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ABSTRACT

Faustino A. Fuentes-Nucamendi (Doctor of Philosophy in Petroleum Engineering)
A Two-Phase Transient Wellbore Model for Simulation of Pressure Data.
( 268 pp. - Chapter V)

Directed by Professor Albert C. Reynolds

( 231 Words)

This work describes the development of a mechanistic model to predict the
effect that transient two-phase gas-oil flow in the wellbore has on pressure drawdown
and buildup behavior. A one-dimensional drift-flux model is used to derive the partial
differential equations governing the two-phase flow in the wellbore. The black-oil
approach, which accounts for a variable bubble-point pressure, is used to account for
the effect of interphase mass transfer. After obtaining the pertinent finite-difference
equations, solutions are computed by a sequential, iterative calculation procedure.
We present the development of a wellbore simulator that implements the proposed
model and the finite-difference solution procedure.

A procedure was developed to couple the wellbore model with a two-phase
flow reservoir simulator in order to allow two-phase flow in both the wellbore and

the reservoir. The coupled model should prove useful for the design of well tests and
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allows one to understand the physics of complex wellbore phenomena including phase
redistribution.

In addition, a subplex method was implemented to calculate the bottom-
hole pressures and flow rates from wellhead conditions. The procedure uses a time-
dependent linear temperature gradient in the wellbore to reduce computational time.
Except at early shut-in times, the method yields reasonable estimates of bottom-
hole pressure during buildup tests, but is not sufficiently accurate to be used with

confidence to predict bottomhole pressures during drawdown tests.
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CHAPTER 1

INTRODUCTION.

Pressure transient testing has been used in the petroleum industry to evalu-
ate reservoir characteristics for many years. It is well-known that there are several
factors that can influence the pressure response, such as skin, wellbore storage, phase
redistribution, partial penetration, etc.

Numerous analytical well testing solutions exits which treat the wellbore stor-
age coefficient as constant. These solutions are used worldwide and accepted in the
industry today, even though it is well recognized that in practice the wellbore storage
may be variable. Somewhat surprisingly, there are few papers related to effect of
wellbore phase segregation, a variable wellbore storage and a complete well dynamics
influence. It is well-known, however, that when wellbore phase segregation occurs
during a pressure buildup test, the buildup data may exhibit a characteristic pressure
hump. The main objective of the present study is to develop a mechanistic model
to predict the effect that transient two-phase gas-oil flow in the wellbore has on the
behavior of pressure drawdown and buildup data. In this study, a one-dimensional
drift-flux model is used to derive partial differential equations governing the phase
segregation process. The black-oil approach, which accounts for a variable bubble-
point pressure, is used to account for the effect of interphase mass transfer. After

obtaining the corresponding finite-difference equations, solutions are computed with
1
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a sequential, iterative calculation procedure.

A computer simulator has been developed to implement the proposed model
and the finite-difference solution procedure. For the purpose of verification. the sim-
ulator was first used to generate pressure responses from a buildup test in a well
where single phase flow exits in the wellbore before shut-in. The analysis of gener-
ated pressure buildup data was carried out by type-curve matching with the classical
wellbore storage and skin type curves and also by using Horner analysis. These stud-
ies yield correct values of permeability, skin factor, initial reservoir pressure and also
the wellbore storage coefficient.

After verification, the simulator was applied to simulate the phase redistribu-
tion process occurring in the wellbore during pressure buildup tests in wells shut-in
at the surface. This study presents two cases: a buildup test in a naturally flowing
well and a buildup test in a gas-lift well. The investigation confirms that the well-
bore storage coefficient can either increase or decrease, as reported in the literature.
The variation in the wellbore storage coefficient is affected by both phase segregation
and gas compression. If the magnitude of afterflow is small after the end of wellbore
phase segregation, then phase segregation will be the dominating factor. and pressure
buildup data will show an increasing wellbore storage coefficient. On the other hand.
if the afterflow is still large after gas and liquid have completely segregated in the
wellbore, the gas column will be compressed due to afterflow and the pressure buildup
data will show a decreasing wellbore storage coefficient.

These cases were used to consider numerical accuracy and stability of the

model. and to investigate the validity of the Fair! and Hegeman? models for wellbore
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phase redistribution. Additionally, an isothermal and a non-isothermal transient pro-
cess of wellbore phase segregation were simulated to investigate its effect on pressure
response.

Finally. several simulations were done and synthetic wellhead and bottomhole
data were recorded. The wellhead data were used to invert the wellhead pressure and
rate response to bottomhole conditions. The data obtained from the inverse problem
solution was compared with the recorded bottomhole data, in order to verify the
feasibility of using it as a method to verify actually recorded bottomhole data or as
an alternative method to produce bottomhole data that can be analyzed with normal

method using only the wellhead pressure and rate responses.

1.1 Background.

All pressure transient tests are the same in a sense that we attempt to obtain
reservoir flow properties by monitoring and analyzing output signals (pressure or flow
rate) generated by a reservoir as it responds to input signals (changes in fiow rate
or pressure). Although pressure is easily measured down-hole, the measurement and

control of flow rates are usually done at the wellhead, not at bottomhole.

Considering a drawdown test, if a constant wellhead rate is maintained. the
bottomhole does not respond immediately to the pressure/rate condition imposed
at surface, i.e., the sandface rate is initially zero and continuously increases as the
bottomhole the pressure/rate condition responds to the surface conditions, reaching
a maximum value equal to the surface rate as steady-steady conditions are reached.

This process is called unloading®*, and its time length is strongly dependent on the
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well producing conditions, reservoir fluid PVT properties and wellbore characteristics.

On the other hand, during a buildup test. a no-Aow wellhead rate is established
at the beginning of the test, and, as in the drawdown test, the bottomhole does not
react instantaneously to the new pressure/rate condition imposed at surface. In this
case, the sandface rate continuously decreases from the maximum value reached at
the end of the production period to a minimum value of zero, or, may even becomes
negative: i.e.. backflow could occur. This process is called afterflow and could include
a certain period of backflow.

In pressure transient analysis, the period where the surface and sandface rates
are different is referred as the wellbore storage period. In order to model the influence
of wellbore effects on the bottomhole pressure, the wellbore storage coefficient was
introduced®*:3. Treating the wellbore storage coefficient as a constant may be ade-
quate for tests in wells operated under single phase flow conditions, but it is not valid
under multiphase flow conditions; i.e., when oil and gas flow simultaneously in the
wellbore, a variable wellbore storage coefficient will be obtained. To develop better
well test analysis techniques, a better understanding of the physics of multiphase fow
in the wellbore is essential.

Complicated phenomena occur when gas and oil flow simultaneously in the
wellbore. One anomalous behavior which occurs in pressure buildup tests is the
“pressure hump”, which is characterized by the fact that the bottomhole pressure
builds up to a maximum and then falls off®.

The first study that reported problems associated with wellbore phase re-

distribution was presented by Stegemeier and Matthews®in the late 1950’s. They
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conducted simple bubble-rise laboratory tests as well as field tests, to confirm the
influence of phase segregation on the pressure response during a buildup test. It was
found that in many cases, this pressure hump behavior was due to the segregation
of gas and liquid after the well was shut-in at the wellhead®”. Pitzer et al.” showed
that the magnitude of the wellbore phase redistribution effects depends on producing
well characteristics, i.e., the producing gas-oil ratio and stabilized rate of flow in the
well. Due to the effect of phase redistribution, the Horner semilog straight line is of-
ten delayed or completely suppressed and standard semilog analysis cannot be used.
Analysis techniques for the pressure buildup response were not presented in either of
these works® 7.

The work by Fair! is the first attempt to correct wellbore effects caused by
phase redistribution in pressure buildup tests. In Fair’s model, phase redistribution
was treated as a wellbore storage effect and incorporated into the inner boundary
condition for the diffusivity equation. Based on limited experimental data, it was
assumed that the phase redistribution pressure function has an exponential form.
New analytical solutions were then obtained and new type curves were developed
for the analysis of field data. Fair’s analytical solution shows that, at carly times. a
well experiencing phase segregation in the wellbore will act like a well with constant
storage, but with an apparent storage coefficient, C,p. Then. a transition period will
follow during which the wellbore storage coefficient can increase. decrease or even
become negative. However, at late times, the well will again act like a well with
constant storage, with storage coefficient equal to Cp. Since Cp > C,p. Fair's model

has been referred to as an increasing wellbore storage model.
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Later on. Hegeman et al.? reported that in some cases, field data indicated that
the exponential function used by Fair does not always give a good representation of
the phase redistribution pressure change. Hegeman ct al. modified and extended
the technique of Fair by using an error function to represent the phase redistribution
pressure function. The Hegeman et al. model apparently was motivated entirely by
a desire to obtain a model which predicted a behavior closer to field buildup data,
especially when the field data exhibits a decreasing wellbore storage coefficient. In
order to match some field data, however, Hegeman et al. assigned negative values
to the phase redistribution pressure change parameter which means that phase re-
distribution causes bottomhole pressure to increase more slowly. This appears to be
unreasonable from a physical point of view. The Hegeman et al. model leads to a
decreasing wellbore storage coefficient. Like Fair's model, the work of Hegeman et
al. shows that, at early times. a well will exhibit a constant wellbore storage co-
efficient, C,p, while at late times, the well will exhibit a constant wellbore storage
coefficient, Cp. Since Cp < C,p, the model by Hegeman et al. has been referred to
as a decreasing storage model.

In 1986, Thompson et al.® showed that there exist three different types of
pressure responses when phase redistribution occurs and presented conditions under
which each of the three types of pressure responses exists. It was also shown that
the analysis using Fair’s type curves could lead to multiple solutions. They presented
correlations to predict the beginning of the semilog straight line for the three types
of pressure response when phase redistribution exists.

The Fair and Hegeman et al. models can be used to prepare type curves.
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However. as pointed out by Fair (also see Ref.8), type curve matching can lead to
multiple solutions. In Ref. 9, we also encountered nonuniqueness problems when we
used nonlinear regression to match synthetic well-test pressure data generated from
our phase segregation simulator with the analytical solutions of Fair and Hegeman
et al. Rushing et al.'° proposed an automatic history matching technique to analyze
pressure buildup data influenced by wellbore phase redistribution. This automated
type-curve analysis method uses a Gauss-Newton least squares procedure.

Fair's results' (also see Thompson et al.®) indicate that phase redistribution
effects may not be severe enough to be easily detected on a log-log plot of buildup
pressure change versus shut-in time; however, as shown in Refs. 11 and 12, pressure
derivative plots can be used to detect the presence of phase segregation and locate
the beginning of the Horner semilog straight line. However, it was found that the
derivative of a pressure buildup response influenced by wellbore phase segregation is
quite similar to the derivative of the pressure buildup response obtained from a dual
porosity reservoir. They discussed methods to distinguish the two types of responses
from each other.

The important influence that phase segregation can have on pressure buildup
data, and the lack of a model which incorporated the true physical process of phase
segregation, motivated the present work, as well as that of previous researchers!3-,
to consider the development of a wellbore model to capture the essential physics of
transient two-phase flow in the wellbore. The simulators developed in Ref. 13 as
well as in Ref. 14 used classical multiphase flow methods for the wellbore. Those

methods were developed for steady-state flow, and therefore are clearly inappropriate
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for applications that involves transient flow.

Winterfeld"® developed a two-fluid wellbore model and coupled it with a (r-
z) reservoir simulator. His model allows three phase flow, but assumes isothermal
flow in both the wellbore and the reservoir. He used semi-empirical correlations for
the viscous forces between phases at phase interfaces. Newton iteration was used to
solve the combined equation reservoir/wellbore equations. Winterfield showed that
his model predicts a pressure hump when phase segregation causes a sufficiently large
pressure increase.

Following the same basic approach of Winterfeld'®, Almehaideb et al.!* devel-
oped a numerical model which couples a wellbore model with a black-oil reservoir
simulator. Instead of writing continuity equations for each phase with an interphase
mass transfer term as done by Winterfield for the wellbore equations, they perform
a mass balance on the oil, gas and water components using the standard black-oil
approach. Although, their basic model is a two-fluid model, they also implemented
an alternate procedure which incorporates the mixture momentum equation instead
of the individual phase momentum equations. They claim. however that the mixture
momentum equation can not be used for countercurrent two-phase flow, i.e.. can not
be used to simulate pressure buildup when phase segregation occurs. Their discussion
of pressure buildup is confined to one example. In their example, the two-fluid model
shows a pressure hump, whereas the solution obtained with the model incorpcrarting
the mixture momentum equation does not show this anomaly (see Fig. 10 of Ref. 14).
However, unlike the behavior of Fair’s model' and Winterfield’s numerical results, the

“pressure hump” exhnibited is not smooth.
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More recently. Hasan and Kabir*® presented a mechanistic approach to model
wellbore phase segregation. As noted in a later paper!® by the same authors. their
coupling of the wellbore and reservoir flow, which uses a different form of Duhamel’s
principle than used in this work and previous reports presented by the author®:!7
and Xiao et al.'®, appears to yield a less robust scheme that the procedure presented
here. Stability problems enconntered by Hasan and Kabir wellbore/reservoir coupling
forced them to switch to an exponential form of the sandface flowrate at low rates.

In Ref. 16, Hasan and Kabir presented a mechanistic model to predict the
pressure increase due to a single bubble migrating upward through the liquid column
during a pressure buildup test, and presented approximate analytical solutions for
this pressure change during early shut-in times. Quite interestingly, their analytical
solutions have the same exponential form as the empirical one used by Fair®.

To the best of our knowledge. no existing simulator has been able to generate
results which confirm the conjectured equations given by Fair! and Hegeman et al.2

for the phase redistribution pressure rise.
1.2 OQutline.

The main objective of this work is to develop computer simulators coupling
wellbore multiphase flow with reservoir flow and investigate the effect of wellbore
multiphase flow on pressure buildup data.

In Chapter II. we present the main features of the transient wellbore model.
Using basic principles and considering local and instantaneous formulations, the equa-

tions that govern the wellbore fluid dynamics are derived. The model is based on the
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drift flux model formulation and all the equations required to compute the physical
properties and a variable bubble-point pressure are based on a black-oil model formu-
lation. These equations are derived and explained in detail in Chapter II. Governing
equations for the wellbore model that include fully transieni mass and momentum
equations are described and detailed methodology to compute the heat transfer in
flowing wells is presented. These equations allow us to compute the pressure, concen-
tration, velocity and temperature profile in a wellbore during drawdown and buildup
tests. The drift-fliixx model closure relationship formulation is presented. The initial
and boundary conditions are established. Methodology to couple the wellbore model
with the reservoir through a convolution integral (Duhamel’s principle) or through a
numerical (r-z) reservoir simulator is presented.

Chapter III focuses on a detailed description of how the system of nonlinear
partial differential equations governing the phase segregation process in the wellbore
is solved numerically using finite difference methods. The wellbore is divided into
uniform control volumes and the finite difference equations are derived with a system
of staggered grids. A multistep implicit formulation has been selected to enhance
stability. The method consists of a basic step to solve for pressures. a stabilizing step
to solve for mixture velocities and a final step to estimate oil concentrations. Detailed
discussion of the calculation procedures for the drawdown and the buildup periods is
presented at the end of Chapter III.

In Chapter IV. pressures responses generated with the simulator for several
drawdown and buildup tests are presented and discussed. As part of the model

validation three cases are presented: the first case consists of a drawdown and buildup
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test in a naturally flowing well where single-phase oil flows in the wellbore. The second
case is a buildup test in a naturally flowing well but two phases develop in the wellbore
during production. The last case represents a pressure buildup test conducted in a
gas-lift well producing only single phase oil from the reservoir.

In the second part of the chapter, we analyze several buildup pressure responses
obtained from our model. The wellbore model was derived from basic principles, so
it is appropriate to consider whether buildup data obtained from it can be analyzed
using the Fair' and Hegeman® models. The TUPREP nonlinear regression package
based on least absolute value is used. Additionally, an isothermal and non-isothermal
transient process of wellbore segregation is simulated and the influence of temperature
in the buildup pressure response is analyzed.

In the last part of chapter IV, synthetic wellhead and bottomhole data are
presented for several cases. The wellhead data are used to invert the wellhead pressure
and rate response to bottomhole conditions. The data obtained from the inverse
problem solution are compared with the recorded bottomhole data. in order to verify
the feasibility of using it as a practical method to replace bottomhole measurements.

Finally, Chapter V summarizes the results and conclusions of the present work.

and suggests areas where additional investigation is needed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11



CHAPTER II

DRIFT FLUX MODEL

Investigation of transient gas-liquid two-phase flow in pipes has been pursued
by the following three general approaches®>!: the homogeneous model, the separated
or two-fluid model and the drift-ux model®*23:24:25, Qur formulation is based on the
drift-flux model. The procedure uses a black-oil formulation with variable bubble-
point to model the two-phase flow of oil and gas. For the reservoir, both single-phase
flow of oil and two-phase flow of oil and gas are considered. In the case of single-
phase flow, we can rigorously couple the reservoir and wellbore through a convolution
integral (Duhamel’s principle) or through a numerical reservoir simulator. In the case
of two-phase flow, a numerical reservoir simulator is used. Additionally, we allow the
injection of gas at the bottomhole. This option allows us not only to simulate gas-lift,
but also to approximate the effect of both gas and oil flowing into the well at the
sandface provided that the flowing gas-oil ratio is specified.

2.1 General PVT Properties and Muitiphase Flow Variables Definitions.

Here, a general two-component, two phase black-oil model will be described.
The reader well note that the formulation is quite similar to a standard one used
in reservoir simulation®®. Throughout our formulation, oil-field units are used and

the standard conditions assumed are given by p,c = 14.7 [psia] and T, = 60 [°F].
12
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Throughout this study, the subscript sc is used to denote standard conditions. The

black-oil wellbore model has the following characteristics :
e Two component system:

— 0 =oil component.

— § =gas component.
e Two-phase system:

-~ | =liquid phase=oil phase.

— g =gas phase.

By use the following notation:

Vi = volume of phase m at some pressure (p)
and temperature (T), (2.1)
Vam = volume of component ¢ at standard conditions (2.2)
that is obtained from phase m.
Mem = P5Va.m = mass of component ¢ in the volume Vi . (2.3)
The formation volume factor of the oil phase is defined by
Vo
B, = . 24
= 24
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that is. the ratio of the volume of oil plus its dissolved gas at reservoir conditions
to the volume of the oil component at the standard conditions in [RB/STB]. In a

similar way. the formation volume factor of the gas is

Ve
= 2.5
B, s (2.5)

i.e., as the ratio of the volume of free gas (only gas component) at reservoir conditions
to the resulting volume of the gas obtained at standard conditions in [ft3/scf].

In general, the solubility ratio of component ¢ in phase m defined as

fom = 2.
Room = 725 (2.6)

ms,m

Thus, the solubility of the gas component in the oil phase is given by

VA

Rs.go = V—ffﬁs (27)

5.0
which is, the volume of gas at standard conditions dissolved at a given pressure and
temperature in a unit volume of stock-tank oil in [scf/ST B].

The phase density of the gas phase is defined as ratio of mass of oil and gas
components in the gas phase to the volume of that phase at specified conditions and

is given by

Mog + Mgg
pg = ———=. (2.8)
9 ‘/g

where o, g are the components present in the gas phase. g . and m,, and m,, are
defined as mo, = p5;V5, and myy = pg Vi tespectively, where pz; and pg; are

0s.g9

the densities of component 6 and § at standard conditions. Considering the two-
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components (o, g) and using the definitions of formation volume factor and solubility
ratio, we have
= —R*"g’)"?‘) , (2.9)

pg:Fg(pﬁJr 5.615

and for the liquid (oil) phase the density is defined as

1 Rs.gop&
=—|pa+—. 2.10
A =B, (”°°+ 5615 (2.10)

In our work, we assume that the oil component is not allowed to vaporize into
the gas phase (R;oy = 0). Then, letting R = R; o, pgs = pg; and pos = pg;, the gas

phase density and liquid (oil) phase density, respectively, are given in units of lbm/ft3

by
~ Pas 2.11
P2 = 56158, 1)
and
Rqus Pos
= b Lo 2.12
M= 356158, B, (2.12)

where we now assume B, represents the gas formation volume factor in [RB/scf],
B, represents the oil formation volume factor in [RB/ST B] and R, represents the
dissolved or solution gas-oil ratio in [scf/STB]. The 5.615 factor in Eq. 2.11 con-
vert B, from [RB/scf] to [ft3/scf]. The 5.615 factor in Eq. 2.12 convert R, from
[s¢f/STB] to [STB/STB].

From Eq. 2.12 the partial densities of the gas and oil components in the liquid
phase. denoted, respectively, by py and p,, are given by

_fspgs (2.13)
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By using Eq. 2.13 and 2.14, we can rewrite Eq. 2.12 as
pL = pgt + Pol- (2.135)

The mass fraction of component ¢ in phase m is defined as

Cm = m ki
Mm
aVa & Vaim Vam
_ P& Vam _ P& S. : (216)

PmVm _pm Vi V;?s_m’

by using formation volume factor and solubility ratio definitions, Eq. 2.16 yields

PaRs.em 9 1=
= e ST 2.1
Cem o B.. (2.17)

Considering Eq. 2.17, the mass fraction of the gas component in the liquid (oil) phase

and the mass fraction of the oil component in the liquid phase, respectively, are given

by
Pgs s :
Cop=c—ir, 2.18
% 5.615 B, (2.18)
pOS
Cu= . 2.19
l Bopi ( )
where
Cy+Cq =1 (2.20)
By considering the mass fraction definitions, we can rewrite Eqgs. 2.13 and 2.14
as

pgt = Cqpr. (2.21)
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and
Pol = Colpl- (222)
By combining Egs. 2.18 and 2.19, we can calculate the solution gas-oil ratio
as
R, = (ﬂ) (__5615”‘”) . (2.23)
Col Pgs
If we denote E, and E; as the gas void fraction and liquid holdup, respectively,
we have

E,+E =1, (2.24)
The gas-liquid two-phase mixture density is defined as
Pm = Ligpg + Ep. (2~25)

Defining the mass concentration of oil and gas components in the two-phase

system by C; and Cy, respectively, and considering material balance, we obtain

C, = M' (2.26)
Pm
C = Zbet (2.27)
Prm
where
C+C,=1. (2.28)

The total gas-oil ratio in a two-phase system. R. is defined as the ratio of the
volume of the total gas component in [scf], to the volume of the total oil component

in [STB]. By considering the definitions of C; and C,, we have

R= (%) (M) , (2.29)
Ci Pgs
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Values of R from Eq. 2.29 are used to compute the bubble-point pressure at cach
location along the wellbore. Using Egs. 2.11 to 2.14. 2.23, 2.26 and 2.27 it can be

shown that Eq. 2.29 is equivalent to

R=R, + (g:) (-I—EI—E') . (2.30)

We can rearrange the preceding equation to compute liquid holdup as

B,
= 2.
& B, +B,(R—R,) (2:31)

In the multiphase flow literature, superficial gas velocity, 4, and superficial

liquid velocity, vy, are defined respectively as

Veg = %9 (2.32)
and
vy = %, (2.33)

where g, and ¢ are the gas and liquid phase volumetric flow rates in [ft3/sec] and
A is the pipe cross sectional area in [f#*]. Correspondingly, the gas and liquid phase

true velocities are defined as

. = q‘q 2.3

g aE, (2.34)
and

N 2.3:

1 AE,’ (2:35)

where AE; and AE; represent the pipe cross sectional area occupied by the gas
and liquid phase, respectively. From Egs.2.32 through 2.35, we obtain relationships

between the superficial velocity and the true velocity as follows:

vsg = Egtyg, (2.36)
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and

vy = Epy. (2.37)
The relative velocity between gas and liquid phase is defined as
v = vy — 1. (2.38)

In case of the drift-flux model, the two-phase mixture velocity is defined as the
density-averaged superficial velocity, i.e.,

_ VsoPg + vapy (2.39)
Prm

7'm
Note that we have v, = v, when E, = 1. Similarly, we have v,, = v, when E; =
1. From Eq.2.25 and Egs.2.36 through 2.39, one can easily derive the following

relationships between the true velocity and the mixture velocity:

. _E;p”’r, (2.40)

and

2T (2.41)
Prm

M= Uy —

Egs. 2.40 and 2.41 indicate that the flow of each individual phase is a result of relative
fluid motion superposed on the mixture velocity. Because of these relationships. the

drift-flux model is also referred to as the diffusion model.

2.2 Governing Equations.

Gas-liquid two-phase flow is considered in the wellbore. Because the anoma-

lous pressure buildup behavior is believed to be caused by phase redistribution in the
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wellbore. we focus our effort on the analysis of wellbore two-phase flow. The superpo-
sition principle can be used to relate the bottomhole pressure with the sandface flow
rate. provided that the bottomhole pressure at the instant of shut-in is higher than
the initial bubble-point pressure. A reservoir simulator is coupled with the wellbore
model so that either single-phase oil flow or two-phase flow in the reservoir can be
considered. As discussed later, the reservoir model essentially provides a boundary
condition for the wellbore flow. This study is concentrated on the investigation of
wellbore transient two-phase flow during pressure drawdown and buildup tests.
Throughout this study, the z-coordinate lies along the wellbore which is as-

sumed to be vertical. In relation to the z-coordinate the upward direction is positive.

2.2.1 Mlaterial Balance Equations.

A standard volume balance for the oil and gas components, respectively, can

be written as:

0 a
% (Eipol] + 3 [Eiport1] = 0. (2.42)
and
0 d
a [Egpg + E1pg[] + a [Egpgﬂg + Elpg[l’l] =0. (2.43)

Substituting Eqs. 2.11. 2.13, 2.14. 2.36. 2.37 in Egs. 2.42 and 2.43. we have
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and
o [E,  ER, 0 [vyy . vaRy ] 5 i
ot [B_gpgs + Bo pgsJ + Oz ,:nggs + B, pgsj, =0. (-'40)

By substituting Eq. 2.14 in Eq. 2.44, we find that
7] 0
— £ o o UstPot] = U. 2.
at[ P [] + 9= [l 1P f] 0 ( 46)

Similarly, using Eqgs. 2.11 and 2.13 in Eq. 2.45, yields

a ad -
ot [Egpg + Eipg] + 9= (5909 + vs1pgt] = 0. (2.47)

If we consider our drift-flux model formulation, we can rewrite the oil and gas
component mass balance equations in terms of v, and v,. By using Egs. 2.36, 2.37,

2.40 and 2.41 in Egs. 2.46 and 2.47, respectively, we find

0 0 0 | paEip,E v
E [Elpol] + E [Elpol7'm] = a_; [pl_lp’h'g—lJ B (248)
and
%) 0 0 | paEip,Eqv, .
ot [Egpg + Eipg] + 9z [(Egpg + Epgt)tm] = 92 [’l_io::'_g_] . (2.49)

By nsing Egs. 2.26 and 2.27, Egs. 2.48 and 2.49 can be written in terms of component
concentrations as follows:

0 oD,

0 -
a [Clpm] -+ E [Clpmrm] = - N (2‘)0)
and
3] a oD, -
-a-z [Cgpm] + 'a—: [Cgpmlfm] = — 9z " (2.51)

where the parameter D, represents diffusion caused by relative motion and is defined

by

[
[¥1]
1Y)
o

D, = Cip,Egv,. (2.
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Summation of Egs. 2.50 and 2.51 results in the following overall mass balance
equation for the flow system:
2 loml + 2 [pm] =01 (2.53)

Eqgs. 2.50, 2.51 and 2.53 are the three basic mass balance equations. In princi-
ple, any two of these equations can be used. In this study. we choose to nuse Egs. 2.50

and 2.53, i.e.. the oil component mass balance equation and the overall mass balance

equation.

