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ABSTRACT

Fahim Forouzanfar (Doctor of Philosophy in Petroleum Engineering)

Well-Placement Optimization

Directed by Albert C. Reynolds

208 pp., Chapter 6: Conclusions

(508 words)

A gradient-based well-placement algorithm for optimizing the number of wells,

their locations and well controls is developed. Furthermore, a derivative-free well-

placement algorithm for more general well trajectory wells such as horizontal, vertical

and directional wells is presented in this work.

In the first part of this work, a gradient-based optimization algorithm with the

gradients calculated by the adjoint method is developed to solve the general well-

placement problem which simultaneously optimizes the number of wells, the well

locations and the rates of rate-controlled vertical injection and production wells.

Fixing the well controls and the expected reservoir life a priori during the well-

placement optimization results in a sub-optimal solution. To overcome this problem

and to mitigate the effects of an ad hoc specification of both operating well rates

and operational reservoir life, an initialization step is proposed to determine an

appropriate total reservoir water injection rate and/or total reservoir production

rate for the specified operational life of the reservoir. Also, a practical method is

proposed for imposing nonlinear bound constraints on the bottomhole pressure of

each well; this procedure does not require the calculation of the gradients of the

bottomhole pressure constraints.
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In the second part of this work, a new methodology for the efficient estimation

of the location, length and trajectory of 3D vertical, horizontal and directional wells

is developed that maximizes the life-cycle net-present-value (NPV) of production

from a given reservoir. With this methodology, the well controls and the expected

reservoir life are specified a priori for the well-placement problem. Although it is

more natural to specify the operating bottomhole pressure of wells, the procedure

also works if well controls correspond to specified rates. For vertical or horizontal

wells, the well-placement problem is formulated in terms of four continuous variables,

the xw, yw and zw coordinates of the center point of the well and the length, lw, of

the well. For a directional well, the well trajectory parameters are the xw, yw and

zw coordinates of the center point of the well, the length of the well, lw, and θw

and ϕw which are the orientation angles of the well in the horizontal and vertical

directions, respectively. A NPV functional is defined by distributing the rate of the

well among “gridblock perforations” which are “close” to the trajectory of the well.

The NPV functional by our model is based on the life-cycle NPV of production from

the reservoir and it is a function of these continuous well trajectory parameters.

Conceptually, this NPV functional can be maximized using any algorithm but since

commercial simulators do not provide all derivatives needed for a gradient-based

optimization algorithm, we apply a derivative-free optimization (DFO) algorithm,

BOBYQA. For the straightforward formulation of the optimal well-placement prob-

lem, BOBYQA performs relatively poorly. A cogent way for the transformation of

the control variables is proposed in order to improve the performance of BOBYQA

for the well-placement optimization problem. Because a DFO algorithm is applied,

the technology developed here can be easily applied using any reservoir simulator.
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CHAPTER 1

INTRODUCTION

Determining the optimal number of the production and injection wells as well

as determining good locations and completions of the production and injection wells

are critical steps in preparing the development plan for a reservoir when the objective

is to optimally develop and produce a reservoir. The distance of a production well

from the aquifer, gas cap or injection wells, the reservoir layers to be penetrated

and the length of the perforated or open section of a well greatly influence the

well performance. Therefore, the use of a well-placement optimization algorithm is

required.

Solution of the general well-placement optimization problem would require si-

multaneous estimation of the optimal number of wells, well type, well locations and

trajectories and operating conditions for the life of the reservoir by maximizing a

measure of the field net-present-value. Although dozens of papers have been written

on the individual components of the problem, the general problem is far from solved.

Well-placement optimization is a challenging optimization problem due to the high

dimension and the complexity of the optimization search space and also the com-

putational costs associated with the function evaluations. The number of wells, the

location and trajectory of the wells and their controls results in a high dimensional

and complex optimization search space. Also the optimization is computationally

very demanding as every objective function evaluation requires one reservoir simu-

lation run. Therefore, an efficient robust well-placement optimization algorithm is

desirable.
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1.1 Well-Placement Optimization Algorithms

As mentioned previously, the general well-placement optimization problem

which considers simultaneously optimizing the number of wells, well type, well loca-

tions and trajectories and well operating conditions for life cycle of the reservoir is

far from solved. Many researchers have focused on solving individual components of

the problem. Virtually all papers on optimal well-placement assume the number of

wells are fixed and the well operating conditions, wellbore pressures or rates, and the

reservoir life are specified and fixed when optimizing well locations and trajectories

(completions). Perhaps, we should mention, however, that in the optimization proce-

dures used by Handels et al. [16] and Emerick et al. [13] the optimal number of wells

may change by a very small number during the optimization process. Also, in the

optimization procedures proposed by Yeten et al. [44] and Onwunalu and Durlofsky

[26], the number of laterals of a multi-lateral well is optimized during the optimiza-

tion process. Additionally, in the optimization method developed by Yeten et al.

[44], the well controls (wellbore pressures or rates) are also optimized and Beckner

and Song [3] proposed an algorithm to optimize the schedule of the wells (the time

to bring the wells online).

The perforations of a well are introduced into the simulation model as the

indices of the perforated gridblocks. For a 3D vertical, horizontal or directional well,

it is most common to define the indices of the endpoint gridblocks of each well as the

optimization variables. Thus, finding the optimum location of a well is most naturally

formulated as a discrete optimization problem where the perforation gridblock indices

of the endpoints of the wells are the optimization variables, even though the actual

physical problem of determining optimal well locations is a continuous problem. In

the Beckner and Song [3] and Bittencourt and Horne [4] well-placement optimization

methods, a vector of integer numbers containing the indices of the active gridblocks

determine the possible locations for the wells. Centilmen et al. [9], Bangerth et al.
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[2] and Ozdogan and Horne [27] considered the optimization of 2D vertical wells

where the (“i”, “j”) gridblock indices are the optimization variables. In the well-

placement optimization method of Emerick et al. [13], a directional well is a straight

line and the gridblock indices of the two endpoints of the well are the optimization

variables. Lee et al. [20] proposed a node-based configuration for well trajectories.

Based on their representation, a well trajectory is defined as one or several nodes,

called “kick-off” points. The path connecting the nodes gives the well trajectory. In

their representation, the maximum number of the nodes is predefined. In the Yeten

et al. [44] well-placement method, a nonconventional (multi-lateral) well contains a

mainbore and a number of laterals which are to be optimized. The mainbore and

each lateral of the well are represented by independent straight lines in 3D. The

mainbore is represented by a straight line which is defined by the three coordinate

locations of the heel (hx, hy, hz), the projected length of the mainbore on the x − y

plane (lxy), the orientation angle in the x−y plane (θ) and the depth to the trajectory

endpoint (tz). Each lateral of the well is also a straight line that is parameterized in

terms of its junction point on the mainbore (j) and the three parameters (lxy, θ, tz)

of the lateral. The maximum number of laterals is pre-specified. Yeten et al. [44]

represented the real space (x, y, z) coordinate location of the points on a simulation

grid by using their corresponding (“i”, “j”, “k”) gridblock indices.

To solve the discrete optimal well-placement problem, most researchers have

focused on using non-gradient-based optimization algorithms, i.e., the genetic algo-

rithm (Bittencourt and Horne [4], Yeten et al. [44], Ozdogan and Horne [27] and Lee

et al. [20], Emerick et al. [13]), neural networks (Centilmen et al. [9] and Yeten et al.

[44]), simulated annealing (Beckner and Song [3] and Norrena and Deutsch [25]).

The genetic algorithm appears to be the most widely used derivative-free algorithm

for solving the discrete well-placement optimization problem. Yeten et al. [44] used

the genetic algorithm method to optimize the type, well control, location and tra-
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jectory of non-conventional wells. To improve the computational efficiency of the

optimization run, Yeten et al. [44] implemented artificial neural networks and hill

climbing algorithms in their well-placement method. Lee et al. [20] implemented the

genetic algorithm to optimize the location and trajectory of wells in a 2D reservoir by

optimizing the configuration of the well trajectory nodes (“kick off” points). Emerick

et al. [13] also applied the genetic algorithm method to optimize the location, com-

pletion and the type (injection or production) of wells. They applied their method

to a field case, where the “best” locations and trajectories of injection and produc-

tion wells were tentatively selected by experienced reservoir engineers. These best

locations and trajectories were used in the initial population for the genetic algo-

rithm. Generally speaking, discrete derivative-free optimization algorithms are slow

and require a very large number of reservoir simulation runs to obtain convergence

and thus require significant computer time.

Some researchers have investigated gradient-based optimization algorithms for

the optimal well-placement problem to improve the computational cost of the opti-

mization. Bangerth et al. [2] introduced integer simultaneous perturbation stochastic

approximation (SPSA) and integer finite difference (FD) algorithms to solve the dis-

crete optimal well-placement problem for vertical wells. The proposed well-placement

algorithms are gradient-based methods where the gradients are computed by SPSA

or finite difference methods. In their integer SPSA and integer finite difference opti-

mization algorithms, the perturbation and step size values are integer numbers. Note,

Bangerth et al. [2] assumed that the derivatives of the objective function (NPV) can

be well approximated by finite differences on the integer lattice of the simulation

model. This may not be a good assumption if the simulation model has a course

simulation grid and/or the permeability field of the reservoir is very heterogeneous.

Also, the computation of the gradients with the finite difference is not computa-

tionally efficient when the number of wells and hence the number of parameters is
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large. A successful application of a gradient-based optimization procedure requires

a method for efficient computation of the gradient of the objective function with

respect to the vector of the optimization parameters. This requires the definition of

continuous optimization parameters so that the objective function (usually NPV) is

a differentiable function of these parameters. Also, it requires a reservoir simulator

with the appropriate adjoint code, but adjoint code for computing these gradients is

not commonly provided in commercial reservoir simulators. Handels et al. [16], Zand-

vliet [45], Sarma and Chen [36], Wang et al. [41] and Zhang et al. [47] reformulated

the optimal well-placement problem for vertical wells so that it can be treated as an

optimization problem on continuous variables and solved the optimal well-placement

problem with efficient gradient-based methods.

The method of Handels et al. [16] and Zandvliet [45] are the first attempts

to use a gradient-based optimization algorithm for optimal well placement where

optimal well locations are defined as those that maximize NPV over a specific to-

tal production time specified a priori. Although this method still seeks to find the

discrete (“i”, “j”) indices of optimal well location, wells are moved from simulator

gridblock to simulator gridblock based on a gradient calculation. Specifically, eight

“pseudo-wells” with very small injection or production rates are placed around each

actual well. Although the pseudo-wells have a negligible impact on the NPV, the

gradient of the NPV with respect to all the pseudo-well rates can be obtained with

one backward adjoint run. Based on this gradient calculation, a well is moved to

the location of the pseudo-well that has the largest positive gradient regardless of

whether this movement actually increases or decreases NPV. Thus, NPV may os-

cillate (increase and then decrease) from iteration to iteration of the optimization

algorithm and it is not possible to use a standard convergence criterion. In our ap-

plication of this method, we terminate iteration when a well configuration repeats

from a previous iteration. We choose the well locations corresponding to the iter-
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ation with the highest NPV value as the optimal well locations. The well controls

are predetermined and fixed for the specified reservoir production life; hence, the

final well locations depend on the specified well controls (Zandvliet [45]). Handels

et al. [16] and Zandvliet [45] considered only vertical wells and in their procedure;

the location of a well is effectively at the center of a gridblock. Sarma and Chen [36]

extended the Handels et al. [16] method in a way that approximately accounts for

the actual location, (xw, yw), of a vertical well in a gridblock, i.e., they treated the

well location (xw, yw) as continuous variables. Sarma and Chen [36] also introduced

a method to find the “best” direction for moving the wells to increase the NPV. In

their method, a well is surrounded by pseudo-wells at the neighboring gridblocks but

unlike the Handels et al. [16] procedure, the rate of a well is distributed among the

well and its pseudo-wells as a function of the well location, (xw, yw). The optimiza-

tion parameters are the actual locations of wells. Sarma and Chen [36] applied their

method to find the locations of bottomhole pressure-controlled vertical wells for 2D

flow problems. Their method requires the derivative of the objective function with

respect to the productivity index (PI) multipliers of the pseudo-wells and the original

well. In their implementation, the gradients are computed by the adjoint method.

Vlemmix et al. [40] developed an adjoint-based well trajectory optimization

method which is effectively an extension of the Handels et al. [16] idea to three

dimensions. In the Vlemmix et al. [40] method, the well trajectory is determined

by connecting the estimated trajectory points. The optimization algorithm moves

the trajectory points to find the optimum trajectory of the well. In order to find

the proper direction of the move for a well’s trajectory points, the initial trajectory

points are surrounded by “pseudo side tracks” at all adjacent gridblocks in each

direction. Typically, there are pseudo side tracks to the four adjacent gridblocks of

each trajectory point. The side tracks are given a very small perforation length so

that their influence on the overall flow is negligible. The sensitivity of the objective
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function to the inflow area in the side track is determined by the adjoint method for

each pseudo side track. Using these sensitivities (derivatives), a set of “attractor”

points is constructed, one for each trajectory point. The attractor points are used

to move trajectory points in an improving direction at each iteration.

Wang et al. [41] and Zhang et al. [47] proposed a method for the optimiza-

tion of the location of injection rate-controlled wells. In their procedure, a large

number of injection wells are initially placed in the reservoir and the total injection

rate is uniformly distributed among those injectors. A modified net-present-value

functional, which also accounts for the drilling cost of a well, is defined as the objec-

tive function to be maximized. A derivative-based optimization method is used to

optimize the modified NPV functional with respect to the rates of the wells. Some

well rates go to zero during an optimization iteration and the corresponding wells are

therefore eliminated. The injection wells that remain when the algorithm converges

provide an estimate of the optimal well locations. This method is applicable for the

rate-controlled wells only.

Recently Onwunalu and Durlofsky [26] and Bouzarkouna et al. [5] defined the

well-placement optimization using continuous real variables as the optimization pa-

rameters. They used iterative population-based stochastic optimization algorithms

because of the non-smooth shape of the objective function. Onwunalu and Durlof-

sky [26] implemented particle swarm optimization (PSO) for determining the location

and type (injector or producer) of directional and lateral wells. The parametriza-

tion of a nonconventional (multi-lateral) well in Onwunalu and Durlofsky [26] is

similar to the one used by Yeten et al. [44], however, the optimization variables

are continuous real variables. They also compared the performance of PSO with

a binary implementation of the genetic algorithm (bGA) for the optimization of a

vertical production well, and in this example PSO outperformed bGA. Bouzarkouna

et al. [5] used “the covariance matrix adaptation evolution strategy” (CMA-ES) for
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the optimal placement of nonconventional (multi-lateral) wells. CMA-ES is also an

iterative population-based stochastic optimization algorithm. In the Bouzarkouna

et al. [5] well-placement optimization method, the trajectory of the mainbore of a

multi-lateral well is defined by a sequence of points which determine the segments of

the wells. The heel of the mainbore is defined in the Cartesian coordinate system,

(x, y, z), and the intermediate points and the endpoint of the mainbore are defined

in their corresponding spherical coordinate system, (r, θ, ϕ), with respect to their

bases (the previous point on the mainbore segment). For the laterals of the well, the

starting point of a lateral is located on a segments of the mainbore and it is defined

by its distance from the heel of the well. The endpoint of a lateral is defined in the

spherical coordinate system corresponding to its starting point. Note, the number

of segments of a well and the number of laterals are pre-specified. Spherical coor-

dinates are used as they allow for straightforward control of the well lengths of the

segments and laterals of the well by imposing a box constraint. Bouzarkouna et al.

[5] compared the performance of CMA-ES with a continuous implementation of the

genetic algorithm for optimizing the locations of an injector and a producer in the

PUNQ reservoir, and found that CMA-ES outperformed GA. They also introduced

an implementation of local meta-models (local quadratic approximation model) with

CMA-ES which can improve the computational efficiency of the CMA-EA method.

1.2 Research Contributions and Dissertation Outline

1.2.1 Research Contributions

The development of practical and efficient techniques for well-placement opti-

mization is a research problem of great interest. The first contribution of this research

is to propose a derivative-based optimization algorithm for the optimal placement

of vertical production and injection wells with the appropriate gradients computed

from the adjoint method. The algorithm determines the optimum number of wells
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to be placed in the reservoir, the optimum location of each well and the optimal

well controls (rates) of each well subject to nonlinear well bottomhole pressure con-

straints. In the proposed method, bound constraints are put on wellbore pressures

because, in reality, a water injection well is always constrained by a maximum bot-

tomhole pressure and a producing well always has a minimum bottomhole pressure

constraint. As upper and lower bottomhole pressure constraints represent nonlin-

ear constraints when the optimization parameters or well controls are flow rates,

adding bound constraints on bottomhole pressures adds a significant complication

to the optimization problem. As derivatives of the bottomhole pressure constraints

with respect to the control variables (rates) are not available with the commercial

simulator used, a novel method is devised to ensure the satisfaction of these non-

linear bottomhole pressure constraints for rate-controlled wells. The method does

not require the gradient of these nonlinear constraints on pressure. Also an initial-

ization stage is proposed where the optimal total injection/production rates for the

expected life of the reservoir are determined. In most of the optimal well-placement

algorithms presented in the literature, the well controls and the expected reservoir

life are both specified a priori and fixed during optimization, which may result in a

very sub-optimal solution. To overcome this problem, an initialization step is pro-

posed to find appropriate total reservoir injection/production rates for a specified

reservoir life. Then, in the second stage, these total rate constraints are used as

equality constraints when applying a gradient projection method to reduce the wells

to an optimal number at optimal locations as well as optimizing the well controls of

the remaining wells.

The second contribution of this work is to define a relatively smooth continu-

ous NPV objective function for the placement of vertical, horizontal and directional

wells. Here, an efficient derivative-free optimization algorithm is applied to solve the

well-placement optimization problem because the gradients needed are not available.
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A vertical or horizontal well is considered as a column or a row of perforated grid-

blocks and the proposed well-placement algorithm estimates the optimal location

of the center point, (xw, yw, zw), and length, lw, of each well. The directional well

is represented by a straight line in spherical coordinate system, where (xw, yw, zw)

determines the well center point, lw is the length of the well and θw and ϕw are the

directional angles. In order to define the NPV functional with our model, the rate

of the well is distributed not only among the gridblocks penetrated by the well, but

also among the gridblocks “close” to the well. A derivative-free optimization (DFO)

algorithm, Bound Optimization BY Quadratic Approximation (BOBYQA), is used

to solve the optimization problem; BOBYQA uses the simulator as a “black box” and

there is no need to compute gradients. BOBYQA which was developed by Powell

[34], tries to find the optimum solution of an optimization problem by minimizing a

sequence of quadratic approximations of the objective function subject to predefined

bounds on the optimization variables. To improve the performance of BOBYQA, a

cogent way is proposed to re-scale the optimization variables for the well-placement

optimization problem.

1.2.2 Dissertation Outline

There are six chapters and one appendix in this dissertation. In Chapter

2, we introduce the NPV functional that we use as the objective function to be

maximized in the well-placement optimization problem. A brief description of the

gradient projection and BOBYQA optimization algorithms we use for solving the

defined optimization problems are also presented in Chapter 2. Chapter 3 presents

details of the proposed derivative-based two-stage optimization algorithm for opti-

mizing the number of the wells to be placed in the reservoir, their locations and

controls. The computational results for both single-stage and two-stage optimiza-

tion algorithms and a comparison with the Handels et al. [16] method are included

in this chapter. Chapter 4 covers the proposed algorithm for optimizing the well
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locations and lengths of vertical and horizontal production and injection wells using

a DFO algorithm. The results for the optimization of well locations and completions

in homogeneous and heterogeneous synthetic 3D reservoirs are also given in Chapter

4. Chapter 5 considers the optimization of well locations and trajectories of general

directional wells using a DFO algorithm, BOBYQA. The computational results for

the optimization of directional wells in homogeneous and heterogeneous synthetic

3D reservoir are also presented in Chapter 5. Chapter 6 presents the conclusions

and a brief discussion and summary of the research contribution of this disserta-

tion. In Appendix A, the detailed formulations for two well models for representing

directional wells in commercial simulators are given.
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CHAPTER 2

OBJECTIVE FUNCTION AND OPTIMIZATION ALGORITHMS

FOR WELL-PLACEMENT OPTIMIZATION

The cumulative oil production from a reservoir or the net-present-value (NPV)

of production from a reservoir are the two most common objective functions chosen

for maximization in the well-placement optimization problem. In this dissertation,

we choose the NPV of production from a reservoir as the objective function to be

maximized in the well-placement optimization problem. The detailed form of the

specific well-placement optimization problems defined for optimizing 2D vertical rate-

controlled wells, 3D horizontal and vertical wells and 3D directional wells are given

at the beginning of Chapters 3, 4 and 5, respectively.

In this chapter, we first introduce net-present-value functional as the objec-

tive function of the well-placement optimization problem. Then we briefly explain

two optimization algorithms we use in this work which are: (1) Gradient projection

method, which is a gradient-based algorithm for solving the optimization problems

subject to the linear constraints, and (2) Bound Optimization BY Quadratic Ap-

proximation, BOBYQA, method which is a derivative-free optimization method to

solve the optimization problems subject to predefined bounds on the optimization

variables.

2.1 Net-Present-Value Definition

In the optimal well-placement problems discussed in this dissertation, the

objective function is defined based on the net-present-value (NPV) of production

from the reservoir. For a three-phase reservoir under water flooding, the NPV is
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defined by

NPV =
Nt∑
n=1

[Nprd∑
j=1

(
roq

n
o,j − rwqnw,j + rgq

n
g,j

)
−

Ninj∑
i=1

(
rw,injq

n
winj,i

) ] ∆tn

(1 + b)tn/365
, (2.1)

where Nt is the number of reservoir simulation time steps; Ninj and Nprd, respectively,

denote the number of water injection and oil production wells, respectively; ∆tn

represents the size of the nth simulation timestep in days; tn represents the total

simulation time in days at the end of the nth timestep; qno,j, q
n
w,j in STB/D and qng,j

in MSCF/D, respectively, represent the average oil, water and gas production rates

of the jth producer over the nth simulation timestep; qnwinj,i in STB/D is the average

water injection rate of the ith water injection well over the nth simulation timestep;

ro in $/STB is the oil revenue per unit volume; rg in $/MSCF is the gas revenue per

unit volume; rw in $/STB is the disposal cost per unit volume of produced water;

rw,inj in $/STB is the water injection cost per unit volume and b is the annual discount

rate. Note that in Eq. 2.1, we have assumed constant economical parameters for the

whole production life of the reservoir.

2.2 Gradient Projection Method

The detailed formulation and procedure of the gradient projection method is

given in Nocedal and Wright [23, 24], Chen [10]. However, the gradient projection

method we use in this research is adopted for the well-placement problem which does

not exactly follow the procedure. The detailed algorithm of our gradient projection

method for the well-placement optimization including the procedures for determining

the active constraints and the step length at each optimization iteration are given

in Chapter 3 of this dissertation. Here we explain the formulations of computing

the search direction with projecting the gradient of the objective function onto the

hyperplane of the active constraints. For the purpose of illustration, consider the
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maximization of the objective function J [u] subject to the linear equality constraints,

max
u

J [u], (2.2)

subject to

ei(u) = 0 i = 1, 2, . . . , ne. (2.3)

where u is a n-dimensional column vector of the optimization variables and ei de-

notes the ith equality constraint which can be an active bound constraint or any

defined linear equality constraint for the optimization problem. The linear equality

constraints in Eq. 2.3 can be written in the matrix form of

Au = b, (2.4)

where A is a ne × n matrix and b is a ne-dimensional column vector. In the gradi-

ent projection optimization algorithm for the well-placement problem, the vector of

control variables at maximization iteration `+ 1 is updated by

u`+1 = u` + α`+1d`+1, (2.5)

where α`+1 and d`+1 are the step length and the search direction at iteration ` + 1,

respectively. As it is mentioned above, the procedure for determining the active

constraints (matrix A) and the step length, α`+1, are given in Chapter 3. Here we

only discuss the computation of the search direction, d`+1.

At iteration `, all the optimization constraints are satisfied and therefore,

Au` = b, (2.6)

The search direction d`+1 should be an uphill direction ((g`)Td`+1 ≥ 0) which the
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linear constraints in Eq. 2.4 are satisfied along this direction, therefore,

Au`+1 = Au` + α`+1Ad`+1 = b, (2.7)

Comparing Eqs. 2.6 and 2.7, it follows that

Ad`+1 = 0, (2.8)

Therefore, the search direction d`+1 needs to be an uphill direction which satisfies

Eq. 2.8. Such a d`+1 is found by projecting the gradient g` onto the hyperplane of the

linear constraints. To compute d`+1, we solve the following constrained minimization

problem,

min ||g` − d`+1||2, (2.9)

subject to the constraints given in Eq. 2.8. To solve the minimization problem, we

define the Lagrangian function,

L(d`+1, λ) = (g` − d`+1)T (g` − d`+1) + (Ad`+1)Tλ, (2.10)

where λ is the vector of Lagrangian multipliers. To solve for d`+1, we set,

∇d`+1L = 2d`+1 − 2g` + ATλ = 0. (2.11)

If A is full rank, then sing Eq. 2.10 in Eq. 2.11 and solving for λ from Eq. 2.11 yields,

λ = 2(AAT )−1Ag`. (2.12)

Substituting the value of λ from Eq. 2.12 in Eq. 2.11 and solving for d`+1 yields,

d`+1 = (I − AT (AAT )−1A)g`. (2.13)
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or

d`+1 = Pg`. (2.14)

where P = (I − AT (AAT )−1A) is the projection matrix.

The search direction given in Eq. 2.13 should satisfy two required conditions,

i.e., it should be an uphill direction and the linear constraints should be satisfied

along this direction. Here we verify these two conditions for the search direction

given in Eq. 2.13. Pre-multiplication of Eq. 2.13 by A gives,

Ad`+1 = (A− AAT (AAT )−1A)g` = 0. (2.15)

So any point along the search direction satisfies the constraints.

Next we show that the search direction d`+1 is an uphill direction.

(g`)Td`+1 = (g` − d`+1 + d`+1)Td`+1 = (g` − d`+1)Td`+1 + (d`+1)Td`+1 (2.16)

From Eq. 2.11, we note that

(g` − d`+1)Td`+1 = 0.5λTAd`+1 = 0. (2.17)

Therefore, Eq. 2.16 becomes,

(g`)Td`+1 = (d`+1)Td`+1 = ||d`+1||2 ≥ 0. (2.18)

Equality in Eq. 2.18 holds only if d`+1=0 or the gradient is orthogonal to the hyper-

plane of the linear constraints. Except this, the search direction given by Eq. 2.13 is

an uphill direction.
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2.3 Bound Optimization BY Quadratic Approximation (BOBYQA)

Bound Optimization BY Quadratic Approximation, BOBYQA, is a derivative-

free iterative algorithm based on the quadratic approximation of the objective func-

tion (Powell [31], Powell [32], Powell [33] and Powell [34]). The subroutine seeks the

minimum of an objective function, J [u], subject to the bound constraints,

min J [u] such that ulow ≤ u ≤ uup, (2.19)

where u is an n-dimensional vector containing all optimization variables. At the `th

iteration, BOBYQA constructs a quadratic approximation Q`[u] of J [u] such that

Q`[û`j] = J [û`j], j = 1, 2, . . . ,m, (2.20)

where û`j are interpolation points which change from iteration to iteration and n+2 ≤

m ≤ [(n+ 1)(n+ 2)]/2. The quadratic Q`[u] can be written as

Q`[u] = c` + (u− u`0)Tg` +
1

2
(u− u`0)TG`(u− u`0), (2.21)

where u`0 is the initial approximation to the optimal u. The point u`0, and accordingly

c`, is changed at certain iterations (see Powell [34]). If Eq. 2.21 were the first three

terms of the Taylor series approximation of J [u] about u`0, then G` would be the

Hessian of Q` and g` would be equal to ∇J [u`0]; thus, here, we simply refer to G` as

the Hessian. G` is always required to be a real symmetric n×n matrix. To determine

Q`[u], we must find the scalar c`, the n-linear coefficients, i.e., the n-dimensional

column vector g` and all entries of n × n matrix G` which represent the quadratic

coefficients. Because G` is required to be symmetric, only the n(n + 1)/2 upper

diagonal estimate of G`, the scaler c` and the n entries of g` need to be determined.

Thus, in total, there are nt = [(n + 1)(n + 2)]/2 coefficients that must be found
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to define Q`[u]. Determination of Q`[u] could be done using m = nt interpolation

points (see Eq. 2.20), but to construct the quadratic at the first iteration, Q1[u],

m = nt evaluations of J [û1
j ], j = 1, 2, . . . ,m are required. (In our approximation,

evaluation of J [u] at a û1
j requires one reservoir simulation run.) Thus, if the number

of controls, n, is large, it is not computationally efficient to run the simulator n times

to simply construct the first quadratic approximation of J . The algorithm of Powell

[34] requires m ≥ n+ 2 where n+ 1 interpolation conditions can be used to evaluate

c` and g` and the remaining m − (n + 1) interpolation conditions can be used to

determine some of the entries of G`. However, if m < [(n + 1)(n + 2)]/2, there are

not enough interpolation conditions to determine all the entries of G`. Thus, similar

to quasi-Newton methods, the algorithm at the `th iteration minimizes the Frobenius

norm of the change in the Hessian

δG` = G` −G`−1, (2.22)

where at the first interaction (` = 1), G0 is the n×n null matrix. Thus, the problem

of determining Q` is defined by minimizing ‖δG`‖2
F , subject to the interpolation

conditions of Eq. 2.20 with (n + 2) ≤ m < [(n + 1)(n + 2)]/2. Powell [34] suggests

using m = n + 6 or m = 2n + 1. The choice of m = 2n + 1 is motivated by

the fact that 2n + 1 interpolation conditions would be sufficient to determine c`, g`

and the diagonal entries of G`. For the results presented in this dissertation, we

use m = 2n + 1 when the number of wells, and hence the number of optimization

variables, is small. However, in the cases where n is fairly large, we use m = n+ 2 or

m = n + 6. In BOBYQA, the initial interpolation points are generated by making

m perturbations about the initial point, u1
0 = uinit, in the n coordinate directions.

Such perturbations effectively provide information for approximating derivatives of

J [u] by finite difference methods, Powell [34]. At each subsequent iteration, only

one interpolation point is changed so that at each subsequent iteration only one new
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evaluation of J [u] is required.

BOBYQA implements a truncated conjugate gradient trust-region method

(Conn et al. [11], Powell [33] and Powell [34]). The optimization algorithm terminates

when the trust-region radius becomes smaller than the minimum trust-region radius.

Once Q`[u] has been determined, it is minimized subject to the bound constraints of

Eq. 2.19 by an active set version of the truncated conjugate gradient (Powell [34])

to find u`, the new approximation to the parameter vector which minimizes J [u].

Note G` is not generally positive definite so Q` is not generally convex. In the next

iteration, the set of interpolation points is updated by replacing one old interpolation

point with u` so that the number of interpolation points is constant throughout the

iterative process.

BOBYQA utilizes two trust-region radii; ∆` which is the trust-region radius

at iteration ` and ρ` which is a lower bound on ∆`. At iteration `, BOBYQA finds

a step d` which minimizes Q`[u` + d`] subject to the condition

1

2
ρ` ≤ ||d`|| ≤ ∆`, (2.23)

and such that u`+1 = u`+d` satisfies the bound constraints of Eq. 2.19. The purpose

of the bound

∆` ≥ ρ`, ` = 1, 2, . . . . (2.24)

is to postpone the use of short steps (small values of ||d`||) until late in the calcu-

lation (Powell [34]). The user of BOBYQA has to supply the initial value of ρ`,

which is denoted by ρbeg, and the minimum value of ρ`, which is denoted by ρend.

The optimization algorithm terminates at the iteration at which ρ` = ρend but the

algorithm indicates that a reduction in ρ` is required at the next iteration (Powell

[34]). BOBYQA sets the initial trust-region radius to ∆1 = ρ1 = ρbeg. The value of

the outer trust region radius at the next iteration, ∆`+1, depends on the ratio of r`+1
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defined by

r`+1 =
J [u`]− J [u` + d`]

Q[u`]−Q[u` + d`]
=
Q[u`]− J [u` + d`]

Q[u`]−Q[u` + d`]
. (2.25)

BOBYQA computes ∆`+1 by

∆`+1 =


min[1

2
∆`, ||d`||] if r`+1 ≤ 0.1,

max[1
2
∆`, ||d`||] if 0.1 < r`+1 ≤ 0.7,

max[1
2
∆`, 2||d`||] if r`+1 > 0.7,

(2.26)

except that ∆`+1 is set to ρ` if ∆`+1 computed from Eq. 2.26 satisfies ∆`+1 ≤ 1.5ρ`.

The inner radius ρ` is monotonically decreasing but at most iterations, ρ`+1 = ρ`

(see Powell [34]). When a reduction in ρ` is required, BOBYQA applies the formula,

ρ`+1 =


ρend if ρ` ≤ 16ρend,

(ρ`ρend)
1
2 if 16ρend < ρ` ≤ 250ρend,

0.1ρend if ρ` > 250ρend.

(2.27)

As we will discuss in later chapters of this dissertation, the objective function

in the well-placement problem is noisy, i.e., exhibit discrete jumps as part of the

well crosses a gridblock boundary and these jumps can conceivably introduce very

localized local minima. Recall that, ρ`/2 is the lower bound on the “trust-region”

step, ||d`||, see Eq. 2.23. In order to decrease the chance of fast convergence to a

local minimum with a high value of the objective function by rapidly reducing the

size of ρ`, in our implementation of BOBYQA, we modify Eq. 2.27 to

ρ`+1 =


ρend if ρ` ≤ 2ρend,

(ρ`ρend)
1
2 if ρ` > 2ρend.

(2.28)

Eq. 2.28 will generally result in a smaller decrease in ρ` than Eq. 2.27 because in
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Eq. 2.27, ρ`+1 is set equal to ρend when ρ` ≤ 16ρend; however, in Eq. 2.28, ρ`+1 is not

set equal to ρend until ρ` ≤ 2ρend. According to Powell [34], a decrease in ρ` happens

when “the work with current ρ` is found to be finished,” i.e., the trust-region method

could not find a new point which decreases the objective function. Therefore, Eq. 2.28

not only postpones taking smaller steps to later optimization iterations but also, the

optimization domain [1
2
ρ`,∆`] is investigated with more iterations before shrinking

the investigation radius by decreasing the lower bound on the trust-region radius.

For the purpose of an intuitive illustration, suppose the current iterate is very close

to a weak local minimum introduced by a noisy objective function and the work with

the current inner trust-region radius is finished. If the inner trust-region radius is

radically reduced, the optimization algorithm may converge to this local minimum

which is not desirable. By using Eq. 2.28, we hope that the optimization algorithm

will skip over local minima (at least those arising from a noisy objective function) and

converge to a local optimum solution with smaller value of the objective function.

Based on our observations, Eq. 2.28 reduces the chance of fast convergence to a local

minimum which represents an unacceptably high value of the objective function, but

may increase the number of optimization iterations required to obtain convergence.

As we explain in the following chapters, the values of ρbeg and ρend are usually close in

our implementation of BOBYQA for the well-placement optimization problem and

therefore, using Eq. 2.28 instead of Eq. 2.27 does not increase the computational cost

of the method significantly.
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CHAPTER 3

TWO-STAGE WELL PLACEMENT OPTIMIZATION METHOD

BASED ON ADJOINT GRADIENT

Wang et al. [41] introduced a gradient-based procedure to optimize locations

of water injection wells. Their main idea was to initialize the optimization procedure

by placing an injection well in every gridblock not containing a producing well. In

addition, they added a term to the conventional NPV function to account for the cost

of drilling each well. Then well rates are adjusted to maximize NPV over a specified

reservoir lifetime. If the rate of one of the initial wells becomes zero, the well is

eliminated from the system and the cost of drilling that well is removed from the

modified NPV function. As the problem requires the rates of some wells go to zero,

Wang et al. [41] applied the steepest ascent algorithm with limited step size so that

at most one well is eliminated at each iteration which is computationally inefficient

when the initial number of wells is large. Zhang et al. [47] significantly improved the

computational efficiency of the optimization procedure using a gradient-projection

method. With the projected gradient, at early iterations, it is often possible to

remove several wells during a single iteration.

In this chapter we improve the basic methodology introduced in Wang et al.

[41] and Zhang et al. [47] so that it can be applied to more realistic problems,

i.e., three-dimensional three-phase flow problems where the objective is to optimize

not simply the location of water injection wells, but the location of both producers

and injectors. In addition, unlike the work of Wang et al. [41] and Zhang et al.

[47], we put bound constraints on wellbore pressures because, in reality, a water

injection well always has a maximum bottomhole pressure constraint and producing
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wells always have a minimum bottomhole pressure constraint. As upper and lower

bottomhole pressure constraints represent nonlinear constraints when our parameters

(well controls) are flow rates, adding bound constraints on bottomhole pressures adds

a significant complication to the optimization problem. As the commercial simulator

used (Eclipse 300) does not provide the gradient of these nonlinear constraints on

pressure, we have devised a novel method to ensure the satisfaction of these nonlinear

bottomhole pressure constraints for rate-controlled wells.

We also present a methodology which attempts to mitigate the effects of

an ad hoc specification of both operating well rates and operational reservoir life

as well as the number of wells by using an initialization step. Most of the well-

placement algorithms specify a priori both the number of wells to be drilled and

the operating rates (or pressures) for the specified operational life of the reservoir.

Therefore, the final optimal well locations may not be optimal when different well

rates (or pressures) and/or reservoir production life are specified. The initialization

step is proposed to determine an appropriate total reservoir water injection rate

and/or total reservoir production rate for the specified operational life. During the

initialization stage, a large number of wells are placed in the reservoir and few if any

are eliminated. After the initialization stage, a second stage is performed in which

we estimate (i) the optimal number of water injection wells and/or producing wells;

(ii) the optimal location of these wells and (iii) the optimal rates at these wells.

Both stages use a gradient-based optimization algorithm with the relevant gradient

computed by a combination of the adjoint method and analytical methods for linear

constraints which are imposed using a gradient-projection method.

