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In this work, we developed techniques based on inverse problem theory to

generate realizations of reservoir rock property fields (porosity and permeability) and well

skin factors conditioned to hard data, geostatistical information and well-test pressure data

obtained under single-phase conditions. The probability density function (pdf) for the prior

model (reservoir parameters) is constructed based on static information and geostatistics.

The uncertainty in the prior means of the model parameters is incorporated using a

partially doubly stochastic model. The a posteriori probability density function (pdf) of the

model is obtained using Bayes’s Theorem. The Gauss-Newton method is applied to

minimize the objective function and obtain the maximum a posteriori estimate (most

probable model). We developed a procedure to estimate sensitivity coefficients for three

dimensional problems. These are required for applying the Gauss-Newton method.

Realizations of reservoir rock property fields are obtained by procedures for sampling of

the a posteriori pdf. Reparameterization techniques based on spectral decomposition and

subspace method are implemented to save computational time and memory storage.

The methodology is applied to synthetic cases and a field example using 10,000

gridblocks. We show how the uncertainty in model parameters is reduced by conditioning
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realizations to multiwell pressure data. Although pressure data do not resolve individual

gridblock permeabilities very well, pressure data significantly reduce the uncertainty in

thickness averaged permeability. In the three-dimensional case, well skin factors can be

estimated accurately only by conditioning to both wellbore pressure and layer flow rates.

The porosity field is not resolved as well as the permeability field by pressure data;

however, if pseudosteady state flow pressure data are used as conditioning data, the

uncertainty in the average reservoir porosity is very small.

Procedures to generate realizations by sampling the a posteriori pdf are presented.

By making performance predictions using such a set of realizations, we can quantify the

uncertainty in predicted reservoir performance.
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CHAPTER I

INTRODUCTION

Scientists from different disciplines view reservoir description somewhat differ-

ently. Geologists may mainly consider reservoir description from the viewpoint of

geological setting and architecture. Geophysicists mainly focus on the reservoir shape and

structure, including fault locations, but may also consider the estimation of porosity.

Engineers have been interested in rock and fluid properties, well conditions and produc-

tion data. However, the overall goal of all disciplines is the same, i.e., to reduce the

uncertainty in reservoir parameters and make correct reservoir performance predictions.

The appropriate way to reach the goal is to integrate all the available data: geological,

petrophysical, geophysical, and production data. However, how to effectively integrate

these data is a challenge to the person or team working in this area. Reservoir characteri-

zation is a multistage and cross-disciplinary work process.

The overall objective of this work is to generate realizations of reservoir rock

property fields that represent an approximately correct sampling of the a posteriori

probability density function for the rock property fields. In order to do this correctly, it is

important that one formulates an a posteriori probability density function which is

conditioned to all available information and data. Our standard approach for doing this is

to estimate a most probable model (maximum a posteriori estimate) and then to generate
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realizations using information obtained in generating the maximum a posteriori estimate.

However, it is important to recognize that the most important task is to sample the a

posteriori probability density function, not to generate the most probable model.

In our work, the rock property fields generated actually represent reservoir simu-

lator gridblock values of permeability and porosity. If one generates a set of N realizations

that represents a proper sampling of the a posteriori probability distribution, then one can

characterize the uncertainty in performance predictions. To do this, we simply use each

reservoir description (each realization) as input data for a reservoir simulation and

generate the resulting reservoir performance. From these N flow simulations, one can

compute the statistics for each parameter or variable predicted by the flow simulations and

estimate the mean and variance for each of the predicted parameters to provide a measure

of the uncertainty in predicted performance.  Having characterized the uncertainty in

predicted performance, one can make reservoir management decisions that account for

our lack of complete knowledge of the true reservoir.

It is important to realize that, contrary to popular opinion, the objective is not to

construct equiprobable realizations, but to construct a set of realizations which represents

a correct sampling of the a posteriori probability distribution for the rock property fields.

By simulating reservoir performance with each such realization, one can accurately

evaluate the uncertainty in reservoir performance and develop optimum reservoir

management strategies. Similar to standard procedures for making  reservoir management

decisions, our methodology is data driven.  However, unlike standard technology, our

techniques allow one to directly incorporate the uncertainty in data, to evaluate the

uncertainty in estimates of rock property fields and to evaluate the value of data, i.e., to
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determine how much given data reduce the uncertainty in reservoir descriptions and

performance predictions.

1.1 Integrating Dynamic Data into Reservoir Characterization

Geostatistics provides a tool to generate realizations of rock property fields from

static data (logging, core, seismic, geological knowledge). However, due to lack of closely

spaced lateral data there is great uncertainty in geostatistical simulation or description.

Generally, realizations generated from static data can not match the dynamic performance.

To reduce the uncertainty in reservoir characterization and make reliable future perform-

ance predictions, we need to effectively couple static information with dynamic data.

For the last several years, much work has been done to generate reservoir descrip-

tions conditioned to both static (non-production) and dynamic (production) data.

However, most attempts have not incorporated production data into reservoir description

directly, but instead have used the production data to estimate some other parameters

which are then used as a constraint when generating reservoir descriptions using prior

information. For example, Deutsch1, Sagar et al.2 and Holden et al.3 used pressure data to

compute an average permeability within a radius of investigation and then used this

average permeability as a constraint when constructing a permeability field which matches

the variogram. (Alabert4 has made an extensive study of the how this average permeability

and radius of investigation should be computed.) Since Refs. 1 and 2 use simulated

annealing to construct reservoir descriptions, it would not be computationally feasible to

incorporate pressure data directly into the objective function because this would require
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one run of the reservoir simulator at each iteration of the simulated annealing algorithm,

and the simulated annealing algorithm may require several thousand iterations to obtain

convergence. While this provides a motivation for incorporating an average permeability

instead of pressure into the objective function, it does not mean the procedure is

rigorously correct. In fact, since any permeability averaging technique used is only

approximate, the permeability field obtained from simulated annealing may not predict the

observed pressure data with a high degree of accuracy and the derivatives of these

predicted and observed pressures may be radically different2. Moreover, it is difficult to

interpret what the generated permeability fields represent in a probabilistic sense and it

appears that any attempt to quantify the uncertainty in reservoir description from a set of

descriptions obtained from simulated annealing as typically applied1,2  will be difficult. The

descriptions obtained more or less honor the data, but it is difficult to argue that a set of

such descriptions represents a proper sampling of the correct probability density function.

Huang5 proposed a method to integrate static data with dynamic data. In his work,

porosity is estimated from logging and seismic inversion, then permeability is perturbed

within the correlation scatter-cloud relation between porosity and permeability, to match

the production data. However, the correlation scatter cloud from core measurement

normally does not represent the correct probability density function for rock property

fields.  Even though the permeability field generated by this method honors dynamic data,

it is not feasible to predict reservoir performance from this permeability field.

Datta-Gupta et al.6 and Vasco et al.7 also used simulated annealing method to inte-

grate transient pressure data and production data into reservoir characterization. They

used a fast streamline simulator rather than traditional numerical simulator for their
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forward calculation in order to greatly improve the computational efficiency. But, for a

three-dimensional full reservoir model, in which tens or hundreds of thousands of

simulations is required to reach convergence by simulated annealing, this method is still

extremely computationally demanding and probably impractical. Moreover, their approach

represents a regularized history matching procedure oriented towards generating a rock

property field which honors the production data rather than a stochastic simulation

procedure for generating a suite of realizations which adequately represents the uncer-

tainty in rock property fields.

1.2 History Matching

History matching is a procedure in which grid block values of permeability, poros-

ity and well skin factors are modified to obtain a reservoir description that matches

observed production performance. However, classic history matching yields nonunique

results and often leads to unreliable predictions of future reservoir performance, especially

when future predictions are based on a different producing mechanism than was used in

the history matching process. For example, if history matching was done using production

data during a water flooding operation, reliable predictions of performance for a planned

CO2 flood can not be expected to be highly accurate.

Mathematically, the nonuniqueness in the classical history matching procedure

arises because, in practice, we never have a sufficient number of independent observed

data to determine all reservoir parameters uniquely. Nonuniqueness may arise either

because the production data are completely insensitive to some of the reservoir parameters
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(for example, the gridblock values of porosity and permeability in certain parts of the

reservoir) or because production data may be sufficient only to estimate certain linear

combinations or regional averages of parameters.  The latter case is natural and occurs

routinely in pressure transient analysis. For example, single-phase pseudosteady-state flow

pressure data can be used to estimate average porosity, but can not be used to estimate

gridblock values of porosity or porosity values at specific locations. Standard analysis of

radial flow transient pressure data obtained at a completely-penetrating well in a layered

reservoir, where each layer is homogeneous, yields a good estimate of thickness-averaged

permeability but does not provide a means to estimate the individual layer permeabilities.

If one casts the classical history matching problem in a natural mathematical for-

mulation (see, for example Tang et al.8), one arrives an ill-conditioned matrix problem.

While one can regularize the problem8 (for example, by Tikhonov9 regularization) to

obtain a matrix problem with a nonsingular coefficient matrix, the solution or history-

match obtained is then determined by the specific form of the regularization procedure. 

Different regularizations yield different solutions, i.e., different history matches. Moreover

in such a procedure, one can not easily characterize the uncertainty in the resulting

reservoir description. Perhaps even more importantly, when one obtains a reservoir

description by history matching only production data, the resulting description will often

violate  other information, for example, log data, core data, seismic data, or geologic

interpretation.  The current practice of reservoir characterization may be thought of as

generating reservoir descriptions that honor all available data. Returning to the problem of

history matching, intuitively one believes that if history matching of production data is

done using other data as constraints, then the nonuniqueness problem should somehow be
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reduced. By reduction of the nonuniqueness problem, we do not mean there will be a

unique solution; there will still exist an infinite variety of reservoir descriptions which

honor all data. Reduction of the nonuniqueness in the history matching process means

reduction of the variation or variability in the set of solutions, i.e., a reduction in the

uncertainty in the reservoir description. In some cases, we may be able to resolve a few

parameters almost perfectly. It is important to note that a  reservoir description obtained

by such a constrained history matching method will honor all the data, not just the

production data.

Gavalas et al.10 in 1976 recognized that the proper incorporation of prior data sta-

bilizes the history matching problem and also reduces the variability in the set of reservoir

descriptions that provide an acceptable match of production data. They used Gaussian

type expressions for the co-variance functions of porosity and permeability, the cross

covariance between them, and the prior estimates of the means of porosity and permeabil-

ity to incorporate prior information in the objective function when history matching

multiwell pressure data obtained in a synthetic one-dimensional reservoir under single-

phase flow conditions. They showed that incorporating the prior information reduced the

errors in the estimates of permeability and porosity and also improved the convergence

properties of the minimization algorithms considered. Moreover they showed that the

Bayesian estimation approach gave better estimates of the true permeability and porosity

fields than were obtained by zonation11,12. In a later paper13 the same authors considered

the same one-dimensional single-phase flow problem and compared results obtained by

reparameterization using zonation, reparameterization using vectors of sensitivity

coefficients (derivatives of pressures at observation points with respect to model
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parameters) and Bayesian estimation. Their comparisons were based on computing the

traces of the a posteriori covariance matrices (i.e., the sum of all a posteriori variances)

obtained by assuming the objective function could be linearized around the true model. 

The trace of the a posteriori covariance matrix gives a measure of the total uncertainty in

the parameter estimates. They found that the smallest total uncertainty was obtained with

Bayesian estimation. They did not, however, use reparameterization when considering

Bayesian estimation, and did not consider estimating well skin factors or generating

multiple realizations of the rock property fields.

1.3 Geostatistics Based Automatic History Matching

Inverse problem theory14 provides a methodology to incorporate prior information

when history matching production data. The standard application of inverse problem

theory rests on the fact that prior information on the model (set of reservoir parameters to

be estimated) satisfies a multinormal distribution and that measurement errors in produc-

tion data can be considered as Gaussian random variables with zero mean and known

variance. Under these assumptions, the most probable model (the maximum a posteriori

estimate) conditioned to both prior information and production data can be obtained by

minimizing an objective function derived directly from the a posteriori probability density

function. Since the a posteriori probability density function is derived from Bayes's

theorem, this approach is often referred to as Baysian estimation. It is convenient to

minimize the objective function by a gradient method to obtain an approximation to the

maximum a posteriori estimate.  Important aspects of inverse problem theory15 are that an
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estimation of the uncertainty in reservoir description can be obtained from the a posteriori

covariance matrix and approximate realizations of the reservoir description can be

constructed from the a posteriori covariance matrix.  It is important to recognize that from

the viewpoint of inverse problem theory14 the solution of the inverse problem is repre-

sented by the probability density function for the model (reservoir description). This

probability density function is not arbitrary in that it must properly account for all data and

information and must account for the uncertainties in the data and information itself.

The specific objective of this work is to construct realizations of the model (reser-

voir simulator gridblock values of log-permeability, porosity and well skin factors) that are

conditioned to prior means (averages) for these variables, variograms, and multiwell

pressure data. For the approach followed here, this is largely a two step process.   First,

we estimate a most probable model by minimizing an objective function arising naturally

from the a posteriori probability density function. Secondly, we generate other realizations

of the model. In many cases, we simply generate this set of realizations from a Cholesky

decomposition of the a posteriori covariance matrix and this set of realizations can only

represent an approximate sampling of the a posteriori probability density function. As

discussed later, however, a more computationally efficient approach has recently been

presented for generating realizations.

We note that many of the basic ideas we use have been around for some time both

in general theoretical form14,15 and in the language of specific disciplines. For example, in a

sequence of excellent papers, Carrera and Neuman16-18 presented a similar method for the

estimation of hydraulic conductivities and storativities from head data and prior informa-
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tion by using a maximum likelihood method, where the liklihood function incorporates

both head data and prior information.

In a important paper, Oliver19 re-initialized the research path of Refs. 10 and 13

and introduced the fundamental  philosophy of Tarantola14 to the reservoir characteriza-

tion field. His approach follows the general procedure outlined above, i.e., estimate the

most probable model by minimizing the proper objective function and then construct

realizations from the Cholesky decomposition of the prior covariance matrix. Oliver

considered the problem of constructing realizations of one-dimensional permeability and

porosity fields and two-dimensional permeability fields (assuming porosity is known)

conditioned to prior means and covariances, hard data and multiwell pressure data.

In this work, we have followed the basic philosophy and methodology of Taran-

tola14 as introduced to the petroleum engineering field by Oliver19,20. More specifically, we

generate a most probable model by applying the Gauss-Newton method with restricted

step21,22. For this method to be computationally feasible, the Gauss-Newton method must

converge rapidly and an efficient method for generating the sensitivity coefficients must be

available. For the problems considered here, the sensitivity coefficients represent the

derivatives of wellbore pressures with respect to the model parameters (well skin factors

and gridblock values of log-permeability and porosity). For three-dimensional problems,

however, individual layer skin factors can not be resolved only by pressure data and

individual layer flow rate is also required to resolve skin factors. Chu et al.23, 24 assumed

porosity was known and considered only the problem of constructing realizations of the

permeability field and active well skin factors. They derived and implemented a modified

generalized pulse spectrum technique (MGPST) to estimate the sensitivity coefficients
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using basic results of Tang et al.8. Although we later25 used the same approach to generate

sensitivity coefficients related to the porosity field, we eventually discovered that this

procedure does not yield good estimates of the sensitivity coefficients related to the

porosity field. Thus, in this work and in Refs. 26, 27, 28, we have extended a procedure

introduced by Carter et al.29 to generate sensitivity coefficients related to the permeability

and porosity fields. The results of Ref. 29 reproduce the results of Jacquard30 and

Jacquard and Jain11 who used an electric-circuit analogue to construct formulas for

sensitivity coefficients. However, the elegant mathematical derivation of Carter et al. is

markedly different than the derivation of Refs. 11 and 30, and is conveniently cast in the

language of reservoir engineering.

As we will show, there are computational nuances involved in the implementation

of the Carter et al. method that, to the best of our knowledge, have not been recognized

prior to our work.  In the two-dimensional setting, if conditioning pressure data are

observed at Nw  wells, then the Carter et al. procedure requires Nw +1 simulation runs to

estimate sensitivity coefficients. As presented, the Carter et al. procedure actually

computes the sensitivity of simulator gridblock pressures with respect to gridblock values

of permeability and porosity. In three dimensions, if each well is vertical and is completed

in Nz  vertical gridblocks, then there are N Nz w  gridblocks associated with the set of

wells. To compute sensitivity coefficients related to this total set of gridblock pressures

would require N Nz w +1 simulation runs. However, in practice, we measure wellbore

pressures, not gridblock pressures; i.e., we only need to compute the sensitivity of

wellbore pressures to the rock property fields. For three-dimensional problems, we have

derived a way to estimate these sensitivity coefficients with only Nw +1 simulation runs.
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While our modification of the Carter et al. procedure provides an accurate and

relatively efficient method to estimate sensitivity coefficients, it is applicable only for

single-phase flow problems. The MGPST23 has approximately the same computational

efficiency as the Carter et al.29 method and can be extended to multiphase flow problems,

but is not sufficiently accurate unless it is restricted to estimation of only sensitivity

coefficients related to the permeability field. The direct and gradient simulator methods31

are accurate and applicable to multiphase flow problems, but are too computationally

intensive to be used routinely in practical applications where we may wish to consider

thousands or tens of thousands of simulator gridblocks. If  we wish to generate values of

three permeability values (kx , ky  and kz ) and one porosity value at each of M grid-

blocks, the direct method will require 4M+1 simulation runs. The time required by the

gradient simulator method is very roughly comparable to the time required by the direct

method, but some reduction in computational costs are achieved by computing all

sensitivity coefficients during one simulation run.  This requires the solution of an

additional 4M linear systems at each time step of the simulation run, but all of these linear

systems involve the same coefficient matrix; see Refs. 31 and 32 for additional details.

 

1.4  Reservoir Performance Prediction

As we mentioned, the ultimate goal of reservoir characterization is to predict fu-

ture reservoir performance and assess the uncertainty in production predictions. Multiple

realizations which represent a correct sampling of the pdf (probability density function) for

the rock property fields are required to obtain a reliable prediction. In Refs. 25, 26 and 27,
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we generated a set of realizations of the rock property fields that approximate a  correct

sampling of the a posteriori probability density function using the Cholesky decomposition

of the a posteriori covariance matrix, CMP . However,  this procedure assumes that the a

posteriori probability density function is multivariate Gaussian with covariance matrix 

CMP  and mean given by the maximum a posteriori estimate.  At best, this is only

approximate since the assumption is strictly valid if and only if the functional relationship

between the vector of pressure data and the model (gridblock values of porosity and log-

permeability) can be accurately linearized about the maximum a posteriori estimate. As

this is not true in general, generating a set of realizations using the Cholesky decomposi-

tion of CMP  can only generate an approximate sampling of the a posteriori probability

density function.

Cunha33, Cunha et al.34  and Oliver et al.35 investigated the possibility of using 

Markov chain Monte Carlo methods and hybrid Markov chain Monte Carlo methods to

sample the a posteriori probability density function. These procedures have been

implemented only for two-dimensional problems and only for the case where we wish to

sample the a posteriori distribution for the log-permeability field.  This assumes that the

porosity field can be accurately resolved from other information, for example, from log

and seismic data. In the limit, the Markov chain Monte Carlo (MCMC) methods are

guaranteed to yield a correct sampling of the a posteriori probability density function. 

Unfortunately, there is no way to determine how long a chain must be to ensure that the

samples at the end of the chain are correct. At best, they can provide only heuristic

practical guidelines for making this determination. The implementation of the hybrid

Markov chain Monte Carlo Method is superior to a more conventional MCMC procedure
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in that the hybrid method provides a more efficient exploration of the set of possible

realizations and does not suffer from high rejection rates. However, the hybrid method is

computationally expensive. In viewing simulated annealing in the context of Markov chain

theory, it can be shown that standard implementations of simulated annealing do not

sample the a posteriori probability density function correctly and, contrary to conventional

wisdom, when implemented in the standard way, do not generate equally probable

realizations.  However, as shown in Refs. 33 and 34, with a proper implementation of

simulated annealing, one can estimate the maximum a posteriori estimate. It is also

possible to use simulated annealing for stochastic simulation. However, the computational

time required by simulated annealing is two orders of magnitude greater than is required

by the Gauss-Newton method. These aforementioned results on simulated annealing were

reported in Refs. 33, 34 and 35.

In this work, we also use an efficient two-step procedure of Oliver et al.27 (also

see, Oliver36) to generate  multiple realizations conditioned to prior information and well-

testing pressure data. The first step is to propose a set of unconditional realizations from a

known probability distribution, the prior model. This step could be carried out using any

unconditional simulation technique. In Refs. 26 and 27, we used the Cholesky decomposi-

tion method to generate unconditional realizations, while in Ref. 28 we applied sequential

Gaussian cosimulation37. As part of the first step, we also generate unconditional

simulations of the pressure data. The second step involves history matching of the

unconditional realizations to the simulated well-testing pressure data. By simulation from

the set of realizations obtained by history matching, we can predict the future performance

and also quantify the uncertainty in predicted performance. Here and Ref. 28, we
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incorporate uncertainty in prior means of the rock property fields by using a partially

doubly stochastic model38, because in reality, the true means of the rock properties may be

difficult to obtain. This is specially true for the permeability field where means estimated

from core or logging are generally not consistent with average value obtained by analysis

of well-test data. We show that we can generate the maximum a posteriori estimate of

rock property fields and means by Gauss-Newton procedure.
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CHAPTER II

INVERSE PROBLEM THEORY

The inverse problem or inversion is widely encountered in variety of science and

engineering disciplining. In “solving” an inverse problem, we wish to infer the values of

model parameters from observations of some model parameters and/or model perform-

ance, while in the forward problem, we predict the response or model performance given

the values of all model parameters. In some cases, the inverse problem is “exact” or over-

determined, in which the number of observed data are the same as, or more than, the

number of  model parameters to be determined. If the number of data are greater than the

number of model parameters, model parameters are typically estimated by a least-square

procedure. Nonlinear regression used in pressure transient analysis provides a typical

example of an over-determined problem.

In many cases, however, the number of observed data are less, often far less, than

the parameters to be determined, in which case the inverse problem is underdetermined or

‘ill-posed’. To solve an ‘ill-posed’ problem is difficult and generally we need to introduce

prior assumptions for the model space (parameters). For the problem considered in this

work, the observed data are well-testing pressure data or production data observed at

wells and the model parameters are the gridblock values of porosity and permeability and

well skin factors. In this work, we assume that reservoir geological model and fluid
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properties are known. As the observed independent (not redundant) pressure data are far

less than the number of parameters, we need to introduce prior statistics assumptions or

constraints on the model space in order to formulate our inverse problem in a way that

allows us to generate solutions (realizations of model parameters) that are consistent with

the observed data. We do this in a probabilistic way by formulating a prior model

characterized by a prior probability density function (pdf). The prior model can be

obtained from static data (core, logging, seismic) measurement and analysis (geological

interpretation and geostatistics).

2.1 The Prior Model

We assume that permeabilities in three directions (kx , ky  and kz ) have log-

normal distributions with known means and variances given by σ kx

2 , σ ky

2  and σ kz

2 . 

Porosity is assumed to be normal with known mean and variance given by σ φ
2 .  Each rock

property attribute ( ln( )kx , ln( )ky , ln( )kz ) and φ) is modeled as a stationary Gaussian

random function so that the covariance functions are directly related to the variograms. 

The correlation coefficients between the various attributes are assumed to be known, but

may be zero. If the permeability tensor is isotropic, we use a three-dimensional variogram

for log-permeability which can be either isotropic or anisotropic.  Both anisotropic log-

permeability fields and anisotropic variograms can be considered.  In the anisotropic

permeability case, we either specify k a k kz x y=  for some constant a, or assume kz  is

uncorrelated with kx  and ky  and thus has its own mean and variogram. The well skin
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factors are modeled as uncorrelated Gaussian random variables with estimates of the

means and variances available. The reservoir can also be modeled as a layered system

where we may specify different two-dimensional variograms for each layer.

The number of simulator gridblocks is M. Our objective is to determine realiza-

tions of the well skin factors and the gridblock values of porosity and permeability. Since

permeability is assumed to be log-normal, we actually determine gridblock values of ln(k).

For an isotropic reservoir, the complete model to be estimated is represented by the

2M Ns+  dimensional vector

m

m

m

m
k

s

=
















φ

,                                                                    (2.1)

where mφ  is the M-dimensional column vector of gridblock porosities, mk  is the M-

dimensional column vector of gridblock values of ln(k) and ms  is the Ns -dimensional

column vector of well skin factors to be estimated. In the most general three-dimensional

anisotropic case, Eq. 2.1  is replaced by

m

m

m
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,                                                                (2.2)

where the notation is obvious.  Thus, the number of model parameters to be estimated

(denoted by Np) is equal to 2M Ns+  for the case of an isotropic permeability field, and

4M Ns+  in the most general anisotropic case.
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Based on our assumption of a multinormal distribution, the prior distribution has a

probability density function statisfying the following proportionality relation:

ρ( ) exp ( ) (m m m C m mprior
T

M prior∝ − − −





−1

2
1 , (2.3)

where mprior  is the vector containing the estimates of the prior means of the rock

properties and well skin factors, CM  is the prior covariance matrix obtained from the

variogram model.

A critical assumption is that the prior model has a Gaussian probability density

function with prior covariance matrix, CM , given by

C

C C O

C C O

O O C
M

k

k k

S

=
















φ φ

φ .                                                         (2.4)

In Eq. 2.4, Cφ  is the covariance matrix for gridblock porosities derived from the porosity

variogram, Ck  is the covariance matrix for gridblock ln(k)’s, Cs is the covariance matrix

for well skin factors, C kφ  is the cross covariance matrix between porosity and ln(k) at the

set of gridblocks, Ckφ  is equal to the transpose of C kφ  and throughout O’s denote null

matrices, i.e. matrices with all entries equal to zero. The matrix Cs is diagonal since we

assume no correlation between skin factors of different wells and between skin factors of

different layers at same well. We avoid specific modeling of the cross covariance matrices

by using the “screening hypothesis” of Xu et al.39 As shown in Ref. 24, this assumption

implies that the variograms for porosity and ln(k) are of the same type, and have identical

ranges, but different sills, where the ratio of their sills is equal to the corresponding ratios

of their variances.  Also as shown in Refs. 39 and 24, the screening hypothesis implies that
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C C Ck k
k

k
φ φ

φ φ
φ

ρ σ
σ

= = , ( )0
 ,                                       (2.5)

where ρφ , ( )k 0  is the correlation coefficient between porosity and permeability at a

common location. Detailed expressions for generating the covariance matrices are given in

Ref. 24.

