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In this work, we developed techniques based on inverse problem theory to
generate realizations of reservoir rock property fields (porosity and permeability) and well
skin factors conditioned to hard data, geostatistical information and well-test pressure data
obtained under single-phase conditions. The probability density function (pdf) for the prior
model (reservoir parameters) is constructed based on static information and geostatistics.
The uncertainty in the prior means of the model parameters is incorporated using a
partially doubly stochastic model. The a posteriori probability density function (pdf) of the
model is obtained using Bayes’s Theorem. The Gauss-Newton method is applied to
minimize the objective function and obtain the maximum a posteriori estimate (most
probable model). We developed a procedure to estimate sensitivity coefficients for three
dimensional problems. These are required for applying the Gauss-Newton method.
Realizations of reservoir rock property fields are obtained by procedures for sampling of
the a posteriori pdf. Reparameterization techniques based on spectral decomposition and
subspace method are implemented to save computational time and memory storage.

The methodology is applied to synthetic cases and a field example using 10,000

gridblocks. We show how the uncertainty in model parameters is reduced by conditioning



realizations to multiwell pressure data. Although pressure data do not resolve individual
gridblock permeabilities very well, pressure data significantly reduce the uncertainty in
thickness averaged permeability. In the three-dimensional case, well skin factors can be
estimated accurately only by conditioning to both wellbore pressure and layer flow rates.
The porosity field is not resolved as well as the permeability field by pressure data;
however, if pseudosteady state flow pressure data are used as conditioning data, the
uncertainty in the average reservoir porosity is very small.

Procedures to generate realizations by sampling the a posteriori pdf are presented.
By making performance predictions using such a set of realizations, we can quantify the

uncertainty in predicted reservoir performance.
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CHAPTER |

INTRODUCTION

Scientists from different disciplines view reservoir description somewhat differ-
ently. Geologists may mainly consider reservoir description from the viewpoint of
geological setting and architecture. Geophysicists mainly focus on the reservoir shape and
structure, including fault locations, but may also consider the estimation of porosity.
Engineers have been interested in rock and fluid properties, well conditions and produc-
tion data. However, the overall goal of all disciplines is the same, i.e., to reduce the
uncertainty in reservoir parameters and make correct reservoir performance predictions.
The appropriate way to reach the goal is to integrate all the available data: geological,
petrophysical, geophysical, and production data. However, how to effectively integrate
these data is a challenge to the person or team working in this area. Reservoir characteri-
zation is a multistage and cross-disciplinary work process.

The overall objective of this work is to generate realizations of reservoir rock
property fields that represent an approximately correct sampling of the a posteriori
probability density function for the rock property fields. In order to do this correctly, it is
important that one formulates an a posteriori probability density function which is
conditioned to all available information and data. Our standard approach for doing this is

to estimate a most probable model (maximum a posteriori estimate) and then to generate



2
realizations using information obtained in generating the maximum a posteriori estimate.

However, it is important to recognize that the most important task is to sample the a
posteriori probability density function, not to generate the most probable model.

In our work, the rock property fields generated actually represent reservoir simu-
lator gridblock values of permeability and porosity. If one generates a set of N realizations
that represents a proper sampling of the a posteriori probability distribution, then one can
characterize the uncertainty in performance predictions. To do this, we simply use each
reservoir description (each realization) as input data for a reservoir simulation and
generate the resulting reservoir performance. From these N flow simulations, one can
compute the statistics for each parameter or variable predicted by the flow simulations and
estimate the mean and variance for each of the predicted parameters to provide a measure
of the uncertainty in predicted performance. Having characterized the uncertainty in
predicted performance, one can make reservoir management decisions that account for
our lack of complete knowledge of the true reservoir.

It is important to realize that, contrary to popular opinion, the objective is not to
construct equiprobable realizations, but to construct a set of realizations which represents
a correct sampling of the a posteriori probability distribution for the rock property fields.
By simulating reservoir performance with each such realization, one can accurately
evaluate the uncertainty in reservoir performance and develop optimum reservoir
management strategies. Similar to standard procedures for making reservoir management
decisions, our methodology is data driven. However, unlike standard technology, our
techniques allow one to directly incorporate the uncertainty in data, to evaluate the

uncertainty in estimates of rock property fields and to evaluate the value of data, i.e., to



3
determine how much given data reduce the uncertainty in reservoir descriptions and

performance predictions.

1.1 Integrating Dynamic Data into Reservoir Characterization

Geostatistics provides a tool to generate realizations of rock property fields from
static data (logging, core, seismic, geological knowledge). However, due to lack of closely
spaced lateral data there is great uncertainty in geostatistical simulation or description.
Generally, realizations generated from static data can not match the dynamic performance.
To reduce the uncertainty in reservoir characterization and make reliable future perform-
ance predictions, we need to effectively couple static information with dynamic data.

For the last several years, much work has been done to generate reservoir descrip-
tions conditioned to both static (non-production) and dynamic (production) data.
However, most attempts have not incorporated production data into reservoir description
directly, but instead have used the production data to estimate some other parameters
which are then used as a constraint when generating reservoir descriptions using prior
information. For example, DeutsciBagar et &.and Holden et dl.used pressure data to
compute an average permeability within a radius of investigation and then used this
average permeability as a constraint when constructing a permeability field which matches
the variogram. (Alabetthas made an extensive study of the how this average permeability
and radius of investigation should be computed.) Since Refs. 1 and 2 use simulated
annealing to construct reservoir descriptions, it would not be computationally feasible to

incorporate pressure data directly into the objective function because this would require
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one run of the reservoir simulator at each iteration of the simulated annealing algorithm,

and the simulated annealing algorithm may require several thousand iterations to obtain
convergence. While this provides a motivation for incorporating an average permeability
instead of pressure into the objective function, it does not mean the procedure is
rigorously correct. In fact, since any permeability averaging technique used is only
approximate, the permeability field obtained from simulated annealing may not predict the
observed pressure data with a high degree of accuracy and the derivatives of these
predicted and observed pressures may be radically diffetdoteover, it is difficult to
interpret what the generated permeability fields represent in a probabilistic sense and it
appears that any attempt to quantify the uncertainty in reservoir description from a set of
descriptions obtained from simulated annealing as typically applied be difficult. The
descriptions obtained more or less honor the data, but it is difficult to argue that a set of
such descriptions represents a proper sampling of the correct probability density function.

Huang proposed a method to integrate static data with dynamic data. In his work,
porosity is estimated from logging and seismic inversion, then permeability is perturbed
within the correlation scatter-cloud relation between porosity and permeability, to match
the production data. However, the correlation scatter cloud from core measurement
normally does not represent the correct probability density function for rock property
fields. Even though the permeability field generated by this method honors dynamic data,
it is not feasible to predict reservoir performance from this permeability field.

Datta-Gupta et dland Vasco et dlalso used simulated annealing method to inte-
grate transient pressure data and production data into reservoir characterization. They

used a fast streamline simulator rather than traditional numerical simulator for their
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forward calculation in order to greatly improve the computational efficiency. But, for a

three-dimensional full reservoir model, in which tens or hundreds of thousands of
simulations is required to reach convergence by simulated annealing, this method is still
extremely computationally demanding and probably impractical. Moreover, their approach
represents a regularized history matching procedure oriented towards generating a rock
property field which honors the production data rather than a stochastic simulation
procedure for generating a suite of realizations which adequately represents the uncer-

tainty in rock property fields.

1.2 History Matching

History matching is a procedure in which grid block values of permeability, poros-
ity and well skin factors are modified to obtain a reservoir description that matches
observed production performance. However, classic history matching yields nonunique
results and often leads to unreliable predictions of future reservoir performance, especially
when future predictions are based on a different producing mechanism than was used in
the history matching process. For example, if history matching was done using production
data during a water flooding operation, reliable predictions of performance for a planned
CO; flood can not be expected to be highly accurate.

Mathematically, the nonuniqueness in the classical history matching procedure
arises because, in practice, we never have a sufficient number of independent observed
data to determine all reservoir parameters uniquely. Nonuniqueness may arise either

because the production data are completely insensitive to some of the reservoir parameters
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(for example, the gridblock values of porosity and permeability in certain parts of the

reservoir) or because production data may be sufficient only to estimate certain linear
combinations or regional averages of parameters. The latter case is natural and occurs
routinely in pressure transient analysis. For example, single-phase pseudosteady-state flow
pressure data can be used to estimate average porosity, but can not be used to estimate
gridblock values of porosity or porosity values at specific locations. Standard analysis of
radial flow transient pressure data obtained at a completely-penetrating well in a layered
reservoir, where each layer is homogeneous, yields a good estimate of thickness-averaged
permeability but does not provide a means to estimate the individual layer permeabilities.

If one casts the classical history matching problem in a natural mathematical for-
mulation (see, for example Tang ef)alone arrives an ill-conditioned matrix problem.
While one can regularize the probferfior example, by Tikhondvregularization) to
obtain a matrix problem with a nonsingular coefficient matrix, the solution or history-
match obtained is then determined by the specific form of the regularization procedure.
Different regularizations yield different solutions, i.e., different history matches. Moreover
in such a procedure, one can not easily characterize the uncertainty in the resulting
reservoir description. Perhaps even more importantly, when one obtains a reservoir
description by history matching only production data, the resulting description will often
violate other information, for example, log data, core data, seismic data, or geologic
interpretation. The current practice of reservoir characterization may be thought of as
generating reservoir descriptions that honor all available data. Returning to the problem of
history matching, intuitively one believes that if history matching of production data is

done using other data as constraints, then the nonuniqueness problem should somehow be
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reduced. By reduction of the nonuniqueness problem, we do not mean there will be a

unique solution; there will still exist an infinite variety of reservoir descriptions which
honor all data. Reduction of the nonunigueness in the history matching process means
reduction of the variation or variability in the set of solutions, i.e., a reduction in the
uncertainty in the reservoir description. In some cases, we may be able to resolve a few
parameters almost perfectly. It is important to note that a reservoir description obtained
by such a constrained history matching method will honor all the data, not just the
production data.

Gavalas et df’ in 1976 recognized that the proper incorporation of prior data sta-
bilizes the history matching problem and also reduces the variability in the set of reservoir
descriptions that provide an acceptable match of production data. They used Gaussian
type expressions for the co-variance functions of porosity and permeability, the cross
covariance between them, and the prior estimates of the means of porosity and permeabil-
ity to incorporate prior information in the objective function when history matching
multiwell pressure data obtained in a synthetic one-dimensional reservoir under single-
phase flow conditions. They showed that incorporating the prior information reduced the
errors in the estimates of permeability and porosity and also improved the convergence
properties of the minimization algorithms considered. Moreover they showed that the
Bayesian estimation approach gave better estimates of the true permeability and porosity
fields than were obtained by zonafibHf. In a later papét the same authors considered
the same one-dimensional single-phase flow problem and compared results obtained by
reparameterization using zonation, reparameterization using vectors of sensitivity

coefficients (derivatives of pressures at observation points with respect to model
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parameters) and Bayesian estimation. Their comparisons were based on computing the

traces of the a posteriori covariance matrices (i.e., the sum of all a posteriori variances)
obtained by assuming the objective function could be linearized around the true model.
The trace of the a posteriori covariance matrix gives a measure of the total uncertainty in
the parameter estimates. They found that the smallest total uncertainty was obtained with
Bayesian estimation. They did not, however, use reparameterization when considering
Bayesian estimation, and did not consider estimating well skin factors or generating

multiple realizations of the rock property fields.

1.3 Geostatistics Based Automatic History Matching

Inverse problem theoty/provides a methodology to incorporate prior information
when history matching production data. The standard application of inverse problem
theory rests on the fact that prior information on the model (set of reservoir parameters to
be estimated) satisfies a multinormal distribution and that measurement errors in produc-
tion data can be considered as Gaussian random variables with zero mean and known
variance. Under these assumptions, the most probable model (the maximum a posteriori
estimate) conditioned to both prior information and production data can be obtained by
minimizing an objective function derived directly from the a posteriori probability density
function. Since the a posteriori probability density function is derived from Bayes's
theorem, this approach is often referred to as Baysian estimation. It is convenient to
minimize the objective function by a gradient method to obtain an approximation to the

maximum a posteriori estimate. Important aspects of inverse problem'traeryhat an
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estimation of the uncertainty in reservoir description can be obtained from the a posteriori

covariance matrix and approximate realizations of the reservoir description can be
constructed from the a posteriori covariance matrix. It is important to recognize that from
the viewpoint of inverse problem thebhthe solution of the inverse problem is repre-
sented by the probability density function for the model (reservoir description). This
probability density function is not arbitrary in that it must propadgount for all data and
information and must account for the uncertainties in the data and information itself.

The specific objective of this work is to construct realizations of the model (reser-
voir simulator gridblock values of log-permeability, porosity and well skin factors) that are
conditioned to prior means (averages) for these variables, variograms, and multiwell
pressure data. For the approach followed here, this is largely a two step process. First,
we estimate a most probable model by minimizing an objective function arising naturally
from the a posteriori probability density function. Secondly, we generate other realizations
of the model. In many cases, we simply generate this set of realizations from a Cholesky
decomposition of the a posteriori covariance matrix and this set of realizations can only
represent an approximate sampling of the a posteriori probability density function. As
discussed later, however, a more computationally efficient approach has recently been
presented for generating realizations.

We note that many of the basic ideas we use have been around for some time both
in general theoretical forfh™>and in the language of specific disciplines. For example, in a
sequence of excellent papers, Carrera and Neldiigresented a similar method for the

estimation of hydraulic conductivities and storativities from head data and prior informa-
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tion by using a maximum likelihood method, where the liklihood function incorporates

both head data and prior information.

In a important paper, OlivEr re-initialized the research path of Refs. 10 and 13
and introduced the fundamental philosophy of Tarattétathe reservoir characteriza-
tion field. His approach follows the general procedure outlined above, i.e., estimate the
most probable model by minimizing the proper objective function and then construct
realizations from the Cholesky decomposition of the prior covariance matrix. Oliver
considered the problem of constructing realizations of one-dimensional permeability and
porosity fields and two-dimensional permeability fields (assuming porosity is known)
conditioned to prior means and covariances, hard data and multiwell pressure data.

In this work, we have followed the basic philosophy and methodology of Taran-
tola** as introduced to the petroleum engineering field by Ofv&rMore specifically, we
generate a most probable model by applying the Gauss-Newton method with restricted
steg*?2 For this method to be computationally feasible, the Gauss-Newton method must
converge rapidly and an efficient method for generating the sensitivity coefficients must be
available. For the problems considered here, the sensitivity coefficients represent the
derivatives of wellbore pressures with respect to the model parameters (well skin factors
and gridblock values of log-permeability and porosity). For three-dimensional problems,
however, individual layer skin factors can not be resolved only by pressure data and
individual layer flow rate is also required to resolve skin factors. Chu’&t*&hssumed
porosity was known and considered only the problem of constructing realizations of the
permeability field and active well skin factors. They derived and implemented a modified

generalized pulse spectrum technique (MGPST) to estimate the sensitivity coefficients
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using basic results of Tang ef’al\ithough we latef used the same approach to generate

sensitivity coefficients related to the porosity field, we eventually discovered that this
procedure does not yield good estimates of the sensitivity coefficients related to the
porosity field. Thus, in this work and in Refs. 26, 27, 28, we have extended a procedure
introduced by Carter et &.to generate sensitivity coefficients related to the permeability
and porosity fields. The results of Ref. 29 reproduce the results of Jaqaadd
Jacquard and Jainwho used an electric-circuit analogue to construct formulas for
sensitivity coefficients. However, the elegant mathematical derivation of Carter et al. is
markedly different than the derivation of Refs. 11 and 30, and is conveniently cast in the
language of reservoir engineering.

As we will show, there are computational nuances involved in the implementation
of the Carter et al. method that, to the best of our knowledge, have not been recognized
prior to our work. In the two-dimensional setting, if conditioning pressure data are

observed aiN,, wells, then the Carter et al. procedure requigs+1 simulation runs to

estimate sensitivity coefficients. As presented, the Carter et al. procedure actually
computes the sensitivity of simulator gridblock pressures with respect to gridblock values
of permeability and porosity. In three dimensiongai€h well is vertical and is completed

in N, vertical gridblocks, then there amd,N,, gridblocks associated with the set of
wells. To compute sensitivity coefficients related to this total set of gridblock pressures
would require N,N,+1 simulation runs. However, in practice, we measure wellbore
pressures, not gridblock pressures; i.e., we only need to compute the sensitivity of
wellbore pressures to the rock property fields. For three-dimensional problems, we have

derived a way to estimate these sensitivity coefficients with Nigly-1 simulation runs.
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While our modification of the Carter et al. procedure provides an accurate and

relatively efficient method to estimate sensitivity coefficients, it is applicable only for
single-phase flow problems. The MGP%has approximately the same computational
efficiency as the Carter et dlmethod and can be extended to multiphase flow problems,
but is not sufficiently accurate unless it is restricted to estimation of only sensitivity
coefficients related to the permeability field. The direct and gradient simulator méthods
are accurate and applicable to multiphase flow problems, but are too computationally
intensive to be used routinely in practical applications where we may wish to consider
thousands or tens of thousands of simulator gridblocks. If we wish to generate values of

three permeability valuesk(, k, and k,) and one porosity value at each of M grid-

blocks, the direct method will require 4M+1 simulation runs. The time required by the
gradient simulator method is very roughly comparable to the time required by the direct
method, but some reduction in computational costs are achieved by computing all
sensitivity coefficients during one simulation run. This requires the solution of an
additional 4M linear systems at each time step of the simulation run, but all of these linear

systems involve the same coefficient matrix; see Refs. 31 and 32 for additional details.

1.4 Reservoir Performance Prediction

As we mentioned, the ultimate goal of reservoir characterization is to predict fu-
ture reservoir performance and assess the uncertainty in production predictions. Multiple
realizations which represent a correct sampling of the pdf (probability density function) for

the rock property fields are required to obtain a reliable prediction. In Refs. 25, 26 and 27,
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we generated a set of realizations of the rock property fields that approximate a correct

sampling of the a posteriori probability density function using the Cholesky decomposition

of the a posteriori covariance matrig,,». However, this procedure assumes that the a

posteriori probability density function is multivariate Gaussian with covariance matrix

Cuyp and mean given by the maximum a posteriori estimate. At best, this is only

approximate since the assumption is strictly valid if and only if the functional relationship
between the vector of pressure data and the model (gridblock values of porosity and log-
permeability) can beccurately linearized about the maximum a posteriori estimate. As
this is not true in general, generating a set of realizations using the Cholesky decomposi-
tion of Cy» can only generate an approximate sampling of the a posteriori probability
density function.

Cunh&®, Cunha et al’ and Oliver et af® investigated the possibility of using
Markov chain Monte Carlo methods and hybrid Markov chain Monte Carlo methods to
sample the a posteriori probability density function. These procedures have been
implemented only for two-dimensional problems and only for the case where we wish to
sample the a posteriori distribution for the log-permeability field. This assumes that the
porosity field can be accurately resolved from other information, for example, from log
and seismic data. In the limit, the Markov chain Monte Carlo (MCMC) methods are
guaranteed to yield a correct sampling of the a posteriori probability density function.
Unfortunately, there is no way to determine how long a chain must be to ensure that the
samples at the end of the chain are correct. At best, they can provide only heuristic
practical guidelines for making this determination. The implementation of the hybrid

Markov chain Monte Carlo Method is superior to a more conventional MCMC procedure



14
in that the hybrid method provides a more efficient exploration of the set of possible

realizations and does not suffer from high rejection rates. However, the hybrid method is
computationally expensive. In viewing simulated annealing in the context of Markov chain
theory, it can be shown that standard implementations of simulated annealing do not
sample the a posteriori probability density function correctly and, contrary to conventional
wisdom, when implemented in the standard way, do not generate equally probable
realizations. However, as shown in Refs. 33 and 34, with a proper implementation of
simulated annealing, one can estimate the maximum a posteriori estimate. It is also
possible to use simulated annealing for stochastic simulation. However, the computational
time required by simulated annealing is two orders of magnitude greater than is required
by the Gauss-Newton method. These aforementioned results on simulated annealing were
reported in Refs. 33, 34 and 35.

In this work, we also use an efficient two-step procedure of Oliver %t(also
see, Olivet’) to generatenultiple realizations conditioned to prior information and well-
testing pressure data. The first step is to propose a set of unconditional realizations from a
known probability distribution, the prior model. This step could be carried out using any
unconditional simulation technique. In Refs. 26 and 27, we used the Cholesky decomposi-
tion method to generate unconditional realizations, while in Ref. 28 we applied sequential
Gaussian cosimulatidh As part of the first step, we also generate unconditional
simulations of the pressure data. The second step involves history matching of the
unconditional realizations to the simulated well-testing pressure data. By simulation from
the set of realizations obtained by history matching, we can predict the future performance

and also quantify the uncertainty in predicted performance. Here and Ref. 28, we
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incorporate uncertainty in prior means of the rock property fields by using a partially

doubly stochastic mod&] because in reality, the true means of the rock properties may be
difficult to obtain. This is specially true for the permeability field where means estimated
from core or logging are generally not consistent with average value obtained by analysis
of well-test data. We show that we can generate the maximum a posteriori estimate of

rock property fields and means by Gauss-Newton procedure.



CHAPTER Il

INVERSE PROBLEM THEORY

The inverse problem or inversion is widely encountered in variety of science and
engineering disciplining. In “solving” an inverse problem, we wish to infer the values of
model parameters from observations of some model parameters and/or model perform-
ance, while in the forward problem, we predict the response or model performance given
the values of all model parameters. In some cases, the inverse problem is “exact” or over-
determined, in which the number of observed data are the same as, or more than, the
number of model parameters to be determined. If the number of data are greater than the
number of model parameters, model parameters are typically estimated by a least-square
procedure. Nonlinear regression used in pressure transient analysis provides a typical
example of an over-determined problem.

In many cases, however, the number of observed data are less, often far less, than
the parameters to be determined, in which case the inverse problem is underdetermined or
‘il-posed’. To solve an ‘ill-posed’ problem is difficult and generally we need to introduce
prior assumptions for the model space (parameters). For the problem considered in this
work, the observed data are well-testing pressure data or production data observed at
wells and the model parameters are the gridblock values of porosity and permeability and

well skin factors. In this work, we assume that reservoir geological model and fluid

16
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properties are known. As the observed independent (not redundant) pressure data are far

less than the number of parameters, we need to introduce prior statistics assumptions or
constraints on the model space in order to formulate our inverse problem in a way that
allows us to generate solutions (realizations of model parameters) that are consistent with
the observed data. We do this in a probabilistic way by formulating a prior model
characterized by a prior probability density function (pdf). The prior model can be
obtained from static data (core, logging, seismic) measurement and analysis (geological

interpretation and geostatistics).

2.1 The Prior Model

We assume that permeabilities in three directioks, (k, and k,) have log-

normal distributions with known means and variances givemﬁ)y oﬁ and oﬁ .
X y z

Porosity is assumed to be normal with known mean and variance gi\@\ bach rock
property attribute (IrK, ,) In(k,), In(k,)) and¢ is modeled as a stationary Gaussian

random function so that the covariance functions are directly related to the variograms.
The correlation coefficients between the various attributes are assumed to be known, but
may be zero. If the permeability tensor is isotropic, we use a three-dimensional variogram
for log-permeability which can be either isotropic or anisotropic. Both anisotropic log-

permeability fields and anisotropic variograms can be considered. In the anisotropic

permeability case, we either specky = a,/k,k, for some constard, or assumek, is

uncorrelated withk, and k, and thus has its own mean and variogram. The well skin
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factors are modeled as uncorrelated Gaussian random variables with estimates of the

means and variances available. The reservoir can also be modeled as a layered system
where we may specify different two-dimensional variograms for each layer.

The number of simulator gridblocks is M. Our objective is to determine realiza-
tions of the well skin factors and the gridblock values of porosity and permeability. Since
permeability is assumed to be log-normal, we actually determine gridblock valuel).of In(

For an isotropic reservoir, the complete model to be estimated is represented by the

2M + Ng dimensional vector

2.1)

:
iR

where m, is the M-dimensional column vector of gridblock porositieg, is the M-

dimensional column vector of gridblock values of In(k) amg is the N-dimensional

column vector of well skin factors to be estimated. In the most general three-dimensional

anisotropic case, Eq. 2.1 is replaced by

(2.2)

2P

2
MmOoOoOOoOoQ

min
s

where the notation is obvious. Thus, the number of model parameters to be estimated

(denoted byNp) is equal to 21 + N for the case of an isotropic permeability field, and

4M + Ny in the most general anisotropic case.
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Based on our assumption of a multinormal distribution, the prior distribution has a

probability density function statisfying the following proportionality relation:

1
p(m) O eX%E (m_ rTE)rior )T C;Al( i rHior @! (23)
where my;, is the vector containing the estimates of the prior means of the rock

properties and well skin factors;,, is the prior covariance matrix obtained from the
variogram model.
A critical assumption is that the prior model has a Gaussian probability density

function with prior covariance matrix,, , given by

C, Ci OO
Cu=ffw C Op (2.4)
G0 o cf

In Eqg. 2.4,C, is the covariance matrix for gridblock porosities derived from the porosity

variogram, C, is the covariance matrix for gridblock k)6, Csis the covariance matrix

for well skin factors,Cy is the cross covariance matrix between porosity arkl d(the
set of gridblocks,C,, is equal to the transpose 6f, and throughouO’s denote null

matrices, i.e. matrices with all entries equal to zero. The nm@gis diagonal since we
assume no correlation between skin factors of different wells and between skin factors of
different layers at same well. We avoid specific modeling of the cross covariance matrices
by using the “screening hypothesis” of Xu etahs shown in Ref. 24, this assumption
implies that the variograms for porosity andk)rdére of the same type, and have identical
ranges, but different sills, where the ratio of their sills is equal to the corresponding ratios

of their variances. Also as shown in Refs. 39 and 24, the screening hypothesis implies that
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p(p,k (O)J(p C

o G (2.5)

qu = Ck(p =
where p,,(0) is the correlation coefficient between porosity and permeability at a

common location. Detailed expressions for generating the covariance matrices are given in
Ref. 24.

