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ABSTRACT

Pérez, Godofredo (Doctor of Philosophy in Petroleum Engineering)
Stochastic Conditional Simulation for Description of Reservoir Properties
(227 pp. - Chapter V)
Directed by Dr. Mohan Kelikar
(338 words)

In this work, a stochastic conditional simulation method founded on the simu-
lated annealing optimization technique is developed to generate three-dimensional
distributions of a property. This method allows one to specify various condition-
ing data, and univariate and spatial statistical attributes in the distributions of
a property. The conditional simulation method is robust, and reproduces all the
specifications and constraints with remarkable accuracy. A new testing procedure
is introduced to evaluate the quality of the simulations and is used to establish the
simulated annealing parameters required for high quality and small computation
cost simulations.

Field studies in sandstone and carbonate environments indicate that descrip-
tions of reservoir properties generated by the stochastic conditional simulation
method closely resemble the observed distributions provided that adequate models
are used to represent the spatial correlation structure of the properties. Yet, in most
field cases, the spatial correlation structure maybe the greatest source of uncertainty
in the descriptions. Assuming that same amount of information is available, the
conditional simulation method based on simulated annealing is compared with other
conditional simulation methods. The quality of the descriptions generated by the
method developed in this work is similar or superior than for other conditional sim-
ulation methods tested. For similar degrees of duality, the conditional simulation

method of choice should be the one that yields the smallest computation cost.
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A field study is conducted in a carbonate reservoir using horizontal and vertical
well log data to evaluate the statistical attributes of the inter-vertical-well distri-
bution of reservoir properties. Although the evaluations suggest that the porosity
correlation range in the inter-well region is more than two times longer than in the
vertical direction, other statistical attributes in the horizontal and vertical direc-
tions are not significantly different. Guidelines are developed to assess information
about the inter-well spatial correlation of reservoir properties from vertical well
data. Conditional simula.tjons of porosity generated in this reservoir highlight the

role of the spatial correlation models on simulated inter-well distributions.
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CHAPTER1I

INTRODUCTION

Description of reservoir properties is an important aspect of several engineer-
ing evaluations, including assessment of hydrocarbon reserves, selection of infill well
locations, and prediction of displacement processes performance. As a result, de-
scription of reservoir properties can have a direct impact in the economic decisions
and benefits of a reservoir exploitation project. This view has been a inajor motiva-
tion in the petroleum industry to develop new methodologies to improve reservoir
description, as indicated by recent investigations reported in two reservoir charac-
terization conferences.!:?

The nature of the problems in the description of reservoir properties is related
to availability of sample data and geologic complexities. The sample data in most
reservoirs are available at vertical wells and represent only a small fraction of the
reservoir. Such sample data include properties derived from cores, logs and well
test analysis. Other measurements and sources of information which are valuable
for reservoir description include geophysical data, geologic interpretations, evalu-
ations of outcrop analogs, and production history. In addition to the scarcity of
sample data, the description process must account for geologic complexities, such
as characteristics of the depositional environment, which may be reflected as spatial
relationships in the distribution of a property. These relationships include spatial
variability and anisotropy observed in the sample data of reservoir properties.

Stochastic conditional simulation is a geostatistical method to generate de-
scriptions of reservoir properties which use the available scarce data and the spatial
relationships outlined above. The most important elements of the method are noted
within the terms stochastic, conditional and simulation. This method is a stochas-
tic approach because reservoir properties are represented by random variables or
stochastic processes. Descriptions of properties generated by this method are con-

ditional since the available data are honored at the sampled locations. And last,

1
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the method simulates or predicts several equiprobable descriptions of the actual
distribution of a property in the reservoir.

Although, in this investigation, the stochastic conditional simulation approach
is developed exclusively for the generation of reservoir properties, such as porosity
and permeability, in general, this approach can be used to develop descriptions
of other geologic features. Haldorsen and Damsleth® review the state of the art in
stochastic modeling of different geologic features, such as sand bodies, shales, facies,
fractures and faults. An extensive description of these stochastic modeling methods
is given by Haldorsen et al.* Recently, Damsleth et al.? proposed a hybrid approach
which combines two stochastic modeling methods to generate facies descriptions and
distributions of reservoir properties within the facies. The stochastic conditional
simulation method described in this dissertation utilizes geostatistical relations to
represent the spatial correlation structures of properties. Any large scale geologic
features that might be apparent in the descriptions generated by this method are a
consequence of the information embedded in the statistics of the sample data.

Geostatistical methods for the spatial description of properties were originally
introduced for mining applications. The theoretical aspects of geostatistics are
given in details by Journel and Huijbregts® and summarized by Journel.” Extensive
examples on the application of geostatistical methods are described by Isaaks and
Srivastava.® In addition, geostatistical methods have been used in hydrology to
describe groundwater flow parameters.® In petroleum engineering, one of the first
applications of geostatistics to describe reservoir properties has been presented by
Da Costa e Silva.!?

The objective of geostatistical methods is to generate a distribution of a prop-
erty which satisfies a specified model for the spatial correlation. Most geostatistical
methods, such as ordinary kriging, indicator kriging and others described by Jour-
nel and Huijbregts,® use a function known as the semi-variogram to represent the
spatial correlation of a variable. The semi-variogram allows one to quantify the
variability of a property as a function of distance and direction and it is used ex-

tensively throughout this investigation. The definition of the semi-variogram, 7, of
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a variable V is given by®
- 1 - g
v(R) = ZE [V (@ + ) - V@), (1.1)

where, k is the lag vector, & represents the locations of the variable V in the region
considered and the symbol E denotes the expectation operator. Perhaps, the better

known covariance function, C OV(I-z:), is related to the semi-variogram by®

COV (k) = COV (0) — ~(R). (1.2)
The estimator of the semi-variogram is®
() = > Ni(:ﬁ)[( 3 I
q(h) = = V(g; + h) - V((I)‘,;) , (1.3)
2Np(h) =1

where, N, (ﬁ) are the number of pairs of the variable V separated by a distance or lag
|E| along the direction of the vector k. For example, in a well log of a property with
n samples uniformly spaced by 1 foot, the number of pairs in the semi-variogram
are Np(1 foot) =n —1, Np(2feet) =n—2,....

Usually, the sample semi-variograms are presented as a plot of || versus (k)
for one or more directions. For a correlated variable, the magnitude of the semi-
variogram is small for short lags and increases as the lag increases until it reaches
an approximate constant value denoted as the sill, as illustrated in Figure 1.1. Nor-
mally, the sill is close to the sample variance. The correlation range denotes the lag
at which the semi-variogram reaches the sill and for lags greater than the correlation
range, the variable is uncorrelated. The spatial correlation models used in geosta-
tistical methods are mathematical expressions fitted to the sample semi-variogram
plot. Several types of spatial correlation models or mathematical expressions are
available which satisfy the condition of positive definiteness required for kriging
applications® and a few of these models are described in the following chapters.

One of the first geostatistical conditional simulation method based on kriging

is described by Journel and Huijbregts.® The simulated distribution of a property
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generated by this method consists of the sum of the kriging estimates and a distri-
bution of unconditional random components. These random components must have
the same spatial correlation structure as the kriging estimaies. The turning bands
method!! can be used to generate these unconditional random distributions with a
prescribed spatial correlation model. Farmer'? describes several other methods to
generate unconditional distributions. Recently, Journel and Alabert!?® introduced
the sequential indicator simulation method based on indicator kriging. According to
Journel and Alabert!® an advantage of the sequential indicator simulation method
is that it accounts fbr the spatial connectivity of extreme values of a property, such
as permeability, which can have an important effect on the presence of preferential
flow paths in reservoirs. Journel and Gémez-Herndndez!* presented a field study
using the sequential indicator simulation method to generate sand-shale sequences
in an oil reservoir. The sequential indicator simulation method is described and
used in the Carbonate Field section of Chapter III.

In addition to the conventional spatial correlation models developed in geosta-
tistical applications, the concept of statistical fractals can be used to represent the
spatial correlation of a property. Statistical fractals are stochastic processes which
closely resemble the records of several natural phenomena.®:1¢ The spatial correla-
tion models of statistical fractal processes are characterized by a parameter known
as the fractal dimension and these models are described in more detail in the Fractal
Models section of Chapter III. Hewett!? proposed the use of statistical fractals to
analyze and represent spatial correlation of porosity logs in vertical wells. Hewett!7?
developed a stochastic conditional simulation method to generate distributions of
porosity in a vertical reservoir section between two conditioning wells based on
assumptions about the spatial correlation structure of porosity in the inter-well re-
gion. This stochastic conditional simulation method!? is described and used in the
Sandstone Field Section in Chapter III. Furthermore, Hewett!? presented a hybrid
simulation approach to extend the use of the conditional simulations of properties
in vertical reservoir sections to predict the production performance of large fields.

