of any derivatives.

As shown by Tavakoli and Reynolds [88] and Tavakoli and Reynolds [89], the reduction

in uncertainty attained by assimilating data can be directly characterized in terms of the

singular values of the dimensionless sensitivity matrix of Eq. 3.4. This motivates rewriting

the ES-MDA equation in terms of the dimensionless sensitivity matrix defined in Eq. 3.3.

After doing so, the SVD of the dimensionless sensitivity matrix of Eq. 3.3 is used to derive

an analytical expression that can be used to directly calculate the minimum inflation factor

at each iteration which guarantees that the discrepancy principle is satisfied. By writing the

inverse matrix in Eq. 2.78 as

[
∆Di(∆Di)T + αiCD

]−1
= C

−1/2
D

[
C
−1/2
D ∆Di(∆Di)TC

−1/2
D + αiINd

]−1
C
−1/2
D , (3.5)
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the ES-MDA update equation (Eq. 2.78) can be rewritten as

ma,i
j = mf,i

j + ∆M i(Gi
D)T

[
Gi
D(Gi

D)T + αiINd

]−1
C
−1/2
D

(
duc,j − df,ij

)
, (3.6)

for j = 1, 2, · · ·Ne. Similar to Eq. 3.6, one can update the mean of m directly as

m̄a,i = m̄f,i + ∆M i(Gi
D)T

[
Gi
D(Gi

D)T + αiINd

]−1
C
−1/2
D

(
dobs − d̄f,i

)
, (3.7)

where d̄f,i is given by Eq. 2.73. We can show that m̄a,i is the solution of the regularized least

squares problem given by

xa,i = arg min
x

{
1

2

∥∥Gi
Dx− y

∥∥2 +
αi
2
‖x‖2

}
, (3.8)

where

x = (∆M i)+
(
m− m̄f,i

)
, (3.9)

and

y = C
−1/2
D

(
dobs − d̄f,i

)
. (3.10)

Here, (∆M i)+ is the pseudo-inverse of ∆M i. To show in the following that m̄a,i is the

solution of the regularized least squares problem given by Eq. 3.8, we start by defining the

following function:

Õ(x) =
1

2

∥∥Gi
Dx− y

∥∥2 +
αi
2
‖x‖2 , (3.11)

which we wish to minimize. The gradient of Õ with respect to x is given by

∇Õ = (Gi
D)T

(
Gi
Dx− y

)
+ αix. (3.12)
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If we set the gradient equal to zero and solve for the minimizer, xa,i, we obtain

xa,i =
[
(Gi

D)TGi
D + αiINe

]−1
(Gi

D)Ty

=
1

αi
INe(G

i
D)T

[
1

αi
Gi
D(Gi

D)T + INd

]−1
y

= (Gi
D)T

[
Gi
D(Gi

D)T + αiINd

]−1
y, (3.13)

where we have used the first matrix inversion lemma given in Eq. 2.12 to obtain the second

equality. If we use the definitions of x and y, which are given by Eqs. 3.9 and 3.10 respectively,

Eq. 3.13 can be rewritten as

(∆M i)+
(
m̄a,i − m̄f,i

)
= (Gi

D)T
[
Gi
D(Gi

D)T + αiINd

]−1
C
−1/2
D

(
dobs − d̄f,i

)
. (3.14)

Multiplying both sides of Eq. 3.14 by ∆M i and moving m̄f,i to the right-hand side of the

equality we obtain Eq. 3.7.

Note that Eq. 3.8 is the well-known Tikhonov regularization method with regulariza-

tion parameter αi applied to the ill-posed inverse problem:

Gi
Dx = y. (3.15)

The term multiplied by αi in Eq. 3.8 is called the regularization term and the regularization

parameter, αi, controls the relative importance of the two terms. If αi is too small, the

solution of Eq. 3.7, or, equivalently, Eq. 3.8 includes high frequency components and is

generally too oscillatory to be an acceptable solution; moreover, the numerical solution of

Eq. 3.7, or, equivalently, Eq. 3.8 can be unstable. On the other hand, if αi is too large, the

high frequency components in the solution are filtered out but the resulting solution may

be too smooth to be physically viable. One approach to define and determine the optimum

regularization parameter is to use the discrepancy principle [94, p. 104]. It is reasonable

to assume that the data mismatch is greater than the noise level associated with the data,
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otherwise there is no point in matching the data. This assumption can be written as

‖y‖ > η, (3.16)

or, equivalently,

‖C−1/2D

(
dobs − d̄f,i

)
‖ > η, (3.17)

where η is the noise level defined as

η2 ≡
∥∥∥C−1/2D (dobs − g(mtrue))

∥∥∥2 . (3.18)

Viewing dobs as a random vector given by dobs = g(mtrue) + ξ (see Eq. 2.2) where ξ is the

random noise vector from the distribution N (0, CD), η2 has a χ2-distribution with mean

Nd [4, p. 107]. Therefore, it is reasonable to assume η =
√
Nd. Eq. 3.16 or, equivalently,

Eq. 3.17 simply states that the signal-to-noise ratio is strictly greater than one. From

Eq. 3.15, (Gi
Dx

a,i − y) is the difference between the data vector y and the regularized solution

given by Eq. 3.7. Thus, the discrepancy principle indicates that the minimum regularization

parameter, αi, that should be used in Eq. 3.7, should be selected such that

η = ‖Gi
Dx

a,i − y‖. (3.19)

Eq. 3.19 has a unique solution for the regularization parameter, αi [39, p. 44]. From Eq. 3.13

we have

Gi
Dx

a,i − y = Gi
D(Gi

D)T
[
Gi
D(Gi

D)T + αiINd

]−1
y − y

= Gi
D(Gi

D)T
[
Gi
D(Gi

D)T + αiINd

]−1
y

−
[
Gi
D(Gi

D)T + αiINd

] [
Gi
D(Gi

D)T + αiINd

]−1
y

= αiINd

[
Gi
D(Gi

D)T + αiINd

]−1
y. (3.20)
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Using Eq. 3.10 in Eq. 3.20, it follows that

η =
∥∥Gi

Dx
a,i − y

∥∥ = αi

∥∥∥[Gi
D(Gi

D)T + αiINd

]−1
C
−1/2
D

(
dobs − d̄f,i

)∥∥∥ . (3.21)

The expression for η given by Eq. 3.21 can be used in Eq. 3.17 to obtain

‖C−1/2D

(
dobs − d̄f,i

)
‖ > αi

∥∥∥[Gi
D(Gi

D)T + αiINd

]−1
C
−1/2
D

(
dobs − d̄f,i

)∥∥∥ . (3.22)

We can replace the inequality in Eq. 3.22 by an equality by multiplying the left-hand-side

by some ρ ∈ (0, 1). Then we replace Eq. 3.22 by

ρ‖C−1/2D

(
dobs − d̄f,i

)
‖ = αi

∥∥∥[Gi
D(Gi

D)T + αiINd

]−1
C
−1/2
D

(
dobs − d̄f,i

)∥∥∥ . (3.23)

The term multiplied by ρ is the norm of the dimensionless forecast data mismatch vector

(which is obtained using the current estimates of the model) and the right-hand side of

Eq. 3.23 is an approximation of the dimensionless data mismatch vector that would be

obtained the updated model parameters (dimensionless analysis mismatch vector using a

given value of αi). Evaluating the exact dimensionless data mismatch vector requires running

the forward model for the updated model parameters. Eq. 3.23 states that the mismatch of

the updated models should be reduced by a factor (ρ < 1) times the dimensionless forecast

mismatch vector. A higher value of ρ will result in a less decrease in the data mismatch

which is achieved by more damping of the updates with a larger value of αi. However,

for regularizing Levenberg-Marquardt, Hanke [41] proposed the following condition for the

regularization parameter

ρ2
∥∥∥C−1/2D

(
dobs − d̄f,i

)∥∥∥2 ≤ α2
i

∥∥∥[Gi
D(Gi

D)T + αiINd

]−1
C
−1/2
D

(
dobs − d̄f,i

)∥∥∥2 , (3.24)

and showed that any regularization parameter, αi, satisfying Eq. 3.24 (which is greater than

or equal to the regularization parameter obtained from Eq. 3.23) suffices to obtain a stable
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solution for the inverse problem. Eq. 3.24 states that instead of finding the exact value of

αi, we can use a larger inflation factor; however, this often will result in more iterations

when the algorithm is applied. Iglesias and Dawson [49] adopted the idea of Hanke [41]

and Hanke [42] for the selection of the regularization parameter and stopping criteria of

Levenberg-Marquardt (LM) as applied to a least-squares problem. As the update equations

for regularized LM and ES-MDA have similar forms, Iglesias [48] and Le et al. [52] used

the criterion to choose the ES-MDA inflation factor but proposed two somewhat different

methods for choosing the inflation factors which are derived by analogy with the choise of

the regularization parameter for the regularized LM algorithm [49]. Specifically, Iglesias

[48] used Eq. 3.24 for the regularizing parameter, but Le et al. [52] replaced dobs and d̄f,i,

respectively, with duc,j and df,ij to enforce the condition for each individual realization which

results in a much stricter condition and larger inflation factors. Another difference between

their methods is the stopping criteria for the algorithms. While ES-MDA-RLM of Le et al.

[52] uses Eq. 2.79 as the stopping criterion to ensure that we sample correctly in the linear-

Gaussian case, the IR-ES [48] algorithm terminates based on the following criterion according

to the discrepancy principle:

∥∥∥C−1/2D

(
dobs − d̄f,i

)∥∥∥ ≤ τη, (3.25)

where τ > 1 is a tuning parameter. For the gradient-based regularizing LM algorithm,

Hanke [41] showed that τ > 1/ρ provides a stable approximation of the solution of the

inverse problem.

Iglesias [48] proposed estimating an inflation factor that satisfies Eq. 3.24 with an

iterative scheme. The iterative scheme starts with αi = 1, and if Eq. 3.24 is not satisfied we

double αi and recheck Eq. 3.24 with the new αi, otherwise we accept the αi. The procedure

is continued until an αi that is sufficiently large so that Eq. 3.24 is satisfied is found. By

starting IR-ES with α1 = 1, IR-ES will sample correctly in the linear-Gaussian case as the

ensemble size goes to infinity if and only if ρ is sufficiently small so that Eq. 3.24 holds when
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i = 1 (so α1 = 1 is acceptable) and Eq. 3.25 is satisfied after the first iteration. As an

alternative to using an iterative procedure to determine αi, we show below that the right-

hand side of Eq. 3.24 can be written in a form that allows its easy evaluation by using the

SVD of Gi
D. The resulting expression provides a straightforward method for determining

the minimum inflation factor that ensures that Eq. 3.24 is satisfied.

Let UΛV T represent the SVD of Gi
D, where U is an Nd×Nd orthogonal matrix with

its jth column given by the jth left singular vector, V is an Ne×Ne orthogonal matrix with

its jth column given by the jth right singular vector, and Λ is an Nd ×Ne matrix with the

jth singular value, λj, as its jth diagonal entry. The singular values are ordered as

λmax ≡ λ1 ≥ λ2 ≥ · · ·λN ≡ λmin ≥ 0 (3.26)

where N is the minimum of Nd and Ne. It follows that

C ≡ Gi
D(Gi

D)T + αiINd
=
(
UΛV T

) (
UΛV T

)T
+ αiINd

. (3.27)

Using V TV = INe and UUT = INd
, we can write

C = U
(
ΛΛT + αiINd

)
UT , (3.28)

with the inverse of C given by

C−1 = UΓUT , (3.29)

where Γ is an Nd ×Nd diagonal matrix with its jth diagonal entry equal to

γj =
1

λ2j + αi
. (3.30)

Using the definition of the vector y in Eq. 3.10 and defining the matrix C as given in Eq. 3.27,

one can write Eq. 3.24 as

ρ2 ≤ α2
i

‖C−1y‖2

‖y‖2
, (3.31)
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where y is still given by Eq. 3.10. We know that the columns of U form an orthonormal set

and therefore the vector y can be expressed as a linear combination of the columns of U , i.e.,

y =

Nd∑
`=1

c`u`, (3.32)

where c`’s are scalers and u` is the `th column of U . Note c` is given by

c` = uT` y. (3.33)

Using Eq. 3.32 and the orthonormality of {u`}Nd
`=1, the norm of y can be written as

‖y‖2 = yTy =

Nd∑
i=1

Nd∑
j=1

ciu
T
i ujcj =

Nd∑
j=1

c2j . (3.34)

Similarly,

∥∥C−1y∥∥2 =
(
C−1y

)T (
C−1y

)
=

(
Nd∑
i=1

ciC
−1ui

)T ( Nd∑
j=1

cjC
−1uj

)
. (3.35)

As the eigenvalue/eigenvector pairs of the matrix C−1 are (γj, uj) where the γj’s are given

by Eq. 3.30, we can replace C−1ui by γiui in Eq. 3.35 to obtain

∥∥C−1y∥∥2 =

(
Nd∑
i=1

ciγiui

)T ( Nd∑
j=1

cjγjuj

)
=

Nd∑
j=1

γ2j c
2
j (3.36)

Using Eqs. 3.34 and 3.36 in Eq. 3.31, we obtain

ρ2 ≤ α2
i

∑Nd

j=1 γ
2
j c

2
j∑Nd

j=1 c
2
j

. (3.37)

Eq. 3.37 is a nonlinear function of αi which can be solved numerically to obtain the exact

value of αi satisfying the discrepancy principle (Eq. 3.24) for each iteration. The ratio that

is multiplied by α2
i in Eq. 3.37 represents a weighted average of the squared eigenvalues of
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C−1. If y in Eq. 3.32 is equal to a constant times the kth eigenvector, then Eq. 3.37 reduces

to

ρ2 ≤ α2
i γ

2
k =

α2
i

(λ2k + αi)2
, (3.38)

which is equivalent to

αi ≥
ρ

1− ρ
λ2k. (3.39)

More generally, it is easy to show that the largest possible value of αi that satisfies Eq. 3.37 is

obtained when y is aligned with the first eigenvector and the smallest value of αi that satisfies

Eq. 3.37 is acquired when y is in the same direction as the eigenvector corresponding to the

smallest singular value. For a given y, the optimum value of αi is between these two extremes.

Therefore, instead of strictly enforcing Eq. 3.24, we propose a modified version of IR-ES,

which we call M-IR-ES, where the inflation factor at each data assimilation step is defined

by

αi =
ρ

1− ρ
λ
2

(3.40)

where λ is the average singular value of the dimensionless sensitivity matrix, Gi
D, and is

given by

λ =
1

N

N∑
j=1

λj, (3.41)

where N is the minimum of Nd and Ne. In M-IR-ES, if Eq. 3.40 gives a value of αi which

makes the sum of the inverse of the inflation factors greater than one, we choose αi so

that the inverse of the inflation factors sum to 1. The M-IR-ES is terminated if either the

stopping criteria based on discrepancy principle (Eq. 3.25) is satisfied or the sum of the

inverse inflation factors becomes equal to unity; see Eq. 2.79. or

3.1.2 ES-MDA with geometric inflation factors

In this section, we introduce a practical and efficient method for generating the in-

flation factors used in ES-MDA. This method allows the user to specify the number of data

assimilation steps (Na) a priori considering the computational resources available. The mo-
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tivation for specifying Na a priori is that our experience with the other forms of iterative

ES, such as IR-ES [48] and ES-MDA-RLM [52], shows that they may require more than 20

iterations, in fact far more, to meet their stopping criteria and using more than 20 itera-

tions is not generally computationally feasible for very large-scale field applications. Our

experience to date shows that between 4 to 8 data assimilation steps with an appropriate

choice of inflation factors results in a good history-match using ES-MDA and this number

is generally computationally feasible. In the practical approach, given the initial ensemble

and associated initial data match, the ES-MDA inflation factor at the first data assimilation

step is determined using Eq. 3.40 where, in Eq. 3.40, we use ρ = 0.5. Thus, the first inflation

factor is given by

α1 = λ
2

=

(
1

N

N∑
j=1

λj

)2

. (3.42)

As the inflation factors, αi’s, are originally introduced in order to damp the ES updates,

it is reasonable to require that the inflation factors are a monotonically decreasing function

of the data assimilation step index i [25], and the results of [52] on adaptive ES-MDA

suggests that the estimated optimal inflation factors often decrease rapidly as i increases.

Our implementations of the IR-ES method [48] and ES-MDA-RLM method [52] indicate

that the optimal inflation factors usually, but not always, decrease with the ES iterations.

This observation inspired us to introduce the inflation factors based on a geometric sequence

where the first inflation factor, α1, is given by Eq. 3.42. We assume that the inflation factors

form a geometric sequence, i.e., each inflation factor is a constant multiple of the previous

inflation factor so that

αi = βi−1α1, (3.43)

where β is called the common ratio of the sequence. To find the common ratio β, we use

Eq. 3.43 in Eq. 2.79, which yields
Na∑
i=1

1

βi−1
= α1. (3.44)
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The expression for a summation of the geometric series can be used in Eq. 3.44, to obtain

1− (1/β)Na−1

1− (1/β)
= α1. (3.45)

Eq. 3.45 can be solved to find the desired solution in the domain of (0, 1) for β. Once we

find β, the subsequent inflation factors are determined based on Eq. 3.43.