In the anisotropic permeability case, the prior covariance makfjx, is given by
0C,  Ca, C(pky G, OO
fo G Cuy G O
Cy = BDkyq, Ckykx Cky Ckykz OB’ (2.5a)
k. Ckzk>< Ckzky CkZ OD
HO O O O GH

In Eg. 2.5a,C, is the covariance matrix for gridblock x-direction log-permeability,In( )

derived from the variogram for x-direction Iog-permeabil'q,y Is the covariance matrix

for gridblock y-direction log-permeabilities I Yerived from the variogram for
In(k,), C,, is the covariance matrix for gridblock z-direction log-permeabilities,In( )

derived from the variogram for IR{ , )C; is the Ng x Ng covariance matrix for well skin

factors and is diagonalC , represents the cross covariance matrix between pair of
reservoir property attributeg, and p,, for exampleCy represents the cross covariance
matrix between porosity [, = ¢) and x-direction log-permeabilityp;, = In(k,)). From

the definition of covariance, we know that, , equals the transpose @f, , . So, the
overall covariance matrixC,, is symmetric. ThroughouD's denote null matrices, i.e.,

matrices with all entries equal to zero.
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Similar to Eg. 2.5, the screening hypothesis is applied to determine the cross-

variancesC, , given the correlation coefficients between attribysesand p, .

It is important to note that the adoption of the screening hypothesis is not a re-
quirement of the procedures presented in this work. This hypothesis simply eliminates the
need to develop models for the cross-variograms between pairs of rock property

attributes.

2.2 Inverse Solution

2.2.1 Bayes Estimation Theory

In the problem considered herm,,, refers to the vector of observed or measured
wellbore pressures data, and containsNyjl pressure measurements that are used as
conditioning data. As in Ref. 23-28, measurement errors are modeled as independent
identically distributed Gaussian random variables with zero mean and vasigndéus,

the covariance matrix for these errors is a diagonal m&gixwith all diagonal entries

equal to o5. We assume that vectar contains the calculated wellbore pressure data

corresponding tal,, and is related to the model by

d=g(m. (2.6)

The functional relationship of Eq. 2.6 represents the effect of genechatiagn
our reservoir simulator from model m. The reservoir simulator is discussed in more detail
in next chapter. For given data, the likelihood function for the model is given by the

following relation:
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(i ) D expf > (9 ] G (o 10 g T 27)

From Bayes’s theorm, it follows that the a posteriori probability density function

for our model, denoted,, (m d,,s), satisfies the following relation

Fm (M dyps) O L dgpd Mo (). (2.8)

Using Egs. 2.3 and 2.7 in Eq. 2.8, we obtain

fM ("71 dobs) O EXDE'%((ITI— rrbrior )T cr:/iL ( mr rHior )+
(9(M) = dh)” G d M- )]

(2.9)

The most probable model (the maximum a posteriori estimate) which honors prior

information and pressure data is obtained by maximizipg(m d,,s), or equivalently,

minimizing the objective functiors( n) where

S(n):%(m_ rgrior)T (r;ll( m mor)+

(2.10)
(9(M = dhoe)” GH(d M= dhs)].

2.2.2 Gauss-Newton Method

To obtain the most probable model (the maximum a posteriori estimate), we mini-
mize S(m) by applying a restricted-step Gauss-Newton procedure. Thus, we must
compute the gradient and the approximate Hessian of S(m). The sensitivity coefficients
represent the derivatives of wellbore pressure with respect to model parameters, i.e.,

ag;(m)
am

J

for 1<i<Ny and k j<N,. A sensitivity coefficient gives a measure of how
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strongly the datag; (m) are affected by a change in model parameter The sensitivity

coefficient matrix is given by

0dg,(m) a9, (m) ag,(m) O
Jom  om, oy, o
09g,(m)  dg,(m) ag, (M O
G=p om am, om,_ O (2.11)
o : o0
[P, (M) dgNd (m dgNd(m)D
gom om, m, g

Note G is a Ny x N, matrix. Again,m denotes the vector of model parameters,

denotes the jth model parameter agdm) represents the calculated pressure data
corresponding to thigh wellbore pressure measurement. If we want to condition to layer
flow rates, i.e., production logging data, thgfm) represents the vector of calculated
layer flow rates corresponding to observed layer flow rates. The procedure for calculating
the sensitivity coefficients will be presented in Chapter 3.
At the ( +1xt iteration of the Gauss-Newton method, the gradier@(ai) is
05 =0, M= G §( g M- d)+ G m m), (2.12)
and Hessian matrix is given by:
H =HM) =00 M) = ¢ ¢ ¢+ ¢ (2.13)
The Gauss-Newton method is then given by
m"=n-HOS, (2.14)
where | denotes the iteration index. ThroughournI represents the estimate of the

minimum of S(m) obtained at thelth Gauss-Newton iteration an, denotes the

sensitivity coefficient matrix G (Eq. 2.11) evaluated rat, S denotes the gradient
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evaluated at the old iterateltl{iterate) and H, denotes the approximate Hessian

evaluated at the old iteration. In applying the Gauss-Newton method, we do notHpvert
directly, but instead solve

Hom*=-03, (2.15)
for dm'*l. The vectordm' " gives the search direction at the+{ st )teration, and an

efficient algorithm would need a line search technique (or similar technique) to determine
how far to step in that direction, i.e., the iterative method would actually modify Eq. 2.14

to

m2=m-y H'OS$S= m-yd M’ (2.16)
where y; gives the size of the step in the directidm' ™. We use a restricted-step
method instead of a line search to determing

Using Egs 2.12 and 2.13, Eq. 2.16 can be written as

m?=m-u[6 G 6+ G

(2.17)
[GT s m) -~ doo)+ GHC = myor)],
Tarantola’ refers toy, as a damping factor.
From the matrix inverse lemiflawe have
_ 1711
el +GiH Gi= -G F[e+ 66 €] @ (2.18)
From basic matrix algebra, the following matrix identity can be established.
_ 111
[clcie+Gl] d =6 d[ e+ 66 & (2.19)

Using Egs 2.18 and 2.19 in Eqg. 2.17 and rearranging the resulting equation, one obtains

the following form of the Gauss-Newton method:
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m|+1:/~1| rrbrior +(1_M)M_HI[Q/I q;( g+ (l;gl G)_lx

(2.20)
(g(rd)— Chos + G( M= Mior ))]

Although Eqgs. 2.20 and 2.17 are mathematically equivalent, the computational
time for the two schemes may be radically different. The inverse matrix on the right side of

Eqg. 2.17 isN, x N, where N, is the number of parameters to be determined. The

inverse matrix on the right side of Eq. 2.20 idNg x Nymatrix, whereNyis the total

number of observed data. My << N, which will often be the case, Eq. 2.20 should be

applied. In Chapter 1V, we will discuss reparameterization techniques which can reduce
computational time and memory requirements.
In applying either form of the Gauss-Newton method, we set the convergence

criterion as follows:
Nid(g(rrf)— ) (o M)~ ) <02, (2.21)

This means if Eq. 2.21 is satisfied, we accebtas the maximum a posteriori estimate.

2.2.3 A Posteriori Covariance

If we assumed = g(m can be linearized around the maximum a posteriori esti-
mate, m,, then
gm=dm)+ G(m m+e( M (2.22)
where g(m)is the error introduced by linearization arg, represents the sensitivity

coefficient matrix evaluated an,, .
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Using Eq. 2.22 into Eg. 2.10 gives

S(M=2[(m M)’ G(m mo)+( @M+ & m e )m g
2
xCoH(a(m.)+ G, (m- m)+e( i g)].

(2.23)

We defined,, by
d, =dyps—am)+ G m. (2.24)
Then Eq. 2.23 becomes
s(m=—[(m M) GCm o)+ 6 me( m J G )m
== M) GH ) +(G ) B( 6 m ]
+(Gom=d,)' Gle(r+ 2 A Ge(
=§(m+(G - d)" Ge( we( MiCrle(m),

(2.25)

where
Sm=2[m )" Gm g 6 m #H sm ) (@2

Since é( m is quadratic, any"2order Taylor series expansion é{ M) is exact, so use a

Taylor expansion abouty,, (most probable model) to obtain

Sm=%m)+(076 0) ( m o m o pT0(SH -mm
(2.27)
=&m)+[0% m) (m o+ ( m ] £+ Bef mow
From Eq. 2.26,

0S(m,)= Gi(m - M)+ G 6( G o 9. (2.28)
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FromEqQ. 2.24G,m, - d, = d m) - dgs, SO we can rewrite Eq. 2.28 as

OS(m)= Gi(m = M)+ G 6 60— k) (2:29)
Comparing Eg. 2.29 with Eq. 2.12 with replaced bym,, we see that

OS(m,)=0% ) =0, (2:30)
where the last equality in Eq. 2.30 follows from the fact timgt minimizes S(m). From

Eq. 2.30, it follows that Eq. 2.27 can be reduced to

Sm=8m+(m o[ g+ & A m

A f (2.31)
=S(m)+(m- m)" Ge( ™ m),
where
cwe =[Ci+ Gl GG (2:32)
Using Eq. 2.31 in Eq. 2.25 gives
SM=Fm+(m m G m
(2.33)

+(G.m- )" Gle(m+e(AT Cle(

Thus, our a posteriori pdf can be written as

fu (ml hes) O exei-2 (]
= exp-2 S(m) xS ((m m ) Gh(m (2.34)
expfe.m-d.)’ Ge(m+Ze(nf Ge(
If we assumes(m) =0, or equivalently that g(m) are linearly related to the model m (see

Eq. 2.22), then Eq. 2.34 gives
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fu (M) Dexgt (- § G (v m ] (2.35)

Eq. 2.35 shows that when the data are linearly related to the model, the a posteriori
probability density function is Gaussian, and the a posteriori covariance matrix is

[~ T~1n~ 171
Cu {63+ ]
=Cy-CuG(G.G'G+G) G G.
The preceding results were included for completeness but are not novel. The basic result,
Eq. 2.35, can be found in TarantdlaAlso Eq. 2.34 was used by Oliver ef%as a basis

for generating more efficient Markov Chain Monte Carlo method for sampling the a

posteriori pdf.

2.2.4 Realizations

In previous subsections, we discussed how to generate the maximum a posteriori
estimate and posteriori covariance matrix by the Gauss-Newton procedure. Here, we
present a method to generate realizations by sampling the posteriori probability density
function of our model after conditioning to all available data. Again, the basic results are
known, see for example, Tarantdland Refs. 19, 23 and 24.

If hard data are used as conditioning data, we propose a two-step procédare

generate realizations. In the first step, we obtain the most probable nmdg) and

posteriori covarianceQ,,, ) conditioned to hard data and prior information. In subsection

(2.3) , we will show how to incorporate hard data into our model. In the second step, we

condition to pressure data by minimizingrp(vhere Sifn) is given by the right side of Eq.
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2.10 with my, replaced bym, ,, and Cy, replaced byCy,. The a posteriori covariance

matrix after conditioning to both hard data and pressure data is given by

Cwp =Cuh ~CwnG (G G G + G) G G, (2.37)
where G, is the sensitivity coefficient matrix evaluated at, which denotes the
maximum a posteriori estimate obtained from the Gauss-Newton procedure. If no hard
data are used as conditioning data, then in Eq. 33, is replaced byC,, , i.e., EQ.
2.37 is the same as Eq. 2.36.

As shown in Ref. 23-25, realizations of the porosity and log-permeability fields can

be generated from

m=m, + LZ, (2.38)
whereZ; is a vector of independent standard random normal deviatek] ancepresents
the Cholesky decomposition of the a posteriori covariance matrix. At best, this procedure
only generates an approximate sampling of the a posteriori pdf since it assumes that Eq.
2.6 is linear, i.e., pressure data are linearly related to the model.

The diagonal elements &, give the a posteriori variances of model parameters
after conditioning to pressure data. If the variance of a particular model paramister
significantly less than the corresponding variance before incorporating pressure data, then
pressure data have been of significant value in reducing the level of uncertainty in this
model parameter. An approximate 95 percent confidence interval fopththmodel

parameter after conditioning to pressure data is givefmby -20%, m,; +20/] where
of Is the a posteriori variance for this model parameter, i.ejthhgiagonal element of

Cwr- Reducing the variance reduces the size of the confidence interval and reduces the
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variability in realizations of the model parameters obtained by applying Eg. 2.38 to

generate realizations. Similarly, the diagonal elementgf give the a posteriori

variances for the model parameters after conditioning to hard data. The ratio of these
posteriori variances to the corresponding prior variances gives a measure of the reduction
in the uncertainty in model parameters achieved by incorporating hard data, i.e., a measure
of the value of hard data in terms of the resulting reduction in variability of realizations of
the rock property fields. If we condition only to pressure data and all diagonal elements of
Cywp are equal to the corresponding diagonal element€pf then we say that the
incorporation of the pressure data is of no value for reducing the uncertainty in the
individual model parameters (gridblock log-permeabilities and porosities). However, even

if the uncertainty in individual model parameters is not reduced, it is still possible that
pressure data can be of value for reducing the uncertainty in linear combinations of model
parameters, e.g., average reservoir porosity and thickness-averaged permeability. As will
be seen in the layered reservoir example considered later, conditioning the rock property
fields to pressure data reduces the uncertainty in thickness-averaged permeability much
more than it reduces the uncertainty in individual gridblock log-permeabilities. This
occurs primarily because the variance of a linear combination of model parameters
involves the covariance between pairs of individual parameters and these covariances may
be negative. Thus, we see that by computing and comparing variances, one can obtain a
measure of the value of collecting a particular type of data, where high value means a

significant reduction in the uncertainty as measured by the variances.

2.3 Conditioning to Hard Data
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In this work, hard data refer to “measurements” of gridblock values of porosity
and permeability (converted to “measurements” of log-permeability) at the location of
wells. This obviously assumes that any measurements of rock properties at the well
locations have been properly scaled up to gridblock size. Hard data measurements errors
are modeled as independent Gaussian random variables with zero mean and prescribed

variances. For hard porosity data, the standard deviation for measurement errors is

denoted byaqzn| and the standard deviation for the measurement errors in hard log-

permeability data is assumed denotedty.
We let d, ., represent observed data (hard data) for porosity and log-permeability

(we assume that there is no hard data for skin factors) ag| Istpresent the hard data
function which is related to the model by a linear oper@grso that

d, = G,m. (2.39)
We assume the dimension ofi,, and d, ,,s is N, and letd,; and d; ,,; respectively
represent the components df and dy, ops » i =12,....Ny,, so thatG, is a N, XN,
matrix. Moreover, we let thel,, . ; represent the measured valuengf,1< i< N, . Then

Eq. 2.39 can be written as

Ddh1D E@hl Oho Q%NP%WHB

d 2 .. m,
B hZB Eghl gr:m,z § ghl\lp% f B (2.40)
O 08y n o HD

o B FORG Ohb - Onk AN,
p

. | =15
whereg;H:Ep_ yfori=12..N,,j=12,...N,
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Similarly to section 2.2.1, by a standard application of Bayes’s theorm, it follows that the

most probable model which honors hard data and the prior information is one that

minimizes the following objective function

:i T A
Sn( n) 2 ( m- rrBrlor) (r;l( m mor)+ (2.41)
(GaM= thopd” GH( G M o).

which C,, is the diagonal covariance matrix of hard data measurement error, i.e., errors in

porosity and log-permeability measurements.

Setting the gradient o&,(m) with respect to m equal to zero, we have

OnSh(M= Ga( M Mio)+ G C( 6 M phyd =0. (2.42)

or
Cri (M= My )=~ G G (G M Hovd- (2.43)
Adding G,T CrG,(m- Myior) t0 both sides of Eq. 2.43, we obtain

(GhGlG+ (M M) == G G G M fops— & M o)),  (2.44)

or
(GnGh'Gn* G(M Myior) == G G G Mhor — v (2.45)
So, our solution (maximum a posteriori estimate) is
M=o = (@ G G+ G G G G Phor — oo (2.46)
The maximum a posteriori estimation conditioned to hard data and prior information can

be obtained analytically using Eq. 2.45 and is denoteahhy, i.e., from Eq. 2.46,

Mhw= Myior = (G G G+ GD™ G G G Whior — oo - (2.47)
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Using the basis given in subsection 2.2.3, the a posteriori covariance matrix after

conditioning to hard data and prior information is given by

Cmn = Cn —Cy G}:(Gh Gu C% + cBh)_1 G G- (2.48)

2.4 Conditioning to Layer Flow Rates

As shown in Refs. 41 and 42, for three-dimensional problems, measured wellbore
pressures can not resolve individual layer properties (permeability, porosity and skin
factor). More specifically, even though wellbore pressures resolve thickness averaged
permeability reasonably well (i.e., reduce the uncertainty in thickness averaged horizontal
permeability), they can not resolve individual layer permeabilities and skin factors. To
obtain the estimation of layer properties, we need other information, i.e., individual layer
flow rate data. Production logging can provide us with layer flow rate information. Using
this information together with wellbore pressure, we can obtain more reliable estimate of
layer permeabilities and layer skin factors.

The methodology for conditioning to both wellbore pressure and layer flow rate is
theoretically the same as conditioning to wellbore pressure. We can just follow the
derivation described in previous sections for conditioning to wellbore pressure. The
difference is that now we have more observed data.

As indicated previously, we assume the total number of observed wellbore pres-

sure data iNg , the number of model parametersNg . We assume that the total number

of observed layer flow rate datalé, and assume that measurement errors for layer flow
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rates can be modeled as independent Gaussian random variables with zero mean and

varianceoy .

The total covariance matrix for measurement errors is now

c, =00 °E (2.49)
= |:| D .
° g0 GCogp
where

Ga 0 - OF

0O o2 --- 0
Con=p: - - .0 (2.50)
S
g0 0 o048

is the N4 X N4 covariance matrix related to wellbore pressure measurement errors and

b2 0 00

0 2 0

_ DO q 0 O
CD’q =0 : . D (2.51)

0 ,0

QO 0 04

is the N, x N, covariance matrix for layer flow rate measurement errors. gwis an
(Ng + Ng) % (Ng + Ng) matrix.

The sensitivity coefficient matrix is now given by
G= s (2.52)
Bsq D’ .

where G, is the sensitivity coefficient matrix related to wellbore pressure and is a
Ny x N, matrix; G, is the sensitivity coefficient matrix related to layer flow rates and is a
N, X N, matrix. The procedure for the calculation @f will also be presented in the

next chapter. The size @ is (N4 + Ng)* N,,.
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The data mismatch includes the mismatch between observed wellbore pressure and

calculated wellbore pressure, and also the mismatch between observed layer flow rate and

calculated layer flow rate, i.e.,

I () B
g(m) dobs—g(m)_ q?bsg, (2.53)

where p(m) - di} is the vector of wellbore pressure mismatches @(vd) — d\. is the

vector of layer flow rate mismatches. Heid} . represents the vector of all observed

pressure data used as conditioning daff, represents the vector of all observed flow

rate data used as conditioning data and our vector of the total observed data is

g8 O
d bs = [] ObsD (2533)
o @Sbsa

Similarly, for a giverm, d” = p(m) represents calculated pressure data corresponding to
dis andd® = g(m) represents calculated flow rate data correspondirtff@nd

_ Pl p(mo
d= %jq B— E}(m) % (2.53b)

With the preceding definitions o, d,.s, Cp and G, all equations presented previously
still apply.

With these modifications, we can apply the Gauss-Newton method to obtain the
maximum a posteriori estimate and posteriori covariance matrix conditioned to both

observed wellbore pressures and observed layer flow rates.

2.5 Computational Examples
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2.5.1 True Reservoir Model

A true three-layer reservoir is considered Wil k, = k andk, = 0, i.e., there is
no cross-flow between layers. However, layers communicate through the wellbore so
cross-flow between layers can occur through the wells. Fig. 2.1 shows the areal grid used,
well locations and well numbers for the problem considered. An 1lardal grid is used
with 100x 100 ft* gridblocks and three gridblocks in the vertical direction with a uniform
vertical grid. Each layer is ten feet thick. The example pertains to a five-well problem.

The center well (well A) is located in areal gridblock (6,6) and is produced at a

1,100
2 1
[%)
z A
>
4 3
0
0
X - Axis, ft 1,100

Fig. 2.1 - Areal grids, well locations and well numbers.
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Fig. 2.2 - True log-permeability fields.
constant rate of 500 RB/D. This active well is surrounded by four observation wells

located at areal gridblocks (9,9) for observation well 1, (3,9) for observation well 2, (9,3)
for observation well 3 and (3,3) for observation well 4.

Each layer has its own two-dimensional isotropic spherical variogram model for
the log-permeability field. For layer 1 (top layer), the range of the variogram for log-
permeability is450 ft. The prior mean fdn(k) is 4.0 with variance equal to 0.6. For layer
2, the range of the variogram for log-permeabiliti@® ft, the prior variance is equal to
0.5 and the prior mean fdm(k) is 4.5. For layer 3, the range of the variogram for log-
permeability is400 ft, the prior mean is 5.0 and the prior variance is 0.6. In layer 1, the
prior mean of the porosity was set equal to 0.15 and the prior variance was 0.0025. In
layer 2, the prior mean of the porosity was set equal to 0.20 and the prior variance was
0.0025. In layer 3, the prior mean of the porosity was set equal to 0.25 and the prior

variance was 0.0025. A prior correlation coefficient of 0.6 was assumed between the
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porosity and log-permeability fields. kmach layer, the porosity variogram is obtained

from the log-permeability variogram by multiplying the latter variogramo@yoﬁ; see

Refs. 3 and 18.

In this problem, the average well skin factor is 4.0. Well skin factors vary signifi-
cantly from well to well and from layer to layer, and if estimation of well skin factors are
not known, we normally assign high variances to the skin factors. However, wellbore

pressure can not accurately resolve individual layer skin factors; thus in this example, we
use a reasonably small varianeg (= 4.0) on well skin factors.

The “true” permeability and porosity distributions were obtained as an uncondi-
tional simulation generated from a Cholesky decomposition of the prior covariance
matrix. The true log-permeability field is shown in Fig. 2.2 with the true porosity field
shown in Fig. 2.3. Note that the left slice on the figure is the top layer (layer 1) and the
right slice is the bottom layer (layer 3). The pressure data were obtained by running the
simulator using the true gridblock values of permeability and porosity. The duration of the
synthetic multiwell test was 1.7 days. During the test, significant crossflow occurs
through observation wells with flows rates on the order of 20 RB/D at the end of the test.
The observation well pressure drops are shown in Fig. 2.4.

We use the exact value of log-permeability and porosity at well locations (one ac-

tive well and four observation wells) as hard data. We assume the variance on log-

permeability measurement errordﬁ’jk =0.0016 and variance for porosity measurement

error isof;,, = 0.00009
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2.5.2 Maximum a Posteriori Estimate (Most Probable Model)

The maximum a posteriori estimate of log-permeability obtained by conditioning
only to hard data is shown in Fig. 2.5. Comparing Fig. 2.5 with Fig. 2.2, we see that as
expected, the maximum a posteriori estimate matches the true field only at regions near
the wells. The maximum a posteriori estimate obtained by conditioning to only pressure
data is shown in Fig. 2.6. Comparing with the true case, the layer log-permeability

maximum a posteriori estimate is quite different. However, we show later that pressure

. INEEREREEEENRN |
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Fig. 2.3 - True Porosity fields.
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Fig. 2.4 - Pressure drop at four observation wells.

Fig. 2.5 - Maximum a posteriori estimate of log-permeability fields condi-
tioned only to hard data.
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Fig. 2.6 - Maximum a posteriori estimate of log-permeability fields, condi-
tioned only to pressure data.

can resolve the thickness averaged permeability reasonably wel. The maximum a
posteriori estimate after conditioning to both hard data and pressure data is shown in Fig.
2.7. It is clear that the maximum a posteriori estimate conditioned both to hard data and
pressure data is “better” (more closely captures the features of the true case) than the
maximum a posteriori estimate obtained by conditioning only to hard data (Fig. 2.5) or
only to pressure data (Fig. 2.6). Note that in layer 3, the maximum a posteriori estimate
conditioned to both hard data and pressure data gives low permeabilities in the interwell
region between the active well and observation well 4. Except for this difference, the
maximum a posteriori is qualitatively similar to the true log-permeability field shown in
Fig. 2.2. The reason that low permeabilities are obtained in region between the active well

and observation well 4 in layer 3 is that the true values of log-permeability at the two well
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gridblocks are low. Since these two values are fixed essentially exactly by the hard data

and the prior model indicates that log-permeability is correlated over a distance of 400
feet, it is difficult for pressure data to resolve these values correctly even though pressures
at the two wells are relatively sensitive to the permeabilities in the interwell region.

Fig. 2.8 shows the maximum a posteriori estimate of the porosity field conditioned
to both hard data and pressure data. Even though porosity is correlated to log-
permeability for the example considered here, pressure data does not resolve the porosity
field well. Note this estimate bears only rough similarity to the true porosity field, Fig. 2.3.
However, since pseudosteady-state flow exists at the end of the test, we expect to be able

to estimate average reservoir porosity from only pressure data. The average reservoir

Fig. 2.7 - Maximum a posteriori estimate of log-permeability fields,
conditioned to hard data and pressure data.
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Fig. 2.8 - Maximum a posteriori estimate of porosity fields, condition to hard
data and pressure data.
porosity for the truth case wag = 0.202. The average reservoir porosity computed from

the maximum a posteriori estimate obtained by conditioning only to pressure data was
@ =0192. The average reservoir porosity computed from the maximum a posteriori
estimate obtained by conditioning to both hard data and pressure data Wag03.

Thus, we see that pseudosteady-state pressure data by themselves are sufficient to give a

good estimate of average reservoir porosity.