3.1 Well-Placement Problem Definition

Following the basic ideas of Wang et al. [41] and Zhang et al. [47], the problem

of determining the optimal location of new wells (injectors and producers) is equiv-

alent to the problem of maximizing a modified net-present-value (NPV) functional,
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J [u], where u denotes the vector of well controls (flow rates) and J [u] is defined by

J(u) = NPV−
Ninj∑
i=1

[finj,i (u)Cinj]−
Nprd∑
j=1

[fprd,j (u)Cprd] , (3.1)

where NPV denotes the standard net-present-value function defined in Eq. 2.1, Cinj

represents the cost of drilling one injection well and Cprd represents the cost of drilling

one producing well. Ninj and Nprd, respectively, denote the initial number of injection

wells and the initial number of production wells that are placed in the reservoir at

the initial step of the optimization procedure developed in here. In this optimization

algorithm, we use large values of Ninj and Nprd but at convergence, the optimal

number of injectors and optimal number of producers, respectively, are typically far

smaller than Ninj and Nprd. In order to economically justify drilling each well, the

resulting increase in the NPV function must be greater than the cost of drilling that

well. Note that the two sums on the right side of Eq. 3.1 represent the costs of drilling

wells. If the optimum value of the kth injection well’s rate is zero, then finj,k (u) = 0,

the corresponding kth cost term in the first sum of Eq. 3.1 will be zero and the kth

injection well will not be drilled. On the other hand, if the optimal solution includes

drilling well k, we wish to have finj,k (u) to be equal to, or very close to 1 so that the

cost of drilling this well will be fully accounted for in the modified NPV function,

J [u].

At each potential injection well, the injection rate is the control whereas at

the jth producing well, the total liquid rate, qprd,j, is the control. Thus, the vector

of all controls is given by

u = [qinj,1, qinj,2, · · · , qinj,Ninj
, qprd,1, qprd,2, · · · , qprd,Nprd

]T . (3.2)

NPV in Eq. 3.1, represents the standard net-present-value including the oil and gas

revenues and the injection and production water cost and is defined in Eq. 2.1.
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The functional J [u] is maximized subject to constraints on the controls (well

rates) using a gradient-projection method. Following Eq. 3.1, the derivative of the

objective function, (J(u)), is

∇uJ(u) =

[
∂J(u)

∂uk

]
, (3.3)

where

∂J(u)

∂uk
=
∂NPV

∂uk
−

Ninj∑
i=1

[
∂finj,i(u)

∂uk
Cinj

]
−

Nprd∑
j=1

[
∂fprd,j(u)

∂uk
Cprd

]
. (3.4)

The gradient of NPV with respect to the control vector u is computed with the

adjoint method for multiphase flow (Wu et al. [42], Li et al. [22], Brouwer and Jansen

[6], Sarma et al. [35] and Kraaijevanger et al. [19]) with the gradient terms in the

summations of Eq. 3.4 computed analytically. In this work, we use the “Eclipse

Reservoir Optimization” option in Eclipse 300 for the gradient calculation. This

option gives the derivative of NPV with respect to each control variable at each

control step, i.e., ∂NPV
∂unk

, where unk is the kth control variable at the nth control step.

For the well-placement problem, however, we specify each well control (the total rate

at each well) as constant throughout the reservoir life, i.e., unk = uk for all n. The

gradient of NPV for the whole reservoir life with respect to uk can be computed as

∂NPV

∂uk
=

Nc∑
n=1

(
∂NPV

∂unk

∂unk
∂uk

)
=

Nc∑
n=1

∂NPV

∂unk
. (3.5)

where Nc is the number of control steps.

As noted previously, we want the term finj,i(u)Cinj in Eq. 3.1 to represent an

accurate approximation of the cost of drilling injection well i. If finj,i(u) = 0 the

well is deleted from the system, i.e., is not drilled and the associated drilling cost

does not contribute to the total cost of drilling injection wells, which is given by

the first sum on the right side of Eq. 3.1; whereas if the well is actually drilled we

want finj,j(u) = 1. While these two limiting values of 0 and 1 are desirable, at the
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same time, we need to define finj,i (u) so that it is continuously differentiable and

its derivatives take on values during optimization that are non-negligible compared

to the corresponding values of the derivatives of NPV. It is not possible to satisfy

these conditions on the gradient of finj,i (u) and also have finj,i (u) = 1 for qinj,i 6= 0

and finj,i (u) = 0 for qinj,i = 0. Similar comments apply to the fprd,j (u) terms which

account for the cost of drilling producing wells. Thus, we make some compromise on

the choice of finj,i (u) and fprd,j (u) to obtain a feasible and efficient algorithm.

We would also like the gradient of the drilling cost function for an individual

well to be a decreasing function of the well’s control (injection or production rate),

i.e., the gradient of the drilling cost function for a well with a lower rate should have

a larger value comparing to the gradient of the drilling cost function for a well with

higher rate. Since in the computation of the derivative of the objective function

J [u], (Eq. 3.4), the gradient of NPV is reduced by the gradient of the cost term, this

property helps eliminating the wells with low rates.

We propose the following functions for the drilling cost terms at the `th

iteration of the optimization algorithm:

f `inj,i

(
q`inj,i

)
=

(
q`inj,i

q`−1
inj,i

)β

, (3.6)

for i = 1, 2, · · ·Ninj and

f `prd,j

(
q`prd,j

)
=

(
q`prd,j

q`−1
prd,j

)β

, (3.7)

for j = 1, 2, · · ·Nprd. Note that q`inj,i and q`−1
inj,i, respectively, represent the injection

rate of well i at the current (`th) and previous ((`−1)st) iterations of the optimization

algorithm. A similar comment applies to q`prd,j and q`−1
prd,j. The term β is a constant

and takes a positive value less than or equal 1.0. In the computational results section

presented at the end of this chapter, a sensitivity analysis on the value of β is

provided, where for the other examples in the results section we use β = 0.25.
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Differentiating Eq. 3.6 with respect to the well control (q`inj,i) gives

∂f `
(
q`inj,i

)
∂q`inj,i

=
β(

q`−1
inj,i

)β (
q`inj,i

)1−β , (3.8)

which is strongly dependent on q`inj,i particularly for small values of q`inj,i, a char-

acteristic which is useful for driving rates to zero (eliminating wells) during the

optimization process. q`inj,i can be written as q`inj,i = γq`−1
inj,i, where γ is a positive

number and can be less than or greater than 1. Therefore, Eq. 3.8 is rewritten as

∂f `
(
q`inj,i

)
∂q`inj,i

=
β(

q`−1
inj,i

)β (
γq`−1

inj,i

)1−β =
β(

q`−1
inj,i

)
(γ)1−β (3.9)

In Fig. 3.1, the value of
∂f`(q`inj,i)
∂q`inj,i

is plotted with respect to q`inj,i for three

different values of q`−1
inj,i. Note that in this plot the value of β is assumed β = 0.25.

As it is shown in this figure, larger q`inj,i results a smaller value for the derivative of

the drilling cost function. Also, a larger value of the rate of a well at the previous

iteration, results in a smaller value of the gradient of the cost function. These two

properties of the derivative are both favorable since they help to eliminate the wells

with smaller and decreasing rates. The problem with the proposed drilling cost

function is in evaluating the objective function. As the well rate can decrease or

increase significantly from iteration to iteration, the function in Eq. 3.6 can take

values significantly different than 1.0 for q`inj,i 6= 0. (Using the βth root for β < 1

in Eqs. 3.6 and 3.7 moderates this deviation from unity.) However, to avoid this

potential difficulty, we simply use the definitions of Eqs. 3.6 and 3.7 when computing

gradients but when evaluating J [u], we set finj,i = 1.0 if qinj,i > 0 and set fprd,j = 1.0

whenever qprd,j > 0. The examples presented here were all done with this procedure.

For well-placement optimization, we wish to maximize the modified NPV

functional J [u] subject to bound constraints and possibly equality and inequality
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Figure 3.1: Derivative of the cost function versus rate of the well.

constraints. Bound constraints would naturally include minimum and maximum

values of flowing bottomhole pressures and well flow rates. As we have defined the

controls as well rates, a constraint on bottomhole pressure is a nonlinear function of

the control vector and the calculation of its gradient could not be done analytically. In

the well-placement optimization procedures presented here, a method is introduced

to avoid violation of bounds on wellbore pressure by adjusting the upper bound

on the rate so the well can always operate under a specified rate control and does

not switch to bottomhole pressure control during an iteration of the optimization

algorithm. This obviates the need to compute gradients of nonlinear constraints and

bound constraints are explicitly imposed only on the components of the rate control

vector during an iteration of the optimization algorithm.

In addition, equality constraints are imposed on the total injection rate and

the total production rate. This is done not because it is required for the definition

of the well optimization problem but because it improves the robustness and effi-

ciency of the algorithm we use here which starts with a large number of potential

wells and tries to eliminate a large number of them during iterations of the opti-

mization algorithm. By using an equality constraint on the total injection rate and
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the total production rate, if J [u] is increased by increasing the rates at some wells,

the rates at some other wells must be decreased. As the only way to eliminate a

well is to decrease its rate to zero, the equality constraints on total rates tend to

promote our objective of eliminating some wells. On the other hand, specifying the

total injection (or production) rate a priori is difficult as if it is too large, we may

not be able to reset a well’s rate to avoid violation of specified bounds on flowing

bottomhole pressure. More importantly, the final optimum location of the wells are

dependent on the specified total rates. To avoid this potential problem, a two-stage

optimization procedure is introduced where in the first initialization stage, we try to

find appropriate values to use for the total injection rate and total production rate

when specifying the equality constraints.

3.2 Gradient Projection for Linear Constraints

In the optimization algorithm, we maximize the functional J(u), subject to

the following constraints,
Ninj∑
i=1

qinj,i = qt,inj, (3.10)

Nprd∑
j=1

qprd,j = qt,prd, (3.11)

0 ≤ qinj,i ≤ qup
inj,i, 1 ≤ i ≤ Ninj, (3.12)

0 ≤ qprd,j ≤ qup
prd,j, 1 ≤ j ≤ Nprd. (3.13)

In the initialization stage where we determine approximate total rates, we use only

the bound constraints. The upper bound, qup
inj,i is initially set equal to qt,inj for all i

and qup
prd,j is initially set equal to qt,prd for all j. However, the upper bound for the

rate of a well can decrease during optimization. More detail is given in the follow-

ing paragraphs where we also explain the procedure for satisfying the bottomhole

pressure constraints of the wells.
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The total rate constraints (Eqs. 3.10 and 3.11) and all active bound constraints

at iteration ` are linear and can be written in the matrix form,

A`u` = b`, (3.14)

where A` is an M×(Ninj +Nprd) matrix, b` is an M -dimensional column vector; M is

the number of active constraints at iteration ` which in the optimization algorithm

includes the linear total rate constraints and the active bound constraints. For

example, in the case where there are two active bound constraints (the rates of

the first injector and the second producer are at their lower and upper bounds,

respectively), A and b, respectively, are given by,

A` =



1 1 · · · 1 0 0 · · · 0

0 0 · · · 0 1 1 · · · 1

1 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 1 · · · 0


, (3.15)

and

b` =



qt,inj

qt,prd

0

qup
prd,i


. (3.16)

During maximization, the control vector is updated as

u`+1 = u` + α`+1d`+1, (3.17)

where ` is the iteration index, d`+1 is the search direction obtained by projecting the
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gradient g` = ∇uJ [u`] onto the hyperplane of the active constraints, i.e.,

d`+1 =
[
I − (A`)T (A`(A`)T )−1A`

]
g`. (3.18)

As it is shown in Chapter 2, the projected gradient d`+1 is uphill ((g`)Td`+1 > 0)

where d`+1 6= 0, and the active constraints are satisfied at the (` + 1)st iteration as

long as they are satisfied at the `th iteration, i.e., A`d`+1 = 0.

3.3 Well-Placement Optimization Algorithm

In this section, we discuss the well-placement optimization algorithm. In the

following, first, we introduce the method for considering the bottomhole pressure

constraints in the well-placement problem. Then the procedure for determining the

active bound constraints is described and at the end, the well-placement algorithm

is presented. In the following discussions of this chapter, we use general notation

and let ulow
i and uup

i , respectively, represent the lower and upper bound for the ith

control variable, ui.

3.3.1 Bottomhole Pressure Nonlinear Constraints

With the definition of the optimal well location problem described in here, the

well controls are the total liquid production rate at producers and the water injection

rate at injectors, which are held constant for the whole reservoir life. However, for

application to real fields, we would wish impose some lower limit on the bottomhole

pressure at a producing well and an upper limit on the wellbore pressure at each

injection well, for example to keep the pressure below parting pressure to avoid

fracturing the formation. These pressure constraints for injection well and producing

wells, respectively are written as

pwf,inj,i < pwf,max, (3.19)
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for i = 1, 2, · · ·Ninj and

pwf,prd,j > pwf,min, (3.20)

for j = 1, 2, · · ·Nprd. As each bottomhole pressure is a nonlinear function of the well

rates, the constraints in Eqs. 3.19 and 3.20 are nonlinear state-control constraints and

if these pressure constraints are added to the constrained optimization problem, the

gradients of these constraints with respect to the controls (well rates) must be cal-

culated during each iteration of the optimization algorithm. Although this gradient

calculation can be done with the adjoint method, our objective is to couple our well-

placement algorithms with commercial simulators. Since Eclipse 300, which is used

in the examples presented here, and other commercial simulators do not provide the

adjoint gradient of bottomhole pressure with respect to well controls where the well

controls are well rates, we impose a practical way to ensure that these bottomhole

pressure constraints are satisfied during well-placement optimization without explic-

itly adding the constraints to the optimization problem definition. The proposed

method for changing the rate of a well to fix the bottomhole pressure constraint

violation is shown in Fig. 3.2.

Figure 3.2: Schematic of the production rate and BHP changes of a production well
in time.

In the proposed method, we explicitly include the bottomhole pressure con-

straints in the input file of the reservoir simulator during each iteration of the well-
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placement optimization. Note that the well controls for the producers and injectors,

respectively are the constant total liquid production and water injection rates which

are estimated by the optimization algorithm at each iteration. If a well cannot meet

the constant rate target specified in the current control vector without violating the

bottomhole pressure constraint, we will cut the rate before doing the optimization

step in a way that ensures the well can produce (or inject) at the specified rate with-

out violating its pressure constraint. Because the total production rate and the total

injection rate are fixed by the two equality constraints, if the producing (or injection)

rate is cut at one well, the rate at one or more other wells must be increased to satisfy

the relevant equality constraint on total rate. We propose the following method to

make these rate changes.

Recall that the first Ninj components of the control vector u correspond to

controls (water injection rates) at the Ninj potential injection wells and the last Nprd

entries of u correspond to controls (total liquid production rates) at the Nprd po-

tential producing wells. u`+1 is the vector of controls estimated by the optimization

algorithm at iteration ` + 1. If the jth producer is switched from the rate control

qopt
prd,j ≡ u`+1

j+Ninj
to production at the minimum bottomhole pressure during the sim-

ulation run using the controls specified by u`+1, then we simply set u`+1
j+Ninj

equal to

the minimum producing rate obtained at any time step of the reservoir simulation

run:

u`+1
j+Ninj

= qprd, min,j (3.21)

Also, in order to prevent a violation of the bottomhole pressure constraint at future

iterations of the optimization algorithm, we modify the upper bound on uj+Ninj
as

uup
j+Ninj

= qprd, min,j (3.22)

We apply the preceding rate control modification at each producing well where
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the well producing condition was switched to minimum bottomhole pressure control

during the reservoir simulation run. Because some well flow rates are decreased by

this modification, the sum of the producing rates is no longer equal to the total

production rate, qt,prd specified in the equality constraint of Eq. 3.11. To satisfy this

equality constraint, we must increase the production rates at some wells where the

bottomhole pressure constraint was not violated. Assuming that the components of

u`+1 that were set equal to the corresponding minimum rate by this procedure are

given by u`+1
kj

, j = 1, 2, · · ·mp, the sum of the last Nprd components of u`+1 is equal

to the qt,prd − qprd,redis where

qprd,redis =

mp∑
j=1

(
qopt

prd,kj
− qprd,min,kj

)
. (3.23)

To satisfy the equality constraint of Eq. 3.11, we must increase the rates at some

wells where the bottomhole pressure constraint was not violated and the sum of these

rates increases must sum to qprd,redis. Although there are many ways to distribute

this total rate qprd,redis, we want to do so in a way that does not tend to introduce

new violations of the minimum bottomhole pressure constraint. The best procedure

we have found to minimize the number of new violations of the minimum bottomhole

pressure constraint is to distribute qprd,redis inversely proportional to the well rates.

Specifically, if u`+1
Ninj+ni

= qopt
prd,ni

, i = 1, 2, · · ·mq, denotes the set of producing liquid

rate controls that were honored throughout the reservoir simulation run, the rate

controls at these wells are changed to

u`+1
Ninj+ni

=
1

qopt
prd,inv

1

qopt
prd,ni

qprd,redis + qopt
prd,ni

, (3.24)

where qopt
prd,inv is defined by

qopt
prd,inv =

mq∑
i=1

1

qopt
prd,ni

. (3.25)
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This procedure distributes qprd, redis to lower rate wells so that wells that are already

producing at high rate will not be increased to a rate that can not be achieved

without violating the minimum bottomhole pressure restriction. Exactly the same

procedure is used to modify rate controls at injection wells if the upper bound on the

injection pressure cannot be honored with the injection rate specified by the injection

rate components of u`+1.

3.3.2 Identifying Active Bound Constraints

In the gradient projection method, we need to determine which wells have

active lower or upper bound constraint to form the matrix A (matrix of constraints).

The lower bound constraint of a well is active if the rate of the well is zero. Once this

happens, the well is eliminated and the lower bound constraint will remain active

for the rest of the iterations. The upper bound constraints on rate for injectors and

producers are initially set at the total injection and production rates, respectively.

Therefore, in this situation the upper bound of a well would be active only if the rate

of this well is equal to the total rate constraint which implies that this is the only

producer or injector that remains. However, as we previously explained (Eq. 3.22),

the upper bound constraint value of the rate of a well can decrease within the opti-

mization process for honoring the bottomhole pressure constraints set in the reservoir

simulator. When such a modification occurs, it is possible to have several wells with

rates equal to their upper bound values. For the gradient projection method, we

need to determine the wells that have active upper and lower bound constraints to

construct matrix A (Eq. 3.14) for the calculation of the projected gradient using

Eq. 3.18.

The task of identifying active bound constraints is more difficult than it ap-

pears to be. The change in upper bound values to satisfy the bottomhole pressure

constraints discussed above further complicates the situation. As an example, con-

sider the case where the rate control for injector i was changed to u`+1
i = qinj, min,i
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and the upper bound constraint was changed to ui ≤ uup
i ≡ qinj, min,i in a previous

iteration. If the component of the next computed search direction corresponding to

the rate control for injection well i is positive, a step in the search direction would

increase ui to a value greater than uup
i = qinj, min,i which would be likely to result in a

violation of the maximum bottomhole pressure constraint. To avoid this possibility,

one should make ui = qinj, min,i an active constraint and recompute the projected

gradient with this active constraint. If the component of the search direction cor-

responding to the rate control for injection well i is negative, a step in the search

direction would decrease ui to a value smaller than uup
i which would not cause a vio-

lation of the maximum bottomhole pressure constraint so the constraint ui ≤ qinj,min,i

should remain inactive. In order to consider this situation, an algorithm is proposed

to rigorously determine the wells with the active upper bound constraints. The upper

(lower) bound constraint of a well is active if the two following conditions are both

satisfied: (i) the rate of the well is at its upper (lower) bound value, (ii) the search

direction of the next optimization iteration tends to increase (decrease) the value of

the control. Therefore, the state of a bound constraint for a control in an iteration

depends on both the value of the control and the vector of the gradient of the objec-

tive function with respect to all controls at that iteration. The proposed procedure

for identifying the active bound constraints is based on a successive application of the

gradient projection formula (Eq. 3.18). In this procedure, first, we assume that all

the wells have inactive bound constraints. Then, wells with active bound constraint

are identified one by one. At the end of this procedure, all the wells with active

bound constraints are identified. Once all the active constraints are identified, the

matrix of active constraints (matrix A in Eq. 3.18) is constructed accordingly. This

matrix is needed for gradient projection at each iteration of the optimization algo-

rithm. For simplicity, here we only consider the case of identifying the active upper

bounds. However, the approach can be easily extended to identify inactive lower
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bounds which allows an eliminated well to reopen in a future optimization iteration.

The successive gradient projection procedure follows:

Procedure for Identifying Active Upper Bound Constraints:

a) Assume that all the wells with zero rate have active lower bound constraint.

Assume that the upper bound constraint for all wells are inactive. Therefore the

only present constraints are active lower bound constraints (and the total rate

constraints if they are present). Consider all the active constraints in addition

to the constant total rate constraints (if they are present) and construct matrix

A.

b) Project the gradient, g, to the current active constraints, matrix A, by applying

Eq. 3.18 to compute the search direction d. Note that a step in the direction

of d is uphill and honors all the active constraints present in matrix A.

c) Consider the computed components of the search direction, d, (projected gra-

dient), for all the wells which (i) have their rates at their upper bound value

and (ii) have inactive upper bound constraints. If there is none which satisfies

both (i) and (ii) then goto step (e).

d) If the search direction component corresponding to all the wells which satisfy

both (i) and (ii) are negative, then go to step (e). Otherwise, choose the one

which satisfies (i) and has the largest positive search direction component.

Set the upper bound constraint for this well active. Update the matrix A

accordingly and go to step (b).

e) If we arrive at this step, all the wells with their rates at their upper bounds

and with positive search direction components are set to active. Therefore, all

the active lower and upper bound constraints are identified and matrix A is

constructed.
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3.3.3 Optimization Algorithm

In the following, we present the well-placement optimization algorithm. In

order to achieve the goal of eliminating more than one well per iteration by setting

its rate to zero, we attempt to project the gradient onto L bounds at the same time

where L is a positive integer which represents the maximum number of wells we try

to force to their upper or lower bound at one iteration of the optimization algorithm.

Note that putting the rate of a well at its lower bound is equivalent to eliminating

that well. Given the control variables at `th iteration, u` and the search direction

d`+1, at least one component of u` would reach either its lower or upper bound if the

step size α`+1 were set equal to α`+1
max defined as

α`+1
max = min (α`+1

max,i), (3.26)

where

α`+1
max,i =



ulowi −u`i
d`+1
i

if d`+1
i < 0,

uupi −u
`
i

d`+1
i

if d`+1
i > 0.

(3.27)

The step size α`+1 = α`+1
max puts the rate of at least one well to its lower (zero) or

upper bound. If the step size results in uk = qinj,k equal to its lower bound, then

the kth injection well is eliminated from the system. A similar comment applies to

the case where the rate at a producing well is equal to its lower bound, the step size

defined by Eq. 3.26 is used.

One additional comment is needed before discussing the optimization algo-

rithm. If the step size defined by Eq. 3.26 does not give J [u`+1] > J [u`], then we need

to cut the step size until we obtain an increase in the objective function. Here, we

simply cut the step size by a factor of 1/2. Steps of the well-placement optimization

algorithm follow:
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Well-Placement Optimization Algorithm:

1. Specify L, the number of wells we attempt to put at their lower/upper bound

at each iteration. This is equivalent to the maximum number of wells that we

try to eliminate at one iteration. Set the iteration index to ` = 1.

2. Check for the stopping criteria: all the wells are at active constraint. If the

criteria are met, terminate the algorithm. Otherwise, compute the gradient

g` = ∇uJ [u`] and proceed to the next iteration.

3. Set k = 1 and u0,`+1 = u`. If [(Ninj +Nprd)−M ] ≤ L, set L = 1, where M is

the number of active constraints in the previous iteration, `− 1.

4. Identify the active constraints, which include the upper/lower bound con-

straints and the total rate constraints. Form the matrix of constraints (matrix

A`) by implementing the procedure from the previous section. Apply Eq. 3.18

to project the gradient to the active constraints to obtain the search direction

d`+1 (Eq. 3.18), which is now denoted by dk,`+1.

5. Set αk,`+1 = αmax where αmax is computed from Eqs. 3.26 and 3.27. Set uk,`+1 =

uk−1,`+1 +αk,`+1dk,`+1. From our previous discussion the number of components

(well rates) of uk,`+1 that are equal to their lower or upper bound values is

strictly greater than the number of components of uk−1,`+1 that are equal to

their lower or upper bound. Thus, this step will increase the number of active

constraints by at least one. (Note that in steps 4 and 5, no reservoir simulation

runs are required.)

6. Repeat steps 4 and 5 for k = 2, 3, · · ·L, to obtain uk,`+1. From the discussion

at step 5, setting u`+1 = uL,`+1 puts at least L well rates equal to the one of

their bound values (eliminates them from the system or puts them equal to

their upper bound values). Note, at this point k = L, and we must check to

see if by eliminating k wells, k = L,L− 1, · · · , 1, we increase J [u].
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7. In the current step, we run the simulator with the controls specified by uk,`+1

and calculate J [uk,`+1].

8. If (a) k ≥ 1, (b) J [uk,`+1] > J [u`], and (c) no bottomhole pressure constraints

are violated, set u`+1 = uk,`+1. Increase the iteration index ` by one, set L = k,

and go to step 2. Otherwise, go to step 9.

9. If k > 1, decrease k by one and go to step 7. Otherwise, we must have k = 1

and we go to step 10.

10. If we arrive at this step, there are only two possibilities. (a) If J [u1,`+1] >

J [u`] and a bottomhole pressure constraint is violated at one or more wells,

then we redistribute rates and modify the upper bound constraint values as in

Eq. 3.22. We repeat the rate redistribution if other well bottomhole pressure

constraint violation occurs. u`+1
rd is the modified rates after performing the

rate redistribution procedure. If J [u`+1
rd ] > J [u`], then set the u`+1 = u`+1

rd ,

increase the iteration index ` by one, set L = 1 and go to step 2. Otherwise,

the rate redistribution procedure resulted in a smaller J [u] value and we then

go to situation (b). (b) If J [u1,`+1] ≤ J [u`], then set α`+1 = 0.5α1,`+1 and set

u`+1
c = u`+α`+1d1,`+1. If J [u`+1

c ] > J [u`], we check for the bottomhole pressure

constraint violations. If no bottomhole pressure constraint is violated, set

u`+1 = u`+1
c , increase the iteration index ` by one, set L = 1 and go to step

2. Otherwise if J [u`+1
c ] ≤ J [u`], we decrease the current step size α`+1 by a

factor of 2 again and repeat the process. Cutting the step size by a factor of

two is repeated at most five times. If the modified NPV function, J [u] did not

improve after 5 times of cutting the step length, we go to step 11. Note if we

reach the point where we cut the step size in half, then no well rates are set to

one of its bounds during the iteration, we are simply changing some of the rates

to attempt to increase the modified NPV function, J [u]. Once J [u`+1
c ] > J [u`],
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we check the bottomhole pressure constraint violation for u = u`+1
c . If no

bottomhole pressure constraints are violated, set u`+1 = u`+1
c , increase the

iteration index ` by one, set L = 1 and go to step 2. Otherwise, the rate

redistribution procedure resulted a lower J [u], therefore go to step 11.

11. If we arrive at this step, the modified NPV functional, J [u], did not improve by

cutting the step length for five times or the rate redistribution (for satisfying

the bottomhole pressure constraints) performed after cutting the step length,

resulted in a lower J [u]. Here, we set α`+1 = α1,`+1, u1,`+1 = u` + α1,`+1d1,`+1.

As discussed below, continuing to iterate by this process can allow the algo-

rithm to escape from a strong local minimum as is illustrated by later examples.

Now, check the bottomhole pressure constraint violation for u = u1,`+1. If no

bottomhole pressure constraints are violated, set u`+1 = u1,`+1, increase the

iteration index ` by one, set L = 1 and go to step 2. If a pressure constraint is

violated at one or more wells, then similarly we redistribute rates and modify

the upper bound constraint values as in Eq. 3.22. We repeat the rate redistri-

bution if other well bottomhole pressure constraint violation occurs. When all

the bottomhole pressure constraints are satisfied, set u`+1 = u`+1
rd , which u`+1

rd

are the modified rates after performing the rate redistribution procedure. Set

L = 1 and go to step 2.

The procedure described above is for the general case of optimizing both pro-

ducers and injectors simultaneously. A similar procedure can be applied for finding

the optimal locations of only injection wells or only producing wells. Note that the

value of L, the number of wells which we try to force to their bound, is modified

during the optimization iterations.

Because we seek to identify more than one local maximizer, step 2 does not

employ a standard convergence test. If in step 10, we are not able to find a u`+1

with J [u`+1] > J [u`], it may be because we are at a local maximum of J [u]. In this
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case, in step 11, we take a step of length α`+1 = α1,`+1 and u`+1 = u` + α`+1d1,`+1.

In many cases, this step will result in the elimination of exactly one well, but at

a minimum we have projected the gradient onto one additional bound so we can

return to step 2 and try again to obtain a larger value of J [u]. This simple procedure

allows us to escape from a local maximum. With this process, the optimization

algorithm may do several steps where at each step, we eliminate exactly one well or

at least increase the number of active constraints by one, but do not increase the

NPV functional J [u], i.e., we have J [u`+1] ≤ J [u`]. However, after several such steps,

we again start to increase J [u] from iteration to iteration until we encounter another

local maximum. By continuing this process we often find a few local maximum, then

we simply pick the optimal solution, (u∗), the local maximum which gives the largest

value of J [u]. We always continue gradient projection iterations until we reach the

point in step 2 where no degrees of freedom remain for the control variables for the

next gradient projection iteration. For the stopping criteria, we check for the number

of active constraints (number of wells with active lower or upper bound constraints

plus the total rate constraints). The stopping criterion is when the number of active

constraints is equal to the number of control variables. In this situation, there are

no degrees of freedom remaining and we terminate the algorithm. Note that in the

most general case where we place both the injection and production wells at the same

time, this convergence criterion is met when either of the two following conditions

are satisfied: (i) the number of injection wells with active lower or upper bound

constraint plus one is equal to the number of injection wells. (ii) the number of

production wells with active lower or upper bound constraint plus one is equal to

the number of production wells. Once the stopping criterion is met, we terminate

the algorithm. The u` corresponding to the highest value of J [u] will be returned as

the optimal solution of the well-placement problem.
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3.4 Initialization Step for the Well-Placement Algorithm

The “optimal well locations” determined by methods presented in the litera-

ture depend on the specified well rates (or pressures) and the specified operational

life of the reservoir. For example, suppose we wish to drill a single additional wa-

ter injection well in a reservoir that is under production but currently has a single

producing well. If a small water injection rate and a short reservoir life time are

specified, an optimal location of the injector will be closer to the producer than for

the case where a high water injection rate and a much longer reservoir life time are

specified. The well-placement optimization algorithm we developed has the advan-

tage that only the total reservoir injection or production rates need to be specified

and optimal rates for individual wells are determined simultaneously with location

during the optimization process. Nevertheless, our method is still sensitive to the to-

tal rates specified and the operational time specified. By invoking the initialization

algorithm described in this section to determine the total injection or production

rates to be used in the equality constraints of Eq. 3.10 (or Eq. 3.11), we have found

that the robustness and efficiency of our well-placement algorithm is improved. Note

that the initialization can be performed when placing the injection or the production

wells only while the other group of wells are considered to operate on their specified

well control.

Here, we explain the initialization procedure for placing the injection wells.

For this purpose, we assume the production wells are already placed and have their

specified well control. In this initialization stage, we determine the appropriate to-

tal injection rate by maximizing the conventional NPV functional of Eq. 2.1. Then

we use the total injection rate obtained from this step in the equality constraint of

Eq. 3.10 and apply the well-placement optimization algorithm defined in the previous

section to maximize the functional J defined in Eq. 3.1 subject to the total injection

rate constraint and the bound constraints. In the initialization stage where appropri-
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ate total rate is determined for a specified reservoir life time, no equality constraints

are imposed; however, an upper bound for each well rate is specified and this bound

may decrease for a well in order to satisfy the bottomhole pressure constraint of the

well. We still attempt to drive the rate control for some wells to a lower bound (zero)

or an upper bound by taking a step size as defined by Eq. 3.26, i.e., we still use a

projection gradient type algorithm. We stop the optimization procedure when both

of the following criteria are satisfied: (A) the algorithm takes a step smaller than

the step size of Eq. 3.26 (which means that we could not take a step large enough to

reach the next bound constraint) and (B) the change in the total rate between two

successive iterations is less than one percent of the estimated total rate.

The specific steps of the total rate initialization algorithm for the injection

well locations follows:

Total Rate Initialization Algorithm:

1. Distribute a large number of injectors in the reservoir. Specify an arbitrary

total injection rate and specify the upper bound values for the injection rate

of the wells, qup
inj,i. A reasonable choice for the initial total injection rate is a

fraction of pore volume of the reservoir. This total rate is distributed uniformly

among the injection wells.

2. Next we apply the well-placement optimization algorithm derived earlier to

maximize the standard NPV by modifying injection rates but with two changes:

(a) no equality constraint on total injection rate is used; and (b) at the (`+1)st

iteration of the optimization algorithm, we redefine the upper bound on the

injection rate of injection well i as

uup,`+1
i = qup,`+1

inj,i = min
{
qup

inj,i, 2q
`
inj,i, q

up,BHP
inj,i

}
, (3.28)

where qup
inj,i is the initially specified upper bound for the rate of injection well i
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and qup,BHP
inj,i is the approximation of the maximum rate that can be used without

violating the upper bound on the injection well pressure. The value of qup,BHP
inj,i

would be explicitly determined only if injection well i was unable to inject at the

optimal rate determined without violating the bottomhole pressure constraint.

If this modification did not occur, we would set qup,BHP
inj,i = qup

inj,i. Eq. 3.28 limits

the maximum change in a well’s rate in order to avoid sudden huge changes

in the total injection rate. Note that, during an optimization step, we will

typically eliminate some injectors by taking their injection rates to the lower

bound of zero.

3. The initialization step is continued until meeting the convergence criteria,

which are defined by

|q`+1
inj,t − q`inj,t|

max
{
q`inj,t, 1

} < 0.01 and α`+1 < α`+1
max, (3.29)

where

q`+1
inj,t =

Ninj∑
i=1

q`+1
inj,i. (3.30)

q`+1
inj,t and q`inj,t are the estimated total injection rates at iterations (` + 1) and

`, respectively.

A similar procedure is applied for the initialization step when placing the

producers. We still apply the gradient projection method without any total rate

constraint to optimize NPV while we modify the upper bound constraints in the

same way as in the preceding initialization algorithm.
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3.5 Computational Results

3.5.1 Example 1: 2D Heterogenous Reservoir

Example 1 is a 2D, two phase (oil-water), heterogeneous reservoir. The reser-

voir size is 3000 × 2000 ft with a 15 × 10 grid system. Porosity is constant and

equal to 0.25 throughout the reservoir. The log-permeability field of the reservoir

is shown in Fig. 3.3. The total and hydrocarbon pore volumes of this reservoir are

13.6 and 10.6 MMRB, respectively. The reservoir has two fixed production wells

at gridblocks (6, 6) and (13, 4). The bottomhole pressure at producers is fixed and

equal to 1, 000 psi. Initially 40 injection wells are placed in the reservoir. The initial

well locations are shown in Fig. 3.3. The oil price is 80 $/STB and water injection

and water production costs are 10 $/STB and 30 $/STB, respectively and the annual

discount rate is b = 0. The drilling cost of each injection well is $1, 000, 000. The

maximum bottomhole pressure constraint for injection wells is 9, 000 psi. Through

this simple example, the importance and effectiveness of the proposed initialization

step is discussed.

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
1
2
3
4
5
6
7
8
9

1 0

2 . 0 9 0
2 . 5 1 2
2 . 9 3 5
3 . 3 5 7
3 . 7 8 0
4 . 2 0 2
4 . 6 2 5
5 . 0 4 8
5 . 4 7 0

Figure 3.3: Initial injection well locations, Example 1.

Two cases are considered in this example. The first case is the well-placement

optimization without the initialization step. In this case, the total injection rate for

the reservoir is specified. In the second case, first we apply the initialization step
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to find the optimum total injection rate for the reservoir. Then, the well-placement

optimization is performed with the computed total injection rate.

Case 1: Optimization of the Injection Well Locations Under Total Injection

Rate Constraint: In this case, the well-placement optimization is performed with

two different total injection rate constraints of qt,inj = 400 and qt,inj = 4, 000 STB/D.

In both cases, the total injection rates are initially distributed uniformly between

all injectors and the maximum bottomhole pressure for injectors is 9, 000 psi. The

producing reservoir life is set equal to 4 years. The final well locations are shown in

Figs. 3.4(a) and 3.4(b) for the total injection rates of qt,inj = 400 and 4, 000 STB/D,

respectively. In these two figures, the well locations are plotted in the NPV map of

the production from the reservoir with the total injection rates of qt,inj = 400 and

4, 000 STB/D, respectively. The NPV maps are generated numerically by putting

a single injection well injecting at the specified injection rate and computing the

modified NPV function which includes the cost of drilling the injection well. By

moving the single injector from gridblock to gridblock we generate the NPV map.

In Figs. 3.4(a) and 3.4(b), it can be observed that, the rate of the well directly

influences the NPV map which indicates that the optimum location of a well with

a specified rate is dependent to the injection rate of the well. For a lower injection

rate, the NPV map shows that gridblocks closer to the producers are more favorable

for the water injection but the injection well still has to be far enough away so that

water production is negligible. For the larger injection rate the preferable location for

the injection well should be far away from the producers in gridblock (1, 1) according

to Fig. 3.4(b), to minimize water production. The optimum NPV for the total

injection rate constraints of qt,inj = 400 STB/D and 4, 000 STB/D, respectively, are

$5.11 × 107 and $9.12 × 107. Note that both these NPVs are higher than the NPV

of the production from the reservoir with a single injection well, which according to

the NPV maps are $5.10 × 107 for qt,inj = 400 STB/D and $5.80 × 107 for qt,inj =
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I - 3 7

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
1
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4
5
6
7
8
9

1 0

0 . 0 0 0
9 . 1 8 0 E + 0 6
1 . 8 3 6 E + 0 7
2 . 7 5 4 E + 0 7
3 . 6 7 2 E + 0 7
4 . 5 9 0 E + 0 7
5 . 1 0 0 E + 0 7

(a) qt,inj = 400

I - 1 I - 4

I - 3 3 I - 4 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
1
2
3
4
5
6
7
8
9

1 0

- 1 . 8 8 5 E + 0 8
- 1 . 4 4 1 E + 0 8
- 9 . 9 7 6 E + 0 7
- 5 . 5 3 9 E + 0 7
- 1 . 1 0 2 E + 0 7
3 . 3 3 5 E + 0 7
5 . 8 0 0 E + 0 7

(b) qt,inj = 4, 000

Figure 3.4: Final injection well locations with no initialization used to determine the
total injection rate constraint, Example 1, Case 1.

Table 3.1: Optimal injection rate allocation with qt,inj = 400, Example 1, Case 1.

I-5 I-35 J ($)

182.2 217.8 5.11× 107

4, 000 STB/D, respectively. The optimum rates of the wells for the two cases are

summarized in Tables 3.1 and 3.2.

Note that for qt,inj = 4, 000 STB/D we have four injection wells at the esti-

mated optimal locations where as in the low injection rate case, qt,inj = 400 STB/D,

all but two injection wells are eliminated by our optimization algorithm. This is the

expected result because if the specified total injection rate is increased, then more

wells are required to inject that amount of water. Also, a larger injection rate in-

creases the chance of a maximum bottomhole pressure constraint violation which in

our algorithm will cause a redistribution of the residual injection rate among wells.
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Table 3.2: Optimal injection rate allocation with qt,inj = 4000, Example 1, Case 1.