In the anisotropic permeability case, the prior covariance matrix, CM , is given by

   C

C C C C O

C C C C O

C C C C O

C C C C O

O O O O C
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k k k
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.                         (2.5a)

In Eq. 2.5a, Ckx
 is the covariance matrix for gridblock x-direction log-permeability ln( )kx

derived from the variogram for x-direction log-permeability, Ck y
 is the covariance matrix

for gridblock y-direction log-permeabilities ln( )ky  derived from the variogram for

ln( )ky , Ckz
 is the covariance matrix for gridblock z-direction log-permeabilities ln( )kz

derived from the variogram for ln( )kz , Cs  is the N Ns s×  covariance matrix for well skin

factors and is diagonal. Cp p1 2
represents the cross covariance matrix between pair of

reservoir property attributes p1 and p2 , for example C kxφ  represents the cross covariance

matrix between porosity (p1 = φ ) and x-direction log-permeability (p kx2 = ln( ) ). From

the definition of covariance, we know that Cp p1 2
 equals the transpose of Cp p2 1

. So,  the

overall covariance matrix CM  is symmetric. Throughout O’s denote null matrices, i.e.,

matrices with all entries equal to zero.
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Similar to Eq. 2.5, the screening hypothesis is applied to determine the cross-

variances Cp p1 2
 given the correlation coefficients between attributes p1 and p2 .

It is important to note that the adoption of the screening hypothesis is not a re-

quirement of the procedures presented in this work. This hypothesis simply eliminates the

need to develop models for the cross-variograms between pairs of rock property

attributes.

2.2 Inverse Solution

2.2.1 Bayes Estimation Theory

In the problem considered here, dobs refers to the vector of observed or measured

wellbore pressures data, and contains all Nd  pressure measurements that are used as

conditioning data. As in Ref. 23-28, measurement errors are modeled as independent

identically distributed Gaussian random variables with zero mean and variance σ d
2 . Thus,

the covariance matrix for these errors is a diagonal matrix CD  with all diagonal entries

equal to σ d
2 . We assume that vector d contains the calculated wellbore pressure data

corresponding to dobs and is related to the model by

d g m= ( ) . (2.6)

The functional relationship of Eq. 2.6 represents the effect of generating d from

our reservoir simulator from model m. The reservoir simulator is discussed in more detail

in next chapter. For given data, the likelihood function for the model is given by the

following relation:
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L m d g m d C g m dobs obs
T

D obs( | ) exp ( ( ) ) ( ( ) )∝ − − −





−1

2
1 . (2.7)

From Bayes’s theorm, it follows that the a posteriori probability density function

for our model, denoted f m dM obs( | ) , satisfies the following relation

f m d L d m mM obs obs( | ) ( | ) ( )∝ ρ . (2.8)

Using Eqs. 2.3 and 2.7 in Eq. 2.8, we obtain

(
)]

f m d m m C m m

g m d C g m d

M obs prior
T

M prior

obs
T

D obs

( | ) exp ( ) ( )

( ( ) ) ( ( ) ) .

∝ − − − +


− −

−

−

1

2
1

1

(2.9)

The most probable model (the maximum a posteriori estimate) which honors prior

information and pressure data is obtained by maximizing f m dM obs( | ) , or equivalently,

minimizing the objective function S m( )  where

[
]

S m m m C m m

g m d C g m d

prior
T

M prior

obs
T

D obs

( ) ( ) ( )

( ( ) ) ( ( ) ) .

= − − +

− −

−

−

1

2
1

1
 (2.10)

2.2.2 Gauss-Newton Method

To obtain the most probable model (the maximum a posteriori estimate), we mini-

mize S m( )  by applying a restricted-step Gauss-Newton procedure. Thus, we must

compute the gradient and the approximate Hessian of S(m). The sensitivity coefficients

represent the derivatives of wellbore pressure with respect to model parameters, i.e.,

∂
∂
g m

m
i

j

( )
 for 1≤ ≤i Nd  and 1≤ ≤j N p . A sensitivity coefficient gives a measure of how
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strongly the data g mi ( )  are affected by a change in model parameter mj . The sensitivity

coefficient matrix is given by
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Note G  is a N Nd p×  matrix. Again, m denotes the vector of model parameters, mj

denotes the jth model parameter and g mi ( )  represents the calculated pressure data

corresponding to the ith wellbore pressure measurement.  If we want to condition to layer

flow rates, i.e., production logging data, then g(m) represents the vector of calculated

layer flow rates corresponding to observed layer flow rates. The procedure for calculating

the sensitivity coefficients will be presented in Chapter 3.

At the ( )l st+1  iteration of the Gauss-Newton method, the gradient of S m( ) is

∇ = ∇ = − + −− −S S m G C g m d C m ml m
l

l
T

D
l

obs M
l

prior( ) ( ( ) ) ( ),1 1 (2.12)

and Hessian matrix is given by:

( )H H m S m G C G Cl
l l T

l
T

D l M= = ∇ ∇ = +− −( ) ( ) 1 1 . (2.13)

The Gauss-Newton method is then given by

               m m H Sl l
l l

+ −= − ∇1 1 ,       (2.14)

where l denotes the iteration index. Throughout, ml  represents the estimate of the

minimum of S(m) obtained at the lth  Gauss-Newton iteration and Gl  denotes the

sensitivity coefficient matrix G (Eq. 2.11) evaluated at ml , ∇Sl  denotes the gradient
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evaluated at the old iterate (lth iterate) and Hl  denotes the approximate Hessian

evaluated at the old iteration. In applying the Gauss-Newton method, we do not invert Hl

directly, but instead solve

H m Sl
l

lδ + = −∇1 , (2.15)

for δml +1 . The vector δml +1 gives the search direction at the ( )l st+1  iteration, and an

efficient algorithm would need a line search technique (or similar technique) to determine

how far to step in that direction, i.e., the iterative method would actually modify Eq. 2.14

to

m m H S m ml l
l l l

l
l

l+ − += − ∇ = −1 1 1µ µ δ , (2.16)

where µl  gives the size of the step in the direction δml +1 . We use a restricted-step

method instead of a line search to determine µl
21,22.

Using Eqs 2.12 and 2.13, Eq. 2.16 can be written as

[ ]
[ ]

m m G C G C

G C g m d C m m

l l
l l

T
D l M

l
T

D
l

obs M
l

prior

+ − − −

− −

= − + ×

− + −

1 1 1 1

1 1

µ

( ( ) ) ( ) ,
(2.17)

Tarantola14 refers to µl  as a damping factor.

From the matrix inverse lemma40, we have

[ ] [ ]G C G C C I C G C G C G Gl
T

D l M M M l
T

D l M l
T

l
− − − −+ = − +1 1 1 1 . (2.18)

From basic matrix algebra, the following matrix identity can be established.

[ ] [ ]G C G C G C C G C G C Gl
T

D l M l
T

D M l
T

D l M l
T− − − −+ = +1 1 1 1 . (2.19)

Using Eqs 2.18 and 2.19 in Eq. 2.17 and rearranging the resulting equation, one obtains

the following form of the Gauss-Newton method:
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( )[
( )]

m m m C G C G C G

g m d G m m
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l prior l

l
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T
D l M l

T
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l
prior

+ −
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− + −

1 1
1µ µ µ( )

( ) ( ) ,
(2.20)

Although Eqs. 2.20 and 2.17 are mathematically equivalent, the computational

time for the two schemes may be radically different. The inverse matrix on the right side of

Eq. 2.17 is N Np p×  where N p  is the number of parameters to be determined. The

inverse matrix on the right side of Eq. 2.20 is a N Nd d× matrix, where Nd is the total

number of observed data. If N Nd p<< , which will often be the case, Eq. 2.20 should be

applied. In Chapter IV, we will discuss reparameterization techniques which can reduce

computational time and memory requirements.

In applying either form of the Gauss-Newton method, we set the convergence

criterion as follows:

( ) ( )1 2

N
g m d g m d

d

l
obs

T l
obs d( ) ( )− − < σ . (2.21)

This means if Eq. 2.21 is satisfied, we accept ml  as the maximum a posteriori estimate.

2.2.3 A Posteriori Covariance

If we assume d g m= ( ) can be linearized around the maximum a posteriori esti-

mate, m∞ , then

g m g m G m m m( ) ( ) ( ) ( )= + − +∞ ∞ ∞ ε , (2.22)

where ε ( )m is the error introduced by linearization and G∞  represents the sensitivity

coefficient matrix evaluated at m∞ .
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Using Eq. 2.22 into Eq. 2.10 gives
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We define d∞  by

d d g m G mobs∞ ∞ ∞ ∞= − +( ) . (2.24)

Then Eq. 2.23 becomes
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where

( ) ( )[ ]�( ) ( ) ( )S m m m C m m G m d C G m dprior
T

M prior

T

D= − − + − −−
∞ ∞

−
∞ ∞

1

2
1 1 .     (2.26)

Since �( )S m  is quadratic, any 2nd order Taylor series expansion of �( )S m  is exact, so use a

Taylor expansion about m∞  (most probable model) to obtain
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From Eq. 2.26,

∇ = − + −∞
−

∞ ∞
−

∞ ∞ ∞
�( ) ( ) ( )S m C m m G C G m dM prior

T
D

1 1 . (2.28)
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From Eq. 2.24, G m d g m dobs∞ ∞ ∞ ∞− = −( ) , so we can rewrite Eq. 2.28 as

∇ = − + −∞
−

∞ ∞
−

∞
�( ) ( ) ( ( ) )S m C m m G C g m dM prior

T
D obs

1 1 . (2.29)

Comparing Eq. 2.29 with Eq. 2.12 with ml  replaced by m∞ , we see that

∇ = ∇ =∞ ∞
�( ) ( )S m S m 0 ,   (2.30)

where the last equality in Eq. 2.30 follows from the fact that m∞  minimizes S(m). From

Eq. 2.30, it follows that Eq. 2.27 can be reduced to
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where
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Using Eq. 2.31 in Eq. 2.25 gives
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Thus, our a posteriori pdf can be written as

(
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(2.34)

If we assume ε ( )m = 0 , or equivalently that g(m) are linearly related to the model m (see

Eq. 2.22),  then Eq. 2.34 gives
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(f m d m m C m mM obs
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Eq. 2.35 shows that when the data are linearly related to the model, the a posteriori

probability density function is Gaussian, and the a posteriori covariance matrix is

[ ]C C G C G

C C G G C G C G C

MP M
T

D

M M
T

D
T

D M

= +

= − +

−
∞

−
∞

−

∞ ∞
−

∞
−

∞

1 1 1

1 1( ) .
(2.36)

The preceding results were included for completeness but are not novel. The basic result,

Eq. 2.35, can be found in Tarantola13. Also Eq. 2.34 was used by Oliver et al.35 as a basis

for generating more efficient Markov Chain Monte Carlo method for sampling the a

posteriori pdf.

2.2.4 Realizations

In previous subsections, we discussed how to generate the maximum a posteriori

estimate and posteriori covariance matrix by the Gauss-Newton procedure. Here, we

present a method to generate realizations by sampling the posteriori probability density

function of our model after conditioning to all available data. Again, the basic results are

known, see for example, Tarantola14 and Refs. 19, 23 and 24.

If hard data are used as conditioning data, we propose a two-step procedure23-27 to

generate realizations. In the first step, we obtain the most probable model (mh,∞ ) and

posteriori covariance (CMh ) conditioned to hard data and prior information. In subsection

(2.3) , we will show how to incorporate hard data into our model. In the second step, we

condition to pressure data by minimizing S(m) where S(m) is given by the right side of Eq.
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2.10 with mprior  replaced by mh,∞  and CM  replaced by CMh .  The a posteriori covariance

matrix  after conditioning to both hard data and pressure data is given by

C C C G G C G C G CMP Mh Mh
T

Mh
T

D Mh= − +∞ ∞ ∞
−

∞( ) 1 ,  (2.37)

where G∞  is the sensitivity coefficient matrix evaluated at m∞  which denotes the

maximum a posteriori estimate obtained from the Gauss-Newton procedure.  If no hard

data are used as conditioning data, then in Eq. 3.37, CMh  is replaced by CM  , i.e., Eq.

2.37 is the same as Eq. 2.36. 

As shown in Ref. 23-25, realizations of the porosity and log-permeability fields can

be generated from

m m LZr r= +∞ ,                     (2.38)

where Zr is a vector of independent standard random normal deviates, and LLT  represents

the Cholesky decomposition of the a posteriori covariance matrix. At best, this procedure

only generates an approximate sampling of the a posteriori pdf since it assumes that Eq.

2.6 is linear, i.e., pressure data are linearly related to the model.

The diagonal elements of CMP  give the a posteriori variances of model parameters

after conditioning to pressure data.  If the variance of a particular model parameter mj is

significantly less than the corresponding variance before incorporating pressure data, then

pressure data have been of significant value in reducing the level of uncertainty in this

model parameter.  An approximate 95 percent confidence interval for the jth model

parameter after conditioning to pressure data is given by [ , ], ,m mj j j j∞ ∞− +2 22 2σ σ  where

σ j
2  is the a posteriori variance for this model parameter, i.e., the jth diagonal element of

CMP .  Reducing the variance reduces the size of the confidence interval and reduces the
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variability in realizations of the model parameters obtained by applying Eq. 2.38 to

generate realizations.  Similarly, the diagonal elements of CMh  give the a posteriori

variances for the model parameters after conditioning to hard data.  The ratio of these

posteriori variances to the corresponding prior variances gives a measure of the reduction

in the uncertainty in model parameters achieved by incorporating hard data, i.e., a measure

of the value of hard data in terms of the resulting reduction in variability of realizations of

the rock property fields.  If we condition only to pressure data and all diagonal elements of

CMP  are equal to the corresponding diagonal elements of CM , then we say that the

incorporation of the pressure data is of no value for reducing the uncertainty in the

individual model parameters (gridblock log-permeabilities and porosities).  However, even

if the uncertainty in individual model parameters is not reduced, it is still possible that

pressure data can be of value for reducing the uncertainty in linear combinations of model

parameters, e.g., average reservoir porosity and thickness-averaged permeability.  As will

be seen in the layered reservoir example considered later, conditioning the rock property

fields to pressure data reduces the uncertainty in thickness-averaged permeability much

more than it reduces the uncertainty in individual gridblock log-permeabilities.  This

occurs primarily because the variance of a linear combination of model parameters

involves the covariance between pairs of individual parameters and these covariances may

be negative.  Thus, we see that  by computing and comparing variances, one can obtain a

measure of the value of collecting a particular type of data, where high value means a

significant reduction in the uncertainty as measured by the variances.

2.3 Conditioning to Hard Data
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In this work, hard data refer to “measurements” of gridblock values of porosity

and permeability (converted to “measurements” of log-permeability) at the location of

wells. This obviously assumes that any measurements of rock properties at the well

locations have been properly scaled up to gridblock size. Hard data measurements errors

are modeled as independent Gaussian random variables with zero mean and prescribed

variances. For hard porosity data, the standard deviation for measurement errors is

denoted by σφd
2  and the standard deviation for the measurement errors in hard log-

permeability data is assumed denoted by σkd
2 .

We let dh obs,  represent observed data (hard data) for porosity and log-permeability

(we assume that there is no hard data for skin factors) and let dh  represent the hard data

function which is related to the model by a linear operator Gh  so that

d G mh h= . (2.39)

We assume the dimension of   dh  and dh obs,  is Nh  and let dh i,  and dh obs i, ,  respectively

represent the components of dh  and dh obs,  , i Nh= 1 2, ,..., , so that Gh  is a N Nh p×

matrix. Moreover, we let the dh obs i, ,  represent the measured value of m i Nr hi
,1≤ ≤ . Then

Eq. 2.39 can be written as
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Similarly to section 2.2.1, by a standard application of Bayes’s theorm, it follows that the

most probable model which honors hard data and the prior information is one that

minimizes the following objective function

[
]

S m m m C m m

G m d C G m d

h prior
T

M prior

h h obs
T

h h h obs

( ) ( ) ( )

( ) ( ) ,, ,

= − − +

− −

−

−

1

2
1

1
(2.41)

which Ch  is the diagonal covariance matrix of hard data measurement error, i.e., errors in

porosity and log-permeability measurements.

Setting the gradient of S mh ( )  with respect to m equal to zero, we have

∇ = − + − =− −
m h M prior h

T
h h h obsS m C m m G C G m d( ) ( ) ( ),

1 1 0 . (2.42)

or

C m m G C G m dM prior h
T

h h h obs
− −− = − −1 1( ) ( ), . (2.43)

Adding G C G m mh
T

h h prior
− −1 ( )  to both sides of Eq. 2.43, we obtain

( )( ) ( ( )),G C G C m m G C G m d G m mh
T

h h M prior h
T

h h h obs h prior
− − −+ − = − − − −1 1 1 ,     (2.44)

or

( )( ) ( ),G C G C m m G C G m dh
T

h h M prior h
T

h h prior h obs
− − −+ − = − −1 1 1 .     (2.45)

So, our solution (maximum a posteriori estimate) is

m m G C G C G C G m dprior h
T

h h M h
T

h h prior h obs= − + −− − − −( ) ( ),
1 1 1 1 .             (2.46)

The maximum a posteriori estimation conditioned to hard data and prior information can

be obtained analytically using Eq. 2.45 and is denoted by mh,∞ , i.e., from Eq. 2.46,

m m G C G C G C G m dh prior h
T

h h M h
T

h h prior h obs, ,( ) ( )∞
− − − −= − + −1 1 1 1 . (2.47)
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Using the basis given in subsection 2.2.3, the a posteriori covariance matrix after

conditioning to hard data and prior information is given by

C C C G G C G C G CMh M M h
T

h M h
T

Dh h M= − + −( ) 1 . (2.48)

2.4 Conditioning to Layer Flow Rates

As shown in Refs. 41 and 42, for three-dimensional problems, measured wellbore

pressures can not resolve individual layer properties (permeability, porosity and skin

factor). More specifically, even though wellbore pressures resolve thickness averaged

permeability reasonably well (i.e., reduce the uncertainty in thickness averaged horizontal

permeability), they can not resolve individual layer permeabilities and skin factors. To

obtain the estimation of layer properties, we need other information, i.e., individual layer

flow rate data. Production logging can provide us with layer flow rate information. Using

this information together with wellbore pressure, we can obtain more reliable estimate of

layer permeabilities and layer skin factors.

The methodology for conditioning to both wellbore pressure and layer flow rate is

theoretically the same as conditioning to wellbore pressure. We can just follow the

derivation described in previous sections for conditioning to wellbore pressure. The

difference is that now we have more observed data.

As indicated previously, we assume the total number of observed wellbore pres-

sure data is Nd , the number of model parameters is N p . We assume that the total number

of observed layer flow rate data is Nq  and  assume that measurement errors for layer flow
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rates can be modeled as independent Gaussian random variables with zero mean and

variance σq
2 .

The total covariance matrix for measurement errors is now

C
C
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=


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is the N Nd d×  covariance matrix related to wellbore pressure measurement errors and

CD q
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is the N Nq q×  covariance matrix for layer flow rate measurement errors. Now CD   is an

( ) ( )N N N Nd q d q+ × +  matrix.

The sensitivity coefficient matrix is now given by

G
G

G
p

q
=









 , (2.52)

where Gp  is the sensitivity coefficient matrix related to wellbore pressure and is a

N Nd p×  matrix; Gq  is the sensitivity coefficient matrix related to layer flow rates and is a

N Nq p×  matrix. The procedure for the calculation of Gq  will also be presented in the

next chapter. The size of G  is  ( )N N Nd q p+ × .
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The data mismatch includes the mismatch between observed wellbore pressure and

calculated wellbore pressure, and also the mismatch between observed layer flow rate and

calculated layer flow rate, i.e.,

g m d
p m d

q m d
obs

obs
p

obs
q( )

( )

( )
− =

−
−













, (2.53)

where p m dobs
p( ) −  is the vector of wellbore pressure mismatches and q m dobs

q( ) −  is the

vector of layer flow rate mismatches. Here, dobs
p  represents the vector of all observed

pressure data used as conditioning data, dobs
q  represents the vector of all observed flow

rate data used as conditioning data and our vector of the total observed data is

d
d

d
obs

obs
p

obs
q=


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







. (2.53a)

Similarly, for a given m, d p mp = ( )  represents calculated pressure data corresponding to

dobs
p  and d q mq = ( )  represents calculated flow rate data corresponding to dobs

q and

d
d

d

p m

q m

p

q=








 =











( )

( )
. (2.53b)

With the preceding definitions of d dobs, , CD  and G , all equations presented previously

still apply.

With these modifications, we can apply the Gauss-Newton method to obtain the

maximum a posteriori estimate and posteriori covariance matrix conditioned to both

observed wellbore pressures and observed layer flow rates.

2.5 Computational Examples
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2.5.1 True Reservoir Model

A true three-layer reservoir is considered with kx = ky = k and kz = 0, i.e., there is

no cross-flow between layers. However, layers communicate through the wellbore so

cross-flow between layers can occur through the wells.  Fig. 2.1 shows the areal grid used,

well locations and well numbers for the problem considered. An 11 11×  areal grid is used

with 100 100×  ft2 gridblocks and three gridblocks in the vertical direction with a uniform

vertical grid.  Each layer is ten feet thick. The example pertains to a five-well problem. 

The center well (well A) is located in areal gridblock (6,6) and is produced  at a

X  - A xis , ft

Y
 -

 A
xi

s,
 f

t

12

A

34

1 ,100

0

Fig. 2.1 - Areal grids, well locations and well numbers.
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2 . 5 3 . 7 4 . 8 6 . 0

Fig. 2.2 - True log-permeability fields.
constant rate of 500 RB/D.  This active well is surrounded by four observation wells

located at areal gridblocks (9,9) for observation well 1, (3,9) for observation well 2, (9,3)

for observation well 3 and (3,3) for observation well 4.

Each layer has its own two-dimensional isotropic spherical variogram model for

the log-permeability field.  For layer 1 (top layer), the range of the variogram for log-

permeability is 450 ft. The prior mean for ln(k) is 4.0 with variance equal to 0.6.  For layer

2, the range of the variogram for log-permeability is 500 ft, the prior variance is equal to

0.5 and the prior mean for ln(k) is 4.5.  For layer 3, the range of the variogram for log-

permeability is 400 ft, the prior mean is 5.0 and the prior variance is 0.6.  In layer 1, the

prior mean of the porosity was set equal to 0.15 and the prior variance was 0.0025.  In

layer 2, the prior mean of the porosity was set equal to 0.20 and the prior variance was

0.0025.  In layer 3, the prior mean of the porosity was set equal to 0.25 and the prior

variance was 0.0025.  A prior correlation coefficient of 0.6 was assumed between the
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porosity and log-permeability fields.  In each layer, the porosity variogram is obtained

from the log-permeability variogram by multiplying the latter variogram by σ σφ
2 2/ k ; see

Refs. 3 and 18.

In this problem, the average well skin factor is 4.0. Well skin factors vary signifi-

cantly from well to well and from layer to layer, and if estimation of well skin factors are

not known, we normally assign high variances to the skin factors. However, wellbore

pressure can not accurately resolve individual layer skin factors; thus in this example, we

use a reasonably small variance (σs
2 4 0= . ) on well skin factors.

The “true” permeability  and porosity distributions were obtained as an uncondi-

tional  simulation  generated  from  a  Cholesky  decomposition  of  the  prior  covariance

matrix. The true log-permeability field is shown in Fig. 2.2 with the true porosity field

shown in Fig. 2.3. Note that the left slice on the figure is the top layer (layer 1) and the

right slice is the bottom layer (layer 3). The pressure data were obtained by running the

simulator using the true gridblock values of permeability and porosity.  The duration of the

synthetic multiwell test was 1.7 days.  During the test, significant crossflow occurs

through observation wells with flows rates on the order of 20 RB/D at the end of the test.

 The observation well pressure drops are shown in Fig. 2.4. 

We use the exact value of log-permeability and porosity at well locations (one ac-

tive well and four observation wells) as hard data. We assume the variance on log-

permeability measurement error is σh k, .2 0 0016=  and variance for porosity measurement

error is σ φh, .2 0 00009= .
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2.5.2 Maximum a Posteriori Estimate (Most Probable Model)

The maximum a posteriori estimate of log-permeability obtained by conditioning

only to hard data is shown in Fig. 2.5. Comparing Fig. 2.5 with Fig. 2.2, we see that as

expected, the maximum a posteriori estimate matches the true field only at regions near

the wells. The maximum a posteriori estimate obtained by conditioning to only pressure

data is shown in Fig. 2.6. Comparing with the true case, the layer log-permeability

maximum a posteriori estimate is quite different. However, we  show  later  that  pressure

   

0 . 1 0 0 . 1 8 0 . 2 7 0 . 3 5

Fig. 2.3 - True Porosity fields.
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Fig. 2.4 - Pressure drop at four observation wells.

3 . 5 4 . 3 5 . 2 6 . 0

Fig. 2.5 - Maximum a posteriori estimate of log-permeability fields condi-
tioned only to hard data.
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3 . 8 4 . 3 4 . 9 5 . 5

Fig. 2.6 - Maximum a posteriori estimate of log-permeability fields, condi-
tioned only to pressure data.

can resolve the thickness averaged permeability reasonably well. The maximum a

posteriori estimate after conditioning to both hard data and pressure data is shown in Fig.

