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ABSTRACT

Fengjun Zhang (Doctor of Philosophy in Petroleum Engineering)
AUTOMATIC HISTORY MATCHING OF PRODUCTION DATA FOR LARGE
SCALE PROBLEMS
(243 pp.-Chapter VII)
Directed by Dr. Albert C. Reynolds

(319 words)

Within the context of Bayesian statistics, realizations of rock property fields can be
generated by automatic history matching of production data using a prior model
to provide regularization. Automatic history matching requires the minimization of
an objective function which includes the sum of squared production data mismatch
as well as a regularization term arising from the prior geostatistical model. For
large scale problems, the computational efficiency and robustness of the optimization
algorithms used for minimization are of paramount importance.

We consider a variety of optimization algorithms for history matching pro-
duction data. For history matching problems where tens of thousands of param-
eters are estimated, preconditioned conjugate gradient methods and quasi-Newton
methods appear to be the only viable gradient based methods. Based on several ex-
amples considered in this work, a particular implementation of the limited memory
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is more robust and computa-
tionally efficient for large scale problems than the preconditioned conjugate gradient
methods that we have tried. It is shown that computational efficiency of the limited

memory BFGS can be improved by a proper choice of the scaling factor and the

il



initial approximation of the inverse Hessian. To the best of our knowledge, the par-
ticular implementations of these algorithms presented here are new to the petroleum
engineering literature.

An iterative linear solver based on orthomin theory was implemented in this
work. For large problems, the iterative solver is orders of magnitude faster than the
direct solver which is based on the LU decomposition. The iterative solver was used
to solve the adjoint equation system which is a linear system. The solution obtained
by the iterative solver is in excellent agreement with the solution obtained by a sparse
matrix technique.

The computational algorithms for history matching are applied to condition
rock property fields generated from a prior geostatistical model to production data.

The procedure allows one to consider the errors in prior means as model parameters.
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CHAPTER I

INTRODUCTION

Automatic history matching can be used to generate reservoir descriptions
that are consistent with both static data and dynamic data. In our application of his-
tory matching, we minimize an objective function which consists of a data mismatch
part and a model mismatch part. The data mismatch part measures the distance
between predicted production data from forward modeling and observed production
data. The model mismatch part provides regularization and measures the distance
from a prior mean or unconditional realization generated from the prior model. With
this approach to automatic history matching, we can construct estimates or realiza-
tions of reservoir parameters, e.g., absolute permeability fields and porosity fields.
Prior means for model parameters can also be considered as parameters in the history
matching procedure. Adjusting prior means is similar to estimating permeability or
porosity multipliers. The parameters to be estimated are referred to as the model
parameters, or the model.

To minimize the objective function involved in the history matching proce-
dure, we need to apply the optimization algorithms. Basically, there are two cate-
gories of minimization algorithms for unconstrained optimization problems. One cat-
egory consists of gradient based algorithms, e.g., steepest descent, Newton, Gauss-
Newton, Levenberg-Marquardt, conjugate gradient and variable metric (or quasi-
Newton), and the other category includes non-gradient based algorithms, such as
simulated annealing (see, for example, Ouenes et al. (1993) and Vasco et al. (1996)),
genetic algorithm (see, for example, Sen et al. (1992)), Monte Carlo methods (see, for
example, Hegstad et al. (1994) and Bonet-Cunha et al. (1998)) and neutral networks

(see, for example, Ouenes et al. (1994)). Unless one can predict production data for



a given reservoir model by some method which is orders of magnitude faster than
running a conventional finite-difference simulator, non-gradient based algorithms are
far too slow for practical application (see, for example, Bonet-Cunha et al. (1998)) as
they may require hundreds of thousands of iterations for convergence, and one must
recalculate the predicted production data at each iteration. In our work, predicted
data are always generated by running a reservoir simulator, and only gradient based
algorithms are considered.

With this approach, the efficiency of automatic history matching rests on
the parameterization of the model and the efficiency of the optimization algorithm.
The simplest reparameterization technique is known as the method of zonation, in
which the reservoir is divided into a relatively small number of zones over which the
parameter is assumed to have uniform values. To the best our knowledge, Jacquard
and Jain (1965) and Jahns (1966) used the zonation approach first for history match-
ing purposes. A decade later, Gavalas et al. (1976) and Shah et al. (1978) showed
that a Baysian history matching approach gave better estimates of the true perme-
ability and porosity fields than were obtained by zonation in a simulated case of a
one-dimensional reservoir. In a recent study, Bissell et al. (1994) proposed a type of
zonation in which gridblocks are grouped together into sets that they call gradzones.
They provided a procedure to select gradzones based on the high sensitivity of vari-
ous data with respect to parameters in each of the selected gridblocks. Although it
is simple to apply zonation for reservoir inverse problems, it is difficult to obtain a
good data match because of the small number of degrees of freedom. More impor-
tantly, any coarse zonation method typically yields discontinuous reservoir properties
at zonation boundaries.

The pilot point method of parameterization which perturbs reservoir proper-
ties only at selected pilot point locations to match the production data was originally
proposed by de Marsily et al. (1984) in the groundwater hydrology field. This is a
reduced parameterization whose basis vectors are simply the columns of the prior
covariance matrix corresponding to the pilot point locations. The pilot point method

has been applied to synthetic and field cases by several researchers (for example, Ki-



tanidis (1995), RamaRao et al. (1995) and Gémez-Herndndez et al. (1997)) in the
groundwater hydrology field. In recent years, some researchers (for example, Xue and
Datta-Gupta (1997), Wen et al. (1997), Bissell et al. (1997) and Roggero (1997)) have
adapted the same idea to history matching. The drawback of this method is that,
it can result in overshoot at the pilot point locations (see, for example, Xue and
Datta-Gupta (1997)).

The subspace method (for example, Reynolds et al. (1996), Abacioglu et al.
(2000)) is another reparameterization method which can be used for history match-
ing. This method requires applying the adjoint method to compute the subspace
vectors and then applying the gradient simulator method to calculate the gradi-
ent of the objective function with respect to the subspace vectors. Therefore, even
though this method avoids the direct calculation of the sensitivity coefficient G, it is
impractical for large scale history matching problems.

Computational efficiency of the optimization process depends on the num-
ber of iterations required to converge and the computational cost per iteration. In
general, the cost per iteration depends largely on the cost of computing the required
sensitivity coefficients, i.e., the derivatives of predicted production data with respect
to reservoir model parameters. If the number of model parameters is very small, the
finite-difference method can be used to estimate sensitivity coefficients. This process
requires V,, + 1 simulation runs where N,, is the number of model parameters. If the
number of model parameters exceeds a few dozen, it is clear that the finite-difference
method will be impractical.

If the number of model parameters is large, the gradient simulator method
(Yeh (1986) and Anterion et al. (1989)), which is a popular approach for comput-
ing sensitivity coefficients, also becomes impractical. With the gradient simulator
method, the sensitivities of all gridblock pressures and gridblock saturations to a par-
ticular model parameter are computed at the end of a simulation time step. From
these sensitivities, we can easily calculate needed sensitivities, e.g., the sensitivities
of water-oil ratio to model parameters. To generate the sensitivities, we must solve

a matrix problem which involves the same coefficient matrix as the one that ap-



pears in the finite-difference simulator equations. Only the right-hand side of the
matrix problem depends on the particular sensitivities being calculated. Thus, the
problem reduces to solving a matrix problem with multiple right-hand side vectors,
one right-hand side vector for each model parameter. With the fast iterative solver
developed by Killough et al. (1995), it appears that the computational time to com-
pute a single sensitivity coefficient is on the order of 10% of a forward simulation.
For the gradient simulator to be practical, the number of model parameters must be
small. This means, if the underlying reservoir simulation problem involves thousands
of model parameters, e.g., all gridblock porosities and permeabilities, one must re-
duce the number of parameters estimated directly in the optimization algorithm by
some form of reparameterization, e.g., zonation (Jacquard and Jain (1965) or grad-
zones (Bissell et al. (1994); Bissell (1994), Tan (1995)), pilot points (de Marsily et al.
(1984), RamaRao et al. (1995), Bissell et al. (1997)) or subspace methods (Kennett
and Williamson (1988), Oldenburg et al. (1993), Reynolds et al. (1996), Abacioglu
et al. (2000)). However, these methods have those disadvantages mentioned earlier.
Therefore, our research focused on more computationally efficient gradient based
optimization algorithms.

The MGPST, which was introduced by Chu et al. (1995) based on ideas of
Tang et al. (1989), provides a highly efficient approximation of the gradient simulator
method. Unfortunately, the MGPST methods yields highly inaccurate estimates of
the sensitivity of pressure data to the porosity field.

The other main alternative for the computation of sensitivity coefficients is
the adjoint method (Chavent et al. (1975) and Chen et al. (1974)). For linear prob-
lems, the adjoint method is equivalent to a procedure developed for two-dimensional
linear single-phase problems by Carter et al. (1974) and extended in an approxi-
mate, but highly efficient way, to three-dimensional problems by He et al. (1997).
The adjoint method was applied to a water-oil two-phase problem by Wu (1999) and
to three-dimensional three-phase problems by Makhlouf et al. (1993) and Li (2001).
Using this method to get the sensitivity of one datum with respect to all the model

parameters, we need to solve a system of adjoint equations. The system of equation



describing the adjoint problem is similar to the system of finite-difference equations
solved in the reservoir simulator, but there are some major differences. First, the
adjoint problem is solved backward in time and requires information from the for-
ward solution (reservoir simulation run) to form the matrices involved in the adjoint
problem. In our approach, we save pressure and saturation from the forward run
so that we can compute the matrices involved in the adjoint problem. Secondly,
the system of finite-difference equations for the forward problem is nonlinear and is
solved by Newton-Raphson iteration. The adjoint system is linear, consequently, the
solution of the adjoint problem over one time step, may require on the order of one
half the time or less required to solve the forward problem over one time step, but
we have not done any exact timing of the time required. For the purpose of making
comparison of the computational effort required by different algorithms, we equate
the cost of solving an adjoint system for one time step to the cost of solving the
simulator finite-difference equations over one time step. In the adjoint procedure,
the number of right-hand sides is no greater than the number of production data and
independent of the number of model parameters. If the data are evenly distributed
in time, the cost of computing the sensitivities of all data to all model parameters is
roughly equal to N;/2 simulation runs backward in time without using the multiple
right-hand side technique where Ny is the number of data. If the number of data is
large, this method is computationally expensive and is impractical for real problems.

Due to the fact that it exhibits quadratic convergence, Newton’s method is
a popular method for unconstrained minimization. As the second derivative terms
needed for Newton’s method are difficult to evaluate, Newton’s method is often re-
placed by the Gauss-Newton method. Near a minimum, the Gauss-Newton method
is approximately quadratically convergent and has the advantage that the associated
Hessian matrix for Bayesian inverse problems is guaranteed to be positive definite if
the prior covariance matrix is positive definite. For a non-quadratic objective func-
tion, Newton’s method may not provide the optimal downhill direction if the initial
guess is far from a model that corresponds to a minimum of the objective function.

Moreover, for history matching problems, the Gauss-Newton method occasionally



fails to converge to a model which gives a good match of production data if the
initial data mismatch is large; see Wu et al. (1999) and Li et al. (2001). For these
reasons, the Levenberg-Marquardt algorithm is often preferable to the Gauss-Newton
method.

If the sensitivities are easily obtained, the Gauss-Newton (GN) and Levenberg-
Marquardt (LM) methods are good choices for the unconstrained minimization prob-
lem, because they have the quadratic convergence property which results from using
the curvature information of the objective function. This curvature information is
represented by the second order derivatives of the objective function, i.e., the Hes-
sian matrix. Constructing the Hessian matrix requires the computation of sensitivity
coefficients. As computation of all sensitivity coefficients is impractical if both the
number of data and the number of model parameters are large, we will consider other
alternatives for conditioning a model to multi-phase flow production data. The al-
ternatives include those methods that do not require the calculation of all sensitivity
coefficients. They require only the gradient of the objective function, which can be
calculated from a single adjoint solution. Thus, even if these algorithms require sig-
nificantly more iterations to converge, they may still require a small fraction of the
computer time required to obtain convergence with either the Levenberg-Marquardt
algorithm or the Gauss-Newton algorithm.

There are two main classes of effective optimization algorithms which re-
quire only the gradient of the objective function. The first class includes the set of
conjugate gradient algorithms and the second class includes the set of quasi-Newton
or variable metric methods. Each algorithm includes a directional line search, i.e.,
the solution of a one-dimensional minimization problem, at each iteration. However,
the search direction differs from algorithm to algorithm.

Quasi-Newton methods, which are based on generating an approximation to
the inverse of the Hessian matrix, require only the gradient of the objective function.
The methods differ in how they correct or update the inverse Hessian approximation
at each iteration. The rank one correction formula was first suggested by Broyden

(1967). Another formula, called the DFP algorithm, was first suggested by Davidon



(1959) and later presented by Fletcher and Powell (1963). The BFGS correction
formula (which was suggested by Broyden (1970), Fletcher (1970), Goldfarb (1970)
and Shanno (1970) independently), and several variants of the BFGS formula (like
the self-scaling variable metric (SSVM) by Oren and Luenberger (1974), limited
memory BFGS by Nocedal (1980) and Liu and Nocedal (1989)) have proven useful
in many scientific applications.

DFP, BFGS and all the variants of BFGS are members of Broyden’s family
which is a subset of Huang’s family; see Huang (1970) or Appendix B. Dixon’s theo-
rem (see Dixon (1972)) shows that for a general continuously differentiable objective
function, the set of search directions developed by any two members of Broyden’s
family differ only by a scalar multiplier and successive iterates are identical, given
that the same starting point and the same initial Hessian inverse approximation,
flo_ ! are used and that all line searches are exact. The importance of an exact line
search is underlined by Dixon’s theorem, but in practice exact line searches are ex-
pensive and lead to less computationally efficient algorithms. Due to an inexact line
search and round off errors, different members of the Broyden class usually give in
practice different results for the same problem starting with the same initial condi-
tion. In practice, BFGS is the best update of the Broyden class (see, e.g., Shanno
and Phua (1978), Nocedal (1992) and Kolda et al. (1998)), in the sense that this
algorithm exhibits more robust behavior than others in this class.

Another minimization algorithm which only uses the gradient of the ob-
jective function is the conjugate gradient method. The conjugate gradient method
was originally proposed by Hestenes and Stiefel (1952) for solving linear systems
and extended to nonlinear optimization by Fletcher and Reeves (1964) to obtain
the Fletcher-Reeves algorithm. Later Polak (1971) proposed a different formula to
calculate the coefficient involved in the search direction update equation and the
corresponding algorithm is called Polak-Ribiere algorithm. Powell (1977) presented
some numerical results and gave some theoretical reasons which indicate that the
Polak-Ribiere algorithm is superior to the Fletcher-Reeves algorithm. Efficiency of

the conjugate gradient method depends primarily on the preconditioner used.



When applied to quadratic functions, the conjugate gradient method is
equivalent to the standard BFGS algorithm provided that an exact line search is
performed; see Buckley (1978b) or Nazareth (1979). However, the BFGS algorithm
is more efficient than the conjugate gradient method when applied to nonlinear prob-
lems due to the fact that BFGS uses approximate curvature information of the objec-
tive function, e.g., see Buckley (1978a) and Kolda et al. (1998). The disadvantage of
the BFGS algorithm over the conjugate gradient method is that the BFGS requires
much more storage than the standard conjugate gradient method. Here, standard
conjugate gradient algorithm refers to the conjugate gradient algorithm without pre-
conditioning. The standard conjugate gradient algorithm requires less memory than
the Gauss-Newton, Levenberg-Marquardt and quasi-Newton methods. The limited
memory BFGS algorithm requires an intermediate amount of memory which is spec-
ified by users and also uses the approximate information of the Hessian. Kolda
et al. (1998) shows that limited memory BFGS has the property of termination in
finite number of iterations (quadratic termination) when applied to strictly convex
quadratic functions. The examples shown in this study also indicate that limited
memory is more efficient than the conjugate gradient method.

The limited memory BFGS was designed for the purpose of solving large
scale problems which involve thousands of variables. Limited memory BFGS methods
originated with the work of Shanno (1978a), and were subsequently developed and
analyzed by Buckley (1978a), Nazareth (1979), Nocedal (1980), Shanno (1978b),
and Buckley and Lenir (1983). Liu and Nocedal (1989), and Nash and Nocedal
(1991) tested LBFGS method on a set of problems. They concluded that LBFGS
performs better than conjugate gradient in terms of computational efficiency, except
in cases where the function evaluation is inexpensive. Nash and Nocedal also tested
the truncated-Newton algorithm in their work. From their comparison, none of the
algorithms is clearly superior to the other.

The SSVM (self-scaling variable metric) method was used by Yang and
Watson (1988) on hypothetical water floods of both 1D and 2D reservoir models.

The 1D reservoir model consisted of 10 gridblocks with an injection well at one end



and a producing well at the other end. Sixty data from each well were used for
history matching. Four cases based on this 1D reservoir model were tested. The
reservoir was characterized by different parameters in different cases. The number of
model parameters varied from 9 to 19. The other two cases were based on a quarter
of a five-spot 2D model which consisted of a 10 x 10 grid. Again sixty data from
each well were history matched. The number of model parameters for these two
cases were 4 and 11 respectively. In this paper, the authors tested four different
algorithms, BFGS, SSVM, conjugate gradient and steepest descent. They concluded
that (i) the self-scaling variable metric method is significantly more efficient than
the BFGS method; (ii) the SSVM and BFGS methods are more efficient and robust
than the conjugate gradient method, except in the case where the objective function
is nearly quadratic; and (iii) both SSVM and BFGS methods perform significantly
better than the steepest descent method.

Masumoto (2000) applied the SSVM method to a water-oil two-phase flow
problem. The author considered a one-dimensional reservoir model with 20 grid-
blocks. With a fixed porosity field, the author estimated the permeabilities in all
gridblocks. Hence, there were 20 unknown model parameters. The objective func-
tion he minimized included a pressure mismatch part and the pressure derivative
mismatch part. The author did not give any information about how many data he
history matched or any assessment of the minimization algorithm. Savioli and Grat-
toni (1992) tested 4 different algorithms: Davidon-Fletcher-Powell (DFP), Fletcher-
Reeves (FR), BFGS and Levenberg-Marquardt (LM). The authors presented two ex-
amples. In the first example, they estimated one permeability value and one porosity
value by applying these four algorithms. The second example they considered was
an oil-water two-phase water flooding problem. They estimated the exponent used
to define the relative permeability and capillary pressure curves with a power law
function (only one adjustable parameter for each curve). They concluded that among
these four algorithms, BFGS performed best in terms of computational efficiency and
stability:.

Makhlouf et al. (1993) applied the conjugate gradient method to a three-



phase three-dimensional history matching problem. The authors considered a three
layer reservoir. A 15 x 10 grid was used to simulate this problem with only one
vertical gridblock per layer. They assumed the porosity and relative permeabilities
are known. Absolute permeabilities were the only model parameters estimated (450
model parameters). For the three-phase examples presented, wellbore pressure, wa-
ter cut, gas-oil ratio as well as phase flow rate at the individual penetrated layers
(about two thousand production data) were history matched. The conjugate gradi-
ent algorithm presented by Nazareth (1977) was applied to minimize the objective
function. The authors presented two examples for the three-phase problem. In the
example where free gas was present initially, 222 iterations were required to converge.
In the example where no free gas was present initially, 110 iterations were required
to converge. The authors did not discuss a preconditioner. If a good precondition-
ing matrix can be found for nonlinear conjugate gradient methods, it is conceivable
that convergence could be considerably accelerated. For the Baysian formulation of
the history matching problem considered here, the most straightforward choice of
a preconditioning matrix is the inverse of the prior covariance matrix (Kalita and
Reynolds (2000)). Although this preconditioner yields some improvement in the
examples we have tried, it tends to result in much slower convergence rates than
are obtained with a good implementation of the limited memory BFGS method. In
this work, we also explore using approximations to the inverse Hessian matrix con-
structed from a variable metric method as a preconditioning matrix for the nonlinear
conjugate gradient method. This method is also shown to be less robust than the
limited memory BFGS method.

Deschamps et al. (1998) presented an interesting comparison of the rela-
tive efficiency of several optimization methods for automatic history matching of
production data. They suggest that the most efficient optimization method will be
a hybrid scheme and specifically advocate schemes that combine a Gauss-Newton
method with another procedure. They reject the Levenberg-Marquardt scheme as
relying too heavily on the steepest descent method and do not present any com-

parisons based on this method. On the other hand, some results (Li et al. (2001)
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and Zhang et al. (2001)) indicate that a Levenberg-Marquardt algorithm is often
superior to the Gauss-Newton method. The Levenberg-Marquardt algorithm used
in these references, however, is the nonstandard one introduced by Bi et al. (2000)
and is based on a regularized objective function. In this procedure, one starts with a
large value of the Levenberg-Marquardt parameter A\ to avoid making large changes
in the model at early iterations, whereas, the standard algorithm starts with a small
value of X\. Deschamps et al. history matched only a few model parameters and
apparently used no regularization term in their objective function. Instead of the
standard Levenberg-Marquardt algorithm, they implemented a trust region method.
In the event that neither the Gauss-Newton step nor steepest descent give an ac-
ceptable step, then a dogleg strategy is used to interpolate between Gauss-Newton
and steepest descent to obtain a search direction.

Deschamps et al. also considered a scheme, due to Law and Fariss (1972),
which is referred to as ConReg. This method effectively requires a spectral or singu-
lar value decomposition of the Gauss-Newton Hessian matrix. (This is not feasible,
when the dimension of these parameters is large.) Based on this decomposition,
they calculated parameters corresponding to “small” eigenvalues by a steepest de-
scent method and those corresponding to sufficiently large eigenvalues using a Gauss-
Newton search direction. Another algorithm is based on starting the optimization
with a quasi-Newton method and then switching to a ConReg when the objective
function has been reduced below a preset limit. As the quasi-Newton method re-
quires only the gradient of the objective function, one iteration of a quasi-Newton
method requires much less computational effort than one iteration of the Gauss-
Newton method. They also consider three other hybrid algorithms which combine
Gauss-Newton and quasi-Newton methods.

Deschamps et al. compared the hybrid methods with a pure quasi-Newton
method, although it is not clear which quasi-Newton method they used, how they
initialized the inverse Hessian approximation, or whether they used scaling. For the
two history matching problems they considered, the quasi-Newton method required

on the order of three times as many “equivalent simulation runs” to obtain conver-
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gence as most of the other methods. For the first example presented, a synthetic
case, the quasi-Newton method converged to a much higher value of the objective
function than all the other methods.

It is important to note that fewer than 20 parameters were estimated by
history matching in the two examples considered by Deschamps et al. For these
problems, it is feasible to compute all sensitivity coefficients necessary to form the
Hessian matrix for the Gauss-Newton method. In the examples we considered in
this study, we estimated a few hundred to tens of thousands of model parameters
which include both horizontal and vertical permeabilities in each individual gridblock
by history matching up to a thousand production data. As a matter of fact, our
code has the capacity of estimating horizonal permeabilities, vertical permeabilities,
porosities and well skin factors. For such problems, direct calculation of all sensitivity
coefficients is not feasible.

There are 7 chapters and 4 appendices in this dissertation. Chapter 2
briefly describes the theory of automatic history matching. It includes discussions
of Bayesian inversion, the construction of the MAP estimate and multiple realiza-
tions. A procedure of handling the doubly stochastic model is also presented in this
chapter. Chapter 3 discusses the forward simulator and the adjoint method used
to calculate the gradient of the objective function. Chapter 4 presents the iterative
solver we used to solve the adjoint equation system which is linear. We show ex-
amples to compare the accuracy of the iterative solver and the sparse matrix solver.
Chapter 5 discusses optimization algorithms. It covers the evaluation of computa-
tional efficiency and the memory requirements of different optimization algorithms.
Technical details for applying quasi-Newton method are discussed in this chapter. In
Chapter 6, we apply optimization algorithms for a set of history matching problems.
The problems considered include three-dimensional single-phase flow gas reservoir,
two three-phase flow problems and an example modeled on the Oseberg reservoir at
North Sea. In Chapter 7, the conclusions and research contributions of this work are
summarized. In Appendix A, a detailed theoretical background for the linear equa-

tion solver is provided. In Appendix B, some derivations and theoretical results for
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quasi-Newton methods are presented. In Appendix C, details on linear and nonlin-
ear conjugate gradient methods are provided. Appendix D discusses the relationship

between conjugate gradient and the quasi-Newton methods.



CHAPTER II

THEORY OF AUTOMATIC HISTORY MATCHING

History matching is a process of changing model parameters to find a set
of values that will yield a reservoir simulation prediction of data that matches the
observed historical production data. As we all know, the reservoir models are built
on limited information which may include core data, log data, geological information,
lab data (for fluid properties) and 3D seismic data. Note the preceding data sets do
not include production data. Before using a model based on this information to make
reservoir management decisions, we wish to integrate historical production data. The
historical production data may include bottom-hole or static pressures, gas-oil ra-
tios (GOR’s), water-oil ratios (WOR’s), or phase flow rates. If the current reservoir
description, when input into a reservoir simulator, does not predict data that agree
with historical “measured” production data, then we need to change the descrip-
tion, i.e., change the model parameters, which may include gridblock permeabilities
(horizontal and vertical), gridblock porosities, parameters that define the relative
permeability, fault locations or fault transmissibilities. This adjustment procedure is
called history matching. History matching can be done manually or automatically.
Today, for complex problems, history matching is largely done manually, although
automatic history matching tools are starting to have some impact. Our research
focused on automatic history matching of production data for the purpose of con-
structing an estimate or multiple realizations of model parameters, i.e., porosity and
permeability fields, well skin factors and parameters defining relative permeability
functions. Because we do history matching automatically, we can consider many
more parameters than in the manual history matching process. History matching is

done in a Bayesian framework so that estimates and realizations are consistent with
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a prior geostatistical model formulated from static data. Automatic history match-
ing is accomplished by applying an optimization algorithm to minimize an objective
function which includes a sum of data mismatch terms squared. In this approach,
one can include time-lapse seismic data or even “hard data” such as gridblock poros-
ity interpreted from a log as well as production data in the data mismatch terms. In
the Bayesian framework, generating a suite of realizations is equivalent to sampling
the a posteriori probability density function. If sampling is done properly, then the
set of realizations will provide a correct assessment of the uncertainty in the model
parameters. By simulating future performance under proposed operating conditions
using each realization as reservoir simulation input, and constructing statistics for the
set of outcomes (e.g., cumulative oil production, WOR’s, GOR’s and breakthrough

time), one can evaluate the uncertainty in predicted performance.

2.1 Prior Model and Data Measurement Errors

Let m be an N,,-dimensional column vector that contains all the model
parameters we want to estimate or simulate, where NN,, represents the number of

model parameters. We write m as

my
m = , (2.1)

Mg
where my is the vector of the well skin factors and m,. is the vector for the rock prop-
erty fields. In our work, we use only rock gridblock permeabilities and porosities
and well skin factors as model parameters. These parameters are modeled as ran-

dom variables, so m is a random vector. We approximate the prior reservoir model

parameters as multivariate Gaussian with prior mean given by

mr,prior

Mprior = ) (22)
ms,prior
and prior covariance matrix given by
c, 0
Cy = , (2.3)

0 Cs
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where C§ is the covariance matrix for well skin factors and C, is the covariance
matrix for the rock property fields. The dimension of m is N,,, so C)s is an N,,, X N,
matrix. As the well skin factors are assumed to be independent Gaussian random
variables, (s is a diagonal matrix. C) is obtained from the geostatistical information.
Assuming the prior model is multivariate Gaussian, the probability density function

(pdf) for the prior model is given by
p(m) = aexp(—0,,(m)). (2.4)

where a is the normalizing constant and

Om) = 50m — M) O3 — M) (2.5)

We let d,,s be an Ny-dimensional column vector that contains all observed
production data that will be history matched, where Ny denotes the number of
conditioning production data. Let e be an Njdimensional column vector of data
measurement errors. Here, we assume that e is a Gaussian random vector with
mean equal to zero and covariance matrix given by C'p. Here, we also assume that
the data measurement errors are independent although there exist evidence that
this may not always be a good assumption, see Aanonsen et al. (2002). Therefore,
the data covariance matrix Cp is an Ny X Ny diagonal matrix. Each entry of Cp
corresponds to the variance of a particular measurement error and these variances
are not assumed to be identical. For example, we expect the “measurement” of
GOR to be much less accurate than the measurement of bottom-hole pressures. The

probability density function (pdf) for the data measurement error is given by
|
ple) = bexp(—ie Cphe). (2.6)

Let d be an Nj-dimensional column vector that contains the predicted data

given model m. The equation

d=g(m) (2.7)

represents the operation of calculating data d corresponding to d,s for a given model

m, i.e, the forward simulation run. If m is the true model, then the difference between
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d and d,s represents measurement error, i.e.,
e=d— dobs~ (28)

Suppose we are given model m, but have not yet measured dgs, then do,s = d + € is

a random vector. The pdf for d,,s given m is
1
p(dobs|m) = beXp ( - §(d - dobs)TCBI(d - dobs))

= bexp ( — =(g(m) — dobs)TCBI(g(m) - dobs))'

(2.9)

If we treat m as the random variable and assume d, is given, then Eq. 2.9 gives the

likelihood of m given d.,s and we write
l(m|dys) = b 1 —dys)TCHY —d 2.10
(m| obS) eXp ( Q(Q(m) obS) D (g(m) obS))- ( . )

The most likely model or the maximum likely estimate is the model that maximizes
[(m|dops), i.e., the model that minimizes
1 _

Og4(m) = i(g(m) — dobs) T CH (g(m) — dops)- (2.11)
Even though the estimate of the model obtained by minimizing Eq. 2.11 is the same
as the least squares estimate, Eq. 2.10 has statistical meaning. If we characterize
the measurement error correctly, then Eq. 2.10 represents the likelihood function of
the model. By minimizing Eq. 2.11, we get the maximum likelihood estimate of the

model.

2.2 Bayesian Estimate

For automatic history matching problems of interest to us, the number of
model parameters is usually greater than the number of independent production data
and thus the history matching problem does not have a unique solution. If the Gauss-
Newton procedure is applied to minimize an objective function consisting of only the
sum of squared production data misfit terms, the Hessian matrix will be singular
and the optimization algorithm will be unstable. This instability problem can be

avoided by adding a regularization term to the objective function to be minimized;
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see Tikhonov (1963) and Parker (1994). With a proper regularization, the Hessian
matrix in the Gauss-Newton method will be real symmetric positive definite and
hence nonsingular. In this work, we use a prior geostatistical model to provide
regularization. With this approach, the history matching problem is equivalent to a
Bayesian estimation problem, see Gavalas et al. (1976); Tarantola (1987); He et al.
(1997); Wu et al. (1999). With the application of Bayes theorem, we can estimate
the conditional probability density function (the a posteriori pdf) for the model

parameters m given observations dops, i.€.,

p(dobs|m)p(m) _ p(dobs|m)p(m) _ p(dobs|m)p(m)
p(dobs) fp<dobs’u)p(u)du fp(dobs, u)du ’

where p(dops, u) is the joint probability density function. Using 2.4 and Eq. 2.9 in

p(m|dops) = (2.12)

Eq. 2.12, we can write the a posteriori pdf as
w(m) = cexp(—0O(m)), (2.13)

where c is the normalizing constant and

(2.14)

which is the total objective function we wish to minimize in the history matching
procedure. The total objective function contains two parts, the model mismatch
part O,,(m) and the data mismatch part O4z(m). The model mismatch part O,,(m)
provides the regularization for the objective function to avoid unrealistic changes in
the model parameters. Minimizing Eq. 2.14 gives the maximum a posteriori (MAP)

estimate of the model which is the most probable model.

2.3 Evaluation of Uncertainty

The MAP estimate of the model gives a very smooth model which does not
reflect the heterogeneity that would be typical for a realization generated from the

prior model. We are more interested in generating multiple realizations to evaluate
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the uncertainty in reservoir description and performance prediction. The general
approach we follow here to characterize the uncertainty in reservoir performance
prediction is the one that has been advocated by Oliver (1996), He et al. (1997)
and Reynolds et al. (1999). This approach is consistent with one promulgated by
the Norwegian school of reservoir characterization; see, for example, Omre et al.
(1993) and Holden et al. (1995). In our approach, we (i) develop an a posteriori
probability density function (pdf) for the model parameters; (ii) sample this pdf to
obtain a set of realizations of the model; (iii) predict future reservoir performance
for each realization using a reservoir simulator; and (iv) construct statistics (mean,
variance, histograms, etc.) for the outcomes (e.g., cumulative oil production, water
cut, producing gas-oil ratio or breakthrough times) to evaluate the uncertainty in
performance predictions and to evaluate risk in reservoir management decisions.

Sampling the pdf is difficult. The rejection algorithm is theoretically sound,
but completely impractical for the general problem of conditioning a reservoir model
to production data unless the uncertainty in the production data (noise and modeling
error) is very large compared to the uncertainty in the prior model. Liu et al. (2001)
recently presented a paper on conditioning a simple one-dimensional model with forty
model parameters to pressure data. They tried several different probability density
functions to propose realizations, but were unable to generate more than a handful
of valid samples using rejection despite proposing millions of candidate realizations.

Markov chain Monte Carlo (MCMC) methods also provide a theoretically
sound method for sampling the a posteriori pdf correctly. Unfortunately, even with
modifications aimed at improving computational efficiency, the MCMC approach
appears to be too computationally inefficient for practical applications; see Oliver
et al. (1997) and Bonet-Cunha et al. (1998).

In this work, the randomized maximum likelihood method is used for sam-
pling. The randomized maximum likelihood method refers to the sampling procedure
presented within the context of MCMC methods by Oliver et al. (1996), and was also

mentioned without discussion by Kitanidis (1995). To generate a realization with
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this procedure, we calculate an unconditional realization m,. from
Muc = Mprior + 011\4/22M7 (215)

where z,; is an N,,-dimensional column vector of independent standard random
normal deviates. The matrix 011\4/2 is a square root of Cy; and is normally chosen as
011\4/2 = L where

Cy =LL", (2.16)

is the Cholesky decomposition of C'y;. Similarly a realization of the data is generated
from

due = dops + CH2p, (2.17)

where zp is an Njz-dimensional column vector of standard random normal deviates.

If the model is very large, e.g., if the number of model parameters is on
the order of ten thousand or larger, then the covariance matrix C}; is so large that
Choleskey decomposition of C; becomes computationally expensive and impractical.
Then Gaussian co-simulation provides a practical alternative for generating uncon-
ditional realizations of m; see, for example Gémez-Herndndez and Journel (1992).

The associated conditional realization of m is the model that minimizes
1 T ~—1 1 T ~—1
O(m) = i(m — Mye)” Chp (M — mye) + E(g(m) —due) Cp (g(m) —dye).  (2.18)

Similar to results given in Tarantola (1987) O(m) can be approximated by a chi-
squared distribution with expectation given by E(O(m)) = N4 and standard devi-
ation given approximately by o(O(m)) =~ /2Ny. Virtually all samples should be
within five standard deviations of the mean. Thus, if applying an optimization algo-
rithm to minimize Eq. 2.18 gives a result m.., we accept m. as a legitimate realization
if and only if

Nd—5\/ 2Nd < O(TTLC) < Nd+5\/ 2Nd (219)

If Eq. 2.19 is not satisfied, the minimization algorithm has failed. This failure can
occur if the algorithm converges to a local minimum or converges so slowly that the

decrease in the objective function is so small that the convergence criteria, which is
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based on the change in the objective function, is satisfied before we actually reach
a minimum. The chi-squared approximation on which Eq. 2.19 is based assumes
that g(m) is a linear function of m. In some cases, this chi-squared approximation
appears to be valid; see, for example the results on conditioning a stochastic channel
to pressure data of Zhang et al. (2002) and the results on history matching pressure
data from a single-phase gas reservoir presented in Section 6.1. In other cases, we
obtain values of the objective function at convergence much greater than Ny+5+/2Ny;
see, for example the three-phase flow history matching example of Section 6.3. It is
unclear whether the failure to satisfy Eq. 2.19 at convergence occurs because g(m)
is not well approximated by a linear function of m or for some other reasons.
Ultimately, we wish to be able to history match several hundred to a few
thousand production data to generate realizations of tens of thousands of model
parameters. Thus, computational efficiency is an extremely important consideration.
It is equally important that the algorithm should be robust, i.e., the number of
convergence failures should be extremely small. If minimization of O(m) frequently
result in values of O(m,) which do not satisfy Eq. 2.19, the utility of the optimization

algorithm is diminished.

2.4 Doubly Stochastic Model

In the history matching procedure, people usually treat the prior mean of
the model parameters as known and constant. In practice, however, the prior mean
is also obtained from observations and is uncertain. If this situation happens, we
need to correct the prior mean of model parameters. Thus, following Reynolds et al.
(1999), we introduce a random vector denoted by # to model the correction to the

prior mean where we assume 6 can be written as

Q161 €1 o ... O (07]

O e ... O
o= 2 =7 " T ™ = Ea, (2.20)

N, EN, O O ... EN, an,
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where _ _
€1 o . O
O €y ... O
E=1| . (2.21)
O O . EN,
and
e=[1,---,1]" (2.22)

with appropriate dimensions.
' ) vari S =
We assume the «;’s are independent random variables in which case C, is

a diagonal, positive definite matrix. The pdf for « is specified as
1 T -1
Pala) = aexp( - 5(@ —ap) C (a— a0)>. (2.23)

The conditional pdf of M given « is

1
Pmja(m | @) = aexp( — §(m — Mprior — Ea)TCA}l(m — Mprior — Ea)). (2.24)

The joint pdf for M and « is given by

pm,a(ma a) = lea(m | O‘)pa<O‘) =

1 1
aexp( = §(m — Meprior — EOz)TC]\}1 (m — Mprior — Far) — 5(04 — ao)TCgl(a = a0)>.

(2.25)

Eq. 2.25 implies that the expectation of M given « is
E[M | a] = mpior + Ea, (2.26)

where in the preceding equation, E denotes the expectation. Let M denote the

random vector including the model vector M and vector «, i.e.,
M = : (2.27)

and let 7 denote a realization of M. Let d represent the data vector which is obtained

by running the simulator given the model m. The relationship between the data d
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and the model m is specified by Eq. 2.7. Given m, the observed pressure data is
treated as a realization of the random vector d,,s = g(m) + €. By the application of

Bayes theorem, we can write the a posteriori pdf for (m, «) conditional to dgps as
m(m, &) = pm,a) (M, a | dobs) = aexp( — O(m, a)) (2.28)

where O(m, «) is given by

O(m, @) = ~(g(m) — dons)"Cp (g(m) — dons)+

2
1 1
§(m — Mprior — Ba) O (M — Mypgior — Fa) + 5(04 — )T C (o — ). (2.29)

Eq. 2.29 is the objective function we should minimize for the doubly stochastic model.