2.5.3 Posteriori Covariance

To consider the reduction in uncertainty in the log-permeability field obtained by
conditioning to hard data and/or pressure data, normalized variances are plotted i.e., for
each layer the normalized a posteriori variances represent the a posteriori variances for the

layer divided by the prior variance of log-permeability for the layer. Thus, if adding
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conditioning data has no value in reducing the uncertainty for a gridblock value of log-

permeability, the normalized variance will be equal to unity and a normalized variance on
the order of 0.1 represents a ten fold reduction in the level of uncertainty. We also sum
these normalized variances over the gridblocks and divide by the number of gridblocks to
obtain a quantitative measure in the overall reduction in uncertainty for the whole log-

permeability field. We refer to this last term as the global uncertainty inggk,), or

more specifically, the global uncertainty index for the log-permeability field. Similar ideas

can be applied to evaluate the uncertainty in the porosity field. So we have

= Var(in(k,,))

_ 1
') =3 2 Var(in(ion ) (2.:34)
(@=L V@) (2.55)
'c M Z Var(¢prlor i ) .

This concept is a slight modification of an idea of Shah Etvaho evaluated the accuracy
of the maximum a posteriori estimate by considering the magnitude of the trace of the a
posteriori covariance matrix.

The normalized a posteriori variances of log-permeability after conditioning only
to hard data is shown in Fig. 2.9 and in this case, the global uncertainty index was equal to
0.812. The a posteriori variances after conditioning to only pressure data are shown in

Fig. 2.10 and in this caség(k)= 0.836. Although the global uncertainty indices are

almost the same for these two results, the reduction in uncertainty of individual gridblock
values ofln (k) are quite different for the two cases. Hard data reduce the variance to
almost zero at gridblocks containing wells (Fig. 2.9), but results in only a very small

reduction in variances at distances far from the wells. When the maximum a posteriori
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estimate is conditioned only to pressure data, the variances at gridblocks containing wells

are not necessarily small, but the overall reduction in uncertainty as measured by the
global uncertainty index is essentially equal to the one obtained after conditioning only to
hard data.

The a posteriori variances after conditioning to both hard data and pressure data
are shown in Fig. 2.11. In this cadg,(k) = 0.641. Note the combination of hard data
plus pressure data results in a significant decrease in the overall uncertainty in the log-
permeability field as well as a reduction in the uncertainty at gridblocks near wells. The

reduction in uncertainty is greater than was achieved by using only pressure data or only

0.1 0.4 0.7 1.0

Fig. 2.9 - Normalized a posteriori variances of log-permeability, conditioned
only to hard data.
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Fig. 2.10 - Normalized a posteriori variances of log-permeability, conditioned
only to pressure data.

Fig. 2.11 - Normalized a posteriori variances of log-permeability, conditioned
to hard data and pressure data.
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Fig. 2.12 - Normalized a posteriori variances of porosity, conditioned to hard

data and pressure data.
hard data as conditioning data. This is the expected result since pressure data often resolve

thickness-averaged permeability, but does not resolve individual layer permeabilities.
Adding hard data at wells essentially fixes the individual layer permeabilities at the wells,
and then by adding pressure data as conditioning data, individual layer permeabilities are
much better resolved.

Fig. 2.12 shows the normalized a posteriori variances of porosity after condition-
ing to both hard data and pressure data. We note that the porosity field is not resolved as
well by pressure data as is the log-permeability field. In fact, the normalized a posteriori
variances for porosity after conditioning to both hard data and pressure data look very
similar qualitatively to the results of Fig. 2.9 (only reduces the variance at near well

region). The global uncertainty index for porosity in this case is equgl (@) = 0.745.

The global index only conditioning to hard datd ig¢) = 0.879 and the global index only
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conditioning to pressure data lig (¢) = 0.882. This means that only conditioning to hard

data, the overall uncertainty in the porosity field is only reduced a small amount, while by
conditioning only to pressure data, the overall uncertainty in porosity field has been
reduced much more (about a 30% reduction). By conditioning to both hard data and
pressure, the overall uncertainty is reduced slightly more than by conditioning only to

pressure data.

2.5.4Thickness Averaged Permeability

It is well known that for layered systems, classical semilog analysis can only yield
an estimate of thickness-averaged permeability. For the example under consideration,

there exist three layers of equal thickness so this average permeability is given by

_ 13
k(% ¥1) =3 > k06 %), (2.56)
=1

where k (%, y;) denotes the horizontal permeability in layerin the areal gridblock
centered X; y; )

To continue the example, we investigate the resolution of the thickness-averaged

permeability. Since the inverse problem is phrased in terms kf, Im{e )must convert

variances of Ik Yo variances fok . When one converts variances ofknto)variances

for k, the mean of I )affects the variance & Specifically, for a single stochastic
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variable Ink )having a normal distribution with mean and variances?, the mean and
variance fork are given, respectively, by

a =expu) expo?/2), (2.57)
and
B? = a?(exqo?)-1). (2.58)

Thus, ifX andY are log-normal and I{ &and In{Y ) have equal variances, but the mean

of In(X) is larger than the mean of W(, Jhe variance foX will be larger than the
variance ofY. This suggests that to compare the uncertaink/tion the uncertainty iry

on a common scale, each variance should be divided by the mean (expected value)
squared, i.e., one can consider dimensionless variances. Thus, in considering thickness-
averaged permeability, we divide the variancek olby the square of the expected value

of k, to obtain the dimensionless variance. Note this is similar to constructing dimen-
sionless confidence intervals, or confidence intervals in terms of percentages.

For the prior model, Egs. 2.57 and 2.58 can be applied to compute the expected
value and variance for eadqi(x, y;) variable. Permeabilities are uncorrelated in the
vertical direction since each layer has its own two-dimensional variogram for log-
permeability. Thus, the expected value and variance of the thickness-averaged permeabil-

ity can be calculated as

E[k(x. )/,-)]%i d k(x y) (2.59)
=1

and

Var[Roq, y )] =éi Va{ K( X, y)], (2.60)
=1
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where E denotes expected value awdr denotes variance. The corresponding dimen-

sionless variances are given by

Var[R(&, Y, )]

EZ[R(&, y )] . (2.61)

VarD[R(xi, yj)] =

After conditioning to hard data, the maximum a posteriori estimate of each gridblock
value ofIn(k) gives the approximate a posteriori mean and the diagonal entries of the a
posteriori covariance matrix give the a posteriori variances. Since after conditioning to
hard data, log-permeabilities are still uncorrelated in the z-direction, we can use the same

procedure used for the prior model to compute the dimensionless variances
VarDh[R(xi, Y| )], where the subscrifi?h is used to indicate that these are dimensionless

variance after conditioning to hard data.
After conditioning to pressure data, however, permeabilities are correlated in the

vertical direction. Thus, converting from variances forklIn@t) each gridblock to

variances fork is not straightforward. To estimate expected values and variancies for

we generateN realizations of the rock property fields from Eq. 2.38 and compute

K, (%, y;) for each realization at each areal location. (In our case, we used N=50.) We

then estimate the expected value and variance at each location from
1 N

and

Var[R(x,w)]=Ni_1%(E(x,yj)— k(. y))) - (2.63)
r=1
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We let Vaer[E(xi, Y| )] denote the corresponding dimensionless variances, where the
subscriptp is used to denote that these are dimensionless variances after conditioning to

pressure data. We use the notafitar,,, to denote the dimensionless variances after

conditioning to both hard data and pressure data. In the following, the terminology
normalized variances will refer to ratios of dimensionless variances.

The normalized variance Vi&r/ Var is plotted in Fig. 2.13. Note this normalized
variance represents the dimensionless variance obtained by conditioning to only hard data

divided by the prior dimensionless variance. Note the normalized variances are signifi-

Fig. 2.13 - Average permeability; normalized dimensionless variance condi-
tioned only to hard data.
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Fig. 2.14 - Average permeability; normalized dimensionless variance condi-
tioned only to pressure data.

0.1 0.4 0.6 0.9

Fig. 2.15 - Average permeability; normalized dimensionless variance condi-
tioned to hard data and pressure data.
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cantly less than 1 only at well locations and at the locations within the correlation length
(variogram range) from each well. In other locations, the valuesitudose to or equal

to unity; i.e., the variance of the average permeability at those locations has not been
reduced by hard data.

Fig. 2.14 shows the normalized dimensionless variancg,Vavar. Note the
normalized variances are significantly less than unity near the active well and in the
interwell region between the active well and the two observation wells near the “left” of
the reservoir. Comparing these results with those of Fig. 2.10, it is apparent that
incorporating pressure data as conditioning reduces the uncertainty in average permeabil-
ity much more than it reduces the uncertainty in individual layer values of permealbility.

Fig. 2.15 shows a plot of Viag/ Var,. Note we have reduced these normalized
variances significantly below unity near the wells and the overall reduction in uncertainty is
greater than is achieved by conditioning to only pressure data. However, considering the
results of Figs. 2.10, 2.14, 2.11 and 2.15 together, it is clear that hard data is of signifi-
cantly more value for reducing the uncertainty in individual layer values of permeability
than it is in reducing the uncertainty in the thickness-averaged permeability.

Fig. 2.16 represents a plot of the “true” thickness averaged permeabilities. Fig.
2.17 shows a plot of average permeabilities computed from the maximum a posteriori
estimate obtained by conditioning only to hard data. Fig. 2.18 depicts the thickness-
averaged permeabilities computed from the maximum a posteriori estimate obtained by

conditioning only to pressure data. Fig. 2.19 shows the corresponding average permeabil-
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ities obtained from the maximum a posteriori estimate conditioned to hard data and

pressure data. Average permeabilities obtained using only pressure data capture the main
trends of the true average permeability better than the corresponding average computed
by conditioning only to hard data. In terms of capturing the main features of the true
average permeability distribution (Fig. 2.16), the results obtained by conditioning to both
hard data and pressure data (Fig. 2.19) are slightly better than those obtained by condi-

tioning to only pressure data (Fig. 2.18).

2.5.5Realizations

Up to now, we have focused on generating maximum a posteriori estimates of the

permeability and porosity fields. However, our final objective is to generate a set of

k W O N ©O© -

50 133 217 300

Fig. 2.16 - Average permeability for true case.
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Fig. 2.17 - Average permeability from maximum a posteriori estimate,
conditioned to only hard data.

60 90 120 150

Fig. 2.18 - Average permeability from maximum a posteriori estimate,
conditioned to only pressure data.
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Fig. 2.19 - Average permeability from maximum a posteriori estimate,

conditioned to hard data and pressure data.
realizations of the rock property fields which represent a proper sampling of the a

posteriori probability density function. As shown in Eq. 2.38, we can generate realizations
from the maximum a posteriori estimate and Cholesky decomposition of the a posteriori
covariance matrix. However, the set of realizations generated in this way will only
represent an approximate sampling of the approximate pdf. Fig. 2.20 and 2.21 show one
realization of the log-permeability and porosity fields generated by this procedure after
conditioning to both hard data and pressure data. Comparing the realizations with the true
case (Fig. 2.2 and Fig. 2.3), we see that realizations exhibit some similar to the true case in
some locations. But, they also exhibit differences with the true case, because even through
the variance is reduced by conditioning to hard data and pressure data, the variance is still
high is some places.

Fig. 2.22 and 2.23 respectively show the log-permeability and porosity values from

50 realizations at specified gridblock. We select three gridblocks ((9, 9, 2), (8, 8, 2) and
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(6, 1, 2)) to show that how much variability there is in the realizations. As we can see

from Fig. 2.1, gridblock (9,9,2) pertains to the middle gridblock penetrated by observation
well 4, gridblock (8, 8, 2) is located between the active well (6,6) and observation well 4,
while gridblock (6,1,2) is at an areal location adjacent to x-axis. We can see that the log-
permeability and porosity values of gridblock (9,9,2) are quite stabbaulse after
conditioning to hard data, the posteriori variance is reduced to almost zero at the
observation well. The log-permeability and porosity values at gridblock (6,1,2) vary

significantly, because neither pressure data nor hard data at wells is very sensitive to

Fig. 2.20 - Realization of log-permeability field.
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Fig. 2.21 - Realization of porosity field.
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Fig. 2.22 - Gridblock value of log-permeability in realizations.
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Fig. 2.23 - Gridblock value of porosity in realizations.

permeabilities at gridblocks near the model boundaries, so conditioning to hard data
and pressure will not significantly reduce the variance. The log-permeability and porosity
values of gridblock (8,8,2) also vary significantly, however compared with the values at
gridblock (6,1,2), the variability is less, i.e., conditioning to hard data and pressure data

will reduce the uncertainty in the rock property field in the inter-well regions.

2.5.6Conditioning to Layer Flow Rates

As wehave shown, wellbore pressures resolve the thickness averaged permeability
(see Fig. 2.16) much better than individual layer permeabilities (see Fig. 2.6). Similarly,
pressure data do not resolve gridblock porosity well and we can not determine individual
layer skin factors from pressure data. However, if the individual layer flow rate data are

available, we can also use this information to obtain reasonable resolution of individual
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layer properties. We assume that the variance of the layer flow rates measurement error is

o¢ =10

Fig. 2.24 shows the maximum a posteriori estimate after conditioning to both
wellbore pressure and layer flow rates. No hard data were used as conditioning data. We
see that the layer log-permeability field represented by the maximum a posteriori estimate
is qualitatively similar to the true log-permeability field, Fig. 2.2. Fig. 2.25 shows the
average permeability from the maximum a posteriori estimate after conditioning to both
wellbore pressure and layer flow rates. We see that this average permeability qualitatively

matches that of the true case (Fig. 2.16), and is better than the average permeability field

obtained by conditioning only to pressure data (see Fig. 2.18).

3.5 4.3 5.1 5.9

Fig. 2.24 - Maximum a posteriori estimate of log-permeability fields, condi-
tioned to wellbore pressure and layer flow rates.
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Fig. 2.25 - Average permeability from maximum a posteriori estimate,

conditioned to wellbore pressure and layer flow rates.
The following table compares the true skin factors with the maximum a posteriori

estimate obtained at the active well.

layer no. true skin skin factor, conditioned  skin factor, conditioned to
factor only to wellbore pressure pressure and layer flow rates

layer 1 3.35 3.97 3.99
layer 2 -0.04 3.78 -1.37
layer 3 6.34 2.01 8.15

From the table, we see that by conditioning only to wellbore pressure, we can not estimate

skin factors very accurately. However, if the maximum a posteriori estimate is conditioned
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to both wellbore pressure and layer flow rates, the skin factors at the active well can be

estimated with reasonable accuracy. Theoretically, if we have recorded the wellbore
pressure and layer flow rates at observation wells, we can estimate the observation well
skin factors. However, in this example, we found the skin factors at observation wells can

not be accurately estimated. More research is needed on this aspect.



CHAPTER Il

FLOW SIMULATION AND SENSITIVITY COEFFICIENT

CALCULATION

3.1 The Reservoir Model

We consider single-phase flow in a three-dimensional reservoir. We use a X-y-z
Cartesian coordinate system. In some cases, we restrict our attention to two dimensional
flow in the x and y directions. Reservoir boundaries are assumed to be no-flow boundaries
or constant pressure boundaries. The reservoir can contain any number of complete-
penetration or restricted-entry wells. Each well is produced at a specified rate or specified
bottom-hole pressure. Pressure buildup tests are simulated by changing the rate to zero
after producing for a specified time. Interference or observation wells are simulated by
setting the rate to zero at all times. In the three-dimensional case, even though the surface
rate at an observation well is zero, crossflow between reservoir layers may occur through
the observation well. Fluid properties are assumed to be known. We assume a slightly
compressible fluid of constant compressibility and viscosity. The permeability and porosity
fields are assumed to be heterogeneous. Permeability may be either isotropic or aniso-
tropic, but we assume a diagonal permeability tensor; i.e., the principal permeabilities are

aligned with the coordinate axes. Except in special cases, e.g., vertical interference tests,
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pressure data can not be expected to yield good estimates of vertical permeability. Thus in

our case, we always require thiat = a,/ k. k, , for the anisotropic case, wheaeis a

constant. This means the vertical permeability field is determined directly froky thad

k, permeability fields. Normally, we set=01. For the isotropic casd, =k, = k, = k,

i.e., there is only one permeability value to estimateaah grid block. Skin factors vary
from well to well, and may even vary from gridblock to gridblock in the vertical direction.
Pressure responses are obtained by a finite-difference simulator, i.e., a simulator is
used to generate synthetic multiwell pressure data, where wellbore pressure is related to
the well gridblock pressure by Peaceman's méth@d each well, the pressure at each
gridblock penetrated by the well is related to the wellbore pressure by formally applying
the two-dimensional Peaceman equation at each vertical gridblock. Since the rate of
production from each of these vertical gridblocks (referred to here as gridblock or “model
layer” rates) is unknown, the individual Peaceman equations can not be directly used.
However, by summing the set oé&eman’s equations, one obtains a relation between the
pressures in gridblocks penetrated by the well, the wellbore pressure and total well flow
rate. Then the matrix equations relating well gridblock pressures to wellbore pressures can
be constructed. These equations are solved for gridblock pressures and wellbore pressures
simultaneously and then Peaceman’s equation can be applied to calculate individual layer
flow rates. Fundamentally, our procedure assumes that at any depth, flow in the neighbor-
hood of the wellbore should be primarily radial. Details regarding the simulator are given

below.
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3.2 Three Dimensional Simulation

3.2.1 Flow Equation for 3-D Problem

For the three-dimensional single-phase flow problem considered here we neglect

gravity effects, so the governing flow equation can be written in oil-field units as follows:

cUo O dp0d 90 dpd 90 dpd
LG K, = [ — Ky = F — (K, =~ [T}

“EQX%( Xgﬁy%(y ygﬁzg( 9z

3 @,
qum(xim' yjm’zm)é( X= ?(m)5( y- }’m)5( z 'ZJ:C_E’
=l Iy 5

(3.1)

for 0<x<L,, 0<y<L,,0<z< L, andt>0,whereL,, L, and L, are the dimensions

of the reservoir. Throughout,c, =1127x 10° and ¢, =5615 ft*/ RB and N,, denotes

the number of wells. The inner sum in Eq. 3.1 is over the number of gridblocks penetrated
by wellm. In Eg. 3.1,p is the pressure at (X, y, z) and titpep=p(x v,z 9, k, IS x-
directional permeabilityk, = k,(X Y, 2, similarly for k,and k,. The termsd(x - xim),
o(y-vy; ) and 6(z-7z ) denote Dirac delta functions in units of-.ftAll wells are
assumed to be vertical. The areal location of med specified by X; y; )and may be

completed over any interval (or set of intervals) in the vertical direction. The term

qm(xim, Yi.» %, 1 is the source or sink term at tirhet wellm at the vertical location
z=7_in units of RB/D. If wellm is completed over the intervai, <z< h, then
integrating qm(xim, Yi.» %, 90(z ¢ ) over this interval givesy,(x; ,y; ,t) which is

the total flow rate of welin in units of reservoir barrels per day. The rates are sandface
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flow rates; however, we assume that wellbore storage effects are negligible so sandface

and surface flow rates are equal. It is important to note that ifrvedl an observation

well, i.e., shut-in at the surface at all times, thgffx; , y; ,t)=0 but qm(xim, Vi 4.9

may not be zero at any vertical location since crossflow can occur through the observation
well. For production at weth, q,,is positive, while for injectiong,,, is negative.

We let

R={(x v 20< x< L,.0< y< L,0< = 1}, (3.2)
i.e., R is the region in three-dimensional space occupied by the reservoir. VUR let
denotes the boundary &. Assuming an uniform initial pressure; , the initial boundary

condition is then specified by
p(x y,z0)= p, (3.3)

for (x,y,2 in R.
For no-flow boundary conditions, we have

—dp(x'o,,r{’ 29_o, (3.4)
for (x,y,2 atdR andt>0. Eq. 3.4 simply specifies that the normal derivative is zero on
all boundaries, i.e., all boundaries are assumed to be no flow boundaries.

In case of constant pressure boundary, the boundary condition equation is

p(x Y,z 9= R, (3.5)

for (x,y, 2) at R andt >0, wherep, is pressure at the boundary.

3.2.2 Finite Difference Equations
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In the following, we present the difference equations for the initial-boundary-value

problem (IBVP) specified by Egs. 3.1 to 3.5. A purely implicit seven-point difference
scheme is uséd®

Differencing Eq. 3.1 at X y; % )and multiplying by Ax;Ay;Az, where

Ax;,Ay; and Az, are the dimensions of the gridblock centeredxaty{ z gives

O Oplajk — PO bk~ Pl kU
&llyjAsz(Hl/ZJkElﬁD_AyJAZkK(I1/2]k|:I I’JX _X|I J O
e B n B B X~%1 H

g

Dp.n.+1k—p”.k|] Dp,n.k—pn._lkD
FOXGDZK ok B O DXAZ K gy B

H Y«a~Y H B Yi~ Y+ H

|:|p.n.k+l—pn.k|:| Dp'n'k_pn',k—lm .
DAY, K aap B O DAY K gp B O G

B Zu~% B %~ %1 HH

(3.6)

) Op"., —p" 1 O
(H,J,kct |:!pl,] k F}I’kaXiijAZ(.
C; H At H

There areN, gridblocks in the x-directionN, gridblocks in the y-direction and
N, gridblocks in the z-direction with gridblock centers given by ¥; % , foy
i=12,..N,, j=12..N,, and k=12..N,, where x <X,<.<Xx,
Y1 < Y2 << W, s andz <z<.<3 .

We let x;,4, for i=01,...,N, denote the gridblock boundaries in the x-direction
with %y, =0 and Xy .y, =L, so the x-direction widths of gridblocks are
AX; = (K42 = %-y2) /2 for i=12,...N, . We lety,,,, for j=01...N, denote the

gridblock boundaries in the y-direction wityj,, =0 and Yn,+2 = Ly SO the lengths of
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gridblocks in the y-direction ar@y; = (Y., ~ ¥j-y2)/2 for j=12...N, . Gridblock

boundaries in the z-direction and the, s's are defined in a similar way.

We definex, y andz direction transmissibities by

Gk Xy ¥, %A YA
Wewzik = Xivg = % ’

fori=12...N, -1 and al] andk,
T2k = T +v2jk =0,

for all j and k;

Ciky (%, Vs Z)AXA

Dhjsaa = Yin Y]
J+ J

forall j=12..N, -1 and all andk,

TYiyok = TyI,Ny+1/2,k =0,

for alli andk;

Gk (X%, Y Z)AXA Y
Tajkz = Ly ~ & ’

for j=12,...N, -1 and all andj,
TZ1,=TZjn,+v2=0,
for alli andj. Throughout we use the following notation:
Keijk = Ke(%5 Y0 %),
and

Kyijk =K (X, Y0 %)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Permeabilities at gridblock intexdes are computed by the standard harmonic average, for

example,

o= 2(Xi = % ) Keiarji Kk ) (3.15)
Xz k Ky kA%ie1 + K jorj A%

Harmonic average permeabilities in the y and z direction are defined in a similar way.
In finite difference techniques, we generate an approximate solution of the initial-

boundary value problem (Egs. 3.1 to 3.5) at each gridblock at a set of time tgteps,
n=12,... where by definition, t,=0 and At,=t,-t,; so t,=t,,+At, for
n=12... We let p’;x denote the pressure obtained at the gridblock centered at
(Xi,Yj %) by solving the system of finite difference equations at tigneFor all {, j, k),

we let

n WX,y %)eAxAyA g
Lk 5,615t '

(3.16)

We define

Tiik = Tz + Thovzix + jova + TY-vx + TZcevot Tho- 127 i k.
(3.17)

fori=1,2,..N,,j=12..N, andk=12..,N, .

With the preceding notation, the implicit finite difference equation at any gridblock

can be written as

TZ w2 Bik-rt T vk Bi-x + TXage By = Tk B
1

_ (3.18)
ok Ak * T jevak Biex + THueve By = By = Vi Bk
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In Eq. 3.18,qi’?jk (RB/D) represents the internal sink or source term at tjma
gridblock ¢, j, k) and is nonzero only if the gridblock is penetrated by a well. When the
gridblock is penetrated by a weﬂ,-’?i x represents the total sandface flow rate into or out
of the well over the intervat,_;,, < z< %,,,. At any well, only the total flow rate will be

known; thus, the individual gridblock source and skin terms must be obtained as part of
the solution procedure. Also, Eq. 3.16 explicitly involves only gridblock pressures,

whereas, we wish to work in terms of wellbore pressures. Our procedures for resolving
individual gridblock flow rates and computing wellbore pressures are presented immedi-

ately below.

3.2.3 Relating Wellbore Pressure and Gridblock Pressures

We consider a well located at a position withy) coordinates given byx( y; ,)

with the well completed in associated vertical gridblocks centeredxay; (%, for )
k=1111+1...] 2). We denote the total sandface flow rate at tijméy ¢, with the

individual source or sink terms given by, for k=1L11+1...] 2), i.e.,q;x gives the

source or sink term for gridblock (, k). We relate the individual source and sink terms to

the wellbore pressure by applying Peaceman'’s equdtaireach location, i.e.,
a'ik = (WD (Rik = B ). (3.19)

where

(3.20)

,EPrlclAZk\/ Keivik Kiiik E
m

W)= it ] +59
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Here, C, =1127x 103, r,, is the wellbore radius of the well (wellbore radii may vary

from well to well) and

Ke i o
0.280733xi\/1+ ik HOYi D
Kyi,jx 0AX O (3.21)

ro,k =

In Eqg. 3.20, we have assumed the well is perforated throughout the height of each vertical

gridblock. Ifit is perforated over the fracti@n of the gridblock associated wity , then
in Eq. 3.20,Az, should be replaced hyAz, . In Eq. 3.20,s, represents an effective skin
for the well gridblock centered ak;(y;, %, , he.,  is the skin factor for ““layer” k.