2.7. It is clear that the maximum a posteriori estimate conditioned both to hard data and

pressure data is “better” (more closely captures the features of the true case) than the

maximum a posteriori estimate obtained by conditioning only to hard data (Fig. 2.5) or

only to pressure data (Fig. 2.6). Note that in layer 3, the maximum a posteriori estimate

conditioned to both hard data and pressure data gives low permeabilities in the interwell

region between the active well and observation well 4.  Except for this difference, the

maximum a posteriori is qualitatively similar to the true log-permeability field shown in

Fig. 2.2.  The reason that low permeabilities are obtained in region between the active well

and observation well 4 in layer 3 is that the true values of log-permeability at the two well
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gridblocks are low.  Since these two values are fixed essentially exactly by the hard data

and the prior model indicates that log-permeability is correlated over a distance of 400

feet, it is difficult for pressure data to resolve these values correctly even though pressures

at the two wells are relatively sensitive to the permeabilities in the interwell region.

Fig. 2.8 shows the maximum a posteriori estimate of the porosity field conditioned

to both hard data and pressure data. Even though porosity is correlated to log-

permeability for the example considered here, pressure data does not resolve the porosity

field well. Note this estimate bears only rough similarity to the true porosity field, Fig. 2.3.

However, since pseudosteady-state flow exists at the end of the test, we expect to be able

to estimate average reservoir porosity from only pressure data. The average reservoir

3 . 5 4 . 3 5 . 2 6 . 0

Fig. 2.7 - Maximum a posteriori estimate of log-permeability fields,
conditioned  to hard data and pressure data.
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0 . 1 0 0 . 1 7 0 . 2 3 0 . 3 0

Fig. 2.8 - Maximum a posteriori estimate of porosity fields, condition to  hard
data and pressure data.

porosity for the truth case was φ = 0 202. . The average reservoir porosity computed from

the maximum a posteriori estimate obtained by conditioning only to pressure data was

φ = 0192. . The average reservoir porosity computed from the maximum a posteriori

estimate obtained by conditioning to both hard data and pressure data was φ = 0 203. .

Thus, we see that pseudosteady-state pressure data by themselves are sufficient to give a

good estimate of average reservoir  porosity.

2.5.3  Posteriori Covariance

To consider the reduction in uncertainty in the log-permeability field obtained by

conditioning to hard data and/or pressure data, normalized variances are plotted i.e., for

each layer the normalized a posteriori variances represent the a posteriori variances for the

layer divided by the prior variance of log-permeability for the layer.  Thus, if adding
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conditioning data has no value in reducing the uncertainty for a gridblock value of log-

permeability, the normalized variance will be equal to unity and a normalized variance on

the order of 0.1 represents a ten fold reduction in the level of uncertainty.  We also sum

these normalized variances over the gridblocks and divide by the number of gridblocks to

obtain a quantitative measure in the overall reduction in uncertainty for the whole log-

permeability field.  We refer to this last term as the global uncertainty index, I kG( ) , or

more specifically, the global uncertainty index for the log-permeability field. Similar ideas

can be applied to evaluate the uncertainty in the porosity field. So we have

I k
M

Var k

Var kG
i

prior ii

M

( )
(ln( ))

((ln( ))
,

,

= ∞

=
∑1

1

, (2.54)

I
M

Var

VarG
i

prior ii

M

( )
( )

( )
,

,

φ
φ

φ
= ∞

=
∑1

1

.   (2.55)

This concept is a slight modification of an idea of Shah et al.13 who evaluated the accuracy

of the maximum a posteriori estimate by considering the magnitude of the trace of the a

posteriori covariance matrix.

The normalized a posteriori variances of log-permeability after conditioning only

to hard data is shown in Fig. 2.9 and in this case, the global uncertainty index was equal to

0.812.  The a posteriori variances after conditioning to only pressure data are shown in

Fig. 2.10 and in this case I kG( ) = 0.836.  Although the global uncertainty indices are

almost the same for these two results, the reduction in uncertainty of individual gridblock

values of ln (k) are quite different for the two cases.  Hard data reduce the variance to

almost zero at gridblocks containing wells (Fig. 2.9), but results in only a very small

reduction in variances at distances far from the wells.  When the maximum a posteriori
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estimate is conditioned only to pressure data, the variances at gridblocks containing wells

are not necessarily small, but the overall reduction in uncertainty as measured by the

global uncertainty index is essentially equal to the one obtained after conditioning only to

hard data.

The a posteriori variances after conditioning to both hard data and pressure data

are shown in Fig. 2.11.  In this case, I kG( )  = 0.641.  Note the combination of hard data

plus pressure data results in a significant decrease in the overall uncertainty in the log-

permeability field as well as a reduction in the uncertainty at gridblocks near wells.  The

reduction  in  uncertainty is greater than was achieved by using only pressure data or only

0 . 1 0 . 4 0 . 7 1 . 0

Fig. 2.9 - Normalized a posteriori variances of log-permeability, conditioned
only to hard data.
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0 . 1 0 . 4 0 . 6 0 . 9

Fig. 2.10 - Normalized a posteriori variances of log-permeability, conditioned
only to pressure data.

0 . 1 0 . 4 0 . 6 0 . 9

Fig. 2.11 - Normalized a posteriori variances of log-permeability, conditioned
 to hard data and pressure data.
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0 . 1 0 . 4 0 . 6 0 . 9

Fig. 2.12 - Normalized a posteriori variances of porosity, conditioned to hard
data and pressure data.

hard data as conditioning data. This is the expected result since pressure data often resolve

thickness-averaged permeability, but does not resolve individual layer permeabilities. 

Adding hard data at wells essentially fixes the individual layer permeabilities at the wells,

and then by adding pressure data as conditioning data, individual layer permeabilities are

much better resolved.

Fig. 2.12 shows the normalized a posteriori variances of porosity after condition-

ing to both hard data and pressure data. We note that the porosity field is not resolved as

well by pressure data as is the log-permeability field. In fact, the normalized a posteriori

variances for porosity after conditioning to both hard data  and pressure data look very

similar qualitatively to the results of Fig. 2.9 (only reduces the variance at near well

region). The global uncertainty index for porosity in this case is equal to IG ( ) .φ = 0 745.

The global index only conditioning to hard data is IG ( ) .φ = 0 879  and the global index only
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conditioning to pressure data is IG ( ) .φ = 0 882 . This means that only conditioning to hard

data, the overall uncertainty in the porosity field is only reduced a small amount, while by

conditioning only to pressure data, the overall uncertainty in porosity field has been

reduced much more (about  a 30% reduction). By conditioning to both hard data and

pressure, the overall uncertainty is reduced slightly more than by conditioning only to

pressure data.

2.5.4  Thickness Averaged Permeability

It is well known that for layered systems, classical semilog analysis can only yield 

an estimate of thickness-averaged permeability.  For the example under consideration,

there exist three layers of equal thickness so this average permeability is given by

k x y k x yi j l
l

i j( , ) ( , )=
=

∑1

3 1

3

, (2.56)

where k x yl i j( , )  denotes the horizontal permeability in layer l  in the areal gridblock

centered ( , )x yi j .

To continue the example, we investigate the resolution of the thickness-averaged

permeability.  Since the inverse problem is phrased in terms of ln( )k , we must convert

variances of ln( )k  to variances for k . When one converts variances of ln( )k  to variances

for k, the mean of ln( )k  affects the variance of k.  Specifically, for a single stochastic
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variable ln( )k  having a normal distribution with mean µ  and variance σ 2 , the mean and

variance for k are given, respectively, by

α µ σ= exp exp( ) ( / )2 2 , (2.57)

and

β α σ2 2 2 1= −( ( ) )exp . (2.58)

Thus, if X and Y are log-normal and ln( )X  and ln( )Y  have equal variances, but the mean

of ln( )X  is larger than the mean of ln( )Y , the variance for X will be larger than the

variance of Y.  This suggests that to compare the uncertainty in X to the uncertainty in Y

on a common scale, each variance should be divided by the mean (expected value)

squared, i.e., one can consider dimensionless variances.  Thus, in considering thickness-

averaged permeability, we divide the variances of k  by the square of the expected value

of k , to obtain the dimensionless variance.  Note this is similar to constructing dimen-

sionless confidence intervals, or confidence intervals in terms of percentages.

For the prior model, Eqs. 2.57 and 2.58 can be applied to compute the expected

value and variance for each k x yl i j( , )  variable.  Permeabilities are uncorrelated in the

vertical direction since each layer has its own two-dimensional variogram for log-

permeability.  Thus, the expected value and variance of the thickness-averaged permeabil-

ity can be calculated as

[ ] [ ]E k x y E k x yi j l i j
l

( , ) ( , )=
=
∑1

3
1

3

, (2.59)

and

[ ] [ ]Var k x y Var k x yi j l i j
l

( , ) ( , )=
=

∑1

9
1

3

,  (2.60)
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where E denotes expected value and Var denotes variance. The corresponding dimen-

sionless variances are given by

[ ] [ ]
[ ]Var k x y

Var k x y

E k x y
D i j

i j

i j

( , )
( , )

( , )
=

2
. (2.61)

After conditioning to hard data, the maximum a posteriori estimate of each gridblock

value of ln(k) gives the approximate a posteriori mean and the diagonal entries of the a

posteriori covariance matrix give the a posteriori variances. Since after conditioning to

hard data, log-permeabilities are still uncorrelated in the z-direction, we can use the same

procedure used for the prior model to compute the dimensionless variances

[ ]Var k x yDh i j( , ) , where the subscript Dh is used to indicate that these are dimensionless

variance after conditioning to hard data.

After conditioning to pressure data, however, permeabilities are correlated in the

vertical direction.  Thus, converting from variances for ln( )k  at each gridblock to

variances for k  is not straightforward.  To estimate expected values and variances for k ,

we generate N realizations of the rock property fields from Eq. 2.38 and compute

k x yr i j( , )  for each realization r at each areal location.  (In our case, we used N=50.)  We

then estimate the expected value and variance at each location from

[ ]E k x y
N

k x yi j r i j
r

N
( , ) ( , )=

=
∑1

1
, (2.62)

and

[ ] [ ]( )Var k x y
N

k x y E k x yi j r i j r i j
r

N

( , ) ( , ) ( , )=
−

−
=

∑1

1

2

1

. (2.63)
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We let [ ]Var k x yDp i j( , )  denote the corresponding dimensionless variances, where the

subscript p is used to denote that these are dimensionless variances after conditioning to

pressure data.  We use the notation VarDhp  to denote the dimensionless variances after

conditioning to both hard data and pressure data.  In the following, the terminology

normalized variances will refer to ratios of dimensionless variances.

The normalized variance VarDh / VarD is plotted in Fig. 2.13. Note this normalized

variance represents the dimensionless variance obtained by conditioning to only hard data

divided by the prior dimensionless variance.  Note  the  normalized variances  are  signifi-
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0.1 0.4 0.6 0.9

Fig. 2.13 - Average permeability; normalized dimensionless variance condi-
tioned only to hard data.
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Fig. 2.14 - Average permeability; normalized dimensionless variance condi-
tioned only to pressure data.
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Fig. 2.15 - Average permeability; normalized dimensionless variance condi-
tioned to hard data and pressure data.
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cantly less than 1 only at well locations and at the locations within the correlation  length

(variogram range) from each well. In other locations, the values are still close to or equal

to unity; i.e., the variance of the average permeability at those locations has not been

reduced by hard data.

Fig. 2.14 shows the normalized dimensionless variance VarDp / VarD. Note the

normalized variances are significantly less than unity near the active well and in the

interwell region between the active well and the two observation wells near the “left” of

the reservoir.  Comparing these results with those of Fig. 2.10, it is apparent that

incorporating pressure data as conditioning reduces the uncertainty in average permeabil-

ity much more than it reduces the uncertainty in individual layer values of permeability.

Fig. 2.15  shows a plot of VarDhp / VarD.  Note we have reduced these normalized

variances significantly below unity near the wells and the overall reduction in uncertainty is

greater than is achieved by conditioning to only pressure data. However, considering the

results of Figs. 2.10, 2.14, 2.11 and 2.15 together, it is clear that hard data is of signifi-

cantly more value for reducing the uncertainty in individual layer values of permeability

than it is in reducing the uncertainty in the thickness-averaged permeability.

Fig. 2.16 represents a plot of the “true” thickness averaged permeabilities.  Fig.

2.17 shows a plot of average permeabilities computed from the maximum a posteriori

estimate obtained by conditioning only to hard data.  Fig. 2.18 depicts the thickness-

averaged permeabilities computed from the maximum a posteriori estimate obtained by

conditioning only to pressure data. Fig. 2.19 shows the corresponding average permeabil-
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ities obtained from the maximum a posteriori estimate conditioned to hard data and

pressure data.  Average permeabilities obtained using only pressure data capture the main

trends  of the true average permeability better than the corresponding average computed

by conditioning only to hard data.  In terms of capturing the main features of the true

average permeability distribution (Fig. 2.16), the results obtained by conditioning to both

hard data and pressure data (Fig. 2.19) are slightly better than those obtained by condi-

tioning to only pressure data (Fig. 2.18).

2.5.5  Realizations

Up to now, we have focused on generating maximum a posteriori estimates of the

permeability  and  porosity  fields.  However,  our  final  objective  is  to  generate a set of
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Fig. 2.16 - Average permeability for true case.
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Fig. 2.17 - Average permeability from maximum a posteriori estimate,
conditioned to only hard data.
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Fig. 2.18 - Average permeability from maximum a posteriori estimate,
conditioned to only pressure data.
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Fig. 2.19 - Average permeability from maximum a posteriori estimate,
conditioned to hard data and pressure data.

realizations  of  the rock  property  fields  which  represent  a  proper  sampling  of  the a

posteriori probability density function. As shown in Eq. 2.38, we can generate realizations

from the maximum a posteriori estimate and Cholesky decomposition of the a posteriori

covariance matrix. However, the set of realizations generated in this way will only

represent an approximate sampling of the approximate pdf. Fig. 2.20 and 2.21 show one

realization of the log-permeability and porosity fields generated by this procedure after

conditioning to both hard data and pressure data. Comparing the realizations with the true

case (Fig. 2.2 and Fig. 2.3), we see that realizations exhibit some similar to the true case in

some locations. But, they also exhibit differences with the true case, because even through

the variance is reduced by conditioning to hard data and pressure data, the variance is still

high is some places.

Fig. 2.22 and 2.23 respectively show the log-permeability and porosity values from

50 realizations at specified gridblock. We select three gridblocks ((9, 9, 2), (8, 8, 2) and
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(6, 1, 2)) to show that how much variability there is in the realizations. As we can see

from Fig. 2.1, gridblock (9,9,2) pertains to the middle gridblock penetrated by observation

well 4, gridblock (8, 8, 2) is located between the active well (6,6) and observation well 4,

while gridblock (6,1,2)  is at an areal location adjacent to x-axis. We can see that the log-

permeability and porosity values of gridblock (9,9,2) are quite stable because after

conditioning to hard data, the posteriori variance is reduced to almost zero at the

observation well. The log-permeability and porosity values at gridblock (6,1,2) vary

significantly,  because  neither  pressure  data  nor  hard  data  at  wells is very sensitive to

2 . 5 3 . 8 5 . 2 6 . 5

Fig. 2.20 - Realization of log-permeability field.
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Fig. 2.21 - Realization of porosity field.
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Fig. 2.22 - Gridblock value of log-permeability in realizations.
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Fig. 2.23 - Gridblock value of porosity in realizations.

permeabilities  at  gridblocks  near  the model  boundaries, so conditioning  to  hard data

and pressure will not significantly reduce the variance. The log-permeability and porosity

values of gridblock (8,8,2) also vary significantly, however compared with the values at

gridblock (6,1,2), the variability is less, i.e., conditioning  to hard data and pressure data

will reduce the uncertainty in the rock property field in the inter-well regions.

2.5.6  Conditioning to Layer Flow Rates

As we have shown, wellbore pressures resolve the thickness averaged permeability

(see Fig. 2.16) much better than individual layer permeabilities (see Fig. 2.6). Similarly,

pressure data do not resolve gridblock porosity well and we can not determine individual

layer skin factors from pressure data. However, if the individual layer flow rate data are

available, we can also use this information to obtain reasonable resolution of individual
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layer properties. We assume that the variance of the layer flow rates measurement error is

σq
2 10= . .

Fig. 2.24 shows the maximum a posteriori estimate after conditioning to both

wellbore pressure and layer flow rates. No hard data were used as conditioning data. We

see that the layer log-permeability field represented by the maximum a posteriori estimate

is qualitatively similar to the true log-permeability field, Fig. 2.2. Fig. 2.25 shows the

average permeability from the maximum a posteriori estimate after conditioning to both

wellbore pressure and layer flow rates. We see that this average permeability qualitatively

matches that of the true case (Fig. 2.16), and is better than the average permeability field

obtained by conditioning only to pressure data (see Fig. 2.18).

3 . 5 4 . 3 5 . 1 5 . 9

Fig. 2.24 - Maximum a posteriori estimate of log-permeability fields, condi-
tioned  to wellbore pressure and layer flow rates.
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Fig. 2.25 - Average permeability from maximum a posteriori estimate,
conditioned to wellbore pressure and layer flow rates.

The following table compares the true skin factors with the maximum a posteriori

estimate obtained at the active well.

layer no.    true skin  
     factor

skin factor, conditioned
only to wellbore pressure

skin factor, conditioned to
pressure and layer flow rates

 layer 1      3.35                3.97                 3.99

 layer 2    -0.04                3.78                -1.37

 layer 3     6.34                2.01                 8.15

From the table, we see that by conditioning only to wellbore pressure, we can not estimate

skin factors very accurately. However, if the maximum a posteriori estimate is conditioned
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to both wellbore pressure and layer flow rates, the skin factors at the active well can be

estimated with reasonable accuracy. Theoretically, if we have recorded  the wellbore

pressure and layer flow rates at observation wells, we can estimate the observation well

skin factors. However, in this example, we found the skin factors at observation wells can

not be accurately estimated. More research is needed on this aspect.
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CHAPTER III

FLOW SIMULATION AND SENSITIVITY COEFFICIENT

CALCULATION

3.1 The Reservoir Model

We consider single-phase flow in a three-dimensional reservoir. We use a x-y-z

Cartesian coordinate system. In some cases, we restrict our attention to two dimensional

flow in the x and y directions. Reservoir boundaries are assumed to be no-flow boundaries

or constant pressure boundaries. The reservoir can contain any number of complete-

penetration or restricted-entry wells. Each well is produced at a specified rate or specified

bottom-hole pressure. Pressure buildup tests are simulated by changing the rate to zero

after producing for a specified time. Interference or observation wells are simulated by

setting the rate to zero at all times. In the three-dimensional case, even though the surface

rate at an observation well is zero, crossflow between reservoir layers may occur through

the observation well. Fluid properties are assumed to be known. We assume a slightly

compressible fluid of constant compressibility and viscosity. The permeability and porosity

fields are assumed to be heterogeneous. Permeability may be either isotropic or aniso-

tropic, but we assume a diagonal permeability tensor; i.e., the principal permeabilities are

aligned with the coordinate axes. Except in special cases, e.g., vertical interference tests,
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pressure data can not be expected to yield good estimates of vertical permeability.  Thus in

our case, we always require that k a k kz x y= , for the anisotropic case, where a is a

constant. This means the vertical permeability field is determined directly from the kx  and

ky  permeability fields. Normally, we set a = 01. . For the isotropic case, k k k kx y z= = = ,

i.e., there is only one permeability value to estimate at each grid block. Skin factors vary

from well to well, and may even vary from gridblock to gridblock in the vertical direction.

Pressure responses are obtained by a finite-difference simulator, i.e., a simulator is

used to generate synthetic multiwell pressure data, where wellbore pressure is related to

the well gridblock pressure by Peaceman's method43. At each well, the pressure at each

gridblock penetrated by the well is related to the wellbore pressure by formally applying

the two-dimensional Peaceman equation at each vertical gridblock. Since the rate of

production from each of these vertical gridblocks (referred to here as gridblock or “model

layer” rates) is unknown, the individual Peaceman equations can not be directly used.

However, by summing the set of Peaceman’s equations, one obtains a relation between the

pressures in gridblocks penetrated by the well, the wellbore pressure and total well flow

rate. Then the matrix equations relating well gridblock pressures to wellbore pressures can

be constructed. These equations are solved for gridblock pressures and wellbore pressures

simultaneously and then Peaceman’s equation can be applied to calculate individual layer

flow rates. Fundamentally, our procedure assumes that at any depth, flow in the neighbor-

hood of the wellbore should be  primarily radial. Details regarding the simulator are given

below.
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3.2 Three Dimensional Simulation

3.2.1 Flow Equation for 3-D Problem

For the three-dimensional single-phase flow problem considered here we neglect

gravity effects, so the governing flow equation can be written in oil-field units as follows:
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(3.1)

for 0 0 0< < < < < <x L y L z Lx y z, ,  and t > 0,where L Lx y, and Lz  are the dimensions

of the reservoir. Throughout,  c1
31127 10= × −. and c ft RB2

35615= . / and Nw  denotes

the number of wells. The inner sum in Eq. 3.1 is over the number of gridblocks penetrated

by well m. In Eq. 3.1, p is the pressure at (x, y, z) and time t, p p x y z t= ( , , , ) , kx  is x-

directional permeability, k k x y zx x= ( , , ) , similarly for ky and kz . The terms δ ( )x xim
− ,

δ ( )y yjm
−  and δ ( )z zlm

−  denote Dirac delta functions in units of ft-1. All wells are

assumed to be vertical.  The areal location of well m is specified by ( , )x yi jm m
 and may be

completed over any interval (or set of intervals) in the vertical direction.  The term

� ( , , , )q x y z tm i j lm m m
 is the source or sink term at time t at well m at the vertical location

z zlm
= in units of RB/D. If well m is completed over the interval h z hb t≤ ≤ , then

integrating � ( , , , ) ( )q x y z t z zm i j l lm m m m
δ −  over this interval gives q x y tm i jm m

( , , )  which is

the total flow rate of well m in units of reservoir barrels per day. The rates are sandface
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flow rates; however, we assume that wellbore storage effects are negligible so sandface

and surface flow rates are equal.  It is important to note that if well m is an observation

well, i.e., shut-in at the surface at all times, then q x y tm i jm m
( , , ) = 0  but � ( , , , )q x y z tm i j lm m m

may not be zero at any vertical location since crossflow can occur through the observation

well. For production at  well m, qm is positive, while for injection, qm is negative. 

We let

{ }R x y z x L y L z Lx y z= < < < < < <( , , )| , ,0 0 0 ,               (3.2)

i.e., R is the region in three-dimensional space occupied by the reservoir. We let ∂R

denotes the boundary of R. Assuming an uniform initial pressure, pi , the initial boundary

condition is then specified by

p x y z pi( , , , )0 =  ,            (3.3)

for (x, y, z) in R.

For no-flow boundary conditions, we have

∂
∂

p x y z t

n

( , , , )
= 0 , (3.4)

for (x, y, z) at ∂R and t > 0 . Eq. 3.4 simply specifies that the normal derivative is zero on

all boundaries, i.e., all boundaries are assumed to be no flow boundaries.

In case of constant pressure boundary, the boundary condition equation is

p x y z t pb( , , , )= ,                               (3.5)

for (x, y, z) at ∂R and t > 0 , where pb  is pressure at the boundary.

3.2.2 Finite Difference Equations
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In the following, we present the difference equations for the initial-boundary-value

problem (IBVP) specified by Eqs. 3.1 to 3.5. A purely implicit seven-point difference

scheme is used44, 45.

Differencing Eq. 3.1 at ( , , )x y zi j k  and multiplying by ∆ ∆ ∆x y zi j k , where

∆ ∆x yi j,  and ∆zk  are the dimensions of the gridblock centered at ( , , )x y zi j k  gives
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i j k
n

k k
i j z i j k

i j k
n

i j k
n

k k
i j k
n

i j k t i j k
n

i j k
n

n

, , , /
, , , ,

, , , /
, , , ,

, ,

, , , , , ,

�1 2
1

1
1 2

1

1

2

1φ


∆ ∆ ∆x y zi j k .

          (3.6)

There are Nx  gridblocks in the x-direction, Ny  gridblocks in the y-direction and

Nz  gridblocks in the z-direction with gridblock centers given by ( , , )x y zi j k  for

i Nx= 1 2, ,..., , j N y= 1 2, ,..., , and k Nz= 1 2, ,..., , where x x xNx1 2< < <... ,

y y yNy1 2< < <... , and z z zNz1 2< < <... .

We let xi+1 2/  for i N x= 01, ,...,  denote the gridblock boundaries in the x-direction

with x1 2 0/ =  and x LN xx + =1 2/  so the  x-direction widths of gridblocks are

∆x x xi i i= −+ −( ) // /1 2 1 2 2  for i Nx= 1 2, ,..., . We let y j+1 2/  for j N y= 0 1, ,...,  denote the

gridblock boundaries in the y-direction with y1 2 0/ =  and y LN yy + =1 2/  so the lengths of
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gridblocks in the y-direction are ∆y y yj j j= −+ −( ) // /1 2 1 2 2  for j N y= 1 2, ,..., . Gridblock

boundaries in the z-direction and the ∆z sk
' 's are defined in a similar way.