To evaluate the uncertainty, we use the randomized maximum likelihood
method (Kitanidis (1995), Oliver et al. (1996)) to sample the a posteriori pdf. There
are three steps in this procedure: (i) generate an unconditional realization of the

model and correction to the prior mean, respectively, from
1/2
Mye = mprior + C]\/é ZM, (230)

where z); is an N,,-dimensional column vector of independent standard random
normal deviates and

Qye = Qi + C}/?za, (2.31)

where z, is independent standard random normal deviates with consistent dimen-

sions; (ii) generate a realization of the data from
dye = dovs + Cf 2D, (2.32)

where zp is an Ny-dimensional column vector of standard random normal deviates;
(i) replace Mpyior, dobs and ayg, respectively, by myc, dye and aye in Eq. 2.29 to obtain
the modified objective function given by

Or(m. ) =1 (4(m) ~ due) 5 (g(m) — due)

1 1
+§(m — Muye — E@)TC’]\}l (m —my. — Ea) + 5(04 — auc)TCojl(a — Qiye)-

(2.33)

To obtain a realization conditional to the data, we minimize Eq. 2.33 once. To obtain

n independent realizations, we repeat the procedure n times.
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CHAPTER III

RESERVOIR SIMULATOR AND ADJOINT METHOD

In the first section, we briefly discuss the forward finite-difference equations
that are required to solve in the reservoir simulator. In the second section, we
consider the adjoint method which is used to calculate the sensitivity coefficients,
which represent derivatives of the data with respect to model parameters. The
gradient of the objective function is the derivative of the objective function with
respect to the model parameters. Therefore, the whole objective function can be
treated like an individual datum so that the gradient of the objective function can
be obtained by one application of the adjoint method. This chapter gives the basic
formulas of the adjoint method; see Li (2001) for detailed information. We focus on

the calculation of the gradient of the objective function.

3.1 The Reservoir Simulator

For simplicity, the reservoir is assumed to be a rectangular parallelepiped

which occupies the region
Q={(z,y,2) | 0<z<L,,0<y<L,0<z<L,} (3.1)

The simulator used is based on a fully-implicit, finite-difference formulation
of the three-phase flow, black-oil equations expressed in a r—y—2z coordinate system
which apply on €2; see Eq. 3.1. Suppose there are N,, N,, N, gridblocks in the
r—, y— and z— directions respectively. Let N be the total number of gridblocks,
ie., N = N, x N, x N,. At each of the N gridblocks, three basic finite-difference
equations apply. These three equations represent the mass balance for each of the

three components, i.e., oil, gas and water. In addition, a constraint is applied at
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each of the N, wells to yield N, additional equations. At each well at each time
step, either an individual phase flow rate, the total flow rate or the wellbore pressure
may be specified as a well constraint. In the results considered in this work, capil-
lary pressures are assumed to be negligible. The fully-implicit, black-oil simulator
(CLASS-Chevron’s Limited Applications Simulation System) used in this work was
provided by Chevron.

For gridblock 7, the primary variables that are solved for are case dependent.
Table 3.1 summarizes the different cases and the primary variables solved for in
each case. In the column entitled “Equations”, Sum denotes the total mass balance
equation (i.e., the summation of the oil, gas and water equations); Oil represents the

oil mass balance equation and Gas represents the gas mass balance equation.

Table 3.1: Equations and unknowns solved for in the simulator.

Phases Equations Unknowns | Auxiliary equation
Sy >0 | Sum, Oil, Gas | p, S,, Sg Sw=1-25,—954; Rs from PVT table
O-W-G S, =0 | Sum, Oil, Gas | p, So, Ry | Sy =0; Sp=1-8,— S,
O-W Sum, Oil P, So Sw=1-25,
W-G Sum, Gas P, Sy Sw=1-29,
Sy >0 | Sum, Gas P, Sy So =1—294; Rs from PVT table
0-G Sy =0 | Sum, Gas p, Rs Sg=0;5=1-5,

At each time step, we can output p, S,, Sy, S, and R, of each individ-
ual gridblock from CLASS. From these primary variables, we can calculate all the
derivatives required for constructing the adjoint system based on the PVT table. In
addition to the gridblock variables, the flowing wellbore pressure, p,,; at the ith well
at a specified depth is also a primary variable. We let y™ denote a column vector
which contains the set of primary variables (pressures and saturations) at time step

n. At gridblock i, the finite-difference equation for component u can be written as

fu,i(yn+17yn7m) - Ov (32)
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for u=o0,w,g and 1 =1,..., N. The well constraints are represented by

fwf,l(yn+17yn7m) = 07 (33)

forl=1,2,..., N,. For simplicity, we let

fm_1 = fu, i(y n+1’yn7m)7 (3.4)

and
fg}—ll fwf,l(yn+1a yna m)7 (35)

then Egs. 3.2 and 3.3 can be rewritten as
futt = (3.6)

and

wii =0, (3.7)

respectively. If the flowing wellbore pressure at well [ at the datum depth at time

t"*1 is specified to be equal to pZJJCiO, then Eq. 3.5 is simplified to

il =Pt — Plufio =0 (3.8)

In CLASS, the three equations for three-phase problem that are solved at gridblock

7 are
= it s T = (3.9)
st o= folt=0 (3.10)
5= foil=0 (3.11)

where 1 = 1,2,--- , N. If the following three equations

= foi=0 (3.12)
= fart =0 (3.13)
o= it =0 (3.14)

instead of Eqgs. 3.9 through 3.11 are used to construct the Jacobian matrix, then

we will have trouble for some situations to do incomplete LU decomposition of the
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Jacobian matrix in order to use orthomin which is an iterative solver. From Table 3.1,
we can see no matter which case happens, the pressure is always one of the primary
variables. Hence, in the Jacobin matrix, the derivative of a certain equation at ith
gridblock with respect to the pressure at the ¢th gridblock is always the diagonal
element. The location of this entry depends on how you order the primary variables.
If the pressure is ordered as the first primary variable in each gridblock as people
usually do, then in the Jacobian matrix, every third diagonal entry will be df; ;/dp;
where i is the gridblock index. If fi; = f,;, then the derivative dfy;/dp; is zero
whenever oil saturation S, ; is zero. Because if this is the case, then every individual
term involved in df; ;/dp; is related to oil saturation by either relative permeability
or S, itself and becomes zero. The subroutine we used to perform the incomplete
LU decomposition will perform the operation of dividing the row of Jacobian matrix
by the diagonal element. Therefore, if the situation presented above happens, e.g.,
in the gas cap area, then this subroutine will be terminated because of the illegal
math operation.

Eq. 3.7 and Egs. 3.9 through 3.11 represent a system of N, equations where
Ne = 3N + N,,. (3.15)

These N, equations are solved to obtain the values of the primary variables at time
"t = ¢ + At". For wells at which the flowing bottom-hole pressure is specified,
phase flow rates at each well are computed by Peaceman’s equation (Peaceman,
1983). The component flow rates from the perforated layer k of well [ (at gridblock
(1,7,k)) at time step n 4+ 1 can be evaluated as

1 T0 1 1
= Whon () G- o) (3.10)
o o i’j’k
1 rw 1 1
=W (522) Wi k) (3.17)
w w i7j7k
and
+1 g +1 +1 +1 +1
qgvi7j7k - WIZ’]’]C (B l’[/ ) (p:t_ﬁk B p$f7l7k> + Rgovivjvkqgvivjvk
9’9 / i,5.k
N ” Ly (3.18)
=WI, ( "9 L R ) (p??“ _pn+1 ).
1,J Bglﬁg SBo,Uo ik 1,9,k wf,lk
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n+1

The rates g, ;.

and ¢"t1  are in units of STB/Day, and qgﬁ has units of SCF/Day.

w,i,7,k

Here, layer k£ means the wellbore gridblock with z-direction gridblock index equal to
k. The well index term W1, ; is the geometry part of productivity index and it is
defined by

Wi, = 0.00708 2 \/Fa i j kb ik |

3.19
ln(TO,l,k/rw,l,k) + Sk ( )
and 7, is defined
0.28073 A4 /1 + Friik (§>
Tolk = — (3.20)

k?x,i,j,k/k:y,i,j,k
Here, 7, is the wellbore radius of the well [ at layer k and s; is the skin factor
for well [ at layer k.

The complete system of equations can formally be written as

n+1
1,1

n+1
0,1

n+1
9,1

n+1
1,2

n+1
g,N

+1
f$f71

n+1
wf7Nw

where
17, (3.22)
and

n+1l n+1 n+1 n+1 _n+l1 n+1 n+1 n+1 n+1l _n+l n+1 T
) _[pl 7So,1 , L yPo 5 Dy 7So7i y Ly o, Ty Jpwf,la'” 7pwf,Nw]

)

(3.23)
where

ngl for S,;>0
gttt =¢ 7 (3.24)

(2
RMY for S,;=0
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Eq. 3.21 is solved by the Newton-Raphson method (Aziz and Settari, 1979)
which can be written as

Jrlkgntlbel  _ gnlh (3.25)
s R el (3.26)

where k is the Newton-Raphson iteration index, n is the time step index and

T
Jn+1,k — VynJrl (fn+1)T:|

yn+1,k’

(3.27)

n+1,k

is the Jacobian matrix evaluated at y , which represents the kth approximation

1

for gy, !

The initial guess for y"** is chosen as the solution at the previous time

step, i.e.,

y Y =y (3.28)

3.2 Adjoint Equations

We define a general scalar function by

ﬁ:ﬁ(yly-“ayL7m)a (329)

where L corresponds to the last time step ¢t at which one wishes to compute sensi-
tivity coefficients. The objective is to compute the derivatives of 3 with respect to
the model parameters m. We obtain an adjoint functional J by adjoining Eq. 3.21
to the function [3:

L
J = ﬁ + Z(}\n+1)Tfn+1’ (33())
n=0
where A" is the vector of adjoint variables at time step n + 1, and is given by
n+1 1 1 1 r
R L ARMIP VAL NP Lo I (3.31)

Taking the total differential of Eq. 3.30, and doing some simple rearranging

29



gives

dJ =dB+ Y {(X") Vo (F) T dy™ + (Vo (f) T dm}
)\nJrl TVn n+1 TTd n
+;( ) AV (") dy 5.3
= dB+ BT + > {[(\) [Vyn (/"
+ (AT (Y dy™ + (AT Vo (fM) T dm},

where

BT — ()\L+1)T{[V L_H(fLJrl) ]TdyLJrl + [Vm(fLJrl)T]Tdm} 4 (/\I)T[Vyo(jﬂ)T}TdyO_

(3.33)
The total differential of 3 can be written as
L
dB = [V B dy" + [V, 5] dm. (3.34)
n=1
The initial conditions are fixed, so
dy® = 0. (3.35)
Choosing
AL =, (3.36)

it follows that BT = 0. Using this result and Eq. 3.34 in Eq. 3.32 and rearranging

the resulting equation gives

a7 =3 {19 )T+ ()T [V ()T
e (3.37)

VBT }dy"| + {[VmBI" +Z N [V (F)7)" fdm.

To obtain the adjoint system, the coefficients multiplying dy™ in Eq. 3.37 are set

equal to zero; i.e., we require that the adjoint variables satisfy

AV ()T + DIV (DT + [V B =0 (3.38)
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Taking the transpose of Eq. 3.38, gives the adjoint system

n\T7 yn n+1\T7 yn+1
[V (F)TANY = = [Vyu (TN = V0 5. (3.39)
where
[ o fia ofgn Ofira Ny |
op? op? op? op? op?
At A ofgn Ofira O f Ny
oSy | oSy 4 oSy | oSy 4 oSy
A A ofg N s O, N
9571 9571 05g N 9541 9591
8fl,l 8fzﬁ@ 8an 8f:zf,l 8fgf»Nw
opy opy opy opy opy
n T . .
Vel = . (3.40)
Oft Owa ofg N Ofira O f Ny
85;1’ N 85’; N 85; N GS;IY N 65; N
O Afia ofgn g Of £, Nw
81’24,1 apZm apwf 1 8P?uf,1 6pi,1
Ofi 0fi 1 ofg, Ofira Ofis.Ny
L OPLsNe PN WefNw g Ny Py Ny
where f;; is given by Eq. 3.9 and
r n n n+1 1 1 =
8f +1 8f +1 8f + 8]03}#’1 8f$}F,Nw
o ' o . B’Jil o, ory
8f"+ 8f”+ 8]"" 8fwfal 8fwf,Nw
osn | osn | BSZ}J i oSy | osn |
8fn+1 afn-u Bf”“ 3f3;11 8f£}jg\,w
oSy Sy 85;‘ N 85;’711 85’;11
P f”+1 af”+1 of N Ofnia O i Ny,
opy opy 8p2 opy opy
n+111T __ :
vy" [f ] - )
8fn+1 6fn+1 6fn+1 afn+1 8fn}—£vw
6S"N 8S"N 85” N 85;‘1\{ 85;‘11\,
afn+1 afn+1 afn+ afg?l afn}»Nw
8pwf,1 8pwf,1 apwf,l 8p?uf,1 8ow 1
afnJrl 6fn+1 6fn+1 afg}-i 8f3-f~_§\fw
L 8pwf,Nw 8pwf,Nw 8pwf Ny 8pgfan apwfan -
(3.41)
and
T
po[L, 00 08 0 03 0 0 52)
y" n n no n ’ n : :
85’ 85’971 ops 85 N Gpwf 1 apwnyw

Note that when we set up the adjoint system, we use the water equation

fuw, instead of the oil equation f, as in CLASS, as the second equation in order to
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use the previous code developed by Ruijian Li without modifying it too much. Our
results indicate that using f,, instead of f, as the second equation does not affect the
accuracy of the adjoint solutions. When we construct the adjoint system, the entries

of the y vector are always p, S,, S, and p,y, i.e.,

Yy = [pl; 50,17 Sg,17p27 L Piy So,i7 Sg,i7 e JSg,N7pwf,17 T 7pwf,Nu,]7 (343)

whereas in the forward simulator, Eq. 3.23 is used. Our results indicate that this
does not affect the accuracy of the adjoint solutions.

Eq. 3.39 with initial condition 3.36 is solved backwards in time for n =
L,L—1,...,1. Note that the forward simulation equation is solved forward in time.
Also note that the coefficients in Eq. 3.39 are independent of the adjoint variable A,
which means that the adjoint equation is linear. Therefore, solving the adjoint system
is cheaper in terms of the computation cost than solving the forward simulation
equation which is nonlinear. In the above equations, V.« (f™)T and V. (f"™)7 are
N, x N, matrices, and V»f3 is an N.-dimensional column vector.

The matrix given by Eq. 3.41 is a diagonal band matrix which is only related
to the accumulation terms in the reservoir simulation equations. Note that the co-
efficient matrix (V,«(f™)") (Eq. 3.40) in the adjoint system is simply the transpose
of the Jacobian matrix of Eq. 3.27 evaluated at y™ when the equations and primary
variables used to construct adjoint system are the same as used in the forward equa-
tions. As the adjoint system is solved backwards in time, information needed in these
matrices (Egs. 3.40 and 3.41) must be saved from the forward simulation run. In
our code, we write all these primary variables to disk to save memory. For details
on these equations for computing the derivatives Vo (f™)7, Vo (f"t)7T, and V08
in the adjoint equation, Eq. 3.39, see Li (2001).

As a summary, the adjoint system has the following properties:

(i) the adjoint system is solved backward in time;

(ii) the adjoint system is linear;
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(iii) the coefficient matrix in the adjoint system is the transpose of the Jacobian
matrix used for solving the forward equations only if the adjoint system is fully
consistent with the forward equation, i.e., in each gridblock the same equations
and primary variables are used to construct the adjoint system and the flow

equation system.
Considering J as a function of m , we can write its total differential as
dJ = (V,,J) dm. (3.44)

By comparing Eq. 3.37 and Eq. 3.44, it follows that the desired sensitivity coefficients

for J, or equivalently, 3, are given by

L
T
Vid = VB + 3 [V (710, (3.45)
n=1
where
[ofp, ofm,  Ofh O, Ofw Of. iy ]
omq omq om1 om1 om1 omq om1
Offy  Ofn. A, Of.  Ofty Ofi, O,
Vm [fn]T — '8m2 'sz '877’112 .8m2 .8m2 . Omo . Ooms 7
OfTa Of 0fg1 OfTs . 8f;,N afgf,l . 8f:;f,Nw
L omn,, Omp,, Ompy,,  Omn,, omy,, Omn,, omn,,
(3.16)
and
T
op  op op
V.3 = 7 e _ (3.47)
omy;’ Ome omy,,

The matrix V,,[f"]T is an N,, x N, sparse matrix and V,,3 is an N,,-
dimensional column vector. In Eq. 3.45, the gradient V,,3 involves the partial
derivatives of (3 with respect to the model parameters. If the jth model parameter
does not explicitly appear in the expression for 3, then 98/0m; = 0. For example,
if 8= py, then we set V,, =0 in Eq. 3.45.

To apply a conjugate gradient (Makhlouf et al., 1993) or variable metric
method (Yang and Watson, 1988), we need only compute the gradient of the objective
function and this can be done by setting f = O(m) in the adjoint procedure. In this
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case, one only needs to solve the adjoint system Eq. 3.39 once and substitute the
resulting adjoint solutions to Eq. 3.45 to obtain the gradient.

To apply the adjoint method to calculate the sensitivity of the variable
to model parameters m, one needs to solve the adjoint system equation Eq. 3.39
to obtain the adjoint variable A, and then use Eq. 3.45 to calculate sensitivity
coeflicients. If we consider permeabilities (k,, k, and k,) and porosities (¢) in each

individual gridblock, i.e.,

Mg, = kl‘ - [ kx,h k:p,27 ) kI,N ]T7 (348)
mky = ky = [ ky,ly ky727 Ty ky,N ]T7 (349>
my, = kZ = [ kz,la kz,Za Ty kz,N ]T7 (35())
and
me = (b = [ ¢1a ¢27 Ty ¢N ]T7 (351)

then from Eq. 3.45, the equations to calculate the derivatives with respect to k,, ky, k.

and ¢ are given by

Vi = Vi B+ Vi (S IO, (3.52)
Vi, J = Vi, B4 ) [Vi, (f)7IA), (3.53)
Vid = Ve84 Y [Ve. ()", (3.54)
and L_
Vol = VB + > [Vo(f") (A", (3.55)

where 3 is p,r, GOR, WOR at some specified time step L, the whole data mismatch
part of the objective function O4(m) or any other terms for which we wish to calculate
sensitivities.

In order to calculate the gradient of the objective function, we consider 3

as the whole data mismatch part of the objective function, i.e.,

5= Oalm) = 3(gm) — dun) C (glm) = dose), (3.50)
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or in the case of stochastic simulation of m,

5= 0ulim) = 5(g(m) — due) €5 (g(m) — ). (3.57)

Thus, we have
Vi = Ve (5 (9m) — )T Cp g(m) — )}
= |V (g(m) = o) | O (9(m) — dose) (3.58)
= Vnlg(m))"C5 ! (9(m) = dot).

In the case of § given by Eq. 3.57, the dg,s in Eq. 3.58 should be replaced by de.

The matrix V,[g(m)]" is an N, x N; matrix and defined as

991 9 . 99y
op} op? op?
991 992 . 99Ny
853’1 85;’)71 853’1
991 992 L. 99Ny
85’;1 65;1’1 85';1,1\,
g1 992 .. 99y
opy opy opy
T _ : : :
VlgmT=| S (3.59)
991 992 L. 99Ny
GS;I,N 85;1\, GSQ,N
991 992 . 99Ny
Wura s s
991 992 . 99Ny
| NG OPus N % s Ny

The entries of vector g(m) represent production data. The vector may contain entries
like py, s, GOR and WOR or any combination of these three kinds of production data.
Details for calculating each entry of matrix V»[g(m)]” can be found in Li (2001).
It turns out many columns of this matrix are zero. Only the columns corresponding
to data that are measured at time n are nonzero. After we evaluate the matrix
Vo [g(m)]¥, we multiply Cp,'(g(m) — deps) by this matrix to obtain V,«3. Once we
have V=3, we can apply Eq. 3.39 to compute the adjoint variables.

To apply Eq. 3.45 to compute the derivatives, we need to evaluate V,,(
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first. The vector V,,[ is given by
1 _
= vm{?(g(m) - dobs)TCDl(g(m) - dobs)}

= [Vinlg(m) — dons)"]C5 (g(m) — dops)
= Vulg(m)]"C5 (g(m) — dobs)-

(3.60)

In the case of 3 given by Eq. 3.57, the d,,s in Eq. 3.60 should be replaced by dc.

The matrix V,,[g(m)]T is an N,, x Ny matrix and defined as

991 992 . 99N,
omq om1 omq
991 992 . 99Ny
T omo omo Omo
Vinlg(m)]" = , , , : (3.61)
Og1 092 99Ny
L Omn,, Omn,, omn,,

The vector g(m) is the calculated production data vector. For the history matching
problems considered here, an entry of g will correspond to p, s, GOR or WOR. The

T can be found in Li

formulas for calculation of elements in the matrix V,,[g(m)]
(2001). After we compute V,,3, we can use Eq. 3.45 to compute the derivatives
of the objective function with respect to model parameters, i.e., the gradient of the

objective function.



CHAPTER IV

LINEAR EQUATION SOLVERS

In the automatic history matching procedure, we need to repeatedly solve
adjoint equations given by Eq. 3.39 either to compute the gradient of the objective
function or to form the sensitivity coefficient matrix. Hence, the computational effi-
ciency of solving the adjoint equations plays a dominant role in the computational
efficiency of the overall history matching procedure. Solving an adjoint equation
problem is equivalent to solving a system of linear finite-difference equations back-
wards in time. At each time step, we must solve a linear system of equations. The
linear equation solver used in the previous code developed by Ruijian Li is the Harwell
sparse matrix solver based on a direct method. Direct methods require far too much
computer memory to be useful for field scale history matching problems. On the
other hand, iterative solvers are far more efficient than direct method for large scale
problems. In this work, an iterative solver was implemented in our history matching
code. The iterative method we used to solve the adjoint system is effectively the
same iterative solver used in the CLASS (Chevron’s Limited Application Simulation
Systems) simulator. The iterative solver is based on the orthomin technique; see
Vinsome (1976). An incomplete LU decomposition (see, for example, Todd Dupont
and Rachford (1968), Axelsson and Gustafsson (1980) and Meijerink (1981)) was
used to generate the preconditioner for the purpose of accelerating the convergence.

For simplicity, the adjoint equation system at each time step is written as
Az = b, (4.1)

where

A=V (M7, (4.2)
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r=\", (4.3)

and

b= —[Vu(f" TN — V. (4.4)

at any time step n. A theoretical discussion of iterative solvers is given in Appendix
A. As noted above, the iterative solver implemented in our code is based on the
orthomin technique. The algorithm for applying orthomin to solve Eq. 4.1 is given

below.
* Choose an initial guess x.
* Set rog = b — Axy.

* Solve Mdx; = rqg for dx; where M is an approximation to matrix A which is

chosen such that this linear equation can be solved easily and set p; = dx; and

calculate
(7“07 Apl)
a = —" 4.5
' (AphApl) ( )
1T = X + aip1 (46)
o= 19— a1 Ap (4-7>
* Iteration loop
DO k=1,2,---

5$k+1 = MﬁlTk (48)

(A5513k+1> Apj) .
bj=———7-—7-—> =12k 4.9
’ (Ap;, Ap;) (4.9)

k
Pre1 = 6Tpp1 + > bjp; (4.10)

j=1
(Tkv Apk:+1)

a = 4.11
o (Api+1, Apr+1) (4.11)
Th1 = Tk + Qg 1Pk+1 (4.12)
Ter1 =Tk — ak+1Apk+1 (413)

END DO
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We call this algorithm orthomin. In this algorithm, py,; denotes the search direction
vector at iteration k+ 1 and xy; denotes the (k4 1)st approximation to the solution
of Eq. 4.1. Note that in Eq. 4.10, all the previous search direction vectors are used
to construct the current search direction. If we just use a limited number of previous
search direction vectors to construct py,q, we call the corresponding version of the
algorithm the truncated orthmin method. If we use [ previous vectors, then the only
change is that Eq. 4.10 is replaced by

k

Pk+1 = (5xk+1 + Z bjpj. (414)
Jj=k+1-1

(If l =1 and M is the identity matrix, then the algorithm is referred to as orthomin
(2); see Appendix A). Note that in Eq. 4.8, the value of dx.; is obtained by solving

M(Sxk+1 =Tk, (415)

instead of forming M ~! and the matrix product M ~'r;. Recall that M can be con-
sidered to be a preconditioning matrix which is an approximation to the coefficient
matrix A. The key issue for implementation of the orthomin algorithm is how to
choose M such that Eq. 4.15 can be solved very efficiently. In our implementation,
an incomplete LU decomposition of A was applied. This entails a decomposition of
the form A = LU — R where L is lower triangular, U is upper triangular and R
is the residual or error in the decomposition. L and U are typically chosen to be
sparse and have a simple structure. If L and U, respectively, are required to have the
same nonzero structure as the lower and upper triangular of A, then incomplete LU
decomposition is known as ILU(0) or called the level-0 fill-in incomplete LU decom-
position. The fill-in refers to nonzero elements of L and U that occurs at locations
where the corresponding elements of A are zero. To improve the rate of convergence,
more fill-in in L and U are allowed to develop higher level fill-in incomplete decompo-
sitions. In general, we expect that more accurate ILU decompositions require fewer
iterations to converge, but the preprocessing cost to compute such factors is higher.
Meijerink and van der Vorst (1977) provided a theoretical basis for the incomplete

decomposition. Let P represent the set of the locations in the matrix A where the
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corresponding entries are zero. The algorithm can be written as
DOk=1,...n—1

DOi=k+1,nandif (i,k) > P
ik, = ik, [ A
DOj=k+1,--- ,nandif (i,j) > P

Qij = Qij — Qi * Qfj.

ENDDO

ENDDO

ENDDO
In the above algorithm, > means “not belong to”.

In our application, level-1 fill-in was applied. For example, the standard 5
diagonal matrix (Fig. 4.1(a)) becomes a 7 diagonal matrix (Fig. 4.1(b)) after level-1
fill-in; the standard 7 diagonal matrix (Fig. 4.2(a)) becomes a 13 diagonal matrix
(Fig. 4.2(b)) after level-1 fill-in. In all these 4 figures, an “X” in a cell represents an

original nonzero entry and an “F” in a cell represents a fill-in element.

21)22|23|24/ 21)|22|23|24/
Eﬁimm Eﬁimm
11]12]13| 14| 1112]13| 14/
6[7]8]9 6[7]8]9
1(2[3]4 1(2[3]4
6 7 8 9 10 16 17 18 19 20 6 7 8 9 10 16 17 18 19 20
XX X XX X
XXX X XXX F1X
XXX X XXX FIX
XXX X XXX F1X
XX X XX FIX
6] X XX X 6| X | F XX X
7| X XXX X 7| X|F X[X]X F[X
8| X XXX X 8| X|F XXX FIX
9| X XXX X 9| X|F XXX FIX
10} X XX X 10} X XX FIX
X XX X X|F XX X
X XXX X X|F XXX FlX
X XXX X X|F XXX FlX
X XXX X X|F XXX FlX
X XX X X XX FlX
16 X XX X 16| X|F XX X
17) X X[X[X X 17) X|F XXX FlIX
18] X XXX X 18| X|F XXX FIX
19) X XXX X 19} X|F XXX FIX
20} X XX X 20} X XX Fl1X
X XX X|F XX
X XXX X|F XXX
X XXX X|F XXX
X X[ XX X|F X|X[X
X X | X X X | X
(a) Level 0 fill-in (b) Level 1 fill-in

Fig. 4.1: Matrix structure of 2D (5x5) single-phase flow equation.
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UEE T6[17]18 B[] 27 EEIE
[4]5]6] [4]5]6] [ 5] [2[Z] 2]
1[2]3 10[11] 12| 19]20[21
1 2 3 456 7 8 91011121314 15 16 17 18 19 20 21 22 23 24 25 26 27 1 2 3 456 7 8 91011121314 15 16 17 18 19 20 21 22 23 24 25 26 27
Y x| X X X Y x| X X X
2 XXX X X 2 XXX F[X FIX
3 XX X X 3 XX FIX FIX
4 X X[ X X X 4 X|F X[ X X F X
sl X [X[X|X| [x X s| [XTF[X|[X|X[F[X FIF[X
of X [X]X X X of X XX [FX Fl_[F[X
71 X XX X 71 X E[ XX F X
o X[ XXX X o XX XX I FIX
9| X XX X 9| X XX F FIX
10] X XX X X 10| X | F F XX X X
11 X XXX X X 11 X|F F X|IX[X[F|X FIX
12] X XX X X 12] X F XX FIX FlX
13] X X XX X X 13] X|F F X|F XX X F X
14§ X XX XXX X 14§ HENE X F XXX FX FI[F[x
15} X XXX X X 15} X F x| XX [F[X Fl_[F[x
16} X X XX X 16} I XTF[ XX F X
17) X X XXX X 17) X|F X[FIX]|X[X F FIX
18 X X XX X 18 X X XX F F1X
19| X XX X 19| X|F F XX X
20] X X[X]X X 20] X|F F X[X|X|F[X
21 X XX X 21 X F XX FlX
22 X X XXX 22} HENE XTE XXX
23} X X XXX X 2} HENIE X F XXX FX
24§ X X[ [x[X X 24§ X F X XX [F[X
25} X X XX 25} X|F X F[ X[
26 X X X[X]X 26 X|F X[FIX|X[X
(a) Level 0 fill-in (b) Level 1 fill-in

Fig. 4.2: Matrix structure of 3D (3x3x3) single-phase flow equation.

4.1 Comparison of the Iterative Solver with the Sparse Matrix Solver

A two-dimensional three-phase history matching problem was considered for
the purpose of comparison of the iterative solver with the sparse matrix solver. We
use a 15 x 15 grid with Az = Ay = 40 ft and Az = 30 ft. The porosity for the true
model is homogeneous and equal to 0.22. Permeability is isotropic and uniform in
three different zones; see Fig. 4.3. The value of In(k) in the lower left zone, lower
right zone and the upper half zone are equal to 4.0, 4.6 and 4.2 respectively for k
in md. Four producers and one water injection well are completed in the reservoir.
The well locations are indicated by the white squares in Fig. 4.3. All producers start
production at time 0 at a constant total flow rate of 200 STB/Day and produce for
300 days. Bottom-hole pressure from all five wells, GOR and WOR from all four
producers are used as conditioning data to estimate the gridblock permeabilities
only, i.e., the porosity is fixed at its true values. A total of 364 production data
are history matched, 28 data of each of the three types at the four producing wells
and 28 pressure data at the water injection well. An isotropic spherical variogram
with the range equal to 240 ft in all three directions and the variance for In(k) equal

to 1 was used to construct the prior covariance matrix for log-permeability. Note
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the true case does not exhibit the type of permeability heterogeneity that would
be typical of an unconditional realization that would be generated from the prior
model. The maximum a posteriori (MAP) estimate was obtained by history matching
the production data. The Levenberg-Marquardt algorithm was applied to minimize
the objective function involved in the history matching procedure. The truncated
orthmin algorithm using five previous vectors with level-1 fill-in was applied to solve
the adjoint equations involved in the computation of the sensitivity coefficient matrix.
The iteration was stopped when the following condition is satisfied

“ Tk ”oo
70 [lo ™~

=107, (4.16)

where || - || denotes the infinity or maximum norm.

15

y-direction

Fig. 4.3: Permeability field for the true model.

To apply the iterative solver, we have to provide an initial guess for the
vector of adjoint variables, A\. Often, we did not obtain the same solution obtained
with the Harwell sparse matrix solver (a direct solver based on LU decomposition)
if we used an arbitrary initial guess. For example, when solving the adjoint equation
systems corresponding to the time step at which we have wellbore pressure data as

the conditioning data, we did not get the correct solution in 100 iterations when we
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used 0, 1, 10 or 100 as the initial guess for all components of X. Fig. 4.4 shows the
Harwell sparse matrix solver solution to the adjoint equation system for the case
where we wish to obtain the sensitivity to pywr1(tr), the wellbore pressure at well 1
at time t;. The solution for the \’s represents the results obtained by doing a single
time step backward in time to obtain the adjoint variables A;(t;,) where the subscript
7=1,2,---  N,. The z-coordinate in Fig. 4.4 represents the adjoint equation index.
We have 15 x 15 = 225 gridblocks. Each gridblock has three equations corresponding
to three phases. In addition, we have 5 equations corresponding to 5 wells. Thus,
the total number of adjoint variables is 680. For the 680 equations, only the 676th
equation (which corresponds to the first well equation) has a nonzero right-hand side,
all other equations have zero right-hand sizes. Most of the \’s are on the order of 10°
in amplitude. The biggest value corresponds to the 676th A. The adjoint solutions
corresponding to the well gridblock equations are bigger than the adjoint solutions
corresponding to the equations for the gridblocks surrounding the well gridblocks.
Since, all the \’s are large, setting all \’s equal to a small value provides a poor

initial guess.

8.0x10°

6.0x10°

4.0x10°

-2.0x10° o

o O

-4.0x10° T T T T T T T T T T T T T
0 100 200 300 400 500 600 700

Equation Index

Fig. 4.4: Adjoint solution from Harwell solver, the source term from py(tL).

Figs. 4.5 and 4.6 show the Harwell solver solution to the adjoint equation
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Fig. 4.5: Adjoint solution from Harwell solver, source term from a GOR datum.
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Fig. 4.6: Adjoint solution from Harwell solver, source term from a WOR, datum.

systems associated with GOR and WOR as source terms respectively. These adjoint
solutions are corresponding to all the forward simulation equations at a single time
step where we have measured data. In checking the Harwell solutions carefully, we
found that almost all the solutions for the adjoint equation system associated with

GOR are negative. We also found that the solutions to the adjoint equation system



associated with WOR are relatively small in amplitude with some positive and some
negative.

Based on the features of the correct adjoint solution (Figs. 4.4 through 4.6),
we provide an ad hoc procedure for generating the initial guess. The equation for

solving the \’s at the first step backward in time has the form

ai A} + Zam‘/\f =5 (4.17)
J#i

for 1 <i < N, where N, is the number of adjoint variables at each time step. Note
that N, = N,. If the source term, s;, is not zero, we set the initial guess for \* equal
to s;/a;;. For equations with s; = 0, we set the initial guess for \; equal to 1000 if
we solve for A’s to compute the sensitivities of py¢ to model parameters, to -100 if we
compute GOR sensitivities and to 0 if we are computing WOR sensitivities. After
the first step of solving the adjoint equation system backward in time, we use the
resulting solution as the initial guess when solving the adjoint system at the next
time step backward and repeat this procedure for all the subsequent time steps. For
simplicity, this iterative solver is called iterative solver with initial guess scheme 1.
Fig. 4.7 shows the adjoint solutions for the equation systems when py¢ from well 1
was used as data to generate the source term. In this figure and similar figures, the
circles represent the Harwell solver solution and the plus signs represent the iterative
solver solution. In the semilog plot, we plotted the absolute value of the A’s. We can
see that the iterative solver solution matched the Harwell solver solution very well.
In addition, we can see that the semilog plot has a very beautiful pattern.
The calculated adjoint variables fall into three big groups. These three groups of
adjoint solutions correspond to the three types of equation, i.e., oil equation (top
group), gas equation (middle group) and water equation (bottom group). Note that
although it is not so obvious, the middle group is underneath the top group. Each big
group contains 15 small groups of adjoint solutions. Each small group corresponds to
a specific row of gridblocks; recall that the grid system is 15 x 15. Each small group
contains 15 points. Each point represents the adjoint solution corresponding to one

equation at a gridblock of a certain row. The last 5 points represent the adjoint
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Fig. 4.7: Adjoint solution obtained from iterative solver with initial guess scheme 1,

source term from a pyr datum.

solutions corresponding to the 5 well equations respectively. We also can see that
the adjoint solution corresponding to the well at which the datum was measured has
the biggest amplitude. We also can see that an adjoint variable corresponding to a
gridblock that is closer to the well gridblock has a bigger amplitude than the adjoint
variable corresponding to a gridblock that is further away from the well gridblock.

Figs. 4.8 and 4.9, respectively, show the adjoint solutions when GOR and
WOR from well 1 was used to generate the source term. For both cases, the iterative
solver solution matched the Harwell solver solution very well. The pattern observed
in Fig. 4.7 can also be observed in Figs. 4.8 and 4.9.

Above, we provided an ad hoc procedure to generate an initial guess for
the adjoint variables for different types of source terms. This procedure is used for
the first time step (backward) associated with the generation of the sensitivity of a
particular production datum to model parameters. Due to the fact that the adjoint
equations are solved backward in time, after we solve the adjoint equation system
corresponding to the time at which we have conditioning data, we use these values of
A as the initial guess to solve the adjoint equation at the next time step and repeat

this process for all the subsequent time steps. Figs. 4.10 through 4.12 show the plot
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Fig. 4.8: Adjoint solution obtained from iterative solver with initial guess scheme 1,

source term from a GOR datum.
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Fig. 4.9: Adjoint solution obtained from iterative solver with initial guess scheme 1,

source term from WOR.

of the adjoint solution for the \’s corresponding to the first well equation versus time
when pyr, GOR and WOR were used as the source terms, respectively. We can see
that the changes are not dramatic except at the time steps very close to the time

at which we have a source term. Note that in Fig. 4.10 the pressure datum was
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measured at the 1st time step backward, in Fig. 4.11 the GOR datum was obtained

at the 4th time step backward and in Fig. 4.12 the WOR datum was obtained at the
4th time step backward.

7x10° -
6x10 =
5x10°
4x10°
E_ 3x10°
(< <4
2x10°
’ ] O
1x10 ‘
] ClDll“l‘l'l”'l”””“ll“ll“'l‘bl'Dl”l)l”lb‘l"‘
0 —fcroooeorrroroorrs oY
-1x10° —7r77— 77— T
0 10 20 30 40 50 60 70 80 90

Time Step

Fig. 4.10: Adjoint variables corresponding to the well equation versus time, source

term from pys.
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Fig. 4.11: Adjoint variables corresponding to the well equation versus time, source

term from GOR.
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Fig. 4.12: Adjoint variables corresponding to the well equation versus time, source

term from WOR.