A great interest in Hewett’s approach arose when several field studies!®~22 showed
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that this approach closely predicts the production histories. Other recent investiga-

tions presented by Aasum et al.?® and Crane and Tubman?* used statistical fractals

to study the performance of miscible flooding.
The major objectives of the research reported in this dissertation are:

(1) Develop a stochastic conditional simulation method to generate three-dimen-
sional descriptions of reservoir properties which overcomes the restrictions of
currently available methods.

(2) Establish the validity of a stochastic conditional simulation method to represent
the distributions of pfoperties observed in the field. |

(3) Evaluate the nature of the distribution and spatial correlation of reservoir prop-
erties in the inter-well regions, which is critical for stochastic conditional sim-
ulation applications, using horizontal and vertical well data.

The Stochastic Conditional Simulation chapter presents the development of

a stochastic conditional simulation method based on the simulated annealing tech-

nique. A general description of the simulated annealing technique, and the basis and
motivations to select this technique are given in the Background section of Chapter
II. Also, Chapter II presents the optimization of the conditional simulation method.
Chapter III reports the field validations of the stochastic conditional simulation
method developed in Chapter II to generate descriptions of reservoir properties in
a sandstone and a carbonate field and presents comparisons with other conditional
simulation methods. In Chapter IV, log data from a horizontal well and several
closely spaced vertical wells “in a carbonate reservoir are used to evaluate the dis-
tribution of reservoir properties in the inter-well region and to derive guidelines to
assess the spatial correlation of a property in the inter-well regions from vertical
well data. In addition, Chapter IV describes the effects of different spatial corre-
lation models for the inter-well regions on the distributions of properties generated
by stochastic conditional simulation. Finally, the conclusions of this dissertation

are summarized in Chapter V.
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CHAPTER II
STOCHASTIC CONDITIONAL SIMULATION

This chapter describes the development of a stochastic conditional simulation
method to generate multi-dimensional distributions of a random variable with spec-
ified univariate and spatial statistical attributes. As discussed in the Chapter I, this
method is useful to generate descriptions of properties because it accounts for het-
erogeneities, such as spatial variability and anisotropy, observed in the sample data
of reservoirs.

The basis of the stochastic conditional simulation method described in this
chapter is the simulated annealing optimization technique. Therefore, the first sec-
tion of this chapter provides a background and a description of simulated annealing.
In the following sections, the three-dimensional conditional simulation probiem is
formulated and all the definitions and steps of the simulation method are described.
Then, a procedure is designed to evaluate the performance of the conditional simu-
lation method. This procedure is used to derive the simulation parameters, referred
as the annealing schedule, required for computationally efficient simulations. Ad-
ditional numerical experiments are conducted to examine the effect of different
degrees of information about the statistical specifications on the magnitude of the
uncertainties of the simulated distributions. Finally, potential extensions of the

stochastic conditional simulation method are briefly discussed.

Background

Farmer?® introduced the “Numerical Rocks” conditional simulation method
based on simulated annealing to generate patterns of discrete rock types repre-
senting different lithologies. The statistical properties of the rock types imposed
in the patterns generated by this conditional simulation method are a single-point

histogram, a two-point histogram and a correlation function. Farmer?® defines

7
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two-point histograms as the density distribution of sample pairs as a function of
separation distance and the direction between pairs. The correlation function is
calculated using the two-point histogram functions. The main difference between
the conditional simulation method described in this chapter and Farmer’s?® method
is that semi-variograms are used to represent the spaﬁal correlation of a continuous
variable instead of two-point histograms and correlation functions. Additional dif-
ferences between these methods pertain to the annealing schedule parameters and
are discussed in the Simulation Parameters and Annealing Schedule sections.
Simulated annealing is a simple, yet general and flexible, optimization tech-
nique which has been applied to problems in diverse disciplines. According to
Aarts and Korst,2® the simulated annealing optimization method was introduced

independently by Kirkpatrick et al.2?

and Cerny.2® A thorough literature review,
which includes 292 articles about developments and implementations of simulated
annealing optimization, is given by Collins et al.2° Some areas of application of sim-
ulated annealing include placement of computer components, wiring of electronic
components and image processing. Several investigations reported by Collins et al.?®
used the traveling salesman problem (calculation of the shortest distance required
to visit several sites) as a benchmark for different implementations of simulated
annealing.

Simulated annealing is founded in concepts from statistical mechanics and the
annealing process. Therefore, the implementation of simulated annealing requires
the definition of three components of a system which are analogous to the energy,
the temperature and the interactions of a molecular system. The objective function
repfesents the energy of a system and it is defined as the function to be minimized (or
maximized). The control parameter represents the temperature of a system which
is an independent parameter and not necessarily related to any other parameter of
the problem. The interchange mechanism corresponds to the molecular interactions
and it usually consists of a finite set of perturbations to the independent variables
which produce a change of the objective function. The following sections provide
more specific definitions of these components for the conditional simulation problem

studied in this chapter.
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The goal of the simulated annealing method is to determine the configuration
of the independent variables that yields a global minimum of the ohjective func-
tion. The simulation process consists of performing a specified number of changes
to the independent variables with the interchange mechanism and for each change,
the objective function is evaluated. A change of the variables is accepted and re-
tained if it reduces the magnitude of the objective function. If a change increases
the magnitude of the objective function, it is accepted or rejected and discarded
according to the probability function proposed by Metropolis et al.3° This proba-
bility function, introduced by Metropolis et al.2 to study the statistical mechanics
of molecular systems, is a Boltzmann distribution which depends on the energy and
the temperature of the system. At high temperatures, when the energy and the
degree of disorder of the system is large, there is a high probability of accepting a
change which results in an increase in the energy. As the temperature decreases,
the energy decreases and the system (molecules) becomes more ordered, and at this
stage, there is a small probability of accepting changes which result in an increase
of the energy of the system. This probabilistic feature of simulated annealing allows
the system to escape from solutions which correspond to local minima of the objec-
tive function. Other algorithms, such as the iterative improvement or the greedy
algorithm, which accept only the changes resulting in a decrease of the energy of
the system may become easily trapped in a local minimum solution.

The procedure to reduce the temperature or control parameter and specify
the number of iterations or changes required at each temperature is known as the
annealing schedule. Annealing is the process of carefully reducing the temperature
of a metal, from an initial high temperature (high energy state near the melting
point) to a low temperature (low energy state near the freezing point), so that at
the final state the metal can achieve a high strength. If the temperature is reduced
too fast, a metal will cool to an unstable state (analogous to a local minimum). At
each temperature, the number of iterations or changes should be large enough so
that the energy achieves an equilibrium state. The temperature is reduced until

a stopping criteria is satisfied. Stopping criteria can be when the energy becomes
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small or until further changes at subsequent temperatures have negligible effect on
the changes in the energy function.

Several annealing schedules have been proposed in the simulated annealing
literature. The review by Collins et al.2? reports nine temperature reduction func-
tions, eleven number of iterations schemes and five stopping criteria. Most annealing
schedules can be divided into two major groups on the basis of some common fea-
tures. In one group, the number of total iterations per step is constant and the size
of the step or decrement of the control parameter changes in successive steps. In the
second group, the number of total iterations per step is adjusted between steps and
the size ‘of the steps is fixed. Theoretical developments by Aarts and Korst?® and
Geman and Geman®! using Markov random fields theory demonstrate the conver-
gence properties of simulated annealing and derive annealing schedules. Aarts and
Korst2% noted that these theoretical annealing schedules lead to an exponential-time
execution of the algorithm and showed that other approximate annealing schedules
provide near optimal solutions for a significantly smaller execution time. The an-
nealing schedule used in the conditional simulation method developed in this chapter

is described in the Annealing Schedule section.

Problem Formulation

The objective of the stochastic conditional simulation method described in this
chapter is to generate a distribution of a random variable with specified statistical
properties in a three-dimensional rectangular grid. The statistical properties and
constraints specified in this conditional simulation method are:

(1) conditioning data,
(2) distribution function and
(3) semi-variogram models for several directions.

The simulation variable is defined in a three-dimensional rectangular region
discretized using N, N, and N; grid points along the x, y and z directions, respec-
tively. The coordinates of a point, (z;,ys, 2), in this rectangular region are given
by

z; = Oz + 1AL, (2.1)
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yi = Oy + 74y (2.2)
and

2k = Oz + kA, (2.3)

where, O, Oy and O, are the coordinates of the origins of the simulation region
and Az, Ay and A, are the spacing between grid points in the x, y and z directions,
respectively. In Equations 2.1 through2.3,1 <¢{ < N;,1 <3< Nyand1 <k < N..