We define x, y and z direction transmissibities by

Tx
C k x y z y z

x xi j k
x i j k j k

i i
+

+

+
=

−1 2
1 1 2

1
/ , ,

/( , , )∆ ∆
 ,   (3.7)

for i N x= −1 2 1, ,...,  and all j and k,

Tx Tyj k N j kx1 2 1 2 0/ , , / , ,= =+ ,                                               (3.8)

for all j and k;

Ty
C k x y z x z

y yi j k
y i j k i k

j j
, / ,

/( , , )
+

+

+
=

−1 2
1 1 2

1

∆ ∆
,                                  (3.9)

for all j N y= −1 2 1, ,...,  and all i and k,

Ty Tyi k i N ky, / , , / ,1 2 1 2 0= =+ ,                                              (3.10)

for all i and k;

Tz
C k x y z x y

z zi j k
z i j k i j

k k
, , /

/( , , )
+

+

+
=

−1 2
1 1 2

1

∆ ∆
,                                 (3.11)

for j N z= −1 2 1, ,...,  and all i and j,

Tz Tzi j i j N z, , / , , /1 2 1 2 0= =+ ,                                              (3.12)

for all i and j. Throughout we use the following notation:

k k x y zx i j k x i j k, , , ( , , )= ,                                  (3.13)

and  

    k k x y zy i j k y i j k, , , ( , , )= .                                            (3.14)
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Permeabilities at gridblock interfaces are computed by the standard harmonic average, for

example, 

k
x x k k

k x k xx i j k
i i x i j k x i j k

x i j k i x i j k i
, / , ,

, , , , , ,

, , , , , ,

( )
+

+ +

+ +
=

−
+1 2

1 1

1 1

2

∆ ∆
.  (3.15)

Harmonic average permeabilities in the y and z direction are defined in a similar way.

In finite difference techniques, we generate an  approximate solution of the initial-

boundary value problem (Eqs. 3.1 to 3.5) at each gridblock at a set of time steps, tn ,

n = 1 2, ,... where by definition, t0 0=  and ∆t t tn n n= − −1 so t t tn n n= +−1 ∆  for

n = 1 2, ,... . We let pi j k
n
, ,  denote the pressure obtained at the gridblock centered at

( , , )x y zi j k  by solving the system of finite difference equations at time tn . For all (i, j, k),

we let

V
x y z c x y z

ti j k
n i j k t i j k

n
, ,

( , , )

.
=

φ ∆ ∆ ∆
∆5615

.                                           (3.16)

We define

T Tx Tx Ty Ty Tz Tz Vi j k i j k i j k i j k i j k i j k i j k i j k
n

, , / , , / , , , / , , / , , , / , , / , ,.= + + + + + ++ − + − + −1 2 1 2 1 2 1 2 1 2 1 2 ,  

(3.17)

for i Nx= 1 2, ,..., , j N y= 1 2, ,...,  and k Nz= 1 2, ,..., .

With the preceding notation, the implicit finite difference equation at any gridblock

can be written as

Tz p Ty p Tx p T p

Tx p Ty p Tz p q V p

i j k i j k
n

i j k i j k
n

i j k i j k
n

i j k i j k
n

i j k i j k
n

i j k i j k
n

i j k i j k
n

i j k
n

i j k
n

i

, , / , , , / , , , / , , , , , , , ,

/ , , , , , / , , , , , / , , , , , , ,

− − − − − −

+ + + + + +

+ + −

+ + + − = −
1 2 1 1 2 1 1 2 1

1 2 1 1 2 1 1 2 1 j k
n

, .−1
            (3.18)
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In Eq. 3.18, qi j k
n
, ,  (RB/D) represents the internal sink or source term at time tn  in

gridblock (i, j, k) and is nonzero only if the gridblock is penetrated by a well. When the

gridblock is penetrated by a well, qi j k
n
, ,  represents the total sandface flow rate into or out

of the well over the interval z z zk k− +≤ ≤1 2 1 2/ / . At any well, only the total flow rate will be

known; thus, the individual gridblock source and skin terms must be obtained as part of

the solution procedure. Also, Eq. 3.16 explicitly involves only gridblock pressures,

whereas, we wish to work in terms of wellbore pressures. Our procedures for resolving

individual gridblock flow rates and computing wellbore pressures are presented immedi-

ately below.

3.2.3 Relating Wellbore Pressure and Gridblock Pressures

We consider  a well located at a position with (x, y) coordinates given by ( , )x yi j ,

with the well completed in associated vertical gridblocks centered at ( , , )x y zi j k  for

k l l l= +1 1 1 2, ,..., ) . We denote the total sandface flow rate at time tn  by qi j
n
,  with the

individual source or sink terms given by qi j k
n
, ,  for k l l l= +1 1 1 2, ,..., ) , i.e., qi j k

n
, ,  gives the

source or sink term for gridblock (i, j, k). We relate the individual source and sink terms to

the wellbore pressure by applying Peaceman's equations43 at each location, i.e.,

q WI p pi j k
n

k i j k
n

wf
n

, , , ,( ) ( )= − ,                                                (3.19)

where

( )WI
C z k k

r r sk

k x i j k y i j k

ok w k

=
+













2 1π
µ

∆ , , , , , ,

(ln[ / ] )
.                                    (3.20)
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Here, C1
31127 10= × −. , rw  is the wellbore radius of the well (wellbore radii may vary

from well to well) and

r

x
k

k

y

x

k k
o k

i
x i jk

y i j k

j

i

x i j k y i j k
,

, ,

, , ,

, , , , , ,

.

=

+








+

0 28073 1

1

2

∆
∆
∆ .                               (3.21)

In Eq. 3.20, we have assumed the well is perforated throughout the height of each vertical

gridblock.  If it is perforated over the fraction α  of the gridblock associated with zk , then

in Eq. 3.20, ∆zk  should be replaced by α∆zk . In Eq. 3.20, sk  represents an effective skin

for the well gridblock centered at ( , , )x y zi j k , i.e., sk  is the skin factor for ``layer'' k.

The individual gridblock rates must sum to the total rate; i.e, we must have

q q WI p pi j
n

i j k
n

k i j k
n

k l

l

k l

l

wf
n

, , , , ,( ) ( )= = −
==
∑∑

1

2

1

2

.                                  (3.22)

Using Eq. 3.19 in Eq. 3.18, we have

Tz p Ty p Tx p T WI p

Tx p Ty p Tz p WI p

i j k i j k
n

i j k i j k
n

i j k i j k
n

i j k i j k i j k
n

i j k i j k
n

i j k i j k
n

i j k i j k
n

i j k wf i

, , / , , , / , , , / , , , , , , , , , ,

/ , , , , , / , , , , , / , , , , ,

( )− − − − − −

+ + + + + +

+ + − +

+ + + +
1 2 1 1 2 1 1 2 1

1 2 1 1 2 1 1 2 1 ,

, , , , .

j
n

i j k
n

i j k
nV p= − −1

(3.23)

for 1≤ ≤i Nx , 1≤ ≤j N y  and 1≤ ≤k Nz . Eq. 3.22 can be written as

W I p W I p qi j k i j k
n

i j k
k l

l

k l

l

wf i j
n

i j
n

, , , , , , , , , .−








 =

==
∑∑

1

2

1

2
 (3.24)

Combining Eqs. 3.23 and  3.24, we obtain a matrix equation for the flow problem

with well rates specified. By solving the equations, we can obtain gridblock pressure

pi j k
n
, , and wellbore pressure pwf i j

n
, , . With known wellbore pressure and gridblock

pressure, “layer” flow rates can be computed with Eq. 3.19.
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            For a problem with wellbore pressures specified, we can rewrite Eq. 3.23 as:

T p T p T p T WI p

T p T p T p

z i j k i j k
n

y i j k i j k
n

x i j k i j k
n

i j k i j k i j k
n

x i j k i j k
n

y i j k i j k
n

z i j k i

, , , , , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , ,

( )− −
+

− −
+

− −
+ +

+ +
+

+ +
+

+

+ + − +

+ + +

1
2

1
2

1
2

1
2

1
2

1
2

1
1

1
1

1
1 1

1
1

1
1

, , , , , , , , , , .j k
n

i j k
n

i j k
n

i j k wf i j
nV p WI p+

+ += − −1
1 1

       ( 3.25 )

Eq. 3.25 can be solved individually for gridblock pressures. Then Eqs. 3.19 and 3.22 can

be applied to compute flow rates.

3.3 Theory for Estimating Sensitivity Coefficients

In this section, we present the equations for computing sensitivity coefficients,

which are used when applying the Gauss-Newton method to estimate the most probable

model. Specifically, we need sensitivity coefficients at all wells where we measure

wellbore pressure and use this pressure data as conditioning data.  If p twf ( )  denotes the

pressure response at a well for a given reservoir description, then the relevant sensitivity

coefficients at any time t, are ∂ ∂φp twf l m n( ) , , , ∂ ∂p t kwf x l m n( ) , , , , ∂ ∂p t kwf y l m n( ) , , , ,

∂ ∂p t kwf z l m n( ) , , ,  for all (l, m, n) and ∂ ∂p t swf k( ) . The first three expressions for

sensitivity coefficients give a measure of how strongly a change in a rock property in the

gridblock centered at ( , , )x y zl m n  will affect the wellbore pressure at time t and the last

expression gives a measure of how much the wellbore pressure will change due to a

change in one of the well's  ``layer'' skin factors.

3.3.1  Extension of Carter et al.29 Method for Sensitivity Coefficients

 

3.3.1.1  Leibnitz rule and Green’s theorem
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The Leibnitz rule can be stated as follows:

if f x y( , )  and 
∂

∂
f x y

x

( , )
 are continuous on [ ]a x b x( ), ( ) , then

∂
∂

∂
∂x

f x y dy f x b x
db x

dx
f x a x

da x

dx

f x y

x
dy

a x

b x

a x

b x

( , ) ( , ( ))
( )

( , ( ))
( ) ( , )

( )

( )

( )

( )

= − +∫ ∫ . (3.26)

Green’s theorem (divergence theorem) can be stated as follows:

let f  be a vector field defined on domain D with boundary given by S, then

∇ = ⋅∫∫∫ ∫∫fdxdydz f nds
D S

&
, (3.27)

where 
&
n  is the unit vector outward normal to S.

3.3.1.2 Generalized Reciprocity Principle

For completeness, we outline the Carter et al. derivation of a generalized reciproc-

ity principle.

Consider a problem

[ ]C
k p X s V

p X s

s
Q X sd

d1
00

0

µ
∂

∂
∇ ⋅ ∇ − =( , )

( , )
( , ) , on R, (3.28a)

p X sd0
0 0( , )= = , (3.28b)

∇ ⋅ =p X s nd0
0( , )

& , on ∂R, (3.28c)

where R is the domain of the problem, ∂R denotes the domain boundary, pd0
 is the

pressure drop solution, X x y z R= ∈( , , )   and s represents the time variable.

Consider another problem
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[ ]C
k p X u V

p X u

u
Q X ud

d1
11

1

µ
∂

∂
∇ ⋅ ∇ − =( , )

( , )
( , ) , on R, (3.29a)

p X ud1
0 0( , )= = , (3.29b)

∇ ⋅ =p X u nd1
0( , )

& , on ∂R, (3.29c)

where pd1
 is the pressure drop solution for this problem and u represents the time

variable. Making the change of variable u t s= − , we have p X u p X t sd d1 1
( , ) ( , )= −  and

∂
∂

∂
∂

∂
∂

∂
∂

p

u

p

s

s

u

p

s
d d d1 1 1= = − . (3.29d)

Then,  Eq. 3.29a-c becomes

[ ]C
k p X t s V

p X t s

u
Q X t sd

d1
11

1

µ
∂

∂
∇ ⋅ ∇ − +

−
= −( , )

( , )
( , ) ,  (3.30a)

p X t sd t s1 0 0( , )|− =− = , (3.30b)

∇ − ⋅ =p X t s nd1
0( , )

& . (3.30c)

Multiply Eq. 3.28a by p X t sd1
( , )− and (3.30a) by p X sd0

( , )  to obtain

[ ]C
p X t s k p X s p X t s V

p X s

s

p X t s Q X s

d d d
d

d

1

0

1 0 1

0

1

µ
∂

∂
( , ) ( , ) ( , )

( , )

( , ) ( , ),

− ∇ ⋅ ∇ − −

= −
(3.31)

 
[ ]C

p X s k p X t s p X s V
p X t s

s

p X s Q X t s

d d d
d

d

1

1

0 1 0

1

0

µ
∂

∂
( , ) ( , ) ( , )

( , )

( , ) ( , ).

∇ ⋅ ∇ − +
−

= −
 (3.32)

Subtracting Eq. 3.31 from Eq. 3.32 and integrating over time and space, we have

( )p X s Q X t s p X t s Q X s dsdX S Sd d

t

R
0 11 0

0

1 2( , ) ( , ) ( , ) ( , )− − − = +∫∫∫∫ , (3.33)

where
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[ ] [ ][ ]S
C

p X s k p X t s p X t s k p X s dsdXd d d d

t

R

1
1

0
0 1 1 0

= ∇ ⋅ ∇ − − − ∇ ⋅ ∇∫∫∫∫µ
( , ) ( , ) ( , ) ( , )    

[ ] [ ][ ]= ∇ ⋅ ∇ − − − ∇ ⋅ ∇∫∫∫∫C
ds p X s k p X t s p X t s k p X s dXd d d d

t

R

1

0
0 1 1 0µ
( , ) ( , ) ( , ) ( , ) ,      (3.34)

S p X s V
p X t s

s
p X t s V

p X s

s
dsdXd

d
d

d
t

R

2

0
0

1

1

0=
−

+ −








∫∫∫∫ ( , )

( , )
( , )

( , )∂
∂

∂
∂

. (3.35)

We can show that

p X t s
p X s

s
ds

p X t s p X s p X s
p X t s

s
ds

p X s
p X t s

s
ds

d
d

t

d d

t

d
d

t

d
d

t

1

0

1 0 0

1

0

1

0

0
0

0

0

( , )
( , )

( , ) ( , ) ( , )
( , )

( , )
( , )

.

−

= − −
−

= −
−

∫

∫

∫

∂
∂

∂
∂

∂
∂

(3.36)

Using Eq. 3.36 in Eq. 3.35 gives S2 0= .

We have the following vector calculus identity:

b a c ab c a c b∇ ⋅ ∇ = ∇ ⋅ ∇ − ∇ ⋅∇( ) ( ) . (3.36a)

Using Eq. 3.36a in Eq. 3.34, we obtain

[ ]( ) [ ][S
C

ds k p X s p X t s k p X t s p X sd d d d

R

t

1
1

0
0 1 1 0

= ∇ ⋅ ∇ − − ∇ − ⋅∇∫∫∫∫µ
( , ) ( , ) ( , ) ( , )

       [ ]( ) [ ] ]− ∇ ⋅ − ∇ − ∇ ⋅∇ −k p X t s p X s k p X s p X t s dXd d d d1 0 0 1
( , ) ( , ) ( , ) ( , )               

[ ] [ ][ ]= ∇ ⋅ ∇ − − − ∇∫∫∫∫C
ds k p X s p X t s k p X t s p X s dXd d d d

R

t
1

0
0 1 1 0µ
( , ) ( , ) ( , ) ( , ) .         (3.37)

Applying Green’s Theorem (Eq. 3.27), Eq. 3.37 becomes

[ ] [ ][ ]S
C

ds k p X s p X t s n k p X t s p X s n d Rd d d d

R

t

1
1

0
0 1 1 0

= ∇ − ⋅ − − ∇ ⋅∫∫∫µ
∂

∂

( , ) ( , ) ( , ) ( , )
& &

. (3.38)
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Applying boundary conditions (3.28c) and (3.30c) in Eq. 3.38, we obtain S1 0= .

Recalling that we also have S2 0= , Eq. 3.33 becomes

( )p X s Q X t s p X t s Q X s dsdXd d

t

R
0 11 0

0

0( , ) ( , ) ( , ) ( , )− − − =∫∫∫∫ , (3.39)

or

p X s Q X t s dsdX p X t s Q X s dsdXd

t

R

d

t

R
0 11

0

0

0

( , ) ( , ) ( , ) ( , )− = −∫∫∫∫ ∫∫∫∫ . (3.40)

Eq. 3.40 is the generalized reciprocity theorem.

3.3.1.3  Sensitivity to Permeability Field

The fluid flow in the reservoir is described by the following IBVP (initial boundary

value problem) 

[ ]C
k p V

p

s
Q1

µ
∂
∂

∇ ⋅ ∇ − = , on R, (3.41a)

p ps i| = =0 , (3.41b)

∇ ⋅ =p n
&

0, on ∂R, (3.41c)

where p p x y z s= ( , , , )  is the pressure at (x, y, z) and time s, pi  is the initial reservoir

pressure and Q includes all well sources and sinks term in the reservoir.

Let p p pd i= −  be the pressure drop solution, then the above problem can be

written as

[ ]C
k p V

p

s
Qd

d1

µ
∂
∂

∇ ⋅ ∇ − = − , on R, (3.42a)

pd s| = =0 0 , (3.42b)
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∇ ⋅ =p nd
&

0, on ∂R. (3.42c)

Consider the same problem with a small perturbation in the permeability field

[ ]C
k k p V

p

s
Qd

d1

µ
δ

∂
∂

∇ ⋅ + ∇ − = − , on R, (3.43a)

pd s| = =0 0 , (3.43b)

∇ ⋅ =p nd
&

0, on ∂R, (3.43c)

where

[ ]δ
δ

δ
δ

k

k

k

k

x

y

z

=
















,                  (3.44a)

represents a small perturbation of the permeability tensor [ ]k ,

  [ ]k

k

k

k

x

y

z

=
















,             (3.44b)

pd  and  Q , respectively,  represent the resulting pressure drop solution and distribution

of sources and sinks due to the small perturbation in the permeability field. Note that even

through the total flow rate at each well does not change when the permeability field is

perturbed, the vertical distribution of fluxes along the well may change.

The total pressure differential due to the perturbation is given by

dp p pd d d= − . (3.44)

We expand Eq. 3.43a as

 [ ] [ ]C
k p

C
k p V

p

s
Qd d

d1 1

µ µ
δ

∂
∂

∇ ⋅ ∇ + ∇ ⋅ ∇ − = − . (3.45)

Subtracting 3.42a from Eq. 3.45 and using Eq. 3.44, we obtain
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[ ] [ ]C
k dp V

dp

s

C
k p Q Qd

d
d

1 1

µ
∂

∂ µ
δ∇ ⋅ ∇ − = − ∇ ⋅ ∇ − −( ) , (3.46a)

dpd s| = =0 0 , (3.46b)

∇ ⋅ =dp nd
&

0, on ∂R. (3.46c)

Define a functional F by

F k G x y z dp x y z t dxdydzn d

Tn

( ) ( , , ) ( , , , )= ∫∫∫ , (3.47)

where Tn  is a subregion of the reservoir, T Rn ∈ , and define Gn  on R  so that

G x y zn ( , , ) ,= 0  for (x, y, z) not contained in Tn  and G x y z dxdydzn

Tn

( , , )∫∫∫ = 1.0. For our

problem, it is convenient to let Tn  be any gridblock even through we are now considering

the continuous problem. Eq. 3.47 actually gives an average value of  p x y z td ( , , , )  on Tn . 

If we let Tn  be the gridblock centered at ( , , )x y zi j k  and choose

G x y z x x y y z zn i j k( , , ) ( ) ( ) ( )= − − −δ δ δ , then F k dp x y z td i j k( ) ( , , , )= . Carter et al.

actually work in terms of the Frechet derivative and thus need to define this functional. In

our work, we will derive formulas for sensitivity coefficients using basic calculus

principles.

Consider another pressure drop problem represented by

[ ]C
k p V

p

s
H t G x y znd

nd
n

1

µ
∂

∂
∇ ⋅ ∇ − = − ( ) ( , , ) , on R, (3.48a)

dpnd s| = =0 0 , (3.48b)

∇ ⋅ =p nnd
&

0, on ∂R, (3.48c)
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where H t( )  is the Heaviside function

H t
t

t
( )

, ;

, .
=

<
>





0 0

1 0
(3.49)

Note if G x y z x x y y z zn i j k( , , ) ( ) ( ) ( )= − − −δ δ δ , then the sink term for this problem

corresponds to the removal of 1 bbl/day of fluid from gridblock Tn . If H t( )  is replaced by

δ ( )t , this would be a Green’s function problem.

Applying the generalized reciprocity theorem Eq. 3.40 to problems Eq. 3.46 and

Eq. 3.48, we obtain

[ ]

− −

= − ∇ ⋅ ∇ −

∫∫∫∫

∫∫∫∫

G x y z H t s dp x y z t dsdxdydz

C
k p x y z s p x y z t s dsdxdydz

n d

t

R

t

R

d nd

( , , ) ( ) ( , , , )

( , , , ) ( , , , )

0

1

0
µ

δ

( )− − −∫∫∫∫ Q x y z s Q x y z s p x y z t s dsdxdydz
t

R

nd( , , , ) ( , , , ) ( , , , )
0

. (3.50)

Since s t< , in the first integral, H t s( )− = 1. Differentiating Eq. 3.50 with respect to time

using Leibnitz rule (Eq. 3.26) gives

[ ]

[ ] ]

G x y z dp x y z t dxdydz

C
k p x y z s

t
p x y z t s ds

k p x y z s p x y z t s dxdydz

n d

R

t
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R

d nd s t

( , , ) ( , , , )

( , , , ) ( , , , )

( , , , ) ( , , , )|

∫∫∫

∫∫∫∫= ∇ ⋅






∇ −

+ ∇ ⋅ ∇ − =

1

0
µ

δ
∂
∂

δ

( )

( ) ]

+ −






−

+ − −

∫∫∫∫

=

Q x y z s Q x y z s
t

p x y z t s ds

Q x y z s Q x y z s p x y z t s dxdydz

t

nd

R

nd s t

( , , , ) ( , , , ) ( , , , )

( , , , ) ( , , , ( , , , )| .

0

∂
∂   (3.51)
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But, p x y z t s p x y znd s t nd( , , , )| ( , , , )− = == 0 0  and G x y zn( , , ) = 0 for (x, y, z) not in Tn , so

Eq. 3.51 reduces to

[ ]

G x y z dp x y z t dxdydz

C
k p x y z s

t
p x y z t s dsdxdydz

n d

T

t

d nd

R

n

( , , ) ( , , , )

( , , , ) ( , , , )

∫∫∫

∫∫∫∫= ∇ ⋅ ∇ −1

0
µ

δ ∂
∂

( )+ − −∫∫∫∫ Q x y z s Q x y z s
t

p x y z t s dsdxdydz
t

nd

R

( , , , ) ( , , , ) ( , , , )
0

∂
∂

. (3.52)

Adding and subtracting term [ ]C
k p x y z s

t
p x y z t s dsdxdydz

t

d nd

Tn

1

0
µ

δ
∂
∂

∇ ⋅ ∇ −∫∫∫∫ ( , , , ) ( , , , )

to the right-hand side of Eq. 3.52. We have 

[ ] ( )

[ ]

G x y z dp x y z t dxdydz

C
k p x y z s p x y z s

t
p x y z t s dsdxdydz

C
k p x y z s

t
p x y z t s dsdxdydz

n d

T

t

d d nd

R

t
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R

n

( , , ) ( , , , )

( , , , ) ( , , , ) ( , , , )

( , , , ) ( , , , )

∫∫∫

∫∫∫∫
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= ∇ ⋅ ∇ − −

+ ∇ ⋅ ∇ −

1

0

1

0

µ
δ

∂
∂

µ
δ

∂
∂

( )+ − −∫∫∫∫ Q x y z s Q x y z s
t

p x y z t s dsdxdydz
t

nd

R

( , , , ) ( , , , ) ( , , , )
0

∂
∂

.              (3.53)

As ( )δk p pd d→ − →0 0, , i.e. ( )p p kd d− = Ο δ , Thus, following Carter et al., by

ignoring the second order perturbations, Eq. 3.53 can be written as

[ ]

G x y z dp x y z t dxdydz

C
k p x y z s

t
p x y z t s dsdxdydz

n d

T

t

d nd

R

n

( , , ) ( , , , )

( , , , ) ( , , , )

∫∫∫

∫∫∫∫= ∇ ⋅ ∇ −






1
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∂
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  ( )+ − −∫∫∫∫ Q x y z s Q x y z s
t

p x y z t s dsdxdydz
t

nd

R

( , , , ) ( , , , ) ( , , , )
0

∂
∂

, (3.53a)
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Using the vector identity, Eq. 3.36a, with b
t

p x y z t snd= −
∂
∂

( , , , ) , [ ]a k= δ  and c pd= ,

we can rewrite Eq. 3.53a as

[ ]

[ ] ]

G x y z dp x y z t dxdydz

C
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t
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∂
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.            (3.53b)

Applying Green’s Theorem (Eq. 3.27)  to the first term on the right-hand side of Eq.

3.53b yields

[ ]
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∇ ⋅ − ∇
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

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&

0

       (3.54)

where the last equality follows from the boundary condition, Eq. 3.42c. Thus, Eq. 3.53b

reduces to
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G x y z dp x y z t dxdydz

C
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+ −∫∫∫∫ dQ x y z s
t

p x y z t s dsdxdydz
R

t

nd( , , , ) ( , , , )
0

∂
∂

, (3.55)

where we have used dQ x y z s Q x y z s Q x y z s( , , , ) ( , , , ) ( , , , )= − .

If we interpret Tn  as gridblock “n” centered at ( , , )x y zi j k  and divide our reservoir

into gridblocks T m Mm, , ,...,= 1 2  (M is the total number of gridblocks in reservoir), set

Gn  equals to the delta function centered at the gridblock, and expand the differential p in

terms of the permeability differentials, Eq. 3.55 becomes
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By definition, if we discretize the reservoir into gridblocks, the total differential of pd  is

given by

dp
p

k
k

p

k
k
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k
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∂
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δ
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,
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. (3.55b)
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Comparing Eq. 3.55a with 3.55b, we see that

∂
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,    (3.56a)
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,            (3.56c)

for m M= 1 2, ,..., , where M is the total number of gridblocks in the reservoir.

Let us examine the second term in Eqs. 3.56a-3.56c. We can see the second term

is related to the flow rate change due to the permeability perturbation. We define

 I T
Q x y z s

t
p x y z t s dsdxdydzn T

T

t

nd

R
m

m

( , )
( , , , )

( , , , )α
∂

∂α
∂
∂

= −∫∫∫∫
0

, (3.57)

where α  represents k kx y, or kz . As we presented at beginning of this subsection, Q

contains the all source/sink terms used in the actual problem, i.e.,

Q x y z s q x y z s x x y y z zi j l
lw

i j lw w w

w

w w w
( , , , ) �( , , , ) ( ) ( ) ( )= − − −∑∑ δ δ δ . (3.57a)

Using Eq. 3.57a in Eq. 3.57, we obtain
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.                   (3.58)

We can evaluate this flow change related term,I Tn Tm
( , )α , in different cases.