Fig. 4.13 (a) and (b), respectively, show the sensitivities of the first pressure
data (the first pressure data at the first well) and the 51st pressure data (the 23rd
pressure data at the second well) to all gridblock log-permeabilities. Fig. 4.14 shows
the sensitivities of one GOR data point (1st GOR at well 1) to the gridblock log-
permeabilities and Fig. 4.15 shows the sensitivities of one WOR data point (1st WOR
at well 1) to the gridblock log-permeabilities. We can see that results obtained by

the two solvers are in good agreement in Figs. 4.13 through 4.15.

The results shown in Fig. 4.16 represent MAP estimates of the log-permeability

field obtained by history matching the production data. In generating the MAP es-
timate of log-permeability shown in Fig. 4.16 (a), all adjoint solutions were obtained
using the Harwell solver, whereas the result of Fig. 4.16 (b) pertain to the case where
the iterative solver was used to solve the adjoint equations. We see that similar re-
sults were obtained for both cases and both of them are similar to the true model. As
shown in Fig. 4.17, the convergence behavior of the Levenberg-Marquardt algorithm
was similar for the two cases, where Iterative 1 referred to using the iterative solver
with the initial guess generated by the method discussed above. The results labeled
Iterative 2 will be discussed later.

For this example, only pressure data was matched at the injection well. At
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scheme 1.

the producers, pressure, WOR and GOR data were matched. The observed, initial
and pressure data predicted by the MAP estimate for well 2 and well 5 are shown
in Fig. 4.18 (a) and (b). In this figure and in similar figures, the circles represent

the observed data, the diamonds represent the data calculated from the initial model
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Fig. 4.16: Final permeability model.

and the plus signs represent the data calculated from the final model. The observed,

initial and conditioned gas-oil ratio from well 1 and well 2 are shown in Fig. 4.19 (a)
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Fig. 4.17: Behavior of the objective function.

and (b). The observed, initial and water-oil ratio predicted from the MAP estimate
at well 1 and well 4 are shown in Fig. 4.20 (a) and (b). From these figures, we can
see that we obtain very good matches for all three types of data. Data matches of

similar quality were obtained from all wells.
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Fig. 4.18: Wellbore pressure match from two wells.

We also considered another scheme to generate the initial guess. In this

scheme, we take the summation of all the nonzero coefficients of the source term
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Fig. 4.20: WOR match from two wells.

equation; and divide the source term (right-hand side) by this summation; and then
take the quotient as the initial guess for the component of A corresponding to this
equation and use 1000 as the initial guess for all other entries of A if we solve for A’s to
compute the sensitivities of pyr to model parameters. If we calculate the sensitivities
of GOR data, we use -100 as the initial guess for all the \'s. If we calculate the
sensitivities of WOR, we use 0 as the initial guess for all the \'s. After the first
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step of solving the adjoint equation system backward in time, we use the resulting
solution as the initial guess when solving the adjoint system at the next time step
and repeat this procedure for all the subsequent time steps. The sensitivity of py¢
and GOR obtained by this scheme is almost the same as the results obtained by the
iterative solver with initial guess scheme 1. But the sensitivities of WOR obtained by
this scheme is less accurate than those obtained by the iterative solver with initial
scheme 1. Therefore, the scheme for generating initial guess presented previously
was used in our code.

The method presented above for generating an initial guess for the adjoint
variables is quite ad hoc. If we consider the fact that only a small number of adjoint
equation systems are associated with source terms, then we can use the Harwell solver
to solve adjoint equations at time steps which have source terms without affecting
the overall efficiency very much provided the problem is not so large that computer
memory requirements preclude the use of the Harwell solver. Specifically, when we
solve the adjoint equations to find the adjoint variables necessary to compute the
sensitivity to a particular datum at time ¢, only the adjoint equations for /\JL, 1<5<
N,, have nonzero source terms. This linear system corresponds to the first time step
backward in time. Initial guess scheme 2 refers to solving for the )\f using the Harwell
direct solver then solving subsequent time steps for )\é», l=L—-1,L—2,---,1, using
the iterative solver. When we solve for )\2, 1 <45 <N, we use the vector of /\?“1 as
the initial guess for )\2, 1 <75 < N,. Figs. 4.21 through 4.23 compare the sensitivities
of two pressure data, one GOR and one WOR to all the model parameters obtained
by the Harwell solver and those obtained by the iterative solver with this initial
guess scheme 2. We can see that the iterative solver yields a very good agreement
for the sensitivities of all three types of data to model parameters as compared to
the corresponding results obtained by using the Harwell solver to solve the adjoint
system. The crosses in Fig. 4.17 show the behavior of the objective function when
the iterative solver with initial guess scheme 2 was applied. Fig. 4.24 (a) shows the
MAP estimate of the model obtained by using the Harwell solver to solve the adjoint
system and Fig. 4.24 (b) shows the MAP estimate obtained by using this iterative
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solver with initial guess scheme 2 to solve the adjoint system. They agree very well
and also are close to the results obtained with initial guess scheme 1. Since initial

guess scheme 1 has significantly lower memory requirements, it is preferred.
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Fig. 4.24: Final permeability model.

When we calculate the gradient of the objective function, we treat the whole

objective function as a single datum. So when we solve the adjoint equation back-



wards, source terms appear at all times corresponding to data mismatch terms in the
objective function. In all the applications, we use initial guess scheme 1 to generate
the initial guess when calculating the gradient of the objective function. But, here
we compare adjoint solutions obtained by this method with results obtained with the
Harwell solver. Fig. 4.25 (a) through (c) show the adjoint solution corresponding to
the 10th gridblock equation, the first well equation and the last well equation which
is an injection well versus time. From Fig. 4.25 (c) we can see clearly that, unlike the
case when we only calculate the sensitivity of an individual datum, the adjoint solu-
tion changes significantly with time. The observed data set was generated by picking
the production data, i.e., pwr, GOR and WOR, every third time step backward when
we run the simulator based on the true model given in Fig. 4.3. Fig. 4.25 (¢) indicates
clearly that the adjoint solutions jump up every third time step backward. When-
ever a source term appears on the right-hand side of the adjoint equation system, the
adjoint solution jumps up. Note that Fig. 4.25 (c) corresponding to well 5 (the water
injection well) is much different from Fig. 4.25 (b) corresponding to well 1 (produc-
ing well). Figs. 4.26 through 4.28 show the adjoint solutions at times equal to 300
days, 75 days and 0.001 day. Again, in these figures, circles represent the solution
obtained by the Harwell solver and the plus signs represent the solution obtained by
the iterative solver. These same results are also shown on the corresponding semilog
plot of these figures where we plotted the absolute value of the adjoint variables. We
can see that the two sets of results are in very good agreement.

Fig. 4.29 shows the gradient of the objective function constructed by com-

puting the full sensitivity coeflicient matrix G, i.e.,
VO = Cyt(m — Mpsior) + GTCRHg(m) — dops) (4.18)

where all individual entries of G were calculated by the adjoint method with the
Harwell solver (circles) and the gradient obtained by one application of the adjoint
method with adjoint equations solved using the iterative solver (plus signs). We can
see a very good agreement is obtained. Fig. 4.30 (a) shows the difference between

the two results for elements of VO and Fig. 4.30 (b) shows the relative difference,

57



L(10.n)
7 O  Harwell
[0
@ea§ ®
6.0x10" - °&E
o &
= &
E 4.0x10" &»
z ®
£ 20m0° %
2 2.0x10"
2 ® w@
] 2 b
0.0 -t &
@&
&
-2.0x10’ T T T T T T T T
0 20 40 60 80 100
Time Step Index
(a) The 10th gridblock
L(676,n) s L(e80)
1.4x10° 3.0x10
O Harwell O Harwell
1.2x10° 1 Tod o 2.5x10° 0®79000, +—CGL1
(X5 @@@ ®
1.0x10° - Sop ®
o ; ®®§ 2 200" $0090644,
S 8.0x10" =
2 & £ 1.5x10° ®®
S ’ ® g
; 6.0x10" P ‘E gg@& b
S ; % S 1.0x10° 8,
g 4001 o @@;@%@;@;% 3 7 I 2,
2.0x10" o ) 'y 5010 o ® G8898 00
&® ® 000® % ea%@@@
0.0-gmgm@@ 0.0 Jmaeded
0 20 40 60 80 100 0 20 40 60 80 100
Time Step Index Time step Index
(b) The first well (c) The fifth well
Fig. 4.25: Adjoint solution versus time.
ie.,
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6mj H
where 88_0 and (22 ) | respectively, represent the derivative of the objective
™) | om; /i

function with respect to the jth model parameters obtained by applying Eq. 4.18
and by one application of the adjoint method.
Fig. 4.31 shows that the gradient of the objective function obtained by the
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Fig. 4.27: Adjoint solution at 75 days.

finite-difference method (circles) and the gradient obtained by the adjoint method
using the iterative solver. The perturbation we used in the finite-difference method
was 0.0004 for log-permeability which is 0.01% of the log-permeability value to be
perturbed. From the semilog plot, we can see that almost all the derivatives obtained

by the adjoint method are in good agreement with the derivatives obtained by the
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Fig. 4.29: The gradient of the objective function.

finite-difference method. Points where the two methods do not agree well corresponds

to derivatives which are relatively small in magnitude. These points are expected to

have a very small effect on the history matching process.
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CHAPTER V

OPTIMIZATION ALGORITHMS

There are two categories of minimization algorithms for unconstrained opti-
mization problems. One category consists of gradient based algorithms, e.g., steepest
descent, Newton, Gauss-Newton, Levenberg-Marquardt, conjugate gradient and vari-
able metric (or quasi-Newton), and the other category includes non-gradient based
algorithms, such as simulated annealing (see, for example, Ouenes et al. (1993) and
Vasco et al. (1996)), genetic algorithm (see, for example, Sen et al. (1992)), Monte
Carlo methods (see, for example, Hegstad et al. (1994) and Bonet-Cunha et al.
(1998)) and neutral networks (see, for example, Ouenes et al. (1994)). Unless one
can predict production data for a given reservoir model by some method which is
orders of magnitude faster than running a conventional finite-difference simulator,
non-gradient based algorithms are far too slow for practical application (see, for
example, Bonet-Cunha et al. (1998)) as they may require tens of thousands of it-
erations for convergence, and one must recalculate the predicted production data at
each iteration. In our work, predicted data is always generated by running a reservoir
simulator, and only gradient based algorithms are considered.

In this chapter, we will discuss gradient based optimization algorithms and
some technical details on line search and scaling factors used in quasi-Newton meth-
ods. A comparison of the computational efficiency and memory requirement for
different algorithms is also provided in this chapter. We consider the problem of
minimizing a real-valued function O(m). We assume that O is bounded below and
twice continuously differentiable with respect to m. The optimization algorithms
for all the gradient based methods are similar and an outline of the methods are

described below:
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1. Choose an initial guess, mg, of the model and an initial search direction dj.

Set the iteration index k£ = 0.

2. Calculate the step size «y along the search direction dj. Different algorithms

use different schemes to find the step size; see Table 5.1.

Table 5.1: Step size calculation scheme used by different algorithms.

Algorithm Step size calculation scheme

Gauss-Newton restricted step

Levenberg-Marquardt | damping factor or restricted step

steepest descent line search
conjugate gradient line search
quasi-Newton line search

3. Determine whether or not the stop criterion is satisfied. If it is satisfied then
stop. If it is not, then compute the new search direction dyyq, set k = k + 1

and then go to 2. Different algorithms employ different search directions.

5.1 Steepest Descent Method

For most problems, this method is relatively inefficient compared to other
gradient based methods. Thus, we only provide the basic idea of this method. In
this approach, the negative gradient of the objective function is chosen as the search
direction. This is the simplest approach. It has been illustrated in the literature
that the direction of descent computed with this method is very inefficient; see, for
example, Fletcher (1987). Also the procedure has only a linear convergence rate for

a quadratic problem; see Greenbaum (1997) or Fletcher (1987).



5.2 Gauss-Newton and Levenberg-Marquardt Algorithms

Let my, be the most recent estimate of the model m that minimizes O(m).

Approximate O(m) by a quadratic expansion about my and let

om =m — my, (5.1)

O(m) = O(my) + (VO(my)) "sm + %(m)T[v (VO(m)]m. (5.2)

We define the Hessian Hj, by

Hy, =V - (VO(my))". (5.3)

Taking the gradient of O(m) in Eq. 5.2 with respect to m, we get

VO(m) = V(m) [VO(my)] + %{[V(ém)T](Hkém) +V(EmT HE )om)

1 (5.4)
= VO(my) + §(Hk(5m + Hl'om).
It is easy to show that Hj is symmetric. So Eq. 5.4 becomes
VO(m) = VO(my) + Hyom. (5.5)
If m minimizes O(m) then
VO(m) = 0. (5.6)
Setting VO(m) = 0 in Eq. 5.5 and rearranging gives
Hiom = =VO(my,). (5.7)
Eq. 5.7 is usually written in the iterative form which is given by
Hpdmg, = —VO(my), (5.8)

Mer1 = Mg -+ 6mk+1- (59)
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This is Newton’s method. Based on the objective function Eq. 2.14, we can easily

write down the gradient of the objective function which is given by
VO(my) = GLCpH(g(my) = dovs) + Cyf (mi = Mprior), (5.10)
and the Hessian matrix which is given by
H(my) = (VGL)Cp' (9(mk) — dovs) + G Cp Gr + Chft (5.11)

In these equations, GG}, denotes the matrix of sensitivity coefficients, i.e., the deriva-
tives of predicted data with respect to model parameters, evaluated at my. The

individual elements of the sensitivity matrix are

99

Z,]:a Y
m,
J

(5.12)

for 1 < i < Nyand 1 < j < N,,,. A sensitivity coefficient gives a measure of
how strongly the change in the data, d; = g;(m), is affected by the change in the
model parameter m;. The sensitivity coefficients can be obtained by either gradient
simulator method or adjoint method. If the number of model parameters and the
number of data are both large, computation of the sensitivity coefficient matrix G
by either the gradient simulator method or the adjoint method is not feasible.

The term in Eq. 5.11 that involves the gradient of G is small if the residual
term, (g(my)—dons), is small, or if the data is linearly related to the model parameters,
i.e., the function g(m) is linear. As a matter of fact, calculation the gradient of G
is impractical in practice. So we simply drop this term to form the Gauss-Newton

method. The approximation to the Hessian at my is then given by

Substitution Eqgs. 5.13 and 5.10 into Eq. 5.8 gives the Gauss-Newton iterative pro-

cedure, i.e.,

(Cyf + GiCp Gr)dmuss = —Ciy (mi — Mprior) — G Cp' (9(mi) — dos). | (5.14)

This equation is called the Gauss-Newton equation. The model is updated by

Mpr1 = Mk + UpOMper1, (515)
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where ; is usually obtained by the restricted-step procedure; see Fletcher (1987).
Note dmy1 is the search direction. The model obtained at convergence based on the
above derivation is the maximum a posteriori (MAP) estimate of the model which
is the most probable model. If one wants to generate the realizations, the iterative
equation Eq. 5.14 should be modified slightly by replacing dobs by dye and mprior
by myu.. We also can consider the case where the corrections to the prior mean are
also variables. The corresponding version of the Gauss-Newton iterative procedure
is given later.

Gauss-Newton equation given by Eq. 5.14 requires solving an N,, x N,,
matrix problem where N, is the number of model parameters which is normally
large as well as evaluating C'. By applying the inverse lemma (see Beck and
Arnold (1977)), Eq. 5.14 with Eq. 5.15 can be reformulated as

5mk 1 :<m rior — mk)+
B (5.16)

{CuGY[Cp + GrCuGY] ™ [Grlmr = mywior) — (9(m) — dons) ] }-
Note that Eq. 5.16 requires solving an Ny x Ny matrix problem where N is the
number of data. This formulation will result in an algorithm which is much more
computationally efficient than application of Eq. 5.14 if Ny << N,,.

For many examples, the Gauss-Newton procedure with restricted-step con-
verges without difficulty. However, it may be necessary to damp the Gauss-Newton
step at early iterations if the initial estimate gives a large data mismatch; see, for
example, Wu et al. (1999) and Li et al. (2001). If damping is not done, the effect
of regularization provided by the prior model covariance matrix appears to be lost.
In this case, the Gauss-Newton method may yield rock property fields which are
excessively rough and give an unacceptable match of the pressure data. This prob-
lem can be avoided using the ideas due to Levenberg and Marquardt. The modified

Levenberg-Marquardt algorithm given in Bi (1999) can be written as

-1
Sy = — | (1+N)Ct + G{C,glak} {q\—; (M, — Mypsior) + GECH (g(my) — dobs)] .
(5.17)
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As shown by Bi (1999), matrix inverse lemma can be applied to rewrite Eq. 5.17 as

Mprior — Mg
1+ A

+ CuGT [(1 +AN)Cp + GkGMG{] B {Gk(

OMpq1 =

my — mprior)
14+ A

- (g(mk) - dobs)} .
(5.18)

Note the formula of Eq. 5.17 requires calculation of C;;' and then solving an N,, x N,
matrix problem where N, is the number of model parameters. Applying Eq. 5.18
requires solving an Ny x Nz matrix problem where Ny is the number of data. When
we apply Levenberg-Marquardt, we usually choose a large number as the initial value
for ), for example, 10°, such that the initial step is relatively small. If the value of A
used results in a decrease in the objective function, we simply decrease A for the next
iteration by a factor of 10. Otherwise, A is increased by a factor of 10. The model my,
is not updated to my,, unless the update decreases the objective function. One can
also compute the optimal damping factor at each step; see, for example, Abacioglu
et al. (2001). However, calculation of the optimal damping factor is quite expensive.
Thus, in our study, we use the simple scheme based on multiplying or dividing A by

a factor of 10.

5.3 Truncated Gauss-Newton Method

According to Nash (1985), if the search direction in the Gauss-Newton
method (see, for example, Eq. 5.16) is not formed accurately, then the corresponding
iterative procedure is referred to as the truncated Gauss-Newton method. Typically,
the Gauss-Newton equation could be solved approximately at early iterations due
to the fact that the second order approximation of the objective function is not a
good approximation at early iterations. When the model approaches the minimum,
the Hessian matrix tends to be a constant matrix, then the Gauss-Newton equation
should be solved more accurately. The Gauss-Newton version given by Eq. 5.16

requires solving

(Cp + GrOMnGY)x = Gr(mi — Mprior) — (9(mi) — dops), (5.19)
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for

2 = (Cp + GrCWGT) ™ (Crlmp — Mprior) — (g(mi) — dops)).- (5.20)

Eq. 5.19, which is a linear equation, can be solved by any iterative solver, for ex-
ample, successive-over-relax (SOR), steepest descent or conjugate gradient. Detailed
information about these linear iterative solvers can be found in Appendix A. If this
matrix problem is solved iteratively by the conjugate gradient method, then one
does not need to explicitly compute G; one only needs to be able to calculate Gu
and GTv for vectors v and v at each iteration of the Gauss-Newton or Levenberg-
Marquardt algorithm. Chu et al. (2000) suggested solving Eq. 5.19 by a conjugate
gradient method and implemented a procedure for computing Gu and G7v for the
single-phase flow of a slightly compressible fluid. A somewhat different and clearer
presentation of how one may compute Gu and GTv is given in Abacioglu (2001).
Computation of Gu requires a forward run of the simulation. Computation of GTv
requires one solution of the adjoint system. As the solution of the adjoint system
requires roughly the same computational time as one simulation run, each iteration
of the conjugate gradient method requires roughly two reservoir simulation runs.
Computation of the right-hand side of Eq. 5.19 also requires one simulator run to
evaluate Gg(my — Mpior) but must be done only once for each Gauss-Newton it-
eration. To apply the conjugate gradient algorithm, we also need to calculate the
residual corresponding to the initial estimate which requires one operation of Gu and
one operation of GTv. To accomplish one Gauss-Newton iteration, we need one more
operation of GTv outside the inner iteration; see Eq. 5.16. Thus, if the inner iteration
(the solution of Eq. 5.19 by the conjugate gradient method) requires on average ko
iterations for convergence and kgy iterations are required to obtain convergence of

the Gauss-Newton method, roughly
Ion = ken(2kce + 4), (5.21)

reservoir simulation runs are required to generate each realization. For the overall
procedure to be feasible ko must be quite small. If an extremely good precondi-

tioning matrix could be found for the conjugate gradient step, it is possible that the
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method could be effective. However, the matrices Gy and Cp + GpCyGE are never
explicitly constructed, so it is not clear how to construct a good preconditioner. At
this point, we are skeptical that the method will prove to be sufficiently computa-
tionally efficient for practical applications, but we have not implemented it in our

work.

5.4 Nonlinear Conjugate Gradient Method

Nonlinear conjugate gradient method which is usually used to minimize
non-quadratic function can “be evolved” from the linear conjugate gradient method
which is normally used to solve a linear equation system. A variety of linear con-
jugate gradient algorithms and nonlinear conjugate gradient algorithms are given in
Appendix C. In this section, we focus on the application of the nonlinear conjugate
gradient method to our history matching problem.

In the conjugate gradient method, the search direction is given by

desr = —M; g + Brdy, (5.22)

where k is the iteration index, g, represents the gradient of the objective function,
Mj, is called the preconditioning matrix which is an approximation to the Hessian
matrix Hy and [ is obtained by the Polak-Ribiere formula given by

T -1 -1
B, = Tiep1 (M 1reen — My )
r%M,;lrk ’

(5.23)

where 7, = —g,. As discussed later, the step size can be obtained by a line search.
If we choose the preconditioning matrix M) to be identity matrix I, then Eq. 5.22
reduces to the standard conjugate gradient method without preconditioning.

It is well known that the nonlinear conjugate gradient method can be ap-
plied to minimize non-quadratic objective functions; see, Fletcher and Reeves (1964).
Although the method has been applied for the history matching of production data
(see, for example, Makhlouf et al. (1993)), its slow rate of convergence has precluded
its use in large scale history matching problems. The success of the conjugate gradi-

ent method for nonlinear optimization depends on whether we are able to construct a
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good preconditioner. A good preconditioning matrix at the kth iteration is a matrix

M, which is a good approximation to the Hessian Hj, so that
M, 'Hy ~ I (5.24)

For our problem, the Hessian at the kth iteration is given by
H, = Cy}! + GLCp' Gy, (5.25)

see the deviation of Eq. 5.13. An optional preconditioner for the conjugate gradient
method would be
My, = Hy, (5.26)

but the conjugate gradient method requires solving the matrix problem

to form search direction dy; using Eq. 5.22. If M}, = Hy, Eq. 5.27 requires the same
computational effort as the direct application of Gauss-Newton method Eq. 5.14 and
does not improve computational efficiency. If we choose M, = C};', however, then
Eq. 5.27 becomes

dpy = —Chrigi, (5.28)

and the calculation of dj, which is the first term in Eq. 5.22 requires only multiplica-
tion of g by the prior covariance matrix C},. Kalita (2000) considered the problem
of conditioning a gas reservoir model to well test pressure data by automatic his-
tory matching. Both the Gauss-Newton method and the conjugate gradient method
with C;; as the preconditioner were used to minimize the relevant objective function
(Eq. 2.14 or Eq. 2.18). Kalita’s results indicate that the conjugate gradient method
was not always more efficient than the Gauss-Newton method. Moreover, in most
cases, the conjugate gradient method converged to a value of the objective function
which was significantly higher than the converged value of the objective function
obtained by the Gauss-Newton method.

In the preconditioned conjugate gradient method, the preconditioning ma-

trix My, is used only in equations like Eq. 5.27. Thus, it is preferable to estimate M, !
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directly instead of estimating Mj,. We would like M, ! to be an approximation to
the inverse Hessian. This suggests that H © I constructed from quasi-Newton might
be a good candidate for a preconditioner. Quasi-Newton method will be discussed
in the next section. The difficulty with this procedure is that we can only approxi-
mate the quasi-Newton H . ! using information in the conjugate gradient algorithm.
Our work indicated that the preconditioner constructed by this scheme works bet-
ter than C]\}l for some cases, for example, in the gas reservoir examples shown by
Zhang et al. (2001); and works worse than C;;" for some cases, for example, in the
three-phase example presented later. The reason is that the iterates generated by
the quasi-Newton method are different from the iterates generated by the conjugate
gradient method. The search direction for the conjugate gradient algorithm is given
by Eq. 5.22 whereas it is given by Eq. 5.31 in the quasi-Newton method. Different
search directions generate different iterates and in turn different y;’s and s;’s which
are used to construct Hessian inverse approximation matrix H K ! Therefore, the in-
verse Hessian approximation generated within the conjugate gradient algorithm will
not be the same as the one generated in a quasi-Newton method. In particular, the
“inverse Hessian approximation” generated with the conjugate gradient procedure
may not have the property that the inverse Hessian approximation will be equal to
the true inverse Hessian at the Nth iteration for a N-dimensional quadratic func-
tion given that the line search is exact; see Oren and Luenberger (1974) and Oren

(1974b).

5.5  Quasi-Newton Methods

The search direction in the Newton’s method can be written as

i1 = —Hy g, (5.29)

where Hj, and g, respectively, denote the second derivative (Hessian matrix) and
the first derivative (gradient) of the objective function evaluated at my and k is the

iteration index. With O(m) given by either Eq. 2.14 or Eq. 2.18, the Gauss-Newton
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Hessian matrix is estimated by
H, = Cy}! + GLCp'Gy, (5.30)

where Gy is the sensitivity matrix evaluated at my. As noted before, if both the
number of model parameters and the number of data are large, the evaluation of Gy
is computationally expensive. In quasi-Newton methods, H, !'is approximated by a
symmetric positive definite matrix H & ! which is corrected or updated from iteration
to iteration. With this Hessian inverse approximation matrix, the search direction

can be written as
A1 = —H_ gy (5.31)

Because the matrix H n ! takes the place of H I Uin Eq. 5.29, the method with search
direction given by Eq. 5.31 is called a quasi-Newton method. This method is also
called a variable metric method. The reason why this method is called a variable
metric method is given below.

Suppose f(x) represents the real functional and p is a nonzero vector. The

directional derivative of f(x) at zy along the direction p is given by

df (xo) T

where e is the unit vector in the direction p. If [V f (a:o)]Te < 0, then p is a downhill
direction, otherwise it is a uphill direction. The rate of change in the function f(x)
in the direction p depends on the absolute value of the directional derivative, i.e.,

}Lf(ivo) ‘ Applying the Cauchy-Schwarz inequality, we have

Op
of(x T
fégpo) = |[Vf(@o)] e| || Vf(@o) ll2 % || e ll2=I| Vf(zo) Il2. (5.33)
where || - ||2 represents the Iy norm or the Euclidean norm. For example, if z is a

vector, then ||z||s = VaTz. From Eq. 5.33, we have

‘ [V (@) e| < V(o) 2 (5.34)

If we take
Vf(xo)

IVl (5.35)

e =
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then HV f (xo)]Te’ takes on its maximum value given by the right-hand side of

Eq. 5.34. Because

[V (o)) o = = || V()] [l2< 0, (5.36)
e = eg results in minimizing afa(%). Therefore,
P
p = [V f(zo)|l2e0 = =V f (o) (5.37)

is the steepest descent direction of f(x) at x.
We introduce a new norm or a new metric || - || 4 to measure the length of a

vector. || - || defined by

|z||a = VaT Ax (5.38)

where A is a symmetric positive definite matrix. We can show that
| Ayl < ]| ally]la. (5.39)

The absolute value of the directional derivative in terms of the new introduced norm

| - ||a can be written as

‘[Vf(xo ‘ - ) Vf(zo)]" A 1Ae‘ — ) 1Vf(m0)}TAe‘
(5.40)
< ATV f(zo)] llallella = [[[AT"V f(z0)] ]| a-
Note that here e is a unit vector in terms of || - || 4, i.e., |||l = 1. From Eq. 5.40, we
have
[V £(@0)]"e| < [[A7'V f(20)] |1 (5.41)
If we take
ATV f (o)
e=— = ey, 5.42
ATV ol 42
then

which is the maximum value of the directional derivative in terms of ||-|| 4. Therefore,

p=[IATV f(z0)llae0 = —ATV f(x0) (5.44)
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is the steepest descent direction in terms of || - || 4 of the function f(z) at xzq. If the
objective function is a quadratic function, then the second derivative of the objective
function, i.e., the Hessian matrix, is a constant matrix, will take the place of matrix A
in Eq. 5.44. If we consider a nonlinear problem, like our history matching problem,
the Hessian matrix Hy, which can be treated as a metric matrix, changes from
iteration to iteration. This provides a motivation for calling this method a variable
metric method. We also can treat this method as a “steepest descent” method in
terms of the new metric.

In a quasi-Newton method, the key issue is how to generate the approxi-
mation to the inverse Hessian matrix. Different quasi-Newton methods use different
formulas to calculate H . 451 from H .. All updating formulas satisfy the quasi-Newton

condition given by

HyLye = si, (5.45)
where
Yk = Jrk+1 — Gk, (5.46)
and
Sp = Myy1 — Myg; (5.47)

see Appendix B. Various possible updating formulas honor this quasi-Newton condi-
tion. The Broyden family equation is given by
SKSE H 'y H Y

S Yk y,?ﬁk‘lyk

Hk_+11 = ]:Ik_l + -+ Hkvkv,::, (548)

where 6, € [0,1] and

s My (5.19)

T Fr—1, \1/2
e = (i H ) <Sfyk L H
Given that the line search is exact and the initial Hessian inverse approximation
is real symmetric positive definite, the Hessian inverse approximation generated by
Eq. 5.48 is guaranteed to be symmetric positive definite; see details in Appendix B.
In our procedure, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) correction

equation proposed by Broyden (1970), Fletcher (1970), Goldfarb (1970) and Shanno
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(1970) independently, which is a special case of Broyden family obtained by setting
0, = 1 in Eq. 5.48. The BFGS update equation is given by

T [f[fl T[:[fl
Hyly= 07+ 20 Tk P e T (5.50)
Sk Yk Yi. Hk Uk

The limited memory BFGS (LBFGS), which uses a limited number of pre-
vious vectors (yx’s and s’s) to construct the inverse Hessian approximation at each
iteration, is an appropriate method for large scale problems where it is not feasible
to explicitly store and compute the full matrix H & !, In our work, the algorithm
proposed by Nocedal (1980) was implemented and applied. In order to derive the
limited memory BFGS, the normal BFGS formula Eq. 5.50 can be written as

H = VIIH Vi + pesest (5.51)

where pp = 1/ylsp and Vi = I — ppyrst. Nocedal (1980) suggested a procedure

where only the L previous vectors are used when constructing the new H k- 4&1- When

k < L, the update equation is still given by Eq. 5.51 which can be rewritten as
ﬁl;h :VkTVk:Cl T VOTI:[(;IVO w Vi Vi

+VkT...{/1TpOSOSg’{/1...Vk

(5.52)
+ Vi pr—15k—154_1 Vi
+ pksksg.
For k + 1 > L the update equation is
ﬁk_ﬁ :VkTVkT—l T VkT—L+1ﬁ0_1Vk—L+1 w Vi Vi
+ V... VkT_L+2,0k_L+1Sk—L+18£_L+1V1 Vi
(5.53)

T T

+ Vi pr—15k-155_1Vk
T

+ PrSKSE -

Unless the dimension of H e Uis small, direct application of Egs. 5.52 and 5.53, which

involve matrix products, is inefficient. Instead, we form the product H gk, which
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is used to construct the search direction, directly by using the algorithm proposed

by Nocedal (1980). The calculation of H & g, only involves vector products instead

of matrix products. Because only the L most recent vectors from the set of s, and

yi are used to construct H k- jl, this algorithm is called the limited memory BFGS

method. The precise algorithm for this method is given in Appendix B.

The BFGS or LBFGS algorithm we used to minimize O(m) (Eq. 2.14 or

Eq. 2.18) is given below.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Initialization

(a)Provide an initial guess, mg, of the model, calculate the objective function
corresponding to mg and evaluate the gradient of the objective function at my,
i.e., compute go; (b)provide an initial Hessian inverse approximation Hy ! (e.g.,

C) in our examples), set the initial iteration index k=0.

Calculate the search direction d, = — | & L9 and check whether it is a downhill
direction, i.e., check to see if df gy < 0. If dj is not a downhill search direction,

set d, = — N()’lgk.

Calculate the step size ay by a line search procedure as discussed later.
Update the model to m. = my + ady.

Calculate the objective function based on m..

Determine if the Wolfe conditions (discussed later) are satisfied; if they are
satisfied, then set my,.; = m, and go to step 7, otherwise do

(a) fit a quadratic and find a step size by minimizing this quadratic, then go
to step 4;

(b) if a quadratic fit has already been done, cut the step size by a specified
factor (in our examples we cut the step size by a factor of 10) and go to step

4. All computations we have done suggest this case does not occur very often.
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Step 7 Determine if the stopping criteria are satisfied. If satisfied, then stop; otherwise

go to step 8.

Step 8 Calculate s = myp1 — mp = agd, and yp = g1 — gr- Apply Eq. 5.50 or
Egs. 5.52 and 5.53 to update the inverse Hessian approximation lfl,;:l Set
k =k + 1 and then go to step 2.

5.5.1 Scaling

The scaling is obtained by multiplying the old H . ! by a factor 7, and then
substituting kalk_l instead of lflk_l itself into the update equation (e.g., Eq. 5.48)
to calculate H,;; see Oren (1973), Oren and Luenberger (1974), Oren (1974b) and

Shanno (1970). If we do so, Eq. 5.48 becomes

sesh wH 'y, !

I:-rk_ll = Vkﬁk_l + - + Hkvkvkv,f, (5.54)
’ Sk Yk iy
and this equation can be further simplified to
) 7 H 'yl Hy! spsT
Hy}y = ( p L e ekUkUT>’Yk + =k (5.55)
! ’ Yyt Hy yn ‘ St Uk

where vy, is given by Eq. 5.49 and is the same one used in Eqgs. 5.48 and 5.50.

For BFGS and LBFGS, scaling can have a significant effect on the rate of
convergence. The self-scaling variable metric (SSVM) method developed by Oren and
Luenberger (1974) and Oren (1974b) is motivated by the desire to choose a scalar
~Yk—1 so that the condition number of i), = H,i/zfl,le;/z is as close to one as possible.
If H N !is identical to the inverse of the true Hessian, Hj, then this condition number
is equal to one. For a quadratic objective function, these authors provide theoretical
conditions and a method for computing v, that insure that (i) Apnin < 1 < Apax where
Amin and Apay, respectively, denote the minimum and maximum eigenvalues of Ry;
and (ii) the condition number of Ry is less than or equal to the condition number
of Rj. A quasi-Newton method which satisfies these two conditions is referred to as
a self-scaling variable metric method.

Let R
S%Hksk

T
Sk Yk

(5.56)

Tk —



and .
o = % (5.57)
By applying the fact that
Sp = audy = —&kﬁk’lgk, (5.58)
and using the fact that H ,; !'is real symmetric, Eq. 5.56 can be rewritten as
T = ng’“s’“ (5.59)
Sk Yk
_ _akiz;;: (5.60)
_ 7955?%. (5.61)

In general the motivation for using the last two formulae to calculate 7 is to avoid
calculating the inverse of H L

There are many options we can choose to perform scaling. Oren and Spedi-
cato (1976) proposed an optimal condition which minimizes the upper bound of the
condition number of H - jl by proper selection of 8, and <. This condition is given

by
agby — @i’yk

fp = 0~ Qi
bCr Yk — A3

(5.62)

where 6, is the parameter used in Broyden family update equation, Eq. 5.48, a, =
sTyr, by = st Hysy and ¢ = y] H, 'y With these definitions, there is still freedom
to select scaling factors. In the same paper, Oren proposed four similar switching
rules based on his earlier published paper (Oren (1974a)). One of the switching rules
for choosing v, and 6 in Eq. 5.55 is

if 7, <1, choose v, = 7, and 6, = 0;

if o, > 1, choose v, = 0} and 0, = 1;

1—O'k
Tk — Ok~

if o, <1 < 73, choose v, =1 and 0, =
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Some examples (see Zhang et al. (2001)) show that when we use 6§ = 6 not equal to 1
in Eq. 5.55, the convergence rate is almost always slower than the case where we use
0, = 1. Therefore, we consider only the case where #, = 1; this choice corresponds
to the BFGS algorithm. Setting 6, = 1 in Eq. 5.62 and solving for v = v, we obtain
the optimal scaling factor for BFGS which is given by

T
e _ _ SkYk

= ~— = 0k, (563)
Ck y]::Hk lyk

Ve =

where oy, is given by Eq. 5.57. Shanno and Phua (1978) and Yang and Watson (1988)
use this scaling factor and only scale the initial matrix, ﬁo_ ! in their work. In our
implementation, we modify Oren’s switching rule to

Ve =Tk, if 7 <1
(5.64)

Ve = Ok, otherwise
and always use 6 = 1. Note that using switching rule Eq. 5.64 for choosing the
scaling factor still guarantees the condition number of matrix Ry = H. ,i/ °H e 'H ,1/ 2
monotonously decreases at least for quadratic functions; see Appendix B for detail.
The scaled version BFGS algorithm is similar to the standard BFGS al-
gorithm given previously. The only difference is in step 8. For the scaled BFGS
algorithm, step 8 is replaced by

Step 8 Calculate sy = mpi1 —my = apdy, and Y = grr1 — gx. Calculate 7, by Eq. 5.61
and determine whether 7 is less than one. If it is, then set v, = 7. Otherwise,
calculate o using Eq. 5.57 and set v, = o. Apply Eq. 5.55 to update the

inverse Hessian approximation H o 4:1' Set k =k + 1 and go to step 2.

This step 8 is given for the case where the inverse Hessian approximation is scaled
at each iteration. For the case where only initial scaling is done, set v, = 1 for
k > 0 in this step. For the LBFGS algorithm with initial scaling, we just replace
[:IJI in Egs. 5.52 and 5.53 by 70170’1 in computing ﬁfl and use v, = 1 at all
subsequent iterations. For the LBFGS with all scaling, we replace ]:-’o_ Uin Egs. 5.52
and 5.53 by Vklffo_ 'in computing f[,; J:I. The efficient LBFGS method given by
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Nocedal (1980) avoid formation of H, ' for k > 1, only H, ‘g is calculated at each
iteration. However, ]:IO_ ! must be provided as the initial approximation to the inverse
Hessian. Based on these considerations, we tried implementing Eq. 5.57 with H o

replaced by E[g ! then we have

T
~ Sk Yk
Op = 2. (5.65)
yi Hy 'y
The ]:Ik_l and Hj, in Egs. 5.59 and 5.61 are replaced by ﬁo_l and H, respectively. The
resulting three equations for 75 are no longer equivalent except at the first iteration.