I-1 I-4 I-33 I-40 J ($)

915.6 1240.8 1312.3 531.3 9.12× 107

The initialization step tries to find an appropriate value for the total injection

rate; therefore the optimum well locations are less influenced by the specified controls

of the wells. Case 2 presents the injection well-placement optimization when the total

rate constraint is determined by the initialization step.

Case 2: Optimization of the Injection Well Locations with Initialization of

Total Injection Rate: In this case, we apply the initialization method to find the

appropriate total injection rate to use in the equality constraints of Eq. 3.10 before

applying the well-placement algorithm to find the optimal well locations of the injec-

tors. To test the reliability of the procedure, we tried two different initial injection

rates in the initialization process, namely 4, 000 STB/D and 400 STB/D. Recall that

when doing the initialization step, no equality constraint is used on the total rate so

the total rate may change from iteration to iteration of the initialization algorithm.

As in Case 1, we start with 40 injectors and the initial total injection rate is uni-

formly distributed among the wells. With an initial total injection rate of qt,inj = 400

STB/D and 4, 000 STB/D, respectively, the initialization process gave an estimated

optimal total injection rate of 2027.5 STB/D and 2042.9 STB/D, respectively. These

final optimal total injection rates determined in the initialization stage are also listed

in Tables 3.3 and 3.4. Figs. 3.5(a) and 3.5(b) show the final optimum injection well

locations obtained for the initial total injection rates of 400 and 4, 000 STB/D, re-

spectively. These locations are shown in the NPV map for a single injector with

qt,inj = 2, 000 STB/D.

The complete algorithm converged with 122 simulation runs for the high initial

total injection rate case and with 126 simulation runs for the low initial total injection
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I - 1 I - 4

I - 3 3 I - 4 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
1
2
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4
5
6
7
8
9

1 0

- 8 . 1 7 5 E + 0 7
- 4 . 8 7 7 E + 0 7
- 1 . 5 7 8 E + 0 7
1 . 7 2 1 E + 0 7
5 . 0 1 9 E + 0 7
8 . 3 1 8 E + 0 7
1 . 0 1 5 E + 0 8

(a) with initial qt,inj = 400
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I - 3 3 I - 3 6 I - 4 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
1
2
3
4
5
6
7
8
9

1 0

- 8 . 1 7 5 E + 0 7
- 4 . 8 7 7 E + 0 7
- 1 . 5 7 8 E + 0 7
1 . 7 2 1 E + 0 7
5 . 0 1 9 E + 0 7
8 . 3 1 8 E + 0 7
1 . 0 1 5 E + 0 8

(b) with initial qt,inj = 4, 000

Figure 3.5: Final injection well locations with total injection rate determined from
the initialization algorithm, Example 1, Case 2.

Table 3.3: Optimal injection rate allocation and estimated total injection rate with
initial qt,inj = 400, Example 1, Case 2.

I-1 I-4 I-33 I-40 qt,inj J ($)

564.7 1147.5 118.2 197.1 2027.5 1.33× 108

rate case. The final well locations are similar in Figs. 3.5(a) and 3.5(b), but in

Fig. 3.5(b) we are left with an additional injector at I-36. The estimated optimal

values of modified NPV (J) are essentially identical. Compared to Case 1, applying

the initialization process to estimate the total injection rates yields a much higher

value of J : $1.33× 108 for Case 2 as opposed to $5.11× 107 and $9.12× 107 for Case

1. The two-stage well-placement, which incorporates the initialization step, resulted

in a more reasonable total injection rate, also the injection well locations are not

severely influenced by the specified total injection rate.
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Table 3.4: Optimal injection rate allocation and estimated total injection rate with
initial qt,inj = 4000, Example 1, Case 2.

I-1 I-4 I-33 I-36 I-40 qt,inj J ($)

463.4 553.3 373.1 373.2 279.8 2042.9 1.33× 108

3.5.2 Example 2: 3D, 3-Phase PUNQ Reservoir

PUNQ is a three-phase, three-dimensional reservoir simulation model. The

reservoir has five simulation layers and it is bounded to the east and south by a

fault. A small gas cap is located in the center of the dome shaped structure. The

reservoir is in communication with a fairly strong aquifer to the north and west.

The aquifer is a numerical aquifer which is introduced by converting some of the

inactive cells in the original model to active cells containing only water and adding

a row of gridblocks with high pore volume along the north and south edges and

one column of gridblocks of high pore volume along the west edge. The porosity

of aquifer gridblocks is 0.95. For the case where we consider an inactive aquifer,

the porosity of the aquifer gridblocks are changed to 0.0001. The drilling cost of

a well, for both injectors or producers, is $10, 000, 000. The oil price is set at 80

$/STB, water injection costs at 10 $/STB, water production costs at 30 $/STB and

b at 0.0. We do not consider any revenue or cost for the produced gas from the

reservoir. The maximum bottomhole pressure constraint for injectors is 6, 000 psi

and the minimum bottomhole pressure constraint for producers is 1, 500 psi. The

initial datum pressure at a depth of 7726.38 feet is 3, 400 psi. The production life of

the reservoir is 25 years. The porosity, horizontal permeability, vertical permeability

distributions and initial fluid distribution are shown in Figs. 3.6 to 3.9, respectively.

For the well-placement problems considered here, the wells are perforated in all 5

layers. For three cases considered, the optimal well locations are shown in the plots

of layer-1 horizontal log-permeability field, see, for example Fig. 3.10(a).
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Figure 3.6: The porosity field of the PUNQ reservoir.
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Figure 3.7: The horizontal log-permeability field of the PUNQ reservoir.
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Figure 3.8: The vertical log-permeability field of the PUNQ reservoir.
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Figure 3.9: The initial oil saturation distribution of the PUNQ reservoir.

Case 1: Optimal Placement of Injection Wells for the PUNQ Reservoir with-

out Aquifer: In this case, we consider the optimization of the injection well locations.

We use the original PUNQ production well locations for the six producers in the reser-
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(b) 65 initial injectors

Figure 3.10: The initial injection well locations, PUNQ reservoir without aquifer,
Example 2, Case 1.

voir. The numerical aquifer is inactive. Note that all the producers and injectors are

perforated in all reservoir layers. The initial total water injection rate is set to 5, 600

STB/D.

To check the robustness of our algorithm, we start with two initial sets of

injectors, Case (1a) has 258 injectors where each of them is assigned a rate of 21.705

STB/D, so the total injection rate is 5, 600 STB/D. In Case (1b), each of 65 initial

water injection wells is assigned a rate of 86.15 STB/D. The initial well locations are

shown in Figs. 3.10(a) and 3.10(b).

Figs. 3.11(a) and 3.11(b) show the final optimal injection well locations ob-

tained using well-placement optimization algorithm without the initialization step

with the constant total water injection rate specified as qt,inj = 5, 600 STB/D. In

Case (1a), 8 injectors remained whereas in Case (1b), 7 injectors remained. The

optimization algorithm required 232 and 202 reservoir simulation runs to terminate

for Case (1a) and (1b), respectively.

Figs. 3.12(a) and 3.12(b) show the final optimal injection well locations ob-

tained using the initialization procedure to determine an appropriate total water

injection rate to use in the equality constraint of Eq. 3.19. With initialization, one

less injection well remains at the estimated optimum for both Case (1a) and Case

(1b). When using the two-stage procedure, which incorporates the initialization step,
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(b) 65 initial injectors

Figure 3.11: Final injection well locations with no initialization used to determine
the total injection rate constraint, PUNQ reservoir without aquifer, Example 2, Case
1.
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Figure 3.12: Final injection well locations with total injection rate determined from
the initialization algorithm, PUNQ reservoir without aquifer, Example 2, Case 1.

248 and 126 simulation runs were required to terminate the optimization for Case

(1a) and Case (1b), respectively.

The plot of J [u] versus optimization iteration number are shown in Figs. 3.13(a)

and 3.13(b) for both single-stage and two-stage optimizations with 258 and 65 initial

injection wells, respectively. Note that in Fig. 3.13(a), there is a break in ordinate

axis. Recall that the objective function in the initialization stage is the NPV without

considering the drilling costs of the wells. Therefore, the objective functions at the

end of the initialization stage of the two-stage algorithm is larger than the value of

the objective function at corresponding iterations of the single-stage optimization.

When the initialization stage terminates and the well-placement optimization goes to
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(b) 65 initial injectors

Figure 3.13: Plot of objective function versus optimization iteration number for
placement of injection wells in the PUNQ reservoir without aquifer, Example 2,
Case 1.

the second stage, there is a sharp decrease in the objective function, which is due to

consideration of the drilling costs of the remaining wells in the modified NPV func-

tion, J [u]. That is possible for the well-placement optimization to become trapped

in a strong local maximum. In the two-stage case of Fig. 3.13(a), after iteration 40,

we are in the second stage of the algorithm. At any point thereafter, a decrease

in the J [u] corresponds to an iteration where the algorithm is continued after con-

verging to a local maximum. These local maxima occur at iterations 64, 79, 85, 91,

95 and 100. Note, however, the overall maximum of J = $2.08 × 109 occurs the

local maximum at iteration 85 after the algorithm has successfully escaped the local

maximum encountered at iterations 64 and 79. A similar situation is happened for

the single-stage procedure. The local maxima occur at iterations 68, 79, 87, 93 and

100; however, the overall maximum of J = $2.03× 109 occurs at iteration 79.

Optimum injection rate allocation and the estimate of the maximum J value

are summarized in Tables 3.5 and 3.6 for the two different optimization procedures.

In the total rate initialization step, the initial total injection rate is 5, 600 STB/D

and after optimization the optimum injection rates are 3, 502 and 3, 428 STB/D,

respectively, for the initial well locations of Case (1a) and Case (1b), respectively. The
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Table 3.5: Optimal injection rate allocation and J value without total rate initial-
ization, Example 2, Case 1.

I-24 I-111 I-136 I-146 I-163 I-207 I-215 I-252 J ($)

258 wells 345.8 640.7 1219.3 661.0 609.3 984.8 641.7 497.5 2.05× 109

I-8 I-34 I-40 I-44 I-51 I-58 I-62 J ($)

65 wells 595.4 649.3 601.3 696.2 419.7 673.5 1964.7 1.95× 109

Table 3.6: Optimal injection rate allocation and J value, Total injection rate deter-
mined from the initialization algorithm, Example 2, Case 1.

I-110 I-120 I-136 I-163 I-175 I-225 I-252 qt,inj J ($)

258 wells 339.5 149.9 519.3 592.5 664.7 395.1 841.3 3502.3 2.08× 109

I-8 I-34 I-40 I-51 I-58 I-62 qt,inj J ($)

65 wells 489.6 412.2 548.2 839.9 230.2 907.7 3427.8 2.03× 109

optimum J values for the cases with total injection rate initialization are $2.08×109

and $2.03 × 109, respectively, for the cases with 258 and 65 initial injection wells,

respectively. However, the optimum modified NPV function value for the cases of

without the initialization step are $2.05 × 109 and $1.95 × 109, respectively for 258

and 65 initial injection wells, respectively. Note, the initialization step decreased

total water injection rate from 5, 600 STB/D to roughly 3, 500 STB/D.

We applied the Handels et al. [16] method starting with the final injection well

locations and rates obtained both with and without total injection rate initialization

for both Case (1a) (258 initial injectors) and Case (1b) (65 initial injection wells).

The J values in three cases decreases as a function of iteration as shown in Fig. 3.14

which indicates that the Handels et al. [16] method failed to improve our results in

those three cases. For the case of no initialization for the rates and starting with

258 initial injectors, Handels et al. [16] method improved NPV from 2.04 × 109 to

2.11×109. The final well locations for this case obtained by the procedure of Handels

et al. [16] is shown in Fig. 3.15. Note that the final well locations from Handels et al.

[16] method (Fig. 3.15) is very similar to the starting locations which are obtained
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by our algorithm (Fig. 3.11(a)). Indeed, in the final Handels et al. [16] method

locations, injection wells I-111, I-138 and I-215 are moved only one gridblock from

the final locations that were calculated with our algorithm.
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Figure 3.14: Plot of J versus iteration from Handels et al. [16] method starting
with final injector locations and rates from our algorithm, PUNQ reservoir without
aquifer.
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Figure 3.15: The final injection well locations with Handels et al. [16] method for
the case with no initialization used to determine the total injection rate constraint
and starting with 258 injectors, PUNQ reservoir with aquifer, Example 2, Case 1.

Case 2: Optimal Placement of Production Wells for the PUNQ Reservoir with

Aquifer: In this case, we consider the optimization of production well locations in

PUNQ reservoir with the numerical aquifer. There are no injection wells in the reser-

voir. We consider the initial total liquid production rate to be 5, 600 STB/D, which
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Figure 3.16: The initial production well locations, PUNQ reservoir with aquifer,
Example 2, Case 2.

will result in total production approximately equal to 40% of the initial reservoir oil

in place within the 25 years of production life if the oil rate is equal to the total

liquid rate. We start with 61 producers where each producer has an initial liquid

rate of 91.80 STB/D. The initial production well locations are shown in Fig. 3.16.

Fig. 3.17 shows the final optimal production well locations (5 producers re-

mained) obtained using the well-placement optimization algorithm with the constant

total liquid production rate specified as qt,prd = 5, 600 STB/D without using the ini-

tialization algorithm to determine an appropriate total liquid production rate. The

optimization algorithm required 92 reservoir simulation runs to terminate. Fig. 3.18

shows the final optimal production well locations (8 producers remained) obtained

using the initialization procedure to determine an appropriate production rate to

use in the equality constraint of Eq. 3.11. When using the two-stage procedure, 119

simulation runs were required to terminate the optimization. Optimum production

rate allocation and estimate of the maximum J value are summarized in Tables 3.7

and 3.8 for the two different optimization procedures. In the total rate initialization

step, the initial total liquid production rate is 5, 600 STB/D and after optimization

is 8, 459.5 STB/D. The optimum J values for the cases with and without the total

production rate initialization are $3.05 × 109 and $3.27 × 109, respectively. Note
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Figure 3.17: Final production well
locations with no initialization used
to determine the total production
rate constraint, PUNQ reservoir with
aquifer, Example 2, Case 2.
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Figure 3.18: Final production well lo-
cations with total production rate de-
termined from the initialization algo-
rithm, PUNQ reservoir with aquifer,
Example 2, Case 2.

Table 3.7: Optimal production rate allocation and J value without total rate initial-
ization, Example 2, Case 2.

P-26 P-33 P-50 P-56 P-59 J ($)

714.6 1085.2 1125.5 1753.7 921.0 3.05× 109

that, in the well-placement optimization with the initialization stage, the total pro-

duction rate from the reservoir is increased and a larger number of producers remain.

However, the optimal well locations by the single-stage and two-stage well-placement

optimizations are similar.

The plot of the objective function for single-stage and two-stage optimization

procedure are shown in Fig. 3.19. Again a sharp decrease in the objective function

happens at the first iteration of the second stage as the drilling cost of the remaining

wells are added to the objective function.

Table 3.8: Optimal production rate allocation and J value, Total production rate
determined from the initialization algorithm, Example 2, Case 2.

P-17 P-22 P-26 P-33 P-41 P-50 P-56 P-59 qt,prd J ($)

314.2 335.6 246.2 835.3 1727.6 1828.3 2160.6 1078.9 8526.7 3.27× 109
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Figure 3.19: Objective function versus iteration number for placement of production
wells in the PUNQ reservoir with aquifer, Example 2, Case 2.
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Figure 3.20: Plot of J versus iteration from Handels et al. [16] method starting with
our final producer’s locations and rates, PUNQ reservoir with aquifer.

We applied the Handels et al. [16] method starting with the final production

well locations and rates obtained both with and without total production rate ini-

tialization. The J values in both cases decreases as a function of iteration as shown

in Fig. 3.20 which indicates that the Handels et al. [16] method failed to improve our

results. In our final results, all the wells satisfy the BHP constraint. However, when

Handels et al. [16] method moves the wells, some BHP controls cannot be honored

with the specified production rates.

The original PUNQ reservoir has 6 production wells. In the following, we
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Figure 3.21: Original production
well locations, PUNQ reservoir with
aquifer.
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Figure 3.22: Optimal production
well locations by Handels et al. [16]
method.

apply the Handels et al. [16] method starting with 6 production wells with a total

liquid production rate of 5,600 STB/D. This total production rate is uniformly dis-

tributed among the 6 producers. The initial well locations are the ones from the

original PUNQ reservoir example shown in Fig. 3.21. The final optimum well loca-

tions obtained with Handels et al. [16] method are shown in Fig. 3.22. The initial

J value is $2.10 × 109 considering the drilling cost of each well of $10, 000, 000 and

the final optimum J value increased to $2.80× 109, which is significantly lower than

the optimum values of J obtained by our method with (Table 3.8) and without (Ta-

ble 3.7) total production rate initialization. Note that the Handels et al. [16] method

assumes a uniform production rate from all wells and a well may be converted to

BHP control when the BHP constraint is violated.

Case 3: Optimal Placement of Injection and Production Wells for the PUNQ

Reservoir without Aquifer: The porosity of the aquifer gridblocks is reduced from

0.95 to 0.0001 to make the effect of the aquifer negligible. We start with 65 injectors

and 61 producers. We consider two initial configurations for the initial injection and

production well locations. For this case, we set the total injection and liquid pro-

duction rate constraints to 5,600 STB/D with these total rates uniformly distributed
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(b) Final well locations, Config-
uration 1.
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(c) Initial well locations, Config-
uration 2.
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(d) Final well locations, Config-
uration 2.

Figure 3.23: The initial and optimum well locations for simultaneous injector and
producer optimization, PUNQ reservoir without aquifer, Example 2, Case 3.

among injection and production wells. The initial configuration of the injection and

production well locations as well as the final optimized well locations for both initial

well configurations are shown in Fig. 3.23. The injectors are shown as solid black

circles and the producers are shown as solid white circles.

The final number of injectors and producers are respectively 5 and 5 for the

first initial configuration and 6 and 5 for the second one. The final J value for

configurations 1 and 2, respectively, are $2.42×109 and $2.58×109. To obtain these

results required 253 and 257 reservoir simulation runs, for configurations 1 and 2,

respectively.

The plot of the objective function versus the number of optimization itera-

tions is shown in Fig. 3.24. Similar to previous cases, a decrease in the objective
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Figure 3.24: Objective function versus iteration number for simultaneous placement
of injectors and producers, PUNQ reservoir without aquifer, Example 2, Case 3.

Table 3.9: Optimal production and injection rate allocation with total rate con-
straints and no initialization step, Initial well configuration 1, Example 2, Case 3.

Producers Rate Injectors Rate

P-17 1025.9 I-6 1406.0

P-22 1064.2 I-30 786.5

P-41 1517.5 I-32 837.7

P-47 1543.0 I-58 877.8

P-48 449.3 I-61 1692.1

function is observed when the algorithm is forced out of a strong local optimum,

e.g., iterations 54, 83, 87, 99 and 103 of the optimization with initial configuration

1 and iterations 54, 60, 64, 76 and 91 of the optimization with initial well configu-

ration 2. The overall maximum occur at iterations 99 and 91 for the configuration

1 and 2, respectively. Optimum production and injection rate allocation values are

summarized in Tables 3.9 and 3.10 for the two initial well configurations.

We applied the Handels et al. [16] method starting with the final injection

and production well locations and rates obtained for the both configurations. The

J value for both cases as a function of iteration is shown in Fig. 3.25. The Handels

et al. [16] method improved our J values slightly, from $2.42 × 109 to $2.47 × 109

for configuration one and from $2.58 × 109 to $2.60 × 109 for the second initial
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Table 3.10: Optimal production and injection rate allocation with total rate con-
straints and no initialization step, Initial well configuration 2, Example 2, Case 3.

Producers Rate Injectors Rate

P-26 1653.8 I-7 96.0

P-33 1491.5 I-25 657.4

P-41 844.9 I-31 1003.6

P-46 371.0 I-52 551.9

P-47 1238.8 I-58 829.7

- - I-61 2461.4

configuration. The final well locations are shown in Fig. 3.26. Comparing Fig. 3.26(a)

with Fig. 3.23(b), we see that the Handels et al. [16] algorithm only slightly changed

the well locations. The location of well P-48 is changed significantly, however the

other well locations are very similar. However, for the initial configuration 2 case, the

Handels et al. [16] algorithm made a more significant change in some well locations,

compare Fig. 3.26(b) with Fig. 3.23(d). In particular P-41 is moved outside the

channel and injectors I-25 and I-31 were collapsed into a single injector. Thus, this

example suggests that we should at least try to improve results using the Handels

et al. [16] method to move wells after we have estimated the optimal number, rates

and location of both production and injection wells from our algorithm.
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Figure 3.25: Plot of J versus iteration from Handels et al. [16] method starting with
our final well locations and rates for both initial well location configurations, PUNQ
reservoir without aquifer.
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(a) Configuration 1.
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(b) Configuration 2.

Figure 3.26: The final well locations from Handels et al. [16] method starting with
our final well locations, PUNQ reservoir without aquifer, Example 2, Case 3.

3.5.3 Sensitivity Analysis on the Value of β

We previously suggested using β = 0.25 in the drilling cost functions of wells

introduced in Eqs. 3.6 and 3.7. Here, we present the results of a sensitivity analysis

on β. For illustration we consider, optimization of injection well locations in PUNQ

reservoir without aquifer, Example 2, Case (1b) and Example 2, Case 2, optimizing

the production well locations in the PUNQ reservoir with an aquifer, for the sensi-

tivity analysis. Note that, in the results presented in Cases 1 and 2 in the previous

sections the value β = 0.25 is used.

In this sensitivity analysis, we run the same cases with β = 0.1, 0.5 and 1.0.

For injection well location optimization, we chose the case with 65 initial injection

wells with the initial locations shown in Fig. 3.10(b). The initial production well

locations for optimization are shown in Fig. 3.16. The summary of runs for the

injection well-placement and production well-placement are shown in Tables. 3.11

and 3.12. The final optimum well locations for the optimization of the injectors

and producers, respectively, with different values for β are respectively shown in

Figs. 3.27 and 3.28, respectively.

Optimum value of the modified NPV functional J are very close for all the

values of β. All cases have some well locations in common, however, more wells
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remained than the others. This suggests that the convergence of the method to an

optimum solution is not sensitive to the value of β. However, the number of wells

and number of required simulation runs might be different with different values of β.

Table 3.11: Summary of sensitivity runs for β for placement of injection wells.

Sim. Runs Wells remained NPV

β = 0.1 112 6 $1.96× 109

β = 0.25 202 7 $1.95× 109

β = 0.5 147 7 $1.95× 109

β = 1.0 124 7 $1.95× 109
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(d) β = 1.0.

Figure 3.27: The optimum final injection well locations with optimization runs with
different β, PUNQ reservoir without aquifer.
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Table 3.12: Summary of sensitivity runs for β for placement of production wells.

Sim. Runs Wells remained NPV

β = 0.1 141 9 $3.05× 109

β = 0.25 92 5 $3.05× 109

β = 0.5 86 8 $3.05× 109

β = 1.0 81 5 $3.05× 109
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(d) β = 1.0.

Figure 3.28: The optimum final production well locations with optimization runs
with different β, PUNQ reservoir with aquifer.
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CHAPTER 4

OPTIMIZATION OF THE WELL LOCATIONS AND COMPLETIONS

FOR VERTICAL AND HORIZONTAL WELLS

In this chapter, a new methodology for estimation of the location and comple-

tions of 3D horizontal and vertical wells that maximize the life-cycle net-present-value

(NPV) of production from a given reservoir is presented. Here, the well can be ei-

ther a rate-controlled or a bottomhole pressure-controlled injection or production

well, however, the well control values and the production life of the reservoir are

fixed. A vertical well is a column of perforated gridblocks in the “k” (or z) direc-

tion. A horizontal well is considered as a perforated row of gridblocks in the “i”

(or x) or “j” (or y) direction. Because of the way wells are commonly modeled in

reservoir simulators, the optimal well-placement is usually formulated as a discrete

optimization problem, where the center point of the well is moved from the center

of one gridblock to the center of another gridblock at each iteration of whatever

optimization algorithm is used. However, in reality, the optimal well-placement is a

continuous optimization problem as the center point of the well can be located at

any point within the reservoir and it does not have to be at the center of a gridblock.

Here, the well-placement problem is formulated in terms of four continuous variables,

the xw, yw and zw coordinates of the center point of the well and the length, lw, of the

well. A procedure is developed to modify well-productivity indices in the reservoir

simulator to account for the location of the centerline of a well within gridblocks

and to define the life-cycle NPV of production as a function of these four continuous

well parameters, (xw, yw, zw, lw). This NPV functional is maximized using BOBYQA

which uses the simulator as a “black box” and there is no need to compute gradients.
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For a derivative-free optimization (DFO) algorithm, BOBYQA is reasonably efficient

and it was recently applied for production optimization, Shuai et al. [39]. However,

to improve the performance of BOBYQA, we provide a cogent way to re-scale the

optimization variables. Similar to gradient-based optimization methods, BOBYQA

may converge to a local optimum. Thus, in general, it may be a good idea to apply

the algorithm for a set of different initial guesses. For field applications, conver-

gence to a local maximum may actually be less of a problem because field engineers

would always have a rough idea of what well locations are optimal. In this chap-

ter, we first explain the method for converting the discrete optimization problem

of placing horizontal and vertical wells into a problem with continuous optimiza-

tion variables. Then the application of the derivative-free optimization technique is

explained. Finally, some results for the optimization of horizontal and vertical well

locations and completions in homogeneous and heterogeneous synthetic 3D reservoirs

are presented.

4.1 Well-Placement Problem Definition

In the optimal well-placement problem, the objective function is the net-

present-value (NPV) of production from the reservoir defined in Eq. 2.1. In a con-

ventional commercial reservoir simulator, a well is typically modeled by specifying

the gridblocks penetrated by the well and then specifying an effective well index for

each penetrated gridblock. For simplicity in presentation of the theoretical ideas, we

assume that all gridblocks penetrated by a horizontal well can be represented by a

row of gridblocks in either the “i” (or x) direction or “j” (or y) direction and that

each vertical well penetrates only a column of gridblocks in the “k” (or z) direction;

see Fig. 4.1.

As each gridblock is uniquely associated with some set of gridblock indices,

(“i”, “j”, “k”), we could estimate a set of (“i”, “j”, “k”) indices penetrated by each

of a specified number of wells which maximize the value of NPV. If the optimization
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Figure 4.1: Schematic view of a vertical and a horizontal well.

problem were defined this way, it would be a discrete optimization problem. Instead,

we extend the idea of Sarma and Chen [36] to write our well-placement problem in

terms of continuous variables so that more efficient optimization methods (gradient-

based optimization methods or methods that use an approximate gradient, Li and

Reynolds [21] and Zhao et al. [48]) can be applied. In our case, we use the derivative-

free optimization algorithm BOBYQA (Powell [34]) which is discussed in Chapter

2.

In our approach, a 3D horizontal or vertical well is defined by four continuous

variables. These variables are: (xw, yw, zw), which are the spatial coordinates of

the well center point, and lw, which is the length of the well; see Fig. 4.1. As the

optimization code that we use is based on minimizing an objective function, we

consider minimizing J [u] where J [u] = −NPV and u is the vector of variables which

represent well locations. The continuous optimization problem is then defined by

min
u
J [u], (4.1)

subject to

ulow ≤ u ≤ uup, (4.2)

where u = [xw,1, yw,1, zw,1, lw,1, . . . , xw,Nwell
, yw,Nwell

, zw,Nwell
, lw,Nwell

]T is the vector of
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optimization variables. Nwell is the number of wells, and (xw,j, yw,j, zw,j) and lw,j,

respectively, define the location of the center point and the length of well j. Note

we assume the direction of the centerline of each well is predefined so that by spec-

ifying (xw,j, yw,j, zw,j, lw,j), we uniquely define the location of well j. Eq. 4.2 defines

simple bound constraints for every optimization variable. The bound constraints for

the optimization variables xw,j, yw,j and zw,j are defined according to the reservoir

boundaries because the center point of each well is required to be inside the reservoir.

The upper bound for lw,j is defined by simply setting a maximum length of the well.

4.2 Continuous Approximation of the Discrete Optimization Problem

As noted above, the trajectory of well j, and hence, the gridblocks that are

penetrated by well j are completely determined by the four-dimensional vector of pa-

rameters, [xw,j, yw,j, zw,j, lw,j]
T . Also, we assume that the “i”, “j” and “k” directions

are oriented in x, y and z coordinate directions, respectively.

Production and injection wells are represented by sink and source terms in the

flow equation. Here, we consider a 3D vertical or horizontal well as a line source/sink

term. In reservoir simulation models, the well source/sink terms are incorporated

into the model with so-called “well models.” Well models are used to model the flow

between the gridblock and the wellbore by relating the wellbore and well gridblock

pressures. Peaceman [28, 29, 30] introduced the most famous well model which

is widely used directly or in some modified form in commercial reservoir simulators.

Well models typically assume radial flow toward the well inside a gridblock and relate

the flowing wellbore pressure, pw, and the gridblock pressure, po, by the following

type of equation:

pw − po =
qµ

2παkh
ln
rw
ro
. (4.3)

Here, α is a unit conversion factor with α = 1.127 × 10−3 for field units which are

used here; q is the flow rate at reservoir conditions in RB/day; µ is the viscosity of
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the fluid in cp; k in md is the “effective” permeability of the gridblock in the “radial

direction”; h in ft is the net length of the perforation interval; rw is the wellbore

radius in ft and ro in ft is an “equivalent radius,” which makes Eq. 4.3 correct when

po is the gridblock pressure. Eq. 4.3 assumes that the skin factor is zero. Eq. 4.3 is for

single-phase flow, but the multi-phase flow well model equation is similar. In Eclipse

100, the well model equation applies the following well inflow performance equation

of phase p for each perforation (connection) of the well, (Schlumberger [38]),

qnp,` = Tw,`M
n
p,`(p

n
` − pnw −Hn

w,`), (4.4)

where qnp,` is the volumetric flow rate of phase p in perforation (connection) ` at time

tn. Tw,` is the perforation transmissibility factor and Mn
p,` =

krp,`
µp,`

is the phase mo-

bility at the perforation which is evaluated based on the properties of the gridblock

corresponding to the perforation at time tn; where krp,` and µp are the phase “p”

relative permeability and viscosity of fluid at perforation `, respectively. Throughout

we denote the term Tw,`M
n
p,` as the productivity index of the perforation. The pres-

sures pn` and pnw, respectively, are the gridblock pressure and the bottomhole pressure

in psi at time tn, and Hn
w,` is the wellbore pressure head between the perforation and

the well’s bottomhole pressure datum depth at time tn. The perforation transmis-

sibility factor, Tw,`, is computed with the following relationship for Cartesian grids

(Schlumberger [38]):

Tw,` =
αθ`k`h`

ln(ro,`/rw) + s`
, (4.5)

where, α is the unit conversion factor, and θ` is the angle of the corresponding

perforation with the well in radians. In a Cartesian grid, θ` = 2π, because the

connection is assumed to be in the center of the grid block. For a well located on

an edge (or a corner) of a Cartesian grid block, θ` = 0.5 × 2π (or θ` = 0.25 × 2π)

(Schlumberger [38]). In Eq. 4.5, k`h` is the product of the effective permeability
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in the radial direction and the net thickness of the perforation (completed interval)

within the gridblock, and s` is the skin factor of the perforation. The equivalent

radius, ro,`, by Peaceman’s formula for a gridblock which is fully penetrated by a

vertical well at the center is given by

ro,` = 0.28


[(

ky,`
kx,`

)1/2

∆x2
` +

(
kx,`
ky,`

)1/2

∆y2
`

]1/2

[(
ky,`
kx,`

)1/4

+
(
kx,`
ky,`

)1/4
]

 . (4.6)

where ∆x` and ∆y` are the dimensions of the gridblock in the x and y directions,

respectively. In Eq. 4.6, kx,` and ky,`, respectively, are the gridblock permeabilities in

the x and y directions. Similar relations but modified for the gridblock properties in

the appropriate directions are used for computing ro,` for perforations of a horizontal

wells in the x and y directions.

Here, we refer to kh as the “perforation connectivity,” which is determined in

the simulator by multiplication of the effective permeability of the gridblock in the

direction of radial flow towards (or away from) the well and the net length of the

perforation inside the gridblock in the direction of the well axis. For example, the

connectivity of a perforation of a vertical well which penetrates the whole thickness

of a rectangular gridblock is kh =
√
kxky∆z, where kx and ky are the gridblock per-

meabilities in the x and y directions, respectively. For a fully-penetrated gridblock,

the perforation length (h) is equal to the gridblock thickness, ∆z. For a gridblock

partially-penetrated by a vertical well, the perforation connectivity is defined by

(kh) =
√

(kxky)∆l = γ
√

(kxky)∆z, (4.7)

where ∆l is the penetrated length of the gridblock. For the horizontal and vertical

well orientations considered here, we can define a productivity index (PI) multiplier

which multiplies the connectivity (kh) for any gridblock perforation which is partially
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penetrated by the well as

γ =
∆l

∆L
, (4.8)

where ∆l and ∆L, respectively, are the penetrated length and the dimension of the

gridblock in the direction of the axis of the well.

Mathematically, a well can be incorporated into the equations describing fluid

flow in porous media using a series of point sinks (or sources) defined in terms of

Dirac delta functions (Gunduz and Aral [14]). In an attempt to make the well-

location variables continuous and make the NPV a continuous function of the well

locations, Sarma and Chen [36] distributed each well source (or sink) term among

the original well and pseudo-wells introduced in neighboring gridblocks. As discussed

below, we will use a fairly similar approach here, but we extend the methodology to

3D problems so we can consider both horizontal and vertical wells and can optimize

not only well locations but well completions. Unlike Sarma and Chen [36], we develop

methodology which can be applied regardless of whether the user wishes to specify

pressure-controlled or rate-controlled wells. Also, in our methodology, we replace the

connectivity of the perforations of the pseudo-wells corresponding to a well with an

average perforation connectivity; when we use this average instead of the perfora-

tion connectivities, the NPV changes are smoother as function of the well-location

parameters. Throughout we refer to this NPV functional as the continuous NPV

functional since the NPV varies continuously when the well location changes within

a gridblock; however, the defined continuous NPV is not differentiable as there is

a jump discontinuity in the NPV functional when the well location moves across a

gridblock boundary.

We give the details of our algorithm only for a vertical well, but exactly

the same procedure is applied for a horizontal well. Consider a well with given

trajectory parameters (xw, yw, zw, lw). For simplicity, assume that the well is vertical

and that the well penetrates only one gridblock. The location of the actual well at a
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particular iteration of the optimization algorithm is at a point (xw, yw, zw) which is

in gridblock (iw, jw, kw). Denote the spatial location of the center point of gridblock

(iw, jw, kw) by (x̄(iw,jw,kw), ȳ(iw,jw,kw), z̄(iw,jw,kw)). The location of the actual well is not

necessarily at the center of the gridblock. To account for the actual location of

the well inside a gridblock, we replace the actual well with 9 pseudo-wells where

the axis of all pseudo-wells are in the same direction as the axis (centerline) of the

actual well. One pseudo-well is located in gridblock (iw, jw, kw), and the 8 other

pseudo-wells are located at the neighboring gridblocks in the plane perpendicular to

the well’s centerline (axis), e.g., for a vertical well, the pseudo-wells are located in

gridblock (iw, jw, kw) and in the neighboring gridblocks in x− y plane with gridblock

indices (iw + ī, jw + j̄, kw) where ī, j̄ = −1, 0, 1. All pseudo-wells are always located

exactly at the center of their corresponding gridblocks. Therefore, the (x, y) spatial

location of every pseudo-well is equivalent to the spatial location of the center of its

corresponding gridblock. For a vertical well, the schematic of the actual well location

and its corresponding pseudo-wells in the x− y plane are shown in Fig. 4.2, where,

(xw, yw, zw) shows the actual well location and pw-1 to pw-9 are the pseudo-wells.

Note that like the actual well, all the pseudo-wells are vertical. Similar comments

apply if the actual well is horizontal and its axis is in the “i” (or “j”) direction. If

the actual well axis is in the “i” (or “j”) direction, the axis of all pseudo-wells is

also in the “i” (or “j”) direction and the pseudo-wells are perpendicular to y− z (or

x− z) plane.

We distribute the rate of the actual well among the pseudo-wells so that the

pseudo-wells closer to the actual well location get a larger portion of the rate of the

actual well. The equations discussed below are applied to distribute the rate of the

actual well (source/sink term) among the pseudo-wells. Throughout, βm denotes

the contribution of the mth pseudo-well to the total source/sink term of a well, i.e.,

the portion of the rate of the original well assigned to pseudo-well m. Generally
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Figure 4.2: Schematic of the actual well and its corresponding pseudo-wells for a
vertical well.

speaking, the axis (centerline) of the actual well is perpendicular to the u− v plane.

For a vertical well, u = x and v = y. For a horizontal well with its axis in the y (or

“j”) direction, u = x and v = z. For a horizontal well with its axis in the x (or “i”)

direction, u = y and v = z. For a well with its axis perpendicular to the u− v plane,

βm for pseudo-well m is defined by

βm(uw, vw) =
exp (− (upw,m−uw)2

σ2
u

)× exp (− (vpw,m−vw)2

σ2
v

)∑9
n=1

(
exp (− (upw,n−uw)2

σ2
u

)× exp (− (vpw,n−vw)2

σ2
v

)
) , m = 1, 2, . . . , 9.

(4.9)

where (uw, vw) is the coordinate of the actual well in the u−v plane, and (upw,m, vpw,m)

is the coordinate of the pseudo-well m in the u−v plane which is located at the center

of its corresponding gridblock. The summation of the βm’s is required to equal 1 so

that the total rate of production (or injection) from all pseudo-wells is equal to the

production rate (or injection rate) of the actual well. However, as discussed later,

for pressure-controlled wells, this is actually true only if the perforation connectivity

(kh) and the gridblock pressure are the same in all nine gridblocks containing pseudo

wells. The parameters σu and σv must be specified by the user; larger σ values result

in a larger portion of the total rate assigned to the neighboring pseudo-wells. A

76



larger value of σ makes the representation of the original well with pseudo-wells

more approximate. On the other hand, for smaller σ values, a larger portion of

the total rate will be assigned to the center pseudo-well. For pressure-controlled

wells, small values of σ result in a bigger jump discontinuity when a well location

crosses a gridblock boundary as the gridblock pressure at neighboring pseudo-well

perforations may be very different from the one for the center pseudo-well. Based

on experimentations, we recommend choosing σu and σv, respectively, to be the

dimensions of the gridblock which contains (xw, yw, zw) in the u and v directions,

respectively.