Two-dimensional case

            In a two-dimensional reservoirs, the flow rate at each well is fixed and there is no

any change in flow rate due to parameter perturbation, i.e., 
∂

∂αT
i j l

m

w w w
q x y z�( , , ) = 0 .

Thus, I Tn Tm
( , )α = 0 and Eqs 3.56a -3.56c reduce to following equations:

∂
µ

∂
∂

∂
∂

∂
∂

p T t

dk

C

x t
p x y z t s

x
p x y z s dsdxdydzd n

x T

t

nd d

Tm m

( , )
( , , , ) ( , , , )

,

= − −∫∫∫∫1

0
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0

, (3.59c)

Three-dimensional case

For three dimensional reservoirs, if there is sufficient vertical communication (kz

is large enough), so that 
∂
∂ t

p x y z t snd i j lw w w
( , , , )−  does not vary with depth, then
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∂
∂

∂
∂t

p x y z t s
t

p x y z t snd i j l nd i j ww w w w w
( , , , ) ( , , , )− = − , (3.60a)

for l l l lw = +1 1 1 2, ,... , where zw  denotes an arbitrarily fixed datum. (Recall that pnd  is the

solution to a single well problem).

Then, Eq. 3.58 can be written as
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      (3.60b)

Note in Eq. 3.60b q x yi jw w
( , )  is the flow rate of well w and is fixed, so 

∂
∂αT

i j
m

w w
q x y( , ) = 0 . Thus, for a three-dimensional reservoir with good vertical

communication, the sensitivity coefficient to permeability field can be computed from Eqs.

3.56a-3.56c.

Layered reservoir case

 In a layered reservoir case, with no communication between layers, we expect the correction

terms, I Tn Tm
( , )α , to be more important. However, if the reservoir properties of different

layers are quite close, then we may still have I Tn Tm
( , )α ≈ 0 ,  so Eqs. 3.56a-3.56c apply.

If the reservoir properties vary widely from layer to layer with no vertical commu-

nication between layers within the reservoir, the pressure in different layers will be quite
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different. In this case, if there exists an observation well, then there will be a strong cross

flow through the wellbore at observation well. Ignoring I Tn Tm
( , )α , in this case, will

underestimate the sensitivity coefficients. However, we have no easy way to estimate this

term other than using the direct method to compute the sensitivity of layer flow rates to

the permeability field. However, computations indicate that ignoring the term  I Tn Tm
( , )α

when estimating sensitivity coefficients only has a significant effect when computing the

sensitivity of an observation well pressure to the permeability in a gridblock penetrated by

an active well. In this case, the active well rates, and hence the observation well rates, are

quite sensitive to the permeabilities in active well gridblocks.

3.3.1.4 Sensitivity to Porosity Field

Similar to the last subsection, we can derive the sensitivity coefficient of gridblock

pressure with respective to porosity.

We consider the same problem described in Eq. (3.42) , i. e.,

[ ]C
k p V

p

s
Qd

d1

µ
∂
∂

∇ ⋅ ∇ − = − on R, (3.61a)

pd s| = =0 0 , (3.61b)

∇ ⋅ =p nd
&

0, on ∂R. (3.61c)

In Eq. 3.61a, V is defined as V
ct=

φ
5 615.

.

Consider the related problem with a small perturbation on V , i.e.,
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[ ] ( )C
k p V dV

p

s
Qd

d1

µ
∂
∂

∇ ⋅ ∇ − + = − , on R, (3.62a)

pd s| = =0 0 , (3.62b)

∇ ⋅ =p nd
&

0, on ∂R. (3.62c)

Here, pd  and  Q , respectively,  represent the resulting pressure drop solution and

distribution of sources and sinks due to a small perturbation inV .

The total pressure differential due to the perturbation is given by

dp p pd d d= − . (3.63)

We rewrite Eq. 3.62a as

 [ ]C
k p V
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s
Q dV

p

sd
d d1

µ
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∇ ⋅ ∇ − = − + .  (3.64)

Subtracting Eq. 3.61a from Eq. 3.64 and use Eq. 3.63, we have

[ ]C
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s
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s
Q Qd

d d1

µ
∂

∂
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∂
∇ ⋅ ∇ − = − −( ) , (3.65a)

dpd s| = =0 0 , (3.65b)

∇ ⋅ =dp nd
&

0, on ∂R. (3.65c)

Define a functional F by

F G x y z dp x y z t dxdydzn d

Tn

( ) ( , , ) ( , , , )φ = ∫∫∫  , (3.66)

where Tn  is a subregion of reservoir, T Rn ∈ , and define Gn  on R so that G x y zn ( , , ) ,= 0

for (x, y, z) not contained in Tn  and G x y z dxdydzn

Tn

( , , )∫∫∫ = 1.0. For our problem, we let

Tn  represent one of the gridblocks. Eq. 3.66 may be thought of giving an average value of
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 p x y z td ( , , , )  on Tn .  If we let Tn  be the gridblock centered at ( , , )x y zi j k  and choose

G x y z x x y y z zn i j k( , , ) ( ) ( ) ( )= − − −δ δ δ , then F dp x y z td i j k( ) ( , , , )φ = .

Consider the problem
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∇ ⋅ ∇ − = − ( ) ( , , ) , on R, (3.67a)

pnd s| = =0 0 , (3.67b)

∇ ⋅ =p nnd
&

0, on ∂R, (3.67c)

where H t( )  is the Heaviside function
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0 0

1 0
(3.68)

Note if G x y z x x y y z zn i j k( , , ) ( ) ( ) ( )= − − −δ δ δ , then the sink term for this problem

represents the removal of 1 bbl/day of fluid from Tn . If H t( )  is replaced by δ ( )t , this

would be a Green’s function problem.

Applying the generalized reciprocity theorem (Eq. 3.40) to problems (3.65) and

(3.67) gives
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− −∫∫∫∫ dQ x y z s p x y z t s dsdxdydz
t

R

nd( , , , ) ( , , , )
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, (3.69)

where we have used dQ x y z s Q x y z s Q x y z s( , , , ) ( , , , ) ( , , , )= − .

Since s t< in the first integral, H t s( )− = 1. Differentiating Eq. 3.69 with respect to time

using Leibnitz rule gives
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But, p x y z t s p x y znd s t nd( , , , )| ( , , , )− = == 0 0  and G x y zn( , , ) = 0 for (x, y, z) not in Tn .

Thus, Eq. 3.70 reduces to
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Adding and subtracting terms dV
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t
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right-hand side of Eq. 3.71, we obtain 
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As ( )dV p pd d→ − →0 0, , thus following Carter et al., Eq. 3.72 can be written as
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If we interpret Tn  as gridblock “n” centered at ( , , )x y zi j k  and divide our reservoir into

gridblocks T m Mm, , ,...,= 1 2  (M is the total number of gridblocks in reservoir), then with

Gn  equals to the delta function centered at the gridblock, Eq. 3.74 becomes
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By definition, if the region is discretized into m gridblocks, the differential dpd is given by
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Comparing Eq. 3.75a with 3.75b, we obtain
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Since V
c

T
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m
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, applying the chain rule gives
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Ignoring the second term on right-hand side of Eq. 3.77 gives
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Computations indicate that ignoring this term of Eq. 3.77 involving the flow rates does not

have a significant effect on the accuracy of the sensitivity coefficients related to the

perosity field. This result is not surprising since changing the porosity at one gridblock

should not have a significant effect on flow rates.

3.3.2 Numerical Calculation of Sensitivity Coefficients
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Eqs. 3.59a-3.59c and Eq. 3.78 give the equations for sensitivity coefficient calcu-

lations. In this section, we will discuss how to implement these results numerically.

If Tm represents the  gridblock centered at ( , , )x y zl m n , using a midpoint integra-

tion rule46 to perform the y and z integration,  then Eq. 3.59a becomes
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(3.79)

for all (l, m, n) at any time tn .  The integrals in Eq. 3.79 are evaluated by a standard

composite trapezoidal rule.18 

In applying the trapezoidal rule to perform the x-integration in Eq. 3.79, we need

to evaluate the derivatives ∂ ∂p x y z t xd l m n( , , , ) //+
−

1 2  and ∂ ∂p x y z t xd l m n( , , , ) //−
+

1 2 as well

as similar spatial derivatives of pnd , where the superscripts - and +, respectively, denote

derivatives from the left and the right.  In evaluating such derivatives, one must recognize

that for a heterogeneous permeability field, fluxes are continuous across gridblock

interfaces, but pressure derivatives are not.  In following subsection, we will discuss how

to accurately compute spatial derivatives. 

3.3.2.1 Spatial Derivatives

The following figure shows two adjacent gridblocks in the x direction, centered at 

xi  and  xi+1 respectively. Here, the x-direction permeabilities of these two gridblock are

simply denoted by  ki  and ki+1, gridsizes are ∆xi  and ∆xi+1 respectively. Since we are

considering only the x-derivative, we suppress any reference to the y, z and t variable.
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                                      ∆xi                                    ∆xi+1

                                       xi                                      xi+1    

                                       •                                        •

                                       ki                                      ki+1
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At this point, pd i, /+1 2  is unknown. However continuity of fluxes gives
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Rearranging Eq. 3.82, we have
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or
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Using Eq. 3.84 in Eq. 3.80
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Similarly, we can show that
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Similar formulas for the other spatial derivatives needed in applying the trapezoidal rule to

evaluate specific forms of Eq. 3.79 can be easily derived.

3.3.2.2 Linear Interpolation of Pressure Data

In using Eq. 3.79 to calculate sensitivity coefficients where we perform the time

integration by the trapezoidal rule, we need to have the value of

p x y z t s s t t tnd l m n n n( , , , ), , ,..., .− = 1 2  However, we do not compute pressures at all times

t s s t t tn n− =, , ,...,1 2 . Here, t t tn1 2, ,...,  represent the times at which we have obtained a

pressure solution from our simulation. In our application we use linear interpolation to

find these pressure values.
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    tn-s

                                                                             •
         T1          T2

      t1         t2       tj        tj+1

As shown in the above figure, if t t s tj n j< − < +1 , we set T t s tn j1 = − −( )  and

T t t sj n2 1= − −+ ( ) . Thus, by linear interpolation, we have

p x y z t s
p x y z t T p x y z t T

T Tnd n
nd j nd j

( , , , )
( , , , ) * ( , , , ) *

− =
+
+

+2 1 1

1 2

. (3.87)

3.3.2.3 Discrete Form of Sensitivity Coefficients

Using the trapezoidal rule to perform integration, the equation for the sensitivity

coefficients related to the x-direction permeability field (Eq. 3.79) can be written as
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(3.88a)

where the spatial derivative of pd  and pnd  can be calculated by Eq. 3.86. Again, pd  is

the gridblock pressure drop generated numerically by our simulator, while pnd  is the

pressure response by using unit source at the gridblock Tn  centered at ( , , )x y zi j k . And

p x y z t t p nnd l m n n p( , , , ), , ,...,− = 1 2 is calculated using Eq. 3.87.

According to the convolution rule, the sensitivity coefficients related to the x-

direction permeability field (Eq. 3.79) can also be written as
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The integration formula Eq. 3.88b can be obtained by simply interchanging pd  and pnd  in

Eq. 3.88a. In our application, we averaged the values obtained from Eq. 3.88a and 3.88b

and found the average value is more accurate than values from either Eq. 3.88a or Eq.

3.88b.

To compute the sensitivity of gridblock pressure with respect to a gridblock po-

rosity, we can write Eq. 3.78 as
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(3.89a)

Again using the convolution rule, the sensitivity coefficient of Eq. 3.78 can also be written

as
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(3.89b)

We use the average value of Eq. 3.89a and Eq. 3.89b as the sensitivity coefficient related

to the porosity field.

Note Eqs. 3.88a, 3.88b, 3.89a and 3.89b require approximations for time

derivatives. To show how these approximation are done, we consider Eq. 3.89b. Since t p

corresponds to a time at which pressure is measured, we simply use the approximation

∂
∂
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s
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( )1
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1( , , , ) ( , , , ) , (3.89c)

which represents an average of the two one-sided derivatives at t p . To find the approxi-

mation for 
∂

∂
p x y z t t

t s
d l m n n p

n

( , , , )

( )

−
−

, we first find the interval [ ]t tj j, +1  such that
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t t t tj n p j≤ − ≤ +1 and then estimate p x y z t td l m n n p( , , , )−  using Eq. 3.87. Then the

approximation for the derivative is
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(3.89d)

Other time derivatives needed are approximated in a similar way.

3.3.3 Sensitivity of Wellbore Pressure to Reservoir Parameters

In previous sections, we derived the equations for sensitivity coefficients related to

gridblock pressures by a straightforward extension of the Carter et al.28 method. However,

the pressure data available are the observed wellbore pressures, not gridblock pressures.

In order to condition reservoir properties to wellbore pressure, we need to have sensitivity

coefficients related to wellbore pressure. We will show that the wellbore pressure

sensitivity coefficients are related directly to the sensitivity coefficients for the gridblock

pressures, and can be calculated similar to the calculation of the sensitivity coefficients for

gridblock pressures.

As we discussed in section 3.2.3, wellbore pressure is related to gridblock pressure

by Peaceman’s equation, i.e.,

q WI p pi j k
n

k i j k
n

wf
n

, , , ,( ) ( )= − , (3.90)

where
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r

x
k

k

y

x

k k
k

i
x i jk

y i j k

j

i

x i j k y i j k
0

2

0 28073 1

1
,

, ,

, , ,

, , , , , ,

.

=

+








+

∆
∆
∆ . (3.92)

The individual gridblock rates must sum to the total sandface flow rate, qi j
n
, , i.e,

q q WI p pi j
n

i j k
n

k i j k
n

k l

l

k l

l

wf
n

, , , , ,( ) ( )= = −
==
∑∑

1

2

1

2

. (3.93)

In our applications, the total flow rate at each well is specified and maintained as a

constraint throughout the Gauss-Newton iteration process used to generate the maximum

a posteriori estimate of the rock property fields; i.e., total flow rates are not sensitive to

the rock property fields so the derivative of qi j
n
,  with respect to any model parameter is

zero.  Thus, letting α denote any gridblock value of k k kx y z, ,  or φ , differentiating Eq.

3.93 with respect to α , we obtain

∂
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∂
∂α

q
WI p p
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, (3.94)

or

( ) ( ) ( ) ( ), ,
, ,
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n

− + − =
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∂
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∂
∂α1

2
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2

0 . (3.94a)

Finally, we can obtain
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where
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is the term related to the derivatives of gridblock pressures, and
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is the term related to the derivatives of well indices.

3.3.3.1 Term Related to Gridblock Pressure

Let us first consider 
∂
∂α
pwf

n









1

,  and take kx , i.e., α = kx l m n, , , for concentration.

Then Eq. 3.96 becomes

∂
∂

∂
∂p

k

WI
p

k

WI

wf
n

x l m n

k
k l

l
i j k
n

x l m n

k
k l

l
, , ,

, ,

, , ,

( )

( )









 = =

=

∑

∑

1

1

2

1

2 . (3.98)



102

Using Eq. 3.79 in Eq. 3.98 and noting that p x y z t p p x y z td i j k n in i j k n( , , , ) ( , , , )= − , we

have
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As we have shown in section 3.3.1.3, pnd  is the solution of

[ ]C
k p V

p

s
x x y y z znd

nd
i j k

1

µ
∂

∂
δ δ δ∇ ⋅ ∇ − = − − − −( ) ( ) ( ) on R, (3.101a)

pnd s| = =0 0 , (3.101b)

∇ ⋅ =p nnd
&

0, on ∂R. (3.101c)
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Multiplying Eq. 3.101 by ( )WI k for k l l l= +1 1 1 2, ,..., , summing the resulting

equations over k and then dividing the resulting equation by ( )WI k
k l

l

=
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, it follows that
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   on R    (3.102a)

� |pnd s= =0 0 , (3.102b)

∇ ⋅ =�p nnd
&

0, on ∂R. (3.102c)

To obtain the solution �pnd  corresponding to a well location at areal location ( , )x yi j , we

simply need to use a sink term equal to s i j z
WI z z

WI

k k

k
k l

l( , , )
( ) ( )

( )

=
−

=
∑

δ

1

2  in gridblock

( , , )x y zi j k , for k l l l= +1 1 1 2, ,..., , where gridblocks ( , , )x y zi j k , k l l l= +1 1 1 2, ,..., ,

represent the gridblocks penetrated by the vertical well. Note that the integral of s i j z( , , )

over the wellbore is equal to 1.

From the above derivation, we see that 
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k
wf
n

x l m n, , ,











1

can be obtained from Eq. 3.99

where  �pnd  in the solution of the IBVP specified by Eqs. 3.101a-3.101c. Similarly,
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, respectively, can be obtained from similar

equations. After these terms are computed, the sensitivity coefficients related to wellbore
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pressure can be computed from Eq. 3.95 once we have estimated the terms related to the

derivatives of well indices needed in Eq. 3.97; see next subsection.

 Note if α = sr  where sr  is a layer skin factor, then
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Eq. 3.103 follows from the fact that we assume infinitesimally small skin zones, so

gridblock pressures are independent of skin factors.

3.3.3.2 Term Related to well Indices

As we can see from Eq. 3.97, 
∂
∂α
pwf

n









2

 involves the sensitivity of well indices

( )WI k  to reservoir parameters and skin factors. Also from Eq. 3.91 and 3.92, we see that

the well index for a particular gridblock penetrated by the vertical well depends only on

the x and y direction permeabilities for that gridblock and the associated skin factor. So
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= 0 ,  (3.104)

for all gridblocks. Moreover,
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for all gridblocks unless ( , , ) ( , , )x y z x y zl m n i j k=  and

∂
∂

( )WI

s
k

r

= 0 , (3.105a)
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if r k≠ .

Taking the relevant derivatives of Eq. 3.91 and 3.92, and performing considerable

algebraic manipulation, we find

( )
∂
∂ µ
( )

ln( / ) ln( / )

.

, , ,

, , ,

, , ,

, , , , , ,

, , , , , ,

, , ,

, , , , , ,

WI

k

C z

r r s

k

k r r s

k k y

k x k x

k

k k

k

x i j k

k

k w k

y i j k

x i j k k w k

x i j k y i j k j

y i j k i x i j k i

y i j k

x i j k y i j k

=
+

× −
+

×






+
−

+


















1

0 0

2

2 2

2

1∆

∆

∆ ∆

(3.106)

Similarly,
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Also
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Using the preceding formula for the derivatives of the well index terms in Eq. 3.97, we can

compute 
∂
∂α
pwf
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2

. Summing 
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and 
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




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2

, we obtain the sensitivity coefficient

of wellbore pressure with respect to skin factors, porosity and permeability, see Eq. 3.95.

3.3.3.3 Isotropic Permeability Case
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If the permeability field is isotropic (k k k kx y z= = = ), k controls flow in all three

(x, y and z) directions and to compute ∂ ∂p kwf , we simply add the three formulas (see

Eqs. 3.59a-c) for ∂ ∂p kwf x , ∂ ∂p kwf y  and ∂ ∂p kwf z  to obtain
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(3.109)

If k k kx y= =  and kz = 0 or kz  is fixed, then kz  is not estimated (or perturbed)

during the Gauss-Newton iterations and we use
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If k k kx y= =  and k kz = α , for some constant α , then and change in kz  is di-

rectly related to the change in k and
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3.3.3.4  Sensitivity to Log-permeability

In our work, we use log-permeabilities instead of permeabilities as model

parameters. Thus, we need to know the derivative of wellbore pressure with respect to

ln(k).  However, by the chain rule

∂
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k k
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k
wf wf wf= =
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1
, (3.111)

so
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Thus once 
∂
∂
p

k
wf

 has been calculated, 
∂

∂
p

k
wf

ln( )
 can be obtained easily with Eq. 3.112.

3.3.4 Sensitivity of Layer Flow Rates

If we have observed (measured) layer flow rates in a multilayered reservoir, we can

also condition reservoir properties to them. To apply the Gauss-Newton method, we need

the sensitivity of each layer flow rate with respect to reservoir properties ( permeability,

porosity and skin factor).

As indicated by Eq. 3.90, the layer flow rate qi j k
n
, , , gridblock pressure pi j k

n
, ,  and

wellbore pressure pwf
n  are related by following equation:

q WI p pi j k
n

k i j k
n

wf
n

, , , ,( ) ( )= − , (3.113)

where ( )WI k  are the well indices defined by Eq. 3.91. Taking the derivative with respect

to reservoir parameters, we obtain
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where 
∂

∂α
pi j k

n
, ,

 and 
∂
∂α
pwf

n

, respectively, represent sensitivity coefficients related to

gridblock pressure and wellbore pressure.

The procedure to calculate 
∂

∂α
qi j k

n
, ,

 is:
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1. Calculate sensitivity of gridblock pressure with respect to reservoir parameters,

∂
∂α
pi j k

n
, ,

,  using the Carter et al. method.

2. Calculate the sensitivity of wellbore pressure with respect to reservoir parameters,

∂
∂α
pwf

n

, using Eq. 3.95.

3. Calculate 
∂

∂α
qi j k

n
, ,

 using Eq. 3.114.

3.4 Computational Examples

In this section, estimates of sensitivity coefficients computed from our three-

dimensional extension of  the Carter et al. method29 are compared with those obtained by

the direct method which is based on individual parameter perturbations; see, for example,

Ref. 23.  The direct method yields accurate answers within the limits of the  accuracy of

the simulator, but is extremely inefficient.  Although we only present results for an

isotropic permeability case, accurate results were also obtained when the permeability field

was anisotropic.  Both permeability sensitivity coefficients, ∂ ∂p t kwf l m n( ) / , , , and porosity

sensitivity coefficients, ∂ ∂φp twf l m n( ) / , ,  are presented. In generating the maximum a

posteriori estimate, we actually use derivatives with respect to the log-permeabilities.  A

simple application of the chain rule (Eq. 3.112) can be used to convert from permeability

sensitivity coefficients to log-permeability sensitivity coefficients.
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In all results, the values of the following parameters are fixed: ct = −10 5psi-1,

µ = 0 5. cp. and  rw = 0 3.  ft at all wells.

3.4.1 2D Homogeneous Case

 We first consider a two-dimensional case where the permeability and porosity

fields are homogeneous and consider a 15 15×  grid. For this problem, an active well

located at gridblock (4,8) was produced at a constant rate of q = 500 RB/D and an

observation well was located at gridblock (12,8).

Figs. 3.1 and 3.2, respectively, present the natural logarithm of permeability sensi-

tivity coefficients related  to  the  active  well  computed  with the direct method and the

Carter et al. method at t = 0.03 days. Figs. 3.3 and 3.4, respectively, present a similar

comparison at t = 0.25 days. We see that the results from Carter et al. method are in

excellent agreement with those obtained by the direct method. We can also see that as

time increases, the wellbore pressure becomes sensitive to permeabilities at a greater

distance from the well. However, the wellbore pressure is much more sensitive to

permeabilities very near the well than to permeabilities a few gridblocks away from the

well.

Figs. 3.5 and 3.6, respectively, present permeability sensitivity coefficients related

to the observation well pressure computed with the direct method and the Carter et al.

method at t = 0.25 days. We see the two sets of results are in excellent agreement. Fig. 3.7

shows a plot of these sensitivity coefficients at gridblocks on the line through the two

wells at four different values of time. Again, we see that the two sets of sensitivity

coefficients  are  in  excellent agreement. Note the observation well pressure is insensitive
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Fig. 3.1 - Log sensitivity of active well pressure to a homogenous log-
permeability field at early time, direct method.
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Fig. 3.2 - Log sensitivity of active well pressure to a homogenous log-
permeability field at early time, Carter et al. method.
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Fig. 3.3 - Log sensitivity of active well pressure to a homogenous log-
permeability field at late time, direct method.
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Fig. 3.4 - Log sensitivity of active well pressure to a homogenous log-
permeability field at late time, Carter et al. method.
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Fig. 3.5 - Sensitivity of observation well pressure to a homogenous log-
permeability field, direct method
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Fig. 3.6 - Sensitivity of observation well pressure to a homogenous log-
permeability field, Carter et al. method
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to the permeability in the gridblock containing the observation well and to the permeability

in the gridblock containing the active well.

We also see that the sensitivity coefficients are symmetric around the two wells,

i.e., for all j,

∂
∂

∂
∂

p

k

p

k
wf

i j

wf

i j4 12+ −
=

, ,

, (3.115)

for i = -3, -2, ..., 0, 1, 2, 3

and for all i

∂
∂

∂
∂

p

k

p

k
wf

i j

wf

i j, ,8 8+ −
= , (3.116)

for j =1, 2, ..., 7. For this infinite acting case, this symmetry can be established either from

the approximate analytical solution of Oliver59 or using the reciprocity theorem of Carter

et al.29 Once results are influenced by reservoir boundaries, the sensitivity coefficients

related to the observation well pressure will not generally be symmetric around the two

wells. However, for the case considered here, with the two wells on a line through y7  and

the  two  wells  equidistant  from  the  x-direction  boundaries,  the reciprocity  theorem 

of  Carter  et al.28  can  be  used  to  establish  the  symmetry  of  the

sensitivity coefficients observed in Figs. 3.5 through 3.7. Also note that between the two

wells, the sensitivity coefficients are negative.  This means an increase in permeability at

one of these gridblocks will cause a decrease in the pressure at the observation well.

Physically, a higher permeability in the interwell region causes the pressure to begin

dropping sooner at the observation well, thus resulting in a lower pressure at a given time.
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This provides a physical explanation of why the sensitivity coefficients on the line segment

connecting the two wells are negative. 