By using ﬁo’l in place of F[,;l and Hy in place of Hy, in Eqs. 5.59 and 5.61, we obtain

T
H
Fp = k0% (5.66)
Si Yk
T
~ Sk 9k
T3k — T <567)
9 Hy "

respectively. However, Eq. 5.60 can be applied exactly in all cases. To simplify the
notation, we let

gzzsk
SEyk

More details about the scaling schemes we used and how they affect the convergence

(5.68)

Tor = T, = —Qu

are given in the example sections.

5.6 Convergence Criteria

In our results, the following stopping criteria are used to terminate the

algorithm:
1.
| Or41 — O |
i 5.69
Op+ 1014 =7 (5.69)
and
| g1 — |2
<e¢ 5.70
[ 710738 < 10
where k denotes the iteration index and || - || denotes the I3 norm of a vector.

Both conditions must be satisfied to terminate the iteration. If we use only

Eq. 5.69 as the convergence criterion, the algorithm may converge prematurely
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especially when the objective function decreases very slowly at the early iter-
ations. Because at the early iteration, the objective function is relatively big

such that Eq. 5.69 becomes easier to be satisfied.

2. Specify a maximum allowable iteration number. If the number of iterations
exceeds the specified number, we force the iteration to stop. In our examples,
we usually specify the maximum number of iterations as 100. Note that reach-
ing the maximum number of iterations does not imply that the algorithm has

converged.

5.7 Line Search

In our implementation of conjugate gradient and quasi-Newton methods,
the line search is performed using one iteration of the Newton-Raphson method
followed by a quadratic fit if necessary. We do not do an exact line search, but
terminate the line search when the Wolfe conditions are satisfied; see, for example,
Fletcher (1987). The Wolfe conditions are used to ensure that step sizes are not too
small and that the reduction in the objective function is not negligible. In addition,
the Wolfe conditions are side conditions for the exact line search; see Kolda et al.
(1998). At each iteration, we perform one Newton-Raphson iteration to find a step
size. Then we check whether this step satisfies the Wolfe conditions. If it does, we
accept this step. Otherwise we find an optimum step size by fitting a quadratic,
as discussed in the next section, and then check whether the new step satisfies the
Wolfe conditions. If it does, we accept this new step. Otherwise, we check whether
the objective function increases or decreases. If it increases, we cut the step size
by a factor of 10. If it decreases, we accept this new step size no matter whether
the Wolfe conditions are satisfied or not. Our experience shows that for most of
the iterations, the step size generated by one Newton-Raphson iteration satisfies the
Wolfe conditions and virtually all the step sizes satisfy the Wolfe conditions after the
quadratic fit. One may argue that we should perform a sequence of quadratic fits or

a sequence of cubic fits after one quadratic fit instead of cutting the step size after
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one quadratic fit. Our limited experience shows that the Wolfe conditions may never
be satisfied during the sequence of quadratic or cubic fits. If this situation happens,
then we are in a “dead loop” and the iteration never terminates. Because of this, we
implemented the simple scheme of reducing the step size by a factor of ten whenever
the situation arise that the Wolfe conditions are not satisfied after the quadratic fit.
Sometimes, however, this procedure leads to a false convergence. Thus, whenever we
obtain convergence as a result of reducing the step size by a factor of 10, we check
the objective function value. If the objective function value is still so big, then we
restart the algorithm manually.

A line search is used to find the step size a at the kth iteration such that
fla) = O(my, + ady,), (5.71)

is minimized along the search direction di. The minimizer can be found by setting
the derivative of the function f(a) equal to zero, i.e.,

. dO(mk + Oédk)
N do

he) = (@) — (VO(my, + ady))" dj, = 0. (5.72)

This equation can be solved by using the Newton-Raphson algorithm which is given

by

_ h(ey)
h(ey)’

where j denotes the index of the Newton-Raphson iteration and the first derivative

(5.73)

Qj+1 = Qj

of h can be evaluated by

In an exact line search, the Newton-Raphson iteration is stopped when a convergence
criterion is satisfied. The exact line search is very expensive due to the evaluation of
the term dZH (my + ady)dy, which requires at least one simulation run. In our pro-
cedure, we use an inexact line search. Specifically, we do only one Newton-Raphson
iteration as mentioned previously. To perform one Newton-Raphson iteration, we
set ap = 0 and then Eq. 5.73 gives

(5.75)

A = —

82



Eq. 5.75 involves the Hessian matrix which can be approximated. The Hessian for

the objective function given by Eq. 2.14 is given by
H, = GZCBle + Cj\_/ll (576)

So
di Hydy, = di (GFCoMGr + Cy ) dy,
= d} (GTCR'Gy)dy + dECytdy, (5.77)
= (Grdp)" CHGrdy) + df Cyf dy.
In this equation, we do not need to compute the sensitivity coefficient matrix G
directly. We only need to calculate Gdj which can be done by using a finite-difference
approximation as shown next. It could also be calculated using one run of the

gradient simulator method. The method given below was originally implemented by

Kalita (2000). The elements of the sensitivity coefficient matrix can be written as

dgi
Gi; = m;’ (5.78)
wheret=1,--- ,Ngyand j=1,---, N,,. The directional derivative is
dg dg(m + ady,)
— =(—= . 5.79
(d(Jz)a:o ( da >a:0 ( )
Let uw=dy/ || di ||. So we have
dgi o T
(@)azo = [Vg(m)] u
1
= [Vgi(m)]" dy. (5.80)
| di |
The ith component of Gdy, is given by
N,
j=1 1"
= [Vgi(m)]" dy, (5.81)

where dy, ; denotes the jth component of the vector di. Substituting Eq. 5.80 into



Eq. 5.81, we obtain

dg
G =] di || (57) g
(m + edy,) — g(m)
el de |

g(m + edy) — g(m)

)

g
~| d |l

(5.82)

€

where € is a small number. We choose € based on the infinity norm of dj, such that e
satisfies € || d ||co= 1073. Note that calculating Gd, needs one additional simulation
run. Once we have Gdj, it is straight forward to calculate d;fdek using Eq. 5.77
and then Eq. 5.75 can be applied to calculate the step size. Application of Eq. 5.77
requires evaluating C]\}ldk. In our code, we provide two ways to calculate this term.

One way is to solve a matrix problem
Cyx = dy (5.83)

for x = C’A}ldk using either LU decomposition or preconditioned conjugate gradient
method (both of them are available in our code). The other way is to approximate
C,; by using stencil method; see Skjervheim (2002) or Oliver (1998).

Fig. 5.1 presents plots of O(my + ady) (circles) and f'(a) = [VO(my +
ady)]Tdy (diamonds) versus a. The cross shows f’(a;) where a; was computed by
Eq. 5.75. Note f’(aq) is close to zero and a4 is close to the point (o = 3.765) where
O(my + ady) is minimum. This result illustrates our observation that one iteration
of the Newton-Raphson algorithm usually yields a sufficient accurate line search so
that the Wolfe conditions are satisfied.

The above procedure for computing H (my)d; was based on the particular
form of the Hessian given by Eq. 5.76. For other cases, for example, the case where
the prior means are considered as model parameters, the above procedure must be
modified. A more general derivation based on Taylor’s series is given below. The
resulting formula can be applied to estimate directly the Hessian-vector product. For
any vector valued function f(m) (here, f is an N-dimensional column vector where
each component is a function of m,) we can write a Taylor series approximation as

T

f(m+ev) = f(m)+ (V(f(m)")) ev, (5.84)
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Fig. 5.1: Illustration of Newton-Raphson.

where € is a real scalar and v and m are fixed N,,—dimensional vectors. If f = g(m)

represents calculated data, then

(V(f(m)T)) ev = (V(g(m)T)) " ev = eGu (5.85)
Gy = 9m “’2 —gm). (5.86)

which gives a finite-difference method for calculating Gv. Another procedure for
doing so is to use the gradient simulator method. Now suppose f = VO, then

Eq. 5.84 gives

VO(m + ev) = VO(m) + (V - (VO(m))") ev
=VO(m) + H ev (5.87)
= VO(m) + Hev.
The last equality follows from the fact that the Hessian is symmetric. Rearranging
the last equation gives

Ho — VO(m + ev) — VO(m). (5.88)

€

85



The advantage of the last equation is that the H represents the Hessian for whatever
objective function O we use. Application of Eq. 5.88 implies that the Hessian matrix
used is the true Hessian given by Eq. 5.11 instead of the Hessian approximation given
by Eq. 5.13. However, Eq. 5.77 makes use of the approximation form of the Hessian
matrix, i.e., Eq. 5.13.

We choose € by either

e=(1+|m|s)107® (5.89)

or

e(1+[[vllso) = (14 [Iml]o) 107, (5.90)

where 3 < k < 5. In our code, Eq. 5.89 was used to calculate e. The application
of Eq. 5.88 requires one forward simulation run to calculate the primary variables
that are required to form the adjoint system and one adjoint solution to form the
gradient evaluated at m + ev, whereas application Eq. 5.82 requires only a forward
simulation run. Thus, we use Eq. 5.82 whenever the objective function is given by
Eq. 2.14 or Eq. 2.18 and use Eq. 5.88 only for the case where we correct the prior
mean. This case is discussed later.

As mentioned above, instead of doing an exact line search, we generate
a sequence of iterate approximations to a that minimizes f(«) and terminate the
iterations when the Wolfe conditions are satisfied. As discussed below, the Wolfe
conditions were formulated to ensure that step sizes are not too small and that there
is a non-negligible reduction in the objective function at each iteration. In addition,
the Wolfe conditions are the side conditions for quadratic termination for linear

problems in practice; see Kolda et al. (1998).

5.8  Wolfe Conditions

Following Fletcher (1987), let &) denote the smallest positive value of « for
which O(my + ady) = O(my). Negligible reductions in the value of the objective

function can occur either if a, — @, or ap — 0; see Fig. 5.2. Goldstein (1965)
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conditions can be used to avoid the occurrence of these negligible reductions. Again

we let f(«) denote O(my, + ady), so f(0) = O(my). The Goldstein conditions are

fla) < f(0) + apf'(0), (5.91)

to exclude the right-hand side extreme of [0, @], and

f(@) = f(0) + (1 = p)f'(0) (5.92)

to exclude the left-hand side extreme of [0, ay], where p € (0, 1) is a fixed parameter.
In our examples, we choose p = 0.0001. Eq. 5.91 is often also referred to as a Wolfe
condition. In Figs. 5.2 and 5.3, the line labeled pf’(0) goes through f(0) and its
slope is equal to pf’(0); the line labeled f'(0) goes through f(0) and has slope equal
to f'(0). Eq. 5.91 can be rewritten as

< pf'(0). (5.93)

From Eq. 5.93, we can see that if the step size satisfies this condition then the line
through (0, f(0)) and (a, f(«)) in Fig. 5.2 must be below the line with slope of pf’(0).
Similarly, Eq. 5.92 can be rewritten as

fla) = f(0) >

«

(1= p)f(0). (5.94)

If the step size satisfies this condition then the line through (0, f(0)) and («, f(«))
must be above the line labeled (1 —p)f/(0) in Fig. 5.3. Hence, if the step size satisfies
both Eq. 5.91 and Eq. 5.92, then the line through (0, f(0)) and («, f(«)) must fall
between the line with slope of pf’(0) and the line with slope of (1 — p)f’(0).

Applying the fact that f'(0) = gldy where g, = VO(my), Eq. 5.91 can be
rewritten as

fr = frn = —apgy dy. (5.95)

When f(«) is non-quadratic, the second Goldstein condition (Eq. 5.92) may exclude
the minimum point of f(«); see Fig. 5.3. Wolfe (1969) replaced Eq. 5.92 by a new

condition which is given by

f'(a) = nf'(0), (5.96)
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Fig. 5.2: Illustration of the Goldstein or the first Wolfe condition.

f(a)
f (0) p f'(0)
1-pf'O §
f'(0)
0 « o a

Fig. 5.3: Illustration of the second Goldstein condition.

where 7 < 1. Eq. 5.96 can be rewritten as
Giprdr = g (5.97)

which is called Wolfe’s condition. In practice, Eq. 5.97 is often replaced by

| giadi |<m | gidy |- (5.98)



which is called the strong Wolfe condition. The reason for using Eq. 5.98 instead
of Eq. 5.97 is given below, also see Fletcher (1987) for details. In our examples we
use n = 0.25. In Fig. 5.4, the top dashed line shows a situation where Eq. 5.97 is
satisfied but the strong Wolfe condition Eq. 5.98 is not satisfied. This dashed line,
which intersects the objective function curve at the point (&, f(&)), falls below the
line with slope of pf’(0). At the point (&, f(&)) where this dashed line intersects the
objective function, the slope of the objective function which is ng+1dk is greater than
—nf'(0). With my4; = myg + ady, Eq. 5.97 is satisfied, due to the fact that f'(&) is
positive whereas f’(0) is negative. However, the strong Wolfe condition (Eq. 5.98)
is not satisfied at o = @&, because the value of f'(&) > nf’(0). To satisfy the strong
Wolfe condition, we have to move the dashed line toward the minimum until it falls
below the dot dashed line which intersects the objective function curve at the point
at which the derivative is equal to —nf’(0). We use n = 0.25 in our work. So
the strong Wolfe condition is more restrictive. The first condition (Eq. 5.95) ensures
that the objective function is reduced sufficiently, and the second condition (Eq. 5.98)
prevents the steps from being too small. As is standard, we simply refer to Egs. 5.95

and 5.98 as the Wolfe conditions.

fa)t

/I
T

FO\ “o==c pf'(0)
f'(0)
-1
0 a a a'

Fig. 5.4: Tllustration of the strong Wolfe condition.
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5.9 Quadratic Fit

Suppose at iteration k, we perform one Newton-Raphson iteration and find a
step size &y, for the current search direction di. With this step size, we calculate a new
objective function value O(my + éxdy) = f(1my+1) and check the Wolfe conditions. If
the Wolfe conditions are not satisfied, we fit the function f(«) = O(my + ady) with

a quadratic function given by
q(a) = aa® + ba + c. (5.99)

With the known values of ¢(0) = f(my), ¢'(0) = f'(my) and q(éx) = f(mg + drdy),

we find

f(my + agdy,) — f'(my) g — f(my,)

a = &2 ,
b = f(m),
c = f(myg).
Minimizing g gives
l A2
ap = — Sl (5.100)

2[f (my, + apdy) — f'(my)ds — f(my)]’
which is used as the new step size. Based on our experience, the quadratic fit
almost always results in a decrease in the objective function. Even though it rarely
happens, however, a quadratic fit may yield a model at which the objective function
value is bigger than the value of the objective function corresponding to the model
obtained by one Newton-Raphson iteration. Such a situation is depicted in Fig. 5.5
where the quadratic approximation to the true objective function is inaccurate near
the minimum. In this figure, point A corresponds to my; point B corresponds to
my + ady, obtained after the Newton-Raphson iteration and point C corresponds to
my, +agdy, which is obtained after quadratic fit. We see that the value of the objective
function at point C obtained from the quadratic fit is larger than the value of the

objective function at point B obtained by one Newton-Raphson iteration.
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Fig. 5.5: llustration of quadratic fit.

5.10 Evaluation of Computational Efficiency

Here, we assess the computational efficiency of GN (Gauss-Newton), LM
(Levenberg-Marquardt), PCG (preconditioned conjugate gradient), BEGS and LBFGS.
In the evaluation of computational efficiency, we count only the number of adjoint
solutions and the number of reservoir simulation runs required by each method.
Moreover, we count one adjoint solution over the total time interval of a simulation
run as one equivalent simulation run although in our examples, one adjoint solution
typically takes less than one half of the time of a simulation run. We do not keep
track of the computational effort incurred when a proposed model update is rejected
because it results in a violation of the Wolfe conditions.

In GN and LM, if the data are evenly distributed in the time domain, the
computational cost of calculating sensitivity of all data to all model parameters re-
quires N4/2 adjoint solutions which we count as being equivalent to Ny/2 simulation
runs. GN and LM require one additional simulation run to calculate the new value
of the objective function. So a total of N;/2 4+ 1 simulation runs are needed to

accomplish one GN or LM iteration.



In LBFGS and PCG, the total computational cost of implementing one
iteration is equivalent to 3 simulation runs, which include one equivalent simulation
run for calculating the gradient of the objective function by using the adjoint method,
one simulation run for calculating the step size when using Newton-Raphson iteration
(only one iteration of Newton-Raphson is done in our implementation) and another
simulation run for calculating the objective function. Thus, LBFGS and PCG are
(Na/2 + 1)/3 times faster than GN and LM for each iteration. For example, if we
have 1000 data, LBFGS and PCG will be roughly 167 times faster than GN or LM
per iteration. In terms of the total time, if GN or LM require n, iterations to

converge on average, while LBFGS or PCG need n iterations to converge on

BFGS
average, then LBFGS or PCG will be [ times faster than GN or LM where
B N Mgy Ng/2+1
= —q ot = O x (5.101)

N2+ D)3 BFGS
Although BFGS requires more time than LBFGS and PCG to perform the matrix
operations involved in the update equation, it is the memory requirement that makes
the standard BFGS method inferior to LBFGS and PCG for large scale problems.
Hence, the “standard” BFGS refers to using Eq. 5.50 and storing H .. We could of
course implement BFGS in exactly the same way as LBFGS in which case we do not

explicitly compute or store H & L

5.11 Comparison of Memory Requirements

For large scale problems, the memory required by an optimization algorithm
is a key issue that needs to be considered. Because we are only concerned with the
difference between algorithms, we only consider the memory used by the optimization
algorithm itself. Table 5.2 gives a rough estimate of the number of double precision
real numbers used by each algorithm when applied to minimize the objective function
of Eq. 2.14 or Eq. 2.18. Recall that Ny is the number of production data, N,, is the
number of model parameters, and L is the number of previous vectors used in the
LBFGS algorithm. For convenience, we use one memory unit to stand for the memory

occupied by one double precision real number. Recall the dimension of my, mygiq,
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OMit1, S, diy Gy Ght1, Mprior and V,, O is N, the dimension of a sensitivity coefficient
matrix G is Ny x N,,, and the dimension of C}; is N,,, X N,,,. In the GN or LM method,
(4 4+ 2Ny) X Ny (myg, mii1, 0m, Mpior, sensitivity coefficient matrix G and CyG7)
memory units are used. In CG, 8 x N, (8 X Ny: my, Myy1, OMpi1, Sk, i, Grit,
Mprior; VimO) memory units are used. For PCG, in addition to the memory required
for the standard conjugate gradient, memory is required to store the preconditioner.
In BFGS (104 N,,) X Ny, (10 X Nyt Mg, M1, M1, diy Gy Gt Mpriors Vs Hy Uk,
Yi; Ny X Ny ]:[,;1) memory units are used. In LBFGS, (7+2 x L) x N,,, (7 X N,,:
Mgy M1, OMpt1, Gis Ak, Mprior, diagonal inverse Hessian approximation; 2 X L X Np,:
yr and sy for k =1,2,--- | L) memory units are used. From the results of Table 5.2,
we see that the full-memory version of BFGS uses the most memory which is on the
order of N2 | the standard conjugate gradient method uses the least memory which is
on the order of N,,, and Gauss-Newton or Levenberg-Marquardt and limited memory
BFGS have intermediate memory requirements. For large scale problems in which
the number of data and the number of model parameters are both large, the memory
used by limited memory BFGS depends on the number of previous vectors (denoted
by L in Table 5.2) used to construct the Hessian inverse approximation update; L
must be specified by the user. Fig. 5.6 shows a snapshot of the panel which monitors
the memory usage history and the CPU usage history when the LBFGS algorithm
was applied to do a history match for a 2D problem presented in Chapter VI. In
the right bottom black window, the curve shows the memory usage. The period of
high memory usage corresponds to a simulation run and the lower memory period

corresponds to solving an adjoint system.

5.12  Optimization for Doubly Stochastic Model

In this section, we will consider the optimization algorithms for the doubly

stochastic model specifically where the objective function is given by Eq. 2.29 which
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Table 5.2: Memory used by each algorithm.

No. of DP real numbers

GN/LM (442 x Ny) x Ny,
CG 8 x N,,
PCG | 8 x N,;, + memory for preconditioner
BFGS (10 + Ny) x N
LBFGS (7+2L) x N,

£ Windows Task Manager
File Options Yiew Help

Applications | Processes | Performance | Networking

CPU Usage CPU Usage Histary

PF Lisage Page File Usage History

Totals Phrysical Memory (K}

Handles 15560 Tokal 1047564
Threads 404 Avvailable EEE304
Processes L. System Cache 705676
Corarit Charge (K) Kernel Memory (K)

Total 615392 Tatal TIZ36
Lirnit: 2521244 Paged 51512
Peak 670016 MNonpaged 25724

Processes: 49 CPU Usage: 100% Corarnit Charge: 600M | 24628

Fig. 5.6: Memory and CPU usage history of the computer.

is repeated as

1
O(ma Oz) - §(g(m) - dobS)TC[_):l(g(m) - dobs)"‘
1 1
é(m — Mprior — Ba)T O3 (m — Mprior — Ea)) + é(a —ao)'C (o — ap). (5.102)

Recall that M denotes the random vector including the model vector M and vector

a, i.e.,

M = , (5.103)

94



and 7 denotes a realization of M. We can apply the methods that require both
the Hessian and gradient, such as Gauss-Newton or Levenberg-Marquardt, or the

methods that require only the gradient, such as quasi-Newton or conjugate gradient.

5.12.1 Application of Gauss-Newton/Levenberg-Marquardt Methods

The gradient of the objective function can be partitioned as

VO(in) = ngﬁ; . (5.104)

The gradient of the objective function with respect to m and « are given by
VnO(m) = GTCR N g(m) — dons) + Cif (M — mprior — E), (5.105)

and

VaO(i) = —ETCy/ (m — Mpior — Ba) + C (o — ), (5.106)
respectively. The first term in the right-hand side of Eq. 5.105 can be obtained by
the adjoint method. The second term in the right-hand side of the same equation
can be obtained by solving the matrix problem using the conjugate gradient method.
The two terms in the right-hand side of Eq. 5.106 can be obtained by solving two
matrix problems respectively. One is an N,, x N, matrix problem. The other one
is N, x N, matrix problem. Note that N, < N,,.

The Hessian matrix is given by

o Vi (VimO() Viu(VeO() | |GTCH'G+Cyt —Cy'E
Vo (VinO()" Vo(VaO(m))" —ETC;}  ETC;E+C;

(5.107)
where the last equality is actually approximation because we have used the Gauss-
Newton approximation of the Hessian. The Gauss-Newton method is given by

Hypdmg 1 = —V30(m) (5.108)
where k denotes the iterative index. If we delete the off diagonal entries of Hessian
matrix, then we obtain the approximation

X GTCL'G + Cyf O

H, = : (5.109)
O ETCy'E+C.!

95



When I:Ik is used as the modified Hessian in the Gauss-Newton iteration

procedure, the overall iteration can be decomposed as follows:
(GECHIGL+Chf Y omy i = —GL O} (9(m) —dobs) — Cyf (my;— Myprior — Ecvy,) (5.110)
(ETC E + C Mooy = ETCyf (mi — mprior — Eay) — O (o — ) (5.111)
Mpy1 = Mp + UpdMpiq (5.112)

Q1 = Ok + ukéakﬂ (5.113)

where py, is calculated by the restricted step scheme; see Fletcher (1987). Note in
the spirit of the restricted step, it is important to use the same value of yj in both
Egs. 5.112 and 5.113, otherwise we effectively change the search direction. Note by
replacing H by H , we avoid inversion of H, i.e., we have “decoupled” the iteration
on the model m from the iteration on the correction « to the prior mean. Eq. 5.110
is essentially the same equation we used when the prior mean is fixed and we can
apply any of the techniques mentioned earlier to solve it, including applying matrix
inversion lemmas. In Eq. 5.111, the dimension of « is N, X N, and if porosity and all
log-permeability fields are modeled as stationary random functions throughout the
domain, then the dimension of « is at most 4 so the matrix on the left side of Eq. 5.111
is of lower order. However, to form the matrix on the left-hand side of Eq. 5.111
appears to require calculation of C’]\_/[1 and then doing the matrix multiplication. The
product of C’]QlE is calculated by computing C;,'e; where ¢; is the [th column of
E. This is done by solving Cy,w; = ¢; using a preconditioned conjugate gradient

method.

5.12.2  Application of Quasi-Newton Method

In this method, the gradient required is given by Egs. 5.105 and 5.106. The
step size can be obtained by applying Newton-Raphson iterative procedure using the
basic formula of Eq. 5.88. The initial Hessian inverse approximation used for this

case is given by
x Cvy O
=" . (5.114)
O C,
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Once we have the gradient of the objective function, the step size and the initial
Hessian inverse approximation, we can use the same LBFGS algorithm as used for

the case without correcting the prior mean to minimize Eq. 2.29.



CHAPTER VI

EXAMPLES

In this chapter, several history matching examples are presented. The first
example is a 3D single-phase gas problem. Five optimization algorithms Gauss-
Newton (GN), Levenberg-Marquardt (LM), preconditioned conjugate gradient (PCG),
Broyden-Fletcher-Goadfarb-Shanno (BFGS) and limited memory Broyden-Fletcher-
Goadfarb-Shanno (LBFGS) are tested on this example. The convergence behavior
and the computational cost are compared for the five algorithms. Extensive op-
tions for choosing the initial inverse Hessian approximation and for choosing scaling
schemes are explored and analyzed for the BFGS and LBFGS algorithms. Among of
all these options, we recognized the best options for choosing the scaling factor and
initial Hessian inverse approximation for both BFGS and LBFGS for this problem.

The second example is a 2D three-phase synthetic example. The purpose
of this example is to further test and verify the points that we observed from the
single-phase gas example on the three-phase problem. The same optimization algo-
rithms are tested and analyzed on this example. Basically, the same conclusions can
be made except that the LBFGS-PCG (preconditioned conjugate gradient using a
preconditioner which is an approximation to (lfl 5 =1 where H N !is the inverse Hes-
sian approximation) does not work as well as in the single-phase gas example. For
both examples, LBFGS with the “optimum” scaling option works very well. Then
the LBFGS was applied to a 3D three-phase history matching problem. The results
are encouraging. Based on all these examples we have done, we believe that LBFGS
is the best minimization algorithm for large scale problems.

Finally, we applied LBFGS to a pseudo-field example. The example is a

synthetic example which was constructed using data and information from the Os-
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eberg reservoir which is located in the Norwegian sector of the North Sea. There
is a gas cap at the top and an aquifer at the bottom. Two gas injection wells are
located in the gas cap. Five producing wells are located above the aquifer. Wellbore
pressure from all seven wells and the GOR from the five producing wells are history

matched. We obtained a very good match for both types of data.

6.1 Three-Dimensional Single-Phase Gas Synthetic Example

This example pertains to flow in a 3D single-phase gas reservoir. Reservoir
simulation was done on a 20 x 20 x 4 grid. The dimension of the reservoir is 2000
ft x 2000 ft x 40 ft. The gridblock size is actually uniform with Az = Ay = 100
ft and Az = 10 ft. A spherical variogram was used to generate the prior covariance
matrix. The correlated lengths in the x—, y— and z— direction are 400 ft, 200 ft and
10 ft, respectively. Horizontal permeability, vertical permeability, porosity and skin
factor are the model parameters for this example. We assume that the porosity field
is correlated with the horizonal log-permeability field and the correlation coefficient
is 0.7 and that the vertical log-permeability field is uncorrelated with the porosity
and horizontal permeability fields. The prior information for the model parameters
are given in Table 6.1 where s denotes the skin factors at all wells. Because of the

small variance on s, the skin factor is almost fixed.

Table 6.1: Prior information on model parameters.

Mean | Variance
In(k,) | 4.0 0.5
In(k,) | -2.9 0.5

) 0.25 0.002
Sskin 4.0 0.0001

The initial pressure is 3230 psi. All six boundaries are assumed to be no-flow

boundaries. The reservoir is produced by two completely penetrating wells. Well 1 is
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located in areal gridblock (5, 5) and well 2 is located in areal gridblock (15, 15). Well
1 was shut in for two days and then was produced at the rate of 4 x 10* Mscf/day for
another two days. Well 2 produced at the rate of 3.5 x 10* Mscf/day for the first two
days and was then shut in for the following two days. Fig. 6.1 shows the pressure
response of the two wells. We used 22 measured data from each well as conditioning
data. Thus, the total number of data to be history matched is 44. The observed
data are obtained by adding random noise to the simulated pressure data predicted
from the true reservoir. The variance for the observed pressure data is specified as
1 psi?. The total number of reservoir variables is 4808. Note that each layer has a

skin factor at each well.
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Fig. 6.1: Pressure response from the true model.

100

Stochastic simulation was done using randomized maximum likelihood method.

Ten realizations were generated using five different optimization algorithms: (i)
Gauss-Newton (GN) with restricted step, (ii) Levenberg-Marquardt (LM), (iii) pre-
conditioned conjugate gradient (PCG), (iv) BFGS and (v) limited memory BFGS
(LBFGS). In LM, we simply use the value of 1000 for the initial damping factor
and multiply by 10 when the objective function increases and divide by 10 when the

objective function decreases. In PCG, the full matrix C;;' was chosen as the precon-



ditioner and fixed for each iteration. In BFGS, the full prior covariance matrix C'y,
was used as the initial inverse Hessian approximation. In BFGS, we only scale the ini-
tial inverse Hessian approximation and it is scaled by a factor of v = s yo/yl f[o_ Yo
where sq and y are obtained at the first iteration. The LBFGS we used is the
algorithm proposed by Nocedal (1980). In the LBFGS method, at most 30 previ-
ous vectors were used to construct the inverse Hessian approximation I;TO_ I and at
each iteration, H; !, which is an identity matrix, is scaled by a factor of stye/ (Yl yr)
where k represents the kth iteration. For the GN and LM methods, only Eq. 5.69
with £, = 1072 was used as a stopping criterion to terminate the iteration. When the
same stopping criterion was used for the other algorithms, most of the “realizations”
obtained at convergence gave very high values of the objective function; see Table 6.2.
In order to obtain a smaller value of the objective function at convergence, we used
g1 = 107" in Eq. 5.69 as the convergence criterion for PCG, BFGS and LBFGS. All
five algorithms were applied to the same 10 unconditional realizations of data and
the model, when doing history matching, i.e., the same m,. and d,. were used in the
objective function of Eq. 2.18. The observed and unconditional data are the same
for each algorithm.

Fig. 6.2(a) through Fig. 6.2(e) show the behavior of the objective function
iteration by iteration for each algorithm based on using ¢; = 1073 for GN and
LM algorithms and €; = 1077 for the other algorithms. Each curve on each figure
corresponds to one realization. Table 6.3 shows the objective function values at
convergence and the number of iterations required to obtain convergence. In terms
of the number of iterations, the GN and LM methods are the best algorithms and
the objective function converges to a small value (approximately 33 or so) for each
of the 10 realizations. Both the GN and LM methods, however, require considerable
computational work at each iteration due to evaluating the sensitivity of each data
to all model parameters. From the results shown in Table 6.3, we can make the

following observations:

1. In terms of total machine time, algorithms which only require the gradient of

the objective function (especially LBFGS and PCG) are much faster than GN
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Table 6.2: Comparison of BFGS, LBFGS and PCG, £, = 1073.

BFGS LBFGS PCG
Real. No. | Obj. | No. Iter. | Obj. | No. Iter. | Obj. | No. Iter.
R1 65 17 69 25 153 12
R2 372 10 F F 146 18
R3 56 15 63 17 70 11
R4 86 11 171 25 263 10
R5 58 11 138 25 347 13
R6 7 15 68 25 112 25
R7 64 25 66 10 184 5
RS 113 19 245 22 213 17
R9 445 7 112 20 230 19
R10 47 25 60 22 45 23
Average | 138 15.5 99 21.2 176 15.3

and LM methods. As discussed previously, theoretically, LBFGS and PCG
should be roughly [Ny/2 4+ 1]/3 times faster than GN and LM per iteration. In
this example, we history matched 44 data to generate each realization. Thus,
LBFGS and PCG algorithms should be [N;/2+ 1]/3 ~ 8 times faster than GN

and LM per iteration.

. PCG converges to higher values of the objective function than does the LBFGS
method under the same stopping criterion but requires fewer iterations for

convergermnce.

. Based on our previous discussions, we believe that the average value of the
objective function at the minima should be around Ng; = 44. However the
average objective function value at convergence is higher than this value for all

methods except GN and LM. Moreover, the average objective function value for
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the preconditioned conjugate gradient method exceeds N, + 5v/2N; = 91; see
the discussion in section 2.3. Given that significantly higher average value of
the objective function were obtained for BFGS, LBFGS and PCG than for GN
and LM, it is not clear that these four methods converge to appropriate minima
of O(m). Thus we seek modified algorithms that will have better convergence

properties.

Table 6.3: Comparison between algorithms.

R1 | R2 | R3| R4 | R5 | R6 | R7T | R | R9 | R10 | Average
N Obj. 37 | 31 | 21 | 33 | 43 | 28 | 27 | 38 | 40 | 33 33.1
No. Tter. | 7 13 | 6 8 12 | 8 12 | 12 6 6 9
A Obj. 38 | 30 | 21 | 33 | 43 | 28 | 27 | 38 | 40 | 34 33.2
No. Iter. | 8 14 | 12 | 8 13 | 13 | 21 8 14 10 12
Obj. 77 | 43 | 33| 8 | 52 | 33 | 39 | 114 | 103 | 41 62.1
BFGS
No. Iter. | 13 47 | 25 12 22 76 | 41 19 22 38 31.5
Obj. 53 | 47 | 63 | 131 | 138 | 44 | 66 | 174 | 87 | 42 84.5
LBFGS
No. Iter. | 36 | 41 | 17 | 42 | 27 | 50 | 10 | 39 | 34 | 43 33.9
POG Obj. 153 | 146 | 70 | 94 | 347 | 42 | 184 | 213 | 230 | 45 152
No. Iter. | 12 | 20 | 11 | 23 | 19 | 64 | 5 17 | 19 | 23 21.3

6.1.1 Scaling Effects on BFGS

The following three different scaling options were tested for the BFGS. The

full matrix C'y; was used as the initial Hessian approximation [:[5 1in all options.

BFGS-Optl: Use only initial scaling and scale I:IO_ ! by the factor of

Yo = 00 = sg o/ (e Hy o). (6.1)

This option was suggested by Shanno and Phua (1978) and used by
Yang and Watson (1988) in their work. This option is the one we used
previously (see Table 6.3).
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BFGS-Opt2: Scale at each iteration with the scaling factor chosen by the

following scheme:

(

o, and 6,=1 for o >1
Yo =97 and 6, =0 for 7, <1 (6.2)
_1—oy
\1 and Qk—Tk_Uk for o, <1< 71

where o and 7 are given by Eqs. 5.57 and 5.56, respectively. This
option was suggested by Oren (1974a).

BFGS-Opt3: Use only initial scaling and choose the scaling factor by the

scheme:

To for <1
Yo = (6.3)
o otherwise

This option is a modification of BEGS-Opt2.

BFGS-Opt4: No scaling

In BFGS-Opt2, when o, <1 < 73 is satisfied, both v, and 6, are calculated.
This is the only case where 6, is computed by an equation. This equation forces 6
to be in the interval between 0 and 1. We know when 0, = 0, Eq. 5.48 reduces to the
DFP formula and when 8, = 1, it reduces to the BFGS formula. As we discussed in
the Appendix B, the DFP algorithm is inferior to BFGS. It is not clear whether or
not the algorithm with 6, < 1 is inferior to the BFGS algorithm in which 6, = 1.
However, our results show that the BFGS-Opt3 is as good as BFGS-Opt2. The
results are summarized in Table 6.4. Note that BFGS-Opt3 is slightly superior to
BFGS-Optl. On average BFGS-Opt2 requires 4 fewer iterations than BFGS-Opt3
to obtain convergence, but it results in a higher value of the objective function at
convergence. Thus, at this point, we believe that BFGS-Opt3 is the better choice for
scaling in the BFGS algorithm. Comparing BFGS-Opt3 with BFGS-Opt4, we can
see that scaling does not have apparent improvement on the convergence behavior
for this particular single-phase gas problem. At least in terms of the value of the

objective function at convergence, however, Option 2 seems to perform the worst.



Table 6.4: Comparison of different scaling options in BFGS algorithm.

R1|R2|R3| R4 | R5|R6 | R7| R8 | RO | R10 | Average

Obj. 77 | 43 | 33 | 86 | 52 | 33 | 39 | 114 | 103 | 41 62.1

BFGS-Optl
No. Iter. | 13 | 47 | 25 | 12 | 22 | 76 | 41 | 19 | 22 | 38 31.5
Obj. 89 | 78 | 53 | 86 | 85 | 38 | 70 | 104 | 62 | 41 70.6

BFGS-Opt2
No. ITter. | 15 | 22 | 20 | 15 | 24 | 48 | 21 18 46 24 25.3
Obj. 77 | 50 | 33 | 43 | 56 | 36 | 43 | 105 | 64 | 38 54.5

BFGS-Opt3
No. Iter. | 13 | 51 | 25 | 38 | 17 | 41 | 29 | 14 | 32 | 31 29.1
Obj. 59 | 52 | 35 | 41 | 70 | 41 | 39 | 53 | 54 | 87 53

BFGS-Opt4
No. Iter. | 33 | 17 | 18 | 19 | 33 | 38 | 18 | 42 | 35 52 30.5

6.1.2 Scaling Effects on LBFGS

The following options are used to test the effect of the different initial inverse

Hessian approximation and different scaling schemes on the behavior of LBFGS.

LBFGS-Optl: Use the identity matrix as the initial inverse Hessian

approximation; scale I:IO_ ! for each iteration by a factor v, which is given

by

Ve = &k,

where 6}, is given by Eq. 5.65 with }”[04 =1

(6.4)

LBFGS-Opt2: Use the identity matrix as the initial inverse Hessian

approximation; scale I:IO_ ! for each iteration by a factor v, which is

determined by the following scheme:

Tk =

T3k

o

for

otherwise

where 73 is given by Eq. 5.67 with ﬁo_l =1.

