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ABSTRACT

Fengjun Zhang (Doctor of Philosophy in Petroleum Engineering)

AUTOMATIC HISTORY MATCHING OF PRODUCTION DATA FOR LARGE

SCALE PROBLEMS

(243 pp.-Chapter VII)

Directed by Dr. Albert C. Reynolds

(319 words)

Within the context of Bayesian statistics, realizations of rock property fields can be

generated by automatic history matching of production data using a prior model

to provide regularization. Automatic history matching requires the minimization of

an objective function which includes the sum of squared production data mismatch

as well as a regularization term arising from the prior geostatistical model. For

large scale problems, the computational efficiency and robustness of the optimization

algorithms used for minimization are of paramount importance.

We consider a variety of optimization algorithms for history matching pro-

duction data. For history matching problems where tens of thousands of param-

eters are estimated, preconditioned conjugate gradient methods and quasi-Newton

methods appear to be the only viable gradient based methods. Based on several ex-

amples considered in this work, a particular implementation of the limited memory

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is more robust and computa-

tionally efficient for large scale problems than the preconditioned conjugate gradient

methods that we have tried. It is shown that computational efficiency of the limited

memory BFGS can be improved by a proper choice of the scaling factor and the
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initial approximation of the inverse Hessian. To the best of our knowledge, the par-

ticular implementations of these algorithms presented here are new to the petroleum

engineering literature.

An iterative linear solver based on orthomin theory was implemented in this

work. For large problems, the iterative solver is orders of magnitude faster than the

direct solver which is based on the LU decomposition. The iterative solver was used

to solve the adjoint equation system which is a linear system. The solution obtained

by the iterative solver is in excellent agreement with the solution obtained by a sparse

matrix technique.

The computational algorithms for history matching are applied to condition

rock property fields generated from a prior geostatistical model to production data.

The procedure allows one to consider the errors in prior means as model parameters.
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CHAPTER I

INTRODUCTION

Automatic history matching can be used to generate reservoir descriptions

that are consistent with both static data and dynamic data. In our application of his-

tory matching, we minimize an objective function which consists of a data mismatch

part and a model mismatch part. The data mismatch part measures the distance

between predicted production data from forward modeling and observed production

data. The model mismatch part provides regularization and measures the distance

from a prior mean or unconditional realization generated from the prior model. With

this approach to automatic history matching, we can construct estimates or realiza-

tions of reservoir parameters, e.g., absolute permeability fields and porosity fields.

Prior means for model parameters can also be considered as parameters in the history

matching procedure. Adjusting prior means is similar to estimating permeability or

porosity multipliers. The parameters to be estimated are referred to as the model

parameters, or the model.

To minimize the objective function involved in the history matching proce-

dure, we need to apply the optimization algorithms. Basically, there are two cate-

gories of minimization algorithms for unconstrained optimization problems. One cat-

egory consists of gradient based algorithms, e.g., steepest descent, Newton, Gauss-

Newton, Levenberg-Marquardt, conjugate gradient and variable metric (or quasi-

Newton), and the other category includes non-gradient based algorithms, such as

simulated annealing (see, for example, Ouenes et al. (1993) and Vasco et al. (1996)),

genetic algorithm (see, for example, Sen et al. (1992)), Monte Carlo methods (see, for

example, Hegstad et al. (1994) and Bonet-Cunha et al. (1998)) and neutral networks

(see, for example, Ouenes et al. (1994)). Unless one can predict production data for
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a given reservoir model by some method which is orders of magnitude faster than

running a conventional finite-difference simulator, non-gradient based algorithms are

far too slow for practical application (see, for example, Bonet-Cunha et al. (1998)) as

they may require hundreds of thousands of iterations for convergence, and one must

recalculate the predicted production data at each iteration. In our work, predicted

data are always generated by running a reservoir simulator, and only gradient based

algorithms are considered.

With this approach, the efficiency of automatic history matching rests on

the parameterization of the model and the efficiency of the optimization algorithm.

The simplest reparameterization technique is known as the method of zonation, in

which the reservoir is divided into a relatively small number of zones over which the

parameter is assumed to have uniform values. To the best our knowledge, Jacquard

and Jain (1965) and Jahns (1966) used the zonation approach first for history match-

ing purposes. A decade later, Gavalas et al. (1976) and Shah et al. (1978) showed

that a Baysian history matching approach gave better estimates of the true perme-

ability and porosity fields than were obtained by zonation in a simulated case of a

one-dimensional reservoir. In a recent study, Bissell et al. (1994) proposed a type of

zonation in which gridblocks are grouped together into sets that they call gradzones.

They provided a procedure to select gradzones based on the high sensitivity of vari-

ous data with respect to parameters in each of the selected gridblocks. Although it

is simple to apply zonation for reservoir inverse problems, it is difficult to obtain a

good data match because of the small number of degrees of freedom. More impor-

tantly, any coarse zonation method typically yields discontinuous reservoir properties

at zonation boundaries.

The pilot point method of parameterization which perturbs reservoir proper-

ties only at selected pilot point locations to match the production data was originally

proposed by de Marsily et al. (1984) in the groundwater hydrology field. This is a

reduced parameterization whose basis vectors are simply the columns of the prior

covariance matrix corresponding to the pilot point locations. The pilot point method

has been applied to synthetic and field cases by several researchers (for example, Ki-



3

tanidis (1995), RamaRao et al. (1995) and Gómez-Hernández et al. (1997)) in the

groundwater hydrology field. In recent years, some researchers (for example, Xue and

Datta-Gupta (1997), Wen et al. (1997), Bissell et al. (1997) and Roggero (1997)) have

adapted the same idea to history matching. The drawback of this method is that,

it can result in overshoot at the pilot point locations (see, for example, Xue and

Datta-Gupta (1997)).

The subspace method (for example, Reynolds et al. (1996), Abacioglu et al.

(2000)) is another reparameterization method which can be used for history match-

ing. This method requires applying the adjoint method to compute the subspace

vectors and then applying the gradient simulator method to calculate the gradi-

ent of the objective function with respect to the subspace vectors. Therefore, even

though this method avoids the direct calculation of the sensitivity coefficient G, it is

impractical for large scale history matching problems.

Computational efficiency of the optimization process depends on the num-

ber of iterations required to converge and the computational cost per iteration. In

general, the cost per iteration depends largely on the cost of computing the required

sensitivity coefficients, i.e., the derivatives of predicted production data with respect

to reservoir model parameters. If the number of model parameters is very small, the

finite-difference method can be used to estimate sensitivity coefficients. This process

requires Nm+1 simulation runs where Nm is the number of model parameters. If the

number of model parameters exceeds a few dozen, it is clear that the finite-difference

method will be impractical.

If the number of model parameters is large, the gradient simulator method

(Yeh (1986) and Anterion et al. (1989)), which is a popular approach for comput-

ing sensitivity coefficients, also becomes impractical. With the gradient simulator

method, the sensitivities of all gridblock pressures and gridblock saturations to a par-

ticular model parameter are computed at the end of a simulation time step. From

these sensitivities, we can easily calculate needed sensitivities, e.g., the sensitivities

of water-oil ratio to model parameters. To generate the sensitivities, we must solve

a matrix problem which involves the same coefficient matrix as the one that ap-
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pears in the finite-difference simulator equations. Only the right-hand side of the

matrix problem depends on the particular sensitivities being calculated. Thus, the

problem reduces to solving a matrix problem with multiple right-hand side vectors,

one right-hand side vector for each model parameter. With the fast iterative solver

developed by Killough et al. (1995), it appears that the computational time to com-

pute a single sensitivity coefficient is on the order of 10% of a forward simulation.

For the gradient simulator to be practical, the number of model parameters must be

small. This means, if the underlying reservoir simulation problem involves thousands

of model parameters, e.g., all gridblock porosities and permeabilities, one must re-

duce the number of parameters estimated directly in the optimization algorithm by

some form of reparameterization, e.g., zonation (Jacquard and Jain (1965) or grad-

zones (Bissell et al. (1994); Bissell (1994), Tan (1995)), pilot points (de Marsily et al.

(1984), RamaRao et al. (1995), Bissell et al. (1997)) or subspace methods (Kennett

and Williamson (1988), Oldenburg et al. (1993), Reynolds et al. (1996), Abacioglu

et al. (2000)). However, these methods have those disadvantages mentioned earlier.

Therefore, our research focused on more computationally efficient gradient based

optimization algorithms.

The MGPST, which was introduced by Chu et al. (1995) based on ideas of

Tang et al. (1989), provides a highly efficient approximation of the gradient simulator

method. Unfortunately, the MGPST methods yields highly inaccurate estimates of

the sensitivity of pressure data to the porosity field.

The other main alternative for the computation of sensitivity coefficients is

the adjoint method (Chavent et al. (1975) and Chen et al. (1974)). For linear prob-

lems, the adjoint method is equivalent to a procedure developed for two-dimensional

linear single-phase problems by Carter et al. (1974) and extended in an approxi-

mate, but highly efficient way, to three-dimensional problems by He et al. (1997).

The adjoint method was applied to a water-oil two-phase problem by Wu (1999) and

to three-dimensional three-phase problems by Makhlouf et al. (1993) and Li (2001).

Using this method to get the sensitivity of one datum with respect to all the model

parameters, we need to solve a system of adjoint equations. The system of equation
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describing the adjoint problem is similar to the system of finite-difference equations

solved in the reservoir simulator, but there are some major differences. First, the

adjoint problem is solved backward in time and requires information from the for-

ward solution (reservoir simulation run) to form the matrices involved in the adjoint

problem. In our approach, we save pressure and saturation from the forward run

so that we can compute the matrices involved in the adjoint problem. Secondly,

the system of finite-difference equations for the forward problem is nonlinear and is

solved by Newton-Raphson iteration. The adjoint system is linear, consequently, the

solution of the adjoint problem over one time step, may require on the order of one

half the time or less required to solve the forward problem over one time step, but

we have not done any exact timing of the time required. For the purpose of making

comparison of the computational effort required by different algorithms, we equate

the cost of solving an adjoint system for one time step to the cost of solving the

simulator finite-difference equations over one time step. In the adjoint procedure,

the number of right-hand sides is no greater than the number of production data and

independent of the number of model parameters. If the data are evenly distributed

in time, the cost of computing the sensitivities of all data to all model parameters is

roughly equal to Nd/2 simulation runs backward in time without using the multiple

right-hand side technique where Nd is the number of data. If the number of data is

large, this method is computationally expensive and is impractical for real problems.

Due to the fact that it exhibits quadratic convergence, Newton’s method is

a popular method for unconstrained minimization. As the second derivative terms

needed for Newton’s method are difficult to evaluate, Newton’s method is often re-

placed by the Gauss-Newton method. Near a minimum, the Gauss-Newton method

is approximately quadratically convergent and has the advantage that the associated

Hessian matrix for Bayesian inverse problems is guaranteed to be positive definite if

the prior covariance matrix is positive definite. For a non-quadratic objective func-

tion, Newton’s method may not provide the optimal downhill direction if the initial

guess is far from a model that corresponds to a minimum of the objective function.

Moreover, for history matching problems, the Gauss-Newton method occasionally
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fails to converge to a model which gives a good match of production data if the

initial data mismatch is large; see Wu et al. (1999) and Li et al. (2001). For these

reasons, the Levenberg-Marquardt algorithm is often preferable to the Gauss-Newton

method.

If the sensitivities are easily obtained, the Gauss-Newton (GN) and Levenberg-

Marquardt (LM) methods are good choices for the unconstrained minimization prob-

lem, because they have the quadratic convergence property which results from using

the curvature information of the objective function. This curvature information is

represented by the second order derivatives of the objective function, i.e., the Hes-

sian matrix. Constructing the Hessian matrix requires the computation of sensitivity

coefficients. As computation of all sensitivity coefficients is impractical if both the

number of data and the number of model parameters are large, we will consider other

alternatives for conditioning a model to multi-phase flow production data. The al-

ternatives include those methods that do not require the calculation of all sensitivity

coefficients. They require only the gradient of the objective function, which can be

calculated from a single adjoint solution. Thus, even if these algorithms require sig-

nificantly more iterations to converge, they may still require a small fraction of the

computer time required to obtain convergence with either the Levenberg-Marquardt

algorithm or the Gauss-Newton algorithm.

There are two main classes of effective optimization algorithms which re-

quire only the gradient of the objective function. The first class includes the set of

conjugate gradient algorithms and the second class includes the set of quasi-Newton

or variable metric methods. Each algorithm includes a directional line search, i.e.,

the solution of a one-dimensional minimization problem, at each iteration. However,

the search direction differs from algorithm to algorithm.

Quasi-Newton methods, which are based on generating an approximation to

the inverse of the Hessian matrix, require only the gradient of the objective function.

The methods differ in how they correct or update the inverse Hessian approximation

at each iteration. The rank one correction formula was first suggested by Broyden

(1967). Another formula, called the DFP algorithm, was first suggested by Davidon
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(1959) and later presented by Fletcher and Powell (1963). The BFGS correction

formula (which was suggested by Broyden (1970), Fletcher (1970), Goldfarb (1970)

and Shanno (1970) independently), and several variants of the BFGS formula (like

the self-scaling variable metric (SSVM) by Oren and Luenberger (1974), limited

memory BFGS by Nocedal (1980) and Liu and Nocedal (1989)) have proven useful

in many scientific applications.

DFP, BFGS and all the variants of BFGS are members of Broyden’s family

which is a subset of Huang’s family; see Huang (1970) or Appendix B. Dixon’s theo-

rem (see Dixon (1972)) shows that for a general continuously differentiable objective

function, the set of search directions developed by any two members of Broyden’s

family differ only by a scalar multiplier and successive iterates are identical, given

that the same starting point and the same initial Hessian inverse approximation,

H̃−1
0 , are used and that all line searches are exact. The importance of an exact line

search is underlined by Dixon’s theorem, but in practice exact line searches are ex-

pensive and lead to less computationally efficient algorithms. Due to an inexact line

search and round off errors, different members of the Broyden class usually give in

practice different results for the same problem starting with the same initial condi-

tion. In practice, BFGS is the best update of the Broyden class (see, e.g., Shanno

and Phua (1978), Nocedal (1992) and Kolda et al. (1998)), in the sense that this

algorithm exhibits more robust behavior than others in this class.

Another minimization algorithm which only uses the gradient of the ob-

jective function is the conjugate gradient method. The conjugate gradient method

was originally proposed by Hestenes and Stiefel (1952) for solving linear systems

and extended to nonlinear optimization by Fletcher and Reeves (1964) to obtain

the Fletcher-Reeves algorithm. Later Polak (1971) proposed a different formula to

calculate the coefficient involved in the search direction update equation and the

corresponding algorithm is called Polak-Ribière algorithm. Powell (1977) presented

some numerical results and gave some theoretical reasons which indicate that the

Polak-Ribière algorithm is superior to the Fletcher-Reeves algorithm. Efficiency of

the conjugate gradient method depends primarily on the preconditioner used.
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When applied to quadratic functions, the conjugate gradient method is

equivalent to the standard BFGS algorithm provided that an exact line search is

performed; see Buckley (1978b) or Nazareth (1979). However, the BFGS algorithm

is more efficient than the conjugate gradient method when applied to nonlinear prob-

lems due to the fact that BFGS uses approximate curvature information of the objec-

tive function, e.g., see Buckley (1978a) and Kolda et al. (1998). The disadvantage of

the BFGS algorithm over the conjugate gradient method is that the BFGS requires

much more storage than the standard conjugate gradient method. Here, standard

conjugate gradient algorithm refers to the conjugate gradient algorithm without pre-

conditioning. The standard conjugate gradient algorithm requires less memory than

the Gauss-Newton, Levenberg-Marquardt and quasi-Newton methods. The limited

memory BFGS algorithm requires an intermediate amount of memory which is spec-

ified by users and also uses the approximate information of the Hessian. Kolda

et al. (1998) shows that limited memory BFGS has the property of termination in

finite number of iterations (quadratic termination) when applied to strictly convex

quadratic functions. The examples shown in this study also indicate that limited

memory is more efficient than the conjugate gradient method.

The limited memory BFGS was designed for the purpose of solving large

scale problems which involve thousands of variables. Limited memory BFGS methods

originated with the work of Shanno (1978a), and were subsequently developed and

analyzed by Buckley (1978a), Nazareth (1979), Nocedal (1980), Shanno (1978b),

and Buckley and Lenir (1983). Liu and Nocedal (1989), and Nash and Nocedal

(1991) tested LBFGS method on a set of problems. They concluded that LBFGS

performs better than conjugate gradient in terms of computational efficiency, except

in cases where the function evaluation is inexpensive. Nash and Nocedal also tested

the truncated-Newton algorithm in their work. From their comparison, none of the

algorithms is clearly superior to the other.

The SSVM (self-scaling variable metric) method was used by Yang and

Watson (1988) on hypothetical water floods of both 1D and 2D reservoir models.

The 1D reservoir model consisted of 10 gridblocks with an injection well at one end
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and a producing well at the other end. Sixty data from each well were used for

history matching. Four cases based on this 1D reservoir model were tested. The

reservoir was characterized by different parameters in different cases. The number of

model parameters varied from 9 to 19. The other two cases were based on a quarter

of a five-spot 2D model which consisted of a 10 × 10 grid. Again sixty data from

each well were history matched. The number of model parameters for these two

cases were 4 and 11 respectively. In this paper, the authors tested four different

algorithms, BFGS, SSVM, conjugate gradient and steepest descent. They concluded

that (i) the self-scaling variable metric method is significantly more efficient than

the BFGS method; (ii) the SSVM and BFGS methods are more efficient and robust

than the conjugate gradient method, except in the case where the objective function

is nearly quadratic; and (iii) both SSVM and BFGS methods perform significantly

better than the steepest descent method.

Masumoto (2000) applied the SSVM method to a water-oil two-phase flow

problem. The author considered a one-dimensional reservoir model with 20 grid-

blocks. With a fixed porosity field, the author estimated the permeabilities in all

gridblocks. Hence, there were 20 unknown model parameters. The objective func-

tion he minimized included a pressure mismatch part and the pressure derivative

mismatch part. The author did not give any information about how many data he

history matched or any assessment of the minimization algorithm. Savioli and Grat-

toni (1992) tested 4 different algorithms: Davidon-Fletcher-Powell (DFP), Fletcher-

Reeves (FR), BFGS and Levenberg-Marquardt (LM). The authors presented two ex-

amples. In the first example, they estimated one permeability value and one porosity

value by applying these four algorithms. The second example they considered was

an oil-water two-phase water flooding problem. They estimated the exponent used

to define the relative permeability and capillary pressure curves with a power law

function (only one adjustable parameter for each curve). They concluded that among

these four algorithms, BFGS performed best in terms of computational efficiency and

stability.

Makhlouf et al. (1993) applied the conjugate gradient method to a three-
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phase three-dimensional history matching problem. The authors considered a three

layer reservoir. A 15 × 10 grid was used to simulate this problem with only one

vertical gridblock per layer. They assumed the porosity and relative permeabilities

are known. Absolute permeabilities were the only model parameters estimated (450

model parameters). For the three-phase examples presented, wellbore pressure, wa-

ter cut, gas-oil ratio as well as phase flow rate at the individual penetrated layers

(about two thousand production data) were history matched. The conjugate gradi-

ent algorithm presented by Nazareth (1977) was applied to minimize the objective

function. The authors presented two examples for the three-phase problem. In the

example where free gas was present initially, 222 iterations were required to converge.

In the example where no free gas was present initially, 110 iterations were required

to converge. The authors did not discuss a preconditioner. If a good precondition-

ing matrix can be found for nonlinear conjugate gradient methods, it is conceivable

that convergence could be considerably accelerated. For the Baysian formulation of

the history matching problem considered here, the most straightforward choice of

a preconditioning matrix is the inverse of the prior covariance matrix (Kalita and

Reynolds (2000)). Although this preconditioner yields some improvement in the

examples we have tried, it tends to result in much slower convergence rates than

are obtained with a good implementation of the limited memory BFGS method. In

this work, we also explore using approximations to the inverse Hessian matrix con-

structed from a variable metric method as a preconditioning matrix for the nonlinear

conjugate gradient method. This method is also shown to be less robust than the

limited memory BFGS method.

Deschamps et al. (1998) presented an interesting comparison of the rela-

tive efficiency of several optimization methods for automatic history matching of

production data. They suggest that the most efficient optimization method will be

a hybrid scheme and specifically advocate schemes that combine a Gauss-Newton

method with another procedure. They reject the Levenberg-Marquardt scheme as

relying too heavily on the steepest descent method and do not present any com-

parisons based on this method. On the other hand, some results (Li et al. (2001)
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and Zhang et al. (2001)) indicate that a Levenberg-Marquardt algorithm is often

superior to the Gauss-Newton method. The Levenberg-Marquardt algorithm used

in these references, however, is the nonstandard one introduced by Bi et al. (2000)

and is based on a regularized objective function. In this procedure, one starts with a

large value of the Levenberg-Marquardt parameter λ to avoid making large changes

in the model at early iterations, whereas, the standard algorithm starts with a small

value of λ. Deschamps et al. history matched only a few model parameters and

apparently used no regularization term in their objective function. Instead of the

standard Levenberg-Marquardt algorithm, they implemented a trust region method.

In the event that neither the Gauss-Newton step nor steepest descent give an ac-

ceptable step, then a dogleg strategy is used to interpolate between Gauss-Newton

and steepest descent to obtain a search direction.

Deschamps et al. also considered a scheme, due to Law and Fariss (1972),

which is referred to as ConReg. This method effectively requires a spectral or singu-

lar value decomposition of the Gauss-Newton Hessian matrix. (This is not feasible,

when the dimension of these parameters is large.) Based on this decomposition,

they calculated parameters corresponding to “small” eigenvalues by a steepest de-

scent method and those corresponding to sufficiently large eigenvalues using a Gauss-

Newton search direction. Another algorithm is based on starting the optimization

with a quasi-Newton method and then switching to a ConReg when the objective

function has been reduced below a preset limit. As the quasi-Newton method re-

quires only the gradient of the objective function, one iteration of a quasi-Newton

method requires much less computational effort than one iteration of the Gauss-

Newton method. They also consider three other hybrid algorithms which combine

Gauss-Newton and quasi-Newton methods.

Deschamps et al. compared the hybrid methods with a pure quasi-Newton

method, although it is not clear which quasi-Newton method they used, how they

initialized the inverse Hessian approximation, or whether they used scaling. For the

two history matching problems they considered, the quasi-Newton method required

on the order of three times as many “equivalent simulation runs” to obtain conver-
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gence as most of the other methods. For the first example presented, a synthetic

case, the quasi-Newton method converged to a much higher value of the objective

function than all the other methods.

It is important to note that fewer than 20 parameters were estimated by

history matching in the two examples considered by Deschamps et al. For these

problems, it is feasible to compute all sensitivity coefficients necessary to form the

Hessian matrix for the Gauss-Newton method. In the examples we considered in

this study, we estimated a few hundred to tens of thousands of model parameters

which include both horizontal and vertical permeabilities in each individual gridblock

by history matching up to a thousand production data. As a matter of fact, our

code has the capacity of estimating horizonal permeabilities, vertical permeabilities,

porosities and well skin factors. For such problems, direct calculation of all sensitivity

coefficients is not feasible.

There are 7 chapters and 4 appendices in this dissertation. Chapter 2

briefly describes the theory of automatic history matching. It includes discussions

of Bayesian inversion, the construction of the MAP estimate and multiple realiza-

tions. A procedure of handling the doubly stochastic model is also presented in this

chapter. Chapter 3 discusses the forward simulator and the adjoint method used

to calculate the gradient of the objective function. Chapter 4 presents the iterative

solver we used to solve the adjoint equation system which is linear. We show ex-

amples to compare the accuracy of the iterative solver and the sparse matrix solver.

Chapter 5 discusses optimization algorithms. It covers the evaluation of computa-

tional efficiency and the memory requirements of different optimization algorithms.

Technical details for applying quasi-Newton method are discussed in this chapter. In

Chapter 6, we apply optimization algorithms for a set of history matching problems.

The problems considered include three-dimensional single-phase flow gas reservoir,

two three-phase flow problems and an example modeled on the Oseberg reservoir at

North Sea. In Chapter 7, the conclusions and research contributions of this work are

summarized. In Appendix A, a detailed theoretical background for the linear equa-

tion solver is provided. In Appendix B, some derivations and theoretical results for
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quasi-Newton methods are presented. In Appendix C, details on linear and nonlin-

ear conjugate gradient methods are provided. Appendix D discusses the relationship

between conjugate gradient and the quasi-Newton methods.



CHAPTER II

THEORY OF AUTOMATIC HISTORY MATCHING

History matching is a process of changing model parameters to find a set

of values that will yield a reservoir simulation prediction of data that matches the

observed historical production data. As we all know, the reservoir models are built

on limited information which may include core data, log data, geological information,

lab data (for fluid properties) and 3D seismic data. Note the preceding data sets do

not include production data. Before using a model based on this information to make

reservoir management decisions, we wish to integrate historical production data. The

historical production data may include bottom-hole or static pressures, gas-oil ra-

tios (GOR’s), water-oil ratios (WOR’s), or phase flow rates. If the current reservoir

description, when input into a reservoir simulator, does not predict data that agree

with historical “measured” production data, then we need to change the descrip-

tion, i.e., change the model parameters, which may include gridblock permeabilities

(horizontal and vertical), gridblock porosities, parameters that define the relative

permeability, fault locations or fault transmissibilities. This adjustment procedure is

called history matching. History matching can be done manually or automatically.

Today, for complex problems, history matching is largely done manually, although

automatic history matching tools are starting to have some impact. Our research

focused on automatic history matching of production data for the purpose of con-

structing an estimate or multiple realizations of model parameters, i.e., porosity and

permeability fields, well skin factors and parameters defining relative permeability

functions. Because we do history matching automatically, we can consider many

more parameters than in the manual history matching process. History matching is

done in a Bayesian framework so that estimates and realizations are consistent with

14
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a prior geostatistical model formulated from static data. Automatic history match-

ing is accomplished by applying an optimization algorithm to minimize an objective

function which includes a sum of data mismatch terms squared. In this approach,

one can include time-lapse seismic data or even “hard data” such as gridblock poros-

ity interpreted from a log as well as production data in the data mismatch terms. In

the Bayesian framework, generating a suite of realizations is equivalent to sampling

the a posteriori probability density function. If sampling is done properly, then the

set of realizations will provide a correct assessment of the uncertainty in the model

parameters. By simulating future performance under proposed operating conditions

using each realization as reservoir simulation input, and constructing statistics for the

set of outcomes (e.g., cumulative oil production, WOR’s, GOR’s and breakthrough

time), one can evaluate the uncertainty in predicted performance.

2.1 Prior Model and Data Measurement Errors

Let m be an Nm-dimensional column vector that contains all the model

parameters we want to estimate or simulate, where Nm represents the number of

model parameters. We write m as

m =





mr

ms



 , (2.1)

where ms is the vector of the well skin factors and mr is the vector for the rock prop-

erty fields. In our work, we use only rock gridblock permeabilities and porosities

and well skin factors as model parameters. These parameters are modeled as ran-

dom variables, so m is a random vector. We approximate the prior reservoir model

parameters as multivariate Gaussian with prior mean given by

mprior =





mr,prior

ms,prior



 , (2.2)

and prior covariance matrix given by

CM =





Cr 0

0 Cs



 , (2.3)
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where Cs is the covariance matrix for well skin factors and Cr is the covariance

matrix for the rock property fields. The dimension of m is Nm, so CM is an Nm×Nm

matrix. As the well skin factors are assumed to be independent Gaussian random

variables, Cs is a diagonal matrix. Cr is obtained from the geostatistical information.

Assuming the prior model is multivariate Gaussian, the probability density function

(pdf) for the prior model is given by

p(m) = a exp(−Om(m)). (2.4)

where a is the normalizing constant and

Om(m) =
1

2
(m−mprior)

TC−1
M (m−mprior). (2.5)

We let dobs be an Nd-dimensional column vector that contains all observed

production data that will be history matched, where Nd denotes the number of

conditioning production data. Let e be an Nd-dimensional column vector of data

measurement errors. Here, we assume that e is a Gaussian random vector with

mean equal to zero and covariance matrix given by CD. Here, we also assume that

the data measurement errors are independent although there exist evidence that

this may not always be a good assumption, see Aanonsen et al. (2002). Therefore,

the data covariance matrix CD is an Nd × Nd diagonal matrix. Each entry of CD

corresponds to the variance of a particular measurement error and these variances

are not assumed to be identical. For example, we expect the “measurement” of

GOR to be much less accurate than the measurement of bottom-hole pressures. The

probability density function (pdf) for the data measurement error is given by

p(e) = b exp(−1

2
eTC−1

D e). (2.6)

Let d be an Nd-dimensional column vector that contains the predicted data

given model m. The equation

d = g(m) (2.7)

represents the operation of calculating data d corresponding to dobs for a given model

m, i.e, the forward simulation run. Ifm is the true model, then the difference between
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d and dobs represents measurement error, i.e.,

e = d− dobs. (2.8)

Suppose we are given model m, but have not yet measured dobs, then dobs = d+ e is

a random vector. The pdf for dobs given m is

p(dobs|m) = b exp
(

− 1

2
(d− dobs)

TC−1
D (d− dobs)

)

= b exp
(

− 1

2
(g(m)− dobs)

TC−1
D (g(m)− dobs)

)

.
(2.9)

If we treat m as the random variable and assume dobs is given, then Eq. 2.9 gives the

likelihood of m given dobs and we write

l(m|dobs) = b exp
(

− 1

2
(g(m)− dobs)

TC−1
D (g(m)− dobs)

)

. (2.10)

The most likely model or the maximum likely estimate is the model that maximizes

l(m|dobs), i.e., the model that minimizes

Od(m) =
1

2
(g(m)− dobs)

TC−1
D (g(m)− dobs). (2.11)

Even though the estimate of the model obtained by minimizing Eq. 2.11 is the same

as the least squares estimate, Eq. 2.10 has statistical meaning. If we characterize

the measurement error correctly, then Eq. 2.10 represents the likelihood function of

the model. By minimizing Eq. 2.11, we get the maximum likelihood estimate of the

model.

2.2 Bayesian Estimate

For automatic history matching problems of interest to us, the number of

model parameters is usually greater than the number of independent production data

and thus the history matching problem does not have a unique solution. If the Gauss-

Newton procedure is applied to minimize an objective function consisting of only the

sum of squared production data misfit terms, the Hessian matrix will be singular

and the optimization algorithm will be unstable. This instability problem can be

avoided by adding a regularization term to the objective function to be minimized;
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see Tikhonov (1963) and Parker (1994). With a proper regularization, the Hessian

matrix in the Gauss-Newton method will be real symmetric positive definite and

hence nonsingular. In this work, we use a prior geostatistical model to provide

regularization. With this approach, the history matching problem is equivalent to a

Bayesian estimation problem, see Gavalas et al. (1976); Tarantola (1987); He et al.

(1997); Wu et al. (1999). With the application of Bayes theorem, we can estimate

the conditional probability density function (the a posteriori pdf) for the model

parameters m given observations dobs, i.e.,

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
=

p(dobs|m)p(m)
∫

p(dobs|u)p(u)du
=
p(dobs|m)p(m)
∫

p(dobs, u)du
, (2.12)

where p(dobs, u) is the joint probability density function. Using 2.4 and Eq. 2.9 in

Eq. 2.12, we can write the a posteriori pdf as

π(m) = c exp(−O(m)), (2.13)

where c is the normalizing constant and

O(m) =
1

2
(m−mprior)

TC−1
M (m−mprior) +

1

2
(g(m)− dobs)

TC−1
D (g(m)− dobs)

= Om(m) +Od(m)

(2.14)

which is the total objective function we wish to minimize in the history matching

procedure. The total objective function contains two parts, the model mismatch

part Om(m) and the data mismatch part Od(m). The model mismatch part Om(m)

provides the regularization for the objective function to avoid unrealistic changes in

the model parameters. Minimizing Eq. 2.14 gives the maximum a posteriori (MAP)

estimate of the model which is the most probable model.

2.3 Evaluation of Uncertainty

The MAP estimate of the model gives a very smooth model which does not

reflect the heterogeneity that would be typical for a realization generated from the

prior model. We are more interested in generating multiple realizations to evaluate
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the uncertainty in reservoir description and performance prediction. The general

approach we follow here to characterize the uncertainty in reservoir performance

prediction is the one that has been advocated by Oliver (1996), He et al. (1997)

and Reynolds et al. (1999). This approach is consistent with one promulgated by

the Norwegian school of reservoir characterization; see, for example, Omre et al.

(1993) and Holden et al. (1995). In our approach, we (i) develop an a posteriori

probability density function (pdf) for the model parameters; (ii) sample this pdf to

obtain a set of realizations of the model; (iii) predict future reservoir performance

for each realization using a reservoir simulator; and (iv) construct statistics (mean,

variance, histograms, etc.) for the outcomes (e.g., cumulative oil production, water

cut, producing gas-oil ratio or breakthrough times) to evaluate the uncertainty in

performance predictions and to evaluate risk in reservoir management decisions.

Sampling the pdf is difficult. The rejection algorithm is theoretically sound,

but completely impractical for the general problem of conditioning a reservoir model

to production data unless the uncertainty in the production data (noise and modeling

error) is very large compared to the uncertainty in the prior model. Liu et al. (2001)

recently presented a paper on conditioning a simple one-dimensional model with forty

model parameters to pressure data. They tried several different probability density

functions to propose realizations, but were unable to generate more than a handful

of valid samples using rejection despite proposing millions of candidate realizations.

Markov chain Monte Carlo (MCMC) methods also provide a theoretically

sound method for sampling the a posteriori pdf correctly. Unfortunately, even with

modifications aimed at improving computational efficiency, the MCMC approach

appears to be too computationally inefficient for practical applications; see Oliver

et al. (1997) and Bonet-Cunha et al. (1998).

In this work, the randomized maximum likelihood method is used for sam-

pling. The randomized maximum likelihood method refers to the sampling procedure

presented within the context of MCMC methods by Oliver et al. (1996), and was also

mentioned without discussion by Kitanidis (1995). To generate a realization with
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this procedure, we calculate an unconditional realization muc from

muc = mprior + C
1/2
M zM , (2.15)

where zM is an Nm-dimensional column vector of independent standard random

normal deviates. The matrix C
1/2
M is a square root of CM and is normally chosen as

C
1/2
M = L where

CM = LLT , (2.16)

is the Cholesky decomposition of CM . Similarly a realization of the data is generated

from

duc = dobs + C
1/2
D zD, (2.17)

where zD is an Nd-dimensional column vector of standard random normal deviates.

If the model is very large, e.g., if the number of model parameters is on

the order of ten thousand or larger, then the covariance matrix CM is so large that

Choleskey decomposition of CM becomes computationally expensive and impractical.

Then Gaussian co-simulation provides a practical alternative for generating uncon-

ditional realizations of m; see, for example Gómez-Hernández and Journel (1992).

The associated conditional realization of m is the model that minimizes

O(m) =
1

2
(m−muc)

TC−1
M (m−muc) +

1

2
(g(m)− duc)

TC−1
D (g(m)− duc). (2.18)

Similar to results given in Tarantola (1987) O(m) can be approximated by a chi-

squared distribution with expectation given by E(O(m)) = Nd and standard devi-

ation given approximately by σ(O(m)) ≈
√
2Nd. Virtually all samples should be

within five standard deviations of the mean. Thus, if applying an optimization algo-

rithm to minimize Eq. 2.18 gives a result mc, we accept mc as a legitimate realization

if and only if

Nd − 5
√

2Nd ≤ O(mc) ≤ Nd + 5
√

2Nd. (2.19)

If Eq. 2.19 is not satisfied, the minimization algorithm has failed. This failure can

occur if the algorithm converges to a local minimum or converges so slowly that the

decrease in the objective function is so small that the convergence criteria, which is
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based on the change in the objective function, is satisfied before we actually reach

a minimum. The chi-squared approximation on which Eq. 2.19 is based assumes

that g(m) is a linear function of m. In some cases, this chi-squared approximation

appears to be valid; see, for example the results on conditioning a stochastic channel

to pressure data of Zhang et al. (2002) and the results on history matching pressure

data from a single-phase gas reservoir presented in Section 6.1. In other cases, we

obtain values of the objective function at convergence much greater thanNd+5
√
2Nd;

see, for example the three-phase flow history matching example of Section 6.3. It is

unclear whether the failure to satisfy Eq. 2.19 at convergence occurs because g(m)

is not well approximated by a linear function of m or for some other reasons.

Ultimately, we wish to be able to history match several hundred to a few

thousand production data to generate realizations of tens of thousands of model

parameters. Thus, computational efficiency is an extremely important consideration.

It is equally important that the algorithm should be robust, i.e., the number of

convergence failures should be extremely small. If minimization of O(m) frequently

result in values of O(mc) which do not satisfy Eq. 2.19, the utility of the optimization

algorithm is diminished.

2.4 Doubly Stochastic Model

In the history matching procedure, people usually treat the prior mean of

the model parameters as known and constant. In practice, however, the prior mean

is also obtained from observations and is uncertain. If this situation happens, we

need to correct the prior mean of model parameters. Thus, following Reynolds et al.

(1999), we introduce a random vector denoted by θ to model the correction to the

prior mean where we assume θ can be written as

θ =

















α1e1

α2e2

...

αNαeNα

















=

















e1 O . . . O

O e2 . . . O
...

...
. . .

...

O O . . . eNα

































α1

α2

...

αNα

















≡ Eα, (2.20)
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where

E =

















e1 O . . . O

O e2 . . . O
...

...
. . .

...

O O . . . eNα

















(2.21)

and

e = [1, · · · , 1]T (2.22)

with appropriate dimensions.

We assume the αj’s are independent random variables in which case Cα is

a diagonal, positive definite matrix. The pdf for α is specified as

pα(α) = aexp
(

− 1

2
(α− α0)

TC−1
α (α− α0)

)

. (2.23)

The conditional pdf of M given α is

pm|α(m | α) = aexp
(

− 1

2
(m−mprior − Eα)TC−1

M (m−mprior − Eα)
)

. (2.24)

The joint pdf for M and α is given by

pm,α(m,α) = pM |α(m | α)pα(α) =

aexp
(

− 1

2
(m−mprior − Eα)TC−1

M (m−mprior − Eα)− 1

2
(α− α0)

TC−1
α (α− α0)

)

.

(2.25)

Eq. 2.25 implies that the expectation of M given α is

E[M | α] = mprior + Eα, (2.26)

where in the preceding equation, E denotes the expectation. Let M̂ denote the

random vector including the model vector M and vector α, i.e.,

M̂ =





M

α



 . (2.27)

and let m̂ denote a realization of M̂ . Let d represent the data vector which is obtained

by running the simulator given the model m. The relationship between the data d
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and the model m is specified by Eq. 2.7. Given m, the observed pressure data is

treated as a realization of the random vector dobs = g(m) + ε. By the application of

Bayes theorem, we can write the a posteriori pdf for (m,α) conditional to dobs as

π(m,α) = p(m,α)

(

m,α | dobs

)

= aexp
(

−O(m,α)
)

(2.28)

where O(m,α) is given by

O(m,α) =
1

2
(g(m)− dobs)

TC−1
D (g(m)− dobs)+

1

2
(m−mprior − Eα)TC−1

M (m−mprior − Eα) +
1

2
(α− α0)

TC−1
α (α− α0). (2.29)

Eq. 2.29 is the objective function we should minimize for the doubly stochastic model.

To evaluate the uncertainty, we use the randomized maximum likelihood

method (Kitanidis (1995), Oliver et al. (1996)) to sample the a posteriori pdf. There

are three steps in this procedure: (i) generate an unconditional realization of the

model and correction to the prior mean, respectively, from

muc = mprior + C
1/2
M zM , (2.30)

where zM is an Nm-dimensional column vector of independent standard random

normal deviates and

αuc = α0 + C1/2
α zα, (2.31)

where zα is independent standard random normal deviates with consistent dimen-

sions; (ii) generate a realization of the data from

duc = dobs + C
1/2
D zD, (2.32)

where zD is an Nd-dimensional column vector of standard random normal deviates;

(iii) replace mprior, dobs and α0, respectively, by muc, duc and αuc in Eq. 2.29 to obtain

the modified objective function given by

Or(m,α) =
1

2
(g(m)− duc)

TC−1
D (g(m)− duc)

+
1

2
(m−muc − Eα)TC−1

M (m−muc − Eα) +
1

2
(α− αuc)

TC−1
α (α− αuc).

(2.33)

To obtain a realization conditional to the data, we minimize Eq. 2.33 once. To obtain

n independent realizations, we repeat the procedure n times.



CHAPTER III

RESERVOIR SIMULATOR AND ADJOINT METHOD

In the first section, we briefly discuss the forward finite-difference equations

that are required to solve in the reservoir simulator. In the second section, we

consider the adjoint method which is used to calculate the sensitivity coefficients,

which represent derivatives of the data with respect to model parameters. The

gradient of the objective function is the derivative of the objective function with

respect to the model parameters. Therefore, the whole objective function can be

treated like an individual datum so that the gradient of the objective function can

be obtained by one application of the adjoint method. This chapter gives the basic

formulas of the adjoint method; see Li (2001) for detailed information. We focus on

the calculation of the gradient of the objective function.