2.2.2 Momentum Equation.

Phase segregation after the well is shut-in is a slow and gravity dominated
process. Here, however, we consider a full momentum equation. For vertical flow, the
gas and liguid momentum equations in any consistent set of units, respectively, are

given by Eq. A.56 (see Appendix A) as follows

d 0 0
52 (Espotsl + 5 [Bapgd] + T = ~Eya [py] + (pys = py) o [E]
w Si _
—LgPeg — Tgw A + ’qz,_Agf (2.54)
0 0 0 d
% [Eipvy] + [Ezpﬂ’ ] + Dy = —EIE o] + (pii — p) = 2
w S __
~Eipig = mw—p - nq’- (2.55)

where I';; and I'y; are the mass sources of the phases generated per unit volume of
the pipe. 1;; and vy, are the phase velocities at the gas liquid interface. p;; and p,; are
the phase pressures at the gas liquid interface and 7; and 7,; are the interfacial shear

forces.
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Since [y = - ['y;, summing the two momentum equations, Egs. 2.54 and 2.55.

we obtain the following combined momentum equation for the gas-liquid mixture:

7] 0 N 2
Y [Eypgve + Erprv)] + s [Egpg"E + EIPN'E] + Dyt (v — 1) =

0 ) P
_Egéz [pg] — E[& 1] + (pg: — p1:) 3 (E,]

0
+ (P = py) 9= (E,y] ~ [Egpg + Ezpql g

>
~

Sy Sy S: S; .
- ,:T[wjl' + Tgqu] + [Tgif - TlijJ . (206)

From Yadigaraglu®” the following interfacial transfer condition holds:

St St 0 0 .
Tgi‘_‘: - TIiZI = Dot [vgi = vi] + (pgi — D) EP [E,] = —QUHE::: (E,] . (2.57)

where o is the surface tension and H is the mean curvature of the interface.

In the drift flux model. we apply the two-phase mixture momentum equation
and a constitutive relation for the relative velocity. In order to simplify our mixture
momentum, the following assumptions for the conditions at the interface are applied:

a) the gas and liquid phase pressures are equal. i.e., Dgi == Dua,

b) the surface tension can be neglected.

Using Egs. 2.39, 2.40, 2.41 and 2.53, and considering the preceding assump-
tions, it can be shown that mixture momentum equation converted to field units is

equivalent to

pm_ O
14ig. Ot

[l'm] + PmUm 0 1 , a [(1 - El)ng[pl‘U;‘?J ap Pmg 0

T ] + = +—+ 2y, =
144g, 0z | I+ 3; 14dg.0,, 5z 1aig, T

(2.58)

where 7, = (7. S}*) JA+ (ngS;") /A, represents the pressure losses due to wall shear

stress. Allison et al.?® used the Lockhart-Martinelli?® method to develop correlations
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for the two-phase friction factors which depend on the flow regimes. However, their
correlations are reasonably well approximated by the Colebrook-White3® correlation
based on mixture properties. In our case, we are using a drift-flux model which
considers slippage but assumes that the fluids are well-mixed, (i.e., a homogeneous
model) in the part of the wellbore where two phases coexist, thus we consider it
appropriate to base our correlation for the pressure losses due to shear stress on the
mixture density and velocity.

Under the preceding assumption, 7, is given by

_ fmPm|Vm|Vm 5 =
™= Ta4g)2d (2.59)

where f,, is defined from the Colebrook-White correlation:

1 2e 18.7
—=174-2log | = - —|. 2.
fm o8 [d Rem\/f_m} ( 60)

Eq. 2.60 is nonlinear, but can be solved easily by Newton’s method using as the initial

guess the explicit expression given by Zigrang and Sylvester3!:

1 e/d 5.02 e/d 13.0
—_— = 2o | = — g | L= 4 . 2.
AV fm °8 ,:37 Hcm loc (31— + lzem)] ( 61)

In Egs. 2.60 and 2.61, R.., is the Reynolds number, which. in field units. is given by

_ 1488pm7'md (.-) 69)
T o

Rem

In Egs. 2.60, 2.61 and 2.62, the mixture density is defined by Eq. 2.25 and the

mixture viscosity is calculated from

pm = mE + py(1 ~ Ep). (2.63)
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Eqs. 2.50, 2.53 and 2.58 are the three fundamental equations describing tran-
sient flow of a gas-liquid mixture in the wellbore. The three primary dependent
variables are the oil component concentration, Cj, the mixture velocity, r,,. and the
pressure, p. Once the concentration distribution is determined, the total gas-oil ratio.
R. can be calculated from Eq. 2.29. Consequently, with known values of R and the

pressure distribution, liquid holdup can be obtained through Eq. 2.31.

2.2.3 Energv Equation and Heat Transfer in Wells.

As the reservoir fluids flow through the wellbore, they lose heat to the sur-
rounding rock. In this work, we consider convective heat loss between the flowing
fluids and the pipe wall, conductive heat losses through the pipes walls (tubing and
casing) and through any insulation or coating material and convective heat losses
between the fluid in the annular space and the tubing and casing walls. Addition-
ally. heat losses due to radiation can be considered and may be important for steam
injection or geothermal wells.

Fourier’s law for radial heat flow by conduction is given by

a1 ar
—_— - — _277 / K, —
q ky, Aar rAzky o

(2.64)
Integrating Eq. 2.64 from r; to 7,1, and rearranging the resulting equation gives

(T =Tiv)

z 2.65
1n(":+l/ri) (2.69)

g=27k, A

where k5 is the thermal conductivity of the medium in [BTU/hr — ft —° F]. q is the

rate of heat flow in [BTU/hr], T is the temperature in [°F]. Az is the gridblock size

in [ft].
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Eq. 2.65 can be applied to predict the heat loss through the tubing, the
casing, the pipe insulation and the cement. For example, when computing the heat
loss through the tubing with Eq. 2.65. r; and r;.,, respectively, represent the inner
and outer radii of the tubing and T; and T;.,, respectively, represent the temperature
at the inner and outer surfaces of the tubing. When introducing temperature cffects
into our wellbore simulator, Az will be the gridspacing in the z direction and Eq.
2.64 will be applied on each gridblock.

For heat convection, Newton’s law of cooling is given by

g=hs AAT, ~ (2.66)
where Ay is the convective heat transfer coefficient in [BTU/hr — ft* —° F|. In the
case of radial heat flux, Eq. 2.66 becomes

q=2mr, hy Az (T; - T;y). (2.67)
We apply Eq. 2.67 in each z-direction gridblock to predict the rate of convective heat

flow between the fluid in the tubing and the tubing wall; in this case, r; will be the

inner radius of the tubing, so
q=2mry hy Az (Ty — T). (2.68)

When Eq. 2.67 is used to predict the heat loss due to convection in the annulus. we

have

q = 27Ty honn Az (Tho — Ta). (2.69)
or in case of an insulated tubing,

q= 2x Tins h:mn Az (Tlins - Tm)v (270)
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where h,n, is the convective heat transfer coefficient of the annulus fluid in
[BTU/hr — ft* =° F), ry; is tubing internal radius in [ft], re is the tubing external
radius in [ft], r;,, is outer radius of the insulation in [ft].

In the case of radiation heat losses, we can write our heat loss equation as
q= 27 T h-r Az (T; - T‘i-é—l) . (271)

where A, is the radiation heat transfer coefficient in [BTU/hr — ft? —° F ]. Conduc-
tion, natural convection and radiation are important heat transfer mechanisms for
the annulus. In practice, a heat transfer coefficient .., can be used to consider
the combined effect of conduction and natural convection. The radiation heat losses
are important when the annulus is filled with gas but will not be considered here.

Applying Eq. 2.71 for our annulus space gives:

=27 T s he Az (Tins — 1) . (2.72)
Combining Eq. 2.70and 2.72 gives
q= 27 T ins (hann + hr) Az (T;'ns e Tcz) . (273)

We assume the well configuration as shown in Fig. 2.1 and assume steady-
state heat flow, i.e., at each z location and at each time, the heat flow is constant
for 0 < r < r,, where r,, is the outer radius of the cement. Then, since we have

steady-state heat flow across the tubing, annulus, casing, etc.. we can write:

_ (Tf - th) _ (th - Tto) _ (T;,o - Tms)
U T Urrah; A7) In(rafre) J@7 kD) 10 (ree/ra) /@7 ki)
_ (Tons = i)  (T.-Tw)
T 1/[27 Tins Az( hann + A )] T In(reo/ra) /(27 ksAZ)
(no - TuJ)

In(ry/reo) /(27 keemAz)’
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Figure 2.1: Typical Well Configuration
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which can be rearranged to obtain

q 1 In (rto/rti) In (rins/rtl) 1
T;y-T, =
d 27Az T hf * ks * kins * rins( hann. + hr)
1 co/'ci w/ ' co -
+n(’”k/r )+1n(,: [Te) | (2.75)

In Eq. 2.75, k, is the thermal conductivity of the steel, k.., is the thermal conduc-
tivity of the cement, and £, is the thermal conductivity of the insulation.

If we define a overall heat transfer coefficient as

_ 1 In(reo/re;) I (Tins/rei) 1 In(re/re)  In(ry/reo)

r—1 __ | w

Do B Tti hf T ks * kins * rins( hann + hr) ks * kcem ’
(2.76)

with units [BTU/hr — ft —° F] ,Eq. 2.75 can be rewritten as

[SV]
=~
-1
~

q=27U,Az(Ty - Ty). (2.

2.2.3.a Formation Temperature.

Assuming heat flow is only in the radial direction, an energy balance on the

formation gives

— == (2.78)

lﬂ( 0T) Cpepe OT 10T

where c, is the earth’s heat capacity, p, is the earth’s density. k. is the earth’s
thermal conductivity and ¢, is the earth’s thermal diffusivity, i.e., a. = k., /(Cpe Pe)-
To complete the specification of our initial-boundary-value problem (IBVP), we define
the following conditions:

Initial Condition:
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Inner Boundary Condition:

oT
= =27 ANz | — .
q 2nry koA (ar>rw

Outer Boundary Condition:

lim T (r,t) =T,

r—2

In order to generalize our solution, we recast our IBVP (Eq.

terms of the following dimensionless variables:

Dimensionless radius, rp:

r
'p =—,
rw
Dimensionless time, tp :
Qet
tp = —-.
rw

Dimensionless temperature drop, Tp :

2m ke Az

(2.81)

2.78-2.81) in

(2.83)

(2.84)

Using the above dimensionless variables, we have our dimensionless IBVP as

19 ( OTD>_0TD

T .
D aT‘D b 67‘0 0tD

Tp(rp,0) =
oTp
rD'ar_er_l = -1,
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and

lim Tp (T‘D, tD) =0. (288)

rp—2oC

The IBVP has the following Laplace space solution

Ko (rD\/a) P
PR, (rov/) (239

Tp=
where Tp is the Laplace transform of Tp with respect to {p and u is the Laplace
variable.

Evaluating Eq. 2.89 at rp = 1.we obtain our wellbore solution as

= __K.(Vu)

At long times, (¢p > 25), the dimensionless wellbore temperature drop can be

closely approximated by a semilog equation, i.e.,

[In ¢p + 0.80907] . (2.91)

[ X

T.p=

This approximation for tp > 25 was proposed by Ramey3?, who used a line source

solution for Tp,

Following Ramey’s work, we let f(t) = T,.p. Then rearranging Eq. 2.84. we

find
q=27k. Az - T.) (2.92)

f(t)

2.2.3.b_ Coupling Wellbore and Reservoir Heat Transfer Solutions.

By equating Eq. 2.77 with Eq. 2.92, and simplifying we find

(Ty - T)

=270, k. Az————-—--"—.
1 (T F(8) + k)
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We define the final combined heat transfer coefficient U as

ROl _
L_;[a+TeJ , (2.99)

with field units [BTU/hr —° F]. With this notation, Eq. 2.93 can be written as
q=2aroU A2 (Ty ~T.) =U Ap, (Ty - T2), (2.95)
where Ay, = 27T, z. or equivalently,
§=U(T;-T.). (2.96)
where § = ¢/27r,Az is the heat flux, i.e., heat flow per unit area, [BTU/hr — ft?].

2.2.3.c_A Unified Model for Predicting Flowing Temperature Distribution in the

Wellbore.

In this section we use the approach of Alves et al.®3 to predict the fluid tem-
perature distribution in the wellbore under steady-state conditions.
The steady-state continuity, momentum, and energy balances, in the wellbore

can be written as

= (pv) =0, (2.97)
d 7d
d— (pv') = —-——— - pgsm9 - %—' (2 98)
z P
d 1 d qrd
7 [p (e + 31*2)} =1 (pr) — prgsinf — qT (2.99)
< -~ ~ “Ip

respectively. In Eq. 2.99. e is internal energy per unit of mass, v is the fluid velocity.

p is pressure, T is the shear stress at the pipe wall. p is the fluid density and 6 is the
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inclination angle with respect to the horizontal plane. Note that ¢ is the heat flux
from the fluid to the earth as defined by Eq. 2.96.

Using the continuity equation, Eq. 2.97, we can write Egs. 2.98 and 2.99,

respectively as

dp dv T7d

=X = —pr— — pgsinf — — 2
P pr— pgsinf A (2.100)
and
d 1, dv i grd
P~ (e + v ) =-—pv- = prgsinf — A—p’ (2.101)
Eq. 2.101 is equivalent to
dh dv . qrwd
=== - 2.102
o v gsiné 7 (2.102)
Combining Egs. 2.102 and 2.96 yields
dh dv Und
_— = — — 3 — —_ 9
7 v gsinf T (T-T,). (2.103)

By using thermodynamics definitions, we can write the wellbore enthalpy gra-

dient as
dh aT dp

dz de—z - ncp';l—z. (2104)
where & is enthalpy, ¢, is the heat capacity at constant pressure, and 7 is the Joule-

Thompson coefficient.

Combining Egs. 2.103 and 2.104, we find that

dIr Umw Ur 1 dp ) dv
—— = —1, -_ - - 0 1. 2' 5
iz T We “WeoTs ("C”dz g 'dz) (2.105)
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where IV is the mass flow rate. Ramey®? defined the relaxation distance, 4. as

We,
= ) 2.
: Urd (2.106)
Defining a dimensionless parameter, ®, as
d; dv

$ = (pncpgg — pgsinf — pv-d—:) Z—f (2.107)

and using Eq. 2.106. we can rewrite Eq. 2.105 as

dar 1 1 1d

+-T=-T,+—=2Ls (2.108)

We assume that the surrounding temperature is a linear function of depth
T.=T. - g.Lsinb. (2.109)

where g. is the geothermal gradient in [°F/100 ft], 8 is the inclination angle with
respect to horizontal. and L is depth in the z-direction in [100 f¢].
By substituting Eq. 2.109 into Eq. 2.108, we find

dT 1 1 1 1 dp
—+-=T=-T,— —Lsinf+ ——o. 2.
Fri I I 7 Lsinf+ cpdz (2.110)

Eq. 2.110 can be solved for a given pipe segment to obtain

Ty = (T.i—geLsinG) + (Tin — To,) exp(—L/A) (2.111)
: 1 dp
+g. Asinf [1 —exp (—L/A)] + p—c_"q)A [1 —exp(—L/A)].
p £

As discussed in Ref. 33, for an ideal gas, n = 0. Neglecting the acceleration
term Eq. 2.111 becomes identical to Ramey’s expression for ideal gas. For an incom-
pressible liquid, n = —1/p ¢, and if the frictional losses are not. considered. Eq. 2.111

becomes Ramey’s expression for an incompressible liquid.
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From thermodynamics definitions and considering two-phase flow of a real gas

and an incompressible liquid, the mixture heat capacity is defined as

W, ¢y + W,
g, = ”"P-"W .y (2.112)

where @, is the two-phase heat capacity at constant pressure in [BTU/lbm —° F]. c,,
is the gas phase heat capacity at constant pressure in {BTU/lbm —° F], ¢, is the
liquid phase heat capacity at constant pressure in [BTU/lbm —° F], W is total mass
flow rate in [lbn /sec] . I is gas mass flow rate in [Ib,,/sec] and 1V} is liquid mass flow
rate in [{b,,/sec].

The average Joule-Thomson coefficient in field units [°F — ft2/BTU] is given

_ 1 [w, | 1} (62) W
e M) Lrf02) ) Pl 2.113
d a,,w{ Pq [ z\aty),| T p (2113)

where Z is the gas compressibility factor.

It can be shown that Eq. 2.111 for two-phase flow. converted to field units. is

equivalent to

Ty = (Tei —geLsinb) + (Tpn — To;) exp (—L/A)
144 dp 24

e a g Lmexp(=L/4). (2114
m*-p “~ 2

+g. Asinf [1 —exp(—L/4)] +

where ./ is equal to 778.2 (ft — lb;/BTU) and Ty is temperature of the flowing fluids.

The relaxation distance A in field units is equal to

3600\ . (1  f(t)\ 36000z _
1=\ w — = 2 2.11¢
4 ( on )‘ @ (U,, "k ) 7dU (2.115)

where Aisin [ft], IV isin [lbm/ sec]. T, is in [BTU/lbm —° F), U isin [BTU/hr — ft? —> F],

and k. is in [BTU/hr ~ ft —° F].
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It is important to note that the total solution expressed by Eq. 2.114 reduces
to single-phase solution so it can be safely applied to our process of phase segregation.
The total solution that this equation represents consist of three main parts: an overall
heat transfer computation for the flowing fluids, a heat flux computation through all
the well components (pipes, insnlation, annular fluids, cement, etc.) and a transient
heat conduction to the earth. This overall combination of solutions is able to give us
a well defined rate normalized approximation of the wellbore heat losses. Eq. 2.114 is

applied for each gridblock in the wellbore at each time step of the simulation process.

2.2.3.d _Estimating Convective Heat Transfer Coefficient (k).

Turbulent Flow. Correlating equations that reproduce experimentally or analyti-
cally obtained estimates of the heat transfer coefficient and the Nusselt number have
been used in the oil industry for several years. The Nusselt number, N, is defined as

the ratio of the convective conductance h; to the pure molecular thermal conductance

k/d, ie..
hy

s (2.116)

.
ANnu =

The Prandtl number, V., is defined as the ratio of momentum diffusivity to

thermal diffusivity of the fluid

- v HiCp 9117
Npp = — =2.492 . 2.
= 49 5 (2.117)

where 1y is the fluid viscosity in [cp).
In Ref. 34, the expression developed by Sleicher and Rouse®® is recommended

for the Nusselt number provided the pipe is smooth, 10* < N, < 10%. 0.1 < N, <
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10°. The relevant expression is

Npy =5+ 0.015NLN, (2.118)
where
0.24
= — 9
a =088 ryy . (2.119)
and
1
b= 3+ 0.5exp (—0.6 N,), (2.120)

This correlation is useful for both liquids and gases (see Ref. 34).

The effect of the pipe roughness on the heat-transfer coefficient is usually less
than its effect on the friction factor in case the of head losses (pressure losses). The
Reynolds analogy, which suggests that the heat transfer coefficient, h, is proportional
to friction factor, f, is predicated on shear providing flow resistance, but this is not
the case when roughness elements protrude above the laminar sublayer. Under this
circumstance, the departure from Reynolds’ analogy can be expressed by defining an

effectiveness parameter £ as3®

- (."\"nu/f,.)r ‘,V033 _ ) _
§= BT = log,o 99022"3 —0.32 x 107%p,, log,q (N,r) + 1.25, (2.121)
where

1/2

. (€N [ f-
Cre = Npe |l =) | = . 2.122
v (d) (s) (2:122)

fs is the friction factor for smooth pipes, f, is the friction factor for rough pipes. € is

the pipe roughness in [ft], d is the pipe diameter in [ft].

Laminar Flow. A satisfactory expression for heat transfer rates in laminar flow is

given by an empirical modification of the Graetz problem®’, developed by Sieder and
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Tate including the correction proposed by Sellars et al.?® for the constant heat flux

case. The Nusselt number is given by.

Npyw = 2.232 N}BN)3(L/d)Y3, (2.123)

“'re

where L is the pipe length in [ft]. Another expression that produces reasonable

results was proposed by Hausen'® and is given by

0.0894 ¥3

1+ 0.0492° (2.124)

Npw = 4392+

where ¥ = NY3 NY/3(L/d)=/3. To avoid numerical oscillations, it is assumed that
laminar flow exists for V.. < 2000, turbulent flow for N,. > 2500, and transition flow
between 2000 < N, < 2500. The Nusselt number in the transition zone is calculated
by linear interpolation between the values obtained from Eqs. 2.118 and 2.124.
The value of the convection coefficient (hy) is obtained from the Nusselt num-
ber definition as
kf Ny

hy = ——, 2.125
dy (2.123)

with units [Btu/hr — ft? —° F];here d,, is the pipe diameter in [f#].
According to Ref. 41 the correlations defined by Eqgs. 2.118 and 2.124 give
reasonable results for gases and liquids. This being the case, we apply to the two-

phase flow, by using mixture properties to compute the Reynolds, Prandtl and Nusselt

numbers33.
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2.2.3.e Estimating Natural Convection (Aqnn) .

The literature indicated that the estimation of the natural convection coeffi-
cients is difficult. Dropkin and Sommerscales?**3 performed vertical plates studies to
estimate the annular heat transfer coefficient for natural convection (hgn,). By as-

suming that for vertical concentric cylinders the effect of curvature can be neglected,

we can write

Nuy = 0.049 (NyN,r) /2 NOOT4, (2.126)

where N, is the Grashof number, defined in field units as

)

N, = 8913.0704 x 10% (dg — diny)® Pann B (Tins (2.127)

2
.u‘ann

In Eq. 2.127, ponn is the density of the annular space fluid in [lb,/ft%], ttann is the
viscosity of the annular space fluid in [cp]. and 3 is the thermal volumetric expansion

coefficient of the annular space fluid in [1/°F]. The Prandtl number is calculated as

N,y = 2.492%parn Hanr, (2.128)

ann

Eq. 2.127 is valid for 5 x 10* < N,, N, < 7.17 x 10%, and was developed for liquids,
but also gives satisfactory results for gases>#3. Another correlation was proposed by
Evans and Stefany in Ref. 45 for a cylindrical annulus formed by two long vertical

concentric cylinders. i.e..

(NWNP")IM In (dei/ dins)
[(e/dins)S/s + (e/dci)s/s] 3 ' (2129)

max

J‘Vnu = 1, 0.603 Cl
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where e = (dy/dinst)/2, and C) is obtained by using the following equation:

Cy=exp[ —0.63412 + 0.09606 x In (:V,,)
—-0.013472 x In (N,,,)z + 0.00063 x log (Npr)a]_ (2.130)
In our model, we use Eq.2.129 since this correlation was developed for an annulus

between to two cylindrical pipes.

From the definition of Nusselt number. the heat transfer coefficient can be

computed as

hann - 2 kann Nnu ,
dins In I
ms d

ins

(2.131)

with units [Btu/hr — ft* —° F]. It is important to note that for Grashof numbers
below 2000, the heat transfer is essentially all conduction. so that N,, = 1. and for

this region we have

2kann
hann = __G_- (2.132)

d.;
dins =
In ( dins )

Correlations for liquids that also give reasonable results for gases

12,13 are ap-

plied to two-phase flow by using mixture properties to compute the Reynolds. Prandtl.

Nusselt and Grashof numbers33.

2.2.3.f Procedure for Calculating Fluid Temperature.

The following procedure is applied for each wellbore gridblock to compute the

temperature profile. This procedure can be considered as one additional step in our
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multistep numerical solution procedure that is described in the next chapter.

1. By assuming that conduction is the dominant heat transfer mechanism in the

annulus space, we estimate U}, with the following equation:

v =L ln(r;:/'r,i)_*_ln(rd/rto)+ln(rz/ra)+ln(rw/rco) o (2.133)

I'to kann

kccm
2. Calculate tp and compute the dimensionless time function, f(¢) = T,.p using

Eq. 2.90, i.e.,

K, (Vu) (2.90)

10 = BRE, (V)

3. Compute @, T,. 77, A using Eqs. 2.107, 2.112, 2.113 and 2.115 respectively, i.e.,

__dp . dv, \ ,dp
= o — — Pt = 2.
6] (pmr]cpdz Pmgsing — ppt, dz) 7z (2.107)
2, =Y Cng; Wicn (2.112)
_ 1 (w, [ T, (OZ) 17
=-—=!d 2| -L ) |+ 28, 2.113
7 EPW{pg [ Z\aTy),| " m (2.113)
t
A= (@) W, (El— + %) . (2.115)
L to e

4. Estimate a value of T}, using Eq. 2.114, i.e..

Ty = (T — g.Lsind) + (Ton — Tui) exp(—L/A)

144 dp @4
pmCpdz J

[1 —exp(—L/A4)]. (2.114)

+g. Asing [l —exp (—L/A)] +

5. Calculate the cement-formation interface temperature as

ricUeo f(8) Ty + kT (2.134)

T, =
Tto [/Yto f(t) + ke
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6. Calculate the heat transfer as

q = 2nr,Udz [Ty — T, . (2.135)

. Compute the casing temperature with the following equation:

~1

Ta _ Tw n (ln (;w/rCD) + In (Tlcco/rci)) rtoUto (Tf _ Tw) . (2136)
8. Calculate the outside tubing temperature,
4 1 In(reo/7T) 5
To=1; 27Az (ruhf + k, ' (2.137)

9. Calculate the annulus Nusselt number and convective heat transfer coefficient

henn using Eqgs. 2.126 or 2.129 and 2.131 respectively, i.e.,

Ny = 0.049 (N, N,r) /2 N3O, (2.126)

Ng N, b dei/dins
Ny = |1, 0.603C, (Y pr)_ In (di/ — 5)1 i (2.129)
[(e/dins)a/o =+ (e//dct):;/o] | max
2kann Nny
i (2.131)

ms dins

10. Recompute the overall heat transfer coefficient, U,,.

-1

1[ L (o) |1 W (re/ma)  I(re/me)]™ 5

Usoe = —
foe Tto | Tt hf ks Tto hann ks kccrn

11. Compare the estimated value of U, computed in step 1 with the value computed

in step 10. If Ui — Uso] > €. let Uy, = Upoe and go back to step 2.
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2.2.4 Closure Relationship.

A relationship for the relative velocity, »,. is necessary to close the model
formulation. It is known that v, is a flow pattern dependent variable. During the
buildup period, since the effect of phase segregation is maximized for bubbly and slug
flows’. it is possible to restrict the model to handle bubbly and slug flow regimes only

but in a more general case, the following flow regimes relations are used.

2.2.4.a Bubbly Flow Regime.

The relative velocity of a gas bubble in liquid for turbulent flow regime is ob-
tained by balancing the drag force with the pressure and gravity force. The following

well known Harmathy equation (see Ref. 20) is used:

iR

0.79 [a(p —mJ”“ )
= N : 2.139
E; [ P ( )

where & is the gas-liquid surface tension. Note that all variables in Eq. 2.139 are in

oil field units.

2.2.4b Slug Flow Regime.

The relative velocity in oil field units is given by the well known Niklin et al.

equation (see Refs. 20 and 47),

vy

0.61 [d(p: —pq)}‘” )
- - . 2.140
5 [ . _ (2.140)

where d is the diameter of the tubing string in [ft].
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2.2.4.c  Churn-Turbulent Flow Regime.

Due to high flux in this flow regime, the effects of distribution of velocity and

momentum are dominant in comparison to other effects. Thus,

1 Um
= . 2.141
0.3048 [(1 - E,C,) [(Co— 1)+ Egpg/pt| ( )

v,

where C, = 1.1 as suggested by Hsu®.

2.2.4.d Annular Flow Regime.