The individual gridblock rates must sum to the total rate; i.e, we must have

12 12

qir,]j = Zqirjjk = Z(Wl)k( d],jk - ) (3.22)

k=11 k=11

Using Eqg. 3.19 in Eq. 3.18, we have

TZ v Bjk-1t TY vz Bi-x + TXuzie By —Cle + W) M
ok Ahgik * TYjevac Biax + THuewe Bys & Why B i) (3.23)
==Viik ﬂrjj_li

for 1<i<N,, 1< j<N, and kxk< N,. Eq. 3.22 can be written as

0
ZWlllkp'Jk DZWIIJKB £ C] . (3.24)

Combining Egs. 3.23 and 3.24, we obtain a matrix equation for the flow problem
with well rates specified. By solving the equations, we can obtain gridblock pressure

pijx and wellbore pressurepy ;;. With known wellbore pressure and gridblock

pressure, “layer” flow rates can be computed with Eq. 3.19.
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For a problem with wellbore pressures specified, we can rewrite Eq. 3.23 as:

n+1 +1 1 +1
Tk Pk ¥ T Bk * Tk B — (i + W) B

n+l T n+1 + +1 n+1

o (3.25)
ey ik Ptk F T ek Bk * Ty Bikan = Vijk Pk ~Whjy Rt -

Eq. 3.25 can be solved individually for gridblock pressures. Then Egs. 3.19 and 3.22 can

be applied to compute flow rates.

3.3 Theory for Estimating Sensitivity Coefficients

In this section, we present the equations for computing sensitivity coefficients,
which are used when applying the Gauss-Newton method to estimate the most probable
model. Specifically, we need sensitivity coefficients at all wells where we measure

wellbore pressure and use this pressure data as conditioning dgig. (t)f denotes the
pressure response at a well for a given reservoir description, then the relevant sensitivity
coefficients at any timet, are dp, (1)/0@ mn, Iu (1)/FKyimns Iwr (1)/ Ky i mns
Oyt (1)/ Ky mn for all (, m, n) and dp,(t)/ds.. The first three expressions for
sensitivity coefficients give a measure of how strongly a change in a rock property in the
gridblock centered atx( v,, z, Wil affect the wellbore pressure at timeand the last

expression gives a measure of how much the wellbore pressure will change due to a
change in one of the well's “layer" skin factors.

3.3.1Extension of Carter et al.Method for Sensitivity Coefficients

3.3.1.1Leibnitz rule and Green’s theorem
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TheLeibnitz rule can be stated as follows:

if f(x,y) and I (0,);( Y) are continuous o[a(x), b(x)] , then
20 oyydy= | b9 _ ¢ day "' (x.9), 3.26
o..an;) (x, y)dy= f(x K3~~~ F(x.a00)~ a& 5 0y (3.26)

Green’s theorem (divergence theorem) can be stated as follows:

letf be a vector field defined on domain D with boundary given by S, then

[[[ctdxdydz= ([ fOnds (3.27)
D S

wheren is the unit vector outward normal to S.

3.3.1.2 Generalized Reciprocity Principle
For completeness, we outline the Carter et al. derivation of a generalized reciproc-
ity principle.

Consider a problem

X,
%D[ﬁk]mpdo(x,s)— sz%(x,s), onR, (3.28a)
pdo(X, s=0)=0, (3.28b)
Opg, (X, 90n=0, on IR, (3.28¢)

where R is the domain of the proble@R denotes the domain boundarpy is the

pressure drop solutionX = (X, y, 20 R ands represents the time variable.

Consider another problem
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X,
%D[ﬂk]Dpdl(X, u)- szQl(X, u), onR, (3.29a)
pdl( X,u=0)=0, (3.29b)
Opg, (X, =0, on dR, (3.29¢)

where py is the pressure drop solution for this problem andepresents the time

variable. Making the change of variahle= t—s, we havepy (X, u)= p, ( X t- 9 and

P, _ Po 05 _ Py

F YRS - Vil = (3.29d)
Then, Eq. 3.29a-c becomes
&D[ﬂk]Dpd (X, t— 9+ VMle(X,t— 9, (3.30a)
H ' au
Pg, (X, t= 9-s0=0, (3.30b)
Opg, (X, t- 90n=0. (3.30c)
Multiply Eq. 3.28a bypg (X, t—s)and (3.30a) bypy (X, 9 to obtain
[ ) ) Py, (X, 9
y Po, (X, t=9OMRO R, (X §= B Xt pV—o (3.31)
=Py, (X, 1=9Q( X 39,
[ 3Py (X, 1= 9
P (X IDMRO R (X & 3+ R XV (3.32)

= Pg, (X, 9Q( X = 9.

Subtracting Eq. 3.31 from Eq. 3.32 and integrating over time and space, we have
t
Hﬂ(pdo(X,S)Q(Xt— 3- B( Xt PQ X)b dsdX , 8 ,S  (3.33)
R 0

where



Sﬁ%j{j{[pdo(x,s)mwﬂmlww 3- p( Xt B K g X)]s dsdX

:%Hfdsf[ ry (% 900 R0 g ( Xt 3 p( X+ )W JK P XJs dX (3.39)

dpd ( ) dpd (X, S)D
S, = ORy, ( X 9 v1—+ Pg, (X, t= 9 V————rdisdX. (3.35)
1 I Pt
We can show that
t
g, (X, 9
!pdl(x,t 9o s
e ! Ipg, (X, 1= 9
= g, (X, t=9 R ( X 9|o‘f B,( X )sdl—d (3.36)
0
t
_ Dy, (X, t-9)
=0 ! Py (X, 9 ——ds
Using Eq. 3.36 in Eq. 3.35 gives, = 0.
We have the following vector calculus identity:
bO{allc)=0U{ablg— al ¢l b (3.36a)

Using Eqg. 3.36a in Eq. 3.34, we obtain

Sl:%-!ds-fg[ﬂfﬁ[@m)(x 0 R( Xt B[ K p( X4)8 @ Xs
-0kl py (X, t= 300, ( X §)-[ k0 ( X ¥ p( X+ )b dx
:ngs-[gﬂtp[k] R(X% 30 (Xt 5[ ko X+ )8 ,X)]s dX  (3.37)

Applying Green’s Theorem (Eq. 3.27), Eqg. 3.37 becomes

Sr—jdsﬂ[[l@ra(x&m B( Xt ¥Rl kgl X4)5 f 5] ad ke.38)
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Applying boundary conditions (3.28c) and (3.30c) in Eg. 3.38, we ob&in 0.

Recalling that we also hav®, =0, Eq. 3.33 becomes

t
[[[J(Pe(X,9QUX = 3= B( X t » & X)p dsdx0, (3.39)
R 0
or
t t
[ Pa(X:9QUX t= g dsc [[[[ p( X+ )52 X)sdsdX  (3.40)
R 0 R 0
Eq. 3.40 is the generalized reciprocity theorem.
3.3.1.3Sensitivity to Permeability Field

The fluid flow in the reservoir is described by the following IBVP (initial boundary

value problem)

1 _yP_

. Ok]Op V3=Q  OonR, (3.41a)
Pls=0 = Pi (3.41b)
Oph=0, onoR, (3.41c¢)

where p= p(x Y, Z 9§ is the pressure ak,(y, 2 and times, p; is the initial reservoir
pressure and Q includes all well sources and sinks term in the reservoir.
Let py = p;— p be the pressure drop solution, then the above problem can be

written as

G _y P __
. Ofk]Op, -V 5 = ~Q ONR, (3.42a)

Pals0 =0, (3.42b)
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Opg =0, onoJR. (3.42¢)

Consider the same problem with a small perturbation in the permeability field

G Py

=100k +ok]Op, - V—=-Q, R, 4
 Olker ooy - v, 0=-Q,  on (3.432)
Pdls0=0, (3.43b)
Opg =0, onoJR, (3.43c)
where
[k, O
k=g &, DO (3.44a)
5 ok, 8

represents a small perturbation of the permeability tefidor

[k, 0
K=g &k o (3.44b)
i k,H

Py and Q, respectively, represent the resulting pressure drop solution and distribution

of sources and sinks due to the small perturbation in the permeability field. Note that even
through the total flow rate at each well does not change when the pditynéeld is
perturbed, the vertical distribution of fluxes along the well may change.
The total pressure differential due to the perturbation is given by
dpg = Py~ Py- (3.44)
We expand Eq. 3.43a as

C J—
= oddon, +*ofadop, -v e =-Q. (3.49)

Subtracting 3.42a from Eq. 3.45 and using Eq. 3.44, we obtain
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%D[ﬁk]mdpd —Vdg—:dz—%ﬂtﬁék]ﬂﬁd -(0-0, (3.46a)
dpgls0 =0, (3.46b)
Odpy (h=0, onoJR. (3.46¢)
Define a functional F by
F(K)=[[f Gn(x % 2 dp( x y z) dxdydz (3.47)
Tn

where T, is a subregion of the reservoif,, OR, and defineG, on R so that

G,(x,v¥,2=0, for (x, y, 2) not contained irT,, and J]]'Gn(x, y, Z) dxdydz1.0. For our
Tn

problem, it is convenient to I€f, be any gridblock even through we are now considering
the continuous problem. Eq. 3.47 actually gives an average valpg(©f y, z f) onT,.
If we let T, be the gridblock centered at x(y;,%, )and choose
Gh(X ¥,2=0(x x)o( y y»(z 2, then F(k)=dp,(X%, ¥, %, ). Carter et al
actually work in terms of the Frechet derivative and thus need to define this functional. In
our work, we will derive formulas for sensitivity coefficients using basic calculus
principles.

Consider another pressure drop problem represented by

p

%D[ﬂk]ngd —Vd—gdz—H(t)Gn(x, y,2), onR, (3.48a)
dPnals0=0, (3.48b)

Oppg =0, ONJR, (3.48¢)
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where H(t) is the Heaviside function

H(t) = %L (>0, (3.49)

Note if G,(x y,2=0(x X)0( - y)o( z @, then the sink term for this problem

corresponds to the removal of 1 bbl/day of fluid from gridbldgkIf H(t) is replaced by
o(t), this would be a Green'’s function problem.

Applying the generalized reciprocity theorem Eqg. 3.40 to problems Eq. 3.46 and

Eq. 3.48, we obtain
-G, (x Y, 2 H(t= 9 dp( ) dsdxdyd
I{I{ X Y2 p( x y z) dsdxdydz
-4 tm K|OBy (X Vi 2 9 g + ) dsdxdyd
LJ{I{@]DMWZ Ra( XY 7 sdxdydz
- QX ¥,z 9- Q x ( Xy,zt )s dsdxdyd (3.50)
J:!{]'_!)'( XY 4 xyz})ng X,y,zt )s dsdxdydz

Sinces< t, in the first integral,H(t — s) = 1. Differentiating Eq. 3.50 with respect to time

using Leibnitz rule (Eq. 3.26) gives

G,(x Y, 2 dp( I dxdyd
J:!{]' X Y, 2dp( x y z} dxdydz

O 9
=7Iggmﬂ5klﬂﬁd(x %2 95 Pa(X.¥,2 t 9 ds
+0[K]Ops (X %29 pe( X y 2+t )st;t] dxdydz

O 9
+_[gg(Q(X, Y. z29- @xyz })E Py (X,Y,2,t= s)ds 351
+(6(X, Y.29- @xy Z)Sr{a( Xy, z-t )g_.t] dxdydz
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But, phg(X ¥,z t= 9l<= Ra( X Yy P)=0 andG,(x y,2=0 for X, y, 2 notinT,, so

Eg. 3.51 reduces to

[[JGn(x . 2dn(x y 2} dxdydz
Tn
t
=[PP (x v, 2 s)% Pa (X, ¥, 2, t- 9 dsdxdydz
R 0
t
A 0
+[£I_£(Q(x, z29- Axyz })E P.g (X,Y,Z,t- ) dsdxdydz (3.52)
t
Adding and subtracting termi—lITInI-!D fok]Opy (% v, z s)% Pna (X, Y, Z t= 9 dsdxdydz

to the right-hand side of Eq. 3.52. We have

[[JGatx v 2dR(xy 2} dxdydz
Tn
= I rteda(pax vz 9= B x v 2 )}% Doy (X,Y,2,t= §) dsdxdydz
R O
- tmﬁ&]ﬂ (% ¥z s)i (X,,2 t- 9 dsdxdydz
i J]R]--!)- pd Y ot pnd Y, Z, Yy
- J
+I{I{(Q(X’ %29 @ XY 2} Poq (x,Y,2,t 9 dsdxdydz (3.53)

As || - 0, (Py = py)— O, i.e. |pg — pg| =O(I6K]), Thus, following Carter et al., by

ignoring the second order perturbations, Eqg. 3.53 can be written as

Gn(% Yy, 2 dp( } dxdyd
_[Tfn_[ X, Y,Z2)dp( X y 7} axayaz

t
[ 0 0
- FJ-.L]-.!;D [Bék]EDpd (x vz S)E Png (X, Y, 21 S)% dsdxdydz

[[[[@x %2 9= Axy 2} P yzt- 9dschdydz  (353a)
R 0
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0
Using the vector identity, Eq. 3.36a, with= —- pr(X ¥, 2 t- 9, a= [6k] and c= py,

we can rewrite Eq. 3.53a as

Gh(% Y, 2 dp( I dxdyd
J:Tln]' X, Y,2dp( x y z} dxdydz

[t
=%gﬂ}mﬁ5k]§%pnd(x, Yzt=90R(xy z% dsdxdydz
R
A% pra(x v 2 = S0 R ( x y 7 5 dsdxafaz
0 R
+IIII(6(X’ V,Z29- A xyz }}% Phg (X,Y,2,t= s)dsdxdydz (3.53b)
0 R

Applying Green’s Theorem (Eq. 3.27) to the first term on the right-hand side of Eq.

3.53b yields
17} O
[[fOH80% pu(x vzt 90 R x v 2 5 ey
R

0 [
:H@&]E Pra(X Y2t 90 R( x y z BT ndr (3.54)
R
= 0,
where the last equality follows from the boundary condition, Eq. 3.42c. Thus, Eq. 3.53b

reduces to

ITHGn(x, Y, 2 dp( x y 7 } dxdydz
:—%-:[Igﬁd(]ﬂg Pra(X ¥, Z t= s)@ﬂ]] R( x y z » dsdxdydz
+H{I(6(X’ $:29- Axy7? 3)% Png (X,Y,Z,t= s) dsdxdydz

=-%MI§&]D§ Pra( %2 t= T (% y 2 » dsceaydz
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t
7]
+ dQ(X ¥, Z 9— Pna (X, ¥, Z t= 9 dsdxdydz (3.55)
Qs 52 35
where we have usedQ(x, v,z 3= A xy zp O Xx.y,2)s

If we interpretT, as gridblock h" centered atX; y; z )pnd divide our reservoir

into gridblocksT,,,,m=12,...,M (M is the total number of gridblocks in reservoir), set
G, equals to the delta function centered at the gridblock, and expand the differential p in
terms of the permeability differentials, Eq. 3.55 becomes

dpd(T t)=

__ZJ‘J‘J'J‘[&]D_pnd(x y,zt- 90 R( x y z » dsdxdydz

EBQ(X ¥.29 5 R(X,y,2 9 R (X,y,z,9) =
J]]-J-Z D dkxT xT + dky,Tm 5ky,Tm + dkz,Tm &Z,ng

% Prg(X, Y, z t— 9 dsdxdydz

.D

M t
7211@@:&%%&& 12 5Pz
m=L 0

0

a0 0 B
2Tn Gy g Pr(% ¥ 21 S Pa(X, Y, 2 sgdsdxdydz

(xyZ.S) Q(X,Y,29 Q((x,y,zs), U
+ZH” l5 o A A

+K

(3.55a)

% Prg(X Y, z t= 9 dsdxdydz

By definition, if we discretize the reservoir into gridblocks, the total differentigbpfs

given by

dpy =

SOdy o, o o,
X, T

[l
&, 0 (3.55h)
m=1 X, Tm d(y,Tm o B
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Comparing Eg. 3.55a with 3.55b, we see that

—mga L y ﬂ” o..x— Pra(X ¥, 2 t= s)% pa(X, .z 9 dsdxdydz
Iﬂ I (Revzso 5t Pa(X% Y, 2 = 9 dsdxdydz (3.56a)

| ;gg 32 92 3oy

Yilm

ﬂHdQ(X %299 S Pra(x ¥ 2. t= 9 dsdxdydz (3.56b)

—mgéT:’t) y H”EE Pra(X, ¥ 2 t- s) Py (X, .2, § dsdxdydz
i r— dQ(df 1299 (6 v 7t § dsixdydz (3.560)

Kz, T

for m=12,...,M, whereM is the total number of gridblocks in the reservoir.
Let us examine the second term in Egs. 3.56a-3.56¢. We can see the second term

is related to the flow rate change due to the permeability perturbation. We define
t
R(x Y, z9 9
I(T,, = — , Y, z t= 9 dsdxd 3.57
(Tn,ax,) jg! oo, ot Pra(X ¥, Z t= 9 dsdxdydz (3.57)

where a representsk,, k, or k,. As we presented at beginning of this subsection, Q

contains the all source/sink terms used in the actual problem, i.e.,

Q(x, y12.5):ZZA‘q X Y012, B( % iva()é( Y ,-y)é( _lez)- (3.57a)

Using Eg. 3.57a in Eq. 3.57, we obtain



84

)= [ 33 50X, 3,07, B0 K0y 330 2 12)
N m

0
XE Pha(X Y, z t— 9 dsdxdydz

IZZ A%, ¥i,» %, 5) pnd(x Y, 4, = 9ds (3.58)

0

We can evaluate this flow change related té,, a+ ), in different cases.

Two-dimensional case

In a two-dimensional reservoirs, the flow rate at each well is fixed and there is no

. . 7
any change in flow rate due to parameter perturbation, Wq(xiw, ij,sz)=0.
Tm

Thus, I(T,,ay ) =0and Eqgs 3.56a -3.56¢ reduce to following equations:

Pa(Tnt) _ Gy e d 0 9

dk.r Iﬂ!oy 5; Pra(X %, 2 1= 9Py (XY, 2 9 dsdxdydz (3.592)
Pa(Tnt) _ Cicprcd 0 9

dk,, HLH! oy 31 Pra(% % 2t 95 pq(x .29 dsdxdydz (3.50h)

@géTn’t) U H”EE Pna(X ¥, Z t= 5) P4(X, Y,z 9 dsdxdydz (3.59c)
Z,Tm

Three-dimensional case

For three dimensional reservoirs, if there is sufficient vertical communicaition (

J .
is large enough), so th%t? Pna(Xi, s ¥j,+ %, t= 9 does not vary with depth, then



0 0
Epnd(xiw’ Yi,» 4, Szﬁpnd %, Yj, %59,
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(3.60a)

for I, =1L11+1..1 2, wherez, denotes an arbitrarily fixed datum. (Recall timgy is the

solution to a single well problem).

Then, Eq. 3.58 can be written as

t
d J .
I(Thar )= ) o Pra(Xy, Y, &0 =9 4x, Y.z pds
o w dt W daT

m

t P 5 A
Igapnd(xm'ij%t— So"aT Z 4 x, Y,z pds

mlw

~+ O

7} 7}
IZEpnd(XiW’ijJwt_ SdaTm qx, yXs

w

1
O o

(3.60D)

Note in Eq. 3.60bq(x, .y, ) is the flow rate of wellw and is fixed, so

dar

communication, the sensitivity coefficient to permeability field can be computed from Eqgs.

3.56a-3.56¢.

Layered reservoir case

In a layered reservoir case, with no communication between layers, we expect the correction

a(x, . Y;,)=0. Thus, for a three-dimensional reservoir with good vertical

terms, I(T,,a+ ), to be more important. However, if the reservoir properties of different

layers are quite close, then we may still h&a(E,,a; )=0, so Egs. 3.56a-3.56¢ apply.

If the reservoir properties vary widely from layer to layer with no vertical commu-

nication between layers within the reservoir, the pressure in different layers will be quite
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different. In this case, if there exists an observation well, then there will be a strong cross

flow through the wellbore at observation well. Ignoritgl,,ay ), in this case, wil

underestimate the sensitivity coefficients. However, we have no easy way to estimate this
term other than using the direct method to compute the sensitivity of layer flow rates to

the permeability field. However, computations indicate that ignoring the tE(rT’ﬁn,aTm)

when estimating sensitivity coefficients only has a significant effect when computing the
sensitivity of an observation well pressure to the permeability in a gridblock penetrated by
an active well. In this case, the active well rates, and hence the observation well rates, are

quite sensitive to the permeabilities in active well gridblocks.

3.3.1.4 Sensitivity to Porosity Field
Similar to the last subsection, we can derive the sensitivity coefficient of gridblock
pressure with respective to porosity.

We consider the same problem described in Eq. (3.42) , i. e.,

%D[ﬁk]mpd —v%:—q on R, (3.61a)

Pals0=0, (3.61b)

Opg (=0, ondR. (3.61c)
In Eq. 3.61a, V is defined as:ﬁ.
5615

Consider the related problem with a small perturbatiok' gme.,
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. D[ﬁk]mpd (V+dV) f" =-Q, on R, (3.62a)
Pals0=0, (3.62b)
Opy (=0, ondR. (3.62¢)

Here, p; and Q, respectively, represent the resulting pressure drop solution and
distribution of sources and sinks due to a small perturbativn in
The total pressure differential due to the perturbation is given by
dpg = Do~ Pu- (3.63)
We rewrite Eg. 3.62a as

%D[ﬂk]ﬂpd V@:—va%. (3.64)

Subtracting Eq. 3.61a from Eq. 3.64 and use Eq. 3.63, we have

adpy ddpd

G _ _
. Ofk]Odp, - V 3 = dv -(Q-0), (3.65a)
dpglso =0, (3.65h)
Odpy (h=0, onoJR. (3.65c)
Define a functional F by
F(@)=[[[Cn(x ¥, 2dR( % y z} dxdydz (3.66)
i

where T, is a subregion of reservoif,, R, and defineG, onR so thatG,(x, y, 2=0,

for (x, y, 2 not contained irT,, and IHGn(x, y, 2) dxdydz 1.0. For our problem, we let
T,

T, represent one of the gridblocks. Eg. 3.66 may be thought of giving an average value of
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Pa(X Y,z Y onT,. If weletT, be the gridblock centered ak; (y;, %, ahd choose

Gh(xy,9=0(x x)o( y- y)o( z 2, thenF(p)=dpy(X., ¥, %, 9.
Consider the problem

ap

%D[ﬁk]Dpnd—Vd—;dz—H(t)Gn(x, y,2), onR, (3.67a)
Pnals0 =0, (3.67b)
Op,g =0, onodR, (3.67c)

where H(t) is the Heaviside function

H(t)=[0’t<q (3.68)
4, t>0

Note if G,(x y,2=0(x X)0( y- y)o( z @, then the sink term for this problem

represents the removal of 1 bbl/day of fluid froip. If H(t) is replaced byd(t), this

would be a Green’s function problem.
Applying the generalized reciprocity theorem (Eg. 3.40) to problems (3.65) and
(3.67) gives
t
[[JJ~Gn(x v, 2 Ht= 9 dp( x y 2 dsdxdydz
R 0
s

- J]]'j'depnd(x, y, 7 t- § dsdxdydz
R 0

_.U.U(G(X’ v 20- QAxyzY R( xyzt)s dsdxdydz
R 0

. ﬂ]'j'dVand(x, y, 7 t- § dsdxdydz
R 0
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“[ffJdAx ¥z 9 pa( x y 2t ) dsdxdydz (3.69)
R 0

where we have usedQ(x, v,z 3= A xy zB O Xx.y,2)s
Since s< tin the first integral,H(t — s) =1. Differentiating Eq. 3.69 with respect to time

using Leibnitz rule gives

_[[[Gn(x, Y, 2 dp( x y z} dxdydz

ﬂ”[olvd'ﬁd(X REILp (x vzt 9ds

My (X Y. 29
s

+J]]'J-[dQ(X, Y, Q% Py (X, Y,2,t= 9ds
R 0

+dv Pra(X ¥, 2 t= 9ls | dxdydz

(3.70)
+dQ(x ¥z 9 p( Xy z+ W] dxdydz

But, phg(X ¥,z t= 9ls<= Rag( Xy P)=0 andG,(x y,2=0 for (x, y, z) not inT,,.

Thus, Eq. 3.70 reduces to

_[UGn(X, Y, 2 dp( x y 7} dxdydz

dev PuVEID 3.zt § dsdvaydz

os

+ Ig ng(x, Vi Z QE Pra (X, ¥, 2, t= 9 dsdxdydz (3.71)

pe(X Y, 299

Adding and subtracting termﬂ I I dv =

Pnd(X y, z t— 9 dsdxdydzo the

right-hand side of Eq. 3.71, we obtain
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jﬂGn(x, y,2dp( % y z} dxdydz

Hﬂdv (Pa(x v.29- R(xy Z)} Po (.Y, 2,t- 9) dsdxdydz
dev 2 (3.2 92 Prg(x,y,2.1- 9 dddydz

+J]R]-_!)-dQ(X, Y, 2 QE P (X, Y,z t= 9 dsdxdydz (3.72)

As |[dV| - 0, (‘pd - Q,) - 0, thus following Carter et al., Eq. 3.72 can be written as

[JJGn(x v, 2dR(x y 7} dxdydz

b J J

= _II”dVFspd(X’ Y, Z, S)E Prg (X, Y, Z, t— 9 dsdxdydz
R 0

t
+I g{dQ(x, Y, Z S)% Prng (X, Y, Z, t= 9 dsdxdydz (3.73)

If we interpretT, as gridblock h" centered at X; y; %z )and divide our reservoir into

gridblocks T,,, m=12,...,M (M is the total number of gridblocks in reservoir), then with

G, equals to the delta function centered at the gridblock, Eq. 3.74 becomes

dpg (%, ¥, &, 9=— Zﬂ”é\f —pd(xyz$—pnd(xyzt— s) dsdxdydz

m=1 Tm

I I Z

_ZJ]]-J-&/T gspd(x Y Z 5) pnd(X Y, z, t— 9 dsdxdydz

" ot pnd(x Yy, z, t— 9 dsdxdydz

+;Ig!d\/ Q(x ¥,z 9 VY pnd(x Yy, z,t— 9 dsdxdydz (3.75a)

By definition, if the region is discretized into m gridblocks, the differemtlis given by
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Z 0'0" Ny (3.75b)

Comparing Eg. 3.75a with 3.75b, we obtain

dpy (T, ©)
S\/—Tm ﬂ”a Pa(X ¥, 2 3 - Pra (X, ¥,2,t= 9 dsdxdydz
‘9
At = 7
+J]R]--!)- o.,va Q(x Y,z So"'[ Pnd (x,y,2 9 dsdxdydz (3.76)
. @ Cy
V —
Since T, = 5615

g (To, 1) _ 9ps (T, § MV,

d@' WTm d(q.m
5615H”aspd( Y4 9 pnd(x Y,z =9
+J'-g-!)'d—¢er(x, Y, Z S)Epnd (X, Y,z t— 9 dsdxdydz (3.77)

Ignoring the second term on right-hand side of Eq. 3.77 gives

o =gl 35Pos v 2 S Protry. 2 S 79
m ’ Tmn O

Computations indicate that ignoring this term of Eq. 3.77 involving the flow rates does not

have a significant effect on the accuracy of the sensitivity coefficients related to the
perosity field. This result is not surprising since changing the porosity at one gridblock

should not have a significant effect on flow rates.

