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ABSTRACT

Emilio Paulo dos Santos Sousa (Doctor of Philosophy in Petroleum Engineering)

Adaptive Least Squares Support Vector Regression for History Matching and Markov Chain

Monte Carlo Uncertainty Quantification

Directed by Albert C. Reynolds

227 pp., Chapter 5: Conclusions

(471 words)

In the petroleum industry, important decisions need to be made based on uncertain

information. To reduce the risks involved, uncertainty quantification of reservoir produc-

tion forecast is of utmost importance. For practical purposes, application of Bayes’ the-

orem allows the uncertainty in the reservoir model parameters and reservoir predictions

to be encapsulated in a posterior probability density function (pdf) for the reservoir pa-

rameters. Consequently, the uncertainty quantification problem reduces to the generation

of samples from the posterior pdf. The Metropolis-Hastings Markov chain Monte Carlo

(MCMC) method provides the means to rigorously sample the posterior pdf. Unfortunately,

for our problems MCMC comes with a extremely high associated computational cost, since

a large number of states in the Markov chain need to be generated, and each state requires

a reservoir simulation run. Many alternative methods have been proposed to approximately

sample the posterior, which avoids the high computational cost of MCMC, but none of them

is completely rigorous. In this research, we embrace the MCMC method and investigate the

feasibility of replacing the reservoir simulator by a fast proxy model, in an attempt to reduce

the computational cost of quantifying the uncertainty using MCMC.

The approach adopted here is based on a previous work in which a Gaussian mixture

model (GMM) was introduced as an appropriate proposal distribution for MCMC. The GMM
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proposal distribution accelerates the convergence of the MCMC method, which in practice

translates to a reduction in the required number of reservoir simulation runs. The GMM is

constructed centered at modes of the posterior pdf for reservoir parameters.

In this research, we conduct similar procedure, with the important modification that

we construct the Markov chain using a proxy model in place of the reservoir simulator to

evaluate the Metropolis-Hastings probability of acceptance. For this purpose, we investigate

a machine leaning technique, least squares support vector regression (LS-SVR), as a suitable

proxy model. The LS-SVR proxy is constructed using a training set. To achieve a reliable

proxy model, we introduce a novel procedure to adaptively construct the training set which

is used to train the LS-SVR proxy model. Furthermore, we take advantage of the analytical

proxy gradient to find modes of the posterior pdf in order to construct the GMM proposal

distribution. For large-scale problems, principal component analysis (PCA) is used to reduce

the dimension of the problem and the LS-SVR proxy is constructed based on the reduced-

order model. Via examples, we show that our proposed method reduced the total number

of reservoir simulation runs required for the complete uncertainty quantification process

by a factor on the order of 50 to 100. The application examples so far include a single

parameter toy problem, an one-dimensional water-flooding reservoir model, a synthetic two-

dimensional reservoir model, a three-dimensional model based on the PUNQ-S3 case, and a

three-dimensional large scale reservoir model constructed by refining the grid of the PUNQ-

S3 model.
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CHAPTER 1

INTRODUCTION

The costs involved in the discovery and development of a hydrocarbon accumulation

are extremely high. Several significant decisions on development are made based on par-

tial and limited knowledge. The most important information needed to decide on whether

to develop the field and the capital expenditure, needed to do so, is a reasonable accurate

estimate of the future production performance of the new discovery. Ultimately, the to-

tal amount of possible production and its temporal distribution dictates how the financial

resources are applied. To better support decision-making on field development, one must

be able to generate a prediction of the future reservoir production and quantify the uncer-

tainty in this prediction. Due to the increasing necessity and commitment to better apply

financial resources, increasingly sophisticated tolls for reservoir characterization have been

developed. Simplified prediction techniques used in the early days of the oil industry have

been replaced by numerical simulators. Currently, the construction of a numerical reservoir

simulation model is the standard method to achieve reliability in production forecast for the

oil industry.