7~—3k<1

(6.5)

LBFGS-Opt3: Use the identity matrix as the initial inverse Hessian

approximation; scale JZIO’ ! for each iteration by a factor v, which is
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determined by the following scheme:

Tok for Tor < 1
Tk = (6.6)

O otherwise

where Ty is given by Eq. 5.68 with ]:[0_1 =1

LBFGS-Opt4: Use the identity matrix as the initial inverse Hessian
approximation; scale ]ZIO_ ! for each iteration by a factor v, which is

determined by the following scheme:

Tk for T < 1
Ve = (6.7)

Oy otherwise

where Ty, is given by Eq. 5.66 with I:[O’l =1

LBFGS-Opt5: Use the diagonal of C); instead of the identity matrix as the
initial inverse Hessian approximation and only scale the initial matrix at

the first iteration by a factor vy given by the following scheme:

T10 for Tio < 1

(6.8)

0
00 otherwise

Note that for the initial scaling, i.e., k = 0, Ty9 = Tog = T3¢ holds, i.e.,
Eqgs. 5.66 through 5.68 give the same value of 7.

LBFGS-Opt6: Use the diagonal of C), as the initial inverse Hessian
approximation; scale ﬁo_ ! for each iteration by a factor v, which is

determined by the following scheme:

T3k for T < 1
Ye = (69)
Oy, otherwise

where 73, is given by Eq. 5.67 with H; ! = Diag[Cy].

LBFGS-Opt7: Use the diagonal of C), as the initial inverse Hessian

approximation; scale I;TO_ ! for each iteration by a factor v, which is
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determined by the following scheme:

Tok for Top < 1
Oy otherwise

where 7y, is given by Eq. 5.68 with H; ! = Diag[Cy].

LBFGS-Opt8: Use the diagonal of C'y; as the initial inverse Hessian
approximation; scale [:IO_ ! at each iteration by a factor v, which is

determined by the following scheme:

Tk for T < 1
T = (6.11)
O otherwise

where 7y, is given by Eq. 5.66 with Hy ' = Diag[Cyy].

LBFGS-Optl was previously considered by Liu and Nocedal (1989), to the
best of our knowledge, none of the other options have been considered previously.
All the results corresponding to the above options are summarized in Table 6.5.
Comparing the first four options, LBFGS-Opt1 is the worst one in terms of the value
of the objective function at convergence. As shown in Table 6.5 both the average
value of objective function at convergence and the number of iterations required
to obtain convergence are higher for LBFGS-Opt4 than for LBFGS-Opt3. Note
that for realization R4, the objective function is equal to 309 at convergence for
option 4 which significantly increases the average value of the objective function
at convergence. If we ignore the result for R4 of LBFGS-Opt4, the average value
of the objective function at convergence and the number of iterations required are
49 and 40.5 respectively, these results are better than those obtained with LBFGS-
Opt3. If we compare these two options based on the convergence behavior for every
conditional realization, we would say that these two options are similar. In this
table, an F entry indicates that the algorithm converged to a very large value. In
our examples, F corresponds to a value greater than or equal to 700. Note that

LBFGS-Optl, in which a “fixed” scaling factor was used, converged in slightly fewer



iterations than options 2, 3 and 4, but it converged to a higher average objective
function value (84.5). In LBFGS-Optb, the diagonal of C; was used as the initial
inverse Hessian approximation and we only scale the initial I:[O_ ! For initial scaling,
all the three formula which are used to calculate 7, (Eqgs. 5.66 through 5.68) are
identical. Thus, in the LBFGS-Opt5 case, it does not matter which formula is
used to calculate 7,. In option 6, 7, and 8, the diagonal of C'; was used as the
initial inverse Hessian approximation and we scale the initial Flg ! at each iteration.
The difference between them is that different formulas were used to calculate 7.
Comparing these results with those from LBFGS-Opt5, we can conclude that scaling
HO_ 1 at each iteration is better than just scaling at only the initial iteration. (We
obtained the same conclusion for the case where the identity matrix was used as H;
even though we did not show these results in Table 6.5.) Comparing the results of
option 6 through 8, we also can conclude that using (s Hosy)/(sEys) (LBFGS-Opt8)

to calculate 7, provides the best results.

Table 6.5: Comparison of LBFGS algorithm with different options.

R1 | R2 | R3| R4 | R5 | R6 | R7 | R8 | R9 | R10 | Average

Obj. 53 | 47 | 63 | 131 | 138 | 44 | 66 | 174 | 87 42 84.5

LBFGS-Opt1
No. Iter. | 36 | 41 | 17 | 42 27 50 | 10 39 34 43 33.9
Obj. 53 51 41 70 114 | 42 65 F 95 42 63.7

LBFGS-Opt2
No. Iter. 41 33 40 52 40 53 11 F 24 43 37.4
Obj. 47 | 51 | 41 62 | 115 | 43 | 66 F 54 40 57.6

LBFGS-Opt3
No. Iter. | 41 | 34 | 25 51 39 | 41 | 10 F 41 40 35.7
Obj. 47 55 30 | 309 94 36 36 F 58 38 78

LBFGS-Opt4
No. Iter. | 38 | 50 | 36 12 43 | 44 | 35 F 39 39 37
Obj. 90 F 60 | 100 | 70 58 | 59 | 110 | 156 60 84.8

LBFGS-Opt5
No. Iter. 40 F 14 39 25 39 16 50 11 46 31.1
Obj. 55 | 55 | 78 66 F 41 | 60 | 163 | 61 41 69

LBFGS-Opt6
No. Iter. | 21 | 26 8 46 F 46 | 16 36 50 32 31.2
Obj. 59 F 30 38 83 | 42 | 36 67 50 36 49

LBFGS-Opt7
No. Iter. | 10 F 20 32 16 24 | 23 16 34 34 23.2
Obj. 43 41 31 38 55 33 35 54 54 36 42

LBFGS-Opt8
No. Iter. 34 22 18 38 21 35 26 24 21 34 27.3

109



6.1.3 Preconditioning Effects on the Conjugate Gradient Method

In the results shown previously, we found that the conjugate gradient method
with C};' as the preconditioner does not work well. Here we denote this method by
CM-PCG which means the preconditioner is given by the full matrix C]\_/Il. For the
10 realizations tested, the conjugate gradient algorithm converged to higher objec-
tive function values than the BFGS algorithm with C'; as the initial inverse Hessian
approximation and the LBFGS algorithm; see Table 6.3. As discussed previously,
an approximation to the inverse Hessian calculated from the quasi-Newton equation
can be incorporated into the conjugate gradient algorithm as a preconditioner. Here
we tested two preconditioners. One is generated from BFGS with the full matrix
C)y as the initial inverse Hessian approximation. For simplicity, we call this algo-
rithm BFGS-PCG which means the preconditioner is generated from BFGS. Note
that when we form the inverse Hessian approximation we apply Eq. 5.50 with s
and y; obtained based on conjugate gradient method. The other preconditioner is
generated from LBFGS using LBFGS-Opt8, i.e., the diagonal of C'y; was used as ﬁo_l
and the scaling of option 8 was used at each iteration. We refer to this algorithm as
LBFGS-PCG which means the preconditioner is generated from LBFGS. Again, in
this algorithm when we calculate H . gk, the s;.’s and y;’s are obtained based on the
conjugate gradient method.

The final objective function value and the number of iterations required to
converge for both algorithms are shown in Table 6.6. For the purpose of comparison,
we also include the results from BFGS with scaling option of BFGS-Opt3, LBFGS
with scaling option of BFGS-Opt8 and CM-PCG in this table. The convergence
behavior of LBFGS and LBFGS-PCG are similar. Compared to the BFGS algorithm,
we can see that on average the BFGS-PCG converged to slightly lower objective
function values in fewer iterations although BFGS-PCG failed for one realization.
Both BFGS-PCG and LBFGS-PCG have much better convergence properties than
CM-PCG.

From this particular example, we can see that LBFGS and LBFGS-PCG
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Table 6.6: Results for BFGS-PCG and LBFGS-PCG.

R1 R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | Average
Obj. 90 F 28 | 40 54 | 41 39 46 53 47 48.7
BFGS-PCG
No. Iter. 35 F 25 31 10 33 25 19 24 26 25.3
Obj. 44 51 29 | 38 57 | 33 | 36 47 54 36 42.5
LBFGS-PCG
No. Iter. | 23 17 | 23 | 31 23 | 38 21 35 20 30 26.1
Obj. 153 | 146 | 70 94 | 347 | 42 184 | 213 | 230 45 152
CM-PCG
No. Iter. 12 20 11 23 19 64 5 17 19 23 21.3
Obj. 7 50 33 | 43 56 | 36 | 43 | 105 | 64 38 54.5
BFGS
No. Iter. 13 51 25 38 17 41 29 14 32 31 29.1
Obj. 43 41 31 | 38 55 33 | 35 54 54 36 42
LBFGS
No. Iter. 34 22 18 38 21 35 26 24 21 34 27.3

are the most effective and efficient methods among all the algorithms. So these two
algorithms were used to generate 50 different realizations. For the LBFGS algorithm,
the average value of the objective function at the convergence and the average number
of iterations required to converge are 44.7 and 27.2 respectively. For the LBFGS-PCG
algorithm, these two average values are 44.3 and 26.3, respectively.

To further confirm the effectiveness of the preconditioner generated from the
LBFGS, we used LBFGS-PCG algorithm in the restricted-entry example of Kalita
(2000) where CM-PCG worked very poorly. The restricted-entry example is a slight
modification of the gas reservoir problem just considered. In the restricted-entry case,
only the top layer is open to flow. For this case we also generated 10 realizations using
the CM-PCG and the LBFGS-PCG algorithms. The value of the objective function
at convergence and the number of iterations required to converge for both methods
are summarized in Table 6.7. When CM-PCG was used, all the 10 realizations
converged to a very high value. On average, 35.3 iterations were required to reduce
the average objective function value to 447. For the same 10 realizations, LBFGS-
PCG performed very well, the objective function converged to an average value of

43.1 in 29.3 iterations.
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Table 6.7: Results for restricted-entry case.

R1 R2 R3 R4 | Rb R6 R7 R8 R9 | R10 | Average
Obj. 237 | 578 | 159 | 372 | 252 | 119 | 776 | 1381 | 504 | 93 447
CM-PCG
No. Iter. 46 63 30 12 17 52 33 39 19 42 35.3
Obj. 55 37 32 41 52 38 38 51 50 37 43.1
LBFGS-PCG
No. Iter. | 35 34 23 32 21 30 34 23 31 30 29.3
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6.2 Two-Dimensional Three-Phase Synthetic Example

A 2D three-phase history matching problem was considered in this example.
We use a 15 x 15 grid with Az = Ay = 40 ft and Az = 30 ft. We consider a very
small problem so we can easily apply all optimization algorithms. The porosity for
the true model is homogeneous and equal to 0.22. Permeability is isotropic and
uniform in three different zones; see Fig. 6.3. The values of In(k) in the lower left
zone, lower right zone and the upper half zone are equal to 4.0, 4.6 and 4.2 with &
in md, respectively. Four producers and one water injection well are completed in
the reservoir. The well locations are indicated by the white squares in Fig. 6.3. All
producers start producing at time zero at a constant total flow rate of 200 STB/Day
and produce for 300 days. The production constraint is the minimum bottom-hole
pressure which is set to 50 psi and the economic limit is the maximum WOR which
is set to 49 STB/STB. When the bottom-hole pressure of a well decreases below
50 psi, then the well will be produced at a constant bottom-hole pressure equal to
50 psi. If the WOR exceeds 49, then the well will be shut in. For all examples
considered in this section, the production constraint and economic limit are never
reached. Bottom-hole pressure data from all five wells, GOR and WOR from all four
producers are used as the conditioning data to estimate the gridblock permeabilities,
i.e., the porosity is fixed at its true values. A total of 364 data (28 for each type of data
at each producing well and 28 pressure data at the water injection well) are history
matched. We assume pressure measurement errors to be independent, identically-
distributed, normal random variables with mean equal to zero and variance equal to
1 psi?. GOR measurement errors were modeled similarly except the variance was set
equal to 25 (SCF/STB)?. Following Wu (1999), the variance of WOR measurement

errors was specified by

1
Var[ewor] = WORZ,.€% + —07 (6.12)
0,0bs

V
2 [gm,obs 27”] , (6,]3)

m 2
qm,obs
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for m = o, w and
o = max|e gmin ] (6.14)
G ,0bs wqw,obs) quw,obsl* .

Here, ¢mn.obs, m = o0, w denotes the observed rate of phase m. In this example, we
choose o1 | =2.0 STB/Day, €,=0.001 and €,,=0.02. The variances for different data
are used to form the data covariance matrix C'p. The isotropic spherical variogram
with the range equal to 240 ft in all three directions and the variance for In(k) equal
to 1 was used to construct the model covariance matrix, C;. The objective function

given in Eq. 2.14 was minimized; i.e., we generated the maximum a posteriori (MAP)

estimate by history matching the production data.

y-direction

3 5 8 10 13 15

x-direction

Fig. 6.3: Permeability field for the true model.

6.2.1 Comparison of the Optimization Algorithms

For the examples considered in this subsection, we did not add any noise to
the true data generated by running the simulator with the true model as input. Our
focus is on the investigation of the computational efficiency of different optimization
algorithms.

The iterative solver (see Appendix A) was applied to solve the adjoint equa-

tions involved in the computation of the sensitivity coefficient matrix and the com-
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putation of the gradient of the objective function. For the comparison purpose,
the Levenberg-Marquardt (LM), Broyden-Fletcher-Goldfarb-Shanno (BFGS), lim-
ited memory BFGS (LBFGS), conjugate gradient with C; as the preconditioner
(CM-PCG) and conjugate gradient with preconditioner generated from limited mem-
ory BFGS (LBFGS-PCG) were used to minimize the objective function involved in
the history matching procedure. In some cases, GN fails to converge to a legitimate
model; see Li (2001). Thus, GN is not compared with the other algorithms. For
these algorithms, a uniform value of 4 for In(k) was used as the initial guess.

In Levenberg-Marquardt, the initial damping factor was chosen as 10°.
When the objective function increases, the damping factor was simply multiplied
by a factor of 10; whereas, when the objective function decreases, the damping fac-
tor was simply divided by a factor of 10. Levenberg-Marquardt (LM) converged to
13.343 in 9 iterations. The curve through the circles in Fig. 6.4 shows the behavior
of the objective function during the LM iterations. Fig. 6.5(b) shows the final model
(i.e., the permeability field) obtained by Levenberg-Marquardt, which is very similar
to the true model which is reproduced in Fig. 6.5(a).

—0—LM

—O— BFGS

—%— LBFGS
—+— CM-PCG
—X— LBFGS-PCG

Objective Function

L L L S S S SN BN BN N
0 10 20 30 40 50 60 70 80 90 100 110

Iteration Index

Fig. 6.4: Behavior of the objective function.

The BFGS method we used is the standard Broyden-Fletcher-Goldfarb-

Shanno method with initial scaling. In other words, v, = 1 for all £ > 0 was
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used when applying Eq. 5.55 to update the inverse Hessian approximation. The
initial scaling factor vy was obtained by

T
S0 Yo

= —=— (6.15)
ngo 19(?

Yo = 0o

where Hy ! is equal to Cj;. BFGS converged to 13.448 in 97 iterations. The curve
through the diamonds in Fig. 6.4 shows the behavior of the objective function.
Fig. 6.5(c) shows the final model obtained by the BFGS. We can see that the fi-
nal model obtained by BFGS is very similar to the final model obtained by the
Levenberg-Marquardt method (compare Figs. 6.5(c) and 6.5(b)).

(b) LM

8 10 13

(d) LBFGS (¢) CM-PCG (f) LBFGS-PCG

Fig. 6.5: Final model obtained by different optimization algorithms.

In limited memory BFGS, we scaled the inverse Hessian approximation at

each iteration. Following Oren (1974a), and the results of our comparative studies,

116



the scaling factors were chosen by the following scheme

Y = T b T < 1.0, (6.16)

Ve = O otherwise. (6.17)

The diagonal of C'y; was chosen as the initial inverse Hessian approximation. The 30
most recent vectors (i.e., sx’s and y;’s) were used to construct the inverse Hessian
approximation at each iteration, i.e, L = 30. Limited memory BFGS converged to
13.685 in 40 iterations. The curve through the stars in Fig. 6.4 shows the behavior
of the objective function. Fig. 6.5(d) shows the final model obtained by the limited
memory BFGS, which captures the main characteristics of the true model, but is
somewhat rougher than the true model and the MAP estimate obtained with LM.

The two preconditioned conjugate gradient methods discussed earlier were
implemented and applied to this history matching problem. In one method, the
full C]\_/[l was used as the preconditioner (we call this method CM-PCG); whereas in
the other method, we used an estimated quasi-Newton preconditioner (we call this
method LBFGS-PCG). Both algorithms were terminated at 100 iterations, because
this was the maximum number of iterations allowed. However, the convergence
criteria of Eqgs. 5.69 and 5.70 were not satisfied at the 100th iteration of either
method. CM-PCG “converged” to a model corresponding to an objective function
value equal to 28.851 in 100 iterations. The curve through the plus signs in Fig. 6.4
shows the behavior of the objective function. Fig. 6.5(e) shows the final model
obtained by the CM-PCG. LBFGS-PCG “converged” to a model corresponding to
an objective function value equal to 35.187 in 100 iterations. The curve through the
crosses in Fig. 6.4 shows the behavior of the objective function. Fig. 6.5(f) shows the
final model obtained by the LBFGS-PCG. Note the MAP estimates obtained with
the preconditioned CG method are inferior to those obtained by LM and BFGS.

In the quasi-Newton methods, the Hessian inverse approximation is con-
structed based on the quasi-Newton search direction. The theory guarantees that
for a positive definite quadratic function the Hessian inverse approximation becomes

the true Hessian inverse at the nth iteration where n is the number of model param-

117



eters for the quadratic problem with exact line search. However, in LBFGS-PCG
the Hessian inverse approximation is constructed based on the preconditioned conju-
gate gradient search direction, which is no longer the quasi-Newton Hessian inverse
approximation. When we use the conjugate gradient search direction to find a new
model, and based on this new model, construct the Hessian inverse approximation
as a preconditioner, it is not clear how good this preconditioner is. For the previous
single-phase gas example, this preconditioner results in faster convergence than is
obtained by simply using C]\jll as a preconditioner; in the current example, however,
convergence is slower.

The final objective function value at convergence and the number of itera-
tions required to converge for different algorithms are summarized in Table 6.8. In
the “Scaling Scheme” column, “Initial Scaling” means that only the initial Hessian
inverse approximation is scaled by a factor . In other words, we choose a sequence
v, such that v, = 1 for all £ > 0. “All Scaling” means that the inverse Hessian
approximation H N ! was scaled by 7, at each iteration for the case when BFGS was
applied and the initial inverse Hessian approximation ]:IO_ ! was scaled by v, at each
iteration for the case where limited memory BFGS was applied. “N/A” means not
available. FCM-LBFGS stands for the LBFGS algorithm in which the initial Hessian
inverse approximation is chosen as the full C); matrix instead of just the diagonal of

Cyr; see the discussion presented later.

Algorithms | Scaling Scheme | Objective Function | No. of Iterations
LM N/A 13.343 9
BFGS Initial Scaling 13.448 99
LBFGS All Scaling 13.685 40
CM-PCG N/A 28.851 100
LBFGS-PCG All Scaling 35.187 100
FCM-LBFGS All Scaling 13.992 33

Table 6.8: Comparison of different minimization algorithms.
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119
Based on Eq. 5.101 and the number of iterations required (see Table 6.8),

LBFGS and FCM-LBFGS, respectively, are 13.7 and 16.6 times faster than Levenberg-
Marquardt overall. Table 6.9 shows the CPU time in seconds used by different al-
gorithms. Based on the real CPU time, LBFGS and FCM-LBFGS, respectively, are
10.5 and 11.1 times faster than Levenberg-Marquardt overall. The column labeled

“Scaling Scheme” has the same meaning as in Table 6.8.

Algorithms | Scaling Scheme | CPU time (seconds)
LM N/A 2930
BFGS Initial Scaling 923
LBFGS All Scaling 279
CM-PCG N/A 887
LBFGS-PCG All Scaling 904
FCM-LBFGS All Scaling 263

Table 6.9: Comparison of the CPU time used by different minimization algorithms.

6.2.2 Effect of Preconditioning Matrix on Conjugate Gradient Methods

Fig. 6.6 shows the behavior of the objective function obtained by the conju-
gate gradient without preconditioning (triangles) and the preconditioned conjugate
gradient with C’]\Ql as the preconditioner (circles). We can see clearly that the pre-
conditioned conjugate gradient is slightly better than conjugate gradient without
preconditioning. Fig. 6.7 shows the final model (a) obtained by the conjugate gradi-
ent method without preconditioning compared to the true model (c¢) and the model
(b) obtained using C;; as a preconditioner. We can see that the MAP estimate
obtained from CG without preconditioning is far rougher than the model obtained
by the CM-PCG. We can conclude that the prior covariance matrix C'p; not only

acts as a preconditioning matrix but also provides smoothness for the model.
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Fig. 6.6: Behavior of the objective function obtained by CG and CM-PCG.
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Fig. 6.7: Final model obtained by conjugate gradient without preconditioning.

6.2.3 BFGS Scaling Scheme

The BFGS result of the preceding section was obtained by only scaling the
initial Hessian inverse approximation ﬁo_ ' If we consider the fact that the Hessian
matrix changes iteration by iteration for the nonlinear problem, it seems that we
should scale the matrix at every iteration based on the new information; see Oren
and Luenberger (1974) or Oren (1974b). According to Oren and Spedicato (1976),

the optimal scaling factor which minimizes the upper bound of the condition number



of H o 4:1 at the kth iteration should be

T
Sk Yk

y,fﬁk?lyk'

The new Hessian inverse approximation H . +11 was calculated by using Eq. 5.55 with
i given by Eq. 6.18. With this all-scaling scheme, BFGS converged to 16.1989 in
66 iterations; see the curve through circles in Fig. 6.8. The curve through the plus
signs in Fig. 6.8 shows the behavior of objective function iteration by iteration for
BFGS with initial scaling scheme. This case was presented previously. Although
it appears that the all-scaling scheme is better than just initial scaling in terms of
the number of iterations required to converge, at the 66th iteration, the objective
function value for the two schemes are very close. Yet, the convergence criteria of
Eqgs. 5.69 and 5.70 were satisfied for all-scaling BFGS but not for the initial scaling
BFGS at the 66th iteration. The diamonds shown in Fig. 6.8 represent the objective
function values obtained by BFGS without any scaling at each iteration. Clearly,
BFGS without scaling is much worse than initial scaling and all-scaling. As presented
previously, scaling does help to improve the convergence rate of BFGS for this three-
phase problem. Note this result is somewhat different than was obtained for the gas
example of section 6.1 where scaling did not have a great effect. The MAP estimate
obtained with the all scaling BFGS is shown in Fig. 6.9 and is very similar to the
MAP estimate obtained by applying BFGS with initial scaling (see Fig. 6.5(c)).
Based on Oren and Spedicato (1976), oy, is the optimal scaling factor for -
if the BFGS algorithm (6, = 1) or one of its variants is applied; see Eq. 5.63. Our
experiments discussed later, however, indicate that v, = 7 (Eq. 5.56) is superior to
v = o (Eq. 5.57) for LBFGS; also see Zhang et al. (2001). Here, we investigate
the convergence behavior of BFGS with the scaling factor equal to 7. The behavior
of the objective function obtained by BFGS with v, = 7, is shown by the curve
through stars in Fig. 6.10. The curve through circles in the same figure is obtained
by the BFGS with v, = 0. Even though v, = o} is the optimal scaling factor
based on Oren’s theory, it turns out v, = 73 is not worse than v, = 0. The curve

through plus signs in this same figure is obtained by the BFGS with the modified
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Fig. 6.8: Behavior of the objective function for BFGS with different scaling schemes.

y-direction

Fig. 6.9: Final model obtained by BFGS with scaling at all iterations; v, = o.

Oren scaling scheme, i.e., v, = 7 if 7 < 1.0; otherwise v, = 0;. There is not much
difference between these three scaling schemes in terms of the objective function at

convergence.
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Fig. 6.10: Behavior of the objective function for BFGS with different schemes for

scaling at all iterations.

6.2.4 LBFGS Scaling Scheme

As shown in Oren (1974b), 75 calculated by Eq. 5.66 or Eq. 5.67 is an
approximation to the correct 7, which is given by Eq. 5.56. In our implementation
of LBFGS, we only form the product of H e !9 which is used to generate the search
direction. We never form H L Lor H,, explicitly. Therefore, we cannot obtain 75, using
the exact form of Egs. 5.59 and 5.61 and cannot obtain o, using the exact form of
Eq. 5.57. Thus, as we described in chapter V, we have to use Eq. 5.66 or Eq. 5.67 to
approximate 7, and use Eq. 5.65 to approximate o;. The scaling factor was chosen

as follows:

Vi = Tk it 7 <1, (6.19)

Ve = Ok otherwise, (6.20)

where 75 can be obtained by either Eq. 5.66, Eq. 5.67 or Eq. 5.68 and 7, is obtained
by Eq. 5.65.
Fig. 6.11 shows the behavior of the objective functions during the LBFGS

iterations when different formulas are applied to calculate 7. The diamonds repre-
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sent the objective function obtained by using Eq. 5.67 to calculate 7x. The circles
represent the objective function obtained by using Eq. 5.68 to calculate 7. The curve
through stars represents the objective function obtained by using Eq. 5.66 to calcu-
late 7,. The triangles represent the objective function obtained by setting vy, =
at every iteration where 7y, is calculated from Eq. 5.65. This scaling option was used
by Liu and Nocedal (1989). Shanno and Phua (1978) suggested using & and only
scaling the initial matrix. From these curves, we can see that the curve through
the stars in which the 7 is calculated by the Eq. 5.66 is the best. The three other
scaling factors give roughly the same convergence results as each other. Note that
the curve through the circles in which 7, = 73 is calculated by Eq. 5.68 requires the
most iterations to converge. Note that Eq. 5.68 gives the correct value for 7. This is
somewhat surprising in that it indicates that using an approximation for 7, which is
defined by Eq. 5.56, gives better convergence results than using the correct value of
7. It turns out that when we use Eq. 5.66 and Eq. 5.67 to calculate 7y, the value of
Tr is always less than 1 which implies that the scaling factor always takes the value
of 7,.. When we use Eq. 5.68 to calculate 7, which is the correct 7, it is less than 1
at some iterations and is bigger than 1 at other iterations. So whenever 7, > 1, v,
takes the value of 6, which is also an approximation. So these four options are all
approximations. Based on the example just presented and the gas reservoir example
presented earlier, Eq. 5.66 is the best approximation. Based on the paper published
by Oren and Spedicato (1976), the optimal scaling factor 7 should always take the
value of oy, for the BFGS method. It is not clear how to form o accurately at every
iteration without forming H . U explicitly. Moreover, our result presented previously
(see Fig. 6.10) indicates that o might not be the optimal scaling factor. For almost
all examples that we have considered using either BEGS or LBFGS, 7, = 7 gives as
good or better convergence results than are obtained using v, = 7.

Fig. 6.12 shows the behavior of the objective function when LBFGS was
applied without scaling, with initial scaling and with all-scaling based on Eqs. 6.19
and 6.20 where 7, is calculated by Eq. 5.66. In this figure, the circles represent
the objective function values obtained by LBFGS with all-scaling, the plus signs
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Fig. 6.11: Behavior of the objective function for LBFGS with different scaling factors.
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Fig. 6.12: Comparison of the behavior of the objective function for different scaling

schemes.

represent the objective function value obtained by LBFGS with initial scaling and

diamonds represent the objective function obtained by LBFGS without any scaling.



As in BFGS, we can see clearly that LBFGS with all-scaling is better than just initial

scaling and initial scaling is better than no scaling.

6.2.5 Sensitivity to the Number of Previous Vectors

Here we investigate how the convergence rate is affected by the number of
previous vectors used in constructing the Hessian update in the LBFGS algorithm.
Fig. 6.13 shows the behavior of the objective function obtained by using a different
number of previous vectors to construct the new approximate inverse Hessian. In
all cases, the all-scaling scheme with scaling factor given by Eq. 5.66 was applied.
Table 6.10 lists the number of iterations required for convergence and the value of
the objective function at convergence when using a different number of previous
vectors to construct the Hessian inverse updates. L denotes the number of previous
vectors. We can see that when we use too few (10 in this example) previous vectors
to construct Hessian inverse updates, more iterations are required for convergence
and the value of the objective function is higher than when L = 20,30 or 50. When
L equals 20, 30 or 50, there is not too much difference in terms of the number of
iterations required to obtain convergence, but L = 20 gives a higher value of the

objective function at convergence.

L | Objective Function | No. of Iterations
10 20.922 90
20 18.555 43
30 13.685 40
50 12.512 46

Table 6.10: Sensitivity to the number of previous vectors.
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Fig. 6.13: The effect of the number of previous vectors used to construct the new

Hessian inverse approximation on the performance of LBFGS.

6.2.6  Improvement of the Smoothness of the Model

From the results of Figs. 6.5(c) and 6.5(d), we see that the final model
obtained by LBFGS is somewhat rougher than the true model and the MAP estimate
obtained with BFGS. It turns out this is caused by the fact that only the diagonal of
C)r was used as the initial Hessian inverse approximation. When we form the search
direction, i.e., the product of the ]jlk_ ! and the gradient of the objective function
g, we need to perform the operation of multiplying a vector by the initial Hessian
inverse approximation. If we use the full C'y; instead of just the diagonal elements
of Cyy as Hy', we obtain a smoother result. Fig. 6.14(a) shows the MAP estimate
obtained by LBFGS using the full C'y; as the initial Hessian inverse approximation
compared with using only the diagonal of C};, DCM-LBFGS. Using ﬁo’l = Cy
gives improved results, i.e., gives a MAP estimate much closer to the truth than
is obtained with Hy' =diag[Cy;]. With H;' = Cy, the LBFGS converged in 33
iterations and the value of the objective function at convergence was equal to 13.992.

For this case, Fig. 6.15 indicates again that convergence is fastest when Eq. 5.66 is
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used to calculate the scaling factor. This method is labeled as FCM-LBFGS in Table

6.8.
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Fig. 6.14: Final model obtained by LBFGS with full C'; (a) and diagonal C) (b) as

the initial Hessian inverse approximation, compared with the true model
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6.2.7 Effect of Data Noise

In this subsection we consider the case where the observed data were ob-
tained by adding noise to the true data. With this data set, we repeated the example
in the previous subsection using LBFGS with the full C'y; as the initial Hessian in-
verse approximation. The objective function evaluated based on Eq. 2.14 is reduced
from 900728 to 309 in 35 iterations. For the case where data are noisy, the approxi-
mate results of Tarantola suggest that the expected value of the objective function is
Ny/2 = 182 with standard deviation equal to \/m = 13.5. Thus, the expectation
plus five standard deviations equals 249 which is somewhat smaller than the 309.
Although the value of the objective function does not satisfy the criterion given in
section 2.3, one should recall that the criterion assumed data is a linear function
of the model, which is not the case. Recall that when using the true data without
noise the objective function converged to 13.992 in 33 iterations. The behavior of the
objective function for both cases (solid circles for the true data case and the circles
for the case where the data with noise) are shown in Fig. 6.16. The model obtained
by history matching data with noise (observed data) is shown in Fig. 6.17(a). We
can see that even though the model obtained by history matching data with noise
captures the main structure of the true model, it is worse than the model obtained

by history matching the true data.

6.3 Three-Dimensional Three-Phase Example

Here, we consider a three-dimensional three-phase history matching prob-
lem. We use a 40 x 40 x 6 grid with Ax = Ay = 100 ft and Az = 30 ft. The porosity
for the true model is homogeneous and equal to 0.22. The true permeability field
is an unconditional realization generated by Gaussian co-simulation. An isotropic
spherical variogram with the range in all directions equal to 600 ft was used to gen-
erate unconditional realizations. The variance for In(k) is 1 and the mean for In(k)
is 4.5. One layer of the true permeability field is shown in Fig. 6.18. Fig. 6.18 (b) is

the interpolation plot of (a). The interpolation plots make it easier to compare the
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(a) data with noise (b) true data

Fig. 6.17: Final model obtained by LBFGS with full C'y; as the initial Hessian inverse

approximation by history matching data with noise (a) and true data (b).

permeability structure. The initial pressure is 4500 psi and the bubble point pressure
is 4417 psi. The formation volume factor (FVF) and the viscosity for oil, water and
gas at the bubble point pressure are given in Table 6.11. The capillary pressure is

assumed to be negligible. The water-oil and oil-gas two-phase relative permeability
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are given in Fig. 6.19 (a) and (b), respectively. Stone’s model II is used to calculate
three-phase oil relative permeability; see Aziz and Settari (1979). Six producers and
four water injection wells are completed in the reservoir. The producers and the in-
jectors, respectively, are indicated by black squares and white squares, respectively,
in Fig. 6.18 (a). All producers start producing at time 0. We will history match
synthetic data generated from running the CLASS simulator up to 500 days using
the truth case as input. The injectors start to inject water at 30 days and stop at
500 days. The well operating conditions are summarized in Table 6.12. The wells are
operating with the target first. Whenever the constraint is violated at a particular
well, then the constraint will be switched to be the target for the corresponding well.
When the economic limits are violated at a particular well, then the corresponding
well will shut in. In this table, the keyword MAXVOL means maximum total rate
in STB/Day; MAXWATINJ means the maximum water injection rate in STB/Day;
MINBHP means the minimum bottom-hole pressure in psi and MAXWOR means

the maximum water-oil ratio in STB/STB.

Layer 1 of true Layer 1 of true

y-direction
y-direction

10 20 30 40 10 20 30 40

x-direction x-direction

2.50 3.75 5.00 6.25 7.50 2.50 3.75 5.00 6.25 7.50
(a) (b)

Fig. 6.18: The layer 1 log-permeability field of the true model.
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B, (RB/STB) | 1.748
it (cp) 0.486
B, (RB/MSCF) | 0.75
g (cp) 0.0284
B, (RB/STB) | 1.006
o (Cp) 0.012

Table 6.11: Fluid properties at bubble point pressure.
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Fig. 6.19: The relative permeability curve used in this example.

As in the example presented in the previous section, the production target
is a constant total flow rate for the producers and constant water injection rate
for injection wells. The production constraints for the producers are the minimum
bottom-hole pressure which is set to 50 psi and the maximum WOR which is set
to 49 STB/STB. If the bottom-hole pressure of a well decreases below 50 psi, then
thereafter, the well will be produced at a constant bottom-hole pressure equal to 50
psi. When the WOR is bigger than 49 STB/STB, then the corresponding well will

be shut in. For this example, the production constraint and economic limit are never

reached, so all wells are produced at their target rate.
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Well No. Targets Constraints | Economic Limits
MAXVOL | MAXWATINJ | MINBHP MAXWOR
(STB/Day) | (STB/Day) (psi) (STB/STB)
1 4000 - 50 49
2 10000 - 50 49
3 4000 - 50 49
4 15000 - 50 49
5 8000 - 50 49
6 8000 - 50 49
7 - 6000 - -
8 - 10000 - -
9 - 8000 - -
10 - 8000 - -

Table 6.12: Well operating targets, constraints and economic limits.

6.3.1 Conditioning to True Data

In this subsection, we consider the case where the true data are history
matched. Bottom-hole pressure from all ten wells, GOR and WOR from all six
producers are used as the conditioning data to estimate the gridblock permeabilities
only, i.e., the porosity is fixed at its true values. There are a total of 880 conditioning
production data which are history matched. (40 for each type at each producing well
and 40 pressure data at the water injection wells.) The variance used for all the
measurement errors are the same as used in the 2D three-phase flow example. The
variances for different data are used to form the diagonal data covariance matrix
Cp. The objective function given in Eq. 2.18 was minimized, except we used dgps
instead of dy. and dg,s is equal to the true data with no noise added. Although we
did not add noise to the data, we refer to the resulting realization as a conditional

realization.
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The unconditional realization was generated by Gaussian co-simulation.
Two layers of the unconditional realization of the log-permeability fields are shown
in Fig. 6.20 (a) and Fig. 6.21 (a), respectively. Optimization was done with the
LBFGS algorithm using scaling at all iterations. Eq. 5.66 was used to generate the
kth scaling factor. The objective function was reduced from 312,164,623 to 649 in 70
iterations. The objective function value was calculated based on the Eq. 2.18 with
dy. replaced by the true data without noise. The behavior of the objective function

is shown in Fig. 6.22.

10 20 30 40

(a) Unconditional (b) Conditional (c) True

Fig. 6.20: The log-permeability field for layer 1 generated by Gaussian co-simulation
(a), by history matching production data (b) and the true model(c).

10 20 30 40

(a) Unconditional (b) Conditional (c) True

Fig. 6.21: The log-permeability field for layer 4 generated by Gaussian co-simulation
(a), by history matching production data (b) and the true model(c).
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Fig. 6.22: Behavior of the objective function for the big model.

Fig. 6.23 shows the pressure match for two injectors (well 7 and well 8).
In this figure and in similar figures, the line through circles represents the observed
data; the line through the plus signs represents the calculated data based on the
conditional realization obtained by history matching the production data and the
line through the diamonds represents the calculated data based on the initial model,
My, before history matching. In Fig. 6.23 (a), the pressure data generated from
the initial model falls below the observed data during the injection period, whereas
in Fig. 6.23 (b), the pressure data generated using the initial model is greater than
the observed pressure data. For both wells, the pressure data are matched very well.
Fig. 6.24 (a) and (b) show the pressure data match for well 4 and the WOR match at
the same well which is the only well at which water has broken through. We can see
that at this well, both the pressure and the WOR are matched very well. Fig. 6.25
shows the gas-oil ratio data match for two producers (well 3 and well 4). We can see
that we obtained a very good GOR match for both wells. We obtained matches of
comparable quality to these shown in Figs. 6.23 through 6.25 at all wells.

Two layers of the final permeability fields are shown in Fig. 6.20 (b) and
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Fig. 6.23: Pressure match at two water injection wells.
4600 0.8
o 1|—0— WOR_obs (0]
4400 8 o— Pwf_obs 74 o -ob
a —O— Pwf_Init 0.7 | |—©0— WOR_init /
4200 & —+— Pwf_Final 0.64 . —+— WOR_final ®
N 0.5+ /
2 v 047 2]
g O 43 /
=) .
? = ]
® (5]
o 0.2
& ] /
(4]
2400 T T T T T -0.1- T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
Time (days) Time (days)
(a) Pressure (b) WOR

Fig. 6.24: Pressure and WOR match at well 4.

Fig. 6.21 (b) and the corresponding two layers from the true model are shown in
Fig. 6.20 (c) and Fig. 6.21 (c), respectively. The corresponding unconditional perme-
ability distribution is shown in (a) in these two figures. The conditional realization
is close to the truth, in fact much closer than would normally be expected. This

occurs because of the long correlation length in the vertical direction.
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Fig. 6.25: GOR match from two wells.