3.3.2 Numerical Calculation of Sensitivity Coefficients
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Egs. 3.59a-3.59c and Eq. 3.78 give the equations for sensitivity coefficient calcu-

lations. In this section, we will discuss how to implement these results numerically.

If T, represents the gridblock centered st ¥, ,z, , uging a midpoint integra-

tion rule®® to perform they andz integration, then Eq. 3.59a becomes

Mg (X, Y &, k)
dkx(xliym1zn) 3.79
——A AZ X nXHMEWpd(X ym1zn S 0 dpnd(x ym1zn’tn_ gEﬂXdS ( . )
Ym II “ax ot,-s O

X-y2
for all (I, m, n) at any timet,. The integrals in Eq. 3.79 are evaluated by a standard
composite trapezoidal ruté.

In applying the trapezoidal rule to perform the x-integration in Eq. 3.79, we need
to evaluate the derivativedd, (X, 2, Yms Zy» 0/ x and dpy (X 4,5, Yims Zy» £) /9 xas well
as similar spatial derivatives qd,q, where the superscripts - and +, respectively, denote

derivatives from the left and the right. In evaluating such derivatives, one must recognize
that for a heterogeneous permeability field, fluxes are continuous across gridblock
interfaces, but pressure derivatives are not. In following subsectionjlivaiseuss how

to accurately compute spatial derivatives.

3.3.2.1 Spatial Derivatives
The following figure shows two adjacent gridblocks in the x direction, centered at

X; and X, respectively. Here, the x-direction permeabilities of these two gridblock are
simply denoted byk; and k;,;, gridsizes areAx; and Ax;,,; respectively. Since we are

considering only the x-derivative, we suppress any reference yozlamdt variable.



AX; AXiq
X Xiy1
ki ki +1

Py (Xisy2) _ Py (Xis1) — pd()ﬁ).

Our simulator incorporates approximatioty;
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But

Mdoes not make sense, i.e., the x-derivative is discontinuous gt unless

oX

k; = k.,,. However, one sided derivative exists, e.g., the derivative from the Igft,at

is well defined and can be approximated by

My (Xisy2) _ Pa,i+172 = Pa,i
ox Ax 12

At this point, py .y, is unknown. However continuity of fluxes gives

Kk ét)d(X;-HZ) =k ét)d(X:FHZ)
i 0")( N+ 0")( !
or
Pairw2 " Pai _ Pajsa T Pajsare
' AX 12 A, 12
Rearranging Eq. 3.82, we have
0 Ok, N ko O ki D, + Ki 0
a2 i AXi+1E Ax ¢ DXy g

or

(3.80)

(3.81)

(3.82)

(3.83)
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0 Ok, 0 kI+1 p Ok, Ki,, O
i+ Di + D ~o U
d,i+1/2 — d| d,i+1 ﬁ AX|+1D (3 84)
_ ki+1A)§ Rijat KA X+1 B
kiAXi+1+ I'$+1A)|(
Using Eq. 3.84 in Eq. 3.80
Dy (Xiry2) _ Pd,isy2 = Paji
oX Ax; 12
2 |:k+A)ﬂ Q1'++KA¥+ 9 O
= g : k L= Pq,i 0 (3.85)
A O KidXay t KAX O
2K, B
kA)Q+1+ I'$+1A)$ [pd’iﬂ pd’i].
Similarly, we can show that
Obd(xityz) 2ki_,
vy LIRLISE (3.86)

Similar formulas for the other spatial derivatives needed in applying the trapezoidal rule to

evaluate specific forms of Eq. 3.79 can be easily derived.

3.3.2.2 Linear Interpolation of Pressure Data
In using Eq. 3.79 to calculate sensitivity coefficients where we perform the time
integration by the trapezoidal rule, we need to have the value of

Pra (X3 Ym» Zoy t,— 9, & {4, 4,..., I, . However, we do not compute pressures at all times
t,—s s=t,t,....1,. Here, t,t,,....t, represent the times at which we have obtained a

pressure solution from our simulation. In our application we use linear interpolation to

find these pressure values.
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t b 3 tj+1

As shown in the above figure, ff, <t, -s<t;,;, we setT =(t,-9)-t; and
T, =t = (t, =9 . Thus, by linear interpolation, we have

Pra(X ¥, Z24)* T+ Ra( Xy Zf)™ T
T+T, '

Pra(X ¥, 2 §,— 9= (3.87)

3.3.2.3 Discrete Form of Sensitivity Coefficients
Using the trapezoidal rule to perform integration, the equation for the sensitivity

coefficients related to the x-direction permeability field (Eqg. 3.79) can be written as
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My (X ¥ % 1)
Ky
nxl+1/2
ClAymAZJ' J‘ |:Wpd(x ym Zn S d d)nd(x ym gl:deX
by, % o(t, —s) [
clA At ” a (% e 2y 9 5 0 g% Yo Zo t= I,
Y32 I ID “ox o”(tn—s) Eds X
X2 P=lt,
X+1/2 n -t
:—&AymAZn J- Z( : P—l)
H X_y2 P71 2
[ﬁpd(x Ymr Zn) tp—l) 0 d)nd(x YmZ tpl)
d Ox Ix a(t, —s)
4 FPa (% Y 200 ) 0 P (X, Y Zoy L~ t )00
X ox at, - 9) d
C (tp —tpq)

=-—NAx Ay, A

EI:ﬁpd(XI—ZIJZ! Ym» 40 tp—l)idpnd(xl—]l 2 Y Zns U~ tpl)

o ox ot —9)
+ dpd(xl—:ljz’ Yms tp)i @nd(xkﬂz’ Y Zno Uy tp)g (3.88a)
o ox ot —s) .
[ﬁpd(XH:IJZ Yo Zns tm) 0 nd(Xig2: Y Zns thi= 1)
. o ox at, —s)
+dpd(X|+1/2, ym1Zn’tp)idpnd(xh:llz’ym’zn’tn_ tp)ljD
X ox at, - ) H

where the spatial derivative gi; and p,4 can be calculated by Eq. 3.86. Agajy is
the gridblock pressure drop generated numerically by our simulator, whjles the
pressure response by using unit source at the griddipatentered atx y; %z .)And
Pra (X5 Ym» Zos 1= t), P=12,..., nis calculated using Eq. 3.87.
According to the convolution rule, the sensitivity coefficients related to the x-

direction permeability field (Eq. 3.79) can also be written as
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Mg (X, Y & h)
K,
¢ (xy 209 0 WX Yzt 90 D
——A A nd m? “n’ d m “ne
Ym Z! I B X at,-s X
X-y2

The integration formula Eqg. 3.88b can be obtained by simply interchapgiramnd p,,4 in
Eq. 3.88a. In our application, we averaged the values obtained from Eq. 3.88a and 3.88b
and found the average value is more accurate than values from either Eq. 3.88a or Eq.
3.88h.

To compute the sensitivity of gridblock pressure with respect to a gridblock po-

rosity, we can write Eq. 3.78 as

Mg (X, Y1 & h)
aqq,m,n
__& apd( s Yms % sdpnd(xl Yms Znat 3
=™ AymAZ“I Js o,-s o
__& apd(xl Ym1 % sapnd(xl ymizn!t 3
= Ax Ay, Az, thf s =9 dsds
G ~tpq)
= -—=Ax Ay A X
|y zan:l 5
I:apd(xl Ymr Zns tp—l)apnd()(l1ymiznat al)
- Is Itn =9) (3.89a)
+ apd (XI1 Ymr Zns tp)(?pnd(xh Ym Zn th— 1:p)D
ds at, - 9) g

Again using the convolution rule, the sensitivity coefficient of Eq. 3.78 can also be written

as
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Mg (X, Y &, b))
dqq,m,n
__& apnd( b Ymi Zns sapd(xl Ym Z 3
T B .[ Js at, —s) ds
__& apnd(xhymizn sapd(xl ymiznat 9
= Ax Ay, Az, thj' e ot -9 ds
~t,,)
= _%AXIAymAZnZTX
[PPng (X1+ Yms Zns tpl)apd(xh Y Zny Uy tpl) (3.89b)
d ds at, -9
+ apnd(xlv Ymr Zns tp) apd(xli Ym Zny th~ tp)D
ds at, -9) H

We use the average value of Eq. 3.89a and Eq. 3.89b as the sensitivity coefficient related
to the porosity field.
Note Egs. 3.88a, 3.88b, 3.89a and 3.89b require approximations for time

derivatives. To show how these approximation are done, we consider Eq. 3.894,,Since

corresponds to a time at which pressure is measured, we simply use the approximation

ét)nd(xli ym1 Zn! t )_
ds -

1

[t
x%p (pnd(X| Ymr Zos )= Pra( %5 Y Zo tpl))

ty —tp, 0
et P 2 )= P S 20 D) (3.89¢)

+
tp+1 p
which represents an average of the two one-sided derivatiugs @b find the approxi-

apd(xlv Yo Zny &~ tp)
at, —9)

mation for

, we first find the interval [tj,tj+1] such that
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t;<t,-t,<tj; and then estimatepy(x, ym, z,, t,— t,) using Eqg. 3.87. Then the

approximation for the derivative is
d)nd(xli Ymr Zno tn_ tp)
a(t, —9)
1 xl:tj+1_(tn _tp)(

(tn_tp)_tj 0
m(pd(xl’ym’zn’tj‘*l)_ nj()‘, M’]’ %’ m_ F]:))8

Pa(X Yo 2o b= )= P(% Yoo 20 §) (3890

Other time derivatives needed are approximated in a similar way.

3.3.3 Sensitivity of Wellbore Pressure to Reservoir Parameters

In previous sections, we derived the equations for sensitivity coefficients related to
gridblock pressures by a straightforward extension of the Cartef®enathod. However,
the pressure data available are the observed wellbore pressures, not gridblock pressures.
In order to condition reservoir properties to wellbore pressure, we need to have sensitivity
coefficients related to wellbore pressure. We will show that the wellbore pressure
sensitivity coefficients are related directly to the sensitivity coefficients for the gridblock
pressures, and can be calculated similar to the calculation of the sensitivity coefficients for
gridblock pressures.

As we discussed in section 3.2.3, wellbore pressure is related to gridblock pressure

by Peaceman’s equation, i.e.,
a'ik = (WD (Rik = B ). (3.90)

where
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(W|) Hzncl ZKVK(IJKK/IJK% (391)
k H u(ln[rok/rw] +Sk) E’
and
kx,i,jk DAY DZ
0.2807&x;,| I+ EATE
fo = vk . (3.92)
' 1+ K ik /Ky ik
The individual gridblock rates must sum to the total sandface flowqﬁjtej.e,
12 12
n] = ZQirjjk = Z(Wl)k( d],jk - /) (3.93)
k=11 k=11

In our applications, the total flow rate at each well is specified and maintained as a
constraint throughout the Gauss-Newton iteration process used to generate the maximum

a posteriori estimate of the rock property fields; i.e., total flow rates are not sensitive to
the rock property fields so the derivativeqﬁj with respect to any model parameter is
zero. Thus, lettingx denote any gridblock value d,k,,k, or ¢, differentiating Eq.

3.93 with respect tar , we obtain

%

o 0 12 ] e
oa =07 3a 2 WDK(Plik ~ F), (3.94)

or

dpl]k dp\?vf _
o) (3.94a)

Z(p.,k P ) 5 (WI)k Z(WI)(

Finally, we can obtain
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dpl],k 12
(Wi — "~ (Pljx = Par) 5 (W|)k
o"p J
L 200 20
Z(\Nl)k > Wi, (3.95)
k=I1 k=I1

where

(Wl)k
Edga g Z , (3.96)

is the term related to the derivatives of gridblock pressures, and

> , (3.97)
> (Wi,

k=11

B Z(p.”( p\m) (Wl)k
Tl

is the term related to the derivatives of well indices.

3.3.3.1 Term Related to Gridblock Pressure

n
Let us first conside%d%ﬁ, and takek,, i.e., a =k, ,for concentration.

Then Eq. 3.96 becomes

12
Z(\Nl)k dp'l”‘

S i,

k=11

(3.98)

+
e
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Using Eq. 3.79 in Eqg. 3.98 and noting thaf(x;, ¥j, %, £)= B~ KX Y, & ) we

have
12
dpl i K
(Wi)
0pwf El_kz I(o'hkxl,m,n
Eﬁkx I,m, nE - 12
Z(\Nl)k
K=T1
12 ]
tn x|+ﬂ2 (WD Pra (% Yms Zny th— 3%
— Ay AZJ‘J‘ Em)d(x ym Zn, 3 J J k=11 [(dxds
Ty M “oxa(t, - 2
0X|—112 (h=9 Z(W|)k %
K=T1
e 3. 0 bud i 90
X, ym Zns ndX ¥Ym Zn Un™
== A A d Cdxds,
Ym Z“,([XI ox at,-s  0O°
1-12
(3.99)
where
12
Z(Wl)k Pra(X ¥ 29
Pra(X ¥, 2 D= 1—F . (3.100)
3 W),
k=11
As we have shown in section 3.3.118, Is the solution of
Ip
%D[ﬂk]ngd vd—;d:—a(x—ma( y- ¥)d(z- z) onR, (3.101a)
Prals0=0, (3.101b)

Opng =0, oOnodR. (3.101c)



103
Multiplying Eqg. 3.101 by I Jfor k=1111+1...] 2, summing the resulting
12
equations ovek and then dividing the resulting equation @(Wl)k , it follows that

k=11

Pha(X Y, z 1) is also the solution of

k=12
. (W) o(z- %)
G o dpnd:_ v — v\ kT
OfK|Ofng = V=22 = =3(x = %)3( Y= ¥) - onR (3.102a)
u 0s
Z(\Nl)k
k=11
Pralso=0, (3.102b)
Op,g =0, ondR. (3.102c)

To obtain the solutiorp,4 corresponding to a well location at areal locatien y; , wg

(W), 9(z- %)
12
S o,

k=I1

simply need to use a sink term equal i, j,z)= in gridblock

(% Yj:%), for k=IL11+1...1 2, where gridblocks X( y; % ,k=1L11+1...] 2,
represent the gridblocks penetrated by the vertical well. Note that the integfaljoz)

over the wellbore is equal to 1.

0 gpn, O
From the above derivation, we see t@h% can be obtained from Eq. 3.99
x,I,m,n

where p,4 in the solution of the IBVP specified by Egs. 3.101a-3.101mileBly,

Do O Dopr, O Oopn, O
Eﬂ % % % respectively, can be obtained from similar
ky,l,m,n kz,l,m,n (q,m,n

equations. After these terms are computed, the sensitivity coefficients related to wellbore
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pressure can be computed from Eq. 3.95 once we have estimated the terms related to the

derivatives of well indices needed in Eq. 3.97; see next subsection.

Note if o =s wheres is a layer skin factor, then

dpuk

(W)
Eﬁ;g Z k =0 . (3.103)

Z(Wl)k

k=11

Eq. 3.103 follows from the fact that we assume infinitesimally small skin zones, so

gridblock pressures are independent of skin factors.

3.3.3.2 Term Related to well Indices
n
As we can see from Eq. 3.9%?%@ involves the sensitivity of well indices

(W1),. to reservoir parameters and skin factors. Also from Eqg. 3.91 and 3.92, we see that

the well index for a particular gridblock penetrated by the vertical well depends only on

the x and y direction permeabilities for that gridblock and the associated skin factor. So

oW1,

= .104
G 0, (3.104)

for all gridblocks. Moreover,

OQWI), _ O(WI), _ AWI), _

- =0, (3.105)
d(x,l ,m,n dky,l mn dkz lmn
for all gridblocks unlessX( v, z, 9 X Yy % and
I
OWI)ic =0, (3.105a)

o5
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if rzk.

Taking the relevant derivatives of Eq. 3.91 and 3.92, and performing considerable

algebraic manipulation, we find

W), _ CAz, < kyiik 1 5
Ky jk 2#(|n(rok /rw)+sk) Keijk (o /1y) +S
(3.106)
Q Jaixkyiixy 0 ki B
Hky,i,j,kAxiz + K,i,jkAXZ \/kx,i,j,k +\/ky,i,jk %
Similarly,
o(WI), — CAz 9 0 kx,i,j,k 3 1 y
Ky ik 2#(|n(rok/r )+5) Kyijk  InCroc /1) +s¢
(3.107)
D X|Jk\/ xukAyz lek
yIJk\/ yIJkA)q Ky lS/HkAX2 kyllk+\/kX|Jkky|Jk%
Also
J(WI - (WI
W) _ - (W), 3.108)

oS, - In(ro /1) +Sy

Using the preceding formula for the derivatives of the well index terms in Eqg. 3.97, we can

computeédp—ﬁ Summing EULﬁ and Evp—ﬁ we obtain the sensitivity coefficient

of wellbore pressure with respect to skin factors, porosity and permeability, see Eq. 3.95.

3.3.3.3 Isotropic Permeability Case
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If the permeability field is isotropickf = k, = k, = k), k controls flow in all three

(x, y and z) directions and to compufip, /o”k, we simply add the three formulas (see
Egs. 3.59a-c) fodp,,; /K, , dp,s /IK, anddp,, /K, to obtain

d)wf(x y] t) @wf(x y] t) dpwf(x y] t) dpwf(x y] t)
KX\ Y Z0) O (X, Yins A) Ky (X, Ym» A) K, (X1, Yo Zn)

(3.109)

If ky =k, =k andk, =0 ork, is fixed, thenk, is not estimated (or perturbed)

during the Gauss-Newton iterations and we use

d)wf(x y] t) @wf(x y] t) dpwf(x y] t)
K4 Yons ) (X, Vi A) Ky (X, Ym» %)

(3.110a)

If k, =k, =k and k, =ak, for some constantr, then and change ik, is di-

rectly related to the changekrand

d)wf(x y] t) @wf(x y] t) @wf(x y] t) @wf(x y] )
d((xl ym Z’]) dk (XI ym Zn) K (XI ym Zn) dk (XI ym )

(3.110b)

3.3.3.4Sensitivity to Log-permeability
In our work, we use log-permeabilities instead of permeabilities as model
parameters. Thus, we need to know the derivative of wellbore pressure with respect to

In(k). However, by the chain rule

But _ MPwr dIn(k) _ 1 AP
Kk dlnk) ok  kadln(k)’

(3.111)

SO
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dpwf _kdpwf
din(k) ok

(3.112)

p : L
Thus onceO?i)TWf has been calculate Invsz) can be obtained easily with Eq. 3.112.

3.3.4 Sensitivity of Layer Flow Rates

If we have observed (measured) layer flow rates in a multilayered reservoir, we can
also condition reservoir properties to them. To apply the Gauss-Newton method, we need
the sensitivity of each layer flow rate with respect to reservoir properties ( péityeab

porosity and skin factor).

As indicated by Eq. 3.90, the layer flow ragg;, , gridblock pressurepjx and
wellbore pressurepyy are related by following equation:
a'ik = (WD (Rik = B ) (3.113)

where WI ) are the well indices defined by Eq. 3.91. Taking the derivative with respect

to reservoir parameters, we obtain

o (W1 hik _ 9Pl -
aa = (Pl P =g, W~ (3.114)
" n
where o’l’—’ajk and 0—2{”, respectively, represent sensitivity coefficients related to

gridblock pressure and wellbore pressure.

n

T
The procedure to calculateo,',;—k is:
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1. Calculate sensitivity of gridblock pressure with respect to reservoir parameters,

P
oa

, using the Carter et al. method.

2. Calculate the sensitivity of wellbore pressure with respect to reservoir parameters,

ol

,using Eq. 3.95.
5+ Using Ed

n

3. Calculate% using Eq. 3.114.

3.4 Computational Examples

In this section, estimates of sensitivity coefficients computed from our three-
dimensional extension of the Carter et al. methade compared with those obtained by
the direct method which is based on individual parameter perturbations; see, for example,
Ref. 23. The direct method yields accurate answers withifinthe of the accuracy of
the simulator, but is extremely inefficient. Although we only present results for an
isotropic permeability casagccurate results were also obtained when the peilityefdid

was anisotropic. Both permeability sensitivity coefficierds,; (t) / Jk, ,, ,, and porosity
sensitivity coefficients,dp, (t)/ 0@ ,,,, are presented. In generating the maximum a

posteriori estimate, we actually use derivatives with respect to the log-permeabilities. A
simple application of the chain rule (Eq. 3.112) can be used to convert from péiyneab

sensitivity coefficients to log-permeability sensitivity coefficients.
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In all results, the values of the following parameters are fixgd: 10~°psi*,

u=05cp. andr, = 0.3 ft at all wells.

3.4.1 2D Homogeneous Case

We first consider a two-dimensional case where the permeability and porosity
fields are homogeneous and consider & 15 gfil. For this problem, an active well

located at gridblock (4,8) was produced at a constant rateg 0300 RB/D and an

observation well was located at gridblock (12,8).

Figs. 3.1 and 3.2, respectively, present the natural logarithm of permeability sensi-
tivity coefficients related to the active well computed with the direct method and the
Carter et al. method at= 0.03 days. Figs. 3.3 and 3.4, respectively, present a similar
comparison at = 0.25 days. We see that the results from Carter et al. method are in
excellent agreement with those obtained by the direct method. We can also see that as
time increases, the wellbore pressure becomes sensitive to permeabilities at a greater
distance from the well. However, the wellbore pressure is much more sensitive to
permeabilities very near the well than to permeabilities a few gridblocks away from the
well.

Figs. 3.5 and 3.6, respectively, present permeability sensitivity coefficients related
to the observation well pressure computed with the direct method and the Carter et al.
method at t = 0.25 days. We see the two sets of results are in excellent agreement. Fig. 3.7
shows a plot of these sensitivity coefficients at gridblocks on the line through the two
wells at four different values of time. Again, we see that the two sets of sensitivity

coefficients are in excellent agreement. Note the observation well pressure is insensitive
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-10.0 -6.7 -3.3 -0.0

Fig. 3.1 - Log sensitivity of active well pressure to a homogenous log-
permeability field at early time, direct method.

-10.0 -6.7 -3.3

Fig. 3.2 - Log sensitivity of active well pressure to a homogenous log-
permeability field at early time, Carter et al. method.
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-10.0 -6.7 -3.3

Fig. 3.3 - Log sensitivity of active well pressure to a homogenous log-
permeability field at late time, direct method.

-10.0 -6.7 -3.3 -0.0

Fig. 3.4 - Log sensitivity of active well pressure to a homogenous log-
permeability field at late time, Carter et al. method.
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-0.0030 -0.0015 0.0000 0.0015

Fig. 3.5 - Sensitivity of observation well pressure to a homogenous log-
permeability field, direct method

1 8 15

-0.0030 -0.0015 0.0000 0.0015

Fig. 3.6 - Sensitivity of observation well pressure to a homogenous log-
permeability field, Carter et al. method
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to the permeability in the gridblock containing the observation well and to the permeability

in the gridblock containing the active well.

We also see that the sensitivity coefficients are symmetric around the two wells,

i.e., for allj,
Pur__ Pur , (3.115)
d(4+i,j 0k12—i,j
fori=-3,-2,...,,0,1,2,3
and for alli
Pwi M
= , (3.116)
d(i,8+j dki,B—j

forj =1, 2, ..., 7. For this infinite acting case, this symmetry can be established either from
the approximate analytical solution of Oli¥eor using the reciprocity theorem of Carter

et al®

Once results are influenced by reservoir boundaries, the sensitivity coefficients
related to the observation well pressure will not generally be symmetric around the two

wells. However, for the case considered here, with the two wells on a line thyguayid

the two wells equidistant from the x-direction boundaries, the reciprocity theorem
of Carter et a® can be used to establish the symmetry of the

sensitivity coefficients observed in Figs. 3.5 through 3.7. Also note that between the two
wells, the sensitivity coefficients are negative. This means an increase in permeability at
one of these gridblocks will cause a decrease in the pressure at the observation well.
Physically, a higher permeability in the interwell region causes the pressure to begin

dropping sooner at the observation well, thus resulting in a lower pressure at a given time.
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This provides a physical explanation of why the sensitivity coefficients on the line segment

connecting the two wells are negative.