In summary, in our practical method for generating geometric inflation factors which

we call ES-MDA-GEO, we allow the user to specify the number of data assimilation steps

and choose the first inflation factor based on Eq. 3.42. Then we solve Eq. 3.45 for the

common ratio of the geometric sequence, β. The rest of the inflation factors are determined

using Eq. 3.43. Below in Algorithm 3.1, we summarize in pseudo-code the ES-MDA-GEO

algorithm. Before doing so, we should note that, as is relatively standard in ensemble-based

methods, we generally use a truncated singular value decomposition (TSVD) in the update

equation for an ensemble-based data assimilation method. Letting the TSVD of Gi
D be given

by

Gi
D = UpΛpV

T
p , (3.46)

where

p ≤ N = min{Nd, Ne}, (3.47)

the matrix C of Eq. 3.28 is replaced by

C = Up
(
Λ2
p + αiIp

)
UT
p , (3.48)

with the pseudo-inverse of C given by

C+ = UpΓpU
T
p , (3.49)
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where Γp is an p× p diagonal matrix with its jth diagonal entry equal to

γj =
1

λ2j + αi
. (3.50)

It is important to recall that in Eq. 3.42, N = min{Nd, Ne} and that Eq. 3.42 is based on

the full SVD of the dimensionless sensitivity matrix, not TSVD, so the choice of the first

inflation factor is not affected by truncation. However, after determining the first inflation

factor, TSVD can be used to compute the updated solution of Eq. 3.6 as shown immediately

below. Finally, using Eqs. 3.46 and 3.49 in Eq. 3.6 and simplifying gives the following

ES-MDA update equation for ith data assimilation step:

ma,i
j = mf,i

j + ∆M iVpΛpΓpU
T
p C

−1/2
D (duc,j − df,ij ). (3.51)

Here, p is chosen as the smallest positive integer that satisfies

p∑
j=1

λj ≥ ã
N∑
j=1

λj. (3.52)

In the examples, we have used ã = 0.99 but decreasing ã will lead to a smoother solution.

It is interesting to note that using the update equation given by Eq. 3.51, the dimensionless

data mismatch term, C
−1/2
D (duc,j − df,ij ), is projected onto the subspace spanned by the left

singular vectors of Gi
D that correspond to the p largest singular vectors, i.e., the scaled

data-mismatch vector, C
−1/2
D (duc,j − df,ij ), is projected onto the subspace span{ui}pi=1 which

is equivalent to applying principal component analysis.

3.2 Comments on ES-MDA Update

In this section, we investigate the ES-MDA update equation in more detail. We define

the normalized data mismatch vector, δd̃j by

δd̃j = C
−1/2
D

(
duc,j − df,ij

)
. (3.53)
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Algorithm 3.1: Pseudo-code for ES-MDA with geometric inflation factors

� Choose the number of data assimilation steps, Na.

� Generate initial ensemble denoted by {ma,0
j }

Ne
j=1.

� For i = 1 to Na

• Set mf,i
j = ma,i−1

j for j = 1, 2, ..., Ne.

• Run the ensemble from time zero.

• Calculate ∆M i and ∆Di using Eqs. 2.70 and 2.72 respectively.

• Calculate Gi
D using Eq. 3.3 (Gi

D = C
−1/2
D ∆Di), compute the TSVD of Gi

D and
choose the truncation level based on Eq. 3.52.

• If (i = 1) then

– Set α1 = max{λ2, Na}, where λ is given by Eq. 3.41.
– Solve Eq. 3.45 for β.

• Else

– Set αi = βi−1α1.

• Endif

• For j = 1 to Ne

– Perturb the observation vector with duc,j = dobs +
√
αiC

1/2
D Zj,

where Zj ∼ N (0, INd).
– Update the model parameters based on Eq. 3.51 (or Eq. 3.6).

• Endfor

� Endfor

In the case where CD is diagonal, multiplying the data mismatch vector, duc,j−df,ij , by C
−1/2
D

simply normalizes each component of the data mismatch vector by the standard deviation

of the associated measurement error. Similarly, we define

δm̃j =
(
∆M i

)+ (
ma,i
j −m

f,i
j

)
, (3.54)

where the Ne × Nm matrix, (∆M i)+, is the pseudo-inverse of ∆M i. Note that δm̃j is an

Ne-dimensional column vector. Using Eqs. 3.53 and 3.54, we can rewrite Eq. 3.51 as

δm̃j = VpΛpΓpU
T
p δd̃j, (3.55)
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where, as noted earlier, UT
p δd̃j is the projection of δd̃j onto the p−dimensional subspace

spanned by the columns of Up. Thus, using the TSVD effectively replaces an Nd-dimensional

data mismatch vector by a p-dimensional data mismatch vector. In most applications, Ne is

much smaller than Nd so p will be much smaller than Nd; see Eq. 3.47.

If we truncate too many singular values, i.e., choose p too small, we may not be able

to match all data well. On the other hand, if we do not truncate and Nd >> Ne, the final

set of {mj}Ne

j=1 may underestimate the uncertainty in m and we may even suffer ensemble

collapse. Ensemble collapse refers to the situation where all the models generated become

essentially equal. This is because each member of the final ensemble of models must be

a linear combination of the initial ensemble of models [53] so there are effectively only Ne

degrees of freedom (the coefficients in the linear combination of the initial models) available

to assimilate data; when Nd >> Ne, assimilating all data has a tendency to cause the set of

coefficients for each updated member to be the same and in this case, there is little variability

(uncertainty) in the updated (analyzed) ensemble of models.

The columns of the Ne ×Ne matrix V form a basis for RNe so there exist scalars, cjk,

k = 1, 2, · · ·Ne such that

δm̃j =
Ne∑
`=1

cj`v`, (3.56)

where

cj` = vT` δm̃j. (3.57)

Multiplying Eq. 3.55 by vT` , where v` is the `th right singular vector of Gi
D, we obtain

vT` δm̃j = vT` VpΛpΓpU
T
p δd̃j. (3.58)

We let e` be the unit Ne-dimensional column vector with unity as its `th component and

with all other components equal to zero. Note vT` Vp = eT` so using this result in Eq. 3.58
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gives

vT` δm̃j = eT`


λ1

. . .

λp




1
λ21+αi

. . .

1
λ2p+αi

 δd̂j =
λ`

λ2` + αi
(δd̂j)`. (3.59)

for ` = 1, 2, · · · p where (δd̂j)` is the `th entry of the vector δd̂j and

(δd̂j)` = UT
p (δd̃j)`. (3.60)

Multiplying Eq. 3.55 by vT` for ` > p, gives

vT` δm̃j = 0. (3.61)

Eqs. 3.59 and 3.61 indicate that using TSVD effectively reparameterizes the ES-MDA update

of the jth model in terms of the coefficients of the principal p right singular vectors of

the dimensionless sensitivity matrix. Moreover, the weight (coefficient) of the `th right

singular vector in Eq. 3.56 is λ`(λ
2
` +αi)

−1 times the projection of the `th component of the

dimensionless data mismatch terms onto the space spanned by the p principal left singular

vectors. Assuming all these projected data mismatch terms are roughly equal in magnitude,

the expression for the coefficients suggests that by choosing αi larger than λ21 we ensure that

the weights of the right singular vectors are descending. It is interesting to note that this last

statement is consistent with the discussion of Shirangi [80] and Shirangi and Emerick [81]

about the choice of the Levenberg-Marquardt (LM) parameter where they parameterize the

update in the model parameters using the LM algorithm based on the right singular vectors

of the standard dimensionless sensitivity matrix for gradient-based history matching. Since

the singular vectors corresponding to the small singular values are of high frequency and

often cause rough changes in the model parameter updates, it is reasonable to avoid putting

high weights on these singular vectors. However, despite the results of Tavakoli and Reynolds
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[88] and Shirangi and Emerick [81], we do not necessarily need to give higher weights to the

right singular vectors corresponding to the highest singular values.

3.3 Results and Discussion

In this section, we provide two history-matching examples in order to compare the

performance of our methodology for choosing the inflation factors (ES-MDA-GEO) with

three iterative forms of ES: ES-MDA with equal inflation factors (ES-MDA-EQL), the adap-

tive ES-MDA (ES-MDA-RLM) proposed by Le et al. [52], and the iterative regularized ES

(IR-ES) proposed by Iglesias [48]. For IR-ES, we also consider its modified version (M-IR-ES)

which we introduced earlier. In our implementation of IR-ES, we use the value of τ = 1/ρ in

all cases. To investigate the performance of the methods, we define a number of performance

measures which we discuss next. The first metric uses the root-mean-square-error (RMSE)

to measure the closeness of the realizations of the posterior to the true model:

RMSE =
1

Ne

Ne∑
j=1

(
1

Nm

Nm∑
k=1

(mtrue,k −mj,k)
2

)1/2

, (3.62)

wheremtrue,k andmj,k, respectively, are the kth model parameter from the true model and the

jth realization of the posterior models. The next metric considered is the average standard

deviation

σ =
1

Nm

Nm∑
k=1

σk, (3.63)

where σk is the standard deviation of the kth model parameter. Finally, we have the average

normalized objective function which measures the quality of the data match and is given by

ONd =
1

NeNd

Ne∑
j=1

(dfj − dobs)TC−1D (dfj − dobs). (3.64)

The lower the value of the average normalized objective function, the closer the predicted

data to the observed data. Based on the results of Gao and Reynolds [30], we expect to be

able to obtain values of ONd fairly close to unity if we generate an appropriate data match.
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3.3.1 Case study 1: 2D waterfooding

Example 1 pertains to a synthetic two-dimensional square reservoir with a length

equal to 5120 ft in each direction. The reservoir domain is discretized on a 64 × 64 × 1

grid. Each gridblock is 80 × 80 × 15 ft. The true permeability field is generated using a

spherical covariance function with the major range of 2560 ft and the minor range of 1280

ft where the major range is oriented in the north direction. The mean and the variance

of ln(k) are, respectively, 5.5 and 1.0. The model (vector of reservoir parameters), m,

consists of the set of gridblock horizontal log-permeabilities. We assume that permeability is

isotropic. Figure 3.1(a) shows the true log-permeability map from which the observed data

are generated. The reservoir model contains nine production wells and four water injection

wells. Figure 3.1(b) shows the location of the wells. The initial reservoir pressure is 3000 psi.

The injection wells operate with constant bottomhole pressure equal to 4500 psi during the

whole simulation time while the production wells operate at a constant bottomhole pressure

of 2800 psi for the first six months and then the bottomhole pressure constraint is changed to

2500 psi for the rest of the simulation. The observations include the monthly water injection

rate of the injection wells and water and oil production rates of the production wells from the

first 36 months. The history-match period, which is 36 months, is followed by a 20 month

long prediction period. The predicted data from the true model are obtained by running the

reservoir simulator model with the true model parameters and the measurements are acquired

by adding random Gaussian noise to the data predicted from the true model. The standard

deviation of the measurement error is assumed to be equal to 3% of the measured value with

the minimum of 2 STB/day. An initial ensemble of 400 realizations is generated with the

same covariance function used for generating the truth case. Because of the relatively large

ensemble, we do not use any type of covariance localization for this example.

We assimilate the observed data to condition the ensemble of prior models to pro-

duction data with different methods. Recall that ES-MDA-GEO refers to the proposed new

method for choosing the inflation factors based on a geometric sequence where the geometric

ratio β is obtained by solving Eq. 3.45 with α1 = λ̄2; see Eq. 3.42. Recall that this value
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Figure 3.1: Schematic of (a) true log-permeability field and (b) the well configuration for
the synthetic two-dimensional model.

Prior
ES-MDA-RLM IR-ES M-IR-ES ES-MDA-EQL ES-MDA-GEO

ρ=0.5 ρ=0.5 ρ=0.5 Na =4 Na =6 Na =4 Na =6

RMSE 2.235 0.613 0.902 0.680 1.451 1.093 0.586 0.633
σ 0.995 0.334 0.517 0.363 0.258 0.255 0.380 0.362
ONd 16121 1.059 8.143 6.899 8.451 1.344 25.246 5.778
Iter - 21 9 4 4 6 4 6

Table 3.1: Comparison of the performance of different methods for ρ = 0.5 and different
values of Na in example 1.

of α1 is obtained by setting i = 1, ρ = 0.5 and λk = λ̄ in Eq. 3.39 where λ̄ is the average

of the nonzero singular values of G0
D, the initial dimensionless sensitivity coefficient matrix

(Eq. 3.3). Thus, the ES-MDA-GEO algorithm corresponds to using ρ = 0.5 in Eq. 3.24;

therefore, the results of ES-MDA-GEO should logically be compared with results generated

using ρ = 0.5 in the ES-MDA-RLM, IR-ES and M-IR-ES algorithms. Such a comparison is

presented in Table 3.1. For this example, the first inflation factor determined using Eq. 3.42

is 1049.4 and solving Eq. 3.45 for Na of 4 and 6, respectively, we obtain β equal to 0.102 and

0.264. Note all IR-ES and M-IR-ES results are generated with τ = 1/ρ. Note that we con-

sider two applications of equal inflation factors in Table 3.1, one uses four data assimilation

steps (Na = 4) and one uses six data assimilation steps (Na = 6); in both cases all inflation

factors are given by αi = Na for i = 1, 2, · · · , Na.

In Table 3.1, the results from the two ES-MDA cases with equal inflation factors are
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inferior to those generated with the other methods because the two applications of ES-MDA

with equal inflation factors give the highest values of RMSE, i.e., estimated models which

are farthest from the true model, and also give the lowest value of σ̄ (lowest variation in

posterior models) which almost certainly means ES-MDA-EQL results in an underestimation

of uncertainty for this example. Plots (a) and (b) of Figure 3.2 also show that using ES-MDA-

EQL results in an estimated mean model which is quite rough compared to the mean models

estimated with other methods using ρ = 0.5; see plots (c) and (d) of Fig. 3.2 and plots (b),

(e), and (g) of Fig. 3.3. For completeness, we point out that ES-MDA with equal inflation

factors and Na = 6 gives an extremely good data match (ONd = 1.344) but at least based on

the discrepancy principle (see IR-ES value of ONd = 8.143), we have overmatched the data

in the Na = 6 equal inflation factor case. Excluding the ES-MDA-EQL results of Table 3.1

from further consideration, the second observation from these results is that the best data

match obtained with any method remaining under consideration is achieved with ES-MDA-

RML but, again according to the discrepancy principle, this method overmatches the data;

moreover ES-MDA-RLM is extremely computationally inefficient as it requires 21 iterations

to reach convergence. Next, we note that ES-MDA-GEO and M-IR-ES, based on the RMSE

values, give estimated models that are closer to the truth than the models obtained from

IR-ES. In addition, fewer iterations are required to obtain convergence with ES-MDA-GEO

and M-IR-ES than are required with IR-ES. On the other hand, IR-ES gives the largest value

of σ̄ obtained with any method and given the tendency of ensemble-based data assimilation

methods to underestimate uncertainty [9, 92], it may be tempting to conjecture that IR-ES

gives the most reliable estimate of the posterior uncertainty in the model, but without a

correct sampling using a method such as Markov chain Monte Carlo (MCMC), we cannot

ascertain whether this conjecture is correct. We should also point out that as we decrease the

accuracy of the history-match, we tend to increase the uncertainty in the posterior ensemble

of models and this can lead to an overestimation of uncertainty. In Chapter 4 we consider a

new for using MCMC for sampling the posterior that is feasible for problems with a small

number of parameters, but too computationally expensive which has over 4,000 parameters.
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Standard MCMC methods such as random walk are far too computationally expensive for

practical applications and have their own sampling issues in practice [23, 59]. Finally, as

should be the case, note that the estimates of the mean of the posterior log-permeability

field in plots (c) and (d) of Fig. 3.2 and (b),(e) and (g) of Fig. 3.3 are smoother than the

true model (Fig. 3.1(a)) but capture some of the dominant large features of the true model.

Note that the posterior mean of the log-permeability field generated with IR-ES and M-

IR-ES (plots (e) and (g) of Fig. 3.3) do not capture the low permeability region between

the wells I4 and P8 (see Fig. 3.1) or the high permeability region connecting P2 and P5

as well as ES-MDA-GEO does. Overall, ES-MDA-GEO requires a fewer number of data

assimilation steps and yet resolves the permeability map better compared to other methods

under consideration in terms of identifying the high and low permeability regions of the true

permeability map.