3.1 The Reservoir Simulator

For simplicity, the reservoir is assumed to be a rectangular parallelepiped

which occupies the region

Ω = {(x, y, z) | 0 < x < Lx, 0 < y < Ly, 0 < z < Lz}. (3.1)

The simulator used is based on a fully-implicit, finite-difference formulation

of the three-phase flow, black-oil equations expressed in a x–y–z coordinate system

which apply on Ω; see Eq. 3.1. Suppose there are Nx, Ny, Nz gridblocks in the

x−, y− and z− directions respectively. Let N be the total number of gridblocks,

i.e., N = Nx × Ny × Nz. At each of the N gridblocks, three basic finite-difference

equations apply. These three equations represent the mass balance for each of the

three components, i.e., oil, gas and water. In addition, a constraint is applied at

24
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each of the Nw wells to yield Nw additional equations. At each well at each time

step, either an individual phase flow rate, the total flow rate or the wellbore pressure

may be specified as a well constraint. In the results considered in this work, capil-

lary pressures are assumed to be negligible. The fully-implicit, black-oil simulator

(CLASS-Chevron’s Limited Applications Simulation System) used in this work was

provided by Chevron.

For gridblock i, the primary variables that are solved for are case dependent.

Table 3.1 summarizes the different cases and the primary variables solved for in

each case. In the column entitled “Equations”, Sum denotes the total mass balance

equation (i.e., the summation of the oil, gas and water equations); Oil represents the

oil mass balance equation and Gas represents the gas mass balance equation.

Table 3.1: Equations and unknowns solved for in the simulator.

Phases Equations Unknowns Auxiliary equation

O-W-G
Sg > 0 Sum, Oil, Gas p, So, Sg Sw = 1− So − Sg; Rs from PVT table

Sg = 0 Sum, Oil, Gas p, So, Rs Sg = 0; Sw = 1− So − Sg

O-W Sum, Oil p, So Sw = 1− So

W-G Sum, Gas p, Sg Sw = 1− Sg

O-G
Sg > 0 Sum, Gas p, Sg So = 1− Sg; Rs from PVT table

Sg = 0 Sum, Gas p, Rs Sg = 0; So = 1− Sg

At each time step, we can output p, So, Sg, Sw and Rs of each individ-

ual gridblock from CLASS. From these primary variables, we can calculate all the

derivatives required for constructing the adjoint system based on the PVT table. In

addition to the gridblock variables, the flowing wellbore pressure, pwf,l at the lth well

at a specified depth is also a primary variable. We let yn denote a column vector

which contains the set of primary variables (pressures and saturations) at time step

n. At gridblock i, the finite-difference equation for component u can be written as

fu,i(y
n+1, yn,m) = 0, (3.2)
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for u = o, w, g and i = 1, . . . , N . The well constraints are represented by

fwf,l(y
n+1, yn,m) = 0, (3.3)

for l = 1, 2, . . . , Nw. For simplicity, we let

fn+1
u,i = fu,i(y

n+1, yn,m), (3.4)

and

fn+1
wf,l = fwf,l(y

n+1, yn,m), (3.5)

then Eqs. 3.2 and 3.3 can be rewritten as

fn+1
u,i = 0, (3.6)

and

fn+1
wf,l = 0, (3.7)

respectively. If the flowing wellbore pressure at well l at the datum depth at time

tn+1 is specified to be equal to pn+1
wf,l,0, then Eq. 3.5 is simplified to

fn+1
wf,l = pn+1

wf,l − pn+1
wf,l,0 = 0. (3.8)

In CLASS, the three equations for three-phase problem that are solved at gridblock

i are

fn+1
1,i = fn+1

o,i + fn+1
w,i + fn+1

g,i = 0 (3.9)

fn+1
2,i = fn+1

o,i = 0 (3.10)

fn+1
3,i = fn+1

g,i = 0 (3.11)

where i = 1, 2, · · · , N . If the following three equations

fn+1
1,i = fo,i = 0 (3.12)

fn+1
2,i = fn+1

w,i = 0 (3.13)

fn+1
3,i = fn+1

g,i = 0 (3.14)

instead of Eqs. 3.9 through 3.11 are used to construct the Jacobian matrix, then

we will have trouble for some situations to do incomplete LU decomposition of the
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Jacobian matrix in order to use orthomin which is an iterative solver. From Table 3.1,

we can see no matter which case happens, the pressure is always one of the primary

variables. Hence, in the Jacobin matrix, the derivative of a certain equation at ith

gridblock with respect to the pressure at the ith gridblock is always the diagonal

element. The location of this entry depends on how you order the primary variables.

If the pressure is ordered as the first primary variable in each gridblock as people

usually do, then in the Jacobian matrix, every third diagonal entry will be df1,i/dpi

where i is the gridblock index. If f1,i = fo,i, then the derivative df1,i/dpi is zero

whenever oil saturation So,i is zero. Because if this is the case, then every individual

term involved in df1,i/dpi is related to oil saturation by either relative permeability

or So itself and becomes zero. The subroutine we used to perform the incomplete

LU decomposition will perform the operation of dividing the row of Jacobian matrix

by the diagonal element. Therefore, if the situation presented above happens, e.g.,

in the gas cap area, then this subroutine will be terminated because of the illegal

math operation.

Eq. 3.7 and Eqs. 3.9 through 3.11 represent a system of Ne equations where

Ne = 3N +Nw. (3.15)

These Ne equations are solved to obtain the values of the primary variables at time

tn+1 = tn + ∆tn. For wells at which the flowing bottom-hole pressure is specified,

phase flow rates at each well are computed by Peaceman’s equation (Peaceman,

1983). The component flow rates from the perforated layer k of well l (at gridblock

(i, j, k)) at time step n+ 1 can be evaluated as

qn+1
o,i,j,k = WIi,j,k

(

kro
Boµo

)n+1

i,j,k

(pn+1
i,j,k − pn+1

wf,l,k), (3.16)

qn+1
w,i,j,k = WIi,j,k

(

krw
Bwµw

)n+1

i,j,k

(pn+1
i,j,k − pn+1

wf,l,k), (3.17)

and

qn+1
g,i,j,k = WIi,j,k

(

krg
Bgµg

)n+1

i,j,k

(pn+1
i,j,k − pn+1

wf,l,k) +Rn+1
so,i,j,kq

n+1
o,i,j,k

= WIi,j,k

(

krg
Bgµg

+Rs
kro
Boµo

)n+1

i,j,k

(pn+1
i,j,k − pn+1

wf,l,k).

(3.18)
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The rates qn+1
o,i,j,k and q

n+1
w,i,j,k are in units of STB/Day, and qn+1

g,l,k has units of SCF/Day.

Here, layer k means the wellbore gridblock with z-direction gridblock index equal to

k. The well index term WIi,j,k is the geometry part of productivity index and it is

defined by

WIi,j,k =
0.007084zk

√

kx,i,j,kky,i,j,k

ln(ro,l,k/rw,l,k) + sl,k
, (3.19)

and ro,l,k is defined

ro,l,k =
0.280734xi

√

1 +
kx,i,j,k
ky,i,j,k

(

4yj
4xi

)2

1 +
√

kx,i,j,k/ky,i,j,k
. (3.20)

Here, rw,l,k is the wellbore radius of the well l at layer k and sl,k is the skin factor

for well l at layer k.

The complete system of equations can formally be written as

fn+1 = f(yn+1, yn,m) =















































fn+1
1,1

fn+1
o,1

fn+1
g,1

fn+1
1,2

...

fn+1
g,N

fn+1
wf,1

...

fn+1
wf,Nw















































= 0, (3.21)

where

m = [m1,m2, · · · ,mNm ]
T , (3.22)

and

yn+1 = [pn+1
1 , Sn+1

o,1 , xn+1
1 , pn+1

2 , · · · , pn+1
i , Sn+1

o,i , xn+1
i , · · · , xn+1

N , pn+1
wf,1, · · · , pn+1

wf,Nw
]T ,

(3.23)

where

xn+1
i =











Sn+1
g,i for Sg,i > 0

Rn+1
s,i for Sg,i = 0

(3.24)
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Eq. 3.21 is solved by the Newton-Raphson method (Aziz and Settari, 1979)

which can be written as

Jn+1,kδyn+1,k+1 = −fn+1,k (3.25)

yn+1,k+1 = yn+1,k + δyn+1,k+1, (3.26)

where k is the Newton-Raphson iteration index, n is the time step index and

Jn+1,k =
[

∇yn+1(fn+1)T
]T

yn+1,k
, (3.27)

is the Jacobian matrix evaluated at yn+1,k, which represents the kth approximation

for yn+1. The initial guess for yn+1 is chosen as the solution at the previous time

step, i.e.,

yn+1,0 = yn. (3.28)

3.2 Adjoint Equations

We define a general scalar function by

β = β(y1, ..., yL,m), (3.29)

where L corresponds to the last time step tL at which one wishes to compute sensi-

tivity coefficients. The objective is to compute the derivatives of β with respect to

the model parameters m. We obtain an adjoint functional J by adjoining Eq. 3.21

to the function β:

J = β +
L
∑

n=0

(λn+1)Tfn+1, (3.30)

where λn+1 is the vector of adjoint variables at time step n+ 1, and is given by

λn+1 =
[

λn+1
1 , λn+1

2 , . . . , λn+1
Ne

]T

. (3.31)

Taking the total differential of Eq. 3.30, and doing some simple rearranging
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gives

dJ = dβ +
L
∑

n=0

{

(λn+1)T [∇yn+1(fn+1)T ]Tdyn+1 + [∇m(f
n+1)T ]Tdm

}

+
L
∑

n=0

(λn+1)T [∇yn(f
n+1)T ]Tdyn

= dβ +BT +
L
∑

n=1

{[(λn)T [∇yn(f
n)T ]T

+ (λn+1)T [∇yn(f
n+1)T ]T ]dyn + (λn)T [∇m(f

n)T ]Tdm},

(3.32)

where

BT = (λL+1)T
{

[∇yL+1(fL+1)T ]TdyL+1 + [∇m(f
L+1)T ]Tdm

}

+ (λ1)T
[

∇y0(f 1)T
]T
dy0.

(3.33)

The total differential of β can be written as

dβ =
L
∑

n=1

[∇ynβ]
Tdyn + [∇mβ]

Tdm. (3.34)

The initial conditions are fixed, so

dy0 = 0. (3.35)

Choosing

λL+1 = 0, (3.36)

it follows that BT = 0. Using this result and Eq. 3.34 in Eq. 3.32 and rearranging

the resulting equation gives

dJ =
L
∑

n=1

[

{

(λn)T [∇yn(f
n)T ]T + (λn+1)T [∇yn(f

n+1)T ]T

+ [∇ynβ]
T
}

dyn
]

+
{

[∇mβ]
T +

N
∑

n=1

(λn)T [∇m(f
n)T ]T

}

dm.

(3.37)

To obtain the adjoint system, the coefficients multiplying dyn in Eq. 3.37 are set

equal to zero; i.e., we require that the adjoint variables satisfy

(λn)T [∇yn(f
n)T ]T + (λn+1)T [∇yn(f

n+1)T ]T + [∇ynβ]
T = 0. (3.38)
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Taking the transpose of Eq. 3.38, gives the adjoint system

[

∇yn(f
n)T

]

λn = −
[

∇yn(f
n+1)T

]

λn+1 −∇ynβ. (3.39)

where

∇yn [f
n]T =

















































∂fn1,1
∂pn

1

∂fnw,1
∂pn

1

· · · ∂fng,N
∂pn

1

∂fnwf,1
∂pn

1

· · · ∂fnwf,Nw
∂pn

1

∂fn1,1
∂Snw,1

∂fnw,1
∂Snw,1

· · · ∂fng,N
∂Snw,1

∂fnwf,1
∂Snw,1

· · · ∂fnwf,Nw
∂Snw,1

∂fn1,1
∂Sng,1

∂fnw,1
∂Sng,1

· · · ∂fng,N
∂Sng,N

∂fnwf,1
∂Sng,1

· · · ∂fnwf,Nw
∂Sng,1

∂fn1,1
∂pn

2

∂fnw,1
∂pn

2

· · · ∂fng,N
∂pn

2

∂fnwf,1
∂pn

2

· · · ∂fnwf,Nw
∂pn

2

...
... · · · ...

... · · · ...
∂fn1,1
∂Sng,N

∂fnw,1
∂Sng,N

· · · ∂fng,N
∂Sng,N

∂fnwf,1
∂Sng,N

· · · ∂fnwf,Nw
∂Sng,N

∂fn1,1
∂pn
wf,1

∂fnw,1
∂pn
wf,1

· · · ∂fng,N
∂pn
wf,1

∂fnwf,1
∂pn
wf,1

· · · ∂fnwf,Nw
∂pn
wf,1

...
... · · · ...

... · · · ...
∂fn1,1

∂pn
wf,Nw

∂fnw,1
∂pn
wf,Nw

· · · ∂fng,N
∂pn
wf,Nw

∂fnwf,1
∂pn
wf,Nw

· · · ∂fnwf,Nw
∂pn
wf,Nw

















































, (3.40)

where f1,i is given by Eq. 3.9 and

∇yn [f
n+1]T =

















































∂fn+1
1,1

∂pn
1

∂fn+1
w,1

∂pn
1

· · · ∂fn+1

g,N

∂pn
1

∂fn+1

wf,1

∂pn
1

· · · ∂fn+1

wf,Nw

∂pn
1

∂fn+1
1,1

∂Snw,1

∂fn+1
w,1

∂Snw,1
· · · ∂fn+1

g,N

∂Snw,1

∂fn+1

wf,1

∂Snw,1
· · · ∂fn+1

wf,Nw

∂Snw,1
∂fn+1

1,1

∂Sng,1

∂fn+1
w,1

∂Sng,1
· · · ∂fn+1

g,N

∂Sng,N

∂fn+1

wf,1

∂Sng,1
· · · ∂fn+1

wf,Nw

∂Sng,1
∂fn+1

1,1

∂pn
2

∂fn+1
w,1

∂pn
2

· · · ∂fn+1

g,N

∂pn
2

∂fn+1

wf,1

∂pn
2

· · · ∂fn+1

wf,Nw

∂pn
2

...
... · · · ...

... · · · ...
∂fn+1

1,1

∂Sng,N

∂fn+1
w,1

∂Sng,N
· · · ∂fn+1

g,N

∂Sng,N

∂fn+1

wf,1

∂Sng,N
· · · ∂fn+1

wf,Nw

∂Sng,N
∂fn+1

1,1

∂pn
wf,1

∂fn+1
w,1

∂pn
wf,1

· · · ∂fn+1

g,N

∂pn
wf,1

∂fn+1

wf,1

∂pn
wf,1

· · · ∂fn+1

wf,Nw

∂pn
wf,1

...
... · · · ...

... · · · ...
∂fn+1

1,1

∂pn
wf,Nw

∂fn+1
w,1

∂pn
wf,Nw

· · · ∂fn+1

g,N

∂pn
wf,Nw

∂fn+1

wf,1

∂pn
wf,Nw

· · · ∂fn+1

wf,Nw

∂pn
wf,Nw














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
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






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

,

(3.41)

and

∇ynβ =

[

∂β

∂pn1
,
∂β

∂Snw,1
,
∂β

∂Sng,1
,
∂β

∂pn2
, · · · , ∂β

∂Sng,N
,

∂β

∂pnwf,1
, · · · , ∂β

∂pnwf,Nw

]T

. (3.42)

Note that when we set up the adjoint system, we use the water equation

fw, instead of the oil equation fo as in CLASS, as the second equation in order to
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use the previous code developed by Ruijian Li without modifying it too much. Our

results indicate that using fw instead of fo as the second equation does not affect the

accuracy of the adjoint solutions. When we construct the adjoint system, the entries

of the y vector are always p, So, Sg and pwf , i.e.,

y = [p1, So,1, Sg,1, p2, · · · , pi, So,i, Sg,i, · · · , Sg,N , pwf,1, · · · , pwf,Nw ], (3.43)

whereas in the forward simulator, Eq. 3.23 is used. Our results indicate that this

does not affect the accuracy of the adjoint solutions.

Eq. 3.39 with initial condition 3.36 is solved backwards in time for n =

L,L− 1, . . . , 1. Note that the forward simulation equation is solved forward in time.

Also note that the coefficients in Eq. 3.39 are independent of the adjoint variable λ,

which means that the adjoint equation is linear. Therefore, solving the adjoint system

is cheaper in terms of the computation cost than solving the forward simulation

equation which is nonlinear. In the above equations, ∇yn(f
n)T and ∇yn(f

n+1)T are

Ne ×Ne matrices, and ∇ynβ is an Ne-dimensional column vector.

The matrix given by Eq. 3.41 is a diagonal band matrix which is only related

to the accumulation terms in the reservoir simulation equations. Note that the co-

efficient matrix (∇yn(f
n)T ) (Eq. 3.40) in the adjoint system is simply the transpose

of the Jacobian matrix of Eq. 3.27 evaluated at yn when the equations and primary

variables used to construct adjoint system are the same as used in the forward equa-

tions. As the adjoint system is solved backwards in time, information needed in these

matrices (Eqs. 3.40 and 3.41) must be saved from the forward simulation run. In

our code, we write all these primary variables to disk to save memory. For details

on these equations for computing the derivatives ∇yn(f
n)T , ∇yn(f

n+1)T , and ∇ynβ

in the adjoint equation, Eq. 3.39, see Li (2001).

As a summary, the adjoint system has the following properties:

(i) the adjoint system is solved backward in time;

(ii) the adjoint system is linear;
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(iii) the coefficient matrix in the adjoint system is the transpose of the Jacobian

matrix used for solving the forward equations only if the adjoint system is fully

consistent with the forward equation, i.e., in each gridblock the same equations

and primary variables are used to construct the adjoint system and the flow

equation system.

Considering J as a function of m , we can write its total differential as

dJ = (∇mJ)
Tdm. (3.44)

By comparing Eq. 3.37 and Eq. 3.44, it follows that the desired sensitivity coefficients

for J , or equivalently, β, are given by

∇mJ = ∇mβ +
L
∑

n=1

[∇m(f
n)T ](λn), (3.45)

where

∇m[f
n]T =

















∂fn1,1
∂m1

∂fnw,1
∂m1

∂fng,1
∂m1

∂fn1,2
∂m1

· · · ∂fng,N
∂m1

∂fnwf,1
∂m1

· · · ∂fnwf,Nw
∂m1

∂fn1,1
∂m2

∂fnw,1
∂m2

∂fng,1
∂m2

∂fn1,2
∂m2

· · · ∂fng,N
∂m2

∂fnwf,1
∂m2

· · · ∂fnwf,Nw
∂m2

...
...

...
...

...
...

...
...

...
∂fn1,1
∂mNm

∂fnw,1
∂mNm

∂fng,1
∂mNm

∂fn1,2
∂mNm

· · · ∂fng,N
∂mNm

∂fnwf,1
∂mNm

· · · ∂fnwf,Nw
∂mNm

















,

(3.46)

and

∇mβ =

[

∂β

∂m1

,
∂β

∂m2

, · · · , ∂β

∂mNm

]T

. (3.47)

The matrix ∇m[f
n]T is an Nm × Ne sparse matrix and ∇mβ is an Nm-

dimensional column vector. In Eq. 3.45, the gradient ∇mβ involves the partial

derivatives of β with respect to the model parameters. If the jth model parameter

does not explicitly appear in the expression for β, then ∂β/∂mj = 0. For example,

if β = pnwf , then we set ∇mβ = 0 in Eq. 3.45.

To apply a conjugate gradient (Makhlouf et al., 1993) or variable metric

method (Yang andWatson, 1988), we need only compute the gradient of the objective

function and this can be done by setting β = O(m) in the adjoint procedure. In this
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case, one only needs to solve the adjoint system Eq. 3.39 once and substitute the

resulting adjoint solutions to Eq. 3.45 to obtain the gradient.

To apply the adjoint method to calculate the sensitivity of the variable β

to model parameters m, one needs to solve the adjoint system equation Eq. 3.39

to obtain the adjoint variable λ, and then use Eq. 3.45 to calculate sensitivity

coefficients. If we consider permeabilities (kx, ky and kz) and porosities (φ) in each

individual gridblock, i.e.,

mkx = kx = [ kx,1, kx,2, · · · , kx,N ]T , (3.48)

mky = ky = [ ky,1, ky,2, · · · , ky,N ]T , (3.49)

mkz = kz = [ kz,1, kz,2, · · · , kz,N ]T , (3.50)

and

mφ = φ = [ φ1, φ2, · · · , φN ]T , (3.51)

then from Eq. 3.45, the equations to calculate the derivatives with respect to kx, ky, kz

and φ are given by

∇kxJ = ∇kxβ +
L
∑

n=1

[∇kx(f
n)T ](λn), (3.52)

∇kyJ = ∇kyβ +
L
∑

n=1

[∇ky(f
n)T ](λn), (3.53)

∇kzJ = ∇kzβ +
L
∑

n=1

[∇kz(f
n)T ](λn), (3.54)

and

∇φJ = ∇φβ +
L
∑

n=1

[∇φ(f
n)T ](λn), (3.55)

where β is pwf , GOR, WOR at some specified time step L, the whole data mismatch

part of the objective function Od(m) or any other terms for which we wish to calculate

sensitivities.

In order to calculate the gradient of the objective function, we consider β

as the whole data mismatch part of the objective function, i.e.,

β = Od(m) =
1

2
(g(m)− dobs)

TC−1
D (g(m)− dobs), (3.56)
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or in the case of stochastic simulation of m,

β = Od(m) =
1

2
(g(m)− duc)

TC−1
D (g(m)− duc). (3.57)

Thus, we have

∇ynβ = ∇yn{
1

2
(g(m)− dobs)

TC−1
D (g(m)− dobs)}

=
[

∇yn(g(m)− dobs)
T
]

C−1
D (g(m)− dobs)

= ∇yn [g(m)]TC−1
D (g(m)− dobs).

(3.58)

In the case of β given by Eq. 3.57, the dobs in Eq. 3.58 should be replaced by duc.

The matrix ∇yn [g(m)]T is an Ne ×Nd matrix and defined as

∇yn [g(m)]T =

















































∂g1
∂pn

1

∂g2
∂pn

1

· · · ∂gNd
∂pn

1

∂g1
∂Snw,1

∂g2
∂Snw,1

· · · ∂gNd
∂Snw,1

∂g1
∂Sng,1

∂g2
∂Sng,1

· · · ∂gNd
∂Sng,N

∂g1
∂pn

2

∂g2
∂pn

2

· · · ∂gNd
∂pn

2

...
... · · · ...

∂g1
∂Sng,N

∂g2
∂Sng,N

· · · ∂gNd
∂Sng,N

∂g1
∂pn
wf,1

∂g2
∂pn
wf,1

· · · ∂gNd
∂pn
wf,1

...
... · · · ...

∂g1
∂pn
wf,Nw

∂g2
∂pn
wf,Nw

· · · ∂gNd
∂pn
wf,Nw

















































. (3.59)

The entries of vector g(m) represent production data. The vector may contain entries

like pwf , GOR and WOR or any combination of these three kinds of production data.

Details for calculating each entry of matrix ∇yn [g(m)]T can be found in Li (2001).

It turns out many columns of this matrix are zero. Only the columns corresponding

to data that are measured at time n are nonzero. After we evaluate the matrix

∇yn [g(m)]T , we multiply C−1
D (g(m)− dobs) by this matrix to obtain ∇ynβ. Once we

have ∇ynβ, we can apply Eq. 3.39 to compute the adjoint variables.

To apply Eq. 3.45 to compute the derivatives, we need to evaluate ∇mβ
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first. The vector ∇mβ is given by

∇mβ = ∇mOd(m)

= ∇m

{1

2
(g(m)− dobs)

TC−1
D (g(m)− dobs)

}

=
[

∇m(g(m)− dobs)
T
]

C−1
D (g(m)− dobs)

= ∇m[g(m)]TC−1
D (g(m)− dobs).

(3.60)

In the case of β given by Eq. 3.57, the dobs in Eq. 3.60 should be replaced by duc.

The matrix ∇m[g(m)]T is an Nm ×Nd matrix and defined as

∇m[g(m)]T =

















∂g1
∂m1

∂g2
∂m1

· · · ∂gNd
∂m1

∂g1
∂m2

∂g2
∂m2

· · · ∂gNd
∂m2

...
... · · · ...

∂g1
∂mNm

∂g2
∂mNm

· · · ∂gNd
∂mNm

















. (3.61)

The vector g(m) is the calculated production data vector. For the history matching

problems considered here, an entry of g will correspond to pwf , GOR or WOR. The

formulas for calculation of elements in the matrix ∇m[g(m)]T can be found in Li

(2001). After we compute ∇mβ, we can use Eq. 3.45 to compute the derivatives

of the objective function with respect to model parameters, i.e., the gradient of the

objective function.



CHAPTER IV

LINEAR EQUATION SOLVERS

In the automatic history matching procedure, we need to repeatedly solve

adjoint equations given by Eq. 3.39 either to compute the gradient of the objective

function or to form the sensitivity coefficient matrix. Hence, the computational effi-

ciency of solving the adjoint equations plays a dominant role in the computational

efficiency of the overall history matching procedure. Solving an adjoint equation

problem is equivalent to solving a system of linear finite-difference equations back-

wards in time. At each time step, we must solve a linear system of equations. The

linear equation solver used in the previous code developed by Ruijian Li is the Harwell

sparse matrix solver based on a direct method. Direct methods require far too much

computer memory to be useful for field scale history matching problems. On the

other hand, iterative solvers are far more efficient than direct method for large scale

problems. In this work, an iterative solver was implemented in our history matching

code. The iterative method we used to solve the adjoint system is effectively the

same iterative solver used in the CLASS (Chevron’s Limited Application Simulation

Systems) simulator. The iterative solver is based on the orthomin technique; see

Vinsome (1976). An incomplete LU decomposition (see, for example, Todd Dupont

and Rachford (1968), Axelsson and Gustafsson (1980) and Meijerink (1981)) was

used to generate the preconditioner for the purpose of accelerating the convergence.

For simplicity, the adjoint equation system at each time step is written as

Ax = b, (4.1)

where

A = ∇yn(f
n)T , (4.2)

37
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x = λn, (4.3)

and

b = −[∇yn(f
n+1)T ]λn+1 −∇ynβ. (4.4)

at any time step n. A theoretical discussion of iterative solvers is given in Appendix

A. As noted above, the iterative solver implemented in our code is based on the

orthomin technique. The algorithm for applying orthomin to solve Eq. 4.1 is given

below.

? Choose an initial guess x0.

? Set r0 = b− Ax0.

? Solve Mδx1 = r0 for δx1 where M is an approximation to matrix A which is

chosen such that this linear equation can be solved easily and set p1 = δx1 and

calculate

a1 =
(r0, Ap1)

(Ap1, Ap1)
(4.5)

x1 = x0 + a1p1 (4.6)

r1 = r0 − a1Ap1 (4.7)

? Iteration loop

DO k = 1, 2, · · ·
δxk+1 = M−1rk (4.8)

bj = −
(Aδxk+1, Apj)

(Apj, Apj)
, j = 1, 2, · · · , k (4.9)

pk+1 = δxk+1 +
k

∑

j=1

bjpj (4.10)

ak+1 =
(rk, Apk+1)

(Apk+1, Apk+1)
(4.11)

xk+1 = xk + ak+1pk+1 (4.12)

rk+1 = rk − ak+1Apk+1 (4.13)

END DO
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We call this algorithm orthomin. In this algorithm, pk+1 denotes the search direction

vector at iteration k+1 and xk+1 denotes the (k+1)st approximation to the solution

of Eq. 4.1. Note that in Eq. 4.10, all the previous search direction vectors are used

to construct the current search direction. If we just use a limited number of previous

search direction vectors to construct pk+1, we call the corresponding version of the

algorithm the truncated orthmin method. If we use l previous vectors, then the only

change is that Eq. 4.10 is replaced by

pk+1 = δxk+1 +
k

∑

j=k+1−l

bjpj. (4.14)

(If l = 1 and M is the identity matrix, then the algorithm is referred to as orthomin

(2); see Appendix A). Note that in Eq. 4.8, the value of δxk+1 is obtained by solving

Mδxk+1 = rk, (4.15)

instead of forming M−1 and the matrix product M−1rk. Recall that M can be con-

sidered to be a preconditioning matrix which is an approximation to the coefficient

matrix A. The key issue for implementation of the orthomin algorithm is how to

choose M such that Eq. 4.15 can be solved very efficiently. In our implementation,

an incomplete LU decomposition of A was applied. This entails a decomposition of

the form A = LU − R where L is lower triangular, U is upper triangular and R

is the residual or error in the decomposition. L and U are typically chosen to be

sparse and have a simple structure. If L and U , respectively, are required to have the

same nonzero structure as the lower and upper triangular of A, then incomplete LU

decomposition is known as ILU(0) or called the level-0 fill-in incomplete LU decom-

position. The fill-in refers to nonzero elements of L and U that occurs at locations

where the corresponding elements of A are zero. To improve the rate of convergence,

more fill-in in L and U are allowed to develop higher level fill-in incomplete decompo-

sitions. In general, we expect that more accurate ILU decompositions require fewer

iterations to converge, but the preprocessing cost to compute such factors is higher.

Meijerink and van der Vorst (1977) provided a theoretical basis for the incomplete

decomposition. Let P represent the set of the locations in the matrix A where the
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corresponding entries are zero. The algorithm can be written as

DO k = 1, ..., n− 1

DO i = k + 1, n and if (i, k) 3 P
aik = aik/akk.

DO j = k + 1, · · · , n and if (i, j) 3 P
aij = aij − aik ∗ akj.

ENDDO

ENDDO

ENDDO

In the above algorithm, 3 means “not belong to”.

In our application, level-1 fill-in was applied. For example, the standard 5

diagonal matrix (Fig. 4.1(a)) becomes a 7 diagonal matrix (Fig. 4.1(b)) after level-1

fill-in; the standard 7 diagonal matrix (Fig. 4.2(a)) becomes a 13 diagonal matrix

(Fig. 4.2(b)) after level-1 fill-in. In all these 4 figures, an “X” in a cell represents an

original nonzero entry and an “F” in a cell represents a fill-in element.

21 22 23 24 25
16 17 18 19 20
11 12 13 14 15
6 7 8 9 10
1 2 3 4 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 X X X P1
2 X X X X P2
3 X X X X P3
4 X X X X P4
5 X X X P5
6 X X X X P6
7 X X X X X P7
8 X X X X X P8
9 X X X X X P9

10 X X X X P10
11 X X X X P11
12 X X X X X P12
13 X X X X X P13
14 X X X X X P14
15 X X X X P15
16 X X X X P16
17 X X X X X P17
18 X X X X X P18
19 X X X X X P19
20 X X X X P20
21 X X X P21
22 X X X X P22
23 X X X X P23
24 X X X X P24
25 X X X P25

(a) Level 0 fill-in

21 22 23 24 25
16 17 18 19 20
11 12 13 14 15
6 7 8 9 10
1 2 3 4 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 X X X P1
2 X X X F X P2
3 X X X F X P3
4 X X X F X P4
5 X X F X P5
6 X F X X X P6
7 X F X X X F X P7
8 X F X X X F X P8
9 X F X X X F X P9

10 X X X F X P10
11 X F X X X P11
12 X F X X X F X P12
13 X F X X X F X P13
14 X F X X X F X P14
15 X X X F X P15
16 X F X X X P16
17 X F X X X F X P17
18 X F X X X F X P18
19 X F X X X F X P19
20 X X X F X P20
21 X F X X P21
22 X F X X X P22
23 X F X X X P23
24 X F X X X P24
25 X X X P25

(b) Level 1 fill-in

Fig. 4.1: Matrix structure of 2D (5x5) single-phase flow equation.



41
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1 X X X X P1
2 X X X X X P2
3 X X X X P3
4 X X X X X P4
5 X X X X X X P5
6 X X X X X P6
7 X X X X P7
8 X X X X X P8
9 X X X X P9

10 X X X X X P10
11 X X X X X X P11
12 X X X X X P12
13 X X X X X X P13
14 X X X X X X X P14
15 X X X X X X P15
16 X X X X X P16
17 X X X X X X P17
18 X X X X X P18
19 X X X X P19
20 X X X X X P20
21 X X X X P21
22 X X X X X P22
23 X X X X X X P23
24 X X X X X P24
25 X X X X P25
26 X X X X X P26

(a) Level 0 fill-in

3D single phase Flow Equation (Level 1 Fill-in)

7 8 9 16 17 18 25 26 27
4 5 6 13 14 15 22 23 24

1 2 3 10 11 12 19 20 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1 X X X X P1
2 X X X F X F X P2
3 X X F X F X P3
4 X F X X X F X P4
5 X F X X X F X F F X P5
6 X X X F X F F X P6
7 X F X X F X P7
8 X F X X X F F X P8
9 X X X F F X P9

10 X F F X X X X P10
11 X F F X X X F X F X P11
12 X F X X F X F X P12
13 X F F X F X X X F X P13
14 X F F X F X X X F X F F X P14
15 X F X X X F X F F X P15
16 X F X F X X F X P16
17 X F X F X X X F F X P17
18 X X X X F F X P18
19 X F F X X X P19
20 X F F X X X F X P20
21 X F X X F X P21
22 X F F X F X X X P22
23 X F F X F X X X F X P23
24 X F X X X F X P24
25 X F X F X X P25
26 X F X F X X X P26

(b) Level 1 fill-in

Fig. 4.2: Matrix structure of 3D (3x3x3) single-phase flow equation.

4.1 Comparison of the Iterative Solver with the Sparse Matrix Solver

A two-dimensional three-phase history matching problem was considered for

the purpose of comparison of the iterative solver with the sparse matrix solver. We

use a 15× 15 grid with ∆x = ∆y = 40 ft and ∆z = 30 ft. The porosity for the true

model is homogeneous and equal to 0.22. Permeability is isotropic and uniform in

three different zones; see Fig. 4.3. The value of ln(k) in the lower left zone, lower

right zone and the upper half zone are equal to 4.0, 4.6 and 4.2 respectively for k

in md. Four producers and one water injection well are completed in the reservoir.

The well locations are indicated by the white squares in Fig. 4.3. All producers start

production at time 0 at a constant total flow rate of 200 STB/Day and produce for

300 days. Bottom-hole pressure from all five wells, GOR and WOR from all four

producers are used as conditioning data to estimate the gridblock permeabilities

only, i.e., the porosity is fixed at its true values. A total of 364 production data

are history matched, 28 data of each of the three types at the four producing wells

and 28 pressure data at the water injection well. An isotropic spherical variogram

with the range equal to 240 ft in all three directions and the variance for ln(k) equal

to 1 was used to construct the prior covariance matrix for log-permeability. Note
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the true case does not exhibit the type of permeability heterogeneity that would

be typical of an unconditional realization that would be generated from the prior

model. The maximum a posteriori (MAP) estimate was obtained by history matching

the production data. The Levenberg-Marquardt algorithm was applied to minimize

the objective function involved in the history matching procedure. The truncated

orthmin algorithm using five previous vectors with level-1 fill-in was applied to solve

the adjoint equations involved in the computation of the sensitivity coefficient matrix.

The iteration was stopped when the following condition is satisfied

‖ rk ‖∞
‖ r0 ‖∞

≤ ε = 10−4, (4.16)

where ‖ · ‖∞ denotes the infinity or maximum norm.
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Fig. 4.3: Permeability field for the true model.

To apply the iterative solver, we have to provide an initial guess for the

vector of adjoint variables, λ. Often, we did not obtain the same solution obtained

with the Harwell sparse matrix solver (a direct solver based on LU decomposition)

if we used an arbitrary initial guess. For example, when solving the adjoint equation

systems corresponding to the time step at which we have wellbore pressure data as

the conditioning data, we did not get the correct solution in 100 iterations when we
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used 0, 1, 10 or 100 as the initial guess for all components of λ. Fig. 4.4 shows the

Harwell sparse matrix solver solution to the adjoint equation system for the case

where we wish to obtain the sensitivity to pwf,1(tL), the wellbore pressure at well 1

at time tL. The solution for the λ’s represents the results obtained by doing a single

time step backward in time to obtain the adjoint variables λj(tL) where the subscript

j = 1, 2, · · · , Ne. The x-coordinate in Fig. 4.4 represents the adjoint equation index.

We have 15×15 = 225 gridblocks. Each gridblock has three equations corresponding

to three phases. In addition, we have 5 equations corresponding to 5 wells. Thus,

the total number of adjoint variables is 680. For the 680 equations, only the 676th

equation (which corresponds to the first well equation) has a nonzero right-hand side,

all other equations have zero right-hand sizes. Most of the λ’s are on the order of 109

in amplitude. The biggest value corresponds to the 676th λ. The adjoint solutions

corresponding to the well gridblock equations are bigger than the adjoint solutions

corresponding to the equations for the gridblocks surrounding the well gridblocks.

Since, all the λ’s are large, setting all λ’s equal to a small value provides a poor

initial guess.

Fig. 4.4: Adjoint solution from Harwell solver, the source term from pwf,1(tL).

Figs. 4.5 and 4.6 show the Harwell solver solution to the adjoint equation
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Fig. 4.5: Adjoint solution from Harwell solver, source term from a GOR datum.

Fig. 4.6: Adjoint solution from Harwell solver, source term from a WOR datum.

systems associated with GOR and WOR as source terms respectively. These adjoint

solutions are corresponding to all the forward simulation equations at a single time

step where we have measured data. In checking the Harwell solutions carefully, we

found that almost all the solutions for the adjoint equation system associated with

GOR are negative. We also found that the solutions to the adjoint equation system
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associated with WOR are relatively small in amplitude with some positive and some

negative.

Based on the features of the correct adjoint solution (Figs. 4.4 through 4.6),

we provide an ad hoc procedure for generating the initial guess. The equation for

solving the λ’s at the first step backward in time has the form

ai,iλ
L
i +

∑

j 6=i

ai,jλ
L
j = si (4.17)

for 1 ≤ i ≤ Na where Na is the number of adjoint variables at each time step. Note

that Na = Ne. If the source term, si, is not zero, we set the initial guess for λ
L
i equal

to si/ai,i. For equations with si = 0, we set the initial guess for λi equal to 1000 if

we solve for λ’s to compute the sensitivities of pwf to model parameters, to -100 if we

compute GOR sensitivities and to 0 if we are computing WOR sensitivities. After

the first step of solving the adjoint equation system backward in time, we use the

resulting solution as the initial guess when solving the adjoint system at the next

time step backward and repeat this procedure for all the subsequent time steps. For

simplicity, this iterative solver is called iterative solver with initial guess scheme 1.

Fig. 4.7 shows the adjoint solutions for the equation systems when pwf from well 1

was used as data to generate the source term. In this figure and similar figures, the

circles represent the Harwell solver solution and the plus signs represent the iterative

solver solution. In the semilog plot, we plotted the absolute value of the λ’s. We can

see that the iterative solver solution matched the Harwell solver solution very well.

In addition, we can see that the semilog plot has a very beautiful pattern.

The calculated adjoint variables fall into three big groups. These three groups of

adjoint solutions correspond to the three types of equation, i.e., oil equation (top

group), gas equation (middle group) and water equation (bottom group). Note that

although it is not so obvious, the middle group is underneath the top group. Each big

group contains 15 small groups of adjoint solutions. Each small group corresponds to

a specific row of gridblocks; recall that the grid system is 15× 15. Each small group

contains 15 points. Each point represents the adjoint solution corresponding to one

equation at a gridblock of a certain row. The last 5 points represent the adjoint
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(a) Linear Plot (b) Semilog Plot

Fig. 4.7: Adjoint solution obtained from iterative solver with initial guess scheme 1,

source term from a pwf datum.

solutions corresponding to the 5 well equations respectively. We also can see that

the adjoint solution corresponding to the well at which the datum was measured has

the biggest amplitude. We also can see that an adjoint variable corresponding to a

gridblock that is closer to the well gridblock has a bigger amplitude than the adjoint

variable corresponding to a gridblock that is further away from the well gridblock.

Figs. 4.8 and 4.9, respectively, show the adjoint solutions when GOR and

WOR from well 1 was used to generate the source term. For both cases, the iterative

solver solution matched the Harwell solver solution very well. The pattern observed

in Fig. 4.7 can also be observed in Figs. 4.8 and 4.9.

Above, we provided an ad hoc procedure to generate an initial guess for

the adjoint variables for different types of source terms. This procedure is used for

the first time step (backward) associated with the generation of the sensitivity of a

particular production datum to model parameters. Due to the fact that the adjoint

equations are solved backward in time, after we solve the adjoint equation system

corresponding to the time at which we have conditioning data, we use these values of

λ as the initial guess to solve the adjoint equation at the next time step and repeat

this process for all the subsequent time steps. Figs. 4.10 through 4.12 show the plot
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(a) Linear Plot (b) Semilog Plot

Fig. 4.8: Adjoint solution obtained from iterative solver with initial guess scheme 1,

source term from a GOR datum.

(a) Linear Plot (b) Semilog Plot

Fig. 4.9: Adjoint solution obtained from iterative solver with initial guess scheme 1,

source term from WOR.

of the adjoint solution for the λ’s corresponding to the first well equation versus time

when pwf , GOR and WOR were used as the source terms, respectively. We can see

that the changes are not dramatic except at the time steps very close to the time

at which we have a source term. Note that in Fig. 4.10 the pressure datum was
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measured at the 1st time step backward, in Fig. 4.11 the GOR datum was obtained

at the 4th time step backward and in Fig. 4.12 the WOR datum was obtained at the

4th time step backward.