The total number of simulation points, N,, is
Ng = N:N,N.. (2.4)

For convenience in the presentation of later derivations, the coordinates of the

location vector of a grid point, &; = (zi,y;, 2k), are defined with a single index, {,

as follows
-1
k=1+INT [NzNy] , (2.5)
j=1+INT [l_(k“l)N’N”‘l] (2.6)
N,
and
i=1—(k—1)N.Ny ~ (j — )Nz, (2.7)

where, l = 1,...,N, and the symbol INT refers to the integer part of the number
inside the brackets. Equations 2.5 through 2.7 allow a sequential arrangement of
the coordinates, such that the x, y and z coordinates cycle first, second and third,
respectively. Hence, the coordinates of the location vector are &y = (z1,¥1,21),
ceny WN, = (ZN.,¥1,21)s ON.+1 = (Z1,¥2521)s oo oy D2N, = (BN, Y2:21)5 ov s oons
@n, = (zn.,UN,,2N,). The simulation variable is V(&)), for ! =1,...,N,

The conditioning data values are assigned to the simulation variable at specified
locations. The conditioning data remain fixed at the specified locations through-
out the conditional simulation. The constraints corresponding to a number N, of

conditioning data can be expressed as

V(@) = Ve (e 1), (2.8)
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where, V. are the values of the conditioning data and &, for { = 1,..., N, are the
set of locations corresponding to the conditioning data. Usually, the conditioning
data are a set of measurements available at sampled locations, such as log or core
measurements of the property to be simulated.

The cumulative distribution function represents the probability that the vari-
able is smaller than a given value. The discrete cumulative distribution function,
F(Vj,k), of the simulation variable, for an upper class limit value equal to Vy, is

given by
N,

F(Vig) = ﬁl— E 1(@1; Vik)s (2.9)
8 =1

where, k = 1,..., Ny and Ny is the number of classes used to discretize the cumu-

lative distribution function. The indicator function, z, in Equation 2.9 is

s _J, V(@) < Vik
The specified discrete cumulative distribution function, F,, for the simulation vari-

able requires the following constraints
F(Vig) = Fo(V§k), (2.11)

for k =1,...,Ns. The cumulative distribution function must be a strictly increé.sing
function, or equivalently, 0 < Fo(Vy,1) < Fo(Vy,2) ... < Fo(Vy,n,) = 1. In practice,
the specified discrete cumulative distribution function can be calculated from the
conditioning data or may be available from other sources of information.

" As explained in Chapter I, the semi-variogram is used in geostatistics to quan-
tify the spatial correlation of a variable as a function of separation distance and

direction. The sample semi-variogram, «,, of the simulation variable, V, is given by

1
2NP (il‘[,;')

2
3

Vo(h1s) = (2.12)

Np(gl.o’) -
> Vi@ + k) - V(@)

Jj=1

where, Ez,g = (haz,1,i; by 1,55 ka,1,:) is the lag distance vector and Np (E;,.-) is the number

of pairs within the simulation grid corresponding to the lag 7::1,.-. For the lag distance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12



vector in Equation 2.12, the index ¢ refers to a direction and the index ! refers to
the lag distances considered for a given direction. The number of semi-variogram
directions considered in the simulations is Ny and for each direction ¢ the number
of semi-variogram lags is N, ;. Hence, the range of the indices for the lag distance
vector in Equation 2.12 are l = 1,...,N,; and ¢ = 1,..., Ng. The semi-variogram

models specified in the conditional simulations are denoted by v, and require that

Vo (k1) = Yo(Pa,3), (2.13)
for ! = 1,...,Np; and ¢ = 1,...,N4. Usually, the semi-variogram models along
different directions are derived by fitting one of the conventional models through
the sample semi-variogram of the available data of the simulation variable or it
may be necessary to infer a model based on external information if the available
data is undersampled along a specific direction. The mathematical expressions for
the semi-variogram models widely used in geostatistics and the fractal methods are
given in the description of the implementation of the conditional simulation method
in Appendix A.

It should be noted that there are two major differences in the role of the
semi-variograms in other geostatistical methods, such as kriging, and the condi-
tional simulation method described in this chapter. First, kriging methods require
semi-variogram models which satisfy the conditions of positive definiteness® while
the semi-variogram models specified in Equation 2.13 are not restricted to mod-
els which satisfy this condition. Second, kriging methods require a semi-variogram
model along all the directions between the location where a variable is estimated
or simulated and the locations of the surrounding sample data. In the conditional
simulation method discussed in this chapter, the semi-variogram models are repro-
duced only along the directions specified in Equation 2.13, and further assumptions
about the spatial correlation structure for other directions are not needed.

All the constraints and specifications required in a conditional simulation of a
variable are given in Equations 2.8, 2.11 and 2.13. The total number of constraints,
N,, for the conditional simulation is

Ng .
No=N.+Nf+)_ Ny (2.14)

=1
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The simulation procedure to obtain distributions of the variable V which satisfy
these N, specifications is described in the Initial Distribution and the Simulated

Annealing sections.

Initial Distribution

The first step of the conditional simulation method is to generate an initial dis-
tribution of the simulation variable which satisfies the conditioning data constraints
and cumulative distribution function specifications given by Equations 2.8 and 2.11.
This first step can be readily accomplished using the transformation method3? to
generate a distribution of a variable with a specified cumulative distribution func-
tion.

The procedure to generate the initial distribution consists of visiting all the
points of the simulation grid, one at a time. If the location of a point is equal to the
location of a conditioning data point (&% = 1,...,N;), then the variable is as-
signed the specified conditioning data value, as required in Equation 2.8. Otherwise,
the variable is assigned a random value from the specified cumulative distribution
function.

The transformation method is used to assign a random value from a specified
distribution function and it is illustrated in Figure 2.1. A random number, R, in
the range of (0,1] is drawn from a uniform random generator3® and the variable is

assigned a value according to one of the following two alternatives

~ R — Fo(Vf,k-1)
V(G) =Vegk—-1+ (Vix — Vik- 2 2.15
(@) =Vir-1+ Vik = Vi) ) T S TR (V0 (2.15)
for a uniform subclass distribution, or
V(@) = L—IZ"_'XL’E (2.16)

for a discrete distribution, for I/ = 1,...,N,. In Equations 2.15 and 2.16, the
index k is such that F,(Vyr~1) < R < Fo(Vy,x) and for the case when k = 1 then
Fo(Vf,0) = 0 and Vy g is set equal to the specified minimum value of the distribution.

Equation 2.15 assumes that the distribution between the lower and upper limits of
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a class is a uniform distribution and Equation 2.16 is used to assign discrete values
equal to the class marks.

The transformation method described in this section yields an uncorrelated
distribution of the simulation variable. The results in the Reproduction of Statistics
section, described later, show that the distributions generated with this method

are in close agreement with the specified distributions. Minor deviations from the

specified distribution function might occur if the distribution of the conditioning

data is different than the specified distribution. However, these deviations will
seldom happen, since in most cases the specified distribution function is derived
from the same sample data used as conditioning data. The sample semi-variograms
of the initial distribution of the simulated variable for all directions are close to the

sample variance of the distribution.

Simulated Annealing

The objective of the simulated annealing method is to rearrange the initial
distribution generated in the previous section until the semi-variogram specifications
given by equation 2.13 are satisfied. The rearrangements of the spatial distribution
of the variable performed by the simulation process wiil not affect the specifications
imposed by the initial distribution (Equations 2.8 and 2.11). Therefore, upon the
completion of the simulation process described in this section, the simulated variable
will fulfill all the required specifications and constraints.

The basic elements of simulated annealing are defined and described in the Ob-
jective Function, Interchange Mechanism and Metropolis Condition sections. Then,

these elements are integrated in the Simulation Process section.

Objective Function

The objective function is the function to be minimized with the simulated
annealing method and it is analogous to the energy of the system in the context
of statistical mechanics. The objective function is defined as a function of the

difference between the sample semi-variograms of the simulation variable and the
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required semi-variogram models. Therefore, by minimizing this objective function,
the requirements in Equation 2.13 can be satisfied.