Prior
ES-MDA-RLM IR-ES M-IR-ES

ρ=0.2 ρ=0.5 ρ=0.8 ρ=0.2 ρ=0.5 ρ=0.2 ρ=0.5 ρ=0.8

RMSE 2.235 0.698 0.613 0.601 1.333 0.902 0.721 0.680 0.811
σ 0.995 0.335 0.334 0.320 0.538 0.517 0.378 0.363 0.329
ONd 16121 1.864 1.059 1.054 28.665 8.143 36.741 6.899 2.689
Iter - 9 21 45 4 9 3 4 7

Table 3.2: Comparison of the performance of different methods for different values of ρ in
example 1.

The performance of ES-MDA-RLM, IR-ES and M-IR-ES depends on the value of

ρ. For this example, we tried three values of ρ namely, 0.2, 0.5 and 0.8 and the results

are summarized in Table 3.2. To include a complete comparison in Table 3.2, the results

of ρ = 0.5 are repeated from Table 3.2. Note that Iglesias [48] recommended the use of

ρ = 0.8 and τ ' 1, but in this example, IR-ES with τ = 1/ρ = 1.25, which results in

faster termination of the method, did not converge after 200 iterations so we obtained no

results for this case. The general observation of the results presented in Table 3.2 is that

increasing the value of ρ tends to result in models that are closer to the true model (except

for M-IR-ES which gives higher value of RMSE with ρ = 0.8 than with ρ = 0.5). Also for all

61



methods in Table 3.2, a higher value of ρ gives a smaller value of σ̄, a smaller value of ONd,

and a higher number of data assimilation steps. Note that the estimates of the mean of the

posterior log-permeability field obtained with ρ = 0.2 in plots (a), (d), and (f) of Fig. 3.3

are rougher compared to the other plots in Fig. 3.3, which suggest that ρ = 0.2 does not

provide sufficient damping of the change in model parameters.
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Figure 3.2: The posterior mean of the log-permeability (a) ES-MDA-EQL Na = 4, (b) ES-
MDA-EQL Na = 6, (c) ES-MDA-GEO Na = 4, (d) ES-MDA-GEO Na = 6. The colorbar
scale is the same as in Fig. 3.1(a).
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Figure 3.3: The posterior mean of the log-permeability in example 1. (a) ES-MDA-RLM
ρ = 0.2, (b) ES-MDA-RLM ρ = 0.5, (c) ES-MDA-RLM ρ = 0.8, (d) IR-ES ρ = 0.2, (e)
IR-ES ρ = 0.5, (f) M-IR-ES ρ = 0.2, (g) M-IR-ES ρ = 0.5, and (h) M-IR-ES ρ = 0.8. The
colorbar scale is the same as in Fig. 3.1(a).
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(a) (b) (c)

Figure 3.4: Plot of water production rates of wells P7 and P4 and oil production rate of
well P3 obtained using the initial ensemble in example 1. The red circles show the history,
the red line is true model response, the green line is the mean of the ensemble responses,
and the blue lines represent all the ensemble responses.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 3.5: Plot of water production rates of wells P7 and P4 and oil production rate of
well P3 in example 1. The legend is the same as that of Fig. 3.4. (a)-(c) with ES-MDA-EQL
with Na = 4 (d)-(f) with ES-MDA-EQL with Na = 6.

Figure 3.4 shows the initial ensemble predictions for some wells and the data matches

and future predictions obtained from different methods for those wells are illustrated in

Figures 3.5-3.7. The plots shown are representative of the results from all wells. Note

that the data from the first 1, 080 days (36 months) are used for history matching and the

predictions for the next 20 months are shown to examine the predictive capabilities of the

history-matched models. Despite the aforementioned issues with the result obtained using

equal inflation factors for this example, consistent with the results of Table 3.1, the results of
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Figure 3.6: Plot of water production rates of wells P7 and P4 and oil production rate of
well P3 in example 1. The legend is the same as that of Fig. 3.4. (a)-(c) ES-MDA-RLM with
ρ = 0.5, (d)-(f) IR-ES with ρ = 0.5, (g)-(i) M-IR-ES with ρ = 0.5, (j)-(l) ES-MDA-GEO
with Na = 4, (m)-(o) ES-MDA-GEO with Na = 6.
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Figure 3.7: Plot of water production rates of wells P7 and P4 and oil production rate of
well P3 in example 1. The legend is the same as that of Fig. 3.4. (a)-(c) ES-MDA-RLM with
ρ = 0.2, (d)-(f) IR-ES with ρ = 0.2, (g)-(i) M-IR-ES with ρ = 0.2, (j)-(l) ES-MDA-RLM
with ρ = 0.8, (m)-(o) M-IR-ES with ρ = 0.8.
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Fig. 3.5 indicate good data matches are obtained with equal inflation factors. Good future

rate predictions (t > 1, 080 days) are obtained in most cases but the predicted oil rate at

well P3 (Fig. 3.5 (c) and (f)) is much higher than the true rate. One should note, however,

during the period from 200 days to 1, 080 days, the observed rate is approximately constant

and there is nothing in the data to suggest that the oil rate will decline immediately after the

historical period where data are measured. Thus, predicting the future oil rate at well P3 is

quite difficult. Nevertheless, as shown in Fig. 3.6 and Fig. 3.7, all the iterative ensemble-based

history matching methods yield a better prediction of well P3’s future oil rate compared to

ES-MDA with equal inflation factors; however, the predictions of well P3’s oil rate shown in

Figs. 3.6 and 3.7 are still biased, but the ensemble of predictions obtained with ES-MDA-

GEO is the least biased. As mentioned earlier, because the inverse inflation factors always

sum to unity (Eq. 2.79) when ES-MDA-GEO is applied, ES-MDA is guaranteed to provide

a correct characterization of the posterior pdf in the linear-Gaussian case as the ensemble

size goes to infinity whereas, IR-ES and M-IR-ES do not sample the posterior pdf correctly

if Eq. 2.79 is not satisfied. In this particular case, the sum of the inverse of the inflation

factors for IR-ES and M-IR-ES with ρ = 0.5, respectively, are 0.047 and 0.510. Except

for the preceding comments on the sum of the inverse inflation factors, there is no intrinsic

property of ES-MDA-GEO that makes it give less-biased predictions than are obtained with

IR-ES or M-IR-ES for this example; in fact, the objective of ES-MDA-GEO is to find a

method that is far more computationally efficient than IR-ES or M-IR-ES that also allows

one to specify a priori the number of data assimilation steps but gives reasonable estimates of

the true model and posterior uncertainty as well as a good data match without introducing

roughness in the posterior models. We can also see that all methods except the IR-ES with

ρ = 0.2 provide good data matches and future predictions of the water production rate of

wells P7 and P4; see plots (d) and (e) of Fig. 3.7.

3.3.2 Case study 2: Brugge model

The Brugge benchmark case is a synthetic reservoir designed by the Dutch Organiza-
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tion for Applied Scientific Research (TNO) to test the performance of history matching and

production optimization methods in a closed-loop reservoir management framework. The

reservoir simulation model consists of 139×48×9 grid cells with 44,550 active cells and the

reservoir contains 10 water injection wells and 20 production wells. In the original Brugge

data set, TNO provided 104 realizations of porosity (PORO), permeability in x-, y-, and

z-directions (PERMX, PERMY, and PERMZ), net-to-gross ratio (NTG) and initial water

saturation. A more detailed description of the model can be found in Peters et al. [73].

During the first 10 years of production, each injection well operates under a constant in-

jection rate and each production well produces at a specified total liquid rate. Monthly oil

and water production rates at producers and bottomhole pressures at both injection and

production wells for the first ten years of the reservoir life were made available for history

matching purposes. After history matching, the study participants were asked to estimate

the optimal well controls that maximize the net-present value (NPV) of production for the

next ten years of the reservoir life where each well has three inflow-control valves (ICV’s).

Since the true model is unknown to us, we pick the 44th realization as the true model

in order to have a reference for comparison of the performance of the history-matching

methods. Gaussian noise is added to the first ten years of production data generated using

the true reservoir model in order to generate the observed data. In this procedure, we

assume a measurement error with a standard deviation equal to 7.25 psi for the bottomhole

pressure data and a measurement error with a standard deviation equal to 30 STB/D for

the oil rates and the water rates. Before water breakthrough, we assume that the standard

deviation of measurement error for the water rates is 2 STB/D. Here, we consider only

the history-matching aspects of the problem, where the history-matching parameters are

gridblock porosities (PORO), gridblock log-permeabilities in the x (PERMX), y (PERMY),

and z (PERMZ) directions and net-to-gross ratio (NTG) at each gridblock. The remaining

103 realizations of PORO, PERMX, PERMY, PERMZ, and NTG are used for history-

matching the 10 years of production data. Because the number of realizations is much smaller

than the number of model parameters, we use a distance-based Kalman gain localization
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to increase the degrees of freedom, mitigate the effect of spurious correlations and avoid

ensemble collapse [99].

The history matching results from four methods, IR-ES with ρ = 0.5, M-IR-ES with

ρ = 0.5, ES-MDA with 6 equal inflation factors and ES-MDA-GEO with 6 data assimilation

steps are compared for this example. The results of ES-MDA-RLM with ρ = 0.5 are not

included as it did not converge for this example. The first inflation factor for ES-MDA-GEO

based on Eq. 3.42 is 828.8 for this example and solving Eq. 3.45 with Na = 6, we obtain β

equal to 0.278. Iglesias [48] claimed that in IR-ES there is no need for covariance localization,

so we use IR-ES both with and without covariance localization. Here, IR-ES refers to the

original method without covariance localization while IR-ES-WL refers to the implementa-

tion of IR-ES with covariance localization. In this example, RMSE and σ are calculated

separately for each type of model parameter i.e., PORO, PERMX, PERMY, PERMZ, and

NTG. For example, RMSE of PORO is calculated using Eq. 3.62 where Nm is replaced by the

number of active gridblocks in the model, and mtrue,k and mj,k are, respectively, the porosity

of the kth active cell from the true model and jth realization. Table 3.3 summarizes the

results obtained with different methods for the Brugge model.

Prior
IR-ES-WL IR-ES M-IR-ES ES-MDA-EQL ES-MDA-GEO
ρ=0.5 ρ=0.5 ρ=0.5 Na =6 Na =6

RMSE PERMX 1.7469 1.4764 1.3187 1.4748 1.4249 1.4117
PERMY 1.7534 1.4812 1.3245 1.4799 1.4306 1.4167
PERMZ 2.0931 1.7800 1.5798 1.7835 1.7104 1.6955
PORO 0.0318 0.0310 0.0297 0.0308 0.0304 0.0302
NTG 0.2261 0.2179 0.2054 0.2128 0.2061 0.2083

σ PERMX 1.0801 0.8791 0.6829 0.8466 0.7436 0.7500
PERMY 1.0811 0.8798 0.6839 0.8475 0.7445 0.7507
PERMZ 1.3015 1.0843 0.8479 1.0351 0.9026 0.9146
PORO 0.0174 0.0166 0.0141 0.0157 0.0140 0.0142
NTG 0.1059 0.0980 0.0799 0.0895 0.0750 0.0789

ONd 692.362 5.265 5.251 1.256 1.372 3.693
Iter - 12 5 4 6 6

Table 3.3: Comparison of the performance of different methods for the Brugge case.

We first consider the results obtained from IR-ES with no localization (IR-ES) in com-

parison with those obtained from IR-ES with localization (IR-ES-WL). For both methods,

we obtain essentially the same value of the average normalized objective function (about 5.3)
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which is as expected, because both methods use the same stopping criteria (Eq. 3.25). How-

ever, as shown in Table 3.3, compared to the localization case, IR-ES without localization

results in lower average posterior standard deviations (smaller uncertainty in the parame-

ters). As expected, this comparison of the two IR-ES methods suggest that localization is

actually required in IR-ES because it is expected that in the no localization case, sampling

errors due to the limited ensemble size will result in spurious correlations that will cause

a reduction in the uncertainty in parameters at gridblocks far from any data measurement

whereas, in reality, these parameters should not be changed by data assimilation if the data

are insensitive to these gridblock parameters [2, 12, 16, 23, 99]. In short, it appears that

IR-ES underestimates to some extent the posterior variance because it causes an incorrect

reduction in the variance of parameters at gridblocks far from wells. Although Kalman

gain localization mitigates this erroneous reduction in uncertainty, we cannot and do not as-

sert that the standard derivations obtained with IR-ES-WL are correct. Note however that

the two ES-MDA with six data assimilations as well as M-IR-ES give standard derivations

values between the corresponding ones obtained by IR-ES-WL (which uses Kalman gain

localization) and by IR-ES (except for NTG and PORO for ES-MDA-EQL) which again

suggests that IR-ES with no localization underestimates the posterior variance in model

parameters. Note the results on average standard derivation for the Brugge example are

distinctly different than in the first example, where localization was not needed and IR-ES

with no localization gave higher values of the average posterior standard deviation than was

obtained using ES-MDA with geometric inflation factors. It is important to state, however,

that IR-ES-WL requires 12 data assimilation steps to converge whereas only 6 data assim-

ilation steps are used in the two ES-MDA methods. IR-ES with no localization requires

only 5 iterations to obtain convergence in this example, but as noted above localization is

required to obtain reliable results. It is important to state that M-IR-ES with covariance

localization, which selects the inflation factors at each iteration based on Eq. 3.40, converges

in 4 data assimilation steps and gives values of RMSE similar to those obtained with the

other implementations of ES-MDA while giving average standard deviation values similar

69



to those obtained with IR-ES-WL and slightly higher than those generated with ES-MDA-

GEO. Also note that, according to the results of Table 3.3, our new method for generating

inflation factors (ES-MDA-GEO) yields results that are very similar to using six equal infla-

tion factors although using geometric inflation factors does yield very slightly larger values

of average standard derivations than are generated with equal inflation factors.

Since we consider only the history-matching aspects of the problems, we use the

optimal controls obtained by Chen and Oliver [13] (see also Peters et al. [72]) for the next 20

years to test the predictions of the history-matching problems. Figure 3.8 shows the water

production rates for wells P7, P9, and P20 for 30 years which includes 20 years of future

predictions obtained using the initial ensemble. Figure 3.9 shows the water production

rates for the same wells after history-matching using different methods. These wells are

representative of the quality of the history-match and predictions in all wells. We can observe

that more uncertainty is associated with the results of IR-ES and IR-ES-WL in the prediction

period than is associated with the predictions from the other methods but part of the high

variability of predictions in well rates arises from the fact that the data match obtained with

IR-ES and IR-ES-WL is worse than the data match obtained with the other methods. As

pointed out by Emerick and Reynolds [24], decreasing the accuracy of the data match can

lead to an overestimation of the uncertainty in future predictions. The ensemble of predicted

water rates at well P7 tends to be biased regardless of the data assimilation method used

in part because the observed water rate at well 7 is zero throughout the historical period.

However, this bias is greater for the ES-MDA-EQL and ES-MDA-GEO results. Note that

IR-ES-WL and IR-ES do improve the predictions of the water rate for well P20 compared

to the initial ensemble, although both methods improved the data match in the historical

period.

The first realizations of the log-permeability in x-direction and porosity fields are

shown in Figures 3.10 and 3.11 respectively. We can see that there the posterior plots

are not significantly changed compared to the prior fields and after the history-match the

geological structures of the prior model are preserved. This example does not suffer from
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the overshooting and undershooting of the properties.

(a) (b) (c)

Figure 3.8: The water production rate of wells P7, P9 and P20 obtained using the prior
models for Brugge case. The red circles show the history, the red line is true model response,
the green line is the mean of the ensemble responses, and the blue lines represent all the
ensemble responses.

3.3.3 Case study 3: PUNQ-S3 model

The PUNQ-S3 model contains 19 × 28 × 5 grid blocks with ∆x = ∆y = 590.55 ft;

1761 blocks are active [3, 29]. The field is bounded to the east and south by a fault, and is

supported by a fairly strong aquifer to the north and west. A small gas cap is located in the

center of the dome shaped structure. The field initially contains 6 production wells located

around the gas-oil contact. None of the wells are perforated in the top two layers. The

production consists of an extended well test during the first year, followed by a three year

shut-in period, and then 12.5 years of production with two-week shut-in periods annually

used to collect buildup pressure data. The extended well testing period is divided into four

3-month periods; during successive periods all wells operate under constant oil rate of 628.9,

1257.9, 628.9, and 314.5 STB/D, respectively. The oil production rate during the last 12.5

years is 943.5 STB/D except for the shut-in periods.

We consider the first 12 years as the history matching period and the remaining

4.5 years as the forecast period. The observed data include the bottomhole pressure (BHP)

during both production shut-in periods and gas production rate (GPR) and water production

rate (WPR) during the production periods. Gaussian random noise with mean of zero is

added to the noise free data obtained by running the reservoir simulator using the true model.