Beyond the observation well ( , )i j> =12 8 , the sensitivity coefficients are positive

indicating that an increase in permeability in one of these gridblocks will cause an increase

in the observation well pressure, or a decrease in permeability will cause a decrease in

pressure (increase in pressure drop). In the limit, decreasing permeability towards zero is

like introducing a partially sealing fault at that gridblock which will result
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Fig. 3.7 - Sensitivity of observation well pressure to a homogenous log-
permeability field, comparison of Carter et al. and direct methods.
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in an increase in the pressure drop (decrease in pressure) so again the results are physically

reasonable.  Similarly, the sensitivity coefficients at j =8, i =1,2,3 are positive. Decreasing

permeability at one of these gridblocks results in a greater pressure drop at the active well

which results in a greater pressure drop (lower pressure) at the observation well. Also

note that the sensitivity coefficients related to permeability at the two well gridblocks are

approximately zero.  If the size of the gridblocks approaches zero, the sensitivity

coefficients should converge to zero. Physically, as the area of the well grids approach the

size of the wellbore radii, these gridblock permeabilities act like a skin zone, and skin

factors do not affect the observation well pressure for two-dimensional (x-y) problems;

three-dimensional problems are different. At an observation well, the net flow into the well

is zero so the permeability at the well sandface has no influence on the pressure. 

For the same problem, Figs. 3.8 and 3.9, respectively, present the sensitivity of the

observation well pressure to the porosity field obtained by the direct and Carter et al.

methods at t= 0.25 days. Fig. 3.10  compares the two results along a line through the  two

wells at four values of time.  Again note that the two sets of results are in excellent

agreement and results are symmetric around the two wells.  Note all porosity sensitivity

coefficients are positive. Increasing the porosity at any gridblock increases the fluid in the

system for pressure support and hence results in an increase in pressure.
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Fig. 3.8 - Sensitivity of observation well pressure to a homogenous porosity
field, direct method

1 8 15

15

8

1

0.3 0.8 1.3 1.8

Fig. 3.9 - Sensitivity of observation well pressure to a homogenous porosity
field, Carter et al. method.
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Fig. 3.10 - Sensitivity of observation well pressure to a homogenous porosity
field, comparison of Carter et al. and direct methods.

3.4.2 3D Heterogeneous Case
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This example pertains to a case with three gridblocks in the z-direction and a 

11 11×   areal grid with an isotropic heterogeneous permeability field and a heterogeneous

porosity field. The active well is located at areal gridblock (3,6) and the observation well

at (9,6).

Figs. 3.11 and 3.12, respectively, show the sensitivity of the observation well pres-

sure to the gridblock permeabilities at t = 0.2 days computed by the direct method and our

three-dimensional extension of the Carter et al. method.  Note that the two sets of results

are in excellent agreement.  Figs. 3.13 and 3.14, respectively, shows a comparison of the

sensitivity of the observation well pressure to permeability and porosity at gridblocks lying

on a line through the two wells.  Results are presented at four values of time  and   pertain

 to  the  middle  “layer.”  Again  the  two sets of results are in excellent

agreement.  Note the results of Figs. 3.12 and 3.13 exhibit no evidence of any errors due

to our neglect of the correction involving sensitivities of layer flow rates, see Eqs. 3.57. 

This is because there is no significant crossflow through the observation wells or in

gridblocks containing the wells.
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Fig. 3.11 - Sensitivity of observation well pressure to heterogeneous log-
permeability field , direct method.

- 0 . 0 0 2 0 . 0 0 0 0 . 0 0 2

Fig. 3.12 - Sensitivity of observation well pressure to heterogeneous log-
permeability field , Carter et al. method.
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Fig. 3.13 - Sensitivity of observation well pressure to heterogeneous log-
permeability field.
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Fig. 3.14 - Sensitivity of observation well pressure to heterogeneous porosity
field .
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3.4.3 3D Case with Strong Cross-flow

Next, we consider a true commingled three-layer reservoir containing two wells. 

No crossflow between layers occurs within the reservoir, i.e., kz = 0, but significant

crossflow occurs through the observation well.  In simulating this system, a 11 11×  areal

grid was used with one gridblock per layer in the vertical direction.  The active and

observation wells, respectively, are located at areal gridblocks (6,6) and (3,6).  Again the

permeability and porosity fields are heterogeneous but the prior means for log-

permeability vary from 4.0 in the top layer to 5.0 in the bottom layer.  Due to the contrast

in layer permeabilities, significant crossflow occurs through the observation well.

Fig. 3.15 shows the sensitivity of the observation well pressure to the gridblock

permeabilities of the middle layer lying along a line through the two wells.  Note our

extension of the Carter et al. method underestimates the sensitivity of the observation well

pressure to gridblock permeabilities at the active well.  Although not shown, our three-

dimensional implementation of the Carter et al. method yields accurate estimates of the

sensitivity coefficients related to the active well pressure and accurate estimates of the

porosity sensitivity coefficients for this problem.  It is important to note that when

generating the maximum a posteriori estimate, the active well sensitivity coefficients

control the resolution of the gridblock permeabilities penetrated by the active well; thus, 

the fact that the sensitivity of the observation well pressure to active well gridblock

permeabilities is underestimated should not have a great effect on the maximum a

posteriori estimate obtained by the Gauss-Newton procedure.
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CHAPTER IV

REPARAMETERIZATION TECHNIQUES FOR

INVERSE PROBLEM

In Chapter II, we applied the Gauss-Newton method to obtain the maximum a

posteriori estimate of the reservoir parameters.  If one wishes to determine permeability

and porosity values at thousands of gridblocks for use in a reservoir simulator, then

inversion of the Hessian matrix at each iteration of the Gauss-Newton procedure becomes

computationally expensive.  In this work, we present two methods to reparameterize the

reservoir model to improve the computational efficiency.  The first method uses spectral

(eigenvalue/eigenvector) decomposition of the prior covariance matrix.  The second

method uses a subspace method to reduce the size of the matrix problem that must be

solved at each iteration of the Gauss-Newton method.  It is shown that proper implemen-

tation of the subspace method may significantly reduce the computational time required to

generate realizations of the reservoir model, i.e., the porosity and permeability fields and

well skin factors, conditioned to prior information on porosity and permeability and

multiwell pressure data.

In Ref. 20, Oliver incorporated reparameterization based on the spectral (eigen-

value-eigenvector) decomposition of the prior covariance matrix to determine two-

dimensional permeability fields conditioned to well-test pressure data and prior informa-
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tion.  In one example considered, reparameterization based on spectral decomposition

reduced the number of parameters to be obtained by Gauss-Newton iteration from 1089 to

128 without a significant reduction in the quality of the final permeability estimates

obtained. The spectral decomposition technique used in Ref. 20 is effectively the same as

used in Ref. 10 and also has been considered by Luster47. It is important to recognize that

the aforementioned results of Oliver20 were based on the covariance function for a

Gaussian variogram with no nugget effect. As discussed later, the number of parameters to

be estimated after applying spectral decomposition depends on the rate of decay of the

eigenvalues. For the covariance functions associated with common variograms (spherical,

exponential and Gaussian), the eigenvalues decay the fastest for the Gaussian covariance48

and thus the reduction in the number of parameters achieved by spectral decomposition is

greatest for this covariance function.  Later, we show that adding a nugget effect will

decrease the rate of decay of the eigenvalues and thus make spectral decomposition less

efficient.

Finally, we note that Oliver20 considered estimating only the permeability field as-

suming the porosity field was known. We have found that when the overall prior

covariance matrix contains information for both porosity and permeability, spectral

decomposition should be applied to the prior correlation matrix in order to obtain

meaningful results.

Although reparameterization based on the spectral decomposition may significantly

reduce the number of parameters to be estimated by the Gauss-Newton procedure, the

size of the resulting Hessian matrix may still be very large. Also, we will see that in case of

large reservoir model, the spectral decomposition of the correlation matrix becomes
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computationally inefficient. In this work, we show that subspace methods can be applied

to significantly reduce the size of the matrix problem solved at each iteration.  Subspace

methods have recently been applied in the geophysics literature49-51. In a subspace method,

at each iteration the search direction vector is expanded as a linear combination of basis

vectors for a lower dimensional subspace of the model space.  The order of the matrix

problem to be solved at each iteration of the Gauss-Newton procedure is thereby reduced

to the dimension of the subspace.

4.1  Reparameterization Based on Spectral Decomposition

As shown on Chapter II, CM  is the covariance matrix of parameters (permeability,

porosity and skin factors). We partition CM  as

C
C

CM
B

S

=










0

0
,  (4.1)

where

C
C C

C CB
k

k k
=











φ φ

φ
, (4.2)

for the case of an isotropic permeability field.

If the model is reparameterized in terms of the eigenvectors of CM  corresponding

to the largest eigenvalues10,20,47, few of the eigenvectors contain porosity information,

thus, one cannot expect to obtain good representations of realizations of the porosity field.

More importantly, eigenvalues and eigenvectors of a given matrix CM  are physically

meaningful only if all entries of CM  have the same physical dimensions or are dimension-
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less13. For the preceding reasons, we apply spectral decomposition to the prior correlation

matrix.

Let ci j,  denote the entry in the ith row and jth column of CB , and let D1 be the

2M × 2M diagonal matrix with ith diagonal entry equal toci i, , i.e.,
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Note ci i,  is simply the variance of the ith model parameter.

Then, the correlation matrix is given by
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Eq. 4.4 shows that the porosity and ln(k) variances have been normalized to unity.

The eigensystem52 of 
~
CB  can be computed by standard techniques53. We order the

eigenvalues of 
~
CB  from largest to smallest, i.e., as λ λ λ1 2 2≥ ≥ ≥� M and let µ j  denote

the 2M  dimensional eigenvector corresponding to λ j  for j M= 1 2 2, ,..., . Throughout,

we use this ordering of eigenvalues so the first p eigenvalues, and the pth largest

eigenvalues both refer to the set }{λ j j p, , , ...,=1 2 .  Let U be the 2 2M M×  matrix with

its jth column equal to µ j and let Λ1 be the 2 2M M×  diagonal matrix with its jth

diagonal element equal to λ j . It is well known52 that

~
C U UB

T= Λ1 , (4.5)

and U is an orthogonal matrix, i.e., UU U U IT T= = .

Throughout I denotes an identity matrix, but the size of I may vary from equation

to equation.  We refer to Eq. 4.5 as the orthogonal decomposition of 
~
CB ,  the spectral

decomposition of 
~
CB  or the eigenvalue-eigenvector decomposition of 

~
CB .

Now we let p be chosen such that

λ θ λj
j

p

j
j

M

= =
∑ ∑≥

1 1

2

, (4.6)

where0 1< ≤θ .  Note Eq. 4.6 indicates that θ is the fraction of the total spectrum (or

“energy”) contained in the first p eigenvalues. Choosing θ and determining the corre-

sponding value of p effectively determines the reparameterization based on spectral

decomposition. Once p has been determined, U and Λ1 respectively, are partitioned as

[ ]U U Up= 0 . (4.7)
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And
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Here, Λ p  is the diagonal matrix with the first p eigenvalues as its diagonal elements and

the columns of the 2M p×   matrix U p  are given by the first p eigenvectors.  If the trace

of Λ 0 is small compared to the trace of Λ p , then Eq. 4.5 can be approximated by
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where the last equality defines �CB .
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the ( ) ( )2M N p NS S+ × +  matrix Wp  is defined by
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and the (p + Ns) × (p + Ns) diagonal matrix Λ is defined by
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Using the approximation for 
~
CB  (Eq. 4.9), we have the following approximation for CM :
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The reparameterized model, mp , is now defined implicitly by

m DW mp p= , (4.14)

and since W W Ip
T

p = , Eq. 4.14 implies

m W D mp p
T= −1 ,  (4.15)

similarly, defining

m W D mp prior p
T

prior, = −1 .                      (4.16)

Note the dimension of mp  is  p + Ns  which will be much less than the dimension of

( 2M NS+ )  if  p M<< 2 , i.e., if spectral decomposition significantly reduces the number

of parameters to be directly estimated. Thus, solving for  mp  instead of m may signifi-

cantly reduce the computer time required by the inverse procedure.

The Gauss-Newton formulation is given by Eq. 2.20. Multiplying Eq. 2.20

byW Dp
T −1, we obtain
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Using Eqs. 4.13, 4.15  and 4.16 in 4.17 gives
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We define

G G DWp l l p, = , (4.19)

so
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, = . (4.20)

Using Eqs. 4.19, 4.20, 4.15 and 4.16 in Eq. 4.18,
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Applying similar matrix algebra used in Eq. 2.17-2.20, we can show
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Λ
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(4.22)

Throughout Gl  denotes the sensitivity coefficient matrix evaluated at ml where

ml  and mp
l  are related by Eqs. 4.14 and 4.15. Note that DWp can be computed once at

the beginning of the process and stored.  The advantages of the reparameterized scheme of

Eq. 4.22 are two fold.  First, the dimension of the model space has been reduced. 

Secondly, the dense matrix C M
−1  of Eq. 2.17 has replaced by the inverse of the diagonal
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matrix Λ . The disadvantage is that one must perform a spectral decomposition which may

be computationally expensive.

It is important to note that at each iteration, g ml( ) is obtained from the simulator

using ml as input where the conversion between ml  and mp
l  is given by Eqs. 4.14 and

4.15.  Thus, even though the Gauss-Newton formula is applied to the reparameterized

problem, the simulator run is in terms of the original model parameters.

Throughout, mp,∞ denotes the reparameterized maximum a posteriori estimate

obtained by the Gauss-Newton procedure (Eq. 4.22) and m∞  denotes this maximum a

posteriori estimate in terms of the original model parameters.

The a posteriori covariance matrix for the reparameterized model is given by

( )C G G G C GMP p p
T

p p
T

D p, , , , , .= − +∞ ∞ ∞
−

∞Λ Λ Λ Λ
1

(4.23)

In Eq. 4.23, G G DWp p,∞ ∞= , where G∞  now denotes the sensitivity coefficient matrix

evaluated at m∞ . If L Lp p
T  denotes the LU decomposition ofCMP p, , then realizations of

mp r,  of the reparameterized model can be obtained from

m m L Zp r p p r. , ,= +∞ (4.24)

where Zr is a vector of independent normal deviates.  Corresponding realizations for the

original model can then be obtained via Eq. 4.14.

Some remarks on spectral decomposition are in order. For any chosen θ < 1, Eq.

4.6 indicates that the number (p) of eigenvectors used in the reparameterization will

depend on the rate of decay of the eigenvalues.  A more rapid rate of decay results in a

smaller value of p, i.e., a more efficient reparameterization.  The rate at which eigenvalues
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decrease to zero depends on the specific covariance function or variogram used. For the

continuous problem, the eigenvalue problem represents a Fredholm integral equation with

the covariance function as its kernel54 where the covariance function is symmetric positive

definite.  Assuming that the eigenvalues (� , , , ..., )λn n = ∞1 2  for the continuous problem are

ordered from largest to smallest, Refs. 55 and 56 show that the rate of decay of the

eigenvalues depends on the smoothness of the kernel.  The spherical and exponential

covariance functions are continuous but are not differentiable at the origin.  Thus, the

results of Ha56 indicate that � ( / ) .λn o n as n= → ∞1  The Gaussian covariance function,

however, has continuous partial derivatives everywhere which is sufficient to guarantee

that the associated eigenvalues satisfy � ( / ) .λn o n= 1 2  Thus, the eigenvalues associated

with the Gaussian covariance function decay much faster than the eigenvalues associated

with the spherical and exponential covariance functions and computations not shown (also

see  Ababou et al.48) here indicate that this is the case.  However, if a nugget effect is

added to the variogram, the associated covariance function for all variogram models

becomes discontinuous at the origin and the eigenvalues asymptotically approach the value

of the nugget as n → ∞  instead of decaying to zero.  Since the covariance matrix

represents a discretized version of the covariance operator, we expect the eigenvalues of

the covariance matrix to display a behavior similar to those discussed for the continuous

problems (Ababou et al48. have verified that this is true for several one-dimensional

covariance models).  Thus, a Gaussian variogram, as used in Ref. 20, should yield the

most efficient reparameterization, i.e., the smallest value of p that satisfies the inequality of

Eq. 4.6.  As we wish to consider the limitations of spectral decomposition, we consider a
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spherical variogram and consequently obtain a less efficient spectral decomposition than

was obtained in Ref. 20.  Moreover, we illustrate that adding a nugget effect seriously

reduces the efficiency of spectral decomposition as is expected based on our theoretical

discussion.

4.2  Reparameterization Based on Subspace Methods

4.2.1 Subspace Method

Here, we give a brief description of the subspace method which essentially follows

 the description given in Refs. 49 through 51.  Kennett and Williamson49 consider a

problem of the same form considered here, whereas, Oldenberg et al.50 and Oldenberg and

Li51 consider a constrained least squares problem.

The basic idea is to choose subspace vectors al
j , j= 1,2,..., r and let Al  be the

matrix with jth column equal to the column vector al
j .  The subscript l is used to indicate

that the subspace and its basis vectors are recomputed at each iteration of the Gauss-

Newton method.  The proposed change in the model estimate or search direction vector at

the (l + 1)th iteration of Newton's method is then written as

δ α αm a Al
j
l

j

r

l
j

l
l+

=

= =∑1

1

, (4.25)

where α is the column vector with jth component equal to α j
l . Using Eq. 4.25 in Eq. 2.15

of Chapter 2 and multiplying the resulting equation by the transpose of Al  gives

( ) .A H A A Sl
T

l l
l

l
T

lα = − ∇ (4.26)
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Note the coefficient matrix in Eq. 4.26 is an r × r matrix, whereas the order of Hl  is the

total number of parameters to be estimated by the Gauss-Newton procedure.  Once Eq.

4.26 is solved to obtain α l , the corresponding δml +1 can be computed directly from Eq.

4.25 and ml +1  is obtained from Eq. 2.16.

4.2.2 Choice of Subspace Vectors

Refs. 49-51 consider several procedures for choosing subspace vectors. If one

were to use only one subspace vector, an appropriate choice at iteration l + 1 would be

a Sl
1 = −∇ .  With this choice, the subspace method would be equivalent to the steepest

descent algorithm which is known to be inefficient.

Refs. 49-51 all suggest partitioning the objective function and its gradient into the

part related to the prior model and the part related to the data misfit.  Thus, the objective

function S(m) is written as S m f m f mm d( ) ( ) ( )= +  where

( ) ( ) ( )f m m m C m mm prior

T

M prior= − −−1

2
1 , (4.27)

and

( ) ( ) ( )f m g m d C g m dd obs
T

D obs= − −−1

2
1( ) ( ) . (4.28)

If one were to use a two-dimensional subspace, an appropriate choice would be

a f mm
l1 = ∇ ( )  and a f md

l2 = ∇ ( ) , but again this choice is too simple to yield a rapidly

converging algorithm.  Note, however, the negative of these gradients represent the

steepest descent vectors for the two sub-objective functions, f m and f d . More subspace

vectors could be added by multiplying these two gradients by the Hessian49 to form two
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additional descent vectors or by further partitioning of f d  as suggested in Refs. 50 and

51.  We follow the later choice but also further partition f m as suggested by Kennett and

Williamson49. Oldenberg et al.50 also suggest that the gradient vectors should be precondi-

tioned by multiplying by CM . In the two-dimensional subspace case discussed above, this

means that the two subspace vectors should actually be modified to C f mM m
l∇ ( ) and

C f mM d
l∇ ( ) . The first of these vectors is actually the steepest descent vector for f m

considered by itself relative to a norm defined in terms of the positive definite matrix CM .

Oldenberg et al.50 also note that preconditioning by CM  provides appropriate smoothness.

It is interesting to note that if we consider minimizing only f m, ∇ = −−f C m mm M prior
1( )

and the Hessian is  ( )∇ ∇ = −f Cm

T

M
1 . Thus, the Newton's method is

δm C f ml
M m

l+ = − ∇1 ( ) , (4.29)

or

m m C C m m m ml l
M M

l
prior

l
prior

+ −− = − − = − +1 1( ) . (4.29a)

So m ml
prior

+ =1  at all l, i.e., Newton’s method converges to the minimum, mprior , in one

iteration for any initial guess. This provides further motivation for preconditioning

gradient vectors by multiplying by CM . As shown by Oldenberg et al.50, all gradient

vectors should be multiplied by the same preconditioning matrix when forming subspace

vectors.

One choice for the subspace vectors which we have found to be efficient for our

problem arises by partitioning the data misfit term well by well. Specifically, we partition

g m dobs( ) −  as
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where dobs
j is the vector of all observed well j pressure data used as conditioning data and

g m dj
obs
j( )−  is the pressure mismatch vector for well j for j Nw= 1 2, ,..., . We also use the

same relative partitioning to partition the data covariance matrix as

C

C O O

O C O

O C

D

D

D

DNw
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where the order of CDj  is the number of observed conditioning pressure data at well j. 

Finally, we partition the, transpose of the sensitivity coefficient matrix (see Chapter III) as

[ ]G G G GT T T
N
T

w
= 1 2, , ..., ,  (4.32)

where Gj  contains all sensitivity coefficients related to well j.  It can then be shown that

( ) ( )( )∇ = − = −−

=

−∑f m G C g m d G C g m dd
T

D obs j
T

j

nw

Dj
j

obs
j1

1

1( ( ) ) .         (4.33)

The jth term in the preceding summation gives the part of the gradient related to the total

data misfit at well j.  Each term in the  summation is a candidate for a subspace vector;

however, we precondition them by premultiplying by CM . For now, we simply record

these potential subspace vectors as

( )( )w C G C g m dj
M j

T
Dj

j
obs
j= −−1 , (4.34)

for j Nw= 1 2, ,..., .
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   Following a proposal of Kennett and Williamson49, the gradient of f mm( )  is

partitioned into the three parts associated with each of the three attributes; log-

permeability, porosity and well skin factors. In our application, we actually precondition

the gradient of fm by premultiplying by CM  and then partition C fM m∇  into parts

associated with the three attributes. (This procedure is more computationally efficient, but

is equivalent to preconditioning after partitioning the gradient by attributes if and only if

there is no correlation between attributes in the prior model.) The resulting three candidate

subspace vectors are as follows:

[ ]w m mN
prior

T T
w+ = −1 0 0( ) , ,,φ φ , (4.35a)

[ ]w m mN
k k prior

T T
w + = −2 0 0,( ) ,, , (4.35b)

and

[ ]w m mN
s s prior

T T
w + = −3 0 0, , ( ), .             (4.35c)

Since the final subspace vectors will be normalized, partitioning the model by attributes

removes the dependence on the units of the attributes.

Finally, Oldenberg et al.50 have noted that convergence of the method is acceler-

ated by adding a constant vector.  However, our computational experiments indicate that

the results can be further improved by partitioning a constant vector into parts corre-

sponding to each attribute.  In our example problem, there is only one skin factor

estimated and it is sufficient to add only the two following constant vectors:

[ ]wN T
w + =4 1 1 1 0 0 0, , , , , , ,� � ,  (4.36a)

and
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[ ]wN T
w + =5 0 0 0 1 1 1, , , , , , ,� � . (4.36b)

wNw +4  has its first m entries equal to unity and all other entries equal to zero. wNw +5  has

its first m entries equal to zero and all other entries equal to 1.

In essence, the span of the total set of w j ’s represents our subspace.  However, if

we were unfortunate enough to choose subspace vectors which formed a linearly

independent set, then the coefficient matrix of Eq. 4.23 would be singular and the

subspace method would fail.  Thus, we actually use the Gram-Schmidt57 procedure to

construct an orthonormal set of subspace vectors, a j , j Nw= +1 2 5, ,..., , from the w j ’s.

The resulting set of a j ’s represent the subspace basis used in the following example

problem. In all cases the w j  are normalized to obtain unit vectors.

4.3  Computational Example

4.3.1  Two-dimensional Case

4.3.1.1 True Reservoir Model

Here, we present results for only one synthetic example, which pertains to two di-

mensional (x - y) flow in a rectangular parallelepiped reservoir of thickness h = 100 ft and
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areal dimensions of of 1,700 ft x 1,700 ft.  All reservoir boundaries are no-flow bounda-

ries.  Reservoir performance was simulated using a uniform spatial grid with

∆ ∆x y= =100 ft.

Other relevant reservoir and fluid properties are as follows: system compressibility,

ct = −10 5  psi, fluid viscosity, µ = 0 5.  cp; all wellbore radii, rw = 0 25.  ft; and initial

pressure, pi = 6 000,  psi.  The permeability distribution is assumed to be log-normal with

log variance of 0.5 and log mean equal to 4.0. We further assume the permeability field is

isotropic and spatial continuity can be described by a spherical variogram model with a

range equal to 450 ft.  It is assumed that porosity has a normal distribution with a mean of

0.25 and a variance of 0.0025. The correlation coefficient between log-permeability and

porosity was set equal to ρφ , .k = 0 7 .  The standard deviation for all pressure measurement

errors was assumed to be equal to σ d = 015.  psi.

The areal gridblocks are shown in Fig. 4.1. A number within the gridblock indi-

cates a well in located in the gridblock with the actual number denoting the well number. 

In the example presented, the center well (well 5) is an active well produced at a constant

rate of 500 STB/D and all other wells are observation wells.  The skin factor at the active

well is equal to 4.0 with the prior mean equal to zero and the prior variance equal to 36.

The "true" distributions of log permeability and porosity, are shown respectively in

Figs. 4.2 and 4.3  and represent results from an unconditional simulation generated from

the Cholesky decomposition of the prior covariance matrix.  In these figures and all

subsequent figures, the x-direction and y-direction scales are in feet measured from the

"lower left corner" of  the  reservoir.  Note  we  are only determining the areal distribution
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of rock properties.  In terms of ln(k), the scale in Fig. 4.2 ranges from 1.5 to 7.0, i.e., in

terms of k, the scale ranges from 4.5 md. to 1,097 md.