The objective function, E, is defined as

. . - - 2
gt L & 4 [ v (Big) = vo(r,) (2.17)
Eo Yo(Ri1,5) ’

where, the index k refers to the iteration number within a step and Ej is a normal-

=1 l=1

izing constant equal to

E0=

(2.18)

=1 I=1 ’yo(h’l,‘)

55 [qs(ﬁz,i) % (2;,;)] :
In Equation 2.18, 42 ('-;1,,') are the semi-variograms of the simulation variable at ini-
tial conditions calculated from the initial distribution of the variable. The purpose
of the normalizing constant used in Equation 2.17 is to assign a value of one to the
objective function at the initial conditions for any distribution or specifications.
The advantage of the objective function defined in Equation 2.17 over other
possible definitions is the ability to assign a different weight to each semi-variogram
term in the function. It can be noted in Equation 2.17 that differences between
the sample semi-variogram of the variable and the specified model (Ve (R) — 7o(R))
are assigned greater weights (1/7,(%)) at smaller lags (|k|) because the magnifude
of the semi-variogram model decreases as the lag becomes smaller. This feature is
useful because it amplifies the effect of the semi-variograms for small lags in the

objective function, which are the terms with greater contribution to the magnitude

of the energy function.

Interchange Mechanism

The interchange mechanism are perturbations to the distribution of the sim-
ulation variable resulting in changes in the objective function. There are several
different ways to design an interchange mechanism. However, for efficiency rea-
sons, the interchange mechanism should be simple, so that the computational costs

required to update the objective function for one interchange is as small as possible.
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The interchange mechanism implemented in the conditional simulation method
consists of exchanging or swapping the values of the variable at two locations. se-
lected at random in the simulation region. The exchange locations within the sim-
ulation region are selected by drawing at random two integer numbers, I} and I,

between one and the number of simulated grid points (N,) as follows
I =1+ INT(NpR,) (2.19)

and
I, =1+ INT(N,R2), (2.20)

where, R; and R; are two random numbers from a uniform distribution in the range

(0,1] and the symbol INT indicates the integer part of a number.

In addition, prior to exchanging the values of the two selected random points,

the following three conditions must be satisfied:

()

Wi, # Je,ls (2.21)
(2)
@, # We,l (2.22)
forl=1,...,N; and
(3)
|V(“-;Il) - V(‘:"Iz)l > AVf,min- (2.23)

In Equation 2.23, AV, min is a constant equal to the smallest inter-class size of the

distribution function and it is given by
AVimin = MIN[V;; — Vf,,'_l] (2.24)

for i = 1,..., Ny and the symbol MIN refers to the minimum value. The first two
conditions (Equations 2.21 and 2.22) require that the selected random points do not
coincide with the locations of the conditioning data. If one of these two conditions

are not satisfied, then new random points are drawn a.ccording to Equations 2.19 and
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2.20, as required. The third condition (Equation 2.23) does not allow to exchange
the selected points when the magnitude of the difference of the variable at these
points is smaller than the smallest magnitude of the difference between consecutive
class limits. If this third condition is not satisfied, one of the locations of the
random points is selected again with Equation 2.19 or 2.20. This last condition
is not necessary to satisfy the simulation specifications; but it eliminates further
computational efforts required by unnecessary exchanges which have none or small
effect on the objective function.

The actual interchange of the values of the simulation variable at the selected
random locations is performed later in the simulation process. Nevertheless, it is
possible to calculate the semi-variograms and the corresponding objective function
that will result if the exchange is performed. During the simulation process many
iterations of the above exchanges will be performed; therefore, it is not feasible
to recalculate the sample semi-variograms using Equation 2.12. Instead, the new
values of the semi-variograms of the distribution of the simulated variable, v/, that

result due to the exchange of the random points is calculated by
Vy(hrs) = 15 (Ra) + N (R ), (2.25)

where, \* (ﬁg,;) is a semi-variogram correction term. If the two random points are
interchanged, then the new objective function, E’, can be calculated by inserting

Equation 2.25 into Equation 2.17, or

1 Ng Nui ,71.-,(}';1 ) + Ak(ﬁz ) - (I-z‘, ) 2
E = N Z Z Al i Akl UL B (2.26)
o i=1 I=1 ’Yo(hl,i)

In Equations 2.25 and 2.26,! =1,...,Np s and i = 1,..., Ny, and the index k refers
to an iteration within a step.

During the simulation process, most of the computational effort is dedicated
to the calculation of the correction terms /\k(i-i) in Equation 2.25. Accordingly,
in practice, it is vital to calculate these correction terms in as small number of
operations as possible. The formulas developed to calculate the correction terms in

Equation 2.25 are described in Appendix B.
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Metropolis Condition

The Metropolis condition is a Boltzmann distribution introduced by Metropolis
et al.3 to study the statistical mechanics of molecular systems. Metropolis et al.3°
used this distribution to calculate the probability of moving a molecule in a lattice
as a function of the change of energy resulting from this move and the temperature
of the system. In the simulated annealing method, the Metropolis condition is used
to calculate the probability of the transition between two states of the objective
function at a given value.of a control parameter analogous to the temperature of
the system.

The Metropolis condition is given by

1, AE* <0

Ak 2.27
exp( ?,F), AE¥ > 0, ( )

P(AE*,T") = {

where, the index k refers to an iteration within a step represented by the index r.
In Equation 2.27, the change of the objective function, AE*, due to one interchange

18

AE* = E' — E¥, (2.28)

where, the terms on the right hand side are given by Equations 2.17 and 2.26. The
implementation of the probability function given by Equation 2.27 is discussed in
the Simulation Process section.

The control parameter, T7, in Equation 2.27 is calculated according to the
following equation

T = oT"™ !, (2.29)

where, the index r refers to a step number equal to r = 2,3,.... For the first
step, r = 1 in Equation 2.29, the control parameter is set equal to the initial value
described in the Initial Control Parameter section. The parameter a in Equation
2.29 is the convergence rate factor and it is a constant value in the range 0 <

a < 1 throughout the simulation. The effect of the convergence rate factor on
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the computational efficiency of simulated annealing is discussed in the Optimum
Schedule section.

As noted in the Background section, several ways to calculate the control pa-
rameter have been proposed in different investigations. For the method discussed
in this chapter, other forms of Equation 2.29 were considered, such as the equation

t26 which uses an additional parameter referred as the

proposed by Aarts and Kors
specific heat of the system. However, preliminary tests indicated no advantages of
other schedules over the simple equation given by Equation 2.29.

The Metropolis condition allows to perform exchanges of two values of the sim-
ulated variable, even if a change increases the magnitude of the objective function.
The probability of approving an exchange which results in an increase of the magni-
tude of the objective function decreases as the magnitude of the control parameter
is decreased from step to step according to Equation 2.29. Figure 2.2 illustrates this
effect of the control parameter on the Metropolis condition. For a fixed value of the

change of objective function, the probability of accepting an exchange decreases as

the control parameter becomes smaller.

Simulation Process

The simulation process consists of a series of steps and within each step' sev-
eral iterations are performed. At each step, the value of the control parameter is
reduced gradually according to Equation 2.29. Then, within each step, several iter-
ations are performed using the interchange mechanism described in the Interchange
Mechanism section.

In addition to the specifications and constra.ints)for the simulation variable
(Equations 2.8, 2.11 and 2.13), the simulation process of simulated annealing re-
quires other parameters. The methods designed to evaluate two parameters, the
initial control parameter {T°) and the maximum number of total iterations per
step (M;), are described in the Simulation Parameters section. The remaining pa-
rameters, referred as the annealing schedule, are the convergence rate factor (),

the maximum number of accepted iterations per step (M), the tolerance for the
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objective function (¢,) and the tolerance for the acceptance ratio (€5). These pa-
rameters have an important effect on the efficiency of the simulation and the quality
of the results. A detailed analysis of these parameters is conducted in the Annealing
Schedule section.

The simulation process is summarized in the flow chart shown in Figure 2.3.
The following steps explain the details of this process.

(1) Calculate the initial distribution of the simulation variable, V' (J;) for j =
1,...N,, using Equation 2.15 or 2.16.

(2) Calculate the normalizing constant of the objective function, Eo, using
Equation 2.18.

(3) Calculate the initial value of the control parameter, T°, using Equation
2.40. The control parameter for the first step is set equal to the initial value,
T! =T°.

(4) For the first step, set the maximum number of total iterations per step
equal to the maximum number of accepted iterations per step, M} = M,.

(5) Select two random locations in the simulation grid, I; and Iz, using the
interchange mechanism given by Equations 2.19 and 2.20.

(6) Calculate the sample semi-variograms, ~} (E;,,-) forl=1,...,Npsand i =
1,..., Ng, using Equation 2.25 and the objective function, E’, using Equation 2.26
that will result if the exchange is accepted by the Metropolis condition. |

(7) Check if the Metropolis condition accepts the interchange proposed in Step
(5). This test consists of comparing a random number, R, from a uniform distri-
bution in the range (0,1] to the probability, P(AE*,T"), calculated from Equation
2.27. Note that if AE* < 0 the exchange is always accepted, according to the
definition given by Equation 2.27. Depending on the results of the test in this step,
sub-step (i) or (ii) is followed.