Unfortunately, virtually all information available to construct such a reservoir model

is uncertain. Eventually, dynamic production data become available, and are used to cali-

brate the original reservoir model. The assimilation of data is called history matching in the

petroleum industry. Most commonly, history matching is applied to integrate production

data into reservoir models and this problem is the focus of this research. However, infor-

mation contained in the production data is not enough to resolve all uncertainty. To guide

future decisions on the field development and management it is important to quantify the

remaining uncertainty in the reservoir model and, most importantly, how the uncertainty is
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disseminated to the reservoir production predictions. Accordingly, in the oil industry, un-

certainty quantification in reservoir simulation predictions has become a standard procedure

to support decisions and mitigate the risks involved in field development

The original motivation for history matching was to procure a sole specific reservoir

model for which its pressure and rates predictions were able to match some available dynamic

production data with reasonable agreement, and then use this model to make predictions.

Current history matching is more nuanced. First, it soon become clear and is now largely

recognized that to be considered an acceptable history-matched model, the reservoir model

obtained by history matching must conform to the geological model developed for the field

from available static data, e.g., seismic data, log and core data, and not simply reproduce

the observed data reasonably well. Secondly, it is possible to find several models which are

in sufficiently good correspondence with both observed data and some geological model. In

fact, it is well established that exist an infinite number of models which give an acceptable

history-matched model. As a consequence, the purpose of history matching has shifted to

select not just one, but a representative set of models from the total set of plausible reservoir

models. The representative ensemble of models should be able to characterize the uncertainty

in the reservoir models and future reservoir performance predictions. Within this new history

matching scenario, the framework of Bayesian statistics has become an appropriate approach

for modern assisted history matching and uncertainty quantification.

In the Bayesian framework for history matching and uncertainty quantification, one

needs to provide prior knowledge concerning the uncertain nature of the reservoir model

parameters. For practical reasons, the uncertainty in reservoir model parameters is encapsu-

lated into a probability density function (pdf), the so-called prior pdf. Then, Bayes’ theorem

is used to assimilate the noisy dynamic observed data. For this purpose, the measurement

errors contained in the observed data are treated as a random vector with some given pdf.

Bayes’ theorem results in a pdf for the reservoir model parameters conditioned to the ob-

served data, where this conditioned pdf is the so-called posterior pdf. As discussed earlier, a

set of sample from this posterior pdf is used to characterize the uncertainty in the reservoir
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model parameters [89]. Consequently, the assisted history matching and uncertainty quan-

tification problem is reduced to the problem of generating samples from the posterior pdf.

The predictions using the sampled models are used to quantify the uncertainty in reservoir

forecasts, which are then used to support decisions.

As we discuss later in this dissertation, for most practical applications the reservoir

simulator represents a non-linear relationship between reservoir model and corresponding

predictions. Consequently, the posterior pdf is a non-Gaussian distribution, which can po-

tentially be a multi-modal distribution, and sampling from a non-Gaussian posterior pdf can

potentially be computationally expensive. The main goal of this research is to develop a

computationally inexpensive framework to sample from the posterior pdf, as we discuss in

the remainder of this dissertation.

1.1 Literature Review

Correctly sampling from a multi-modal distribution is a computational expensive

task. In the oil industry, great research effort has being employed in the last decades to

develop techniques able to produce a meaningful sample from the posterior distribution in

a computational feasible manner, as we present in this literature review.

1.1.1 The Randomized Maximum Likelihood Method

In the petroleum industry literature, one of the earliest methods developed to gener-

ate samples from the posterior pdf was proposed by Oliver et al. [87]. The method became

known as randomized maximum likelihood (RML). A similar sampling method was indepen-

dently introduced by Kitanidis [64]. To generate samples from the posterior pdf, the RML

sampling method starts with unconditional realizations, i.e., samples from the prior pdf,

which is assumed to be a Gaussian distribution. Then, the RML performs by conditioning

the unconditional realization to a perturbation of the actual observed data. The perturbed

observed data is obtained by adding a random realization of the measurement errors to the

actual observed data. The measurement errors are assumed to follow a Gaussian distribu-
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tion, which is sampled to generate the realizations used to perturb the data. To condition the

model, a minimization problem is conducted by minimizing an objective function composed

of two quadratic terms, a model mismatch term, which contains the unconditional realization

and the prior covariance matrix, and a data mismatch term, which contains the perturbed

data and the measurement error covariance matrix. The minimization problem is solved

using a gradient-based optimization algorithm, e.g., Gauss-Newton [83, 89] or Levenberg-