The standard deviation for the pressure measurement error is equal to 14.7 psi during shut-in
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Figure 3.9: The water production rate for history and prediction periods of wells P7, P9,
and P20 for Brugge case. The rows ordered from top to bottom are obtained with IR-ES-
WL, IR-ES, M-IR-ES, ES-MDA-EQL, and ES-MDA-GEO, respectively. The legend is the
same as Fig. 3.8.
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Figure 3.10: Plot of the log-permeability in x-direction. The first row corresponds to the
true model, the rest are the realization 1 from prior, IR-ES-WL, IR-ES, M-IR-ES, ES-MDA-
EQL, and ES-MDA-GEO respectively.
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Figure 3.11: Plot of porosity map. The first row corresponds to the true model, the rest
are the realization 1 from prior, IR-ES-WL, IR-ES, M-IR-ES, ES-MDA-EQL, and ES-MDA-
GEO respectively.
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periods, and is equal to 44.1 psi for any pressure measurement obtained during a flowing

period. The standard deviations for the measurement errors for water and gas production

rates are set equal 3% of the data predicted by the true model.

(a) (b) (c) (d) (e)

Figure 3.12: True horizontal log-permeability field for PUNQ-S3 case. (a) layer 1, (b) layer
2, (c) layer 3, (d) layer 4, and (e) layer 5

The history-matching parameters are horizontal permeability (PERMX), vertical per-

meability (PERMZ) and porosity (PORO) at each active gridblock. The true horizontal

log-permeability for all layers is shown in Figure 3.12. The initial realizations of the model

parameters are generated with sequential Gaussian co-simulation based on the geostatistical

parameters described in Gao et al. [31] without using any hard data at well locations. An

ensemble of size 400 is used to perform history matching. Note in this example, we only

consider ρ = 0.5 for ES-MDA-RLM, IR-ES and M-IR-ES methods and Na = 6 for ES-MDA-

EQL and ES-MDA-GEO methods. We use Kalman gain localization for all methods except

for IR-ES method. For ES-MDA-GEO, the first inflation factor based on Eq. 3.42 is 335.8

for this example and solving Eq. 3.45 with Na = 6, we obtain β = 0.339. Since the model

parameters in this example are porosity and horizontal and vertical permeability of the grid-

blocks, similar to the Brugge model, RMSE and σ are calculated for each type of model

parameters separately, and the results are presented in Table 3.4. The final values of the

average normalized objective function obtained with IR-ES and M-IR-ES are fairly similar.

As convergence of these two methods are based on the discrepancy principle, the results

of Table 3.4 suggest that ES-MDA-RML, and perhaps even ES-MDA-EQL, may have pro-

duced an overmatch of the data at least based on the discrepancy principle. The values of the

average normalized objective function obtained with IR-ES, M-IR-ES, and ES-MDA-GEO
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are close, and as the first two methods have converged based on the discrepancy principle

(Eq. 3.25), we can say that ES-MDA-GEO has resulted in an acceptable data match. ES-

MDA-RLM results in the lowest values of the RSMEs overall, the method requires 48 data

assimilation steps to obtain convergence which makes it far less computationally efficient

than the other methods. The RSME and σ results of ES-MDA-GEO shown in Table 3.4

are very close to those obtained with ES-MDA-RLM but it takes only 6 iterations opposed

to the 48 iterations required with ES-MDA-RLM. Note IR-ES has converged in 9 iterations

whereas only 6 iterations were used with ES-MDA-GEO and ES-MDA-EQL, and modified

M-IR-ES converged in only 4 iterations. In addition, ES-MDA-GEO gives significantly lower

RMSE values than are obtained with IR-ES, M-IR-ES, and ES-MDA-EQL which indicates

that the models obtained with ES-MDA-GEO are closer to the true model. Despite these

issues with IR-ES, this algorithm gives a larger values of σ compared to all other methods

but without knowing the correct posterior we cannot assume that this method gives the best

estimate of the posterior uncertainty. Note that ES-MDA-EQL gives the lowest values of σ,

and comparing the results of ES-MDA-EQL with those obtained with ES-MDA-GEO, we

find that using our method for choosing the inflation factors based on a geometric sequence

will alleviate the underestimation of uncertainty without increasing the computational cost

of the ES-MDA method.

Prior
ES-MDA-RLM IR-ES M-IR-ES ES-MDA-EQL ES-MDA-GEO

ρ=0.5 ρ=0.5 ρ=0.5 Na =6 Na =6

RMSE PERMX 2.2457 1.9128 2.0547 2.0049 1.9775 1.9251
PERMZ 2.4992 2.0463 2.2227 2.1103 2.1289 2.0498
PORO 0.0974 0.0808 0.0877 0.0860 0.0823 0.0801

σ PERMX 1.4218 0.7022 1.0043 0.8398 0.6728 0.8282
PERMZ 1.6238 0.8198 1.1609 0.9737 0.7882 0.9635
PORO 0.0599 0.0300 0.0431 0.0361 0.0290 0.0356

ONd 6537.15 1.40 8.93 12.16 3.49 11.05
Iter - 48 9 4 6 6

Table 3.4: Comparison of the performance of different methods for the PUNQ-S3 model.

Figure 3.13 shows the predictions of the initial ensemble for some of the wells. Fig-

ures 3.14 and 3.15 shows the predictions of the history-matched models using different meth-

ods. Note that in all of these figures the vertical lines correspond to the shut-in and opening

76



periods of the wells were the rates drop to zero as we shut-in the wells and starts producing

after opening the well. As it can be observed in Fig. 4.12, the bottomhole pressure of well

PRO-1 drops in most of the posterior realizations in the prediction period which results in

producing significant amount of gas while it is not the case for the true model. However,

ES-MDA-GEO gives the best predictions of the bottomhole pressure and gas production

rate of well PRO-1 and the mean of the ensemble are very close to the predictions of the

true model for this well. According to the results of Fig. 4.13, none of the history-matching

methods are able to predict the water breakthrough of the well PRO-12. During the histor-

ical period well PRO-12 has zero water rate and therefore it is very difficult to predict the

water breakthrough for this well.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 3.13: The data matches and predictions obtained with the initial ensemble for
PUNQ-S3 model. The red circles show the history, the red line is true model response, the
green line is the mean of the ensemble responses, and the blue lines represent all the ensemble
responses.

Figures 3.16 and 3.17 show horizontal log-permeability for all layers obtained with

different methods for the 10th and 20th realizations respectively. This figures show that

IR-ES seems to be overshooting the horizontal log-permeability of layer 3 and 4 for both

of these realizations. Also, ES-MDA-RLM and ES-MDA-EQL show slight overshooting for

layers 3 and 4 in the 20th realization of horizontal log-permeability.
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(a)

(d)
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Figure 3.14: Plot of bottomhole pressures of wells PRO-1 and PRO-12 and gas production
rate of well PRO-1 for PUNQ-S3 model. (a)-(c) ES-MDA-RLM, (d)-(f) IR-ES, (g)-(i) M-IR-
ES, (j)-(l) ES-MDA-EQL and (m)-(o) ES-MDA-GEO. The legend is the same as in Fig. 3.13.
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(d)
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(l)
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Figure 3.15: Plot of water production rates of wells PRO-5, PRO-12 and PRO-15 for
PUNQ-S3 model. (a)-(c) ES-MDA-RLM, (d)-(f) IR-ES, (g)-(i) M-IR-ES, (j)-(l) ES-MDA-
EQL and (m)-(o) ES-MDA-GEO. The legend is the same as in Fig. 3.13.
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 3.16: Horizontal log-permeability of the 10th realization compared to the true for
PUNQ-S3 model
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 3.17: Horizontal log-permeability of the 20th realization compared to the true for
PUNQ-S3 model.
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Chapter 4

AN EFFICIENT MCMC FOR UNCERTAINTY QUANTIFICATION

Our objective in this chapter is to provide a methodology for finding a better char-

acterization of the posterior uncertainty than is obtained with ES, EnKF, or ES-MDA. To

do so, we combine the distributed Gauss-Newton (DGN) method of Gao et al. [32] with

Markov Chain Monte Carlo. Designing an efficient MCMC method in order to character-

ize a target pdf is a difficult task especially if the target pdf is multimodal where a simple

random walk MCMC can remain trapped near one mode for an extremely large number of

iterations before moving to a nearby mode. If the modes of the target pdf are separated

with a wide zero or extremely low probability region, it is almost impossible to move from

one mode to another unless the proposal distribution is able to propose states far from the

current state which generally will result in an unacceptably low acceptance rate. There-

fore it is convenient to use a proposal distribution that is close to the target pdf. Li and

Reynolds [56] proposed a two-level MCMC algorithm which has shown promising results for

sampling a posterior pdf with multiple modes separated by low probability regions. In their

method they first find many local minimums of the objective function using a gradient-based

algorithm and then build a Gaussian mixture model (GMM) around the modes they find.

This GMM serves as the proposal distribution in the second step of their two-level MCMC

algorithm. An important advantage of this method is that it is easy to jump from mode to

another which leads to a well-mixed chain that does not requires a large number of iterations

to characterize the target pdf. The main drawback of their method is the need for an ad-

joint solution to compute the gradients in the first step where a gradient-based optimization

method is used to find multiple local minima starting from different initial guesses. Since

the adjoint solution is not typically available in commercial reservoir simulators, we would
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like to find multiple modes of the posterior pdf in the first step of the two-level MCMC with

a method which does not require an adjoint formulation. To accomplish this purpose, we

need a method which is able to find multiple local minima of a multimodal posterior pdf

and also provides the covariance matrices for each local minimum. Ensemble-based methods

such as EnKF, ES, or their variations, including ES-MDA, are the most popular methods

for assisted history-matching which do not need the adjoint formulation and are easy to

implement. However, these methods only use the first and second moments of the ensemble

to approximate the posterior which makes it suboptimal for highly non-Gaussian pdfs e.g.,

multimodal pdfs arising from nonlinear forward model operators. Furthermore, following

Reynolds et al. [75] we showed in Chapter 2 that the ES update equation is similar to taking

a full-step Gauss-Newton iteration using the same average sensitivity matrix to update all

ensemble members. Therefore, a single application of ES, EnKF, or ES-MDA to approxi-

mate a multimodal pdf will not generally result in finding multiple modes of the pdf. There

have been efforts to extend the ensemble based method to handle non-Gaussian problems

[5, 18, 19, 83, 86]. Bengtsson et al. [5] introduced a local-local ensemble filter which com-

bines the EnKF with a GMM to handle non-Gaussian problems. The ensemble members

are partitioned into clusters and the localized sample covariance obtained for each cluster is

used to update the members in each cluster. They found that this method does not provide

smooth states, therefore they introduced a hybrid filter where the standard EnKF updates

are used to ensure that the updated states from the local-local ensemble filter are spatially

smooth. Smith [83] extended the EnKF by performing an expectation-maximization step

to estimate the GMM parameters for the ensemble of forecast states. The Kalman gain for

each component of the GMM is calculated and each ensemble member is updated with all

the Kalman gains resulting in an increased number of state vectors (Ne × Nc, where Nc is

the number of GMM components). At the end, the analysis states are remapped to obtain

Ne equally weighted analysis states. This step is done by drawing random vectors from a

single Gaussian which approximates the GMM the best. A similar method was proposed by

Dovera and Della Rossa [18] where they assumed a multimodal prior model approximated
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by a GMM and modified EnKF to sample from a GMM posterior. Elsheikh et al. [19] de-

veloped a stochastic ensemble method with an update equation similar to EnKF where the

gradient is estimated stochastically using an ensemble of directional derivatives. To explore

different modes of the posterior, they augmented their method with k-mean clustering al-

gorithm. Gao et al. [32] proposed an assisted history matching algorithm to find multiple

local MAP estimates in parallel. They called the method distributed Gauss-Newton (DGN).

Although DGN is not an ensemble based method, the sensitivity matrix for Gauss-Newton

is found using a simplex gradient based on a sub-ensemble of models. Since the method does

require availability of the adjoint solution and is able to find multiple modes concurrently,

it seems like a good candidate for the first step of the two-stage MCMC algorithm. We will

describe DGN of Gao et al. [32] in details in the next section and discuss its advantages and

disadvantages.

4.1 Distributed Gauss-Newton (DGN)

DGN starts with Ne unconditional realizations of m generated from the prior pdf

as the base ensemble or the Ne base-cases. At each iteration of DGN, the forward model

is run for the Ne (current) models to obtain the predicted data. Similar to the ensemble-

based methods, this step can be parallelized to improve the computational performance as it

includes running the forward model forNe independent models. Then, for each member of the

base ensemble, the the sensitivity matrix is estimated using a simplex gradient approximation

based on the closest models in the training set to that member of the base ensemble which

is a great advantage in the sense that the method does not require the availability of the

adjoint solution and the information for one base-case can be used for estimation of the

sensitivity matrix for other base-cases. The training set includes the models in the current

and the previous iterations and it will be updated dynamically during iterations. The initial

training set includes the Ne base-cases and it can be larger than the number of base-cases

to improve the approximation of the sensitivity matrix for large scale problems. For each

base-case a search direction is obtained using a trust region method which gives a new model.

84



If the new model improves the objective function, the base-case will be updated and trust

region radius will be updated. If the new model does not improve the objective function,

the base-case will not be updated and the trust region radius will be reduced. In any case,

the new model obtained at the end of each trust region iteration and its simulation results

are added to the training set provided that its distance to any point in the training set is

greater than a minimum distance, dmin.

Chen et al. [11] utilized the DGN algorithm in an RML framework and proposed a

procedure to find the global minimizer of the objective function. Gao et al. [33] proposed

to use DGN to find multiple distinct MAP estimates and the approximate the posterior pdf

with a GMM where each MAP estimate is used as the mean of one Gaussian of a GMM

with the corresponding covariance matrix of the Gaussian equal to the inverse of the Gauss-

Newton Hessian. Gao et al. [33] provided a method to estimate the weights of the GMM and

claimed that samples from this GMM can be used for uncertainty quantification without the

need for expensive MCMC methods which we will discuss in details later in this chapter.

However, we show that this last claim is generally invalid.

4.1.1 Approximation of the sensitivity matrix

As discussed in Chapter 2, the sensitivity matrix is an Nd × Nm matrix with the

the entry in the ith row and the jth column given by the partial derivative of the ith data

with respect to the jth model parameter. Although the most efficient and accurate way to

compute the sensitivity matrix is with an adjoint formulation, the sensitivity matrix can be

estimated using a simplex gradient approach. To calculate the sensitivity matrix for the mj

model, we find the Ns closest models and the corresponding vectors of forecast or predicted

data in the training set to each base ensemble member, mj, for j = 1, 2, · · · , Ne. The closest

models are chosen based on the Euclidean distance between the models in the training set

and the jth base-case. Next we define two matrices ∆M (j) and ∆D(j), respectively, given by

∆M (j) =
[
m

(j)
1 −mj, ...,m

(j)
N −mj

]
, (4.1)
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and

∆D(j) =
[
d
f,(j)
1 − dfj , ..., d

f,(j)
N − dfj

]
, (4.2)

where d
f,(j)
` = df (m

(j)
` ) for ` = 1, 2, · · · , N and dfj = df (mj). Note that ∆M (j) is Nm × N

and ∆D(j) is Nd × N . Below, we suppress the superscript “(j)” and simply use ∆M and

∆D in place of ∆M (j) and ∆D(j) respectively. The sensitivity matrix evaluated at mj is

approximated by solving

∆MTGT = ∆DT . (4.3)

In the original DGN of Gao et al. [32], it is proposed to choose N equal to Nm which makes

∆M square. This choice requires that the number of models in the initial training set is

much larger than Nm, and the methodology is computationally too expensive for case where

the number of model parameters, Nm, is larger than few hundred. Also, the N (which is

equal to Nm) points from the training set should be selected such that ∆M is full-rank and

thus invertible. However, finding Nm linearly independent models which result in a full-rank

matrix has its own implementation difficulties. Here, when Nm is large, we use a value of

N that is smaller than Nm and use the pseudo-inverse of ∆M to estimate the sensitivity

matrix. Assume that the singular value decomposition of ∆M is given by

∆M = UΛV T , (4.4)

where U is Nm×Nm matrix of the left singular vectors, V is N ×N matrix of right singular

vectors and Λ is diagonal matrix of the singular values of ∆M . Then, the pseudo-inverse of

∆M which is denoted by ∆M+ is defined as

∆M+ = VpΛ
+
p U

T
p . (4.5)

In Eq. 4.5, p is the number of singular values retained based on the truncation level, Vp and

Up are used to denote the first p columns of V and U and the matrix Λ+
p is diagonal and is
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defined as

Λ+
p = diag(λ−11 , λ−12 , · · · , λ−1p ), (4.6)

with decreasing eigenvalues of ∆M , i.e., λi ≥ λi+1. Note that similar to the discussion of

Chapter 3 about the choice of the truncation level, p, one can use

p∑
j=1

λj ≥ ã
N∑
j=1

λj, (4.7)

to determine p. Alternatively, we can choose p such that

λp
λ1

< â, (4.8)

is satisfied, where â is a number less than one. A larger value of â will result in a smaller

p which implies more truncation. An advantage of choosing the truncation level based on

Eq. 4.8 over the use of Eq. 4.7 is that it does not require the computation of all singular values

and singular vectors. Therefore, a truncated singular value decomposition (TSVD) based

on Lanczos algorithm [37, 66, 95] can be used to calculate the TSVD and the associated

approximation of the sensitivity matrix. Using the expression in Eq. 4.5 for the pseudo-

inverse of the ∆M in Eq. 4.3, the approximate sensitivity matrix is obtained as

G = ∆D(UpΛ
+
p V

T
p ). (4.9)

Note that in the original DGN the matrix ∆M is assumed square and insertable; therefore

there is no need for the calculation of its pseudo-inverse. However, finding an invertible

matrix from the training set is not an straight-forward task especially if the number of

parameters is large. Using the sensitivity matrix calculated for the base-case mj, the gradient

of the objective function and the Hessian matrix can be calculated based on

g = m̂j +GT
Dd̂

j, (4.10)
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and

Ĥ = INm +GT
DGD, (4.11)

where similar to Eqs. 2.22, 2.23 and 2.29, we have

m̂j = C
−1/2
M (mj −mpr), (4.12)

d̂j = C
−1/2
D

(
dfj − dobs

)
, (4.13)

and

GD = C
−1/2
D GC

1/2
M . (4.14)

Once we have the gradient vector and the Hessian matrix, an update for the jth

base-case can be obtained using the trust region procedure discussed in Chapter 2. A de-

tailed description of the DGN algorithm is given in Algorithm 4.1. Note that the algorithm

converges if a specified number of models are converged. For the toy problems we require

the convergence of all models while for the large problems we require the convergence of 95

percent of models.