Fig. 4.10: Adjoint variables corresponding to the well equation versus time, source

term from pwf .

Fig. 4.11: Adjoint variables corresponding to the well equation versus time, source

term from GOR.



49

Fig. 4.12: Adjoint variables corresponding to the well equation versus time, source

term from WOR.

Fig. 4.13 (a) and (b), respectively, show the sensitivities of the first pressure

data (the first pressure data at the first well) and the 51st pressure data (the 23rd

pressure data at the second well) to all gridblock log-permeabilities. Fig. 4.14 shows

the sensitivities of one GOR data point (1st GOR at well 1) to the gridblock log-

permeabilities and Fig. 4.15 shows the sensitivities of one WOR data point (1st WOR

at well 1) to the gridblock log-permeabilities. We can see that results obtained by

the two solvers are in good agreement in Figs. 4.13 through 4.15.

The results shown in Fig. 4.16 represent MAP estimates of the log-permeability

field obtained by history matching the production data. In generating the MAP es-

timate of log-permeability shown in Fig. 4.16 (a), all adjoint solutions were obtained

using the Harwell solver, whereas the result of Fig. 4.16 (b) pertain to the case where

the iterative solver was used to solve the adjoint equations. We see that similar re-

sults were obtained for both cases and both of them are similar to the true model. As

shown in Fig. 4.17, the convergence behavior of the Levenberg-Marquardt algorithm

was similar for the two cases, where Iterative 1 referred to using the iterative solver

with the initial guess generated by the method discussed above. The results labeled

Iterative 2 will be discussed later.

For this example, only pressure data was matched at the injection well. At
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(a) pwf 1 (b) pwf 51

Fig. 4.13: Sensitivity of pwf to permeability, iterative solver with initial guess scheme

1.

Fig. 4.14: Sensitivity of GOR to permeability, iterative solver with initial guess

scheme 1.

the producers, pressure, WOR and GOR data were matched. The observed, initial

and pressure data predicted by the MAP estimate for well 2 and well 5 are shown

in Fig. 4.18 (a) and (b). In this figure and in similar figures, the circles represent

the observed data, the diamonds represent the data calculated from the initial model
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Fig. 4.15: Sensitivity of WOR to permeability, iterative solver with initial guess

scheme 1.
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model _Kxy_4(b) Iterative solver with initial guess scheme 1

Fig. 4.16: Final permeability model.

and the plus signs represent the data calculated from the final model. The observed,

initial and conditioned gas-oil ratio from well 1 and well 2 are shown in Fig. 4.19 (a)
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Fig. 4.17: Behavior of the objective function.

and (b). The observed, initial and water-oil ratio predicted from the MAP estimate

at well 1 and well 4 are shown in Fig. 4.20 (a) and (b). From these figures, we can

see that we obtain very good matches for all three types of data. Data matches of

similar quality were obtained from all wells.

(a) Well 2 (b) Well 5

Fig. 4.18: Wellbore pressure match from two wells.

We also considered another scheme to generate the initial guess. In this

scheme, we take the summation of all the nonzero coefficients of the source term
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(a) Well 1 (b) Well 2

Fig. 4.19: GOR match from two wells.

(a) Well 1 (b) Well 4

Fig. 4.20: WOR match from two wells.

equation; and divide the source term (right-hand side) by this summation; and then

take the quotient as the initial guess for the component of λ corresponding to this

equation and use 1000 as the initial guess for all other entries of λ if we solve for λ’s to

compute the sensitivities of pwf to model parameters. If we calculate the sensitivities

of GOR data, we use -100 as the initial guess for all the λ’s. If we calculate the

sensitivities of WOR, we use 0 as the initial guess for all the λ’s. After the first
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step of solving the adjoint equation system backward in time, we use the resulting

solution as the initial guess when solving the adjoint system at the next time step

and repeat this procedure for all the subsequent time steps. The sensitivity of pwf

and GOR obtained by this scheme is almost the same as the results obtained by the

iterative solver with initial guess scheme 1. But the sensitivities of WOR obtained by

this scheme is less accurate than those obtained by the iterative solver with initial

scheme 1. Therefore, the scheme for generating initial guess presented previously

was used in our code.

The method presented above for generating an initial guess for the adjoint

variables is quite ad hoc. If we consider the fact that only a small number of adjoint

equation systems are associated with source terms, then we can use the Harwell solver

to solve adjoint equations at time steps which have source terms without affecting

the overall efficiency very much provided the problem is not so large that computer

memory requirements preclude the use of the Harwell solver. Specifically, when we

solve the adjoint equations to find the adjoint variables necessary to compute the

sensitivity to a particular datum at time tL, only the adjoint equations for λLj , 1 ≤ j ≤
Na, have nonzero source terms. This linear system corresponds to the first time step

backward in time. Initial guess scheme 2 refers to solving for the λLj using the Harwell

direct solver then solving subsequent time steps for λlj, l = L− 1, L− 2, · · · , 1, using
the iterative solver. When we solve for λlj, 1 ≤ j ≤ Na, we use the vector of λl+1

j as

the initial guess for λlj, 1 ≤ j ≤ Na. Figs. 4.21 through 4.23 compare the sensitivities

of two pressure data, one GOR and one WOR to all the model parameters obtained

by the Harwell solver and those obtained by the iterative solver with this initial

guess scheme 2. We can see that the iterative solver yields a very good agreement

for the sensitivities of all three types of data to model parameters as compared to

the corresponding results obtained by using the Harwell solver to solve the adjoint

system. The crosses in Fig. 4.17 show the behavior of the objective function when

the iterative solver with initial guess scheme 2 was applied. Fig. 4.24 (a) shows the

MAP estimate of the model obtained by using the Harwell solver to solve the adjoint

system and Fig. 4.24 (b) shows the MAP estimate obtained by using this iterative
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solver with initial guess scheme 2 to solve the adjoint system. They agree very well

and also are close to the results obtained with initial guess scheme 1. Since initial

guess scheme 1 has significantly lower memory requirements, it is preferred.

(a) Pwf 1 (b) Pwf 51

Fig. 4.21: Sensitivity of pwf to permeability, iterative solver with initial guess scheme

2.

Fig. 4.22: Sensitivity of GOR to permeability, iterative solver with initial guess

scheme 2.
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Fig. 4.23: Sensitivity of WOR to permeability, iterative solver with initial guess

scheme 2.
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(b) Iterative solver with initial guess scheme 2

Fig. 4.24: Final permeability model.

When we calculate the gradient of the objective function, we treat the whole

objective function as a single datum. So when we solve the adjoint equation back-
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wards, source terms appear at all times corresponding to data mismatch terms in the

objective function. In all the applications, we use initial guess scheme 1 to generate

the initial guess when calculating the gradient of the objective function. But, here

we compare adjoint solutions obtained by this method with results obtained with the

Harwell solver. Fig. 4.25 (a) through (c) show the adjoint solution corresponding to

the 10th gridblock equation, the first well equation and the last well equation which

is an injection well versus time. From Fig. 4.25 (c) we can see clearly that, unlike the

case when we only calculate the sensitivity of an individual datum, the adjoint solu-

tion changes significantly with time. The observed data set was generated by picking

the production data, i.e., pwf , GOR and WOR, every third time step backward when

we run the simulator based on the true model given in Fig. 4.3. Fig. 4.25 (c) indicates

clearly that the adjoint solutions jump up every third time step backward. When-

ever a source term appears on the right-hand side of the adjoint equation system, the

adjoint solution jumps up. Note that Fig. 4.25 (c) corresponding to well 5 (the water

injection well) is much different from Fig. 4.25 (b) corresponding to well 1 (produc-

ing well). Figs. 4.26 through 4.28 show the adjoint solutions at times equal to 300

days, 75 days and 0.001 day. Again, in these figures, circles represent the solution

obtained by the Harwell solver and the plus signs represent the solution obtained by

the iterative solver. These same results are also shown on the corresponding semilog

plot of these figures where we plotted the absolute value of the adjoint variables. We

can see that the two sets of results are in very good agreement.

Fig. 4.29 shows the gradient of the objective function constructed by com-

puting the full sensitivity coefficient matrix G, i.e.,

∇O = C−1
M (m−mprior) +GTC−1

D (g(m)− dobs) (4.18)

where all individual entries of G were calculated by the adjoint method with the

Harwell solver (circles) and the gradient obtained by one application of the adjoint

method with adjoint equations solved using the iterative solver (plus signs). We can

see a very good agreement is obtained. Fig. 4.30 (a) shows the difference between

the two results for elements of ∇O and Fig. 4.30 (b) shows the relative difference,
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(a) The 10th gridblock

(b) The first well (c) The fifth well

Fig. 4.25: Adjoint solution versus time.

i.e.,
(

∂O
∂mj

)

H
−
(

∂O
∂mj

)

it
(

∂O
∂mj

)

H

, (4.19)

where
(

∂O
∂mj

)

H
and

(

∂O
∂mj

)

it
, respectively, represent the derivative of the objective

function with respect to the jth model parameters obtained by applying Eq. 4.18

and by one application of the adjoint method.

Fig. 4.31 shows that the gradient of the objective function obtained by the
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(a) Linear (b) Semilog

Fig. 4.26: Adjoint solution at 300 days.

(a) Linear (b) Semilog

Fig. 4.27: Adjoint solution at 75 days.

finite-difference method (circles) and the gradient obtained by the adjoint method

using the iterative solver. The perturbation we used in the finite-difference method

was 0.0004 for log-permeability which is 0.01% of the log-permeability value to be

perturbed. From the semilog plot, we can see that almost all the derivatives obtained

by the adjoint method are in good agreement with the derivatives obtained by the
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(a) Linear (b) Semilog

Fig. 4.28: Adjoint solution at 0.001 days.

(a) Linear Plot (b) Semilog Plot

Fig. 4.29: The gradient of the objective function.

finite-difference method. Points where the two methods do not agree well corresponds

to derivatives which are relatively small in magnitude. These points are expected to

have a very small effect on the history matching process.
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(a) Difference (b) Relative difference

Fig. 4.30: Difference between the gradient constructed using the full G with asso-

ciated adjoint equations solved with the Harwell solver and the gradient

obtained by the adjoint method with the adjoint equations solved by the

iterative solver.

(a) Linear Plot (b) Semilog Plot

Fig. 4.31: Comparison of the gradient of the objective function obtained by finite

difference method and the adjoint method.



CHAPTER V

OPTIMIZATION ALGORITHMS

There are two categories of minimization algorithms for unconstrained opti-

mization problems. One category consists of gradient based algorithms, e.g., steepest

descent, Newton, Gauss-Newton, Levenberg-Marquardt, conjugate gradient and vari-

able metric (or quasi-Newton), and the other category includes non-gradient based

algorithms, such as simulated annealing (see, for example, Ouenes et al. (1993) and

Vasco et al. (1996)), genetic algorithm (see, for example, Sen et al. (1992)), Monte

Carlo methods (see, for example, Hegstad et al. (1994) and Bonet-Cunha et al.

(1998)) and neutral networks (see, for example, Ouenes et al. (1994)). Unless one

can predict production data for a given reservoir model by some method which is

orders of magnitude faster than running a conventional finite-difference simulator,

non-gradient based algorithms are far too slow for practical application (see, for

example, Bonet-Cunha et al. (1998)) as they may require tens of thousands of it-

erations for convergence, and one must recalculate the predicted production data at

each iteration. In our work, predicted data is always generated by running a reservoir

simulator, and only gradient based algorithms are considered.

In this chapter, we will discuss gradient based optimization algorithms and

some technical details on line search and scaling factors used in quasi-Newton meth-

ods. A comparison of the computational efficiency and memory requirement for

different algorithms is also provided in this chapter. We consider the problem of

minimizing a real-valued function O(m). We assume that O is bounded below and

twice continuously differentiable with respect to m. The optimization algorithms

for all the gradient based methods are similar and an outline of the methods are

described below:

62
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1. Choose an initial guess, m0, of the model and an initial search direction d0.

Set the iteration index k = 0.

2. Calculate the step size αk along the search direction dk. Different algorithms

use different schemes to find the step size; see Table 5.1.

Table 5.1: Step size calculation scheme used by different algorithms.

Algorithm Step size calculation scheme

Gauss-Newton restricted step

Levenberg-Marquardt damping factor or restricted step

steepest descent line search

conjugate gradient line search

quasi-Newton line search

3. Determine whether or not the stop criterion is satisfied. If it is satisfied then

stop. If it is not, then compute the new search direction dk+1, set k = k + 1

and then go to 2. Different algorithms employ different search directions.

5.1 Steepest Descent Method

For most problems, this method is relatively inefficient compared to other

gradient based methods. Thus, we only provide the basic idea of this method. In

this approach, the negative gradient of the objective function is chosen as the search

direction. This is the simplest approach. It has been illustrated in the literature

that the direction of descent computed with this method is very inefficient; see, for

example, Fletcher (1987). Also the procedure has only a linear convergence rate for

a quadratic problem; see Greenbaum (1997) or Fletcher (1987).
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5.2 Gauss-Newton and Levenberg-Marquardt Algorithms

Let mk be the most recent estimate of the model m that minimizes O(m).

Approximate O(m) by a quadratic expansion about mk and let

δm = m−mk, (5.1)

we have

O(m) = O(mk) +
(

∇O(mk)
)T
δm+

1

2
(δm)T

[

∇ · (∇O(mk))
T
]

δm. (5.2)

We define the Hessian Hk by

Hk = ∇ · (∇O(mk))
T . (5.3)

Taking the gradient of O(m) in Eq. 5.2 with respect to m, we get

∇O(m) = ∇(δm)T [∇O(mk)] +
1

2
{[∇(δm)T ](Hkδm) +∇(δmTHT

k )δm}

= ∇O(mk) +
1

2
(Hkδm+HT

k δm).
(5.4)

It is easy to show that Hk is symmetric. So Eq. 5.4 becomes

∇O(m) = ∇O(mk) +Hkδm. (5.5)

If m minimizes O(m) then

∇O(m) = 0. (5.6)

Setting ∇O(m) = 0 in Eq. 5.5 and rearranging gives

Hkδm = −∇O(mk). (5.7)

Eq. 5.7 is usually written in the iterative form which is given by

Hkδmk+1 = −∇O(mk), (5.8)

and

mk+1 = mk + δmk+1. (5.9)
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This is Newton’s method. Based on the objective function Eq. 2.14, we can easily

write down the gradient of the objective function which is given by

∇O(mk) = GT
kC

−1
D (g(mk)− dobs) + C−1

M (mk −mprior), (5.10)

and the Hessian matrix which is given by

H(mk) =
(

∇GT
k

)

C−1
D (g(mk)− dobs) +GT

kC
−1
D Gk + C−1

M . (5.11)

In these equations, Gk denotes the matrix of sensitivity coefficients, i.e., the deriva-

tives of predicted data with respect to model parameters, evaluated at mk. The

individual elements of the sensitivity matrix are

Gi,j =
∂gi
∂mj

, (5.12)

for 1 ≤ i ≤ Nd and 1 ≤ j ≤ Nm. A sensitivity coefficient gives a measure of

how strongly the change in the data, di = gi(m), is affected by the change in the

model parameter mj. The sensitivity coefficients can be obtained by either gradient

simulator method or adjoint method. If the number of model parameters and the

number of data are both large, computation of the sensitivity coefficient matrix G

by either the gradient simulator method or the adjoint method is not feasible.

The term in Eq. 5.11 that involves the gradient of G is small if the residual

term, (g(mk)−dobs), is small, or if the data is linearly related to the model parameters,

i.e., the function g(m) is linear. As a matter of fact, calculation the gradient of G

is impractical in practice. So we simply drop this term to form the Gauss-Newton

method. The approximation to the Hessian at mk is then given by

Hk = H(mk) = C−1
M +GT

kC
−1
D Gk. (5.13)

Substitution Eqs. 5.13 and 5.10 into Eq. 5.8 gives the Gauss-Newton iterative pro-

cedure, i.e.,

(C−1
M +GT

kC
−1
D Gk)δmk+1 = −C−1

M (mk −mprior)−GT
kC

−1
D (g(mk)− dobs). (5.14)

This equation is called the Gauss-Newton equation. The model is updated by

mk+1 = mk + µkδmk+1, (5.15)
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where µk is usually obtained by the restricted-step procedure; see Fletcher (1987).

Note δmk+1 is the search direction. The model obtained at convergence based on the

above derivation is the maximum a posteriori (MAP) estimate of the model which

is the most probable model. If one wants to generate the realizations, the iterative

equation Eq. 5.14 should be modified slightly by replacing dobs by duc and mprior

by muc. We also can consider the case where the corrections to the prior mean are

also variables. The corresponding version of the Gauss-Newton iterative procedure

is given later.

Gauss-Newton equation given by Eq. 5.14 requires solving an Nm × Nm

matrix problem where Nm is the number of model parameters which is normally

large as well as evaluating C−1
M . By applying the inverse lemma (see Beck and

Arnold (1977)), Eq. 5.14 with Eq. 5.15 can be reformulated as

δmk+1 =(mprior −mk)+

{

CMG
T
k

[

CD +GkCMG
T
k

]−1[
Gk(mk −mprior)−

(

g(mk)− dobs

)]}

.
(5.16)

Note that Eq. 5.16 requires solving an Nd × Nd matrix problem where Nd is the

number of data. This formulation will result in an algorithm which is much more

computationally efficient than application of Eq. 5.14 if Nd << Nm.

For many examples, the Gauss-Newton procedure with restricted-step con-

verges without difficulty. However, it may be necessary to damp the Gauss-Newton

step at early iterations if the initial estimate gives a large data mismatch; see, for

example, Wu et al. (1999) and Li et al. (2001). If damping is not done, the effect

of regularization provided by the prior model covariance matrix appears to be lost.

In this case, the Gauss-Newton method may yield rock property fields which are

excessively rough and give an unacceptable match of the pressure data. This prob-

lem can be avoided using the ideas due to Levenberg and Marquardt. The modified

Levenberg-Marquardt algorithm given in Bi (1999) can be written as

δmk+1 = −
[

(1 + λ)C−1
M +GT

kC
−1
D Gk

]−1[

C−1
M (mk −mprior) +GT

kC
−1
D (g(mk)− dobs)

]

.

(5.17)
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As shown by Bi (1999), matrix inverse lemma can be applied to rewrite Eq. 5.17 as

δmk+1 =
mprior −mk

1 + λ

+ CMG
T
k

[

(1 + λ)CD +GkCMG
T
k

]−1[Gk(mk −mprior)

1 + λ
−
(

g(mk)− dobs

)

]

.

(5.18)

Note the formula of Eq. 5.17 requires calculation of C−1
M and then solving an Nm×Nm

matrix problem where Nm is the number of model parameters. Applying Eq. 5.18

requires solving an Nd×Nd matrix problem where Nd is the number of data. When

we apply Levenberg-Marquardt, we usually choose a large number as the initial value

for λ, for example, 105, such that the initial step is relatively small. If the value of λ

used results in a decrease in the objective function, we simply decrease λ for the next

iteration by a factor of 10. Otherwise, λ is increased by a factor of 10. The model mk

is not updated to mk+1 unless the update decreases the objective function. One can

also compute the optimal damping factor at each step; see, for example, Abacioglu

et al. (2001). However, calculation of the optimal damping factor is quite expensive.

Thus, in our study, we use the simple scheme based on multiplying or dividing λ by

a factor of 10.

5.3 Truncated Gauss-Newton Method

According to Nash (1985), if the search direction in the Gauss-Newton

method (see, for example, Eq. 5.16) is not formed accurately, then the corresponding

iterative procedure is referred to as the truncated Gauss-Newton method. Typically,

the Gauss-Newton equation could be solved approximately at early iterations due

to the fact that the second order approximation of the objective function is not a

good approximation at early iterations. When the model approaches the minimum,

the Hessian matrix tends to be a constant matrix, then the Gauss-Newton equation

should be solved more accurately. The Gauss-Newton version given by Eq. 5.16

requires solving

(

CD +GkCMG
T
k

)

x = Gk(mk −mprior)− (g(mk)− dobs), (5.19)
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for

x =
(

CD +GkCMG
T
k

)−1(
Gk(mk −mprior)− (g(mk)− dobs)

)

. (5.20)

Eq. 5.19, which is a linear equation, can be solved by any iterative solver, for ex-

ample, successive-over-relax (SOR), steepest descent or conjugate gradient. Detailed

information about these linear iterative solvers can be found in Appendix A. If this

matrix problem is solved iteratively by the conjugate gradient method, then one

does not need to explicitly compute G; one only needs to be able to calculate Gu

and GTv for vectors u and v at each iteration of the Gauss-Newton or Levenberg-

Marquardt algorithm. Chu et al. (2000) suggested solving Eq. 5.19 by a conjugate

gradient method and implemented a procedure for computing Gu and GTv for the

single-phase flow of a slightly compressible fluid. A somewhat different and clearer

presentation of how one may compute Gu and GTv is given in Abacioglu (2001).

Computation of Gu requires a forward run of the simulation. Computation of GTv

requires one solution of the adjoint system. As the solution of the adjoint system

requires roughly the same computational time as one simulation run, each iteration

of the conjugate gradient method requires roughly two reservoir simulation runs.

Computation of the right-hand side of Eq. 5.19 also requires one simulator run to

evaluate Gk(mk − mprior) but must be done only once for each Gauss-Newton it-

eration. To apply the conjugate gradient algorithm, we also need to calculate the

residual corresponding to the initial estimate which requires one operation of Gu and

one operation of GTv. To accomplish one Gauss-Newton iteration, we need one more

operation of GTv outside the inner iteration; see Eq. 5.16. Thus, if the inner iteration

(the solution of Eq. 5.19 by the conjugate gradient method) requires on average kCG

iterations for convergence and kGN iterations are required to obtain convergence of

the Gauss-Newton method, roughly

IGN = kGN(2kCG + 4), (5.21)

reservoir simulation runs are required to generate each realization. For the overall

procedure to be feasible kCG must be quite small. If an extremely good precondi-

tioning matrix could be found for the conjugate gradient step, it is possible that the
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method could be effective. However, the matrices Gk and CD +GkCMG
T
k are never

explicitly constructed, so it is not clear how to construct a good preconditioner. At

this point, we are skeptical that the method will prove to be sufficiently computa-

tionally efficient for practical applications, but we have not implemented it in our

work.

5.4 Nonlinear Conjugate Gradient Method

Nonlinear conjugate gradient method which is usually used to minimize

non-quadratic function can “be evolved” from the linear conjugate gradient method

which is normally used to solve a linear equation system. A variety of linear con-

jugate gradient algorithms and nonlinear conjugate gradient algorithms are given in

Appendix C. In this section, we focus on the application of the nonlinear conjugate

gradient method to our history matching problem.

In the conjugate gradient method, the search direction is given by

dk+1 = −M−1
k gk + βkdk, (5.22)

where k is the iteration index, gk represents the gradient of the objective function,

Mk is called the preconditioning matrix which is an approximation to the Hessian

matrix Hk and βk is obtained by the Polak-Ribière formula given by

βk =
rTk+1(M

−1
k+1rk+1 −M−1

k rk)

rTkM
−1
k rk

, (5.23)

where rk = −gk. As discussed later, the step size can be obtained by a line search.

If we choose the preconditioning matrix Mk to be identity matrix I, then Eq. 5.22

reduces to the standard conjugate gradient method without preconditioning.

It is well known that the nonlinear conjugate gradient method can be ap-

plied to minimize non-quadratic objective functions; see, Fletcher and Reeves (1964).

Although the method has been applied for the history matching of production data

(see, for example, Makhlouf et al. (1993)), its slow rate of convergence has precluded

its use in large scale history matching problems. The success of the conjugate gradi-

ent method for nonlinear optimization depends on whether we are able to construct a
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good preconditioner. A good preconditioning matrix at the kth iteration is a matrix

Mk which is a good approximation to the Hessian Hk so that

M−1
k Hk ≈ I. (5.24)

For our problem, the Hessian at the kth iteration is given by

Hk = C−1
M +GT

kC
−1
D Gk, (5.25)

see the deviation of Eq. 5.13. An optional preconditioner for the conjugate gradient

method would be

Mk = Hk, (5.26)

but the conjugate gradient method requires solving the matrix problem

Mkd̃k = −gk, (5.27)

to form search direction dk+1 using Eq. 5.22. If Mk = Hk, Eq. 5.27 requires the same

computational effort as the direct application of Gauss-Newton method Eq. 5.14 and

does not improve computational efficiency. If we choose Mk = C−1
M , however, then

Eq. 5.27 becomes

d̃k = −CMgk, (5.28)

and the calculation of d̃k which is the first term in Eq. 5.22 requires only multiplica-

tion of gk by the prior covariance matrix CM . Kalita (2000) considered the problem

of conditioning a gas reservoir model to well test pressure data by automatic his-

tory matching. Both the Gauss-Newton method and the conjugate gradient method

with C−1
M as the preconditioner were used to minimize the relevant objective function

(Eq. 2.14 or Eq. 2.18). Kalita’s results indicate that the conjugate gradient method

was not always more efficient than the Gauss-Newton method. Moreover, in most

cases, the conjugate gradient method converged to a value of the objective function

which was significantly higher than the converged value of the objective function

obtained by the Gauss-Newton method.

In the preconditioned conjugate gradient method, the preconditioning ma-

trixMk is used only in equations like Eq. 5.27. Thus, it is preferable to estimateM−1
k
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directly instead of estimating Mk. We would like M−1
k to be an approximation to

the inverse Hessian. This suggests that H̃−1
k constructed from quasi-Newton might

be a good candidate for a preconditioner. Quasi-Newton method will be discussed

in the next section. The difficulty with this procedure is that we can only approxi-

mate the quasi-Newton H̃−1
k using information in the conjugate gradient algorithm.

Our work indicated that the preconditioner constructed by this scheme works bet-

ter than C−1
M for some cases, for example, in the gas reservoir examples shown by

Zhang et al. (2001); and works worse than C−1
M for some cases, for example, in the

three-phase example presented later. The reason is that the iterates generated by

the quasi-Newton method are different from the iterates generated by the conjugate

gradient method. The search direction for the conjugate gradient algorithm is given

by Eq. 5.22 whereas it is given by Eq. 5.31 in the quasi-Newton method. Different

search directions generate different iterates and in turn different yk’s and sk’s which

are used to construct Hessian inverse approximation matrix H̃−1
k . Therefore, the in-

verse Hessian approximation generated within the conjugate gradient algorithm will

not be the same as the one generated in a quasi-Newton method. In particular, the

“inverse Hessian approximation” generated with the conjugate gradient procedure

may not have the property that the inverse Hessian approximation will be equal to

the true inverse Hessian at the Nth iteration for a N -dimensional quadratic func-

tion given that the line search is exact; see Oren and Luenberger (1974) and Oren

(1974b).

5.5 Quasi-Newton Methods

The search direction in the Newton’s method can be written as

dk+1 = −H−1
k gk, (5.29)

where Hk and gk, respectively, denote the second derivative (Hessian matrix) and

the first derivative (gradient) of the objective function evaluated at mk and k is the

iteration index. With O(m) given by either Eq. 2.14 or Eq. 2.18, the Gauss-Newton
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Hessian matrix is estimated by

Hk = C−1
M +GT

kC
−1
D Gk, (5.30)

where Gk is the sensitivity matrix evaluated at mk. As noted before, if both the

number of model parameters and the number of data are large, the evaluation of Gk

is computationally expensive. In quasi-Newton methods, H−1
k is approximated by a

symmetric positive definite matrix H̃−1
k which is corrected or updated from iteration

to iteration. With this Hessian inverse approximation matrix, the search direction

can be written as

dk+1 = −H̃−1
k gk. (5.31)

Because the matrix H̃−1
k takes the place of H−1

k in Eq. 5.29, the method with search

direction given by Eq. 5.31 is called a quasi-Newton method. This method is also

called a variable metric method. The reason why this method is called a variable

metric method is given below.

Suppose f(x) represents the real functional and p is a nonzero vector. The

directional derivative of f(x) at x0 along the direction p is given by

∂f(x0)

∂p
=
[

∇f(x0)
]T
e, (5.32)

where e is the unit vector in the direction p. If
[

∇f(x0)
]T
e < 0, then p is a downhill

direction, otherwise it is a uphill direction. The rate of change in the function f(x)

in the direction p depends on the absolute value of the directional derivative, i.e.,
∣

∣

∂f(x0)

∂p

∣

∣. Applying the Cauchy-Schwarz inequality, we have

∣

∣

∣

∣

∣

∂f(x0)

∂p

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

[

∇f(x0)
]T
e

∣

∣

∣

∣

∣

≤‖ ∇f(x0) ‖2 ∗ ‖ e ‖2=‖ ∇f(x0) ‖2, (5.33)

where ‖ · ‖2 represents the l2 norm or the Euclidean norm. For example, if x is a

vector, then ‖x‖2 =
√
xTx. From Eq. 5.33, we have

∣

∣

∣

[

∇f(x0)
]T
e
∣

∣

∣
≤‖ ∇f(x0)

]

‖2 . (5.34)

If we take

e = − ∇f(x0)

‖∇f(x0)‖2
≡ e0, (5.35)
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then
∣

∣

[

∇f(x0)
]T
e
∣

∣ takes on its maximum value given by the right-hand side of

Eq. 5.34. Because
[

∇f(x0)
]T
e0 = − ‖ ∇f(x0)

]

‖2< 0, (5.36)

e = e0 results in minimizing
∂f(x0)

∂p
. Therefore,

p = ‖∇f(x0)‖2e0 = −∇f(x0) (5.37)

is the steepest descent direction of f(x) at x0.

We introduce a new norm or a new metric ‖ · ‖A to measure the length of a

vector. ‖ · ‖A defined by

‖x‖A =
√
xTAx (5.38)

where A is a symmetric positive definite matrix. We can show that

|xTAy| ≤ ‖x‖A‖y‖A. (5.39)

The absolute value of the directional derivative in terms of the new introduced norm

‖ · ‖A can be written as

∣

∣

∣

[

∇f(x0)
]T
e
∣

∣

∣
=
∣

∣

∣

[

∇f(x0)
]T
A−1Ae

∣

∣

∣
=
∣

∣

∣

[

A−1∇f(x0)
]T
Ae

∣

∣

∣

≤ ‖A−1∇f(x0)
]

‖A‖e‖A = ‖
[

A−1∇f(x0)
]

‖A.
(5.40)

Note that here e is a unit vector in terms of ‖ · ‖A, i.e., ‖e‖A = 1. From Eq. 5.40, we

have
∣

∣

[

∇f(x0)
]T
e
∣

∣ ≤ ‖
[

A−1∇f(x0)
]

‖A. (5.41)

If we take

e = − A−1∇f(x0)

‖A−1∇f(x0)‖A
≡ e0, (5.42)

then
∣

∣

[

∇f(x0)
]T
e0

∣

∣ = ‖A−1∇f(x0)‖A (5.43)

which is the maximum value of the directional derivative in terms of ‖·‖A. Therefore,

p = ‖A−1∇f(x0)‖Ae0 = −A−1∇f(x0) (5.44)
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is the steepest descent direction in terms of ‖ · ‖A of the function f(x) at x0. If the

objective function is a quadratic function, then the second derivative of the objective

function, i.e., the Hessian matrix, is a constant matrix, will take the place of matrix A

in Eq. 5.44. If we consider a nonlinear problem, like our history matching problem,

the Hessian matrix Hk, which can be treated as a metric matrix, changes from

iteration to iteration. This provides a motivation for calling this method a variable

metric method. We also can treat this method as a “steepest descent” method in

terms of the new metric.

In a quasi-Newton method, the key issue is how to generate the approxi-

mation to the inverse Hessian matrix. Different quasi-Newton methods use different

formulas to calculate H̃−1
k+1 from H̃−1

k . All updating formulas satisfy the quasi-Newton

condition given by

H̃−1
k+1yk = sk, (5.45)

where

yk = gk+1 − gk, (5.46)

and

sk = mk+1 −mk; (5.47)

see Appendix B. Various possible updating formulas honor this quasi-Newton condi-

tion. The Broyden family equation is given by

H̃−1
k+1 = H̃−1

k +
sks

T
k

sTk yk
− H̃−1

k yky
T
k H̃

−1
k

yTk H̃
−1
k yk

+ θkvkv
T
k , (5.48)

where θk ∈ [0, 1] and

vk = (yTk H̃
−1
k yk)

1/2
( sk
sTk yk

− H̃−1
k yk

yTk H̃
−1
k yk

)

. (5.49)

Given that the line search is exact and the initial Hessian inverse approximation

is real symmetric positive definite, the Hessian inverse approximation generated by

Eq. 5.48 is guaranteed to be symmetric positive definite; see details in Appendix B.

In our procedure, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) correction

equation proposed by Broyden (1970), Fletcher (1970), Goldfarb (1970) and Shanno
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(1970) independently, which is a special case of Broyden family obtained by setting

θk = 1 in Eq. 5.48. The BFGS update equation is given by

H̃−1
k+1 = H̃−1

k +
sks

T
k

sTk yk
− H̃−1

k yky
T
k H̃

−1
k

yTk H̃
−1
k yk

+ vkv
T
k . (5.50)

The limited memory BFGS (LBFGS), which uses a limited number of pre-

vious vectors (yk’s and sk’s) to construct the inverse Hessian approximation at each

iteration, is an appropriate method for large scale problems where it is not feasible

to explicitly store and compute the full matrix H̃−1
k . In our work, the algorithm

proposed by Nocedal (1980) was implemented and applied. In order to derive the

limited memory BFGS, the normal BFGS formula Eq. 5.50 can be written as

H̃−1
k+1 = V T

k H̃
−1
k Vk + ρksks

T
k , (5.51)

where ρk = 1/yTk sk and Vk = I − ρkyks
T
k . Nocedal (1980) suggested a procedure

where only the L previous vectors are used when constructing the new H̃−1
k+1. When

k < L, the update equation is still given by Eq. 5.51 which can be rewritten as

H̃−1
k+1 =V T

k V
T
k−1 · · ·V T

0 H̃
−1
0 V0 · · ·Vk−1Vk

+ V T
k · · ·V T

1 ρ0s0s
T
0 V1 · · ·Vk

...

+ V T
k ρk−1sk−1s

T
k−1Vk

+ ρksks
T
k .

(5.52)

For k + 1 > L the update equation is

H̃−1
k+1 =V T

k V
T
k−1 · · ·V T

k−L+1H̃
−1
0 Vk−L+1 · · ·Vk−1Vk

+ V T
k · · ·V T

k−L+2ρk−L+1sk−L+1s
T
k−L+1V1 · · ·Vk

...

+ V T
k ρk−1sk−1s

T
k−1Vk

+ ρksks
T
k .

(5.53)

Unless the dimension of H̃−1
k is small, direct application of Eqs. 5.52 and 5.53, which

involve matrix products, is inefficient. Instead, we form the product H̃−1
k gk, which
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is used to construct the search direction, directly by using the algorithm proposed

by Nocedal (1980). The calculation of H̃−1
k gk only involves vector products instead

of matrix products. Because only the L most recent vectors from the set of sk and

yk are used to construct H̃−1
k+1, this algorithm is called the limited memory BFGS

method. The precise algorithm for this method is given in Appendix B.

The BFGS or LBFGS algorithm we used to minimize O(m) (Eq. 2.14 or

Eq. 2.18) is given below.

Step 1 Initialization

(a)Provide an initial guess, m0, of the model, calculate the objective function

corresponding to m0 and evaluate the gradient of the objective function at m0,

i.e., compute g0; (b)provide an initial Hessian inverse approximation H̃−1
0 (e.g.,

CM in our examples), set the initial iteration index k=0.

Step 2 Calculate the search direction dk = −H̃−1
k gk and check whether it is a downhill

direction, i.e., check to see if dTk gk < 0. If dk is not a downhill search direction,

set dk = −H̃−1
0 gk.

Step 3 Calculate the step size αk by a line search procedure as discussed later.

Step 4 Update the model to mc = mk + αkdk.

Step 5 Calculate the objective function based on mc.

Step 6 Determine if the Wolfe conditions (discussed later) are satisfied; if they are

satisfied, then set mk+1 = mc and go to step 7, otherwise do

(a) fit a quadratic and find a step size by minimizing this quadratic, then go

to step 4;

(b) if a quadratic fit has already been done, cut the step size by a specified

factor (in our examples we cut the step size by a factor of 10) and go to step

4. All computations we have done suggest this case does not occur very often.
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Step 7 Determine if the stopping criteria are satisfied. If satisfied, then stop; otherwise

go to step 8.

Step 8 Calculate sk = mk+1 − mk = αkdk and yk = gk+1 − gk. Apply Eq. 5.50 or

Eqs. 5.52 and 5.53 to update the inverse Hessian approximation H̃−1
k+1. Set

k = k + 1 and then go to step 2.

5.5.1 Scaling

The scaling is obtained by multiplying the old H̃−1
k by a factor γk and then

substituting γkH̃
−1
k instead of H̃−1

k itself into the update equation (e.g., Eq. 5.48)

to calculate H̃−1
k+1; see Oren (1973), Oren and Luenberger (1974), Oren (1974b) and

Shanno (1970). If we do so, Eq. 5.48 becomes

H̃−1
k+1 = γkH̃

−1
k +

sks
T
k

sTk yk
− γkH̃

−1
k yky

T
k γkH̃

−1
k

yTk γkH̃
−1
k yk

+ θkγkvkv
T
k , (5.54)

and this equation can be further simplified to

H̃−1
k+1 =

(

H̃−1
k −

H̃−1
k yky

T
k H̃

−1
k

yTk H̃
−1
k yk

+ θkvkv
T
k

)

γk +
sks

T
k

sTk yk
, (5.55)

where vk is given by Eq. 5.49 and is the same one used in Eqs. 5.48 and 5.50.

For BFGS and LBFGS, scaling can have a significant effect on the rate of

convergence. The self-scaling variable metric (SSVM) method developed by Oren and

Luenberger (1974) and Oren (1974b) is motivated by the desire to choose a scalar

γk−1 so that the condition number of Rk = H
1/2
k H̃−1

k H
1/2
k is as close to one as possible.

If H̃−1
k is identical to the inverse of the true Hessian, Hk, then this condition number

is equal to one. For a quadratic objective function, these authors provide theoretical

conditions and a method for computing γk that insure that (i) λmin ≤ 1 ≤ λmax where

λmin and λmax, respectively, denote the minimum and maximum eigenvalues of Rk;

and (ii) the condition number of Rk+1 is less than or equal to the condition number

of Rk. A quasi-Newton method which satisfies these two conditions is referred to as

a self-scaling variable metric method.

Let

τk =
sTk H̃ksk
sTk yk

, (5.56)
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and

σk =
sTk yk

yTk H̃
−1
k yk

. (5.57)

By applying the fact that

sk = αkdk = −αkH̃−1
k gk, (5.58)

and using the fact that H̃−1
k is real symmetric, Eq. 5.56 can be rewritten as

τk =
sTk H̃ksk
sTk yk

(5.59)

= −αk
gTk sk
sTk yk

(5.60)

=
sTk gk

gTk H̃
−1
k yk

. (5.61)

In general the motivation for using the last two formulae to calculate τk is to avoid

calculating the inverse of H̃−1
k .

There are many options we can choose to perform scaling. Oren and Spedi-

cato (1976) proposed an optimal condition which minimizes the upper bound of the

condition number of H̃−1
k+1 by proper selection of θk and γk. This condition is given

by

θk =
akbk − a2

kγk
bkckγk − a2

kγk
(5.62)

where θk is the parameter used in Broyden family update equation, Eq. 5.48, ak =

sTk yk, bk = sTk H̃ksk and ck = yTk H̃
−1
k yk. With these definitions, there is still freedom

to select scaling factors. In the same paper, Oren proposed four similar switching

rules based on his earlier published paper (Oren (1974a)). One of the switching rules

for choosing γk and θk in Eq. 5.55 is

if τk ≤ 1, choose γk = τk and θk = 0;

if σk ≥ 1, choose γk = σk and θk = 1;

if σk ≤ 1 ≤ τk, choose γk = 1 and θk =
1− σk
τk − σk

.
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Some examples (see Zhang et al. (2001)) show that when we use θ = θk not equal to 1

in Eq. 5.55, the convergence rate is almost always slower than the case where we use

θk = 1. Therefore, we consider only the case where θk = 1; this choice corresponds

to the BFGS algorithm. Setting θk = 1 in Eq. 5.62 and solving for γ = γk, we obtain

the optimal scaling factor for BFGS which is given by

γk =
ak
ck

=
sTk yk

yTk H̃
−1
k yk

= σk, (5.63)

where σk is given by Eq. 5.57. Shanno and Phua (1978) and Yang and Watson (1988)

use this scaling factor and only scale the initial matrix, H̃−1
0 , in their work. In our

implementation, we modify Oren’s switching rule to











γk = τk, if τk ≤ 1;

γk = σk, otherwise

(5.64)

and always use θk = 1. Note that using switching rule Eq. 5.64 for choosing the

scaling factor still guarantees the condition number of matrix Rk = H
1/2
k H̃−1

k H
1/2
k

monotonously decreases at least for quadratic functions; see Appendix B for detail.