In annular flow, the constitutive equation for the relative velocity between the
phases can be obtained by taking the interfacial mementum transfer and the flow
structure into account?!. Neglecting the effects of gravity, the relative velocity for

cocurrent and turbulent flow is given by

1

= O 3048 vm 1/2 (2-142)
S0 176 = T5E, )0y /o1y [Ey | + Eopo/ pm

vy

In cases where only bubbly and slug flow are considered. the change of flow
pattern from bubbly flow to slug flow occurs when the gas void fraction is around 0.20.
To avoid numerical oscillation?, it is assumed that bubbly flow exists for £, < 0.15,
slug flow exists for E, > 0.25 and for 0.15 < E; < 0.25, the flow is in the transition
zone. The relative velocity in the transition zone is calculated by linear interpolation
between values obtained from Egs. 2.139 and 2.140.

In a general case, a continuous relation for the relative velocities for all the flow
regimes is a requirement in order to avoid numerical oscillations. Hsu*® developed

an empirical flow pattern map for vertical flow that allows the identification of the
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different flow regimes, creates a smooth transition between the different flow regimes,

and enables us to compute the relative velocity in the different transition zones by

using linear interpolation. The flow pattern map is presented in Fig. 2.2.

The following procedure is applied for each wellbore gridblock to determine

the flow pattern:
1. Calculate the total mass flux in [kg/m? — sec], i.e.,
G = 1.8825 ppm tm (2.143)

where py, is the mixture density in {Ib,,/ft%] and v,, is the mixture velocity in

[ft/sec].

2. Calculate the gas void fraction using Eq. 2.31, i.e.,

B,
E = . 2.31
‘" B, + B,(R-R,) (231)
3. Determine the correspondent flow pattern using Fig. 2.2. Note the flow pattern

can be different in each wellbore gridblock.

2.2.5 [Initial and Boundary Conditions.

2.2.5.a Drawdown Period.

It is assumed that initially the well is under static condition, i.e.. no flow
conditions, so that the bottomhole pressure is equal to the average reservoir pressure
and the pressure at each well gridblock from bottomhole to wellhead is computed

based on the density of the well fluids, i.e.,
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Figure 2.2: Flow Pattern Map for Vertical Flow
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op _ _ pmg 5
0z l4dg. (2.143)

Note that in Eq. 2.144, we assume that the upward direction is the positive z-
direction.

The wellbore is connected with the reservoir at the bottomhole. When using
an analytical solution, the dimensionless pressure solution at the sandface for the
constant sandface rate production problem with no skin effect. i.e., s = 0, is denoted
as p.p- Since we assume radial flow. values of p.p can be obtained by numerical

inversion of the following Laplace space solution:

- KV (2.145)

Peo = BRKL /)

For tp > 25, a semi-log approximation can be used to evaluate p.p, i.e.,

DPeD = [ln tp + 080907} . (2146)

(SR

The dimensionless wellbore pressure for the constant sandface rate production

problem with an infinitesimally thin skin is

_ kh[p, —ow] _ 1 . - 514~
PweD = —1412_(1# =3 [lnto + 08090{] + s. (2.147)

from which the bottomhole flowing pressure. p,s. can be easily computed.

In case of using the RDRBOS® two-dimensional (r— ) reservoir simulator (see
Figs. 2.3 and 2.4), the simulator is nin under a total rate inner boundary condition.
The production rate can be computed by using the Darcy’s Law at the wellbore for
the required phase, so that the production at a total volumetric reservoir flow rate in

[RB/D] can be calculated as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



* P =3
*P; =2
P, =1
p"" . h=
r4
” " O=hy1

Figure 2.3: Reservoir and Wellbore Scheme for a Full Penetration Well

hwe
g = 27(1.127 x 10~%)r, / kn (k”’ 9p. + kg 9Py + Krw 9Py
P OT

dz. 2.148
h Ho OT pe Or >r ‘ ( )
wi w

where the perforated interval corresponds to h,; < z < hy. Under this condi-
tion the reservoir simulator solves for the corresponding bottomhole flowing pressure.
Pws = DPub. at the wellbore reference block. In our case, the top perforated gridblock
is selected as the reference block: this selection is imposed by the lower-boundary
condition of the wellbore simulator that requires the bottomhole pressure exactly at
the lower-boundary. This means, Py = Puy: where P} corresponds to the wellbore
simulator lower boundary pressure and p,.s corresponds to the bottomhole flowing

pressure computed by the reservoir simulator (see Figs. 2.3 and 2.4).
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Figure 2.4: Reservoir and Wellbore Scheme for a Partial Penetration Well.

For a full detailed description of the implementation of the initial and boundary

conditions for the reservoir simulator RDRBOS, the reader is referred to Ref. 50.

At each time, the wellbore simulator imposes a constant rate lower boundary
condition as the inner boundary condition for the (r-z) simulator, obtaining the cor-
responding flowing wellbore pressure. A iterative procedure is required to guarantee
that the mass-conservation as well as the upper and lower boundary conditions are
satisfied in the wellbore and that the inner boundary condition for the (r-z) simulator

is also satisfied. A detailed calculation algorithm is described in the next chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2.5.b  Buildup Period.

If a buildup test is simulated without the explicit simulation of the transient
drawdown period, it is assumed that the well produces at a constant rate for a suf-
ficiently long period of time so that steady-state flow is established in the wellbore
prior to the instant of shut-in. With a known sandface production rate and producing
time, the spatial distributions of the mixture velocity, oil concentration, and pressure
are calculated at the instant of shut-in from a steady-state model. But if the transient
drawdown simulation has been done, the spatial distribution of the mixture velocity,
oil concentration and pressure that we have at the instant of shut-in are used as the
initial conditions for the buildup period simulation.

We assume that wellhead shut-in occurs instantaneously, and so, the boundary

condition at the wellhead during the pressure buildup period is

[mler =0, [vr] 0 =0, At >0, (2.149)

where At is the shut-in time.

The wellbore is connected with the reservoir at the bottomhole. Immediately
after shut-in, fluids may continue to flow into the wellbore. i.e.. afterflow occurs. At
late times. fluids may even be injected back into the reservoir due to wellbore phase
segregation.

In the case where the bottomhole pressure remains above bubble point pres-
sure, we use an analytical solution to relate sandface flow rate and bottomhole pres-

sure. The boundary condition at bottomhole for the wellbore flow is obtained by
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applying Duhamel’s principle, i.e.,

tpDﬂ'-AtD
pun= [ ao(Tp(te + Atp = T)dr + sqpltyp + Atp).  (2150)
0

where t, is the producing time and t,p is the dimensionless producing time.

In Eq. 2.150. p,,p is the dimensionless buildup bottomhole pressure defined as

wep = i — Pus) 151
PusD = 141 2 (2.151)

where ¢ is the sandface production rate in [RB/D] at the instant of shut-in. The

dimensionless flow rate, gp, is defined as

ap(r) = 20, (2.152)

For 0 < 7 < t,, ¢ = g and ¢p(7) = 1, i.e., when considering the single-phase
reservoir flow case, we assume that the drawdown solution is equivalent to the one
obtained for production at a constant sandface rate. The dimensionless time, tp, is
defined as

2637 x 10~%kt

o= . (2.153)

ocur?,

where ¢ is in hours. In Eq. 2.150, t,p is the dimensionless producing time. obtained
by replacing ¢ with producing time ¢, in Eq. 2.133, and Atp in Eq. 2.150 is the
dimensionless shut-in time. obtained by replacing ¢ with At in Eq. 2.153. In Eq.
2.150. p.p is the dimensionless pressure solution at the sandface for the constant
sandface rate production problem with no skin effect, i.e., s = 0. Since we assume

radial flow, values of p.p can be obtained by numerical inversion of the following
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Laplace space solution:

- __K(Vu) 5 1=
Pep = m (2.154)

For tp > 25, the semi-log approximation can be used to evaluate p.p. i.e.,
1 .
pep = 35 [Intp +0.80907] . (2.155)

The dimensionless wellbore pressure for the constant sandface rate production

problem with an infinitesimally thin skin is

kh[P pwf] 1 5 1=
PweD = 1412 ‘2' [ln tp +0. 8090(] (2.156)

Eq. 2.150, which relates sandface flow rate with bottomhole pressure, is the
bottomhole boundary condition for the wellbore two-phase flow system. For a given
time and flow rate. Eq. 2.150 is numerically integrated to give the bottomhole shut-in
pressure, py.

When using the two-dimensional (r — z) reservoir simulator, the simulator
is run at each buildup period simulation timestep under total rate inner boundary

conditions. i.e.,

hwa
- Ar Vraw w 7
(Aro apo Nrg apg + L_OL) dz. (215()

= 27(1.127 10‘3w/k
o ( X r i h Mo O py or Uy OT
w)

where the perforated interval corresponds to h,; < z < hye. Under this condition the
reservoir simulator computes the corresponding bottomhole pressure. This interaction
between the wellbore simulator and the wellbore simulator allows us to simulate a

process of afterflow during the buildup period.
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CHAPTER III

NUMERICAL SOLUTION METHOD

The system of nonlinear partial differential equations governing the phase seg-
regation process in the wellbore is solved numerically using a finite difference method.
The wellbore is divided into uniform control volumes, as shown in Fig. 3.1. In the
wellbore, flow occurs in the z direction only. Finite difference equations are derived
with a system of staggered grids where dependent variables are defined at different
positions in each control volume®. Specifically, we define oil concentration and all
physical properties at the center of each control volume while the mixture velocity is
defined at the control volume boundaries or faces. Thus, our finite difference solution
directly yields oil concentration at the center of each gridblock and mixture velocity
at the boundary of each gridblock, i.e., at the gridblock interfaces.

In this chapter, we present the finite difference equation systems used to solve
for mixture velocity, pressure and the mass concentration of the oil component. The
formulation is applied during the drawdown and buildup periods. Additionally during
a drawdown period, we sometimes use the so-called “steady-state” formulation. for
cases where the bottomhole pressure remains above the bubble point pressure so that
the reservoir flow equation can be solved analytically. This procedure is applicable
where the total sandface rate is constant and the drawdown period is long enough so

that the sandface flow rate become equal to the surface rate. For a detailed discussion
53
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Figure 3.1: Control Volumes and Staggered Grids.

of the steady-state wellbore model, the reader is referred to Refs. 9,17-19.

3.1 Overall Mass Balance Equation.

Finite difference equations are obtained by integrating the corresponding par-
tial differential equations over each of the control volumes. Integrating the overall

mass balance equation, Eq. 2.53, over the i** control volume, we obtain

(o)™ = (pm)t , (pmim )y — (omtm) Ty -
At + Az o (3

fori =1,2,...,N. (IV is the total number of cells in the calculation domain: see Fig.

3.1. Rearranging Eq. 3.1, we obtain
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n+l n+l n+ n
[(p“)i+%}< n+1_{(pm)"‘%}(m)"“ (en)i” = on)? (39

"mlied T | T Az B

i-3 At
fori=1,2.....N.

Summation of Eq. 3.2 over all 7 and rearranging the resulting equation gives

et A2 S [~ (o)) Ty .
= RS G A (3.3)

1
3

Note that Eq.3.3 is the wellbore mass conservation equation. During the
buildup period, the boundary condition at the top of the well is a no-flow boundary

condition, i.e., v, n. 1= 0 (Eq. 2.149) and Eq. 3.3 reduces to

T I w i (Y il (5 |
(1) = () St et s (3.4)

1
2

1
2
In Egs. 3.1 through 3.4, values of mixture densities at the control volume faces

are required. An upstream weighting technique is used to evaluate these variables.

For example, for (pm)i+%, we have
1 + 'Bi-f-l 1 - 31'__:_._1) -
(pm)i+-2- = [—9—2'] (Pm)i + ['—5—] (pm)iz1 (3.5)

where the coefficient for the upstream weighting is defined as

n+l
+1 w2 0

BH_% =SGN@*! ) = T2 (3.6)

: m.z+%
n+1
-1 e, <0,

>

Once the sandface velocity, (v,)7+!, satisfying both the bottomhole boundary
2

conditions and the wellbore mass conservation equation (Egs. 3.3 or 3.4) is obtained,
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Eq. 3.2 can be applied recursively to compute velocity from the bottomhole to the

wellhead. Further details of this computational procedure are given later.

3.1.1 Oil Component Concentration Equation.

To derive the finite difference equation for the oil component concentration, it
is necessary to write the finite difference overall mass balance equation in a different

form. Applying the concept of upstream weighting, we have

()i = (pr)i ™ maz ()27 0] = (p)ifimaz [~(e) 0] (37)
Substituting equations for (o, vy, )"‘*'1 and (pmvm )l"_*’%1 into Eq. 3.1 and multi-
plying both sides of the resulting equation by (C;)**!, we obtain

(COFHom) 2 = (C)F (om)? N (C)F* (pm)i i maz [( )"+1 }
At Az

(COF )i maz [~(m)21.0] (GO pm)iimaz [(0m) 0]

- Az Az

(COF (o) maz [~ (om)7. 0
+ = : Lo (3.8)

Integrating the oil component mass balance, Eq. 2.50, over the {** control

volume and using upstream weighting, we obtain

(Clpm);ﬂ-l — (Clpm)? (Clpm)l’-lJ'-lm(l.’L' [(l'm)f:%l 0}

At * Az
(Cupm)izimez [~(n).0]  (Cipm)iimaz [(rm);.0)
— 2 — 2
Az Az
(Cupm)i™'maz [~(um)274,0] (D)7 - (D7
. , 2 P ) (3.9)
Az Az
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Subtracting Eq. 3.8 from Eq. 3.9 and rearranging vields

—a(C)i + (G - e(C)I = d, (3.10a)
where
n+l
(priz 1 mar [(?m)n.x-l O] (.310b)
n n+1 n+1
b= (/Zzt)z + (pr;)z Lmaz [(1m)?:110] Lp’l)_:r-lma.z: [ (Tm):l:_l’_l 0] ,  (3.10c¢)
n+1
c= (p";)i*l maz |~ (vm)73.0)] (3.10d)
and

(D)5 — (Do)} n
d= 5&_ : 4 (CZ:)‘ : (3.10€)

fori=1.2...., V. Note that if we write Eq. 3.10a, for all control volumes. in a matrix
form. the coefficient matrix will be a tridiagonal matrix. Solution of the system of
nonlinear algebraic equations will yield the oil component concentration distribution
along the wellbore.

For the evaluation of diffusion terms at the control volume boundaries in Eq.
3.10e. Alhanati®? suggested that for numerical stability reasons that we should chose

the minimum value in the two adjacent cells, i.e.. for (D ),‘_ we have

(Dr)i+% = min [(Dr)iv (Dr)i+1] . (3.11)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Note that during the buildup period, from the boundary condition at the wellhead, we
should have (D;)y,1 = 0. On the other hand, in case of using a reservoir analytical

solution, since we consider single phase liquid flow at bottomhole, we should also have

Overrelaxation can be used to accelerate convergence and underrelaxation can
be used to slow down the changes in a variable at each iteration. Without relaxation.
the new value for the oil component concentration from Eq. 3.10a is

+1 +1
et (OO +c(C)FY] +d

(G = 5 : (3.12)

Considering relaxation, the new value will be computed as

[a(Ci +e(CE] +d

- +1-O)CNT (313

(Gt =0

where © is the relaxation factor and (C;)?*! is the previous iteration value. Eq. 3.13

can be rearranged to give

~a(C)I + ()T - c(C) = d. (3.14a)
where
~ (b
and
d=d+(1-96) (%) (crrt. (3.14c)
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Eq. 3.14a indicates that relaxation can be achieved by slightly modifying
the original finite difference equation, Eq. 3.10a. Overrelaxation corresponds to
using 1 < © < 2, underrelaxation is obtained when 0 < © < 1, and no relaxation
corresponds to © = 1. As in Refs. 9, 17 and 19, our code includes the option of using

relaxation. however with our formulation, we found relaxation is not needed.

It should be pointed out that there is no guarantee that C; obtained from Eq.
3.14a always remain in the interval [0,1]. If solution of Eq. 3.14a returns any values of
C) outside this range, the iteration process will no longer maintain the continuity of
each individual fluid®. Carver®® suggested that since 3.14a is an expression of mass
balance, it is not sufficient merely to solve Eq. 3.14a, and then set (C))?*! = 1 if
we obtain (C;)7*' > 1 and set (C;)?*! = 0 if we obtain (C;)?*' < 1. This type of
modification will degrade the mass balance because the remaining variables will not
be adjusted appropriately. Alhanati®® and Carver®® proposed modifications to Eq.
3.14a so that C; obtained always stays in the desired interval. As discussed in Refs.
9, 17 and 19, the main modification is done by splitting the positive and negative

components of d. First, we rewrite Eq. 3.14a as

BC*! = [a(Cort + (C)] + dy - . (3.15)

where d; and Jg are the positive and negative components of d, respectively, ((f =
d; — ds (?1 >0, c?z > 0). Since all coefficients in Eq. 3.15 are non-negative,

2.

(C1)?*! can not become negative unless d; < d». Under this condition, Eq. 3.14ais

modified to
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—a(C)H + B(C)r = e(C)L = d, (3.16a)
where
R A
b= |b+ ———|. 3.16b
[ <c;).r*l} (3.16b)

Eq. 3.16a indicates that by modifying the coefficients of Eq. 3.14a, the com-
puted concentration is ensured to retain a positive sign, providing the previous iter-
ation value is positive. On the other hand, if Jl > cfg in Eq. 3.15, the solution of
Eq. 3.15 will be guaranteed to give positive values for all positions. However. under
this condition, it is at least possible to obtain a value of oil component concentration
greater than one. To keep the oil component concentration below one is the same as

keeping the gas component concentration above zero. Therefore, we transform Eq.

3.15 to

bi-@r] = [aft-@m] + e[t~ @]

+[5+Jg]—[a+c+(fl.]. (3.17)

The strategy to keep [1 — (C)"!] positive is the same as the strategy to keep
(C;)?! positive. Therefore, proceeding as before. we eventually obtain the following

modification of Eq. 3.17:

—a(C)ME + (O — (G =4, (3.18a)

where
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;_ [5 . la‘+(2 T) il 1} ’ (3.18b)
and
T =\n+1 n
7o laterd)(Ctt+d (3.18¢)

= (i)

The implementation of the previous formulations with or without relaxation
and the use of the procedures to keep the oil component concentration within the
correct range is simple, because the modifications require only easy transformations

of the original system of equations.

3.2 Mixture Momentum Equation.

A multistep numerical procedure has been selected for stability-enhancing rea-
sons. In this approach the mixture momentum equation is solved by a two-step
method that consists of a basic step for pressures and a stabilizing step for mixture
velocities. In the final step, we obtain the oil concentration from the continuity equa-
tion. Here, we discuss the finite difference form for the mixture momentum equations.

To construct a finite-difference approximation for the mixture momentum. we
consider Eq. 2.58 at the point z;.;,». From a physical viewpoint, the finite difference
approximation for the partial differential equation, Eq.2.58. at this point may be
constructed as a momentum balance on the control volume lying between z; and z;.,;
(see Fig. 3.1) which is referred to as the (i + 1/2)* control volume for the momentum

equation. Integrating, Eq.2.58, over the (i + 1/2)* control volume
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—=n+1 n+1 n+l
pmwuz [ n+1 —n ] + Piry — P + Tn-i»l
l44gcAt myi1/2 myiy/2

Az Wipijz
-—n+1 —n+1 N+l
pm.+1/'zg Pmyp12Um, 10 [ e+l ,n+1]

144g, 144g. Az RirL T

st () - )]

for i = 1.2,.....NV, where

(3.19a)

n

fmpm lvml
114g.(2d)

,‘_n+1
Wy 2

el (3.19b)

12 my g0t
+1/2

p:::uz == 19 ™ ' (3190)

4

and

‘ 1— E E n+1
n+l _ [( z)Pg szJ . (3.19d)

p =
fi o

i

Using Eq. 3.19b in Eq. 3.19a and rearranging, we have

—n--1 n 1
Pm, 112 + fmpm ll'm} Py iia + (i) p:li-ll —
At 2d 144g. Az '

1+1/2

1 n+1
(Az)pi *

—n+1 =n+1 n —-n+1 n+l
y + )
_pmx+1/29 pmx+1/2 mys1/2 _ pm’i+l/2 My31,2 [ n+l I'n+1]

1449, 1449, At 144g. Az msy m,

—144;CA2 [(f’f "3):1 - (Pf"’f)f“} : (3.20)

In Eq. 3.20, we apply the following upstream weighting schemes:

pf_T"r,zl'r.x-l/2: T, 20
(pfvf)i = (3.21a)

pfrrr.il"r.i-.LI/Z-, F1‘,i < Ov
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[ ("m,i+1/2 - T'm‘i—l/'.’) s+ Umisl/2 >0
Pmeer = Um ] = Umeyyg (3.21b)

I"": +,2 )

(?’m,i+3/2 - 1-’m,i+1/2> < Umigry2 <0,

where

y '
Irl—l/2 T Uy

2

&

0, =

2 (3.21c)

Following the suggestion of Mahaffy>*, additional robustness is obtained using

the following form of the friction term :

n n
—-n fm n n+1 —n fm n n+1 n
— ! v = — ) 2 )
pmwx/e <2d> 1'":«,-1/2 Mmy41/2 pm:+1/2 (2(1) llmx+1/2| [ vmz+l/2 Im:+1/2 '

i+1/2 i+1/2

Applying Eq. 3.22 in Eq. 3.20, the mixture momentum equation becomes

el n n+1
1 n+1 pm+x/2 fm I,'m 12 1 .

- — bl (T2 L o [ IR —n n 141 (_) ﬂ:1=
(Az)pz At 2 2 pm,+1,"2]7m,+1/2| _1449c + »'z ot
=l —=n+1 n

_pnm,&l/zg + pmi+1/2 " (f_m_)n ﬁn '_l’n l Imx+l/2

144gc At 2d i+1/2 Mypr2l Magy2 144gc
—n+1 n+1
Pm,.1;2Vmicry2 [ pat n+l 1 s\ R+l oy 1
—_——re e —p -+ - 2 _ 2 5
144g.Az [“m,n U j, 144g.Az [(pﬂ")i+l (pfl,.)l } . (3.23)

or equivalently,

=n+1 n n+1
! +1 Pmii1so frm — Umii1/a 1
—_ — 7 —_—r 21 = n )7 it 2. (= 1_1+l=“ g
(AZ) ! + l: At + 2d /. pm,“/z 1m1+1/2| 144gc (AZ) Div1 1’1

i+1/2
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where
bt 1 +1 "
= /’&Tng ﬁ;t"wl2 + [ﬂ i ﬁn | ;n | ?'m.+1,»2
o 144g. At 2d ) e TR T2 144,
-[-)-n+1 77.-|-1
m.+1/2 m»+1/2 n+l _ n+l
- [enet, =227 (3.25)

—14491&32 {(pfvf)::l B (pfv;?):H] ‘

If we consider Eq. 3.24 for node (i — 1), we have

g1

1 n+1 pzf—ll/" fm —=n n ]m;—l/? \ 1 n<-1
(_\.~>p' ! +[ ae T2\2a) Pl WT(E)”" = Mi-s.

Subtracting Eq. 3.26 from Eq. 3.24 gives

At\ L. PZAV AN n
#(ge)om - (F)m+ (&)

+[—n-‘-1 pntl sn+l n+l <

pm'u/z mis1/2 pmz—l/i’ m,.1,2

144gc>
At [JL[,‘ - -’\/[i—l]

_ [ 24t fm o - .
144g, 2d i+1/2p’"z+1/2 M2l M2

oAt [(fa\"  _ »
57 " g e : 3.27
+ (144gc> [(2(1)1—1/2 pm.'-l/zlz m,_1/2 lmz-l,/;’} (3 {)

Recall that our finite difference form of the mixture continuity equation is

given by

1 n+1 1 n+1 n+1 n-+1 n+1 :
A [p'm Pm,] T A_ [pm-+1/2vmx,x/2 pmx-x 2Um,_; /2] =0. (3’28)

n+1

Letting A, denote the time difference operator, we have A;p; = pJ}

P, - It is well
known that

As(ab) = ™1 A(b) + b*Au(a). (3.29)
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Applying Eq. 3.29 to the definition of p,, given by Eq. 2.25, we obtain

ot = = Aipm = pi T AE, + PPTIAE, + ET Apg, + Ef A, (3.30)
Using

EI + Eg = 1, (3313.)

AR, = —=AE,,. (3.31b)

and the approximations

d
Apr, = (dﬂ) A¢pi, (3.31c)
and
dpy,
Aupy (‘d—;‘> A (3:31d)
Eq. 3.30 simplifies to
+ - nd 1 n
Atpm,, = [p;:hl n 1] AgEgl + I:Eg 5_(] ""( Eg;) p ] At z (332)

Since the equations we need to solve are nonlinear, we use an iterative method.
In this procedure, the superscript (n + 1.%) or (k) always denotes the value of the
variable at the old iterative at time t"*! and (n + 1) by itself denotes the vaiue at the
new (k + 1) iteration step.
By using Eq. 3.32, we can rewrite Eq. 3.28 as
Az

n+1 In+1 n4-1 n+1 + ___ﬂm‘p:zJ-l — Cz‘-, (333)

pm-ﬂ/z my41/2 pmx x/z m: 1/2 At
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where
c = 2 [Dm? = (0~ ot) (E% - ET)] . (3.34)
i At m, /; 9 1, 9 gi ’
and
dp dpz =
Y, = EP =2 -E,) —. .
1 1 Eg, dp + (1 EJ!) dp (3 30)

In solving Eq. 3.34 iteratively, we use the approximations

dps, _ Ph — P}
R T T 3.362)
dp  pf—p? (
and
do, _ Pl = PL (3.36b)
dp  pf—pf

Note that at the first iteration when p{f = pf, Py, = Py, and p* = p? the derivatives are
computed numerically by adding a small Ap; to the present value of p¥ and computing
the corresponding values of the fluid densities using the PVT property correlations
or doing interpolation in the PVT properties table.