6.3.2 Conditioning to Observed Data with Noise Added

In this section, the objective function given by Eq. 2.18 is minimized. So
the unconditional data were generated using Eq. 2.17. The objective function value
is reduced from 313,023,514 to 5471 in 45 iterations. The squares in Fig. 6.26 show
the behavior of the objective function when Eq. 2.18 is minimized. The circles in this
figure show the behavior of the objective function when the true data without noise
were used in Eq. 2.18. We can see that the objective function value at convergence
is much bigger when unconditional data were used than when true data were used.
Fig. 6.27 (a) shows the first layer of the model obtained by minimizing the objective
function given by Eq. 2.18. Figs. 6.28 and 6.29 show results comparable to those
shown in Figs. 6.24 and 6.25. Note although the match of data is not as close as in

the case without noise in the data, we still obtain a reasonable match.

6.4 Doubly Stochastic Model Example

A 2D three-phase history matching problem was considered in this section.

We use a 15 x 15 grid with Az = Ay = 40 ft and Az = 30 ft. The porosity for the
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Fig. 6.26: Behavior of the objective function when unconditional data were used.
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Fig. 6.27: The log-permeability field for layers 1 generated by history matching d,.
(a), by history matching true data (b) and the true model(c).

true model is homogeneous and equal to 0.22. Permeability for the true model is
an unconditional realization which is generated using Gaussian co-simulation. The
variogram used is an isotropic spherical variogram with the mean and variance for
In(k) equal to 4.0 and 1.0 respectively. The range in z-, y— and z-directions are 240
ft, 120 ft and 30 ft respectively. The true permeability field is shown in Fig. 6.30.
Four producers and one water injection well are completed in the reservoir.

The four producers are located in areal gridblock (3,3), (13,3), (13,13) and (3,13)
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Fig. 6.29: GOR match from two wells, dyc.

respectively and the water injection well is located in areal gridblock (8,8). All
producers start producing at time zero at a constant total flow rate of 200 STB/Day
and produce for 300 days. The production constraint is the minimum bottom-hole
pressure which is set to 50 psi and the economic limit is maximum WOR which is set

to 49 STB/STB. When the bottom-hole pressure of a well decreases below 50 psi,



then the well will be produced at a constant bottom-hole pressure equal to 50 psi. If
the WOR exceeds 49, then the well will be shut in. For this example, the production
constraint and economic limit are never reached. The injectors start injecting water
at time zero at a constant flow rate of 700 STB/Day. The initial pressure is 4500 psi
and the bubble point pressure is 4417 psi. Bottom-hole pressure data from all five
wells, GOR and WOR from all four producers are used as the conditioning data. A
total of 364 data (28 for each type of data at each producing well and 28 pressure
data at the water injection well) are history matched. Noise was not added to the
true data. The prior mean for the log-permeability field is adjusted also during the
history matching procedure. The LBFGS was applied to minimizing the objective
function given by Eq. 2.29 with d,. replaced by di ye-

y-direction

1 4 7 9 12 15

x-direction

Fig. 6.30: Permeability field for the true model.

In the history matching process, we assume the prior mean for In(k) is 3.0.
Thus, when we generate an unconditional realization, m.., of the log-permeability
field to use in the randomized maximum likelihood method, it is based on a lower

mean for In(k) than was used to generate the truth case. The correction to the prior
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mean for In(k) is assumed to be a Gaussian random variable with mean equal to 0
and variance equal to 0.5, respectively, when we generate unconditional realizations
of the correction to the prior mean; see Eq. 2.31. We expected that by history
matching the production data, we should obtain the value of the correction to the
prior mean for In(k) be around 1. Fig. 6.31 shows the 30 unconditional realizations
(the triangles) and 30 conditional realizations (the solid circles) of the correction to

the prior mean. We can see as expected the correction to the prior mean for In(k) is

around 1.

A Uncond. Realization
® Cond. Realization

2.0

1.5

1.0

0.5+

< |
3 0.04A
-0.5

-1.0

No. of Realization

Fig. 6.31: Correction to mean of horizontal log-permeability.

In order to check whether the method with correction to the prior mean
helps to improve the convergence or not, we performed a history matching for one
realization without using correction to the prior mean. Without using correction
to the prior mean, the objective function is reduced from 47,310,977 to 540 in 100
iterations and the corresponding behavior of the objective function is shown by plus
signs in Fig. 6.32. When using correction to the prior mean in the history matching
procedure, for the same realization the objective function is reduced from 47,310,993
to 440 in 66 iterations and the corresponding behavior of the objective function is

shown by circles in Fig. 6.32. The final model obtained when the objective function
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given by Eq. 2.29 was minimized in the history matching procedure is shown in
Fig. 6.33 (a). The final model obtained when the objective function given by Eq. 2.18
was minimized is shown in Fig. 6.33 (b). We can see that the model shown in Fig. 6.33
(b) has bigger variation than the model shown in Fig. 6.33 (a) compared with the
true model which is shown in Fig. 6.33 (d). Fig. 6.33 (c) shows the corresponding
unconditional realization used as the initial guess in the history matching process to

generate Fig. 6.33 (a) and (b).

10°

—0— With Correction to Mean
—+— Without Correction to Mean

!
%

Objective Function Value

Iteration Index

Fig. 6.32: Behavior of the objective function for the case with correction to the prior
mean (circles) and the case without correction to the prior mean (plus

signs).
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Fig. 6.33: The log-permeability field obtained by history matching with correction to
the prior mean(a) and without correction to the mean (b); Unconditional

realization of the model (c¢) and the true model (d).



6.5 Field Example — Oseberg Reservoir from North Sea

We consider a synthetic problem which is based on the Oseberg reservoir in
the Norwegian sector of the North Sea. The reservoir consists of three distinct geo-
logical zones, Etive, Rannoch and Oseberg. Etive is the top zone and Oseberg is the
bottom zone. These two zones are separated by Rannoch which is a relatively tight
layer. There is vertical communication between the three zones. In our simulation
study, we simulate only one half of the reservoir using a 39 x 25 x 10 grid. Only one
vertical gridblock is used in the Etive and Rannoch layer. So layer 3 through 10 are
used to model the Oseberg zone. The gridblock size in the z-direction is equal to
328 ft in the central part of the reservoir, and the gridblock sizes expand gradually
towards the ends from 328 ft to 2624 ft. The gridblock sizes in the y-direction are
uniform and equal to 656 ft. Gridblock sizes in the z-direction are non-uniform with
values equal to 23.0 ft in Etive, 16.5 ft in Rannoch and 11.5 ft in Oseberg. Initial
reservoir pressure is 4071 psi at the depth of 8192 ft subsea, and the initial bubble
point pressure is 3771 psi. The reservoir has a gas cap at the top and an aquifer at
the bottom. The initial gas-oil contact is at 8192 ft subsea and the water-oil contact
is at 8918 ft subsea. Fig. 6.34 (a) shows the surface plot of the reservoir top and
(b) shows the overview of the reservoir top with well locations indicated by black
squares for producers and by white squares for injectors. Note that the reservoir has
a significant dip. The oil column is separated from the aquifer by a tar mat. The
initial permeability and porosity field are based on a geostatistical model, and the
true synthetic model is generated by using a Gaussian co-simulation algorithm.

Two gas injection wells, which are indicated by the white squares in Fig. 6.34
(b), are located in the gas cap and five producing wells, which are indicated by the
black squares in Fig. 6.34 (b), are located in the oil zone. The producing wells are
named PROD1, PROD2, ..., PROD5 and the two gas injection wells are named
INJT1 and INJT2 respectively. All these wells are fully-penetrated, i.e., all layers
are open to flow. The areal locations of the five producing wells are in gridblocks

(32,3), (32,8), (32,13), (32,18) and (32,23) respectively. Fig. 6.35 (a) through (e)
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Fig. 6.34: Top depth of Oseberg reservoir and well locations.

show the production rate history for each well respectively. The production rate
history for all producing wells are plotted together in Fig. 6.35 (f). We can see
that these five wells are open to flow with a high flow rate (15000 STB/Day) in a
sequential order (at 30, 90, 180, 270 and 360 days in turn). The oil rate shown in
Fig. 6.35 are the rates which were specified as the target rates in the simulation runs.
The minimum bottom-hole pressure (MINBHP) which is fixed at 2000 psi is used as
the producing constraint. When the bottom-hole pressure falls below 2000 psi, this
constraint will be switched to be the producing target. The maximum water-oil ratio
(MAXWOR) which is specified to be 50 STB/STB and the maximum gas-oil ratio
(MAXGOR) which is specified to be 561000 MSCF/STB are used as the producing
economic limits. When these economic limits are violated at a certain well, then
the corresponding well will be shut in. INJT1 and INJT2 are gas injection wells
which are located in gridblocks (2,12) and (2,24) respectively. The gas injection rate
history for the two gas injectors are plotted in Fig. 6.36. INJ1 starts to inject gas at
900 days and INJ2 starts to inject gas at 990 days. All six boundaries are assumed

to be no-flow boundaries, and the capillary pressure is assumed to be negligible. In
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Fig. 6.35: Production rate history for the five producing wells.
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Fig. 6.36: Injection rate history for the gas injection wells.
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the oil column, initial oil saturation is 0.885 and the initial water saturation is equal
to the irreducible water saturation which is equal to 0.115. In the gas cap, the initial
gas saturation is 0.885. The water saturation in the gas cap is the irreducible water
saturation and there is no oil in the gas cap initially.

The oil formation volume factor (FVF) and the oil viscosity are shown in
Fig. 6.37. Gas FVF and viscosity are shown in Fig. 6.38. Water FVF and viscosity
are 1.03 RB/STB and 0.34 cp, respectively, at the reference pressure of 4219.5 psi.
The water-oil two-phase relative permeability is shown in Fig. 6.39 (a) and oil-gas
two-phase relative permeability is shown in Fig. 6.39 (b) respectively. Stone’s model
IT is used to generate three-phase oil relative permeability; see Aziz and Settari

(1979).
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Fig. 6.37: Oil FVF and viscosity.

6.5.1 Reservoir Model

A non-isotropic exponential covariance structure, with ranges a, = 1968 ft,
a, = 6555 ft and a, = 20 ft was used. The statistical descriptions of the prior models
for Etive and Rannoch, and Oseberg are given in Tables 6.13 and 6.14 respectively.
Note that horizontal and vertical log-permeability in Oseberg decrease linearly from

top to bottom, i.e., from layer 3 to layer 10. In Table 6.14, only the means for
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Fig. 6.39: Relative permeability.

model layer 3 and 10 are specified. Means for the intermediate model layers are
obtained by linear interpolation. The unconditional realization of In(k) and In(k,)
for Oseberg layers was generated with fixed means. The mean value of 7.48 for In(k)
and 6.47 for In(k,) were used for generating the unconditional realization. Therefore,
the unconditional realization for In(k) and In(k.) do not have any trend vertically.
The mean used for generating the unconditional realization for In(k) and In(k,) for
Etive layer are 6.02 and 4.61, respectively. The same means as used in generating the

true Rannoch layer were used to generate the unconditional realization for In(k) and
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In(k,) for the Rannoch layer. The correlation between horizontal and vertical log-
permeability, pi k., was equal to 0.8, and the correlations between log-permeability
and porosity, pkg¢, Pr..e, Was equal to 0.3. In the history matching process, the
porosity field was fixed and equal to the true porosity. The tar-zone is located in
gridblocks centered at (x;,y;,2;), ¢ = 33,34, 1 < j < 25,1 < k < 10. In the
tar-zone, we set the horizontal and vertical permeability equal to 1 md in the true
case. When history matching to generate a realization by the randomized maximum
likelihood method, we first generate an unconditional realization m,,. from the prior
model and then modify m,. by setting the entries corresponding to In(k) and In(k,)
for the tar-zone to zero. As noted previously, the tar-zone prevents water conning
from the aquifer. Fig. 6.40 (a) through (c) show the 3D cube of the horizontal log-
permeability, In(k), vertical log-permeability, In(k,), and porosity ¢, respectively,
for the true model. Fig. 6.41 (a) through (c) show the middle z-z cross-section
corresponding to true In(k), In(k,) and ¢ respectively. These figures indicate that
Rannoch has very low permeability values compared to Etive and Oseberg, and acts

as a flow restriction between the Etive and Oseberg formations.

Etive Rannoch

Mean | Variance | Mean | Variance
In(k) 7.5 1.2 2.1 1.8
In(k,) | 6.3 1.8 0.15 2.2

0] 0.14 0.002 0.10 0.001

Table 6.13: Prior model of Etive and Rannoch.

Mean top | Mean bottom | Variance
In(k) 7.8 6.3 0.4
In(k,) 6.4 4.4 0.8
) 0.22 0.22 0.001

Table 6.14: Prior model of Oseberg.
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(a) Horizontal log-perm. (b) Vertical log-perm. (c) Porosity

Fig. 6.40: Permeability and porosity for the true model.
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Fig. 6.41: Permeability and porosity for the true model.

Fig. 6.42(a) shows the observed wellbore pressures, which are generated
based on the true model, for all seven wells including both producers and injec-
tors. Fig. 6.42(b) shows the GOR data from the five producing wells. From this
figure, we can see that the gas breaks through at the five producing wells in a se-
quential order due to the fact that the producers start to produce in a time-delayed
scheme. the exception is that the PROD2 experiences gas breakthrough earlier than
PROD1. This occurs because PROD2 is much closer to the injection well than
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PRODI1. Fig. 6.43(a) shows wellbore pressures obtained from the unconditional
realization which is used as initial model (initial guess) in the history matching pro-
cedure. Comparing Fig. 6.43(a) with Fig. 6.42(a), we can see that the behavior of the
wellbore pressure for the initial model is different from the behavior of the wellbore
pressure for the true model. Fig. 6.43(b) shows the GOR data for the initial model.
We can see that, for the initial model, only PROD1 and PROD2 had gas break-
through and the breakthrough happened very late compared with the true model.
Breakthrough did not happen for PROD3 to PROD5.
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Fig. 6.42: Observed production data.

6.5.2 History Matching

The observed data used for history matching are constructed by running the
simulator with the true model for a total time of 2400 days. Several data sets are
used for history matching. Data set 1 contains the wellbore pressures from both the
producing wells and injection wells and the GOR data from the producers. There
are 71 measurements for each type of data at each well. So the total number of data
history matched is 852 for the first data set. Data set 2 contains only the wellbore
pressure from the five producing wells and the two gas injection wells. The total

number of data history matched for the second data set is 497. Data set 3 contains
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Fig. 6.43: Calculated data for the initial model.

only the GOR data from the five producing wells. So for this case, the total number of
data used for history matching is 375. No noise was added to the data, i.e., we history
matched the objective function given by Eq. 2.18 with d,. replaced by din.. We
assumed wellbore pressure measurement errors to be independent Gaussian random
variable with mean zero and variance equal to 1 psi? and gas-oil ratio measurement
errors to be independent Gaussian error with mean zero and variance equal to 25.0.
The limited memory BFGS algorithm was used for the minimization.

With data set 1, even though no noise was added to the true data, the
objective function value is only reduced from 1.4 x 107 to 3 x 10* in 31 iterations
which is much larger than N;. As shown below, however, we obtained decent matches
of the data. We restarted the algorithm once at the 19th iteration. The behavior of
the objective function is shown by the triangles in Fig. 6.44. Pressure data matches
for three producing wells, PROD1, PROD2, PROD4 and one injection well, INJ1, are
shown in Fig. 6.45. In these four figures and in similar figures, the circles represent
the observed data, the diamonds represent the calculated data based on the initial
model and the plus signs represent the calculated data based on the final model after
history matching the production data. From these four figures, we can see that we

get a very good match for pressure data at both producing wells and the injection
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Fig. 6.44: Behavior of the objective function when the both pressure and GOR were
history matched, data set 1.

well. Matches of comparable quality were obtained at the other three wells. Fig. 6.46
shows the GOR data match for PROD1, PROD2, PROD3 and PROD4. Again a
very good match for GOR data at these four wells is obtained.

Fig. 6.47 shows the gas saturation at 2400 days for the first layer which
corresponds to Etive (top row) and the third layer which is the first layer of the
Oseberg (bottom row) corresponding to initial, true and final model which is obtained
by history matching both pressure and GOR data. Fig. 6.48 shows the gas saturation
at 2400 days for the 13th z-z cross-section (top row) and the 20th x-z cross-section
(bottom row) corresponding to the initial, true and final models. From these figures,
we can see that the gas distribution for the final model obtained by history matching
the production data is similar to the gas distribution for the true model. For the
initial model (see Fig. 6.47 (a) and (d) and Fig. 6.48 (a) and (d)), the gas moves
more slowly towards the producing wells. The gas breaks through only at PROD1
and PROD2 and the breakthrough time is much later than for the true model. For
the model obtained by history matching the production data, the gas breaks through

at all wells at about the same time as for the true model. Fig. 6.49 shows 4 layers of
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Fig. 6.45: Wellbore pressure data match at four wells, data set 1.

the horizontal log-permeability field corresponding to the initial, true and final model
obtained by history matching data set 1. In this figure, the log-permeability fields for
the same layer are plotted with the same scale. From these figures, it is not easy to
see how the log-permeabilities change by history matching the production data. In
order to see how the history matching changes the permeability field from the initial
guess, we plotted in Fig. 6.50 the log-permeability change, i.e., the difference between
the final model and the initial model, for six layers. From this figure, we can see
clearly that for the first three layers, the permeabilities around some wells (especially
at the PROD1 and PROD2) for the final model are larger than the permeabilities
in the same area for the initial model which is an unconditional realization. Recall
that the mean of log-permeability for the Etive layer and the top two layers of the

Oseberg zone for the initial model is smaller than the true model. Therefore the
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Fig. 6.46: GOR data match at four wells, data set 1.
permeabilities are increased for these layers in order to match the GOR data. We
also can see that the permeabilities for the layers 7 through 9 are decreased. Even
though we did not show it here, the permeabilities are decreased also for the bottom
layer. Recall that the permeability for the true model has the decreasing trend
vertically and the permeability for the layer 6 through 10 for the true model are
smaller than the initial model. The vertical log-permeabilities were only changed
slightly by history matching (less than 0.06 for the change in log-permeability).

When data set 2, which contains only the wellbore pressure data, is history
matched, the objective function value is reduced from 2.2 x 10° to 1.4 x 10* in
36 iterations. The behavior of the objective function is shown by the squares in

Fig. 6.44. Pressure data match for PROD1, PROD2, PROD4 and INJ1 are shown

in Fig. 6.51. From these four figures, we can see that we obtain a reasonable match
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Fig. 6.47: Gas saturation at 2400 days in the first layer (top row) and the third layer
(bottom row) corresponding to initial, true and final model from history

matching wellbore pressure and GOR, data set 1.

for pressure data at both producing wells and the injection well. Based on the model
obtained by history matching only the wellbore pressure data, we ran the simulator
to calculate the GOR data at the five producing wells in order to compare with
the observed GOR data. Fig. 6.52 shows the GOR data based on different reservoir
models. The circles in these figures represent the observed GOR data obtained based
on the true model; the diamonds represent the calculated GOR data based on the
initial reservoir model and the stars represent the calculated GOR data based on
the model obtained by history matching only wellbore pressure data. We can see
that GOR data obtained from the model obtained by history matching wellbore
pressure data moves towards the observations but does not give as nearly as good a
match as when we actually matched GOR and pressure data (see Fig. 6.46) although
calculated GOR data at PROD1 and PROD?2 are fairly close to the observed GOR
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Fig. 6.48: Gas saturation at 2400 days for the 13th cross-section (top row) and the

&
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(d)

(f)

20th cross-section (bottom row) corresponding to initial, true and final

model from history matching wellbore pressure and GOR, data set 1.

data. These figures indicate that history matching wellbore pressure data improves
the model to some extent, but if only one type of data are history matched then the
other type data predicted based on this model do not match the observations as well
as if they are explicitly included in the history matched data.

The final data set we history matched contains only GOR data from all five
producing wells. Each producing well has 71 GOR data. So a total of 355 GOR data
are history matched. The behavior of the objective function is shown in Fig. 6.44
by the circles. The value of the objective function is reduced from 1.2 x 10° to
5.7 x 10% in 40 iterations. The algorithm was restarted at the 10th iteration. The
GOR data matches for PROD1 through PROD4 are shown in Fig. 6.53. Again,
the circles represent the observed data; the plus signs represent the data calculated

based on the model obtained after history matching the GOR data and the diamonds
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Fig. 6.49: Horizontal permeability field for 4 different layers corresponding to initial,
true and final model obtained from history matching wellbore pressure and

GOR, data set 1.
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Fig. 6.50: Change in log-permeability for six layers.

represent the calculated data based on the initial model. We can see that we obtain a
slightly better match of GOR data compared to the GOR match obtained by history
matching both pressure and GOR data; see Fig. 6.53 and Fig. 6.46.

The stars in Fig. 6.54 shows the bottom-hole pressure data which are calcu-
lated based on the model obtained after history matching only GOR data. Again, in
these figures, circles represent the observed data and diamonds represent the calcu-

lated data corresponding to the initial model. We can see that even though pressures
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Fig. 6.51: Wellbore pressure data match at four wells, data set 2.

are not matched as well as the case where the pressure data were used as the con-
ditioning data, the pressures predicted from the matched model are much closer to
the observed data than those predicted from the initial model. Although we did not
match any data from the injection wells, the observed pressure data are matched
very well at the injection wells which implies that the GOR data at the producing
wells can resolve the permeability around the injection wells very well. Wu (1999)
also observed this phenomenon. Comparing the results given in Figs. 6.52 and 6.54

suggests that GOR data are more useful in resolving the permeability field than the

pressure data.
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Fig. 6.52: GOR data obtained from initial model (diamonds), true model (circles)
and the model obtained by history matching only wellbore pressure data

(stars) at four wells, data set 2.

6.5.3 Future Performance Prediction

In making a future performance prediction, after the 2400 days production
history, we let the five producing wells keep producing at the constant rate of 9000
STB/Day with the minimum bottom-hole pressure of 2000 psi as the constraint for
another 400 days, i.e., from 2400 days to 2800 days. At 2800 days, we let the five
producing wells produce at a fixed constant bottom-hole pressure of 2000 psi for 1100
days, i.e., from 2800 days to 3900 days. After the first 2400 days history, the two
injection wells were shut in for 200 days from 2400 days to 2600 days and then we
started injecting gas again at the rate of 18715 MSCF /Day, which is one third of
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Fig. 6.53: GOR data obtained from initial model (diamonds), true model (circles)
and final model obtained by history matching only GOR data (plus signs)

at four wells, data set 3.

the injection rate at the end of the observed history, for another 200 days, i.e., from
2600 days to 2800 days. Then the injection rates were changed to 56145 MSCF /Day,
which is equal to the rate at the end of the history, for the rest of the time in the
prediction period in order to provide enough pressure support. So the total time span
for the future performance prediction is 1500 days, i.e., from 2400 days to 3900 days.
The simulation run were performed for the initial model, true model and the models
obtained by history matching the three different data sets described in the previous
section. The total cumulative oil production obtained for the five models are shown in
Fig. 6.55. Fig. 6.55 (b) shows the total cumulative oil production only for the period
of time for future prediction. In this figure, the solid line, dashed line, short dashed
line, dot-dash line and the dotted line, respectively, represent the total cumulative

oil production from the true model, the model obtained by history matching both
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Fig. 6.54: data obtained from initial model (diamonds), true model (circles) and the
model obtained by history matching only GOR data (stars) at four wells,

data set 3.

pressure and GOR data, the model obtained by history matching only GOR data, the
model obtained by history matching only pressure and the initial model. From this
figure, we can see that the cumulative oil productions based on the model obtained
by conditioning the initial model to both pressure data and GOR data and the model
obtained by conditioning only to the GOR data are very close to the cumulative oil
production corresponding to the true model. The total cumulative oil production
obtained for the initial model is far away from that obtained for the true model.
From the future performance prediction, we also can see that the GOR data are
more useful than pressure data. Fig. 6.56 (a) through (e) show the predictions of
GOR obtained based on the five different models for PROD1 through PRODS5.
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CHAPTER VII

CONCLUSIONS

The main objective of this work was to develop and implement an automatic
history matching procedure that is computationally efficient enough to be applica-
ble to large scale problems. For large scale problems where the number of data
and the number of model parameters are both large, it is too expensive to apply
optimization algorithms which require the Hessian of the objective function, such
as the Gauss-Newton and Levenberg-Marquardt methods, to minimize the objective
function involved in history matching. In this work, we compared the convergence
performance of a set of gradient based nonlinear optimization algorithms including
modified Levenberg-Marquardt, preconditioned conjugate gradient, BFGS and lim-
ited memory BFGS on a set of history matching problems. The implementation of
BFGS used was based on explicitly computing and storing the approximate inverse
Hessian at each iteration; although computationally inefficient, this implementation
allows one to apply all scaling procedures that have been suggested in the litera-
ture. Our results indicate that for large scale history matching problems, the limited
memory BFGS algorithm requires significantly less time and less memory than the
modified Levenberg-Marquardt and BFGS algorithms, but yields results of compa-
rable quality based on the value of the objective function obtained at convergence
and the model obtained at convergence. Scaling has a significant effect on the per-
formance of the LBFGS and BFGS algorithms. The scaling factors used here result
in significant improvement in the convergence properties of the algorithm as com-
pared to the no scaling cases. For all examples considered, our implementations
of preconditioned conjugate gradient algorithms were less robust than the scaled

BFGS and LBFGS algorithms. Based on our results, we conclude that the limited
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memory BFGS is the only viable algorithm for large scale 3D three-phase automatic
history matching problems where the number of model parameters and the number
of data are both large. Conceptually, a preconditioned nonlinear conjugate gradient
method could be competitive with the limited memory BFGS method, but we have
not identified an effective preconditioner to achieve this result.

An iterative linear solver based on orthomin theory was implemented in
this work. Essentially, this iterative solver is the same as the solver used in CLASS
(Chevron Limited Application of Simulation System) simulator for solving the finite-
difference flow equation system. For large problems, the iterative solver is orders of
magnitude faster than the direct solver which is based on the LU decomposition.
The iterative solver was used to solve the adjoint equation system which is a linear
system. In this application, it is important to obtain a reasonable initial guess for the
adjoint variables in order to avoid convergence failure. We have presented an ad hoc
procedure for generating a sufficiently good initial guess. With this procedure, the
solution obtained by the iterative solver is in excellent agreement with the solution
obtained by a sparse matrix technique.

The iterative solver and limited memory BFGS developed in this work were
applied to several problems including a synthetic example based on a North Sea
reservoir. In this example, we history matched only GOR data, then matched the
wellbore pressure only and then matched both pressure and GOR. The limited results
suggest that the information content of GOR data is as good as or superior to wellbore
pressure data at least in terms of reducing the uncertainty in future performance

prediction.
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NOMENCLATURE

covariance matrix.

data covariance matrix.

model covariance matrix.

covariance matrix for rock property field.

covariance matrix for well skin factors.

vector of data (units depend on data type).

vector of observed data.

observed data with random noise added.
matrix of sensitivity coefficients.
calculated data based on m.

Hessian matrix.

approximation to the Hessian matrix.
Identity matrix

Jacobian matrix

permeability, mD.

vector of model parameters.

vector of prior mean for model parameters.

vector of unconditional realization of model parameters.

total number of gridblocks.
number of data.

total number of flow equations.
number of model parameters.
number of wells.

number of gridblocks in x-direction.
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N, = number of gridblocks in y-direction.

=
[

number of gridblocks in z-direction.

S
I

objective function.
P() = probability density function.
pwf = wellbore pressure.

p = gridblock pressure.

qg= flow rate.
r = residual.
Ry = solution gas oil ratio.
S = saturation.
Z = vector of standard random normal deviates
a = vector of corrections to the prior mean, or step size.
e = random noise in pressure measurements.
A = adjoint variable.
= step size in Gauss-Newton method.
v = scaling factor.
¢ = porosity.
Subscripts
M = model.
obs = observed.
prior =  a priori value.
uc = unconditional.
Superscripts
T = transpose.

—1 = inverse.
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APPENDIX A

THEORY OF LINEAR EQUATION SOLVERS

In this appendix, we summarize some theoretical results and algorithms for
iterative solvers. Some material presented here is based on material that can be found
in Greenbaum (1997). From the derivations, we can understand the relationship
between the different methods. We provide some description of the computational
efforts required by a direct solver in the first section for the purpose of comparison
and to provide a more complete overview of linear solvers. All other sections of this

appendix are focused on the iterative solvers.

A.1 Direct Solvers

Direct methods include Gauss-Jordan elimination, Gaussian elimination,
LU decomposition and nested factorization often in conjunction with special pro-
cedures for sparse matrices. Here, we only compare the arithmetic operations (addi-
tions/subtractions and multiplications) used by different methods for the purpose of
comparing the computational efficiency; see Press et al. (1992) for details. Assume N
is the number of equations and M is the number of right hand sides. Gauss-Jordan
elimination requires $N® + N2M additions/subtractions and the same number of
multiplications. Gaussian elimination requires %N 3 + N2M additions/subtractions
and the same number of multiplications. (For both methods, divisions by pivot
elements are not counted.) For M <« N (a few right hand sides), Gaussian elimina-
tion is faster than Gauss-Jordan elimination. One disadvantage of both elimination
methods is that the right hand sides must be known in advance to perform the elim-
ination assuming we do not wish to store all the multipliers used in elimination. The

LU decomposition, which is another direct solver, does not depend on the right hand
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sides. The LU decomposition requires about + N* additions and 5 N* multiplications.
To solve one linear equation system with one right hand side, LU decomposition re-
quires %N 3 + N? additions and the same number of multiplications. If we have N
right hand sides, LU decomposition requires %N 3 4+ N x N? additions and the same

number of multiplications.

A.2 Tterative Solvers

Iterative solvers that were frequently used in the past, e.g., Jacobi, Gauss-
Seidel and SOR, can be treated as preconditioned iterative solvers. Assume the

system of linear equations to be solved is given by
Az = b, (A-1)

where A is an N x N nonsingular matrix and x and b are N-dimensional column
vectors. Let M denote a preconditioning matrix. Since a preconditioner is designed
so that M~ A in some sense approximates the identity, M ~!(b— Ax}) can be expected
to approximate the error A='b — x;, in the approximate solution zj. Intuitively, we

expect a better solution can be obtained using the following formula:
Thy1 = Tk + M_l(b - Al’k) (A*Q)
Note that if M~! = A~!, then Eq. A-2 becomes

Ty = 2 + A7 (b — Axy,)
=x,+ A7 — (A-3)
= A1,
which is the exact solution of Eq. A—1. Different choices of M in Eq. A-2 gives

different iterative procedures. Let
A=D—-L-U, (A—4)

where D is a diagonal matrix with its diagonal entries equal to the diagonal entries

of A, L is strictly lower triangular and U is strictly upper triangular. M equal to D
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(the diagonal of A) gives the Jacobi method. If M is equal to D — L, Eq. A-2 gives

the Gauss-Seidel procedure, i.e.
Thy1 = Tk + (D — L)_l(b - A?L’k) (A*E))
Left multiplying by (D — L) on both sides of Eq. A-5, we find

(D — L).I'kJrl = (D — L)%k + (b — Al'k)

=(D—-L)xpy+b—(D—L—-U)xy (A-6)
Rearranging Eq. A-6 gives
Tpy1 = (D — L)Y Uz + (D — L)™', (A-7)

which is equivalent to Eq. A-5. For M = w™'D — L, where w is a relaxation param-
eter, the resulting iterative method obtained from Eq. A-2 is called the successive
over relaxation or SOR method.

Define the error vector at the kth iteration as
er = A7 — .. (A-8)
Applying Eq. A-2, Eq. A—8 can be rewritten as
€ = Ailb — Tp—1 — Mﬁl(b — Al‘k,1)
= €k—1 — M_l(AA_lb - A[Ek_l)
=ep1 — M TAATD — 25y) (A-9)
=ep 1 — M ' Aep
= ([ - MflA)ek,l.
The following theorem is given in Greenbaum (1997).
THEOREM: The iteration scheme of Eq. A—2 converges to A~!b for ev-
ery initial error ey if and only if p(I — M~'A) < 1 where p(A) = max{|)\| :
A is an eigenvalue of A} is the spectral radius of the matrix A.

By introducing dynamically computed parameters ay into the iterative scheme

of Eq. A-2 and assuming b and A are preconditioned already (which implies M ~'b



can be treated as the new right hand side vector and M ~'A can be treated as the
new coefficient matrix so we do not need to include M), Eq. A-2 can be rewritten

as

Tyl = Tk + ak(b — Aﬂ?k) (A*lO)
The residual at the kth iteration is defined by
Ty = b— Aka (A*ll)
So Eq. A-10 can be rewritten as
Tp4+1 = T + agpri (A*12)
where 7 can be considered to be a search direction. From Eqs. A-10 and A-11, we
have
Thy1 = b — Azpy
=b— Al’k - (lkA(b - AZEk> (A*13)
=1y — apArg,
which gives the relationship between the new residual r;,; and the previous residual
ri. Using Egs. A-8 and A-12, it follows that
eer1 = AT — xppy
= Ailb — T — ATk (A*14)
= € — AgTk,
which gives a relationship between the new error vector e, 1, the old error vector e
and the old residual r;. Left multiplying by A on both side of Eq. A-8, we find that
Aek = AAilb — Al’k
=Tk,
which relates the error vector e to the residual . Using Eq. A-15 in Eq. A-14, we

obtain

Aek = € — CLkAGk (A*16)
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which gives a relationship between the new error vector e, ; and the old error vector
k-

The coefficient a; in Eq. A-12 can be determined either by minimizing the
residual or by minimizing the error vector. The consequence of these choices are

discussed later.

A.2.1 Orthomin (1)

In this method, a5 in Eq. A-12 is obtained by minimizing the /s norm of the

residual. The square of the [, norm of ;.4 is given by
(rry1, Thr1) = (16 — apArg, T — agpAry)
= (1p, 1) — ag(Ary, 7)) — ap(re, Ary) + ai(Ary, Ary) (A-17)
= (14, 7%) — 2a(Arg, 71)) + az(Arg, Aryg).
Here and throughout (-, ) denotes the [, inner product. Note that in Eq. A-17

(Arg,ri) = ri Ary = (Arg)Try, = (13, Arg), (A-18)

i.e., we have not assumed that A is a symmetric matrix. To minimize the l3 norm
of the residual, we set the derivative of Eq. A—17 with respect to a, equal to zero.
This gives

(Tk, Ar k)

This aj minimizes (711, rg+1) if and only if the second derivative of (rgi 1, rgs1) with
respect to ay , which is given by 2(Ary, Ary) = 2r] AT Ar, = 2||Ari||?, is positive.
This is true if the matrix A is nonsingular and r; # 0. A is assumed to be nonsingular,
so Eq. A-1 has a unique solution. Therefore, r} AT Ary, is positive if r; is not equal
to zero, but r, = 0 means Ax, = b so x}, is the desired solution. Eq. A-12 with ay
given by Eq. A-19 is called the orthomin (1) method. In this method, A can be any

nonsingular square matrix.

A.2.2 Steepest Descent

Note that the coefficient a; in orthomin (1) is obtained by minimizing the

ly norm of the residual. The coefficient a; can also be obtained by minimizing the
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A—norm of the error vector which is defined by

lerialld = (ert1, Aeria). (A-20)

We now assume that A is a real symmetric matrix, then using Eq. A-14, Eq. A-20

can be written as

lexsilla = (ensr, Aegrr)
= (ex — agrg, Aler, — agry)) (A21)
= (ex, Aey) — ag(er, Ary) — ap(ry, Aey) + ai (ry, Arg)
= (

€L, Aek) — Qak(ek, ATk) + ai(rk, A?"k;),

By setting the first derivative of ||egy1||% With respect to a; equal to zero, we obtain

(ek, ATk) _ (Tk, T‘k>
(Tk,A’f’k) (’f’k,ATk).

(A-22)

ap =

The second equality in Eq. A-22 is obtained from Eq. A-15 (Aex, = ry) and the
fact that A is real symmetric, which implies (ey, Ary) = (Aex,re) = (rg, 7). To
determine whether a; corresponds to a maximum, minimum or saddle point, we

need the second derivative of ||ey,||% which is given by

EllewB) o ) — 07 a N
2 = 2(rg, Ari) = 21y, Ary,. (A-23)
day

To guarantee that a;, given by Eq. A-22 minimizes ||ex11]|3, the second derivative
of |lexs1]|3 given in Eq. A-23 must be positive. This is guaranteed if the matrix A
is positive definite and 7y is nonzero. Eq. A—12 with a, given by Eq. A—22 is called
steepest descent. Note that applying this method requires the matrix A to be real
symmetric positive definite, whereas, the matrix A in orthomin (1) can be any real

nonsingular square matrix.

Eq. A-12 can be written in the more general form
Tgt1 = Tk + AgPr, (A-24)

where pj, is the search direction at the (k + 1)st iteration which can be formed in

many different ways. In orthomin (1) and steepest descent, the search direction py
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is equal to the residual r,. The residual and error vectors based on this new form

can be rewritten as
The1r = b — Az
=b— Ax, — apAp
=1 — apApg,
and
1 =ATb — zppa
= A7 — 1 — arpi
= €r — AkPk-
Note that the relation
Aeppr = A(ATD — 2144)
= A(A7'(b— Azypa))
= AA_l?“kJrl
= Tk+1;

always holds.

If we choose py as a linear combination of r; and py_1, i.e.,

DPr = Tk + bpDr—1,

(A 25)

(A 26)

(A-27)

(A28

then we have two parameters, a; and b, to adjust. Different choices for a;, in Eq. A—

24 and by, in Eq. A-28 result in different algorithms. Reasonable ways to choose ay

and by are presented below.

A.2.3 Orthomin (2)

We can effectively determine by by requiring the following orthogonality

relation holds:

(Apg, Apr—1) = 0.

(A 29)
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Using Eq. A-28 in Eq. A-29, we find

(Apk, Apr—1) = (Ary + b Apr—1, Apr—1)
= (Ark, Api—1) + bi.(Apik—1, Apr—1) (A-30)
=0.

Thus,

o (Ar Apy)
N

. A-31
(Apr 1, Ape1) (A-31)

So Eq. A28 can be rewritten as

L — (ArkaApk—l) Dh
(ApkflyApkfl) -

As in orthomin (1), we minimize the [, norm of the residual, i.e., we minimize

Pr=T (A-32)

(Tk41,Tkt1), to determine the coefficient aj in Eq. A—24. This procedure gives

ay, = (Tka Apk)
(Apw, Apr)

The formula for a; can also be obtained by setting (ryy1, Apr) = 0. Eqs. A-24, A-32

(A-33)

and A-33 represent the orthomin (2) method. As in orthomin (1), the matrix A can

be any real nonsingular square matrix.