Two cases of rate-controlled and bottomhole pressure-controlled wells are con-

sidered. When optimizing the location of a rate-controlled well, the rate of the well

is distributed between 9 pseudo-wells by

qm = q × βm, m = 1, 2, . . . , 9. (4.10)

where q is the specified rate at the actual well and qm is the rate of pseudo-well m.

If the well operates on constant bottomhole pressure, all the pseudo-wells are

assigned the same bottomhole pressure as the actual well, however, every pseudo-well

is assigned a “well index multiplier.” The well index multiplier of a well, modifies

the transmissibility factor of all the perforations of a well (Tw,`’s in Eqs. 4.4 and 4.5).

The WI multipliers of pseudo-wells should sum to 1 so the sum of the rates of all

the pseudo-wells is equal to the rate of the actual well. For bottomhole pressure-

controlled wells, theoretically, the sum of the rates of the pseudo-wells is equal to the

rate of the actual well, if (i) all the pseudo-wells have the same transmissibility factors

as the original well, but weighted with a WI multiplier, and (ii) all pseudo-wells also

have the same potential difference between the reservoir and the wellbore (drawdown

pressure for producers and build up pressure for injection wells) (see Eq. 4.4). The
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well index multiplier of every pseudo-well is given by

WIm = βm, m = 1, 2, . . . , 9. (4.11)

WIm is the well index multiplier for pseudo-well m. However, every gridblock con-

taining a pseudo-well may have a different gridblock size and permeability and hence

a different transmissibility factor. Therefore, the sum of the rates of the pseudo-wells

is not the same as the rate of the original well. In order to eliminate this inconsis-

tency, we average the perforation connectivities (effective kh) of all nine pseudo-wells

and replace the perforation connectivity of all pseudo-wells with this averaged value.

If the wells penetrate more than one plane of gridblocks, then this averaging is done

for each plane of gridblocks separately, as discussed later. Note, this fix will force

the aforementioned condition (i) to hold but condition (ii) on pressure differentials

still will not generally hold.

The transmissibility factor of a perforation is a function of the perforation

gridblock size as well as the perforation gridblock effective permeability and the per-

foration length. In Eq. 4.5, ro is a function of gridblock size and effective permeability

according to Peaceman’s equation (Eq. 4.6). For simplicity, we assume that all the

pseudo-well gridblocks relevant to a perforation (simulation layer) have the same

dimensions in the x, y and z directions. Moreover, if the skin is nonzero, each perfo-

ration of each pseudo-well is assigned the skin factor of the corresponding perforation

of the actual well. Therefore, the variation from pseudo-well to pseudo-well in the

transmissibility factor for a perforation is entirely due to the variation in kh where

k is the effective “radial permeability” of the gridblock and h is the net thickness

of the perforation. We average kh over all the gridblocks containing pseudo-wells.

Note that k in kh does not denote horizontal permeability, but denotes the effec-

tive permeability in the plane parallel to a well; see for example Eq. 4.7. We tried

three common averaging methods for averaging kh of perforation ` over pseudo-wells

78



m = 1, 2, . . . 9,

a geometric average given by

(kh)` =

(
9∏

m=1

(kh)m,`

)1/9

= 9

√
(kh)1,`(kh)2,` . . . (kh)9,`, (4.12)

a weighted arithmetic average given by

(kh)` =
9∑

m=1

βm(kh)m,`, (4.13)

and a weighted geometric average given by

(kh)` =
9∏

m=1

[(kh)m,`]
βm , (4.14)

In the weighted averages, the weight factors βm are given by Eq. 4.9; therefore, the

average connectivity (kh) is a stronger function of the permeabilities corresponding

to the perforated gridblocks of the pseudo-wells that are closer to the actual well

location. Replacing the connectivity of the perforations of the pseudo-wells with the

average connectivity (kh), smoothes the discontinuity in the NPV functional that

occurs when a well moves across a gridblock boundary. A discussion on the results for

different averaging methods is given in Example 1. Based on the results presented in

Example 1 and other results not shown here, the weighted geometric average method

gives a smoother continuous NPV as a function of spatial well locations. Therefore,

we show only the results for this averaging method for the other examples.

In three dimensions, a well may penetrate several gridblocks so the line

source/sink is present in several gridblocks. In this case, the actual well is again

replaced by nine pseudo-wells where each pseudo-well has its axis in the same direc-

tion as the axis of the actual well and each pseudo-well penetrates the same number

of gridblocks that are penetrated by the actual well. For concreteness in presenta-
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Figure 4.3: Schematic of perforations of a vertical well in multiple layers.

tion, assume a vertical well with its center point at (xw, yw, zw) which penetrates

gridblocks (iw, jw, kw,`), ` = 1, 2, . . . , Ncom where Ncom > 1. Then the nine pseudo-

wells also have perforations in simulation layers kw,`, ` = 1, 2, . . . , Ncom and the

completions of the eight surrounding pseudo-wells are in gridblocks (iw± 1, jw, kw,`),

(iw, jw±1, kw,`), (iw±1, jw±1, kw,`), ` = 1, 2, . . . , Ncom, i.e., the pseudo-wells are con-

figured as in Fig. 4.2 and each pseudo-well penetrates Ncom simulation layers in the

z-direction. Similar to our previous discussion on partially-penetrated gridblocks,

every perforation ` of a pseudo-well is assigned with a productivity index multiplier

γ`,

γ` =
∆l`
∆L`

, ` = 1, . . . , Ncom. (4.15)

where ∆l` and ∆L`, respectively, are the penetrated length of and the size of the

gridblock (iw, jw, kw,`) for perforation ` in the direction of well axis. The schematic

of the perforations of a vertical well is given in Fig 4.3. Note that for a given

perforation `, γ` is the same for all pseudo-wells. When a well is perforated in a row

or column of gridblocks, for every perforation `, (kh)` is set equal to the average of the

effective kh’s of the gridblocks containing the pseudo-wells and (kh)` is assigned to

the perforation ` in all pseudo-wells. For example, (kh)` computed with the weighted

geometric average given in Eq. 4.14.

In this work, we use Eclipse 100 simulator to run the simulation model and
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evaluate the NPV. At the initial stage of the optimization, all the simulation grid-

block information, including geometrical information and the rock properties, are

imported into the code. For given well parameters, first, the perforation gridblock

indices of the center pseudo-well is determined from the values of the well parameters

(the center point and length of the well) and the direction of the well. The produc-

tivity index (PI) multiplier for each perforation is computed by Eq. 4.15 using the

well parameters and the geometrical grid information. The surrounding pseudo-well

completions are determined based on the perforations of the center pseudo-well. For

every perforation `, (kh)` is computed based on the average of the effective kh’s

of the gridblocks containing perforation ` in pseudo-wells m = 1, 2, . . . , 9, Eq. 4.14.

This (kh)` is assigned as the effective kh for perforation ` of every pseudo-well. Per-

foration ` of each pseudo-well is also assigned the productivity index (PI) multipliers

(γ`) computed from Eq. 4.15. Then, the contribution of each pseudo-well to the rate

of the original well (βm) is computed by Eq. 4.9. For a rate-controlled original well,

all the pseudo-wells are rate-controlled wells with the rate of each pseudo-well given

by Eq. 4.10. If an actual well is pressure-controlled, all the pseudo-wells are bot-

tomhole pressure-controlled wells with the same bottomhole pressure as the original

well; however, each pseudo-well is assigned a well index (WI) multiplier computed

from Eq. 4.11.

Moving the actual well in a plane changes the NPV because moving the

location of the well redistributes the proportions of the rate assigned to each pseudo-

well. If the change in location moves the actual well across a gridblock boundary, so

the gridblocks containing the actual well are modified, then the gridblocks containing

the pseudo-wells are also modified. Thus as each gridblock has its own effective

kh, moving the actual well across a gridblock boundary can cause discontinuity in

NPV. However, because the effective (kh)` of perforation ` of all pseudo-wells is

the same, the jump in NPV is reasonably small. Moreover, we use a derivative-free
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optimization algorithm and such algorithms are less affected by discontinuities in

derivatives than are gradient-based algorithms. Moving the well in the direction

of its axis, and/or changing the length of the well, changes both the perforated

gridblocks and the PI multipliers assigned to the perforations of the pseudo-wells,

and hence, changes the NPV. Thus, NPV is sensitive to the vector of parameters

[xw, yw, zw, lw]T which describes the well location and completions, and therefore we

can estimate the optimal location and completions of a given number of production

and injection wells by maximizing the NPV functional of Eq. 2.1. The algorithm

that we have developed can also be applied to optimize subsets of (xw, yw, zw, lw).

For example, when optimizing only the location of a fully-penetrating vertical well,

the optimization parameters are reduced to the (xw, yw) coordinates of the wells.

When optimizing the completions of a vertical well at a fixed location, (zw, lw) would

be the optimization parameters. In this last case, no pseudo-wells are needed since

the (xw, yw) coordinates of the well are considered to be fixed. However, every

perforation of the well will be assigned a PI multiplier which is a function of (zw, lw)

parameters of the well.

4.3 BOBYQA for Derivative-Free Optimization

The optimal values of the set of parameters (xw,m, yw,m, zw,m, lw,m), m =

1, 2, . . . , Nwell are obtained by minimizing J = −NPV using Bound Optimization BY

Quadratic Approximation, BOBYQA. BOBYQA optimization algorithm is briefly

explained in Chapter 2. Here, we present a method for normalizing the optimization

variables to improve the performance of BOBYQA.

BOBYQA uses the reservoir simulator as a “black box.” The optimization

parameters are u = [xw,1, yw,1, zw,1, lw,1, . . . , xw,Nwell
, yw,Nwell

, zw,Nwell
, lw,Nwell

]T . The to-

tal number of the optimization variables is n = 4×Nwell. The bound values on xw,m

and yw,m parameters are determined by the outer reservoir boundaries. The bounds

on each zw,m is the depth of the top and bottom of the reservoir at (xw,m, yw,m). The
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maximum and minimum values for the length of the well, lw,m, are specified by the

user. In BOBYQA, the same trust-region radius is applied for all the optimization

parameters, therefore, in our implementation, we normalize every optimization vari-

able and transform the original bounds to bounds on the normalized components of

u. BOBYQA is then applied to the normalized variables, and hence, the parameters

used in BOBYQA are all specified in the normalized domain, i.e., the values of the

initial and minimum trust-region radii, ρbeg and ρend, the initial point and the bound

constraints are all specified in the normalized domain. The normalized components

ũi, i = 1, 2, . . . , n of the normalized vector of parameters ũ are defined by

ũi =
(ui − ulow

i )ρend
Diεi

, (4.16)

where Di and εi are defined below; ρend is the minimum trust-region radius in

BOBYQA which is specified by the user and ulow
i is the lower bound for ui pre-

defined in Eq. 4.2. Note when ui = ulow
i , ũi = 0 and when ui is equal to its upper

bound uup
i , the corresponding upper bound for ũi is

ũup
i =

uup
i − ulow

i

Di

× ρend ×
1

εi
. (4.17)

Thus in the transformed domain, the bound constraints are

ũlow
i ≤ ũi ≤ ũup

i , 1 ≤ i ≤ n, (4.18)

where ũlow
i = 0. In Eq. 4.16, Di is the average over the optimization domain of the

reservoir gridblock size in a particular coordinate direction (x, y or z) appropriate for

the variable ui. Di, for xw, yw and zw is respectively the average reservoir gridblock

size in the x, y and z direction, respectively. The average is taken over the grid-

blocks inside the part of the reservoir that we consider for well-placement. The value
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of Di for the length parameter (lw) of the trajectory of the well depends on the well

direction. Its value for a well with its axes in the x, y and z directions, respectively,

is the average gridblock size in the x, y and z directions, respectively. The term

(uup
i −ulow

i )/Di for optimization variable i is an estimate of the number of simulation

gridblocks in the original domain corresponding to variable ui. For example, if opti-

mization variable ui is the xw coordinate of a well center point, then (uup
i − ulow

i )/Di

gives the approximate number of simulation gridblocks in the x direction. Note that

Eq. 4.16 implies that

∆ũi =
∆uiρend
Diεi

. (4.19)

For the optimization parameter ui, εi is the fraction of Di which corresponds to

ρend in the normalized domain, i.e., ∆ui = εiDi corresponds to ∆ũi = ρend. For

example, εi = 0.1 for the optimization parameter xw (or yw) implies that the value of

∆ũi = ρend is equivalent to 0.1 of the average gridblock size in the x (or y) direction.

A similar comment applies for the εi corresponding to optimization parameters zw

and lw. From numerical experiments with BOBYQA, Powell [34] observed that the

distance from the final ũ` to a local minimum of J [ũ] is less than 10ρend. Based

on this observation, we choose εi = 0.1 so that, for optimization variable ũi, 10ρend

is equivalent to one average gridblock size, Di, in the original domain. Therefore,

the final well location resulting from BOBYQA and the local optimum well location

would tend to be in the same gridblock, or at worst, in two adjacent gridblocks

assuming that the aforementioned observation of Powell [34] is generally valid.

In applying Eq. 4.17, the upper bound values in the normalized domain are

computed first for all the optimization variables. Then, the optimization variables

are normalized using Eq. 4.16, which is equivalent to

ũi =
ui − ulow

i

uup
i − ulow

i

ũi
up, i = 1, 2, . . . , n. (4.20)
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Note that the optimization is performed in the normalized domain; therefore for

evaluating the objective function at each optimization iteration, the well parameters,

ui’s are determined from

ui = ulow
i +

ũi
ũi

up (uup
i − ulow

i ), i = 1, 2, . . . , n. (4.21)

As we previously mentioned, BOBYQA utilizes the same trust-region radius for all

optimization variables. In our work, after specifying ρend, we define the initial trust-

region radius, ρbeg, by

ρbeg = min

(
10ρend, 0.2 min

i=1,2,...,n
(ũi

up)

)
. (4.22)

As we previously discussed, we choose εi = 0.1 for all the optimization variables

based on the Powell’s observation. Choosing εi = 0.1 means that ∆ũi = 10ρend is

equal to the length of a gridblock in one direction in the original domain. BOBYQA

constructs the initial interpolation set by making ρbeg-sized perturbations (in the

normalized domain) in the coordinate directions; therefore, if we set ρbeg = 10ρend,

the perturbation points for constructing the initial interpolation set are about one

gridblock away from the initial well locations. On the other hand, for BOBYQA, the

conditions

ũup
i − ũlow

i = ũup
i ≥ 2.0ρbeg, i = 1, 2, . . . , n, (4.23)

should hold so that it is likely that the initial interpolation points obtained by per-

turbations around the initial point, ũinit, in the normalized domain are all contained

within the reservoir simulation grid. If the inequality condition in Eq. 4.23 holds for

the component i, but ũinit,i is very close to one of the lower or upper bound values

(ũinit,i− ũlow
i < ρbeg or ũup

i − ũinit,i < ρbeg), then BOBYQA may automatically change

ũinit,i away from the bound value in order to make enough room for the perturba-

tion (see Powell [34]). Based on these considerations, Eq. 4.22 was proposed to use
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a fraction (0.2) of the shortest normalized domain length among all the variables,

0.2 mini=1,2,...,n(ũup
i − ũlow

i = ũup
i ), for an estimate of ρbeg. However, Eq. 4.22 avoids

taking a large initial trust-region radius by putting an upper bound of 10ρend on the

value of ρbeg.

There is one problem that can occur when applying our implementation of

BOBYQA described above. This problem arises when denormalizing the value of

z̃`+1
w,m for well m in a new well location. Since the initial lower and upper bound

values for the zw,m’s (zup
w,m and zlow

w,m) are defined based on the initial well locations,

when denormalizing z̃`+1
w,m at a different location, the top and bottom surfaces of the

reservoir might be different in the new location so that is possible to obtain a value

of z`+1
w,m which is outside the reservoir. To avoid this problem, we redefine the bound

constraints for z`+1
w,m at iteration ` + 1 based on the top and bottom depth of the

reservoir at the current well location, (x`+1
w,m, y

`+1
w,m). Therefore, the denormalized z`+1

w,m

obtained from z̃`+1
w,m using Eq. 4.21 at the new well location is always within the

top and bottom surfaces of the reservoir. Even with this modification, depending

on the well length and the location of the well center point, part of a well can be

located outside the reservoir; in this event, the length of the well is truncated by the

reservoir boundary and only the part of the well which is located inside the reservoir

is considered. Therefore, the location of the completed part of a well is always inside

the reservoir, and its location is defined relative to the depth of the top and bottom

surfaces of the reservoir at the well location. The following procedure explains the

steps followed in iteration `+ 1 for the denormalization of (x̃`+1
w,m, ỹ

`+1
w,m, z̃

`+1
w,m, l̃

`+1
w,m) to

obtain the well parameters, (x`+1
w,m, y

`+1
w,m, z

`+1
w,m, l

`+1
w,m).

• Denormalize (x̃`+1
w,m, ỹ

`+1
w,m) to find the new well location (x`+1

w,m, y
`+1
w,m) by applying

Eq. 4.21,

x`+1
w,m = xlow

w,m +
x̃`+1

w,m

x̃up
w,m

(xup
w,m − xlow

w,m). (4.24)
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and

y`+1
w,m = ylow

w,m +
ỹ`+1

w,m

ỹup
w,m

(yup
w,m − ylow

w,m). (4.25)

Note that xlow
w,m, xup

w,m, ylow
w,m and yup

w,m are fixed and defined according to the

reservoir boundaries.

• Determine zlow,`+1
w,m and zup,`+1

w,m which are the depths of the bottom and top

surfaces, respectively, of the reservoir at the new well location (x`+1
w,m, y

`+1
w,m).

• Denormalize z̃`+1
w,m to find the depth of the well, z`+1

w,m, by

z`+1
w,m = zlow,`+1

w,m +
z̃`+1

w,m

z̃up,`+1
w,m

(zup,`+1
w,m − zlow,`+1

w,m ). (4.26)

Note that zlow,`+1
w,m and zup,`+1

w,m are the bottom and top depths of the reservoir

at the new well location (x`+1
w,m, y

`+1
w,m).

• Denormalize l̃`+1
w,m to find the length of the well, l`+1

w,m, by

l`+1
w,m = llow

w,m +
l̃`+1
w,m

l̃up
w,m

(lup
w,m − llow

w,m). (4.27)

The well parameters, (x`+1
w,m, y

`+1
w,m, z

`+1
w,m, l

`+1
w,m), give the location and completion inter-

val.

BOBYQA satisfies the specified bound constraints, but for the well-placement

problem considered here, the reservoir boundaries in the x and y directions cannot

always be represented as simple bound constraints on xw,m and yw,m. For the purpose

of illustration, assume the reservoir grid in the one shown in Fig. 4.4. The dark area

determines the active gridblocks. The rest of the reservoir gridblocks are inactive

and are not considered as part of the feasible region for well-placement. We set the

upper and lower bounds on the (xw,m, yw,m)’s as the boundary of the gridded area

which contains the reservoir active gridblocks. However, this region may also contain
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inactive gridblocks. During the optimization procedure a well center point can move

into an inactive gridblock. Therefore, the whole length of the well or some part of

the well can be in the inactive region of the reservoir. If the whole length of a well

is in inactive gridblocks, then the well is effectively eliminated. At every iteration of

the optimization algorithm, the objective function needs to be evaluated by running

the reservoir simulation.

We may consider two approaches for evaluating NPV when a well center

point is moved to an inactive gridblock. The first approach is to keep the well in

its location where the well center point is in an inactive gridblock. Note that in

this case, it is possible that some length of the well is still in active gridblocks.

However, if the whole length of the well is in inactive gridblocks, then the well

will automatically be eliminated when running the simulator to evaluate the NPV

functional. If the elimination of this well or part of it (by moving the well center

point to an inactive gridblock) results in a lower value of NPV, this optimization

iteration automatically will be rejected as the optimal solution. The main concern

with this approach is that elimination of the well may result in a much larger (or

smaller) NPV value, which may damage the quality of the quadratic interpolation

model. The second approach is to move the location of the well center point back

into an active gridblock. We have found via computational experiment (presented at

the end of this chapter) that the second approach results in a more robust algorithm.

To move a well center point from an inactive gridblock to an active gridblock, we

move the well center point along a path which connects the current location of the

well in an inactive gridblock, (x`w,m, y
`
w,m, z

`
w,m), and the location of the well with the

highest NPV (lowest value of J obtained at previous iterations), (xopt,`
w,m , y

opt,`
w,m , z

opt,`
w,m ).

The well center point is moved along this path until the corrected position of the

well center point is located in an active gridblock. Then with this location of the

well, the simulation is run to evaluate J [u`+1]. This process is shown in Fig. 4.4.
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Figure 4.4: Correction of the well location to an active gridblock.

The concern about this approach is that the changes in the location of the well (well

parameters (x`w,m, y
`
w,m, z

`
w,m)) are applied for evaluating the objective function only;

the values of the corresponding optimization variables in BOBYQA algorithm remain

unchanged. (BOBYQA uses the value of the optimization variables in the process

of updating the quadratic model for the next iteration.) The method of modifying

the center point of the well is similar to the truncation method for honoring the

bound constraints in the optimization literature. However, we do not change the

values of the well parameters in BOBYQA because modifying the interpolation set

of points in BOBYQA algorithm is done to ensure that the interpolation set is well

poised, (Powell [34]). Changing the value of the control variables while disregarding

the BOBYQA considerations can damage the well-poisedness of the interpolation set

and the accuracy of the algorithm.

4.4 Computational Results

In this section, we first discuss the continuity of NPV (given in Eq. 2.1) as

a function of well position parameters. Making NPV reasonably smooth is a key

feature of our well-placement method. Also, the DFO optimization algorithm that

we implement in our well-placement method approximates the objective function
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with a smooth and continuous quadratic model. This makes BOBYQA a very good

choice for optimizing the noisy objective function of the well-placement problem. One

laudatory feature of our methodology is that it results in a reasonably smoother NPV.

Then we provide example results generated from our algorithm for both vertical and

horizontal wells in synthetic homogeneous and heterogenous reservoirs. In Example

4, we specifically investigate the two approaches for evaluating the NPV functional

when the well is moved to an inactive gridblock. In all examples, the objective is to

maximize the NPV by optimizing the location and length of the well in a two-phase,

oil-water reservoir with water injection. In all examples, the oil price is fixed at 70

$/STB. The water injection and disposal costs are 10 and 5 $/STB, respectively, and

the annual discount rate is b = 0. In Example 4, we do not consider any revenue or

cost for the produced gas from the PUNQ reservoir.

4.4.1 Example 1. NPV as a Function of Well Spatial Coordinates

In this example, we consider a two-dimensional heterogeneous reservoir. The

reservoir is a 2500 × 2500 × 50 ft (25 × 25 × 1 gridblocks) simulation model. The

reservoir has 4 producers operating at a constant bottomhole pressure equal to 3, 000

psi. The initial reservoir pressure is 3, 500 psi. The porosity and horizontal log-

permeability fields of the reservoir are shown in Figs. 4.5(a) and 4.5(b). The pro-

duction well locations are shown with white circles in Figs. 4.5(a) and 4.5(b).

Our objective is simply to find the best location for a single water injection

well in this reservoir. We consider two cases. In the first case, the injection well

operates at constant bottomhole pressure of 4, 000 psi and the reservoir life is 3

years. In the second case, the well injects at a constant injection rate of 1, 000

STB/D for 8 years. This simple example was chosen so that it is relatively easy to

generate the NPV maps of the production from the reservoir, which are shown in

Figs. 4.6(a) and 4.6(b) for the two cases. The NPV maps are generated numerically

by putting a single injection well at each reservoir gridblock and computing the NPV
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Figure 4.5: The porosity and log-permeability fields of the heterogeneous reservoir,
Example 1.
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Figure 4.6: NPV maps, Example 1.

of production from the reservoir. By moving the single injector from gridblock to

gridblock, we generate the NPV map. Note that the NPV map for the case of the

injection well with constant injection rate is much smoother than the map for the

case where the injection well operates on constant bottomhole pressure. As discussed

previously, for an injector operating at a specified wellbore pressure, the injection

rate of the well may change significantly as the well is moved from one gridblock to

another gridblock because gridblock permeabilities vary significantly. This change

in the injection rate causes a jump in NPV.

The NPV map is a discrete map, i.e., no matter where the injection well is
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located within a given gridblock, we obtain the same value of NPV. To illustrate

the increase in smoothness in the NPV obtained by using the permeability averaging

procedure (Eqs. 4.12, 4.13 or 4.14), we consider the behavior of the NPV as the loca-

tion of a single water injection well moves from point “A” to point “B” in Figs. 4.6(a)

and 4.6(b). Note that there are 25 discrete values for NPV, one for each gridblock

on the line from “A” to “B.” In our well-placement algorithm, the gridblock indices

are replaced with the spatial location of the well. To generate results, the x̃w (the

x coordinate of the injection well in the normalized domain) is moved from 0.0 to

x̃up
w = 0.5 with ỹw fixed, which corresponds to moving the well location from point

“A” to point “B.” The resulting NPV values versus x̃w are plotted in Figs. 4.7(a)

to 4.7(d) for the case where the injection well is operating at a constant bottomhole

pressure. Fig. 4.7(a) corresponds to the case where the perforation of each pseudo-

well is assigned the kh value corresponding to its gridblock properties. Figs. 4.7(b)

to 4.7(d) correspond to different methods of averaging kh over the pseudo-wells per-

foration gridblocks, Eqs. 4.12-4.14. In all figures, the NPV is based on the total

injection rate into the nine pseudo-wells. Fig. 4.7(b) corresponds to averaging the

kh with Eq. 4.12 where Figs. 4.7(c) and 4.7(d) correspond to averaging the kh with

Eqs. 4.13 and 4.14, respectively. Recall that this average kh is specified as the kh for

each of the nine gridblocks containing the pseudo-wells. In these plots, the discrete

NPV values are shown with stars while the continuous NPV is plotted with a curve

through computed values shown as small circles. Note that since there is only one

water injection well, if we made similar plots for the injection rate, the smoothness

of the injection rate and its agreement with the discrete injection rate would display

the same characteristics exhibited in Figs. 4.7(a)-4.7(d). Similar plots for the case

of the injection well operating at a constant specified injection rate are shown in

Figs. 4.8(a) to 4.8(d).

The results of Figs. 4.6(a) to 4.8(d) illustrate two important points. First, the
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Figure 4.7: NPV as a function of x̃w, Injection well operating on constant bottomhole
pressure, Example 1.
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Figure 4.8: NPV as a function of x̃w, Injection well operating on constant rate,
Example 1.
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NPV plot for a bottomhole pressure-controlled injection well is much noisier than

the NPV plot for the rate-controlled injection well case. Also, the continuous NPV

function gives a less accurate approximation of the discrete NPV for bottomhole

pressure-controlled wells than for rate-controlled wells (The results corresponding

to Fig. 4.7 for the rate-controlled case are shown in Figs. 4.8(a)-4.8(d)). The sec-

ond point is that the weighted geometric average gives a smoother continuous NPV

function than the geometric and weighted arithmetic averaging methods when the

injection well operates at a specified bottomhole pressure. Also, comparing to the

no averaging case, the weighted geometric average gives a closer NPV approximate

to the discrete NPV values. A smooth NPV functional is usually a desirable feature

when any optimization method is used although it is generally much less critical

when a derivative-free optimization algorithm instead of a gradient-based algorithm

is used. Note, the NPV map of Fig. 4.6(a) displays several local maxima. While

these local maxima might not cause any significant convergence problems for a global

search method, they have the potential to cause problems for a gradient-based algo-

rithm or even BOBYQA, which in some sense approximates a quasi-Newton method.

Since the injection rate is constant for the rate-controlled wells (see our discussion of

Eq. 4.10), the averaging methods are not critical for rate-controlled wells. Based on

the results of Figs. 4.7 and 4.8, we use the weighted geometric average kh for all the

examples. For reporting the optimum NPV and the corresponding well locations at

the end of the optimization, we remove all the pseudo-wells except the center pseudo-

well and set β` = 1.0 for this pseudo-well, i.e., for each set of pseudo-wells, we keep

only the pseudo-well in the gridblock corresponding to (xw, yw). Then we run the

simulator with these final well locations to evaluate the NPV. This reported NPV

might be slightly different than the optimum NPV estimated from the optimization.

Next, we consider the optimization of the location of a vertical injection well

in the reservoir for Example 1. As the reservoir has one layer, we only optimize
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Table 4.1: Initial and final well locations and the final NPV for different initial
injection well locations, BHP controlled injector, Example 1.

Initial Initial well Final Well loc, NPV ($), with Final Well loc, NPV ($), no
guess loc. with kh ave. kh ave. no kh ave. kh ave.

1 (2, 2) (10, 12) 1.58× 108 (6, 13) 1.32× 108

2 (24, 2) (25, 7) 0.75× 108 (25, 4) 0.70× 108

3 (2, 24) (12, 14) 1.58× 108 (8, 18) 1.32× 108

4 (24, 24) (13, 16) 1.59× 108 (17, 17) 1.61× 108

the (xw, yw) coordinates of the location of the injection well. The initial and final

well location of the rate-controlled and bottomhole pressure-controlled injection well

are shown in Figs. 4.9 and 4.10, respectively, for the optimization algorithm without

kh averaging and the optimization algorithm with kh averaging, respectively. The

background plots of the figures are the NPV maps of Fig. 4.6. We applied our op-

timization algorithm with four different initial locations of the single injection well,

namely, at gridblocks (2, 2), (24, 2), (2, 24) and (24, 24). In Figs. 4.9(a) to 4.10(b),

all the initial and final locations are shown in one plot. As discussed earlier, once

the optimization converges, all the pseudo-wells except the center pseudo-well are

removed. The center pseudo-well, which is located at the center of the gridblock

corresponding to the final well location, represents the optimum location of the in-

jector. In these figures, the initial injection well locations are shown with a solid

black star, and the four fixed producers are shown with solid white circles. The

optimum injection well location is shown with solid black circles. Note the cases

corresponding to the four initial locations are numbered 1 to 4 in Figs. 4.9 and 4.10.

All the initial and final well locations and also the final NPV for different initial

injection well locations are summarized in Tables 4.1 and 4.2, respectively, for the

bottomhole pressure-controlled and rate-controlled injection well, respectively.

For the case of bottomhole pressure-controlled injection well, the optimization

algorithm with kh averaging moved the injector respectively to gridblocks (10, 12),
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Table 4.2: Initial and final well locations and the final NPV for different initial
injection well locations, Rate-controlled injector, Example 1.

Initial Initial well Final Well loc, NPV ($), with Final Well loc, NPV ($), no
guess loc. with kh ave. kh ave. no kh ave. kh ave.

1 (2, 2) (12, 12) 1.40× 108 (13, 13) 1.40× 108

2 (24, 2) (12, 12) 1.40× 108 (12, 12) 1.40× 108

3 (2, 24) (13, 14) 1.38× 108 (13, 14) 1.38× 108

4 (24, 24) (14, 14) 1.40× 108 (14, 14) 1.40× 108
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Figure 4.9: Initial and final well location of the injector, No kh averaging, Example
1. Fixed production well locations are shown with white circles. Black stars and
black circles, respectively, show the initial and final locations of the injection well.
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Figure 4.10: Initial and final well location of the injector, with kh averaging, Example
1. Fixed production well locations are shown with white circles. Black stars and black
circles, respectively, show the initial and final locations of the injection well.
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(12, 14) and (13, 16) in three cases of initial injection well locations at gridblocks

(2, 2), (2, 24) and (24, 24). The optimum NPV in all three of these cases is close

to $1.58 × 108 which is fairly close to the global optimum NPV, which is equal to

$1.61× 108. In the case where the well was initially located at gridblock (24, 2), the

well is moved to gridblock (25, 7), which is a local maximum next to the starting

point. The optimum NPV for this case is $0.75×108. This shows that, similar to the

gradient-based optimization methods, BOBYQA may converge to a local optimum

point close to the initial guess.

The most important observation that can be made from the results of Figs. 4.9(a)

and 4.10(a) and Table 4.1 is that the permeability averaging usually results in higher

NPV values and allows the algorithm to determine a good approximation of a local

maximum. From Fig. 4.10(a) we see that initial locations of 1, 3 and 4 resulted in

similar estimations of the optimal well location and a virtually identical NPV value,

$1.58 × 108 which is fairly close to the global optimum NPV value of $1.61 × 108.

When permeability averaging is not used for bottomhole pressure-controlled wells,

initial locations of 1,3 and 4 result in a distinctly different estimation of the optimal

well location (Fig. 4.9(a)) and NPV values. Although with the choice of (24, 24) as

the initial location we actually obtained the optimal NPV of $1.61×108, overally we

see, however, that using permeability averaging is more likely to result in a better

NPV value.

For the case of rate-controlled injection well, the NPV map (Fig. 4.6(b)) is

much smoother and appears to have only one global maximum, although the NPV

values based on well locations at gridblocks near the center of the reservoir are all

extremely close. In this case, the optimization algorithm with permeability averaging

moved the injector to gridblock (12, 12) for initial injection well locations (2, 2) and

(24, 2) to obtain estimated NPV equal $1.40× 108. In the cases where the well was

initially located at gridblocks (2, 24) and (24, 24), respectively, the well is moved
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to gridblocks (13, 14) and (14, 14) and the optimum NPV values are $1.38 × 108

and $1.40 × 108, respectively. The difference between the NPV for these three well

locations is very small which shows that the optimization converged to very similar

optimal solutions. As shown in Figs. 4.9(b) and 4.10(b) and Table 4.2, the effect of

permeability averaging is negligible for a rate-controlled well.

4.4.2 Example 2. Synthetic Homogeneous 3D Reservoir

In Example 2, we apply our well-placement method to optimize the locations

of vertical and horizontal wells in a homogenous reservoir for two different cases. We

choose a homogeneous reservoir in this example because the optimal solutions are

obvious. The reservoir is a 5, 000× 5, 000× 100 ft with a 25× 25× 5 grid simulation

model. The reservoir porosity, horizontal permeability and vertical permeability are,

respectively, 0.15, 100 md and 10 md. The depth of the reservoir top surface is 1, 000

ft. Gridblock sizes are 200 ft and 20 ft in the two horizontal and vertical directions,

respectively. The initial reservoir pressure is 5, 000 psi. The production life of the

reservoir is 30 years.

Case 1-Optimization of Vertical Producer Locations and Completions: We

assume a fixed water injection well at the center of the reservoir (gridblock (13, 13))

which is completed in the bottom layer of the reservoir (layer 5). The injection

well control is constant bottomhole pressure equal to 6, 000 psi. We optimize the

locations and completions of 4 vertical producers. All the producers are operat-

ing with a constant liquid production rate of 625 STB/D, but there is a minimum

bottomhole pressure constraint of 1, 000 psi. There are 16 optimization variables

(xw,m, yw,m, zw,m, lw,m), m = 1, 2, . . . , 4, i.e., 4 optimization variables for each pro-

ducing well. The initial locations of producers P-1 through P-4 are at the center of

gridblocks (5, 9), (18, 5), (21, 18) and (9, 21). As an initial guess, all the producers

are completed in simulation layers 2, 3 and 4, i.e., zw,m = 1, 050 ft and lw,m = 60 ft,
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Figure 4.11: The initial and optimum locations of the vertical producers in synthetic
homogenous reservoir, Example 2, Case 1. Black circle shows the location of the fixed
injector. White stars and circles, respectively, show the initial and final locations of
the production wells.
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Figure 4.12: PI multipliers for perforations, Optimizing both locations and perfora-
tions simultaneously, Synthetic homogeneous reservoir, Example 2, Case 1.

m = 1, 2, . . . , 4. The optimization algorithm with kh averaging converged after 147

simulation runs and NPV increased from $1.08× 109 to $1.73× 109. Fig. 4.11 shows

the initial and optimum areal location of the producers. Note the four producers are

moved toward the corners of the reservoir by the optimization algorithm with the

estimated optimal locations forming an inverted 5-spot pattern. In Fig. 4.12, the es-

timated optimal open fraction of each perforation layer is shown for each producer.

Note also that in all the producers, the top layer is fully open, while the second

simulation layer is partially open to flow. This is reasonable because the injector is

perforated at the bottom layer of the reservoir.

Since the reservoir is homogenous and the injection well is at the center of the

reservoir, we expect an optimum solution which has symmetric well locations and
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perforations, but our optimization algorithm did not achieve this. In Table 4.3, the

NPV for 8 possible trial solutions with symmetric well locations and completions are

listed. For a better comparison, the NPV values in Table 4.3 are reported with 4

digit precision. Note that the final NPV obtained from our optimization algorithm

is $1.7335× 109.

Table 4.3: Comparison of our optimum NPV with the NPV for some symmetric well
locations and completions, Example 2, Case 1.

Solution
Well locations:

PI multipliers of perforations NPV, $
P-1 through P-4

1 (1,1), (25,1), (25,25), (1,25) γ1 = 0.5, γ2 = γ3 = γ4 = 0 1.7396× 109

2 (1,1), (25,1), (25,25), (1,25) γ1 = 1.0, γ2 = γ3 = γ4 = 0 1.7426× 109

3 (1,1), (25,1), (25,25), (1,25) γ1 = 1.0, γ2 = 0.5, γ3 = γ4 = 0 1.7401× 109

4 (1,1), (25,1), (25,25), (1,25) γ1 = γ2 = 1.0, γ3 = γ4 = 0 1.7401× 109

5 (2,2), (24,2), (24,24), (2,24) γ1 = 0.5, γ2 = γ3 = γ4 = 0 1.7312× 109

6 (2,2), (24,2), (24,24), (2,24) γ1 = 1.0, γ2 = γ3 = γ4 = 0 1.7312× 109

7 (2,2), (24,2), (24,24), (2,24) γ1 = 1.0, γ2 = 0.5, γ3 = γ4 = 0 1.7252× 109

8 (2,2), (24,2), (24,24), (2,24) γ1 = γ2 = 1.0, γ3 = γ4 = 0 1.7252× 109

In trial solutions 1 and 2, only the first layer is open to flow, and since the

producers are rate-controlled wells, we expect that the NPVs in trials 1 and 2 to

be identical. However, note that also a minimum bottomhole pressure constraint of

1, 000 psi is specified for all the producers. In solution 1, since the productivity in-

dex of the only perforation in the production wells is reduced by multiplying by 0.5,

the producers could not maintain the specified production rates and also satisfy the

specified minimum bottomhole pressure at the later times of the simulation. There-

fore, the production well controls are changed to the constant bottomhole pressure

and the producers lost some oil production from the reservoir. This makes the NPV

of solution 1 to be slightly smaller than the NPV of solution 2. In solutions 3 and

4, in addition to the first layer, the second layer perforation of the producers also

contributes to the production from the reservoir. This results in slightly higher wa-

ter production from the reservoir and therefore, the NPV in these two solutions are

smaller than solution 2. Similar comments can be applied for solutions 5 to 8 except
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that the NPVs of both solutions 5 and 6 are identical. In these two solutions, the

production wells are closer to the injection well and the producers could maintain

the specified production rate while satisfying the bottomhole pressure constraints of

the wells even with reduced productivity index of the well. However, the NPVs of

solutions 7 and 8 are slightly less than solutions 1 and 2. This is due to the con-

tribution of the second layer perforation to the well productions from the reservoir

which results in slightly higher water production as compared to solutions 5 and 6.