If we combine Eq. 3.27 and 3.33, we obtain our basic step equation for pressures

At +1 2At Az O, ol At = = _
— ’l p— 1 r’" — ’}‘ = ‘,1, [ s '.
(57 [Az A 144gcJ P (52) =T =T (3.37a)

where

Hi = At [A'[z - ./1’[;'_1]

- 2At —fﬁ " n vn ,”k
144gc 2d w12 pmi+1/2 Mypr/720 " Mypy2
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f n

m n n Lk

(7(1) pm,_l/z Im,_l‘,';. Im,_l’,g
= i=1/2

L[ 2A
14dg,

1 =k k —k k
- (144gc) [pmx+1/27ymu+x/2 - pmz—l/'lvmx—l/‘.‘.'] ? (3'383')

and

— Az d ¢ :
C, = 3? ['9m,p? - (p;x - Pﬁ) (E:‘ - E;')] (144.%)

1
k & Lk k
- [’0""*1/21""-“/2 pm:-xfzhm--lli’] (144.%). (3.38b)

The pressure profile is obtained by solving Eq. 3.37a. Note that the form is such that
the associated matrix problem will be strictly diagonally dominant. Next, we intro-

duce our stabilizing equation for the velocities. If we consider our mixture momentum

equation as
=n+1 n n+1
pm;+1,’2 19 Iﬂ 'En+l pn I ‘(’m,‘.”g —
At 2d )y, T T 1ddg,

- (x5) i -]

—n+1 n n
pm:a,-l/z fm —=n+1 l'mu-x;z
+ [ + <_ pz‘x+l"2 n::ll #1«2[ 144qc

At L
—n+l —n+1 n+1
_pm.:.l/zg _ Pm, 12 ’m-:-I/Q [,n-'—l _ 7n+1]
144g¢ 144gcAZ myay m,
1 o\ n+1 2\ +1
T 144g.Az [(”f”r),-+1 = (pr7), ] (3.39)

Again, following the suggestion of Mahaffy>*, additional robustness is obtained

with the following approximation of vA.v term
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Myt m,

9,0+l —_n _ vn
m, ‘m1+1,'2

i
Stmai2 [ Mt

"”n-H - 1,n+1] =

n+l
m,

?mv'-lv".’ L M+l

Our upstream weighting scheme, Eq. 3.21b gives

(_l,n+l —_ pgn+l ) I,n+1
n=1 Yn-l»l n+l — I’n+1 my41/2 my—1,2 mMyp1/2 —
Mepr,o | Mery m, - Tmgane
n+l _ gn+l ,n-f-l
(l m; 4372 "m.n,z) ? myi1,2 < 0
- n+l 1 n+l n+l
- Um,q,-g [al—l/"vm +3/2 + a1+1/" m0 az+l/’1
where
1 l,ﬂ‘f‘l 0
C(0 = SGN (z,nv‘-l ) + Mmyt1/2 —
i+: = Myiy1/2
n+1
-1 Umyi12 = 0,
o .
1 _ 1- az+1/2
ai+1/2 - 9 *
0
2 _ 1+,
Q12 = - 5
By using Eq. 3.41a in Eq. 3.40, our A, v term becomes
n+l n=l o n+ll n — _ A0 R Tn+l
My [ HOES! me ] - [2(1""‘-!-6-1 ?/mt) al‘l/qlm H«"} mMyyy,2
1 n n+1 2
- (ai+l/21'm,+1/2) Im,+3/2 + (ai-i-l ”I m,yy- 2)

sl ,l,n—,-lj] .

n+l

68

(3.40)

] (3.41a)

(3.41b)

(3.41c)

(3.41d)

(3.42)

mr—l,"."

Applving Eq. 3.42 in Eq. 3.39 and we can write the stabilizing equation for velocities

as
+1

+ Cl-‘-l/21 m,.3/2

=T

al*llzv . T bt‘-l/°"m‘+1/2

where
2 n
Qiv1/2Vm, 10

Qisy2 =+ Tadg.Az
C &~

(3.43a)

(3.43b)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



69

1 ) 1
E”(%) ol (144 )
, 2d /.12 9e

+ (Aiz) [2 (l'?n,u - lf:zn,) - a?-‘,-l/zl!:llﬂ‘q] (14}19() ,  (3.43¢)

1 n
Qit1/2Vm, .12
i1/2 S T AL .43d
Gr1/2 144g. Az (3-43d)
and
1 k k
ri = o———I[Pi1—Pi] -9+
mz+1/2'l‘°
1 fm " n 2’:’1‘;+1/2
+ ——n —_— ————
At i (?’d)i-i-l/2 !vm'ﬂm I} 1444,
1 o k o\ k
I - ! . 3.44
+144gcﬁfn:+l/2Az [(pfw’)iﬂ (pfb")i] (3-44)

Another option for computing velocities without obtaining stability or conver-

gence difficulties is to simply solve Eq. 3.1, i.e.,

, \n+l _ n+1l
(pm)P*! - (pm)} + (pmtm)i'*'% (pmvm)i"zl' =0 (3.45)
At Az ’ o

for velocities from bottom to top once we have solved Eq. 3.43a for pressures. During
the implementation of the computational code, we found practically no difference in
the response found by using either Eq. 3.43a or 3.45. Since Eq. 3.45 requires less

computational effort, we used it to compute velocities.

3.3 Calculation Algorithms.

3.3.1 Drawdown Period Calculation Procedure.

For the drawdown period, the model requires input data on reservoir/well

parameters, simulator control data and fluid property data including p,s and pgs, oil-
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gas surface tension, and tabulated data for R,, B, and B, as functions of pressure in
the case of isothermal flow or as functions of pressure and temperature in the non-
isothermal flow case, if this is the case, all the fluid properties are computed by using
empirical correlations (see chapter 2 of Ref. 30).

Initially (at ¢ = 0) we assume the well is closed so that a gravity equilibrium
condition exists in the wellbore. Thus, the static wellbore pressure profile can be
computed by only considering the gravity difference from the bottomhole pressure.
Pus. to the wellhead.

Once the pressure distribution in the wellbore is known, the calculation of
variables during drawdown is based on the solution of a predictor equation for pres-
sure, a stabilizer equation for velocities, a concentration-continuity equation and a
simplified energy equation to compute the temperature profile. In the following, we
present a detailed description of the procedure for calculating variables at a new
timestep, where we assume that production is at specified oil rate at the wellhead,

%, [STBO/D].

3.3.1.a Calculation at a New Timestep.

During pressure drawdown, pressure, mixture velocity and oil component mass
concentration distributions in the wellbore at a new timestep are determined using
the following procedure:

In this procedure as in the rest of the calculation procedures. the superscript
(n. + 1,k) or (k), always denotes the value of the variable at the old iterative time

t"*! and (n + 1) denotes the value at the new (k + 1) iteration step.
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1.

N

Guess values for (C)?*! for i = 1, .... N, denoted (C;)**! to obtain an approx-
imation for the new oil component mass concentration profile. This guess can

be cbtained by simply using the values at the old time step.

For the non-isothermal case, guess values for (Tf)f“. For the first timestep
during the drawdown period. a linear temperature profile is used as the initial

guess, i.e.,

(TH)F™ = Ton = ge(Lon — =) (3.46)

where Ty, is the temperature at bottomhole in [°F], g. is the geothermal gra-
dient in [°F/100 ft] and Ly is the depth of the well in the z-direction in {100
ft], z; is the depth in the z-direction of the wellbore gridblock i in [100 f¢]. For
the subsequent timesteps, (Tf)f+1 = (Ty)} is used as the initial guess. In case

of isothermal computations, we set (Tj)¥*' = (Ty). ..

Calculate the mixture sandface velocity. (zvm)’l_‘*'l, that satisfies both the bottom-
hole boundary condition and the wellbore mass conservation, by the following
procedure:

(a) Assume a sandface velocity and the total production rate, (g,)**!. As
initial guess the value at the old timestep is used.

(b) Calculate the distribution of the total gas-oil ratio. R. and determine
the distribution of the bubble-point pressure along the wellbore from
linear interpolation with the physical properties table for the isother-
mal case or from the PVT correlation for R, in case of non-isothermal

computations.
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(¢)

(h)

From the bottomhole boundary condition and wusing the total pro-
duction rate (g )**!, calculate the bottomhole pressure, pz“ = pﬁ.}".
obtained from the analytical solution or from the (r-z) reservoir simu-
lator.

Calculate the pressure profile using the predictor equation for pres-
sures, Eq. 3.37a. In applying Eq. 3.37a all the physical properties
are computed using interpolation with the physical properties table
in the isothermal case or directly from PVT-correlations in the non-
isothermal case.

Once we compute pi*!, calculate (p,)¥*! and ()5, from Eq. 2.11

and 2.12, i.e.,

‘.‘.+1 = —————pgs kel 2
(py)t (5.6153!’) k) (u-ll)

i
and

Rpos . Posytt (2.12)

k+1
(0™ = 55138, B,
Calculate (E;)5*! and calculate (p,,)¥, from Egs. 2.31 and 2.25 respec-
tively, i.e.,

B k+1
° 2
B,iB,R-F). (2:31)

i

(E)i™ = (
(pm)f = (ngg + plEl)§+l~ (225)

Using the stabilizer equation for velocities, Eq. 3.43a or 3.45 , calculate

l,n+l.k+l
m; .

If [pf*! — p¥| > ¢, let p¥ = pF*!. and go back to step 3c.

1
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(i)
()

Update the oil component mass concentration, Eq. 3.14a;

Compute the new values of (Tf)f“, using the procedure to calculate
temperature and overall heat transfer coefficient, described in section

223.
Check convergence. If [(C))¥*! — (C))¥| < € is not satisfied for any i
(i =1,2....,N), replace (C))* by (C))**! for i = 1.2,..., N and go back
to step 3.b.

Calculate a new sandface velocity, (1,)%"? , from Eq. 3.5.
v 3.mass balance’

To accelerate convergence of the sandface velocity from Steps 3a to
3l. we use the secant method®®. Let ry and z; represent two initial
guesses of the sandface mixture velocity, and Ary and Az, denote
the corresponding velocity differences between the guessed value and
the one obtained from Step 3l. Based on the secant method. a new

velocity should be determined as

_ Az (z; - )

k+1 -
tm)1 =X =1 . 3.47)
( m 2 Al‘l - AIQ (
. : , Yk+1 {4 YE+1
A check of convergence is made, |(t, 1 mass balance (v'm) 1 | <e.
If convergence is not achieved, set Az, = Ax,.
_ , k1 k+1 —_ . — . k+1
AII - [(z/m)%,massbafance - (Um)% ] T = Iy, Iy = (l m)_é. and

(vm)*! = z,. Repeat steps 3b-3n until convergence.
2

4. Accept all the values of the variables at the iteration level & + 1 as the correct

values of time level n + 1, i.e.. (p)?*! = (p)5*!, etc.
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5. Repeat steps 1-3 for all time steps.

3.3.1.b_ Calculation of Distributions of Dependent Variables Under Steady State

Flow Conditions.

Under the assumption that steady-state conditions have been reached during
the production period. from the production rate, ¢, and production time, ¢,. the
bottomhole pressure at the instant of shut-in, p,ss, is computed from the semilog
approximation (Eq. 2.155) or is obtained from the reservoir simulator results.

When steady-state two-phase flow is assumed to exist in the wellbore before
shut-in, once than the pressure is known at any wellbore gridblock position the fol-

lowing procedure can be used to compute the value of dependent variables at the

gridblock.

Dependent Variables Computational Procedure for Steady State T'wo-Phase Flow.

i. From a known pressure, the PVT fluid properties, i.e., Rs. B,, B,. are com-
puted from PVT fluid properties table interpolation or from PVT fluid proper-

ties correlations0.

ii. Compute p, and p, using Egs. 2.11 and 2.12, i.e.,

= _Pos___ 211
P2 = 56158, (211)
_fsbos | Pos (2.12)

Pl=%5615B, B,
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iii. From mass balance, calculate the in-situ gas and liquid phase volumetric flow

.

vi.

vil.

viil.

rate, g, and ¢ in [f£3/sec ] :

_5.615[qgs — GosRs] By

9= 86400 (3.48)
- 1' os [+]
_ 5615408, (3.19)

%= 86400
Calculate the superficial gas and liquid velocities. v, and v, respectively, from

Egs. 2.32 and 2.33,

q
Usg = Ig, (2.32)
=2 9
Vgl A . (...33)

r. Compute the gas void fraction from Eq. 2.31, i.e.,

B
E = 2 . 2.31
‘" B,+B,(R-R,) (2:31)
Determine the existing flow pattern from Fig. 2.2.

Calculate the relative velocity, v, according to the flow pattern Egs. 2.139 to

2.141 and verify the value of E; using the following equation:

L T (3.50)

Finally compute the mixture properties, mixture density, p.,.and velocity. t,.

using Eqs. 2.25 and 2.39, i.e.,

Pm = ngg + pEy, (225)
v = 1s0Pg T VPl (2.39)
Pm
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76
ix. Calculate the oil component concentration. Cj, and the in-situ total gas oil

ration, R, i.e..

¢, = Eed, (3.51)
Prm
R= (ﬁ) (O.Glapos) . (352)
Ci Pgs

X. Using the value of R the corresponding bubble-point pressure can be computed

from R, table interpolation or from R, PVT-correlations.

Pressure and Dependent Variables Distribution - Calculation Procedure. The distri

bution of the dependent variables along the wellbore under steady-state two-phase

flow conditions is determined according to the following procedure:

1. Considering the bottomhole pressure, Py = Puf.s: obtained from the analyti-
cal solution or from the (r-z) reservoir simulator, we compute (z.'m)% with the

procedure described in dependent variables computation procedure section.

8]

. =
. Guess a value of p; e

3. Compute p; = 3[p

%+p;+%].

4. Using p, compute (C;); and (p,»), and all the other variables as described pre-

viously in the dependent variables computation procedure section.

Ot

. Calculate p, +3 from a steady-state two-phase flow momentum equation.
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6. if !pl,,% +pi | >e€letpl = P1+} and go back to step 3.

-1
B

Once the procedure converges. compute ( zfm)1+% using p, +4 and the dependent

variables computation procedure previously described.

8. Repeat step 2-7 for all the wellbore gridblocks, until the wellhead position is

reached.

3.3.2  Buildup Period Calculation Procedure.

The model requires input data on reservoir/well parameters, simulator control
data and fluid property data including p,s and pys, oil-gas surface tension. and tab-
ulated data for R,, B, and B, as functions of pressure in the case of isothermal flow
or computed using PVT correlations for the non-isothermal flow case. For results
presented here, R,, B, and B, as functions of pressure and temperature are obtained
from empirical correlations®.

The model offers the option of assuming that steady-state flow exists in the
wellbore prior to shut-in and that during the flow period, we produce the reservoir at
a constant total sandface rate, ¢,. [RB/D]. or a transient flow simulation can be done
during the drawdown period, assuming that we produce at a constant wellhead rate.
7. [STBO/D].

In considering steady-state flow for the drawdown period. from the production
rate, ¢, and producing time, t,, we can calculate the bottomhole pressure at the
instant of shut-in, p,y,,, using the semilog approximation or using the RDRBOS (r-z)

simulator. For steady-state flow. if the pressure at a given position is known. all other
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variables can be calculated. But in case of simulating the complete drawdown period
using our simulator. as described in previous section, the producing conditions that
exists at the instant of the shut-in are used, that means, that the bottomhole pressure
present at the instant of shut-in is set as the p, ;.

Once the distribution of variables at the instant of shut-in is known. the cal-
culation of variables during buildup is based on the solution of a predictor equation
for pressures, a stabilizer equation for velocities, a concentration-contiLuity equation
and a simplified energy equation to compute the temperature profile as was previ-
ously described. In the following, we present a detailed description of the procedure

for calculating variables at a new timestep.

3.3.2.a Calculation at a New Timestep.

During pressure buildup, pressure, mixture velocity and oil component mass
concentration distributions in the wellbore at a new timestep are determined using

the following procedure:

1. Guess values for (C;)7*! for i = 1,..., V. denoted (C;)F™*, to obtain an approx-
imation for the new oil component mass concentration profile. This guess can
be obtained either by extrapolation of values at the previous timesteps or by

simply using the value at the old time step.

%

Guess values for (T‘;):.c+l for the non-isothermal case. For the first timestep
during the build-up period, the temperature profile from the drawdown period

is used as the initial guess, and for the subsequent timesteps, (T’ f)f+1 = (Ty)] is
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used as the initial guess. In case of isothermal computations, we set (T,)f’"1 =

(T7),,-

3. Calculate the distribution of the total gas-oil ratio, R, and determine the distri-
bution of the bubble-point pressure along the wellbore from linear interpolation
with the physical properties table for the isothermal case or from the PVT

correlation for R, in case of non-isothermal computations.

4. Calculate the sandface velocity, (vn,)7+!, that satisfies both the bottomhole
2
boundary condition and the wellbore mass conservation, by the following pro-

cedure:

(a) Assume a sandface velocity. This value can be obtained by simply

using the value at the old timestep.

(b) From the bottomhole boundary condition, calculate the bottomhole
pressure, p5*! = pi*!. obtained from the analytical solution or from
2

the (r-z) reservoir simulator.

(c) Calculate the pressure profile using the predictor equation for pres-
sures, Eq. 3.37a. Note that all the physical properties are computed
using interpolation with the physical properties table or directly from

PVT-correlations.

(d) Once we compute p**!, calculate pf*! and ps*l.from Eq. 2.11 and

2.12, i.e.,
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k+1

b+l (_Pos 2
(pg)l (5.61539 )i H (-.11)
and
k+1
(p)+ = (o Posy™ (2.12)

5.615B, B,’;

Calculate E,’f“ and calculate p&™!, from Eqs. 2.31 and 2.25 respec-

tively, i.e.,
B k+1
= 2 2.
(Ev); (Bo+Bg(R— Rs))i ) (2.31)
(om)f = (pgEy + pEr)E+". (2.25)

Using the stabilizer equation for velocities, Eq. 3.43a or 3.45, calculate

k+1
Um1, .

It Ip;H-l.k _p?+l,k+1l > €, let p?+1,k = p:l+1,k+l’ and g0 back to step 4dc.

Calculate a new sandface velocity, (v,,)%*? from Eq. 3.4.

3.mass balance’

To accelerate convergence on the sandface velocity from Steps 4a to 4h,
we use the secant method®. Let z and z, represent two initial guesses
of the sandface velocity, and Azy and Az, denote the corresponding
velocity differences between the guessed value and the one obtained
from Steps 4h. Based on the secant method, a new velocity should be

determined as

Azi(z, — z0)

k+1 =
v, =Iy=2 — . 3.53
A check of convergence is made, |(vm)’;‘”1lm balamce — (vm)’fé_“l <e.

If convergence is not achieved, set Az, = Az,
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AII = (vm);;lmssbalance —(U”‘)?—lJ v Lo = I, Ty = (Um)k+1a and

N~

(#m)5™! = 25, Az, = Ax;. Repeat steps 4b-4j until convergence.
2

Update the oil component mass concentration using Eq. 3.45.

w

6. Compute the new values of (Tf)fH, using the procedure to calculate tempera-

ture and overall heat transfer coefficient, described in section 2.2.3.

7. Check convergence. If [(C))¥*! — (C))¥| < € is not satisfied for any i (; =

1,2,...,N), replace (C))¥ by (C))¥! for i = 1,2, ..., N and go back to step 2.

8. Accept all the values of the variables at the iteration level k£ + 1 as the correct

values at the time level n + 1, i.e., (p)?*! = (p)¥*!, etc.

9. Repeat steps 1-8 for all time steps.
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CHAPTER IV

ANALYSIS OF RESULTS.

In this chapter, pressure responses generated with the simulator for several
pressure drawdown and buildup tests are presented and discussed. These cases were
used to verify that the model gives physically meaningful results, to consider numeri-
cally accuracy and stability and to investigate the validity of the Fair' and Hegeman?
models for wellbore phase redistribution. Cases A consider drawdown and buildup
tests in a naturally flowing well where only single-phase oil flows in the wellbore prior
ro shut-in. Cases B are buildup tests in a naturally flowing well, but unlike Cases A,
the bottomhole flowing pressures in Cases B are only slightly higher than the reser-
voir fluid initial bubble-point pressure and as a result. two-phase flow develops in the
wellbore during production. Cases C represent pressure buildup tests conducted in
a gas-lift well producing only single phase oil from the reservoir. Cases M represent
pressure drawdowﬁ and buildup tests conducted in a naturally flowing well: in all
these cases the RDRBOS two-dimensional (r-z) reservoir simulator is coupled ro the
wellbore model to numerically simulate the reservoir. This option allow 1s to simulate

two-phase flow in both the wellbore and reservoir.

N2
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4.1 \lodel Validation.

4.1.1 Simulation of Single Phase Flow.

Here. we consider a pressure drawdown and buildup tests for wells having only
single phase oil flow in both the wellbore and the reservoir. The wellbore storage
is due to wellbore fluid compressibility. The drawdown data can be analyzed with
the classical wellbore storage and skin f}'pe curves, to estimgte values of skin factor.
wellbore storage and formation flow capacity. The buildup data acquired in these tests
can be analyzed with Horner analysis and type-curve matching with the weilbore
storage and skin drawdown type curves to yield values of formation flow capacity.
skin factor and wellbore storage coefficient. The reservoir was infinite-acting during
the tests so that the Horner straight line should extrapolate to the initial reservoir
pressure at infinite shut-in time.

Case A was designed as the way to verify our simulator under single phase
liquid flow condirions in the wellbore. Table 1.1 presents a list of input parameters for
Case A. A flow period of 50-hours followed by a 20-hours buildup rest was considered.
It is important to notice that for single-phase flow. there is no separation of gas and
oil components: thus, the bubble-point pressure remains constant along the wellbore.

The log-log plots of drawdown and buildup data for Case A are shown in
‘Fig. 1.1 and 4.2, respectively. At early time. pressure and pressure derivarive data
form a unit slope straight line. showing the effect of wellbore sroragé. As shown in
Fig. 4.1 for the (ira\\'down period and Fig. 4.2 for rhe buildup period. nonlinear
Duields paranerors whick

Datewds pare

rearession with rhe classical weiibore storage and skin mede
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| Parameter Value | Unit
Drawdown oil production rate 95.00 { RB/D
Total production time 50.00 | hours
Inital reservoir pressure 5215.00 | psia
Initial bubble point pressure 214.70 | psia
Oil compressibility (p>ps) 1.0e-5 | 1/psia
Oil component API gravity at s.c. 45.00 | API
Gas component. specific gravity at s.c. | 0.70 | -
Oil-gas surface tension 4.50 | dynes/cm
Wellbore pipe inside diameter 1.80 | inch
Formation absolute permeability 35.00 | md.
Formation thickness 15.00 | ft.
Formation porosity 0.20 |-
Wellbore radius 0.364 | ft.
Svstem isothermal compressibility 2e-5 | 1/psia
Average oil viscosity 2.00 |cp.
Skin factor 10.00 |-
Wellbore depth 6000.00 | ft.
Spatial Increment 30.00 | ft.
Buildup simulation time 20.00 | hours

Table 4.1: Input Parameters for Case A

are in excellent agreement with their corresponding input values. The input value
for the wellbore storage coefficient is calculated from the input fluid compressibility
(¢ = 1.0 x 107%psia~!) and the wellbore volume. ie., C = ¢;V,, = 1.90 x 10~
bbl/psia.

A Horner plot of pressure buildup data for case A is presented in Fig. 4.3.
At early times, pressure data deviate from the semilog straight line: this deviation is
due to wellbore storage effects. At late times, buildup data exhibit a semilog straight
line; semilog analysis of these data yields estimates of flow capacity. skin factor and
the initial reservoir pressure. As noted in Fig. 4.3, the parameters calculated from
semilog analysis agree very well with their corresponding input values.

A plot of the variation in sandface flow rate as a function of shut-in time is
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shown in Fig. 4.4. It can be seen that the sandface rate undergoes a significant
decline at carly shut-in times, i.e., at the beginning of the test, and is approximately
a straight line, indicating that rate decline is approximately of exponential form, as
suggested by Van Everdingen and Hurst3.

The bottomhole pressure and sandface flow rate generated with the simulator
can be used to calculate the wellbore storage coefficient. The wellbore storage coef-
ficient is defined as the change of total volume of wellbore fluids per unit change in

bottomhole pressure:

C== (4.1)

where AV is the change in volume of fluid in the wellbore at wellbore conditions in
[bbl], and Ap is the change in bottomhole pressure in [psia]. For pressure buildup

tests, Eq. 4.1 can be written as

dv/dt  qu/24
— = & ()
¢ dpus/dt  dpys/dt’ (42)

where g5 is in [RB/D] and p,,/dt is in [psia/hour].
For the drawdown period, part of the produced fluid comes from the expansion
of the fluids in the wellbore, the wellbore storage is caused by fluid compressibility

and can be computed from

C= Ccf Vi (4.3)

where c; is the compressibility of the wellbore fluids in [psia~!] and V,, is the wellbore

volume in [bbl].
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For the drawdown period, using the value of the oil compressibility and the
volume of the wellbore, a wellbore storage coefficient of 1.90x10~* bbl/psia is ob-
tained. During the buildup test, applying bottomhole pressure and sandface flow
rate data in Eq. 4.2, a constant wellbore storage coefficient of 1.85x 1074 bbl/psia is
obtained for the entire duration of the test even though both p,, and ¢,; are varying.
Note that this value differs slightly from 1.88x10~* bbl/psia obtained from Eq. 4.3.
The calculated value using nonlinear regression for C for the drawdown period is
1.94 x 10~* bbl/psia and for the buildup period is 1.93 x 10~* bbl/psia, these values
are in excellent agreement with the input value which is computed from the input oil
compressibility and the wellbore volume.

For the single-phase flow case, the results obtained and shown in Figs. 4.1-1.4

validate our model and solution algorithm, for the single-phase flow case.

4.1.2 Model Stability Verification.

In this section, pressure responses generated with our numerical simulator for
two pressure buildup tests are presented and analyzed. Case B is a buildup test in
a naturally flowing well, the bottomhole pressure in cases B is slightly higher than
the reservoir fluid initial bubble-point and as a result, two-phase flow develops in
the wellbore during production but single-phase flow exists in the reservoir. Case C
represents a pressure buildup test conducted in a gas-lift well producing only single
phase oil from the reservoir. Results from the new simulation are compared with
results obtained from the explicit model of Ref. 19, using a finite grid and small time

steps, Az = 30 ft. and At = 4 sec. This small time step results are assumed to give
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the correct solution.

4.1.2.a Case B.

Case B is a pressure build-up test in a well that was flowed at a constant
sandface rate for 120 hours prior to conducting a 20 hours pressure buildup test. The
objective is to simulate the transient process of wellbore phase segregation and to
examine its effect on pressure buildup data analysis. Input parameters of Case B
are chosen such that bottomhole pressure is only a few psi higher than the initial
reservoir bubble-point pressure, and consequently, only single-phase flow occurs in
the reservoir, but two-phase flow develops in the wellbore. Table 4.2 gives a list of
input parameters used in Case B and Table 4.3 tabulates B,, R, and B, as functions
of pressure ( wellbore temperature is assumed to be 150°F ).

Fig. 4.5 presents a log-log plot of buildup data generated for Case B using our
previous explicit simulator!® with several different values of the time step. Throughout
the Courant number is defined by » At/Ax where At is referred to the size of the time
step (not shut-in time) used in the simulation. In computing the Courant number
for the buildup period. we always set v equal to the bottomhole mixture velocity
at the instant of shut-in. Toward the end of the buildup test, the derivative is still
decreasing and fitting a semilog straight line through the last data points will yield a
low estimate of kh. At early times, although wellbore segregation is taking place, the
buildup data show the classical appearance of the wellbore storage and skin solution.
In the transition region, the derivative data curve rises above the pressure data,

indicating a decreasing wellbore storage? (see Fig. 4.6). The behavior of the buildup
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| Parameter | Value | Unit |
Drawdown oil production rate 100.00 { RB/D
Total production time 120.00 | hours
Inital reservoir pressure 5215.00 | psia
Initial bubble point pressure 2710.00 | psia
Oil compressibility (p>ps) 1.0e-5 | 1/psia
Oil component API gravity at s.c. 45.00 | API
Gas component specific gravity at s.c. | 0.70 | -
Oil-gas surface tension 4.50 | dynes/cm.
Wellbore pipe inside diameter 1.80 | inch
Formation absolute permeability 25.00 | md.
Formation thickness 10.00 | ft.
Formation porosity 020 |-
Wellbore radius 0.364 | ft.
System isothermal compressibility 2e-5 | 1/psia
Average oil viscosity 2.00 |cp.
Skin factor 15.00 |-
Wellbore depth 9000.00 | ft.
Spatial Increment 30.00 | ft.
Buildup simulation time 20.00 | hours

Table 4.2: Input Parameters for Case B

data is comparable to the behavior of field data reported by Hegeman et al.?

The wellbore storage coefficient calculated from Eq. 4.2 is presented in Fig.
4.6. As shown in Fig. 4.6, this well experiences an order of magnitude decrease in
the wellbore storage coefficient during the 20-hour pressure buildup test. At early
times, buildup data show a constant wellbore storage coefficient, the wellbore storage
coefficient declines sharply around At = 1.0 hour which. as shown later, roughly
corresponds to the time when the gas column begins to be compressed. At late times,
the well again behaves like a well with a constant wellbore storage coefficient. Fig.
4.7 presents sandface flow rate as a function of shut-in time. Compared to Case A,
the sandface flow rate for Case B decreases more slowly.