4.1.2 Approximation of GMM weights

Recall that assuming a Gaussian prior pdf with mean mpr and covariance matrix CM

and Gaussian measurement errors, the posterior pdf can be written as

π(m) = a exp{−O(m)}, (4.15)

where

O(m) =
1

2
(m−mpr)

T C−1M (m−mpr) +
1

2
(g(m)− dobs)T C−1D (g(m)− dobs) . (4.16)

Suppose that using the DGN algorithm we have found Nc distinct minimizers of the objective
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Algorithm 4.1: Pseudo-code for distributed Gauss-Newton (DGN) method

� Set Ne, N , dmin, i = 0, ∆0
j for j = 1, 2, .., Ne, and S = {1, 2, .., Ne}.

� Generate initial ensemble denoted by {m0
j}Ne
j=1.

� Run the forward model for the ensemble to obtain {d0j}Ne
j=1.

� Initialize the training set.

� While (not converged)

• For j ∈ S.

– Find the closest points in the training set to mi
j, to calculate ∆m and ∆d.

– Estimate the sensitivity matrix, G, from Eq. 4.9.
– Calculate m̂i

j = C
−1/2
M (mi

j −mpr), and d̂ij = C
−1/2
D

(
g(mi

j)− dobs
)
.

– Calculate gi = m̂i
j +GT

Dd̂
i
j and Ĥi = INm +GT

DGD, where GD = C
−1/2
D GC

1/2
M .

– Solve si+1
j = arg mins qi(s) subject to ‖s‖ ≤ ∆i

j, where qi(s) = gTi s+ 1
2
sT Ĥis.

– Set δmi+1
j = C

1/2
M si+1

j .

• EndFor

• For j ∈ S.

– Update the model parameters mi+1
j = mi

j + δmi+1
j .

– Run the forward model for mi+1
j .

– Add mi+1
j to the training set, if its distance to all members of the training

set is greater than dmin.
– Based on the improvement in the objective function, accept or reject mi+1

j

and update the trust-region radius, ∆i+1
j (see Algorithm 2.3).

– If model j is converged, delete j from set S.

• EndFor

• Set i = i+ 1.

� EndWhile

function given by Eq. 4.16. Then we can write Taylor’s series approximation of the objective

function in the neighbourhood of the `th mode, m∗` , as

O(m) = O(m∗`) + (m−m∗`)∇O(m∗`) +
1

2
(m−m∗`)TC−1` (m−m∗`) (4.17)

where C` is the covariance matrix at the `th mode which is equal to the inverse of the Hessian

matrix at the `th mode. Assuming that ∇O is equal to zero at the modes, we can rewrite
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Eq. 4.17 as

exp(−O(m)) = exp (−O(m∗`)) exp

(
−1

2
(m−m∗`)TC−1` (m−m∗`)

)
(4.18)

We let

G`(m) = exp

(
−1

2
(m−m∗`)TC−1` (m−m∗`)

)
, for ` = 1, ..., Nc (4.19)

denote the `th component of the GMM which has a mean of m∗` and covariance matrix, C`,

equal to the inverse of the Gauss-Newton Hessian. The posterior pdf can be approximated

using the GMM as

a exp(−O(m)) =
Nc∑
`=1

w`c`G`(m) (4.20)

where a is an unknown normalizing constant, w` is the weight of the `th Gaussian component

of the Gaussian mixture model which are also unknown, and c` is the normalizing constant

for the `th Gaussian given by

c` =
1√

(2π)Nm|C`|
. (4.21)

If we assume that for any m̃ that is a sample of the `th Gaussian, G`(m), the values of the

other Gaussians evaluated at m̃ are negligible compared to G`(m̃), i.e., Gi(m̃) << G`(m̃) for

i 6= `, then using Eqs. 4.18, 4.19 and 4.20, we can write

w`c` exp

(
−1

2
(m−m∗`)TC−1` (m−m∗`)

)
=

a exp (−O(m∗`)) exp

(
−1

2
(m−m∗`)TC−1` (m−m∗`)

)
, (4.22)

which can be simplified to

w`c` = a exp (−O(m∗`)) , for ` = 1, ..., Nc. (4.23)

Note that we have Nc + 1 unknowns including Nc values of w` and the normalizing constant
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a. However, we have the following constraint as the last equation:

Nc∑
`=1

w` = 1. (4.24)

Eq. 4.24 is a necessary condition for the right-hand side of Eq. 4.20 to be pdf. To solve for

a, we can find the expression for w` from Eq. 4.23 and use that expression in Eq. 4.24, to

obtain

a =
1∑Nc

`=1 [exp (−O(m∗`)) /c`]
. (4.25)

Once, we a is found, Eq. 4.23, can be used to find w`’s which are given by

w` = a exp (−O(m∗`)) /c`, for ` = 1, ..., Nc. (4.26)

We refer to this procedure for determining the weights as method 1. Gao et al. [33] proposed

to use the information from the models in the training set close to the MAP estimates

(modes of the posterior pdf) to improve the estimation of GMM weights. To achieve that,

suppose that we have Ncon well-conditioned models close to the Nc minimizers where the

well-conditioned models are defined as the models, mj, that satisfy two conditions: (O(mj)−

O(m∗`))/O(m∗`) < ε1 and (mj −m∗`)TC−1` (mj −m∗`) < ε2, where ε1 > 0 and ε2 > 0 are both

user specified parameters. Note that Gao et al. [33] did not provide any guidelines for

choosing ε1 and ε2. They proposed to define a Ncon-dimensional vector pcon where its jth

element is

pconj = exp (−O(mj) +Omin) , (4.27)

where mj is the jth well-conditioned model and Omin is minimum objective function value

for all Ncon points. By adding Omin to −O(mj), the maximum value of the elements of pcon

will be equal to one. Assuming that Omin = O(mk), then the kth element of pcon is equal to

one, i.e., pconk = 1. Also they defined a Nc-dimensional vector wG with wi as its ith element
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and introduced an Ncon ×Nc matrix Acon whose elements are given by

acon(`,j) = c` exp

(
−1

2
(mj −m∗`)TC−1` (mj −m∗`)

)
, (4.28)

for j = 1, 2, · · · , Ncon and ` = 1, 2, · · · , Nc. A distance function is then defined by Gao et al.

[33] to measure the distance between the GMM approximation and the actual posterior pdf

as

d(wG) = [AconwG − pcon]T [AconwG − pcon]. (4.29)

Note AconwG is a vector of size Ncon and its jth element is the probability of mj based on

the GMM. The weights of the GMM are chosen as the minimizer of d(wG) which is given by

wG =
(
(Acon)TAcon

)−1 (
(Acon)Tpcon

)
. (4.30)

Since there is no guarantee that (Acon)TAcon is nonsingular, we can use singular value decom-

position of Acon to find the pseudo-inverse of (Acon)TAcon. Note that since wG is the solution

of an unconstrained minimization problem, some of the weights (components of wG) may be

negative and if a component of wG of Eq. 4.30 is negative, we replace it by zero. Finally, we

need to normalize the remaining positive weights so that their summation is equal to one. We

refer to this procedure for approximating the weights of the GMM as method 2. Note that

in both methods, if the value of the objective function for different modes differ significantly

one local minimum may get a weight equal to one; see field example in Gao et al. [33] where

890 local MAPs are obtained at the end of DGN but one of them got a weight of 0.9999. It

is important to emphasis that Gao et al. [33] proposed building a Gaussian mixture model

using the modes obtained at the end of DGN approach and assumed that the posterior pdf

is well approximated by this GMM. Thus they assumed that random samples drawn from

the GMM can be used for uncertainty quantification., i.e., they assume that sampling the

GMM constructed is equivalent to sampling the target pdf, π(m) given in Eq. 4.15.
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4.1.3 DGN for toy problems

In this section we test the capabilities of DGN and approximation of the weights as

described above for the uncertainty quantification proposed in [33] for two toy problems. In

both toy problems, since we only have one model parameter, the sensitivity at a given model

is calculated based on a simple finite difference using the closest point in the training set to

that model.

Toy problem 1: Gao et al. [33] designed a scalar toy problem to test their uncertainty

quantification method using DGN algorithm. The relationship between the model parameter

and the observations is nonlinear. For a given model, m, the predicted data are given

dk(m) = k + 10(m− 1.5) [m− (2 + 0.04k)] {m− [2.5 + 0.015(3− k)]} , (4.31)

for k = 1, 2, 3, where dk(m) denotes the kth element of d(m). To obtain the observations,

the data predicted with mtrue = 1.5 are perturbed by adding random Gaussian noise with

mean of zero and standard deviation of 0.05. The prior distribution for m is also assumed

Gaussian with a mean of 2.1 and a variance of 0.2. In this case, the objective function would

be

O(m) =
1

2

[
(m− 2.1)2

0.2
+ (d(m)− dobs)TC−1D (d(m)− dobs)

)
, (4.32)

where CD is a diagonal matrix and is equal to the identity matrix multiplied by 0.052. The

posterior pdf we wish to sample is still π(m) = f(m|dobs) = a exp[−O(m)]. Due to the

nonlinearity of the forward model, the objective function of Eq. 4.32 has three local minima

which means that the posterior pdf for this toy problem has three local maximums, i.e., three

modes. The DGN algorithm is run to minimize the objective function given by Eq. 4.32

starting from 20 unconditional realizations drawn randomly from the prior distribution.

Figure 4.1(a) shows the number of base-cases still running at each iteration of DGN. The

results of Fig. 4.1(a) indicates that the DGN algorithm converges in 8 iterations and that

three of the minimization processes converge in three iterations. From Fig. 4.1(b), we observe
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that 17 base-cases have converged to 2.08, 2 base-cases have converged to 2.51 and only one

base-case has converged to 1.50 which is the value of the true model parameter. Note that

since the prior mean of 2.1 is close to the middle mode (m = 2.08), the majority of the initial

base-case which are generated using the prior distribution converged to the middle mode.

However, if we generated the initial base-cases uniformly the converged models would be

distributed more evenly (as it is the case in [33]).

(a) (b)

Figure 4.1: The results of DGN algorithm for toy problem 1 (a) the number of running
base-cases (b) the histogram of the converged models.

From the modes generated using DGN algorithm, we can build the Gaussian mixture

model that approximates the target pdf. Note that each Gaussian component is centered at

a mode with a covariance matrix which is equal to the inverse of the Hessian at that mode.

Figure 4.2 shows the comparison of the GMM distribution with the target distribution for

two sets of weights. In Fig. 4.2(a) the weights are obtained using method 1 where the

normalizing constant, a, is calculated using Eq. 4.25 and then the weights are determined

using Eq. 4.23. In this case, the calculated weights for the modes from left to right are 0.624,

0.112, and 0.264 and it is clear that there exist some discrepancy between the target pdf and

the GMM distribution using these weights. In Fig. 4.2(b) we used method 2 to determine

the weights where the weights are obtained based on Eq. 4.30 which gives the minimizer of

Eq. 4.29. This procedure results in weights of 0.718, 0.055, and 0.227 for the modes from

left to right. Similar to the results presented in [33] the GMM distribution with this set of
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weights and the target pdf are overlapping. It is important to point out that the modes in

this toy problem are well separated and the target pdf appears to have three Gaussian peaks

and therefore the weights can be tuned such that the target pdf is approximated with the

GMM perfectly.

(a) (b)

Figure 4.2: Gaussian mixture model compared to the true posterior pdf for toy problem 1
(a) weights obtained using method 1 (b) weights obtained using method 2. The black curve
is the true pdf and the blue curve represents the GMM.

Toy problem 2: The second example is also a nonlinear problem with one model

parameter and one datum. This example is similar to the toy problem designed in [97]. The

forward model, g(m), is defined as

d = g(m) = 1− 4.5(m− 2π/3)2, (4.33)

where m is the model parameter which is a scaler with the true value of mtrue = 1.8836. A

Gaussian prior distribution with the mean equal to 2.3 and the standard deviation of 0.2 is

considered. The data from the true model is perturbed by adding random Gaussian noise

with a mean of zero and standard deviation of 0.1 to obtain the observed data, dobs. Because

the prior distribution and the measurement errors are Gaussian, the posterior pdf is given

by Eq. 4.15, where O(m) is defined as

O(m) =
1

2

[(
m− 2.3

0.2

)2

+

(
dobs − g(m)

0.1

)2
]
. (4.34)
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(a) (b)

Figure 4.3: The results of DGN algorithm for toy problem 2 (a) the number of running
base-cases (b) the histogram of the converged models.

The DGN algorithm is run to minimize the objective function given by Eq. 4.34 with

20 initial base-cases drawn from the prior distribution. Figure 4.3(a) shows the number of

base-cases running at each iteration of DGN and as we can see the algorithm converged

in 10 iterations. From Fig. 4.1(b) we observe that two distinct modes are found at the

end of the DGN algorithm which are located at 1.9140 and 2.3077. Note that the true

value of the model parameter is 1.8836, however it turns out that the value of the objective

function at m = 1.9140 is less than the value of the objective function at mtrue = 1.8836

because of contribution of the model mismatch term in the objective function. Fig. 4.3(b)

also shows that 17 base-cases have converged to 2.3077 and the remaining three base-cases

have converged to 1.9140 which, similar to the first toy problem, is due to the fact that the

prior mean is close to the mode at 2.3077 and we only generated 20 initial base-cases.

We build the Gaussian mixture model with two components centered around the

modes we found using DGN. The weights are determined using both method 1 and method

2 and the resulting GMM distributions are plotted in Figure 4.4. The weights obtained

using method 1 for the modes located at 1.9140 and 2.3077 are respectively 0.151 and 0.849.

Method 2 results in weights equal to 0.132 and 0.868 which are only slightly different from

those obtained with method 1. From Fig. 4.4 we observe that although we have found

the modes of the posterior accurately the Gaussian mixture model distributions do not
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Figure 4.4: Gaussian mixture model with different weights compared to the true posterior
pdf for toy problem 2. The black curve is the true posterior pdf, the blue curve is GMM
with weights obtained using method 1, the red curve is the GMM with weights obtained
using method 2, and the green curve is the GMM with equal weights.

approximate the target pdf well especially in the area between the two modes. Note that the

weights are obtained based on the assumption that the modes of the posterior pdf are well

separated and thus they only give a good estimate of the posterior pdf if the modes of the pdf

are not connected. This example shows that in order to obtain the correct characterization

of the posterior pdf, we generally cannot assume that the GMM gives a good representation

of the posterior pdf. However, following the idea of Li and Reynolds [56] we can use the

GMM constructed with DGN as the proposal distribution in a Markov chain Monte Carlo

(MCMC) algorithm to obtain a more efficient MCMC implementation.