Marquardt [66, 73, 89]. Oliver [84] and Reynolds et al. [97] presented two distinct proofs

that for a linear relationship between reservoir parameters and corresponding predictions,

the RML method correctly generate samples from the posterior pdf. Reynolds et al. [97] also

further extended the RML method to incorporate uncertainty in the mean of the prior pdf.

It is well known that for linear relationship, the posterior pdf is a Gaussian distribution when

the prior and measurement errors pdf are assumed Gaussian. Therefore, for the linear case,

the RML method essentially transform the unconditional sample from the prior pdf into a

conditioned sample from the Gaussian posterior pdf. Unfortunately, there is no guarantee

that the resulting sample is indeed a sample from the posterior pdf for the non-linear case

which arises in practical applications. Nevertheless, the minimization problem conducted in

the RML method always produce samples which come from regions close to the modes of

the posterior pdf. For multi-modal distributions, this feature represents a strength of the

RML method, i.e., it is expected that the RML method can at least generate a roughly

characterization of a multi-modal distribution, see [87, 123, 139].

For practical applications, obtaining the gradient of the objective function to solve

the minimization problem required in the RML formulation can be troublesome. To cir-

cumvent this problem, Gu and Oliver [49] introduce an ensemble based RML which requires

no gradient computation. The method was named ensemble RML (EnRML) and works

as an iterative ensemble Kalman filter. Chen and Oliver [21] modified the EnRML to in-

corporate a Levenberg-Marquardt minimization step (LM-EnRML), which results in better

convergence when compared with EnRML. Chen and Oliver [21] also introduced an approx-

imation computationally efficient method in which the model mismatch term in the mini-
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mization update step is neglected. The RML method can be understood as an independent

Metropolis-Hastings algorithm where the acceptance/rejection step is suppressed [85], which

for non-linear cases results in an approximate sampling algorithm. As exposed by Oliver [85],

the acceptance/rejection is omitted because is computational prohibitive to compute the so-

called Metropolis-Hastings acceptance probability. Oliver [85] introduce an augmented state

RML which facilitate the computation of the Metropolis-Hastings acceptance probability.

The method proposed by Oliver [85] presented good sampling performance when applied

to toy problems with multi-modal posterior distribution. However, the method demands

the computation of a Jacobian matrix, which can be computationally intractable for real

problems. Stordal and Nævdal [116] introduce a generalized RML (GRML) by generalizing

the objective function which is minimized in the original RML. Stordal and Nævdal [116]

presented results for a simple weighted objective function in which a weight is applied only

to the model mismatch part. The authors presented a theoretical framework to compute

the optimal weight for this simple case and showed that the resulting GRML performance

is superior to the RML when using the optimal weight. However, computing the optimal

weight for real problems can be computationally infeasible.

1.1.2 Ensemble Methods based on the Kalman Filter

In the past few decades, ensemble methods based on the Kalman filter [62] have

received intensive attention in both academia and industry. The Kalman filter [62], is a

sequential data assimilation algorithm which represents and propagates the uncertainty in

the system by means of the first and second order moments, i.e., the mean and covariance

matrix, of the associated probability distribution. Consequently, the Kalman filter [62] is

more suitable for Gaussian or near Gaussian distribution, which for reservoir petroleum

applications translates to the linear case under prior Gaussian distribution. The extended

Kalman filter (EKF) is an extension of the Kalman filter [62] for non-linear problem. In

EKF, the non-linear model is expanded centered at the current estimate of the state mean,

then the expansion is truncated to generate a linear approximate model. However, this
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linearization can lead to unbounded error variance growth for highly non-linear problems

[31, 32, 42, 13, 77, 34].