We expect that the explicit method will be stable as long as the time step is
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P B, R, B,
(psia) | (RB/STB) || (scf/STB) (RB/scl)
214.7 | 1.059474 15.256641 | 0.139674E-01
414.7 | 1.082794 | 100.044716 | 0.705830E-02
614.7 | 1.109518 | 160.754761 | 0.164529E-02
814.7 | 1.139001 | 225.723618 | 0.342061E-02
1014.7 | 1.170882 | 294.077362 | 0.268376E-02
1214.7 | 1.204915 | 365.266510 | 0.219513E-02
14147 | 1.240920 | 438.909729 | 0.185027E-02
1614.7 | 1.278753 | 514.725098 | 0.159619E-02
1814.7 | 1.318298 | 592.494812 | 0.140309E-02
2014.7 | 1.359457 | 672.044739 | 0.125281E-02
2214.7 | 1.402147 | 753.232605 | 0.113366E-02
2414.7 | 1.446294 | 835.939514 | 0.103775E-02
2614.7 | 1.191835 | 920.064026 | 0.959553E-03
2814.7 | 1.538714 | 1005.519287 | 0.895068E-03
3014.7 | 1.586879 | 1092.229370 | 0.841354E-03
3214.7 | 1.636284 | 1180.127563 | 0.796194E-03
3414.7 | 1.686880 | 1269.154541 | 0.757891E-03
3614.7 | 1.738654 | 1359.257568 | 0.725133E-03
3814.7 | 1.791545 | 1450.389038 | 0.696891E-03
4014.7 | 1.845530 | 1542.505493 | 0.672355E-03 |
4214.7 | 1.900579 | 1635.567871 | 0.650831E-03
44147 | 1.956664 | 1729.510405 | 0.631954E-03
1614.7 | 2.013758 | 1824.389648 | 0.615160E-03
4814.7 | 2.071839 | 1920.085938 | 0.600165E-03
5014.7 | 2.130883 | 2016.600464 | 0.586700E-03
5214.7 | 2.190870 | 2113.907959 | 0.574546E-03
5414.7 | 2.251778 | 2211.983643 | 0.563521E-03
5614.7 | 2.313589 | 2310.804688 | 0.553491E-03
5814.7 | 2.376285 | 2410.350342 | 0.541329E-03
6014.7 | 2.439848 | 2510.600098 | 0.535942E-03

Table 4.3: Physical Properties as Function of Pressure for Case B
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limited by the Courant number relation:

At vm, <1

Az | S (4.4)

l

In applying, Eq. 4.4, we use the maximum mixture velocity predicted by our numer-
ical model.

In order to investigate the Courant number limitation, the explicit simulator
was run with several time steps with a fixed number of wellbore gridblocks; specifically
we use Az = 30 ft. so the number of gridblocks is equal to 300. As Fig. 4.5 shows, the
explicit simulator gives stable and consistent results as long as the Courant number
limitation is satisfied, but when the time step was increased to a value above 100
seconds, so the Courant number is exceeded, the simulator fails to converge for the
full range of relaxation factors (0 < § < 2). This means 15,000 iterations were tried
without obtaining convergence. When, our new multistep simulator was run for the
same conditions, we obtained the results presented in Fig. 4.8. At early times, both
simulators are in excellent agreement; in the transition region the results from the
new simulator are shifted a little to the right; see the derivative curve. This behavior
for the cases when the Courant number is not violated (50, 100 sec.). may simply
be due to the differences in the numerical schemes. For the cases when the Courant
condition is violated, the behavior probably simply reflects a loss of accuracy for the
large time steps used. However, the simulator shows a stable behavior even for the
case where we violated the Courant stability condition by a factor of 10.

Both simulators show good agreement when the Courant number is not vi-

olated. On the other hand, there is a significant difference between simulator per-
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formance when we consider the computational execution time. Simulation using the
explicit simulator for the case of At = 100 sec. and Az = 30 ft., required 10 hours on
a PC-Pentium 66 MHz in comparison with 45 minutes required for the new simulator.

Fig. 4.9 presents the wellbore storage coefficient computed for all the cases.
All results are in excellent agreement except for the case with A¢= 1000 sec., which
gives slightly different results than obtained in the other cases. Again, this difference
can attributed to inaccuracy caused by the large time step size.

The distribution of the gas void fraction along the wellbore for several At
values is shown in Fig. 4.10. The total wellbore depth is 9000, Fig. 4.10 only shows
the top 1000 ft. The profile at At = 1000 sec. shows that a single phase gas zone
has been formed in the top 350 ft. At At = 4000 sec., the two phases are almost
completed segregated, the wellbore void fraction profile shows a single phase gas zone
for the top 650 ft. After At = 4000 sec., the gas-oil interphase moves continuously
upward compressing the gas column. Note that At = 4000 sec. corresponds to
approximately the time at which the pressure/pressure derivative responses in Fig.
1.5 shows an anomalous behavior. This is a clear indication that the decreasing
wellbore storage behavior of Case B is due to the compression of the gas column after
wellbore phase segregation has ceased, i.e., after At = 4000 sec., the test behaves like
a closed chamber test®. The results from the new simulator for different time steps
are presented in the same figure. For a simulation time equal to 1000 seconds. the
gas-oil interphase is shifted a little to the right of the explicit solution for time steps
100 and 500 seconds. This is due to a loss of accuracy loss caused by large times

steps; at late times the agreement between both simulators is reasonable good.
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Fig. 4.10 - Gas void fraction distribution for Case B
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To investigate the stability and accuracy performance of the new simulator,
the time step was fixed at 100 seconds and several cases were run with Az varying
from sizes 30 to 1000 feet. Fig. 4.11 presents the results, and as this figure shows,
the simulation results agree very well at early and late times, but there is some
difference during the transition period. Again the main difference appears when the
computational time is considered; 45 minutes was required for the case Az = 30 ft.

as compared to 5 minutes for Az = 1000 ft.

4.1.2.b Case C.

Case C shows that our simulator can also be used to simulate pressure buildup
tests in gas-lift wells. Also, unlike Case B, for Case C, phase segregation produces
a hump in the wellbore pressure. For Case C, the following assumptions were used:
1) the gas injection point was placed at the sandface; 2) no mass transfer occurs
between the injected gas and reservoir fluids; 3) the produced oil is incompressible,
i.e.,, B, = 1, and does not contain solution gas, i.e., R, = 0. All other parameters
are listed in Table 4.4. Again we, considered a 120-hour flow period followed by a 20
hours buildup test.

By using the explicit simulator. a log-log plot of buildup data was generated
(see Fig. 4.12). At early times. although wellbore segregation is taking place. the
buildup data show the behavior of the classical wellbore storage and skin solution®’.
In the transition region, the derivative data curve shows a v-shape depression, giving
some negative values. The behavior of the buildup data is comparable to the behavior

of field data reported by Olarewaju!l. At late times, the derivative curve is constant,
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| Parameter Value Unit
Drawdown oil production rate 100.00 | RB/D
Gas Injection Rate 200000.00 | scf/D
Total production time 120.00 | hours
Inital reservoir pressure 5215.00 | psia
Oil compressibility (p>ps) 0.0 1/psia
Oil component API gravity at s.c. 45.00 API
Gas component specific gravity at s.c. | 0.9665 | -
Oil-gas surface tension 4.50 dynes/cm.
Wellbore pipe inside diameter 1.80 inch
Formation absolute permeability 25.00 md.
Formation thickness 75.00 ft.
Formation porosity 0.20 -
Wellbore radius 0.364 ft.
System isothermal compressibility 2e-5 1/psia
Average oil viscosity 2.00 cp.
Skin factor 12.00 -
Wellbore depth 9000.00 | ft.
Spatial Increment 30.00 ft.
Buildup simulation time 20.00 hours

Table 4.4: Input Parameters for Case C

which indicates that wellbore storage effects have becomes negligible and pressure
data during this time period will fall on the semilog straight line. The change in
the wellbore storage coefficient computed from Eq. 4.2 is presented in Fig. 4.13.
At early times, buildup data show a constant wellbore storage coefficient. Then,
a transition period follows during which the wellbore storage coefficient decreases
and even becomes negative, indicating a reversal in the direction of flow. Once the
wellbore pressure passes the maximum hump point, the wellbore storage coefficient
becomes a large positive number, but as the test continues, the wellbore storage
coefficient decreases. At late times, the well again acts like a well with constant
storage. The wellbore storage coefficient at late times is approximately 40% larger

than the wellbore storage coefficient at early times.
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As in Case B, for the explicit method, the time step is limited by the Courant
number relation. The explicit simulator was run with several time steps with a fixed
number of wellbore gridblocks, i.e. for Az= 30 ft. The explicit simulator gives stable
and consistent results as long as the Courant number limitation is satisfied, but as in
Case B, when the time step was increased to a value above 100 seconds, the simulator
fails to converge for the full range of relaxation factors (0 < 8 < 2); this means 15,000
iterations were tried without obtaining convergence. The results are presented in Fig.
4.12.

Fig. 4.14 presents the results that were obtained from the new simulator
for Case C. At early and late times, results from both simulators are in excellent
agreement, but similar to Case B results, in the transition region, the results for
the pressure derivative curve are somewhat different especially when the Courant
number is exceeded. The variation of the wellbore storage coefficient for all the cases
is presented in Fig. 4.15. Again results for A¢ > 100 sec. are somewhat different
than results obtained from the other cases at intermediate times.

The computational execution time required is quite different for the two simu-
lators. For the case of At = 100 sec. and Az= 30 ft.: the explicit simulator required
12 hours to run on a PC-Pentium 66 MHz in comparison with 60 minutes required
for the new simulator.

The distributions of the gas void fraction along the wellbore for certain shut-in
times At values are presented in Fig. 4.16. As shown, as the buildup test progresses,
the single gas phase zone grows. Results not shown indicate that from At = 18,000

seconds to the end of the buildup test, the gas-oil contact remains almost unchanged.
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Fig. 4.16 - Gas void fraction distribution for Case C.
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Buildup data from both Case B and Case C are influenced by wellbore phase
segregation. However, buildup data from Case B clearly show a decreasing wellbore
storage effect while buildup data from Case C do not. Comparing the gas void
fraction profiles for the two cases, Fig. 4.10 and Fig. 4.16. it can be concluded that
the variation of wellbore storage coefficient is affected by both phase segregation and
gas compression. If the magnitude of afterflow is small after the end of wellbore phase
segregation, the phase segregation will be the dominating factor, and pressure buildup
data will show an increasing wellbore storage coefficient. On the other hand, if the
afterflow is still large after gas and liquid have completely segregated in the wellbore,
the gas column will be compressed due to afterflow and the pressure buildup data

will eventually show a decreasing wellbore storage coefficient.

To investigate the stability and accuracy performance of the implicit simulator,
the time step was fixed to 100 seconds and several grid block sizes were used. The
results presented in Fig. 4.17 indicate that all simulation results agree reasonably
well. Again, there is considerable difference in the computational time required; from

60 minutes for the case of Az equal to 30 ft. to 15 minutes for Az equal to 1000 ft.

4.1.3 Validitv of Fair and Hegeman Models.

Since our model was derived from mass, momentum and energy balances, it is
appropriate consider whether buildup data obtained from our model can be analyzed
by the Fair! or Hegeman et al.?2 models to obtain good estimates of permeability and
skin factor. The nonlinear regression analysis package based on least absolute value

method (LAV) implemented by Carvalho et al.®® was used to analyze data from cases
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Case B-1
Fairs’s Model
Regression Simul. No I(J)J:\tfliers NLS
Parameters Data ) Outliers Detection
Detection
Optimized Minimum Max.
Value Value Value
(mk;j ) 25.00 3.9044E+02 | 3.4459E+02 | 0.0009E-+00 | 4.3123E+03
¢ ) 1.5788E-03 1.5794E-03 | 0.0000E+00 | 9.541E-02
(bbl/psia)
S 15.00 3.1948E+-02 2.8124E+02 | 1.5670E+01 | 4.5340E+02
( dfzy) 3.7244E-02 7.70208E-02 | -2.1675E+00 | 2.2491E+00
.C"/ 4B 1.7712E4+01 | -1.76866E+01 | -2.4663E+03 ! -2.4309E+03
(psia/bbl/day)

Table 4.5: Case B-1 Least Absolute Value and Least Squares Regression

B and C.

4.1.3.a Case B-1

Case B-1 is exactly the same case B, discussed previously. Using the nonlin-
ear regression package®®6! an analysis of pressure buildup data was performed using
the least absolute value (LAV) method, with outlier detection and no-imaging pro-
cess®61. Fair’s Model and Hegeman’s Model were both considered as the storage
model for regression purposes. In all cases presented, regression was performed on
the pressure data only. The regression analysis graphs are presented from Fig. 4.18

to Fig. 4.21. A table with a summary of results are presented in Tables 4.5 to 4.6.

We experienced extraordinary difficulty in matching this data and often got
radically different answers depending on the initial guess. Since a major objective

was to get the best possible fit of the data, we tried some special techniques using

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



114

"L-g 9SeD {|9POIN SdIed UM AV
paxi} s pue j {ejep Jo sINOY dAl Isil JO Yojew uoissaibay - gL v “bi-

(1y) awi] urpnys
001
| ] | _ | I | ] i | |

010

INfeA paxy (ST =8 (pw) ST =Yy

IAIJBALIIP JINSSIAJ == = = = 00'SE =8 (pw) Sz =N O
2.nssIAg

ejeq@ pajeinuils - (0)

CaanssaEJ o UOISSIASIY
PPOIA S, 116y

00°01

Illlll i

00°0001

(1sd) 3v up/” dvp pue " dv

$52204J SNV 0N / HONIPI( S1APNQ ON] - AVT -1 25V)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

“I-9 ¥se)D
‘PPOIAL S, J1e] YPIM AV ‘ejep dnpling danssdad Jo uoissaasay - ¢1°y “Si1g
AY) awil] ui-}n
00'01 « .m%ﬁ L urs Cmo; 10°0
_______ [} ] __.._._ | | ______ | | | o1'0

ANBALID([ INSSAAJ - = = = -

CRILELEAP | 001

—
=

SIANSSIAJ U0 UOISSIIFIY
[PPOIA S,a1ey

[}
!
[}
' v)eq panwig O
\
]

o
<
o
p—

Ill[lll t

00001

(1sd) 3v uip/” dvp pue " dy

0s'6I€ =8 (pwW) p'06¢ =N
00T =5 (pw)oosz =4 ()

Illllll |

000001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

Case B-1
Hegeman’s Model
Regression Simul. No I(-)‘AYlie S NLS
Parameters Data . ! . r Outliers Detection
Detection
Optimized Minimum Max.
Value Value Value
(n'ﬁi) 25.00 3.5615E+01 | 3.5615E+01 | 3.2796E+01 | 3.8435E+01
C ) 8.3165E-04 8.3165E-04 | 7.7588E-04 8.8743E-04
(bbl /psia)
S 15.00 2.634E+01 2.3634E+401 | 2.1360E+01 | 2.598E+01
( do:ly) 5.1076E-02 5.1076E-02 | 5.0282E-02 5.1870E-02
Co/aB 4.4452E401 | -4.4452E+01 | -4.8583E+01 | -4.0322E+01
(psia/bbl/day)

Table 4.6: Case B-1 Least Absolute Value and Least Squares Regression

correct data. Specifically as a first matching process attempt, we consider only data
for the first 5 hours. With this pressure data and k£ and s fixed at their correct
values, we regressed on the three parameters, C, a and C,/qB, where C, represents
the maximum phase redistribution pressure change' and o represents the time at
which about 63% of the total change has occurred!. The results are presented in Fig.
4.18, and as this figure shows, Fair’s model fails to represent the early time data.
The results from the early time regression were used as initial guesses for a regression
using the complete twenty hours test. In this case, we obtained estimates of k. s.
C, o and C,/qB. Fig. 4.19 shows the results, indicating again a poor match, as is
confirmed by the large confidence intervals in Table 4.5. These confidence intervals
were obtained by applying least squares to the reduced data set obtained by using
LAV to remove outliers. In all cases we applied LAV, removed outliers, and then

applied least squares to generate confidence intervals. As shown in Table 4.5, our
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estimates of permeability are & = 390.4 md and s = 319.48 as opposed to the correct
values of & = 25 md. and s = 15. The results of Fig. 4.19, although poor, is the
best overall pressure match we could obtain. In order to get values of & and s close
to the correct ones, we had to ignore all early time data. In effect, this is equivalent
to performing semilog analysis. However regression analysis of data corresponding to
At > 6 hours gave k£ = 22.4 md. and s = 12.4.

In the case of Hegeman’s Model (Figs. 4.20 and 4.21), the early time data
match with £ and s fixed at the true values presents a reasonable agreement with the
simulated data. In this case, when we match the complete test as shown in Fig. 4.21,
we obtain a reasonable match of pressure and rough estimates of £ and s. Note the
confidence intervals (Table 4.6) are narrow for all the parameters even though the
true values of £ and s are not within their confidence intervals. Note the derivatives

data do not match well the derivatives computed form the model at late times.

4.1.3.b Case B-2

Case B-2 is a similar case to Case B-1 but in this case the value of permeability
was increased to 50.0 md and skin reduced to 5.0 . For the analysis of this case. the
data obtained from the simulator were cut to 2 hours in order to emphasize the
wellbore storage dominated data and the effect of phase redistribution. The non-
linear regression package was executed again to obtain the results shown in Figs.
4.22 to 4.23 and Tables 4.7 and 4.8.

For this case the answer for k£ and s are good for all the regression options and

storage model considered. However, the parameter estimates obtained by regression
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Case B-2
Fairs’s Model
>
Regression Simul. Lav . NLS
No Outliers . .
Parameters Data . Outliers Detection
Detection
Optimized Minimum Max.
Value Value Value
(mka' ) 50.00 5.0144E+4-01 5.0144E401 | 53.0009E+01 | 5.0279E+01
¢ . 2.7054E-04 2.7054E-04 2.5933E-04 2.8175E-04
(bbl/psia)
S 5.00 4.9597E+00 | 4.9597E+00 | 4.9320E+00 | 4.9842E+00
@ 1.4468E-03 1.4468E-03 1.3945E-03 1.4991E-03
(day)
Co/eB 6.7586E+00 | -6.75586E+00 | -7.2359E+00 | -6.2814E+00
(psia/bbl/day)

Table 4.7: Case B-2 Least Absolute Value and Least Squares Regression

with Fair’s model (Fig. 4.22) is good only because it fits data corresponding to the
semilog straight line. Fair’s Model fails to represent the storage dominated period.
Again the small confidence intervals obtained for Fair’s model are meaningless because

our LAV procedures identified all data prior to 0.7 hours as outliers.

Hegeman'’s model in this case shows a excellent performance for all the param-
eters (k, s, C, a and C,/qB). Although the nonlinear least squares results shown in
Table 4.8 were obtained by matching data with outliers removed, the effect of outliers
is not significant for this case as should be expected from the results shown in Fig.
4.23. In fact, when we regressed on all data using least squares, we obtained the
following estimates £ = 48 md, s = 4.53 with confidence intervals (47.7, 48.3 md) for

k and (4.47,4.60) for s.
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Case B-2
Hegeman’s Model
Regression Simul. No I(J)}:':/Iiers NLS
Parameters Data . Outliers Detection
Detection
Optimized | Minimum Max.
Value Value Value
(mkd) 50.00 4.9094E+01 | 4.9028E401 | 4.8878E+01 | 4.9178E+01
¢ ) 2.3599E-04 2.4129E-04 | 2.3637E-04 2.4621E-04
(bbl/psia)
s 5.00 4.7527E400 | 4.7264E+00 | 4.8276E-+00 | 4.7699E+00
o 2.7334E-03 2.6993E-03 | 2.6T46E-03 2.7240E-03
(day)
Cs/9B 59q5=F
} 7.8161E+00 | -7.5347E+00 | -7.7739E+00 | -7.2955E+00
(psia/bbl/day)

Table 4.8: Case B-2 Least Absolute Value and Least Squares Regression

4.1.3.c Case B-3

For Case B-3 the permeability was increased to 100 md and the skin factor was
again set equal to 5. For this case, both storage models show a excellent agrement
with the simulated data, when the match was done considering only the first two
hours of the twenty hours test. However, as before, the regression match quality was
strongly dependent of the values of the initial guesses for the parameters. This shows
that we may have multiple local minima, or an improper solution for the analytical
phase distribution model. The results are presented in Figs. 4.24 to 4.25 and Tables
4.9 and 4.10. Both phase redistribution models give a reasonably good match of data
and good estimates of k£ and s. Also in this case the effect of outliers is small. When
we applied non-linear least squares using the pressure data for At < 2 hours, the
estimates obtained were k = 100.9 md and s = 4.85 for Fair’s model (Fig. 4.24) and

k = 100md and s =4.79 for Hegeman’s model (Fig. 4.25).
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Case B-3
Fairs’s Model
Regression Simul. No I(;ﬁzflie NLS
Parameters Data . rs Outliers Detection
Detection
Optimized Minimum Max.
Value Value Value
(mkd) 100.00 1.0092E+02 1.0104E+01 | 1.0100E+401 | 1.0107E+01
¢ ) 2.9043E-04 2.9500E-04 | 2.3637E-04 2.4621E-04
(bbl/psia)
S 5.00 4.8508E+00 | 4.8590E+00 | 4.8590E+00 | 4.8656E+00
( d(:y) 4.1006E-04 3.9772E-04 | 3.9388E-03 4.0155E-04
Cs/qB 1.1870E+00 | -1.1354E+00 | -1.1501E+00 | -1.1207E+00
(psia/bbl/day) ‘ ’ ' T

Table 4.9: Case B-3 Least Absolute Value and Least Squares Regression

Case B-3
Hegeman’s Model
Regression Simul. No I(J)A‘:/l NLS
Parameters Data v .lers Outliers Detection
Detection
Optimized Minimum Max.
Value Value Value
(r:d) 100.00 1.0103E+02 1.0110+-02 | 1.0107E+02 | 1.0112E+02
¢ ) 2.9940E-04 3.0028E-04 | 2.9961E-04 | 3.0096E-04
(bbl/psia)
s 5.00 4.8619E4-00 | 4.8677E+00 | 4.8663E+00 | 4.8712E+00
( d‘;y) 6.1021E-04 | 6.0784E-04 | 6.0555E-04 | 6.1013E-04
.C"/ 9B 1.1012E+00 | -1.0922E+00 | -1.0996E--00 | -1.0848E+-00
(psia/bbl/day)

Table 4.10: Case B-3 Least Absolute Value and Least Squares Regression
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Case B-4
Fairs’s Model
Regression Simul. No gﬁ:/liers NLS
Parameters Data ; Outliers Detection
Detection
Optimized Minimum Max.
Value Value Value
(mkd) 10.00 1.1506E+01 | 1.1511E+01 | 1.0633E+01 | 1.2388E-+01
¢ : 1.1377E-03 1.3786E-03 | 2.9009E-04 2.4672E-03
(bbl/ psia)
s 2.00 3.0211E+00 | 3.0236E+00 | 2.4034E-+00 | 3.7067E--00
( dC;y) 3.0074E-02 3.0206E-02 | 1.2886E-02 4.7526 E-02
.C"/qB 1.7010E+01 | -1.6941E+01 | -4.4027E+01 | 1.10144E+01
(psia/bbl/day)

Table 4.11: Case B-4 Least Absolute Value and Least Squares Regression

4.1.3.d Case B-4

Case B-4 is similar to Case B-1, but in this case the value of permeability was
increased to 10.0 md and skin factor reduced to 2.0 . The non-linear regression package
was executed again, in this case LAV and NLS with and without outliers detection
were considered. Unlike case B-1, we had little difficulty in obtaining a reasonable
match regardless of the initial guess, especially for Hegeman’s model which again

gives the best results: compare Figs. 4.26 and 4.27 and Tables 4.11 and 4.12.

For this case, the regression estimate of k and s are good for all the regression
options. The regression with Fair's model show us that the storage dominated period
is again not well matched, see Fiig.4.26. Hegeman’s model regression (Fig. 4.27) shows
an excellent match through the time span of data and we obtain small confidence

intervals for all parameters; see Table 4.12.
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Case B-4
Hegeman’s Model
Regression Simul. NLS
Parameters Data Outliers Detection
Optimized Minimum Max.
Value Value Value
(mkd ) 10.00 1.1080+01 | 1.0871E+01 | 1.1288E+01
¢ . 9.2940E-04 | 8.6243E-04 | 9.9636E-04
(bbl/psia)
$ 2.00 2.6913E+00 | 2.5599E+00 | 2.8538E+00
“ 4.6716E-02 | 4.5888E-02 | 4.7543E-02
(day)
Cd)/ qB ; D)
(psia,/bbl/day) -3.4508E+01 | -3.8032E+01 | -3.0985E+01
Table 4.12: Case B-4 Least Squares Regression
4.1.3.e Case C.

Although a additional pressure rise will result whenever phase segregation
occurs in the wellbore. not all phase segregation can produce a hump in wellbore
pressure. With Case C, we show that our simulator can also used to simulate pressure
buildup tests in gas-lift wells. Moreover, unlike Case B, buildup data in Case C shows
a substantial pressure hump.

Our regression results for Case C buildup data are presented from Fig. 4.28 to
4.29. In this case, we found a excellent agreement between the simulated data and the
storage models of Fair and Hegeman. However, the number of outliers points detected
using Fair’s model are less than the number detected when we use the Hegeman’s
model and as shown in Table 4.13 and 4.14, we obtain better estimates of k and s

with the Fair’s model that with the Hegeman’s model.
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Case C
Fairs’s Model
Regression Simul. No gﬁ:liers NLS
Parameters Data : . Outliers Detection
Detection
Optimized | Minimum Max.
Value Value Value
( n’; ) 25.00 | 2.6260E+01 | 2.6464E+01 | 2.4926E+01 | 2.8003E+01
c ) 1.9497E-02 1.8707E-02 | 1.7775E-02 | 1.9638E-02
(bbl/psia)
S 20.00 2.1415E+01 | 2.1348E+01 | 1.9980E+01 | 2.2929E+01
( dC:zy) 9.9489E-03 1.0013E-02 | 9.9223E-03 | 1.0104E-02
.C°/ a8 4.3740E4+00 | 4.3644E+00 | 4.3644E+00 | 4.3919E+00
(psia/bbl/day)

Table 4.13: Case C Least Absolute Value and Least Squares Regression

Case C
Hegeman’s Model
Regression Simul. No I(J)‘?\t%e < NLS
Parameters Data 1er Outliers Detection
Detection
Optimized Minimum Max.
Value Value Value
(rr]:d) 100.00 1.0103E+02 1.0110+02 | 1.0107E+02 | 1.0112E+02
¢ . 2.9940E-04 3.0028E-04 | 2.9961E-04 | 3.0096E-04
(bbl/psi)
S 5.00 4.8619E+00 | 4.8677TE+00 | 4.8663E+00 | 4.8712E+00
( d?zy) 6.1021E-04 6.0784E-04 | 6.0555E-04 | 6.1013E-04
.Cé/ 9B 1.1012E+00 | -1.0922E+00 | -1.0996E+00 | -1.0848E+00
(psi/bbl/day)

Table 4.14: Case C Least Absolute Value and Least Squares Regression
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4.2 Temperature Influence on Pressure Response

The objective is to simulate an isothermal and a non-isothermal transient pro-
cess of wellbore phase segregation, and to examine its effect on pressure buildup data
analysis. In this section, pressure responses generated with our numerical simulator
for a pressure buildup test is presented and analyzed. The Case B data described in
previously is used. Case B is a pressure build-up test in a well that was flowed at a
constant sandface rate for 120 hours prior to conducting a 20-hour pressure buildup

test.