The highest NPV for all the “symmetric solutions” tried is $1.7426 × 109 which is

only 0.5% higher than the estimated optimum automatically determined with our

optimization algorithm.

Case 2-Optimization of a Horizontal Production Well: The same homoge-

neous reservoir is again considered, but in this case, the left side of the reser-

voir is attached to an analytical aquifer. The aquifer is attached to gridblocks

(1 : 1, 13 : 25, 3 : 5) in the “i”, “j” and “k” directions. The gridblocks attached to

the aquifer are shown with a black line on the left side of the reservoir in Fig. 4.13.

The horizontal production well has its axis in the “j” direction, and it is initially

completed in gridblocks (13, 12 : 14, 3), i.e., near the center of the reservoir as shown

in Fig. 4.13. There are 4 optimization variables with the initial guess specified

as (xw, yw, zw, lw)initial = (2500, 2500, 1050, 400) ft, i.e., the well center point is at

the center of gridblock (13, 13, 3) and the well extends from the center of gridblock

(13, 12, 3) to the center of gridblock (13, 14, 3). The well control is the constant liq-

uid production rate equal to 2, 500 STB/D. The minimum and maximum lengths,

respectively, of the horizontal well are defined as 200 and 800 ft. After 56 simulation

runs, the optimization algorithm converged. NPV increased from $1.12× 109 at the

initial guess to $1.85 × 109 at convergence of the optimization algorithm. The esti-

mated optimum location of the well is (xw, yw, zw, lw)opt = (5000, 600, 1015, 800) ft,

which corresponds to gridblocks (25, 2 : 6, 1). As shown in Fig. 4.13, the producer
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Figure 4.13: The initial and optimum locations of the horizontal producer, Synthetic
homogenous reservoir, Example 2, Case 2.

was moved from its initial location in layer 3 to the opposite side of the reservoir and

to the first layer. The length also was increased from 400 ft to 800 ft. From physical

intuition, this is clearly a good solution.

4.4.3 Example 3. Synthetic Heterogeneous 3D Reservoir

Example 3 shows the application of the well-placement method for a 3D, two-

phase (oil-water), heterogeneous reservoir. The reservoir size is 4, 500× 2, 250× 500

ft with a 90 × 45 × 10 gridblock system. The reservoir has heterogeneous porosity

and permeability fields. The horizontal log-permeability and porosity fields of the

first layer of the reservoir are shown in Figs. 4.14(a) and 4.14(b). Porosity and

permeability of all reservoir layers are identical to those of layer 1. We choose layers

with identical permeability and porosity fields so that we will at least have an intuitive

idea of whether our optimization algorithm gives reasonable results. The vertical

permeability is kv = 0.1kh. The initial reservoir pressure is 3, 500 psi. The production

life of the reservoir is 2 years. In Case 1 of this example, we apply our method to

optimize the locations and completions of the horizontal water injectors while the

location of the vertical producers are fixed. In Case 2 of this example, the locations

and completions of both vertical producers and injectors are optimized.

103



1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

5
1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5

0 . 0 4 2
0 . 0 7 2
0 . 1 0 2
0 . 1 3 1
0 . 1 6 1
0 . 1 9 1
0 . 2 2 1
0 . 2 5 0
0 . 2 8 0

(a) Porosity

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

5
1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5

1 . 4 4 0
2 . 3 4 0
3 . 2 4 0
4 . 1 4 0
5 . 0 4 0
5 . 9 4 0
6 . 8 4 0
7 . 7 4 0
8 . 6 4 0

(b) Log-permeability

Figure 4.14: Horizontal log-permeability and porosity fields of layer 1 for the het-
erogenous reservoir, Example 3.

Case 1-Optimization of Horizontal Water Injection Wells: Six fixed vertical

production wells are placed in the reservoir. All the production wells are perforated

in the three top layers of the reservoir and are produced at a constant bottomhole

pressure of 1, 500 psi. We consider the optimization of two horizontal injection wells

where (xw,m, yw,m, zw,m, lw,m), m = 1, 2 for both injectors are the optimization vari-

ables. The axis of the injection well I-1 is in the “i” direction and the axis of injection

well I-2 is in the “j” direction. The injectors are controlled with constant bottomhole

pressure equal to 5, 500 psi. The horizontal injection wells are initially perforated in

layer 5 in the reservoir and have lengths of 100 feet. Two different initial well loca-

tions are considered. In the first initial guess, the initial locations of the injectors
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Figure 4.15: NPV plot versus number of simulation runs, Optimization of horizontal
injectors, Example 3, Case 1.

form two inverted 5-spot well patterns with producers. In this case, the optimization

algorithm with kh averaging (Eq. 4.14) converged after 99 reservoir simulation runs,

and the NPV of the production increased from $2.11 × 109 initially to $3.00 × 109

at convergence. In the second initial guess, the injectors are initially displaced from

the center of the inverted 5-spot well patterns. With the second initial guess, the

optimization algorithm converged after 104 reservoir simulation runs, and the NPV

increased from $1.42 × 109 initially to $2.73 × 109 at convergence. The NPV plot

versus simulation runs for both initial guesses are shown in Fig. 4.15. Note that in

Fig. 4.15, the first 17 simulation runs were needed to build the first quadratic model.

There are 8 optimization control variables (4 optimization parameters for each well)

and 17 simulation runs were needed by BOBYQA to build the first quadratic model,

(m = 2n+ 1). After the initial quadratic model is built, BOBYQA requires only one

simulation run at each optimization iteration.

Fig. 4.15 shows two different initial guesses yield radically different NPV val-

ues which illustrates that the method may converge to a local optimum. The ini-

tial and final well locations for the first and second initial guesses are shown in
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Figure 4.16: The initial and optimum locations of the horizontal injectors, Example
3, Case 1.

Figs. 4.16(a) and 4.16(b). The initial well trajectories are shown with gray lines, and

the optimum trajectories are shown with black lines.

In the optimization run with initial guess 1, both injectors are moved to

simulation layer 9 at the bottom of the reservoir. Injection well I-1 is moved to the

high permeability channel at the left of its initial location, which is slightly farther

away from production well P-5 and close to producer P-1. Note that there is a low

permeability barrier between these two wells. The length of this well increased from

100 ft to 145 ft. Well I-2 is moved to the nearby high permeability channel and

the length of the well is increased from 100 to 300 ft. In the optimization run with

initial guess 2, injection well I-1 is moved to reservoir simulation layer 9 and injection
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well I-2 is moved to reservoir simulation layer 10. With this initial guess, well I-1

is moved to the same location obtained with initial guess 1, but the length of the

well increased from 100 ft to 270 ft. The final location of well I-2 with initial guess

2 is completely different from the location obtained with initial guess 1. With initial

guess 2, the injection well I-2 is moved to the high permeability channel close to its

initial location and the length of the well is increased from 100 ft to 300 ft. These

results further indicate that the well-placement problem may have local maxima and

that the optimization algorithm may then converge to a local maximum. However,

the reader should have in mind that in practice, proposed locations and completions

will be proposed by experienced reservoir engineers and using these locations and

completions as initial guesses and perhaps a set of other initial guesses, the algorithm

can be used to attempt to find locations and completions which give a higher NPV.

Case 2-Optimization of Vertical Injectors and Producers: In this case we

optimize the location of six producers and two injectors. The optimization variables

are (xw,m, yw,m, zw,m, lw,m), m = 1, . . . , 8, where all the production and injection wells

are vertical. The total number of optimization variables is 32. Similar to the previous

case, both injection and production wells are bottomhole pressure-controlled wells.

The bottomhole pressures of the production and injection wells, respectively, are

1, 500 and 5, 500 psi. The production wells are initially perforated at layers 1 to 3 and

the injection wells are initially completed in layers 3 to 7. Optimization is performed

with two different initial well locations. In the first initial guess, the initial locations

of the six production wells and two injectors form two inverted 5-spot patterns.

However, in the second initial guess, the injection well locations are initially displaced

from the center of the inverted 5-spot well patterns. With the first initial guess,

the optimization converged after 231 reservoir simulation runs, and NPV increased

from $2.74× 109 at the initial guess to $3.47× 109 at convergence. With the second

initial guess, the optimization converged after 262 reservoir simulation runs, and NPV
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Figure 4.17: NPV plot versus number of simulation runs, Optimization of producers
and injectors, Example 3, Case 2.

increased from $2.70× 109 at the initial guess to $3.56× 109 at convergence. NPV is

plotted versus the number of reservoir simulation runs in Figs. 4.17(a) and 4.17(b)

for initial guesses 1 and 2, respectively. Similar to Fig. 4.15, the first m = n+6 = 38

simulation runs were required to build the initial quadratic model for the BOBYQA

method. Here, we chose m = n + 6 = 38 instead of m = 2n + 1 due to the fairly

large number of control variables. The choice of m = n + 6 is also suggested by

Powell [34]. Again, at the end of the optimization, we remove all the pseudo-wells

except the center pseudo-well and evaluate the NPV with these center pseudo-wells.

This NPV may be slightly different than the optimized NPV which is based on the

presence of all pseudo-wells. Here, in this case, the evaluated NPV values with the

surrounding pseudo-wells removed, are $3.33×109 and $3.46×109 for initial guesses

1 and 2, respectively.

The initial and final well parameters are summarized in Tables 4.4 and 4.5 for

initial guesses 1 and 2, respectively. Initial and final locations of the injection and

production wells for initial guesses 1 and 2 are shown in Figs. 4.18(a) and 4.18(b),

respectively. In these figures, the production wells are shown in white and the injec-

tion wells are shown in black; the initial well locations are shown with stars and the
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Table 4.4: The initial and final well parameters (xw, yw, zw, lw) of the first initial
guess, Example 3, Case 3.

Well Initial Final

I-1 (1125.0, 1125.0, 1225.0, 250.0) (1205.1, 1026.1, 1500.0, 144.2)

I-2 (3325.0, 1125.0, 1225.0, 250.0) (3483.6, 1002.0, 1432.0, 308.7)

P-1 (25.0, 25.0, 1075.0, 150.0) (98.2, 128.0, 1082.8, 240.7)

P-2 (2225.0, 25.0, 1075.0, 150.0) (1975.3, 3.9, 1055.7, 259.2)

P-3 (4475.0, 25.0, 1075.0, 150.0) (4326.8, 14.7, 1132.1, 248.8)

P-4 (4475.0, 2225.0, 1075.0, 150.0) (4453.5, 2180.8, 1159.5, 231.0)

P-5 (2225.0, 2225.0, 1075.0, 150.0) (2174.4, 2238.9, 1134.1, 251.6)

P-6 (25.0, 2225.0, 1075.0, 150.0) (124.2, 1919.5, 1164.5, 342.5)

Table 4.5: The initial and final well parameters (xw, yw, zw, lw) of the second initial
guess, Example 3, Case 3.

Well Initial Final

I-1 (725.0, 1325.0, 1225.0, 250.0) (586.3, 1495.6, 1354.4, 225.5)

I-2 (3775.0, 1475.0, 1225.0, 250.0) (3839.7, 1372.9, 1369.7, 321.7)

P-1 (25.0, 25.0, 1075.0, 150.0) (0.0, 117.1, 1088.7, 107.3)

P-2 (2225.0, 25.0, 1075.0, 150.0) (1922.5, 89.5, 1188.3, 451.3)

P-3 (4475.0, 25.0, 1075.0, 150.0) (4304.3, 149.5, 1158.6, 311.8)

P-4 (4475.0, 2225.0, 1075.0, 150.0) (4438.5, 2240.9, 1099.1, 38.7)

P-5 (2225.0, 2225.0, 1075.0, 150.0) (2176.7, 2146.3, 1170.6, 327.2)

P-6 (25.0, 2225.0, 1075.0, 150.0) (41.7, 2250.0, 1161.3, 254.9)

final well locations are shown with circles. The final PI multiplier for perforations

at injection and production wells, respectively, are shown in Figs. 4.19 and 4.20 for

initial guess 1 and in Figs. 4.21 and 4.22 for initial guess 2, respectively.

Comparing the NPV’s for the initial well locations of initial guess 1 ($2.74×

109) and initial guess 2 ($2.70× 109) shows that for this reservoir, NPV is not very

sensitive to slight changes in the injection well locations. However, comparing initial

and final NPVs of both initial guesses 1 and 2 shows that for the subject reservoir,

NPV is more sensitive to the well completions than to the location of the wells. This

seems reasonable because the well controls are the constant bottomhole pressure,

and the reservoir properties do not vary in the vertical direction; therefore, the well
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rates are strongly dependent on the length of the wells.

For initial guess 1, the initial injection well locations form two inverted 5-spot

patterns which is often a good configuration for water flooding. In the optimization

run with initial guess 1, changes in the completions of the wells are more significant.

The open perforations in both injection wells are moved to the bottom simulation

layers (Figs. 4.19 and 4.21) and the total length of the perforated interval in well I-1

is reduced. The production wells were initially perforated in the top three simulation

layers. Optimization increased the length of all production wells. Also, production

wells P-2, P-3, P-5 and P-6 are moved to a gridblock with higher permeability. In

the optimization run with initial guess 2, the length of the perforated interval in
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Figure 4.18: The initial and optimum locations of the vertical injectors and produc-
ers, Example 3, Case 2.
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Figure 4.19: PI multipliers for perforations of the injectors, Initial guess 1, Example
3, Case 2.
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Figure 4.20: PI multipliers for perforations of the producers, Initial guess 1, Example
3, Case 2.
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Figure 4.21: PI multipliers for perforations of the injectors, Initial guess 2, Example
3, Case 2.
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Figure 4.22: PI multipliers for perforations of the producers, Initial guess 2, Example
3, Case 2.

112



production wells P-2, P-3 and P-5 are increased significantly (Fig. 4.22) as they are

located far away from the injection wells. However, the length of the perforated

interval in production wells P-1 and P-4 are decreased because they are close to the

injection wells. Similar to initial guess 1, both injection wells are completed near

the bottom of the reservoir (Fig. 4.21). The final NPV for initial guess 1 with the

injection wells located close to the center of inverted 5-spot well patterns is smaller

than the final NPV of initial guess 2, due to the heterogeneity of the reservoir. Note

that even though we started with physically reasonable initial guesses for the optimal

well locations and completions, the algorithm was able to significantly increase the

NPV.

4.4.4 Example 4. PUNQ Reservoir

Example 4 illustrates the application of the well-placement method for the

PUNQ reservoir. This example is designed to compare the results of two approaches

that we introduced for evaluating NPV when a well is moved into an inactive grid-

block; see Section 4.3. The PUNQ simulation model was introduced in Example 2 of

Chapter 3 and the porosity, horizontal and vertical permeability fields and the initial

oil saturation distribution of the reservoir simulation model are shown in Figs. 3.6

to 3.9, respectively. In this example we set the porosity of aquifer gridblocks to 0.

Therefore, the aquifer gridblocks are inactive and infeasible locations for the wells.

In this example, we consider optimizing the location of six vertical producers

and three vertical injectors in the PUNQ reservoir model. Here, we only consider the

optimization of the location of the wells. The optimization variables are the (xw, yw)

coordinates of the injection and production wells and every well is perforated in all 5

simulation layers of the reservoir, i.e., u = [xw,1, yw,1, . . . , xw,Nwell
, yw,Nwell

]T . There are

9 wells subject to the optimization and the total number of the optimization variables

is n = 18. We use m = 37 for the number of interpolation points in the BOBYQA

algorithm. The production life of the reservoir is 10 years and the production and
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injection wells, respectively, have specified constant bottomhole pressure of 1, 500

and 4, 000 psi, respectively. We consider two cases in this example. In the first case,

the location of a well is feasible only if all the perforation gridblocks of the well are

in active gridblocks. However, in the second case, the location of a well is feasible if

at least one perforation gridblock of the well is in an active gridblock.

In the first case, the location of a well is feasible if all the well perforation

gridblocks are active, therefore, if a well moves to a location in which any of its perfo-

ration gridblocks is an inactive gridblock, one of the two approaches explained before

(Section 4.3) is used to evaluate the NPV. In the first approach, the well is automat-

ically assigned zero rate and does not contribute to the NPV; however, in the second

approach the location of the well is modified to a location in which all the perforations

of the well are in active gridblocks. The well-placement optimization is done with

both these approaches. The NPV corresponding to the initial locations of the wells is

$1.82×109. The optimization run with the first approach (eliminating the wells with

perforations in inactive gridblocks) converged after 158 simulation runs and the final

NPV is $2.79 × 109. The evaluated NPV value with the surrounding pseudo-wells

removed for this approach is $2.66× 109. With the second approach (modifying the

locations of the wells with perforations in inactive gridblocks), the optimization run

converged after 183 simulation runs and NPV increased to $2.98 × 109 where the

evaluated NPV value with the surrounding pseudo-wells removed is $2.80×109. The

NPV plot versus the number of simulation runs for the optimization runs correspond-

ing to both approaches are shown in Figs. 4.23(a) and 4.23(b), respectively. The first

37 simulation runs were used to build the first quadratic model in BOBYQA. As we

see in Fig. 4.23(a), the approach of eliminating the well located in an infeasible lo-

cation results in large changes (sharp spikes) in NPV when the well is eliminated

at an iteration. This should be expected to damage the quality of the quadratic

interpolation model and thus result in a smaller final NPV value. As expected, the
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Figure 4.23: The plot of NPV versus the number of simulation runs, Example 4,
Case 1.

final NPV value of the well-placement optimization with this approach ($2.79× 109)

is smaller than the final NPV value corresponding to the optimization run with the

second approach ($2.98× 109).

The initial locations of the injection and production wells and their final

locations with the first and the second approaches are shown in Fig. 4.24. In this

figure, the locations of the wells are shown in the plots of layer-1 horizontal log-

permeability field. The injection wells are shown as black circles and the production

wells are shown as white circles. The initial and final well coordinates in the PUNQ

model are summarized in Table 4.6. As we see in Figs. 4.24(b) and 4.24(c), the

production wells tend to separate from the injection wells. Also, the injection wells

moved toward the edges of the reservoir and away from the production wells. Note

that the changes in the production well locations are smaller with the first approach

(Figs. 4.24(b)) compared to the second approach (Figs. 4.24(c)), which might be due

to the early termination of the optimization algorithm due to the damages to the

quality of the quadratic interpolation model.

In the second case, the location of a well is feasible if any of the perforations

of the well is in an active gridblock. Similar to Case 1, well-placement optimization

runs are performed with both approaches. In this case, none of the wells moved to a
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Figure 4.24: The initial and final locations of the injection and production wells,
Example 4, Case 1.

Table 4.6: The initial and final well parameters (xw, yw) of the injection and produc-
tion wells in the PUNQ model, Example 4, Case 1.

Well Initial Final, first approach Final, second approach

I-1 (8102.7, 13593.4) (7972.5, 13878.0) (8102.7, 13593.4)

I-2 (12319.1, 8910.6) (12696.9, 9744.2) (12319.1, 8910.6)

I-3 (20563.5, 7200.0) (20964.6, 8563.1) (20563.5, 7200.0)

P-1 (12412.6, 15873.1) (12106.4, 15649.7) (12412.6, 15873.1)

P-2 (15282.5, 12857.3) (13287.5, 12696.9) (15282.5, 12857.3)

P-3 (15639.3, 12363.1) (15059.1, 10925.3) (15639.3, 12363.1)

P-4 (18448.3, 10361.5) (18602.4, 10334.7) (18448.3, 10361.5)

P-5 (19416.1, 12479.8) (19783.5, 12696.9) (19416.1, 12479.8)

P-6 (18383.2, 15464.0) (18602.4, 15059.1) (18383.2, 15464.0)
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Figure 4.25: The initial and final locations of the injection and production wells,
Example 4, Case 2.

location where all the gridblock perforations are inactive. Therefore, the optimization

runs with both approaches gave the same results. Both optimization runs converged

after 209 simulation runs and the NPV value increased from $1.87×109 to $3.04×109.

The final evaluated NPV value with the surrounding pseudo-wells removed is $2.78×

109. Note in both cases the initial well locations are the same, but the initial NPV

value of the second case ($1.87× 109) is larger than for the first case ($1.82× 109).

The reason for that is in the first case, some of the pseudo-wells corresponding to

the injection well I-3 are shut-in initially as some of their perforations are in inactive

gridblocks, whereas, in the second case the pseudo-well of a well is shut-in only and

only if all its perforations are in inactive gridblocks. In the second case, none of the

pseudo-wells of the injection well I-3 were initially shut-in and hence the initial NPVs

of these two cases are different. The initial and final well locations for the second

case are shown in Fig. 4.25. Note that the initial well locations are identical to the

initial well locations in Case 1. The final well location parameters are summarized

in Table 4.7. The plot of NPV versus the number of simulation runs is shown in

Fig. 4.26. There are no sharp spikes in the NPV plot as none of the wells moved to

a location where all its perforations are in inactive gridblocks.
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Table 4.7: The initial and final well parameters (xw, yw) of the injection and produc-
tion wells, Example 4, Case 2.

Well Initial Final

I-1 (8419.4, 13513.2) (7972.5, 13878.0)

I-2 (11379.0, 10087.7) (12696.9, 9744.2)

I-3 (21000.0, 7563.9) (20964.6, 8563.1)

P-1 (12530.7, 16200.0) (12106.4, 15649.7)

P-2 (16112.7, 12683.0) (13287.5, 12696.9)

P-3 (17576.5, 13962.8) (15059.1, 10925.3)

P-4 (19015.9, 10390.9) (18602.4, 10334.7)

P-5 (18446.8, 13656.9) (19783.5, 12696.9)

P-6 (18351.9, 15268.6) (18602.4, 15059.1)
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Figure 4.26: The plot of NPV versus the number of simulation runs, Example 4,
Case 2.

118



CHAPTER 5

OPTIMIZATION OF THE WELL LOCATIONS AND

TRAJECTORIES FOR DIRECTIONAL WELLS

In this chapter, we introduce a new methodology for the estimation of the

location, length and trajectory of each of a set of directional wells that maximize the

life-cycle net-present-value (NPV) of production from a reservoir. For efficiency in

writing, we will sometimes simply refer to this problem as estimation of well trajec-

tories. Similar to the well-placement method presented in Chapter 4, a well can be

either a rate-controlled or a bottomhole pressure-controlled injection or production

well, where, the well control values and the production life of the reservoir are fixed.

However, it is more natural to consider pressure-controlled wells. A directional well

is considered as a straight line in 3D. The well-placement problem is formulated in

terms of six continuous variables which define the trajectory of a well. The trajectory

parameters are the xw, yw and zw coordinates of the center point of the well, the

length of the well, lw, and θw and ϕw which are the orientation angles of the well in

the horizontal and vertical directions, respectively. A continuous NPV functional is

defined by distributing the rate of the well among “gridblock perforations” which are

“close” to the trajectory of the well. This NPV functional is based on the life-cycle

NPV of production from the reservoir and it is a function of the six continuous well

trajectory parameters, (xw, yw, zw, lw, θw, ϕw). Similar to the well-placement method

given in Chapter 4, the NPV functional is maximized using a derivative-free opti-

mization (DFO) algorithm, BOBYQA, where we use a transformation of the control

variables to improve the performance of the BOBYQA algorithm. In the following,

we first introduce the optimization problem. Then we explain our method for repre-
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Figure 5.1: Schematic view of a directional well.

senting a directional well in the simulator. Finally, some results for the optimization

of directional wells in homogeneous and heterogeneous synthetic 3D reservoir are

presented.

5.1 Well-Placement Problem Definition

For the optimal well-placement problem algorithm presented in this chap-

ter, the objective function optimized is the net-present-value (NPV) of production

from the reservoir given in Eq. 2.1. The trajectory of a well inside the reservoir is

represented with a straight line in the spherical coordinate system. Spherical coor-

dinates are adopted as they allow for straightforward control of the well lengths by

imposing a box constraint. The well trajectory is defined by six continuous variables

xw, yw, zw, lw, θw and ϕw, where (xw, yw, zw) are the spatial coordinates of the well

center point; lw is the length of the well; θw is the angle between the positive x-axis

and the projection of the well trajectory onto the x−y plane; ϕw is the angle between

the well trajectory and the positive z-axis, i.e., the angle ϕw shows the deviation of

the well trajectory from vertical. The schematic of a well and the corresponding well

trajectory parameters are given in Fig. 5.1.

Here, we consider minimizing J [u] when J [u] = −NPV and u is the vector of

120



variables which represent the well trajectories. The continuous optimization problem

is then defined by

min
u
J [u], (5.1)

subject to

ulow ≤ u ≤ uup, (5.2)

where

u = [xw,1, yw,1, zw,1, lw,1, θw,1, ϕw,1, . . . , xw,Nwell
, yw,Nwell

, zw,Nwell
, lw,Nwell

, θw,Nwell
, ϕw,Nwell

]T

(5.3)

is the vector of optimization variables. Nwell is the number of wells, and (xw,j, yw,j, zw,j)

and lw,j, respectively, define the location of the center point and the length of well

j; θw,j and ϕw,j are the directional angles of well j in the horizontal and vertical di-

rections, respectively, as defined previously (Fig. 5.1). By specifying well trajectory

parameters, (xw,j, yw,j, zw,j, lw,j, θw,j, ϕw,j), we uniquely define the trajectory of well

j. Eq. 5.2 defines simple bound constraints for every optimization variable. The

bound constraints for the optimization variables xw,j, yw,j and zw,j are defined ac-

cording to the reservoir boundaries because the center point of each well is required

to be inside the reservoir. The upper bound for lw,j is defined by simply setting a

maximum length of the well. Because of the symmetry of the trajectory line of the

well about its center point, the minimum and maximum bound values for the well

trajectory parameters, θw,j and ϕw,j, are respectively 0 and 180 degrees (0 and π

radians).

5.2 The Representation of a Directional Well in the Simulator

As explained in Chapter 4, in reservoir simulation models, the well models are

used to model the flow between the gridblock and wellbore; see Eqs. 4.3 through 4.6.

An accurate representation of a directional well inside a reservoir is still an ongoing
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challenge (H. Cinco and Ramey [15], Joshi [17], Jostein Alvestad and Stava [18], Ding

[12], Aavatsmark and Klausen [1] and Schlumberger [37]). In commercial simulators

which use a Peaceman type well model, a well is represented by defining the perfo-

rated well gridblocks. For each perforation i of the well, the well model parameters

in Eq. 4.3 (or Eq. 4.5), which consist of the length of the well inside the perforated

gridblock, hi, the radial permeability toward the well axis, ki, and the equivalent

radius, roi , must be determined and input into the simulator. Once these well model

parameters are provided, the simulator computes the transmissibility factor of the

perforation by applying a form of Eq. 4.5. The Jostein Alvestad and Stava [18]

and Schlumberger [37] methods utilize a Peaceman type well model for the represen-

tation of directional wells. Both these methods provide the well model parameters

for Eq. 4.5.

The Schlumberger [37] method determines kihi in Eq. 4.5 by averaging kh for

perforation i in the x, y and z directions. The average transmissibility factor for the

perforation is also computed by averaging the transmissibility factors in the x, y and

z directions. Then, the parameter roi is back computed from the average value of the

productivity indices in the x, y and z directions and the average kihi using Eq. 4.5.

The detailed equations of Schlumberger [37] are given in Appendix A.1.

Jostein Alvestad and Stava [18] proposed a method to determine the well

model parameters for a Peaceman type well model. In their proposed method, the

well model parameters are defined as a function of the orientation angles of a direc-

tional well, θw and ϕw. In the Jostein Alvestad and Stava [18] method, hi is the exact

length of the part of the well inside the gridblock corresponding to perforation i. The

radial permeability toward the well for perforation i, ki is given as a weighted average

of the horizontal and vertical permeabilities of the gridblock and roi is computed by

equations which involve the orientation angles of the well. The detailed equations

of Jostein Alvestad and Stava [18] are given in Appendix A.2. The Jostein Alvestad
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and Stava [18] definition of the radial permeability toward a directional well in an

anisotropic medium is also given in Aavatsmark and Klausen [1].

A brief discussion on the performance and accuracy of both the Jostein Alves-

tad and Stava [18] and Schlumberger [37] methods is given in Aavatsmark and

Klausen [1]. For both methods, the well is perforated only in the gridblocks pen-

etrated by the well. An accurate consideration of the well gridblock’s geometry

and the intersection of the gridblock faces with the well trajectory is necessary for

both these methods. For the Schlumberger [37] method, the computations regard-

ing the intersection of the well trajectory line with gridblock faces are done in the

pre-processing software named “Schedule”. Since both these methods are Peaceman

type well models, they do not consider the real location of the well perforation inside

the simulation gridblock. The issue of the actual well location is discussed further in

Section 5.5.

5.3 Distributed Representation of a Directional Well in the Simulator

In the simulation models, the reservoir is partitioned into simulation grid-

blocks and the source/sink terms of the flow equation (which represent the production

and injection wells) are introduced by well models in the discretized flow equations.

In the Peaceman type well models, the exact location of the well inside the gridblock

is not considered accurately; and also, the flow from a perforation of a well is strongly

dependent on the permeabilities of its perforation gridblock only. Therefore, the rate

of a well, and the NPV of production from the reservoir, are not smooth functions

of the well location. This can cause difficulty in any optimization algorithm and

introduce spurious local minima; see the results of Zhang et al. [46] on the optimal

placement of a 3D channel in a 3D reservoir, i.e., as the perforation moves from one

gridblock to another gridblock, the rate and NPV will typically change discontinu-

ously. For a well with a known trajectory, an accurate implementation of the well

models of Schlumberger [37] or Jostein Alvestad and Stava [18] methods requires
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the consideration of the well gridblock’s geometry and the computation of intersec-

tion points of the gridblock faces with the well trajectory. These computations are

usually done with pre-processing software to prepare the simulation data deck, e.g.,

Schedule in Eclipse. To use Schedule with a well-placement optimization algorithm

would require a method to recall Schedule after every iteration of the optimization

algorithm. Moreover, if we use only the perforations which correspond to the actual

well location, when a perforation moves from one gridblock to another, we may ex-

perience a jump discontinuity in the rate and NPV due to a discontinuous change in

the PI. As discussed below, our methodology is designed to significantly reduce, but

not eliminate, such jump discontinuities.

Here, we use a derivative-free optimization method which approximates the

objective function with a smooth and continuous quadratic model, and a relatively

smooth objective function may increase the accuracy and efficiency of the optimiza-

tion algorithm. An objective function with jump discontinuities may damage the

quality of the interpolation function evaluated by the BOBYQA optimization algo-

rithm. Therefore, in our well-placement approach, we would like to reduce the jump

discontinuities of the NPV as a function of well trajectory parameters. In addition to

that, our representation of a directional well in the simulator for the computation of

the NPV functional does not require any pre-processing software for doing the com-

putations regarding the intersection of the well with the faces of complex simulation

gridblocks.

To define the NPV with our model, we distribute each well source/sink term

among all the gridblocks “close” to the well trajectory. Therefore, the well is per-

forated not only in the gridblocks penetrated by the well, but is also perforated in

gridblocks adjacent to the well trajectory. The rate of the original well is distributed

among all these perforations such that the perforations closer to the well trajectory

are given a higher portion of the rate of the well. Therefore, the effects of (1) hetero-
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geneity of the reservoir permeabilities and (2) discrete locations of the wells (due to

the gridding of the reservoir) on the production rates of the wells are smoothed. The

distribution of the rate among the well perforations is applied by assigning a pro-

ductivity index (PI) multiplier to each perforation. The procedure for determining

the well perforations and distributing the rate of the well among these perforations

are fully discussed in the remainder of this section.

The schematic of a directional well inside a rectangular reservoir is shown

in Fig. 5.2. The outer rectangular volume shows the reservoir boundaries. The

trajectory of the directional well is shown with a solid black straight line inside the

reservoir. As we previously explained, the trajectory of the well j is defined by

well parameters xw,j, yw,j, zw,j, lw,j, θw,j and ϕw,j. The green sphere shows the volume

around the well which is swept by the rotation of the well with length lw about

its center point, (xw, yw, zw), in both orientation angles θ and ϕ. The inner cuboid

volume refers to the volume of the rectangular box which surrounds the sphere. We

initially perforate all the gridblocks which are located inside this inner rectangular

volume. These gridblocks are shown in Fig. 5.2. In the following, we explain our

method for determining the perforations of well j and distributing the rate of the

well among its perforations. Throughout, the subscript j, which represents the well

index, is dropped.

We denote the gridblocks which contain the points (xw + lw
2
, yw, zw) and (xw−

lw
2
, yw, zw) with the gridblock indices (i1, j1, k1) and (i2, j2, k2), respectively. Similarly,

we denote the gridblocks which contain the points (xw, yw + lw
2
, zw) and (xw, yw −

lw
2
, zw) with the gridblock indices (i3, j3, k3) and (i4, j4, k4), respectively, and the

gridblocks which contain the points (xw, yw, zw + lw
2

) and (xw, yw, zw − lw
2

) with the

gridblock indices (i5, j5, k5) and (i6, j6, k6), respectively. The perforations of a well

contains all the gridblocks with indices (i, j, k) such that (i, j, k) satisfies ie1 ≤ i ≤ ie2,
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je1 ≤ j ≤ je2 and ke1 ≤ k ≤ ke2 where,

ie1 = max(1,
6

min
m=1

(im)− 1), ie2 = min(Nx,
6

max
m=1

(im) + 1),

je1 = max(1,
6

min
m=1

(jm)− 1), je2 = min(Ny,
6

max
m=1

(jm) + 1),

ke1 = max(1,
6

min
m=1

(km)− 1), ke2 = min(Nz,
6

max
m=1

(km) + 1).

(5.4)

To make the NPV functional sensitive to the change in the length of the well within a

gridblock, we use +1 and -1 in Eq. 5.4 to extend the box gridblock in each direction

beyond gridblocks that are wholly or partially in the spherical region of Fig. 5.2.

Note that depending on the length of a well and the size of the reservoir gridblocks,

the number of perforated gridblocks for a well might be large. Therefore, we try

to reduce the number of perforations by eliminating the perforations with negligible

contribution to the flow of the well. This is done after determining the contribution

of each perforation to the flow rate of the well.

For perforation i of a well, the well model parameters, ki, hi and roi , should

be provided to the simulator. Either the Schlumberger [37] or Jostein Alvestad and

Stava [18] methods (explained in Appendices A1) may be implemented to compute

Figure 5.2: Perforated gridblocks around the well trajectory.
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Figure 5.3: Schematic of a horizontal well in x−y plane and the perforated gridblocks.
The well trajectory line is shown with a solid black line. The trajectory of the
perforation path in each perforated gridblock is shown with a dashed line.

the well model parameters of each perforation. Here, we focus on the Schlumberger

[37] method. In order to compute the well model parameters of each perforation

two assumption are made: (1) each perforated gridblock is a rectangular volume

with dimensions of ∆xi, ∆yi and ∆zi and, (2) each perforated gridblock is fully

penetrated in the direction of the well trajectory and the perforation path passes

through the center point of the gridblock. For the purpose of illustration, consider a

horizontal well in the x− y plane (ϕw = 90 degrees) as shown in Fig. 5.3.

The actual well trajectory is shown with a solid black line, but the perforations

of this actual trajectory are not used directly in the simulation model. In computing

the flow rates of the well in the reservoir simulator, the perforations shown as dashed

lines are used. The perforated gridblocks in the current simulation layer are colored

blue. The perforation trajectories in the perforated gridblocks are shown with dashed

lines and as previously mentioned, it is assumed that each perforated gridblock is

fully penetrated in the direction of the well trajectory and the perforation path passes

through the gridblock center point, see assumptions (1) and (2) above. With these

two assumptions, it is easy to compute the length of the perforation that lies within

each gridblock. In Fig. 5.4, the schematic of one perforated gridblock is shown in

three dimensions. Note that the coordinate axis x̃i − ỹi − z̃i, is the local coordinate
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Figure 5.4: Schematic of a perforated gridblock by a 3D directional well. Note this
represents one of the perforations shown as dashed lines in Fig. 5.3, not a perforation
of actual well trajectory.

axis for gridblock i. The significance of the local coordinate system corresponding

to each perforation gridblock, x̃i − ỹi − z̃i, is that in the simulation model, the kx,

ky and kz permeabilities of a gridblock are specified in the direction of its local

coordinate system, therefore, the radial permeability toward the well perforation

should be computed based on the orientation angles of the perforation path with

respect to the local coordinate system of the gridblock. Also, the perforation length

of the well inside the gridblock depends on the orientation angles of the perforation

path with respect to the local coordinate system of the gridblock. Denote θw,i and

ϕw,i as the orientation angles of the perforation trajectory with respect to its local

coordinates system. Since the orientation angles of the well (θw and ϕw) are defined

with respect to the global coordinate axis (x− y − z), we have

θw,i = θw − θ̃i, ϕw,i = ϕw − ϕ̃i, (5.5)

where θ̃i is the angle between the x axis and the projection of x̃i onto the x−y plane

and ϕ̃i is the angle between the z axis and the projection of z̃i onto the x− z plane.

Assuming the perforation gridblock i as a rectangular volume with length,

width and height of ∆xi, ∆yi and ∆zi, respectively, the perforated length of the
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gridblock i is denoted by hi and is given by

hi = min(h̃x,i, h̃y,i, h̃z,i), (5.6)

where

h̃x,i =
∆xi

| sinϕw,i cos θw,i|
, h̃y,i =

∆yi
| sinϕw,i sin θw,i|

, h̃z,i =
∆zi

| cosϕw,i|
. (5.7)

Note that Eqs. 5.6 and 5.7 are based on the assumptions that the gridblock is a

rectangular box and the well passes through the center of the gridblock. With the

information provided above for each perforation i, either the Schlumberger [37] or

Jostein Alvestad and Stava [18] methods can be implemented to compute the well

model parameter values of kihi and roi . Note that the orientation angles of the

trajectory of perforation i for computing the well model parameters are θw,i and ϕw,i.

As previously noted, in our well-placement code, we implement the Schlumberger

[37] procedure to compute the well model parameters for each perforation. The

method description and its corresponding equations are given in Appendix A.1. The

next step is to distribute the rate of the well among its perforations. We distribute

the rate of the well among the perforations of the well so that the perforations

closer to the well trajectory obtain a higher portion of the rate of the well. We

use an exponentially decaying function to approximately distribute the rate of the

well among its perforations, i.e., the contribution of each perforation to the rate

of the well exponentially decreases as the distance of the perforation from the well

trajectory increases. In order to distribute the rate of the well among its perforations,

a productivity index (PI) multiplier, βi, is assigned to each perforation PI of the well,

i.e., the PI of each perforation is multiplied by βi.