For some practical applications, to compute, store and update a full covariance matrix

can be so computational expansive, that the application of the Kalman filter [62] and EKF

becomes infeasible. To circumvent this limitation, Evensen [33] introduced the ensemble

Kalman filter (EnKF), which also performs better for non-linear problems than does EKF.

In the EnKF formulation, the uncertainty in the system is represented and propagated by

means of an ensemble of system parameters. In this case, when required, the mean and

covariance matrix are computed directly from the ensemble, which means that a low rank

approximation of the covariance matrix is used. The EnKF method was further developed

by Burgers et al. [17], where it was shown that the assimilated observations should be treated

as random variables, and Houtekamer and Mitchell [59], which suggested the use of multiples

ensembles. The EnKF was first introduced in the petroleum reservoir literature by Nævdal

et al. [81] and Nævdal et al. [82]. Aanonsen et al. [2] and Oliver and Chen [86] presented a

comprehensive review of EnKF applications in the petroleum literature. The EnKF method

assimilates data sequentially in time, which is a suitable feature for petroleum reservoir

application where the observed data used to become available at discrete times. To avoid

rerun the reservoir simulator from the initial time, each time a new data is assimilated,

the EnKF is formulated as a parameter-state estimation problem, i.e., the uncertainty is

simultaneously propagated for both the model parameters (such as grid-block porosity and

permeability) and model states (such as grid-block pressure and saturation). However, it

requires that the updated parameters and model states are statically consistent, i.e., that

the statistical properties inferred from the updated ensemble of model states present the

same statistical properties computed from the model states obtained running the reservoir

simulator from time zero using the updated ensemble of model parameters. However, it

can be shown [124] that the statistical consistency only holds for the linear-Gaussian case.

Furthermore, the statistical consistency usually does not hold for highly nonlinear petroleum

reservoir cases, as shown by Seiler et al. [109] and Wang et al. [136].
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To avoid the statistical inconsistency issue, van Leeuwen and Evensen [126] introduced

the ensemble smoother (ES). Unlike EnKF, ES is solely a parameter estimation algorithm

which does not assimilate data sequentially in time, but rather assimilates all available

observed data simultaneously. Although assimilating all data simultaneously prevents the

statistical inconsistency between updated parameters and updated states, usually the quality

of the data match obtained with ES is inferior to the one with EnKF. Several authors

suggested iterative approaches to enhance the quality of the data match [27, 29, 21, 60,

72]. The ensemble smoother with multiple data assimilation (ES-MDA) was introduced by

Emerick and Reynolds [27, 28, 29, 30], motivated by the results of Reynolds et al. [99] and

Rommelse [105]. The ES-MDA improves the quality of the data matching by assimilating

the same data multiple times with the corresponding measurement error covariance matrix

multiplied by an inflation factor. Emerick and Reynolds [29] showed that the summation of

the inverse of the inflation factors should equal one over all assimilation steps. Both the total

number of times that the same data is assimilated and the corresponding inflation factors

have to be specified by the user, which can be considered as a drawback of the method. Based

on the works of Hanke [52] and Iglesias and Dawson [61], Le et al. [65] suggested to adaptively

determine the inflation factors simultaneously with the data assimilation. Recently, Rafiee

and Reynolds [94, 93] derived a methodology to compute the inflation factors for ES-MDA

which usually delivers as good or a better data match, and at a lower computational cost,

than the methods considered in Le et al. [65].

Although, ensemble methods based on the Kalman filter [62] present a computation-

ally efficient framework for petroleum reservoir history matching and uncertainty quantifica-

tion, for highly nonlinear practical applications, the updated ensemble does not accurately

describe the posterior pdf, i.e., a correct uncertainty quantification is not achieved.

1.1.3 Markov Chain Monte Carlo Sampling

A frequently applied and endorsed rigorous technique to sample any given pdf is the

Markov chain Monte Carlo (MCMC) method. A Markov chain is a sequence of random
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variables, which are conventionally regarded as the states of the generated chain. Starting

from a random initial state, one can constructs a Markov chain by consecutively appending

news states employing some specified proposal mechanism and an acceptance/rejection step.