Fig. 4.30 presents a log-log plot of buildup data generated for Case B using
our simulator for isothermal and non-isothermal cases. For the isothermal case the
average reservoir temperature of 190°F' is used as the average wellbore temperature.
Toward the end of the buildup test, the derivative is still decreasing and fitting a
semilog straight line through the last data points will yield a low estimate of kh. At
early times, wellbore segregation is taking place. For the isothermal case, buildup

data shows the classical appearance of the wellbore storage and skin solution.

For the nonisothermal case, the heat transfer causes a rate of decrease of
the pressure response that causes the derivative to fall below the Ap plot at very
early times; i.e., the rate of increase in pressure is less that for the isothermal case.
Effectively, the wellbore storage coefficient decreases slightly during early times. Note
in Fig. 4.30, we have included both the case where heat transfer in the annulus is by
conduction and by natural convection. Since, we have found little difference between

these two cases, at least for the cases analyzed here, we will simply refer to them both

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D
[5p]
4

"d 3s8)) 10J JANBALIY(J 2INSSAIJ pUL 3nssaag Jo 30[d 801-307 - ¢y “31
(1) 1 ‘awur ur-pnyg

1+300°1 0+700°1 1-300°1
_______ | ] _______ [} ] _______ | 0+700°'1
uoldNPUOH=SNINULY ‘9SB) |BWISYI0S|-UON O N
UOI}OBAUOY) [BINjEN=SNINUUY ‘9SB)) |eLIaY)0S|-UON O -
ase) |ewayios) w
o 1+300°1
|apoy ainyesadwia |
= Z+700°1
= €4+700°1
= p+900°1
1O pmj,] snpnuuy
g osn)

smdv

(1sd) 1v uppy ~dvp puv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



136

as the non-isothermal case.

During the buildup period, the apparent wellbore storage coefficient is com-

puted from

 au(At)/24 ]
= dpejdat’ (43)

Ce
where g,5(At) is the rate (afterflow) in RB/D. For a the case of a rising liquid level,

it is well known that the wellbore storage coefficient is given by

14471’7';2,
L= o
5.615p(g/gc)

(4.6)
Here, p denotes the liquid density and r, denotes the radius of the pipe in which
the liquid is rising, i.e., for our problem, the radius of the tubing. Eq. 4.6 assumes

single-phase liquid flow. For the case of a gas well, compressive storage exists during

buildup and the wellbore storage coefficient is given by
Ce = Vuc,, (4.7)

where V,, is the volume of the wellbore and ¢, is the gas compressibility. Eqs. 4.7
pertains to single-phase gas flow. Xiao and Reynolds®® considered wellbore storage
during a closed chamber test. They assumed negligible liquid compressibility and an
ideal gas. Also in a closed chamber test, the two phases are completely segregated.
For this problem, they showed that the effective wellbore storage coefficient is given

by

v

CcCL

o G 4.8
Cec+Cg ( )

Very early in the test, the wellbore pressure is low so ¢, and hence C, are large so

Ce>>C;. (4.9)
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When Eq. 4.9 applies, Eq. 4.8 can be approximated by
Ca =C L. (4.10)

Thus at early times, the effective wellbore storage coefficient is approximately equal
to one due to a rising liquid level. As pressure increases, gas compressibility decreases
and C, begins to decrease, and at late-times appreximately stabilizes at a constant
value less than Cy.

Our problem is more complex than any of those discussed above since at the
instant of shut-in, a two phase mixture exists in most of the wellbore. Figs. 4.31
and 4.32, respectively, show the gas-void fractions in the top two-thousand feet of the
wellbore for the isothermal and non-isothermal cases. The times shown are shut-in
times. Note at the instant of shut-in the phases are not segregated; i.e., the gas void
fraction is approximately 0.6 at the top of the well and gradually decreases as we go
down the well, until we reach a point where we are at bubble-point pressure.

For the nonisothermal case, the wellbore fluid loses heat to the surrounding
rock during pressure buildup. As noted by Miller®?, this causes a decrease in enthalpy,
an increase in density and an increase in compressibility. Compared to the isothermal
case, in the part of the wellbore where two phases exist, the fluids are at a lower
temperature than in the isothermal, and hence the gas is more soluble in oil. The
additional increase in R, causes the system compressibility to be higher for the non-
isothermal case. Thus, if the effective wellbore storage coefficient is dominated by
compressibility effects, we expect to obtain a higher wellbore storage coefficient for the

non-isothermal case. This also means that for a given pressure change, the afterflow
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will be greater for the nonisothermal case. Because of this, and the fact that more gas
is dissolved in oil for the non-isothermal case, we expect to also obtain a higher liquid
column in the wellbore once the phases segregate. On the other hand, since density
is greater in the non-isothermal case, if the effective wellbore storage coefficient were
dominated by a rising liquid level, we would expect the wellbore storage coefficient
to be smaller for the non-isothermal case; see Eq. 4.6.

Fig. 4.33 shows a plot of the normalized sandface flow rate during buildup.
Fig. 4.34 shows the same results during the first two hours of buildup. Note Fig. 4.34
shows the afterflow is greater for the non-isothermal case during the first two hours of
buildup as postulated in our previous discussion. Since the total amount of afterflow
is greater for the non-isothermal case and more gas can be dissolved in the oil, the
phase-interface should be located higher in the wellbore for the non-isothermal case.
This is verified by a comparison of the results of Figs. 4.31 and 4.32; compare for
example the two sets of results at 4, 000 seconds (1.11 hours). Note in both cases, the
fluids are essentially completely segregated after 4,000 seconds of shut-in. Once the
fluids have become segregated, the behavior becomes similar to a closed chamber test
with subsequent afterflow compressing the gas column and resulting in a decreasing
wellbore storage coefficient. The decreasing wellbore storage coefficient results in the
pressure derivative curve rising above the pressure curve in Fig. 4.30. Note this
occurs at approximately one hour (3,600 seconds) which is about the time when the
fluids become completely segregated.

A plot of the effective wellbore coefficient computed from Eq. 4.5 is shown

in Fig. 4.35. Note this plot also shows that the wellbore storage coefficient begins
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to decrease rapidly at about one hour. Also for At < 1 hour, the effective wellbore
storage coefficient is higher for the non-isothermal case as expected based on our
earlier discussion. This is also consistent with the greater afterflow rate which occurs
for the non-isothermal case for At < 2 hours; see Fig. 4.34. If, as in a closed
chamber test, the effective storage coefficient were dominated by the compression of
the gas column due to a rising liquid level, then based on our earlier discussion (see
Egs. 4.8-4.10), Eq. 4.6 would give an approximation of the effective wellbore storage
coefficient. Using the average wellbore density at 0.1 hours (using the value any other
time between 0.1 and 1 hours has a negliglible influence on the results), Eq. 4.6 gives
Cr = 0.0135 RB/STB for the isothermal case and 0.0130 for the non-isothermal case.
Note that C, is larger for the isothermal case, whereas the results of Fig. 4.35 show
the effective wellbore storage coefficient is greater for the non-isothermal case. Also
the value of these liquid wellbore storage coefficients are more than twice as large as
the effective wellbore storage coefficients obtained in Fig. 4.35 at early shut-in times.
At a shut-in time of At = 2 hours, the effective wellbore storage coefficient
for the non-isothermal case falls below the effective welibore storage coefficient ob-
tained for the isothermal case and correspondingly, the rate of afterflow for the non-
isothermal case becomes less than the flow rate for the isothermal case; see Fig. 4.33.
The cumulative afterflow (Fig. 4.36) is always greater for the non-isothermal case.
Once the fluids have become completely segregated, the effects of mass trans-
fer between the phases becomes negligible. At this time, the pressure profiles in the
wellbore are not significantly different. Since the amount of free gas in the well-

bore is less for the non-isothermal case, the total compressibility is less than for the
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isothermal case. Thus, wellbore storage due to compressibility effects is less in the
non-isothermal case. Also since the density is greater in the non-isothermal case, any
wellbore storage effects due to a rising liquid level would be less. It follows that after
the phases have become completely segregated, the effective wellbore storage coeffi-
cient for the nonisothermal case should be less than the wellbore storage coefficient
for the isothermal case.

Fig. 4.37 shows the temperature profile in the top 2,000 feet of the well at
shut-in times of 5,000 sec., 7,000 sec. and 72,000 sec. At a shut-in time of 20
hours (72,000 sec.), the temperature profile has returned to the one predicted by the
geothermal gradient.

Fig. 4.39 shows the mixture density profile in the top 2,000 feet of the well.
At the instant of shut-in a two phase mixture exists throughout this 2,000 feet. As
a single-phase gas column is formed at the top, the density decreases in this region.
Once the gas begins to cool, its density increases. Also the pressure at the wellhead
is increasing which causes the density to increase. From a depth of 1,000 ft. to 2,000
ft., gas is both flowing to the top and being redissolved so the relative volume of liquid
increases which causes the mixture density to increase. The fluids are also cooling
in this part of the wellbore due to heat loss to the surrounding rock. Cooling also
tends to increase the density. Note from 7,000 seconds to the end of the buildup test,
the density in the liquid column increases as we go up the wellbore. This is due to
the fact that the liquid is cooler at the top. We believe that during this time period
natural convection is occurring with hot liquid continuing to rise to the top, cooling

off and then falling back towards the bottom.
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4.3 Matching Wellhead Responses.

In this section, the results of several simulations are presented. From these
simulations wellhead and bottomhole data are recorded; this allows us to have syn-
thetic “measured” data. Those wellhead data are used to invert the wellhead pressure
and rate response to obtain pressure and rate at bottomhole conditions. The data
obtained from the inverse problem are compared with the bottomhole data generated
from the simulator, in order to verify the feasibility of using it as a practical method

to compute bottomhole data from the wellhead pressure and rate responses.

A direct method of optimization (see Appendix B) was selected as a method
to invert the wellhead recorded data to bottomhole conditions. This selection arose
because our implementation of Newton’s method did not converge to the current bot-
tomhole values of pressure and rate. The method applied does not require derivatives

which must be computed numerically if Newton’s method is used.

The Rowan’s subplex™ method was selected as the optimization procedure
because the method performs well with noisy or discontinuous objective functions and
derivatives of the objective function are not required. The subplex method, which is
based on the simplex method, was designed by Rowan to improve the performance of
the standard simplex method. The subplex method decomposes the problem solution
space into smaller regions that the simplex method itself can search efficiently. A

more detailed discussion is presented in Appendix B and in Ref. 75.
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4.3.1 Calculation Algorithm.

The method requires input data on well parameters, simulator control data
and fluid property data including p,, and pg,, gas-oil surface tension. Other required
properties, such as R,, B, and B, are computed by using empirical correlations (see
chapter 2 of Ref. 30).

To determine the bottomhole values of pressure and velocity, we use the pro-
cedure discussed below. The matching procedure is done time step by time step,
starting with the drawdown data, however, we match both drawdown and buildup
data . Buildup data can be matched independently provided the distributions of v,,
and p can be computed at the instant of shut-in, i.e., using wellbore model assuming
steady-state conditions. In the matching procedure we use the wellbore model itself.
There is no need to couple the wellbore model with a reservoir simulator. The fol-
lowing relationships are used to compute the wellhead oil rate or total mixture rate
from the wellhead mixture velocity, this relations allow us to match a combination

of either wellhead oil rate and pressure, or, wellhead total mixture rate and pressure,

ie.,

1 Eqpgvr

Vsl wellhead = E(Um - o )7 (411)
(o) welthead = Vsl,welthead A, (4.12)
86400 qo)
o,s¢/w =\l =7 - , 4.1
(9o,5¢)welthead (5.615) (Bo o (4.13)
(Qg,sc)wellhead =R (QO,sc)wellhcmh (414)
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and

(Qt)wellhead = %ﬁﬁﬂ + (QO,sc)wellhea.d, (415)

where (go,sc)welthead i the oil volumetric flow rate in [STB/day), (y,sc)weliheaa i the
gas volumetric flow rate in [scf/day], (¢ )weithead iS the total volumetric flow rate in
[STB/day|, Vuw,weliheaa is the wellhead mixture velocity in [ft/sec|, Vs weitheea iS the
liquid superficial velocity in [ft/ sec], v, is the relative velocity between gas and liquid
phasein[ft/ sec|, A is the pipe cross sectional area in [ft?],and B, is the oil volume
factor in [RB/STB].

In case of recorded wellhead oil volumetric rate, the following set of equation

can be used to calculate the wellhead mixture velocity, i.e.,

5.615
Q@ = (M) (QO,sc)wellhead B,, (4.16)
5.615
49 = (M) (QO,sc)wellhead (R - Rs) Bg, (4.17)

From the mixture velocity definition, i.e.,

vsg pl + Usl pg (4 18)

Vm,wellhead =
Pm

1 +
VUm,wellhead = ':4' ('qupM) y (419)

where ¢; and g, are the oil and gas phase volumetric flow rates in [f#3/ sec], B, is the
gas volume factor [RB/scf], R is total gas-oil ratio in [scf/STB], R, is the solution

gas-oil ratio in [scf/ST B}, and p; and p, are the oil and gas densities in [Ib,,/ f¢3].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



153

4.3.1.a Matching Procedure.

1. Initially (at ¢t = 0), we assume the well is closed so that gravity equilibrium exists
in the wellbore. We assume that the temperature profile in the wellbore follows

the geothermal gradient and the velocity profile is zero along the wellbore.
2. Bottomhole pressure is equal to the initial reservoir pressure.

3. The procedure described in section 3.3.1.b is used for each wellbore gridblock
position to compute the pressure and dependent variables distribution along

the wellbore, at ¢ = 0.

4. For ¢ > 0 at each time step, from the recorded data, we read the values of

wellhead pressure, total production rate and wellhead temperature.

5. Guess the values for (py/2)"*! and (vm,1/2)"*'at bottomhole. This guess can be

obtained by simply using the value at the old time step. For the first time step,

we can guess (py/2)"t! = p; and (vm,1/2)" ! = 0.

6. Using these guesses, the subplex meihod is called (see section B.2.2 in Appendix
B). The subplex method uses a modified version of the procedure described
in section 3.3.1a when matching drawdown data. A modified version of the
procedure described in section 3.3.2.a is used when matching buildup data. The
only difference between the procedures of 3.3.1a and 3.3.2.a is that we assume
a linear temperature gradient between the recorded wellhead temperature and
the bottomhole temperature. The bottomhole temperature is assumed to be

constant and computed using the geothermal gradient. The objective function
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that the subplex method minimizes is

¢ = (pwh,recorded — DPwh,wellbore model)2/ 0’3

272
+(vm,wh,recorded = Um,wh,wellbore model) / o,

+(vm,1/2.subzplcz = Um,1/2,mass lzala.nc:e)2 /0'12;7 (4'20)

while the o terms should be based on the resolution of the measurement instru-
ment, in this work we used 0,=0.5 [psia], 0, = 0.01[ft/sec]. These values of o
were selected by trial and error and give us a good combination of speed and
accuracy in the matching procedure. The last term in Eq. 4.20 was added to

help ensure the conservation of mass, see sections 3.1 and 3.3. In Eq. 4.20,

Az 1'\11[(pm)?+1 = (o)D) (pm)gltll/z +1
Um ,mass balance = = poy 4 r Vm ? .
( )1/2 bal (At) (pm)],/zl (pm)]./-;l ( )N+1/2
(4.21)

If the difference in the estimated value of bottomhole velocity from the subplex
method and the one computed with Eq. 4.21 is large, this difference is going to
be reflected in the value of the objective function and causes that the subplex

method to reject the estimated value of bottomhole velocity.
Another form of the objective function that we tried is
¢ = (Puhrecorded — Puwhwellbore model)*/ P’
+(Vm,wh,recorded — Vm,wh,wellbore modet)/ (Vm) +1/2.4p

+(Um,1/2,subzplez - vrn,l/2,mass balance)2 /(vm)?v+1/2,tp, (4'22)

where p; is the initial reservoir pressure and (vm)n+1/2,4p is the recorded well-

head mixture velocity at the end of the drawdown. This form of the objec-
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tive function normalizes the differences in pressures and velocities to a relative
nondimensional scale. We did not find significant differences between the results

obtained from Eq. 4.20 and Eq. 4.22.

7. Repeat step 5-7 for all the time steps.

In the present study, as recommended in Ref. 75, the following parameters
were used: o =1,8=105, vy=2, 6§ =0.5, ¥ = 0.25 and w = .1, where « is the
reflection coefficient, § is the contraction coefficient, v is the expansion coefficient, §
is the massive contraction coefficient, 7 is the simplex reduction coefficient and w is
the step reduction coefficient (see Appendix B).

For all cases presented here, the drawdown was matched first, then the buildup
period was matched. The matching of buildup data is done separately starting at
At = 0 with éhe wellbore profiles of variables computed at the end of the drawdown
period by matching the drawdown values of wellhead pressures and rates. In all
cases presented, the data were generated using the wellbore model coupled with the

RDRBOS (r-z) reservoir simulator®.

4.3.1.b Case M-1

Case M-1 pertains to a well which flowed for a period of 120 hours prior to
conducting a 20 hour pressure buildup test. The main objective is to simulate a
transient drawdown and buildup period using the wellbore model coupled with the
(r-z) simulator. Table 4.15 gives a list of input parameters used in Case M-1. Input

parameters for Case M-1 are chosen such that the bottomhole pressure is only a few
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| Parameter Value | Unit
Drawdown oil production rate 65.00 | STB/D
Total production time 120.00 | hours
Inital reservoir pressure 5215.00 | psia
Initial bubble point pressure 2710.00 | psia
Oil compressibility (p>ps) 1.0e-5 | 1/psia
Oil component API gravity at s.c. 45.00 | API
Gas component specific gravity at s.c. | 0.70 |-
Oil-gas surface tension 4.50 | dynes/cm
Wellbore pipe inside diameter 1.80 | inch
Formation absolute permeability 25.00 | md.
Formation thickness 10.00 | ft.
Formation porosity 020 |-
Wellbore radius 0.364 | ft.
System isothermal compressibility 2e-5 | 1/psia
Average oil viscosity 2.00 | cp.
Skin factor 15.00 |-
Wellbore depth 9000.00 | ft.
Spatial Increment 200.00 | ft.
Buildup simulation time 20.00 | hours

Table 4.15: Input Parameters for Case M-1

156

psia higher that the initial reservoir bubble-point pressure, and consequently, only
single-phase flow occurs in the reservoir, but two phase flow develops in the wellbore.
Case M-1 considers nonisothermal conditions for the wellbore but isothermal condi-
tions for the reservoir. During the drawdown period the well produces at a constant
wellhead oil rate.

A log-log plot of the drawdown bottomhole data (Ap = p; — p,y) for Case
M-1 is shown in Fig. 4.40. As Fig. 4.40 shows, for the first eight hours of the
test, we have excellent agreement between the measured data and wellhead pressure
estimated from the subplex method, an agreement that is further illustrated by the
pressure derivative curves. At late times, the matched pressure goes slightly below

the measured pressure, and the derivatives of the matched pressure drop below the
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derivatives of the measured data. The results of bottomhole pressure and bottomhole
rates are graphically displayed in Figs. 4.41 and 4.42 respectively. The bottomhole
pressure match shows excellent agreement with the true bottomhole values for the
first eight hours of production, after which the estimated pressure is higher than true
bottomhole pressure. The normalized sandface total production rate plot (Fig. 4.42)
shows that the estimated rate does not match the measured data extremely well but
follows the right trend.

Another important comparison between recorded data and data generated by
our optimization procedure pertains to the wellhead pressure and wellhead production
rate; the results are presented in Fig. 4.43 and Fig. 4.44, respectively. Note that
the optimization procedure has generated an excellent match of the “true” wellhead
values. Based on these results, we can claim that the optimization procedure was quite
successful in minimizing the objective function, even though the estimated values of
bottomhole pressure and bottomhole rate are not as accurate as might be expected.

There are several reasons that could explain the discrepancy in the results.
For example, the discrepancy may be due to nonuniqueness and/or influenced by the
approximate approach used to compute the temperature profile. The assumption of
a linear temperature gradient from the wellhead temperature effectively remove tem-
perature as a variable at each timestep. By assuming a linear temperature gradient,
the temperature at each wellbore gridblock position is fixed at each time step during
the drawdown and buildup test matching procedure. However, when we kept temper-
ature as a variable, the matching procedure become extremely time consuming and

often did not converge.
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Fig. 4.45 shows the temperature profile in the well at production times of
2.90 hours, 15.60 hours and 120 hours. For the simulated data, the assumed linear
temperature profiles result in a wellbore temperature that is lower than the correct
value from the bottomhole (9,000 ft.) of the well to a depth of approximately 4,000 ft.
From a depth of approximately 4,000 ft. to the surface, the linear temperature profiles
result in wellbore temperatures which are higher than the correct values. When the
fluids are at a lower temperature, the gas is more soluble in oil. This increases the
value of R, and causes the system compressibility to be higher. If we consider the
fact that more gas is dissolved in oil at lower temperature, we expect to obtain more
liquid in a gridblock at a given gridblock value of pressure.

The estimated and recorded gas void fraction profiles are presented in Fig.
4.46. At 2.90 hours, the recorded void fraction goes from zero (liquid only) at 8,500
ft. to approximately 0.6 at the wellhead. By the end of the drawdown (t, =120 hours),
the gas void fraction at bottomhole is approximately .07 and 0.73 at the wellhead.
This means that at the instant of shut-in, the phases are not segregated. The recorded
and simulated void fraction match well at 2.90 hours, after that the estimated void
fraction profile appears displaced to the left. This behavior is a direct influence of the
difference between the bottomhole pressures (see Fig. 4.41). Because the estimated
pressures are higher than the true ones and the estimated temperatures are lower than
the true ones near the bottom of the well, the solubility of the gas is higher using
the estimated profiles. Thus, less gas is evolved from the oil phase so there is less
free gas in the wellbore. This results in gas void fractions that are less than the true

ones. The mixture density profile (see Fig. 4.47) shows a good agreement between
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the recorded and estimated data at early times (2.90 hours), but by the end of the
test, the recorded data is displaced to the right showing higher values of density. This
results mainly from the fact that the estimated pressure profile is higher than the true
pressure profile but is also influenced by the fact that the estimated temperatures are
higher than the true ones near the bottom of the well.

Using the buildup period wellhead data, the matching procedure was executed
again to obtain the log-log plot shown in Fig. 4.48. Although, the match is reasonably
good, as shown in Fig. 4.49, the bottomhole pressure obtained from the match is
higher than the measured data. This result is a direct influence of the pressure match
obtained at late times for the drawdown period. The estimated pressure are in good
agreement with the measured data at late times. A similar quality of agreement at
early and late times is observed with the normalized total flow rate (see Fig. 4.50).

During the buildup period, the wellbore fluids lose heat to the surrounding
rock. This causes an increase in density and an increase in compressibility. By the
end of the buildup period, the wellbore fluid temperature profile is approximately the
same as the geothermal gradient (see Fig. 4.51) and hence our procedure in which
we assume a linear temperature profile in the wellbore becomes correct. The gas
void fraction and mixture density profiles are shown in Fig. 4.52 and 4.53, respec-
tively. At early times, the recorded and estimated values of void fraction and mixture
density disagree, which again is a direct influence of the pressure and temperature
differences during the drawdown period. At late times, when the temperature profile
is almost identical to the geothermal gradient, the difference between the recorded

and simulated temperature is minimal and the estimated and recorded void fraction
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and mixture density profile show a good agreement.
Matching of drawdown and buildup wellhead data required 8 hours on a PC-

Pentium 90MHz.

4.3.1.c Case M-2

Case M-2 represents a drawdown and a buildup test conducted in a well com-
pleted in solution-gas drive reservoir. The wellbore simulator was coupled with the
RDRBOS (r-z) reservoir simulator to handle the two-phase flow reservoir condition.
As in Case M-1, a drawdown test followed by a buildup test are conducted in a natu-
rally flowing well. The initial reservoir pressure is higher than the initial bubble-point
pressure, but the well is produced long enough so that the bottomhole pressure falls
below the reservoir initial bubble-point pressure and two-phase flow appears in the
reservoir as well as in the wellbore during the production period. The final bottom-
hole flowing pressure in Case M-2 is equal to p,ss = 2529.7 psia as compared to
the reservoir initial bubble-point pressure of p, = 2710 psia. All the pertinent reser-
voir/wellbore parameters are listed in Table 4.16. We consider a 50-hours drawdown
test followed by a 20-hour buildup test with nonisothermal conditions in the wellbore
but isothermal conditions in the reservoir.

Using the data obtained using the wellbore simulator coupled with the (r-z)
reservoir simulator, the wellbore matching program was used to estimate bottomhole
rates and pressures. A log-log plot of bottomhole pressure drop and its derivative is
shown in Fig. 4.54. At early timcs, the pressure and pressure derivative data exhibit

the effects of wellbore storage and skin. At late times, the true bottomhole pressure
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Parameter Value | Unit
Drawdown surface oil production rate | 40.00 [ STB/D
Total production time 50.00 | hours
Inital reservoir pressure 4500.00 | psia
Initial bubble point pressure 2710.00 | psia
Oil compressibility (p>ps) 1.0e-5 | 1/psia
Oil component API gravity at s.c. 45.00 | API
Gas component specific gravity at s.c. | 0.70 |-
Oil-gas surface tension 4.50 | dynes/cm
Wellbore pipe inside diameter 1.80 |inch
Formation absolute permeability 40.00 | md.
Formation thickness 10.00 | ft.
Well Complety Penetrates Reservoir

Formation porosity 020 |-
Wellbore radius 0.364 | ft.
System isothermal compressibility 2e-5 | 1/psia
Skin factor 10.00 | -
Wellbore depth 9000.00 | ft.
Spatial Increment 200.00 | ft.
Buildup simulation time 20.00 | hours

Table 4.16: Input Parameters for Case M-2

approximately exhibits a semilog straight line indicative of pseudoradial flow.

As in Case M-1, at early times the pressure match shows a good agreement
with the measured data and the pressure derivative is in good agreement also. After
20 hours of production, the estimated bottomhole pressure drop falls slightly below
the true data. This small difference results in a significant difference between the two
sets of pressure derivative data. Fig. 4.55 shows a semilog plot of the two sets of
pressure data and again shows a disagreement at late times.

The wellhead pressure match is presented in Fig. 4.56; this plots clearly shows
an excellent match. This means that the subplex method was able to satisfy the
objective function with respect to the measured wellhead pressure. This is ratified

by the excellent match of the total wellhead rate showed in Fig. 4.57. On the other
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hand, the total bottomhole rate match is not good but gives the right trend, as shown
in Fig. 4.58.

The temperature profile in the well at production times of 3.0 hours, 15.80
hours, 30.50 hours and 50 hours is presented in Fig. 4.59. As in Case M-1, the
estimated temperature profiles gives lower temperature values than the true values
from the bottomhole (9,000 ft.) of the well to a depth approximately of 3,000 ft. From
that depth to surface, the temperature obtained by assuming a linear temperature
profile is higher than the recorded temperature.

Fig. 4.60 shows the estimated and recorded gas void fraction profile. At ¢t =
3.0 hours, the recorded gas void fraction varies from approximately 0.01 at bottomhole
to approximately 0.7 at the wellhead, indicating that two-phases exist at bottomhole.
By the end of the drawdown (50 hours), the void at bottomhole is approximately
0.12 and 0.78 at the wellhead. As in case M-1, all the estimated void fraction profiles
appear displaced to the left of the correct ones which is a direct result of the difference
in the bottomhole pressures (see Fig. 4.55). The mixture density profile is depicted
in Fig. 4.61, the estimated data are displaced to the right of the correct density
profiles, due to the fact that in the lower part of the wells, the estimated pressures
and temperatures are higher than the true values.