The scaled version BFGS algorithm is similar to the standard BFGS al-

gorithm given previously. The only difference is in step 8. For the scaled BFGS

algorithm, step 8 is replaced by

Step 8 Calculate sk = mk+1−mk = αkdk and yk = gk+1−gk. Calculate τk by Eq. 5.61

and determine whether τk is less than one. If it is, then set γk = τk. Otherwise,

calculate σk using Eq. 5.57 and set γk = σk. Apply Eq. 5.55 to update the

inverse Hessian approximation H̃−1
k+1. Set k = k + 1 and go to step 2.

This step 8 is given for the case where the inverse Hessian approximation is scaled

at each iteration. For the case where only initial scaling is done, set γk = 1 for

k > 0 in this step. For the LBFGS algorithm with initial scaling, we just replace

H̃−1
0 in Eqs. 5.52 and 5.53 by γ0H̃

−1
0 in computing H̃−1

1 and use γk = 1 at all

subsequent iterations. For the LBFGS with all scaling, we replace H̃−1
0 in Eqs. 5.52

and 5.53 by γkH̃
−1
0 in computing H̃−1

k+1. The efficient LBFGS method given by
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Nocedal (1980) avoid formation of H̃−1
k for k ≥ 1, only H̃−1

k gk is calculated at each

iteration. However, H̃−1
0 must be provided as the initial approximation to the inverse

Hessian. Based on these considerations, we tried implementing Eq. 5.57 with H̃−1
k

replaced by H̃−1
0 , then we have

σ̃k =
sTk yk

yTk H̃
−1
0 yk

. (5.65)

The H̃−1
k and H̃k in Eqs. 5.59 and 5.61 are replaced by H̃−1

0 and H̃0 respectively. The

resulting three equations for τk are no longer equivalent except at the first iteration.

By using H̃−1
0 in place of H̃−1

k and H̃0 in place of H̃k in Eqs. 5.59 and 5.61, we obtain

τ̃1k =
sTk H̃0sk
sTk yk

(5.66)

τ̃3k =
sTk gk

gTk H̃
−1
0 yk

(5.67)

respectively. However, Eq. 5.60 can be applied exactly in all cases. To simplify the

notation, we let

τ̃2k ≡ τk = −αk
gTk sk
sTk yk

. (5.68)

More details about the scaling schemes we used and how they affect the convergence

are given in the example sections.

5.6 Convergence Criteria

In our results, the following stopping criteria are used to terminate the

algorithm:

1.
| Ok+1 −Ok |
Ok + 10−14

< ε1 (5.69)

and
‖ mk+1 −mk ‖2
‖ mk ‖2 +10−14

< ε2 (5.70)

where k denotes the iteration index and ‖ · ‖2 denotes the l2 norm of a vector.

Both conditions must be satisfied to terminate the iteration. If we use only

Eq. 5.69 as the convergence criterion, the algorithm may converge prematurely
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especially when the objective function decreases very slowly at the early iter-

ations. Because at the early iteration, the objective function is relatively big

such that Eq. 5.69 becomes easier to be satisfied.

2. Specify a maximum allowable iteration number. If the number of iterations

exceeds the specified number, we force the iteration to stop. In our examples,

we usually specify the maximum number of iterations as 100. Note that reach-

ing the maximum number of iterations does not imply that the algorithm has

converged.

5.7 Line Search

In our implementation of conjugate gradient and quasi-Newton methods,

the line search is performed using one iteration of the Newton-Raphson method

followed by a quadratic fit if necessary. We do not do an exact line search, but

terminate the line search when the Wolfe conditions are satisfied; see, for example,

Fletcher (1987). The Wolfe conditions are used to ensure that step sizes are not too

small and that the reduction in the objective function is not negligible. In addition,

the Wolfe conditions are side conditions for the exact line search; see Kolda et al.

(1998). At each iteration, we perform one Newton-Raphson iteration to find a step

size. Then we check whether this step satisfies the Wolfe conditions. If it does, we

accept this step. Otherwise we find an optimum step size by fitting a quadratic,

as discussed in the next section, and then check whether the new step satisfies the

Wolfe conditions. If it does, we accept this new step. Otherwise, we check whether

the objective function increases or decreases. If it increases, we cut the step size

by a factor of 10. If it decreases, we accept this new step size no matter whether

the Wolfe conditions are satisfied or not. Our experience shows that for most of

the iterations, the step size generated by one Newton-Raphson iteration satisfies the

Wolfe conditions and virtually all the step sizes satisfy the Wolfe conditions after the

quadratic fit. One may argue that we should perform a sequence of quadratic fits or

a sequence of cubic fits after one quadratic fit instead of cutting the step size after
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one quadratic fit. Our limited experience shows that the Wolfe conditions may never

be satisfied during the sequence of quadratic or cubic fits. If this situation happens,

then we are in a “dead loop” and the iteration never terminates. Because of this, we

implemented the simple scheme of reducing the step size by a factor of ten whenever

the situation arise that the Wolfe conditions are not satisfied after the quadratic fit.

Sometimes, however, this procedure leads to a false convergence. Thus, whenever we

obtain convergence as a result of reducing the step size by a factor of 10, we check

the objective function value. If the objective function value is still so big, then we

restart the algorithm manually.

A line search is used to find the step size α at the kth iteration such that

f(α) = O(mk + αdk), (5.71)

is minimized along the search direction dk. The minimizer can be found by setting

the derivative of the function f(α) equal to zero, i.e.,

h(α) ≡ f ′(α) =
dO(mk + αdk)

dα
=
(

∇O(mk + αdk)
)T
dk = 0. (5.72)

This equation can be solved by using the Newton-Raphson algorithm which is given

by

αj+1 = αj −
h(αj)

h′(αj)
, (5.73)

where j denotes the index of the Newton-Raphson iteration and the first derivative

of h can be evaluated by

h′(α) =
dh(α)

dα
= dTk∇

[

(

∇O(mk + αdk)
)T
]

dk = dTkH(mk + αdk)dk. (5.74)

In an exact line search, the Newton-Raphson iteration is stopped when a convergence

criterion is satisfied. The exact line search is very expensive due to the evaluation of

the term dTkH(mk + αdk)dk which requires at least one simulation run. In our pro-

cedure, we use an inexact line search. Specifically, we do only one Newton-Raphson

iteration as mentioned previously. To perform one Newton-Raphson iteration, we

set α0 = 0 and then Eq. 5.73 gives

α1 = −
(

∇O(mk)
)T
dk

dTkH(mk)dk
. (5.75)
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Eq. 5.75 involves the Hessian matrix which can be approximated. The Hessian for

the objective function given by Eq. 2.14 is given by

Hk = GT
kC

−1
D Gk + C−1

M . (5.76)

So

dTkHkdk = dTk (G
T
kC

−1
D Gk + C−1

M )dk

= dTk (G
T
kC

−1
D Gk)dk + dTkC

−1
M dk

= (Gkdk)
TC−1

D (Gkdk) + dTkC
−1
M dk.

(5.77)

In this equation, we do not need to compute the sensitivity coefficient matrix G

directly. We only need to calculate Gdk which can be done by using a finite-difference

approximation as shown next. It could also be calculated using one run of the

gradient simulator method. The method given below was originally implemented by

Kalita (2000). The elements of the sensitivity coefficient matrix can be written as

Gi,j =
∂gi
∂mj

, (5.78)

where i = 1, · · · , Nd and j = 1, · · · , Nm. The directional derivative is

( dg

dα

)

α=0
=
(dg(m+ αdk)

dα

)

α=0
. (5.79)

Let u = dk/ ‖ dk ‖. So we have

(dgi
dα

)

α=0
= [∇gi(m)]Tu

=
1

‖ dk ‖
[∇gi(m)]Tdk. (5.80)

The ith component of Gdk is given by

[

Gdk
]

i
=

Nm
∑

j=1

∂gi
∂mj

dk,j

= [∇gi(m)]Tdk, (5.81)

where dk,j denotes the jth component of the vector dk. Substituting Eq. 5.80 into
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Eq. 5.81, we obtain

Gdk =‖ dk ‖
( dg

dα

)

α=0

≈‖ dk ‖
g(m+ εdk)− g(m)

ε ‖ dk ‖

=
g(m+ εdk)− g(m)

ε
,

(5.82)

where ε is a small number. We choose ε based on the infinity norm of dk such that ε

satisfies ε ‖ dk ‖∞= 10−3. Note that calculating Gdk needs one additional simulation

run. Once we have Gdk, it is straight forward to calculate dTkHkdk using Eq. 5.77

and then Eq. 5.75 can be applied to calculate the step size. Application of Eq. 5.77

requires evaluating C−1
M dk. In our code, we provide two ways to calculate this term.

One way is to solve a matrix problem

CMx = dk (5.83)

for x = C−1
M dk using either LU decomposition or preconditioned conjugate gradient

method (both of them are available in our code). The other way is to approximate

C−1
M by using stencil method; see Skjervheim (2002) or Oliver (1998).

Fig. 5.1 presents plots of O(mk + αdk) (circles) and f ′(α) = [∇O(mk +

αdk)]
Tdk (diamonds) versus α. The cross shows f ′(α1) where α1 was computed by

Eq. 5.75. Note f ′(α1) is close to zero and α1 is close to the point (α = 3.765) where

O(mk + αdk) is minimum. This result illustrates our observation that one iteration

of the Newton-Raphson algorithm usually yields a sufficient accurate line search so

that the Wolfe conditions are satisfied.

The above procedure for computing H(mk)dk was based on the particular

form of the Hessian given by Eq. 5.76. For other cases, for example, the case where

the prior means are considered as model parameters, the above procedure must be

modified. A more general derivation based on Taylor’s series is given below. The

resulting formula can be applied to estimate directly the Hessian-vector product. For

any vector valued function f(m) (here, f is an N -dimensional column vector where

each component is a function of m,) we can write a Taylor series approximation as

f(m+ εv) = f(m) +
(

∇(f(m)T )
)T
εv, (5.84)
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Fig. 5.1: Illustration of Newton-Raphson.

where ε is a real scalar and v and m are fixed Nm−dimensional vectors. If f = g(m)

represents calculated data, then

(

∇(f(m)T )
)T
εv =

(

∇(g(m)T )
)T
εv = εGv (5.85)

so

Gv =
g(m+ εv)− g(m)

ε
, (5.86)

which gives a finite-difference method for calculating Gv. Another procedure for

doing so is to use the gradient simulator method. Now suppose f = ∇O, then

Eq. 5.84 gives

∇O(m+ εv) = ∇O(m) +
(

∇ · (∇O(m))T
)T
εv

= ∇O(m) +HT εv

= ∇O(m) +Hεv.

(5.87)

The last equality follows from the fact that the Hessian is symmetric. Rearranging

the last equation gives

Hv =
∇O(m+ εv)−∇O(m)

ε
. (5.88)
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The advantage of the last equation is that the H represents the Hessian for whatever

objective function O we use. Application of Eq. 5.88 implies that the Hessian matrix

used is the true Hessian given by Eq. 5.11 instead of the Hessian approximation given

by Eq. 5.13. However, Eq. 5.77 makes use of the approximation form of the Hessian

matrix, i.e., Eq. 5.13.

We choose ε by either

ε = (1 + ‖m‖∞)10−8 (5.89)

or

ε(1 + ‖v‖∞) = (1 + ‖m‖∞)10−k, (5.90)

where 3 ≤ k ≤ 5. In our code, Eq. 5.89 was used to calculate ε. The application

of Eq. 5.88 requires one forward simulation run to calculate the primary variables

that are required to form the adjoint system and one adjoint solution to form the

gradient evaluated at m + εv, whereas application Eq. 5.82 requires only a forward

simulation run. Thus, we use Eq. 5.82 whenever the objective function is given by

Eq. 2.14 or Eq. 2.18 and use Eq. 5.88 only for the case where we correct the prior

mean. This case is discussed later.

As mentioned above, instead of doing an exact line search, we generate

a sequence of iterate approximations to α that minimizes f(α) and terminate the

iterations when the Wolfe conditions are satisfied. As discussed below, the Wolfe

conditions were formulated to ensure that step sizes are not too small and that there

is a non-negligible reduction in the objective function at each iteration. In addition,

the Wolfe conditions are the side conditions for quadratic termination for linear

problems in practice; see Kolda et al. (1998).

5.8 Wolfe Conditions

Following Fletcher (1987), let ᾱk denote the smallest positive value of α for

which O(mk + αdk) = O(mk). Negligible reductions in the value of the objective

function can occur either if αk → ᾱk or αk → 0; see Fig. 5.2. Goldstein (1965)
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conditions can be used to avoid the occurrence of these negligible reductions. Again

we let f(α) denote O(mk + αdk), so f(0) = O(mk). The Goldstein conditions are

f(α) ≤ f(0) + αρf ′(0), (5.91)

to exclude the right-hand side extreme of [0, ᾱk], and

f(α) ≥ f(0) + α(1− ρ)f ′(0) (5.92)

to exclude the left-hand side extreme of [0, ᾱk], where ρ ∈ (0, 1
2
) is a fixed parameter.

In our examples, we choose ρ = 0.0001. Eq. 5.91 is often also referred to as a Wolfe

condition. In Figs. 5.2 and 5.3, the line labeled ρf ′(0) goes through f(0) and its

slope is equal to ρf ′(0); the line labeled f ′(0) goes through f(0) and has slope equal

to f ′(0). Eq. 5.91 can be rewritten as

f(α)− f(0)

α
≤ ρf ′(0). (5.93)

From Eq. 5.93, we can see that if the step size satisfies this condition then the line

through (0, f(0)) and (α, f(α)) in Fig. 5.2 must be below the line with slope of ρf ′(0).

Similarly, Eq. 5.92 can be rewritten as

f(α)− f(0)

α
≥ (1− ρ)f ′(0). (5.94)

If the step size satisfies this condition then the line through (0, f(0)) and (α, f(α))

must be above the line labeled (1−ρ)f ′(0) in Fig. 5.3. Hence, if the step size satisfies

both Eq. 5.91 and Eq. 5.92, then the line through (0, f(0)) and (α, f(α)) must fall

between the line with slope of ρf ′(0) and the line with slope of (1− ρ)f ′(0).

Applying the fact that f ′(0) = gTk dk where gk = ∇O(mk), Eq. 5.91 can be

rewritten as

fk − fk+1 ≥ −αρgTk dk. (5.95)

When f(α) is non-quadratic, the second Goldstein condition (Eq. 5.92) may exclude

the minimum point of f(α); see Fig. 5.3. Wolfe (1969) replaced Eq. 5.92 by a new

condition which is given by

f ′(α) ≥ ηf ′(0), (5.96)
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Fig. 5.2: Illustration of the Goldstein or the first Wolfe condition.
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Fig. 5.3: Illustration of the second Goldstein condition.

where η < 1. Eq. 5.96 can be rewritten as

gTk+1dk ≥ ηgTk dk, (5.97)

which is called Wolfe’s condition. In practice, Eq. 5.97 is often replaced by

| gTk+1dk |≤ η | gTk dk | . (5.98)
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which is called the strong Wolfe condition. The reason for using Eq. 5.98 instead

of Eq. 5.97 is given below, also see Fletcher (1987) for details. In our examples we

use η = 0.25. In Fig. 5.4, the top dashed line shows a situation where Eq. 5.97 is

satisfied but the strong Wolfe condition Eq. 5.98 is not satisfied. This dashed line,

which intersects the objective function curve at the point (α̃, f(α̃)), falls below the

line with slope of ρf ′(0). At the point (α̃, f(α̃)) where this dashed line intersects the

objective function, the slope of the objective function which is gTk+1dk is greater than

−ηf ′(0). With mk+1 = mk + α̃dk, Eq. 5.97 is satisfied, due to the fact that f ′(α̃) is

positive whereas f ′(0) is negative. However, the strong Wolfe condition (Eq. 5.98)

is not satisfied at α = α̃, because the value of f ′(α̃) > ηf ′(0). To satisfy the strong

Wolfe condition, we have to move the dashed line toward the minimum until it falls

below the dot dashed line which intersects the objective function curve at the point

at which the derivative is equal to −ηf ′(0). We use η = 0.25 in our work. So

the strong Wolfe condition is more restrictive. The first condition (Eq. 5.95) ensures

that the objective function is reduced sufficiently, and the second condition (Eq. 5.98)

prevents the steps from being too small. As is standard, we simply refer to Eqs. 5.95

and 5.98 as the Wolfe conditions.

α

)(αf

0 α

)0(f

)0(f ′

)0( f ′ρ

)0( f ′−η

α~

Fig. 5.4: Illustration of the strong Wolfe condition.
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5.9 Quadratic Fit

Suppose at iteration k, we perform one Newton-Raphson iteration and find a

step size α̂k for the current search direction dk. With this step size, we calculate a new

objective function value O(mk+ α̂kdk) = f(m̂k+1) and check the Wolfe conditions. If

the Wolfe conditions are not satisfied, we fit the function f(α) = O(mk + αdk) with

a quadratic function given by

q(α) = aα2 + bα + c. (5.99)

With the known values of q(0) = f(mk), q
′(0) = f ′(mk) and q(α̂k) = f(mk + α̂kdk),

we find

a =
f(mk + α̂kdk)− f ′(mk)α̂k − f(mk)

α̂2
k

,

b = f ′(mk),

c = f(mk).

Minimizing q gives

αk = −
f ′(mk)α̂

2
k

2[f(mk + α̂kdk)− f ′(mk)α̂k − f(mk)]
, (5.100)

which is used as the new step size. Based on our experience, the quadratic fit

almost always results in a decrease in the objective function. Even though it rarely

happens, however, a quadratic fit may yield a model at which the objective function

value is bigger than the value of the objective function corresponding to the model

obtained by one Newton-Raphson iteration. Such a situation is depicted in Fig. 5.5

where the quadratic approximation to the true objective function is inaccurate near

the minimum. In this figure, point A corresponds to mk; point B corresponds to

mk + α̃dk obtained after the Newton-Raphson iteration and point C corresponds to

mk+αkdk which is obtained after quadratic fit. We see that the value of the objective

function at point C obtained from the quadratic fit is larger than the value of the

objective function at point B obtained by one Newton-Raphson iteration.
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Fig. 5.5: Illustration of quadratic fit.

5.10 Evaluation of Computational Efficiency

Here, we assess the computational efficiency of GN (Gauss-Newton), LM

(Levenberg-Marquardt), PCG (preconditioned conjugate gradient), BFGS and LBFGS.

In the evaluation of computational efficiency, we count only the number of adjoint

solutions and the number of reservoir simulation runs required by each method.

Moreover, we count one adjoint solution over the total time interval of a simulation

run as one equivalent simulation run although in our examples, one adjoint solution

typically takes less than one half of the time of a simulation run. We do not keep

track of the computational effort incurred when a proposed model update is rejected

because it results in a violation of the Wolfe conditions.

In GN and LM, if the data are evenly distributed in the time domain, the

computational cost of calculating sensitivity of all data to all model parameters re-

quires Nd/2 adjoint solutions which we count as being equivalent to Nd/2 simulation

runs. GN and LM require one additional simulation run to calculate the new value

of the objective function. So a total of Nd/2 + 1 simulation runs are needed to

accomplish one GN or LM iteration.
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In LBFGS and PCG, the total computational cost of implementing one

iteration is equivalent to 3 simulation runs, which include one equivalent simulation

run for calculating the gradient of the objective function by using the adjoint method,

one simulation run for calculating the step size when using Newton-Raphson iteration

(only one iteration of Newton-Raphson is done in our implementation) and another

simulation run for calculating the objective function. Thus, LBFGS and PCG are

(Nd/2 + 1)/3 times faster than GN and LM for each iteration. For example, if we

have 1000 data, LBFGS and PCG will be roughly 167 times faster than GN or LM

per iteration. In terms of the total time, if GN or LM require n
GN

iterations to

converge on average, while LBFGS or PCG need n
BFGS

iterations to converge on

average, then LBFGS or PCG will be l times faster than GN or LM where

l =
n
GN

n
BFGS

(Nd/2 + 1)/3

=
n
GN

n
BFGS

× Nd/2 + 1

3
. (5.101)

Although BFGS requires more time than LBFGS and PCG to perform the matrix

operations involved in the update equation, it is the memory requirement that makes

the standard BFGS method inferior to LBFGS and PCG for large scale problems.

Hence, the “standard” BFGS refers to using Eq. 5.50 and storing H̃−1
k . We could of

course implement BFGS in exactly the same way as LBFGS in which case we do not

explicitly compute or store H̃−1
k .

5.11 Comparison of Memory Requirements

For large scale problems, the memory required by an optimization algorithm

is a key issue that needs to be considered. Because we are only concerned with the

difference between algorithms, we only consider the memory used by the optimization

algorithm itself. Table 5.2 gives a rough estimate of the number of double precision

real numbers used by each algorithm when applied to minimize the objective function

of Eq. 2.14 or Eq. 2.18. Recall that Nd is the number of production data, Nm is the

number of model parameters, and L is the number of previous vectors used in the

LBFGS algorithm. For convenience, we use one memory unit to stand for the memory

occupied by one double precision real number. Recall the dimension of mk, mk+1,
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δmk+1, s, dk, gk, gk+1,mprior and∇mO isNm, the dimension of a sensitivity coefficient

matrix G is Nd×Nm and the dimension of CM is Nm×Nm. In the GN or LM method,

(4 + 2Nd)×Nm (mk, mk+1, δm, mprior, sensitivity coefficient matrix G and CMG
T )

memory units are used. In CG, 8 × Nm (8 × Nm: mk, mk+1, δmk+1, sk, dk, gk+1,

mprior, ∇mO) memory units are used. For PCG, in addition to the memory required

for the standard conjugate gradient, memory is required to store the preconditioner.

In BFGS (10+Nm)×Nm (10×Nm: mk, mk+1, δmk+1, dk, gk, gk+1, mprior, vk, H̃
−1
k yk,

yk; Nm ×Nm: H̃
−1
k ) memory units are used. In LBFGS, (7 + 2× L)×Nm (7×Nm:

mk, mk+1, δmk+1, gk, dk, mprior, diagonal inverse Hessian approximation; 2×L×Nm:

yk and sk for k = 1, 2, · · · , L) memory units are used. From the results of Table 5.2,

we see that the full-memory version of BFGS uses the most memory which is on the

order of N 2
m, the standard conjugate gradient method uses the least memory which is

on the order of Nm and Gauss-Newton or Levenberg-Marquardt and limited memory

BFGS have intermediate memory requirements. For large scale problems in which

the number of data and the number of model parameters are both large, the memory

used by limited memory BFGS depends on the number of previous vectors (denoted

by L in Table 5.2) used to construct the Hessian inverse approximation update; L

must be specified by the user. Fig. 5.6 shows a snapshot of the panel which monitors

the memory usage history and the CPU usage history when the LBFGS algorithm

was applied to do a history match for a 2D problem presented in Chapter VI. In

the right bottom black window, the curve shows the memory usage. The period of

high memory usage corresponds to a simulation run and the lower memory period

corresponds to solving an adjoint system.

5.12 Optimization for Doubly Stochastic Model

In this section, we will consider the optimization algorithms for the doubly

stochastic model specifically where the objective function is given by Eq. 2.29 which
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Table 5.2: Memory used by each algorithm.

No. of DP real numbers

GN/LM (4 + 2×Nd)×Nm

CG 8×Nm

PCG 8×Nm + memory for preconditioner

BFGS (10 +Nm)×Nm

LBFGS (7 + 2L)×Nm

Fig. 5.6: Memory and CPU usage history of the computer.

is repeated as

O(m,α) =
1

2
(g(m)− dobs)

TC−1
D (g(m)− dobs)+

1

2
(m−mprior − Eα)TC−1

M (m−mprior − Eα) +
1

2
(α− α0)

TC−1
α (α− α0). (5.102)

Recall that M̂ denotes the random vector including the model vector M and vector

α, i.e.,

M̂ =





M

α



 , (5.103)
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and m̂ denotes a realization of M̂ . We can apply the methods that require both

the Hessian and gradient, such as Gauss-Newton or Levenberg-Marquardt, or the

methods that require only the gradient, such as quasi-Newton or conjugate gradient.

5.12.1 Application of Gauss-Newton/Levenberg-Marquardt Methods

The gradient of the objective function can be partitioned as

∇O(m̂) =





∇mO(m̂)

∇αO(m̂)



 . (5.104)

The gradient of the objective function with respect to m and α are given by

∇mO(m̂) = GTC−1
D (g(m)− dobs) + C−1

M (m−mprior − Eα), (5.105)

and

∇αO(m̂) = −ETC−1
M (m−mprior − Eα) + C−1

α (α− α0), (5.106)

respectively. The first term in the right-hand side of Eq. 5.105 can be obtained by

the adjoint method. The second term in the right-hand side of the same equation

can be obtained by solving the matrix problem using the conjugate gradient method.

The two terms in the right-hand side of Eq. 5.106 can be obtained by solving two

matrix problems respectively. One is an Nm × Nm matrix problem. The other one

is Nα ×Nα matrix problem. Note that Nα ¿ Nm.

The Hessian matrix is given by

H =





∇m

(

∇mO(m̂)
)T ∇m

(

∇αO(m̂)
)T

∇α

(

∇mO(m̂)
)T ∇α

(

∇αO(m̂)
)T



 =





GTC−1
D G+ C−1

M −C−1
M E

−ETC−1
M ETC−1

M E + C−1
α



 ,

(5.107)

where the last equality is actually approximation because we have used the Gauss-

Newton approximation of the Hessian. The Gauss-Newton method is given by

Hkδm̂k+1 = −∇m̂O(m̂) (5.108)

where k denotes the iterative index. If we delete the off diagonal entries of Hessian

matrix, then we obtain the approximation

Ĥk =





GTC−1
D G+ C−1

M O

O ETC−1
M E + C−1

α



 . (5.109)
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When Ĥk is used as the modified Hessian in the Gauss-Newton iteration

procedure, the overall iteration can be decomposed as follows:

(GT
kC

−1
D Gk+C

−1
M )δmk+1 = −GT

kC
−1
D

(

g(m)−dobs

)

−C−1
M (mk−mprior−Eαk) (5.110)

(ETC−1
M E + C−1

α )δαk+1 = ETC−1
M (mk −mprior − Eαk)− C−1

α (α− α0) (5.111)

mk+1 = mk + µkδmk+1 (5.112)

αk+1 = αk + µkδαk+1 (5.113)

where µk is calculated by the restricted step scheme; see Fletcher (1987). Note in

the spirit of the restricted step, it is important to use the same value of µk in both

Eqs. 5.112 and 5.113, otherwise we effectively change the search direction. Note by

replacing H by Ĥ, we avoid inversion of H, i.e., we have “decoupled” the iteration

on the model m from the iteration on the correction α to the prior mean. Eq. 5.110

is essentially the same equation we used when the prior mean is fixed and we can

apply any of the techniques mentioned earlier to solve it, including applying matrix

inversion lemmas. In Eq. 5.111, the dimension of α is Nα×Nα and if porosity and all

log-permeability fields are modeled as stationary random functions throughout the

domain, then the dimension of α is at most 4 so the matrix on the left side of Eq. 5.111

is of lower order. However, to form the matrix on the left-hand side of Eq. 5.111

appears to require calculation of C−1
M and then doing the matrix multiplication. The

product of C−1
M E is calculated by computing C−1

M el where el is the lth column of

E. This is done by solving CMwl = el using a preconditioned conjugate gradient

method.

5.12.2 Application of Quasi-Newton Method

In this method, the gradient required is given by Eqs. 5.105 and 5.106. The

step size can be obtained by applying Newton-Raphson iterative procedure using the

basic formula of Eq. 5.88. The initial Hessian inverse approximation used for this

case is given by

˜̂
H−1

0 =





CM O

O Cα



 . (5.114)
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Once we have the gradient of the objective function, the step size and the initial

Hessian inverse approximation, we can use the same LBFGS algorithm as used for

the case without correcting the prior mean to minimize Eq. 2.29.



CHAPTER VI

EXAMPLES

In this chapter, several history matching examples are presented. The first

example is a 3D single-phase gas problem. Five optimization algorithms Gauss-

Newton (GN), Levenberg-Marquardt (LM), preconditioned conjugate gradient (PCG),

Broyden-Fletcher-Goadfarb-Shanno (BFGS) and limited memory Broyden-Fletcher-

Goadfarb-Shanno (LBFGS) are tested on this example. The convergence behavior

and the computational cost are compared for the five algorithms. Extensive op-

tions for choosing the initial inverse Hessian approximation and for choosing scaling

schemes are explored and analyzed for the BFGS and LBFGS algorithms. Among of

all these options, we recognized the best options for choosing the scaling factor and

initial Hessian inverse approximation for both BFGS and LBFGS for this problem.

The second example is a 2D three-phase synthetic example. The purpose

of this example is to further test and verify the points that we observed from the

single-phase gas example on the three-phase problem. The same optimization algo-

rithms are tested and analyzed on this example. Basically, the same conclusions can

be made except that the LBFGS-PCG (preconditioned conjugate gradient using a

preconditioner which is an approximation to (H̃−1
k )−1 where H̃−1

k is the inverse Hes-

sian approximation) does not work as well as in the single-phase gas example. For

both examples, LBFGS with the “optimum” scaling option works very well. Then

the LBFGS was applied to a 3D three-phase history matching problem. The results

are encouraging. Based on all these examples we have done, we believe that LBFGS

is the best minimization algorithm for large scale problems.

Finally, we applied LBFGS to a pseudo-field example. The example is a

synthetic example which was constructed using data and information from the Os-

98
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eberg reservoir which is located in the Norwegian sector of the North Sea. There

is a gas cap at the top and an aquifer at the bottom. Two gas injection wells are

located in the gas cap. Five producing wells are located above the aquifer. Wellbore

pressure from all seven wells and the GOR from the five producing wells are history

matched. We obtained a very good match for both types of data.

6.1 Three-Dimensional Single-Phase Gas Synthetic Example

This example pertains to flow in a 3D single-phase gas reservoir. Reservoir

simulation was done on a 20 × 20 × 4 grid. The dimension of the reservoir is 2000

ft × 2000 ft × 40 ft. The gridblock size is actually uniform with ∆x = ∆y = 100

ft and ∆z = 10 ft. A spherical variogram was used to generate the prior covariance

matrix. The correlated lengths in the x−, y− and z− direction are 400 ft, 200 ft and

10 ft, respectively. Horizontal permeability, vertical permeability, porosity and skin

factor are the model parameters for this example. We assume that the porosity field

is correlated with the horizonal log-permeability field and the correlation coefficient

is 0.7 and that the vertical log-permeability field is uncorrelated with the porosity

and horizontal permeability fields. The prior information for the model parameters

are given in Table 6.1 where s denotes the skin factors at all wells. Because of the

small variance on s, the skin factor is almost fixed.

Table 6.1: Prior information on model parameters.

Mean Variance

ln(kx) 4.0 0.5

ln(kz) -2.9 0.5

φ 0.25 0.002

sskin 4.0 0.0001

The initial pressure is 3230 psi. All six boundaries are assumed to be no-flow

boundaries. The reservoir is produced by two completely penetrating wells. Well 1 is
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located in areal gridblock (5, 5) and well 2 is located in areal gridblock (15, 15). Well

1 was shut in for two days and then was produced at the rate of 4×104 Mscf/day for

another two days. Well 2 produced at the rate of 3.5×104 Mscf/day for the first two

days and was then shut in for the following two days. Fig. 6.1 shows the pressure

response of the two wells. We used 22 measured data from each well as conditioning

data. Thus, the total number of data to be history matched is 44. The observed

data are obtained by adding random noise to the simulated pressure data predicted

from the true reservoir. The variance for the observed pressure data is specified as

1 psi2. The total number of reservoir variables is 4808. Note that each layer has a

skin factor at each well.

Fig. 6.1: Pressure response from the true model.

Stochastic simulation was done using randomized maximum likelihood method.

Ten realizations were generated using five different optimization algorithms: (i)

Gauss-Newton (GN) with restricted step, (ii) Levenberg-Marquardt (LM), (iii) pre-

conditioned conjugate gradient (PCG), (iv) BFGS and (v) limited memory BFGS

(LBFGS). In LM, we simply use the value of 1000 for the initial damping factor

and multiply by 10 when the objective function increases and divide by 10 when the

objective function decreases. In PCG, the full matrix C−1
M was chosen as the precon-
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ditioner and fixed for each iteration. In BFGS, the full prior covariance matrix CM

was used as the initial inverse Hessian approximation. In BFGS, we only scale the ini-

tial inverse Hessian approximation and it is scaled by a factor of γ0 = sT0 y0/y
T
0 H̃

−1
0 y0

where s0 and y0 are obtained at the first iteration. The LBFGS we used is the

algorithm proposed by Nocedal (1980). In the LBFGS method, at most 30 previ-

ous vectors were used to construct the inverse Hessian approximation H̃−1
0 , and at

each iteration, H̃−1
0 , which is an identity matrix, is scaled by a factor of sTk yk/(y

T
k yk)

where k represents the kth iteration. For the GN and LM methods, only Eq. 5.69

with ε1 = 10−3 was used as a stopping criterion to terminate the iteration. When the

same stopping criterion was used for the other algorithms, most of the “realizations”

obtained at convergence gave very high values of the objective function; see Table 6.2.

In order to obtain a smaller value of the objective function at convergence, we used

ε1 = 10−7 in Eq. 5.69 as the convergence criterion for PCG, BFGS and LBFGS. All

five algorithms were applied to the same 10 unconditional realizations of data and

the model, when doing history matching, i.e., the same muc and duc were used in the

objective function of Eq. 2.18. The observed and unconditional data are the same

for each algorithm.

Fig. 6.2(a) through Fig. 6.2(e) show the behavior of the objective function

iteration by iteration for each algorithm based on using ε1 = 10−3 for GN and

LM algorithms and ε1 = 10−7 for the other algorithms. Each curve on each figure

corresponds to one realization. Table 6.3 shows the objective function values at

convergence and the number of iterations required to obtain convergence. In terms

of the number of iterations, the GN and LM methods are the best algorithms and

the objective function converges to a small value (approximately 33 or so) for each

of the 10 realizations. Both the GN and LM methods, however, require considerable

computational work at each iteration due to evaluating the sensitivity of each data

to all model parameters. From the results shown in Table 6.3, we can make the

following observations:

1. In terms of total machine time, algorithms which only require the gradient of

the objective function (especially LBFGS and PCG) are much faster than GN
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Table 6.2: Comparison of BFGS, LBFGS and PCG, ε1 = 10−3.

BFGS LBFGS PCG

Real. No. Obj. No. Iter. Obj. No. Iter. Obj. No. Iter.

R1 65 17 69 25 153 12

R2 372 10 F F 146 18

R3 56 15 63 17 70 11

R4 86 11 171 25 263 10

R5 58 11 138 25 347 13

R6 77 15 68 25 112 25

R7 64 25 66 10 184 5

R8 113 19 245 22 213 17

R9 445 7 112 20 230 19

R10 47 25 60 22 45 23

Average 138 15.5 99 21.2 176 15.3

and LM methods. As discussed previously, theoretically, LBFGS and PCG

should be roughly [Nd/2+1]/3 times faster than GN and LM per iteration. In

this example, we history matched 44 data to generate each realization. Thus,

LBFGS and PCG algorithms should be [Nd/2+1]/3 ≈ 8 times faster than GN

and LM per iteration.

2. PCG converges to higher values of the objective function than does the LBFGS

method under the same stopping criterion but requires fewer iterations for

convergence.

3. Based on our previous discussions, we believe that the average value of the

objective function at the minima should be around Nd = 44. However the

average objective function value at convergence is higher than this value for all

methods except GN and LM. Moreover, the average objective function value for
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the preconditioned conjugate gradient method exceeds Nd + 5
√
2Nd = 91; see

the discussion in section 2.3. Given that significantly higher average value of

the objective function were obtained for BFGS, LBFGS and PCG than for GN

and LM, it is not clear that these four methods converge to appropriate minima

of O(m). Thus we seek modified algorithms that will have better convergence

properties.

Table 6.3: Comparison between algorithms.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average

GN
Obj. 37 31 21 33 43 28 27 38 40 33 33.1

No. Iter. 7 13 6 8 12 8 12 12 6 6 9

LM
Obj. 38 30 21 33 43 28 27 38 40 34 33.2

No. Iter. 8 14 12 8 13 13 21 8 14 10 12

BFGS
Obj. 77 43 33 86 52 33 39 114 103 41 62.1

No. Iter. 13 47 25 12 22 76 41 19 22 38 31.5

LBFGS
Obj. 53 47 63 131 138 44 66 174 87 42 84.5

No. Iter. 36 41 17 42 27 50 10 39 34 43 33.9

PCG
Obj. 153 146 70 94 347 42 184 213 230 45 152

No. Iter. 12 20 11 23 19 64 5 17 19 23 21.3

6.1.1 Scaling Effects on BFGS

The following three different scaling options were tested for the BFGS. The

full matrix CM was used as the initial Hessian approximation H̃−1
0 in all options.

BFGS-Opt1: Use only initial scaling and scale H̃−1
0 by the factor of

γ0 = σ0 = sT0 y0/(y
T
0 H̃

−1
0 y0). (6.1)

This option was suggested by Shanno and Phua (1978) and used by

Yang and Watson (1988) in their work. This option is the one we used

previously (see Table 6.3).
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(a) Gauss-Newton (b) Levenberg-Marquardt

(c) BFGS (d) LBFGS

(e) PCG

Fig. 6.2: Behavior of objective function for different optimization methods.
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BFGS-Opt2: Scale at each iteration with the scaling factor chosen by the

following scheme:

γk =



























σk and θk = 1 for σk > 1

τk and θk = 0 for τk < 1

1 and θk =
1− σk
τk − σk

for σk ≤ 1 ≤ τk

(6.2)

where σk and τk are given by Eqs. 5.57 and 5.56, respectively. This

option was suggested by Oren (1974a).

BFGS-Opt3: Use only initial scaling and choose the scaling factor by the

scheme:

γ0 =











τ0 for τ0 < 1

σ0 otherwise

(6.3)

This option is a modification of BFGS-Opt2.

BFGS-Opt4: No scaling

In BFGS-Opt2, when σk ≤ 1 ≤ τk is satisfied, both γk and θk are calculated.

This is the only case where θk is computed by an equation. This equation forces θk

to be in the interval between 0 and 1. We know when θk = 0, Eq. 5.48 reduces to the

DFP formula and when θk = 1, it reduces to the BFGS formula. As we discussed in

the Appendix B, the DFP algorithm is inferior to BFGS. It is not clear whether or

not the algorithm with θk < 1 is inferior to the BFGS algorithm in which θk = 1.

However, our results show that the BFGS-Opt3 is as good as BFGS-Opt2. The

results are summarized in Table 6.4. Note that BFGS-Opt3 is slightly superior to

BFGS-Opt1. On average BFGS-Opt2 requires 4 fewer iterations than BFGS-Opt3

to obtain convergence, but it results in a higher value of the objective function at

convergence. Thus, at this point, we believe that BFGS-Opt3 is the better choice for

scaling in the BFGS algorithm. Comparing BFGS-Opt3 with BFGS-Opt4, we can

see that scaling does not have apparent improvement on the convergence behavior

for this particular single-phase gas problem. At least in terms of the value of the

objective function at convergence, however, Option 2 seems to perform the worst.
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Table 6.4: Comparison of different scaling options in BFGS algorithm.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average

BFGS-Opt1
Obj. 77 43 33 86 52 33 39 114 103 41 62.1

No. Iter. 13 47 25 12 22 76 41 19 22 38 31.5

BFGS-Opt2
Obj. 89 78 53 86 85 38 70 104 62 41 70.6

No. Iter. 15 22 20 15 24 48 21 18 46 24 25.3

BFGS-Opt3
Obj. 77 50 33 43 56 36 43 105 64 38 54.5

No. Iter. 13 51 25 38 17 41 29 14 32 31 29.1

BFGS-Opt4
Obj. 59 52 35 41 70 41 39 53 54 87 53

No. Iter. 33 17 18 19 33 38 18 42 35 52 30.5

6.1.2 Scaling Effects on LBFGS

The following options are used to test the effect of the different initial inverse

Hessian approximation and different scaling schemes on the behavior of LBFGS.

LBFGS-Opt1: Use the identity matrix as the initial inverse Hessian

approximation; scale H̃−1
0 for each iteration by a factor γk which is given

by

γk = σ̃k, (6.4)

where σ̃k is given by Eq. 5.65 with H̃−1
0 = I.

LBFGS-Opt2: Use the identity matrix as the initial inverse Hessian

approximation; scale H̃−1
0 for each iteration by a factor γk which is

determined by the following scheme:

γk =











τ̃3k for τ̃3k < 1

σ̃k otherwise

(6.5)

where τ̃3k is given by Eq. 5.67 with H̃−1
0 = I.

LBFGS-Opt3: Use the identity matrix as the initial inverse Hessian

approximation; scale H̃−1
0 for each iteration by a factor γk which is
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determined by the following scheme:

γk =











τ̃2k for τ̃2k < 1

σ̃k otherwise

(6.6)

where τ̃2k is given by Eq. 5.68 with H̃−1
0 = I.