A.2.4 Conjugate Gradient

Instead of choosing by so that Eq. A—29 holds, we can choose b in Eq. A-28
so that the following orthogonality relation holds:

(pkn Apk—l) - 07 (A734)

i.e., the search directions p; and p,_; are A—orthogonal. Using Eq. A28 in Eq. A-34

gives
(Pr> Apk—1) = (7 + brpr—1, Apr—1)
= (&, Ape—1) + b (Pr—1, Apr—1) (A-35)
= 0.
Thus,
(71, Apr—1)

by = — (A-36)

(plcfla Apkq) .
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With this by, Eq. A—28 can be rewritten as

(Tka Apk—l)

1. A-37
(pk—h Apk—1)pk ! ( )

P =Tk —
As in steepest descent, the coefficient a; in Eq. A—24 is chosen by minimizing
Il eria % = (Aekirs exia)
= (Aey, — axApy, e, — arpr) (A-38)
= (Aey, ex) — 2ar(Aex, pr) + aj(pr, Apr)-

Note that we assumed A is real symmetric in the above equation. Setting the deriva-

tive of || ex41 ||4 with respect to a, be zero, we obtain

_ (Aex, pr) _ (7%, Pr) B
e (pr, Apr) a (Pk,APk)' (A-39)

The second equality in Eq. A-39 was obtained by using Eq. A-27. As in steepest

descent, to guarantee that a; given by Eq. A-39 minimizes |lex1]/a, we assume
A is real symmetric positive definite. Eq. A-39 can also be obtained by setting
(er+1, Apr) = 0 given that A is real symmetric. Eq. A-24 with Eq. A-37 and Eq. A-
39 is called the conjugate gradient method.

Using Eq. A-28, the inner product (ry, py) can be written as

(T, i) = (T8, T + brDr—1)

(A—40)
= (1, 7%) + bk (Tk, Di—1)-
Using Eqgs. A—25 and A-39, we obtain
(Tk>]?k—1) = (Tk—1 - ak—lApk—lapk—l)
= (kalapkfl) - ak71<Apkflapkfl) (A741)

(Tk:—lapk—l) - (Tk:—lapk—l)

0,

and using this equation in Eq. A—40, it follows that

(s i) = (T, 7). (A-42)
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Using Eq. A—42 in Eq. A-39 gives

_ (7%, Pr) _ (Ths k) B
= (pr, Apr) a (Pk,Apk)' (A-43)

Using Eqs. A-25, A28, A-34 and A-43, we can show that (rg,rx_1) = 0 as follows:

(Tkﬂ”kq) Tk—1 — akflApkflarkfl)

= (

= (rk—lark—1> - ak—1<Apk—1a 7“k—1)

= (rgp—1,7k-1) — Ag—1(Apr—1,Pr—1 — br—1Pk—2)
( (A-d4)

T’k—177’k—1) - ak—1<Apk—lapk—1)

(Tk—1,7“k—1)
= _ ) ——""" (Aps_ _
(Tk 1, Tk 1) (Apkq,pk&)( Pk—1, Pk 1)

=0.

Using this result and Eq. A—25, we see that

1
(TkaApkﬂ) = (Tk, (qu - Tk))
k-1

1 1
Ty Tk— -
akfl( 1> Ar—1
1
= — ThyTk).
ak_l( k> Tk)

(’l“k, Tk) (A745)

Using this result and Eqs. A-36 and A—43, b, can be written as

(7%, Apr—1)
(Pk—h Apk—l)
(i)
(Pk—1, Apr—1)
()

akl_l (kaly 7’1;71)

(Tk> Tk)
(Tk—la Tk—1) 7

by = —

(A-46)

SO
(Tk7Apkf1) (Tkark)
g (pkflaApkfﬁ (kalyrkfl) ( )

The standard way to apply the conjugate gradient algorithm is to use the second

equality in Eq. A—43 to calculate a; and use the second equality in Eq. A—47 to

calculate bg. This avoids calculation of (1, pr) and (7%, Apg—1)-
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A.2.,5 Orthomin

To obtain a more general form of orthomin, we require the current search
direction be constructed as a linear combination of all the previous search direction

vectors and the current shift vector dxy 1 = 21 — 24, i€,

k
Pri1 = 0Tpq1 — Z bip;- (A-48)

J=1

We require that the p;’s satisfy the following orthogonality relation:
(Ap;, Ap;) =0, i # 7. (A—49)
Thus, we wish pg1 to be such that
(Apgy1, Ap;) = 0, 1=1,2,--- k. (A-50)

From Eq. A48, we see that Eq. A-50 holds if and only if

b, — (Adzyi1, Ap;)
' (Aplv Apl) ’

Now we apply the following iterative procedure to compute the new updated approx-

i=1,2- k. (A-51)

imation of x,

Tyl = Tk + APk, (A-52)

where a;, is chosen by minimizing the [ norm of the residual. Similar to Eq. A-33,

we obtain p
o= Ly A
Since this gives the minimum of f(ay) = ||rx+1]|> = (rrs1, k1) Where
Th1 = Tk — A Apg, (A-54)
and f(0) = (ry,75) = |||, we always have
el < llrwll?, (A-55)

which implies that the method can not “diverge”. Define

5’/“k =Tk+1 — Tk (A*56)
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Applying Eq. A-54, Eq. A-56 can be written as
677@ = —CLkApk. (A*57)
Applying Eqs. A—54 and A-53, we see that

(Tkﬂ, 57"k) = (Tk — apApy, _akApk)

= (r, —arApy) + ai(Apy, Apy)

= ax [(rr, —Ap) + ax(Apr, Apr)] (A-58)
(rx, Apr)
= ay, [ — (r1, Apy) + m(/lpk?flpk)}

=0.

This equation indicates that r,.; is orthogonal to dr,. Fig. A-1 illustrates the
relationship between rpy; and rx. As ||rg|| is the “length” of the hypothenuse of
a right triangle and ||rg11| is the length of one of its sides we see that ||rgy1] is
strictly less than ||7g|| unless ry11 = +ry. We would say that the length measured in
a certain norm (e.g., [ norm) of the new residual is always less than the length of

the old residual.

ory

]

Fig. A-1: Illustration of the relationship of the two adjacent residuals in orthomin

method.

Eqgs. A48, A-51, A-52 and A-53, represent the more general orthomin
algorithm. The overall algorithm for the more general orthomin method for solving

Az = b is given below; see Vinsome (1976) for details.
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* Choose an initial guess z.

* Set rg = b — Axy.

* Solve Mdx; = ro for dx; where M is an approximation to matrix A which is

chosen such that this linear equation can be solved easily and set p; = dx; and

calculate
(T()’ Apl)
an = —2t A-59
= pr Ap) (A-59)
T1 = o+ aipr (A-60)
rn = To— CllAp1 (A*61>
* Iteration loop
DOk=1,2,---
5$k+1 = Mﬁlrk (A—62)
(A5$k+1, Apj) .
b = —————=~ =1,2,---,k A-63
k
Pre1 = 6Tpp1 + > bjp; (A-64)
j=1
(Tk; Apk+1)
a = A-65
fH (Apk+1, Apk+1) ( )
Tpi1 = Tk + Qpy1Pr+1 (A-66)
Tkl = Tk — Q1 APy (A-67)
END DO

We call this algorithm orthomin. The orthomin algorithm was stopped when the

following condition is satisfied

I flee (A-68)

70 fle ™

where || - || denotes the infinity or maximum norm.
Note that in Eq. A-64, all the previous search direction vectors are used to

construct the current search direction. If we just use a limited number of previous



search direction vectors to construct py.i, we call the corresponding version of al-
gorithm the truncated orthmin method. If we use [ previous vectors, then the only
change is that Eq. A-64 is replaced by

k
Pikt1 = 0Tj+1 + Z b;p;. (A-69)

j=k+1-1
If | =1 and M is the identity matrix, then the general algorithm reduces to orthomin

(2) discussed previously. In Eq. A-62, the value of dx; is obtained by solving
M(Sxk+1 =Tk, (A-?O)

instead of forming the matrix product M ~1rj. Recall that M can be considered to be
a preconditioning matrix. Note that the first term in Eq. A—64, i.e., dxpry = M 1ry,
is equivalent to the second term in Eq. A—2. The preconditioner should be chosen
such that M ~ A, so that

M1A~I, (A-T1)

where [ is the appropriate identity matrix. Combining Eq. A-71 with Eq. A-70, we
have

A(Skarl ~ Tk+1, (A*?Q)

which represents the relationship between the shift vector dx. 1 and the residual rg,
(analogue to Eq. A-27). The key issue for implementation of the general orthomin
algorithm is how to choose M such that Eq. A-70 can be solved very efficiently. In

our implementation, the incomplete LU decomposition was applied; see Chapter IV.
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APPENDIX B

QUASI-NEWTON METHODS

In this appendix, we give the derivation of the updating equation for the
inverse Hessian approximation and the principle of the self-scaling variable metric.
Scaling can have a significant effect on the convergence rate of a variable metric
(quasi-Newton) algorithm. Proofs of the propositions, theorems and corollaries pre-
sented here can be found in Oren and Luenberger (1974), Oren (1974b), Oren (1974a)
or Oren and Spedicato (1976). Throughout we assume real vectors and matrices and
all vectors being n-dimensional.

The iteration equation of Newton’s method for minimizing the objective

function f(z) can be written as:
Tpyr = 2p — o H g, (B-1)

where g, and Hy, respectively, represent the gradient and the second derivative
(Hessian) of f(z) evaluated at xy. The term «y denotes the step size in the direction

dy, where
dk = — ]zlgk. (B*2)

Therefore, in Newton’s method, we need to solve Hydp = —gi for dy which may be
computationally expensive for large scale problems, especially if the evaluation of the
Hessian requires considerable effort. In problems of interest to us, the Hessian matrix
involves the sensitivity coefficients. For the history matching problems of interest
to us, the calculation of an individual sensitivity coefficient requires a significant
fraction of the time required to make a reservoir simulation run regardless of the
method used to compute the sensitivity coefficient. Thus, for large scale problems

where the number of model parameters and the number of data are both large,

196



computation of all individual sensitivity coefficients is impractical. In quasi-Newton
methods, calculation of the Hessian matrix is avoided; instead, we directly generate
an approximation to the inverse Hessian, ﬁk_l = ﬁ_l(:ck), at the kth iteration; i.e.,
we construct a sequence of matrices {I:I & 1} to approximate the sequence of the inverse
Hessian matrices {H, '}. Then Eqs. B-2 and B-1, respectively, are approximated
by

dy = —Hy g (B-3)
and

Tl = Ty, + Oékdk. (Bf4>

According to standard theory (see Murray (1972)), the approximation H, ' is re-

quired to satisfy the conditions listed below:

1. Bach H & ! must be symmetric positive definite to guarantee the iterative equa-
tion has the descent property.
To guarantee that the search direction dy = —H & Ygr is a descent direction,
the condition g7 d, = —g! H 'gr < 0 must be satisfied. This is equivalent to

gF H ' gr > 0 which holds if H, ! is positive definite.

2. {H_'} must satisfy the quasi-Newton condition:
I:Il;:1(gk+1 — Ok) = L1 — T (B-5)

A motivation for quasi-Newton condition is given later.

3. One should be able to calculate H .- 431 from H ! by a simple calculational for-
mula such as

H. !\ = H' + Ey, (B-6)

where Fy, called the correction matrix, can be easily calculated.

We now provide a motivation for the quasi-Newton condition. Assume the
objective function f(z) is twice continuously differentiable. Applying a Taylor ex-
pansion, we obtain

Ik R Ghr1 + Hip1(Tr — Tpgr)- (B-7)
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If Hy 1 is nonsingular, it follows that

Hif (gh1 — 0k) = Tpp1 — T (B-8)
For quadratic functions, the preceding two equations are exact, so

Hi L (grs1 — k) = Tpsr — e (B-9)

For non-quadratic functions, it is desirable to require that H . jl satisfies Eq. B9,

ie.,
ﬁkj-&l (k+1 = Gk) = Tpp1 — . (B-10)
We define
Yk = Jk+1 — Gk (B-11)
and
Sk = Tha1 — T (B-12)

Then, the quasi-Newton condition, Eq. B-10, can be written as

Hi Ly = sk, (B-13)

which is another form of the quasi-Newton condition.

There are many update equations that satisfy the three conditions enumer-
ated above. Here, we give the derivation of a general equation from which all others
can be obtained. Methods obtained from this equation are referred to as Huang
family of equations (see Huang (1970)). In Huang’s original equation, the inverse
Hessian approximation H ! was allowed to be nonsymmetric. However, the Hessian
matrices that occur in our history matching problems are always symmetric. Thus,
we present the Huang equation only for the cases where all the Hessian matrices are
symmetric. Part of the derivation assumes a quadratic objective function. From the

VHY O H o 421 we can determine the set of search directions

series I:I(;
dj=—H"g;, j=01,....k+1. (B-14)

If we want the search directions to be H-conjugate in the quadratic case, where H is

the Hessian matrix, so that the algorithm has the property of quadratic termination
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(Fletcher (1987)), the following equation must hold:
di Hd; =0, j=0,1,... k. (B-15)

Substituting Eq. B-14 into Eq. B-15 gives

g H W Hd;j =0, j=0,1,... k. (B-16)

It can be shown that the current gradient is orthogonal to all the previous search

directions for the quadratic function case provided that the line search is exact. So
Giad; =0, j=0,1,... k. (B-17)

We provide a proof of Eq. B-17, which is important for deriving the Huang family
equations. Applying Eq. B-11, we have

Ghrdi = g1 1d; + (9] 1005 — g7 1d5) + (9 15d5 — 9] 0di)+, - +(901ds — i dj)
= giadj + Wi + Yoty d).
(B 18)

From Eqs. B4 and B-12,
Sj = Tjq41 — Tj = Oéjdj. (B*19>

For a quadratic objective function, the quasi-Newton condition (Eq. B-13) holds
exactly. From Eqgs. B-11, B-9, B-12 and B-19, it follows that

Yj =9gj+1 — 9j = H(xjs1 —x;) = Hsj = a;Hdj, (B-20)
Substituting Eq. B-20 into Eq. B-18 gives

Ir1d; = gj1d; + (g Hdjy + ajoHdjot, -+ o Hdy) " d -
= ng_de + ()éj+1d?+1de + aj+2d?+2de+, S +Oékd£HdJ

An exact line search gives

g]Tde =0. (B-22)
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Using Eqgs. B-22 and B-15 in Eq. B-21 gives Eq. B-17. Subtracting Eq. B-17
multiplied by w, which can be any nonzero scalar, from Eq. B-16 gives
gro (H L Hdy —wdy) =0, j=0,1,... k. (B-23)
Eq. B-23 will be satisfied if we choose
O L\ Hdj =wd;, j=0,1,...,k (B-24)
Multiplying Eq. B-24 by «; and applying Eqs. B-20 and B-19, we find
Hly,=ws;, j=0,1,... k. (B-25)

k+

Since

Hyl\ = H' + Ey, (B-26)

Eq. B-25 can be rewritten as
By, =ws; — H 'y;, §=0,1,... k. (B-27)
From Eqgs. B-25 and B-27, we obtain

Ew, = 0, for j=0,1,... k-1, (B-28)

Hence, E} should be chosen such that Eq. B-28 and Eq. B—29 are both satisfied.

Suppose
E, = A, + By, (B-30)
and let
Ay = Geguy (B-31)
Bk = nkpkv,z, (B*SQ)

where & and 7, are scalars, and ¢, ug, pr and vy are column vectors. Substituting

E, = A, + By, into Eq. B-29 gives

Ay + Brye = wsy, — Hy 'y (B-33)
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Eq. B-33 will be satisfied if we choose the vectors such that

_ T
Aryr = EkCry, Y = WSk,

and
Biyx = nepwvi g = —H,, g
If we choose
Ckx = Sk,
and
Dk = — ~k_ Yy,
we obtain
w
& =
Ufyk
and
1
Nk = .
U;z Yk

From Eqs. B-36, B-37, B-38 and B39, it follows that

T -1, T

SpU H )

Ek:Ak+Bk:wl;k— kTykk
Uy Yk Uy, Yk

(B-34)

(B-35)

(B-36)

(B-37)

(B-38)

(B-39)

(B-40)

Our derivation indicates that Eq. B-29 will be satisfied when F is given by Eq. B-

40. If ug and vy are chosen to be vectors such that ujy; = 0 and v]'y; = 0 for all

j=0,1,...,k — 1, then Eq. B-28 will be satisfied. Since Hs; = y; (see Eq. B-9)

and s; = oqd; for all [ (Eq. B-19),
spyy = SiHs;
= apoydi Hd,

= 0,

(B-41)

for 7 # k and the last equality follows from the orthogonality condition of Eq. B-15.

Moreover, Eqgs. B-25 and B-41 can be used to show that
v di'yy = yiws;

= ws; Hs;

= 0,

(B-42)
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for y =0,1,...,k — 1. So if we choose uj to be either s, or lflk_lyk and choose vy,
to be either s; or I:Ik_lyk, then Eq. B-28 will be satisfied. More generally, we can

choose u; and vy, to be a linear combination of s; and flk_lyk, ie.,

wp = arsg + asHy Y, (B-43)
and

v, = bisy + bo Hy 'y, (B-44)

where aq, as, by and by are all scalars. Substituting u; and vy as given by Eqs. B—
43 and B-44 into Eq. B-40, we obtain a general expression for Ej. Inserting the
resulting equation for Ej into the update equation (Eq. B-26), we obtain

Al gy wsk(alsk + azﬁngyk)T ﬁglyk(bﬁk + bzﬁflTyk)T
k k A B
e (ars + asH M ye) Ty (busy + b H i) Ty,

(B-45)

This equation is referred to as the Huang family equation. Choosing different values
for w, ai, as, by, by, we obtain different update procedures. With w = 1, a1 =
1+ ﬁy,{ﬁglyk, as = —Bstyr, by = ﬂyk Tk, ba = 1 — Bsty, where 3 is a scalar,

we obtain the Broyden family equation which is given by

T 71, T f7—1
~ ~ 1 SES H. gy, H -
Hyly = Hy'+ =8 — =2 4 Byl (g Hy yr)ww (B-46)
Sk Yk kak Yk
where ~
H—l
wy =k Tk Yk (B-47)

Yesk  yiH
Eq. B-46 is also called Broyden-{ class update equation. Takingw =1, a; = by =1,
by = as = 0 we obtain the DFP update equation given by
5 T F[_l Tg—l
iyl o= H o 2 T PO Tk (B-48)
Sk Yk Yr. Hk Yk
Taking w =1, a1 = 1+ (yf Hy 'yi)/(sEyw), az = =1, by = (yf Hy 'ye) /(s i), ba = 0

we get the BFGS update equation given by

~ rog-t H_
R e e (B-49)
Sk Yk Yi. Hk Yk

where

o= (At 2 (o = SV ) oy iy, (B-50)
skys Yyl H by
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Note from Eqs. B-48 and B-49 it is clear that if H & lis real symmetric then H .- jl
is also real symmetric. Also note that both BFGS and DFP are members of the
Broyden family. In the DFP algorithm, round off errors or inaccurate line search may
cause the inverse Hessian approximation to become singular. The BFGS algorithm
is more numerically stable than the DFP algorithm; see Murray (1972). Among the
Broyden family, the BFGS algorithm appears to work best in practice based on the
numerical stability; see Shanno and Phua (1978)and Kolda et al. (1998). Thus, the
BFGS algorithm is chosen as the minimization algorithm in our history matching
procedure.

We can show that once H & ! becomes singular, the correct solution of the
minimization problem may be unattainable during the subsequent iterations. All the

Broyden family equations can be written as (see, Murray (1972))
]:Ik_Jil - f{lc_leh (B-51)

where M}, is a matrix specific to a particular update. Thus, by induction,

ol = B 'MyMyyy - My, forall r>1. (B-52)
Since
Sktr = —Oék+rﬁfi;:rgk+m (B-53)
we can write
Skir = —H; lu, r>1 (B-54)
where
U = Qe My M1 -+ - Mitr—1Gitr- (B-55)

Suppose H k_ Uis singular, so that for some nonzero vector ¢, we have qTI:I & =0
From Eq. B-54, we have ¢7s;., = 0 for all » > 1. Therefore, once a particular H & !
becomes singular, all subsequent steps are orthogonal to some fixed vector and hence
are restricted to lie in a subspace of the real n-dimensional Euclidean space. The
solution will be completely unattainable subsequent to the occurrence of a singular

H, ! unless the solution also lies in this subspace (in general it will not).
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If the initial Hessian inverse approximation is real symmetric positive defi-

nite and an exact line search is performed, then we can show that the BFGS update

guarantees the Hessian inverse approximation at each iteration is a real symmetric

positive definite matrix. To do so, we only need to show that H o jl is positive definite

if 4 & ! is positive definite. In other words, we need to show 7 H k- jlx > () given any

nonzero vector x. Eq. B-49 can be rewritten as
-1 _ -1 T
Hy = Hpy + vy,

where 5 ~
! — ! 3k3£ Hk_lykngk_l
P e e B
S Yk Yi Hi "y
which is the DFP update formula given by Eq. B-48. Note that

vl zy, = (27vp)* > 0.

(B-56)

(B-57)

(B-58)

So if we can show H, J:I is positive definite, then H o J:I is positive definite. We can

write

alspstx B oTH 'yl H M

Tg-1, _ Ti-1
v H v = o H v+

Sk Uk v Hy
_ xTHk_lxy,Z’Hk_lyk — xTHglykngglx N lspsTx
i Hi 'y St Uk

Let pp = I:Ik_l/gx and ¢ = ﬁ,;l/ka so that Eq. B-59 can be written as

(Pks Pe) (@ ar) — Pk @) (Qks Pr) i iﬁTSkS;;Fllf
(ax, qx) Sfyk

(pkapk)(Qk7Qk> - (pkan)<Qk7pk> 4 (S;fx)Q
(, Qk) S;;Fyk .

xTHka =

Applying Schwartz’s inequality, we have

| (pkan) |§H Pk HH dk H: (pkapk)1/2(Qk7Qk)l/2-

(B-59)

(B-60)

(B-61)

where equality holds if and only if p; and g, are linearly dependent, i.e, pr = Ag

for some A # 0. So when py and ¢, are linearly independent, i.e., pr # Aqg, the first

term in Eq. B-60 is greater than zero and the second term is greater than or equal
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to zero as long as s}y, > 0 which is shown below. Hence, the whole term is greater

than zero which means H, 11 is positive definite for this case. When p, = Agqy, the

+
first term in Eq. B-60 is equal to zero. Hence we need to show the second term in
Eq. B-60 is greater than zero to guarantee that the H k- jl is positive definite. In this
case, applying the fact that pp = Aqr, we find © = Ay,. Thus,

(sT)? _ N(sfu?

= \sTy,. B-62
SE Yk S Yk g ( )

Because A # 0 we need to show that s?y;, > 0 to complete the proof. When an exact
line search is done, we have

5t gre1 = 0. (B-63)

Using this result and Eqs. B-11, B-14 and B—-19, we find that

Sk = sg (gkr1 — gr)
= Sk Ok+1 — Sk Ok
— —sggk (B—64)
= —akdfgk

= akggﬁl;lgk > 0.

Note the last equality of Eq. B-64 assumes g is not the zero vector. But if g, = 0,
then x is the solution and there is no need to form H, 1. Thus, the exact line
search guarantees that sy, > 0 and hence guarantees that H I Jil is positive definite
given that H & ! is positive definite. Using Eq. B-57, the Broyden family equation (
Eq. B-46) can be written as

H !y = Hl + B(styn)oevy (B-65)

where H, jl is given by Eq. B-57. We have already shown that H,_ jl is positive
definite and that an exact line search guarantees s’y > 0. Therefore, if we choose
£ > 0, all the update equations in Broyden family are such that H k- jl is positive
definite provided that H o 1 is positive definite. The fact above can be summarized

in the following proposition.
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PROPOSITION 1: Let PNIk_jl be defined by Eq. B—46. If ]:]k_l 1S positive

definite, 3 > 0 and sly, > 0 then [:ij:l 18 positive definite.

For a quadratic function with a real symmetric positive definite Hessian H,
sTyr = sT Hsy > 0 always holds. For a general objective function, sfy, = ylsp =
GLi1sk — gt sk > 0, because gi s < 0 holds by the descent property and if an exact
line search is used then g} sy = aygl, dy = 0. Thus, Proposition 1 indicates that if
we choose the initial inverse Hessian approximation to be any real symmetric positive
definite matrix (for example the identity matrix) and choose 3 > 0, all the subsequent
updated inverse Hessian approximations will be symmetric positive definite, which
guarantees that d, = — ~k_ Ygr is a descent direction. This will always be true for
quadratic functions and will be true for a non-quadratic function given that the line
search is exact.

Early applications of quasi-Newton methods routinely used an exact line
search arguing that this is necessary to achieve quadratic termination and is also
desirable for stability. In practice, inexact line searches that satisfy side conditions
such as Wolfe’s conditions are substituted for exact line searches. As noted in Chapter

V, one of Wolfe’s conditions is given by
Terd = ngi di, (B-66)
where 7 < 1. Subtracting g/'dj from both sides of Eq. B-66 gives
gi1di — gidy > ngldy, — gl dy. (B-67)
Using Eq. B-11 in Eq. B-67 gives
yrdi > (11— 1)gy dy. (B-68)
It H I lis positive definite, then dj, is a downhill direction and we have
Gidy = —gi H g < 0. (B-69)
Using the fact n < 1, it follows from Eqs. B-68 and B-69 that

yr dy, > 0, (B-70)
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which implies sy, > 0 which guarantees that H - 4:1 is positive definite according to
Proposition 1.
Next, we consider the scaling issue for quasi-Newton methods. Consider the

following equation which is a subset of the Huang family

. . H-VyuT H-1 T
Hl?—&l = ( e L L Tylfy_kl AT kagvk) + Sl;sk ) (B771>
Yr. Hk Yk Sk Yk

where

Sk nglyk
ST Tf{—l :
k Yk Y 1 Yk

Note that if we choose 0, = Byi si, then Eq. B-71 is exactly the same as Eq. B-46

o= (T ) (B-72)

which is the Broyden-( class. The BFGS method corresponds to choosing 6, = 1
for all £ in Eq. B-71. If we replace f[,;l by f[,;l = %[:[1;17 where 74 is a scalar, in
Eq. B-71 and Eq. B-72, we will obtain the scaled version of the update equation

given by B ~
- o1 H gl H! SkS),
H7l = (A" — =2 22k k 4 golv)ye + 5 (B-73)
o = (s vt Hi o V8 ST

where ;. is a scaling factor which may be adjusted to try to improve the condition
number of Hl/Qlflk_lI:fl/2 and the vy in Eq. B-73 is still given by Eq. B-72.

Before proceeding further, we record a simple algorithm for a quasi-Newton
method based on an exact line search.

Algorithm 1:

Step 1 Initialization:
Provide an initial guess x(, calculate the objective function corresponding to
xg, evaluate gy (the gradient of the objective function at xg), provide an initial

Hessian inverse approximation FIO_ I and set the initial iteration index to k=0.
Step 2 Calculate the search direction dj = — | I L.
Step 3 Calculate the step size a4 by an exact line search procedure.

Step 4 Update: xpi1 = v + aydy.



Step 5 Calculate the objective function based on xy,; and calculate the new gradient

gk+1-

Step 6 Determine if the stopping criteria are satisfied or not. If satisfied, then stop;

otherwise go to step 7.

Step 7 Update ]:Ik_l to obtain ﬁ],;:l based on Eq. B-73 and go to step 2.

From Oren and Luenberger (1974), we have the following theorem.
THEOREM 1: Let H be a real symmetric positive definite matriz. For a positive

definite quadratic objective function
1
fla) = o — 2V Hiw = 1) + f(a°) (B-74)

and for any starting point xq, the Algorithm 1 converges to the unique x* which

minimizes f. Furthermore, for all k

Flren) = 167 < [N 1) — s (B-75)

(Ri) +1
where r(Ry) denotes the condition number of the matriz R, = H'>H_*HY?.

Note that this theorem implies exact line search. This theorem suggests that

H(Rk)fl
k(Rg)+1

the rate of convergence can be improved by decreasing [ r and therefore one
should strive to make k(Ry) as close to unity as possible, i.e., we wish to minimize
the condition number of the matrix R; at each iteration. Furthermore, notice that
steepest descent corresponds to H & ! — I where I is an identity matrix, and in this
case Ry = H. Thus, if k(R;) > k(H) for some k, then the convergence rate of

quasi-Newton at these steps may be worse than steepest descent.

We introduce the notation

77— 77— - Ho'ywiH spsT
Hly =T (Hy ks sk ye) = <Hk P Ak kakUkT>7k + = (B-76)
Ye Hy, "k Sio Uk

Several general theorems about how to select the scaling factors will be given below;
see Oren and Luenberger (1974) and Oren (1974b) for additional details.
THEOREM 1: Let ﬁk_l be the kth positive definite approrimation to the

wnverse of the fixed positive definite matriz H and let s;, be an arbitrary nonzero vector
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in B and let y, = Hsg. Also let Ry, = Hl/Qﬁ,JIHl/Q and assume the eigenvalues of
Ry satisfy 0 < \y < Ay < --- < \,. Then the condition

A <1/v < A\, (B-77)
is a sufficient condition for
W(HY2 L HY) = 6(Bicy) < (Ry) = (V2 H HY2) (B-78)

and for ﬁk_jl to be positive definite if and only if 0y € [0, 1].

This theorem is general. We can translate this theorem into the problem
of interest to us as follows. Suppose H e !is the positive definite approximation to
the inverse of the fixed positive definite matrix H of a quadratic function f; see
Eq. B-74. ﬁ,;}l is obtained by Eq. B-73 where s = x111 — zp and yr = gri1 — &
The equation y, = Hs; always holds for the quadratic function case. Assume the
eigenvalues of the matrix R, = Hl/Ql:Ik_l[-Il/2 satisfy 0 < Ay < Ao, -+, < Ay, then
the condition

A < 1y < A, (B-79)

is a sufficient condition for
k(H'PHZLHY?) = 6(Ry) < 6(Ry) = w(H'V2HTHY?). (B-80)

This theorem suggests that we should choose the scaling factor 7, between 1/\,
and 1/A; to make the condition number of R decrease from iteration k to iteration
k + 1. If we chose 7, this way, at least in the positive definite quadratic case, the
condition number of Ry is monotonically decreasing. We do not know A; and A, in
general, but the following theorem indicates how to select the scaling factor v so
that A\; < 1/9 < A, without explicit knowledge of A\; and \,.

THEOREM 2: Let s, yi be nonzero vectors in E™ such that sfyk > 0.
Assume that lflk_l, H and R are real symmetric positive definite matrices such that

yp = Hsy and Ry = H'/2H_"H'Y?. Define

T T 17
Sk Yk sy, Hysp,

ykTﬁfk_lyk Sk Yk

v seyw) = (1— ) (B-81)
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Then for any ¢ € [0, 1],

S ) < 5
where Ay and \, are the smallest and the largest eigenvalue of Ry, = H'/>H_*H'/?.
We can apply this theorem to the problem of interest to us by defining
S = Tpr1 — Tk and yr = gryr1 — gr. Theorem 2 in combination with Theorem 1
indicates that if we choose the scaling factor according to Eq. B-81, the condition
number of the matrix Ry, will be less than the condition number of Ry, at least
for the quadratic objective function case. Eq. B-81 involves H,, the inverse of H & !
which is not easy to evaluate (note that we form H . instead of H,, at each iteration).
If we substitute s, = —ak[z[,;lgk, we obtain
Szﬁksk . _oekg;fsk _ 9;{816

stur Stk gTH 'y

YO(H, sy, yp) =

(B-82)

We can use either —aggl s,/ (styx) or g si/(gh Hy 'yr) to evaluate the second term
in the right hand side of Eq. B-81 when calculating . If we set ¢ = 0, Eq. B~
81, gives v, = (styx)/ (ygfl ~'y) which is the scaling factor used by several authors
(see Shanno and Phua (1978), Yang and Watson (1988)). Some authors ( Shanno
and Phua (1978)) suggest initial scaling in which only the initial inverse Hessian
approximation ]:IO_ 1is scaled by a factor 7o and in subsequent iterations we set all
vx = 1. The initial scaling strategy is superior to the traditional way of choosing
v, = 1 for all k since initial scaling not only has “property 1”7 but also benefits from
the freedom of choosing ~vy. Property 1 means that for a quadratic function, the
nth inverse Hessian approximation IjI; L will be exactly equal to H~!, where n is
the dimension of the problem, so the algorithm will satisfy quadratic termination.
Unfortunately, for general objective functions, scaling only at the first iteration may
be insufficient. When considering non-quadratic functions, one may expect that as
the algorithm proceeds changes in the Hessian may cause the eigenvalues of the
matrix H ,1/ °H N 'H ,1/ ? to drift farther from unity unless the problem is rescaled. It
should be possible to improve convergence by occasionally rescaling. Unfortunately,

by allowing the scaling factor v to vary, we lose the property that f]g !'= H~'in the
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quadratic case (where n denotes the dimension of the problem), i.e, we lose “property
17. On the other hand, we ensure monotonic improvement in the convergence rate
if the 74 is calculated by Eq. B-81, which is implied by monotonic decrease in x(Ry)
which is called “property 2”.

From Eq. B-81, we sce that v, = ~f can vary from s}y./yf Hy 'y to
s{f[ 15t/ 5t yr. The following proposition gives bounds on ~y;, which can help us choose
the scaling factor 7,. This proposition is a part of a proposition presented by Oren
(1973).

PROPOSITION 2: Let f(z) be a real-valued twice continuously differentiable
objective function, g, =V f(xr), Sk = Tk+1 — Tk, Yk = Jkt1 — Gk» lflk_l be the inverse

Hessian approximation at the kth iteration given by Fq. B-73 and let
7 = gi s/ (9 Hy ') (B-83)

and
o = st/ (i Hy o) (B-84)
with vy given by Eq. B-81, then
(a) op <y < T
(DN < 1/m; < 1/oy, < N\, where Ay and N\, are the smallest and largest eigenvalue
of Ry, respectively.
From the previous discussion, we know that by allowing the scaling factor
v to vary, we lose the property H-' = H~' in the quadratic case. Therefore, it
seems desirable to choose 7 such that -, falls between 1/), and 1/A; on the one
hand and such that v, varies as little as possible on the other hand. Because R} is
real symmetric, A\, A,, 7 and oy are positive numbers. Thus, part (b) of proposition
2 is equivalent to
%S%S%S%S)\%- (B-85)
To reduce oscillation in 7, and avoid unnecessary scaling, it is desirable to use the

value of v closest to unity and this leads to the following procedure:

(1) If oy > 1 choose v = 0.

211



(2) If 7 < 1 choose 7y, = 7.
(3) If 7. > 1 > oy choose v, = 1.

Oren and Spedicato (1976) proposed an additional property based on min-
imizing the sharp upper bound on the condition number of the inverse Hessian ap-
proximation matrix at each iteration, i.e, H k- 4:1- Reducing this condition number can
be important for decreasing the round off error. The following theorem gives the
sharp upper bound on the condition number of the inverse Hessian approximation.

THEOREM 3: Let ﬁkj:l be defined by Eq. B-73, assume ]:],;1 1S positive

definite, that sy, > 0, )
s;‘fyk < < S{Hksk

——— <% < B-86
AT (B-%6)
and 0, > 0. Then
R(Hp ) < s(HDCH (= DY, (B-87)
where
v
¢= ek (B-88)
H T -t
L Sk 1Sk +Ilfyk k yk, (Bf89)
25, Yk
and ~ L
T )2 4§ T T fr- (T N2
M:%[(Skyk) + k(<5k k5k) (W Hy “yk) — (S1Yk) )} (B-90)

(yr Hy "ye) (5T ur)
Furthermore, Eq. B-87 becomes equality if ﬁk_l =1 or lf[k_lyk = Sg.
From the numerical stability standpoint, it is desirable to use an update that
will minimize the condition number of H .- jl at each iteration. As we do not have a
single procedure to do so, a reasonable alternative is to minimize the upper bound
of the condition number of H - jl by proper selection of 6, and ;. Based on Oren’s
definition, if H e ! is positive definite and sy > 0, then H o 4:1 obtained by Eq. B-73
is said to be optimally conditioned if 4 and 6, are such that H o +11 is positive definite
and the right hand side of Eq. B-87 is minimized. Oren and Spedicato (1976) showed
that if the relation given by

apbp — a?
0, = KOk £k

= B-91
breryr — az v ( )
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where ay = %y, by, = st Hysy and ¢ = yi H, 'y, is satisfied, then the matrix flk_jl
is optimally conditioned. For BFGS, 6, = 1 for all £ and solving Eq. B-91 for the
optimal scaling factor v gives

T
a _ _Siye

Cr yisz 1yk

Tk =

If the full matrix of H . is used to implement the BFGS (or the scaled
version of the BFGS algorithm), we refer to the algorithm as the standard BFGS
(or standard scaled BFGS). Nocedal (1980) developed an algorithm called limited
memory BFGS, denoted by LBFGS, in which [:]0_ ! is diagonal and it is not necessary
to store the full H . matrix at any iteration.

To develop the LBFGS method, the BFGS update equation Eq. B-49 is
rewritten as

Hily = Vi H Wi+ pisisy (B-93)

where pp = 1 /y,{sk and V, = I — pkyks;‘f. If only L previous vectors are used to
construct H k- 4:17 memory will be saved. When k£ < L the update equation is as usual,

which is given by

o =Viivil VI H WV - Vi

+VkT“'V1TPoSoSgV1'“Vk

(B-94)
+ Vi pr_1sk15t_1 Vi
-+ pksksg.
For k + 1 > L the update equation is
ﬁI;J:I :VkTVkT—l T VkT—LHﬁo_le—LH VeV
+ Vi Vi k- r1Sk-r18h_ 1 Viert2 o Vi
(B-95)

T T
+ Vk Pkflskflsk_lvk

T
+ PrSKS -
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This method can be implemented by using a very efficient recursive formula. This
recursive form is used to compute H! x g which is required to construct the search
direction in quasi-Newton method. The following is the algorithm proposed by No-
cedal (1980).