Using the profiles obtained from the drawdown match at the instant of shut-
in, the build-up test match was performed. A log-log plot of the results generated is
presented at Fig. 4.62 and a semilog plot is shown in Fig. 4.63. As Figs. 4.62 and 4.63
show, the true and estimated bottomhole pressure match reasonably well throughout

the buildup period. At early times, the estimated pressure data are slightly above
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the measured pressure and at the end of the test, the estimated pressure data fall
slightly below the measured data. The difference that appears at early times (first
1.5 hours) in the log-log plot is a direct influence of the lack of agreement between
estimated and recorded data at end of the drawdown (see Fig. 4.55). At the end of
the test, the two sets of data match well with the estimated pressure change lying

slightly above the measured data but showing approximately the same slope.

The estimated total bottomhole rate generated from the optimization proce-
dure is shown in Fig. 4.64. As in the drawdown period, the match shows the right
trend, but the estimated rate is correct only at late times. Despite this difference,
the optimization procedure yields an excellent match of recorded wellhead pressures

and rates (see Fig. 4.65 and 4.66).

The wellbore fluids continuously loose heat to the surrounding rock during the
buildup test. By the end of the buildup period, the wellbore fluid temperature profile
is approximately equal to the geothermal gradient (see Fig. 4.67). Figs. 4.68 and
4.69 respectively, present the gas void fraction and mixture density profiles. At early
times, the recorded and estimated values of void fraction and mixture density disagree
due to the pressure and temperature differences during the drawdown period. At late
times, we have a small difference between the recorded and simulated temperature
and the estimated and recorded gas void fraction and mixture density profiles are in

good agreement.

Matching of drawdown and buildup wellhead data required 15 hours on a PC-

Pentium 90MHz.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



188

Z-IA 958D 10j
JUILL, WI-)NYS JO UOHIUNY € SE )Y MO]] BJPUBS PIZI[BULION - $9°p "SI

(4noy) w7 ‘owry ur-inyg
00°001 00°01 00°1 01°0 10°0

— 00°0

oley pajewnsy (O — 070
dley onll ————

|
Vo

o0/(

— 09°0
“

I
=
*®
=

(0=1v)[

— 00°1

— 0T'1

C-W 251D - poriad dmupping

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



189

*¢-IA 9se)) 10J
dWIL], Ul-JNYS JO UonOUNY € SE JINSSAIJ PRIY[PA - S9'P “S1]

(anoy) A7 ‘au up-pnyg

00°001 00°0I 00°1

01°0

10°0

aInssald pajewnsy

2Inssald papIoday

O

00°00S

~—~ 00°0001

— 00°00S1

W 2sv)) - pouaq dnpping

00°0007

(visd) ‘aunssasg pvayjo M

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



190

00°001

(4noy) N7 ‘aunn] ur-inyg
00°01 00°1

‘Z-TAl 3s€)) J10]
SUILY, WI-JNYS JO UONIUN € St 3)TY MO PLIY[IIAA PIZI[EWLION - 99°p “S1y

01°0

10°0

ajey pajewnsy
aley anu)

O

00°1-

— 08°0-

— 09°0-

— 0¥°0-

— 02°0-

— 00°0

— 02°0

— 0V°0

— 09°0

~— 08°0

Z-W 251D - pouad dnpping

00°1

0

™

o=)""ar0v)™

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



191

00°00T

(1) damwiadima |

00°091

00°0Z1 00°08 00°0y

WIIPBIS [WIBLI0SD  —lee

(sinoy) 00°0Z =v ‘elRQ PAIRINWIS Y/
(sinou)gL'L = ‘elea pateinuis ]
(sinoy)gg0 = ‘'eiegpalenuis O |-
(snoy) 00’0 =iv ‘ele@ palenuis ()
(sinoy) 00°0Z =Iv ‘BIRQ PEPIOODY ——m
(sinoy) gL'l =Iv ‘e1eq pepiodsYy = e—— |—
(sinoy) 960 =Iv 'Bje@ PapPIOSDY - = = |~

(sinoy) 00’0 =lv ‘Bl PAPIOIBY e [

porag dnpng

*C-IAl 9se)) 10J d10q[IPMA oY) ur uonnqLisiq 0.-5&.-0&:—09 - L9V .w—'m—

00°0006

00°0008

00°000L

00°0009

00°000S

00°000%

00°000€

00°0007

00°0001

00°0

(1)) ‘yrdaqq a40qp1244

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



192

"T-AL 958)) 10§ JU0Q[OAA Y} UI UOHNQLISI(] UOPIELF PIOA - 89 S1q
" ‘uotovag pro
00°1 08°0 09°0 or'o 0T°0 00°0

(sinoy) 00°0Z =WV ‘eleq paeinuig  \/
(sinoy)gr’L = 'eleg paenws ]
(sinoy)9g'0 = ‘eleg palenus O

O

00°0006
00°0008

(sinoy) 00'0 =1V ‘eleq pajejnwig 00°000L

(sinoy) 00°0Z =WV ‘eleq papiooay

00°0009
(sinoy) gL'l =V ‘Bl PAPIODDY = e
sino ‘0 =V ‘Blegpopioty = w =
(sinoy) g5'0 =V ‘eleq papiooay 00°000S
(sIN0Y) 00’0 =V ‘BlEQ PBPIOIDY e

— 00°000¥

! 00°000€

- 000007

e .. 00°001
%WI —_ 7N ] 00°0

pouaq dnpping

() ‘yda(q 24091124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



193

(W ' a) Gisuaq sanpapy

00°0v 00°0€ 00°07 00°01

"T-IN 958D J10J 210q[]IAA Y3 Ul UOHNQLISI ANSUIQ JAMXIA] - 69°p “S1q

00°0

qD
.
D
N

(smoy) 00°0Z =IV ‘ereq parenung
(smoy) 91’1 =3V ‘eleq parenung
(smoy) 96°0 =3V ‘ele( pajenung
(smoy) 00’0 =V ‘eeq paremnung

(smoy) 00°0Z =3IV ‘ere( pap10dsy -
(sMOY) 91' =4V ‘BIR( PIPIOIVY = e
(smoy) 90 =1V ‘®le@ POpI0IY = = -—
(smoy) 000 =IV ‘@18 PIPIOIVY e

&
'b"l'l'ﬁ'@’ -
00 .@'O —d

-
W r——————

Q11 wm,w

O

00°0006

— 000008

— 00°000L

— 00°0009

—

— 00°000S

=

— 00°000%

— 00°000€

— 00°0007

— 00°0001

pouad dnpjing

00°0

(1)) ‘yda(q 24097124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



194

4.3.1.d Case M-3.

Case M-3 is a case that considers a restricted entry well. A simulation of a
drawdown period followed by a buildup period was performed. The initial reservoir
pressure is higher than the initial reservoir bubble-point pressure. The production
period is run long enough so that the bottomhole pressure goes below the initial
bubble point pressure and two-phase flow of oil and gas occurs in the reservoir. The
reservoir is producing under solution gas drive. As in the two previous cases, the
wellbore simulator is coupled with the RDRBOS (r-z) reservoir simulator to produce
the “measured” data. Wellbore and reservoir parameters used for this case are given

in Table 4.17.

Figure 4.70 is a log-log plot of two sets of drawdown bottomhole pressure
drops and their derivatives. At early times, the pressure derivative shows the effects
of wellbore storage and skin. At late times, we obtain approximate pseudoradial flow
although the derivative is not exactly constant and the derivative of the true pressure
drop is actually slightly declining. On the other hand, the two sets of pressure match
well at early times. Fig. 4.71 shows a semilog plot of bottomhole pressure versus
time. As in the log-log plot, good agreement between the recorded and estimated
pressure is obtained during the first three hours of production, but at late times, the
two sets of pressure are not in good agreement. However, as in the two previous cases,
the optimization procedure successfully generates a match of the wellhead pressure
(Fig. 4.72) and total rate (Fig. 4.73). However, the estimated bottomhole rate is

only in rough agreement with the true bottomhole rate; see Fig. 4.74.
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| Parameter Value Unit
Drawdown surface oil production rate 70.00 | STB/D
Total production time 100.00 | hours
Inital reservoir pressure 4000.00 | psia
Initial bubble point pressure 2710.00 | psia
Oil compressibility (p>ps) 1.0e-5 | 1/psia
Oil component API gravity at s.c. 45.00 | API
Gas component specific gravity at s.c. 0.70 | -
Oil-gas surface tension 4.50 | dynes/cm.
Wellbore pipe inside diameter 1.80 | inch
Formation permeability in r-direction 45.00 | md.
Formation permeabilty in z-direction 5.00 | md
Formation thickness 20.00 | ft
Layer 1 Thickness- not open to flow |5 ( 0-5) | ft.
Layer 2 Thickness- open to flow 5 ( 5-10) | ft.
Layer 3 Thickness- open to flow 5 (10-15) | ft
Layer 4 Thickness-not open to flow 5 (15-20) | ft
Formation porosity 0.20 | -
Wellbore radius 0.364 | ft.
System isothermal compressibility 2e-5 | 1/psia
Skin factor 10.00 | -
Wellbore depth 9000.00 | ft.
Spatial Increment 200.00 | ft.
Buildup simulation time 20.00 | hours

Table 4.17: Input Parameters for Case M-3
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As in the two previous cases, the estimated temperature profiles give lower
temperatures than the true temperature from the bottomhole (9,000 ft.) of the well
to a depth of approximately 3,000 ft., see Fig. 4.75. From that depth to surface, the
estimated temperature is higher than the true temperature.

Fig. 4.76 shows estimated and recorded gas void fraction profiles. At Af =
2.87 hours,the recorded void fraction varies from approximately 0.05 at bottomhole
to approximately 0.7 at the wellhead. By the end of the drawdown (t, = 100 hours),
the gas void fraction at bottomhole is approximately 0.10 and equal to 0.76 at the
wellhead. All the estimated void fraction profile appear displaced to the left of the
true ones, which is a direct influence of the discrepancy between true and estimated
pressures (see Fig. 4.71) and temperatures near the bottom of the well. The estimated
mixture density profiles (see Fig. 4.77) are displaced to the right of the true ones
giving higher values of density due to the higher values of pressure and temperature
in the bottom section of the well.

The optimization procedure was run to generate estimated bottomhole buildup
pressures and rates from wellhead measurements recorded during buildup. Fig. 4.78
shows a log-lcg plot of the true and estimated bottomhole buildup pressure change
(Ap = puws—Puwy,s) versus equivalent time and its derivative. Note the estimated results
are in good agreement with the “true” results. A semilog plot of estimated and true
bottomhole pressures is shown in Fig. 4.79. The two bottomhole pressures differs
slightly. At late times, both pressure curves are approximately parallel, i.e., exhibit
approximately the same semilog slope. As previous cases, the optimization procedure

vields a good match of wellhead pressure (Fig. 4.80) and rates (Fig. 4.81). The
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estimated bottomhole rate again exhibits the same trend as the true rate and at late
times both rates are zero, see Fig. 4.82.

At the end of the buildup period, the wellbore fluid temperature profile is
approximately the same as geothermal gradient, see Fig. 4.83. Figs. 4.84 and 4.85
graphically displayed the gas void fraction and mixture density profiles, respectively.

As in our previous examples, at late times, the estimated profiles are in good agree-
ment with the true ones

Matching of drawdown and buildup wellhead data required 20 hours on a PC-

Pentium 90MHz.
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CHAPTER V

CONCLUSIONS.

Although the classical analyses of transient well test pressure data are based
on theories that assume a constant wellbore storage coefficient, it is widely recognized
that in reality, wellbore storage is variable. Despite this, there are relatively few pa-
pers that considers the effect of wellbore phase segregation, variable wellbore storage
or the complete wellbore dynamics.

In the present study, a mechanistic model has been developed to predict the
effect that transient two-phase gas-oil flow in the wellbore has on pressure drawdown
and buildup behavior. A one-dimensional drift-flux model is used to derive partial
differential equations governing the two-phase flow in the wellbore. The black-oil
approach, which accounts for a variable bubble-point pressure, is used to account
for the effect of interphase mass transfer. After obtaining the corresponding finite-
difference equations, solutions are computed with a sequential, iterative calculation
procedure.

A computer simulator has been developed to implement the proposed model
and the finite-difference solution procedure. For the purpose of verification, the simu-
lator was first used to generate pressure responses from a buildup test in a2 well where
single phase flow exits in the wellbore before shut-in. The analysis of generated pres-

sure buildup data was carried out by type-curve matching with the classical wellbore
214
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storage and skin type curves and also by using Horner analysis. These analyses gave
virtually exact values of permeability, skin factor, initial reservoir pressure and also
the wellbore storage coefficient.

After verification, the simulator was applied to simulate the phase redistribu-
tion process occurring in the wellbore during pressure buildup tests in wells shut-in
at the surface. Two cases were considered: a buildup test in a naturally flowing well
and a buildup test in a gas-lift well. The investigation confirmed that the wellbore
storage coefficient can either increase or decrease, as reported in the literature. The
variation in the wellbore storage coefficient is dominated by the relative effects of
phase segregation and gas compression.

The preceding cases were used to considers numerical accuracy and stability
of the model, and to investigate the validity of the Fair! and Hegeman? models for
wellbore phase redistribution. Additionally, both an isothermal and a non-isothermal
transient process were simulated to investigate the effect of temperature variation on
the pressure response.

Finally, several simulations were done and synthetic wellhead and bottomhole
data were recorded. The wellhead data were used to compute the bottomhole pressure
and rate from the measured welthead pressures and rates. The data obtained from
the inverse problem were compared with the true bottomhole data generated from
the forward simulation, in order to investigate the accuaracy of the procedure.

As results of this study, the following conclusions are warranted:

1. A mechanistic model has been developed to simulate the variable wellbore stor-

age process in general, and phase segregation in particular. The wellbore and
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reservoir flow intcraction has been treated through the use of Duhamel’s prin-
ciple or by using a (r-z) numerical reservoir simulator. A variable bubble-point
pressure methodology has been integrated to correctly model the interphase

mass in the black oil model formulation.

The results presented indicate that when two-phase flow exits in the wellbore,
a variable wellbore storage coefficient should be expected and the effective well-
bore storage coefficient can be either increasing or decreasing. As first shown
by Xiao'® and Xiao et al.!%, the variation in the wellbore storage coefficient
is a direct result of the effects of phase segregation and gas compression. If
the magnitude of afterflow is small after the end of wellbore phase segregation,
phase segregation will be the dominating factor, and pressure buildup data will
show an increasing wellbore storage coefficient at the end. On the other hand, if
the afterflow is still large after liquid and gas have completely segregated in the
wellbore, the gas column will be compressed due to afterflow and the pressure

buildup data will show a decreasing wellbore storage coefficient.

For the decreasing wellbore storage case, regression analysis based on the Hege-
man et al.? model often gives reasonable estimates of permeability and skin
factor, but Fair's model! usually yields highly erroneous estimates of these pa-
rameters and may not fit the pressure data well. For the~decreasing wellbore

storage cases, Fair’s model does not give a good match of the pressure response.

For the increasing wellbore storage case, limited cases shows Fair’s model fits

the pressure data better and gives better estimates of permeability and skin

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



217

factor than the Hegeman et al. model. However, in the cases we have con-
sidered, the estimate of C, obtained from regression is unreasonable from a
physical viewpoint. In essence, the Fair’s model and the Hegeman et al. model
contain sufficient parameters to give the right qualitative behavior of the pres-
sure response when the wellbore storage is variable, but do not capture the true

physics of the problem.

5. The addition of temperature gradient affects the buildup data pressure response
and causes a small deviation from the unit slope line on a log-log plot. The
temperature effects result in a higher value of the wellbore storage coefficient at
early times and a lower value at late times in comparison to the response that

we obtain for the isothermal case.

6. We have presented a subplex procedure to estimate bottomhole pressure and
flow rates from measurements of these variables at the wellhead. The method
vields good results during the late buildup period when the temperature gra-
dient in the wellbore becomes approximately equal to the geothermal gradient.
Estimated bottomhole values during the drawdown may not be sufficiently ac-
curate for practical applications. The subplex method was able to obtain a
match of wellhead data, but is extremely time consuming. The minimization
process for difficult problems may take as long as 20 hours on a PC-Pentium
90 MHz. From this point of view, a search for a more efficient optimization

method is highly recommended.
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Variable
a

A

b, b/, b
Bg

B,

Boy

d, d’, d"’

NOMENCLATURE

Definition
matrix coefficient

pipe across sectional area, ft?

matrix coefficient

gas formation volume factor, RB/scf

oil formation volume factor, RB/STB

oil formation volume factor at p,, RB/STB
matrix coefficient

oil compressibility for p > py, 1/psia

system compressibility, 1/psia

gas component mass concentration

gas component mass concentration in liquid phase
oil component mass concentration

oil component mass concentration in liquid phase
max. phase redistribution pressure change, psia
matrix coefficient

pipe diameter, ft

diffusion term

gas void fraction

liquid holdup
218
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9e

Je

Py
b:

PeD

ﬁcD

Psc
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internal energy per unit of mass

acceleration of gravity, ft/sec®

unit conversion factor, 32.17 lbm ft/(lb; sec?)
geothermal gradient, °F/100ft

formation thickness, ft

convective heat transfer coefficient, BTU/hr-ft%-°F
formation permeability, md

thermal conductivity, BTU/hr-ft2-°F

modified Bessel function of the second kind of order one
modified Bessel function of the second kind of order zero
well vertical depth, 100 f¢

time step

Grashof Number

Prandt]l Number

Reynolds Number

pressure, psia

bubble point pressure, psia

initial reservoir pressure, psia

dimensionless wellbore pressure for constant sandface rate
production with s =0

Laplace transform of p.p

pressure at standard conditions 14.7 psia



PweD

Puwy

Duf.s

Duwh

Puws

DwsD

)

qg

qmn ]

Qgs

9os

q

qsf

dimensionless wellhore pressure for constant sandface rate
production

wellbore flowing pressure, psia

wellbore pressure at the instant of shut-in, psia

wellhead pressure, psia

wellbore buildup pressure, psia

dimensionless buildup pressure

sandface production rate, RB/D

heat flow, BTU/hr

heat flux, BTU/hr-ft?

in-situ gas flow rate, ft3/sec

gas injection rate, scf/D

gas component production rate at standard conditions, scf/D
oil component production rate at standard conditions, STB/D
liquid in-situ flow rate, ft3/sec

sandface production rate after shut-in, RB/D

wellbore radius, ft

total gas-oil ratio, scf/STB

solution gas-oil ratio, scf/STB

skin factor

time, hours

producing time, hours
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U

v,

Vsg

Vst

w

S
[3v]
—

dimensionless producing time
dimensionless time

total simulation time

temperature, °F

dimensionless temperature

temperature at standard conditions, 60°F
wellbore temperature, °R

Laplace transform variable

combined heat transfer coefficient, BTU/hr-°F
overall heat transfer coefficient, BTU/hr-ft-°F
gas true velocity, ft/sec

liquid true velocity, ft/sec

density averaged mixture velocity, ft/sec
relative velocity

superficial gas velocity, ft/sec

superficial liquid velocity, ft/sec

mass flow rate, lbm/ sec

coordination or gas compressibility

earth thermal diffusivity, ft/hr

changing storage time parameter, day

oil viscosity at reservoir condition, cp

formation porosity
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Pg =
Pgt =
Pgs =
P =
Pm =
Pol =
Pos =
Tw =
At =
Atp =

AT =

o =

Subscripts.

cem =
ct =

co =

N
(30
W

density of gas, lbm/ft®

partial density of gas component in the liquid phase, Ibm/ft3
gas component density at standard conditions, lbm/ft3
density of liquid, Ibm/ft?

mixture density, lbm/ft3

partial density of oil component in the liquid phase, lbm/ft3
oil component density at standard conditions, Ibm/ft3

wall shear stress

shut-in time, hours

dimensionless shut-in time

time step size, sec.

length of each control volume, ft.

convergence tolerance

relaxation factor

gas-oil surface tension, dynes/cm

Stefan-Boltzmann constant

cement

inside casing
outside casing
dimensionless
earth

gas
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i = initial or index
ins = insulation

[ = liquid

0 = oil

P = production

s = steel

ti = inside tubing
to = outside tubing

wh = wellhead

wf = wellbore
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APPENDIX A

AVERAGED AND LOCAL INSTANTANEOUS FORMULATIONS.

Consider a fixed tube with axis Oz (unit vector n;) in which a volume, V",
of a certain phase k, is cut by two cross-sectional planes separated by a distance
Z (Z can be arbitrarily small), see Fig. A.l. Let Vi be the volume limited by
Ag1, Axo, that define the two cross-sectional planes, and the portions A; and Agw,
that define the phase-k surface interface and the wall enclosed between the two cross-
sectional planes. Consider the unit vector normal to the interface and directed away
from phase-k,where this normal vector is denoted by ni. The cross-sectional planes
limiting the volume V; are not necessarily fixed and their speeds of displacement
are denoted by (—vax; - n;) and (—vake - n.). To derive the volume averaged form
of the conservation equations, we will use Gauss’ theorem (divergence theorem) and
Leibnitz’s rule (Reynolds transport theorem). The distance Z shown in Fig. A.1 can
be as small as desired, so we essentially average over a slice.

Consider a control volume V(t), moving in space (Fig. A.2) and bounded by
a closed surface A(t). At a certain point in this surface, n represents a unit outward
normal vector; the speed of the surface at that point is v4 - n. Leibnitz’s rule applied
to on function f on volume V'(t) gives

) ) ooF
g /V Gfavzna = Zavs ;{m) fva-nda, (A1)

ot
235
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Figure A.1: Control Volume

where v4 represents the speed of the surface A.
Assuming that our control volume Vi (Fig. A.2) moves only in the z-direction,

Eq. A.1 becomes

0 of ..
— 2,1 dV = — dV 5 dA A2
Ot Jvi(z.t) flz.y.2.t) Lk(z,z) ot + .4,-(z.z)f Vit e (4.2)

/ f Vari-n, dA+ f Vakz-n; dA,
Akl (z.t) )

Ak2 {z,t
where v; is the velocity of the interface, v 4, is the velocity of the lower cross-sectional
area, V 42 is the velocity of the upper cross-sectional area.

If the cross-sectional planes are fixed.

d

oave [ |
5 Jroy [@ Y1) AV = / v + /4 gl vemdA (A3)

Vi(z,t) ot

Gauss’ theorem applied to volume Vj leads to
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(V]
w
=

/ V.-CdV = / C-n dA + C-ng dA (A4)
Vie(z,t) A(z)

Akw(:-z)

- / C-n, dA+ C-n. dA,
Agy(20t) Ara(z,t)

considering the definition of volume integral (see Milne-Thompson®?, Pauchon and

Banerjee®)

d 0 z+Z/2
- - = — . d > .—
0z [/k(;,c) C.dv 0z /z-z/z (/Ak@ C- S) dz (A.5)

where C, = C - n. . Noting that

d rb(o)
o (r)dr =¥t (o) f[b(0)]—a'(0) fla(o)], (A.6)

do a(o)

we have

0

— -n, dV = C-n.dA- C.-n. dA, AT
0z /v,,(z,z) C-n. Aga(=:t) R ns G4 (A7)

Ak (z.t)

Using Eq. A.7 in Eq. A4, it follows that

/ V-CdV:—a—/ C-n.dV+ C-ny dA+ C - ny dA.
Vie(z,t) 0z JVi(z.t) Ai(z.t) Arw(z.)
or
a
/ v-CdV=—/ C-n.dvV + C - dA, (A.8)
Vie(z.t) 0z Jvi(z0) Au(2,0)+ A (2.t)
which is equivalent to
0
/ V-CdV:—/ C.dV + C-ndA,  (A9)
Vi(z.0) 0z Jvi(zt) Au(28)+Aw(z.t)
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Figure A.2: Control volume moving in space.

where C; is the z-direction component of C.

For a tensor field, we have (Hetsroni®®)

<

" 8z

/ v.Cdv a/ n,-Cdv + n. - C dA.
Vk(:,t) Vk(:,t)

A(2,t)+Akw(zt)

We define averages as in Pauchon and Barnerjee®®, i.e.,

1
= — daV,
< fi> Vk/kak :

and

1
<fk>i—V/A‘fdev

where V =3 V;.

A.l General Conservation Equation.

(A.10)

(A.11)

(A.12)

Consider pr¥r as the quantity that is conserved in the k—th phase, with ji and

Sk respectively, representing the flux and source terms of ¥. In our control volume

Vi, it is possible to write a general conservation equation as
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Rate of Accumulation Rate of Rate of
of Quantity Quantity in Quantity out
Rate of
+ (A.13)

Quantity Generated
which gives

Oprtk

> + V- petevi + V -k — prSk = 0. (A.14)

Each term of the general conservation equation can be volume averaged. Using

Eqgs. A.3 and A.9 on each term of Eq. A.14, it follows that

6pkwk 6
av =2 —/ be (v - ) dA, Al
/Vk B 5% /Vk Pt AV A P (Vi - ng) (A.15)
and
. o , .
[ V- ovve+ig dv= = [ n.-(onve+ie) @V
- z Jvi

+ / ng - (PcWe Vi + ji) dA. (A.16)
Ax"-‘"kw

Integrating Eq. A.14 over Vi and using Egs. A.15and A.16 in the resulting equation

gives

0 P | .
55/‘4 Pt dV — /A‘ Petic(Vi - i) dA + 5;/% n. - (PeWrve + ji) dV

+ ne- (pudeve +ie) dA - [ pSedv =0 (A7)
Ai+Akw Vi
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At the pipe wall (Ay,) v = 0 (see Bird et al.™). By collecting terms, we can

rewrite Eq. A.17 as

o} 0 N
—_— e dV + — N i - =
5 /Vk Pk AV + Ep /Vk n; - (pk¥e Vi + ji) dV /Vk PxSk dV

—/ [oxtene - (Vi — vi) + 0 - Ji] dA —/ Dy - Jx dA. (A.18)
A Akw

The void fraction, Ey, is defined as

1
E. == . .
k=g ), 4V (A.19)

Using Eqgs. A.11 and A.12 and A.19 in Eq. A.18, we have

0 15} . s
aEk < pr¥r > +$Ek <n; - (e¥eve + k) > —Ex < piSi >

1 1
= —_—— Y 1. - —_—— .3 2
v Ai(mkwk +Jk - ni) dA V/A,m Dy - jx dA, (A.20)
where the interphase mass transfer is defined as

e = peDg - (Vi — Vi), (A.21)

The general form of the conservation equation is represented by Eq. A.20, and

can be used to derived continuity, momentum and energy equations for each phase.

A3 Continuity Equation.

For our control volume Vi, we can establish our mass balance for a k-th phase
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( 3 4 3 / 3
Rateof Rate of Rate of
{ Accumulationof { = \ k-thphase [ =\ k-thphase ( (A.22)
k-th phase J in out
\ \ 7/ \ 7
r 3
Rate of
+ k-th phase 5
fromintephase masstrans fer

/

For the continuity equation, we set ¥, = 1, jr = 0 and S'k =0, so Eq. A.20

becomes
—(Ek < Pk >) + —(Ek <n.- (pkvk) >) = —-l/ m dA. (A23)
ot 0z N V Ja,
From Eq. A.12,
1
— ¥ = — ' D)
< Mg >; v [4, my dA, (A.-4)
hence, Eq. A.23 can be written as
7] .
E(Ek < pe>)+ E(Ek <n; - (peve) >) = — < my >i= Do, (A.25)

where I' .« represents the volume averaged interphase mass transfer rate and is defined

by Eq. A.24. Thus, the final form of the continuity equation is

~ (A.26)

0
-a—t(Ek < pe >) + —(Ee < petk >) = T
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)

A.3 Momentum Equation.