LBFGS-Opt4: Use the identity matrix as the initial inverse Hessian

approximation; scale H̃−1
0 for each iteration by a factor γk which is

determined by the following scheme:

γk =











τ̃1k for τ̃1k < 1

σ̃k otherwise

(6.7)

where τ̃1k is given by Eq. 5.66 with H̃−1
0 = I.

LBFGS-Opt5: Use the diagonal of CM instead of the identity matrix as the

initial inverse Hessian approximation and only scale the initial matrix at

the first iteration by a factor γ0 given by the following scheme:

γ0 =











τ̃10 for τ̃10 < 1

σ̃0 otherwise

(6.8)

Note that for the initial scaling, i.e., k = 0, τ̃10 = τ̃20 = τ̃30 holds, i.e.,

Eqs. 5.66 through 5.68 give the same value of τ̃k.

LBFGS-Opt6: Use the diagonal of CM as the initial inverse Hessian

approximation; scale H̃−1
0 for each iteration by a factor γk which is

determined by the following scheme:

γk =











τ̃3k for τ̃3k < 1

σ̃k otherwise

(6.9)

where τ̃3k is given by Eq. 5.67 with H̃−1
0 = Diag[CM ].

LBFGS-Opt7: Use the diagonal of CM as the initial inverse Hessian

approximation; scale H̃−1
0 for each iteration by a factor γk which is
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determined by the following scheme:

γk =











τ̃2k for τ̃2k < 1

σ̃k otherwise

(6.10)

where τ̃2k is given by Eq. 5.68 with H̃−1
0 = Diag[CM ].

LBFGS-Opt8: Use the diagonal of CM as the initial inverse Hessian

approximation; scale H̃−1
0 at each iteration by a factor γk which is

determined by the following scheme:

γk =











τ̃1k for τ̃1k < 1

σ̃k otherwise

(6.11)

where τ̃1k is given by Eq. 5.66 with H̃−1
0 = Diag[CM ].

LBFGS-Opt1 was previously considered by Liu and Nocedal (1989), to the

best of our knowledge, none of the other options have been considered previously.

All the results corresponding to the above options are summarized in Table 6.5.

Comparing the first four options, LBFGS-Opt1 is the worst one in terms of the value

of the objective function at convergence. As shown in Table 6.5 both the average

value of objective function at convergence and the number of iterations required

to obtain convergence are higher for LBFGS-Opt4 than for LBFGS-Opt3. Note

that for realization R4, the objective function is equal to 309 at convergence for

option 4 which significantly increases the average value of the objective function

at convergence. If we ignore the result for R4 of LBFGS-Opt4, the average value

of the objective function at convergence and the number of iterations required are

49 and 40.5 respectively, these results are better than those obtained with LBFGS-

Opt3. If we compare these two options based on the convergence behavior for every

conditional realization, we would say that these two options are similar. In this

table, an F entry indicates that the algorithm converged to a very large value. In

our examples, F corresponds to a value greater than or equal to 700. Note that

LBFGS-Opt1, in which a “fixed” scaling factor was used, converged in slightly fewer
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iterations than options 2, 3 and 4, but it converged to a higher average objective

function value (84.5). In LBFGS-Opt5, the diagonal of CM was used as the initial

inverse Hessian approximation and we only scale the initial H̃−1
0 . For initial scaling,

all the three formula which are used to calculate τ̃k (Eqs. 5.66 through 5.68) are

identical. Thus, in the LBFGS-Opt5 case, it does not matter which formula is

used to calculate τ̃k. In option 6, 7, and 8, the diagonal of CM was used as the

initial inverse Hessian approximation and we scale the initial H̃−1
0 at each iteration.

The difference between them is that different formulas were used to calculate τ̃k.

Comparing these results with those from LBFGS-Opt5, we can conclude that scaling

H̃−1
0 at each iteration is better than just scaling at only the initial iteration. (We

obtained the same conclusion for the case where the identity matrix was used as H̃−1
0

even though we did not show these results in Table 6.5.) Comparing the results of

option 6 through 8, we also can conclude that using (sTk H̃0sk)/(s
T
k yk) (LBFGS-Opt8)

to calculate τ̃k provides the best results.

Table 6.5: Comparison of LBFGS algorithm with different options.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average

LBFGS-Opt1
Obj. 53 47 63 131 138 44 66 174 87 42 84.5

No. Iter. 36 41 17 42 27 50 10 39 34 43 33.9

LBFGS-Opt2
Obj. 53 51 41 70 114 42 65 F 95 42 63.7

No. Iter. 41 33 40 52 40 53 11 F 24 43 37.4

LBFGS-Opt3
Obj. 47 51 41 62 115 43 66 F 54 40 57.6

No. Iter. 41 34 25 51 39 41 10 F 41 40 35.7

LBFGS-Opt4
Obj. 47 55 30 309 94 36 36 F 58 38 78

No. Iter. 38 50 36 12 43 44 35 F 39 39 37

LBFGS-Opt5
Obj. 90 F 60 100 70 58 59 110 156 60 84.8

No. Iter. 40 F 14 39 25 39 16 50 11 46 31.1

LBFGS-Opt6
Obj. 55 55 78 66 F 41 60 163 61 41 69

No. Iter. 21 26 8 46 F 46 16 36 50 32 31.2

LBFGS-Opt7
Obj. 59 F 30 38 83 42 36 67 50 36 49

No. Iter. 10 F 20 32 16 24 23 16 34 34 23.2

LBFGS-Opt8
Obj. 43 41 31 38 55 33 35 54 54 36 42

No. Iter. 34 22 18 38 21 35 26 24 21 34 27.3
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6.1.3 Preconditioning Effects on the Conjugate Gradient Method

In the results shown previously, we found that the conjugate gradient method

with C−1
M as the preconditioner does not work well. Here we denote this method by

CM-PCG which means the preconditioner is given by the full matrix C−1
M . For the

10 realizations tested, the conjugate gradient algorithm converged to higher objec-

tive function values than the BFGS algorithm with CM as the initial inverse Hessian

approximation and the LBFGS algorithm; see Table 6.3. As discussed previously,

an approximation to the inverse Hessian calculated from the quasi-Newton equation

can be incorporated into the conjugate gradient algorithm as a preconditioner. Here

we tested two preconditioners. One is generated from BFGS with the full matrix

CM as the initial inverse Hessian approximation. For simplicity, we call this algo-

rithm BFGS-PCG which means the preconditioner is generated from BFGS. Note

that when we form the inverse Hessian approximation we apply Eq. 5.50 with sk

and yk obtained based on conjugate gradient method. The other preconditioner is

generated from LBFGS using LBFGS-Opt8, i.e., the diagonal of CM was used as H̃−1
0

and the scaling of option 8 was used at each iteration. We refer to this algorithm as

LBFGS-PCG which means the preconditioner is generated from LBFGS. Again, in

this algorithm when we calculate H̃−1
k gk, the sk’s and yk’s are obtained based on the

conjugate gradient method.

The final objective function value and the number of iterations required to

converge for both algorithms are shown in Table 6.6. For the purpose of comparison,

we also include the results from BFGS with scaling option of BFGS-Opt3, LBFGS

with scaling option of BFGS-Opt8 and CM-PCG in this table. The convergence

behavior of LBFGS and LBFGS-PCG are similar. Compared to the BFGS algorithm,

we can see that on average the BFGS-PCG converged to slightly lower objective

function values in fewer iterations although BFGS-PCG failed for one realization.

Both BFGS-PCG and LBFGS-PCG have much better convergence properties than

CM-PCG.

From this particular example, we can see that LBFGS and LBFGS-PCG
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Table 6.6: Results for BFGS-PCG and LBFGS-PCG.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average

BFGS-PCG
Obj. 90 F 28 40 54 41 39 46 53 47 48.7

No. Iter. 35 F 25 31 10 33 25 19 24 26 25.3

LBFGS-PCG
Obj. 44 51 29 38 57 33 36 47 54 36 42.5

No. Iter. 23 17 23 31 23 38 21 35 20 30 26.1

CM-PCG
Obj. 153 146 70 94 347 42 184 213 230 45 152

No. Iter. 12 20 11 23 19 64 5 17 19 23 21.3

BFGS
Obj. 77 50 33 43 56 36 43 105 64 38 54.5

No. Iter. 13 51 25 38 17 41 29 14 32 31 29.1

LBFGS
Obj. 43 41 31 38 55 33 35 54 54 36 42

No. Iter. 34 22 18 38 21 35 26 24 21 34 27.3

are the most effective and efficient methods among all the algorithms. So these two

algorithms were used to generate 50 different realizations. For the LBFGS algorithm,

the average value of the objective function at the convergence and the average number

of iterations required to converge are 44.7 and 27.2 respectively. For the LBFGS-PCG

algorithm, these two average values are 44.3 and 26.3, respectively.

To further confirm the effectiveness of the preconditioner generated from the

LBFGS, we used LBFGS-PCG algorithm in the restricted-entry example of Kalita

(2000) where CM-PCG worked very poorly. The restricted-entry example is a slight

modification of the gas reservoir problem just considered. In the restricted-entry case,

only the top layer is open to flow. For this case we also generated 10 realizations using

the CM-PCG and the LBFGS-PCG algorithms. The value of the objective function

at convergence and the number of iterations required to converge for both methods

are summarized in Table 6.7. When CM-PCG was used, all the 10 realizations

converged to a very high value. On average, 35.3 iterations were required to reduce

the average objective function value to 447. For the same 10 realizations, LBFGS-

PCG performed very well, the objective function converged to an average value of

43.1 in 29.3 iterations.
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Table 6.7: Results for restricted-entry case.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average

CM-PCG
Obj. 237 578 159 372 252 119 776 1381 504 93 447

No. Iter. 46 63 30 12 17 52 33 39 19 42 35.3

LBFGS-PCG
Obj. 55 37 32 41 52 38 38 51 50 37 43.1

No. Iter. 35 34 23 32 21 30 34 23 31 30 29.3



113

6.2 Two-Dimensional Three-Phase Synthetic Example

A 2D three-phase history matching problem was considered in this example.

We use a 15 × 15 grid with ∆x = ∆y = 40 ft and ∆z = 30 ft. We consider a very

small problem so we can easily apply all optimization algorithms. The porosity for

the true model is homogeneous and equal to 0.22. Permeability is isotropic and

uniform in three different zones; see Fig. 6.3. The values of ln(k) in the lower left

zone, lower right zone and the upper half zone are equal to 4.0, 4.6 and 4.2 with k

in md, respectively. Four producers and one water injection well are completed in

the reservoir. The well locations are indicated by the white squares in Fig. 6.3. All

producers start producing at time zero at a constant total flow rate of 200 STB/Day

and produce for 300 days. The production constraint is the minimum bottom-hole

pressure which is set to 50 psi and the economic limit is the maximum WOR which

is set to 49 STB/STB. When the bottom-hole pressure of a well decreases below

50 psi, then the well will be produced at a constant bottom-hole pressure equal to

50 psi. If the WOR exceeds 49, then the well will be shut in. For all examples

considered in this section, the production constraint and economic limit are never

reached. Bottom-hole pressure data from all five wells, GOR and WOR from all four

producers are used as the conditioning data to estimate the gridblock permeabilities,

i.e., the porosity is fixed at its true values. A total of 364 data (28 for each type of data

at each producing well and 28 pressure data at the water injection well) are history

matched. We assume pressure measurement errors to be independent, identically-

distributed, normal random variables with mean equal to zero and variance equal to

1 psi2. GOR measurement errors were modeled similarly except the variance was set

equal to 25 (SCF/STB)2. Following Wu (1999), the variance of WOR measurement

errors was specified by

Var[eWOR] = WOR2
obsε

2
o +

1

q2
o,obs

σ2
qw,obs

, (6.12)

where

ε2m =
Var[qm,obs − qm]

q2
m,obs

, (6.13)
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for m = o, w and

σqw,obs = max[εwqw,obs, σ
min
qw,obs]. (6.14)

Here, qm,obs, m = o, w denotes the observed rate of phase m. In this example, we

choose σmin
qw, obs=2.0 STB/Day, εo=0.001 and εw=0.02. The variances for different data

are used to form the data covariance matrix CD. The isotropic spherical variogram

with the range equal to 240 ft in all three directions and the variance for ln(k) equal

to 1 was used to construct the model covariance matrix, CM . The objective function

given in Eq. 2.14 was minimized; i.e., we generated the maximum a posteriori (MAP)

estimate by history matching the production data.
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Fig. 6.3: Permeability field for the true model.

6.2.1 Comparison of the Optimization Algorithms

For the examples considered in this subsection, we did not add any noise to

the true data generated by running the simulator with the true model as input. Our

focus is on the investigation of the computational efficiency of different optimization

algorithms.

The iterative solver (see Appendix A) was applied to solve the adjoint equa-

tions involved in the computation of the sensitivity coefficient matrix and the com-
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putation of the gradient of the objective function. For the comparison purpose,

the Levenberg-Marquardt (LM), Broyden-Fletcher-Goldfarb-Shanno (BFGS), lim-

ited memory BFGS (LBFGS), conjugate gradient with CM as the preconditioner

(CM-PCG) and conjugate gradient with preconditioner generated from limited mem-

ory BFGS (LBFGS-PCG) were used to minimize the objective function involved in

the history matching procedure. In some cases, GN fails to converge to a legitimate

model; see Li (2001). Thus, GN is not compared with the other algorithms. For

these algorithms, a uniform value of 4 for ln(k) was used as the initial guess.

In Levenberg-Marquardt, the initial damping factor was chosen as 105.

When the objective function increases, the damping factor was simply multiplied

by a factor of 10; whereas, when the objective function decreases, the damping fac-

tor was simply divided by a factor of 10. Levenberg-Marquardt (LM) converged to

13.343 in 9 iterations. The curve through the circles in Fig. 6.4 shows the behavior

of the objective function during the LM iterations. Fig. 6.5(b) shows the final model

(i.e., the permeability field) obtained by Levenberg-Marquardt, which is very similar

to the true model which is reproduced in Fig. 6.5(a).

Fig. 6.4: Behavior of the objective function.

The BFGS method we used is the standard Broyden-Fletcher-Goldfarb-

Shanno method with initial scaling. In other words, γk = 1 for all k > 0 was
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used when applying Eq. 5.55 to update the inverse Hessian approximation. The

initial scaling factor γ0 was obtained by

γ0 = σ0 =
sT0 y0

yT0 H̃
−1
0 yT0

, (6.15)

where H̃−1
0 is equal to CM . BFGS converged to 13.448 in 97 iterations. The curve

through the diamonds in Fig. 6.4 shows the behavior of the objective function.

Fig. 6.5(c) shows the final model obtained by the BFGS. We can see that the fi-

nal model obtained by BFGS is very similar to the final model obtained by the

Levenberg-Marquardt method (compare Figs. 6.5(c) and 6.5(b)).

b c d egf e b ehc

ehc

ehb

egf

d

c

b

(a) True

model _Kxy_4

Feb 11 2002 Page 1 of  1

3 5 8 10 13 15

15

13

10

8

5

3

x- di r ect i on

y
-

d
i

r
e

c
t

i
o

n

4. 0 4. 1 4. 3 4. 4 4. 5 4. 6

(b) LM

model _Kxy_4

Feb 11 2002 Page 1 of  1

3 5 8 10 13 15

15

13

10

8

5

3

x- di r ect i on

y
-

d
i

r
e

c
t

i
o

n

4. 0 4. 1 4. 3 4. 4 4. 5 4. 6

(c) BFGS
model _Kxy_4

Feb 13 2002 Page 1 of  1

1 3 6 8 10 13 15

15

13

10

8

6

3

1

x- di r ect i on

y
-

d
i

r
e

c
t

i
o

n

3. 9 4. 0 4. 1 4. 3 4. 4 4. 5 4. 6 4. 8

(d) LBFGS

model _Kxy_4

Feb 11 2002 Page 1 of  1

3 5 8 10 13 15

15

13

10

8

5

3

x- di r ect i on

y
-

d
i

r
e

c
t

i
o

n

4. 0 4. 1 4. 3 4. 4 4. 5 4. 6

(e) CM-PCG

model _Kxy_4

Feb 11 2002 Page 1 of  1

1 4 7 9 12 15

15

12

9

7

4

1

x- di r ect i on

y
-

d
i

r
e

c
t

i
o

n

3. 9 4. 0 4. 1 4. 3 4. 4 4. 5 4. 6 4. 8

(f) LBFGS-PCG

Fig. 6.5: Final model obtained by different optimization algorithms.

In limited memory BFGS, we scaled the inverse Hessian approximation at

each iteration. Following Oren (1974a), and the results of our comparative studies,
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the scaling factors were chosen by the following scheme

γk = τ̃1k if τ̃1k < 1.0, (6.16)

γk = σ̃k otherwise. (6.17)

The diagonal of CM was chosen as the initial inverse Hessian approximation. The 30

most recent vectors (i.e., sk’s and yk’s) were used to construct the inverse Hessian

approximation at each iteration, i.e, L = 30. Limited memory BFGS converged to

13.685 in 40 iterations. The curve through the stars in Fig. 6.4 shows the behavior

of the objective function. Fig. 6.5(d) shows the final model obtained by the limited

memory BFGS, which captures the main characteristics of the true model, but is

somewhat rougher than the true model and the MAP estimate obtained with LM.

The two preconditioned conjugate gradient methods discussed earlier were

implemented and applied to this history matching problem. In one method, the

full C−1
M was used as the preconditioner (we call this method CM-PCG); whereas in

the other method, we used an estimated quasi-Newton preconditioner (we call this

method LBFGS-PCG). Both algorithms were terminated at 100 iterations, because

this was the maximum number of iterations allowed. However, the convergence

criteria of Eqs. 5.69 and 5.70 were not satisfied at the 100th iteration of either

method. CM-PCG “converged” to a model corresponding to an objective function

value equal to 28.851 in 100 iterations. The curve through the plus signs in Fig. 6.4

shows the behavior of the objective function. Fig. 6.5(e) shows the final model

obtained by the CM-PCG. LBFGS-PCG “converged” to a model corresponding to

an objective function value equal to 35.187 in 100 iterations. The curve through the

crosses in Fig. 6.4 shows the behavior of the objective function. Fig. 6.5(f) shows the

final model obtained by the LBFGS-PCG. Note the MAP estimates obtained with

the preconditioned CG method are inferior to those obtained by LM and BFGS.

In the quasi-Newton methods, the Hessian inverse approximation is con-

structed based on the quasi-Newton search direction. The theory guarantees that

for a positive definite quadratic function the Hessian inverse approximation becomes

the true Hessian inverse at the nth iteration where n is the number of model param-
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eters for the quadratic problem with exact line search. However, in LBFGS-PCG

the Hessian inverse approximation is constructed based on the preconditioned conju-

gate gradient search direction, which is no longer the quasi-Newton Hessian inverse

approximation. When we use the conjugate gradient search direction to find a new

model, and based on this new model, construct the Hessian inverse approximation

as a preconditioner, it is not clear how good this preconditioner is. For the previous

single-phase gas example, this preconditioner results in faster convergence than is

obtained by simply using C−1
M as a preconditioner; in the current example, however,

convergence is slower.

The final objective function value at convergence and the number of itera-

tions required to converge for different algorithms are summarized in Table 6.8. In

the “Scaling Scheme” column, “Initial Scaling” means that only the initial Hessian

inverse approximation is scaled by a factor γ0. In other words, we choose a sequence

γk such that γk = 1 for all k > 0. “All Scaling” means that the inverse Hessian

approximation H̃−1
k was scaled by γk at each iteration for the case when BFGS was

applied and the initial inverse Hessian approximation H̃−1
0 was scaled by γk at each

iteration for the case where limited memory BFGS was applied. “N/A” means not

available. FCM-LBFGS stands for the LBFGS algorithm in which the initial Hessian

inverse approximation is chosen as the full CM matrix instead of just the diagonal of

CM ; see the discussion presented later.

Algorithms Scaling Scheme Objective Function No. of Iterations

LM N/A 13.343 9

BFGS Initial Scaling 13.448 99

LBFGS All Scaling 13.685 40

CM-PCG N/A 28.851 100

LBFGS-PCG All Scaling 35.187 100

FCM-LBFGS All Scaling 13.992 33

Table 6.8: Comparison of different minimization algorithms.
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Based on Eq. 5.101 and the number of iterations required (see Table 6.8),

LBFGS and FCM-LBFGS, respectively, are 13.7 and 16.6 times faster than Levenberg-

Marquardt overall. Table 6.9 shows the CPU time in seconds used by different al-

gorithms. Based on the real CPU time, LBFGS and FCM-LBFGS, respectively, are

10.5 and 11.1 times faster than Levenberg-Marquardt overall. The column labeled

“Scaling Scheme” has the same meaning as in Table 6.8.

Algorithms Scaling Scheme CPU time (seconds)

LM N/A 2930

BFGS Initial Scaling 923

LBFGS All Scaling 279

CM-PCG N/A 887

LBFGS-PCG All Scaling 904

FCM-LBFGS All Scaling 263

Table 6.9: Comparison of the CPU time used by different minimization algorithms.

6.2.2 Effect of Preconditioning Matrix on Conjugate Gradient Methods

Fig. 6.6 shows the behavior of the objective function obtained by the conju-

gate gradient without preconditioning (triangles) and the preconditioned conjugate

gradient with C−1
M as the preconditioner (circles). We can see clearly that the pre-

conditioned conjugate gradient is slightly better than conjugate gradient without

preconditioning. Fig. 6.7 shows the final model (a) obtained by the conjugate gradi-

ent method without preconditioning compared to the true model (c) and the model

(b) obtained using C−1
M as a preconditioner. We can see that the MAP estimate

obtained from CG without preconditioning is far rougher than the model obtained

by the CM-PCG. We can conclude that the prior covariance matrix CM not only

acts as a preconditioning matrix but also provides smoothness for the model.
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Fig. 6.6: Behavior of the objective function obtained by CG and CM-PCG.
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Fig. 6.7: Final model obtained by conjugate gradient without preconditioning.

6.2.3 BFGS Scaling Scheme

The BFGS result of the preceding section was obtained by only scaling the

initial Hessian inverse approximation H̃−1
0 . If we consider the fact that the Hessian

matrix changes iteration by iteration for the nonlinear problem, it seems that we

should scale the matrix at every iteration based on the new information; see Oren

and Luenberger (1974) or Oren (1974b). According to Oren and Spedicato (1976),

the optimal scaling factor which minimizes the upper bound of the condition number
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of H̃−1
k+1 at the kth iteration should be

γk = σk ≡
sTk yk

yTk H̃
−1
k yk

. (6.18)

The new Hessian inverse approximation H̃−1
k+1 was calculated by using Eq. 5.55 with

γk given by Eq. 6.18. With this all-scaling scheme, BFGS converged to 16.1989 in

66 iterations; see the curve through circles in Fig. 6.8. The curve through the plus

signs in Fig. 6.8 shows the behavior of objective function iteration by iteration for

BFGS with initial scaling scheme. This case was presented previously. Although

it appears that the all-scaling scheme is better than just initial scaling in terms of

the number of iterations required to converge, at the 66th iteration, the objective

function value for the two schemes are very close. Yet, the convergence criteria of

Eqs. 5.69 and 5.70 were satisfied for all-scaling BFGS but not for the initial scaling

BFGS at the 66th iteration. The diamonds shown in Fig. 6.8 represent the objective

function values obtained by BFGS without any scaling at each iteration. Clearly,

BFGS without scaling is much worse than initial scaling and all-scaling. As presented

previously, scaling does help to improve the convergence rate of BFGS for this three-

phase problem. Note this result is somewhat different than was obtained for the gas

example of section 6.1 where scaling did not have a great effect. The MAP estimate

obtained with the all scaling BFGS is shown in Fig. 6.9 and is very similar to the

MAP estimate obtained by applying BFGS with initial scaling (see Fig. 6.5(c)).

Based on Oren and Spedicato (1976), σk is the optimal scaling factor for γk

if the BFGS algorithm (θk = 1) or one of its variants is applied; see Eq. 5.63. Our

experiments discussed later, however, indicate that γk = τk (Eq. 5.56) is superior to

γk = σk (Eq. 5.57) for LBFGS; also see Zhang et al. (2001). Here, we investigate

the convergence behavior of BFGS with the scaling factor equal to τk. The behavior

of the objective function obtained by BFGS with γk = τk is shown by the curve

through stars in Fig. 6.10. The curve through circles in the same figure is obtained

by the BFGS with γk = σk. Even though γk = σk is the optimal scaling factor

based on Oren’s theory, it turns out γk = τk is not worse than γk = σk. The curve

through plus signs in this same figure is obtained by the BFGS with the modified
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Fig. 6.8: Behavior of the objective function for BFGS with different scaling schemes.
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Fig. 6.9: Final model obtained by BFGS with scaling at all iterations; γk = σk.

Oren scaling scheme, i.e., γk = τk if τk < 1.0; otherwise γk = σk. There is not much

difference between these three scaling schemes in terms of the objective function at

convergence.
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Fig. 6.10: Behavior of the objective function for BFGS with different schemes for

scaling at all iterations.

6.2.4 LBFGS Scaling Scheme

As shown in Oren (1974b), τ̃k calculated by Eq. 5.66 or Eq. 5.67 is an

approximation to the correct τk which is given by Eq. 5.56. In our implementation

of LBFGS, we only form the product of H̃−1
k gk which is used to generate the search

direction. We never form H̃−1
k or H̃k explicitly. Therefore, we cannot obtain τk using

the exact form of Eqs. 5.59 and 5.61 and cannot obtain σk using the exact form of

Eq. 5.57. Thus, as we described in chapter V, we have to use Eq. 5.66 or Eq. 5.67 to

approximate τk and use Eq. 5.65 to approximate σk. The scaling factor was chosen

as follows:

γk = τ̃k if τ̃k < 1, (6.19)

γk = σ̃k otherwise, (6.20)

where τ̃k can be obtained by either Eq. 5.66, Eq. 5.67 or Eq. 5.68 and σ̃k is obtained

by Eq. 5.65.

Fig. 6.11 shows the behavior of the objective functions during the LBFGS

iterations when different formulas are applied to calculate τ̃k. The diamonds repre-
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sent the objective function obtained by using Eq. 5.67 to calculate τ̃k. The circles

represent the objective function obtained by using Eq. 5.68 to calculate τ̃k. The curve

through stars represents the objective function obtained by using Eq. 5.66 to calcu-

late τ̃k. The triangles represent the objective function obtained by setting γk = σ̃k

at every iteration where σ̃k is calculated from Eq. 5.65. This scaling option was used

by Liu and Nocedal (1989). Shanno and Phua (1978) suggested using σ̃k and only

scaling the initial matrix. From these curves, we can see that the curve through

the stars in which the τ̃k is calculated by the Eq. 5.66 is the best. The three other

scaling factors give roughly the same convergence results as each other. Note that

the curve through the circles in which τ̃k = τk is calculated by Eq. 5.68 requires the

most iterations to converge. Note that Eq. 5.68 gives the correct value for τk. This is

somewhat surprising in that it indicates that using an approximation for τk, which is

defined by Eq. 5.56, gives better convergence results than using the correct value of

τk. It turns out that when we use Eq. 5.66 and Eq. 5.67 to calculate τ̃k, the value of

τ̃k is always less than 1 which implies that the scaling factor always takes the value

of τ̃k. When we use Eq. 5.68 to calculate τ̃k, which is the correct τk, it is less than 1

at some iterations and is bigger than 1 at other iterations. So whenever τ̃k > 1, γk

takes the value of σ̃k which is also an approximation. So these four options are all

approximations. Based on the example just presented and the gas reservoir example

presented earlier, Eq. 5.66 is the best approximation. Based on the paper published

by Oren and Spedicato (1976), the optimal scaling factor γk should always take the

value of σk for the BFGS method. It is not clear how to form σk accurately at every

iteration without forming H̃−1
k explicitly. Moreover, our result presented previously

(see Fig. 6.10) indicates that σk might not be the optimal scaling factor. For almost

all examples that we have considered using either BFGS or LBFGS, γk = τ̃k gives as

good or better convergence results than are obtained using γk = σ̃k.

Fig. 6.12 shows the behavior of the objective function when LBFGS was

applied without scaling, with initial scaling and with all-scaling based on Eqs. 6.19

and 6.20 where τ̃k is calculated by Eq. 5.66. In this figure, the circles represent

the objective function values obtained by LBFGS with all-scaling, the plus signs
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Fig. 6.11: Behavior of the objective function for LBFGS with different scaling factors.

Fig. 6.12: Comparison of the behavior of the objective function for different scaling

schemes.

represent the objective function value obtained by LBFGS with initial scaling and

diamonds represent the objective function obtained by LBFGS without any scaling.
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As in BFGS, we can see clearly that LBFGS with all-scaling is better than just initial

scaling and initial scaling is better than no scaling.

6.2.5 Sensitivity to the Number of Previous Vectors

Here we investigate how the convergence rate is affected by the number of

previous vectors used in constructing the Hessian update in the LBFGS algorithm.

Fig. 6.13 shows the behavior of the objective function obtained by using a different

number of previous vectors to construct the new approximate inverse Hessian. In

all cases, the all-scaling scheme with scaling factor given by Eq. 5.66 was applied.

Table 6.10 lists the number of iterations required for convergence and the value of

the objective function at convergence when using a different number of previous

vectors to construct the Hessian inverse updates. L denotes the number of previous

vectors. We can see that when we use too few (10 in this example) previous vectors

to construct Hessian inverse updates, more iterations are required for convergence

and the value of the objective function is higher than when L = 20, 30 or 50. When

L equals 20, 30 or 50, there is not too much difference in terms of the number of

iterations required to obtain convergence, but L = 20 gives a higher value of the

objective function at convergence.

L Objective Function No. of Iterations

10 20.922 90

20 18.555 43

30 13.685 40

50 12.512 46

Table 6.10: Sensitivity to the number of previous vectors.
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Fig. 6.13: The effect of the number of previous vectors used to construct the new

Hessian inverse approximation on the performance of LBFGS.

6.2.6 Improvement of the Smoothness of the Model

From the results of Figs. 6.5(c) and 6.5(d), we see that the final model

obtained by LBFGS is somewhat rougher than the true model and the MAP estimate

obtained with BFGS. It turns out this is caused by the fact that only the diagonal of

CM was used as the initial Hessian inverse approximation. When we form the search

direction, i.e., the product of the H̃−1
k and the gradient of the objective function

gk, we need to perform the operation of multiplying a vector by the initial Hessian

inverse approximation. If we use the full CM instead of just the diagonal elements

of CM as H̃−1
0 , we obtain a smoother result. Fig. 6.14(a) shows the MAP estimate

obtained by LBFGS using the full CM as the initial Hessian inverse approximation

compared with using only the diagonal of CM , DCM-LBFGS. Using H̃−1
0 = CM

gives improved results, i.e., gives a MAP estimate much closer to the truth than

is obtained with H̃−1
0 =diag[CM ]. With H̃−1

0 = CM , the LBFGS converged in 33

iterations and the value of the objective function at convergence was equal to 13.992.

For this case, Fig. 6.15 indicates again that convergence is fastest when Eq. 5.66 is
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used to calculate the scaling factor. This method is labeled as FCM-LBFGS in Table

6.8.
model _Kxy_4
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Fig. 6.14: Final model obtained by LBFGS with full CM (a) and diagonal CM (b) as

the initial Hessian inverse approximation, compared with the true model

(c).

Fig. 6.15: Behavior of the objective function; full CM as the initial Hessian inverse

approximation; different scaling factor options.
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6.2.7 Effect of Data Noise

In this subsection we consider the case where the observed data were ob-

tained by adding noise to the true data. With this data set, we repeated the example

in the previous subsection using LBFGS with the full CM as the initial Hessian in-

verse approximation. The objective function evaluated based on Eq. 2.14 is reduced

from 900728 to 309 in 35 iterations. For the case where data are noisy, the approxi-

mate results of Tarantola suggest that the expected value of the objective function is

Nd/2 = 182 with standard deviation equal to
√

Nd/2 = 13.5. Thus, the expectation

plus five standard deviations equals 249 which is somewhat smaller than the 309.

Although the value of the objective function does not satisfy the criterion given in

section 2.3, one should recall that the criterion assumed data is a linear function

of the model, which is not the case. Recall that when using the true data without

noise the objective function converged to 13.992 in 33 iterations. The behavior of the

objective function for both cases (solid circles for the true data case and the circles

for the case where the data with noise) are shown in Fig. 6.16. The model obtained

by history matching data with noise (observed data) is shown in Fig. 6.17(a). We

can see that even though the model obtained by history matching data with noise

captures the main structure of the true model, it is worse than the model obtained

by history matching the true data.

6.3 Three-Dimensional Three-Phase Example

Here, we consider a three-dimensional three-phase history matching prob-

lem. We use a 40×40×6 grid with ∆x = ∆y = 100 ft and ∆z = 30 ft. The porosity

for the true model is homogeneous and equal to 0.22. The true permeability field

is an unconditional realization generated by Gaussian co-simulation. An isotropic

spherical variogram with the range in all directions equal to 600 ft was used to gen-

erate unconditional realizations. The variance for ln(k) is 1 and the mean for ln(k)

is 4.5. One layer of the true permeability field is shown in Fig. 6.18. Fig. 6.18 (b) is

the interpolation plot of (a). The interpolation plots make it easier to compare the
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Fig. 6.16: Behavior of the objective function; full CM as the initial Hessian inverse

approximation; data with noise and without noise.model _Kxy_4
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Fig. 6.17: Final model obtained by LBFGS with full CM as the initial Hessian inverse

approximation by history matching data with noise (a) and true data (b).

permeability structure. The initial pressure is 4500 psi and the bubble point pressure

is 4417 psi. The formation volume factor (FVF) and the viscosity for oil, water and

gas at the bubble point pressure are given in Table 6.11. The capillary pressure is

assumed to be negligible. The water-oil and oil-gas two-phase relative permeability
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are given in Fig. 6.19 (a) and (b), respectively. Stone’s model II is used to calculate

three-phase oil relative permeability; see Aziz and Settari (1979). Six producers and

four water injection wells are completed in the reservoir. The producers and the in-

jectors, respectively, are indicated by black squares and white squares, respectively,

in Fig. 6.18 (a). All producers start producing at time 0. We will history match

synthetic data generated from running the CLASS simulator up to 500 days using

the truth case as input. The injectors start to inject water at 30 days and stop at

500 days. The well operating conditions are summarized in Table 6.12. The wells are

operating with the target first. Whenever the constraint is violated at a particular

well, then the constraint will be switched to be the target for the corresponding well.

When the economic limits are violated at a particular well, then the corresponding

well will shut in. In this table, the keyword MAXVOL means maximum total rate

in STB/Day; MAXWATINJ means the maximum water injection rate in STB/Day;

MINBHP means the minimum bottom-hole pressure in psi and MAXWOR means

the maximum water-oil ratio in STB/STB.
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Fig. 6.18: The layer 1 log-permeability field of the true model.



132

Bo (RB/STB) 1.748

µo (cp) 0.486

Bg (RB/MSCF) 0.75

µg (cp) 0.0284

Bw (RB/STB) 1.006

µw (cp) 0.012

Table 6.11: Fluid properties at bubble point pressure.

(a) Water-Oil (b) Oil-Gas

Fig. 6.19: The relative permeability curve used in this example.

As in the example presented in the previous section, the production target

is a constant total flow rate for the producers and constant water injection rate

for injection wells. The production constraints for the producers are the minimum

bottom-hole pressure which is set to 50 psi and the maximum WOR which is set

to 49 STB/STB. If the bottom-hole pressure of a well decreases below 50 psi, then

thereafter, the well will be produced at a constant bottom-hole pressure equal to 50

psi. When the WOR is bigger than 49 STB/STB, then the corresponding well will

be shut in. For this example, the production constraint and economic limit are never

reached, so all wells are produced at their target rate.
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Well No. Targets Constraints Economic Limits

MAXVOL MAXWATINJ MINBHP MAXWOR

(STB/Day) (STB/Day) (psi) (STB/STB)

1 4000 - 50 49

2 10000 - 50 49

3 4000 - 50 49

4 15000 - 50 49

5 8000 - 50 49

6 8000 - 50 49

7 - 6000 - -

8 - 10000 - -

9 - 8000 - -

10 - 8000 - -

Table 6.12: Well operating targets, constraints and economic limits.

6.3.1 Conditioning to True Data

In this subsection, we consider the case where the true data are history

matched. Bottom-hole pressure from all ten wells, GOR and WOR from all six

producers are used as the conditioning data to estimate the gridblock permeabilities

only, i.e., the porosity is fixed at its true values. There are a total of 880 conditioning

production data which are history matched. (40 for each type at each producing well

and 40 pressure data at the water injection wells.) The variance used for all the

measurement errors are the same as used in the 2D three-phase flow example. The

variances for different data are used to form the diagonal data covariance matrix

CD. The objective function given in Eq. 2.18 was minimized, except we used dobs

instead of duc and dobs is equal to the true data with no noise added. Although we

did not add noise to the data, we refer to the resulting realization as a conditional

realization.
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The unconditional realization was generated by Gaussian co-simulation.

Two layers of the unconditional realization of the log-permeability fields are shown

in Fig. 6.20 (a) and Fig. 6.21 (a), respectively. Optimization was done with the

LBFGS algorithm using scaling at all iterations. Eq. 5.66 was used to generate the

kth scaling factor. The objective function was reduced from 312,164,623 to 649 in 70

iterations. The objective function value was calculated based on the Eq. 2.18 with

duc replaced by the true data without noise. The behavior of the objective function

is shown in Fig. 6.22.
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(a), by history matching production data (b) and the true model(c).
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Fig. 6.21: The log-permeability field for layer 4 generated by Gaussian co-simulation

(a), by history matching production data (b) and the true model(c).
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Fig. 6.22: Behavior of the objective function for the big model.

Fig. 6.23 shows the pressure match for two injectors (well 7 and well 8).

In this figure and in similar figures, the line through circles represents the observed

data; the line through the plus signs represents the calculated data based on the

conditional realization obtained by history matching the production data and the

line through the diamonds represents the calculated data based on the initial model,

muc, before history matching. In Fig. 6.23 (a), the pressure data generated from

the initial model falls below the observed data during the injection period, whereas

in Fig. 6.23 (b), the pressure data generated using the initial model is greater than

the observed pressure data. For both wells, the pressure data are matched very well.

Fig. 6.24 (a) and (b) show the pressure data match for well 4 and the WOR match at

the same well which is the only well at which water has broken through. We can see

that at this well, both the pressure and the WOR are matched very well. Fig. 6.25

shows the gas-oil ratio data match for two producers (well 3 and well 4). We can see

that we obtained a very good GOR match for both wells. We obtained matches of

comparable quality to these shown in Figs. 6.23 through 6.25 at all wells.

Two layers of the final permeability fields are shown in Fig. 6.20 (b) and
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(a) well 7, injector (b) well 8, injector

Fig. 6.23: Pressure match at two water injection wells.

(a) Pressure (b) WOR

Fig. 6.24: Pressure and WOR match at well 4.

Fig. 6.21 (b) and the corresponding two layers from the true model are shown in

Fig. 6.20 (c) and Fig. 6.21 (c), respectively. The corresponding unconditional perme-

ability distribution is shown in (a) in these two figures. The conditional realization

is close to the truth, in fact much closer than would normally be expected. This

occurs because of the long correlation length in the vertical direction.
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(a) well 3 (b) well 4

Fig. 6.25: GOR match from two wells.

6.3.2 Conditioning to Observed Data with Noise Added

In this section, the objective function given by Eq. 2.18 is minimized. So

the unconditional data were generated using Eq. 2.17. The objective function value

is reduced from 313,023,514 to 5471 in 45 iterations. The squares in Fig. 6.26 show

the behavior of the objective function when Eq. 2.18 is minimized. The circles in this

figure show the behavior of the objective function when the true data without noise

were used in Eq. 2.18. We can see that the objective function value at convergence

is much bigger when unconditional data were used than when true data were used.

Fig. 6.27 (a) shows the first layer of the model obtained by minimizing the objective

function given by Eq. 2.18. Figs. 6.28 and 6.29 show results comparable to those

shown in Figs. 6.24 and 6.25. Note although the match of data is not as close as in

the case without noise in the data, we still obtain a reasonable match.

6.4 Doubly Stochastic Model Example

A 2D three-phase history matching problem was considered in this section.

We use a 15× 15 grid with ∆x = ∆y = 40 ft and ∆z = 30 ft. The porosity for the
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Fig. 6.26: Behavior of the objective function when unconditional data were used.
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Fig. 6.27: The log-permeability field for layers 1 generated by history matching duc

(a), by history matching true data (b) and the true model(c).

true model is homogeneous and equal to 0.22. Permeability for the true model is

an unconditional realization which is generated using Gaussian co-simulation. The

variogram used is an isotropic spherical variogram with the mean and variance for

ln(k) equal to 4.0 and 1.0 respectively. The range in x-, y− and z-directions are 240

ft, 120 ft and 30 ft respectively. The true permeability field is shown in Fig. 6.30.

Four producers and one water injection well are completed in the reservoir.

The four producers are located in areal gridblock (3, 3), (13,3), (13,13) and (3,13)
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(a) Pressure (b) WOR

Fig. 6.28: Pressure and WOR match at well 4, duc.