Beyond the observation well ¥12 ) = 8 , Yhe sensitivity coefficients are positive

indicating that an increase in permeability in one of these gridblocks will cause an increase
in the observation well pressure, or a decrease in permeability will cause a decrease in
pressure (increase in pressure drop). In the limit, decreasing permeability towards zero is

like introducing a partially sealing fault at that gridblock which will result

4.00E-3
Direct method

— i Carter et al. method
o t=0.03 day
© 0.00E+0 —
©
o
O —
2
=
£ .4.00E-3 —
[3)
wn

0 4 8 12 16

Gridblocks

Fig. 3.7 - Sensitivity of observation well pressure to a homogenous log-
permeability field, comparison of Carter et al. and direct methods.
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in an increase in the pressure drop (decrease in pressure) so again the results are physically

reasonable. Similarly, the sensitivity coefficients a8,i =1,2,3 are positive. Decreasing
permeability at one of these gridblocks results in a greater pressure drop at the active well
which results in a greater pressure drop (lower pressure) at the observation well. Also
note that the sensitivity coefficients related to permeability at the two well gridblocks are
approximately zero. If the size of the gridblocks approaches zero, the sensitivity
coefficients should converge to zero. Physically, as the area of the well grids approach the
size of the wellbore radii, these gridblock permeabilities act like a skin zone, and skin
factors do not affect the observation well pressure for two-dimensional (x-y) problems;
three-dimensional problems are different. At an observation well, the net flow into the well
is zero so the permeability at the well saedf has no influence on the pressure.

For the same problem, Figs. 3.8 and 3.9, respectively, present the sensitivity of the
observation well pressure to the porosity field obtained by the direct and Carter et al.
methods at= 0.25 days. Fig. 3.10 compares the two results along a line through the two
wells at four values of time. Again note that the two sets of results are in excellent
agreement and results are symmetric around the two wells. Note all porosity sensitivity
coefficients are positive. Increasing the porosity at any gridblock increases the fluid in the

system for pressure support and hence results in an increase in pressure.
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LINANNRL |

0.3 0.8 1.3 1.8

Fig. 3.8 - Sensitivity of observation well pressure to a homogenous porosity
field, direct method

T T

!
0.3 0.8 1.3 1.8

Fig. 3.9 - Sensitivity of observation well pressure to a homogenous porosity
field, Carter et al. method.
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6.00 _
Direct method
| O Carter et al. method
c
o
S 4.00 —
©
o
U —
2
=
@ 2.00 —
[
n
0.00

16

Gridblocks

Fig. 3.10 - Sensitivity of observation well pressure to a homogenous porosity
field, comparison of Carter et al. and direct methods.

3.4.2 3D Heterogeneous Case




118
This example pertains to a case with three gridblocks in the z-direction and a

11x 11 areal grid with an isotropic heterogeneous permeability field and a heterogeneous
porosity field. The active well is located at areal gridblock (3,6) and the observation well
at (9,6).

Figs. 3.11 and 3.12, respectively, show the sensitivity of the observation well pres-
sure to the gridblock permeabilitiestat 0.2 days computed by the direct method and our
three-dimensional extension of the Carter et al. method. Note that the two sets of results
are in excellent agreement. Figs. 3.13 and 3.14, respectively, shows a comparison of the
sensitivity of the observation well pressure to permeability and porosity at gridblocks lying
on a line through the two wells. Results are presented at four values of time and pertain
to the middle “layer.” Again the two sets of results are in excellent
agreement. Note the results of Figs. 3.12 and 3.13 exhibit no evidence of any errors due
to our neglect of the correction involving sensitivities of layer flow rates, see Egs. 3.57.
This is because there is no significant crossflow through the observation wells or in

gridblocks containing the wells.
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-0.002 0.000 0.002

Fig. 3.11 - Sensitivity of observation well pressure to heterogeneous log-
permeability field , direct method.

-0.002 0.000 0.002

Fig. 3.12 - Sensitivity of observation well pressure to heterogeneous log-
permeability field , Carter et al. method.
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0.01

Direct method
Carter et al. method

Sensitivity coefficients

3 6 9
Gridblocks

Fig. 3.13 - Sensitivity of observation well pressure to heterogeneous log-
permeability field.

3.00
7] — Direct method
O Carter et al. method
0 2.00
[
Q
(5}
=
(¢b) -
o
(@]
2
2 q
@ 100 —
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Gridblocks

Fig. 3.14 - Sensitivity of observation well pressure to heterogeneous porosity
field .
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3.4.3 3D Case with Strong Cross-flow

Next, we consider a true commingled three-layer reservoir containing two wells.

No crossflow between layers occurs within the reservoir, kg5 0, but significant

crossflow occurs through the observation well. In simulating this systenmx a 1dreall

grid was used with one gridblock per layer in the vertical direction. The active and

observation wells, respectively, are located at areal gridblocks (6,6) and (3,6). Again the
permeability and porosity fields are heterogeneous but the prior means for log-
permeability vary from 4.0 in the top layer to 5.0 in the bottom layer. Due to the contrast
in layer permeabilities, significant crossflow occurs through the observation well.

Fig. 3.15 shows the sensitivity of the observation well pressure to the gridblock
permeabilities of the middle layer lying along a line through the two wells. Note our
extension of the Carter et al. method underestimates the sensitivity of the observation well
pressure to gridblock permeabilities at the active well. Although not shown, our three-
dimensional implementation of the Carter et al. method yields accurate estimates of the
sensitivity coefficients related to the active well pressure and accurate estimates of the
porosity sensitivity coefficients for this problem. It is important to note that when
generating the maximum a posteriori estimate, the active well sensitivity coefficients
control the resolution of the gridblock permeabilities penetrated by the active well; thus,
the fact that the sensitivity of the observation well pressure to active well gridblock
permeabilities is underestimated should not have a great effect on the maximum a

posteriori estimate obtained by the Gauss-Newton procedure.
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Fig. 3.15 - Sensitivity of observation well pressure to heterogeneous log-

permeability field (multiple layer case).



CHAPTER IV
REPARAMETERIZATION TECHNIQUES FOR

INVERSE PROBLEM

In Chapter Il, we applied the Gauss-Newton method to obtain the maximum a
posteriori estimate of the reservoir parameters. If one wishes to determine permeability
and porosity values at thousands of gridblocks for use in a reservoir simulator, then
inversion of the Hessian matrix at each iteration of the Gauss-Newton procedure becomes
computationally expensive. In this work, we present two methods to reparameterize the
reservoir model to improve the computational efficiency. The first method uses spectral
(eigenvalue/eigenvector) decomposition of the prior covariance matrix. The second
method uses a subspace method to reduce the size of the matrix problem that must be
solved at each iteration of the Gauss-Newton method. It is shown that proper implemen-
tation of the subspace method may significantly reduce the computational time required to
generate realizations of the reservoir model, i.e., the porosity and permeability fields and
well skin factors, conditioned to prior information on porosity and permeability and
multiwell pressure data.

In Ref. 20, Oliver incorporated reparameterization based on the spectral (eigen-
value-eigenvector) decomposition of the prior covariance matrix to determine two-

dimensional permeability fields conditioned to well-test pressure data and prior informa-

123
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tion. In one example considered, reparameterization based on spectral decomposition

reduced the number of parameters to be obtained by Gauss-Newton iteration from 1089 to
128 without a significant reduction in the quality of the final perntigakestimates
obtained. The spectral decomposition technique used in Ref. 20 is effectively the same as
used in Ref. 10 and also has been considered by fudtés important to recognize that

the aforementioned results of Olif®were based on the covariance function for a
Gaussian variogram with no nugget effect. As discussed later, the number of parameters to
be estimated after applying spectral decomposition depends on the rate of decay of the
eigenvalues. For the covariance functions associated with common variograms (spherical,
exponential and Gaussian), the eigenvalues decay the fastest for the Gaussian ¢8variance
and thus the reduction in the number of parameters achieved by spectral decomposition is
greatest for this covariance function. Later, we show that adding a nugget effect will
decrease the rate of decay of the eigenvalues and thus make spectral decomposition less
efficient.

Finally, we note that Olivé? considered estimating only the permeability field as-
suming the porosity field was known. We have found that when the overall prior
covariance matrix contains information for both porosity and permeability, spectral
decomposition should be applied to the prior correlation matrix in order to obtain
meaningful results.

Although reparameterization based on the spectral decomposition may significantly
reduce the number of parameters to be estimated by the Gauss-Newton procedure, the
size of the resulting Hessian matrix may still be very large. Also, we will see that in case of

large reservoir model, the spectral decomposition of the correlation matrix becomes
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computationally inefficient. In this work, we show that subspace methods can be applied

to significantly reduce the size of the matrix problem solved at each iteration. Subspace
methods have recently been applied in the geophysics litéfatule a subspace method,

at each iteration the search direction vector is expanded as a linear combination of basis
vectors for a lower dimensional subspace of the model space. The order of the matrix
problem to be solved at each iteration of the Gauss-Newton procedure is thereby reduced

to the dimension of the subspace.

4.1 Reparameterization Based on Spectral Decomposition

As shown on Chapter Ii¢,, is the covariance matrix of parameters (permeability,

porosity and skin factors). We partitiar), as

c = Cy 00O @.1)
M “Ho csH |
where
EC(,, C(,k 0
Cg = 0 4.2
B %:k(p Ck D ( )

for the case of an isotropic permeability field.

If the model is reparameterized in terms of the eigenvectocg, oforresponding
to the largest eigenvalu8$®*’ few of the eigenvectors contain porosity information,
thus, one cannot expect to obtain good representations of realizations of the porosity field.

More importantly, eigenvalues and eigenvectors of a given maffixare physically

meaningful only if all entries o€,, have the same physical dimensions or are dimension-
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less®. For the preceding reasons, we apply spectral decomposition to the prior correlation

matrix.

Let ¢;; denote the entry in théh row andjth column ofCg, and let D, be the

2M x 2M diagonal matrix withth diagonal entry equal {¢c;; , i.e.,
0 IC 0
D, = B : :2’2 . : B (4.3)
ik : . : :
=R 0 - JCwmomB

Note ¢;; is simply the variance of th8 model parameter.

Then, the correlation matrix is given by

1
-
A/ 0
0 1 0
_ _ 0 0
Cs=D'CgDy = B Cz2 Elx
0 ‘ 1 0
0 0
Jo o —— 1
O 2M,2M []
1
T O 0
Bcl,l G2 = Com T €11 1 0
0%:1 G2 v Cm 7 O 0 B
0 : o ;@ C22 0
0 il P
[foma1 Com2 0 Cow v [ 0 0 1 0
% \ C2m,2m %
B 1 Co - Com B
N vV CL1C22 \C11Com,2m [
B Co1 1 Com B
=0 V€221 VC2,2Com,om [T (4.4)
0 : : : 0
E Com 1 Com 2 1 B
E\/CZM,ZM Ci1 \/CZM,ZM Co2 B
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Eq. 4.4 shows that the porosity andk)n¢ariances have been normalized to unity.

The eigensystethof 55 can be computed by standard technitju&¥e order the
eigenvalues OEB from largest to smallest, i.e., ds=> A, 2...2 A, and lety; denote
the 2M dimensional eigenvector correspondingAp for j=12,...,2M . Throughout,
we use this ordering of eigenvalues so the fpseigenvalues, and thpth largest
eigenvalues both refer to the {e\tj J=12,....p } . LetU be the M x M matrix with
its jth column equal toy;and let A; be the M x M1 diagonal matrix with itgth
diagonal element equal td . It is well knowri” that

Cs =UAUT, (4.5)
andU is an orthogonal matrix, i.,eJU™ =U U =1,

Throughoutl denotes an identity matrix, but the sizel ehay vary from equation
to equation. We refer to Eq. 4.5 as the orthogonal decompositié@ ofthe spectral

decomposition 065 or the eigenvalue-eigenvector decompositioKEQf

Now we letp be chosen such that

p 2M

ELR (4.6)

1=1 1=1
whereD<6<1. Note Eg. 4.6 indicates thétis the fraction of the total spectrum (or
“energy”) contained in the firsp eigenvalues. Choosing and determining the corre-
sponding value ofp effectively determines the reparameterization based on spectral

decomposition. Once has been determined,and A\; respectively, are partitioned as

U=[u, Uy)- 4.7)
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And

(4.8)

Here, A\, is the diagonal matrix with the firgt eigenvalues as its diagonal elements and
the columns of the @ x p matrix U, are given by the firgd eigenvectors. If the trace

of A is small compared to the trace &f,, then Eq. 4.5 can be approximated by

[u u] Ao O%TD—U AUT=C,, (4.9)

where the last equality defin€s .

The (2M + Ng) x (2M + Ng) diagonal matriD is defined by

M, 00O
=0l 0 (4.10)
00 1

the (2M + Ng) x (p+ Ng matrix W, is defined by

W, 0O
W, = Dop 0 (4.11)
0 0

and the f + Ng) % (p + Ng) diagonal matrix\ is defined by

Py 00 (4.12)
= D .
00 Cs

Using the approximation foéB (Eq. 4.9), we have the following approximation o :

M~ Ho CsDD 0  Cs
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D, O0C,p, 00 M, OIE, 0D, 0O

B
= :| =
J 1o cg Ho o e 1F
D, OOU,A UL 00D, 00
=0 M HN O
0 Im;m o Csdl0 10
_ b, ooy, ooA, 00U oub, 0O (4.13)
“Ho 1fHo 1fHo cHo 1o 1F '
— 1
=DW,AW, D.
The reparameterized modet,, is now defined implicitly by
m= DW, m,, (4.14)
and sincen, W, = |, Eq. 4.14 implies
m, =W, D"m (4.15)
similarly, defining
I 1
mp,prior _Wp D rTi)rior . (4-16)

Note the dimension ofn, is p + Ns which will be much less than the dimension of
(2ZM +Ng) if p<<2M, i.e., if spectral decomposition significantly reduces the number
of parameters to be directly estimated. Thus, solving fof instead ofm may signifi-
cantly reduce the computer time required by the inverse procedure.
The Gauss-Newton formulation is given by Eq. 2.20. Multiplying Eqg. 2.20
byW, D™, we obtain
W, D't =y W D' my, +(1-4) W D'

_ (4.17)
~uwW DG, G (G + 6 G @) (¢ M- der & ).
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Using Egs. 4.13, 4.15 and 4.16 in 4.17 gives

I+1:/JI rrb,prior +(1—/J|)I’Té—/.l| V}Z Dl( DW/\p Vgl D éx
(Co+G(DWAW DG) (¢ M- gt & M- )

= UMy por + (A=), = A, W DG x @29
(Co+G(DWAW DG) (¢ M- gt & I ).
We define
G, =G DW,, (4.19)
SO
G, =W, DG . (4.20)
Using Egs. 4.19, 4.20, 4.15 and 4.16 in Eq. 4.18,
M™ = 1 My prior + (L= ) M = A, G X
(Co + Gy &) (o M) - dos* GO - ) o
= M, prior + (L= 1) — A, G X
(Co + G p G ) (o M)~ dis* Gyl = B
Applying similar matrix algebra used in Eq. 2.17-2.20, we can show
= _“'(Gg G Gt (4.22)

[G CE)l g(njl) Cébs)'i'/\ (rhj rpprlor )]
Throughout G, denotes the sensitivity coefficient matrix evaluatedmatvhere

m' and m}, are related by Egs. 4.14 and 4.15. Note tb#, can be computed once at

the beginning of the process and stored. The advantages of the reparameterized scheme of
Eq. 4.22 are two fold. First, the dimension of the model space has been reduced.

Secondly, the dense matr®,; of Eq. 2.17 has replaced by the inverse of the diagonal
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matrix /A . The disadvantage is that one must perform a spectral decomposition which may

be computationally expensive.

It is important to note that at each iteratiay{,m ) is obtained from the simulator
using m' as input where the conversion betwesh and m'IO Is given by Egs. 4.14 and

4.15. Thus, even though the Gauss-Newton formula is applied to the reparameterized
problem, the simulator run is in terms of the original model parameters.

Throughout, m, ., denotes the reparameterized maximum a posteriori estimate
obtained by the Gauss-Newton procedure (Eq. 4.22) mpddenotes this maximum a

posteriori estimate in terms of the original model parameters.

The a posteriori covariance matrix for the reparameterized model is given by
_ T T -1
Cup,p = A=AGL.(GruA Gl + G GoA. (4.23)
In Eq. 4.23,G,,, = G, DW,, where G,, now denotes the sensitivity coefficient matrix

evaluated atm, . If LpLTp denotes the.U decomposition o€ ,, then realizations of

m, . of the reparameterized model can be obtained from

My, =M+ Ly 2, (4.24)
whereZy is a vector of independent normal deviates. Corresponding realizations for the
original model can then be obtained via Eg. 4.14.

Some remarks on spectral decomposition are in order. For any dhesgénEq.
4.6 indicates that the numbep) (of eigenvectors used in the reparameterization will
depend on the rate of decay of the eigenvalues. A more rapid rate of decay results in a

smaller value op, i.e., a more efficient reparameterization. The rate at which eigenvalues
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decrease to zero depends on the specific covariance function or variogram used. For the

continuous problem, the eigenvalue problem represents a Fredholm integral equation with

the covariance function as its keffi@lhere the covariance function is symmetric positive
definite. Assuming that the eigenvalue’zﬁ,(n =1,2,...,00) for the continuous problem are

ordered from largest to smallest, Refs. 55 and 56 show that the rate of decay of the
eigenvalues depends on the smoothness of the kernel. The spherical and exponential

covariance functions are continuous but are not differentiable at the origin. Thus, the
results of H& indicate that/fn =0(1/ n) as n- «. The Gaussian covariance function,
however, has continuous partial derivatives everywhere which is sufficient to guarantee

that the associated eigenvalues sati&}fy: o(1/ n?). Thus, the eigenvalues associated

with the Gaussian covariance function decay much faster than the eigenvalues associated
with the spherical and exponential covariance functions and computations not shown (also
see Ababou et &%) here indicate that this is the case. However, if a nugget effect is
added to the variogram, the associated covariance function for all variogram models
becomes discontinuous at the origin and the eigenvalues asymptotically approach the value
of the nugget asn — « instead of decaying to zero. Since the covariance matrix
represents a discretized version of the covariance operator, we expect the eigenvalues of
the covariance matrix to display a behavior similar to those discussed for the continuous
problems (Ababou et ‘4l have verified that this is true for several one-dimensional
covariance models). Thus, a Gaussian variogram, as used in Ref. 20, should yield the
most efficient reparameterization, i.e., the smallest valpelwt satisfies the inequality of

Eqg. 4.6. As we wish to consider the limitations of spectral decomposition, we consider a
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spherical variogram and consequently obtain a less efficient spectral decomposition than

was obtained in Ref. 20. Moreover, we illustrate that addinggget effect seriously
reduces the efficiency of spectral decomposition as is expected based on our theoretical

discussion.

4.2 Reparameterization Based on Subspace Methods

4.2.1 Subspace Method

Here, we give a brief description of the subspace method which essentially follows
the description given in Refs. 49 through 51. Kennett and Williathsmmsider a
problem of the same form considered here, whereas, Oldenberf &idaOldenberg and

Li°* consider a constrained least squares problem.
The basic idea is to choose subspace vecabrsjz 1,2,....,r and let A be the

matrix withjth column equal to the column vectaliL. The subscripk is used to indicate

that the subspace and its basis vectors are recomputed at each iteration of the Gauss-
Newton method. The proposed change in the model estimate or search direction vector at

the ( + 1)th iteration of Newton's method is then written as
r .
+1 _ — |
om'*t = Za} g = Aa', (4.25)
171

wherea is the column vector witfth component equal ta}. Using EqQ. 4.25 in Eq. 2.15
of Chapter 2 and multiplying the resulting equation by the transpose gives

(ATH A)a' =-A0S. (4.26)



134
Note the coefficient matrix in Eq. 4.26 is ax r matrix, whereas the order ¢, is the

total number of parameters to be estimated by the Gauss-Newton procedure. Once Eq.
4.26 is solved to obtain', the correspondingm*' can be computed directly from Eq.

4.25 andm'*! is obtained from Eq. 2.16.

4.2.2 Choice of Subspace Vectors

Refs. 49-51 consider several procedures for choosing subspace vectors. If one
were to use only one subspace vector, an appropriate choice at iteratiomould be
a' =-0S. With this choice, the subspace method would be equivalent to the steepest
descent algorithm which is known to be inefficient.

Refs. 49-51 all suggest partitioning the objective function and its gradient into the
part related to the prior model and the part related to the data misfit. Thus, the objective

function§m) is written asS(nm) = f,( m+ §( M where

fm(m) = %(m_ n])rior)T C;/Il( m- rﬂior)’ (4-27)
and
fa(m) =2 (M- due)’ GH( ¢ O dhs). (4.28)

If one were to use a two-dimensional subspace, an appropriate choice would be
al=0f (M) anda®=0f,(m), but again this choice is too simple to yield a rapidly
converging algorithm. Note, however, the negative of these gradients represent the
steepest descent vectors for the two sub-objective functignsnd f,. More subspace

vectors could be added by multiplying these two gradients by the Hédsigorm two
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additional descent vectors or by further partitioningfgf as suggested in Refs. 50 and

51. We follow the later choice but also further partitigpas suggested by Kennett and

Willamsori®®. Oldenberg et afalso suggest that the gradient vectors should be precondi-

tioned by multiplying byC,, . In the two-dimensional subspace case discussed above, this

means that the two subspace vectors should actually be modifi€x, wm(M) and

CyOfy(m). The first of these vectors is actually the steepest descent vectdy, for
considered by itself relative to a norm defined in terms of the positive definite rGgfrix

Oldenberg et alalso note that preconditioning Iy, provides appropriate smoothness.

It is interesting to note that if we consider minimizing orly, Of, = Cu(m- Mhrior )

and the Hessian iﬂ(Dfm)T =Cy. Thus, the Newton's method is
om'*t=-C,0f, (), (4.29)
or
m*™ - =-Gy GH(th= M) =— M+ Bhor- (4.29a)
Som™= Myior at alll, i.e., Newton’s method converges to the minimumg,,,, in one

iteration for any initial guess. This provides further motivation for preconditioning

gradient vectors by multiplying b{,,. As shown by Oldenberg et *4). all gradient

vectors should be multiplied by the same preconditioning matrix when forming subspace

vectors.

One choice for the subspace vectors which we have found to be efficient for our

problem arises by partitioning the data misfit term well by well. Specifically, we partition

g( m) - dobs as
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Bgl(m)_ dc:)Lbs O
2 Y.
(1)~ cpy= 09 (M7 (4.30)

: U
O v O
™ (m) - diE
where d)is the vector of all observed wglpressure data used as conditioning data and

g'(m - d, is the pressure mismatch vector for wer j =12,...N,, . We also use the

same relative partitioning to partition the data covariance matrix as

[Ty, O OO
O O
O Cp, o
Co=p: - . B (4.31)
O O
g0 Con, B

where the order o€Cp; is the number of observed conditioning pressure data af.well
Finally, we partition the, transpose of the sensitivity coefficient matrix (see Chapter Ill) as
¢"=[¢. ¢, .G, ] (4.32)

where G; contains all sensitivity coefficients related to wellt can then be shown that

Ofa(m) = GTGH A M- &= G G ¢ - &)  (@39)
]=1

Thejth term in the preceding summation gives the part of the gradient related to the total
data misfit at welj. Each term in the summation is a candidate for a subspace vector;

however, we precondition them by premultiplying by, . For now, we simply record
these potential subspace vectors as
w! = Cw GjT CISjL( gd(m- dbs)' (4.34)

for ] =12,...N,.
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Following a proposal of Kennett and Wiliaméynthe gradient off(m) is

partitioned into the three parts associated with each of the three attributes; log-
permeability, porosity and well skin factors. In our application, we actually precondition

the gradient of f,, by premultiplying by C,, and then partitionc,,0of,, into parts
associated with the three attributes. (This procedure is more computationally efficient, but
is equivalent to preconditioning after partitioning the gradient by attributes if and only if
there is no correlation between attributes in the prior model.) The resulting three candidate

subspace vectors are as follows:

whwtl = [(mp ~ M, prior )40, o]T , (4.35a)

w2 =[0,(m, = M, o) 0] (4.35b)
and

whwt3 = [0, 0, (m - m Iorior)T]T . (4.35c¢)

Since the final subspace vectorsl e normalized, partitioning the model by attributes
removes the dependence on the units of the attributes.

Finally, Oldenberg et &f have noted that convergence of the method is acceler-
ated by adding a constant vector. However,caumputational experiments indicate that
the results can be further improved by partitioning a constant vector into parts corre-
sponding to each attribute. In our example problem, there is only one skin factor

estimated and it is sufficient to add only the two following constant vectors:
wh =[11--,1,0,0:--,4", (4.36a)

and
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w'*® =[0,0,--,01%--,] . (4.36b)

w** has its firstm entries equal to unity and all other entries equal to 28f6*° has
its first m entries equal to zero and all other entries equal to 1.

In essence, the span of the total setvofs represents our subspace. However, if
we were unfortunate enough to choose subspace vectors which formed a linearly
independent set, then the coefficient matrix of Eq. 4.23 would be singular and the

subspace method would fail. Thus, we actually use the Gram-Sthpidtedure to

construct an orthonormal set of subspace vectts,j=12,...N,, + 5, from thew’’s,

The resulting set ohl’s represent the subspace basis used in the following example

problem. In all cases the’ are normalized to obtain unit vectors.

4.3 Computational Example

4.3.1Two-dimensional Case

4.3.1.1 True Reservoir Model
Here, we present results for only one synthetic example, which pertains to two di-

mensional X - y) flow in a rectangular parallelepiped reservoir of thickress100 ft and
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areal dimensions of of 1,700 ft x 1,700 ft. All reservoir boundaries are no-flow bounda-

ries. Reservoir performance was simulated using a uniform spatial grid with
Ax=Ay=100ft.

Other relevant reservoir and fluid properties are as follows: system compressibility,
c, =107 psi, fluid viscosity, u=05 cp; all wellbore radii,r, =0.25 ft; and initial
pressure,p; = 6,000 psi. The permeability distribution is assumed to be log-normal with

log variance of 0.5 and log mean equal to 4.0. We further assume the permeability field is
isotropic and spatial continuity can be described by a spherical variogram model with a
range equal to 450 ft. It is assumed that porosity has a normal distribution with a mean of
0.25 and a variance of 0.0025. The correlation coefficient between log-péityneab

porosity was set equal to,, =0.7. The standard deviation for all pressure measurement

errors was assumed to be equabtp= 015 psi.