We define γi as the contribution of perforation i to the total rate of the well,

where
∑

i γi = 1. The PI multiplier value of a perforation, βi, is proportional to its

129



contribution to the total rate of the well, i.e., βi ∝ γi, however, the βi’s sum to a

value which depends on the length of the well as explained below. If all the per-

forations of a well have identical productivity indices, phase mobilities and flowing

drawdown/build up pressures, then the multiplier of a perforation PI exactly deter-

mines the portion of the total rate of the well assigned to that individual perforation,

e.g., if γi = βi∑
βi

= 0.15, then 15 % of the well total flow rate would be produced

from perforation i. However, since different perforations of the well have different

productivity indices (PI’s), different mobilities and different flowing drawdown/build

up pressures, assigning a PI multiplier to a perforation only approximately specifies

that γi times the rate of the well will flow through that perforation. Experimental

results presented here show that this approximation is good enough for the purpose

of our well-placement algorithm and gives a continuous NPV as a function of well

trajectory parameters for the purpose of optimization. Below we show how γi and

βi for each perforation of the well are computed.

The trajectory parameters xw, yw, zw, θw and ϕw of a well define a straight line

in 3D as

x = xw + Ψxt, y = yw + Ψyt, z = zw + Ψzt. (5.8)

where

Ψx = sinϕw cos θw, Ψy = sinϕw sin θw, Ψz = cosϕw, (5.9)

(xw, yw, zw) is the well center point and t is the parameter of the line. Denote the

two endpoints of the well trajectory line by (xw,e1 , yw,e1 , zw,e1) and (xw,e2 , yw,e2 , zw,e2)

where

xw,e1 = xw + Ψx
lw
2
, yw,e1 = yw + Ψy

lw
2
, zw,e1 = zw + Ψz

lw
2
. (5.10)

xw,e2 = xw −Ψx
lw
2
, yw,e2 = yw −Ψy

lw
2
, zw,e2 = zw −Ψz

lw
2
. (5.11)
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As mentioned earlier, the contribution of the perforation i to the total rate

of the well, γi, is a function of the distance of its gridblock center point from the

well trajectory. As discussed below, we choose an exponentially decaying function to

define γi’s as a function of the distance of the perforation i gridblock center point from

the well trajectory line. However, the reservoir gridblocks usually have different sizes

in the x, y and z directions, e.g., the size of the gridblocks in the z direction is usually

much smaller than the sizes of the gridblock in the x or y directions. Therefore, the

perforation gridblocks of a well which are located in the direction of the smaller

gridblock sizes (e.g., in the z direction) would have a much larger portion of the rate

compared to the gridblocks located in the other directions from the well trajectory,

i.e., their corresponding PI multiplier would be large. Computational experiments

indicate that, this can result in a very low sensitivity of the NPV to the well trajectory

parameters in the other directions (e.g., in the x or y directions). In order to define

γi’s which do not depend strongly on gridblock dimensions, we measure the distance

of the gridblock from the well trajectory in a stretched coordinate system based on the

average reservoir gridblock sizes in the different directions. We define a transformed

coordinate system as


x̂

ŷ

ẑ

 =


1 0 0

0 ∆x
∆y

0

0 0 ∆x
∆z



x

y

z

 . (5.12)

where x − y − z is the original coordinate system and x̂ − ŷ − ẑ is the transformed

coordinate system. ∆x, ∆y and ∆z are the average gridblock sizes in the x, y

and z directions, respectively. The transformed coordinate system is the original

coordinate system stretched proportional to the average gridblock sizes in the x, y

and z directions. Similarly, in the transformed coordinate system, the distances in

the y and z directions are stretched proportional to the ratios ∆x
∆y

and ∆x
∆y

, respectively,
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Figure 5.5: Schematic of the transformation of the coordinate system in x− z plane.
P̂w is the center point of the well in the transformed domain, P̂gb,i is the center point

of gridblock i in the transformed domain and P̂p,i is the projection of P̂gb,i on the
well trajectory line.

i.e., ∆ŷ = ∆x
∆y

∆y and ∆ẑ = ∆x
∆z

∆z.

The contribution of the perforation i to the total rate of the well, γi, is defined

as a function of two distances dp,i and dL,i. Both these distances are defined in the

transformed coordinate x̂ − ŷ − ẑ. Denote the well center point in the transformed

domain by P̂w = (x̂w, ŷw, ẑw), the center point of the perforated gridblock i in the

transformed domain by P̂gb,i = (x̂gb,i, ŷgb,i, ẑgb,i) and the perpendicular projection of

the center point of the perforated gridblock i onto the well trajectory line in the

transformed domain by P̂p,i = (x̂p,i, ŷp,i, ẑp,i). Similarly the two endpoints of the well

in the transformed domain are P̂w,e1 and P̂w,e2 . For the purpose of illustration, the

schematic of the transformation of the coordinate system in x− z and x̂− ŷ planes

are shown in Fig. 5.5.

Let dp,i denote the perpendicular distance of the center point of the perforation

gridblock i from the well trajectory line in the transformed domain, i.e, dp,i = ||P̂gb,i−

132



P̂p,i||2, and let dL,i denote the distance from P̂p,i to the well center point, P̂w, in

the transformed domain, i.e., dL,i = ||P̂p,i − P̂w||2. The distances dp,i and dL,i are

computed by

dp,i =
√

(x̂gb,i − x̂p,i)2 + (ŷgb,i − ŷp,i)2 + (ẑgb,i − ẑp,i)2. (5.13)

and

dL,i =
√

(x̂p,i − x̂w)2 + (ŷp,i − ŷw)2 + (ẑp,i − ẑw)2. (5.14)

The contribution of perforation i of the well in the total rate of the well, γi,

is defined as an exponential function of these two distances,

γi =
f(dp,i)g(dL,i)∑Ncom

k=1 [f(dp,i)g(dL,i)]
, (5.15)

where Ncom is the number of perforations of the well. The functions f and g are

exponential decay functions defined as following

f(dp,i) = exp

(
−
d2

p,i

σ2

)
. (5.16)

and

g(dL,i) =


exp

(
−d2L,i

σ2

)
if dL,i >

||P̂p,i−P̂w,e||2
2

,

1.0 if dL,i ≤ ||P̂p,i−P̂w,e||2
2

.

(5.17)

where

σ = α∆x, (5.18)

and P̂w,e is the closest endpoint of the well to the projection of the center point of

gridblock i on the well trajectory line, P̂p,i. The parameter α determines how widely

the rate is distributed among the perforations of the well. We suggest a value of α
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such that 0.5 ≤ α ≤ 1 and for the results presented in this chapter we use α = 1.

In the following sections, we show how the value chosen for α influences the NPV

functional. Since we measure the distances dp,i and dL,i in the transformed domain

(where the distances in the y and z directions are stretched with reference to the

∆x
∆y

and ∆x
∆z

, respectively), the parameter σ only depends on the average dimension

of the gridblocks in the x direction, ∆x. Our choice of γi’s is such that they sum to

1 as they are used to approximate the contribution of each perforation to the total

rate of the well.

As we previously explained, all the gridblocks contained in the rectangular

volume which surrounds the sphere around the well trajectory are initially considered

as potential perforations. The contribution of each perforation to the total flow rate

of the well is computed by applying Eq. 5.15, where the gridblocks far away from the

well trajectory have much smaller contributions to the total rate of the well compared

to perforated gridblocks closer to the well trajectory. In order to reduce the number

of perforated gridblocks of a well, we remove the perforations which give a negligible

contribution to the rate of the well. To do so, we simply filter out the perforations

with a small value of γi. Denote γmax as the maximum γi of all perforations,

γmax = max
1≤k≤Ncom

{γk}. (5.19)

Now we define γt,i as

γt,i =


γi if γi ≥ εγmax,

0 if γi < εγmax.

(5.20)

for i = 1, 2, . . . , Ncom, where ε is a very small number and determines the threshold

for removing the perforations corresponding to very small flow rates; (in our results

we use ε = 1.0 × 10−6). The γt,k, k = 1, 2, . . . , Ñcom, correspond to the remaining
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perforations where Ñcom is the number of remaining perforations. The remaining

perforations are normalized so the fractional rate contributions sum to 1.0 by defin-

ing,

γ̃i =
γt,i∑Ñcom

k=1 γt,k
. (5.21)

After this step, the well has Ñcom perforated gridblocks and γ̃i determines

the contribution of perforation i to the rate of the well. The PI multiplier of each

perforation of the well, βi is now proportional to γ̃i. The equation for the βi’s is

explained through the following illustrative example.

In Fig. 5.6, a horizontal well is shown in a grid where its axis is in the x

direction and the length of the well is 2∆x. Assume that the reservoir is homogenous

and all the gridblocks have the same sizes in all directions. On the left hand side,

the representation of the well is shown where only the two gridblocks penetrated

by the well are perforated. The perforation length is 2 × ∆x and the well has

two perforations, Nc = 2. On the right hand side of this figure, the distributed

representation of the well is shown, where, several gridblocks are perforated (Ñcom =

12) and the perforated length of each gridblock is equal to ∆x. Denote the rate of

the well by q. Comparing the two representations of the well, we would like to have,

q =
Nc∑
i=1

qi =
Ñcom∑
k=1

qk, (5.22)

where qi is the rate of the perforation i of the well when only the penetrated grid-

blocks are perforated and qk is the flow rate of the perforation k in the distributed

representation of the well. Note that in our well-placement method, we represented

the well by distributed perforations. Using the rates of the perforations from a well

model, we have
Nc∑
i=1

(PI)iλi∆pi =
Ñcom∑
k=1

(PI)kλk∆pk, (5.23)
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Figure 5.6: Schematic of a horizontal well by distributed perforations.

Assuming all the perforations have similar drawdown pressures and mobilities,

Nc∑
i=1

(PI)i =
Ñcom∑
k=1

(PI)k, (5.24)

Assuming that all the perforations have identical PI’s, i.e., a homogenous reservoir

with a uniform grid, and denoting the productivity index of each gridblock by (PI)gb,

we can write,

(PI)i = (PI)gb, i = 1, 2, . . . , Nc. (5.25)

(PI)k = βk(PI)gb, i = 1, 2, . . . , Ñcom. (5.26)

By substituting Eqs. 5.25 and 5.26 in Eq. 5.24, it follows that

Nc(PI)gb = (PI)gb

Ñcom∑
k=1

βk, (5.27)

which gives
Ñcom∑
k=1

βk = Nc. (5.28)

In general, we can write

Ñcom∑
k=1

βk =
lw

h
, (5.29)
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where lw is the length of the well inside the reservoir and h is the average penetrated

length over all the perforated gridblocks of the well.

As we previously mentioned, in order to distribute the rate of the original

well among the perforations, we assign a productivity index (PI) multiplier to each

perforation. Following Eq. 5.29, the PI multiplier of perforation k, βk, is defined by

βk = γ̃k
lw

h
, (5.30)

for k = 1, 2, . . . , Ñcom. We define h as the weighted average of the penetrated lengths

of the perforated gridblocks of the well, and it is given by

h =
Ñcom∑
k=1

γ̃khk, (5.31)

where hk is the perforated length of the perforation of gridblock k (Eq. 4.5). Note

that the γ̃k’s are the weights for averaging the perforation lengths of the wells. The

weights γ̃k’s are adopted so that the average length of the well perforation (h) is

strongly dependent on the perforated length of the perforations which have a higher

portion of the rate. Note that βk’s sum to lw
h

which is representative of the number

of gridblocks penetrated by the original well.

In this work, we use the Eclipse 100 simulator to run the simulation model

and evaluate the NPV. At the initial stage of the optimization, all the simulation

gridblock information, including geometrical information and the rock properties,

are input to the optimization code. First, the perforated gridblocks are determined

from the values of the well trajectory parameters (Eq. 5.4). Then the well model

parameters including kkhk and ro for each perforation k are computed using the

well parameters and the geometrical grid information. Each perforation of the well

is assigned with a productivity index (PI) multiplier (βk) computed from Eq. 5.30.

Therefore, the well model equation in the distributed representation of the well may
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simply be expressed as

q =
Ñcom∑
k=1

βk(PI)kλk∆pk. (5.32)

It is important to note that we use Eq. 5.12 only to compute the γ̃k’s and

βk’s. We still define the vector of optimization variables (Eq. 5.33 below) in terms of

the original well parameters. Before we apply the optimization algorithm, however,

we transform these variables again as presented in the following section.

5.4 The Optimization Algorithms

The optimal values of the set of parameters (xw,m, yw,m, zw,m, lw,m, θw,m, ϕw,m),

m = 1, 2, . . . , Nwell are obtained by minimizing J = −NPV subject to the bound

constraints; see Eqs. 5.1 through 5.3. To solve the preceding optimization problem,

we implement Bound Optimization BY Quadratic Approximation, BOBYQA, intro-

duced in Chapter 2. Similar to Chapter 4, here we present a method for normalizing

the optimization variables to improve the performance of BOBYQA.

As explained before, BOBYQA uses the reservoir simulator as a “black box.”

When optimizing the location and trajectories of directional wells, the optimization

parameters are

u = [xw,1, yw,1, zw,1, lw,1, θw,1, ϕw,1, . . . , xw,Nwell
, yw,Nwell

, zw,Nwell
, lw,Nwell

, θw,Nwell
, ϕw,Nwell

]T

(5.33)

The total number of the optimization variables is n = 6 × Nwell. For well m, the

bound values on xw,m and yw,m parameters are determined by the outer reservoir

boundaries. The bounds on each zw,m is the depth of the top and bottom surfaces

of the reservoir at (xw,m, yw,m). The maximum and minimum values for the length

of the well, lw,m, are specified by the user. The maximum and minimum values for

the deviation angles θw,m and ϕw,m are 0 and 180, respectively.

Similar to the discussion given in Chapter 4, BOBYQA is applied to the nor-
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malized variables; where, every optimization variable is normalized and the original

bounds are transformed to bounds on the normalized components of u. Hence, the

parameters used in BOBYQA are all specified in the normalized domain, i.e., the

values of the initial and minimum trust-region radii, ρbeg and ρend, the initial point

and the bound constraints are all specified in the normalized domain. The normal-

ized components ũi, i = 1, 2, . . . , n of the normalized vector of parameters ũ are

defined by Eq. 4.16. For the parameter εi, based on the Powell [34] observation and

as we explained in Chapter 4, we choose εi = 0.1 for all optimization variables. The

parameter Di for the optimization variables xw, yw and zw is the average over the op-

timization domain of the reservoir gridblock size in a particular coordinate direction

(x, y or z) appropriate for the variable ui, i.e., Di, for xw, yw and zw is respectively

the average reservoir gridblock size in the x, y and z direction, respectively. The

average is taken over the gridblocks inside the part of the reservoir that we consider

for well-placement.

The value of Di for the length parameter (lw) of the trajectory of the well

is an arbitrary value which approximates the length of the well in a gridblock. We

suggest choosing this value based on the initial direction of the well, i.e., if the well

axis is initially in the x direction, choose Di equal to the average gridblock size in

the x direction. The value of Di for the deviation angle ϕw is defined as the value

of the change in this angle which gives a change equal to ∆z in the depth of the

two endpoints of the initial well trajectory, where ∆z is the average gridblock size

in the z-direction. For example, if the well is initially horizontal and has a length of

250 ft and ∆z = 20 ft, then a change of sin−1( 20
250/2

) = 9.2◦ degrees in the deviation

angle of well displaces each endpoint of the well about 20 ft; thus we set Di = 9.2

for ϕw. Note that 250/2 is the half length of the well. Similarly, the value of Di for

the deviation angle θw is defined as the value of the change in this directional angle

which causes a change in the location of each endpoint of the well in the x− y plane
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equal to (∆x
2

+ ∆y
2
)1/2. For example, if the well is initially horizontal and has a

length of 250 ft and ∆x = ∆y = 50 ft, then a change of sin−1(
√

502+502

250/2
) = 34.5◦

degrees in the deviation angle of well, displaces each endpoint of the well about 70.7

ft in the x− y plane; thus we set Di = 34.5 for θw. Note if the computation of Di for

the optimization parameters θw and/or ϕw is not possible with the given guidelines,

we choose an arbitrary value for Di for θw and ϕw such that 0.2θ̃up
w,i ≥ 10ρend and/or

0.2ϕ̃up
w,i ≥ 10ρend, respectively, where θup

w,i = 180 degrees and ϕup
w,i = 180 degrees.

Similar to the procedure explained in Chapter 4, the value of minimum trust region

radius, ρend, is specified by the user and the value of the initial trust-region, ρbeg,

radius is determined Eq. 4.22.

Here, we also redefine the bound constraints for z`+1
w,m at iteration `+ 1 based

on the top and bottom depth of the reservoir at the x− y coordinates of the well lo-

cation, (x`+1
w,m, y

`+1
w,m). The procedure for the denormalization of (x̃`+1

w,m, ỹ
`+1
w,m, z̃

`+1
w,m, l̃

`+1
w,m)

to obtain the well parameters, (x`+1
w,m, y

`+1
w,m, z

`+1
w,m, l

`+1
w,m) follows Eqs. 4.21 through 4.21.

Bound values for optimization parameters θw,m and ϕw,m do not change during opti-

mization iterations. To find θ`+1
w,m and ϕ`+1

w,m, values of θ̃`+1
w,m and ϕ̃`+1

w,m are denormalize

by

θ`+1
w,m = θlow

w,m +
θ̃`+1

w,m

θ̃up
w,m

(θup
w,m − θlow

w,m). (5.34)

ϕ`+1
w,m = ϕlow

w,m +
ϕ̃`+1

w,m

ϕ̃up
w,m

(ϕup
w,m − ϕlow

w,m). (5.35)

As explained in Chapter 4, the upper and lower bounds on the (xw,m, yw,m)’s are set

as the boundary of the gridded area which contains the reservoir active gridblocks.

Similarly we may consider two approaches for evaluating NPV when a well center

point is moved into an inactive gridblock, which are, eliminating the well or modifying

the location of the well center point to an active gridblock. We argued in Example 4

in Chapter 4 that, eliminating the well may damage the quality of the interpolation

model.
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As we know, BOBYQA is a local optimization algorithm. Even though we

defined the optimization problem in a way that promotes smoothness of J , there is

always a chance of converging to a local optimum which gives an unsatisfactorily

low value of NPV. In Example 3 of the computational results section, the results

of BOBYQA are compared with those obtained with an implementation of the Ge-

netic Algorithm (GA). The Genetic Algorithm driver we used is based on the binary

representation of the optimization variables which is usually referred to as a binary

genetic algorithm (bGA) (Carroll [7], Yang et al. [43] and Carroll [8]). In bGA the

range of an optimization variable (which is a real number), uup
i −ulow

i , is divided into

a predefined number of intervals (which is an integer number). The optimization

variables of bGA algorithm are the integer numbers which represent the intervals of

each optimization variable. The integer numbers are represented in binary form and

GA operations (crossover and mutation) are applied in binary form. Binary repre-

sentation easily handles the box bound constraints on the variables. However, the

resolution of the optimization parameter value is controlled by the selected number

of intervals for each optimization variable. We use bGA only for the purpose of

comparing BOBYQA method with a global search method in Example 3.

5.5 NPV Functional as a Function of Well Trajectory Parameters

In this section, we discuss the defined NPV functional (given in Eq. 2.1) by

our model as a function of the well trajectory parameters through a 3D synthetic

reservoir example. We compare the NPV defined by our representation of the well in-

side the reservoir with the NPV computed by the Schlumberger [37] representation of

the well inside the reservoir. Note that in our method, we also use the Schlumberger

[37] method of computing the well model parameters, kihi and roi , where, the well

rate is distributed among gridblocks close to the trajectory of the well and the well

model parameters are computed according to the procedure discussed above. (Each

perforation gridblock is a rectangular volume which it is fully penetrated through
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the center of the gridblock). However, in the Schlumberger [37] method, only the

gridblocks penetrated by the well are perforated and the well model parameters are

determined based on the geometry of each gridblock and the orientation of the well.

To evaluate the NPV with the Schlumberger [37] method, the two endpoints of the

well are computed from the well trajectory parameters and input to the Schedule

software. Then the perforations of the well and their corresponding well model pa-

rameters are exported from the Schedule software (Schlumberger [37]). The simulator

is run with these perforations and the NPV is evaluated. The NPV calculated from

the runs with the Schlumberger [37] method of representing the well in the simulator

is referred to as the “Schedule” method throughout.

Here, we consider both a homogeneous and a heterogenous reservoir. In both

cases, the reservoir is a three-dimensional 2250×2250×200 ft (45×45×10 gridblocks)

simulation model. Gridblocks are 50 ft by 50 ft in the horizontal and 20 ft in the

vertical direction. The depth of the reservoir’s top surface is 10, 000 ft. The initial

reservoir datum pressure is 3, 500 psi at a datum depth of 10, 000 ft. There are four

fixed vertical water injection wells at the four corners of the reservoir. The injection

wells are perforated in the two bottom layers of the reservoir (layers 9 and 10).

All the injection wells are bottomhole pressure-controlled wells with the bottomhole

pressure equal to 4, 000 psi. For a single production well, we investigate the sensitivity

of NPV to the well trajectory parameters and compare the NPV from Schedule with

the NPV from our model. For NPV computations, the oil price is fixed at 70 $/STB;

the water injection and disposal costs are 10 and 5 $/STB, respectively, and the

annual discount rate is b = 0. In the following, we discuss the plot of NPV with our

model as a function of the production well trajectory parameters. We consider both

constant-rate and constant bottomhole-pressure controls for the production well.
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5.5.1 Homogeneous Reservoir

The porosity, permeability in the x direction, permeability in the y direc-

tion and the vertical permeability for the homogeneous reservoir are 0.20, 148.41

md, 74.21 md and 14.84 md, respectively. Initially, the production well is a hori-

zontal well with its principle axis in the x direction and the well length is 250 ft

with its center point in gridblock (20, 10, 3), i.e., the well trajectory parameters are,

(xw, yw, zw, lw, θw, ϕw) = (975, 475, 10050, 250, 0, 90). We consider two cases. In the

first case, the production well is rate-controlled with the constant total liquid pro-

duction rate equal to 2, 000 STB/D and the reservoir life is 18 years. The minimum

flowing bottomhole pressure constraint of the production well is set to 200 psi, i.e, if

the production well cannot maintain the specified production rate without violating

the specified bottomhole pressure constraint, the well control will change to the con-

stant bottomhole pressure of 200 psi. In the second case, the production well control

is the constant bottomhole pressure of 2, 000 psi and the reservoir life is 7 years. For

both the rate-controlled and bottomhole pressure-controlled wells, the reservoir life

is long enough to have significant water production at the end of the reservoir life.

First, to compare the NPV from Schedule with NPV from our model, we

simply change yw keeping all other well parameters fixed. The NPV function versus

yw, the y-coordinate of the center point of the well, is plotted in Fig. 5.7 for both the

Schlumberger [37] method and our method of representing the well in the simulator.

The black square data points show the NPV versus yw for the case that the well

perforations in the simulation model are determined by using the Schedule pre-

processing software. The red, blue and green data points, respectively, correspond

to our method of representing the well in simulator with the parameters α = 1.0,

α = 0.75 and α = 0.5, respectively; see Eqs. 5.16-5.18. For both methods, NPV is

evaluated at yw = 475, 487.5, 499, 501, 525 and 549 ft, where yw = 500 ft corresponds

to the boundary between two rows of gridblocks and yw = 475 and 525 ft correspond
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(b) bottomhole pressure-controlled well

Figure 5.7: NPV as a function of yw,j, Homogeneous reservoir.

to the y-coordinate of the gridblock center points in these two rows of gridblocks.

As it is shown in Fig. 5.7, the yw location of a horizontal well aligned in the x

direction inside a gridblock is immaterial in the Schedule method. For all three

values of yw = 475, 487.5 and 499 ft, the production well is completed in gridblocks

(18:22,10,3). Once the well is moved across the boundary of the gridblock (yw = 500

ft), there is a jump in NPV. For yw = 501, 525 and 549 ft, the production well is

completed in gridblocks (18:22,11,3). On the other hand, our method of representing

the well is sensitive to the location of the well inside a gridblock because the well rate

is distributed among the neighboring rows of gridblocks in addition to the gridblocks

penetrated by the well. The contribution of each perforation rate to the total rate

of the well, γi, for α = 1.0 are shown for yw = 475, 487.5 and 499 ft in Figs. 5.8, 5.9

and 5.10, respectively. In each figure, only the γi’s for the perforations in simulation

layers 2, 3 and 4 are shown.

The horizontal and vertical ordinates in Figs. 5.8 through 5.10 are respectively

the i and j indices of the perforated gridblocks. As we see in Figs. 5.8 to 5.10, once

the well moves in the y direction even within the same gridblock, the γi’s of the

perforations change, e.g., compare Figs. 5.8(a), 5.9(a) and 5.10(a). The values of the

productivity index multipliers, βi’s, (not shown here) are proportional to the values
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Figure 5.8: The values of γi for each perforation of the well for yw = 475 ft, Homo-
geneous reservoir. The x and y-ordinates correspond to the i and j indices of the
perforated gridblocks, respectively.
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Figure 5.9: The values of γi for each perforation of the well for yw = 487 ft, Homo-
geneous reservoir. The x and y-ordinates correspond to the i and j indices of the
perforated gridblocks, respectively.
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Figure 5.10: The values of γi for each perforation of the well for yw = 499 ft,
Homogeneous reservoir. The x and y-ordinates correspond to the i and j indices of
the perforated gridblocks, respectively.
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of γi’s but their values add up to lw
h

= 250
50

= 5. Note that, as we previously explained,

the perforations with a negligible portion of the rate will be eliminated in order to

decrease the number of perforated gridblocks. Therefore, all the perforations shown

in Figs. 5.8 through 5.10 may not be present when running the simulator to evaluate

the NPV.

In our method we perforate the surrounding gridblocks of the well trajectory

as well as the gridblocks actually penetrated by the well. The representation of the

well with distributed perforations is approximate because (i) different perforations

may have different well indices (due to the difference in permeabilities and size of the

perforation gridblocks), (ii) different perforations have different phase mobilities due

to the difference in their pressures and saturations, and (iii) different well perforations

have different flowing drawdown pressures (the difference between the well bottom-

hole pressure and the perforation gridblock pressure). Even though the perforations

of a well may have different drawdown pressures, phase mobilities and productivity

indices, for a rate-controlled well, the total production rate of the well is constant.

Therefore, when the rate-controlled well is located at the center of a gridblock, the

NPV value from our method and the one from the Schedule method are very close,

see yw = 475 ft and yw = 525 ft in Fig. 5.7(a). As the well moves within the gridblock

and in the y direction, the rate fractions of the total production rate corresponding

to the oil and water phases change, which results in a change in NPV as a function

of yw. For a bottomhole pressure-controlled well, the summation of the rates of the

distributed perforations is not equal to the rate of the well which has the perforations

only at the penetrated gridblocks. Note that the productivity index multipliers of

the perforations sum to the right value of lw
h

, however, assuming that the PI’s of the

perforations are additive requires the assumptions of identical drawdown pressure,

phase mobility and productivity indices for all perforations. These conditions do not

generally hold. In the case under consideration, the reservoir is homogeneous so all
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the perforations have identical productivity indices because gridblock perforations

have identical permeabilities and the gridblock dimensions are uniform. However,

due to the distributed perforations and the variation in the flowing drawdown pres-

sure and possibly phase mobilities of the perforations, the NPV from our method is

not identical with the NPV from Schedule, i.e., in the constant bottomhole pressure

case, our approximation over estimates NPV comparing to the Schedule method (see

Fig. 5.7(b) for bottomhole pressure-controlled well). The most important thing that

the reader should observe regarding Figs. 5.7(a) and 5.7(b) is that for the two α = 1

cases, the NPV computed from our method is an increasing continuous function of

yw, so that given the choice of whether yw should be in the gridblock corresponding

to yw = 475 ft or yw = 525 ft, our optimization procedure would put the well in

the gridblock with the y-coordinate of its center point corresponding to yw = 525 ft,

i.e., our optimal choice of yw would be consistent with the choice based on the NPV

computing using the Schedule pre-processing software.

For smaller values of α (α = 0.75 and 0.5), fewer surrounding gridblocks will

be perforated and the βis of the perforations which are further away from the well

trajectory are smaller. Thus, as α decreases, our NPV approximation in the bottom-

hole pressure control case becomes closer to the NPV from Schedule (at yw = 475

ft and yw = 525 ft) but becomes noisy. For smaller values of α, the difference in

the flowing drawdown pressures of different perforations are larger, because of the

variations in the PI multipliers of the perforations. In the case presented here, when

the horizontal well produced at a fixed bottomhole-pressure moves across a boundary

between two gridblocks (yw = 500 ft), the rate of the well is larger than for a well

close to the center of either of those gridblocks (yw = 475 ft or yw = 525 ft). This

makes our approximation inaccurate when the location of the well is close to the

boundary between two gridblocks (see Fig. 5.7(b)). To better explain this situation,

assume that a well with distributed perforations has only three perforations in three
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adjacent rows of gridblocks. If the actual well location is close to the center point

of the perforation gridblock in the middle row, the PI multiplier corresponding to

that perforation would be much larger than the ones for the other perforations (ex-

ponential function behavior). The perforations with small βi’s would have negligible

rates and the perforation with a large βi would have a large rate but the drawdown

pressure for the perforation with large βi is such that the total rate of the perfora-

tions would be close to the rate that the well would have if the well had only a single

perforation in the gridblock close to its location. However, if the location of the well

is close to the boundary of the two gridblocks, both perforations have significant PI

multipliers and drawdown pressures would be large for both perforations, so that,

both perforations would have a significant flow rate and the total rate of the well

would be larger than the rate that the well would have if it were perforated in only

one gridblock. This is because the rate of a perforation of a bottomhole pressure-

controlled well is not a linear function of the productivity index multiplier of that

perforation. The preceding discussion is valid only for a well with constant bottom-

hole pressure control. This behavior can be observed in Fig. 5.7(b) at yw = 500 ft for

α = 0.5 (and to a much smaller degree for α = 0.75). In Figs. 5.11(a) and 5.11(b),

the cumulative oil production, the cumulative water production and the cumulative

liquid production for the bottomhole pressure-controlled production well are shown

as a function of yw for α = 1.0 and α = 0.5, respectively. Fig. 5.11(a) pertains to

the case where α = 1.0. As its shown in this figure, the cumulative oil production

increases and the cumulative water production decreases as the well moves in the y

direction and away from the nearby injection wells. Although the cumulative pro-

duction from the well increases as the well moves across the boundary, however, the

increase in the cumulative production is not significant. Therefore, for α = 1.0 the

NPV increases as a function of yw; see Fig. 5.7(b) for α = 1.0. Fig. 5.11(b) pertains

to the case where α = 0.5. As explained before, for α = 0.5 the cumulative liquid
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(b) α = 0.5

Figure 5.11: Cumulative oil production, cumulative water production and cumulative
liquid production as a function of yw for the bottomhole pressure-controlled well,
Homogeneous reservoir.

production from the well significantly increases when the well crosses the boundary

between two rows of gridblocks at yw = 500 ft. Therefore, for α = 0.5, NPV is a

noisy function of yw; see Fig. 5.7(b) for α = 0.5.

If the well control is a constant production rate and the well center point is

at a gridblock center, our NPV approximation would be very close to the Schedule

NPV as the total rate of the well is constant regardless of the values of βis for the

perforations of a well. However, the NPV with our model changes continuously

as the rate of each perforation changes when the location of the well changes; see

Fig. 5.7(a).

Plots of the NPV as a function of horizontal orientation angle, θw, and ver-

tical orientation angle, ϕw, for the production well controlled with the specified

constant bottomhole pressure and the specified liquid production rate are given in

Figs. 5.12 and 5.13, respectively. In these two figures, the well trajectory parame-

ters, except the orientation angles, have the fixed values given by of (xw, yw, zw, lw) =

(975, 475, 1050, 250). In Fig. 5.12(a) and 5.13(a), ϕw is fixed at 90 degrees (the well

is horizontal) and θw changes from 0 to 180 degrees while all other well parame-

ters remain fixed. In Figs. 5.12(b) and 5.13(b), θw is fixed at 0 degrees (the well
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(b) NPV vs. ϕw

Figure 5.12: NPV as a function of θw and ϕw, Rate-controlled well, Homogeneous
reservoir.

in aligned in the x direction) and ϕw changes from 0 to 180 degrees while all other

well parameters remain fixed. Similar to the plots of NPV versus yw, the NPV plots

computed by running the simulator using our approximate representation of the well

inside the reservoir and the NPV plots which are computed when the well perfora-

tions are determined with Schedule, are in a better agreement for the rate-controlled

well. For the bottomhole pressure-controlled well, the NPV plots with our method of

representing the well inside the reservoir are more approximate, however, note that

the change of NPV with respect to the change of the orientation angles follow the

same trend in both Schedule and our method. Because of this, optimization results

obtained based on our well model should be consistent with Schedule. Based on our

experimentation, which includes the results shown in Figs. 5.7, 5.12 and 5.13, we

suggest using α = 1.

5.5.2 Heterogenous Reservoir

The problem considered here is very similar to the one just presented for

the homogenous reservoir except, here, the reservoir is heterogenous. However, all

the comparisons and the plots presented in this section are similar to the ones for

the homogenous reservoir discussed previously. The log-permeability field of the

heterogenous reservoir in the x direction and the porosity field of the reservoir for
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Figure 5.13: NPV as a function of θw and ϕw, Bottomhole pressure-controlled well,
Homogeneous reservoir.

simulation layers 1 to 10 are shown in Figs. 5.14 and 5.15, respectively. The perme-

ability in the y and z directions are 0.5 and 0.1 times the corresponding gridblock

permeability in the x direction, i.e, ky = 0.5kx and kz = 0.1kx. As in the homogenous

case, there are four vertical water injection wells completed in the bottom two layers

near the four corners of the reservoir. These injection wells operate at a constant

bottomhole pressure equal to 4000 psi.

We consider a horizontal production well in the x direction with its center

point located in gridblock (20, 10, 3) and length equal to 250 ft, i.e., the well tra-

jectory parameters are, (xw, yw, zw, lw, θw, ϕw) = (975, 475, 10050, 250, 0, 90). Well

controls with a constant liquid production rate of 2, 000 STB/Day and with a con-

stant bottomhole pressure of 2, 000 psi are both considered. The NPV plots with

respect to yw, θw and ϕw, respectively, are shown in Figs. 5.16 to 5.18 for the rate-

controlled and the bottomhole pressure-controlled wells. In Fig. 5.16, yw = 500

and 550 ft correspond to the boundaries between adjacent rows of gridblocks and

yw = 475 and 525 ft correspond to the y-coordinate of the gridblock center points

in two adjacent rows of gridblocks. The NPV obtained with our method is a closer

approximation of the NPV from Schedule for the rate-controlled well than for the

bottomhole pressure-controlled well. For a heterogenous reservoir, in addition to
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Figure 5.14: Log-permeability field of the reservoir in the x direction, Heterogenous
Reservoir.
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Figure 5.15: Porosity field of the reservoir, Heterogenous Reservoir.
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(b) bottomhole pressure-controlled well

Figure 5.16: NPV as a function of yw, Heterogeneous reservoir.
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(b) bottomhole pressure-controlled well

Figure 5.17: NPV as a function of θw, Heterogeneous reservoir.

the difference in the mobilities and drawdown pressures of the perforations, the pro-

ductivity indices of the perforations are also different due to the difference in the

permeability of their gridblocks. Therefore, the NPV is more approximate. As in

the homogenous case, the NPV is noisy for smaller values of α when a bottomhole

pressure-controlled well crosses the boundary between two gridblocks.

The results of Figs. 5.16 through 5.18 show that, the NPV from our well model

with α = 1 displays the same trend as the NPV using the well rates computed using

the Schedule pre-processing software, except in case Fig. 5.17(a) for a rate-controlled

well. In this case, based on our model, NPV is optimized with θw ≈ 45 degrees

whereas θw ≈ 90 corresponds to the optimal angle according to the Schedule results.

Note, however, the difference between the two corresponding NPV’s is negligible.
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(b) bottomhole pressure-controlled well

Figure 5.18: NPV as a function of ϕw, Heterogeneous reservoir.

For this example α = 0.75 appears to yield optimum parameter estimates from our

method that are more consistent with the results from Schedule. Nevertheless, we

still recommend α = 1 while recognizing some experimentation may be required to

obtain the best value of α.

5.6 Optimization Results

In this section, we present the results generated from our algorithm for a set of

example problems. In Example 1, we determine the optimum location of a production

well for the synthetic homogeneous and heterogeneous reservoirs discussed in the

previous section. In Example 2, we consider a homogenous and heterogeneous layered

reservoir and we apply our algorithm to optimize the trajectory of a production well.

The significance of this example is that the NPV in this example is very sensitive to

the vertical orientation angle of the well. Example 3 is a 3D anticline reservoir with a

strong edge-water drive. In this example, we consider optimization of the trajectories

of two production wells. We also present a comparison between the performances

of BOBYQA and GA for our well-placement algorithm. In Example 4, we consider

optimizing the locations of producers and water injection wells for the PUNQ-S3

3D three-phase reservoir model. In all examples, the objective is to maximize the

NPV by optimizing the trajectories of the production wells. The first three examples
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are two-phase oil-water reservoirs and PUNQ is a three-phase reservoir model. In

all examples presented in this section, the oil price is fixed at 70 $/STB; the water

injection and disposal costs are 10 and 5 $/STB, respectively and the annual discount

rate is b = 0. In the PUNQ example, we do not consider any revenue or cost for the

produced gas from the reservoir.

5.6.1 Example 1. Optimization of a Single Production Well in a 3D Reservoir

In this example, we consider both homogeneous and heterogenous reservoirs

described in the previous section. Here, we optimize the trajectory of the pro-

duction well for each reservoir model. We consider the constant-rate and constant

bottomhole-pressure controls for the production well.

Case 1- Homogeneous Reservoir: We consider the optimization of the location,

length and trajectory angles of a production well. We consider both bottomhole

pressure-controlled and rate-controlled wells. The homogeneous reservoir is the one

described in Sub-Section 5.5.1. Recall that there are water injection wells completed

in the bottom two layers in each corner of the reservoir. For both types of well

controls, we start with two different initial sets of well parameters. For the first

initial guess, the well is a horizontal well with its principle axis in the x direction

and with the length of 250 ft and its center point is located in gridblock (20, 10, 3),

i.e., (xw, yw, zw, lw, θw, ϕw) = (975, 475, 10050, 250, 0, 90). For the second initial guess,

the well is horizontal and aligned in the y direction where its center point is located

in gridblock (25, 35, 3) and has a length of 250 ft, i.e., the well trajectory parameters,

(xw, yw, zw, lw, θw, ϕw) = (1225, 1725, 10050, 250, 90, 90). The maximum length for

the production well is 500 ft. The summary of the optimization runs for both initial

guesses are shown in Table 5.1.