The proposal mechanism is used to propose a candidate for the new (next) state in the chain.

Whenever the proposed state is accepted in the acceptance/rejection step, it becomes the

next state in the chain and one continues the procedure by proposing a new candidate. When

the candidate is rejected, the current state is repeated as the next state in the chain, one

again proceeds by proposing a new candidate. Normally, a given probability distribution,

the so-called proposal distribution, is used as the proposal mechanism to generate new states

in the chain. The distinctive feature of any Markov chain is the enforced property that the

probability of proposing a new state in the chain depends only on the current state. Accord-

ingly, the proposal distribution is assumed to depend only on the current state, regardless

of the history of previous generated states.

Depending on the chosen proposal mechanism, the resulting Markov chain may present

states that repeatedly occur at a fixed period, i.e., the Markov chain inevitably return to

a particular state exactly at every nth iterations. Those repeated states are termed as pe-

riodic states. A Markov chain which has no periodic states is said to be aperiodic. For

some proposal mechanism, several probable states are impossible to reach depending on the

choice of the initial state. For an aperiodic Markov chain for which it is possible to reach any

probable state, with nonzero probability, when starting from any possible state, the given

Markov chain is said to be irreducible. For a given proposal mechanism, when the probability

to move from a particular state to a new state is the same probability to move back from

the new state to the original state, the Markov chain is said to be reversible. A reversible

Markov chain is said to satisfy the detailed balance condition [35, 125]. Whenever a Markov

chain is aperiodic, irreducible and reversible, the Markov chain is said to be ergodic. It is

associated with any given ergodic Markov chain an unique specific probability distribution,

the so-called invariant or stationary probability distribution [35, 125]. For a given ergodic

Markov chain started at any random state, when the number of generated states in the chain
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approach infinity, the probability distribution which is obtained with the generated states

approaches the stationary distribution of the corresponding Markov chain, i.e., the generated

states represent a sample from the stationary distribution. Naturally, the states generated

at the beginning of the chain do not represent the stationary probability distribution and

should be discarded. Those initial states form the so-called burn-in period, i.e., the period

for which the generated states do not represent samples from the stationary distribution.

The MCMC sampling method performs by generating an ergodic Markov chain which

has stationary probability distribution equal to the probability distribution one wishes to

sample. In this context, the probability distribution which is being sampled is referred to as

the target pdf. After discarding the burn-in period, the remaining states represent a proper

set of samples from the target pdf. It has been proved [35, 125] that for an ergodic Markov

chain, the associated MCMC sampling method asymptotically samples from the target pdf

as the total number of generated states in the chain approaches infinity, provided that the

proposal mechanism is able to propose states from any region of nonzero probability.

Numerous developed variants of the MCMC sampling method essentially follows the

same procedure. First one proposes a candidate to new state in the Markov chain by sam-

pling the chosen proposal distribution, then accepts or rejects the proposed state based on

some well defined acceptance criterion. To make the sampling process feasible for practical

applications, normally one assumes some well known and easy to sample distribution as the

proposal distribution to generate the candidates to new states in the chain. Historically,

the Metropolis-Hastings algorithm [76, 56] is the most applied MCMC sampling method.

Metropolis et al. [76] introduced the MCMC method and developed a sampling algorithm

with an acceptance/rejection criterion which only depends on ratios of the target pdf. This

particular feature of Metropolis et al. [76] algorithm represents a notable advantage for prac-

tical applications, since one only needs to know the target pdf up to a normalizing constant.

Hastings [56] extended the sampling algorithm proposed by Metropolis et al. [76] by gener-

alizing both the proposal distribution and the acceptance/rejection criterion introduced by

Metropolis et al. [76]. Hastings [56] contribution resulted in the framework which is referred
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today as the Metropolis-Hasting algorithm.