(i) If R < P(AE*,T"), the interchange proposed in Step (5) is accepted. Then,
the distribution of the simulated variable is updated by the following changes. Us-
ing the following temporary variables, W, = V(&) and W, = V(&p,), then the

exchange of values of the simulated variable is

V(@1,) = W2 (2.30)
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and
V(&5,) = W;. (2.31)

The update of the sample semi-variograms is given by
Ve (Rug) = 7o (Ras),s (2.32)
forl=1,...,Np;and ¢ =1,...,N; and the update of the objective function is
EFl = E'. (2.33)

Two additional conditions are tested in this sub-step.

(2) If the tolerance condition for the objective function,

k
_—Zfl-vi‘lE]\c;h,g < €y, (2.34)
is satisfied then the simulation is stopped. The condition given by Equation 2.34
requires that root mean square average of the semi-variograms differences terms is
less than a specified tolerance (e,).
(b) If the total number of accepted iterations in the current step exceed the
maximum number of accepted iterations per step, M,, then proceed to Step (9).
(i) ¥ R > P(AE*,T"), then the interchange proposed in Step (5) is not
accepted. In this case, it is not necessary to update the simulation variable, the

semi-variogram or the objective function since these will remain the same for the

next iteration or equivalently
VEFL (hy,g) = 7% (Ra,s),s (2.35)
forl=1,...,Ny;and ¢ =1,...,Ng,
Ek+1 = gk, (2.36)

(8) Check if the number of total iterations k in the step r does not exceed the

maximum number of total iterations per step, M. If the condition given by

k< M, (2.37)
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is satisfied, then proceed to Step (5).
(9) Check the acceptance ratio tolerance for the current step. The acceptance
ratio is the fraction of the total iterations in a step which were accepted by the

Metropolis condition. (Step (7), a). The acceptance ratio, x", is given by
X" = (2.38)

where, m is the number of accepted iterations in the step r. Note, that for any step
in the simulation m < M, and M, < k < M]. If the acceptance ratio condition
given by

X’ <€ (2.39)

is satisfied, then the simulation is stopped.

(10) Calculate the control parameter, T"*1, for the next step using Equation
2.29.

(11) Calculate the maximum number of iterations for the next step, M+,
using Equation 2.46.

(12) Proceed to Step (5).

The simulation process terminates when one of the conditions given by Equa-
tion 2.34 in Step (5,i,a) or Equation 2.39 in Step (9) is satisfied. Depending on the
relative size of the specified tolerances, €, and ¢,, either condition may be sﬁti_s-
fied first. The condition given in Equation 2.39 stops the simulation when many
iterations are performed in a step with minimal changes in the objective function.
Strictly, only the condition given by Equation 2.34 is sufficient; however, in some
cases the condition given by Equation 2.39 allows to save the additional compu-
tational effort that will be required for only a marginal improvement in the final

solution.

Simulation Parameters
This section describes the methods to calculate the value of the initial control
parameter and the maximum number of total iterations per step required in the

simulation process described in the Simulation Process section. The approach used
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in other applications of simulated annealing is to specify these two parameters in
the annealing schedule. In that approach, prior information of the value of these
parameters can be obtained experimentally; However, in the proposed approach,
these simulation parameters are calculated internally. Therefore, the methods dis-
cussed in this section are superior, because prior information or experimentation is

not required.

Initial Control Parameter

The performance efficiency of simulated annealing is sensitive to the value of
the initial control parameter. The effects of the control parameter can be deduced
from the Metropolis condition given by Equation 2.27. If the magnitude of the
initial control parameter is excessively high, then most of the iterations proposed
by the interchange mechanism will be accepted for the first several steps. During
these steps, the distribution of the simulation variable remains essentially uncorre-
lated because interchanges resulting in either increase or decrease of the objective
function have about the same probability to be accepted. Hence, these steps will
be unproductive since the initial distribution of the simulated variable, as defined
in the method developed in this chapter, is already uncorrelated. If the magnitude
of the initial control parameter is too small, then most of the proposed iterations
resulting in an increase of the objective function will be rejected. In this case, there
is the possibility that the simulated distribution will become trapped in a local min-
imum rather than a global minimum, as it is the case in other algorithms such as the
iterative improvement or greedy algorithm mentioned in the Background section.

A method of calculating the value of the control parameter at initial condi-
tions has been derived by Aarts and Korst.2® The procedure for calculating the
initial control parameter consists of generating Minitiqal iterations cycles with the
interchange mechanism given by Equations 2.19 and 2.20 and for each iteration,

calculate the objective function, EX using Equation 2.26 for E’. One iteration

initial?
cycle is equal to the number of iterations equal to the number of grid points (N,)

and the reasons to used this unit is discussed in the Annealing Schedule section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27



The corresponding change in the objective function, AEY,,,;.;, for each iteration is

given by
k
AEE jiiaty= Elitia — E°, (2.40)

for k = 1,...,MinitiatNs, where, EC is the initial objective function. Note that
E° = 1 according to the definition given in Equation 2.17. From the M;uitiaiN,

iterations, there is a number of m; iterations with AEk

initial S 0 and a number of

mg iterations with AEE ,,;.; > 0. Denoting the m; positive changes in the objective

function as AEZ,,;,;, the mean of the positive changes in the objective function,

AE;, ;a1 is calculated as

ma
—_ 1
AEpitial = ey Z AE} isiar- (2.41)
=1
The initial control parameter, T, is given byZ®

—.+
7O — AE;nitial

(2.42)

)
In [x:'ru'tiuimﬂ ‘r(rig"xl’m'ﬁal)ml ]
where, X;nitial is the initial acceptance ratio.

Even though, the above procedure introduces two new pa.rameters (Minitiar and
Xinitial), these parameters can be readily specified or set equal to a constant value
for any simulation. The initial acceptance ratio should a value near one (e.g.,0.98 or
0.99) but not equal to one in order to allow an acceptance probability near one only
during the first step. The number of iterations should be sufficiently large to allow
for a stable estimate of the mean change of the objective function in Equation 2.41.
This requirement can be satisfied by comparing the estimates from Equation 2.41
over a successive number of iterations and stopping the procedure when the estimate
stabilizes. An example of the effect of the number of iterations on the estimates
of the initial control parameter for four realizations of a conditional simulation is
illustrated in Figure 2.4 for a wide range of M;nitial cycles and Xinitiar =0.99. The
specifications of these conditional simulations (Table 2.2) are discussed in more

details in the Reproduction of Statistics section. The results in Figure 2.4 show
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that the initial control parameter estimated by Equation 2.42 attains a stable value

for Mg > 0.20 cycles.

Maximum Number of Total Iterations

The maximum number of total iterations provides a practical upper limit for
the number of iterations conducted in one step of the simulation procedure de-
scribed in the Simulation Process section. Convergence or equilibrium conditions
are achieved in a step when the number of iterations accepted by the Metropolis
condition reaches the maximum number of accepted iterations specified in the an-
nealing schedule described in the Annealing Schedule section. Therefore, the actual
number of iterations conducted in each step is between the maximum number of
accepted iterations and the maximum number of total iterations. For the first few

steps, the actual number of iterations is close to the maximum number of accepted

iterations and for the last few steps, the actual number of iterations approaches the

maximum total number of iterations.

The method developed to calculate the maximum number of total iterations
per step consists of predicting an estimate of the acceptance ratio for the subsequent
step. For several simulations with a large constant value of the maximum number
of total iterations per step, different relations between the acceptance ratio. and
the control parameter were evaluated. Results of these evaluations indicated that
a practical method to predict the acceptance ratio is to perform a logarithmic
extrapolation of the acceptance ratio from the two previous steps. This logarithmic
extrapolation provides the following relation

In{x"*1/x") _ In(x"/x""1)
In(T™+1/T7) _ In(T7/T7-Y)’ (2.43)

where, r—1, r and r+1 are the previous, the current and the next steps, respectively.
From Equation 2.29, it can be noted that T7+!/T" = T"/T"~! = ¢, then Equation

2.43 becomes

2
xf
S (2.44)

X
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for r = 1,2,.... For r = 1 in Equation 2.44, xX° = 1. The relation between the

number of total iterations and the number of accepted iterations for any step r is

M,
xr+1 *

Mt = (2.45)

Inserting the predicted acceptance from Equation 2.44 into Equation 2.45 yields

r—1

r+1 _ X
Mt - Ma (Xr)2 ’

for r = 1,2,.... For the first step M; is set equal to M, as indicated in Step (4) of

(2.46)

the Simulation Process section.