(a) well 3 (b) well 4

Fig. 6.29: GOR match from two wells, duc.

respectively and the water injection well is located in areal gridblock (8,8). All

producers start producing at time zero at a constant total flow rate of 200 STB/Day

and produce for 300 days. The production constraint is the minimum bottom-hole

pressure which is set to 50 psi and the economic limit is maximum WOR which is set

to 49 STB/STB. When the bottom-hole pressure of a well decreases below 50 psi,
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then the well will be produced at a constant bottom-hole pressure equal to 50 psi. If

the WOR exceeds 49, then the well will be shut in. For this example, the production

constraint and economic limit are never reached. The injectors start injecting water

at time zero at a constant flow rate of 700 STB/Day. The initial pressure is 4500 psi

and the bubble point pressure is 4417 psi. Bottom-hole pressure data from all five

wells, GOR and WOR from all four producers are used as the conditioning data. A

total of 364 data (28 for each type of data at each producing well and 28 pressure

data at the water injection well) are history matched. Noise was not added to the

true data. The prior mean for the log-permeability field is adjusted also during the

history matching procedure. The LBFGS was applied to minimizing the objective

function given by Eq. 2.29 with duc replaced by dtrue.
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Fig. 6.30: Permeability field for the true model.

In the history matching process, we assume the prior mean for ln(k) is 3.0.

Thus, when we generate an unconditional realization, muc, of the log-permeability

field to use in the randomized maximum likelihood method, it is based on a lower

mean for ln(k) than was used to generate the truth case. The correction to the prior
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mean for ln(k) is assumed to be a Gaussian random variable with mean equal to 0

and variance equal to 0.5, respectively, when we generate unconditional realizations

of the correction to the prior mean; see Eq. 2.31. We expected that by history

matching the production data, we should obtain the value of the correction to the

prior mean for ln(k) be around 1. Fig. 6.31 shows the 30 unconditional realizations

(the triangles) and 30 conditional realizations (the solid circles) of the correction to

the prior mean. We can see as expected the correction to the prior mean for ln(k) is

around 1.

Fig. 6.31: Correction to mean of horizontal log-permeability.

In order to check whether the method with correction to the prior mean

helps to improve the convergence or not, we performed a history matching for one

realization without using correction to the prior mean. Without using correction

to the prior mean, the objective function is reduced from 47,310,977 to 540 in 100

iterations and the corresponding behavior of the objective function is shown by plus

signs in Fig. 6.32. When using correction to the prior mean in the history matching

procedure, for the same realization the objective function is reduced from 47,310,993

to 440 in 66 iterations and the corresponding behavior of the objective function is

shown by circles in Fig. 6.32. The final model obtained when the objective function
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given by Eq. 2.29 was minimized in the history matching procedure is shown in

Fig. 6.33 (a). The final model obtained when the objective function given by Eq. 2.18

was minimized is shown in Fig. 6.33 (b). We can see that the model shown in Fig. 6.33

(b) has bigger variation than the model shown in Fig. 6.33 (a) compared with the

true model which is shown in Fig. 6.33 (d). Fig. 6.33 (c) shows the corresponding

unconditional realization used as the initial guess in the history matching process to

generate Fig. 6.33 (a) and (b).

Fig. 6.32: Behavior of the objective function for the case with correction to the prior

mean (circles) and the case without correction to the prior mean (plus

signs).
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Fig. 6.33: The log-permeability field obtained by history matching with correction to

the prior mean(a) and without correction to the mean (b); Unconditional

realization of the model (c) and the true model (d).
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6.5 Field Example – Oseberg Reservoir from North Sea

We consider a synthetic problem which is based on the Oseberg reservoir in

the Norwegian sector of the North Sea. The reservoir consists of three distinct geo-

logical zones, Etive, Rannoch and Oseberg. Etive is the top zone and Oseberg is the

bottom zone. These two zones are separated by Rannoch which is a relatively tight

layer. There is vertical communication between the three zones. In our simulation

study, we simulate only one half of the reservoir using a 39× 25× 10 grid. Only one

vertical gridblock is used in the Etive and Rannoch layer. So layer 3 through 10 are

used to model the Oseberg zone. The gridblock size in the x-direction is equal to

328 ft in the central part of the reservoir, and the gridblock sizes expand gradually

towards the ends from 328 ft to 2624 ft. The gridblock sizes in the y-direction are

uniform and equal to 656 ft. Gridblock sizes in the z-direction are non-uniform with

values equal to 23.0 ft in Etive, 16.5 ft in Rannoch and 11.5 ft in Oseberg. Initial

reservoir pressure is 4071 psi at the depth of 8192 ft subsea, and the initial bubble

point pressure is 3771 psi. The reservoir has a gas cap at the top and an aquifer at

the bottom. The initial gas-oil contact is at 8192 ft subsea and the water-oil contact

is at 8918 ft subsea. Fig. 6.34 (a) shows the surface plot of the reservoir top and

(b) shows the overview of the reservoir top with well locations indicated by black

squares for producers and by white squares for injectors. Note that the reservoir has

a significant dip. The oil column is separated from the aquifer by a tar mat. The

initial permeability and porosity field are based on a geostatistical model, and the

true synthetic model is generated by using a Gaussian co-simulation algorithm.

Two gas injection wells, which are indicated by the white squares in Fig. 6.34

(b), are located in the gas cap and five producing wells, which are indicated by the

black squares in Fig. 6.34 (b), are located in the oil zone. The producing wells are

named PROD1, PROD2, · · · , PROD5 and the two gas injection wells are named

INJT1 and INJT2 respectively. All these wells are fully-penetrated, i.e., all layers

are open to flow. The areal locations of the five producing wells are in gridblocks

(32,3), (32,8), (32,13), (32,18) and (32,23) respectively. Fig. 6.35 (a) through (e)
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Fig. 6.34: Top depth of Oseberg reservoir and well locations.

show the production rate history for each well respectively. The production rate

history for all producing wells are plotted together in Fig. 6.35 (f). We can see

that these five wells are open to flow with a high flow rate (15000 STB/Day) in a

sequential order (at 30, 90, 180, 270 and 360 days in turn). The oil rate shown in

Fig. 6.35 are the rates which were specified as the target rates in the simulation runs.

The minimum bottom-hole pressure (MINBHP) which is fixed at 2000 psi is used as

the producing constraint. When the bottom-hole pressure falls below 2000 psi, this

constraint will be switched to be the producing target. The maximum water-oil ratio

(MAXWOR) which is specified to be 50 STB/STB and the maximum gas-oil ratio

(MAXGOR) which is specified to be 561000 MSCF/STB are used as the producing

economic limits. When these economic limits are violated at a certain well, then

the corresponding well will be shut in. INJT1 and INJT2 are gas injection wells

which are located in gridblocks (2,12) and (2,24) respectively. The gas injection rate

history for the two gas injectors are plotted in Fig. 6.36. INJ1 starts to inject gas at

900 days and INJ2 starts to inject gas at 990 days. All six boundaries are assumed

to be no-flow boundaries, and the capillary pressure is assumed to be negligible. In
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Fig. 6.35: Production rate history for the five producing wells.

Fig. 6.36: Injection rate history for the gas injection wells.
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the oil column, initial oil saturation is 0.885 and the initial water saturation is equal

to the irreducible water saturation which is equal to 0.115. In the gas cap, the initial

gas saturation is 0.885. The water saturation in the gas cap is the irreducible water

saturation and there is no oil in the gas cap initially.

The oil formation volume factor (FVF) and the oil viscosity are shown in

Fig. 6.37. Gas FVF and viscosity are shown in Fig. 6.38. Water FVF and viscosity

are 1.03 RB/STB and 0.34 cp, respectively, at the reference pressure of 4219.5 psi.

The water-oil two-phase relative permeability is shown in Fig. 6.39 (a) and oil-gas

two-phase relative permeability is shown in Fig. 6.39 (b) respectively. Stone’s model

II is used to generate three-phase oil relative permeability; see Aziz and Settari

(1979).

(a) FVF (b) Viscosity

Fig. 6.37: Oil FVF and viscosity.

6.5.1 Reservoir Model

A non-isotropic exponential covariance structure, with ranges ax = 1968 ft,

ay = 6555 ft and az = 20 ft was used. The statistical descriptions of the prior models

for Etive and Rannoch, and Oseberg are given in Tables 6.13 and 6.14 respectively.

Note that horizontal and vertical log-permeability in Oseberg decrease linearly from

top to bottom, i.e., from layer 3 to layer 10. In Table 6.14, only the means for
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(a) FVF (b) Viscosity

Fig. 6.38: Gas FVF and viscosity.

(a) Water-oil (b) Oil-gas

Fig. 6.39: Relative permeability.

model layer 3 and 10 are specified. Means for the intermediate model layers are

obtained by linear interpolation. The unconditional realization of ln(k) and ln(kz)

for Oseberg layers was generated with fixed means. The mean value of 7.48 for ln(k)

and 6.47 for ln(kz) were used for generating the unconditional realization. Therefore,

the unconditional realization for ln(k) and ln(kz) do not have any trend vertically.

The mean used for generating the unconditional realization for ln(k) and ln(kz) for

Etive layer are 6.02 and 4.61, respectively. The same means as used in generating the

true Rannoch layer were used to generate the unconditional realization for ln(k) and
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ln(kz) for the Rannoch layer. The correlation between horizontal and vertical log-

permeability, ρk,kz , was equal to 0.8, and the correlations between log-permeability

and porosity, ρk,φ, ρkz ,φ, was equal to 0.3. In the history matching process, the

porosity field was fixed and equal to the true porosity. The tar-zone is located in

gridblocks centered at (xi, yj, zk), i = 33, 34, 1 ≤ j ≤ 25, 1 ≤ k ≤ 10. In the

tar-zone, we set the horizontal and vertical permeability equal to 1 md in the true

case. When history matching to generate a realization by the randomized maximum

likelihood method, we first generate an unconditional realization muc from the prior

model and then modify muc by setting the entries corresponding to ln(k) and ln(kz)

for the tar-zone to zero. As noted previously, the tar-zone prevents water conning

from the aquifer. Fig. 6.40 (a) through (c) show the 3D cube of the horizontal log-

permeability, ln(k), vertical log-permeability, ln(kz), and porosity φ, respectively,

for the true model. Fig. 6.41 (a) through (c) show the middle x-z cross-section

corresponding to true ln(k), ln(kz) and φ respectively. These figures indicate that

Rannoch has very low permeability values compared to Etive and Oseberg, and acts

as a flow restriction between the Etive and Oseberg formations.

Etive Rannoch

Mean Variance Mean Variance

ln(k) 7.5 1.2 2.1 1.8

ln(kz) 6.3 1.8 0.15 2.2

φ 0.14 0.002 0.10 0.001

Table 6.13: Prior model of Etive and Rannoch.

Mean top Mean bottom Variance

ln(k) 7.8 6.3 0.4

ln(kz) 6.4 4.4 0.8

φ 0.22 0.22 0.001

Table 6.14: Prior model of Oseberg.
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Fig. 6.40: Permeability and porosity for the true model.
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Fig. 6.41: Permeability and porosity for the true model.

Fig. 6.42(a) shows the observed wellbore pressures, which are generated

based on the true model, for all seven wells including both producers and injec-

tors. Fig. 6.42(b) shows the GOR data from the five producing wells. From this

figure, we can see that the gas breaks through at the five producing wells in a se-

quential order due to the fact that the producers start to produce in a time-delayed

scheme. the exception is that the PROD2 experiences gas breakthrough earlier than

PROD1. This occurs because PROD2 is much closer to the injection well than
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PROD1. Fig. 6.43(a) shows wellbore pressures obtained from the unconditional

realization which is used as initial model (initial guess) in the history matching pro-

cedure. Comparing Fig. 6.43(a) with Fig. 6.42(a), we can see that the behavior of the

wellbore pressure for the initial model is different from the behavior of the wellbore

pressure for the true model. Fig. 6.43(b) shows the GOR data for the initial model.

We can see that, for the initial model, only PROD1 and PROD2 had gas break-

through and the breakthrough happened very late compared with the true model.

Breakthrough did not happen for PROD3 to PROD5.

(a) Pressure (b) GOR

Fig. 6.42: Observed production data.

6.5.2 History Matching

The observed data used for history matching are constructed by running the

simulator with the true model for a total time of 2400 days. Several data sets are

used for history matching. Data set 1 contains the wellbore pressures from both the

producing wells and injection wells and the GOR data from the producers. There

are 71 measurements for each type of data at each well. So the total number of data

history matched is 852 for the first data set. Data set 2 contains only the wellbore

pressure from the five producing wells and the two gas injection wells. The total

number of data history matched for the second data set is 497. Data set 3 contains
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(a) Pressure (b) GOR

Fig. 6.43: Calculated data for the initial model.

only the GOR data from the five producing wells. So for this case, the total number of

data used for history matching is 375. No noise was added to the data, i.e., we history

matched the objective function given by Eq. 2.18 with duc replaced by dtrue. We

assumed wellbore pressure measurement errors to be independent Gaussian random

variable with mean zero and variance equal to 1 psi2 and gas-oil ratio measurement

errors to be independent Gaussian error with mean zero and variance equal to 25.0.

The limited memory BFGS algorithm was used for the minimization.

With data set 1, even though no noise was added to the true data, the

objective function value is only reduced from 1.4 × 107 to 3 × 104 in 31 iterations

which is much larger than Nd. As shown below, however, we obtained decent matches

of the data. We restarted the algorithm once at the 19th iteration. The behavior of

the objective function is shown by the triangles in Fig. 6.44. Pressure data matches

for three producing wells, PROD1, PROD2, PROD4 and one injection well, INJ1, are

shown in Fig. 6.45. In these four figures and in similar figures, the circles represent

the observed data, the diamonds represent the calculated data based on the initial

model and the plus signs represent the calculated data based on the final model after

history matching the production data. From these four figures, we can see that we

get a very good match for pressure data at both producing wells and the injection



153

Fig. 6.44: Behavior of the objective function when the both pressure and GOR were

history matched, data set 1.

well. Matches of comparable quality were obtained at the other three wells. Fig. 6.46

shows the GOR data match for PROD1, PROD2, PROD3 and PROD4. Again a

very good match for GOR data at these four wells is obtained.

Fig. 6.47 shows the gas saturation at 2400 days for the first layer which

corresponds to Etive (top row) and the third layer which is the first layer of the

Oseberg (bottom row) corresponding to initial, true and final model which is obtained

by history matching both pressure and GOR data. Fig. 6.48 shows the gas saturation

at 2400 days for the 13th x-z cross-section (top row) and the 20th x-z cross-section

(bottom row) corresponding to the initial, true and final models. From these figures,

we can see that the gas distribution for the final model obtained by history matching

the production data is similar to the gas distribution for the true model. For the

initial model (see Fig. 6.47 (a) and (d) and Fig. 6.48 (a) and (d)), the gas moves

more slowly towards the producing wells. The gas breaks through only at PROD1

and PROD2 and the breakthrough time is much later than for the true model. For

the model obtained by history matching the production data, the gas breaks through

at all wells at about the same time as for the true model. Fig. 6.49 shows 4 layers of
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Fig. 6.45: Wellbore pressure data match at four wells, data set 1.

the horizontal log-permeability field corresponding to the initial, true and final model

obtained by history matching data set 1. In this figure, the log-permeability fields for

the same layer are plotted with the same scale. From these figures, it is not easy to

see how the log-permeabilities change by history matching the production data. In

order to see how the history matching changes the permeability field from the initial

guess, we plotted in Fig. 6.50 the log-permeability change, i.e., the difference between

the final model and the initial model, for six layers. From this figure, we can see

clearly that for the first three layers, the permeabilities around some wells (especially

at the PROD1 and PROD2) for the final model are larger than the permeabilities

in the same area for the initial model which is an unconditional realization. Recall

that the mean of log-permeability for the Etive layer and the top two layers of the

Oseberg zone for the initial model is smaller than the true model. Therefore the
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Fig. 6.46: GOR data match at four wells, data set 1.

permeabilities are increased for these layers in order to match the GOR data. We

also can see that the permeabilities for the layers 7 through 9 are decreased. Even

though we did not show it here, the permeabilities are decreased also for the bottom

layer. Recall that the permeability for the true model has the decreasing trend

vertically and the permeability for the layer 6 through 10 for the true model are

smaller than the initial model. The vertical log-permeabilities were only changed

slightly by history matching (less than 0.06 for the change in log-permeability).

When data set 2, which contains only the wellbore pressure data, is history

matched, the objective function value is reduced from 2.2 × 106 to 1.4 × 104 in

36 iterations. The behavior of the objective function is shown by the squares in

Fig. 6.44. Pressure data match for PROD1, PROD2, PROD4 and INJ1 are shown

in Fig. 6.51. From these four figures, we can see that we obtain a reasonable match
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Initial                         True              Pwf+GOR

Layer1

Layer3

(a)                                 (b)                        (c)

(d)                                (e)                       (f)

Fig. 6.47: Gas saturation at 2400 days in the first layer (top row) and the third layer

(bottom row) corresponding to initial, true and final model from history

matching wellbore pressure and GOR, data set 1.

for pressure data at both producing wells and the injection well. Based on the model

obtained by history matching only the wellbore pressure data, we ran the simulator

to calculate the GOR data at the five producing wells in order to compare with

the observed GOR data. Fig. 6.52 shows the GOR data based on different reservoir

models. The circles in these figures represent the observed GOR data obtained based

on the true model; the diamonds represent the calculated GOR data based on the

initial reservoir model and the stars represent the calculated GOR data based on

the model obtained by history matching only wellbore pressure data. We can see

that GOR data obtained from the model obtained by history matching wellbore

pressure data moves towards the observations but does not give as nearly as good a

match as when we actually matched GOR and pressure data (see Fig. 6.46) although

calculated GOR data at PROD1 and PROD2 are fairly close to the observed GOR



157

Initial                        True              Pwf+GOR

J=13

J=20

(a)                                    (b)                      (c)

(d)                                    (e)                      (f)

Fig. 6.48: Gas saturation at 2400 days for the 13th cross-section (top row) and the

20th cross-section (bottom row) corresponding to initial, true and final

model from history matching wellbore pressure and GOR, data set 1.

data. These figures indicate that history matching wellbore pressure data improves

the model to some extent, but if only one type of data are history matched then the

other type data predicted based on this model do not match the observations as well

as if they are explicitly included in the history matched data.

The final data set we history matched contains only GOR data from all five

producing wells. Each producing well has 71 GOR data. So a total of 355 GOR data

are history matched. The behavior of the objective function is shown in Fig. 6.44

by the circles. The value of the objective function is reduced from 1.2 × 106 to

5.7 × 103 in 40 iterations. The algorithm was restarted at the 10th iteration. The

GOR data matches for PROD1 through PROD4 are shown in Fig. 6.53. Again,

the circles represent the observed data; the plus signs represent the data calculated

based on the model obtained after history matching the GOR data and the diamonds
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Layer3

Layer1

Initial                      True                     Pwf+GOR

Layer10

Layer9

Fig. 6.49: Horizontal permeability field for 4 different layers corresponding to initial,

true and final model obtained from history matching wellbore pressure and

GOR, data set 1.
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Fig. 6.50: Change in log-permeability for six layers.

represent the calculated data based on the initial model. We can see that we obtain a

slightly better match of GOR data compared to the GOR match obtained by history

matching both pressure and GOR data; see Fig. 6.53 and Fig. 6.46.

The stars in Fig. 6.54 shows the bottom-hole pressure data which are calcu-

lated based on the model obtained after history matching only GOR data. Again, in

these figures, circles represent the observed data and diamonds represent the calcu-

lated data corresponding to the initial model. We can see that even though pressures
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Fig. 6.51: Wellbore pressure data match at four wells, data set 2.

are not matched as well as the case where the pressure data were used as the con-

ditioning data, the pressures predicted from the matched model are much closer to

the observed data than those predicted from the initial model. Although we did not

match any data from the injection wells, the observed pressure data are matched

very well at the injection wells which implies that the GOR data at the producing

wells can resolve the permeability around the injection wells very well. Wu (1999)

also observed this phenomenon. Comparing the results given in Figs. 6.52 and 6.54

suggests that GOR data are more useful in resolving the permeability field than the

pressure data.
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Fig. 6.52: GOR data obtained from initial model (diamonds), true model (circles)

and the model obtained by history matching only wellbore pressure data

(stars) at four wells, data set 2.

6.5.3 Future Performance Prediction

In making a future performance prediction, after the 2400 days production

history, we let the five producing wells keep producing at the constant rate of 9000

STB/Day with the minimum bottom-hole pressure of 2000 psi as the constraint for

another 400 days, i.e., from 2400 days to 2800 days. At 2800 days, we let the five

producing wells produce at a fixed constant bottom-hole pressure of 2000 psi for 1100

days, i.e., from 2800 days to 3900 days. After the first 2400 days history, the two

injection wells were shut in for 200 days from 2400 days to 2600 days and then we

started injecting gas again at the rate of 18715 MSCF/Day, which is one third of
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Fig. 6.53: GOR data obtained from initial model (diamonds), true model (circles)

and final model obtained by history matching only GOR data (plus signs)

at four wells, data set 3.

the injection rate at the end of the observed history, for another 200 days, i.e., from

2600 days to 2800 days. Then the injection rates were changed to 56145 MSCF/Day,

which is equal to the rate at the end of the history, for the rest of the time in the

prediction period in order to provide enough pressure support. So the total time span

for the future performance prediction is 1500 days, i.e., from 2400 days to 3900 days.

The simulation run were performed for the initial model, true model and the models

obtained by history matching the three different data sets described in the previous

section. The total cumulative oil production obtained for the five models are shown in

Fig. 6.55. Fig. 6.55 (b) shows the total cumulative oil production only for the period

of time for future prediction. In this figure, the solid line, dashed line, short dashed

line, dot-dash line and the dotted line, respectively, represent the total cumulative

oil production from the true model, the model obtained by history matching both
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Fig. 6.54: data obtained from initial model (diamonds), true model (circles) and the

model obtained by history matching only GOR data (stars) at four wells,

data set 3.

pressure and GOR data, the model obtained by history matching only GOR data, the

model obtained by history matching only pressure and the initial model. From this

figure, we can see that the cumulative oil productions based on the model obtained

by conditioning the initial model to both pressure data and GOR data and the model

obtained by conditioning only to the GOR data are very close to the cumulative oil

production corresponding to the true model. The total cumulative oil production

obtained for the initial model is far away from that obtained for the true model.

From the future performance prediction, we also can see that the GOR data are

more useful than pressure data. Fig. 6.56 (a) through (e) show the predictions of

GOR obtained based on the five different models for PROD1 through PROD5.
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(a) 0-3900 days

(b) 2400-3900 days

Fig. 6.55: Total field cumulative oil production.
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(a) PROD1 (b) PROD2

(c) PROD3 (d) PROD4

(e) PROD5

Fig. 6.56: GOR data for all producing wells for the production history and the future

performance predictions.



CHAPTER VII

CONCLUSIONS

The main objective of this work was to develop and implement an automatic

history matching procedure that is computationally efficient enough to be applica-

ble to large scale problems. For large scale problems where the number of data

and the number of model parameters are both large, it is too expensive to apply

optimization algorithms which require the Hessian of the objective function, such

as the Gauss-Newton and Levenberg-Marquardt methods, to minimize the objective

function involved in history matching. In this work, we compared the convergence

performance of a set of gradient based nonlinear optimization algorithms including

modified Levenberg-Marquardt, preconditioned conjugate gradient, BFGS and lim-

ited memory BFGS on a set of history matching problems. The implementation of

BFGS used was based on explicitly computing and storing the approximate inverse

Hessian at each iteration; although computationally inefficient, this implementation

allows one to apply all scaling procedures that have been suggested in the litera-

ture. Our results indicate that for large scale history matching problems, the limited

memory BFGS algorithm requires significantly less time and less memory than the

modified Levenberg-Marquardt and BFGS algorithms, but yields results of compa-

rable quality based on the value of the objective function obtained at convergence

and the model obtained at convergence. Scaling has a significant effect on the per-

formance of the LBFGS and BFGS algorithms. The scaling factors used here result

in significant improvement in the convergence properties of the algorithm as com-

pared to the no scaling cases. For all examples considered, our implementations

of preconditioned conjugate gradient algorithms were less robust than the scaled

BFGS and LBFGS algorithms. Based on our results, we conclude that the limited

166
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memory BFGS is the only viable algorithm for large scale 3D three-phase automatic

history matching problems where the number of model parameters and the number

of data are both large. Conceptually, a preconditioned nonlinear conjugate gradient

method could be competitive with the limited memory BFGS method, but we have

not identified an effective preconditioner to achieve this result.

An iterative linear solver based on orthomin theory was implemented in

this work. Essentially, this iterative solver is the same as the solver used in CLASS

(Chevron Limited Application of Simulation System) simulator for solving the finite-

difference flow equation system. For large problems, the iterative solver is orders of

magnitude faster than the direct solver which is based on the LU decomposition.

The iterative solver was used to solve the adjoint equation system which is a linear

system. In this application, it is important to obtain a reasonable initial guess for the

adjoint variables in order to avoid convergence failure. We have presented an ad hoc

procedure for generating a sufficiently good initial guess. With this procedure, the

solution obtained by the iterative solver is in excellent agreement with the solution

obtained by a sparse matrix technique.

The iterative solver and limited memory BFGS developed in this work were

applied to several problems including a synthetic example based on a North Sea

reservoir. In this example, we history matched only GOR data, then matched the

wellbore pressure only and then matched both pressure and GOR. The limited results

suggest that the information content of GOR data is as good as or superior to wellbore

pressure data at least in terms of reducing the uncertainty in future performance

prediction.
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NOMENCLATURE

C = covariance matrix.

CD = data covariance matrix.

CM = model covariance matrix.

Cr = covariance matrix for rock property field.

Cs = covariance matrix for well skin factors.

d = vector of data (units depend on data type).

dobs = vector of observed data.

duc = observed data with random noise added.

G = matrix of sensitivity coefficients.

g(m) = calculated data based on m.

H = Hessian matrix.

H̃ = approximation to the Hessian matrix.

I = Identity matrix

J = Jacobian matrix

k = permeability, mD.

m = vector of model parameters.

mprior = vector of prior mean for model parameters.

muc = vector of unconditional realization of model parameters.

N = total number of gridblocks.

Nd = number of data.

Ne = total number of flow equations.

Nm = number of model parameters.

Nw = number of wells.

Nx = number of gridblocks in x-direction.
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Ny = number of gridblocks in y-direction.

Nz = number of gridblocks in z-direction.

O() = objective function.

P () = probability density function.

pwf = wellbore pressure.

p = gridblock pressure.

q = flow rate.

r = residual.

Rs = solution gas oil ratio.

S = saturation.

Z = vector of standard random normal deviates

α = vector of corrections to the prior mean, or step size.

ε = random noise in pressure measurements.

λ = adjoint variable.

µ = step size in Gauss-Newton method.

γ = scaling factor.

φ = porosity.

Subscripts

M = model.

obs = observed.

prior = a priori value.

uc = unconditional.

Superscripts

T = transpose.

−1 = inverse.
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APPENDIX A

THEORY OF LINEAR EQUATION SOLVERS

In this appendix, we summarize some theoretical results and algorithms for

iterative solvers. Some material presented here is based on material that can be found

in Greenbaum (1997). From the derivations, we can understand the relationship

between the different methods. We provide some description of the computational

efforts required by a direct solver in the first section for the purpose of comparison

and to provide a more complete overview of linear solvers. All other sections of this

appendix are focused on the iterative solvers.

A.1 Direct Solvers

Direct methods include Gauss-Jordan elimination, Gaussian elimination,

LU decomposition and nested factorization often in conjunction with special pro-

cedures for sparse matrices. Here, we only compare the arithmetic operations (addi-

tions/subtractions and multiplications) used by different methods for the purpose of

comparing the computational efficiency; see Press et al. (1992) for details. Assume N

is the number of equations and M is the number of right hand sides. Gauss-Jordan

elimination requires 1
2
N3 + N2M additions/subtractions and the same number of

multiplications. Gaussian elimination requires 1
3
N3 + N2M additions/subtractions

and the same number of multiplications. (For both methods, divisions by pivot

elements are not counted.) For M ¿ N (a few right hand sides), Gaussian elimina-

tion is faster than Gauss-Jordan elimination. One disadvantage of both elimination

methods is that the right hand sides must be known in advance to perform the elim-

ination assuming we do not wish to store all the multipliers used in elimination. The

LU decomposition, which is another direct solver, does not depend on the right hand
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sides. The LU decomposition requires about 1
3
N3 additions and 1

3
N3 multiplications.

To solve one linear equation system with one right hand side, LU decomposition re-

quires 1
3
N3 + N2 additions and the same number of multiplications. If we have N

right hand sides, LU decomposition requires 1
3
N3 +N ×N 2 additions and the same

number of multiplications.

A.2 Iterative Solvers

Iterative solvers that were frequently used in the past, e.g., Jacobi, Gauss-

Seidel and SOR, can be treated as preconditioned iterative solvers. Assume the

system of linear equations to be solved is given by

Ax = b, (A–1)

where A is an N × N nonsingular matrix and x and b are N -dimensional column

vectors. Let M denote a preconditioning matrix. Since a preconditioner is designed

so thatM−1A in some sense approximates the identity,M−1(b−Axk) can be expected

to approximate the error A−1b − xk in the approximate solution xk. Intuitively, we

expect a better solution can be obtained using the following formula:

xk+1 = xk +M−1(b− Axk). (A–2)

Note that if M−1 = A−1, then Eq. A–2 becomes

xk+1 = xk + A−1(b− Axk)

= xk + A−1b− xk

= A−1b,

(A–3)

which is the exact solution of Eq. A–1. Different choices of M in Eq. A–2 gives

different iterative procedures. Let

A = D − L− U, (A–4)

where D is a diagonal matrix with its diagonal entries equal to the diagonal entries

of A, L is strictly lower triangular and U is strictly upper triangular. M equal to D
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(the diagonal of A) gives the Jacobi method. If M is equal to D − L, Eq. A–2 gives

the Gauss-Seidel procedure, i.e.

xk+1 = xk + (D − L)−1(b− Axk). (A–5)

Left multiplying by (D − L) on both sides of Eq. A–5, we find

(D − L)xk+1 = (D − L)xk + (b− Axk)

= (D − L)xk + b− (D − L− U)xk

= Uxk + b.

(A–6)

Rearranging Eq. A–6 gives

xk+1 = (D − L)−1Uxk + (D − L)−1b, (A–7)

which is equivalent to Eq. A–5. For M = ω−1D−L, where ω is a relaxation param-

eter, the resulting iterative method obtained from Eq. A–2 is called the successive

over relaxation or SOR method.

Define the error vector at the kth iteration as

ek ≡ A−1b− xk. (A–8)

Applying Eq. A–2, Eq. A–8 can be rewritten as

ek = A−1b− xk−1 −M−1(b− Axk−1)

= ek−1 −M−1(AA−1b− Axk−1)

= ek−1 −M−1A(A−1b− xk−1)

= ek−1 −M−1Aek−1

= (I −M−1A)ek−1.

(A–9)

The following theorem is given in Greenbaum (1997).

THEOREM: The iteration scheme of Eq. A–2 converges to A−1b for ev-

ery initial error e0 if and only if ρ(I − M−1A) < 1 where ρ(A) = max{|λ| :

λ is an eigenvalue of A} is the spectral radius of the matrix A.

By introducing dynamically computed parameters ak into the iterative scheme

of Eq. A–2 and assuming b and A are preconditioned already (which implies M−1b
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can be treated as the new right hand side vector and M−1A can be treated as the

new coefficient matrix so we do not need to include M−1), Eq. A–2 can be rewritten

as

xk+1 = xk + ak(b− Axk). (A–10)

The residual at the kth iteration is defined by

rk = b− Axk. (A–11)

So Eq. A–10 can be rewritten as

xk+1 = xk + akrk (A–12)

where rk can be considered to be a search direction. From Eqs. A–10 and A–11, we

have

rk+1 = b− Axk+1

= b− Axk − akA(b− Axk)

= rk − akArk,

(A–13)

which gives the relationship between the new residual rk+1 and the previous residual

rk. Using Eqs. A–8 and A–12, it follows that

ek+1 = A−1b− xk+1

= A−1b− xk − akrk

= ek − akrk,

(A–14)

which gives a relationship between the new error vector ek+1, the old error vector ek

and the old residual rk. Left multiplying by A on both side of Eq. A–8, we find that

Aek = AA−1b− Axk

= b− Axk

= rk,

(A–15)

which relates the error vector ek to the residual rk. Using Eq. A–15 in Eq. A–14, we

obtain

Aek = ek − akAek (A–16)
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which gives a relationship between the new error vector ek+1 and the old error vector

ek.

The coefficient ak in Eq. A–12 can be determined either by minimizing the

residual or by minimizing the error vector. The consequence of these choices are

discussed later.

A.2.1 Orthomin (1)

In this method, ak in Eq. A–12 is obtained by minimizing the l2 norm of the

residual. The square of the l2 norm of rk+1 is given by

(rk+1, rk+1) = (rk − akArk, rk − akArk)

= (rk, rk)− ak(Ark, rk)− ak(rk, Ark) + a2
k(Ark, Ark)

= (rk, rk)− 2ak(Ark, rk)) + a2
k(Ark, Ark).

(A–17)

Here and throughout (·, ·) denotes the l2 inner product. Note that in Eq. A–17

(Ark, rk) = rTkArk = (Ark)
T rk = (rk, Ark), (A–18)

i.e., we have not assumed that A is a symmetric matrix. To minimize the l2 norm

of the residual, we set the derivative of Eq. A–17 with respect to ak equal to zero.

This gives

ak =
(rk, Ark)

(Ark, Ark)
. (A–19)

This ak minimizes (rk+1, rk+1) if and only if the second derivative of (rk+1, rk+1) with

respect to ak , which is given by 2(Ark, Ark) = 2rTkA
TArk = 2‖Ark‖2, is positive.

This is true if the matrix A is nonsingular and rk 6= 0. A is assumed to be nonsingular,

so Eq. A–1 has a unique solution. Therefore, rTkA
TArk is positive if rk is not equal

to zero, but rk = 0 means Axk = b so xk is the desired solution. Eq. A–12 with ak

given by Eq. A–19 is called the orthomin (1) method. In this method, A can be any

nonsingular square matrix.

A.2.2 Steepest Descent

Note that the coefficient ak in orthomin (1) is obtained by minimizing the

l2 norm of the residual. The coefficient ak can also be obtained by minimizing the
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A−norm of the error vector which is defined by

‖ek+1‖2A = (ek+1, Aek+1). (A–20)

We now assume that A is a real symmetric matrix, then using Eq. A–14, Eq. A–20

can be written as

‖ek+1‖2A = (ek+1, Aek+1)

= (ek − akrk, A(ek − akrk))

= (ek, Aek)− ak(ek, Ark)− ak(rk, Aek) + a2
k(rk, Ark)

= (ek, Aek)− 2ak(ek, Ark) + a2
k(rk, Ark),

(A–21)

By setting the first derivative of ‖ek+1‖2A with respect to ak equal to zero, we obtain

ak =
(ek, Ark)

(rk, Ark)
=

(rk, rk)

(rk, Ark)
. (A–22)

The second equality in Eq. A–22 is obtained from Eq. A–15 (Aek = rk) and the

fact that A is real symmetric, which implies (ek, Ark) = (Aek, rk) = (rk, rk). To

determine whether ak corresponds to a maximum, minimum or saddle point, we

need the second derivative of ‖ek+1‖2A which is given by

d2(‖ek+1‖2A)
da2

k

= 2(rk, Ark) = 2rTkArk. (A–23)

To guarantee that ak given by Eq. A–22 minimizes ‖ek+1‖2A, the second derivative

of ‖ek+1‖2A given in Eq. A–23 must be positive. This is guaranteed if the matrix A

is positive definite and rk is nonzero. Eq. A–12 with ak given by Eq. A–22 is called

steepest descent. Note that applying this method requires the matrix A to be real

symmetric positive definite, whereas, the matrix A in orthomin (1) can be any real

nonsingular square matrix.

Eq. A–12 can be written in the more general form

xk+1 = xk + akpk, (A–24)

where pk is the search direction at the (k + 1)st iteration which can be formed in

many different ways. In orthomin (1) and steepest descent, the search direction pk



188

is equal to the residual rk. The residual and error vectors based on this new form

can be rewritten as

rk+1 = b− Axk+1

= b− Axk − akApk

= rk − akApk,

(A–25)

and

ek+1 = A−1b− xk+1

= A−1b− xk − akpk

= ek − akpk.

(A–26)

Note that the relation

Aek+1 = A(A−1b− xk+1)

= A
(

A−1(b− Axk+1)
)

= AA−1rk+1

= rk+1,

(A–27)

always holds.

If we choose pk as a linear combination of rk and pk−1, i.e.,

pk = rk + bkpk−1, (A–28)

then we have two parameters, ak and bk, to adjust. Different choices for ak in Eq. A–

24 and bk in Eq. A–28 result in different algorithms. Reasonable ways to choose ak

and bk are presented below.

A.2.3 Orthomin (2)

We can effectively determine bk by requiring the following orthogonality

relation holds:

(Apk, Apk−1) = 0. (A–29)
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Using Eq. A–28 in Eq. A–29, we find

(Apk, Apk−1) = (Ark + bkApk−1, Apk−1)

= (Ark, Apk−1) + bk(Apk−1, Apk−1)

= 0.

(A–30)

Thus,

bk = −
(Ark, Apk−1)

(Apk−1, Apk−1)
. (A–31)

So Eq. A–28 can be rewritten as

pk = rk −
(Ark, Apk−1)

(Apk−1, Apk−1)
pk−1. (A–32)

As in orthomin (1), we minimize the l2 norm of the residual, i.e., we minimize

(rk+1, rk+1), to determine the coefficient ak in Eq. A–24. This procedure gives

ak =
(rk, Apk)

(Apk, Apk)
. (A–33)

The formula for ak can also be obtained by setting (rk+1, Apk) = 0. Eqs. A–24, A–32

and A–33 represent the orthomin (2) method. As in orthomin (1), the matrix A can

be any real nonsingular square matrix.

A.2.4 Conjugate Gradient

Instead of choosing bk so that Eq. A–29 holds, we can choose bk in Eq. A–28

so that the following orthogonality relation holds:

(pk, Apk−1) = 0, (A–34)

i.e., the search directions pk and pk−1 are A−orthogonal. Using Eq. A–28 in Eq. A–34

gives

(pk, Apk−1) = (rk + bkpk−1, Apk−1)

= (rk, Apk−1) + bk(pk−1, Apk−1)

= 0.

(A–35)

Thus,

bk = −
(rk, Apk−1)

(pk−1, Apk−1)
. (A–36)
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With this bk, Eq. A–28 can be rewritten as

pk = rk −
(rk, Apk−1)

(pk−1, Apk−1)
pk−1. (A–37)

As in steepest descent, the coefficient ak in Eq. A–24 is chosen by minimizing

‖ ek+1 ‖2A = (Aek+1, ek+1)

= (Aek − akApk, ek − akpk)

= (Aek, ek)− 2ak(Aek, pk) + a2
k(pk, Apk).

(A–38)

Note that we assumed A is real symmetric in the above equation. Setting the deriva-

tive of ‖ ek+1 ‖2A with respect to ak be zero, we obtain

ak =
(Aek, pk)

(pk, Apk)
=

(rk, pk)

(pk, Apk)
. (A–39)

The second equality in Eq. A–39 was obtained by using Eq. A–27. As in steepest

descent, to guarantee that ak given by Eq. A–39 minimizes ‖ek+1‖A, we assume

A is real symmetric positive definite. Eq. A–39 can also be obtained by setting

(ek+1, Apk) = 0 given that A is real symmetric. Eq. A–24 with Eq. A–37 and Eq. A–

39 is called the conjugate gradient method.

Using Eq. A–28, the inner product (rk, pk) can be written as

(rk, pk) = (rk, rk + bkpk−1)

= (rk, rk) + bk(rk, pk−1).
(A–40)

Using Eqs. A–25 and A–39, we obtain

(rk, pk−1) = (rk−1 − ak−1Apk−1, pk−1)

= (rk−1, pk−1)− ak−1(Apk−1, pk−1)

= (rk−1, pk−1)− (rk−1, pk−1)

= 0,

(A–41)

and using this equation in Eq. A–40, it follows that

(rk, pk) = (rk, rk). (A–42)
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Using Eq. A–42 in Eq. A–39 gives

ak =
(rk, pk)

(pk, Apk)
=

(rk, rk)

(pk, Apk)
. (A–43)

Using Eqs. A–25, A–28, A–34 and A–43, we can show that (rk, rk−1) = 0 as follows:

(rk, rk−1) = (rk−1 − ak−1Apk−1, rk−1)

= (rk−1, rk−1)− ak−1(Apk−1, rk−1)

= (rk−1, rk−1)− ak−1(Apk−1, pk−1 − bk−1pk−2)

= (rk−1, rk−1)− ak−1(Apk−1, pk−1)

= (rk−1, rk−1)−
(rk−1, rk−1)

(Apk−1, pk−1)
(Apk−1, pk−1)

= 0.

(A–44)

Using this result and Eq. A–25, we see that

(rk, Apk−1) = (rk,
1

ak−1

(rk−1 − rk))

=
1

ak−1

(rk, rk−1)−
1

ak−1

(rk, rk)

= − 1

ak−1

(rk, rk).