As discussed earlier, starting from any randomly selected initial state, the Metropolis-

Hastings algorithm is guaranteed to converge and asymptotically sample from the target pdf

as the number of generated states increase [35, 125]. However, the burn-in period may have a

very long duration for some choices of the proposal distribution. For petroleum reservoir ap-

plications, the target pdf is represented by the posterior pdf for reservoir model parameters,

which for practical applications depends on the predictions of a reservoir simulator. As a

consequence, to evaluate the posterior pdf one reservoir simulation run is required. Depend-

ing on the proposal distribution, the Metropolis-Hastings algorithm may require hundreds

of millions of reservoir simulation runs [44, 71, 28] just to converge to the target pdf, i.e.,

to start to sample from the target pdf, which here is the posterior pdf for reservoir model

parameters. Naturally, for applications where one reservoir simulation run requires more

than a couple minutes, sampling the posterior pdf using the Metropolis-Hastings algorithm

is computationally prohibitive, although theoretically it is a rigorous method for sampling

the posterior pdf.

Motivated by the work of Gao et al. [41], Li and Reynolds [69, 68] introduced a com-

putationally efficient two-level MCMC method based on the Metropolis-Hastings algorithm.

Basically, Li and Reynolds [69, 68] proposed the construction of an approximation of the

posterior pdf to use as proposal distribution in a Metropolis-Hastings MCMC framework.

The underlying idea is since the proposal distribution is close to the target pdf, the Markov

chain converges fast, consequently the associated burn-in period is reduced. The approach

of Li and Reynolds [69, 68] considerably reduces the total number of required reservoir simu-

lation runs. Li and Reynolds [69, 68] recommended constructing a Gaussian mixture model

(GMM) [100, 138], centered at modes of the posterior pdf, to use as proposal distribution.

To find modes of the posterior pdf, Li and Reynolds [69, 68] conducted several minimization

problems using an in-house reservoir simulator which was able to solve the adjoint problem

[20, 19]. This limits the application of their method since commercial reservoir simulators

usually are not able to compute the adjoint solution. Rafiee and Reynolds [95, 93] proposed
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a modification of Li and Reynolds [69, 68] approach and circumvent the adjoint solution

issue by computing an approximate gradient using the distributed Gauss-Newton (DGN)

method, which was proposed by Gao et al. [41].

1.1.4 Support Vector Regression

Considerable effort and attention was given to the field of machine learning in the

last few decades. The term machine learning, which was first used by Samuel [107] in his

work about the game of checkers, symbolizes the suite of techniques that enable machines

to recognize patterns, or more generally learn patterns, from some available data, without

being explicit programmed. Nowadays, machine learning methods are applied to a variety

of practical problems, including the classification problem, which denotes the ability to sep-

arate a given set of inputs into distinct classes, the regression problem, which represents the

estimation of future function outcomes based on some already known function outputs, and

the clustering problem, which means the capacity to recognize different classes from a given

data set and then classify the data into the respective classes found.

The support vector machine (SVM), which is a class of learning machines, has be-

come very popular in recent decades due to its reported and recognized good performance

and generalization when compared with other available machine learning techniques. The

SVM method proceeds by employing a suite of inputs and their corresponding output data,

conventionally termed as a training set, to enable the machine to learn or recognize the

unknown patterns which are present in the data. The primordial idea which led to the

present form of the SVM algorithm is the work of Vapnik and Lerner [134, 135] on pattern

recognition, which is a machine learning classification problem. In their work, the authors

introduced the generalized portraits algorithm, which uses a single-valued transformation to

relate the patterns of a given set of images to points on an unit sphere in a given Hilbert

space. Vapnik and Chervonenkis [131, 132] further developed the ideas present in the gener-

alized portraits algorithm. The pattern predictions represented as a weighted summation of

inner products, along with the sparsity representation of the vector of summation weights,
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which are prominent features of modern SVM algorithms, were already present in this latter

work of Vapnik and Chervonenkis.