Numerical experiments were performed to compare the simulations using Equa-
tion 2.46 and simulations where MJ=40 xM,= 300 cycles, for r = 1,2,.... The
reason to set the maximum number of total iterations equal to a large constant
value is to ensure that the specified maximum number of accepted iterations is
reached at each step. The simulation specifications for these experiments (Table
2.2) are discussed in more detail in the Reproduction of Statistics section. The
simulation experiments reported in this section were conducted with three values
for the convergence rate factor, equal to a = 0.1, 0.5 and 0.9. For all simulations
the maximum number of accepted iterations per step is M, = 7.5 cycles. .

Results of the numerical experiments indicate a close agreement between the
simulations performed with the method given by Equation 2.46 and with the max-
imum number of total iterations per step equal to a large constant value. These
simulations reached the specified constant value of M; = 300 cycles only in the
last simulation step. The values of the acceptance ratio and the objective function
throughout conditional simulations using the method given by Equation 2.46 are
compared to the simulations for M; = 300 cycles in Figures 2.5 through 2.7 for a =
0.10, 0.50 and 0.90. These results indicate a close agreement between the simulation
results of the two methods. For the small convergence rate factor (¢ = 0.10), the
slight difference in the results arises because the predictions of the acceptance ratio

using Equation 2.46 are made over large increments of the control parameter.
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Annealing Schedule

The annealing schedule refers to the set of parameters that must be specified
in the simulated annealing method. In the method developed in this chapter, the
four parameters of the annealing schedule are the convergence rate factor (), the
maximum number of accepted iterations per step (M,), the tolerance for the so-
lution (ey) and the tolerance for the acceptance ratio (€5). The objective of this
section is to evaluate the performance of conditional simulations for different an-
nealing schedules and to derive guidelines to select the parameters of the annealing
schedule needed for efficient simulations.

The convergence rate factor controls the magnitude of the decrements of the
control parameter from step to step in the simulation process. As indicated by
Equation 2.29, small convergence rate factors, close to zero, yield large decrements of
the control parameter, while large convergence rate factors, close to one, yield small
decrements of the control parameter. The maximum number of accepted iterations
per step used in Step (7,i,b) in the Simulation Process section is the criterion to
assume equilibrium conditions of the objective function in each step. The tolerance
for the solution stops the simulation when the attributes of the simulated variable
are close to the set of specified properties. The tolerance for the acceptance ratio
stops the simulation when changes in the objective function are insignificant due to
only few accepted iterations during a step.

The convergence rate factor is the only independent parameter of the system
and in principle it should be the only parameter required in the annealing schedule.
However, in most implementations of simulated annealing, including the method
described in this chapter, a robust procedure is not available to identify the onset
of equilibrium of the objective function at each step of the simulation. The tolerance
for the solution and for the acceptance ratio are practical stopping criteria which
are required in most numerical methods.

The efficiency of a conditional simulation can be ranked by the quality of the
solution and the computational effort. The combination of the four parameters of
the annealing schedule which yield high quality solutions for the smallest computa-

tional effort is the optimal annealing schedule. Unfortunately, for the conditional
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simulation problem considered in this chapter, it is difficult to measure the quality
of the solutions because the problem inherently entangles uncertainties. Further-
more, a close convergence to all the constraints and specifications of the simulation
is not sufficient to measure the quality of the solution. In fact, the evaluation of the
results of several conditional simulations indicates that all of the constraints and
specifications are closely reproduced for a wide range of values of the parameters
in the annealing schedule but the computational effort for the simulations varies
significantly for different annealing schedule parameters.

In this section, an approach is developed to measure the quality of the solutions
from the conditional simulations. This approach consists of estimating a certainty
index between a known master distribution of a variable and the corresponding
simulated distributions. The certainty index is defined in this section and is used
to measure the quality of the simulations. The master distribution is the known
distribution of a variable and it is used to derive the constraints and specifications

used in the simulations.

Master Distribution

The master distribution is a two-dimensional synthetic distribution of a vari-
able. The value of the variable is known everywhere in the master distribution.
The function of the master distribution is to use it as a standard to measure the
quality of the results from conditional simula.tions designed to reproduce this mas-
ter distribution. The advantage of using a master distribution is that uncertainties
involved in the evaluation of the statistical properties of the variable can be elimi-
nated. The exhaustive statistical properties, such as the distribution function and
the semi-variograms, required as specifications in the simulation are available since
the value of the variable is known at every grid point.

The master distribution has been generated with a sequential Gaussian sim-
ulation method.3¢ The specifications used in this simulation method allowed to
generate a master distribution with four regions of alternating low and high mean

values. This type of distribution resembles a layered structure which is found in
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several reservoir engineering applications. Also, this layered structure serves as a se-
vere test for a conditional simulation method due to the nonstationarities resulting
from the marked changes of mean values among the layers. The master distribu-
tion consists of 1300 grid points, and there are 65 grid points in the x or lateral
direction and 20 grid points in the z or vertical direction. Other specifications used
in the sequential Gaussian simulation are not discussed because only the sample
statistics derived from the master distribution are required for the conditicnal sim-
ulation performed in this section. In fact, the origin of the master distribution is
not important and other conditional simulation methods can be used to generate
this distribution.

A gray scale map of the master distribution is shown in Figure 2.8. The white
colors in the gray scale map correspond to the minimum value, the black colors
correspond to the maximum value and different gray tones in between white and
black are assigned by linear interpolation of the corresponding value. The univari-
ate statistical parameters of the master distribution are summarized in Table 2.1.
The histogram of the master distribution is shown in Figure 2.9 and it is close
to a uniform distribution. Actually, this distribution is a mixture of a low mean
distribution with the highest frequency near the value of 9.0 and a high mean distri-
bution with the highest frequency near the value of 29.0. These low and high mean
distributions correspond to the layers with a high and a low magnitude, but the
overall distribution appears to be a uniform due to the gradual transition of values
in between the distributions. The exhaustive cumulative distribution function of
the master distribution is shown in Figure 2.10.

The exhaustive sample semi-variograms of the master distribution along four
directions are shown by the circles in Figures 2.11 and 2.12 and the corresponding
models fitted to these semi-variograms are shown by the solid lines. The parameters
of the semi-variogram models are given in Table 2.2 for the simulation specifications
used in Reproduction of Statistics section. The semi-variogram along the horizontal
or x direction (Figure 2.11) is almost an order of magnitude smaller than the semi-

variograms along the other directions. Also, the correlation range in the x direction
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Table 2.1

Univariate statistics of the master distribution

Parameter

Number 1300
Mean 16.3933
Variance 96.5527
Standard Deviation 9.8261
Coefficient of Variation 0.5994
Minimum 0.0
Maximum 40.2470
Median 15.7100
1% quartile 8.0000
3r¢ quartile 24.6030
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Table 2.2

Base specifications for conditional simulations

Grid Geometry

Direction X
Number 65
Spacing 1.0

Conditioning Data

Number

Distribution Function
Number of classes
Subclass distribution
Semi-variogram Models
x direction

z direction

x/z direction

-x/z direction

of the master distribution

z
1 20
1.0 1.0

60

60

Uniform

~(h) = 31.0[1 — exp(—3h/17.0)]
~(h) = 34.0h,h < 5
q(h) =25.0h,h < T
~(h) = 240k, K < T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44



is longer than the correlation ranges in the other directions. These differences of
the semi-variograms are due to the small variability and greater continuity as a
result of the layered structure of the master distribution. The hole effects® in the
semi-variogram along the vertical or z direction (Figure 2.11), and for the 45° cr
x/z and -45° or -x/z directions (Figure 2.12) are also due to the layered structure of
the master distribution. For the z direction the semi-variogram reaches a minimum
value at a lag equal to 10 units which corresponds to two times the approximate
thickness of each layer. In the x/z and -x/z directions, the layers appear to be thicker
and the distance at which- the semi-variograms reach a minimum value increases to
a lag equal to 14 units. However, the observed hole effects will be ignored and
only the models shown in Figures 2.11 and 2.12 up to a maximum lag equal to the
approximate layer thickness will be used for the z, x/z and -x/z directions in the

conditional simulations.

Reproduction of Statistics

Several numerical experiments were conducted to investigate the effect of the
annealing schedule parameters on the reproduction of the specified statistics and
on the computational performance of simulated annealing. The specifications for
the conditional simulations were derived from the master distribution. A

The simulation region for the conditional simulations consists of 1300 grid
points and it has the same geometric configuration as the master distribution. The
conditioning data, cumulative distribution function, and semi-variogram models for
all the conditional simulations described in this section are the same and are sum-
marized in Table 2.2. The conditioning data consists of 60 values of the master
distribution. These conditioning data are located in three sections along the z
direction corresponding to the first, the middle and the last x locations. The cu-
mulative distribution function and the semi-variogram models are shown in Figures
2.10 through 2.12.