4.2 An Efficient Two-Level MCMC Algorithm

A nonlinear relationship between the model parameters and the observations can

lead to a multimodal posterior distribution. Uncertainty quantification of the posterior dis-

tribution for such problems using a Metropolis-Hastings MCMC method requires a carefully

designed proposal distribution. An essential key to improve the computational efficiency of

MCMC method based on the Metropolis-Hastings acceptance criteria is to have a proposal

distribution which is close to the target distribution. Following the idea of Li and Reynolds

[56], we would like to build a Gaussian mixture model to serve as the proposal distribution
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for MCMC. Therefore, the first step of our efficient two-level MCMC algorithm is to use

DGN in order to find multiple modes of the posterior distribution. An advantage of our two-

level MCMC compared to the work of Li and Reynolds [56] is that in our first step we do

not require the analytical computation of the gradient of the objective function. At the end

of the first step, we build a GMM where the components of GMM are Gaussians centered at

the modes of the posterior pdf that we find in the first step. The second step of the two-level

MCMC method is to use this GMM as the proposal distribution for MCMC. This step is

identical to the second step of the two-level MCMC proposed in Li and Reynolds [56]. For

large scale problems it is possible to find a large number modes and many of these modes

are close to each other [71], therefore it is reasonable to reduce the number of modes before

building the GMM. In order to reduce the number of modes for large scale problems, we

first keep only the modes which give a value of the normalized objective function (objective

function divided by the number of data) less than a threshold and then cluster the modes

that satisfy this condition into a user defined number of clusters using the k-medoids clus-

tering algorithm [50]. The final modes are m∗` , for ` = 1, 2, · · · , Nc where Nc is the number

of modes after clustering. Letting C` denote the inverse Hessian evaluated at m∗` , the GMM

distribution is given by

p(m) =
Nc∑
`=1

w`N (m∗` , C`) , (4.35)

where N (m∗` , C`) denotes a Gaussian distribution with mean of m∗` and the covariance of C`

and w` is called the weight of `th Gaussian component. The weights w` can be determined

by method 1 or 2 discussed earlier in DGN section or assigned by any other procedure but

we must have
∑Nc

`=1w` = 1 in order for p(m) to be a pdf. The pdf p(m) is used as the

proposal distribution. The probability of proposing a transition from the state mi to mj,

which is required in Metropolis-Hastings method, is then defined by

q(mi,mj) = p(mj) =
Nc∑
`=1

w`c` exp

(
−1

2
(mj −m∗`)TC−1` (mj −m∗`)

)
. (4.36)

From Eq. 4.36, it is clear that the probability of proposing a new state is independent of
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the current state in the chain, therefore our two-level MCMC algorithm can be classified as

an independent Metropolis sampler [91]. This feature of the proposal distribution is a great

advantage for sampling multimodal target distributions and tends to avoid being trapped in

one mode for a very large number of states. Independent samplers promote good mixing of

the chain, i.e., it is easy to move between the modes of the posterior or more generally move

around the sample space.

4.2.1 Covariance matrices

As mentioned earlier, the covariance matrix at `th mode, C`, is set equal to the inverse

of the Gauss-Newton Hessian matrix which the is given by

H` = C−1M +GT
` C
−1
D G`, (4.37)

where G` is calculated based on Eq. 4.9 using N points from the training set which are

closet to m∗` . However, since we use an approximate estimate of G` to find the Hessian

matrix, using H−1` as the covariance matrix in the proposal distribution results in a large

number of rejections as most of the proposed states have high values of the objective function.

Therefore, following the suggestion of Li and Reynolds [56] we assume that the covariance

matrix at the `th mode is given by

C` = βH−1` , (4.38)

where 0 < β ≤ 1 is a scaler which is used to rescale the covariance matrices to make the

two-level MCMC more efficient. Note that rescaling the Gauss-Newton covariance matrix

is not required for toy problems but it is crucial to do so as the dimension of the problem

increases. In our examples, β is chosen such that if we generate 200 realizations from the

GMM, at least 20 of those give a normalized objective function less than 5.

4.2.2 Covariance adaptation

Following the discussion of Tierney [91] on independent Metropolis chains, we can
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rewrite the Metropolis-Hastings acceptance probability of the candidate state mj as

α(mi,mj) = min

{
1,
w(mj)

w(mi)

}
, (4.39)

where w(mj) = π(mj)/p(mj) is called the importance weight function in importance sam-

pling process [44]. Note that p(mj) = q(mi,mj) is the probability of proposing mj given

that we are at state mi. With this notion, a close relationship between the independent

Metropolis chains and the importance sampling process can be observed [91]. According to

Eq. 4.39 we can see that candidate states with low importance weights are rarely accepted.

On the contrary, candidate states associated with high importance weights are usually ac-

cepted and will remain in the chain for several steps to increase their weight in the chain;

e.g., for calculating the mean of the chain a state which is repeated for a large number

has more influence on the mean than states which are repeated a few times in the chain.

However, it is possible that the chain get stuck at some points for a long number of iter-

ations, if their importance weights are very high. In the context of importance sampling,

it is recommended that we choose the proposal distribution such that it produces a weight

function that is approximately constant. It is obvious that if the weight function is constant,

all samples will be accepted based on the Metropolis-Hastings acceptance criteria. As it is

not possible to find the proposal distribution that results in almost constant weight function,

we can alternatively improve the proposal distribution as we proceed in the chain using a

covariance adaptation scheme. Haario et al. [40] proposed to use the samples in the chain to

improve the estimate of the mean and the covariance of the proposal distribution. Assuming

that the initial proposal distribution is a Gaussian with mean of m̄ and covariance of C (i.e.,

N (m̄, C)), the adaptive Metropolis algorithm of Haario et al. [40] can be summarized as

1. Initialize i = 0, and mi = m0, where i is the proposal index.

2. Draw a new model, mj, from the proposal distribution N (m̄, C).

3. Run the forward model for mj and evaluate α based on Eq. 4.39.
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4. Generate a random number, u, from the uniform distribution in [0, 1].

5. If u ≤ α, set mi+1 = mj, otherwise set mi+1 = mi.

6. Update the mean and the covariance

m̄ = m̄+ γi+1(mi+1 − m̄) (4.40)

C = C + γi+1

[
(mi+1 − m̄)(mi+1 − m̄)T − C

]
(4.41)

7. Set i = i+ 1 and goto step 2.

In Eqs. 4.40 and 4.41 γi+1 is called the learning rate or the gain factor. The sequence of γi

should satisfy
∞∑
i=1

γi =∞, (4.42)

and
∞∑
i=1

γ1+δi <∞, (4.43)

for some δ ∈ (0, 1] in order for the chain to converge or at least, no proof of convergence

of the chain have been established without assuming that Eqs. 4.42 and 4.43and hold. The

first condition ensures that any point of the target pdf can be reached eventually and the

second condition ensures that noise introduced due to new samples is contained and does

not interfere with the convergence of the chain [58]. Haario et al. [40] proposed to choose

γi = O(1/i) where i is the iteration index. However, Liang et al. [58, p. 306] pointed out that

“the diminishing adaptation condition may not necessarily hold for adaptive independent

Metropolis-Hastings algorithms,” even though, adaptive independent Metropolis-Hastings

samplers have been successfully applied for uncertainty quantification even though their

adaptation is not diminishing [47]. In order to check the effect of the learning rate on

adaptation of an independent MH algorithm, we designed a simple problem where the aim

is to sample a Gaussian target pdf with mean of 4 and variance of 2 i.e., π(m) = N (4, 2).

We assume that the proposal distribution has a mean of zero and variance of 0.6, i.e.,
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p(m) = N (0, 0.6). Note that both mean and variance of the proposal distribution are

smaller than those of the target pdf. We use the adaptive MCMC algorithm discussed

above to sample the target pdf while the mean and the variance of the proposal distribution

are updated with two options for the learning rate, γi. In the first two cases, we use the

suggestion of Haario et al. [40] and set γi = 1/i and γi = 0.1/i. In the third case, we use

a constant value of 0.001 for γi. Figure 4.5 shows the change in the proposal distribution

(initially blue curve) as we proceed in the chain. From Fig. 4.5(a) it is clear that the proposal

moves toward the target pdf as we adapt both its mean and the variance and once it reaches

to the target pdf it stays there. However, from Fig. 4.5(b) it is clear that if we use γi = 0.1/i,

the adaptation scheme fails to converge to the target pdf. Fig. 4.5(c) uses a constant value

for the learning rate which violates the diminishing condition of Eq. 4.43 but it is able to

update the proposal distribution to approximately the target pdf and stay there.

(a) (b) (c)

Figure 4.5: Effect of adaptation learning rate for simple Gaussian target and proposal
distributions (a) γi = 1/i (b) γi = 0.1/i (c)γi = 0.001. The black curve is the target pdf, the
blue curve is the initial proposal pdf, and the red curves are the proposal pdfs plotted every
500 iterations.

The two-level MCMC proposed in this work requires covariance adaptation in order

to improve its performance. However, unlike Haario et al. [40], at the ith iteration of the

chain, we only update the covariance matrix of the `th Gaussian components of GMM using

C` = (1− γi+1)C` + γi+1

[
(mi+1 − m̄`)(mi+1 − m̄)T

]
, (4.44)

which is equivalent to Eq. 4.41. In Eq. 4.44, mi+1 belongs to the `th Gaussian component and
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we assume that the learning rate, γi, is constant and equal to µ/N2
m following the suggestion

of Hansen [43]. The parameter µ is tuned such that we obtain an acceptance rate between

15 to 50 percent for large scale problems [76].

4.2.3 Evaluating the acceptance probability

In high dimensional problems where the number of model parameters is large, evalu-

ating the Metropolis-Hastings acceptance probability is not always straight forward as both

the numerator and denominator may be very close close to zero. Recall that the probability

of accepting a proposed state, mj, in the chain is given by

α(mi,mj) = min

{
1,
π(mj)q(mj,mi)

π(mi)q(mi,mj)

}
, (2.94)

where the current state in the chain is mi. Using the expressions for π(.) and q(., .), we can

write

π(mj)q(mj,mi)

π(mi)q(mi,mj)

=
exp (−O(mj))

∑Nc

`=1
w`√

(2π)Nm |C`|
exp

(
−1

2
(mi −m∗`)TC−1` (mi −m∗`)

)
exp (−O(mi))

∑Nc

`=1
w`√

(2π)Nm |C`|
exp

(
−1

2
(mj −m∗`)TC

−1
` (mj −m∗`)

) . (4.45)

Note that the determinant of C`, which is denoted by |C`|, for high dimensional problems

can be zero when evaluated numerically i.e., all the eigenvalues of C` are nonzero but since

most of them are less than one, the determinant which is the product of all the eigenvalues

is numerically zero. If the determinant of the covariance matrix for one component of the

GMM is zero or extremely close to zero, it causes problems for evaluating Eq. 4.45. To

avoid determinants that are very close to zero, we multiply both the denominator and the
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numerator of the fraction on the right-hand side of Eq. 4.45 by κNm/2 to obtain

π(mj)q(mj,mi)

π(mi)q(mi,mj)

=
exp (−O(mj))

∑Nc

`=1
w`√

(2πκ)Nm |C`|
exp

(
−1

2
(mi −m∗`)TC−1` (mi −m∗`)

)
exp (−O(mi))

∑Nc

`=1
w`√

(2πκ)Nm |C`|
exp

(
−1

2
(mj −m∗`)TC

−1
` (mj −m∗`)

)
=

exp (−O(mj))
∑Nc

`=1
w`√
|2πκC`|

exp
(
−1

2
(mi −m∗`)TC−1` (mi −m∗`)

)
exp (−O(mi))

∑Nc

`=1
w`√
|2πκC`|

exp
(
−1

2
(mj −m∗`)TC

−1
` (mj −m∗`)

) . (4.46)

Therefore instead of calculating the determinant of C`, we calculate the determinant of

2πκC`. The value of κ ≥ 1 is selected using an iterative process starting from κ = 1 and

we increment the value of κ by 0.1 until the determinant of 2πκC` is greater than zero for

` = 1, 2, · · · , Nc. We can rewrite Eq. 4.46 as

π(mj)q(mj,mi)

π(mi)q(mi,mj)

=

exp (−O(mj))
∑Nc

`=1 exp

(
ln

(
w`√
|2πκC`|

)
− 1

2
(mi −m∗`)TC−1` (mi −m∗`)

)
exp (−O(mi))

∑Nc

`=1 exp

(
ln

(
w`√
|2πκC`|

)
− 1

2
(mj −m∗`)TC

−1
` (mj −m∗`)

)
=

exp (−O(mj))
∑Nc

`=1 exp (A`)

exp (−O(mi))
∑Nc

`=1 exp (B`)
, (4.47)

where A` and B` are, respectively, define as

A` = ln

(
w`√
|2πκC`|

)
− 1

2
(mi −m∗`)TC−1` (mi −m∗`), (4.48)

and

B` = ln

(
w`√
|2πκC`|

)
− 1

2
(mj −m∗`)TC−1` (mj −m∗`). (4.49)

If we denote the maximum values of A` and B` over `, respectively, with Amax and Bmax,

104



Eq. 4.47 can be written as

π(mj)q(mj,mi)

π(mi)q(mi,mj)
=

exp (−O(mj)) exp (Amax)
∑Nc

`=1 exp (A` − Amax)

exp (−O(mi)) exp (Bmax)
∑Nc

`=1 exp (B` −Bmax)

= exp

(
[O(mi)−O(mj)] + [Amax −Bmax]

)∑Nc

`=1 exp (A` − Amax)∑Nc

`=1 exp (B` −Bmax)
(4.50)

4.3 Results and Discussion

In this section, our proposed two-level MCMC method is applied to two problems.

The first case is the toy problem 2 which was discussed earlier in this chapter. We showed

that finding the GMM will not provide the correct characterization of the posterior pdf

for this problem and we need to perform sampling in order to capture the correct posterior

distribution. The second example is a 1-dimensional reservoir model which has been designed

by Emerick and Reynolds [24] to investigate the sampling performance of ensemble-based

methods. Li and Reynolds [56] used this example in order to compare the performance of

their two-level MCMC algorithm with other MCMC methods.

4.3.1 Revisiting toy problem 2

Earlier in this chapter, we discussed a procedure to find a GMM where the Gaussians

in the GMM have the modes of the posterior pdf as their means and these modes are found

by applying DGN to find the minimum of the objective function associated with the posterior

pdf. We showed that DGN is able to find both modes of the posterior pdf for this scalar

toy problem, but the GMM does not characterize the posterior pdf exactly especially in the

low probability region between the modes which contributes significantly to the probability

density despite its lower probability compared to the modes. Using the GMM distribution

that we obtained in the first step, we run 5 parallel Markov chains starting from different

initial states drawn randomly from the proposal distribution. The maximum number of

iterations for all the five chains is set equal to 50 thousand. In this toy problem we set β = 1

in Eq. 4.38 to obtain the covariance for each mode. Figure 4.6 shows the change in the

GMM proposal distribution for one of the chains as we adapt the covariances of the GMM
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(a) (b)

Figure 4.6: Change in the proposal distribution with adaptation for toy problem 2 with
(a) γi = 10−4 and (b) γi = 10−3. The black curve is the true posterior pdf, the blue curve
is the initial GMM, the red curve is the final GMM, and the grey curves are adapted GMM
every 1000 iteration.

with γi equal to 10−4 and 10−3. We observe for both values of γi the probability of the

region between the two modes which was close to zero initially is increased with adaptation

which means that the initial GMM proposal distribution becomes closer to the target pdf

with adaptation which should enable each chain to converge more quickly to the target pdf.

Since both values of γ result in very similar final GMMs, in the remainder of this section

we only discuss the results obtained with γi = 10−4. It is also important to note that even

with covariance adaptation the GMM is not exactly the same as the target pdf and this is

due to the fact that we cannot find a GMM with two modes that is able to match the target

pdf. However, the average acceptance rate based on all five chains is 80 percent where the

acceptance rate for a chain is defined as the number of accepted states divided by the total

number of iterations multiplied by 100. In order to monitor the convergence of the chains, we

use the multivariate potential scale reduction factor (MPSRF) [8, 56] which should approach

a value of 1.0 when the chains converge. Figure 4.7 shows the plot of MPSRF with the

iterations in the chains and we observe that the chains converge quickly with the value of

MPSRF very close to one from states 500 onward. Therefore, the states from 501 from

all the chains are combined to approximate the posterior pdf. The approximation of the

posterior pdf is plotted in Figure 4.8 compared to the true posterior pdf. In Fig. 4.8(a)
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we used only 1500 samples from each to approximate the posterior pdf and in Fig. 4.8(b)

we used 5000 samples from each chain. Overall, we are able to resolve the posterior pdf

with a good approximation. The slight discrepancy between the sample distribution and the

posterior pdf is due to the small sample size and it can be observed that with increasing the

sample size the approximation of the posterior improves specially in the region between the

two modes. Although it is not shown here, if we use all the states after 500, i.e., states from

500 to 50,0000, the sample distribution will be indistinguishable from the target pdf.

(a) (b)

Figure 4.7: Convergence of the chains for toy problem 2. (a) full range of iterations (b)
zoom in for the first 1000 iterations.