The field called Statistical Learning Theory (also known as Vapnik–Chervonenkis

theory or VC theory) arises from the work of Vapnik and Chervonenkis [133]. In a further

development of the Statistical Learning Theory, Vapnik [127, 128] presents the original SVM

formulation for the case of linearly separable data. In machine leaning, the linearly separable

data designate the case in which a collection of points, or vectors, belonging to two distinct

classes, is endowed with linear separability in a given space, i.e., the collection of points

can be completely and unequivocally separated into its two distinct categories by means of

a hyperplane. In the linear SVM classifier presented by Vapnik [127, 128], one employs a

given training set, i.e., a suite of input vectors and their corresponding output classifications,

to construct a hyperplane to divide the given data into distinct categories. The distinctive

idea introduced by Vapnik was to uniquely define an optimal hyperplane by maximizing the

distance between the optimal hyperplane and the input vectors belonging to a given training

set. For any vector in a given vector space, a hyperplane can be defined by the inner product

between the given vector and a vector of weights, plus a bias term. To classify any vector

using a particular vector of weights and bias term, one proceeds by computing the inner

product between the vector and the vector of weights, and then summing the result to the

bias term. If this computation results in a positive number, the vector being classified is

on one side of the hyperplane, and thus belongs to a determined class. Conversely, if this

computation results in a negative number, the vector being classified is on the opposite

side of the hyperplane, therefore belongs to the other class. Vapnik [127, 128] showed that

maximizing the distance between the optimal hyperplane and the vectors belonging to a

given training set is equivalent to minimizing the Euclidean norm of the corresponding

hyper-plane’s vector of weights, subject to the constraint that the product between the

predicted classification using the resulting optimal hyperplane for all the vectors in the

training set and their respective true classification is greater or equal to unity. The proposed

formulation results in a quadratic programming problem that one solves to find the vector
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of weights which defines the optimal hyperplane. The minimization problem is usually

first formulated in the primal space of the weights, then converted to the dual space of

Lagrange multipliers. For any given training set, the resulting dual problem has a global

unique solution, which is a desirable feature for any minimization problem, and represents

an important advantage of the SVM formulation over other machine learning techniques.

The resulting vector of weights, which defines the optimal hyperplane, is given as a linear

combination of the vectors in the training set, using the respective Lagrange multipliers as

weights in the linear combination. Therefore, the optimal hyperplane is given as a weighted

summation of inner products between the vectors in the training set and the vector one wants

to classify, with the weights given by the respective Lagrange multipliers. In the proposed

formulation, several of the computed Lagrange multipliers vanish. Furthermore, the nonzero

Lagrange multipliers correspond to the vectors in the training set which are closer to the

resulting optimal hyperplane. Thus, only a few vectors, among those originally present in

a given training set, are required to uniquely define the optimal hyperplane. This sparsity

representation constitutes another important advantage of the SVM formulation proposed

by Vapnik. The small number of vectors with nonzero Lagrange multipliers are the so-called

support vectors, and are the only vectors used to build the final representation of the optimal

hyperplane. Anderson and Bahadur [7] further developed the SVM algorithm and presented

a SVM formulation closer to its current form.

Cortes and Vapnik [24] extended the SVM algorithm for the linearly non-separable

data case, i.e., the case where there is some overlap between the points of two distinct cat-

egories for a given training set, and although one could still construct a hyperplane that

approximately separate the data, points close to the hyperplane can be misclassified. For

the linearly non-separable data case, the SVM formulation of Vapnik [127, 128] is not feasi-

ble because no hyperplane is capable of completely and unequivocally separating the data.