The values of NPV in the first and fourth rows of results in Table 5.1 cor-

respond to the evaluated NPV when the well perforations are determined with the
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Table 5.1: The summary of the optimization runs for both initial guesses, Homoge-
neous reservoir, Example 1, Case 1.

Rate-controlled well BHP controlled well
Init. Guess 1 Init. Guess 2 Init. Guess 1 Init. Guess 2

Initial NPV, Schedule $6.02× 108 $6.33× 108 $5.30× 108 $6.27× 108

Initial NPV $6.02× 108 $6.36× 108 $5.91× 108 $6.91× 108

Final NPV $8.35× 108 $8.36× 108 $9.04× 108 $9.05× 108

Final NPV, Schedule $8.35× 108 $8.31× 108 $8.98× 108 $8.97× 108

No. of Sim. runs 49 60 79 62

Schedule software with the initial and final well trajectory parameters, respectively.

The values of NPV in the second and third rows of results correspond to the initial

and final NPV values of the optimization runs which uses our representation of the

well in the simulator. The Schedule results in row 4 of data as well as corresponding

results for other example were obtained by inputting the optimal well trajectory es-

timated by our procedure into Schedule and then running the simulator. Note that

the NPV values obtained with our well model are close to those obtained using the

Schedule software. Also note that the estimated optimal NPV values obtained from

the two initial guesses differ by less than 0.5%.

The initial and final well parameters are listed in Table 5.2. The schematic of

the reservoir and the initial and final locations of the production well for both initial

guesses are shown in Figs. 5.19(a) and 5.19(b) for the rate-controlled and bottomhole

pressure-controlled wells, respectively. In Fig. 5.19, the two initial guesses are shown

with two different colors where the initial locations are shown in a dashed line and the

final well locations are shown in solid lines. The production rate from the reservoir

is constant for a rate-controlled well. For both initial guesses of the rate-controlled

production well, the final trajectories of the well are horizontal and the well is moved

to the top layer of the reservoir. This is expected as the thickness of the reservoir is

much smaller than the dimensions of the reservoir in the x and y directions, and the

water injection wells are perforated at the bottom of the reservoir. Also, the well
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Table 5.2: The initial and final well trajectory parameters (xw, yw, zw, lw, θw, ϕw) for
the production well, Homogeneous reservoir, Example 1, Case 1.

Rate-controlled well, Initial well param. (975, 475, 10050, 250, 0, 90)
Init. Guess 1 Final well param. (1134.3, 1125.4, 10000.4, 198.5, 0.0, 90.5)

Rate-controlled well, Initial well param. (1225, 1725, 10050, 250, 90, 90)
Init. Guess 2 Final well param. (1125.5, 1128.8, 10000.0, 319.3, 95.7, 90.1)

BHP-controlled well, Initial well param. (975, 475, 10050, 250, 0, 90)
Init. Guess 1 Final well param. (1123.4, 1070.5, 10021.2, 377.1, 113.8, 90.4)

BHP-controlled well, Initial well param. (1225, 1725, 10050, 250, 90, 90)
Init. Guess 2 Final well param. (1135.1, 1145.3, 10015.8, 391.0, 67.5, 89.5)
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(a) rate-controlled well
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(b) BHP controlled well

Figure 5.19: The initial and final well locations, Homogeneous reservoir, Example 1,
Case 1. The initial locations are shown in dashed lines and the final well locations
are shown in solid lines. The well locations corresponding to initial guesses 1 and 2
are shown in blue and green colors, respectively.

is moved to the center of the reservoir which is also expected as the four vertical

injection wells are at the corners of the reservoir. The horizontal orientation angles

of the well obtained for the two initial guesses are θ = 0 and 96 degrees, respectively,

i.e., the values of θ did not change significantly from its initial value during the

iterations of the optimization algorithm.

The final trajectories of the bottomhole pressure-controlled production wells

are horizontal, at the center of the reservoir and in the top simulation layer. Again

this is reasonable considering the location and perforations of the fixed injection

wells. For a BHP-controlled well, the production rate from a perforation of a well

depends on the productivity index of the perforation which is a function of the length
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of the well inside the perforation gridblock (hi) and the radial permeability of the

perforation gridblock toward the well (ki), see Eqs. 4.4 and 4.5. The orientation

angles of the well in both horizontal and vertical directions determines both the

length of the well in a gridblock and the radial permeability toward the well. We

recall that although the reservoir is homogeneous, the permeability in the z and y

directions are respectively 0.1 and 0.5 times the permeability in the x direction. The

final trajectories of both initial guesses are approximately aligned in the y direction.

This is reasonable as it gives a high value of the radial permeability toward the

well, ki ≈
√
kxkz, and also tends to delay water breakthrough and maximize sweep

efficiency as the vertical water injection wells are at the corners of the reservoir. For

the final trajectories obtained with initial guesses 1 and 2, kihi of a perforation of the

well is larger than the one for a well aligned in the y direction which gives a larger

production rate from the reservoir. The final trajectory obtained with initial guesses

1 and 2 have kihi equal to 2458 and 2446 md.ft, respectively, which both are larger

than the one for a perforation of a well oriented in the y direction (
√
kxkz∆y = 2347

md.ft).

Here, we compare our final NPVs for the two initial guesses with the NPV’s

for 6 well trajectory trials with the (xw, yw) coordinates of the well locations at the

exact center of the reservoir. Four trials are for the cases where the well is aligned in

the x or y direction and has the length of 250 or 500 ft. In the other two trials, all well

trajectory parameters except the horizontal orientation angle (θw) correspond to the

optimum solution with the second initial guess. For the horizontal orientation angle

values in these two trials, we use θw = 0 and 90 degrees, respectively. The summary

of the well trajectory parameters and the NPVs are listed in Table 5.3. Our final

NPVs of the optimization runs with both initial guesses are larger than four well

trajectory trials. Two trials gave just slightly higher (0.3 percent) or similar NPV

values compared to our final NPV values. Thus, it appears our method obtained a
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Table 5.3: Comparison of our optimum NPV with the NPV for some trials of the
well trajectory, Homogeneous reservoir, Example 1, Case 1.

Trial Well trajectory parameters NPV

1 (1125, 1125, 10010, 250, 0, 90) $8.75× 108

2 (1125, 1125, 10010, 250, 90, 90) $8.94× 108

3 (1125, 1125, 10010, 500, 0, 90) $9.08× 108

4 (1125, 1125, 10010, 500, 90, 90) $9.03× 108

5 (1135.1, 1145.3, 10015.8, 391.0, 0, 89.5) $9.03× 108

6 (1135.1, 1145.3, 10015.8, 391.0, 90, 89.5) $9.05× 108

Our final solution with
(1123.4, 1070.5, 10021.2, 377.1, 113.8, 90.4) $9.04× 108

initial guess 1
Our final solution with

(1135.1, 1145.3, 10015.8, 391.0, 67.5, 89.5) $9.05× 108

initial guess 2
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(b) BHP controlled well

Figure 5.20: NPV versus the optimization iteration number, Homogeneous reservoir,
Example 1, Case 1.

good estimate of the optimum NPV.

The plot of NPV versus the iteration number is shown in Fig. 5.20 for the rate-

controlled and bottomhole pressure-controlled wells. As we explained in Chapter 2,

BOBYQA needs n + 2 ≤ m ≤ [(n + 1)(n + 2)]/2 simulation runs to build the

first quadratic approximation of the objective function. There are 6 optimization

variables and we choose m = 2n + 1 = 13 for the size of initial interpolation set

for BOBYQA. In Fig. 5.20, the first 13 simulation runs are used to build the initial

quadratic model. In all cases, fewer than 80 reservoir simulation runs were used to

obtain the optimal estimates of well location, length and trajectory angles.
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Table 5.4: The summary of the optimization runs for both initial guesses, Heteroge-
nous reservoir, Example 1, Case 1.

Rate-controlled well BHP controlled well
Init. Guess 1 Init. Guess 2 Init. Guess 1 Init. Guess 2

Initial NPV, Schedule $7.04× 108 $4.90× 108 $6.22× 108 $4.93× 108

Initial NPV $7.04× 108 $4.88× 108 $7.04× 108 $5.47× 108

Final NPV $8.18× 108 $8.29× 108 $8.91× 108 $8.84× 108

Final NPV, Schedule $8.16× 108 $8.27× 108 $8.85× 108 $8.71× 108

No. of Sim. runs 48 70 55 69

Case 2- Heterogenous Reservoir: This case is the same as Example 1, Case

1, except that the reservoir geology is heterogenous. The heterogeneous reservoir

is the one described in Sub-Section 5.5.2. Similar to Example 1, Case 1, we try to

optimize the location of the producer with two different initial guesses for the set

of six well parameters. Again we consider both a rate-controlled production well

and a constant bottomhole pressure-controlled well. Recall that there are water

injection wells completed in the bottom two layers in each corner of the reservoir.

The summary of the optimization runs for both initial guesses are shown in Table 5.4.

Note the NPV values from Schedule are fairly close to the NPV values from the well

model we use in the optimization algorithm.

The initial well trajectory parameters and also the final well trajectory pa-

rameters after the optimization for both initial guesses 1 and 2 are listed in Table 5.4.

The values of NPV in the first and fourth rows of results in Table 5.4 correspond

to the evaluated NPV when the well perforations are determined by the Schedule

method. The values of NPV in the second and third rows of results correspond to

the initial guesses and final NPV values after optimization.

The results for the two initial guesses (Tables 5.4 and 5.5) are sufficiently

different so that, it is clear that BOBYQA converged to a local optimum, however,

the optimum NPVs for both initial guesses are fairly close even though there is

considerable variation in the values of the estimated optimal well parameters, see
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Table 5.5: The initial and final well trajectory parameters (xw, yw, zw, lw, θw, ϕw) for
the production well, Heterogenous reservoir, Example 1, Case 2.

Rate-controlled well, Initial well param. (975, 475, 10050, 250, 0, 90)
Init. Guess 1 Final well param. (695.4, 934.4, 10000.4, 307.4, 0.0, 90.2)

Rate-controlled well, Initial well param. (1225, 1725, 10050, 250, 90, 90)
Init. Guess 2 Final well param. (696.5, 915.2, 10011.3, 500.0, 132.6, 89.3)

BHP-controlled well, Initial well param. (975, 475, 10050, 250, 0, 90)
Init. Guess 1 Final well param. (791.5, 926.7, 10026.4, 396.7, 141.1, 93.2)

BHP-controlled well, Initial well param. (1225, 1725, 10050, 250, 90, 90)
Init. Guess 2 Final well param. (896.1, 919.2, 10013.7, 240.9, 88.7, 83.5)
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(a) rate-controlled well
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(b) BHP controlled well

Figure 5.21: The initial and final well locations, Heterogenous reservoirs, Example
1, Case 2. The initial locations are shown in dashed lines and the final well locations
are shown in solid lines. The well locations corresponding to initial guesses 1 and 2
are shown in blue and green colors, respectively.

the values of θw and lw in particular in Table 5.5. The schematic of the reservoir and

the initial and final locations of the production well for both initial guesses are shown

in Figs. 5.21(a) and 5.21(b) for rate-controlled and bottomhole pressure-controlled

wells, respectively. In Figs. 5.21(a) and 5.21(b), the results for the two initial guesses

are shown with two different colors where the initial locations are shown by a dashed

line and the final well locations are shown as solid lines. Similar to the homogenous

reservoir, the final trajectory of the well is very close to horizontal (ϕw = 90 degrees)

and the well is moved to the top of the reservoir to delay water production. However,

the location of the well is not at the center of the reservoir anymore.

Plots of NPV versus the iteration number are shown in Fig. 5.22 for the
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(b) BHP controlled well

Figure 5.22: NPV versus the optimization iteration number, Heterogenous reservoir,
Example 1, Case 1.

rate-controlled and bottomhole pressure-controlled wells.

5.6.2 Example 2. Single Production Well in a Layered Reservoir

In this example, we consider the optimization of the trajectory of a production

well in a layered reservoir. The reservoir simulation model is a three-dimensional

model with 45×45×20 gridblocks (2250×2250×220 ft). The gridblocks are uniform

with ∆x = ∆y = 50 ft. The simulation model has 10 reservoir layers of good quality

sand which alternates with 10 shale layers which are essentially impermeable. Each

sandstone layer is 20 ft thick and each shale layer is 2 ft thick. Simulation layers

1, 3, 5, 7, 9, 11, 13, 15, 17 and 19 are sandstone layers and other layers are shale

layers. The depth of the reservoir top surface is 10, 000 ft. The initial reservoir datum

pressure is 3, 500 psi at datum depth of 10, 000 ft. The porosity and permeability

of the shale layers are 0.001 and 0.0001 md, respectively. Therefore, the simulation

layers are effectively isolated vertically.

Similar to Example 1, we consider both a homogenous case and a heteroge-

nous case. We consider the optimization of the location, length and trajectory of

a production well for two production scenarios for the reservoir. In the first sce-

nario, the production from the reservoir is due to the depletion of the reservoir (no

water injection) and the production period of the reservoir is 1 year. In the sec-
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ond scenario, there are four fixed vertical water injection wells at the four corners

of the reservoir and the production time period of the reservoir is 3 years. All the

injectors are perforated in layers 1 to 20 and operate at the constant bottomhole

pressure of 4, 000 psi. In both scenarios, the production well operates at the speci-

fied bottomhole pressure of 2,000 psi. Similar to the previous example, we consider

two different initial guesses for the well parameters, (xw, yw, zw, lw, θw, ϕw). In the

optimization runs with initial guess 1, the production well is initially considered to

be a horizontal well in layer 5 (third reservoir layer) and the well axis is in the x

direction and has a length of 300 ft. The well trajectory parameters for the ini-

tial guess 1 are (xw, yw, zw, lw, θw, ϕw) = (475.0, 475.0, 10054.0, 300.0, 0.0, 90.0). In

the optimization runs with the second initial guess, the well is initially inclined

and has a length of 200 ft. The set of well parameters for the initial guess 2 is

(xw, yw, zw, lw, θw, ϕw) = (1475.0, 1725.0, 10054.0, 200.0, 90.0, 30.0). The maximum

length for the production well is 500 ft in all optimization runs.

Case 1- Homogeneous Reservoir Layers: In this case, the reservoir layers of the

simulation model are homogenous. The porosity and permeability of the simulation

layers corresponding to the reservoir layers are 0.2 and 148.41 md, respectively. The

reservoir simulation layers are isotropic, i.e., kx = ky = kz. As mentioned above,

we apply our well-placement optimization algorithm to two different initial guesses.

The summary of the optimization runs for both scenarios (no water injection and

with water injection) are shown in Table 5.6. Two observations are important. First,

the estimated optimal NPV values based on our well model are virtually identical

for both initial guesses. Secondly, even though the NPV values from our model

and Schedule evaluated at the initial guesses are not the same, the NPV values

from Schedule and our model evaluated at the estimated optimal values are not

so different. The difference between our NPV value and the one from the Schedule

method at the initial guesses is due to the fact that the reservoir layers are completely
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Table 5.6: The summary of the optimization runs for both scenarios, Homogeneous
reservoir layers, Example 2, Case 1.

Depletion With
(No water injection) water injection

Initial Guess 1

Initial NPV, Schedule $3.81× 107 $7.03× 107

Initial NPV $3.21× 107 $1.18× 108

Final NPV $1.20× 108 $8.71× 108

Final NPV, Schedule $1.24× 108 $8.63× 108

No. of Sim. runs 150 58

Initial Guess 2

Initial NPV, Schedule $9.59× 107 $3.99× 108

Initial NPV $8.58× 107 $4.62× 108

Final NPV $1.20× 108 $8.70× 108

Final NPV, Schedule $1.24× 108 $8.41× 108

No. of Sim. runs 127 96

isolated by the shale layers. With the Schedule method, the well is perforated only

at the gridblocks which are penetrated by the well. At the initial guesses and with

the Schedule method, most reservoir layers do not contribute in the production from

the reservoir as they are not penetrated by the well and also the reservoir layers are

isolated by the shale layers. With our method, more simulation layers of the reservoir

are perforated, hence, more layers contribute to the production from the reservoir.

Therefore, at the initial guesses, the production from the reservoir and also the NPV

from our method is much larger than the one from the Schedule method. At the final

locations, all reservoir layers are penetrated by the production well and therefore,

the NPV from both methods are close.

The initial and estimated optimal well locations and trajectories with initial

guesses 1 and 2 are shown in Fig. 5.23(a) and Fig. 5.23(b), respectively. In these

figures, the well trajectory based on the initial guess for the vector of parameters

is shown with a red line and the optimal well trajectories for the first production

scenario (depletion) and the second production scenario (water injection) are shown

with a green line and a blue line, respectively. The initial and final well trajectory

parameters corresponding to the optimization runs with the two initial guesses are
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(a) Initial guess 1
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(b) Initial guess 2

Figure 5.23: The initial and final well locations and trajectories, Homogeneous reser-
voir layers, Example 2, Case 1. The initial well trajectory is shown with a red line
and the estimated optimal well trajectories for the first production scenario (deple-
tion) and the second production scenario (water injection) are shown with a green
line and a blue line, respectively.

listed in Table 5.7. Note that in Fig. 5.23, only the part of the well trajectory inside

the reservoir is plotted, however, in Table 5.7, the full length of the well (including

the part of the well which may locate outside the reservoir) is listed.

We first consider the primary depletion scenario. Although the estimated

well parameters obtained for the two initial guesses are not similar, the estimated

optimal NPV’s from the two initial guesses are identical. Since the sandstone layers

are separated by shale layers, simple reservoir physics dictates the optimal inclina-

tion angle, ϕw, should be such that the well penetrates all reservoir layers and our

algorithm achieves this results in both cases which is essentially apparent from the

results of Table 5.7. The well vertical inclination angle is changed from 90 degrees

to 65.2 degrees in the optimization run with initial guess 1 and from 30 degrees to
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Table 5.7: The initial and final well trajectory parameters corresponding to the op-
timization runs with the two initial guesses, Homogeneous reservoir layers, Example
2, Case 1.

Well trajectory parameters

Initial Guess 1

Initial (475, 475, 10054, 300, 0, 90)
Final -

(855.4, 1039.4, 10107.6, 500.0, 100.7, 65.2)
No water injection

Final -
(1125.5, 1131.3, 10085.9, 477.3, 0.0, 178.3)

With water injection

Initial Guess 2

Initial (1475, 1725, 10054, 200, 90, 30)
Final -

(1354.6, 1398.3, 10098.4, 419.5, 179.7, 59.9)
No water injection

Final -
(1141.1, 1083.5, 10093.4, 264.2, 67.7, 34.6)

With water injection

59.9 in the optimization run with initial guess 2 and the length of the well increased

during optimization runs with both initial guesses so that the final trajectory of the

well penetrates all reservoir layers. Also, the well is moved toward the center of the

reservoir, however, the final location of the well’s center point is not exactly at the

center of the reservoir which is (x, y, z) = (1125, 1125, 10110) ft, as the NPV is not

very sensitive to the spatial location of the well in the x and y directions for the

one year reservoir life specified for this problem. This is obvious because although

in the final well locations of the optimization runs with the two initial guesses the

well center point locations are different, but the final NPVs are identical.

In the second scenario (water injection scenario), the well is moved to the

center of the reservoir during the optimization run for both initial guesses, as this

location is the farthest distance from all the injection wells and the specified reservoir

life is longer in this case. The final trajectory of the well for the optimization run

with the first initial guess is vertical and penetrates all reservoir layers. For the

optimization run with the second initial guess, the inclination angle is 34 degrees but

the well still penetrates all reservoir layers. Note that a vertical or close to vertical

final trajectory of the well gives a perfect water flood of all reservoir layers with
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(b) Initial guess 2

Figure 5.24: The plot of NPV versus the reservoir simulation runs for the no water
injection scenario, Homogeneous reservoir layers, Example 2, Case 1.

minimal water production. The estimated NPV obtained with the first initial guess

($8.63 × 108) is slightly greater than the estimated optimal NPV with the second

initial guess ($8.41 × 108). For the purpose of comparison, we evaluate the NPV

of a possible trial solution by the Schedule method for a fully penetrating vertical

production well at the center of the reservoir. The NPV for this trial solution is

$8.63×108 which is identical to our estimated NPV with initial guess 1; see Table 5.6.

The NPV versus the reservoir simulation runs for the first production sce-

nario (depletion) and the second production scenario (water injection) are shown

in Figs. 5.24 and 5.25, respectively. Figs. 5.24(a) and Figs. 5.25(a) correspond to

the optimization runs with the first initial guess and Figs. 5.24(b) and Figs. 5.25(b)

correspond to the optimization runs with the second initial guess. One interesting

feature found from a detailed examination of the iterations shown in Figs. 5.24(a)

and 5.24(b) is that the early iterations in these plots correspond to the iterations

where the change in the well trajectory is mostly in the vertical orientation angle

of the well. The later iterations in these figures correspond to iterations where the

changes in the trajectory of the well are mostly in the location of its center point

in the x − y plane. As we see, we obtain only small improvements in NPV at later

iterations which indicates that the NPV is less sensitive to the location of the well

than to the vertical inclination angle of the well trajectory.
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Figure 5.25: The plot of NPV versus the reservoir simulation runs for the production
scenario with water injection, Homogeneous reservoir layers, Example 2, Case 1.

Case 2- Heterogeneous Reservoir Layers: In this case, the sandstone reservoir

layers of the simulation model have heterogenous porosity and permeability fields.

We use the same kx and porosity fields shown in Figs. 5.14 and 5.15 for the reservoir

layers and assume that the reservoir layers are isotropic, i.e., kx = ky = kz. The

summary of the optimization runs for both production scenarios for the reservoir

with heterogenous layers are shown in Table 5.8. The results are consistent with

those obtained in the homogenous reservoir layer case and are self explanatory.

The initial and final well locations and trajectories of the optimization runs

Table 5.8: The summary of the optimization runs for both scenarios, Heterogeneous
reservoir layers, Example 2, Case 2.

Depletion With
(No water injection) water injection

Initial Guess 1

Initial NPV, Schedule $3.81× 107 $7.03× 107

Initial NPV $3.12× 107 $1.18× 108

Final NPV $1.18× 108 $8.48× 108

Final NPV, Schedule $1.20× 108 $8.26× 108

No. of Sim. runs 67 82

Initial Guess 2

Initial NPV, Schedule $9.60× 107 $3.67× 108

Initial NPV $8.65× 107 $4.29× 108

Final NPV $1.18× 108 $8.37× 108

Final NPV, Schedule $1.19× 108 $8.07× 108

No. of Sim. runs 33 86
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(b) Initial guess 2

Figure 5.26: The initial and final well locations and trajectories, Heterogeneous
reservoir layers, Example 2, Case 2. The initial well trajectory is shown with a
red line and the estimated optimal well trajectories for the first production scenario
(depletion) and the second production scenario (water injection) are shown with a
green line and a blue line, respectively.

with initial guesses 1 and 2 are shown in Fig. 5.26(a) and Fig. 5.26(b), respectively.

The initial well trajectories are shown with a red line and the final well trajectories for

the first production scenario (depletion) and the second production scenario (water

injection) are shown with a green line and a blue line, respectively. The initial and

final well trajectory parameters corresponding to the optimization runs with the two

initial guesses are listed in Table 5.9. Note that in Fig. 5.26, only the part of the

well trajectory inside the reservoir is plotted, however, in Table 5.9, the full length

of the well (including the part of the well which may locate outside the reservoir) is

listed.

We first consider the primary depletion scenario. The estimated location of

the well is close to its initial location for both initial guesses. Yet even though
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Table 5.9: The initial and final well trajectory parameters corresponding to the opti-
mization runs with the two initial guesses, Heterogeneous reservoir layers, Example
2, Case 2.

Well trajectory parameters

Initial Guess 1

Initial (475, 475, 10054, 300, 0, 90)
Final -

(528.5, 508.0, 10096.5, 335.7, 35.4, 53.0)
No water injection

Final -
(1181.8, 960.5, 10029.4, 489.6, 4.2, 139.6)

With water injection

Initial Guess 2

Initial (1475, 1725, 10054, 200, 90, 30)
Final -

(1465.3, 1715.0, 10105.6, 263.8, 92.4, 27.8)
No water injection

Final -
(1074.0, 1051.7, 10212.6, 498.9, 0.0, 27.3)

With water injection

the estimated optimal locations in Figs. 5.26(a) and 5.26(b) are quite different, the

estimated optimal NPV value is $1.18 × 108 for both initial guesses; see Table 5.8.

Similar to the explanation given for the homogenous reservoir layer case, we expect

that the optimal inclination angle, ϕw, be such that the well penetrates all reservoir

layers. Our algorithm achieves this results in both cases; see Table 5.9. For example,

with initial guess 1, ϕw = 90 degrees, i.e., the well is horizontal which is clearly not

optimal but the estimated optimal value of this inclination angle is ϕw = 53 degrees

so with the estimated length lw = 335.7 ft, the estimated optimal well penetrates

all reservoir layers. The fact that the well is not moved towards the center of the

reservoir during optimization is a consequence of the heterogenous permeability field

of the reservoir.

Next we consider the results for the scenario where there are four completely-

perforating vertical water injection wells at the four corners of the reservoir. Unlike

the primary depletion case, the well location is changed radically by applying the

optimization algorithm. Specifically the final well location for both initial guesses is

fairly near the center of the reservoir (Figs. 5.26(a) and 5.26(b)) which is the expected

results as this makes the well roughly equidistant from the injectors. Recall that the
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permeability and porosity fields are heterogenous, so there is no reason to expect

that the optimal location is exactly at the center. We evaluate the NPV of a possible

trial solution by the Schedule method, for a vertical production well at the center of

the reservoir which penetrates all reservoir layers. The NPV for this trial solution

is $7.96 × 108 which is smaller than our estimated NPV with both initial guesses

(8.26× 108 for initial guess 1 and 8.07× 108 for initial guess 2). Moreover, although

the two initial guesses yield significantly different estimates of the optimal values

of some well parameters (Table 5.9), the estimated optimal NPV value for the two

initial guesses are quite close (8.48× 108 for initial guess 1 and 8.37× 108 for initial

guess 2); see Table 5.8. Finally, we note that the results of Table 5.9 include that

the estimated optimal production well penetrates all layers as expected.

For completeness, the plots of NPV versus the simulation run index are shown

in Figs. 5.27 and 5.28. Figs. 5.27(a) and Figs. 5.28(a) correspond to the optimization

runs with the first initial guess and Figs. 5.27(b) and Figs. 5.28(b) correspond to the

optimization runs with the second initial guess.
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Figure 5.27: The plot of NPV versus the reservoir simulation runs for the no water
injection scenario, Heterogeneous reservoir layers, Example 2, Case 2.
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Figure 5.28: The plot of NPV versus the reservoir simulation runs for the production
scenario with water injection, Heterogeneous reservoir layers, Example 2, Case 2.

5.6.3 Example 3. Optimization of the Trajectory of Multiple Production Wells in

an Anticline Reservoir with Aquifer

In this example, we consider an anticline reservoir. The reservoir model is a

three-dimensional 2000× 6500× 500 ft (40× 130× 10 gridblocks) simulation model.

Gridblock sizes are 50 ft in both horizontal and vertical directions. The initial reser-

voir datum pressure is 3, 500 psi at the datum depth of 5, 000 ft and the depth of the

water oil contact is 5, 300 ft. The schematic of the reservoir, the depths of the reser-

voir top surface, bottom surface and the depth of the water-oil contact are shown

in Fig. 5.29. The reservoir has heterogeneous permeability and porosity fields. The

horizontal log-permeability and porosity fields of the first simulation layer of the

reservoir are given in Fig. 5.30. Porosity and permeability of all reservoir layers are

identical to layer 1. The vertical permeability is kv = 0.1kh.

We consider two cases. In the first case, there is a strong aquifer connected to

the north edge as well as a strong aquifer connected to the south edge of the reservoir.

In the second case, only the aquifer connected to the south edge of the reservoir is

active. In this example, the aquifers are numerical aquifers, i.e., the pore volumes

of the gridblocks below the water-oil contact are multiplied by a large number. In

both cases, we try to optimize the location, length and trajectory of two production

wells in the reservoir. In both cases, the reservoir life is 5 years and both production
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Figure 5.29: The schematic of the structure of the reservoir, Example 2.
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Figure 5.30: The horizontal log-permeability and porosity fields of the first simulation
layer of the reservoir, Example 2.

wells operate on constant specified bottomhole pressure of 1, 500 psi. The maximum

length for the production wells in both cases is 500 ft.

Similar to the previous examples, we use BOBYQA to solve the optimization

problem with two different initial guesses. However for this example, we also compare

results obtained with BOBYQA with those obtained from an implementation of

the GA. The genetic algorithm implementation that we use is based on the binary

representation of the optimization variables. We choose 64, 128, 32, 32, 16 and 16
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for the number of intervals for the optimization parameters xw yw, zw, lw, θw and ϕw,

respectively. These values are chosen based on the number of reservoir gridblocks

in the domain of each optimization parameters for xw yw, zw and lw parameters.

Choosing 16 for the number of intervals for the deviation angle parameters implies

that the resolution of these parameters are 180/16 = 11.2 degrees. The number of

the optimization variables are 6× 2 = 12. For the GA, we choose 20 and 50 for the

population size and the number of generations, respectively. Note that for the fairly

small number of optimization variables (n=12), running GA with the population size

of 20 for 50 generations is a conservative and costly choice of these parameters.

As recommended in the GA code (Carroll [8]), we use the options of elitism

to be invoked (best individual replicated into the next generation). We also use the

uniform crossover option with two children per pair of parents. A range of values for

the GA parameters are addressed in the literature. Here we try two sets of values

for the crossover probability (pc) and mutation probability (pm). The two choices

for GA parameters are shown in Table 5.10. In set 1, we choose the crossover and

mutation probability values of 0.5 and 0.1, respectively. GA with set 1 parameters

tends to investigate the search domain more randomly (large value of pm) looking for

a global optimum. With this setting, there is a lower risk of being trapped in a local

optimum but convergence usually takes longer. In parameter set 2, we choose the

crossover and mutation probability values of pc = 0.7 and pm = 0.05, respectively.

The GA run with this set of parameters tends to generate less random solutions and

is more likely to improve the solutions of previous generations to reach convergence

faster, but may be less likely to find a global optimum.

Case 1- Aquifers at both North and South Edges of the Reservoir are Active:

The pore volume of the aquifer gridblocks (the gridblocks which are located below the

water-oil contact) at both the north and south edges of the reservoir are multiplied

by 300 to make the aquifers active and strong. Two production wells are subject
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Table 5.10: The choices for GA parameters, Example 3.

Parameter set 1 Parameter set 2

No. of generations 50 50

Population size 20 20

Crossover probability, pc 0.5 0.7

Mutation probability, pm 0.1 0.05

to the optimization. Similar to the previous examples, we run our well-placement

optimization algorithm with two different initial guesses for the well trajectory pa-

rameters. The optimization using BOBYQA converged after 114 and 96 simulation

runs for the optimization runs with the first and second initial guesses. The NPV

increased from $3.20×109 to $3.83×109 for the optimization run with the first initial

guess, and from $3.37× 109 to $3.79× 109 for the optimization run with the second

initial guess, respectively.

A summary of the BOBYQA results with both initial guesses and the GA

runs with both sets of parameters are shown in Table 5.11. The initial and final

well trajectory parameters for both production wells are summarized in Table 5.12

and 5.13 for the BOBYQA and GA runs, respectively. Note that although the final

NPVs of GA and BOBYQA are close, the final trajectories are not very similar. Here,

we used GA as a global search optimizer to investigate the performance of BOBYQA

for solving the optimization problem. In general, we can say BOBYQA obtains a

close estimate of the optimum NPV obtained with the GA but BOBYQA obtained

this optimum with far fewer reservoir simulator runs than were required by the GA.

It is important to note that the main contribution of our work is our procedure for

modeling wells and for determining optimization parameters; any optimization algo-

rithm can be used. Note, however, that the final solution obtained with BOBYQA

depends on the initial guess, which suggests that using several initial guesses may be

a good strategy for applying our well-placement methodology. Note, based on the

results of Table 5.11, we could estimate optimum parameters with BOBYQA for sev-
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Table 5.11: The summary of BOBYQA and GA runs, Example 3, Case 1.

BOBYQA GA
Init. guess 1 Init. guess 2 Param. set 1 Param. set 2

Initial NPV, Schedule $2.93× 109 $3.16× 109 - -

Initial NPV $3.20× 109 $3.37× 109 - -

Final NPV $3.83× 109 $3.79× 109 $3.84× 109 $3.86× 109

Final NPV, Schedule $3.82× 109 $3.74× 109 $3.80× 109 $3.84× 109

No. of Sim. runs 114 96 1000 1000

Table 5.12: The initial and final well trajectory parameters (xw, yw, zw, lw, θw, ϕw) for
both production wells in BOBYQA optimization runs, Example 3, Case 1.

Well parameters

Initial Guess 1
Prd-1

Initial (475.0, 2775.0, 4915.0, 150.0, 45.0, 45.0)
Final (934.8, 2952.5, 4831.8, 367.7, 59.2, 0.0)

Prd-2
Initial (1475.0, 3225.0, 4895.0, 150.0, 45.0, 45.0)
Final (1493.7, 3267.6, 4733.4, 283.5, 40.1, 4.7)

Initial Guess 2
Prd-1

Initial (975.0, 2475.0, 4945.0, 150.0, 45.0, 45.0)
Final (1109.9, 2659.8, 4822.2, 500.0, 52.0, 32.6)

Prd-2
Initial (975.0, 3475.0, 4895.0, 150.0, 45.0, 45.0)
Final (941.4, 3361.5, 4806.9, 321.5, 88.6, 4.8)

eral different initial guesses faster than applying the GA once. Moreover, the choice

of parameters to reach convergence to a global optimum as efficiently as possible can

be challenging with the GA optimization algorithm.

The schematic of the reservoir and the initial and final well locations of

BOBYQA optimization runs with the initial guesses 1 and 2 are shown in Figs. 5.31(a)

and 5.31(b). The initial well trajectories are shown with dots and the final well tra-

jectories are shown in lines. Each production well is shown with a different color.

We see in both figures that the well locations are modified, also the length of both

wells are increased significantly. Moreover, the final trajectories of both wells are

very close to vertical except for well P-1 for the run with the second initial guess,

which has an inclination angle of 32.6 degrees from the vertical. The best locations

of the production wells with the GA optimization runs with the parameter sets 1
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Table 5.13: The well trajectory parameters (xw, yw, zw, lw, θw, ϕw) corresponding to
the estimate of optimal solutions for both production wells of GA optimization runs,
Example 3, Case 1.

Estimate of optimal well parameters

Parameter set 1
Prd-1 (1523.8, 3161.4, 4815.2, 306.8, 180.0, 0.0)
Prd-2 (634.9, 3267.7, 4750.7, 355.1, 180.0, 12.0)

Parameter set 2
Prd-1 (603.2, 3338.6, 4799.0, 483.9, 108.0, 156.0)
Prd-2 (1333.3, 3409.5, 4702.3, 483.9, 96.0, 120.0)
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(b) Initial guess 2

Figure 5.31: The schematic of the structure of the reservoir and the initial and final
well locations and trajectories of BOBYQA optimization runs, Example 3, Case 1.
The initial well trajectories are shown with dots and the final well trajectories are
shown in lines. Production well P-1 is shown in blue and production well P-2 is
shown in green.

and 2 are shown in Figs. 5.32(a) and 5.32(b), respectively. As can also be seen by

comparing the results of Figs. 5.31 and 5.32 and the results of Tables 5.12 and 5.13,

the estimated optimal wells from GA and BOBYQA are quite different even though

both algorithms yield a similar estimation of the optimal NPV (Table 5.11).

The plot of NPV versus the number of simulation runs is given in Figs. 5.33(a)

and 5.33(b) for the BOBYQA optimization with initial guesses 1 and 2, respectively.

The first 25 simulation runs in Figs. 5.33(a) and 5.33(b) correspond to the simulation

runs required to build the initial interpolation set in the BOBYQA optimization

algorithm (we use m = 2n + 1 = 25 for the number of initial interpolation points).

The NPV plots for the optimization runs with GA with parameter sets 1 and 2 are
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(b) Parameter set 2

Figure 5.32: The well locations and trajectories corresponding to the estimates of
optimal solutions with GA optimization runs, Example 3, Case 1.
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Figure 5.33: The plot of NPV versus the number of simulation runs for the opti-
mization runs using BOBYQA, Example 3, Case 1.

shown in Figs. 5.34(a) and 5.34(b), respectively. The best NPV from GA with 1, 000

simulation runs are $3.84× 109 and $3.86× 109 for GA runs with the parameter sets

1 and 2, respectively. In Figs. 5.34(a) and 5.34(b), the black dots show the NPV of

individuals at all generations. The blue line shows the plot of average NPV of the

generations and the red line shows the maximum NPV of each generation.

Case 2- Only the South Edge Aquifer is Active: In this case, the pore volume

of the aquifer gridblocks in the south edge of the reservoir (the gridblocks at south

edge of the reservoir which are located below the water-oil contact) are multiplied

by 300 to make the aquifer strong and active in the south edge of the reservoir.
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Figure 5.34: The plot of NPV versus the number of simulation runs for the optimiza-
tion runs using GA, Example 3, Case 1. The black dots show the NPV of individuals
at all generations. The blue line shows the plot of average NPV of the generations
and the red line shows the maximum NPV of each generation.

The pore volume of the aquifer gridblocks in the north edge of the reservoir are

multiplied by 1 (remained unchanged). Similar to Case 1, two production wells

are considered for the optimization and we use two different initial guesses for the

trajectory parameters of the wells. Note that the initial guesses are different than the

ones chosen for Case 1. As we mentioned before both production wells operate on

specified bottomhole pressure of 1,500 psi and the reservoir life is 5 years. With initial

guess 1, the optimization converged after 181 simulation runs and NPV increased

from $2.09 × 109 to $2.75 × 109 during the optimization process. The optimization

with initial guess 2 converged after 77 simulation runs and NPV increased from

$2.14× 109 to $2.71× 109. Note that the values of estimated NPV for the two initial

guesses are very close. A summary of the BOBYQA and GA results are shown in

Table 5.14. Note that the four estimates of the optimal NPV are very close but

BOBYQA used far fewer simulation runs than were used by GA.

The initial and final well locations of the BOBYQA optimization runs with

both initial guesses are shown in Figs. 5.35(a) and 5.35(b) with the initial well trajec-

tories shown with dots and the final well trajectories shown as lines. Each production

well is shown with a different color. The final trajectories of the wells are almost
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Table 5.14: The summary of BOBYQA and GA runs, Example 3, Case 2.