The parameters of the annealing schedule used in the numerical experiments

consisted of convergence rate factors () between 0.10 and 0.90 and maximum
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number of accepted iterations per step (M;) between 0.50 and 30.0 cycles. All the
iteration parameters used in this section and the following sections are given in
units of cycles. One cycle equals to the number of iterations equal to the number
of grid points of the simulation region. The cycle is a convenient unit because the
number of combinations of the simulated variable or the solution space is related
to the number of the simulated grid points. For most conditional simulations, the
solution tolerance (€,) is equal to 1x10~4 and the acceptance ratio tolerance (¢s)
is equal to 2.5x1072. These tolerances were varied in a few conditional simulations
described later.

The initial distribution of the variable for all the conditional simulations de-
scribed in this section is the same (i.e., same seed used to initialized the random
number generator). The sample semi-variograms of the initial distribution for the
four directions considered in the simulations are shown in Figures 2.13 and 2.14
and indicate that the initial distribution is uncorrelated. All the simulations, for
different annealing schedule‘parameters, were capable of reproducing the specified
statistical properties (Table 2.2). Comparisons between the simulated and the spec-
ified statistical attributes for the simulation case with a =0.50 and M, = 5.0 cycles
are shown in Figures 2.15 through 2.17. For this case, the agreement is close be-
tween the specified and simulated cumulative distribution function (Figure 2.15)
and semi-variograms (Figures 2.16 and 2.17). For the simulation cases with other
annealing schedules, the agreement between the specified and simulated statisti-
cal attributes is as close as for the case compared in Figures 2.15 through 2.17.
However, the computational effort (total number of iterations throughout the sim-
ulation) varies significantly for the different cases. For example, the computational
effort required for the case with & = 0.50 and M, = 5.0 cycles is about ten times
greater than for case with & = 0.10 and M, = 0.50 cycles. For these and other
cases discussed later, it is observed that the reproduction of the specified statistical
properties appears to be independent of the annealing schedule parameters.

In addition to the simulations with different annealing schedules, a conditional

simulation was conducted using the greedy algorithm for the specifications shown
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in Table 2.2. The greedy algorithm is a limiting case of simulated annealing be-
cause it does not use the Metropolis condition and, therefore, it does not require an
annealing schedule. Instead, it accepts only the iterations which reduce the magni-
tude of the objective function. The greedy algorithm corresponds to the limit when
the control parameter approaches zero and the exponential probability function of
the Metropolis condition in Equation 2.27 becomes equal to zero. Therefore, the
convergence rate factor and the maximum number of accepted iterations per step
are meaningless in the greedy algorithm. For the conditional simulation conducted
with the greedy algorithm, the specified and the simulated statistical attributes
are in close agreement and the comparison between these attributes is similar to
the simulation case shown in Figures 2.15 through 2.17. The computational effort
for the greedy algorithm (50.3 cycles) is smaller than for the simulated annealing
conditional simulations. The computational cost of simulated annealing approaches

the greedy algorithm computational cost as & and M, tend to zero.

Optimum Schedule

The optimum schedule is defined as the set of parameters of the annealing
schedule which yield the lowest computational cost simulations without sacrificing
the quality of the solution. An optimum schedule will be needed for praética.l
application of conditional simulations consisting of a large number of grid points,
potentially in the order of millions of grid points.

The computational cost of a conditional simulation is measured by the total
number of iterations required to achieve the final solution. The computational cost
of a simulation increases as the convergence rate factor increases and as the maxi-
mum number of accepted iterations per step increases. The computational costs of
the conditional simulations of the master distribution described in this section are
shown in Figure 2.18. These results indicate that for a éonsta.nt convergence rate
factor, the total number of iterations of a simulation increases as a linear function
of the maximum number of accepted iterations per step. The results of Figure 2.18

are redrawn in Figure 2.19 using a semi-logarithmic scale to illustrate that for a
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constant number of maximum accepted iterations per step, the total number of
iterations in a simulation increases as an exponential function of the convergence
rate factor.

Results of the numerical experiments indicate that the conditional simulations
for different values of the parameters of the annealing schedule reproduced closely
the specified statistical properties. Based on these results, it appears that repro-
duction of the specified statistical properties is not enough to measure the quality
of a conditional simulation. Otherwise, the greedy algorithm can be judged to be
the best algorithm. The problem, however, with this conclusion is the inability to
discern the local from the global minimum simply based on matching the speci-
fied statistical attributes. In order to distinguish these minima, it is necessary to
evaluate other fundamental differences which must exist among the simulations for
different parameters. One approach to measure the quality of the simulation can
be to visually compare the simulated distribution to the master distribution using,

for example, gray or color scale maps. However, this approach is too subjective.

Since the problem is inherently stochastic, a better approach to estimate the qual-

ity of a simulation is to use a coefficient to measure the certainty of the simulated
distribution.
The certainty coefficient, C, between a simulated variable, V,, and the true

t32

value, V4, is defined using the linear correlation coefficient®* and it is given by

Sy [Ve (@) — V| [Ve(@:) — Vi)

C= =1 e (2.47)
VENL V(@) - Vaj2 TR [Va(@:) - V)2
where,
. 1 Na
Vo= PRACH, (2.48)
8 =1
and
v —iivw-) (2.49)
t Na pa t\Wz ). .

The certainty coefficient varies between 1 and -1. The extreme values of the cer-

tainty coefficient indicate the following relations between the true and the simulated
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distributions: (1) for C = 1 there is a perfect positive linear relation, (2) for C =
0 there is no correlation and (3) C = -1 there is a perfect negative correlation.
Also, the certainty coefficient can be interpreted as the slope of the least-squares
regression line between fthe standard scores transform of the true and simulated
distributions. If the simulated distribution is a perfect prediction of the true dis-
tribution, then the certainty coefficient is equal to one. As the quality of this
prediction degrades the certainty coefficient decreases and it becomes equal to zero
when there is no correlation between the simulated distribution and the true distri-
bution. The certainty coefficient becomes negative when the values predicted by the
simulated distribution and the corresponding true values consistently have opposite
magnitudes.

The certainty coefficients between the simulated distributions and the mas-
ter distribution for the different annealing schedules and the greedy algorithm are
shown in Figure 2.20. These results reveal important differences between simu-
lated annealing and the greedy algorithm and among the simulations with different
annealing schedule parameters. The certainty coefficient of the greedy algorithm
distribution is equal to 0.3232 and it is significantly smaller than the lowest cer-
tainty coefficient in a simulated annealing distribution. The simulated distributions
for a = 0.50 and M, = 5.0 cycles and for the greedy algorithm are shown in the gray
scale maps in Figures 2.21 and 2.22, respectively. It is clear from these results that
the distribution for the greedy algorithm (Figure 2.22) has a different appearance
than the true master distribution (Figure 2.8), while the distribution for simulated
annealing (Figure 2.21) closely resembles the master distribution.

For different annealing schedule parameters, the certainty coefficient decreases
as the convergence rate factor and the maximum number of accepted iterations per
step decrease. For small values of the convergence rate factor and the maximum
number of accepted iterations per step, the large fluctuations of the certainty coef-
ficient indicate that the number of iterations at each step is too small to allow the
equilibrium of the objective function for the large steps corresponding to a small

convergence rate factor. As the maximum number of accepted iterations per step
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increases the certainty coefficient tends to reach a stable value and for the largest
maximum number of accepted iterations per step shown in Figure 2.20, M, = 30.0
cycles, the mean certainty coefficient for the different convergence rate factors is
equal to 0.695.

The criterion of high quality solutions for the selection of the optimum pa-
rameters of the annealing schedule can be fulfilled by maximizing the certainty
coefficient of the simulations. For each of the convergence rate factors considered
in the numerical experiments, the optimum value of the maximum number of ac-
cepted iterations per step has been selected from the results in Figure 2.20 as the
smallest value with a certainty coefficient equal to 0.70. These optimal annealing
schedules are shown in Table 2.3 along with the corresponding total number of iter-
ations in the simulation or computational cost. The optimum annealing schedules
indicate that as the convergence rate factor increases the required maximum num-
ber of accepted iterations per step decreases, except for the case of & = 0.30. As
the convergence rate factor increases, Equation 2.29 indicates that the size of the
control parameter steps decreases and it can be anticipated that a smaller number
of iterations is required for the objective function to reach equilibrium at each step.
The exception observed for the smaller convergence rate factors, « = 0.10 and 0.30
may be due to the instabilities resulting from the large steps for these small con-
vergence rates. Table 2.3 indicates that the optimum annealing schedule with the
lowest computational cost corresponds to a convergence rate factor equal to 0.50.