For the control volume Vj, we write our momentum balance as

LN ¢ 3\ 4 3 ( \

Rate of Rate of Rate of Sumof

'

Accumulation of Momentum f—J Momentum ?'*‘J forces acting (

Momentum in out J onphasek J
(A.27)

where the forces acting on phase k-th are defined as

( Sumof ‘

Surface Body
+ . (A.28)

forces Forces

{ forces acting {

\ onphasek J

The body forces can be classified as gravitational, electrostatic and contact
forces. If we denote the body force vector per unit mass as S; = F, we can express

the body forces acting on the body, relative to the last term on Eq. A.17, as

Body .

= / el dV = / peFe dV. (A.29)
Vi Vi

Forces

In the case of surface forces, a stress vector is defined by

dF

Jmo = o1 (A.30)

The subscript n, indicated that the stress vector depends on the unit outward normal

vector n;, in addition to being function of time and space®®. The simplest form of
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the stress tensor is founded in hydrostatics, where for a single phase j(n) is defined as

Jn) = —pn static fluids, (A.31)

Indicating that the pressure always acts normal to the surface and is opposite in
direction to the unit normal vector. The stress vector can be represented in terms of

the stress tensor by the following expression

J(o) = Jeny) - Bk (A.32)

The stress vector represents the vector force per unit area exerted by the phase into
which n; points on the phase for which n; is the outwardly directed unit normal

vector. We have

Sur face -
=+ / ne -, dA. (A.33)
A+ Arw
Forces
In Eq. A.20, we now set ¥ = Vk737k = p;j — 4, and S = Fi. The pressure
Dk is defined in terms of thermodynamics quantities, and for this reason, is referred
as a thermodynamic stress. The tensor 7 is referred as a stress tensor, or in our case

as a viscous stress tensor. The unit stress tensor is designed as I. With this notation,

Eq. A.20 becomes

a a =
—Ep < ppvie > +—Er < n. - (pvive) > '*'a%Ek < n.-pel>

ot 0z
a =
—5£Ek <n,- 7> -Fr. < kak >
1 . F =
= —V./,; [mkvk+pk1~nk—‘rk-nk]d/{
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_L
‘1,

/.4 B (pel = 7+) dA. (A.34)
By taking the dot product in the general conservation equation, Eq. A.34, with the
unit direction vector n., we can obtain the equation for conservation of momentum
in the z—direction.

Recalling that, when a tensor is dotted with a vector, we get a vector™. If f is
a tensor and g is vector then [f - g] differs from g in both length and direction; that
is, the tensor f “deflects” or “twists” the vector g to form a new vector pointing in a
different direction. In this case the direction is controlled by the unit z direction vector

n.. Additionally, we assume no area change, so N, - n,p; = 0, since ng, - n. = 0.

The unit tensor I has the property that

g.f-_—f.g:g, (A.35)
and
n.- [nc- (o = F4)] = e~ ne - (me - F), (A.36)
n. - Vi = U, (A.37)
n. - [n. - (pkVeve)] = prtis (A.38)
n,- Pka = ka;.k. (ASQ)

By substituting Eq. A.36 to A.39 into Eq. A.34, we find

0 0 a
aEk < Pevi > +£Ek < pevi > +52:Ek < pe >
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N
o

o -
+—Ec<n. (. -T%) > —Ex < ppFrop >

0z
1 ) =
=-v /s [Mave + ;- nepe — 0, - (0 - Ti)| dA
+1—/' " n. - (nkw . 1='k) dA. (A40)

If we let Api; denote the difference between the average interfacial pressure

and average phase pressure, i.e.,
Apri =< pr; > — < Dr >, (A.41)
and let Ap,; be the difference between the local and average interfacial pressure. i.e.,
Ape; = pr— < Pii > - (A.42)

Combining Eq. A.41 and A.42, solving for px, we have

Pk = Api+ < pi > + Apy, (A.43)
and
l/n (ne pe)dA = -l—/n n.(<px > +Api)] dA
an k = Pk = Via k =\ <Pk Drki
+i/n-(nA’)dA (A.44)
7 P ' ’
Using Gauss’ theorem
1 10
2 - In. d ._____/ ) d
=/ ne- [n:(< x> +0pu)] dA 737, mns(<pe > +0p) dV
1
+-‘}- VkV-n;(< Pk > +Apx;) AV
10

- _v&/vk n, - n.(< pr > +Api) dV
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/v (0, < pe >)dV

<|

/ n, - n.(< pe > +Apis) dV. (A.45)

’<I
8’IQ>

By substituting Eq. A.45 in Eq. A.44, we find

! 5
VAlnk-(n;Pk) dA = ~(<pe> +Api) [V aé/dv]

+% /A - (n.0p,) dA

o1
= —(<pk> +Apk,~) 'a—z [V /deV]

b [ e (o0 dd (4.4)

By definition

Eo== [ av. (A.47)
V Jv

Substituting Eq. A.47 in Eq. A.46, we have

1 OF .
‘—/-/; ng - (n:pk) dA = —(<pk> +Apk,') 3_*k+ <N n:Apki > (A.48)
Note that
[nz . (nkw : %k)],‘k'w = —Diw " Tz kw (A49)
[n: - (k- )]y, = =0k Toka (A.50)
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Using Eqgs. A.48, A.49, A.50, A.11 and A.12 our linear momentum equation

(Eq. A.40) can be written as

1%} 15} o 0
—FE —F < ppv > +E— < pr >
5 k<kak>+az e < PeVi > + Lre Dk

+%Ek < Topp > —Apki%Ek =
E, < peFop>—<myve > — <ng-n Ap;ﬂ- >;
+ < M Topi> — <M Topw - (A.51)
As noted by Yadigaraglu?, Delhaye et al.” and Ishii®, 2E; < 7., > and

Ap,, are generally negligible compared to the other terms, thus, we neglect them We

also define
— <y >i= Ly (A.52)
<My Topi >= Tepi S, (A.53)
< Diw - Trhw >= Tehw Of s (A.54)
and
< F.x >=gsing. (A.55)

Substituting Eqs. A.52 to A.55 into Eq. A.51. the final form of our momentum

equation is given by

0 0
—Ei. < prve > +—F; < pkvf > Tk < Vi D=

ot 0z
0 o]
—Ekg <pr>+< Apk,- > gEk
—Er < pr>gsinB+ 7x:S;p = TewSe- (A.56)
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A.4 Energy Equation

The fundamental law of conservation of energy for the fluid contained within

our control volume Vj, at any given time is

' Rateof ‘ ' Rate of ‘ ' Rate of ‘
Accumulation internal and internal and
of internaland kinetic energy kineticenergy
{ kineticenergy J ‘ in by convection J \ out by convection )
' Net Rate of ‘ ( Netrateof ‘
+\ heataddition [ — work done by r
{ by conduction ‘ \ system on surroundings J
Netrateof \
+ 4 heat generatedby (: (A.57)
| the system
where the work done on phase k is defined as
. 3 . 3 f 3
Netrateof Work done Work done
\ work doneon ( = bySurface { +§ byBody (- (A.58)

phasek J { forces J Forces )
The work done by the body forces is mainly due to gravitational forces and the

work done by the surface forces is mainly due by pressure forces and viscous forces.

This means
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( \
Work done
{ by Body
Forces
and
( Work done by

Forces

The rate of heat transfer to the body by conduction is represented by

<

; Surface r =

( Net Rate of

by conduction J
\

3

heat addition r =

/ n;-qdA,
A+ Akw

where q is the heat transferred per unit of volume and time,

.

\

Net Rate of
heat generated by

the system

N

(= v QrdV.

/

where Q. is the heat generated per unit of volume and time.

For the energy equation, we set

Vi - Vi

e =Up =0+ 5

e = qe + (pel

- 7=-k) * Vi,

249

'*'/ - 3 dA=+/ (nk’(Pki—‘?k)) - v dA.
At Arw At Are

(A.60)

(A.61)

(A.62)

(A.63)

(A.64)
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Sk =Fi - vi + Qx, (A.65)

where the pressure p; is defined in terms of thermodynamics quantities. the tensor
T is defined as a viscous stress tensor and 4, is the specific internal energy. Uy is the
total energy (internal plus kinetic). Substituting Eqs. A.63 and A.65 into Eq. A.20,

we have

0 , 17 0
gt-Ek < prUp > +5£Ek < prUrve > +-a—z'Ek <Gz >

0 = -
+EE1¢ <n.- (ka- Vk) > —%Eh <n- ("F'k . Vk) > —Ek < pk(Fk - Vi + Qk >

1 . =
= —-‘—/-/A[mkUk+qk-nk+pkvk-nk—rk-nk]dA

1
—V A Ny * Qi dA, (A66)

where q. ; is the heat transferred by phase & in the z direction. From the definition

of the interphase mass transfer, Eq. A.21

mk = P - (Vk - Vi), (‘AQI)
we find that
Pk
Df - PV = P_k {/?knlc (vie — Vi)} + DkDg * V;
. Dk -
= Mg— + prV; -  Ng. (ASI)
Pk

Using Eq. A.67, we can show that

1 5 1 . . Pk
I—f Ja, [mkUk + DrVi - nk] dA = 1—/— /‘;' [mkUk + mk-p-; + DrVi - Dk dA’ (-‘5&68)

from Eq. A.43

Pk = Apri+ < pr > + Apy, (A.69)
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—

so we can write the last term in Eq. A.68 as

1 1
V-/A, DeVi - D dA = -‘;A‘ ng - [V,'(( D > +Apki)] dA

1 , _
+3 A e (vilrpy) dA. (A.70)
Using Leibnitz’s rule and definitions of average, we find

1 10
‘_/'L‘pknk‘vi dA = (< pr > +Apw:) [";'a'z/vk dV]

1 '
5 A - (vidpl,) dA, (A.T1)
since
Ey = 1 dv, (A.72)
LR VAN VA )
we can rewrite Eq. A.71 as
1 OE; ‘ -
V./A DD - V; dA = (< Dk > +Apk,~) W’F < ng- V,-Apki >. (A(3)

Substituting Eqs. A.68 and A.73 into Eq. A.66, and assuming that the flow

is mainly in the z—direction, we have

0 0 d
aEk < pkUk > +—:Ek < prUkvr > +-—~Ek < Qi >

0 0 o] -
+ aEk <pkvk>+<pk+APki>aEk—5Ek<n:~(f'k-vk) >=

Ee < pr(Fr- v+ Qi) > — < - Qi >y

- <[(mk(Uk + 1;—:)) + ng - V,'Ap;i + (qk . nk)i - (?—:k “Vi o nk),}> . (A74)

1

we recall that

— < my >i=mk, (A.75)
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< DNDg-Vi- 1='k >i= Tk S,: Uk iy (ATG)
< Ng Qi >:= Gk SZ, (A.??)
< Ny Qe >u= Gkw S¢, (A.78)
Ap;; =0, (A.79)
Qk =0, (A.80)

a =
—~Ek <n,- (‘Tk . Vk) >0, (AS].)

and

< Fy >= —gsinf. (A.82)

Using Egs. A.75 to A.82 in Eq. A.74, and collecting terms, we have

ad ) 0
E[Ek < pkUk >] + E[Ek < pkUka >] T < U>=

Qo SE + Qi Sk — EBe < previ > gsind —Z[Ei < pive >

FThi Sp Vki ~2Er < gk >

OBk . p o P (A.83)

—|<pe >+ < App; >
(< e o ]Ot o

Because the flow is dominant in the z direction, vy - vk & v?, and neglecting terms,

we can write our energy equation as

E) _ v2 _ i
aw“q%w>+a<m§>]+g&< mww>+<%mfﬂ
2

—Tme(<ix +%> ) =

Gk w S,':' + ki S;c - Ek < Pr Vg > gsinﬁ —(%[Ek <  DrVk >] + Tk S;c Vk i (A84)
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We use the following expansion:

0 v} v vE o .
3 [Pk Ey g] = pi By ”"a_tk + 7’“& (Px Ex) . (A.85)
and
0 v2 ov 0
E‘ [pkEkvkEkJ = pkEkv,%a—:- + ‘Uza—; (pkEkvk) . (A86)
Adding Eqs. A.85 and A.86, we have
5} v? o) V3 ov Ov
37 [Pk Ex Ek} + 3 l:PkElcvkEkJ = U {PkEka_: + pkEk'L’ka_;}

-;-ﬁ i( E)+i( Exv) 3. (A87)
) 6tpkk azpkklk . .

By considering the momentum and continuity, we can rewrite Eq. A.87 as

o} vE b3} v2
EY: [Pk Ei -2—} +37 [pkEkUk? =
Sy St . 0 0
+ 2 { Pk (Ve — k) — T:Jc.wfk + T:,k,if — pkErsin 3 + Apk,zEEk - Ex —zpk}
v?
+5 (Tmi) .- (A.88)

&

Substituting Eq. A.88 into Eq. A.84, we have

%) . 0 _ . v v?
= [Epr U] + g[Ekpkukvk] —Toi(<tx+=>) + = (Trmuk)

ot 2 2
Sy St 0
+ Uk Tk (Vi — k) = Tepw— + Tepi— — prEx sin 3 + Apri=—Ex — Ex ipk =
A A oz z
. . o ;
+  Gcw S¢ + qri Sk — Ekprvrgsin 8 — E[Ekpkvk] + Tk Sk k- (A.89)
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Simplifying Eq. A.89, we obtain

2

0 - 0 - . 1
= Eepitix]) + = [Exprtrve) — Dmlic — 5 P (ks — 0)” =

ot 0z
. Sw 7
+qkw Sk + Qi S + vaz.k,wTk + T:,k,z‘zk (Ve — i)
—Apriv —a—E' - —Q—[E Uk (A.90)
Pk, kaz k Pkaz kVk|- .

From thermodynamics definitions we have that

B = by — 2%, (A.91)
Pk
and we assume
Fmi =0, (A.92)
Vi = Uk, (A.93)
ki =0, (A.94)
and
Dri = Pk (A.95)

Substituting Eqgs. A.91 through A.95 into Eq. A.90, the final form of our

energy equation is given by

D (Beohe] + 2 (Eepershe] = +auuw SF + teren
Bt k k aZ kPkUkilk kaw Yk k2 kw A
0 0
+Extiez—[pe] + 57 [Eipe]- (A.96)
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APPENDIX B

NON-LINEAR OPTIMIZATION-SUBPLEX METHOD.

The word optimum means “that point at which any condition is most favor-
able” ™, under this condition, it is synonymous with “most” or “maximum” in case
of a maximization process, and with “least” or “minimum” in case of a minimization
process. Optimize is described as “make the most or best of”™. The optimization
theory encompasses the quantitative study of optima and methods for finding them.
Shout™ considers: “from an engineering point of view, that although it is desirable
to have the very best or optimum solution to a problem, the engineer usually must
settle for improvement rather than perfection in designs”. Optimization can be con-
sidered as the process of movement towards improvement rather than achievement of

perfection.

The optimization problem can be expressed mathematically as

F(z) = F(zy,z2,...,Zp), (B.1)

where the function F is defined as the quality, merit or objective function that we
want to maximize or minimize. Mathematically speaking, it provides the quantitative

way for evaluating and comparing the relative goodness of several options or proposal
255
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“designs”. The objective function depends on the n-independent variables

I

— T2 — T B.2
= = (21,Z2,...,Zn) (B.2)

Tn

We can refers to the variables z as design variables which uniquely and com-
pletely define our objective function. The design variables may be function of other
parameters. Note that as main results of our optimization process, the “optimum”
values of these variables are found.

Whether a maximum or a minimum is sought, it is possible to define the

following relationship

Min{F (z)} = —Maz {-F (z)}, (B.3)

Eq. B.3 clearly establish that a maximization problem can be converted in a mini-
mization problem by simply changing the sign of the objective function.

Another important point about optimization is the definition of static and
dynamic optimization. Static optimization considers that the optimization process
and the optimum itself are time independent, so once the location of the extremum
has been found, the search is over. On the other hand, the dynamic optimization goal
is to maintain an optimal condition in the face of varying conditions, in which case

the search becomes a continuous process.
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B.1 Optimization with and without constraints.

The objective function solution domain is defined by the set of all possible val-
ues z variables and is called the solution or design space. But when an optimization
process is applied, several restrictions are used to prevent solutions that are phys-
ically impossible, illegal, unsafe or uneconomical. These restrictions are known as
constraints, and collectively restrict the entire solution space to a restricted region
called problem feasible region which is denoted by I'.

In general, we can classify the constraints as functional and regional con-
straints. Functional constraints are set by a certain number of relationships of the
design variables, z, that must be satisfied by the optimum solution in order to com-
ply with certain restrictions imposed by nature, economics, safety, law, etc. These

restrictions have the following form

(B.4)

Cn (11.1«'2, v 7In) =0
The regional constraints that are a subset of the functional constraints. are set
in the form of inequalities. These constraints have the following form
11 S R1 (.'51‘272, e ,In) S_ L1

12 S Rg (.’El‘.‘L‘g, v ..’tn) S L2

I, LR (z129,...,2Zn) £ L,
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B.2 Optimization Algorithms.

The methods of optimization are usually based on a model that is a convenient
approximation to the objective function, which enables a prediction of the location
of an optimum (minimum or maximum). The typical behavior of an algorithm that

is considered acceptable is

1. With each iteration step, the estimation of the optimum, z*, moves steadily

towards the solution neighborhood of a local minimum z*,

N

then converges rapidly to the point z* itself,

3. and the process is completed when the user-supplied convergence criteria is

satisfied.

Among the several models available the most successful have been the quadratic
models and the prototype models. Since the optimization algorithm depends on the
characteristics of the objective function, a complete information about the objective
function is unavailable. Rowan” described some question about the characteristics of
the objective function F(z) that should be considered when selecting an optimization

method:

e Is F(z) a noisy function?. That means that we have a high variation of the

objective function value with a small variation of the design variables z..

e Is F(z) an extremely inaccurate functional approximation of the real process

that we are trying to simulate?.
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e Is F(z) discontinuous or may have large jumps?

e Is the problem dimension large or small ?

e Is F(z) expensive to evaluate?

e Is F(z) have derivatives which can be easily computed?

e Is F(z) undefined at some points? If so, the optimization may have to be

constrained.

B.2.1 Quadratic Models.

The quadratic models define a quadratic 2pproximation Q(z) to the objective

function F(z),

F(z)~Q(z)=cTz + ézTG T (B.6)

so that

1 -
Qzk+pi) =Qx+ 9l D + ;P{kak, (B.7)

where
g = VQ(z) is the gradient n-vector of z, p is the vector of displacement from

z and G = V?Q(z) is the Hessian matrix of z.
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oz,
BF
oz

VQz)=g=| ™
8F
[ 32 ]
( Al‘l
Al‘z
p=
Az,
32F/31:16x1
VQ(z)=G=
62F/3:rn6x1

Some properties of a quadratic function are™

0°F/8z,0z,

0%*F/8z,0z,

(B.10)

e A quadratic function is one of the simplest smooth functions with a well deter-

mined minimum or maximum,

e A general function expanded about a local minimizer z* is well approximated

by a quadratic function, so the method should have a rapid ultimate rate of

convergence,

e Methods based on quadratic models can be made invariant under a linear trans-

formation of variables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

260



B.2.1.a Failure of Classical Optimization Methods™.

The classical methods are designed to locate local optima that are stationary
points rather than points where the objective function reaches a threshold value. The
objective function needs to be smooth in order to be well approximated, i.e., quadratic
function approximations.

In case of quadratic function approximations, we need to estimate the objective
function derivatives analytically or numerically. But, if we are working with discon-
tinuous or noisy functions or with functions that are computationally expensive to
evaluate, we can easily avoid to consider methods that require derivatives, because
we are certain that the derivative estimation are going to be too inaccurate or costly
to compute in order to be useful.

The nonsmooth optimization methods also called nondifferencizble optimiza-
tion methods will generally fail in case of functions that are not piecewise smooth.

The main rule that we always need to have in main is that if the objective
function characteristics violate the fundamental assumptions upon which the method

is based, that method is not appropriate for the optimization of the function.

B.2.2 Direct Search Methods.

Direct search strategies work without constructing a model of the objective
function, instead the directions of search and step lengths are fixed heuristically or
by using a certain scheme rather than in mathematically optimal way. Thus, the
risk is that it may not be possible to convergence. The “trial” character of their

search strategies has earned the name of trial-and-error procedures. In contrast to
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262
the classical niethods, the direct search methods make few, if any, assumptions about
the objective function. Because the direct search methods are based on “trials” of
the function, they behave well for “noisy” or “discontinuous” functions, i.e., functions
which are not smooth.

The main attraction of the direct search methods lie not in theoretical proofs
and rates of convergence, but in their simplicity. Also, they have proved themselves

useful in practice. The direct search methods are designed to locate local minimum.

B.2.2.a Simplex Method.

There is a group of unconstrained direct search method called simplex strate-
gies. The original idea comes from Stanley, Hest and Himsworth? with later modi-
fications from Nelder and Mead™, Box™, Ward et al.®® and Dambrauskas®32. It is
often recommended as the best alternative for optimizing “noisy” objective functions.
The basic idea is that instead of defining a single starting point, a polyhedron of n+1
vertices is used (n is the number of design variables), and the objective functica is

evaluated at each vertex.

Algorithm Description. A simplex in the n-space is a polyhedron of a set of n+1
points, this simplex moves through the n-dimensional domain space of the objective
function, changing size and shape, and automatically shrinking when it envelopes the

minimum. The algorithm proceeds a follows

1. A starting point, z,, is selected as initial guess,
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2. The initial simplex is formed by setting the simplex vertices as

I; =z, + scale; - e;, (B.11)

for i = 1,2, ...,n, where scale; is the i — th component of scale, scale are the
initial stepsized for the n — coodinate directions and e; is the i — th column for

the n x n identity matrix.

3. Once the simplex has been formed, the objective function is evaluated at each
vertex point. The worst point. z), (the one with the highest value of the ob-
jective function in case of minimization or with the lowest value in case of

maximization) is computed so that
f(zx) =max f(z:), (B.12)
and the centroid of the remaining vertices, c, is calculated as

1 k
c=— >z, (B.13)

the vertex with the minimum value of the objective function is denoted as z;,

so that

f(z) =min f(z.), (B.14)

4. The worst vertex, zj, is reflected through the centroid of the remaining vertices

as follows

Zr=c+a(c—z), (B.15)

where a is a positive constant.
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5. If z, is the best point in the new simplex, i.e., f(z,) < f(z;), a further expansion

in the same direction is tried and we generate the point z., i.e.,

ze=c+y(z,—c). (B.16)

6. If z, is neither the best nor the worst point of the new simplex, then

Tr = Zp. (B.17)

7. If z, has the w... < objective function, z, or z, (whichever has the higher func-

-

tion values), a contracted point is located as follows

Te=c+3(zn—c), if f(z,) > f(za), (B-18)

or

Te=c+3(z- —¢), if f(z,) < fzn). (B.19)

8. The objective function is now evaluated at the contracted point. If an im-
provement over the current points is achieved, the process is restarted. If im-
provement is not achieved and z. is still the worst point, the simplex shrinks in
a massive contraction movement by contracting each vertex towards the best
point

l”s =1z +6(zs — 1), (B.20)

z, =21+ 6 (zn — 7). (B.21)

9. The procedure is terminated when the convergence criterion is satisfied or a

specified number of iterations are achieved.
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A general description of the algorithm as given in Ref. 75 is presented in Fig.

B.L.

Simplex Method Characteristics.”®> The main characteristics of the simplex

method are

e Compared with other methods, the simplex method works well with noisy func-

tions,

e The simplex method performs well when n is small (n < §), but may be very

inefficient when n is much larger as reported by Box®® and Rowan™.

e The simplex method does poorly when constraints are handled by rejecting
infeasible points since the simplex may collapse into a subspace. When mini-
mizing a function, the usual mechanism for rejecting a point is to assign it a

large function value.

e The simplex method requires O(n?) storage because a simplex has n+1 vertices,

and each vertex is an n — vector.
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Algorithm:Nelder-Mead Simplex Method.

Notation:
z; = i—th vertex of simplex

fi

Input:
n

f

= f(z:)

:problem dimension
:function to be minimized
:initial approximation to minimum

scale :initial stepsizes for the n coordinate directions

Output:

T
begin

:reflection coefficient (a>0)
:contraction coefficient 0<ax<l)
:expansion coefficient (v>1)
:shrinkage (massive contraction) coefficient 0<é<1)

:computed minimum
(*start of simplex method*)

generate initial simplex
while termination test not satisfied do
begin

end

determine h, s, [ such that
F(an) =max f(z:), f(z) =max f(z:), f(@) =mip f(z)

n
c— 2> T (*calculate centroid*)

=0
i#h

Zr—c+a(c—zh) i (*reflect™)
if (fr < fi) then
begin
Ze <—'C+7(5Er —C)
if (f. < fi) then z, — z, else z;, — z,
end
else if (f; < f;) then z, — z, (*neither best nor worst point, accept*)

else

begin
if (fn < f+) then z. — c + B(zr — ) else z. — ¢ + 3(z, — ¢)
if (f. < min(f,, f»)) then z, — z. (*successful contraction*)
else
for i — 0 ton do if (¢ #!) then z; — z. + §(z; — ;)
end
end

(*end of simplex method*)

Figure B.1: Nelder-Mead Simplex Algorithm
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B.2.2.b The Subplex Method.

The subplex method was designed by Rowan™ to remove the weaknesses of
the simplex method retaining its positive features. The subplex method’s approach
is to decompose the problem solution space into low-dimensional subspaces that the
simplex method itself can be able to search efficiently. This approach allows to avoid
the difficulties of the simplex method with high-dimensional problems. The subplex
method is designed as a general-purpose optimization method and is not restricted
to any particular application and can be used to minimize or maximize the objective

function under consideration.

Algorithm Description. A simplify description of the method is presented here,
for completeness some material from Rowan™ is reproduced, for a full detailed de-
scription of the method the reader is referred to Ref. 75.

The subplex method, at each iteration, determines an improved set of search
directions and performs a line search along those directions. The subplex method
determines an improved set of subspaces and then uses the simplex method to search
each subspace.

The subplex strategy consists of the values for a, 3, 7, 6, v, w, nsmin. and
nsmaz. The first four coefficients are exactly the ones that are used in the simplex
method. The coefficient ¥ allows to control the accuracy of the subspace searches

within the simplex method. The coefficient w controls the scale of the stepsizes. The
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Algorithm:Rowan’s SUBPLEX Method.

Input:
n :problem dimension
f :function to be minimized
z :initial approximation to minimum
scale :initial stepsizes for the n coordinate directions
! :reflection coefficient (a>0)
3 :contraction coefficient 0<a<l)
~ :expansion coefficient (y>1)
6 :shrinkage (massive contraction) coefficient (0<é<1)
) :simplex reduction coefficient O<wvw<l)
w :step reduction coefficient O<w>1)

nsmin :minimum subspace dimension
nsmaz :maximum subspace dimension
(1 <nsmin<nsmaz< n and nsmin/n/nsmaz/< n)
Output:
z :computed minimum
begin (*start of Complex method*)
generate initial simplex
while terminat.on test not satisfied do
begin
set stepsizes
set subspaces
for each subspace do use Simplex Method to search subspace

check termination

end
end (*end of Complex method*)

Figure B.2: Rowan - Subplex Method

range of the subspace dimensions are determined by the values of nsmin and nsmaz.

An outline of the method as given in Ref. 75 is presented in Fig. B.2.
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