(A–45)

Using this result and Eqs. A–36 and A–43, bk can be written as

bk = −
(rk, Apk−1)

(pk−1, Apk−1)

= −
− 1

ak−1
(rk, rk)

(pk−1, Apk−1)

= −
− 1

ak−1
(rk, rk)

1
ak−1

(rk−1, rk−1)

=
(rk, rk)

(rk−1, rk−1)
,

(A–46)

so

bk = −
(rk, Apk−1)

(pk−1, Apk−1)
=

(rk, rk)

(rk−1, rk−1)
. (A–47)

The standard way to apply the conjugate gradient algorithm is to use the second

equality in Eq. A–43 to calculate ak and use the second equality in Eq. A–47 to

calculate bk. This avoids calculation of (rk, pk) and (rk, Apk−1).
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A.2.5 Orthomin

To obtain a more general form of orthomin, we require the current search

direction be constructed as a linear combination of all the previous search direction

vectors and the current shift vector δxk+1 = xk+1 − xk, i.e.,

pk+1 = δxk+1 −
k

∑

j=1

bjpj. (A–48)

We require that the pj’s satisfy the following orthogonality relation:

(Apj, Api) = 0, i 6= j. (A–49)

Thus, we wish pk+1 to be such that

(Apk+1, Api) = 0, i = 1, 2, · · · , k. (A–50)

From Eq. A–48, we see that Eq. A–50 holds if and only if

bi =
(Aδxk+1, Api)

(Api, Api)
, i = 1, 2, · · · , k. (A–51)

Now we apply the following iterative procedure to compute the new updated approx-

imation of x,

xk+1 = xk + akpk, (A–52)

where ak is chosen by minimizing the l2 norm of the residual. Similar to Eq. A–33,

we obtain

ak =
(rk, Apk)

(Apk, Apk)
. (A–53)

Since this gives the minimum of f(ak) = ‖rk+1‖2 = (rk+1, rk+1) where

rk+1 = rk − akApk, (A–54)

and f(0) = (rk, rk) = ‖rk‖2, we always have

‖rk+1‖2 ≤ ‖rk‖2, (A–55)

which implies that the method can not “diverge”. Define

δrk = rk+1 − rk. (A–56)



193

Applying Eq. A–54, Eq. A–56 can be written as

δrk = −akApk. (A–57)

Applying Eqs. A–54 and A–53, we see that

(rk+1, δrk) = (rk − akApk,−akApk)

= (rk,−akApk) + a2
k(Apk, Apk)

= ak
[

(rk,−Apk) + ak(Apk, Apk)
]

= ak

[

− (rk, Apk) +
(rk, Apk)

(Apk, Apk)
(Apk, Apk)

]

= 0.

(A–58)

This equation indicates that rk+1 is orthogonal to δrk. Fig. A–1 illustrates the

relationship between rk+1 and rk. As ‖rk‖ is the “length” of the hypothenuse of

a right triangle and ‖rk+1‖ is the length of one of its sides we see that ‖rk+1‖ is

strictly less than ‖rk‖ unless rk+1 = ±rk. We would say that the length measured in

a certain norm (e.g., l2 norm) of the new residual is always less than the length of

the old residual.

rk

rk+1

δrk

Fig. A–1: Illustration of the relationship of the two adjacent residuals in orthomin

method.

Eqs. A–48, A–51, A–52 and A–53, represent the more general orthomin

algorithm. The overall algorithm for the more general orthomin method for solving

Ax = b is given below; see Vinsome (1976) for details.
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? Choose an initial guess x0.

? Set r0 = b− Ax0.

? Solve Mδx1 = r0 for δx1 where M is an approximation to matrix A which is

chosen such that this linear equation can be solved easily and set p1 = δx1 and

calculate

a1 =
(r0, Ap1)

(Ap1, Ap1)
(A–59)

x1 = x0 + a1p1 (A–60)

r1 = r0 − a1Ap1 (A–61)

? Iteration loop

DO k = 1, 2, · · ·
δxk+1 = M−1rk (A–62)

bj = −
(Aδxk+1, Apj)

(Apj, Apj)
, j = 1, 2, · · · , k (A–63)

pk+1 = δxk+1 +
k

∑

j=1

bjpj (A–64)

ak+1 =
(rk, Apk+1)

(Apk+1, Apk+1)
(A–65)

xk+1 = xk + ak+1pk+1 (A–66)

rk+1 = rk − ak+1Apk+1 (A–67)

END DO

We call this algorithm orthomin. The orthomin algorithm was stopped when the

following condition is satisfied
‖ rk ‖∞
‖ r0 ‖∞

≤ ε, (A–68)

where ‖ · ‖∞ denotes the infinity or maximum norm.

Note that in Eq. A–64, all the previous search direction vectors are used to

construct the current search direction. If we just use a limited number of previous
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search direction vectors to construct pk+1, we call the corresponding version of al-

gorithm the truncated orthmin method. If we use l previous vectors, then the only

change is that Eq. A–64 is replaced by

pk+1 = δxk+1 +
k

∑

j=k+1−l

bjpj. (A–69)

If l = 1 andM is the identity matrix, then the general algorithm reduces to orthomin

(2) discussed previously. In Eq. A–62, the value of δxk+1 is obtained by solving

Mδxk+1 = rk, (A–70)

instead of forming the matrix productM−1rk. Recall thatM can be considered to be

a preconditioning matrix. Note that the first term in Eq. A–64, i.e., δxk+1 = M−1rk,

is equivalent to the second term in Eq. A–2. The preconditioner should be chosen

such that M ≈ A, so that

M−1A ≈ I, (A–71)

where I is the appropriate identity matrix. Combining Eq. A–71 with Eq. A–70, we

have

Aδxk+1 ≈ rk+1, (A–72)

which represents the relationship between the shift vector δxk+1 and the residual rk+1

(analogue to Eq. A–27). The key issue for implementation of the general orthomin

algorithm is how to choose M such that Eq. A–70 can be solved very efficiently. In

our implementation, the incomplete LU decomposition was applied; see Chapter IV.



APPENDIX B

QUASI-NEWTON METHODS

In this appendix, we give the derivation of the updating equation for the

inverse Hessian approximation and the principle of the self-scaling variable metric.

Scaling can have a significant effect on the convergence rate of a variable metric

(quasi-Newton) algorithm. Proofs of the propositions, theorems and corollaries pre-

sented here can be found in Oren and Luenberger (1974), Oren (1974b), Oren (1974a)

or Oren and Spedicato (1976). Throughout we assume real vectors and matrices and

all vectors being n-dimensional.

The iteration equation of Newton’s method for minimizing the objective

function f(x) can be written as:

xk+1 = xk − αkH
−1
k gk, (B–1)

where gk and Hk, respectively, represent the gradient and the second derivative

(Hessian) of f(x) evaluated at xk. The term αk denotes the step size in the direction

dk, where

dk = −H−1
k gk. (B–2)

Therefore, in Newton’s method, we need to solve Hkdk = −gk for dk which may be

computationally expensive for large scale problems, especially if the evaluation of the

Hessian requires considerable effort. In problems of interest to us, the Hessian matrix

involves the sensitivity coefficients. For the history matching problems of interest

to us, the calculation of an individual sensitivity coefficient requires a significant

fraction of the time required to make a reservoir simulation run regardless of the

method used to compute the sensitivity coefficient. Thus, for large scale problems

where the number of model parameters and the number of data are both large,

196
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computation of all individual sensitivity coefficients is impractical. In quasi-Newton

methods, calculation of the Hessian matrix is avoided; instead, we directly generate

an approximation to the inverse Hessian, H̃−1
k = H̃−1(xk), at the kth iteration; i.e.,

we construct a sequence of matrices {H̃−1
k } to approximate the sequence of the inverse

Hessian matrices {H−1
k }. Then Eqs. B–2 and B–1, respectively, are approximated

by

dk = −H̃−1
k gk (B–3)

and

xk+1 = xk + αkdk. (B–4)

According to standard theory (see Murray (1972)), the approximation H̃−1
k is re-

quired to satisfy the conditions listed below:

1. Each H̃−1
k must be symmetric positive definite to guarantee the iterative equa-

tion has the descent property.

To guarantee that the search direction dk = −H̃−1
k gk is a descent direction,

the condition gTk dk = −gTk H̃−1
k gk < 0 must be satisfied. This is equivalent to

gTk H̃
−1
k gk > 0 which holds if H̃−1

k is positive definite.

2. {H̃−1
k } must satisfy the quasi-Newton condition:

H̃−1
k+1(gk+1 − gk) = xk+1 − xk. (B–5)

A motivation for quasi-Newton condition is given later.

3. One should be able to calculate H̃−1
k+1 from H̃−1

k by a simple calculational for-

mula such as

H̃−1
k+1 = H̃−1

k + Ek, (B–6)

where Ek, called the correction matrix, can be easily calculated.

We now provide a motivation for the quasi-Newton condition. Assume the

objective function f(x) is twice continuously differentiable. Applying a Taylor ex-

pansion, we obtain

gk ≈ gk+1 +Hk+1(xk − xk+1). (B–7)



198

If Hk+1 is nonsingular, it follows that

H−1
k+1(gk+1 − gk) ≈ xk+1 − xk. (B–8)

For quadratic functions, the preceding two equations are exact, so

H−1
k+1(gk+1 − gk) = xk+1 − xk. (B–9)

For non-quadratic functions, it is desirable to require that H̃−1
k+1 satisfies Eq. B–9,

i.e.,

H̃−1
k+1(gk+1 − gk) = xk+1 − xk. (B–10)

We define

yk = gk+1 − gk, (B–11)

and

sk = xk+1 − xk. (B–12)

Then, the quasi-Newton condition, Eq. B–10, can be written as

H̃−1
k+1yk = sk, (B–13)

which is another form of the quasi-Newton condition.

There are many update equations that satisfy the three conditions enumer-

ated above. Here, we give the derivation of a general equation from which all others

can be obtained. Methods obtained from this equation are referred to as Huang

family of equations (see Huang (1970)). In Huang’s original equation, the inverse

Hessian approximation H̃−1 was allowed to be nonsymmetric. However, the Hessian

matrices that occur in our history matching problems are always symmetric. Thus,

we present the Huang equation only for the cases where all the Hessian matrices are

symmetric. Part of the derivation assumes a quadratic objective function. From the

series H̃−1
0 , H̃−1

1 , . . . , H̃−1
k+1 we can determine the set of search directions

dj = −H̃−1
j gj, j = 0, 1, . . . , k + 1. (B–14)

If we want the search directions to be H-conjugate in the quadratic case, where H is

the Hessian matrix, so that the algorithm has the property of quadratic termination
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(Fletcher (1987)), the following equation must hold:

dTk+1Hdj = 0, j = 0, 1, . . . , k. (B–15)

Substituting Eq. B–14 into Eq. B–15 gives

gTk+1H̃
−1
k+1Hdj = 0, j = 0, 1, . . . , k. (B–16)

It can be shown that the current gradient is orthogonal to all the previous search

directions for the quadratic function case provided that the line search is exact. So

gTk+1dj = 0, j = 0, 1, . . . , k. (B–17)

We provide a proof of Eq. B–17, which is important for deriving the Huang family

equations. Applying Eq. B–11, we have

gTk+1dj = gTj+1dj + (gTj+2dj − gTj+1dj) + (gTj+3dj − gTj+2dj)+, · · · ,+(gTk+1dj − gTk dj)

= gTj+1dj + (yj+1 + yj+2+, · · · ,+yk)Tdj.

(B–18)

From Eqs. B–4 and B–12,

sj = xj+1 − xj = αjdj. (B–19)

For a quadratic objective function, the quasi-Newton condition (Eq. B–13) holds

exactly. From Eqs. B–11, B–9, B–12 and B–19, it follows that

yj = gj+1 − gj = H(xj+1 − xj) = Hsj = αjHdj, (B–20)

Substituting Eq. B–20 into Eq. B–18 gives

gTk+1dj = gTj+1dj + (αj+1Hdj+1 + αj+2Hdj+2+, · · · ,+αkHdk)
Tdj

= gTj+1dj + αj+1d
T
j+1Hdj + αj+2d

T
j+2Hdj+, · · · ,+αkdTkHdj.

(B–21)

An exact line search gives

gTj+1dj = 0. (B–22)
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Using Eqs. B–22 and B–15 in Eq. B–21 gives Eq. B–17. Subtracting Eq. B–17

multiplied by w, which can be any nonzero scalar, from Eq. B–16 gives

gTk+1(H̃
−1
k+1Hdj − wdj) = 0, j = 0, 1, . . . , k. (B–23)

Eq. B–23 will be satisfied if we choose

H̃−1
k+1Hdj = wdj, j = 0, 1, . . . , k. (B–24)

Multiplying Eq. B–24 by αj and applying Eqs. B–20 and B–19, we find

H̃−1
k+1yj = wsj, j = 0, 1, . . . , k. (B–25)

Since

H̃−1
k+1 = H̃−1

k + Ek, (B–26)

Eq. B–25 can be rewritten as

Ekyj = wsj − H̃−1
k yj, j = 0, 1, . . . , k. (B–27)

From Eqs. B–25 and B–27, we obtain

Ekyj = 0, for j = 0, 1, . . . , k − 1, (B–28)

Ekyk = wsk − H̃−1
k yk. (B–29)

Hence, Ek should be chosen such that Eq. B–28 and Eq. B–29 are both satisfied.

Suppose

Ek = Ak +Bk, (B–30)

and let

Ak = ξkcku
T
k , (B–31)

Bk = ηkpkv
T
k , (B–32)

where ξk and ηk are scalars, and ck, uk, pk and vk are column vectors. Substituting

Ek = Ak +Bk into Eq. B–29 gives

Akyk +Bkyk = wsk − H̃−1
k yk. (B–33)
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Eq. B–33 will be satisfied if we choose the vectors such that

Akyk ≡ ξkcku
T
k yk = wsk, (B–34)

and

Bkyk ≡ ηkpkv
T
k yk = −H̃−1

k yk. (B–35)

If we choose

ck = sk, (B–36)

and

pk = −H̃−1
k yk, (B–37)

we obtain

ξk =
w

uTk yk
, (B–38)

and

ηk =
1

vTk yk
. (B–39)

From Eqs. B–36, B–37, B–38 and B–39, it follows that

Ek = Ak +Bk = w
sku

T
k

uTk yk
− H̃−1

k ykv
T
k

vTk yk
. (B–40)

Our derivation indicates that Eq. B–29 will be satisfied when Ek is given by Eq. B–

40. If uk and vk are chosen to be vectors such that uTk yj = 0 and vTk yj = 0 for all

j = 0, 1, . . . , k − 1, then Eq. B–28 will be satisfied. Since Hsj = yj (see Eq. B–9)

and sl = αldl for all l (Eq. B–19),

sTk yj = sTkHsj

= αkαjd
T
kHdj

= 0, (B–41)

for j 6= k and the last equality follows from the orthogonality condition of Eq. B–15.

Moreover, Eqs. B–25 and B–41 can be used to show that

yTk H̃
−1
k yj = yTk wsj

= wsTkHsj

= 0, (B–42)
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for j = 0, 1, . . . , k − 1. So if we choose uk to be either sk or H̃−1
k yk and choose vk

to be either sk or H̃−1
k yk, then Eq. B–28 will be satisfied. More generally, we can

choose uk and vk to be a linear combination of sk and H̃−1
k yk, i.e.,

uk = a1sk + a2H̃
−1
k yk, (B–43)

and

vk = b1sk + b2H̃
−1
k yk, (B–44)

where a1, a2, b1 and b2 are all scalars. Substituting uk and vk as given by Eqs. B–

43 and B–44 into Eq. B–40, we obtain a general expression for Ek. Inserting the

resulting equation for Ek into the update equation (Eq. B–26), we obtain

H̃−1
k+1 = H̃−1

k + ω
sk(a1sk + a2H̃

−1T

k yk)
T

(a1sk + a2H̃
−1T

k yk)Tyk
− H̃−1

k yk(b1sk + b2H̃
−1T

k yk)
T

(b1sk + b2H̃
−1T

k yk)Tyk
. (B–45)

This equation is referred to as the Huang family equation. Choosing different values

for ω, a1, a2, b1, b2, we obtain different update procedures. With ω = 1, a1 =

1 + βyTk H̃
−1
k yk, a2 = −βsTk yk, b1 = βyTk H̃

−1
k yk, b2 = 1 − βsTk yk where β is a scalar,

we obtain the Broyden family equation which is given by

H̃−1
k+1 = H̃−1

k +
sks

T
k

sTk yk
− H̃−1

k yky
T
k H̃

−1
k

yTk H̃
−1
k yk

+ β(yTk sk)(y
T
k H̃

−1
k yk)wkw

T
k , (B–46)

where

wk =
sk
yTk sk

− H̃−1
k yk

yTk H̃
−1
k yk

. (B–47)

Eq. B–46 is also called Broyden-β class update equation. Taking ω = 1, a1 = b2 = 1,

b1 = a2 = 0 we obtain the DFP update equation given by

H̃−1
k+1 = H̃−1

k +
sks

T
k

sTk yk
− H̃−1

k yky
T
k H̃

−1
k

yTk H̃
−1
k yk

. (B–48)

Taking ω = 1, a1 = 1 + (yTk H̃
−1
k yk)/(s

T
k yk), a2 = −1, b1 = (yTk H̃

−1
k yk)/(s

T
k yk), b2 = 0

we get the BFGS update equation given by

H̃−1
k+1 = H̃−1

k +
sks

T
k

sTk yk
− H̃−1

k yky
T
k H̃

−1
k

yTk H̃
−1
k yk

+ vkv
T
k , (B–49)

where

vk = (yTk H̃
−1
k yk)

1/2
( sk
sTk yk

− H̃−1
k yk

yTk H̃
−1
k yk

)

= (yTk H̃
−1
k yk)

1/2wk. (B–50)
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Note from Eqs. B–48 and B–49 it is clear that if H̃−1
k is real symmetric then H̃−1

k+1

is also real symmetric. Also note that both BFGS and DFP are members of the

Broyden family. In the DFP algorithm, round off errors or inaccurate line search may

cause the inverse Hessian approximation to become singular. The BFGS algorithm

is more numerically stable than the DFP algorithm; see Murray (1972). Among the

Broyden family, the BFGS algorithm appears to work best in practice based on the

numerical stability; see Shanno and Phua (1978)and Kolda et al. (1998). Thus, the

BFGS algorithm is chosen as the minimization algorithm in our history matching

procedure.

We can show that once H̃−1
k becomes singular, the correct solution of the

minimization problem may be unattainable during the subsequent iterations. All the

Broyden family equations can be written as (see, Murray (1972))

H̃−1
k+1 = H̃−1

k Mk, (B–51)

where Mk is a matrix specific to a particular update. Thus, by induction,

H̃−1
k+r = H̃−1

k MkMk+1 · · ·Mk+r−1, for all r ≥ 1. (B–52)

Since

sk+r = −αk+rH̃−1
k+rgk+r, (B–53)

we can write

sk+r = −H̃−1
k u, r ≥ 1 (B–54)

where

u = αk+rMkMk+1 · · ·Mk+r−1gk+r. (B–55)

Suppose H̃−1
k is singular, so that for some nonzero vector q, we have qT H̃−1

k = 0.

From Eq. B–54, we have qT sk+r = 0 for all r ≥ 1. Therefore, once a particular H̃−1
k

becomes singular, all subsequent steps are orthogonal to some fixed vector and hence

are restricted to lie in a subspace of the real n-dimensional Euclidean space. The

solution will be completely unattainable subsequent to the occurrence of a singular

H̃−1
k unless the solution also lies in this subspace (in general it will not).
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If the initial Hessian inverse approximation is real symmetric positive defi-

nite and an exact line search is performed, then we can show that the BFGS update

guarantees the Hessian inverse approximation at each iteration is a real symmetric

positive definite matrix. To do so, we only need to show that H̃−1
k+1 is positive definite

if H̃−1
k is positive definite. In other words, we need to show xT H̃−1

k+1x > 0 given any

nonzero vector x. Eq. B–49 can be rewritten as

H̃−1
k+1 = H̄−1

k+1 + vkv
T
k , (B–56)

where

H̄−1
k+1 = H̃−1

k +
sks

T
k

sTk yk
− H̃−1

k yky
T
k H̃

−1
k

yTk H̃
−1
k yk

, (B–57)

which is the DFP update formula given by Eq. B–48. Note that

xTvkv
T
k xk = (xTvk)

2 ≥ 0. (B–58)

So if we can show H̄−1
k+1 is positive definite, then H̃−1

k+1 is positive definite. We can

write

xT H̄−1
k+1x = xT H̃−1

k x+
xT sks

T
k x

sTk yk
− xT H̃−1

k yky
T
k H̃

−1
k x

yTk H̃
−1
k yk

=
xT H̃−1

k xyTk H̃
−1
k yk − xT H̃−1

k yky
T
k H̃

−1
k x

yTk H̃
−1
k yk

+
xT sks

T
k x

sTk yk
. (B–59)

Let pk = H̃
−1/2
k x and qk = H̃

−1/2
k yk so that Eq. B–59 can be written as

xT H̄k+1x =
(pk, pk)(qk, qk)− (pk, qk)(qk, pk)

(qk, qk)
+
xT sks

T
k x

sTk yk

=
(pk, pk)(qk, qk)− (pk, qk)(qk, pk)

(qk, qk)
+

(sTk x)
2

sTk yk
.

(B–60)

Applying Schwartz’s inequality, we have

| (pk, qk) |≤‖ pk ‖‖ qk ‖= (pk, pk)
1/2(qk, qk)

1/2. (B–61)

where equality holds if and only if pk and qk are linearly dependent, i.e, pk = λqk

for some λ 6= 0. So when pk and qk are linearly independent, i.e., pk 6= λqk, the first

term in Eq. B–60 is greater than zero and the second term is greater than or equal
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to zero as long as sTk yk > 0 which is shown below. Hence, the whole term is greater

than zero which means H̃−1
k+1 is positive definite for this case. When pk = λqk, the

first term in Eq. B–60 is equal to zero. Hence we need to show the second term in

Eq. B–60 is greater than zero to guarantee that the H̃−1
k+1 is positive definite. In this

case, applying the fact that pk = λqk, we find x = λyk. Thus,

(sTk x)
2

sTk yk
=
λ2(sTk yk)

2

sTk yk
= λ2sTk yk. (B–62)

Because λ 6= 0 we need to show that sTk yk > 0 to complete the proof. When an exact

line search is done, we have

sTk gk+1 = 0. (B–63)

Using this result and Eqs. B–11, B–14 and B–19, we find that

sTk yk = sTk (gk+1 − gk)

= sTk gk+1 − sTk gk

= −sTk gk

= −αkdTk gk

= αkg
T
k H̃

−1
k gk > 0.

(B–64)

Note the last equality of Eq. B–64 assumes gk is not the zero vector. But if gk = 0,

then xk is the solution and there is no need to form H̃−1
k+1. Thus, the exact line

search guarantees that sTk yk > 0 and hence guarantees that H̃−1
k+1 is positive definite

given that H̃−1
k is positive definite. Using Eq. B–57, the Broyden family equation (

Eq. B–46) can be written as

H̃−1
k+1 = H̄−1

k+1 + β(sTk yk)vkv
T
k , (B–65)

where H̄−1
k+1 is given by Eq. B–57. We have already shown that H̄−1

k+1 is positive

definite and that an exact line search guarantees sTk yk > 0. Therefore, if we choose

β > 0, all the update equations in Broyden family are such that H̃−1
k+1 is positive

definite provided that H̃−1
k is positive definite. The fact above can be summarized

in the following proposition.
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PROPOSITION 1: Let H̃−1
k+1 be defined by Eq. B–46. If H̃

−1
k is positive

definite, β > 0 and sTk yk > 0 then H̃−1
k+1 is positive definite.

For a quadratic function with a real symmetric positive definite Hessian H,

sTk yk = sTkHsk > 0 always holds. For a general objective function, sTk yk = yTk sk =

gTk+1sk − gTk sk > 0, because gTk sk < 0 holds by the descent property and if an exact

line search is used then gTk+1sk = αkg
T
k+1dk = 0. Thus, Proposition 1 indicates that if

we choose the initial inverse Hessian approximation to be any real symmetric positive

definite matrix (for example the identity matrix) and choose β > 0, all the subsequent

updated inverse Hessian approximations will be symmetric positive definite, which

guarantees that dk = −H̃−1
k gk is a descent direction. This will always be true for

quadratic functions and will be true for a non-quadratic function given that the line

search is exact.

Early applications of quasi-Newton methods routinely used an exact line

search arguing that this is necessary to achieve quadratic termination and is also

desirable for stability. In practice, inexact line searches that satisfy side conditions

such as Wolfe’s conditions are substituted for exact line searches. As noted in Chapter

V, one of Wolfe’s conditions is given by

gTk+1dk ≥ ηgTk dk, (B–66)

where η < 1. Subtracting gTk dk from both sides of Eq. B–66 gives

gTk+1dk − gTk dk ≥ ηgTk dk − gTk dk. (B–67)

Using Eq. B–11 in Eq. B–67 gives

yTk dk ≥ (η − 1)gTk dk. (B–68)

If H̃−1
k is positive definite, then dk is a downhill direction and we have

gTk dk = −gTk H̃−1
k gk < 0. (B–69)

Using the fact η < 1, it follows from Eqs. B–68 and B–69 that

yTk dk > 0, (B–70)
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which implies sTk yk > 0 which guarantees that H̃−1
k+1 is positive definite according to

Proposition 1.

Next, we consider the scaling issue for quasi-Newton methods. Consider the

following equation which is a subset of the Huang family

H̃−1
k+1 =

(

H̃−1
k −

H̃−1
k yky

T
k H̃

−1
k

yTk H̃
−1
k yk

+ θkv
T
k vk

)

+
sks

T
k

sTk yk
, (B–71)

where

vk = (yTk H̃
−1
k yk)

1/2
( sk
sTk yk

− H̃−1
k yk

yTk H̃
−1
k yk

)

. (B–72)

Note that if we choose θk = βyTk sk, then Eq. B–71 is exactly the same as Eq. B–46

which is the Broyden-β class. The BFGS method corresponds to choosing θk = 1

for all k in Eq. B–71. If we replace H̃−1
k by Ĥ−1

k = γkH̃
−1
k , where γk is a scalar, in

Eq. B–71 and Eq. B–72, we will obtain the scaled version of the update equation

given by

H̃−1
k+1 =

(

H̃−1
k −

H̃−1
k yky

T
k H̃

−1
k

yTk H̃
−1
k yk

+ θkv
T
k vk

)

γk +
sks

T
k

sTk yk
, (B–73)

where γk is a scaling factor which may be adjusted to try to improve the condition

number of H1/2H̃−1
k H1/2 and the vk in Eq. B–73 is still given by Eq. B–72.

Before proceeding further, we record a simple algorithm for a quasi-Newton

method based on an exact line search.

Algorithm 1:

Step 1 Initialization:

Provide an initial guess x0, calculate the objective function corresponding to

x0, evaluate g0 (the gradient of the objective function at x0), provide an initial

Hessian inverse approximation H̃−1
0 and set the initial iteration index to k=0.

Step 2 Calculate the search direction dk = −H̃−1
k gk.

Step 3 Calculate the step size αk by an exact line search procedure.

Step 4 Update: xk+1 = xk + αkdk.
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Step 5 Calculate the objective function based on xk+1 and calculate the new gradient

gk+1.

Step 6 Determine if the stopping criteria are satisfied or not. If satisfied, then stop;

otherwise go to step 7.

Step 7 Update H̃−1
k to obtain H̃−1

k+1 based on Eq. B–73 and go to step 2.

From Oren and Luenberger (1974), we have the following theorem.

THEOREM 1: Let H be a real symmetric positive definite matrix. For a positive

definite quadratic objective function

f(x) =
1

2
(x− x∗)TH(x− x∗) + f(x∗) (B–74)

and for any starting point x0, the Algorithm 1 converges to the unique x
∗ which

minimizes f . Furthermore, for all k

f(xk+1)− f(x∗) ≤
[κ(Rk)− 1

κ(Rk) + 1

]2
[

f(xk)− f(x∗)] (B–75)

where κ(Rk) denotes the condition number of the matrix Rk = H1/2H̃−1
k H1/2.

Note that this theorem implies exact line search. This theorem suggests that

the rate of convergence can be improved by decreasing
[

κ(Rk)−1
κ(Rk)+1

]2

and therefore one

should strive to make κ(Rk) as close to unity as possible, i.e., we wish to minimize

the condition number of the matrix Rk at each iteration. Furthermore, notice that

steepest descent corresponds to H̃−1
k = I where I is an identity matrix, and in this

case Rk = H. Thus, if κ(Rk) > κ(H) for some k, then the convergence rate of

quasi-Newton at these steps may be worse than steepest descent.

We introduce the notation

H̃−1
k+1 = Γθk(H̃−1

k , γk, sk, yk) =
(

H̃−1
k −

H̃−1
k yky

T
k H̃

−1
k

yTk H̃
−1
k yk

+ θkvkv
T
k

)

γk +
sks

T
k

sTk yk
. (B–76)

Several general theorems about how to select the scaling factors will be given below;

see Oren and Luenberger (1974) and Oren (1974b) for additional details.

THEOREM 1: Let H̃−1
k be the kth positive definite approximation to the

inverse of the fixed positive definite matrix H and let sk be an arbitrary nonzero vector
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in En and let yk = Hsk. Also let Rk = H1/2H̃−1
k H1/2 and assume the eigenvalues of

Rk satisfy 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn. Then the condition

λ1 ≤ 1/γk ≤ λn (B–77)

is a sufficient condition for

κ(H1/2H̃−1
k+1H

1/2) = κ(Rk+1) ≤ κ(Rk) = κ(H1/2H̃−1
k H1/2) (B–78)

and for H̃−1
k+1 to be positive definite if and only if θk ∈ [0, 1].

This theorem is general. We can translate this theorem into the problem

of interest to us as follows. Suppose H̃−1
k is the positive definite approximation to

the inverse of the fixed positive definite matrix H of a quadratic function f ; see

Eq. B–74. H̃−1
k+1 is obtained by Eq. B–73 where sk = xk+1 − xk and yk = gk+1 − gk.

The equation yk = Hsk always holds for the quadratic function case. Assume the

eigenvalues of the matrix Rk = H1/2H̃−1
k H1/2 satisfy 0 ≤ λ1 ≤ λ2, · · · ,≤ λn, then

the condition

λ1 ≤ 1/γk ≤ λn, (B–79)

is a sufficient condition for

κ(H1/2H̃−1
k+1H

1/2) = κ(Rk+1) ≤ κ(Rk) = κ(H1/2H̃−1
k H1/2). (B–80)

This theorem suggests that we should choose the scaling factor γk between 1/λn

and 1/λ1 to make the condition number of R decrease from iteration k to iteration

k + 1. If we chose γk this way, at least in the positive definite quadratic case, the

condition number of Rk is monotonically decreasing. We do not know λ1 and λn in

general, but the following theorem indicates how to select the scaling factor γk so

that λ1 ≤ 1/γk ≤ λn without explicit knowledge of λ1 and λn.

THEOREM 2: Let sk, yk be nonzero vectors in En such that sTk yk > 0.

Assume that H̃−1
k , H and R are real symmetric positive definite matrices such that

yk = Hsk and Rk = H1/2H̃−1
k H1/2. Define

γϕk (H̃
−1
k , sk, yk) = (1− ϕ)

sTk yk

yTk H̃
−1
k yk

+ ϕ
sTk H̃ksk
sTk yk

. (B–81)
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Then for any ϕ ∈ [0, 1],

1

λn
≤ γϕk (H̃

−1
k , sk, yk) ≤

1

λ1

,

where λ1 and λn are the smallest and the largest eigenvalue of Rk = H1/2H̃−1
k H1/2.

We can apply this theorem to the problem of interest to us by defining

sk = xk+1 − xk and yk = gk+1 − gk. Theorem 2 in combination with Theorem 1

indicates that if we choose the scaling factor according to Eq. B–81, the condition

number of the matrix Rk+1 will be less than the condition number of Rk, at least

for the quadratic objective function case. Eq. B–81 involves H̃k, the inverse of H̃−1
k ,

which is not easy to evaluate (note that we form H̃−1
k instead of H̃k at each iteration).

If we substitute sk = −αkH̃−1
k gk, we obtain

γ(1)(H̃−1
k , sk, yk) =

sTk H̃ksk
sTk yk

= −αkg
T
k sk

sTk yk
=

gTk sk

gTk H̃
−1
k yk

. (B–82)

We can use either −αkgTk sk/(sTk yk) or gTk sk/(gTk H̃−1
k yk) to evaluate the second term

in the right hand side of Eq. B–81 when calculating γk. If we set ϕ = 0, Eq. B–

81, gives γk = (sTk yk)/(y
T
k H̃

−1
k y) which is the scaling factor used by several authors

(see Shanno and Phua (1978), Yang and Watson (1988)). Some authors ( Shanno

and Phua (1978)) suggest initial scaling in which only the initial inverse Hessian

approximation H̃−1
0 is scaled by a factor γ0 and in subsequent iterations we set all

γk = 1. The initial scaling strategy is superior to the traditional way of choosing

γk = 1 for all k since initial scaling not only has “property 1” but also benefits from

the freedom of choosing γ0. Property 1 means that for a quadratic function, the

nth inverse Hessian approximation H̃−1
n will be exactly equal to H−1, where n is

the dimension of the problem, so the algorithm will satisfy quadratic termination.

Unfortunately, for general objective functions, scaling only at the first iteration may

be insufficient. When considering non-quadratic functions, one may expect that as

the algorithm proceeds changes in the Hessian may cause the eigenvalues of the

matrix H
1/2
k H̃−1

k H
1/2
k to drift farther from unity unless the problem is rescaled. It

should be possible to improve convergence by occasionally rescaling. Unfortunately,

by allowing the scaling factor γ to vary, we lose the property that H̃−1
n = H−1 in the
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quadratic case (where n denotes the dimension of the problem), i.e, we lose “property

1”. On the other hand, we ensure monotonic improvement in the convergence rate

if the γk is calculated by Eq. B–81, which is implied by monotonic decrease in κ(Rk)

which is called “property 2”.

From Eq. B–81, we see that γk = γϕk can vary from sTk yk/y
T
k H̃

−1
k yk to

sTk H̃ksk/s
T
k yk. The following proposition gives bounds on γk which can help us choose

the scaling factor γk. This proposition is a part of a proposition presented by Oren

(1973).

PROPOSITION 2: Let f(x) be a real-valued twice continuously differentiable

objective function, gk = ∇f(xk), sk = xk+1 − xk, yk = gk+1 − gk, H̃
−1
k be the inverse

Hessian approximation at the kth iteration given by Eq. B–73 and let

τk = gTk sk/(g
T
k H̃

−1
k yk) (B–83)

and

σk = sTk yk/(y
T
k H̃

−1
k yk) (B–84)

with γϕk given by Eq. B–81, then

(a) σk ≤ γk ≤ τk

(b)λ1 < 1/τk ≤ 1/σk ≤ λn where λ1 and λn are the smallest and largest eigenvalue

of Rk respectively.

From the previous discussion, we know that by allowing the scaling factor

γk to vary, we lose the property H̃−1
n = H−1 in the quadratic case. Therefore, it

seems desirable to choose γk such that γk falls between 1/λn and 1/λ1 on the one

hand and such that γk varies as little as possible on the other hand. Because Rk is

real symmetric, λ1, λn, τk and σk are positive numbers. Thus, part (b) of proposition

2 is equivalent to
1

λn
≤ σk ≤ γk ≤ τk ≤

1

λ1

. (B–85)

To reduce oscillation in γk and avoid unnecessary scaling, it is desirable to use the

value of γk closest to unity and this leads to the following procedure:

(1) If σk > 1 choose γk = σk.
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(2) If τk < 1 choose γk = τk.

(3) If τk ≥ 1 ≥ σk choose γk = 1.

Oren and Spedicato (1976) proposed an additional property based on min-

imizing the sharp upper bound on the condition number of the inverse Hessian ap-

proximation matrix at each iteration, i.e, H̃−1
k+1. Reducing this condition number can

be important for decreasing the round off error. The following theorem gives the

sharp upper bound on the condition number of the inverse Hessian approximation.

THEOREM 3: Let H̃−1
k+1 be defined by Eq. B–73, assume H̃

−1
k is positive

definite, that sTk yk > 0,

sTk yk

yTk H̃
−1
k yk

≤ γk ≤
sTk H̃ksk
sTk yk

, (B–86)

and θk > 0. Then

κ(H̃−1
k+1) ≤ κ(H̃−1

k )[ζ + (ζ2 − 1)1/2]2, (B–87)

where

ζ =
ν

µ1/2
, (B–88)

ν =
skH̃ksk + µyTk H̃

−1
k yk

2sTk yk
, (B–89)

and

µ =
γk
[

(sTk yk)
2 + θk

(

(sTk H̃ksk)(y
T
k H̃

−1
k yk)− (sTk yk)

2
)]

(yTk H̃
−1
k yk)(sTk yk)

. (B–90)

Furthermore, Eq. B–87 becomes equality if H̃−1
k = I or H̃−1

k yk = sk.

From the numerical stability standpoint, it is desirable to use an update that

will minimize the condition number of H̃−1
k+1 at each iteration. As we do not have a

single procedure to do so, a reasonable alternative is to minimize the upper bound

of the condition number of H̃−1
k+1 by proper selection of θk and γk. Based on Oren’s

definition, if H̃−1
k is positive definite and sTk yk > 0, then H̃−1

k+1 obtained by Eq. B–73

is said to be optimally conditioned if γk and θk are such that H̃−1
k+1 is positive definite

and the right hand side of Eq. B–87 is minimized. Oren and Spedicato (1976) showed

that if the relation given by

θk =
akbk − a2

kγk
bkckγk − a2

kγk
, (B–91)
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where ak = sTk yk, bk = sTk H̃ksk and ck = yTk H̃
−1
k yk is satisfied, then the matrix H̃−1

k+1

is optimally conditioned. For BFGS, θk = 1 for all k and solving Eq. B–91 for the

optimal scaling factor γk gives

γk =
ak
ck

=
sTk yk

yTk H̃
−1
k yk

. (B–92)

If the full matrix of H̃−1
k is used to implement the BFGS (or the scaled

version of the BFGS algorithm), we refer to the algorithm as the standard BFGS

(or standard scaled BFGS). Nocedal (1980) developed an algorithm called limited

memory BFGS, denoted by LBFGS, in which H̃−1
0 is diagonal and it is not necessary

to store the full H̃−1
k matrix at any iteration.

To develop the LBFGS method, the BFGS update equation Eq. B–49 is

rewritten as

H̃−1
k+1 = V T

k H̃
−1
k Vk + ρksks

T
k , (B–93)

where ρk = 1/yTk sk and Vk = I − ρkyks
T
k . If only L previous vectors are used to

construct H̃−1
k+1, memory will be saved. When k < L the update equation is as usual,

which is given by

H̃−1
k+1 =V T

k V
T
k−1 · · ·V T

0 H̃
−1
0 V0 · · ·Vk−1Vk

+ V T
k · · ·V T

1 ρ0s0s
T
0 V1 · · ·Vk

...

+ V T
k ρk−1sk−1s

T
k−1Vk

+ ρksks
T
k .

(B–94)

For k + 1 > L the update equation is

H̃−1
k+1 =V T

k V
T
k−1 · · ·V T

k−L+1H̃
−1
0 Vk−L+1 · · ·Vk−1Vk

+ V T
k · · ·V T

k−L+2ρk−L+1sk−L+1s
T
k−L+1Vk−L+2 · · ·Vk

...

+ V T
k ρk−1sk−1s

T
k−1Vk

+ ρksks
T
k .

(B–95)
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This method can be implemented by using a very efficient recursive formula. This

recursive form is used to compute H̃−1× g which is required to construct the search

direction in quasi-Newton method. The following is the algorithm proposed by No-

cedal (1980).

1. If k ≤ L, set incr=0 and bound=k; else set incr=k − L and bound=L

2. qbound = gk.

3. For i=bound-1, . . ., 0


























j = i+ incr

αi = ρjs
T
j qi+1

qi = qi+1 − αiyj

r0 = H̃−1
0 × q0

For i=0, 1, . . . , bound-1



























j = i+ incr

βj = ρjy
T
j ri

ri+1 = ri + sj(αi − βi)

where k is the iteration number; L is the user specified number of previous

vectors used in the algorithm;. In this procedure, ri is equal to the search

direction vector given by −H̃−1
i × gi.

We can see that this recursive form only involves a small number of vector operations

and only requires enough memory to store a few vectors if H̃−1
0 is a diagonal matrix.

Scaling can also be introduced into this algorithm (see Liu and Nocedal (1989)). In

their paper, they conclude that scaling H̃−1
0 by a factor of γk at each iteration, i.e.

replacing H̃−1
0 by γkH̃

−1
0 in step 3 of the recursion algorithm, is very effective. But

this scaling is different from the scaling scheme discussed above where we scale H̃−1
k

by γk at each iteration. If we scale H̃−1
k by γk, Eqs. B–94 and B–95, respectively,
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should be written as shown below.