The tolerance parameters in the annealing schedule for the numerical experi-
ments reported in Figures 2.18 through 2.19 are fixed. The effect of the acceptance
ratio tolerance on the computational cost is shown in Figure 2.23 for conditional
simulations with « = 0.50. As the acceptance ratio tolerance decreases, the compu-
tational cost increases. Further evaluation of these simulations indicates that when
the acceptance ratio tolerance becomes greater than 0.10 (10 % of the iterations
are accepted in the last step) the quality of the solution or certainty coefficient
decreases. The solution tolerance used in the numerical experiments, €, = 1x1074,

is significantly smaller than the tolerance required to get high quality solutions. In
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Table 2.3
Optimum annealing schedule parameters for
" conditional simulations of the

master distribution

Convergence | M, for |Computation
Rate Factor, |C = 0.70 Cost
a (cycles) (cycles)
0.10 10.0 697.482
0.30 13.8 1000.587
0.50 4.9 576.409
0.70 3.6 644.868
0.90 1.9 1039.115
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other simulations with a tolerance €, = 2x10~3 the statistical specifications are
closely reproduced and the magnitude of the certainty coefficients are close to.the
simulations with a tolerance €, = 1x10~%. An approach to specify these tolerances
of the annealing schedule is to set the acceptance ratio tolerance to a small value,
such as €; = 2.5%X1072, and to set the solution tolerance to a value which provides
a close reﬁroduction of the specified statistics, such as e, = 2x1073,

The analysis of the simulations discussed in this section indicates that the value
of the parameters of an optimum annealing schedule are a = 0.50, M, = 5.0 cycles,

€ = 2.5x10~2 and €, = 2x1073,

Quantifying Uncertainty

The objective of this section is to quantify the uncertainty of simulated distri-
butions for various types of constraints and specifications used in conditional simu-
lations of the master distribution. In practice, the information required to accesses
uncertainty is seldom available. Therefore, a major contribution of this section is
to provide an order of magnitude of the uncertainty of the predicted distributions
relative to the amount and quality of information available.

In the previous section, the statistical specifications were fixed and equal to
the parameters derived from the exhaustive master distribution. In this section, the
conditioning data, the distribution function and the semi-variogram models derived
from the master distribution are systematically altered to observe the effects on the
simulated distributions. Also, different equiprobable realizations of the simulated
distributions are evaluated. The base specifications for the simulations are the same
as the ones used in the previous section (Table 2.2). Except for the changes noted
throughout the discussion, the remaining specifications of the simulations described
in this section are the same as the base specifications. For all the conditional
simulations discussed in this section, the parameters of the annealing schedule are

a = 0.50, M, = 5.0 cycles, €z = 2.5x10~2 and ¢, = 1x1074,
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Equiprobable Realizations

Different equiprobable realizations were generated by varying the seed of the
random number generator. For each seed, a different initial distribution for the
simulations is generated. In the previous section, all the conditioﬁal simulations
used the same seed and have the same initial distribution.

The univariate statistics of the certainty coefficient and the computational cost
for ten realizations of the simulated distribution are given in Table 2.4. For the
ten generated realiza.tions., the certainty coefficient does not change significantly
and indicates that the quality of different realizations of the solutions is similar.
However, for the same realizations, the computational cost of the simulations varies
more than the certainty coefficient and have range of about 200 cycles.

In an attempt to quantify the differences or variations among the realizations of
the simulated distribution, certainty coefficients between the realizations were com-
pared. The purpose of this comparison is to determine if the different realizations
reproduce the same characteristics of the master distribution or if each realization
reproduces characteristics of the master distribution different from other realiza-
tions. This implies that if two realizations have similar certainty coefficients with
respect to the master distribution and the realizations are similar, then the certainty
coefficient between the realizations can be greater than the individual certainty co-
efficients with respect to the master distribution. The approach to calculate the
certainty coefficient between realizations consists of specifying one realization as
the true distribution and calculating the certainty coefficient between this realiza-
tion and each of the remaining nine realizations. This approach allowed to calculate
45 certainty coefficients for different possible combinations among the ten realiza-
tions. The univariate statistics of the certainty coefficients between the realizations
is shown in the third column of Table 2.4. The mean certainty coefficient between
the realizations is lower than mean certainty coefficient with respect to the master
distribution (first column of Table 2.4). Also, the variance and the range of the
certainty coefficients between the realizations are significantly greater than for the

certainty coefficients with respect to the master distribution. None of the certainty
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Table 2.4

Univariate statistics of certainty coefficients

for different realizations of conditional

simulations of the master distribution

Parameter Simulation |Computation | Among Simulations
Certainty Cost Certainty
Coefficient (cycles) Coefficient
Number 10 10 45
Mean 0.7042 491.057 0.6581
Variance 0.0003 5040.348 0.0016
Standard Deviation 0.0160 70.995 0.0405
Coefficient of Variation | 0.0227 0.1446 0.0615
Minimum 0.6777 410.126 0.5679
Maximum 0.7297 603.248 0.7418
Median 0.7061 484.029 0.6532
1%t quartile 0.6878 425.212 0.6294
3% quartile 0.7135 530.034 0.6927
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coefficients between the realizations approaches a value near one, implying that any
pair of the realizations is not close to be identical. On the other extreme, the mini-
mum certainty coefficient between the realizations is significantly greater than zero,

indicating that at least some major characteristics of the realizations are similar.

Conditioning Data

The conditioning data used in the simulations of the master distribution in the
previous section consisted of 60 values arranged in three vertical segments. In this
section, the number of conditioning data values is changed from zero (unconditional)
to 120 values or close to 10 % of the number of grid points in the simulation region.
For all cases, the locations of conditioning data is arranged in vertical segments,
where each segment consists of 20 values. For the case corresponding to one vertical
segment or 20 conditioning data values, this segment is assigned to the middle of
the lateral or x direction and for the case of two vertical segments or 40 conditioning
data values, these segments are assigned to the edges of the lateral direction. For the
remaining cases, the vertical segments of conditioning data are uniformly distributed
along the lateral direction of the simulation region.

The certainty coefficients of the simulated distribution for different number
of conditioning data values are shown in Figure 2.24. Surprisingly, the simulated
distribution with no conditioning data has a certainty coefficient greater than the
certainty coefficients for the cases with 20 and 40 conditioning data. For the re-
maining cases, the certainty coefficient increases as the number of conditioning data
values increases.

In order to investigate the effect of the arrangement of the conditioning data,
an additional simulation has been conducted with the conditioning data arranged
in horizontal segments instead of vertical segments. In this case, the conditioning
data consists of 80 sample values arranged in four horizontal segments, where each
segment consists of 20 values. The horizontal segments are located in the middle
of the simulation region and are uniformly distributed along the vertical direction.

The certainty coefficient for this case is shown by the solid point in Figure 2.24 and
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indicates that this is slightly lower than the certainty coefficient corresponding to

the 80 conditioning values arranged in vertical segments.

Distribution Functions

The cumulative distribution functions used in the conditional simulations were
derived from the master distribution and only the number of classes varies among
the different distribution functions. The number of classes for the distribution func-
tions ranges from 5 to 80 classes and for each case the within class distribution is
assumed to be a uniform distribution. The certainty coefficients of the simulated
distributions with different number of distribution classes are shown in Figure 2.25.
These results indicate that the certainty coefficients for the different number of
classes are not significantly different, except for the case of 25 classes which reaches
an apparent minimum value. In these simulations, the number of classes of the dis-
tribution function should not have a significant effect on the simulated distributions
because all the simulations use a uniform within class distribution which is a good
approximation to the exhaustive distribution function of the master distribution

which is also near a uniform distribution.

Semi-Variograms

Conditional simulations were conducted to investigate the effect of different
number of semi-variogram models on the simulated distributions. In each simulation
case, the semi-variogram models are specified for different directions and the models
are the same as the ones given in Table 2.2. Only in one simulation discussed below,
a parameter of a semi-variogram model has been modified.

The certainty coefficients of the simulated distributions with different semi-
variograms specifications are given in Table 2.5. The certainty coefficients of the
simulated distributions generated with one semi-variogram model for the x direction
and two models for x and z directions are close to the certainty coefficient for the
case of four models. For the case with only one semi-variogram in the z direction the

certainty coefficient is almost equal to zero. Including the semi-variogram models
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Table 2.5
Certainty coefficient for conditional simulations of
the master distribution for semi-variogram models

along different directions

S