1. If kK < L, set incr=0 and bound=k; else set incr=k — L and bound=L

2. Gbound = Yk-

3. For i=bound-1, ..., 0

;

j =1+ incr

_ T
@ = PjS; qi+1

qi = qi+1 — QY5
\

ro = HO_I X o
For i=0, 1, ..., bound-1
.

j =1+ incr

B; = pjy]ri

\7’1'—',-1 =r;+s;(a; — 5;)

where k is the iteration number; L is the user specified number of previous

vectors used in the algorithm;. In this procedure, r; is equal to the search

direction vector given by —H; ' x g;.

We can see that this recursive form only involves a small number of vector operations
and only requires enough memory to store a few vectors if [:[0_ !is a diagonal matrix.
Scaling can also be introduced into this algorithm (see Liu and Nocedal (1989)). In
their paper, they conclude that scaling ﬁg U by a factor of 7, at each iteration, i.e.
replacing I:IO_ ! by ykﬁo_ 'in step 3 of the recursion algorithm, is very effective. But
this scaling is different from the scaling scheme discussed above where we scale H & !

by v at each iteration. If we scale H I ' by v, Egs. B-94 and B-95, respectively,



should be written as shown below.

When k < L the update equation is given by

Bty = VAV PV B e ol Al
1/2Vk 1/2‘/1T005050T%1/2V1 : I/QVk
(B-96)
+ 3PV peasioast_im PV
+ prSKSE .
For k + 1 > L the update equation is

1/2 1/2 1/2
Hk—:l = /VkT'Yk/1VkT—1 ’Yk/ L+1VkT—L+1Ho ’Yk L+1Vk L+1° ”Yk 1Vk 1’Yk/ Vi

1/2 1/2 T T 1/2 /2
Vo2 oV b rise-rstpon o Vi rre v Vi

+’Yk/ Vk Pk—18k— 15k 1’)’/&:/2‘/;C

T
+ PESKS; -

(B-97)
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APPENDIX C
CONJUGATE GRADIENT ALGORITHMS
The conjugate gradient method is a minimization procedure which only
requires the first derivative, i.e., the gradient, of the objective function. Although

our main interest is nonlinear problems, we first discuss the methods for solving

linear systems of equations.

C.1 Conjugate Gradient Methods for Linear Problems

In this section, several conjugate gradient algorithms including precondi-

tioned conjugate gradient algorithms for solving linear problems are given.

C.1.1 Standard Conjugate Gradient Methods

Consider the problem of solving a linear equation system given by
Az =0, (C-1)

where A is an nxn real symmetric positive definite matrix and b is a real n—dimensional
column vector.
LEMMA: If A is real symmetric positive definite, solving Ax = b is equivalent to

minimizing the quadratic form:

f(z) = %mTAa: — b = %(x, Azx) — (z,b), (C-2)

where (-, -) represents the standard inner product (e.g. (u,v) = vTu.)

Taking the gradient of the function f(z) gives

~

Vf(x)=Ax —b= —r, (C-3)
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where 7 is the residual. Eq. C-3 indicates that the negative gradient of f(z) is the
residual of the linear system Az = b. Note V f (x) = 0 is equivalent to Ax = b which
is the linear system we wish to solve. Moreover, since A is positive definite, it can
be shown that f(z) is minimum at z* if and only if Az* = b. Thus, solving Eq. C-1
is equivalent to an optimization problem. To minimize the objective function given
by Eq. C-2, we can apply different algorithms. If we choose the negative gradient
as the search direction and do a line search in this direction at each iteration, then
the resulting algorithm is the steepest descent algorithm. In a conjugate direction
method, search directions are required to satisfy orthogonality conditions. The con-
jugate gradient method is a type of conjugate direction method. The conjugate
gradient method has the property of quadratic termination which means that the
method will locate the minimizing point of the quadratic function of Eq. C-2 in at
most n iterations. We show that minimizing Eq. C-2 is equivalent to minimizing the

following function
1

f(z) = 5(7", A_lr). (CH4)

Applying the definition of the inner product in Eq. C—4 and the definition of the
residual gives

f(@) = ~(r, A7)

= —(Azx — b, A (Az — b))
= —(Az —b,x — A™'b)
[(Az,z) — (Az, A7'b) — (b,z) + (b, A7'b)] (C-5)

[(Az,z) — (2,b) — (b,z) + (b, A"'b)]

NN RN RN DN~ DN

1
2T Ax — bTx + §bTA_1b

1
(z) + 5bTAflb.

~s»

Note that the last term is constant so minimizing f(x) and f(z) are equivalent. The

basic iterative step for minimizing the objective function f(x) takes the form

Tpt1 = Tk + apdy, (C-6)
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where k denotes the iteration index, ay represents the step size and d; denotes the
search direction. The step size is determined by performing a line search along
the search direction. To do a line search, we try to find @ = a; which minimizes
f(z + ady), i.e., we minimize f along the search direction dj. Applying the inner
product, we can write f(zy + ady) as
1
f(SBk + Oédk) = §(A(1'k + Qdk) — b, A_l(A(IEk + dek) — b))
1
= é(Axk + aAdy — b, A (Azy, + aAdy, — b))
1
=5 [(Azy, — b, A" (Azy, — b)) + (Azy — b, a A" Ady,)
+ (aAdy, A7 (Azy, — b)) + (@ Ady, a A7 Ady)] (C-7)
1
= f(l’k) + 5 [Oé(Al’k - b, dk) -+ Oé(dk, AZEk — b) + Oéz(dk, Adkﬂ
1
= f(xy) + a(Azy, — b, dy) + §a2(dk, Ady,)
= fax) + h(a),
where

1 1
h(CY) = a(A:z:k — b, dk) -+ 5042(dk,Adk) = —Oé(’l“k, dk) + 50&2(dk, Adk), (C*S)

and rp = b — Axy, is the residual. Taking

dh(c)
do

—0, (C9)

we find the optimal step size given by

= (Tka dk:)
(di, Ady,)’

At each iteration, we construct a search direction dj such that the search directions

o=

(C-10)

are from an orthogonal set {dy, dy,ds, - - ,di}. The new direction dj,; is chosen such
that
(dk—f—l,dj)A = (dk+1,Adj) = 0, 0 < j < k. (C*ll)

There are many methods can be used to generate conjugate directions. In the conju-
gate gradient method, the new search direction is constructed by using the gradient

at the current iteration and previous search direction, i.e.

di1 = Th1 + Brdy, (C-12)
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where ryy1 = b — Axg 1 = =V f(xpy1) and Gy is obtained by solving
(dk+1,Adk) =0

which gives
(rk+17 Adk)

Br == (dy, Ady)

From Eq. C-6, it follows that
Thy1 = b — Azpyr = b — Axy, — g Ady,

or

Tk+r1 = Tk — OékAdk

(C-13)

(C-14)

(C-15)

(C-16)

Given the search direction and the step size along that direction, we can now write

down the conjugate gradient algorithm for solving Eq. C—1 where A is an n x n real

symmetric positive definite matrix.

Algorithm 1:

(1) Select initial guess .

(2) Calculate

To = b— Aﬂfo,
dy = 19
(3) Iteration loop
DO k=0,1,---
- (7%, d) _ (dy)T'ry
(di, Ady)  (dp)TAdy,’
Tk+1 T — akAdka
Tyl Ty + agdy,
3 (rigr, Ady)  (di) T Argg
F (dy,, Ady,) (dp)TAdy,
djt1 Tkt1 + Ord.

END DO

(C-17)
(C-18)
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We can prove that the gradient or residual at the current step is orthogonal

to all the previous search directions. Applying Eqgs. C—16 and C-10, we obtain
(rk+1,di) = (re — o Adg, dy,)

= (7%, di) — ax(Ady, di,)

B (e, i) (C-24)
= (rp, di) — dek, dy,)

=0.
Applying Eq. C—24 and the fact that the search directions are A—orthogonal for

conjugate gradient method, we have
(rry1, dg—1) = (rp — axAdy, d_1)
= (rg, dp—1) — ax(Ady, di—1) (C-25)
=0.

By mathematical induction, we have

(ri,dj) =0, for j <k. (C-26)

Applying this equation, we find that
(T, di) = (T, 7k + Br—1dk—1)
= (i, ") + Br—1(ri, di—1) (C-27)

= (rg,Tk)-

Applying Egs. C-26, C-23 and C-12 gives
= (41, di)

0=
= (Tkt1, 7% + Br—1di—1)
= (
= (

(C-28)
Tht15 Tk) + Br1(Trg1, di—1)
Tk+1, Tk)-
Using this equation and Eq. C-26, we obtain
= (Tk+1, dk—l)
(C-29)

0=(
= (Th1, Th1 + Br—odi—2)
= (k415 7k-1) + Bre—2(Ths1, di—2)
~(

Tk+1, Tk;—1)-
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By mathematical induction, we have

(rg,75) =0, for j<k. (C-30)

As a summary, we can write

(dg, Adj) = 0 for j#Kk, (C-31)
(re,d;) = 0 for j <k, (C-32)
(re,r;) = 0 for j#k. (C-33)

Egs. C-32 and C-33 hold when an exact line search is done. Let g be the gradient of
the quadratic objective function given by Eq. C-4. Using the fact that the residual
is equal to the negative gradient of the objective function, Eqs. C-32 and C—-33 are,

respectively, equivalent to

(gr,d;) = 0  for j <k, (C-34)

(9k,9;) = 0 for j#k, (C-35)

Egs. C-31 through C-35 indicate that when applied to quadratic functions the con-
jugate gradient method has the following properties:

(i) the search directions are A-orthogonal;
(ii) the residuals are orthogonal;
(iii) the gradients are orthogonal;

(iv) the residual at the current iteration is orthogonal to all previous search direc-

tions;

(v) the gradient at the current iteration is orthogonal to all previous search direc-

tions.

Note that the last four properties require exact line searches.



From Eqgs. C-16 and C-10, it follows that

(Tk—I—l — Tk, dk) = —Oék(Adk, dk) == —(T’k, dk) (0*36)
From Eq. C-16
1
Adk = ——(Tk+1 — Tk). (C*37)
Qg
Thus, using this result and Eq. C-30, we find
1
(ris1, Ady) = (riy1, _a_(rlﬁ-l — 7))
. b (C-38)
= ——(Tht1, Tht1)-
A

Using Eqgs. C-23, C-37, C-26 and C-30, the inner product (dj, Ady) can be written

as
1
(di, Ady) = (1, + Br—1dk—1, _Oé_(rkJrl )
] k (C-39)
= a_]g(Tk’rk)'

Substituting Eqs. C-38 and C-39 into the pertinent equations given in Algorithm 1,
we obtain the following equivalent algorithm:

Algorithm 2:

(1) Select initial guess xy.

(2) Calculate

To = b — Amo, (C—40>
dQ = Tp. (Ci4l>
(3) Iteration loop
DO k=0,1,---
(Tk,rk) (Tk)TT'k

= = C—42
a (dis Ady) — (do)TAdy’ (C-42)
Tk+1 = Tk — OzkAdk, (C*43)
L1 = Ty + Oékdk, (C*44)

(Tk+17 Tk+1) (Tk+1)T7”k+1
= = C-45
B (’Fk, ’f’k) (Tk)TTk ( )
dpr1 = Thg1 + Brdy. (C-46)
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END DO

C.1.2 Preconditioned Conjugate Gradient

Multiplying both sides of Eq. C-1 by C~!, we get
C ' Ax = C M, (C-47)

where C'is chosen such that it is an approximation of A. C'is called a preconditioning

matrix. Note if C' is exactly the same as A, then Eq. C—47 becomes
r=C"1b= A", (C-48)

i.e., the solution of Eq. C—1 is obtained. It is well known (see, for example, Green-

baum (1997)) that the error at the kth iteration of the conjugate gradient satisfies

K(A) — 1\*
<o/ - .
lexlla < 2(5 7)ol (C-49)
where
€ = A_lb — T, (0*5())

k(A) is the condition number of A and for any real n-dimensional column vector y,

lylla = (. 0)d* = VyT Ay. (C-51)

Eq. C-49 suggests that the closer the condition number is to unity, the more rapid
the convergence. The idea of preconditioning is to choose a matrix C' close to A
so that k(C71A) < k(A). Then, if we apply the conjugate gradient method to
the transformed problem given by Eq. C-47, the conjugate gradient method should

converge faster than if we apply it to the original problem. Define the inner product:
(u,v)e = u’ COv,
and the pseudo residual:
hy = C~ b — Axy) = C'ry.

In terms of the transformed problem, it can be shown (see Axelsson (1996))
that the Algorithm 2 becomes
Algorithm 3:
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(1) Select initial guess xy.

(2) Calculate

(3) Iteration loop

DO k=0,1,---
o =
b1 =
Tp1 —
B =
dpy1 =
END DO

= 0717”0 = Cil(b - A.CL’()), (C752)

(his h)e ()" Chy

= —-54

(dk, CilAdk)C (dk)TAdk’ (C g )

hk - Osz_IAdk, (C*55)

Tl -+ Oékdk, (C*56)

(P41, g1 c _ (hk+1);0hk+1’ (C57)
(P, hie) e (hy)TChy,

hiet1 + Brdi. (C-58)

The algorithm for the preconditioned conjugate gradient is analog to the algorithm

for the standard conjugate gradient. Note that if we replace the residual by the

pseudo residual and the standard inner product (-,-) by the inner product (-,)¢ in

Algorithm 2, we obtain the algorithm for preconditioned conjugate gradient, i.e.,

Algorithm 3. However, when we implement the preconditioned conjugate gradient

method, we will use the residual instead of the pseudo residual and the corresponding

algorithm given below.

Algorithm 4:
(1) Select initial guess .

(2) Calculate

To = b—AZE(), (C*59>
do == CilTo. (C760)
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(3) Iteration loop

DO k=0,1,---
T—1
an = (frkvrk)cfl _ (Tk> C Tk’ (0*61)
(dk, CilAdk>c_l (dk)TAdk
Thy1 = T — o Ady, (C-62)
Thy1 = Tk + Oékdk, (C—63)
B, = (Th+1, Tk+1)c_1 _ (rie1) " C g (C-64)
’ (’l“k, rk)c—l (Tk)Tcilrk ’
dk+1 = C_lT‘k_H + ﬁkdk (0*65)
END DO

This algorithm is called the Fletcher-Reeves algorithm; see Fletcher and Reeves

(1964).

C.2  Conjugate Gradient Method for Nonlinear Problems

When minimizing a non-quadratic objective function, the meaning of the
term residual is not so clear. By analogy, the residual for a linear problem will be
replaced by the negative gradient of the objective function for a nonlinear problem.

The preconditioner has an important impact on the convergence rate of the
conjugate gradient algorithm. For the linear quadratic problem, preconditioned con-
jugate gradient method solves C~'Ax = C~'b where C is called the preconditioner,
instead of Ax = b. In the history matching problem of interest to us, the Hessian

matrix which is the second derivative of the objective function, is given by
H=C, +G"Ch'aG. (C-66)
At an iteration of the Gauss-Newton method, we need to solve a problem of the form
Hz = (Cy} + GTCL'G)z =b. (C-67)

For large problems, calculation of the whole sensitivity coefficient matrix G is too
computationally expensive to be feasible. If we do not compute G directly, it is

difficult to use information in GG to obtain a good preconditioner. Thus, the obvious
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choice for a preconditioning matrix is C;;". Using C;;" as the preconditioner can sig-
nificantly improve the convergence rate compared to applying the conjugate gradient
algorithm without using any preconditioner (see Kalita and Reynolds (2000)). But
Kalita found that this preconditioned conjugate gradient method often converges to
a very high objective function value. Thus, a better preconditioner is needed. As
the quasi-Newton method provides an approximation of the inverse Hessian, we at-
tempted to generate an approximation to the inverse Hessian within the conjugate
gradient procedure and use this approximate inverse Hessian as a preconditioner. If
we applied the quasi-Newton method to a quadratic function, given that the exact
line search is done, then the Hessian inverse approximation would become the true
inverse Hessian at the nth iteration where n is the dimension of the problem. Even
though the preconditioner is an approximation of the coefficient matrix (for example,
it is Hessian when solving Eq. C—67), the inverse of the preconditioning matrix will
be used in our implementation of the conjugate gradient algorithm. So we can use
the inverse Hessian approximation calculated from the quasi-Newton update equa-
tion as the preconditioner inverse to implement the conjugate gradient algorithm.
The algorithm follows the description given in Kalita and Reynolds (2000) and is

given below.

(1) Select initial guess m( and initialize the iteration index k and restart counter

1 by setting £k = 0 and 7 = 0 respectively.
(2) Calculate
ro = —VnO(my). (C-68)

Select the initial preconditioning matrix M, (C’]\}l or ]:IO_ 1), calculate “pseudo”

residual

So — Malro, (C769>

and select the initial search direction equal to the “pseudo” residual, i.e.,

d() = S50- (C*?O)
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Calculate

0o = Opew = rgdo = TOTMo_lro. (C-T1)

(3) Iteration loop
k=0,...,knax (CG iteration loop)
Calculate the step size ay in the search direction di by using the approach

discussed later in this appendix. Then calculate

Mpy1 = My + apdy, (C-72)
Ter1 = —VnO(mpg), (C-73)
Omid = rkTHsk = rg+1Mk_1rk, (C-74)
Skp1 = Mk;llrkH, (C-75)
Onew = Thgp1Skt1 = Thyy My Tt (C-76)

(Note if C;;' is used as the preconditioning matrix then the preconditioning
matrix will be fixed for all iterations, i.e., ]\4,;1 = () for all k’s. If the
preconditioning matrix is generated from quasi-Newton method, then M, 1
H.' at the kth iteration.)

Calculate Bgy1:

T
PR __ Tk+1 (Sk-l—l - Sk) o 5new - 5mid B
gt = T = 5 (C-77)
Bry1 = max {B"", 0}. (C-78)

If i = n (n is the maximum number of iteration allowed before restart) or

rid, <0
set
dis1 = Spr1; B =0; ¢=0.
else
di+1 = Spt1 + Br+1de (C-79)
Endif

i=i+1 (C-80)



End k loop

For our history matching problem, the whole objective function can be writ-
ten as

O(m) = O, + O, (C-81)

If we are interested in constructing the MAP estimate then
Om - (m - mprior)TC]\_;(m - mprior)7 (C782>

and
O4 = (g(m) — dobs)TCEl(g(m) — dobs)- (C-83)

If we are interested in calculating a realization of the model m by the randomized

maximum likelihood method, then
Om = (m — mue) " Cif (M — miye), (C-84)

and

O4 = (g(m) = duc)" Cp'(g(m) — duc). (C-85)

The preceding equations assume we do not incorporate a correction to the prior
mean. If we do so, then the objective function is given by Eq. 2.29. In the remainder
of this appendix, we give the equations for calculating the MAP estimate, but it is
quite simple to modify the equations to obtain the relevant equation for generating
a realization with or without a correction to the prior mean.

Some technical details about preconditioned conjugate gradient algorithm

are given below.

1. Calculation of the gradient of the objective function.

1 _ _
Vm0<mk) = vm [§(g(mk) - dobs)TCDl<g(mk) - dobs)] + CMl (mk - mprior)
(C-86)
The first term V,,04(my) can be calculated by using the adjoint method.

The computational cost of computing this term is roughly equivalent to one
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simulation run. The second term in Eq. C-86 can be obtained by solving the

following linear equation system for x.
CMCL‘ = My — Mprior- (C787)

Because the coefficient matrix C'; is fixed, we just do an LU decomposition of
C)r once. At subsequent iterations, the solution of Eq. C—87 can be obtained by
just forward and backward substitution. This assumes that C'y; is not so large
that we cannot afford to store its LU decomposition. If this is the case, then
Eq. C-87 will be solved by preconditioned linear conjugate gradient method

using incomplete LU decomposition to generate a preconditioning matrix.

. Step size calculation.
The step size can be obtained by minimizing f(«) = O(my + ady) with respect
to a.. The value of « at its minimum can be found by solving h(a) = f'(a) =0

for a, i.e., we solve

ha) = f(a) = dO(mfl; ) _ (O +ad) de =0, (C-88)

for a. This equation can be solved by using the Newton-Raphson algorithm

which is given by
h(a;)

Qjy1 = Q5 — W(a))
J

(C-89)
where 7 denotes the index of Newton-Raphson iteration and the first derivative
of f can be evaluated by

_ dh(«)

h'(«) o

= d;fV [(V(mk + Oédk))T] d, = df[—[(mk + Oédk)dk (C—QO)

The Newton-Raphson iteration could be stopped when a suitable convergence
criterion is satisfied. However, an exact line search based on the Newton-
Raphson iteration is very expensive due to the fact that the evaluation of the
term dl H(my, + ady)dy, requires one simulation run. In our procedure, we do
only one Newton-Raphson iteration with ay = 0. As discussed Chapter V, if

a is such that the Wolfe conditions are not satisfied, we apply a quadratic fit
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followed by cuts in the step size to find a suitable oy and my 1 = my + aidy.
To perform one Newton-Raphson iteration, we set ag = 0 and then Eq. C-89

gives

“ dTH (my)d), (C=91)

Because the problem is nonlinear and an inexact line search is used, the search

directions may not be orthogonal or the calculated search direction may be
uphill which is indicated by r{d; < 0. So we restart the CG iteration using
search direction given by dy = —M; ' VO(m;,) whenever a user specified number
of iteration for restart is reached or r]dy < 0. The denominator in Eq. C-91
can be calculated without explicit calculation of the Hessian matrix. If the

Hessian matrix is in the form of
Hy = GL Oy Gy + Oy, (C-92)

then
di Hydy, = di (GFCo'Gr + Cyf )dy,
= dL (GFC'Gr)dy, + dECyfHdy, (C-93)
= (Gidy)"Cp (Grdy,) + d} Cy/ dy..
To evaluate this last equation, we do not need to compute the sensitivity coef-
ficient coefficient matrix G directly. We only need to calculate Gdj which can

be done by using a finite-difference method or gradient simulator method. The

elements of the sensitivity coefficient matrix can be written as

9gi
where ¢ = 1,--+ Ny and j = 1,---,N,, and g(m) represents the vector of

calculated data for the model m with g; representing the ith component of g.

The directional derivative is

(), - (Amreddy (C-95)
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Let uw =dy/ || d ||, so we have

dgi T
— = [Vgi(m)]" u
( do ) a=0 i] : (C-96)

The ith component of Gdy, is given by

M
9y
B
=1 9T (C-97)
— (Vs ()"

[Gdk} i

Substituting Eq. C-96 into Eq. C-97, we obtain

d
(Gaeli =1 dell () oo
gi(m + edy) — gi(m)
elldl
_ gilm+ edy) — gi(m)
€

=l di |l

(C-98)

where € is a small number. As this holds for all components of GGd,, it follows

that

(m + edy) — g(m)
€

The preceding derivation can be found in Kalita and Reynolds (2000). We

(C-99)

choose € based on the infinity norm of dj such that € satisfies € || dj, [|oo= 1075.
Note that calculating Gdj needs one additional simulation run to evaluate
g(m + edy). Once we obtain Gdi, we can use Eqs. C-93 and C-91 to calculate

the step size.

If the Hessian matrix does not have the particular form given in Eq. C-92 we

can use the finite-difference method to calculate Hyd, directly, i.e.,

dek _ VO(mk + Edk) — VO(mk) (C*lOO)

€

Applying Eq. C-100 requires one forward simulation run to calculate the pri-
mary variables that are required to form the adjoint system and one adjoint
solution to form the gradient evaluated at m;+ed,. Whereas applying Eq. C-98

requires only one forward simulation run.

231



232

3. Calculation of preconditioner.
There are two ways that can be used to obtain the preconditioning matrix.
The first choice is to use Mj, = C]\_/[l at all iterations. In the second choice, the
preconditioner M, can be obtained by using quasi-Newton update equation.
In our implementation, we use the limited memory BFGS (LBFGS) proposed
by Nocedal (1980) to generate M X r where r is the residual. Implementation
of LBFGS only needs vector operations and only needs to store vectors. The
details about calculating M x r are given in Appendix B. The difficulty with
this procedure is that we can only approximate the quasi-Newton H . ! using

information in the conjugate gradient algorithm.

4. Calculation of .
In the algorithm, the procedure we use to calculate (3. is based on the Polak-
Ribiere equation for g7F (Eq. C-77); see Polak (1971). By selecting (1 =

maz{BTE, 0}, we will restart the algorithm when g7 < 0.

5. Restart CG.
The conjugate gradient algorithm is restarted if any the following conditions

holds:

(i) Ber1 <05
(ii) reach the maximum allowable number of iterations without restarting;

(iii) r]dy < 0, i.e., the search direction is uphill.



APPENDIX D

RELATIONSHIP BETWEEN CONJUGATE GRADIENT AND
QUASI-NEWTON METHODS

Much of the discussion in this appendix can be found in Murray (1972),
Nazareth (1979), Buckley (1978b) and Buckley and Lenir (1983). Suppose we wish

to minimize an objective function f(z) by using an iterative scheme of the form
xk+1:xk+akdk ]{3:071, s (D*l)

where k is the iteration index, x( is the initial guess, dj is the search direction at
the kth iteration and oy is the step size. If an exact line search is used, then «y
minimizes h(a) = f(zy + ady). The theoretical results are often obtained under the

restrictive condition that f(x) is a quadratic function of the form

flz) = %ZBTA[L’ — bz +c (D-2)

where A is an nxn real symmetric positive definite matrix, b is a fixed n—dimensional
column vector and c is a constant. It is easy to show that there is an unique x* which

minimizes f(z) and z* is the unique solution of
Az =b. (D-3)

Using a Taylor series expansion, it is easy to show that Eq. D-2 can also be written

as
* ]' * *

f(@) = f(a") + (e —a7) Aw — 7). (D-4)

Definition: A set of vectors dg,dy, - ,d,_1 where d; # 0 are conjugate

with respect to a given real symmetric positive definite matrix A, if

d} Ad; = 0 for all i # 7. (D-5)
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If A is equal to the n x n identity matrix, then Eq. D-5 reduces to the usual
definition of orthogonality. It is easy to show that if {d; }?:_& are A—orthogonal, then
{d; ;‘:—01 are linearly independent.

Theorem: If the iterative scheme of Eq. D-1 with an exact line search is
applied to minimize the quadratic objective function of Eq. D-2 starting with an
initial guess xy and the set {dj}?:_& are A—orthogonal, then convergence to the z*

that minimizes f(z) is obtained in at most n iterations. Moreover,
i
xip1 = argmin{ f(z) | = x¢ + Z B,d;}, (D-6)
=0

i.e., x;y1 minimizes f(z) over the subspace consisting of all vectors of the form

To+ Y50 Bid;
The proof of this theorem can be found in Fletcher (1987) and Murray

(1972). This theorem essentially says that for a quadratic function
conjugacy + exact line search = quadratic termination.

Let g; denote the gradient of the quadratic objective function f(x) given
by Eq. D-2 evaluated at the z;. Let {d;} denote search directions and (-,-) denote

the standard inner product on the set of real n-dimensional column vectors. We can

show that
(Adl,dj> = 0 fOI‘ ’L?é] (D—7)
(gind;) = 0 for i>j (D-8)
(9i,95) = 0 for i#3j (D-9)

hold for all quadratic functions (linear problems) when applying the conjugate gradi-
ent method (see Appendix C) to minimize the quadratic objective function of Eq. D—
2. Due to round off errors, search directions may lose the conjugacy, so restarts are
required. As derived in Appendix C, Eqgs. D-8 and D-9 require an exact line search.

For nonlinear problems, Eqgs. D-8 and D-9 do not hold. However, we can

show that (g;41,d;) = 0 holds if an exact line search is performed. Let

h(a) = f(z; + adj), (D-10)
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where f is now a non-quadratic objective function. An exact line search will find the
value of a (v = ;) such that

dh(«)
0= —as
da o=

= (vf(xj + adj)|a:aj)de
= (Vf(zj)) ' d;

= 9]'T+1dj‘

(D-11)

Thus, the current gradient is orthogonal to the previous search direction, but is
not necessarily orthogonal to all the previous search directions for a non-quadratic
objective function.

Before we consider the relationship between the conjugate gradient and
the quasi-Newton method, we write down the algorithms for both methods. For
a quadratic function of the form given by Eq. D-2, the preconditioned conjugate

gradient algorithm with preconditioner H ' is given below.

1) Choose initial guess zo and a preconditioner H , set dy = —H! o and iteration
g g

index j equal to zero.
(2) Find the step size «; in the search direction d; by an exact line search.

(3) Update the model and the search directions by applying

Tipn = x;+a;d;, (D-12)
T -1
9 gj4

Bijs1 = ﬁ;~—_1]7 (D-13)
ng 9j

9;‘T+1H719j+1 4

diyy = —H 'gjp+Bind; = —H g0+ =
g5 Hg;

(4) Determine whether the stopping criteria are satisfied. If satisfied, then stop:;
otherwise replace j by 7 + 1 and go to step 2.

In the above algorithm, H~' denotes the preconditioner. Note that H~* = I corre-
sponds to the standard conjugate gradient method without preconditioning.

The algorithm for BFGS with ﬁo_l — H'is given by
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(1) Choose an initial guess xo and the initial Hessian approximation matrix H, ! =

H'. Set dy = —H g, and set the iteration index j equal to zero.

(2) Find the step size «; in the search direction d; by an exact line search.

(3) Update the model and the search directions by applying

Ty =+ a;ds,
Sj = Tjy1 — Ly,

Yi = Gj+1 — Gy,

. - 1 yI 0y,
H7Y = H'+ <1+ L )s-sT
J+1 J sjryj SjTyj J°g
1 rr—1 T T r7—1
Ty (H; yss; + sy H ),
J
dipn = —Hjhgin

(D-15)
(D-16)
(D-17)

(D-18)

(D-19)

(4) Determine whether the stopping criteria are satisfied. If satisfied, then stop:;

otherwise replace j by 7+ 1 and go to step 2.

For the quadratic function of Eq. D-2, applying a Taylor series expansion

we have
git1 = gj + Alrj1 — ;)

where the Hessian matrix is equal to A. Let

Yi = gij+1 — Gy,

Sj = Tjp1 — Tj.
From the algorithm, we note that

s = ajd;.
Using Eq. D-21 and D-22, Eq. D-20 can be rewritten as

yj = As;

(D-20)

(D-21)

(D-22)

(D-23)

(D-24)
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which is called Newton condition. Using Eq. D-23 we can also write Eq. D-24 as
y; = As; = a; Ad,;. (D-25)
Therefore, the conjugate condition of Eq. D-5 can be replaced by
dly;=0  for i4#j. (D-26)
From Eq. D-23, Eq. D-26 implies that
sty; = audly; =0, for i #j. (D-27)

It is well known that both the conjugate gradient methods and the quasi-Newton
methods satisfy the conjugate condition given by Eq. D-5; see Murray (1972).
For any ¢+ < 7, Eq. D27 and Eq. D-11 imply that, for a quadratic function,

Szng = 5] giv1 + 5] (G2 — Giv1) + 5] (Girs — Gio)+, - 7+SiT(gj — gj-1) (D-25)

=5 gis1 + 8, Wir1 T Yis2 + - +yj-1) =0 for <.
Note that the number of terms in the parentheses of the second term in Eq. D-28 is
equal to j — i — 1. For example, if i = 7 — 1 then the second term in Eq. D-28 will
disappear. Note that Eq. D-28 is equivalent to

gls;=0 for > 3. (D-29)

Eq. D29 indicates that the current gradient is orthogonal to all the previous search
directions when both conjugate gradient and quasi-Newton methods are applied to
quadratic functions, given that an exact line search is performed.

For the BFGS algorithm, Eq. D-28 gives
s, gj = oid, g
= —a;(H;"g:)" 9 (D-30)
=0.

Applying Eq. D28 and the Hessian inverse approximation update equation used in
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the BFGS algorithm, we have

= g;‘FHZ-_lg]
T
(-1, Si—1¥i-1 751
=9 (HZ_ + Hi~ )g
1 SzT_lyzfl 1 J
T 771 gi si1 T 1
=9 H19; + — Y11 19;
zflyl—l
T ;71
=g, Hi g
o (D-31)
(-1, Si—2Y%i-2 ;71
=9 (HZ_ + H; )g
2 S£2yz_2 2197
T 771 gi si2 T 77-1
= G; Hz_—ng + 73 Yi—o z_—QQJ
7,—2y'i—2
= gz‘T]:]z‘_—IQQJ
= Q;‘Fﬁ_lgj
which is valid for all ¢ < 7. Thus,
Ti-1, _ L
g; H "gi=0 for ¢<j. (D-32)
We can prove that
gy~ i1, (033

holds for all i < j by using mathematical induction on 7. Now assume Eq. D-33

holds for some H; ., i.e.,

Hiillgj = ﬁ_lgj. (D*34)

For f[;l, using Eqgs. D-31, D-34 and D-21 we have

- S Si—1 ~
H; 19]’ = z‘—119j + T . yiT—lHi—llgj
i—1Yi—1
o Si— ~
=H g+ (g — gi)"H'g; (D-35)
S@—ly’i—l
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So using Eq. D-28, the search direction in BFGS (see Eq. D-18) can be written as
BFGS ~
diy, = _Hj+119j+1

. 1 _

= —H ‘i + r(ijHj '9541)5;
i Yi
g+ (901 —9)" Hj 'gjn
7 O‘jd;"r(gjﬂ —95)
QJ-T+1H]-_19j+1 d-
= j
—(H; " g;)" (941 — 95)
9f+1H_19j+1d‘
5 j
g; H'g;

o d;

) (D-36)
= —H;'gj+

= —H'gj+

cG
=djy.

So the BFGS and conjugate gradient are equivalent no matter how we choose the
initial Hessian inverse approximation in the BFGS algorithm. If the initial Hes-
sian inverse approximation is the identity matrix, then BFGS is equivalent to the
standard conjugate gradient method without preconditioning. If the initial Hessian
inverse approximation is the an arbitrary matrix H !, then BFGS is equivalent to the
preconditioned conjugate gradient method with preconditioner equal to H~'. This
result was derived assuming that the algorithm are applied to a quadratic objective
function and the search direction is exact.

We summarize the well known properties of conjugate gradient and vari-
able metric algorithms in this paragraph. When applied to the minimization of a

quadratic function and using the same initial metric defined by H—!, we have

(1) termination in at most n steps (quadratic termination);
(2) search direction vectors are conjugate;

(3) giT[:[_lgj =0 for i < j;

(4) the jth direction d, lies in the subspace spanned by H gy, H gy, , H g 4.

One of the more general conjugate gradient algorithms due to see Shanno

and Phua (1978) is given below.
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(1) Choose an initial guess g, set dy = —go and set j = 0.
(2) Find the step size o in the direction d; by an exact line search.

(3) Update the model and the search directions by applying

Tin =+ a,d;, (D-37)
Yi = Ggj+1 — Gy, (D_38)
T
Yi gi+1
g, = Yiditt D-39
dis1 = —gj+1 + Bjd;. (D-40)

(4) Determine whether the stopping criteria are satisfied. If satisfied, then stop;
otherwise replace j by 7 + 1 and go to step 2.

If we do an exact line search, then we have dJngH = 0. If the objective function is
quadratic, we have ngng = 0. For quadratic functions, if we do an exact line search,
the above algorithm becomes the Fletcher and Reeves (1964) algorithm where (3 is
given by

(g1 — gj)ng+1

(941 — 9;)7d;
99
- —gld;
_ 9j195+1
a —g; (—g; + Bj-1d;-1)
_ 9519541
gty

(D-41)

If we do an exact line search but relax the condition that the function is quadratic,

we have

Y g
nggj

which is the Polak (1971) algorithm with an exact line search.

Bj ) (Df42>
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241
Eq. D—40 can be rewritten as

dj1 = —gjp1 + d;f3;

— g+ dj(ijng)
= g + 2T
’ y; d;
C g (djy])gjs (D-43)
= g +
’ y; d;
(1~ djy; )o
Perry proposed
T T
S;Y; 58
d, :—(1—“ J)- = —Qi1g; D44
j+1 ijSj S?yj 9j+1 Qj+195+1 ( )
where s; = ojd; = xj41 — ;, and [ is the n X n identity matrix and
T T
SiY; ;S
Qi1 =1— 22 . (D-45)
/ ylsj 55y,
Note ()41 satisfies
T T
T T 5395 . 5i%j
y; Qi1 =Y (I— )
7 ! Yisi S5
I N (y; si)s;
! ?J;‘-st SJTyj (D—46)
=y Y+
T

Note that ;41 is not symmetric and also note that with an exact line search Eq. D



44 can be rewritten as

Syl sS)
uls;i ]y
—(I B oz;djij N ozjdjozjcl?)g+1
Yyl ayd; s]Tyj J

dy;  aydoy(d]gi)

djy1 = — (I - )9j+1

ijngrl
A (g1 — 95)7d; %

?JJTQJH
JT+1d 95 d;
y] gj+1
d

yj gj+1
—9g; (—g; + B;dj-1)
3/] Jj+1

= g+1+ d7
j ag; j

d;

= —gjr1+——74d;

= —Yj+1 T d;

which is Polak-Ribiere algorithm; see Eq. D—42.
Shanno (1978a) proposed

T T T
JgHlL— 4 = T T T T,,.
Yisi  Y;jSi 55

which is symmetric. Right multiplying Eq. D-48 by y; gives

T
QjnY =Yj — —p— — Y+ 5
yjsj
o Sjyjy]
=S; —
y] S]

which does not satisfy the quasi-Newton condition, i.e., Q;j11y; # s;.
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(D-47)

(D-48)

(D-49)

If we define



Qj+1 by
T T
_ Y Yjsis;
Qj+1 = Qjrr + -
% Y175 Ui (D-50)
T T T T
SiY; +Y;S; Y5 Ui\ 5i5;
=l - ———+ (145 T,
Yj s 5597 55 Y
then @ satisfies the quasi-Newton condition, i.e.,
_ sjyjryj + ijJT?/j yfyj SJS??JJ
Qj+1Y) = Yj — T +{1+ 7 T
Yj 5 5i Y%7 55 Yi
SiY5Yi Yis; Y y/y;
=Y - 7. T T +<1+ T )Sj
Yj Si Yi Si Si Yj
T T
5345 Y Yi Yi (D-51)
=y, — —yj + 85+ T s
Yj y]TSj Yj T 5; S;r A
Ty, Ty,
= j—%é’j— J+Sj+%sj
Y; S 5 Yj
=35

If we replace the H j*l in BFGS Eq. D-18 by an identity matrix I, then we

will obtain Eq. D-50. So the conjugate gradient method with Eqgs. D-50 is exactly

the BFGS method when the approximation to the inverse Hessian is restarted as the

identity matrix at every step. Shanno also called this algorithm the “memoryless”

BFGS method.

243