When k < L the update equation is given by

H̃−1
k+1 =γ

1/2
k V T

k γ
1/2
k−1V

T
k−1 · · · γ

1/2
0 V T

0 H̃
−1
0 γ

1/2
0 V0 · · · γ1/2

k−1Vk−1γ
1/2
k Vk

+ γ
1/2
k V T

k · · · γ
1/2
1 V T

1 ρ0s0s
T
0 γ11/2V1 · · · γ1/2

k Vk
...

+ γ
1/2
k V T

k ρk−1sk−1s
T
k−1γ

1/2
k Vk

+ ρksks
T
k .
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For k + 1 > L the update equation is

H̃−1
k+1 =γ

1/2
k V T

k γ
1/2
k−1V

T
k−1 · · · γ

1/2
k−L+1V

T
k−L+1H̃

−1
0 γ

1/2
k−L+1Vk−L+1 · · · γ1/2

k−1Vk−1γ
1/2
k Vk

+ γ
1/2
k V T

k · · · γ
1/2
k−L+2V

T
k−L+2ρk−L+1sk−L+1s

T
k−L+1γ

1/2
k−L+2Vk−L+2 · · · γ1/2

k Vk
...

+ γ
1/2
k V T

k ρk−1sk−1s
T
k−1γ

1/2
k Vk

+ ρksks
T
k .

(B–97)



APPENDIX C

CONJUGATE GRADIENT ALGORITHMS

The conjugate gradient method is a minimization procedure which only

requires the first derivative, i.e., the gradient, of the objective function. Although

our main interest is nonlinear problems, we first discuss the methods for solving

linear systems of equations.

C.1 Conjugate Gradient Methods for Linear Problems

In this section, several conjugate gradient algorithms including precondi-

tioned conjugate gradient algorithms for solving linear problems are given.

C.1.1 Standard Conjugate Gradient Methods

Consider the problem of solving a linear equation system given by

Ax = b, (C–1)

whereA is an n×n real symmetric positive definite matrix and b is a real n−dimensional

column vector.

LEMMA: If A is real symmetric positive definite, solving Ax = b is equivalent to

minimizing the quadratic form:

f̂(x) =
1

2
xTAx− bTx =

1

2
(x,Ax)− (x, b), (C–2)

where (·, ·) represents the standard inner product (e.g. (u, v) = vTu.)

Taking the gradient of the function f̂(x) gives

∇f̂(x) = Ax− b ≡ −r, (C–3)

216
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where r is the residual. Eq. C–3 indicates that the negative gradient of f̂(x) is the

residual of the linear system Ax = b. Note ∇f̂(x) = 0 is equivalent to Ax = b which

is the linear system we wish to solve. Moreover, since A is positive definite, it can

be shown that f̂(x) is minimum at x∗ if and only if Ax∗ = b. Thus, solving Eq. C–1

is equivalent to an optimization problem. To minimize the objective function given

by Eq. C–2, we can apply different algorithms. If we choose the negative gradient

as the search direction and do a line search in this direction at each iteration, then

the resulting algorithm is the steepest descent algorithm. In a conjugate direction

method, search directions are required to satisfy orthogonality conditions. The con-

jugate gradient method is a type of conjugate direction method. The conjugate

gradient method has the property of quadratic termination which means that the

method will locate the minimizing point of the quadratic function of Eq. C–2 in at

most n iterations. We show that minimizing Eq. C–2 is equivalent to minimizing the

following function

f(x) =
1

2

(

r, A−1r
)

. (C–4)

Applying the definition of the inner product in Eq. C–4 and the definition of the

residual gives

f(x) =
1

2
(r, A−1r)

=
1

2
(Ax− b, A−1(Ax− b))

=
1

2
(Ax− b, x− A−1b)

=
1

2

[

(Ax, x)− (Ax,A−1b)− (b, x) + (b, A−1b)
]

=
1

2

[

(Ax, x)− (x, b)− (b, x) + (b, A−1b)
]

=
1

2
xTAx− bTx+

1

2
bTA−1b

= f̂(x) +
1

2
bTA−1b.

(C–5)

Note that the last term is constant so minimizing f̂(x) and f(x) are equivalent. The

basic iterative step for minimizing the objective function f(x) takes the form

xk+1 = xk + αkdk, (C–6)
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where k denotes the iteration index, αk represents the step size and dk denotes the

search direction. The step size is determined by performing a line search along

the search direction. To do a line search, we try to find α = αk which minimizes

f(xk + αdk), i.e., we minimize f along the search direction dk. Applying the inner

product, we can write f(xk + αdk) as

f(xk + αdk) =
1

2
(A(xk + αdk)− b, A−1(A(xk + αdk)− b))

=
1

2
(Axk + αAdk − b, A−1(Axk + αAdk − b))

=
1

2

[

(Axk − b, A−1(Axk − b)) + (Axk − b, αA−1Adk)

+ (αAdk, A
−1(Axk − b)) + (αAdk, αA

−1Adk)
]

= f(xk) +
1

2

[

α(Axk − b, dk) + α(dk, Axk − b) + α2(dk, Adk)
]

= f(xk) + α(Axk − b, dk) +
1

2
α2(dk, Adk)

= f(xk) + h(α),

(C–7)

where

h(α) = α(Axk − b, dk) +
1

2
α2(dk, Adk) = −α(rk, dk) +

1

2
α2(dk, Adk), (C–8)

and rk = b− Axk is the residual. Taking

dh(α)

dα
= 0, (C–9)

we find the optimal step size given by

α = αk =
(rk, dk)

(dk, Adk)
. (C–10)

At each iteration, we construct a search direction dk such that the search directions

are from an orthogonal set {d0, d1, d2, · · · , dk}. The new direction dk+1 is chosen such

that

(dk+1, dj)A ≡ (dk+1, Adj) = 0, 0 6 j 6 k. (C–11)

There are many methods can be used to generate conjugate directions. In the conju-

gate gradient method, the new search direction is constructed by using the gradient

at the current iteration and previous search direction, i.e.

dk+1 = rk+1 + βkdk, (C–12)
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where rk+1 = b− Axk+1 = −∇f(xk+1) and βk is obtained by solving

(dk+1, Adk) = 0 (C–13)

which gives

βk = −
(rk+1, Adk)

(dk, Adk)
. (C–14)

From Eq. C–6, it follows that

rk+1 = b− Axk+1 = b− Axk − αkAdk, (C–15)

or

rk+1 = rk − αkAdk. (C–16)

Given the search direction and the step size along that direction, we can now write

down the conjugate gradient algorithm for solving Eq. C–1 where A is an n× n real

symmetric positive definite matrix.

Algorithm 1:

(1) Select initial guess x0.

(2) Calculate

r0 = b− Ax0, (C–17)

d0 = r0. (C–18)

(3) Iteration loop

DO k = 0, 1, · · ·

αk =
(rk, dk)

(dk, Adk)
=

(dk)
T rk

(dk)TAdk
, (C–19)

rk+1 = rk − αkAdk, (C–20)

xk+1 = xk + αkdk, (C–21)

βk = −(rk+1, Adk)

(dk, Adk)
= −(dk)

TArk+1

(dk)TAdk
, (C–22)

dk+1 = rk+1 + βkdk. (C–23)

END DO
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We can prove that the gradient or residual at the current step is orthogonal

to all the previous search directions. Applying Eqs. C–16 and C–10, we obtain

(rk+1, dk) = (rk − αkAdk, dk)

= (rk, dk)− αk(Adk, dk)

= (rk, dk)−
(rk, dk)

(dk, Adk)
(Adk, dk)

= 0.

(C–24)

Applying Eq. C–24 and the fact that the search directions are A−orthogonal for
conjugate gradient method, we have

(rk+1, dk−1) = (rk − αkAdk, dk−1)

= (rk, dk−1)− αk(Adk, dk−1)

= 0.

(C–25)

By mathematical induction, we have

(rk, dj) = 0, for j < k. (C–26)

Applying this equation, we find that

(rk, dk) = (rk, rk + βk−1dk−1)

= (rk, rk) + βk−1(rk, dk−1)

= (rk, rk).

(C–27)

Applying Eqs. C–26, C–23 and C–12 gives

0 = (rk+1, dk)

= (rk+1, rk + βk−1dk−1)

= (rk+1, rk) + βk−1(rk+1, dk−1)

= (rk+1, rk).

(C–28)

Using this equation and Eq. C–26, we obtain

0 = (rk+1, dk−1)

= (rk+1, rk−1 + βk−2dk−2)

= (rk+1, rk−1) + βk−2(rk+1, dk−2)

= (rk+1, rk−1).

(C–29)
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By mathematical induction, we have

(rk, rj) = 0, for j < k. (C–30)

As a summary, we can write

(dk, Adj) = 0 for j 6= k, (C–31)

(rk, dj) = 0 for j ≤ k, (C–32)

(rk, rj) = 0 for j 6= k. (C–33)

Eqs. C–32 and C–33 hold when an exact line search is done. Let g be the gradient of

the quadratic objective function given by Eq. C–4. Using the fact that the residual

is equal to the negative gradient of the objective function, Eqs. C–32 and C–33 are,

respectively, equivalent to

(gk, dj) = 0 for j ≤ k, (C–34)

(gk, gj) = 0 for j 6= k, (C–35)

Eqs. C–31 through C–35 indicate that when applied to quadratic functions the con-

jugate gradient method has the following properties:

(i) the search directions are A-orthogonal;

(ii) the residuals are orthogonal;

(iii) the gradients are orthogonal;

(iv) the residual at the current iteration is orthogonal to all previous search direc-

tions;

(v) the gradient at the current iteration is orthogonal to all previous search direc-

tions.

Note that the last four properties require exact line searches.
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From Eqs. C–16 and C–10, it follows that

(rk+1 − rk, dk) = −αk(Adk, dk) = −(rk, dk). (C–36)

From Eq. C–16

Adk = −
1

αk
(rk+1 − rk). (C–37)

Thus, using this result and Eq. C–30, we find

(rk+1, Adk) = (rk+1,−
1

αk
(rk+1 − rk))

= − 1

αk
(rk+1, rk+1).

(C–38)

Using Eqs. C–23, C–37, C–26 and C–30, the inner product (dk, Adk) can be written

as

(dk, Adk) = (rk + βk−1dk−1,−
1

αk
(rk+1 − rk))

=
1

αk
(rk, rk).

(C–39)

Substituting Eqs. C–38 and C–39 into the pertinent equations given in Algorithm 1,

we obtain the following equivalent algorithm:

Algorithm 2:

(1) Select initial guess x0.

(2) Calculate

r0 = b− Ax0, (C–40)

d0 = r0. (C–41)

(3) Iteration loop

DO k = 0, 1, · · ·

αk =
(rk, rk)

(dk, Adk)
=

(rk)
T rk

(dk)TAdk
, (C–42)

rk+1 = rk − αkAdk, (C–43)

xk+1 = xk + αkdk, (C–44)

βk =
(rk+1, rk+1)

(rk, rk)
=

(rk+1)
T rk+1

(rk)T rk
, (C–45)

dk+1 = rk+1 + βkdk. (C–46)
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END DO

C.1.2 Preconditioned Conjugate Gradient

Multiplying both sides of Eq. C–1 by C−1, we get

C−1Ax = C−1b, (C–47)

where C is chosen such that it is an approximation of A. C is called a preconditioning

matrix. Note if C is exactly the same as A, then Eq. C–47 becomes

x = C−1b = A−1b, (C–48)

i.e., the solution of Eq. C–1 is obtained. It is well known (see, for example, Green-

baum (1997)) that the error at the kth iteration of the conjugate gradient satisfies

‖ek‖A ≤ 2
(κ(A)− 1

κ(A) + 1

)k

‖e0‖A, (C–49)

where

ek = A−1b− xk, (C–50)

κ(A) is the condition number of A and for any real n-dimensional column vector y,

‖y‖A = (y, y)
1/2
A =

√

yTAy. (C–51)

Eq. C–49 suggests that the closer the condition number is to unity, the more rapid

the convergence. The idea of preconditioning is to choose a matrix C close to A

so that κ(C−1A) ≤ κ(A). Then, if we apply the conjugate gradient method to

the transformed problem given by Eq. C–47, the conjugate gradient method should

converge faster than if we apply it to the original problem. Define the inner product:

(u, v)C = uTCv,

and the pseudo residual:

hk = C−1(b− Axk) = C−1rk.

In terms of the transformed problem, it can be shown (see Axelsson (1996))

that the Algorithm 2 becomes

Algorithm 3:
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(1) Select initial guess x0.

(2) Calculate

h0 = C−1r0 = C−1(b− Ax0), (C–52)

d0 = h0. (C–53)

(3) Iteration loop

DO k = 0, 1, · · ·

αk =
(hk, hk)C

(dk, C−1Adk)C
=

(hk)
TChk

(dk)TAdk
, (C–54)

hk+1 = hk − αkC
−1Adk, (C–55)

xk+1 = xk + αkdk, (C–56)

βk =
(hk+1, hk+1)C
(hk, hk)C

=
(hk+1)

TChk+1

(hk)TChk
, (C–57)

dk+1 = hk+1 + βkdk. (C–58)

END DO

The algorithm for the preconditioned conjugate gradient is analog to the algorithm

for the standard conjugate gradient. Note that if we replace the residual by the

pseudo residual and the standard inner product (·, ·) by the inner product (·, ·)C in

Algorithm 2, we obtain the algorithm for preconditioned conjugate gradient, i.e.,

Algorithm 3. However, when we implement the preconditioned conjugate gradient

method, we will use the residual instead of the pseudo residual and the corresponding

algorithm given below.

Algorithm 4:

(1) Select initial guess x0.

(2) Calculate

r0 = b− Ax0, (C–59)

d0 = C−1r0. (C–60)
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(3) Iteration loop

DO k = 0, 1, · · ·

αk =
(rk, rk)

C−1

(dk, C−1Adk)
C−1

=
(rk)

TC−1rk
(dk)TAdk

, (C–61)

rk+1 = rk − αkAdk, (C–62)

xk+1 = xk + αkdk, (C–63)

βk =
(rk+1, rk+1)

C−1

(rk, rk)
C−1

=
(rk+1)

TC−1rk+1

(rk)TC−1rk
, (C–64)

dk+1 = C−1rk+1 + βkdk. (C–65)

END DO

This algorithm is called the Fletcher-Reeves algorithm; see Fletcher and Reeves

(1964).

C.2 Conjugate Gradient Method for Nonlinear Problems

When minimizing a non-quadratic objective function, the meaning of the

term residual is not so clear. By analogy, the residual for a linear problem will be

replaced by the negative gradient of the objective function for a nonlinear problem.

The preconditioner has an important impact on the convergence rate of the

conjugate gradient algorithm. For the linear quadratic problem, preconditioned con-

jugate gradient method solves C−1Ax = C−1b where C is called the preconditioner,

instead of Ax = b. In the history matching problem of interest to us, the Hessian

matrix which is the second derivative of the objective function, is given by

H = C−1
M +GTC−1

D G. (C–66)

At an iteration of the Gauss-Newton method, we need to solve a problem of the form

Hx = (C−1
M +GTC−1

D G)x = b. (C–67)

For large problems, calculation of the whole sensitivity coefficient matrix G is too

computationally expensive to be feasible. If we do not compute G directly, it is

difficult to use information in G to obtain a good preconditioner. Thus, the obvious
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choice for a preconditioning matrix is C−1
M . Using C−1

M as the preconditioner can sig-

nificantly improve the convergence rate compared to applying the conjugate gradient

algorithm without using any preconditioner (see Kalita and Reynolds (2000)). But

Kalita found that this preconditioned conjugate gradient method often converges to

a very high objective function value. Thus, a better preconditioner is needed. As

the quasi-Newton method provides an approximation of the inverse Hessian, we at-

tempted to generate an approximation to the inverse Hessian within the conjugate

gradient procedure and use this approximate inverse Hessian as a preconditioner. If

we applied the quasi-Newton method to a quadratic function, given that the exact

line search is done, then the Hessian inverse approximation would become the true

inverse Hessian at the nth iteration where n is the dimension of the problem. Even

though the preconditioner is an approximation of the coefficient matrix (for example,

it is Hessian when solving Eq. C–67), the inverse of the preconditioning matrix will

be used in our implementation of the conjugate gradient algorithm. So we can use

the inverse Hessian approximation calculated from the quasi-Newton update equa-

tion as the preconditioner inverse to implement the conjugate gradient algorithm.

The algorithm follows the description given in Kalita and Reynolds (2000) and is

given below.

(1) Select initial guess m0 and initialize the iteration index k and restart counter

i by setting k = 0 and i = 0 respectively.

(2) Calculate

r0 = −∇mO(m0). (C–68)

Select the initial preconditioning matrix M0 (C−1
M or H̃−1

0 ), calculate “pseudo”

residual

s0 = M−1
0 r0, (C–69)

and select the initial search direction equal to the “pseudo” residual, i.e.,

d0 = s0. (C–70)
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Calculate

δo = δnew = rT0 d0 = rT0 M
−1
0 r0. (C–71)

(3) Iteration loop

k = 0, . . . , kmax (CG iteration loop)

Calculate the step size αk in the search direction dk by using the approach

discussed later in this appendix. Then calculate

mk+1 = mk + αkdk, (C–72)

rk+1 = −∇mO(mk+1), (C–73)

δmid = rTk+1sk = rTk+1M
−1
k rk, (C–74)

sk+1 = M−1
k+1rk+1, (C–75)

δnew = rTk+1sk+1 = rTk+1M
−1
k+1rk+1. (C–76)

(Note if C−1
M is used as the preconditioning matrix then the preconditioning

matrix will be fixed for all iterations, i.e., M−1
k = CM for all k’s. If the

preconditioning matrix is generated from quasi-Newton method, then M−1
k =

H̃−1
k at the kth iteration.)

Calculate βk+1:

βPR =
rTk+1(sk+1 − sk)

rTk sk
=
δnew − δmid

δo
, (C–77)

βk+1 = max
{

βPR, 0
}

. (C–78)

If i = n (n is the maximum number of iteration allowed before restart) or

rTk dk ≤ 0

set

dk+1 = sk+1; βk+1 = 0; i = 0.

else

dk+1 = sk+1 + βk+1dk (C–79)

Endif

i = i+ 1 (C–80)



228

End k loop

For our history matching problem, the whole objective function can be writ-

ten as

O(m) = Om +Od. (C–81)

If we are interested in constructing the MAP estimate then

Om = (m−mprior)
TC−1

M (m−mprior), (C–82)

and

Od = (g(m)− dobs)
TC−1

D (g(m)− dobs). (C–83)

If we are interested in calculating a realization of the model m by the randomized

maximum likelihood method, then

Om = (m−muc)
TC−1

M (m−muc), (C–84)

and

Od = (g(m)− duc)
TC−1

D (g(m)− duc). (C–85)

The preceding equations assume we do not incorporate a correction to the prior

mean. If we do so, then the objective function is given by Eq. 2.29. In the remainder

of this appendix, we give the equations for calculating the MAP estimate, but it is

quite simple to modify the equations to obtain the relevant equation for generating

a realization with or without a correction to the prior mean.

Some technical details about preconditioned conjugate gradient algorithm

are given below.

1. Calculation of the gradient of the objective function.

∇mO(mk) = ∇m

[1

2
(g(mk)− dobs)

TC−1
D (g(mk)− dobs)

]

+ C−1
M (mk −mprior)

(C–86)

The first term ∇mOd(mk) can be calculated by using the adjoint method.

The computational cost of computing this term is roughly equivalent to one
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simulation run. The second term in Eq. C–86 can be obtained by solving the

following linear equation system for x.

CMx = mk −mprior. (C–87)

Because the coefficient matrix CM is fixed, we just do an LU decomposition of

CM once. At subsequent iterations, the solution of Eq. C–87 can be obtained by

just forward and backward substitution. This assumes that CM is not so large

that we cannot afford to store its LU decomposition. If this is the case, then

Eq. C–87 will be solved by preconditioned linear conjugate gradient method

using incomplete LU decomposition to generate a preconditioning matrix.

2. Step size calculation.

The step size can be obtained by minimizing f(α) = O(mk+αdk) with respect

to α. The value of α at its minimum can be found by solving h(α) = f ′(α) = 0

for α, i.e., we solve

h(α) ≡ f ′(α) =
dO(mk + αdk)

dα
=
(

∇O(mk + αdk)
)T
dk = 0, (C–88)

for α. This equation can be solved by using the Newton-Raphson algorithm

which is given by

αj+1 = αj −
h(αj)

h′(αj)
(C–89)

where j denotes the index of Newton-Raphson iteration and the first derivative

of f can be evaluated by

h′(α) =
dh(α)

dα
= dTk∇

[

(

∇(mk + αdk)
)T
]

dk = dTkH(mk + αdk)dk. (C–90)

The Newton-Raphson iteration could be stopped when a suitable convergence

criterion is satisfied. However, an exact line search based on the Newton-

Raphson iteration is very expensive due to the fact that the evaluation of the

term dTkH(mk + αdk)dk requires one simulation run. In our procedure, we do

only one Newton-Raphson iteration with α0 = 0. As discussed Chapter V, if

α1 is such that the Wolfe conditions are not satisfied, we apply a quadratic fit
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followed by cuts in the step size to find a suitable αk and mk+1 = mk + αkdk.

To perform one Newton-Raphson iteration, we set α0 = 0 and then Eq. C–89

gives

α1 = −
(

∇O(mk)
)T
dk

dTkH(mk)dk
. (C–91)

Because the problem is nonlinear and an inexact line search is used, the search

directions may not be orthogonal or the calculated search direction may be

uphill which is indicated by rTk dk < 0. So we restart the CG iteration using

search direction given by d0 = −M−1
0 ∇O(mk) whenever a user specified number

of iteration for restart is reached or rTk dk < 0. The denominator in Eq. C–91

can be calculated without explicit calculation of the Hessian matrix. If the

Hessian matrix is in the form of

Hk = GT
kC

−1
D Gk + C−1

M , (C–92)

then

dTkHkdk = dTk (G
T
kC

−1
D Gk + C−1

M )dk

= dTk (G
T
kC

−1
D Gk)dk + dTkC

−1
M dk

= (Gkdk)
TC−1

D (Gkdk) + dTkC
−1
M dk.

(C–93)

To evaluate this last equation, we do not need to compute the sensitivity coef-

ficient coefficient matrix G directly. We only need to calculate Gdk which can

be done by using a finite-difference method or gradient simulator method. The

elements of the sensitivity coefficient matrix can be written as

gi,j =
∂gi
∂mj

, (C–94)

where i = 1, · · · , Nd and j = 1, · · · , Nm and g(m) represents the vector of

calculated data for the model m with gi representing the ith component of g.

The directional derivative is

( dg

dα

)

α=0
=
(dg(m+ αdk)

dα

)

α=0
. (C–95)
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Let u = dk/ ‖ dk ‖, so we have

(dgi
dα

)

α=0
= [∇gi(m)]Tu

=
1

‖ dk ‖
[∇gi(m)]Tdk.

(C–96)

The ith component of Gdk is given by

[

Gdk
]

i
=

M
∑

j=1

∂gi
∂mj

dk,j

= [∇gi(m)]Tdk.

(C–97)

Substituting Eq. C–96 into Eq. C–97, we obtain

[Gdk]i =‖ dk‖
( dg

dα

)

α=0

≈‖ dk ‖
gi(m+ εdk)− gi(m)

ε ‖ dk ‖

=
gi(m+ εdk)− gi(m)

ε
,

(C–98)

where ε is a small number. As this holds for all components of Gdk, it follows

that

Gdk ≈
g(m+ εdk)− g(m)

ε
. (C–99)

The preceding derivation can be found in Kalita and Reynolds (2000). We

choose ε based on the infinity norm of dk such that ε satisfies ε ‖ dk ‖∞= 10−3.

Note that calculating Gdk needs one additional simulation run to evaluate

g(m+ εdk). Once we obtain Gdk, we can use Eqs. C–93 and C–91 to calculate

the step size.

If the Hessian matrix does not have the particular form given in Eq. C–92 we

can use the finite-difference method to calculate Hkdk directly, i.e.,

Hkdk =
∇O(mk + εdk)−∇O(mk)

ε
. (C–100)

Applying Eq. C–100 requires one forward simulation run to calculate the pri-

mary variables that are required to form the adjoint system and one adjoint

solution to form the gradient evaluated atmk+εdk. Whereas applying Eq. C–98

requires only one forward simulation run.
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3. Calculation of preconditioner.

There are two ways that can be used to obtain the preconditioning matrix.

The first choice is to use Mk = C−1
M at all iterations. In the second choice, the

preconditioner Mk can be obtained by using quasi-Newton update equation.

In our implementation, we use the limited memory BFGS (LBFGS) proposed

by Nocedal (1980) to generate M × r where r is the residual. Implementation

of LBFGS only needs vector operations and only needs to store vectors. The

details about calculating M × r are given in Appendix B. The difficulty with

this procedure is that we can only approximate the quasi-Newton H̃−1
k using

information in the conjugate gradient algorithm.

4. Calculation of β.

In the algorithm, the procedure we use to calculate βk+1 is based on the Polak-

Ribiere equation for βPR (Eq. C–77); see Polak (1971). By selecting βk+1 =

max{βPR, 0}, we will restart the algorithm when βPR ≤ 0.

5. Restart CG.

The conjugate gradient algorithm is restarted if any the following conditions

holds:

(i) βk+1 ≤ 0;

(ii) reach the maximum allowable number of iterations without restarting;

(iii) rTk dk < 0, i.e., the search direction is uphill.



APPENDIX D

RELATIONSHIP BETWEEN CONJUGATE GRADIENT AND

QUASI-NEWTON METHODS

Much of the discussion in this appendix can be found in Murray (1972),

Nazareth (1979), Buckley (1978b) and Buckley and Lenir (1983). Suppose we wish

to minimize an objective function f(x) by using an iterative scheme of the form

xk+1 = xk + αkdk k = 0, 1, · · · , (D–1)

where k is the iteration index, x0 is the initial guess, dk is the search direction at

the kth iteration and αk is the step size. If an exact line search is used, then αk

minimizes h(α) = f(xk + αdk). The theoretical results are often obtained under the

restrictive condition that f(x) is a quadratic function of the form

f(x) =
1

2
xTAx− bTx+ c (D–2)

where A is an n×n real symmetric positive definite matrix, b is a fixed n−dimensional

column vector and c is a constant. It is easy to show that there is an unique x∗ which

minimizes f(x) and x∗ is the unique solution of

Ax = b. (D–3)

Using a Taylor series expansion, it is easy to show that Eq. D–2 can also be written

as

f(x) = f(x∗) +
1

2
(x− x∗)TA(x− x∗). (D–4)

Definition: A set of vectors d0, d1, · · · , dn−1 where di 6= 0 are conjugate

with respect to a given real symmetric positive definite matrix A, if

dTi Adj = 0 for all i 6= j. (D–5)

233
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If A is equal to the n×n identity matrix, then Eq. D–5 reduces to the usual

definition of orthogonality. It is easy to show that if {dj}n−1
j=0 are A−orthogonal, then

{dj}n−1
j=0 are linearly independent.

Theorem: If the iterative scheme of Eq. D–1 with an exact line search is

applied to minimize the quadratic objective function of Eq. D–2 starting with an

initial guess x0 and the set {dj}n−1
j=0 are A−orthogonal, then convergence to the x∗

that minimizes f(x) is obtained in at most n iterations. Moreover,

xi+1 = argmin{f(x) | x = x0 +
i

∑

j=0

βjdj}, (D–6)

i.e., xi+1 minimizes f(x) over the subspace consisting of all vectors of the form

x0 +
∑i

j=0 βjdj

The proof of this theorem can be found in Fletcher (1987) and Murray

(1972). This theorem essentially says that for a quadratic function

conjugacy + exact line search = quadratic termination.

Let gi denote the gradient of the quadratic objective function f(x) given

by Eq. D–2 evaluated at the xi. Let {dj} denote search directions and (·, ·) denote

the standard inner product on the set of real n-dimensional column vectors. We can

show that

(Adi, dj) = 0 for i 6= j (D–7)

(gi, dj) = 0 for i > j (D–8)

(gi, gj) = 0 for i 6= j (D–9)

hold for all quadratic functions (linear problems) when applying the conjugate gradi-

ent method (see Appendix C) to minimize the quadratic objective function of Eq. D–

2. Due to round off errors, search directions may lose the conjugacy, so restarts are

required. As derived in Appendix C, Eqs. D–8 and D–9 require an exact line search.

For nonlinear problems, Eqs. D–8 and D–9 do not hold. However, we can

show that (gj+1, dj) = 0 holds if an exact line search is performed. Let

h(α) = f(xj + αdj), (D–10)
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where f is now a non-quadratic objective function. An exact line search will find the

value of α (α = αj) such that

0 =
dh(α)

dα
|α=αj

=
(

∇f(xj + αdj)|α=αj

)T
dj

=
(

∇f(xj+1)
)T
dj

= gTj+1dj.

(D–11)

Thus, the current gradient is orthogonal to the previous search direction, but is

not necessarily orthogonal to all the previous search directions for a non-quadratic

objective function.

Before we consider the relationship between the conjugate gradient and

the quasi-Newton method, we write down the algorithms for both methods. For

a quadratic function of the form given by Eq. D–2, the preconditioned conjugate

gradient algorithm with preconditioner H̃−1 is given below.

(1) Choose initial guess x0 and a preconditioner H̃, set d0 = −H̃−1g0 and iteration

index j equal to zero.

(2) Find the step size αj in the search direction dj by an exact line search.

(3) Update the model and the search directions by applying

xj+1 = xj + αjdj, (D–12)

βj+1 =
gTj+1H̃

−1gj+1

gTj H̃
−1gj

, (D–13)

dj+1 = −H̃−1gj+1 + βj+1dj = −H̃−1gj+1 +
gTj+1H̃

−1gj+1

gTj H̃
−1gj

dj. (D–14)

(4) Determine whether the stopping criteria are satisfied. If satisfied, then stop;

otherwise replace j by j + 1 and go to step 2.

In the above algorithm, H̃−1 denotes the preconditioner. Note that H̃−1 = I corre-

sponds to the standard conjugate gradient method without preconditioning.

The algorithm for BFGS with H̃−1
0 = H̃−1 is given by
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(1) Choose an initial guess x0 and the initial Hessian approximation matrix H̃−1
0 =

H̃−1. Set d0 = −H̃−1g0 and set the iteration index j equal to zero.

(2) Find the step size αj in the search direction dj by an exact line search.

(3) Update the model and the search directions by applying

xj+1 = xj + αjdj, (D–15)

sj = xj+1 − xj, (D–16)

yj = gj+1 − gj, (D–17)

H̃−1
j+1 = H̃−1

j +
1

sTj yj

(

1 +
yTj H̃

−1
j yj

sTj yj

)

sjs
T
j

− 1

sTj yj

(

H̃−1
j yjs

T
j + sjy

T
j H̃

−1
j

)

, (D–18)

dj+1 = −H̃−1
j+1gj+1. (D–19)

(4) Determine whether the stopping criteria are satisfied. If satisfied, then stop;

otherwise replace j by j + 1 and go to step 2.

For the quadratic function of Eq. D–2, applying a Taylor series expansion

we have

gj+1 = gj + A(xj+1 − xj) (D–20)

where the Hessian matrix is equal to A. Let

yj = gj+1 − gj, (D–21)

sj = xj+1 − xj. (D–22)

From the algorithm, we note that

sj = αjdj. (D–23)

Using Eq. D–21 and D–22, Eq. D–20 can be rewritten as

yj = Asj (D–24)
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which is called Newton condition. Using Eq. D–23 we can also write Eq. D–24 as

yj = Asj = αjAdj. (D–25)

Therefore, the conjugate condition of Eq. D–5 can be replaced by

dTi yj = 0 for i 6= j. (D–26)

From Eq. D–23, Eq. D–26 implies that

sTi yj = αid
T
i yj = 0, for i 6= j. (D–27)

It is well known that both the conjugate gradient methods and the quasi-Newton

methods satisfy the conjugate condition given by Eq. D–5; see Murray (1972).

For any i < j, Eq. D–27 and Eq. D–11 imply that, for a quadratic function,

sTi gj = sTi gi+1 + sTi (gi+2 − gi+1) + sTi (gi+3 − gi+2)+, · · · ,+sTi (gj − gj−1)

= sTi gi+1 + sTi (yi+1 + yi+2 + · · ·+ yj−1) = 0 for i < j.
(D–28)

Note that the number of terms in the parentheses of the second term in Eq. D–28 is

equal to j − i− 1. For example, if i = j − 1 then the second term in Eq. D–28 will

disappear. Note that Eq. D–28 is equivalent to

gTi sj = 0 for i > j. (D–29)

Eq. D–29 indicates that the current gradient is orthogonal to all the previous search

directions when both conjugate gradient and quasi-Newton methods are applied to

quadratic functions, given that an exact line search is performed.

For the BFGS algorithm, Eq. D–28 gives

sTi gj = αid
T
i gj

= −αi(H̃−1
i gi)

Tgj

= 0.

(D–30)

Applying Eq. D–28 and the Hessian inverse approximation update equation used in
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the BFGS algorithm, we have

0 = (H̃−1
i gi)

Tgj

= gTi H̃
−1
i gj

= gTi

(

H̃−1
i−1 +

si−1y
T
i−1

sTi−1yi−1

H̃−1
i−1

)

gj

= gTi H̃
−1
i−1gj +

gTi si−1

sTi−1yi−1

yTi−1H̃
−1
i−1gj

= gTi H̃
−1
i−1gj

= gTi

(

H̃−1
i−2 +

si−2y
T
i−2

sTi−2yi−2

H̃−1
i−2

)

gj

= gTi H̃
−1
i−2gj +

gTi si−2

sTi−2yi−2

yTi−2H̃
−1
i−2gj

= gTi H̃
−1
i−2gj

...

= gTi H̃
−1gj

(D–31)

which is valid for all i < j. Thus,

gTi H̃
−1
i gj = 0 for i < j. (D–32)

We can prove that

H̃−1
i gj = H̃−1gj, (D–33)

holds for all i < j by using mathematical induction on i. Now assume Eq. D–33

holds for some H̃−1
i−1, i.e.,

H̃−1
i−1gj = H̃−1gj. (D–34)

For H̃−1
i , using Eqs. D–31, D–34 and D–21 we have

H̃−1
i gj = H̃−1

i−1gj +
si−1

sTi−1yi−1

yTi−1H̃
−1
i−1gj

= H̃−1gj +
si−1

sTi−1yi−1

(gi − gi−1)
T H̃−1gj

= H̃−1gj.

(D–35)
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So using Eq. D–28, the search direction in BFGS (see Eq. D–18) can be written as

d
BFGS

j+1 = −H̃−1
j+1gj+1

= −H̃−1
j gj+1 +

1

sTj yj

(

yTj H̃
−1
j gj+1

)

sj

= −H̃−1
j gj+1 +

(gj+1 − gj)
T H̃−1

j gj+1

αjdTj (gj+1 − gj)
αjdj

= −H̃−1
j gj+1 +

gTj+1H̃
−1
j gj+1

−(H̃−1
j gj)T (gj+1 − gj)

dj

= −H̃−1gj+1 +
gTj+1H̃

−1gj+1

gTj H̃
−1gj

dj

= d
CG

j+1.

(D–36)

So the BFGS and conjugate gradient are equivalent no matter how we choose the

initial Hessian inverse approximation in the BFGS algorithm. If the initial Hes-

sian inverse approximation is the identity matrix, then BFGS is equivalent to the

standard conjugate gradient method without preconditioning. If the initial Hessian

inverse approximation is the an arbitrary matrix H̃−1, then BFGS is equivalent to the

preconditioned conjugate gradient method with preconditioner equal to H̃−1. This

result was derived assuming that the algorithm are applied to a quadratic objective

function and the search direction is exact.

We summarize the well known properties of conjugate gradient and vari-

able metric algorithms in this paragraph. When applied to the minimization of a

quadratic function and using the same initial metric defined by H̃−1, we have

(1) termination in at most n steps (quadratic termination);

(2) search direction vectors are conjugate;

(3) gTi H̃
−1gj = 0 for i < j;

(4) the jth direction dj lies in the subspace spanned by H̃−1g0, H̃
−1g1, · · · , H̃−1gj−1.

One of the more general conjugate gradient algorithms due to see Shanno

and Phua (1978) is given below.
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(1) Choose an initial guess x0, set d0 = −g0 and set j = 0.

(2) Find the step size αj in the direction dj by an exact line search.

(3) Update the model and the search directions by applying

xj+1 = xj + αjdj, (D–37)

yj = gj+1 − gj, (D–38)

βj =
yTj gj+1

yTj dj
, (D–39)

dj+1 = −gj+1 + βjdj. (D–40)

(4) Determine whether the stopping criteria are satisfied. If satisfied, then stop;

otherwise replace j by j + 1 and go to step 2.

If we do an exact line search, then we have dTj gj+1 = 0. If the objective function is

quadratic, we have gTj gj+1 = 0. For quadratic functions, if we do an exact line search,

the above algorithm becomes the Fletcher and Reeves (1964) algorithm where βj is

given by

βj =
yTj gj+1

yTj dj

=
(gj+1 − gj)

Tgj+1

(gj+1 − gj)Tdj

=
gTj+1gj+1

−gTj dj

=
gTj+1gj+1

−gTj (−gj + βj−1dj−1)

=
gTj+1gj+1

gTj gj
.

(D–41)

If we do an exact line search but relax the condition that the function is quadratic,

we have

βj =
yTj gj+1

gTj gj
, (D–42)

which is the Polak (1971) algorithm with an exact line search.
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Eq. D–40 can be rewritten as

dj+1 = −gj+1 + djβj

= −gj+1 +
dj(y

T
j gj+1)

yTj dj

= −gj+1 +
(djy

T
j )gj+1

yTj dj

= −
(

I −
djy

T
j

yTj dj

)

gj+1.

(D–43)

Perry proposed

dj+1 = −
(

I −
sjy

T
j

yTj sj
+
sjs

T
j

sTj yj

)

gj+1 ≡ −Qj+1gj+1 (D–44)

where sj = αjdj = xj+1 − xj, and I is the n× n identity matrix and

Qj+1 = I −
sjy

T
j

yTj sj
+
sjs

T
j

sTj yj
. (D–45)

Note Qj+1 satisfies

yTj Qj+1 = yTj

(

I −
sjy

T
j

yTj sj
+
sjs

T
j

sTj yj

)

= yTj −
(yTj sj)y

T
j

yTj sj
+

(yTj sj)s
T
j

sTj yj

= yTj − yTj + sTj

= αjd
T
j .

(D–46)

Note that Qj+1 is not symmetric and also note that with an exact line search Eq. D–
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44 can be rewritten as

dj+1 = −
(

I −
sjy

T
j

yTj sj
+
sjs

T
j

sTj yj

)

gj+1

= −
(

I −
αjdjy

T
j

yTj αjdj
+
αjdjαjd

T
j

sTj yj

)

gj+1

= −gj+1 +
djy

T
j

yTj dj
gj+1 −

αjdjαj(d
T
j gj+1)

sTj yj

= −gj+1 +
djy

T
j

yTj dj
gj+1

= −gj+1 +
yTj gj+1

yTj dj
dj

= −gj+1 +
yTj gj+1

(gj+1 − gj)Tdj
dj

= −gj+1 +
yTj gj+1

gTj+1dj − gTj dj
dj

= −gj+1 +
yTj gj+1

−gTj dj
dj

= −gj+1 +
yTj gj+1

−gTj (−gj + βjdj−1)
dj

= −gj+1 +
yTj gj+1

gTj gj
dj,

(D–47)

which is Polak-Ribiere algorithm; see Eq. D–42.

Shanno (1978a) proposed

Qj+1 = I −
sjy

T
j

yTj sj
−
yjs

T
j

yTj sj
+
sjs

T
j

sTj yj
(D–48)

which is symmetric. Right multiplying Eq. D–48 by yj gives

Qj+1yj = yj −
sjy

T
j yj

yTj sj
− yj + sj

= sj −
sjy

T
j yj

yTj sj
.

(D–49)

which does not satisfy the quasi-Newton condition, i.e., Qj+1yj 6= sj. If we define
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Q̄j+1 by

Q̄j+1 = Qj+1 +
yTj yjsjs

T
j

sTj yjs
T
j yj

= I −
sjy

T
j + yjs

T
j

yTj sj
+
(

1 +
yTj yj

sTj yj

)sjs
T
j

sTj yj
,

(D–50)

then Q̄j+1 satisfies the quasi-Newton condition, i.e.,

Q̄j+1yj = yj −
sjy

T
j yj + yjs

T
j yj

yTj sj
+
(

1 +
yTj yj

sTj yj

)sjs
T
j yj

sTj yj

= yj −
sjy

T
j yj

yTj sj
−
yjs

T
j yj

yTj sj
+
(

1 +
yTj yj

sTj yj

)

sj

= yj −
sjy

T
j yj

yTj sj
− yj + sj +

yTj yj

sTj yj
sj

= yj −
yTj yj

yTj sj
sj − yj + sj +

yTj yj

sTj yj
sj

= sj.

(D–51)

If we replace the H̃−1
j in BFGS Eq. D–18 by an identity matrix I, then we

will obtain Eq. D–50. So the conjugate gradient method with Eqs. D–50 is exactly

the BFGS method when the approximation to the inverse Hessian is restarted as the

identity matrix at every step. Shanno also called this algorithm the “memoryless”

BFGS method.