BOBYQA GA
Init. guess 1 Init. guess 2 Param. set 1 Param. set 2

Initial NPV, Schedule $1.81× 109 $1.82× 109 - -

Initial NPV $2.09× 109 $2.14× 109 - -

Final NPV $2.75× 109 $2.71× 109 $2.75× 109 $2.75× 109

Final NPV, Schedule $2.74× 109 $2.71× 109 $2.74× 109 $2.74× 109

No. of Sim. runs 181 77 1000 1000

Table 5.15: The initial and final well trajectory parameters (xw, yw, zw, lw, θw, ϕw) for
both production wells in BOBYQA optimization runs, Example 3, Case 2.

Well parameters

Initial Guess 1
Prd-1

Initial (475.0, 2975.0, 4895.0, 150.0, 45.0, 45.0)
Final (966.1, 3373.0, 4810.5, 342.4, 105.8, 9.5)

Prd-2
Initial (1475.0, 2975.0, 4895.0, 150.0, 45.0, 45.0)
Final (1256.9, 3717.5, 4807.4, 312.6, 83.5, 27.4)

Initial Guess 2
Prd-1

Initial (475.0, 4475.0, 5045.0, 150.0, 45.0, 45.0)
Final (623.2, 4698.3, 5069.7, 198.0, 64.8, 8.2)

Prd-2
Initial (1475.0, 4475.0, 5045.0, 150.0, 45.0, 45.0)
Final (1247.1, 4190.3, 5000.4, 279.1, 56.4, 1.7)

vertical, except for well P-2 with the first initial guess, where we obtained ϕw = 27.4

degrees; see Table 5.15. Note that for both initial guesses, the optimal well locations

are closer to the north edge of the reservoir than the south edge, which is as expected

because the only active aquifer is at the south edge. Despite this, for initial guess 2,

well P-2 in green in Fig. 5.35(b) was moved towards the south during the optimiza-

tion process. The best locations of the production wells with GA optimization runs

with the parameter sets 1 and 2 are shown in Figs. 5.36(a) and 5.36(b), respectively.

The initial and final well trajectory parameters for both production wells are sum-

marized in Table 5.15 for BOBYQA and in 5.16 for the GA runs, respectively. For

parameter set 2, the GA places the two producers close together (Fig. 5.34) but ori-

entation angles, θw and ϕw, for the two producers are quite different; see Table 5.16.
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Table 5.16: The well trajectory parameters (xw, yw, zw, lw, θw, ϕw) corresponding to
the estimate of optimal solutions for both production wells of GA optimization runs,
Example 3, Case 2.

Estimate of optimal well parameters

Parameter set 1
Prd-1 (1142.9, 4047.2, 4923.6, 162.0, 156.0, 0.0)
Prd-2 (1015.9, 3692.9, 4835.2, 435.6, 12.0, 144.0)

Parameter set 2
Prd-1 (1142.9, 3976.4, 4832.9, 451.7, 120.0, 12.0)
Prd-2 (1142.9, 3763.8, 4796.8, 467.8, 12.0, 144.0)
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(b) Initial guess 2

Figure 5.35: The schematic of the structure of the reservoir and the initial and final
well locations and trajectories of BOBYQA optimization runs, Example 3, Case 2.
The initial well trajectories are shown with dots and the final well trajectories are
shown in lines. Production well P-1 is shown in blue and production well P-2 is
shown in green.
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(a) Parameter set 1

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
E

D
U

C
A

T
I
O

N
A

L
 
P

R
O

D
U

C
T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
E

D
U

C
A

T
I
O

N
A

L
 
P

R
O

D
U

C
T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

(b) Parameter set 2

Figure 5.36: The well locations and trajectories corresponding to the estimates of
optimal solutions with GA optimization runs, Example 3, Case 2.
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The plot of NPV versus the number of simulation runs is given in Figs. 5.37(a)

and. 5.37(b) for the BOBYQA runs with the first and the second initial guesses. The

first 25 simulation runs correspond to the simulation runs required to build the initial

interpolation set in the BOBYQA optimization algorithm. The NPV plots for the

optimization runs of GA with parameter sets 1 and 2 are shown in Figs. 5.38(a)

and 5.38(b), respectively, where the best NPV from GA runs after 1, 000 simulation

runs is $2.75 × 109. In Figs. 5.38(a) and 5.38(b), the black dots show the NPV of

individuals at all generations. The blue line shows the plot of average NPV of the

generations and the red line shows the maximum NPV of each generation.
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Figure 5.37: The plot of NPV versus the number of simulation runs for the opti-
mization runs using BOBYQA, Example 3, Case 2.

5.6.4 Example 4. The Optimization of the Trajectory of Production and Injection

Wells in the PUNQ Simulation Model

In this example we consider the optimization of the locations and trajectories

of the production and injection wells in the PUNQ reservoir. The PUNQ model has

analytical aquifers attached to the north, west and south edges of the reservoir. Since

the PUNQ simulation model gridblock sizes in the x and y directions are large, we

refine the simulation grid in these directions. Each gridblock of the original PUNQ

simulation model is refined to 9 gridblocks by decreasing both ∆x and ∆y by a
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Figure 5.38: The plot of NPV versus the number of simulation runs for the optimiza-
tion runs using GA, Example 3, Case 2. The black dots show the NPV of individuals
at all generations. The blue line shows the plot of average NPV of the generations
and the red line shows the maximum NPV of each generation.

factor of three. The horizontal permeability, vertical permeability and porosity fields

of 5 reservoir layers are shown in Figs. 5.39 to 5.41. We present two cases in this

example. In Case 1, we optimize the trajectories of the six production wells in the

PUNQ reservoir. In Case 2, we remove the analytical aquifers of the reservoir and

we optimize the trajectories of six production wells and three water injection wells

in the reservoir.

Case 1. Optimization of the Trajectory of Six Production Wells: We wish to

optimize the locations and trajectories of six production wells. The production wells

are bottomhole pressure-controlled with the specified bottomhole pressure equal to

1,500 psi at all producers. The production period of the reservoir is 20 years. We
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Figure 5.39: The horizontal permeability field of the PUNQ reservoir, Example 4.
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Figure 5.40: The vertical permeability field of the PUNQ reservoir, Example 4.
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Figure 5.41: The porosity field of the PUNQ reservoir, Example 4.

consider two initial guesses of the initial well trajectory parameters. In initial guess

1, we set the initial well center points of the six producers at the original PUNQ

production well locations. In the second initial guess, we use completely arbitrary

locations for the well center points. In both initial guesses, the initial orientation

angles of the wells are chosen fairly arbitrarily but close to horizontal. Each well

has 6 parameters and therefore, there are n = 36 optimization variables. BOBYQA

needs n + 2 ≤ m ≤ [(n + 1)(n + 2)]/2 simulation runs to build the first quadratic

approximation of the objective function. Here in this example, we try choices of

m = n + 2 and m = 2n + 1. The results of the optimization runs for both initial

guesses are summarized in Table 5.17, with the plot of NPV versus the number of

reservoir simulation runs for both trials are shown in Fig. 5.42. From the results

of Fig. 5.42 and Table 5.17, we see that the estimate of the optimal NPV depends

more strongly on the initial guesses where m = 2n + 1. We have no explanation

for this behavior and at this point do not know if this is a general result or only

applies to this example. The most important result is that in all cases, we obtained

a significant improvement in NPV by optimization.
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Table 5.17: The summary of optimization runs for optimizing production wells in
the PUNQ model, Example 4, Case 1.

Initial guess 1 Initial guess 2
m = n+ 2 m = 2n+ 1 m = n+ 2 m = 2n+ 1

Initial NPV, Schedule $3.05× 109 $3.05× 109 $2.64× 109 $2.64× 109

Initial NPV $3.07× 109 $3.07× 109 $2.67× 109 $2.67× 109

Final NPV $3.71× 109 $3.78× 109 $3.62× 109 $3.44× 109

Final NPV, Schedule $3.54× 109 $3.63× 109 $3.50× 109 $3.30× 109

No. of Sim. runs 157 327 172 314
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Figure 5.42: The plot of NPV versus the number of simulation runs, Optimizing
production wells in the PUNQ model, Example 4, Case 1.

The initial and final well trajectory parameters of the six production wells of

the optimization runs with initial guesses 1 and 2 are listed in Tables 5.18 and 5.19,

respectively. The initial and final well trajectories projected onto the top surface of

the reservoir are shown in Figs. 5.43 and 5.44. The well trajectories are shown with

black lines.

The perforations corresponding to the initial and final trajectories of the wells

on the horizontal permeability fields of the 5 simulation layers of the reservoir are

shown in Figs. 5.45 through 5.47 for the optimization runs with the first initial

guess. The perforated layers corresponding to the initial and final trajectories of

the production wells are summarized in Tables 5.20 through 5.22. Similar plots and

tables for the optimization runs with the second initial guess are shown in Figs. 5.48.
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Table 5.18: The initial and final trajectory parameters (xw, yw, zw, lw, θw, ϕw) of the
production wells for initial guess 1, Example 4, Case 1.

Initial

P-1 (5610.2, 3838.6, 7763.8, 250.0, 0.0, 80.0)
P-2 (5019.7, 6791.3, 7772.5, 250.0, 45.0, 80.0)
P-3 (9744.1, 10334.7, 7799.3, 250.0, 90.0, 80.0)
P-4 (6200.8, 2657.5, 7798.6, 250.0, 0.0, 80.0)
P-5 (8563.0, 9744.1, 7793.5, 250.0, 90.0, 80.0)
P-6 (9744.1, 3838.6, 7810.4, 250.0, 45.0, 80.0)

Final, m = n+ 2

P-1 (5851.4, 3470.7, 7798.0, 333.2, 32.9, 78.0)
P-2 (7404.6, 6743.7, 7687.4, 303.9, 19.5, 90.2)
P-3 (10019.1, 9307.6, 7766.6, 320.0, 137.0, 88.7)
P-4 (6507.7, 3822.2, 7720.0, 170.4, 38.7, 76.7)
P-5 (9022.7, 9735.4, 7758.3, 360.9, 163.8, 89.1)
P-6 (9870.9, 4295.2, 7787.6, 339.3, 81.0, 87.0)

Final, m = 2n+ 1

P-1 (6008.8, 3573.3, 7749.9, 268.0, 0.0, 65.8)
P-2 (7266.6, 7381.2, 7712.6, 291.2, 27.6, 81.6)
P-3 (10191.6, 10074.4, 7772.5, 189.9, 99.6, 88.8)
P-4 (6489.1, 2899.8, 7763.6, 229.7, 45.8, 83.7)
P-5 (8537.2, 9379.3, 7722.0, 291.9, 141.1, 86.3)
P-6 (9717.1, 4329.9, 7802.0, 277.4, 12.4, 90.1)

Table 5.19: The initial and final well trajectory parameters (xw, yw, zw, lw, θw, ϕw) of
the production wells for initial guess 2, Example 4, Case 1.

Initial

P-1 (9153.5, 3248.0, 7781.1, 250.0, 45.0, 80.0)
P-2 (6200.8, 2657.5, 7798.6, 250.0, 0.0, 80.0)
P-3 (3838.6, 4429.1, 7774.2, 250.0, 90.0, 80.0)
P-4 (5019.7, 7972.4, 7782.2, 250.0, 45.0, 80.0)
P-5 (6791.3, 10334.7, 7810.2, 250.0, 45.0, 80.0)
P-6 (9153.5, 12106.3, 7811.9, 250.0, 90.0, 80.0)

Final, m = n+ 2

P-1 (9947.0, 3738.0, 7831.3, 409.2, 2.2, 87.5)
P-2 (5784.1, 3041.6, 7809.6, 258.7, 73.0, 72.6)
P-3 (4038.9, 4094.7, 7744.0, 17.5, 46.8, 81.8)
P-4 (6374.0, 7883.1, 7720.6, 148.7, 69.1, 89.3)
P-5 (7936.1, 9203.9, 7757.0, 22.5, 69.6, 84.0)
P-6 (9393.0, 10738.1, 7752.8, 236.0, 73.8, 79.6)

Final, m = 2n+ 1

P-1 (9109.9, 3542.5, 7776.5, 341.2, 48.5, 99.3)
P-2 (6179.0, 2785.7, 7789.9, 256.9, 2.7, 79.0)
P-3 (3764.4, 4365.9, 7739.8, 176.6, 102.2, 82.0)
P-4 (5707.2, 8058.7, 7767.6, 260.7, 43.1, 87.9)
P-5 (7166.6, 10029.1, 7759.7, 192.9, 76.1, 87.2)
P-6 (9346.3, 10393.3, 7842.2, 305.9, 35.0, 9.7)
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(b) Final, m = n+ 2
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(c) Final, m = 2n+ 1

Figure 5.43: The initial and final well trajectories of the producers projected onto
the top reservoir surface for the first initial guess, Example 4, Case 1. The well
trajectories are shown with black lines.
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(b) Final, m = n+ 2
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(c) Final, m = 2n+ 1

Figure 5.44: The initial and final well trajectories of the producers projected onto
the top reservoir surface for the second initial guess, Example 4, Case 1. The well
trajectories are shown with black lines.

through 5.50 and Tables 5.23 through 5.25.

As we mentioned above, aquifers are connected to the edges on the north,

west and south sides of the reservoir, but, the main contribution of the water influx

into the reservoir is from the aquifer connected to the west side of the reservoir. The

direction of the water influx is mainly from the north-west, which is the direction of
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permeability channels of the reservoir; see Figs. 5.39 and 5.40. For the optimization

run with the first initial guess, we see from Fig. 5.43 that the wells are moved toward

the inside and away from the west side of the reservoir to reduce the amount of

produced water. From Fig. 5.45 we see that initially most of the perforations of the

wells are in the bottom layers of the reservoir. However, in the final well trajectories

(Figs. 5.46 and 5.47), we see that the perforations of the wells are in the top layers of

the reservoir to reduce the amount of water production from the reservoir. Similar

results are obtained for initial guess 2; see Fig. 5.44 and Figs. 5.48 through 5.50.
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Figure 5.45: The perforations shown as white circles corresponding to the initial
trajectory of the production wells on the horizontal permeability fields of the 5 sim-
ulation layers, Initial guess 1, Example 4, Case 1.
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Figure 5.46: The perforations shown as white circles corresponding to the final trajec-
tory of the production wells on the horizontal permeability fields of the 5 simulation
layers, Initial guess 1 with m = n+ 2, Example 4, Case 1.

Table 5.20: The perforated layers corresponding to the initial trajectory of the pro-
duction wells in the PUNQ model, Initial guess 1, Example 4, Case 1.

P-1 P-2 P-3 P-4 P-5 P-6

Perforated layers 2, 3, 4, 5 3, 4, 5 2, 3, 4 1, 2, 3, 4, 5 3, 4, 5 3, 4, 5

Table 5.21: The perforated layers corresponding to the final trajectory of the pro-
duction wells in the PUNQ model, Initial guess 1 with m = n+ 2, Example 4, Case
1.

P-1 P-2 P-3 P-4 P-5 P-6

Perforated layers 3, 4, 5 1 1, 2 1, 2 2, 3 2, 3, 4
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Figure 5.47: The perforations shown as white circles corresponding to the final trajec-
tory of the production wells on the horizontal permeability fields of the 5 simulation
layers, Initial guess 1 with m = 2n+ 1, Example 4, Case 1.

Table 5.22: The perforated layers corresponding to the final trajectory of the pro-
duction wells in the PUNQ model, Initial guess 1 with m = 2n+ 1, Example 4, Case
1.

P-1 P-2 P-3 P-4 P-5 P-6

Perforated layers 1, 2, 3, 4, 5 1, 2, 3 1 1, 2 1 4

Table 5.23: The perforated layers corresponding to the initial trajectory of the pro-
duction wells in the PUNQ model, Initial guess 2, Example 4, Case 1.

P-1 P-2 P-3 P-4 P-5 P-6

Perforated layers 2, 3, 4 1, 2, 3, 4, 5 1, 2, 3, 4, 5 2, 3, 4, 5 2, 3, 4 2, 3, 4
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Figure 5.48: The perforations shown as white circles corresponding to the initial
trajectory of the production wells on the horizontal permeability fields of the 5 sim-
ulation layers, Initial guess 2, Example 4, Case 1.

Table 5.24: The perforated layers corresponding to the final trajectory of the pro-
duction wells in the PUNQ model, Initial guess 2 with m = n+ 2, Example 4, Case
1.

P-1 P-2 P-3 P-4 P-5 P-6

Perforated layers 5 2, 3, 4, 5 1 1 2 1, 2

Table 5.25: The perforated layers corresponding to the final trajectory of the pro-
duction wells in the PUNQ model, Initial guess 2 with m = 2n+ 1, Example 4, Case
1.

P-1 P-2 P-3 P-4 P-5 P-6

Perforated layers 1, 2, 3, 4, 5 1, 2, 3, 4, 5 1 2, 3 1 1, 2, 3, 4, 5
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Figure 5.49: The perforations shown as white circles corresponding to the final trajec-
tory of the production wells on the horizontal permeability fields of the 5 simulation
layers, Initial guess 2 with m = n+ 2, Example 4, Case 1.
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Figure 5.50: The perforations shown as white circles corresponding to the final trajec-
tory of the production wells on the horizontal permeability fields of the 5 simulation
layers, Initial guess 2 with m = 2n+ 1, Example 4, Case 1.
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Case 2. Optimization of the Trajectory of Six Producers and Three Injectors:

We wish to optimize the location of six production wells and three injection wells in

the PUNQ model where the reservoir aquifers are eliminated. The production wells

are bottomhole pressure-controlled with the specified bottomhole pressure equal to

1,500 psi at all producers. The injection wells are bottomhole pressure-controlled

wells with the specified bottomhole pressure equal to 4,000 psi at all injectors. The

production period of the reservoir is 10 years. Similar to Case 1 of this example,

we consider two initial guesses for the well trajectory parameters. In initial guess 1,

we set the initial well center points of the six producers at the PUNQ production

well locations and the initial well center points of the injectors are chosen arbitrarily.

In the second initial guess, we use completely arbitrary locations for the well center

points of the injection and production wells. In both initial guesses, the initial

orientation angles of the wells are chosen fairly arbitrarily but close to horizontal,

i.e., the orientation angle ϕw is close to 90 degrees. Each well has 6 parameters and

therefore, there are n = 9 × 6 = 54 optimization variables. We use m = n + 2

for the number of interpolation points in the BOBYQA algorithm. The results of

the optimization runs for both initial guesses are summarized in Table 5.26, and the

plot of NPV versus the number of reservoir simulation runs for both initial guesses

is shown in Fig. 5.51. Note that there is a relatively large difference between the

NPV from our model and the one from the Schedule method. As we discussed in

Section 5.5, our model overestimates the rate of a bottomhole pressure-controlled

well. In this case, all the production and injection wells are bottomhole pressure-

controlled wells, and therefore, this difference is more significant. However, note that

the changes in the NPV of our model and the one from the Schedule method are

consistent.

The initial and final well trajectory parameters of six production and three

injection wells corresponding to the optimization runs with initial guesses 1 and 2
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Table 5.26: The summary of optimization runs for the PUNQ model, Example 4,
Case 2.

Initial guess 1 Initial guess 2

Initial NPV, Schedule $1.57× 109 $1.84× 109

Initial NPV $1.13× 109 $1.38× 109

Final NPV $3.03× 109 $3.10× 109

Final NPV, Schedule $2.80× 109 $2.86× 109

No. of Sim. runs 272 279
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(b) Initial guess 2

Figure 5.51: The plot of NPV versus the number of simulation runs, Example 4,
Case 2.

are listed in Tables 5.27 and 5.28, respectively. The initial and final well trajectories

projected onto the top surface of the reservoir are shown in Figs. 5.52 and 5.53.

The well trajectories of the production wells are shown with black lines and the well

trajectory of the injection wells are shown with red lines.

Similar to the results for Case 1, the perforations corresponding to the initial

and final trajectories of the wells on the horizontal permeability fields of the 5 simu-

lation layers of the reservoir are shown in Figs. 5.54 and 5.55 for the optimization run

with the first initial guess. The perforated layers corresponding to the initial and

final trajectories of the production wells are summarized in Tables 5.29 and 5.30.

Similar plots and tables for the optimization run with the second initial guess are

shown in Figs. 5.56 and 5.57 and in Tables 5.31 and 5.32. In Figs. 5.54 through 5.57,
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Table 5.27: The initial and final trajectory parameters (xw, yw, zw, lw, θw, ϕw) of the
production and injection wells for initial guess 1, Example 4, Case 2.

Initial

I-1 (8563.0, 13878.0, 7841.5, 200.0, 0.0, 80.0)
I-2 (2263.8, 6791.3, 7847.2, 200.0, 45.0, 80.0)
I-3 (3248.0, 2657.5, 7822.2, 200.0, 0.0, 80.0)
P-1 (5610.2, 3838.6, 7763.8, 250.0, 0.0, 80.0)
P-2 (5019.7, 6791.3, 7772.5, 250.0, 45.0, 80.0)
P-3 (9744.1, 10334.7, 7799.3, 250.0, 90.0, 80.0)
P-4 (6200.8, 2657.5, 7798.6, 250.0, 0.0, 80.0)
P-5 (8563.0, 9744.1, 7793.5, 250.0, 90.0, 80.0)
P-6 (9744.1, 3838.6, 7810.4, 250.0, 45.0, 80.0)

Final

I-1 (7913.7, 14812.9, 7852.1, 193.6, 66.7, 81.4)
I-2 (2095.2, 6796.7, 7852.8, 71.9, 160.0, 53.1)
I-3 (1573.4, 2144.3, 7898.2, 251.3, 43.8, 61.9)
P-1 (6599.2, 3849.3, 7751.2, 294.1, 78.1, 71.6)
P-2 (6600.8, 7695.4, 7739.0, 213.7, 40.6, 73.0)
P-3 (9745.9, 9871.2, 7843.5, 164.6, 142.1, 75.9)
P-4 (6748.4, 2989.9, 7765.4, 334.7, 54.2, 86.6)
P-5 (9484.9, 9082.0, 7815.8, 281.4, 132.2, 77.4)
P-6 (9893.4, 4805.2, 7786.3, 461.2, 71.1, 90.6)

Table 5.28: The initial and final well trajectory parameters (xw, yw, zw, lw, θw, ϕw) of
the production wells for initial guess 2, Example 4, Case 2.

Initial

I-1 (8563.0, 13878.0, 7841.5, 200.0, 0.0, 80.0)
I-2 (2263.8, 6791.3, 7847.2, 200.0, 45.0, 80.0)
I-3 (3248.0, 2657.5, 7822.2, 200.0, 0.0, 80.0)
P-1 (9153.5, 3838.6, 7777.9, 250.0, 45.0, 80.0)
P-2 (6791.3, 2657.5, 7797.2, 250.0, 0.0, 80.0)
P-3 (3838.6, 4429.1, 7774.2, 250.0, 90.0, 80.0)
P-4 (5019.7, 8563.0, 7794.9, 250.0, 45.0, 80.0)
P-5 (7381.9, 10334.7, 7806.4, 250.0, 45.0, 80.0)
P-6 (9744.1, 9547.2, 7786.5, 250.0, 90.0, 80.0)

Final

I-1 (8370.8, 14500.7, 7856.1, 195.0, 0.2, 79.2)
I-2 (2295.4, 6702.4, 7827.1, 233.7, 177.4, 65.1)
I-3 (2259.1, 2148.4, 7863.5, 95.1, 47.9, 62.4)
P-1 (9547.8, 4487.5, 7776.8, 324.7, 13.2, 77.1)
P-2 (7029.2, 2876.5, 7780.3, 225.6, 23.8, 75.2)
P-3 (3582.6, 3971.6, 7747.3, 24.6, 61.8, 65.5)
P-4 (5932.5, 8477.6, 7784.5, 66.5, 143.1, 89.2)
P-5 (7820.5, 9660.3, 7748.9, 117.8, 76.7, 91.3)
P-6 (9786.3, 8860.5, 7754.5, 267.7, 85.2, 81.9)
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(b) Final

Figure 5.52: The initial and final well trajectories of the producers and the injectors
projected onto the top reservoir surface for the first initial guess, Example 4, Case
2. The well trajectories of the production wells are shown with black lines and the
well trajectory of the injection wells are shown with red lines.
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(b) Final

Figure 5.53: The initial and final well trajectories of the producers and the injectors
projected onto the top reservoir surface for the second initial guess, Example 4, Case
2. The well trajectories of the production wells are shown with black lines and the
well trajectory of the injection wells are shown with red lines.
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the perforations corresponding to the production wells are shown with white circles

and the perforations corresponding to the injection wells are shown with black circles.
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Figure 5.54: The perforations corresponding to the initial trajectory of the produc-
tion and injection wells on the horizontal permeability fields of the 5 simulation
layers, Initial guess 1, Example 4, Case 2. The perforations corresponding to the
production wells are shown with white circles and the perforations corresponding to
the injection wells are shown with black circles.

Table 5.29: The perforated layers corresponding to the initial trajectories of the
production and injection wells in the PUNQ model, Initial guess 1, Example 4, Case
2.

Producers Perforated layers Injectors Perforated layers

P-1 2, 3, 4, 5 I-1 2, 3, 4

P-2 3, 4, 5 I-2 2, 3, 4

P-3 2, 3, 4 I-3 2, 3, 4, 5

P-4 1, 2, 3, 4, 5 - -

P-5 3, 4, 5 - -

P-6 3, 4, 5 - -
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Figure 5.55: The perforations corresponding to the final trajectory of the production
and injection wells on the horizontal permeability fields of the 5 simulation layers,
Initial guess 1, Example 4, Case 2. The perforations corresponding to the production
wells are shown with white circles and the perforations corresponding to the injection
wells are shown with black circles.

Table 5.30: The perforated layers corresponding to the final trajectories of the pro-
duction and injection wells in the PUNQ model, Initial guess 1, Example 4, Case
2.

Producers Perforated layers Injectors Perforated layers

P-1 1, 2, 3, 4, 5 I-1 1, 2

P-2 1, 2, 3, 4, 5 I-2 1, 2, 3, 4

P-3 4, 5 I-3 1, 2, 3, 4, 5

P-4 1, 2, 3 - -

P-5 4, 5 - -

P-6 4 - -
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Figure 5.56: The perforations corresponding to the initial trajectory of the produc-
tion and injection wells on the horizontal permeability fields of the 5 simulation
layers, Initial guess 2, Example 4, Case 2. The perforations corresponding to the
production wells are shown with white circles and the perforations corresponding to
the injection wells are shown with black circles.

Table 5.31: The perforated layers corresponding to the initial trajectories of the
production and injection wells in the PUNQ model, Initial guess 2, Example 4, Case
2.

Producers Perforated layers Injectors Perforated layers

P-1 2, 3 I-1 2, 3, 4

P-2 1, 2, 3, 4, 5 I-2 2, 3, 4

P-3 1, 2, 3, 4, 5 I-3 2, 3, 4, 5

P-4 2, 3, 4, 5 - -

P-5 2, 3, 4 - -

P-6 2, 3, 4 - -
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Figure 5.57: The perforations corresponding to the final trajectory of the production
and injection wells on the horizontal permeability fields of the 5 simulation layers,
Initial guess 2, Example 4, Case 2. The perforations corresponding to the production
wells are shown with white circles and the perforations corresponding to the injection
wells are shown with black circles.

Table 5.32: The perforated layers corresponding to the final trajectories of the pro-
duction and injection wells in the PUNQ model, Initial guess 2, Example 4, Case
2.

Producers Perforated layers Injectors Perforated layers

P-1 1, 2, 3, 4, 5 I-1 2, 3, 4
P-2 1, 2, 3, 4, 5 I-2 1, 2, 3, 4, 5
P-3 1 I-3 2, 3, 4, 5
P-4 4 - -
P-5 1 - -
P-6 1, 2, 3 - -
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Similar to the results presented in the previous examples, the final well tra-

jectories of the wells strongly depend on the initial guesses for the well trajectories.

However, the final NPVs for both initial guesses are close, event hough the well tra-

jectories are very different. With initial guess 1, the production and injection wells

are moved away from each other, i.e, the injection wells are moved toward the reser-

voir edges in the north and west sides of the reservoir; see Fig. 5.52. The production

wells are moved toward the opposite direction of the injection wells towards the east

of the reservoir. With initial guess 2, the injection wells also tend to separate from

the production wells, however, the changes in the well locations are smaller than the

changes obtained with initial guess 1.

The plots for the field cumulative oil production, field cumulative water pro-

duction and field cumulative water injection with the initial and estimated optimal

well trajectories corresponding to the optimization runs with initial guesses 1 and 2

are shown in Figs. 5.58 and 5.59, respectively. In Figs. 5.58 and 5.59, the production

data corresponding to the simulation run with the initial well trajectories are shown

with dots and the plot of production data corresponding to the simulation run with

optimized well trajectories of the wells are shown with line. Note that there is a

break in the y-ordinate of the Figs. 5.58(b), 5.58(c) and 5.59(b). With initial guess

1, after optimizing the location and trajectories of the wells, we produce almost the

same amount of oil (slightly less than the amount of oil produced with the initial tra-

jectories of the well), however, the amount of produced water and also the amount of

injected water is significantly reduced, which leads to a significant increase in NPV.

With the optimization of the well trajectories with initial guess 2, the amount of

produced oil from the reservoir is increased and the amount of injected water and

also the amount of produced water is decreased. From these results we clearly see

that the optimization of well trajectories significantly reduced water cycling in the

water flooding process of the reservoir.
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Figure 5.58: The production and injection data corresponding to the simulation runs
with the initial and final trajectories of the wells, Initial guess 1, Example 4, Case 2.
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Figure 5.59: The production and injection data corresponding to the simulation runs
with the initial and final trajectories of the wells, Initial guess 2, Example 4, Case 2.
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CHAPTER 6

CONCLUSIONS

The general optimal well-placement problem is difficult because it requires

simultaneously optimizing the number of wells, the well trajectories and the well

schedule and controls to maximize a NPV functional subject to the field operational

and economic constraints. Moreover, the optimal solution depends on the specified

economics and the production life of the reservoir.

In Chapter 3, a well-placement algorithm is introduced to simultaneously op-

timize the number of wells, the well locations and the well rates of rate-controlled

vertical injection and production wells. The optimal solution found depends on the

total field injection and production rates that are specified; thus, we have developed

and illustrated the applicability of a two-stage algorithm for estimating an optimal

solution to the problem. The first stage (initialization step) estimates optimal field

injection and production rates that are appropriate for the given reservoir life spec-

ified and thus essentially eliminates the dependance of the solution on the reservoir

life specified. The algorithm also incorporates a procedure to honor a minimum

bottomhole pressure specified at producers and a specified maximum injection well

pressure. It also has a built in procedure to escape from a local maximum so other

local maxima can be identified. The following specific conclusions are warranted.

• The initialization step, allows one to determine reasonable total production/injection

rates and improves the robustness of the well-placement algorithm.

• Using the initialization step to determine total injection/production rates to

define equality constraints in the well-placement optimization algorithm results
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in a higher value of the modified NPV function, J , than is obtained by applying

the well-placement algorithm without the initialization step.

• The method we have used to ensure that nonlinear constraints represented by

bounds on bottomhole pressures are satisfied results in a robust optimization

procedure and avoids the need to implement an adjoint method to compute the

gradient of these nonlinear constraints, thus enabling the use of Eclipse 300 in

our algorithm for the solution of the optimal well-placement problem.

• The optimized well locations are a sub-set of the initial locations of the wells

and depend on the choice of the initial locations for the wells. However, in

the examples presented in this dissertation, we showed that with reasonable

initial sets of well locations, which cover all the reservoir area, the optimized

NPV’s are fairly close. It is worth mentioning that a similar approach con-

ceptually can be adopted for the well-placement of more general trajectories

for 3D rate-controlled wells. However, one should include all the possible tra-

jectories of the wells (vertical, horizontal, directional with different orientation

angles) distributed over the area of the reservoir in the initial set of well lo-

cations. This makes the application of the method prohibitively complex and

computationally expensive and will generally yield a sub-optimal solution.

• The objective function of the well-placement optimization problem may have

several local optima. With the algorithm presented here, one can obtain a set

of local maximum points where the best maximum represents the estimated

optimal solution of the problem.

• It is shown through examples that the application of Handels et al. [16] method

to simply move the wells from the final locations obtained using the rates

obtained from the two-stage algorithm derived in this work sometimes, but not

always, results in a small additional increase in the modified NPV function.
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In Chapter 4, a derivative-free well-placement optimization procedure is de-

veloped. The optimization procedure simultaneously optimizes the well locations

and lengths (completions) of any combination of horizontal and vertical wells oper-

ating at specified rates or bottomhole pressures. Similarly, in Chapter 5, a method

is presented for optimal placement of directional wells operating at specified rates or

bottomhole pressures. For the well-placement methods of Chapters 4 and 5, the fo-

cus is on optimizing the locations and trajectories of the wells while the well controls

and the production life of the reservoir are specified. For the methods presented in

Chapters 4 and 5, the following conclusions are warranted.

• The well-placement problem can be defined in terms of continuous variables

which represent the location, length and trajectory of each of the wells.

• The NPV can be defined as a relatively smooth function of the continuous well

trajectory parameters. With this formulation, the BOBYQA algorithm can be

applied to obtain a complete algorithm for the optimal well-placement which

is easy to implement, computationally feasible and does not require an adjoint

code for gradient calculations.

• The method developed can be applied to either rate-controlled or pressure-

controlled wells. Note that since BOBYQA uses the reservoir simulator as

a “black box”, the economic and field operating constraints (e.g., maximum

water cut constraint for the production wells) can be introduced in the reservoir

simulator as reactive constraints.

• As is discussed through examples, the objective function of the well-placement

problem might be noisy and may have several local maxima. Similar to gradient-

based methods, the proposed well-placement method may converge to local

optimal solutions, and, therefore the final results depend on the initial well

locations, which should be selected based on best engineering practice.
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• The proposed methods were successfully applied for the optimization of ver-

tical, horizontal and directional well locations, lengths and trajectories in 3D

synthetic and PUNQ reservoirs.
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APPENDIX A

TRANSMISSIBILITY FACTOR OF A PERFORATION OF A DIRECTIONAL WELL

A.1 Schlumberger [37] Method

The transmissibility factor of each perforation of a well is computed by Eq. 4.4

given the values of roi and kihi. Let x̃i − ỹi − z̃i, represent the local coordinate

system for gridblock i where ẽx,i, ẽy,i and ẽz,i are the unit vectors in the x̃i, ỹi and

z̃i directions, respectively. Denoting the axis (centerline) of the well located within

gridblock i by the vector ~Hi, we have

~Hi = hx,iẽx,i + hy,iẽy,i + hz,iẽz,i (A.1)

where hx,i, hy,i and hz,i are the components of the segment length of the well in the

direction of coordinate axis x̃i, ỹi and z̃i, respectively. Note || ~Hi||2 is the length of

the well. To determine ~Hi, we have to determine the two endpoints at which the

well intersects the boundary of the gridblock.

In the Schlumberger [37] method, kihi for perforation i is determined by the

equation:

kihi =

√
(
√
ky,ikz,ihx,i)2 + (

√
kx,ikz,ihy,i)2 + (

√
kx,iky,ihz,i)2, (A.2)

where kx,i, ky,i and kz,i, respectively, are the permeability of gridblock i in the x̃i, ỹi

and z̃i directions, respectively. Similarly, hx,i, hy,i and hz,i are the segment length of

the well located in gridblock i and in the x̃i, ỹi and z̃i directions, respectively.
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To compute roi for a perforation, the Schlumberger [37] method first de-

termines the transmissibility factor of a perforation as a weighted average of the

transmissibility factors in the x̃i, ỹi and z̃i directions. Then, the value for roi is back

calculated from the computed average transmissibility factor of the perforation using

Eq. A.7, where the value of kihi is given by Eq. A.2. The transmissibility factors in

x̃i, ỹi and z̃i directions are computed based on Peaceman equation. For example, the

transmissibility factor in the x̃i direction is computed by the following equations.

Tx,i =
2πα

√
ky,ikz,ihx,i

ln
rox,i
rw

, (A.3)

where α is a unit conversion factor with α = 1.127×10−3 in the field units used here

and

rox,i = 0.28


[(

ky,i
kz,i

)1/2

∆z2
i +

(
kz,i
ky,i

)1/2

∆y2
i

]1/2

[(
ky,i
kz,i

)1/4

+
(
kz,i
ky,i

)1/4
]

 . (A.4)

The transmissibility factors in the ỹi and z̃i directions, PIy,i and PIz,i, have

similar definitions. Then the average transmissibility factor of the perforation is

computed by

Ti =
√
T 2
x,i + T 2

y,i + T 2
z,i (A.5)

Finally roi is back calculated from the average transmissibility factor using the value

of kihi computed by Eq. A.2 by solving

Ti =
2παkihi

ln
roi
rw

, (A.6)

for roi to obtain

roi = e

(
2παkihi

Ti

)
× rw. (A.7)
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A.2 Jostein Alvestad and Stava [18] Method

Similarly, denote the local coordinate axis of the gridblock i by x̃i − ỹi − z̃i.

In the Jostein Alvestad and Stava [18] method, kihi of perforation i is computed by

kihi =
(
Ψ2
xky,ikz,i + Ψ2

ykx,ikz,i + Ψ2
zkx,iky,i

)1/2
hi, (A.8)

where

Ψx = sinϕw cos θw, Ψy = sinϕw sin θw, Ψx = cosϕw. (A.9)

are the weights defined as a function of the orientation angles of the well trajectory

line measured with respect to the local coordinate system of the gridblock; hi is the

length of the part of the well inside the gridblock corresponding to the perforation

i and kx,i, ky,i and kz,i are the permeabilities of the gridblock corresponding to the

perforation i in the x̃i, ỹi and z̃i directions, respectively. Note that to determine hi,

we have to determine the two endpoints at which the well intersects the boundary of

the gridblock. In the Jostein Alvestad and Stava [18] method, the equivalent radius

for each perforation i ,roi , is computed by the following set of equations,

roi = G

(
∆L2

1,i + ∆L2
2,i

)1/2

1
2

(
A

1/2
1,i + A

1/2
2,i

) , (A.10)

where

∆L2
1,i =

(
ky,i
kz,i

)1/2

∆z2
i Ψ

2
x +

(
kz,i
kx,i

)1/2

∆x2
iΨ

2
y +

(
kx,i
ky,i

)1/2

∆y2
i Ψ

2
z. (A.11)

∆L2
2,i =

(
kz,i
ky,i

)1/2

∆y2
i Ψ

2
x +

(
kx,i
kz,i

)1/2

∆z2
i Ψ

2
y +

(
ky,i
kx,i

)1/2

∆x2
iΨ

2
z. (A.12)

A1,i =

(
ky,i
kz,i

)1/2

Ψ2
x +

(
kz,i
kx,i

)1/2

Ψ2
y +

(
kx,i
ky,i

)1/2

Ψ2
z. (A.13)
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and

A2,i =

(
kz,i
ky,i

)1/2

Ψ2
x +

(
kx,i
kz,i

)1/2

Ψ2
y +

(
ky,i
kx,i

)1/2

Ψ2
z. (A.14)

with G = 0.1404.
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