The areal gridblocks are shown in Fig. 4.1. A number within the gridblock indi-
cates a well in located in the gridblock with the actual number denoting the well number.
In the example presented, the center well (well 5) is an active well produced at a constant
rate of 500 STB/D and all other wells are observation wells. The skin factor at the active
well is equal to 4.0 with the prior mean equal to zero and the prior variance equal to 36.

The "true" distributions of log permeability and porosity, are shown respectively in
Figs. 4.2 and 4.3 and represent results from an unconditional simulation generated from
the Cholesky decomposition of the prior covariance matrix. In these figures and all
subsequent figures, the x-direction and y-direction scales are in feet measured from the

"lower left corner” of the reservoir. Note we are only determining the areal distribution
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Fig. 4.1—Areal grids, well locations and well numbers.
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of rock properties. In terms of k)( the scale in Fig. 4.2 ranges from 1.5 to 7.0, i.e., in

terms ofk, the scale ranges from 4.5 md. to 1,097 md.

In this example, we generate synthetic well test pressure data by running the simu-
lator for a total time of 1.7 days. The maximum pressure drops obtained at the observa-
tion wells ranged from 3 psi to 9 psi. In the following, we present realizations of the rock
property fields obtained by conditioning to the prior model and the pressure data at the
nine wells using the conventional method (Refs. 19, 23 and 24), spectral decomposition,
and the subspace method. In the conventional method, Eq. 2.20 in Chapter 2 was applied
since this is more computationally efficient formulation of the Gauss-Newton method if no

reparameterization is done. In all cases, ten pressure data at each well were used.

4.3.1.2 Spectral Decomposition
Fig. 4.4 and 4.5, respectively, show the maximum a posteriori estimateskjor In(

and porosity obtained using the conventional method of Refs. 19, 23, 24. The corre-
sponding estimate of the skin factor obtained was3.75 as compared to the true value

of s = 4.0. Figs. 4.6 and 4.7, respectively, show the maximum a posteriori estimate
obtained using spectral decomposition based on retaining ninety per cent of the total
spectrum in the reparameterized model, i.e., chod&smn@.90 in Eq. 4.6. The associated
estimate of the active well skin factor obtained was s = 3.78. Note that qualitatively, the
maximum a posteriori estimates obtained with spectral decomposition are almost identical

to those obtained by the conventional method, Figs. 4.4 and 4.5. The value
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Fig. 4.4—Log-permeability maximum a posteriori estimate;
conventional method.
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Fig. 4.5 - Porosity maximum a posteriori estimate; conventional method.
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Fig. 4.6 - Log-permeability maximum a posteriori estimate;
spectral decomposition.
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Fig. 4.7 - Porosity maximum a posteriori estimate; spectral decomposition.
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of the objective function (see Eq. 2.10) evaluated at the maximum a posteriori estimate

was 13.8 for the conventional method and 14.6 for the spectral decomposition method,

which further confirms the accuracy ef,,. However, the dimension of the reparameter-
ized modelm, is 211 as compared to 579 for the original madeAll runs were done on

a Pentium-133. The run time for the conventional method was 14.6 minutes as compared
to a run time of 7.4 minutes for the spectral decomposition procedure. The Gauss-
Newton procedure converged in 5 iterations for the conventional problem, whereas, in the
reparameterized case, 6 iterations were required to achieve convergence.

Figs. 4.8 and 4.9 show one realization of the log-permeability and porosity fields
obtainedfrom Egs. 4.24 and 4.14.

In a second example, which only retained 80% of the “ene@y 0.8 ), maxi-
mum a posteriori estimates almost identical to those shown in Figs. 4.6 and 4.7 were
obtained, and the corresponding estimate of the active well skin factos wa3.61.
However, for other examples, we have observed a degradation in the accuracy of the

maximum a posteriori estimate with= 0.8. With 6 = 0.8, the dimension ofn, was

98.

Because the eigenvalues of the prior covariance matrix decay fairly rapidly, one
might expect spectral decomposition to retain a much smaller percentage of the eigenval-
ues as the size of the gridblocks decrease without changing the covariance. For example,
when we ran a similar case w5 total gridblocks so that the conventional method esti-
mates 1251 parameters, the dimension of the reparameterized model was@260660

in Eg. 4.6. Unfortunately, the computer run time was 107 minutes as compared to
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Fig. 4.8 - Realization of log-permeability field;
Spectral decomposition method.
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147
67 minutes for the conventional method. The spectral decomposition alone required

over one hour of computer time. The preceding run times refer to the times required to
generated the maximum a posteriori estimates.

As mentioned previously, addition of a nugget effect significantly retards the de-
crease in dimensionality achieved by reparameterization. For example, adding nugget
effects of 0.1 to the variogram for kx@@and 0.0004 to the porosity variogram, resulted in

reparameterized modet), of dimension 501 for the 625 gridblock case when reparame-

terization was based &= 0.90.

4.3.1.3Subspace Method

Figs. 4.10 and 4.11, respectively show thk)lafd porosity maximum a posteriori
estimates obtained by applying the subspace method. The corresponding value of the
objective function was 16.6 compared to a value of 13.8,at Comparing Fig. 4.10
with Fig. 4.4 and Fig. 4.11 with Fig. 4.5, we see that the estimatg, obtained with the
subspace method is in excellent agreement with obtained with the conventional
method. The estimate of the active well skin factor obtained from the subspace method
was s = 4.04. The subspace method required 4.8 minutes of computer time as compared to
14.6 minutes for the conventional method. The subspace method required 7 Gauss-

Newton iterations to converge as to compared to 5 iterations for the conventional method.

Fig. 4.12 presents a realization of the log-permeability field obtained from the sub-

space method. This realization is virtually identical to the corresponding realization
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Fig. 4.10 - Log-permeability maximum a posteriori estimate;
subspace method.
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Fig. 4.11—Porosity maximum a posteriori estimate; subspace method.
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generated from the conventional method with the same seed and illustrates that

the subspace generates realizations of the same quality as obtained with the conventional
method.

Fig. 4.13 compares the “true” pressure data at three of the observation wells with
the pressure data predicted using the realization of Fig. 12, the associated realization of
porosity and the corresponding realization of the active well skin factor as input to the
reservoir simulator. Note the realization produces pressure data which are in good
agreement with the observed pressure data. Equally good agreement between observed
pressure data and pressure data predicted from the realization was obtained at all other
wells. Similar to Fig. 5 of Ref. 23, the variograms calculated from the realization of Fig.
12 are in reasonable agreement with the model variograms. However, it is well known that
variograms calculated from legitimate realizations of the rock property fields may differ
considerably from the model variogram; see Refs. 33 and 35 for additional discussion.

For a similar problem witl625 gridblocks, the subspace method required 30 min-
utes of computer as compared to 67 minutes for the conventional method. Thus, we see
that the subspace method offers the advantage of significant computational savings as the

size of the problem becomes large.

4.3.2Three-dimensional Case

In this subsection, we show a 3D case with same data set as we used in Chapter II.
We apply the subspace method to reduce the size of the matrix problem solved at each
iteration of the Gauss-Newton method. In selecting subspace vectors, we choose porosity

and permeability okach layer as independent subspace vectors, i.e., the vector of Eq.
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4.35a was further partitioned into three subspace vectors, and Eq. 4.35b was also

replaced by three subspace vectors. Thus, our subspace consists of 3 vectors for porosity,
3 vectors for log-permeability, 2 constant vectors (see Eg. 4.36a and 4.36b); plus 9
vectors arising from Eq. 4.34, i.e., there are 17 subspace vectors.

Fig. 4.14 (same as Fig. 2.7) presents the maximum a posteriori estimate of the log-
permeability field obtained by the conventional method by conditioning to both hard data
and pressure data, and Fig. 4.15 shows the corresponding maximum a posteriori estimate
obtained by the subspace method. Figs. 4.16 (same as Fig. 2.19) and 4.17 show corre-
sponding results for the thickness averaged permeability. Maximum a posteriori estimates
of the porosity field obtained by the conventional method and the subspace method are
shown in Figs. 4.18 (same as Fig. 2.8) and 4.19 respectively. Note results obtained from
the conventional procedure and the subspace method are in good agreement. However,
the final value of the objective function obtained by the subspace method was 6.2 as
opposed to 4.5 for the conventional method. The conventional method requires 6 Gauss-
Newton iterations to converge while the subspace method requires 8 iterations. The
subspace estimate required 9.2 minutes of computer time on a Pentium-133 as opposed to

19.5 minutes for the conventional method.
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Fig. 4.14 - Max. a posteriori estimate of log-permeability field,
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Fig. 4.15 - Max. a posteriori estimate of log-permeability field,
subspace method.
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Fig. 4.19 - Max. a posteriori estimation of porosity fields,
subspace method.



CHAPTER V

RESERVOIR PERFORMANCE PREDICTION

In previous chapters, we have presented procedures based on inverse problem
theory for generating reservoir descriptions (rock property fields) conditioned to pressure
data and geostatistical information represented by prior means for log-permeability and
porosity and variograms. Although we have shown that the incorporation of pressure data
reduces the uncertainty below the level contained in the geostatistical model based only on
static information (the prior model), our previous results did not explicitly account for
uncertainties in the prior means and the parameters defining the variogram model.

In this chapter, we investigate how pressure data can help detect errors in the prior
means. If errors in the prior means are large and are not taken into account, realizations
conditioned to pressure data do not properly characterize the uncertainty in the rock
property fields, whereas, if the uncertainty in the prior means is incorporated properly into
the model, one obtains realistic realizations of the rock property fields.

Our objective is to generate realizations of three-dimensional rock property fields
(simulator gridblock values of log-permeability and porosity) conditioned to a prior model
and well-test pressure data. The prior model is based on a multivariate Gaussian distribu-
tion with known covariance matrix and uncertain prior means. Unlike the past work

mentioned in previous chapters, we specifically account for uncertainty in the prior means

155
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by introducing a partially doubly stochastic prior model using basic ideas described in

Tjelmeland et af®. Our basic procedure for generating realizations of the rock property
fields relies on generating the joint probability density function (pdf) for the rock property
fields and the errors in the prior means conditioned to pressure data, and then sampling
this pdf to obtain realizations.

An efficient procedure for sampling the pdf is obtained by adapting ideas and
techniques presented in Oli¥2and Oliver et al’ to the problem considered here. A
procedure for generating the maximum a posteriori estimates of the rock property fields
and prior means is also presented. Specific realizations and maximum a posteriori
estimates are generated by minimizing an appropriate objective function using the Gauss-
Newton method. Sensitivity coefficients are computed using the procedure presented in
Chapter IlI.

It is important to note that our objective in generating realizations of rock property
fields is to obtain a set of realizations which represent a correct sampling of the probability
density function for the rock property fields. By making a performance prediction with
each realization, one can then evaluate the uncertainty in the predicted parameters, e.g.,
break through time or cumulative oil production. If one simply generates a set of
realizations that honor all the data, but the set does not provide a correct sampling of the
probability density function, we know of no feasible procedure for evaluating the
uncertainty in performance predictions. For simplicity, we give the mathematical details
only for the case where the skin factors are known a priori and not estimated. However, in
our actual implementation, skin factors can also be estimated.

5.1 Prior and A Posteriori Probability Density Functions
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As noted previouslym,,, is the vector containing the prior means of the model
parameters, i.e., for the case where the permeability field is isotropic and skin factors are
known,

Mior o €01
Mprior = U e L, (5.1)
gnprior,k GD

where e is the M-dimensional column vector with all entries equal to unity.
e=[11...9". (5.2)
Since In(k) and porosity are modeled as stationary random functions in the prior model,

m and m,;,, are treated as scalars, although the general formulation presented

prior @
allows each entry ofn,;, to be different.

The random vecto© represents the error in or correction g, with 6 de-

noting specific realizations o® . Introduction of © allows for the incorporation of
uncertainty in the vector of prior means, whereas, in our pastdrkve assumed no

error in Myq, -

The pdf for © is assumed to be Gaussian and is given by
_ D_i _ T ~1/ 0
Po (6) = aexp - 6-6,) G 6-6, )Q (5.3)

where 8, is the mean or expectation of the random ve@oand Cy is the associated

covariance matrix. In this work, we assume that errors in the prior means are independent

so Cq is a diagonal matrix. Although it is appropriate to chofse O, the derivation is

done for any value of,. The conditional distribution (pdf) of M give® =6 is given by
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pM\@(me) = aexpg_% (m_ rrﬂrior _G)T q;ll( mr rmior _9% (5-4)

So the joint pdf for M and® is given by
P (M =0, (MO)= R (1) B(6)

=aexp 5 (M- My =67 GH(M Mo ~0)-,6-6,) C6-6) (59
where

(5.6)

<

Il
B-Z2
IR R

For simplicity, a realizationm of M is sometimes denoted bym@ , ipstead of

(m",07)". Throughout, the superscript T is used to denote the transpose of a matrix or

vector. For convenience, we refer ta,;, as the prior mean, however, one should note

that Eqg. 5.4 indicates that the conditional expectation of M is given by
E[Me=6]= Myrior + 6 (5.7)

All measured well-test pressure data that will be used as conditioning data are in-
corporated in theN, -dimensional column vectod,,;. Note N, is the total number of
observed or measured pressure data used as conditioning data. As is siaegaedents
the corresponding vector of pressures that will be calculated for a given realinadion
the rock property fields and the relationship between the data and m is represented by

d=g(m. (5.8)

Given a specifian, Eq. 5.8 represents the operation of calculating wellbore pres-

sures by running the reservoir simulator.
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As shown previously, we assume that the random veetowhich represents

measurement errors consists of independent identically distributed random variables with
zero mean and varianag? so that the data covariance mat@y, is a diagonal matrix
with all diagonal entries equal to;. Given m, the observed pressure data may be

regarded as a realization of the random ve&or g(m) + €. Thus, the a posteriori pdf

for M conditional to the observed pressure data,, can be derived as in Tjelmeland et

al** by a standard applications of Bayes theorem and is given by

MM6)= by (Mdes) = X5 (A1 dhl GG I h)

1 1
_E(m_ Myrior _G)T Gr\_/ll( m- Mrior _9)_5(9_90)1- Gl(e—eo)g, (59)
where the first equality of Eq. 5.9 simply defines notationaisda normalizing constant.
Eq. 5.9 gives the pdf we wish to sample to generate realizatiorés (f, I\?I To

generate the most probable model (maximum a posteriori estimatd&)l fove need to
minimize the objective functio®(M) given by

O(m)%(qrr)— )’ GH 6 M- )

+%(m_ Mhrior _G)T q—/ll( M= Brior _9)+%(9_90)T gl(e_eo)'

(5.10)

At this point, the dimension & is the same as the dimension of m, i,,,.

5.2 Gauss-Newton Method for Partially Doubly Stochastic Model
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5.2.1 Iteration Precedure

It is convenient to partition the gradient as
[M,0(MO

Oo() = O g,
H1eO(M B

(5.11)

where [0, represents the gradient operator with respect to miandrepresents the

gradient operator with respect éa Using basic vector calculus, it follows that
0,0(M) = G G (d M- dhe)+ Gi( M Mo —0). (5.12)

Similarly,

0e0(M) = — Gy (M= My —6)+ G(6-6,), (5.13)
where G' is the transpose of thal, x N, sensitivity coefficient matrixG which is

defined as
G:Dm[g(m)T] . (5.14)
Using Egs. 5.12 and 5.13 in Eq. 5.11 gives the total gradient of the objective function.
Again using basic vector calculus, the Hessian matrix for the Gauss-Newton iteration is
given by
ESTC51G+ %1 _ q-/ll 0
H=0 O, (5.15)
i -G GG
The Hessian is guaranteed to be positive semidefinite. It is well known (Fit¢hat if

the Hessian is modified, the Gauss-Newton method will still converge to the same

maximum a posteriori estimate provided the modified Hessian is positive definite. Thus, in

order to obtain a simpler computational scheme, we replace the Hdsbiwhfl where
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. BTCH'G+ Gy o U

p=g @St 9 g (5.16)
| O Cyv + G

Since Cp, C,, and C, are all positive definite matrices, it is clear that is positive

definite.

When H is used as the modified Hessian in the Gauss-Newton iteration proce-

dure, the overall iteration can be decomposed as follows:

(GGG + ot =- G G ¢ M) - gdo)— G - m -86%), (5.17)

(Cy' +Cg1)o0"" = Gyi(nt — myo —6) = GY(6" ~60), (5.18)
Mt = mk +“k5rﬁ<+1’ (5.19)
gk = gk +“k59k+1’ (5.20)

wherek refers to the iteration index ang, is the step size determined by the restricted
step method (Fletch&). Note in the spirit of the restricted step, it is important to use the

same value ofy, in both Egs. 5.19 and 5.20, otherwise we effectively change the search

direction. Note by replacing H bb:I , we avoid inversion of H, i.e., we have decoupled
the iteration on the modehj from the iteration on the correctiof ) to the prior mean.

Let e represent a column vector of dimensibiwith all components equal to
unity, i.e.,
e=[11....9" , (5.21)

Then the prior mean given by Eq. 5.1 can be written as more general form
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Ijmprior 1 €

(]
_ dnprior,Z €
prior ~ [] :

(]
amprior,Na € a

m (5.22)

OoOoOooOono

In this case, it is reasonable to require that the correction to the prior mean have the same

structure agn l.e., we require that

prior »

Oae 0 06e [

0.0 0,.0
g= 07220 P80 (5.23)
O: oo: 0° '

0 0 0
['n.f0 EnCO

for some constantsy;, j =12,...N, . Sincem,,, and 6 are both N,- dimensional

column vectorsN,N, = N,. For the case where all attributes are modeled as stationary

random functions,N, is equal to the number of attributes, e.y, =2 if Eq. 5.1

applies. However, if the mean of each attribute varies from gridblock to gridblock, then

N, = N, (the dimension of the mods). In this casee is one dimensional and Eq. 5.23
does not place any restrictions on the component. oiWhen Eq. 5.23 applie€, is
defined as a block diagonal matrix with tit diagonal block given byJ; il for
]=12,...N, wherd is theN, % N, identity matrix.

The (N;Ng)x N, = N x N, matrixE is defined by

o --
e

0o

oOod

(5.24)

O..
[¢)

m
1
RS

so the transpose &fis given by
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v oo
T
ET =§‘3 A 4 (5.25)
o ¢ g
@ O ... eT E

If N, =N, (N.=1), thenkE is the N, x N, identity matrix. Defining theN, dimen-

sional column vectoo by

a =[a;,a;,..0y, (5.26)

Eq. 5.23 can be written &= Eaq .

5.2.2 Partial Subspace Procedure

In Chapter 1V, we showed that using subspace methods can significantly enhance

the computational efficiency of the Gauss-Newton method. Here, we consider only a
partial subspace procedure whé@** in Eq. 5.18 is expanded as

564t = Eda ¥, (5.27)

at all Gauss-Newton iterations. Using Eq. 5.27 in Eq. 5.18 and multiplying the resulting
equation byE' C,, gives
E'(1+Cy GBS ™ = E'(nf - i —6")- E G 66" -6). (5.28)

Eq. 5.27 indicates thal8'*! is a linear combination of the columnskfi.e., the

columns ofE represent the associated subspace vectors. If the initial gues®, for

0°=8,, is also a linear combination of these subspace vectors, then by mathematical

induction, it follows that for all, 8' is a linear combination of these subspace vectors.



164
This result is apparent becaus@/ifis a linear combination of these subspace vectors, i.e.,

0' =Ea', it follows from Egs. 5.20 and 5.27 that
6'" = Ea' + y Eda'"™ = Ea' +yoa'Yy. (5.29)
It now follows that when Eq. 5.18 is replaced by Eq. 5.28, Eqg. 5.20 can be replaced by
a=a'+pda'tt, (5.30)
and
okl = EQX*L. (5.31)
With this modification, the overall computational scheme for estimating the maxi-

mum a posteriori estimate (Egs. 5.17 through 5.20) can now be written as
o™=y, +6'-M-G G(G+ 6G &)

X g(ml)_ hos = Gl m- Mrior -6' )]1

(5.32)
E'(1+CyCs)Eda' ™= E(mM- m, -68')- E G 6%6' -6).
(5.33)
m*™ =l +pyon', (5.34)

and Egs. 5.30 and 5.31. Eq. 5.32 was obtained from Eqg. 5.17 by using basic matrix
inversion lemmas (see Eqs. 2.18 and 2.19). The preceding subspace implementation of the
Gauss-Newton iteration will converge to the so-called maximum a posteriori estimate

(m,,6,,), which is commonly referred to as the most probable model. However, as noted

previously, our objective is not to simply generate the most probable estimatebof to
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generate a suite of realizations which represent a correct sampling of the pdf of Eq. 5.9.

The sampling procedure we used is presented in the following section.

5.3 SAMPLING THE A POSTERIORI DISTRIBUTION

Markov chain Monte Carlo (MCMC) methods provide theoretical techniques
which are guaranteed to produce a correct sampling of a given pdf if a sufficiently large
number of states are generated. However, current implementations (Olivef’et al.
Cunh&® and Cunha et &f) are too computationally intensive for practical applications
when the goal is to generate realizations conditioned to production data and the genera-
tion of each state in the Markov chain requires a run of a reservoir simulator. Procedures
based on approximating the a posteriori pdf by a Gaussian centered at the maximum a
posteriori estimate require computing either the Cholesky decomposition or the square
root of the a posteriori covariance matrix and do not always generate a correct sampling
of the pdf (Oliver et al’, Cunhd® and Cunha et &f). Thus, we pursue a computationally
efficient alternative. For the case where uncertainty in the prior mean is ignored, the basic
procedure has been discussed by Oliver &t ahd relies on underlying theory developed
by Oliver®. The basic procedure is technically correct only for the case where the data are
linearly related to the model, however, Oliver et’ahave presented arguments which
suggest that the procedure should give an approximately correct sampling in the nonlinear

case.

5.3.1 Linear Case
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Here, we extend the results of Oli¥feand Oliver et al’ to the case where we in-

corporate uncertainty in the prior mean. We consider the case where the data are linearly
related to the model, so Eq. 5.8 can be written as

d=Gm, (5.35)
whereG is an Ny x N, matrix. For this case, the maximum a posteriori estimate can be
obtained by solving the following two equatioris; O(fm) =0 and [, O(fM) =0 (see Egs.

5.12 and 5.13) to obtaim, and@,,. It is easy to show that this solution satisfies

R;T _1G+ 1 - ! EHTLO H Ec_l rior + GT ! SD
0 CE -1 a -1 o —1% =0 T?fl 4 CBled)b . (5.36)
0 CM CM + CH o [ D M rnprlor C(; 0 D

Note that the coefficient matrix on the left side of Eq. 5.36 is the Hessian matrix defined in

Eq. 5.15. Moreover, when Eq. 5.35 applies it is easy to show that the a posteriori pdf for

M (Eg. 5.9) is Gaussian with covariance matrix givenl—b')} and expectation given by

(m,,0,) (Tarantold").

Next, we present a procedure for samplimgn,8) which does not require the
generation of the Cholesky or square root decompositiorHof. To construct a
realization, we generate an unconditional simulatiom,ofvhich is denoted byn, and is
given by

Mye = Mypst Coi Z, (5.37)
where the components of th¢, -dimensional column vectdt are independent standard
random normal deviates. Similarly, unconditional simulations of the data and the
correction to the prior mean, respectively, are generated by

dy. = dgpe+ CH2Z,, (5.38)
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and

0, =6, +C3%Z,, (5.39)
where again the components df, and Z, are independent standard random normal

deviates. The 1/2 superscript on the matrices in the preceding three equations represent

the square root of the matrix, but the square roots could also be replaced by the lower
triangular matrix arising from theL' decomposition of the matrix. Howeve€, and

C, are diagonal matrices, thus, it is trivial to compute their square root. Because we wish
to avoid explicit factorization o€,, or the generation of its square root, in our computer
implementation, we actually use sequential Gaussian cosimulation (e.g., Gomez-
Hernandez and Jourfiglin place of Eq. 5.38 to generate,.. If we replace,myq,, by

My, dops DY d,c @and 8, by 6,. in Egs. 5.12 and 5.13, set both equations to zero and

solve to obtain the solution denoted lmg @ , then similar to Eq. 5.36, we find that

G'clc+ct - (m,0
SR oy ofy =
3 -ci  cr+gh.H

Ty (Myior + Qi* D+ G G st G° )0
D CM(rnprlor Q\]jlzz)'i' C;1(904_ (éjz %) D

(5.40)

Subtracting Eq. 5.36 from 5.40, we see that the conditional simulat@resnd 6, satisfy

EcBTchc;+c;w -Gt Om - mom
D —C CM+C9 %9 -6,
(5.41)
m—lCﬂZZ+GTC61CgZ%D

D B’
g-ciclzz+ G'Q?z o
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where the last equality of Eq. 5.41 serves to d@in€éhe random vectoni\?lS Is defined

by

M, =[m, o] . (5.42)
Since the expected values 8f, Z, and Z, are all zero, it is clear that the expected
values of M is given by

E(M,) = Eg‘”ﬁ (5.43)

l.e., E(m)=m, and E(6;) =6,,. The covariance of the random vect&s, IS given by

E%I\?IS ~[ m])(¥1,- f @]) E: H*H BE | HY, (5.44)

where B is defined by the last equality of Eq. 5.41. Thus,
£ BB |=
Dm—:—lcﬂzz_i_ GT glCDIZ%D
"Hcicrze g B
gCKA1C]|\I5|22+ ot CglchZD)T (_ Glci2z glgzz)T%
_ douckiz 6 GG ) Glate & 61 ¢ g)
E( Cicliz+ G Q) GiGiiz & gig?g)
(cickz+ 6 6'32z) GlG’z & ¢'¢%3) -
(cickiz+ 6" ' %% )( GG’z G 6'¢?3) H

(5.45)

Using the fact thatz, Z, and Z, are independent vectors, with components of each

vector representing independent standard random normal deviates, Eq. 5.45 can be

reduced to
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|]3TC_1G —1 _ 1 |:|
E[BBT] =g ° I G _1q” O=H. (5.46)
B —-Cp Cu+G&HE

Using Eq. 5.46 in Eq. 5.44 , we obtain
E%I\?IS ~g f])(f- g )’ = H™. (5.47)
Thus, we have shown that the covariance and expectatioks ahd M, are the same.
Since both random vectors satisfy Gaussian distributions when Eq. 5.35 applies, we can
generate a sampling dfl by sampling the distribution fol\?ls. Samples 0fl\7|S can be

generating by solving Eqg. 5.40 fan, and 6, for a set of independent unconditional

simulations,m,;, d . and 8.