(a) (b)

Figure 4.8: Comparison of the posterior pdf with distribution obtained using samples from
all chains starting from iteration 500 (a) 1500 samples from each chain (b) 5000 samples from
each chain. The black curve is the posterior pdf and the blue curve is sample distribution.
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To investigate the effect of covariance adaptation on the performance of the two-

level MCMC method, we repeated the sampling step for this toy problem without adapting

the covariances of the GMM. Figure 4.9 shows the results of the two-level MCMC without

covariance adaptation. The plot of MPSRF, which is shown in Fig. 4.9(a), indicates that the

chains converge quickly and the value of MPSRF is very close to 1 from iteration 500 onward.

The sample distribution obtained with 5000 samples from each chain starting from 501 state

in the chains is plotted in Fig. 4.9(b) and we can see that it approximate the posterior pdf

slightly worse compared to the case with covariance adaptation (see Fig. 4.8(b)). The average

acceptance rate between chains for the case without adaptation is 79 percent which is very

close to the average acceptance rate with covariance adaptation. Although the covariance

adaptation does not provide much improvement in this toy problem in terms of acceptance

rate, covariance adaptation is important to obtain a reasonable acceptance rate for a higher

dimension problems.

(a) (b)

Figure 4.9: MCMC performance for toy problem 2 without covariance adaptation. (a)
Convergence of the chains (b) The target pdf (black curve) compared to sample distribution
(blue curve) using 5000 samples from each chain.

Finally, we investigate the effect of weights of the GMM components on the sampling

performance of the MCMC. In this case, we assume that the weights of the GMM components

are equal (see the green curve in Fig. 4.4) and the results of the MCMC are plotted in

Figure 4.10. Although the average acceptance rate for the chains is 55 percent in this
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(a) (b)

Figure 4.10: MCMC performance for toy problem 2 with equal weights for the GMM
components. (a) Convergence of the chains (b) The target pdf (black curve) compared to
sample distribution (blue curve) using 5000 samples from each chain.

case, the convergence of the chains is similar to the case where the weights of the GMM

components are obtained based on the value of the objective function and the approximation

of the posterior pdf with sample distribution is slightly different but is almost as well as in

Fig. 4.8(b).

4.3.2 1D model

The second test problem is the one designed by Emerick and Reynolds [24] for testing

the performance of different history matching methods which is a one-dimensional reservoir

model descritized into 31 gridblocks, see Figure 4.11. Each gridblock is 50 ft in all directions.

The porosity for all gridblocks is equal to 0.25 and oil and water viscosities, respectively,

are 2 and 1 cp. The initial reservoir pressure is 3500 psi. The model includes a water

injection well and a producer. The injection well perforated in the first gridblock which

injects water at constant bottomhole pressure of 4000 psi. The producer is perforated in the

31st gridblock and produces under constant bottomhole pressure of 3000 psi. As shown in

Fig. 4.11, a monitoring well is located at the center of the reservoir model. The gridblock

log-permeabilities are considered as the model parameters. The prior covariance is generated

using an exponential covariance function with the practical range corresponding to 10 grid-
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blocks. The prior mean and variance of ln(k), respectively, are 5.0 and 1.0. The observed

data includes the monthly pressure measurements at the monitoring well for the first 360

days which means that we have 12 pressure measurements as the observed data. The true

model is the same one used by Emerick and Reynolds [24] and was generated randomly from

the prior model. The data predicted from the true model is perturbed by adding random

Gaussian noise with mean of zero and standard deviation of one psi to obtain the vector of

observations, dobs. The vector of observations, dobs, is the same one used by Emerick and

Reynolds [24]. As a reference to compare our two-level MCMC results we use the results

Figure 4.11: The gridblocks and well locations in 1-D waterflooding example.

of random walk chain which was generated by Li [55] to sample the posterior pdf given by

Eq. 4.15. The length of the chain is 23 million where the initial state is a random sample

from the prior model. The proposal distribution is a Gaussian centered around the current

state in the chain with the covariance of σ2CM . The scaling factor, σ, of 0.005 was used by

Li [55] for this example which results in 22.9 percent acceptance rate. Figure 4.12 shows the

marginal posterior distributions of permeability and water production rate obtained with

the long random walk MCMC. Note that these marginal distributions are generated using

every 25th state in the last 500 thousand states in the chain.

As the first step of our two-level MCMC method, we apply the DGN method according

to Algorithm 4.1 starting from 200 realizations drawn randomly from the prior distribution,

i.e., Ne = 200. These 200 realizations represent the base realizations or the base-cases and

the initial training set. We use dmin = 0.001 and the new models are added to the training

set if the distance between the model and all models in the training set is greater than or

equal to dmin. In Eqs. 4.1 and 4.2, we use N = 20 which means that ∆M (j) and ∆D(j)
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(a) (b)

Figure 4.12: Marginal distribution of (a) permeability and (b) water production rate ob-
tained using a long random walk MCMC (plots are regenerated from Li [55]). In both figures,
red curve represents the true, the solid black curves are P5 and P95, the blue dashed lines
curves are P25 and P75, and the thick solid black curve is the median (P50).

are constructed using the 20 closest models to mj from the training set (which is less than

the number of parameters, Nm = 31). The sensitivity matrix for each model is calculated

using Eq. 4.9 where p is selected based on Eq. 4.8 with â = 0.001. The initial value of the

trust region radius for all base-cases is set to 1 with a maximum value of 2 and minimum

value of 0.01 and if the trust region radius for a given base-case is reduced to a value less

than this minimum value we flag that base-case as converged. A base-case also is flagged

as converged if at some iteration its the normalized objective objective function (objective

function divided by the number of data) is less than 3.0. The DGN algorithm converges

if 95 percent of base-cases are converged and this convergence criterion is satisfied after 61

iterations. Figure 4.13 shows the number of running base-cases during the iterations of the

DGN. The total number of forward model runs that the DGN algorithm required is 5068. At

the end of DGN algorithm, 60 models give a normalized objective function value less than 5

and we use these models the modes to build the GMM. Before discussing the MCMC results,

we should mention that the calculation of the weights based on the objective function as in

Eqs. 4.26 results in assigning 93 percent of the total weights to the four minimizers which

give normalized objective function values very close to 2. Because the sensitivity matrix is

approximated the gradient of the objective function is not accurate and the algorithm cannot
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Figure 4.13: Plot of the number of running base-cases for DGN algorithm applied to 1D
problem.

decrease the objective function to the same level for all modes.

(a) (b)

Figure 4.14: Marginal distribution of permeability obtained using (a) 1000 realizations
drawn randomly from GMM as proposed in [33] (b) random walk MCMC. The legend is the
same as Fig. 4.12.

In the field case presented in [33], a weight of 0.9999 is assigned to one minimizer

and they used only that minimizer and its corresponding covariance matrix to build a Gaus-

sian distribution and generated 1000 samples using this Gaussian to quantify uncertainty.

Therefore, we built a GMM using all the 60 modes where the weights are calculated using

Eq. 4.26 and generated 1000 random realizations from the GMM. We run the forward model

for these realizations to obtain the predicted data. Figures 4.14 and 4.15 show, respectively,
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(a) (b)

Figure 4.15: Marginal distribution of water production rate obtained using (a) 1000 re-
alizations drawn randomly from GMM as proposed in [33] (b) random walk MCMC. The
legend is the same as Fig. 4.12.

the marginal distribution of permeability and water production rate obtained using the 1000

realizations generated directly from the GMM compared to the random walk MCMC results.

From Fig. 4.14(a) we observe that the marginal distribution of permeability covers the true

permeability, but the distribution is wider compared to the marginal distribution of perme-

ability obtained from the long random walk MCMC given in Fig. 4.14(b). The marginal

distribution of the water production rate plotted in Fig. 4.15(a) is not a good approximation

of the water production rate generated using the long random walk MCMC (see Fig. 4.15(b))

and the water production rate from the true model is outside the P95 curve, Fig. 4.15(a).

Although generating a set of realizations from the GMM is computationally less expensive

than sampling using MCMC, this example confirms that generating a set of realizations from

the GMM does not provide an acceptable quantification of uncertainty.

In order to build the GMM proposal distribution for the second stage of the MCMC

method, we cluster the 60 distinct modes into 25 clusters using the k-medoids algorithm

and use the 25 medoids to build the GMM. Although we used k-medoids clustering to

reduce the number of modes, but we can use all the 60 modes to build the GMM. It is

showed in Li [55] that the difference between the MCMC results with all modes and reduced

number of modes is negligible. As discussed earlier, due to approximation of the sensitivity
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matrix we cannot find the modes exactly for high dimensional problems. Therefore weighting

the GMM components based on the objective function value does not result in reasonable

weights (most modes will have weight very close to zero). We showed that for toy problem

2, a GMM with equal weights is less similar to the target pdf (see Fig. 4.4), but when we

performed sampling using equal weights we were able to characterize the target pdf (see

Fig. 4.10(b)). Thus we set all the weights equal to build the GMM. The covariance matrices

are multiplied by 0.1 (β = 0.1 in Eq. 4.38). We use γi = 4/N2
m which is approximately equal

to 0.004 to adapt the covariances based on Eq. 4.44. Starting from different initial states,

which are drawn randomly from the proposal distribution, we started 5 parallel chains with

the maximum number of iterations equal to 100 thousand. The average acceptance rate of

Figure 4.16: Plot of MPSRF versus the states in the chain calculated using 5 parallel
chains for the 1D waterflooding problem.

all chains is about 21 percent. Figure 4.16 shows that the MPSRF value stabilizes from

the state 20 thousand, however there is only slight change in the MPSRF value from state

20 thousand onward. Therefore, we plotted the marginal distribution of permeability and

water production rate using 3000 samples from each chain starting from state 20 thousand

in Figures 4.17 and 4.18 respectively. The marginal distribution of permeability covers the

true permeability field in Fig. 4.17(a) and similar to the result obtained from the random

walk (Fig. 4.17(b)) there exist less variation in the permeability values of gridblocks to the

left of the monitoring well where the pressure measurement are acquired. In Fig. 4.18(a) we
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observe that the true water production rate curve is almost the same as the P75 curve as it

is in Fig. 4.18(b) too, however the range between P95 and P5 curves is wider in Fig. 4.18(a)

compared to in Fig. 4.18(b).

(a) (b)

Figure 4.17: Marginal distribution of permeability obtained using (a) 3000 states from each
chain of our two-level MCMC starting from state 20 thousand (b) random walk MCMC. The
legend is the same as Fig. 4.12.

(a) (b)

Figure 4.18: Marginal distribution of water production rate obtained using (a) 3000 states
from each chain of our two-level MCMC starting from state 20 thousand (b) random walk
MCMC. The legend is the same as Fig. 4.12.

Starting from the state 40 thousand in the chains, we use 3000 from each chain to

construct the marginal distributions of permeability and water production rate and the result

is given in Figure 4.19. Comparing Fig. 4.19(a) and Fig. 4.17(a) we can see that only the
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(a) (b)

Figure 4.19: Marginal distribution of (a) permeability and (b) water production rate ob-
tained using two-level MCMC. 3000 states from each chain starting from state 40 thousand
are used. The legend is the same as Fig. 4.12.

P5 and P95 curves are slightly different where both curves are smoother in Figure 4.19(a).

However, there is no visual difference between the water production rate curves in Fig. 4.19(b)

and Fig. 4.18(a).

Li and Reynolds [56] used their two-level MCMC in order to sample the posterior pdf

for this problem. In their method, they started from 200 initial guesses generated randomly

from the prior distribution of the model parameters and minimized the objective function

using a gradient-based algorithm. The minimizers with normalized objective function are

clustered into 25 clusters using the k-medoids algorithm and they used the models selected

as the medoids to build a GMM. The weights of the GMM are assigned proportional to the

number of models in each cluster. This GMM is then used as the proposal distribution in

the second stage of their two-level MCMC. The results obtained with their two-level MCMC

algorithm for this problem are presented in Figures 4.20 and 4.21. Comparing the marginal

distribution of permeability in Fig. 4.20(a) with Fig. 4.19(a), we observe that the uncertainty

in the permeability of the first few gridblocks obtained by Li [55] is lower than the results

of our proposed two-level MCMC. Considering the results of random walk MCMC given in

Fig. 4.20(b) as the reference, it seems that our results give a slightly better estimation of

uncertainty for the first few gridblocks. The P5 and P95 curves of the marginal pdf for the

116



water production rate obtained using the two-level MCMC of Li and Reynolds [56] are more

similar to the P5 and P95 curves generated using the random walk MCMC than the P5

and P95 curves generated from our two-level MCMC. However, the P75 and true curves in

Fig. 4.21(a) are clearly distinct while the true water production rate is very close to P75 curve

in Fig. 4.21(b). It is important to note that Li [55] uses modes with normalized objective

function values less than 1.5 which are more accurate modes and result in a narrower bounds

of uncertainty.

(a) (b)

Figure 4.20: Marginal distribution of permeability obtained using (a) the states between
15 thousand to 25 thousand from 5 chains from the two-level MCMC of Li [55] (b) random
walk MCMC. The legend is the same as Fig. 4.12.

Finally, we use the ES-MDA algorithms discussed in Chapter 3 to check their per-

formances for this example. Similar to Emerick and Reynolds [24], we use ten independent

initial ensembles, each of which contains 100 realizations which are generated using the prior

distribution. Note that an ensemble of size 100 (more than three times the number of model

parameters) is sufficiently large for ensemble-based methods so that we do not require any

covariance localization. The history matching results from four methods, IR-ES with ρ = 0.5,

M-IR-ES with ρ = 0.5, ES-MDA with 10 equal inflation factors and ES-MDA-GEO with 10

data assimilation steps are compared for this problem. The results of ES-MDA-RLM with

ρ = 0.5 for this example are not included as it did not converge for any of the ten ensembles

with less than 100 data assimilation steps. Also, IR-ES with ρ = 0.5 did not converge after
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(a) (b)

Figure 4.21: Marginal distribution of water production rate obtained using (a) the states
between 15 thousand to 25 thousand from 5 chains from the two-level MCMC of Li [55] (b)
random walk MCMC. The legend is the same as Fig. 4.12.

250 iterations for the first ensemble and the results of this ensemble is not included here

and the average number of iterations that IR-ES takes for all the remaining nine ensem-

bles is 18 iterations. Note that the average iterations required for M-IR-ES is 12 iterations.

Figure 4.22 shows the box plot of the normalized objective function for all methods as well

as the two level MCMC algorithms. Among the ensemble-based methods, IR-ES results

in the lowest value for the median of the normalized objective function. Note that IR-ES

iterates until the data mismatch satisfies Eq. 3.25 and thus requires a low data mismatch.

Note that we used ES-MDA-GEO with 10 iterations which is almost half of the average

number of iterations required by IR-ES to converge. Figures 4.23 and 4.24, respectively,

show the marginal distribution of permeability and water production rate obtained with

different methods including the random walk MCMC and our two-level MCMC. According

to the results of Fig. 4.23(c), ES-MDA with equal inflation factors results in a poor approx-

imation of the marginal distribution of permeability compared to other methods. This last

statement is consistent with the marginal distribution of the water production rate given

in Fig. 4.24(c), which pertains to ES-MDA with equal inflation factors, where the water

production rate curve from the true model is outside the P95 curve while it should be close

to the P75 curve based on the MCMC results. According to the MCMC results given in
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plots (e) and (f) of Fig. 4.23, the true permeability curve should be almost enclosed within

the P5 and P95 curves, which is not the case for any of ES-MDA plots (see plot (a)-(d)

of Fig. 4.23). However, the marginal distribution of permeability obtained with ES-MDA
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Figure 4.22: Box plot of the normalized objective function. The red line within each box
corresponds to the median, and the bottom and top of each box correspond to P25 and P75.
The horizontal black dash lines correspond to P2 and P98. The blue circle corresponds to
the mean and blue crosses are the minimum and maximum values. The number next to the
boxes correspond to the median of ON . MCMC1 refers to our two-level MCMC algorithm
and MCMC2 refers to the two-level MCMC of Li and Reynolds [56].

with geometric inflation factors (Fig. 4.23(d)) includes the true permeability curve within

its P5 and P95 curves whereas this is not the case with the marginal distributions generated

from IR-ES, M-IR-ES, and ES-MDA-EQL. From Fig. 4.24 it can be observed that the water

production curves of the true model is very close to the P75 curve obtained with both IR-ES

and ES-MDA-GEO which is consistent with the results obtained with random walk MCMC

and our two level MCMC. Note that the marginal distribution of the water production rate

obtained with IR-ES and ES-MDA is very similar to the result obtained with random walk

MCMC despite of the differences in their marginal permeability distributions. Although the

ES-MDA does not provide the exact characterization of the posterior pdf for this example,

it provides a reasonably good approximation of uncertainty and is far more computationally

efficient than the MCMC algorithm.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 4.23: Marginal distribution of permeability obtained using (a) IR-ES with ρ = 0.5
(b) M-IR-ES with ρ = 0.5 (c) ES-MDA-EQL with Na = 10 (d) ES-MDA-GEO with Na = 10
(e) random walk MCMC (f) our two-level MCMC. The legend is the same as Fig. 4.12.