In this example, we generate synthetic well test pressure data by running the simu-

lator for a total time of 1.7 days.  The maximum pressure drops obtained at the observa-

tion wells ranged from 3 psi to 9 psi.  In the following, we present realizations of the rock

property fields obtained by conditioning to the prior model and the pressure data at the

nine wells using the conventional method (Refs. 19, 23 and 24), spectral decomposition,

and the subspace method.  In the conventional method, Eq. 2.20 in Chapter 2 was applied

since this is more computationally efficient formulation of the Gauss-Newton method if no

reparameterization is done.  In all cases, ten pressure data at each well were used.

4.3.1.2 Spectral Decomposition

Fig. 4.4 and 4.5, respectively, show the maximum a posteriori estimates for ln(k)

and porosity obtained using the conventional method of Refs. 19, 23, 24.  The corre-

sponding estimate of the skin factor obtained was s = 3.75 as compared to the true value

of s = 4.0. Figs. 4.6 and 4.7, respectively, show the maximum a posteriori estimate

obtained using spectral decomposition based on retaining ninety per cent of the total

spectrum in the reparameterized model, i.e., choosing θ = 0.90 in Eq. 4.6.  The associated

estimate of the active well skin factor obtained was s = 3.78. Note that qualitatively, the

maximum a posteriori estimates obtained with spectral decomposition are almost identical

to those obtained  by  the  conventional  method,  Figs. 4.4  and  4.5.  The  value
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of  the  objective function (see Eq. 2.10) evaluated at the maximum a posteriori estimate

was 13.8 for the conventional method and 14.6 for the spectral decomposition method,

which further confirms the accuracy of mp,∞ . However, the dimension of the reparameter-

ized model mp  is 211 as compared to 579 for the original model m. All runs were done on

a Pentium-133.  The run time for the conventional method was 14.6 minutes as compared

to a run time of 7.4 minutes for the spectral decomposition procedure.  The Gauss-

Newton procedure converged in 5 iterations for the conventional problem, whereas, in the

reparameterized case, 6 iterations were required to achieve convergence.

Figs. 4.8 and 4.9 show one realization of the log-permeability and porosity fields

obtained from Eqs. 4.24 and 4.14.

In a second example, which only retained 80% of the “energy” (θ = 0.8 ), maxi-

mum a posteriori estimates almost identical to those shown in Figs. 4.6 and 4.7 were

obtained, and the corresponding estimate of the active well skin factor was s = 3.61.

However, for other examples, we have observed a degradation in the accuracy of the

maximum a posteriori estimate with θ = 0.8.  With  θ = 0.8, the dimension of mp   was 

98.

Because the eigenvalues of the prior covariance matrix decay fairly rapidly, one

might expect spectral decomposition to retain a much smaller percentage of the eigenval-

ues as the size of the gridblocks decrease without changing the covariance. For example,

when we ran a similar case with 625 total gridblocks so that the conventional method esti-

mates 1251 parameters, the dimension of the reparameterized model was 267 for θ = 0.90

 in  Eq. 4.6.  Unfortunately,  the  computer run time was 107 minutes as compared to
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Fig. 4.8 - Realization of log-permeability field;
Spectral decomposition method.
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67 minutes for the conventional  method.  The spectral decomposition  alone  required

over  one hour of computer time. The preceding run times refer to the times required to

generated the maximum a posteriori estimates.

As mentioned previously, addition of a nugget effect significantly retards the de-

crease in dimensionality achieved by reparameterization.  For example, adding nugget

effects of 0.1 to the variogram for ln(k) and 0.0004 to the porosity variogram, resulted in a

reparameterized model, mp  of dimension 501 for the 625 gridblock case when reparame-

terization was based on θ = 0.90.

4.3.1.3  Subspace Method

 Figs. 4.10 and 4.11, respectively show the ln(k) and porosity maximum a posteriori

estimates obtained by applying the subspace method.  The corresponding value of the

objective function was 16.6 compared to a value of 13.8 at m∞ .  Comparing Fig. 4.10

with Fig. 4.4 and Fig. 4.11 with Fig. 4.5, we see that the estimate of m∞ obtained with the

subspace method is in excellent agreement with m∞  obtained with the conventional

method.  The estimate of the active well skin factor obtained from the subspace method

was s = 4.04. The subspace method required 4.8 minutes of computer time as compared to

14.6 minutes for the conventional method.  The subspace method required 7 Gauss-

Newton iterations to converge as to compared to 5 iterations for the conventional method.

Fig. 4.12 presents a realization of the log-permeability field obtained from the sub-

space method.   This  realization  is virtually identical to the corresponding realization
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generated  from  the  conventional  method  with   the  same  seed  and  illustrates  that 

the subspace generates realizations of the same quality as obtained with the conventional

method.

Fig. 4.13 compares the “true” pressure data at three of the observation wells with

the pressure data predicted using the realization of Fig. 12, the associated realization of

porosity and the corresponding realization of the active well skin factor as input to the

reservoir simulator. Note the realization produces pressure data which are in good

agreement with the observed pressure data. Equally good agreement between observed

pressure data and pressure data predicted from the realization was obtained at all other 

wells. Similar to Fig. 5 of Ref. 23, the variograms calculated from the realization of Fig.

12 are in reasonable agreement with the model variograms. However, it is well known that

variograms calculated from legitimate realizations of the rock property fields may differ

considerably from the model variogram; see Refs. 33 and 35 for additional discussion.

For a similar problem with 625 gridblocks, the subspace method required 30 min-

utes of computer as compared to 67 minutes for the conventional method.  Thus, we see

that the subspace method offers the advantage of significant computational savings as the

size of the problem becomes large.

4.3.2  Three-dimensional Case

In this subsection, we show a 3D case with same data set as we used in Chapter II.

We apply the subspace method to reduce the size of the matrix problem solved at each

iteration of the Gauss-Newton method. In selecting subspace vectors, we choose porosity

and permeability of each layer as independent subspace vectors, i.e., the vector of Eq.
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4.35a  was further partitioned into three subspace vectors, and Eq. 4.35b was also

replaced by three subspace vectors. Thus, our subspace consists of 3 vectors for porosity,

 3 vectors for log-permeability, 2 constant vectors (see Eq. 4.36a and 4.36b); plus 9

vectors arising from Eq. 4.34, i.e., there are 17 subspace vectors. 

Fig. 4.14 (same as Fig. 2.7) presents the maximum a posteriori estimate of the log-

permeability field obtained by the conventional method by conditioning to both hard data

and pressure data, and Fig. 4.15 shows the corresponding maximum a posteriori estimate

obtained by the subspace method. Figs. 4.16 (same as Fig. 2.19) and 4.17 show corre-

sponding results for the thickness averaged permeability. Maximum a posteriori estimates

of the porosity field obtained by the conventional method and the subspace method are

shown in Figs. 4.18 (same as Fig. 2.8) and 4.19 respectively. Note results obtained from

the conventional procedure and the subspace method are in good agreement. However,

the final value of the objective function obtained by the subspace method was 6.2 as

opposed to 4.5 for the conventional method. The conventional method requires  6 Gauss-

Newton iterations to converge while the subspace method requires 8 iterations. The

subspace estimate required 9.2 minutes of computer time on a Pentium-133 as opposed to

19.5 minutes for the conventional method.
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Fig. 4.14 - Max. a posteriori estimate of log-permeability field,
conventional method.
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Fig. 4.15 - Max. a posteriori estimate of log-permeability field,
subspace method.
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Fig. 4.16 - Thickness averaged permeability field, conventional method.
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Fig. 4.17 - Thickness averaged permeability field, subspace method.



154
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      Fig. 4.18 - Max. a posteriori estimation of porosity fields,
conventional method

0.100 0.167 0.233 0.300

  Fig. 4.19 - Max. a posteriori estimation of porosity fields,
subspace method.
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CHAPTER V

RESERVOIR PERFORMANCE PREDICTION

 In previous chapters, we have presented procedures based on inverse problem

theory for generating reservoir descriptions (rock property fields) conditioned to pressure

data and geostatistical information represented by prior means for log-permeability and

porosity and variograms. Although we have shown that the incorporation of pressure data

reduces the uncertainty below the level contained in the geostatistical model based only on

static information (the prior model), our previous results did not explicitly account for

uncertainties in the prior means and the parameters defining the variogram model.

In this chapter, we investigate how pressure data can help detect errors in the prior

means. If errors in the prior means are large and are not taken into account, realizations

conditioned to pressure data do not properly characterize the uncertainty in the rock

property fields, whereas, if the uncertainty in the prior means is incorporated properly into

the model, one obtains realistic realizations of the rock property fields.

Our objective is to generate realizations of three-dimensional rock property fields

(simulator gridblock values of log-permeability and porosity) conditioned to a prior model

and well-test pressure data. The prior model is based on a multivariate Gaussian distribu-

tion with known covariance matrix and uncertain prior means. Unlike the past work

mentioned in previous chapters, we specifically account for uncertainty in the prior means
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by introducing a partially doubly stochastic prior model using basic ideas described in

Tjelmeland et al.38. Our basic procedure for generating realizations of the rock property

fields relies on generating the joint probability density function (pdf) for the rock property

fields and the errors in the prior means conditioned to pressure data, and then sampling

this pdf to obtain realizations.

An efficient  procedure for sampling the pdf is obtained by adapting ideas and

techniques presented in Oliver35 and Oliver et al.27  to the problem considered here. A

procedure for generating the maximum a posteriori estimates of the rock property fields

and prior means is also presented. Specific realizations and maximum a posteriori

estimates are generated by minimizing an appropriate objective function using the Gauss-

Newton method.  Sensitivity coefficients are computed using the procedure presented in

Chapter III. 

It is important to note that our objective in generating realizations of rock property

fields is to obtain a set of realizations which represent a correct sampling of the probability

density function for the rock property fields. By making a performance prediction with

each realization, one can then evaluate the uncertainty in the predicted parameters, e.g.,

break through time or  cumulative oil production. If one simply generates a set of

realizations that honor all the data, but the set does not provide a correct sampling of the

probability density function, we know of no feasible procedure for evaluating the

uncertainty in performance predictions. For simplicity, we give the mathematical details

only for the case where the skin factors are known a priori and not estimated. However, in

our actual implementation, skin factors can also be estimated.

5.1 Prior and A Posteriori Probability Density Functions
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As noted previously, mprior  is the vector containing the prior means of the model 

parameters, i.e., for the case where the permeability field is isotropic and skin factors are

known,

m
m e

m eprior

prior

prior k

=












,

,

φ
,  (5.1)

where  e is the  M-dimensional column vector with all entries equal to unity.

[ ]e T= 1 1 1, , ..., .         (5.2)

Since ln(k) and porosity are modeled as stationary random functions in the prior model,

mprior ,φ  and mprior k,  are treated as scalars, although the general formulation presented

allows each entry of mprior  to be different.

The random vector Θ  represents the error in or correction to mprior with θ  de-

noting specific realizations of Θ . Introduction of Θ  allows for the incorporation of

uncertainty in the vector of prior means, whereas, in our past work25-27, we assumed no

error in mprior .

The pdf for  Θ  is assumed to be Gaussian and is given by

p a CT
Θ Θ( ) exp ( ) ( )θ θ θ θ θ= − − −





−1

2 0
1

0 , (5.3)

where θ0   is the mean or expectation of the random vector Θ  and CΘ  is the associated

covariance matrix.  In this work, we assume that errors in the prior means are independent

so CΘ  is a diagonal matrix. Although it is appropriate to choose θ0 0= , the derivation is

done for any value of θ0 . The conditional distribution (pdf) of M given Θ = θ  is given by
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p m a m m C m mM prior
T

M priorΘ ( ) exp ( ) ( )θ θ θ= − − − − −





−1

2
1 . (5.4)

So the joint pdf for M and Θ  is given by

    p m p m p m p
M M M� �

( � ) ( , ) ( ) ( )= =θ θ θΘ Θ

= − − − − − − − −





− −a m m C m m Cprior
T

M prior
Texp ( ) ( ) ( ) ( )

1

2

1

2
1

0
1

0θ θ θ θ θ θΘ , (5.5)

where

�M
M

=










Θ
 . (5.6)

For simplicity, a realization �m of �M  is sometimes denoted by ( , )mθ  instead of

( , )mT T Tθ . Throughout, the superscript T is used to denote the transpose of a matrix or

vector. For convenience, we refer to mprior  as the prior mean, however, one should note

that Eq. 5.4 indicates that the conditional expectation of M is given by

[ ]E M mpriorΘ = = +θ θ . (5.7)

All measured well-test pressure data that will be used as conditioning data are in-

corporated in the Nd -dimensional column vector dobs. Note Nd  is the total number of

observed or measured pressure data used as conditioning data. As is standard, d represents

the corresponding vector of pressures that will be calculated for a given realization m of

the rock property fields and the relationship between the data and m is represented by 

d g m= ( ) .  (5.8)

Given a specific m, Eq. 5.8 represents the operation of calculating wellbore pres-

sures by running the reservoir simulator.
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As shown previously, we assume that the random vector ε  which represents

measurement errors consists of independent identically distributed random variables with

zero mean and variance σ d
2  so that the data covariance matrix CD  is a diagonal matrix

with all diagonal entries equal to σ d
2 . Given m, the observed pressure data may be

regarded as a realization of the random vector D g m= +( ) ε . Thus, the a posteriori pdf

for �M  conditional to the observed pressure data, dobs, can be derived as in Tjelmeland et

al.32 by a standard applications of Bayes theorem and is given by

π θ( , ) ( � ) exp ( ( ) ) ( ( ) )
�

m p md a g m d C g m d
M D obs obs

T
D obs= = − − −


−1

2
1

− − − − − − − − 


− −1

2

1

2
1

0
1

0( ) ( ) ( ) ( )m m C m m Cprior
T

M prior
Tθ θ θ θ θ θΘ ,           (5.9)

where the first equality of Eq. 5.9 simply defines notation and a is a normalizing constant.

Eq. 5.9 gives the pdf we wish to sample to generate realizations ( , )mθ  of �M .  To

generate the most probable model (maximum a posteriori estimate) for �M , we need to

minimize the objective function O m( � )  given by

             O m g m d C g m dobs
T

D obs( � ) ( ( ) ) ( ( ) )= − −−1

2
1

+ − − − − + − −− −1

2

1

2
1

0
1

0( ) ( ) ( ) ( )m m C m m Cprior
T

M prior
Tθ θ θ θ θ θΘ .              

(5.10)

At this point, the dimension of θ  is the same as the dimension of m, i.e., Np . 

5.2 Gauss-Newton Method for Partially Doubly Stochastic Model
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5.2.1 Iteration Precedure

It is convenient to partition the gradient as

∇ =
∇

∇













O m
O m

O m

m
( � )

( � )

( � )θ

 , (5.11)

where ∇m  represents the gradient operator with respect to m and ∇θ   represents the

gradient operator with respect to θ . Using basic vector calculus, it follows that

∇ = − + − −− −
m

T
D obs M priorO m G C g m d C m m( � ) ( ( ) ) ( )1 1 θ . (5.12)

Similarly,

∇ = − − − + −− −
θ θ θ θO m C m m CM prior( � ) ( ) ( )1 1

0Θ ,     (5.13)

where GT  is the transpose of the N Nd p×  sensitivity coefficient matrix G  which is

defined as

[ ]G g mm
T= ∇ ( )  . (5.14)

Using Eqs. 5.12 and 5.13 in Eq. 5.11 gives the total gradient of the objective function.

Again using basic vector calculus, the Hessian matrix for the Gauss-Newton iteration is

given by

H
G C G C C

C C C

T
D M M

M M

=
+ −

− +













− − −

− − −

1 1 1

1 1 1
Θ

.  (5.15)

The Hessian is guaranteed to be positive semidefinite.  It is well known (Fletcher58) that if

the Hessian is modified, the Gauss-Newton method will still converge to the same

maximum a posteriori estimate provided the modified Hessian is positive definite. Thus, in

order to obtain a simpler computational scheme, we replace the Hessian H  by �H  where
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�H
G C G C O

O C C

T
D M

M

=
+

+













− −

− −

1 1

1 1
Θ

.  (5.16)

Since CD , CM  and CΘ  are all positive definite matrices, it is clear that �H  is positive

definite.

When �H  is used as the modified Hessian in the Gauss-Newton iteration proce-

dure, the overall iteration can be decomposed as follows:

( ) ( ( ) ) ( ),G C G C m G C g m d C m mk
T

D k M
k

k
T

D
k

obs M
k

prior
k− − + − −+ = − − − − −1 1 1 1 1δ θ (5.17)

( ) ( ) ( )C C C m m CM
k

M
k

prior
k k− − + − −+ = − − − −1 1 1 1 1

0Θ Θδθ θ θ θ ,                      (5.18)

m m mk k
k

k+ += +1 1µ δ ,                                                    (5.19)

θ θ µ δθk k
k

k+ += +1 1,                                                      (5.20)

where k refers to the iteration index and µk  is the step size determined by the restricted

step method  (Fletcher58). Note in the spirit of the restricted step, it is important to use the

same value of µk  in both Eqs. 5.19 and 5.20, otherwise we effectively change the search

direction.  Note by replacing H by �H , we avoid inversion of H, i.e., we have decoupled

the iteration on the model (m) from the iteration on the correction (θ ) to the prior mean. 

Let e represent a column vector of dimension Ne with all components equal to

unity, i.e.,

[ ]e T= 1 1 1, , ...,  ,      (5.21)

Then the prior mean given by Eq. 5.1 can be written as more general form
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m

m e

m e

m e

prior

prior

prior

prior Na

=





















,

,

,

1

2

�
 .  (5.22)

In this case, it is reasonable to require that the correction to the prior mean have the same

structure as mprior , i.e., we require that

θ

α
α

α

θ
θ

θ

=





















=





















1

2

1

2

e

e

e

e

e

eN Na a

� �
, (5.23)

for some constants, α j aj N, , ,...,= 1 2 . Since mprior  and θ  are both  Np - dimensional

column vectors, N N Na e p= .  For the case where all attributes are modeled as stationary

random functions, Na  is equal to the number of attributes, e.g., Na = 2  if  Eq. 5.1

applies. However, if the mean of each attribute varies from gridblock to gridblock, then

N Na p=  (the dimension of the model m). In this case, e is one dimensional and Eq. 5.23

does not place any restrictions on the components of θ .  When Eq. 5.23 applies, CΘ   is

defined as a block diagonal matrix with the jth diagonal block given by σθ , j I
2  for

j Na= 1 2, ,...,  where I  is the N Ne e×  identity matrix.

The ( )N N N N Na e a p a× = ×  matrix E is defined by

E

e O O

O e O

O O e

=



















�

�

� � � �

�

, (5.24)

so the transpose of E is given by
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E

e O O

O e O

O O e

T

T

T

T

=





















�

�

� � � �

�

.  (5.25)

If N Na p=  ( Ne = 1), then E is the N Np p×  identity matrix. Defining the Na  dimen-

sional column vector α  by

[ ]α α α α= 1 2, ,..., N

T

a
      (5.26) 

Eq. 5.23  can be written as θ α= E .

5.2.2 Partial Subspace Procedure

In Chapter IV, we showed that using subspace methods can significantly enhance

the computational efficiency of the Gauss-Newton method. Here, we consider only a

partial subspace procedure where δθ l +1  in Eq. 5.18 is expanded as

δθ δαk kE+ +=1 1, (5.27)

at all Gauss-Newton iterations. Using Eq. 5.27 in Eq. 5.18 and multiplying the resulting

equation by E CT
M  gives

E I C C E E m m E C CT
M

k T k
prior

k T
M

k( ) ( ) ( )+ = − − − −− + −
Θ Θ

1 1 1
0δα θ θ θ . (5.28)

Eq. 5.27 indicates that δθ l +1  is a linear combination of the columns of E, i.e., the

columns of E represent the associated subspace vectors. If the initial guess for θ ,

θ θ0
0= , is also a linear combination of these subspace vectors, then by mathematical

induction, it follows that for all l, θ l  is a linear combination of these subspace vectors.
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This result is apparent because if θ l  is a linear combination of these subspace vectors, i.e.,

θ αl lE= , it follows from Eqs. 5.20 and 5.27 that

θ α µ δα α µ δαl l
l

l l
l

lE E E+ + += + = +1 1 1( ) .  (5.29)

It now follows that when Eq. 5.18 is replaced by Eq. 5.28, Eq. 5.20 can be replaced by

α α µ δαl l
l

l+ += +1 1, (5.30)

and

θ θk kE+ +=1 1.                     (5.31)

With this modification, the overall computational scheme for estimating the maxi-

mum a posteriori estimate (Eqs. 5.17 through 5.20) can now be written as

δ θm m m C G C G C Gl
prior

l l
M l

T
D l M l

T+ −= + − − +1 1( )

[ ]× − − − −g m d G m ml
obs k

l
prior

l( ) ( )θ ,                      

(5.32)

       E I C C E E m m E C CT
M

l T l
prior

l T
M

l( ) ( ) ( )+ = − − − −− + −
Θ Θ

1 1 1
0δα θ θ θ .          

(5.33)

m m ml l
l

l+ += +1 1µ δ ,                                           (5.34)

and Eqs. 5.30 and 5.31. Eq. 5.32 was obtained from Eq. 5.17 by using basic matrix

inversion lemmas (see Eqs. 2.18 and 2.19). The preceding subspace implementation of the

Gauss-Newton iteration will converge to the so-called maximum a posteriori estimate

( , )m∞ ∞θ , which is commonly referred to as the most probable model.  However, as noted

previously, our objective is not to simply generate the most probable estimate of �m, but to
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generate a suite of realizations which represent a correct sampling of the pdf of Eq. 5.9. 

The sampling procedure we used is presented in the following section.

5.3 SAMPLING THE A POSTERIORI DISTRIBUTION

Markov chain Monte Carlo (MCMC) methods provide  theoretical techniques

which are guaranteed to produce a correct sampling of a given pdf if a sufficiently large

number of states are generated. However, current implementations (Oliver et al.35,

Cunha33 and Cunha et al.34) are too computationally intensive for practical applications

when the goal is to generate realizations conditioned to production data and the genera-

tion of each state in the Markov chain requires a run of a reservoir simulator. Procedures

based on approximating the a posteriori pdf by a Gaussian centered at the maximum a

posteriori estimate require computing either the Cholesky decomposition or the square

root of the a posteriori covariance matrix and do not always generate a correct sampling

of the pdf (Oliver et al.35, Cunha33 and Cunha et al.34). Thus, we pursue a computationally

efficient alternative. For the case where uncertainty in the prior mean is ignored, the basic

procedure has been discussed by Oliver et al.27  and relies on underlying theory developed

by Oliver36. The basic procedure is technically correct only for the case where the data are

linearly related to the model, however, Oliver et al.27 have presented arguments which

suggest that the procedure should give an approximately correct sampling in the nonlinear

case.

5.3.1 Linear Case
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Here, we extend the results of Oliver36 and Oliver et al.27 to the case where we in-

corporate uncertainty in the prior mean. We consider the case where the data are linearly

related to the model, so Eq. 5.8 can be written as

d Gm= , (5.35)

where G is an N Nd p×  matrix. For this case, the maximum a posteriori estimate can be

obtained by solving the following two equations: ∇ =θ O m( � ) 0  and ∇ =mO m( � ) 0  (see Eqs.

5.12 and 5.13) to obtain m∞  and θ∞ . It is easy to show that this solution satisfies

G C G C C

C C C

m C m G C d

C m C

T
D M M

M M

M prior
T

D obs

M prior

− − −

− − −
∞

∞

− −

− −
+ −

− +

















 =

+
− +













1 1 1

1 1 1

1 1

1 1
0θ θ θΘ

 . (5.36)

Note that the coefficient matrix on the left side of Eq. 5.36 is the Hessian matrix defined in

Eq. 5.15. Moreover, when Eq. 5.35 applies it is easy to show that the a posteriori pdf for

�M  (Eq. 5.9) is Gaussian with covariance matrix given by H −1 and expectation given by

( , )m∞ ∞θ  (Tarantola14).

Next, we present a procedure for sampling π θ( , )m  which does not require the

generation of the Cholesky or square root decomposition of H −1. To construct a

realization, we generate an unconditional simulation of m, which is denoted by muc and is

given by

m m C Zuc obs M= + 1 2/ , (5.37)

where the components of the Np -dimensional column vector Z are independent standard

random normal deviates. Similarly, unconditional simulations of the data and the

correction to the prior mean, respectively, are generated by

d d C Zuc obs D D= + 1 2/ ,  (5.38)



167

and

θ θuc C Z= +0
1 2
Θ Θ
/ , (5.39)

where again the components of ZD  and Zθ  are independent standard random normal

deviates. The 1/2 superscript on the matrices in the preceding three equations represent

the square root of the matrix, but the square roots could also be replaced by the lower

triangular matrix arising from the LLT  decomposition of the matrix. However, CD  and

Cθ  are diagonal matrices, thus, it is trivial to compute their square root. Because we wish

to avoid  explicit factorization of CM  or the generation of its square root, in our computer

implementation, we actually use sequential Gaussian cosimulation (e.g., Gomez-

Hernandez and Journel37) in place of Eq. 5.38 to generate muc. If we replace, mprior  by

muc, dobs by duc  and θ0  by θuc  in Eqs. 5.12 and 5.13, set both equations to zero and

solve to obtain the solution denoted by ( , )ms sθ , then similar to Eq. 5.36, we find that

G C G C C

C C C

m

C m C Z G C d C Z

C m C Z C C Z

T
D M M

M M

s

s

M prior M
T

D obs D D

M prior M

− − −

− − −

− −

− −

+ −
− +




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











 =

+ + +
− + + +













1 1 1

1 1 1

1 1 2 1 1 2

1 1 2 1
0

1 2

θ

θ θ θ

θ

θ
( ) ( )

( ) ( )
.