5.3.2 Nonlinear Case

For the nonlinear case of interest, the same type of procedure is applied except we
restrict 8 by introducing a subspace method, i.e., samples are generated by the computa-
tional algorithm of Egs. 5.32, 5.33, 5.34, 5.30 and 5.31 wifh, replaced bym,., dgs
replaced byd,. and 6, replaced byf,.. Note this simulation procedure represents
automatic history matching of the perturbed pressure dafga,, with prior information

used as a regularization term.

In this processg,. must be generated so it lies in the appropriate subspace. To do

this, recall thatC, is a block diagonal matrix where the jth diagonal block is given by
05 j| and introduce the associated covariance m&tgixwhich is related tcCo by

Cll=E G'E. (5.48)
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C, isanN, x N, diagonal matrix withth diagonal entry denoted h!;éj . We compute

a,=a,+Cl?z,, (5.49)
where the components of thé, dimensional column vector are independent standard

random normal deviates and set

6,c = Ear .. (5.50)



5.4 COMPUTATIONAL EXAMPLE

5.4.1 Synthetic 3D Case

The example considered pertains to a reservoir containing nine completely-
penetrating wells. A simulation grid with 25 gridblocks in the x and y directions and 10
gridblocks in the z direction is used, i.e., 6,250 gridblocks are used. Since we wish to
generate realizations of the log-permeability and porosity fields, there &@0ldpdel
parameters. The areal grid is 400 ft by 400 ft and all gridblocks in the z directions have
thickness (height) 10 feet. Fig. 5.1 shows the areal grid and well locations.

The reservoir is areally isotropic, = k, = k and we require thak, = k. Thus,

determination of a distribution fde automatically determines the vertical permeability at

each gridblock. An anisotropic spherical variogram fok In§ gised with the range in the

x-direction equal to 3,200 ft, the range in the y-direction equal to 1,600 ft and the range in

the z-direction equal to 30 feet. The variance ok In(sil of the variogram) is specified
aso? = 0.5. The anisotropic variogram for porosity is identical to the one for In(k) except
the variance for porosity is specified a§ =0.002. The correlation coefficient between
log-permeability and porosity is specified ag, , = 0.7 .

The true log-permeability is shown in Fig. 5.2. This truth case was obtained by

unconditional simulation (Eq. 5.38) usingng, , =4.0and m =0.20. This

prior,@
unconditional simulation also yields the true porosity field. For convenience, we refer to

Mpriork = 4.0 andm =0.20 as the true prior means.

prior,@

171
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Fig. 5.1 - Areal grid, well locations and well numbers.

20 3.0 40 5.0 6.0 7.0

Fig. 5.2 - True log-permeability field.
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Other relevant reservoir and fluid properties are as follows: system compressibility,

c, =107 psi, fluid viscosity,u=0.8 cp; all wellbore radii,r,, =030 ft; and initial
pressure,p; = 3,230 psi. The prior mean for skin factors is equal to 5, and the prior

variance of skin factors is equal to 1.0. We set a small variance (1.0) on all skin factors
because wellbore pressure does not contain sufficient information to correctly estimate the
individual “layer” skin factors. Synthetic well-test pressure data were generated by running
the simulator using the true permeability, true porosity fields and well skin factors. All nine
wells are open to flow simultaneously with the flow rates equal to 700, 820, 450, 630,
430, 740, 590, 780, 910 STB from well one to well nine. Well-test pressure data were
collected at wells 2, 4, 5, 6 and 8 (see Fig. 5.1) during a period when the other four wells
were produced at a specified rate. At the center well (well 5), a two-day drawdown
followed by a one-day buildup test was run. At the other four tested wells (wells 2, 4, 6
and 8) pressure data were measured during three day drawdown tests. These synthetic
pressure data are referred to as measured pressure data from this point onward.

In the following, we apply our procedures for sampling the a posteriori pdf (Eq.

5.9). We consider a case where we o%g,,, =50 andm =0.25 (referred to as

prior
the incorrect prior means) with and without allowing for uncertainty (errors) in the prior
means.

Fig. 5.3 shows an unconditional simulation of the log-permeability field generated
from Gaussian cosimulation using the true prior mean. Fig. 5.4 shows an unconditional
simulation of the log-permeability obtained from Gaussian cosimulation using the incorrect

prior means. As expected the gridblock values of log-permeability tend to be much higher
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when the incorrect mean is used; compare Figs. 5.3 and 5.4. Similar results were

obtained for the porosity field since the incorrect mean for porosity is higher than its true
mean.
Fig. 5.5 shows a conditional simulation of the log-permeability field obtained by

applying the method of Oliver et Al. using true prior means for k( gnd porosity. This

is equivalent to our basic procedure wilhset equal to zero at all iterations, i.e., we do

not incorporate uncertainty in the prior mean. Fig. 5.6 shows a conditional simulation
obtained by the same procedure except in this case, the incorrect prior means were used.
Note that the log-permeability values obtained in Fig. 5.6 tend to be much higher than
those obtained in Fig. 5.5. This is the expected result because the incorrect prior means
are much higher than the true values, but we did not apply our procedure to correct the
prior means. We can see that the log-permeability field has been reduced significantly at
locations near wells 2, 4, 5, 6 and 8, where the property fields have been conditioned to
their pressure. At other locations, the log-permeability field has not been changed.

Fig. 5.7 shows a conditional realization obtained by our basic procedure. In this case, we
used the incorrect prior means, but accounted for uncertainty in the prior means, where

the 2x 2 diagonal covariance matriXxC, (see Eq. 5.47) has as its two entries

a(f’l =0.001and ajyl =0.2. Note the realization in Fig. 5.7 is almost identical to the one

of Fig. 5.5 which was generated with the true prior means by assuming no errors in the
prior means. Although they are not presented here, similar results were obtained for the

porosity field.
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20 3.0 40 5.0 6.0 7.0

Fig. 5.3 - Unconditional realization of log-permeability field with true prior
means.

20 3.0 40 5.0 6.0 7.0

Fig. 5.4 - Unconditional realization of log-permeability field with incorrect
prior means.
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I
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2.0 3.0 40 5.0 7.0

Fig. 5.5 - Realization of log-permeability field conditioned to pressure data
using true prior means.

Fig. 5.6 - Realization of log-permeability field conditioned to pressure data
using incorrect prior means without correction to prior means.
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The results of Figs. 5.5 through 5.7 and the corresponding results for porosity (not

shown) illustrate that our procedure faeccounting for uncertainty in the prior means is

viable and yields reasonable realizations of the rock property fields. The valis of

obtained by our basic procedure, which gave the results of Fig. 5.7, indicate that the
correction to the prior mean for k(was -1.041 and the correction to the prior mean for
porosity was -0.047. Note these values are very close to the true error in the incorrect
prior means.

The permeability values corresponding to the results of Fig. 5.7 and associated po-
rosity values were input to the simulator to predict pressure data at the five wells tested.
Fig. 5.8 shows that the pressure data predicted at well 5 from this realization are in good
agreement with the measured pressure data. Equally good agreement was obtained at the
other tested wells. The dashed curve in Fig. 5.8 represents the pressure data predicted

using the corresponding unconditional simulatiay),, as input to the reservoir simulator.
As this m,, was used as the initial guess in the Gauss-Newton method when constructing

the conditional simulation by our basic simulation method, the results of Fig. 5.8 give a
gualitative measure of how the incorporation of pressure data changes estimates of rock
property fields obtained solely from the prior model.

We also generated 50 conditional simulations of the rock property fields using our
basic simulation procedure. As discussed previously, this suite of realizations of the rock
property fields represents an approximate sampling of the a posteriori pdf of Eq. 5.9. For
each realization, we simulated reservoir performance for 1,000 days where all nine wells
were produced at a constant bottom-hole pressure of 1500 psi. Reservoir perform-

ance
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20 3.0 40 5.0 6.0 7.0

Fig. 5.7 - Realization of log-permeability field conditioned to pressure data
with correction to incorrect prior means.

3300.00 — Measured pressure

— = = Unconditional realization

—{>— Conditioned realization

3200.00 — ;F

3100.00 —

Drawdown and buildup pressure, psi

— <D

3000.00 | | |

0.00 1.00 2.00 3.00

Time, days

Fig. 5.8 - Pressure data predicted at well 5 from conditional and unconditional
simulations of rock property fields compared to measured pressure data.
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was also predicted from the set of 50 realizatioms génerated by sampling the prior pdf

for m and@, EqQ. 5.5, using Gaussian cosimulation. Fig. 5.9 represent the predictions of
cumulative oil production obtained from this set of 50 realizations. The curve through the
solid dots represents the field cumulative oil production generated using the true
permeability and porosity fields as simulator input. Note these realizations predict
erroneously high values of cumulative oil production since the incorrect prior means are
much higher than the true prior means. Since the predictions vary over wide range, there is
a large uncertainty in performance predictions. Fig. 5.10 represent the field cumulative oil
production predicted from the 50 history-matched realizations. Comparing Fig. 5.10 with
Fig. 5.9, we see that the predictions from history matched realizations are much closer to
the true case, and the variability in predictions from history matched realizations is much
smaller than that from the unconditional realizations.

A histogram of the cumulative oil production at 1,000 days and associated cumu-

lative distribution function are shown in Fig. 5.11. The expected value (mean) is
570x 16 STB, the median is.5%4 90STB, and the standard deviation is ¥68° 10
STB. Note the bar in the histogram over %80° t8presents the number of outcomes
(15) between 578 fOSTB and 58& 19 STB. The cumulative oil production at 1,000

days predicted using the true rock property fields wasx5 68 SIB.
Fig. 5.12 represent the cumulative oil production of well 2 predicted from the 50
history-matched realizations. Note that the line with solid dots represents the cumulative

oil production of true case. A histogram of the cumulative oil production at 1,000 days



1.00E+7

8.00E+6

6.00E+6

4.00E+6

Cumulative production, STB

2.00E+6

0.00E+0

Fig. 5.9 - Reservoir performance predicted from the true case and a suite of

/%rl’,r

/Md/,

4

g —

/

true case

+

unconditional realizations

0.00

200.00

! | ! | ! | ! |
400.00 600.00 800.00 1000.00
Time, days

unconditional realizations with incorrect prior means.

1.00E+7
8.00E+6

m

|_

[9p]

5

=l

S 6.00E+6

=}

o]

o

=

()

= 4.00E+6

o

=}

e

=}

(@)

2.00E+6

0.00E+0

Fig. 5.10 - Reservoir performance predicted from the true case and a suite of

—@— true case

conditioned realization

0.00

200.00

L
400.00 600.00 800.00 1000.00
Time, days

180

realizations conditioned to pressure data with correction of prior means



181

- 100.00%

-+ 90.00%
-+ 80.00%
- 70.00%
T 60.00%

= Frequency

-+ 0,
50.00% —l— Cumulative %

Frequency

T 40.00%
- 30.00%
T 20.00%
-+ 10.00%

- .00%

5300000
5400000
5500000
5600000
5700000
5800000
5900000
6000000
6100000

More

Fig 5.11 - Histogram and cumulative distribution of cumulative oil production
at 1,000 days.



182
and associated cumulative distribution function are shown in Fig. 5.13. The cumulative oil

production and the histogram of the cumulative oil production of well 3 from the 50
history-matched realizations are shown in Figs. 5.14 and 5.15. Note that well 2 has been
tested and the realizations are conditioned to the pressure data obtained at well 2, while
well 3 has not been tested.

For well 2, the expected value (mean) of cumulative oil production at 1,000 days is
503x 16 STB, the median is.5062 108TB, the standard deviation is 0¥8 “18TB,
and predicted value using the true rock property fields isx530 SIB. For well 3, the
expected value (mean) of cumulative oil production at 1,000 days i 6 84STI®), the
median is 65&% 10 STB, and the standard deviation is ¥95* 19TB. The predicted
value using the true rock property fields is 257> BYB. From these statistical data and
also from the comparison between Fig. 5.12 and 5.14, we see that the variance on
predicted cumulative oil production in well 2 is smaller that that of well 3. This simply
means that after conditioning to well-test pressure, the uncertainty on properties field near

the well has been reduced, therefore the performance prediction for well 2 will have less

variability than for well 3.



183

1.00E+6
8.00E+5 —
m
[ _
%)
- 6.00E+5 —
ol
) 4.00E+5 —
g
E _
3 2.00E+5 — ®— Trecase
| Realizations
0.00E+0 I i T | T | T | T |
0.00 200.00 400.00 600.00 800.00 1000.00
Time, days

Fig. 5.12 - Well 2 production performance predicted from a suite of condi-
tioned simulations.

" 100.00%

5B

T 80.00%%0

1 6000% | Requency
1 a00006 | Qunniative %

Frequency
S

(62}

T 20.00%0

o

- .00%

348 398 438 48 527 572 617

Fig 5.13 - Histogram and cumulative distribution of cumulative oil production
from well 2 at 1,000 days



184

m
|_
)
c
S
3]
)}
ie)
o
o
()]
g
=
IS
-}
O
Realizations
0.00 200.00 400.00 600.00 800.00 1000.00
Time, days

Fig. 5.14 - Well 3 production performance predicted from a suite of condi-

tioned simulations

12 - 100.00%

> 10~ - 80.00%

[&] 8 |

o - 60.00%

S 07 ]

8 4- 40.00%

L o - 20.00%
0 - .00%

440 523 6.06 6.89 7.71 854 937

—8— cumulative %

Fig. 5.15 - Histogram and cumulative distribution of cumulative oil produc-

tion from well 3 at 1,000 days.



185
5.4.2 Field Case

Finally, we apply our method to a real field case. The production zone contains
two sandstone units. On the top is fluvial sandstone and on the bottom is shoreface
sandstone. The reservoir is cut by several faults running in the southeast to northwest
direction. These were assumed to be impermeable barriers to flow. In the field, 29 wells
have been drilled. Logging data are available for all the wells. However, there are few
well-testing data and most well-testing data are not of good quality. Wells 21 and 25 are
adjacent and both have well-testing data. They both produce only oil. Thus, we try to do
history matching on the region around these two wells.

Approximate fluid properties (at reservoir conditioqs= 2500 psi, T =160 °F)
in the oil zone are oil viscosity 3.6 cp, gas viscosity 0.01403 cp, oil compitgssib
74x10° psit.

Fig. 5.16 shows a view of the top of the productive zone. The model is generated
using sequential Gaussian simulation with £35x70 cé&lls. The horizontal gridsize is
uniform with DX=DY=100 ft. Average reservoir thickness is 60 ft. Wells 21 and 25 are
located at the top-right corner of Fig. 5.16.

For history matching, we cut a region withx20 x20 célls from the original
model. The region was chosen to be large enough that it included the regions of investiga-
tion of well tests in both wells. We upscaled the model into the 2« 20coaBse grid
model which is shown in Fig. 5.17. From a geostatistical analysis of the coarse model, we
approximated the variogram by a spherical model with Rx (range

in x direction) = 300 ft, Ry =500 ft, Rz =17 ft; the variances of porosity and log-
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Fig. 5.16 - Top structure map on producing zone and well locations.

Fig. 5.17 - Log-permeability field cut from full model and scale-up
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permeability respectively ared@6 and 6.0; correlation coefficient between porosity and

log-permeability is 0.7. We assumed that=k, = k and k, =01k.

The porosity field is generated from sequential Gaussian simulation conditioned to

core data and logging data. We consider the porosity field to be quite accurate. Thus, in
the history matching process, we use a small variance for the porositwfﬁid0.00l.

From a classical well-test analysis of the data, we estimated that the skin factors are about

10. So, in our work we set the prior mean of the skin factor equal to 10 and set the

variance of the skin agZ = 2.0. We assumed that the variance on pressure measurement

error isgs = 01.

Fig 5.17 shows the original model log-permeability field cut through the location
of well 25. Assuming the prior means are correct, we conditioned the log-permeability
field to well-test pressure data using our history matching procedure. Fig. 5.19 shows the
result after history matching. Comparing Fig. 5.19 with Fig. 5.18, we see that the log-
permeability in the region very near well 25 has been reduced tremendously, while the
log-permeability in most of the reservoir has not changed. If we assume that the log-
permeability field is stationary, then Fig. 5.19 is unrealistic (values near the well are far
lower than values at other location). This suggests that the prior means of the property
fields may not be correct; i.e., we need to incorporate uncertainty in the prior means, and
generate a correction to the prior means during the history matching process. Fig. 5.20
shows the results of history matching where we incorporated uncertainty in the

prior means. The variance in the prior mean of the log-permeability field is equal to 0.5
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Fig. 5.19 - Log-permeability field conditioned to pressure data
without correction to prior mean, cutout at well 25.
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and variance in the prior porosity mean is set to be very small (0.0001). Comparing

Fig. 5.20 with Fig. 5.18, we see that most of the fine detail is unchanged, but the mean of
log-permeability has been reduced from 7.1 to 6.5.

Fig. 5.21 shows the observed drawdown pressure at well 25 and pressures from
simulation during the history matching iterations. We see that the pressure simulated from
original model is significantly different from observed data (about 400 psi). After history
matching, the pressure mismatch is reduced to less than 10 psi.

Fig. 5.22 and Fig. 5.23, respectively, show the original log-permeability field and
the result after history matching well 21 pressure data, both figures are cut at the location
of well 21. Again note that history matching significantly reduced the mean of log-
permeability field. Fig. 5.24 shows the pressure data recorded at well 21. Note that the
flow rate is varied during drawdown test of well 21, but we do not have the detailed flow
rate information. Thus, we used a constant rate in the history matching procedure and
used only the last pressure data in drawdown as conditioning data. Even through the
pressure data are not ideal, Fig. 5.24 shows that after history matching the pressure
mismatch is significantly reduced.

The log-permeability field in the 0layer’ (10" gridblock in vertical direction) of
the original model is shown on Fig. 5. 25. The history matching result is shown on Fig.
5.26. Note the mean value has been reduced after history matching. However, the local
value of log-permeability close to the two wells have been altered more than values far

away in order to match the well-test pressure data.
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Fig. 5.22 Original log-permeability field, cutout at well 21.
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Fig. 5.23 Log-permeability field after history match, cutout at well 21.
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Fig. 5.26 - Log-permeability field conditioned to pressure data, 10th layer.



CHAPTER VI

CONCLUSIONS

We have presented a method to incorporate well test pressure, hard data and
geostatical data into reservoir characterization. The ultimate goal of this work was to
present procedures to characterize the uncertainty in realizations of rock property fields
and reservoir performance predictions. As demonstrated, this objective can be achieved
by first generating realizations of rock property fields and well skin factors conditioned to
the available data using the techniques presented here. By simulating reservoir perform-
ance with each realization, one can construct statistics on the set of outcomes from each
predicted parameter of interest, e.g., cumulative oil production. We have shown that
success in application of this method will hinge primarily on three factors: (1) construction
of the correct prior and a posteriori probability density functions (pdf) of rock property
fields; (2) a correct sampling of the a posteriori pdf to generate realizations, (3) an
efficient iteration procedure to condition property field to production data (history
matching); (3a) an efficient way to generate sensitivity coefficients needed at each iteration
of the history matching procedure; and (3b) procedures to reduce the computational time
required to perform the numerical linear algebra required at each iteration of the computa-

tional scheme.

194
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Regarding factor (1), the prior pdf can be estimated from static data, such as log-

ging data, core measurement and seismic data. The prior pdf assuming the estimated prior
means are correct is discussed in Chapter Il, while the prior pdf with uncertainty in the
prior means is given in Chapter V. In our work, we assume prior information on the model
(set of reservoir parameters to be estimated) satisfies a multinormal distribution and that
measurement errors in production data can be considered as Gaussian random variables
with zero mean and known variance. The correct a posteriori pdf is constructed using
Bayes’s Theorem (Chapter Il and V). We showed in Chapter V that uncertainty in the
prior means can be incorporated into reservoir characterization from dynamic data using a
partially doubly stochastic model.

Regarding factor (2), we presented two different procedures to generating a set of

realizations which represents an approximately correct sampling of the a posteriori pdf;

(1) obtain the maximum a posteriori estimate and posteriori covariance matrix,
then generate realizations by Cholesky decomposition or square root decom-
position of the a posteriori covariance matrix (Chapter Il);

(2) generate unconditional realizations of the model from prior pdf, unconditional
realizations of the pressure data and unconditional realizations of the error in
the prior means and then perform history matching to generate model parame-
ters and adjust prior means that reproduce the simulated pressure data (Chap-
ter V).

Both procedures for sampling the pdf are correct if measured data are linearly

related to the model. Procedure 1 is efficient in the sense that it only requires one history

match to obtain the maximum a posteriori estimation. However, realizations require that



196
we generate the a posteriori covariance matrix and its Cholesky or square root decompo-

sition. Moreover, the set of realizations may not represent a correct sampling of the
posteriori pdf, see Refs. 33 and 34. Procedure 2 is more time consuming since the
generation of each realization requires a history match; however, based on the work of
Oliver et al”’, it provides a better sampling of the a posteriori pdf.

Regarding factor (3), as discussed in Chapter Ill, the Gauss-Newton iteration
provides an efficient way to do the automatic history matching. In most cases, it only
requires 3 to 8 iterations to obtain convergence. Our formulation (based on the assump-
tion that the prior model can be represented by a multivariate Gaussian probability
distribution) yields an objective function for which the Gauss-Newton method is ideally
suited. At each iteration, the Gauss-Newton method requires one solution of the forward
problem, i.e., one simulation run. However, the Hessian and sensitivity coefficients need to
be updated at every iteration and the work required to generate the sensitivity coefficients
related to each well where we match pressure data is essentially equivalent to one
simulation run.

Regarding factor (3a), we have extended the Carter et al. method (Chapter I11) for
computing sensitivity coefficients to three-dimensional single-phase flow problems in a
way that requires only one additional simulation run per well to estimate the sensitivity
coefficients. If one is forced to resort to a procedure such as the one based on the gradient
simulator methot! to generate sensitivity coefficients, the computational time required
will increase dramatically. We have shown that our three-dimensional extension of the
Carter et al. method generally gives extremely accurate estimation of sensitivity coeffi-

cients. The only exception is when there is strong cross-flow through the wellbore; in this
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case the sensitivity of the pressure at an observation well to the permeability at a gridblock

penetrated by an active well is generally underestimated. However, this error should not
have a strong effect on resolving the permeability at an active well locagicawide this
permeability is well resolved by the active well pressure data themselves.

Considering factor (3b), we have investigated two reparameterization techniques,
spectral decomposition and the subspace method. For spectral decomposition, any
reduction is computational costs achieved by this method depends on the type of var-
iogram, the nugget effect and the size of the problem. If the nugget is equal to zero,
spectral decomposition may be beneficial, especially if one wishes to generate a set of
realizations, but any computational savings decreases dramatically if the nugget is large.
When the model is large, decomposition of the covariance matrix requires significant
computer time which in most cases eliminates any advantage of this reparameterization.
On the other hand, we show that the subspace method represents a procedure that can
achieve significant computational savings for large problems. For the problems considered
in this work, our choice of subspace vectors yields reliable maximum a posteriori estimates
and realizations of similar quality to those obtained with the conventional method and
requires roughly one-half the computer time at least for the problems we have considered.

We have applied the computational technique to several synthetic cases and one
field case. Our results indicate that for three-dimensional problems, pressure data
themselves do not accurately resolve individual values of gridblock log-pelesab
However, pressure data do significantly reduce the uncertainty in the thickness-averaged
horizontal permeability, especially near an active well. Using both hard data at the wells

and pressure data significantly reduces the uncertainty in the permeability field. In general,
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the porosity field is not as well resolved by pressure data, however, if pseudosteady-state

flow pressure data is available, then computing the reservoir average porosity by
averaging the porosity values contained in the maximum a posteriori estimate gives a good
estimate of average reservoir porosity. Layer skin factors can not be determined accurately
using only pressure data. However, if data on layer flow rates are available, by condition-
ing to both wellbore pressure data and individual layer flow rate data, we can obtain

reasonable estimates of layer skin factors.

NOMENCLATURE



prior

P,

total system compressibility, psi

covariance matrix for pressure measurement errors.
covariance matrix for hard data measurement errors.
prior covariance matrix.

a posteriori covariance matrix after incorporating all data.

reparameterized a posteriori covariance matrix.

covariance matrix for errors in prior means.

vector of pressures calculated from simulator, psi.

vector of measured wellbore pressure data, psi.

sensitivity coefficient matrix dtth Gauss- Newton iteration.

calculated pressure and layer flow rate data from simulation.

formation thickness, ft.

Hessian matrix dth Gauss-Newton iteration.
permeability, md.

x-direction permeability.

y-direction permeability.

z-direction permeaubility.

vector of model parameters.

vector of prior means of model parameters.

reparameterized maximum a posteriori estimate.
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m, maximum a posteriori estimate after conditioning to all data.
M number of simulator gridblocks.

Ng number of conditioning pressure data.

Np number of hard data.

N, number of model parameters estimated.

Ng number of skin factors estimated.

N number of wells at which pressure is measured.
pi initial reservoir pressure, psi.

M wellbore radius, ft.

S skin factor.

t time, days.

0 vector of correction to prior means.

U viscosity, cp.

Q porosity, fraction.

o? variance.

Superscripts

T matrix transpose.
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