4.3.3 2D model

This example pertains to a synthetic two-dimensional square reservoir which is de-
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 4.24: Marginal distribution of water production rate obtained using (a) IR-ES with
ρ = 0.5 (b) M-IR-ES with ρ = 0.5 (c) ES-MDA-EQL with Na = 10 (d) ES-MDA-GEO
with Na = 10 (e) random walk MCMC (f) our two-level MCMC. The legend is the same as
Fig. 4.12.
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signed in Li [55] to test their two-level MCMC algorithm. The reservoir domain is discretized

on a 44 × 44 × 1 grid. Each gridblock is 100 × 100 × 15 ft. The true permeability field is

generated using an exponential covariance function with the major range of 2, 500 ft and

the minor range of 1, 100 ft where the major range is oriented in 45◦ from the positive y-

direction. The mean and the variance of ln(k) are, respectively, 5 and 1.0. The model (vector

of reservoir parameters), m, consists of the set of gridblock horizontal log-permeabilities. We

assume that permeability is isotropic. Figure 4.25 shows the true log-permeability map (true

model). The reservoir model contains nine production wells and four water injection wells.

The initial reservoir pressure is 3, 000 psi. The injection wells operate with constant bottom-

hole pressure equal to 4, 500 psi during the whole simulation time while the production wells

operate at a constant bottomhole pressure of 2, 800 psi for the first six months and then the

bottomhole pressure constraint is changed to 2, 500 psi for the rest of the simulation. The

observations include the monthly water injection rate of the injection wells and water and oil

production rates of the production wells from the first 36 months. The history-match period,

which is 36 months, is followed by a 20 month long prediction period. The predicted data

from the true model are obtained by running the reservoir simulator model with the true

model parameters and the measurements are acquired by adding random Gaussian noise to

the data predicted from the true model. The standard deviation of the measurement error

is assumed to be equal to 5% of the measured value with the minimum of 2 STB/day.

As the first step of our two-level MCMC method, we apply the DGN method according

to Algorithm 4.1 starting from 250 realizations drawn randomly from the prior distribution,

i.e., Ne = 250. These 250 realizations represent the base realizations or the base-cases.

The initial training set includes 400 realizations which includes the 250 base-cases. We use

dmin = 0.001 and the new models are added to the training set if the distance between the

model and all models in the training set is greater than or equal to dmin. In Eqs. 4.1 and

4.2, we use N = 100 which means that ∆M (j) and ∆D(j) are constructed using the 100

closest models to mj from the training set (which is less than the number of parameters,

Nm = 1936). The sensitivity matrix for each model is calculated using Eq. 4.9 where p is
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Figure 4.25: True log-permeability map for the synthetic 2D model. The black circles are
the production wells and the red circles with cross are the injection wells.

selected based on Eq. 4.8 with â = 0.001. The initial value of the trust region radius for all

base-cases is set to 1 with a maximum value of 2 and minimum value of 0.1 and if the trust

region radius for a given base-case is reduced to a value less than this minimum value we

flag that base-case as converged. A base-case also is flagged as converged if at some iteration

its the normalized objective objective function (objective function divided by the number of

data) is less than 3.0. The DGN algorithm converges if 95 percent of base-cases are converged

and this convergence criterion is satisfied after 25 iterations. Figure 4.26 shows the number

of running base-cases during the iterations of the DGN. The total number of forward model

runs that the DGN algorithm required is 4722. At the end of DGN algorithm, 52 models

Figure 4.26: Plot of the number of running base-cases for DGN algorithm applied to 2D
problem.
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give a normalized objective function value less than 3.5. In order to build the GMM proposal

distribution for the second stage of the MCMC method, we cluster the 52 distinct modes into

25 clusters using the k-medoids algorithm and use the 25 medoids to build the GMM. Since

our modes are not exact weighting the GMM components based on the objective function

value does not results in reasonable weights and similar t the previous example we set all the

weights equal. The covariance matrices are multiplied by 0.08 (β = 0.08 in Eq. 4.38) and we

use γi = 500/N2
m which is approximately equal to 0.0001 to adapt the covariances based on

Eq. 4.44. Starting from different initial states, which are drawn randomly from the proposal

distribution, we started 5 parallel chains with the maximum number of iterations equal to

50 thousand. The average acceptance rate of all the five chains is about 23 percent for this

problem. According to Figure 4.27, which shows the value of MPSRF versus the iteration

number in the chains, we observe that the five chains converge after about 30 thousand

iterations as the value of MPSRF stabilizes to a value close to one. Therefore, we use the

states between 30 to 40 thousands to approximate the posterior distribution.

Figure 4.27: Plot of MPSRF versus the states in the chain calculated using 5 parallel
chains for the 2D problem.

We compare the results of our two-level MCMC algorithm for this 2D problem with

the results obtained by the two-level MCMC of Li [55] which uses gradient-based minimiza-

tion to find minimizers of the objective function. For this example, Li [55] started with 250

random realizations of the prior as the initial guesses for their gradient-based minimization
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(a) (b) (c)

Figure 4.28: The posterior mean of the log-permeability compared to true model. (a)
True model (b) our two-level MCMC and (c) two-level MCMC of Li and Reynolds [56]. The
colorbar scale is the same as in Fig. 4.25

algorithm. Then, the minimizers with normalized objective function less than 1.5 are clus-

tered into 35 modes using k-medoid clustering algorithm. The GMM is then constructed

using these 35 modes and is used as the proposal distribution for their two-level MCMC

algorithm, which shows convergence after 30 thousand iterations. Figure. 4.28 shows the

mean of the log-permeability obtained with both MCMC algorithms compared to the true

model. Fig. 4.28 indicates that both two-level MCMC algorithms are able to capture the

mean features (structures) of the true model, but the structures (high or low permeability

regions) captured from our two-level MCMC (Fig. 4.28(b)) are larger than those obtained

with the two-level MCMC of Li [55] (Fig. 4.28(c)). The main reason for this last observation

is that Li [55] uses analytical gradient of the objective function which is more accurate than

our simplex gradient approximation. This approximation of the gradient causes changing

the model parameters in a larger region that is required with analytical gradient.

Figures 4.29-4.31 compares the data match and prediction of well rates for some wells

using both MCMC algorithms. It is clear that the data match obtained with our two-level

MCMC is inferior compared to those obtained with the two-level MCMC of Li [55] which

is an expected result due to the accuracy of the modes used to build the GMM. In our

algorithm, we used modes with normalized objective function less than 3.5 to construct our

GMM while Li [55] used the modes with normalized objective function less than 1.5. Note
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that since we use an approximate gradient we cannot decrease the objective function as low

as it can be reduced with a gradient-based method. As a result, the predictions obtained

with our method also have wider bands compared to those Li [55] obtained.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 4.29: Plot of water production rate of wells P5, P7 and P9 for 2D model. (a)-(c)
our two-level MCMC and (d)-(f) two-level MCMC of Li and Reynolds [56]. The red curve
represents the true, the red circles are the observed data, the solid black curves are P5 and
P95, the blue dashed lines curves are P25 and P75, and the thick solid black curve is the
median (P50).

(a)

(d)

(b)

(e)

(c)

(f)

Figure 4.30: Plot of oil production rate of wells P1, P6 and P7 for 2D model. (a)-(c) our
two-level MCMC and (d)-(f) two-level MCMC of Li and Reynolds [56]. The legend are the
same as in Fig. 4.29.
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(a)

(d)

(b)

(e)

(c)

(f)

Figure 4.31: Plot of water injection rate of wells I1, I2 and I4 for 2D model. (a)-(c) our
two-level MCMC and (d)-(f) two-level MCMC of Li and Reynolds [56]. The legend are the
same as in Fig. 4.29.

Finally, we compare the performance of different ES-MDA methods (discussed in

Chapter 3) for this problem. An initial ensemble of size 400 is generated using the prior

model and are used to perform history matching. Note in this example, we consider ρ = 0.5

for ES-MDA-RLM, IR-ES and M-IR-ES methods and Na = 6 for ES-MDA-EQL and ES-

MDA-GEO methods. For ES-MDA-GEO, the first inflation factor based on Eq. 3.42 is

1058.4 for this example and solving Eq. 3.45 with Na = 6, we obtain β = 0.264. Table 4.1

summarizes the results obtained with different methods for this example. In Table 4.1,

RMSE is define as

RMSE =
1√
Nm

‖mtrue −m‖, (4.51)

which compares the mean of the posterior model parameters, m, with the true model, mtrue.

Also, ON is the average normalized objective function which is different from ONd introduced

in Chapter 3 which only includes the data mismatch term. First, we compare the results

obtained with the two MCMC methods. We refer to our two-level MCMC as MCMC1 and

we use MCMC2 to refer to the two-level MCMC of Li [55]. We can see that the values of

RSME, σ, and ON are higher for MCMC1 compared to those obtained with MCMC2. A

higher RSME indicated that the mean model farther from the true model, the higher value of
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σ shows that the variation in the models is higher, and higher value of ON is an indication of

inferior data match. These results are consistent with the results of Figs. 4.28-4.31. For the

ensemble-based method, we observe that ES-MDA-RLM results in the closest value of RSME

to that obtained with MCMC2. However, ES-MDA-RLM converges in 19 iterations which

is more than three times the iterations we used for ES-MDA-GEO and its final value ON

is lower than that of the MCMC2 method which is an indication of overmatching the data.

Ignoring the results of ES-MDA-RLM, ES-MDA-GEO results in the closest value of RSME

to that obtained with MCMC, while ES-MDA-EQL and M-IR-ES give the highest values of

RSME which is consistent with rougher mean log-permeability maps shown in Figure 4.32.

IR-ES gives the highest value of σ which is close to that given by MCMC2. ES-MDA-GEO

Prior ES-MDA-RLM IR-ES M-IR-ES ES-MDA-EQL ES-MDA-GEO MCMC1 MCMC2

RMSE 0.936 0.791 0.833 0.921 0.882 0.770 0.885 0.793
σ 0.993 0.450 0.701 0.445 0.375 0.491 0.872 0.734

ON 8367 1.19 4.45 3.03 1.42 2.26 3.76 2.25
Iter - 19 8 4 6 6 - -

Table 4.1: Comparison of the performance of different methods for 2D problem. MCMC1
refers to our two-level MCMC and MCMC2 refers to the two-level MCMC of Li [55].

results in the second highest value σ among the ensemble-based methods. Regarding the

average normalized objective function, ON , ES-MDA-GEO gives the closet value of ON to

that obtained with MCMC2 while IR-ES results in the highest value of ON . Figures 4.33-

4.35 compares the data match and predictions for some wells obtained with ensemble-based

methods and MCMC2. Based on the results of these figures, we observe that IR-ES is

not able to match the data well compared to other method (see plot (i) of Fig. 4.33, plots

(g)-(i) of Fig. 4.33, and plots (g)-(h) of Fig. 4.33), and the uncertainty in the predictions

is higher than those obtained with MCMC2. Overall, the uncertainty in the predictions

of ES-MDA-RLM, M-IR-ES, and ES-MDA-EQL is lower than the results of MCMC2 and

ES-MDA-GEO gives the best quantification of the uncertainty in the predictions compared

to other methods. The results of this example confirms that ES-MDA provides a reasonably

good approximation of uncertainty while it requires far less computational effort than the

MCMC algorithm.
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Figure 4.32: The posterior mean of the log-permeability compared to true for 2D model.
(a) True, (b) our two-level MCMC, (c) two-level MCMC of Li and Reynolds [56], (d) ES-
MDA-RLM ρ = 0.5, (e) IR-ES ρ = 0.5, (f) M-IR-ES ρ = 0.5, (g) ES-MDA-EQL Na = 6,
and (h) ES-MDA-GEO Na = 6. The colorbar is the same as in Fig. 4.25.
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Figure 4.33: Plot of water production rate of wells P5, P7 and P9 for 2D model. (a)-
(c) two-level MCMC of Li and Reynolds [56], (d)-(f) ES-MDA-RLM, (g)-(i) IR-ES, (j)-(l)
M-IR-ES, (m)-(o) ES-MDA-EQL, and (p)-(r) ES-MDA-GEO. The legend is the same as in
Fig. 4.29.
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Figure 4.34: Plot of oil production rate of wells P1, P6 and P7 for 2D model. (a)-(c) two-
level MCMC of Li and Reynolds [56], (d)-(f) ES-MDA-RLM, (g)-(i) IR-ES, (j)-(l) M-IR-ES,
(m)-(o) ES-MDA-EQL, and (p)-(r) ES-MDA-GEO. The legend is the same as in Fig. 4.29.
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Figure 4.35: Plot of water injection rate of wells I1, I2 and I3 for 2D model. (a)-(c) two-
level MCMC of Li and Reynolds [56], (d)-(f) ES-MDA-RLM, (g)-(i) IR-ES, (j)-(l) M-IR-ES,
(m)-(o) ES-MDA-EQL, and (p)-(r) ES-MDA-GEO. The legend is the same as in Fig. 4.29.
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Chapter 5

CONCLUSIONS

5.1 Generation of Inflation Factors for ES-MDA

The ES-MDA-GEO algorithm developed in this work is an efficient data assimilation

method that allows the user to specify a priori the number of data assimilation steps that

will be done based on computational resources while at the same time providing sufficient

damping of changes in the realizations of the reservoir model at each iteration to control

overshooting and undershooting that can lead to overly rough estimates of reservoir mod-

els. ES-MDA-GEO is more robust than using the original ES-MDA algorithm with equal

inflation factors since ES-MDA-GEO generally generates better estimates of the true model

preserves more variability (uncertainty) in the posterior ensemble of realizations of the reser-

voir model obtained by assimilating observed data. However, there exist examples where

the performance of ES-MDA-GEO and ES-MDA with equal inflation factors generate very

similar results, e.g., the Brugge example.

We presented an analytical expression that enables the exact calculation of the mini-

mum inflation factor that satisfies the inequality derived from the discrepancy principle that

is the basis of IR-ES. However, in order to enhance computational efficiency, we use a smaller

than theoretically optimum value of this first inflation factor to generate the inflation factor

at the first data assimilation step of ES-MDA-GEO. Overall, the resulting ES-MDA-GEO al-

gorithm produces model estimates and estimates of posterior uncertainty that are somewhat

similar to those generated with IR-ES, which strictly enforces the discrepancy principle, but

ES-MDA is not only more computationally efficient but also allows the user to control the

total computational effort by specifying the number of data assimilations to be done a priori.

Based on the approximation of the inflation factors that satisfy the discrepancy principle,
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we also developed a modified IR-ES algorithm that gives fairly similar estimates of the true

model and the posterior uncertainty as IR-ES but is more computationally efficient than

IR-ES.

We no longer recommend use of ES-MDA-RML due to the fact that this method

tends to be very computationally inefficient than the other methods considered and may

tend to underestimate the posterior variances.

With a choice of ρ = 0.8, which has been recommended previously, the iterative

regularizing ensemble smoother method (IR-ES) may require such an extremely high number

of iterations to obtain convergence that the method becomes computationally infeasible for

practical problems. For one example provided, IR-ES failed to converge in 200 iterations.

In this regard, the modified IR-ES algorithm we developed here is more robust.

A previous claim to the contrary, results presented in the Brugge case make it clear

that at least in some cases, covariance or Kalman gain localization will generally be required

with using IR-ES.

5.2 An Efficient MCMC for Uncertainty Quantification

We presented a computationally efficient two-level MCMC algorithm to characterize

the posterior pdf which generates samples of the vector of model parameters conditional to

the vectors of observed data. The main contribution of this work is that in the first step of the

proposed two-level MCMC we do not require the availability of the adjoint solution to find

multiple modes of the posterior pdf. Instead, we use the DGN method which approximates

the sensitivity matrix using a simplex gradient approach and finds multiple modes of the

posterior pdf in parallel. A Gaussian mixture model is then built which is used as the

proposal distribution for the second step of our two-level MCMC scheme. Since the GMM

expected to approximate the posterior pdf locally, it improves the efficiency of the MCMC

scheme for sampling multimodal posteriors.

The computational results confirm that this proposed two-level MCMC method pro-

vides a correct sampling of the posterior pdf for the reservoir model parameters which is
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comparable to the two-level MCMC algorithm which uses adjoint solution to find the modes

while it requires far less computational effort than is required by random walk MCMC meth-

ods. For the 2D problem which has a relatively large number of parameters, the DGN is not

able to decrease the objective function as low as it is possible with gradient-based method

and therefore the two-level MCMC results show higher uncertainty in the predictions and

model parameters than it is obtained with the two-level MCMC based on analytical gradient.

While the use of the constructed GMM as the proposal distribution promotes the

performance of the MCMC scheme, we showed that generated samples from this GMM

(without a rejection mechanism), which is claimed by some researchers, can not be used to

characterize the posterior pdf in general.
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