/ /

/ /

 (5.40)

Subtracting Eq. 5.36 from 5.40, we see that the conditional simulations, ms  and θs satisfy

G C G C C

C C C

m m

C C Z G C C Z

C C Z C C Z
B

T
D M M

M M

s

s

M M
T

D D D

M M

− − −

− − −
∞

∞

− −

− −

+ −
− +











−
−









 =

+
− +









 =

1 1 1

1 1 1

1 1 2 1 1 2

1 1 2 1 1 2

θ

θ θ θ

θ θ

/ /

/ / ,

  (5.41)
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where the last equality of Eq. 5.41 serves to define B. The random vector �Ms is defined

by

[ ]� ,M ms s
T

s
T T

= θ  . (5.42)

Since the expected values of Z , ZD  and Zθ  are all zero, it is clear that the expected

values of �Ms  is given by

E M
m

s( � ) =










∞

∞θ
, (5.43)

i.e., E m ms( ) = ∞  and E s( )θ θ= ∞ . The covariance of the random vector, �Ms , is given by

[ ]( ) [ ]( ) [ ]E M E M M E M H E BB Hs s s s

T
T

� � � �− −





= − −1 1,  (5.44)

where B is defined by the last equality of Eq. 5.41.  Thus,
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(5.45)

Using the fact that Z , ZD  and Zθ  are independent vectors, with components of each

vector representing independent standard random normal deviates, Eq. 5.45 can be

reduced to
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Using Eq. 5.46 in Eq. 5.44 , we obtain

[ ]( ) [ ]( )E M E M M E M Hs s s s

T
� � � �− −





= −1 .  (5.47)

Thus, we have shown that the covariance and expectations of �M  and �Ms  are the same. 

Since both random vectors satisfy Gaussian distributions when Eq. 5.35 applies, we can

generate a sampling of �M  by sampling the distribution for �Ms . Samples of �Ms  can be

generating by solving Eq. 5.40 for ms and θs  for a set of independent unconditional

simulations, muc, duc  and θuc.

5.3.2 Nonlinear Case

For the nonlinear case of interest, the same type of procedure is applied except we

restrict θ  by introducing a subspace method, i.e., samples are generated by the computa-

tional algorithm of Eqs. 5.32, 5.33, 5.34, 5.30 and 5.31 with mprior  replaced by muc, dobs

replaced by duc  and θ0  replaced by θuc.  Note this simulation procedure represents

automatic history matching of the perturbed pressure data , duc , with prior information

used as a regularization term.

In this process, θuc must be generated so it lies in the appropriate subspace.  To do

this, recall that CΘ  is a block diagonal matrix where the jth diagonal block is given by

σθ , j I
2  and introduce the associated covariance matrix Cα , which is related to CΘ  by

C E C ET
α
− −=1 1

Θ  .   (5.48)
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Cα  is an N Na a×  diagonal matrix with jth diagonal entry denoted by σα , j
2 . We compute

α α α αuc C Z= +0
1 2/ ,  (5.49)

where the components of the Na  dimensional column vector are independent standard

random normal deviates and set

θ αuc ucE= . (5.50)
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5.4 COMPUTATIONAL EXAMPLE

5.4.1 Synthetic 3D Case

The example considered pertains to a reservoir containing nine completely-

penetrating wells. A simulation grid with 25 gridblocks in the x and y directions and 10

gridblocks in the z direction is used, i.e., 6,250  gridblocks are used.  Since we wish to

generate realizations of the log-permeability and porosity fields, there are 12,500 model

parameters.  The areal grid is 400 ft by 400 ft and all gridblocks in the z directions have

thickness (height) 10 feet. Fig. 5.1 shows the areal grid and well locations.

The reservoir is areally isotropic k k kx y= =   and we require that k kz = .  Thus,

determination of a distribution for k automatically determines the vertical permeability at

each gridblock.  An anisotropic spherical variogram for ln( )k  is used with the range in the

x-direction equal to 3,200 ft, the range in the y-direction equal to 1,600 ft and the range in

the z-direction equal to 30 feet. The variance of ln( )k  (sill of the variogram) is specified

as σ k
2 0 5= . . The anisotropic variogram for porosity is identical to the one for ln(k) except

the variance for porosity is specified as σφ
2 0 002= . . The correlation coefficient between

log-permeability and porosity is specified asρ φk, .= 0 7 .

The true log-permeability is shown in Fig. 5.2.  This truth case was obtained by

unconditional simulation (Eq. 5.38) using mprior k, .= 4 0 and mprior , .φ = 0 20 . This

unconditional simulation also yields the true porosity field. For convenience, we refer to

mprior k, .= 4 0  and mprior , .φ = 0 20  as the true prior means.
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 Fig. 5.1 - Areal grid, well locations and well numbers.
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     Fig. 5.2 - True log-permeability field.
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Other relevant reservoir and fluid properties are as follows: system compressibility,

ct = −10 5 psi, fluid viscosity, µ=0.8 cp; all wellbore radii, rw = 030.  ft; and initial

pressure, pi = 3 230,  psi. The prior mean for skin factors is equal to 5, and the prior

variance of skin factors is equal to 1.0. We set a small variance (1.0) on all skin factors

because wellbore pressure does not contain sufficient information to correctly estimate the

individual “layer” skin factors. Synthetic well-test pressure data were generated by running

the simulator using the true permeability, true porosity fields and well skin factors. All nine

wells are open to flow simultaneously with the flow rates equal to 700, 820, 450, 630,

430, 740, 590, 780, 910 STB from well one to well nine. Well-test pressure data were

collected at wells 2, 4, 5, 6 and 8 (see Fig. 5.1) during a period when the other four wells

were produced at a specified rate. At the center well (well 5), a two-day drawdown

followed by a one-day buildup test was run.  At the other four tested wells (wells 2, 4, 6

and 8) pressure data were measured during three day drawdown tests. These synthetic

pressure data are referred to as measured pressure data from this point onward.

In the following, we apply our procedures for sampling the a posteriori pdf (Eq.

5.9). We consider a case where we use mprior k, .= 50  and mprior , .φ = 0 25 (referred to as

the incorrect prior means) with and without allowing for uncertainty (errors) in the prior

means.

Fig. 5.3 shows an unconditional simulation of the log-permeability field generated

from Gaussian cosimulation using the true prior mean. Fig. 5.4 shows an unconditional

simulation of the log-permeability obtained from Gaussian cosimulation using the incorrect

prior means.  As expected the gridblock values of log-permeability tend to be much higher



174

when the incorrect mean is used; compare Figs. 5.3 and 5.4.   Similar results were

obtained for the porosity field since the incorrect mean for porosity is higher than its true

mean.

Fig. 5.5 shows a conditional simulation of the log-permeability field obtained by

applying the method of Oliver et al.26  using true prior means for ln( )k  and porosity.  This

is equivalent to our basic procedure with θ  set equal to zero at all iterations, i.e., we do

not incorporate uncertainty in the prior mean. Fig. 5.6 shows a conditional simulation

obtained by the same procedure except in this case, the incorrect prior means were used.

Note that the log-permeability values obtained in Fig. 5.6 tend to be much higher than

those obtained in Fig. 5.5.  This  is  the  expected  result because the incorrect prior means

are much higher than the true values, but we did not apply our procedure to correct the

prior means.  We can see that the log-permeability field has been reduced significantly at

locations near wells 2, 4, 5, 6 and 8, where the property fields have been conditioned to

their pressure. At other locations, the log-permeability field has not been changed.

Fig. 5.7 shows a conditional realization obtained by our basic procedure.  In this case, we

used the incorrect prior means, but accounted for uncertainty in the prior means, where

the 2 2×  diagonal covariance matrix Cα  (see Eq. 5.47) has as its two entries

σα , .1
2 0 001=  and σα , .1

2 0 2= . Note the realization in Fig. 5.7 is almost identical to  the one

of Fig. 5.5 which was generated with the true prior means by  assuming  no  errors  in  the

prior means. Although they are not presented here, similar results were obtained for the

porosity field.
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2.0 3.0 4.0 5.0 6.0 7.0

Fig. 5.3 - Unconditional realization of log-permeability field with true prior
means.

2.0 3.0 4.0 5.0 6.0 7.0

Fig. 5.4 - Unconditional realization of log-permeability field with incorrect
prior means.
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2.0 3.0 4.0 5.0 6.0 7.0

Fig. 5.5 - Realization of log-permeability field conditioned to pressure data
using true prior means.

2.0 3.0 4.0 5.0 6.0 7.0

Fig. 5.6 - Realization of log-permeability field conditioned to pressure data
using incorrect prior means without correction to prior means.
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The results of Figs. 5.5 through 5.7 and the corresponding results for porosity (not

shown) illustrate that our procedure for accounting for uncertainty in the prior means is

viable and yields reasonable realizations of the rock property fields. The values of θs

obtained by our basic procedure, which gave the results of Fig. 5.7, indicate that the

correction to the prior mean for ln( )k  was -1.041 and the correction to the prior mean for

porosity was -0.047.  Note these values are very close to the true error in the incorrect

prior means.

The permeability values corresponding to the results of Fig. 5.7 and associated po-

rosity values were input to the simulator to predict  pressure data at the five wells tested.

Fig. 5.8 shows that the pressure data predicted at well 5 from this realization are in good

agreement with the measured pressure data. Equally good agreement was obtained at the

other tested wells.  The dashed curve in Fig. 5.8 represents the pressure data predicted

using the corresponding unconditional simulation, muc, as input to the reservoir simulator.

As this muc was used as the initial guess in the Gauss-Newton method when constructing

the conditional simulation by our basic simulation method, the results of Fig. 5.8  give a

qualitative measure of how the incorporation of pressure data changes estimates of rock

property fields obtained solely from the prior model.

We also generated 50 conditional simulations of the rock property fields using our

basic simulation procedure. As discussed previously, this suite of realizations of the rock

property fields represents an approximate sampling of the a posteriori pdf of Eq. 5.9. For

each realization, we simulated reservoir performance for 1,000 days where all nine wells

were produced at a constant  bottom-hole  pressure  of  1500 psi.   Reservoir  perform-

ance



178

2.0 3.0 4.0 5.0 6.0 7.0

Fig. 5.7 - Realization of log-permeability field conditioned to pressure data
with correction to incorrect prior means.
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Fig. 5.8 - Pressure data predicted at well 5 from conditional and unconditional
simulations of rock property fields compared to measured pressure data.
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was also predicted from the set of 50 realizations of m generated by sampling the prior pdf

for m and θ , Eq. 5.5, using Gaussian cosimulation. Fig. 5.9 represent the predictions of

cumulative oil production obtained from this set of 50 realizations. The curve through the

solid dots represents the field cumulative oil production generated using the true

permeability and porosity fields as simulator input. Note these realizations predict

erroneously high values of cumulative oil production since the incorrect prior means are

much higher than the true prior means. Since the predictions vary over wide range, there is

a large uncertainty in performance predictions. Fig. 5.10 represent the field cumulative oil

production predicted from the 50 history-matched realizations. Comparing Fig. 5.10 with

Fig. 5.9, we see that the predictions from history matched realizations are much closer to

the true case, and the variability in predictions from history matched realizations is much

smaller than that from the unconditional realizations.

A histogram of the cumulative oil production at 1,000 days and associated cumu-

lative distribution function are shown in Fig. 5.11. The expected value (mean) is

5 70 106. ×  STB, the median is 574 106. ×  STB, and the standard deviation is 168 105. ×

STB. Note the bar in the histogram over 580 106. ×  represents the number of outcomes

(15) between 5 70 106. ×  STB and 580 106. ×  STB. The cumulative oil production at 1,000

days predicted using the true rock property fields was 568 106. ×  STB.

Fig. 5.12 represent the cumulative oil production of well 2 predicted from the 50

history-matched realizations. Note that the line with solid dots represents the cumulative

oil production  of  true  case.  A  histogram of the cumulative oil production at 1,000 days
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Fig. 5.9 - Reservoir performance predicted from the true case and a suite of
unconditional realizations with incorrect prior means.
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Fig. 5.10 - Reservoir performance predicted from the true case and a suite of
realizations conditioned to pressure data with correction of prior means.
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and associated cumulative distribution function are shown in Fig. 5.13. The cumulative oil

production and the histogram of the cumulative oil production of  well 3  from  the  50

history-matched realizations are shown in Figs. 5.14 and 5.15. Note that well 2 has been

tested and the realizations are conditioned to the pressure data obtained at well 2, while

well 3 has not been tested.

For well 2, the expected value (mean) of cumulative oil production at 1,000 days is

503 105. ×  STB, the median is 502 105. ×  STB, the standard deviation is 0 78 104. ×  STB,

and predicted value using the true rock property fields is 530 105. ×  STB. For well 3, the

expected value (mean) of cumulative oil production at 1,000 days is 6 64 105. ×  STB, the

median is 6 52 105. ×  STB, and the standard deviation is 195 104. ×  STB. The predicted

value using the true rock property fields is 757 105. ×  STB. From these statistical data and

also from the comparison between Fig. 5.12 and 5.14, we see that the variance on

predicted cumulative oil production in well 2 is smaller that that of well 3. This simply

means that after conditioning to well-test pressure, the uncertainty on properties field near

the well has been reduced, therefore the performance prediction for well 2 will have less

variability than for well 3. 
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Fig. 5.12 - Well 2 production performance  predicted from a suite of condi-
tioned simulations.
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Fig 5.13 - Histogram and cumulative distribution of cumulative oil production
from well 2 at 1,000 days.
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Fig. 5.14 - Well 3 production performance predicted from a suite of condi-
tioned simulations.
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Fig. 5.15 - Histogram and cumulative distribution of cumulative oil produc-
tion from well 3 at 1,000 days.
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5.4.2 Field Case

Finally, we apply our method to a real field case. The production zone contains

two sandstone units. On the top is fluvial sandstone and on the bottom is shoreface

sandstone. The reservoir is cut by several faults running in the southeast to northwest

direction. These were assumed to be impermeable barriers to flow. In the field, 29 wells

have been drilled. Logging data are available for all the wells. However, there are few

well-testing data and most well-testing data are not of good quality. Wells 21 and 25 are

adjacent and both have well-testing data. They both produce only oil. Thus, we try to do

history matching on the region around these two wells.

Approximate fluid properties (at reservoir conditions: p = 2500 psi, T = 160   OF)

in the oil zone are oil viscosity  3.6  cp,  gas viscosity  0.01403 cp, oil compressibility

7 4 10 6. × −   psi-1.

             Fig. 5.16 shows a view of the top of the productive zone. The model is generated

using sequential Gaussian simulation with 135 70 70× ×  cells.  The horizontal  gridsize is

uniform with DX=DY=100 ft. Average reservoir thickness is 60 ft. Wells 21 and 25 are

located at the top-right corner of Fig. 5.16.

            For history matching, we cut a region with 20 20 70× ×  cells from the original

model. The region was chosen to be large enough that it included the regions of investiga-

tion of well tests in both wells. We upscaled the model into the 20 20 23× ×  coarse grid

model which is shown in Fig. 5.17. From a geostatistical analysis of the coarse model,  we

 approximated  the  variogram  by  a  spherical  model  with  Rx (range

in  x  direction) = 300 ft, Ry = 500 ft,   Rz = 17 ft;   the variances   of   porosity   and  log-



186

Fig. 5.16 - Top structure map on producing zone and well locations.

Fig. 5.17 - Log-permeability field cut from full model and scale-up
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permeability respectively are 0.006 and 6.0; correlation coefficient between porosity and

log-permeability is 0.7. We assumed that k k kx y= =  and k kz = 01. .

 The porosity field is generated from sequential Gaussian simulation conditioned to

core data and logging data. We consider the porosity field to be quite accurate. Thus, in

the history matching process, we use a small variance for the porosity field, σφ
2 0 001= . .

From a classical well-test analysis of the data, we estimated that the skin factors are about

10. So, in our work we set the prior mean of the skin factor equal to 10 and set the

variance of the skin as σ s
2 2 0= . .  We assumed that the variance on pressure measurement

error is σ d
2 01= . .

Fig 5.17 shows the original model log-permeability field cut through the location

of well 25. Assuming the prior means are correct, we conditioned the log-permeability

field to well-test pressure data using our history matching procedure. Fig. 5.19 shows the

result after history matching. Comparing Fig. 5.19 with Fig. 5.18, we see that the log-

permeability in  the  region very near well 25 has  been  reduced  tremendously, while the

log-permeability   in   most of the reservoir has not changed.  If we assume that the log-

permeability field is stationary, then Fig. 5.19 is unrealistic (values near the well are far

lower than values at other location). This suggests that the prior means of the property

fields may not be correct; i.e., we need to incorporate uncertainty in the prior means, and

generate a correction to the prior means during the history matching process. Fig. 5.20

shows  the  results  of  history  matching  where  we  incorporated  uncertainty in  the

prior means.  The  variance in the prior mean of the log-permeability field is  equal to  0.5
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Fig. 5.18 - Original model log-permeability field, cutout at well 25.

-3.0 -0.6 1.8 4.2 6.6 9.0

Fig. 5.19 - Log-permeability field conditioned to pressure data
without correction to prior mean, cutout at well 25.
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Fig. 5.20 - Log-permeability field conditioned to pressure data with correction
to prior mean, cutout at well 25
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Fig. 5.21 - Pressure data for well 25
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and variance in the prior porosity  mean  is  set  to  be very small (0.0001). Comparing

Fig. 5.20 with Fig. 5.18, we see that most of the fine detail is unchanged, but the mean of

log-permeability has been reduced from 7.1 to 6.5.

Fig. 5.21 shows the observed drawdown pressure at well 25 and pressures from

simulation during the history matching iterations. We see that the pressure simulated from

original model is significantly different from observed data (about 400 psi). After history

matching, the pressure mismatch is reduced to less than 10 psi.

Fig. 5.22 and Fig. 5.23, respectively, show the original log-permeability field and

the result after history matching well 21 pressure data, both figures are cut at the location

of well 21. Again note that history matching significantly reduced the mean of log-

permeability field. Fig. 5.24 shows the pressure data recorded at well 21. Note that the

flow rate is varied during drawdown test of well 21, but we do not have the detailed flow

rate information. Thus, we used a constant rate in the history matching procedure and

used only the last pressure data in drawdown as conditioning data. Even through the

pressure data are not ideal, Fig. 5.24 shows that after history matching the pressure

mismatch is significantly reduced.

The log-permeability field in the 10th ‘layer’ (10th  gridblock in vertical direction) of

the original model is shown on Fig. 5. 25. The history matching result is shown on Fig.

5.26. Note the mean value has been reduced after history matching. However, the local

value of log-permeability close to the two wells have been altered more than values far

away in order to match the well-test pressure data.
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-3.0 -0 .6 1. 8 4. 2 6. 6 9. 0
Fig. 5.22 Original log-permeability field, cutout at well 21.

-3.0 -0.6 1.8 4.2 6.6 9.0
Fig. 5.23 Log-permeability field after history match, cutout at well 21.
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Fig. 5.24 - Pressure data for well  21.
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Fig. 5.25 - Original log-permeability field, 10 th layer.

-3.0 -0.6 1.8 4.2 6.6 9.0

Fig. 5.26 - Log-permeability field conditioned to pressure data, 10th layer.
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CHAPTER VI

CONCLUSIONS

We have presented a method to incorporate well test pressure, hard data and

geostatical data into reservoir characterization. The ultimate goal of this work was to

present procedures to characterize the uncertainty in realizations of rock property fields

and  reservoir performance predictions. As demonstrated, this objective can be achieved

by first generating realizations of rock property fields and well skin factors conditioned to

the available data using the techniques presented here. By simulating reservoir perform-

ance with each realization, one can construct statistics on the set of outcomes from each

predicted parameter of interest, e.g., cumulative oil production. We have shown that

success in application of this method will hinge primarily on three factors: (1) construction

of the correct prior and a posteriori probability density functions (pdf) of rock property

fields; (2) a correct sampling of the a posteriori pdf to generate realizations, (3) an

efficient iteration procedure to condition property field to production data (history

matching); (3a) an efficient way to generate sensitivity coefficients needed at each iteration

of the history matching procedure; and (3b) procedures to reduce the computational time

required to perform the numerical linear algebra required at each iteration of the computa-

tional scheme. 
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Regarding factor (1), the prior pdf can be estimated from static data, such as log-

ging data, core measurement and seismic data. The prior pdf assuming the estimated prior

means are correct is discussed in Chapter II, while the prior pdf with uncertainty in the

prior means is given in Chapter V. In our work, we assume prior information on the model

(set of reservoir parameters to be estimated) satisfies a multinormal distribution and that

measurement errors in production data can be considered as Gaussian random variables

with zero mean and known variance. The correct a posteriori pdf is constructed using

Bayes’s Theorem (Chapter II and V). We showed in Chapter V that uncertainty in the

prior means can be incorporated into reservoir characterization from dynamic data using a

partially doubly stochastic model.

Regarding factor (2), we presented two different procedures to generating a set of

realizations which represents an approximately correct sampling of the a posteriori pdf;

(1) obtain the maximum a posteriori estimate and posteriori covariance matrix,

then generate realizations  by Cholesky decomposition or square root decom-

position of the a posteriori covariance matrix (Chapter II);

(2) generate unconditional realizations of the model from prior pdf, unconditional

realizations of the pressure data and unconditional realizations of the error in

the prior means and then perform history matching to generate model parame-

ters and adjust prior means that reproduce the simulated pressure data (Chap-

ter V).

Both procedures for sampling the pdf are correct if measured data are linearly

related to the model. Procedure 1 is efficient in the sense that it only requires one history

match to obtain the maximum a posteriori estimation. However, realizations require that



196

we generate the a posteriori covariance matrix and its Cholesky or square root decompo-

sition. Moreover, the set of realizations may not represent a correct sampling of the

posteriori pdf, see Refs. 33 and 34. Procedure 2 is more time consuming since the

generation of each realization requires a history match; however, based on the work of

Oliver et al.27, it provides a better sampling of the a posteriori pdf. 

Regarding factor (3), as discussed in Chapter III, the Gauss-Newton iteration

provides an efficient way to do the automatic history matching. In most cases, it only

requires 3 to 8 iterations to obtain convergence. Our formulation (based on the assump-

tion that the prior model can be represented by a multivariate Gaussian probability

distribution) yields an objective function for which the Gauss-Newton method is ideally

suited.  At each iteration, the Gauss-Newton method requires one solution of the forward

problem, i.e., one simulation run. However, the Hessian and sensitivity coefficients need to

be updated at every iteration and the work required to generate the sensitivity coefficients

related to each well where we match pressure data is essentially equivalent to one

simulation run.

Regarding factor (3a), we have extended the Carter et al. method (Chapter III) for

computing sensitivity coefficients to three-dimensional single-phase flow problems in a

way that requires only one additional simulation run per well to estimate the sensitivity

coefficients. If one is forced to resort to a procedure such as the one based on the gradient

simulator method31 to generate sensitivity coefficients, the computational time required

will increase dramatically. We have shown that our three-dimensional extension of the

Carter et al. method generally gives extremely accurate estimation of sensitivity coeffi-

cients. The only exception is when there is strong cross-flow through the wellbore; in this
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case the sensitivity of the pressure at an observation well to the permeability at a gridblock

penetrated by an active well is generally underestimated. However, this error should not

have a strong effect on resolving the permeability at an active well location, because this

permeability is well resolved by the active well pressure data themselves.

Considering factor (3b), we have investigated two reparameterization techniques,

spectral decomposition and the subspace method. For spectral decomposition, any

reduction is computational costs achieved by this method depends on the type of var-

iogram, the nugget effect and the size of the problem.  If the nugget is equal to zero,

spectral decomposition may be beneficial, especially if one wishes to generate a set of

realizations, but any computational savings decreases dramatically if the nugget is large.

When the model is large, decomposition of the covariance matrix requires significant

computer time which in most cases eliminates any advantage of this reparameterization.

On the other hand, we show that the subspace method represents a procedure that can

achieve significant computational savings for large problems. For the problems considered

in this work, our choice of subspace vectors yields reliable maximum a posteriori estimates

and realizations of similar quality to those obtained with the conventional method and

requires roughly one-half the computer time at least for the problems we have considered.

We have applied the computational technique to several synthetic cases and one

field case. Our results indicate that for three-dimensional problems, pressure data

themselves do not accurately resolve individual values of gridblock log-permeabilities. 

However, pressure data do significantly reduce the uncertainty in the thickness-averaged

horizontal permeability, especially  near an active well.  Using both hard data at the wells

and pressure data significantly reduces the uncertainty in the permeability field.  In general,
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the porosity field is not as well resolved by pressure data, however, if pseudosteady-state

flow pressure data is available, then computing the reservoir average porosity by

averaging the porosity values contained in the maximum a posteriori estimate gives a good

estimate of average reservoir porosity. Layer skin factors can not be determined accurately

using only pressure data. However, if data on layer flow rates are available, by condition-

ing to both wellbore pressure data and individual layer flow rate data, we can obtain

reasonable estimates of layer skin factors.

NOMENCLATURE
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ct total system compressibility, psi-1.

CD covariance matrix for pressure measurement errors.

CDh                  covariance matrix for hard data measurement errors.

CM             prior covariance matrix.

CMP a posteriori covariance matrix after incorporating all data.

CMP P, reparameterized a posteriori covariance matrix.

CΘ covariance matrix for errors in prior means.

d vector of pressures calculated from simulator, psi.

dobs     vector of measured wellbore pressure data, psi.

Gl             sensitivity coefficient matrix at lth  Gauss- Newton iteration.

g(m)                calculated pressure and layer flow rate data from simulation.

h formation thickness, ft.

Hl            Hessian matrix at lth   Gauss-Newton iteration.

k permeability, md.

kx x-direction permeability.

ky y-direction permeability.

kz z-direction permeability.

m    vector of model parameters.

mprior vector of prior means of model parameters.

mp,∞     reparameterized maximum a posteriori estimate.
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m∞ maximum a posteriori estimate after conditioning to all data.

M number of simulator gridblocks.

Nd              number of conditioning pressure data.

Nh               number of hard data.

Np           number of model parameters estimated.

Ns number of skin factors estimated.

Nw number of wells at which pressure is measured.

pi  initial reservoir pressure, psi.

rw wellbore radius, ft.

s skin factor.

t time, days.

θ vector of correction to prior means.

µ viscosity, cp.

φ  porosity, fraction.

σ 2          variance.

Superscripts

T          matrix transpose.
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