Cortes and Vapnik [24] circumvent this limitation by adding additional slack variables to the

SVM formulation and enabling misclassifications in the final predictions. This approach is

known as the soft margin classifier.
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Perhaps one of the most important and recognized feature of the SVM method is it

relatively easy extension to the nonlinear case, which ensures broad practical applicability

of the method. Vapnik [129, 130] extend the SVM algorithm for the nonlinear case, i.e.,

for the cases where a hyperplane is not capable of separating the data and one needs to

resort to some nonlinear separation hyper-surface. For the nonlinear case, Vapnik [129, 130]

proposed to first transform the vectors in the training set to some high-dimensional space,

the so-called feature space, by means of a nonlinear mapping, and then simply apply a linear

SVM in the feature space. The optimal hyperplane constructed in the feature space projects

into a hyper-surface on the original input space which is capable of separating the given

data. The underlying key idea is to choose a nonlinear mapping to a feature space where the

given data presents linear separability [92, 25, 115]. Some theoretical results [92, 25, 115]

support the existence of such a nonlinear mapping. However, a clear procedure of how to

derive this nonlinear mapping is yet to be discovered.

As discussed above, the nonlinear SVM formulation resembles the formulation for

the linear SVM, the main difference is that, with the nonlinear SVM, the input vectors

in the training set are first mapped to the feature space. As a consequence, the optimal

hyperplane constructed in the feature space requires only inner products of vectors in the

feature space. Aizerman et al. [4, 5] established a geometric interpretation of positive-definite

kernel functions as inner products in some high-dimensional feature space. A positive-definite

kernel function is any symmetric continuous function that satisfies Mercer’s condition [75].

In the formulation proposed by Vapnik [129, 130], there is no need to explicitly compute the

nonlinear mapping from the input space to the feature space, one can simply employ a kernel

function to compute the required inner products in the feature space. This replacement of

the inner products in the feature space by the computation of some kernel function became

known as the kernel trick, and is one of the main advantages of the nonlinear SVM machines.

In its current formulation, the SVM algorithm represents a nonlinear generalization of the

generalized portraits algorithm developed earlier by Vapnik and Lerner [134, 135]. A detailed

tutorial on SVM was presented by Burges [18].
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Vapnik [129, 130] also extended the SVM algorithm to the regression problem, a

method that has become known as the support vector regression (SVR). In the SVR algo-

rithm, Vapnik [129, 130] introduced the so-called Vapnik’s ε-insensitive loss function. The

SVR algorithm proceeds by building a virtual region with radius ε around the given data,

where ε is the parameter from the ε-insensitive loss function. The resulting regression func-

tion represents the smoothest function that can be enclosed by the virtual region of radius

ε. For the cases where a virtual region cannot envelop the given data, Vapnik [129, 130]

proposed the use of additional slack variables, which is a similar approach of the soft margin

classifier. Vapnik [129, 130] SVR formulation also results in a sparsity representation of the

unknown function delineated by the data, and the input vectors that are used to build the

regression function are also called support vectors. A comprehensive tutorial in SVR was

presented by Smola and Schölkopf [112].

Suykens and Vandewalle [118] and Suykens et al. [121] proposed a modification of the

Vapnik [129, 130] SVM formulation by employing a squared loss function in the minimiza-

tion problem formulation and replacing the inequality constraint in the Vapnik [129, 130]

formulation by an equality constraint. The authors refer to this approach as the least squares

support vector machine (LS-SVM). By using an equality constraint in the minimization prob-

lem, in the LS-SVM classifier the quadratic programming problem, which is solved in the

original Vapnik [129, 130] formulation, reduces to solving a linear system of equations with

dimension equal to the size of the given training set. To solve a linear system of equation

can be easier for several practical applications. However, the sparsity representation is lost

in the LS-SVM classifier. Hence, all vectors in the training set become support vectors, i.e.,

all vectors in a given training set are used to construct the optimal hyperplane. Suykens and

Vandewalle [119] and Suykens [117] extended the LS-SVM to the regression case, method

called the least squares support vector regression (LS-SVR). As pointed by Suykens [117],

the LS-SVR formulation represents a ridge regression [57] applied in the feature space.
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1.2 Research Objectives

As stated in the literature review, uncertainty quantification in reservoir produc-

tion forecasts using MCMC may requires an impractically large number of reservoir sim-

ulation runs to sample the target pdf. Consequently, applying MCMC for real reservoir

petroleum applications may be computationally prohibitive, even with the innovations of

Li and Reynolds [69] and Rafiee and Reynolds [95]. The overriding objective of this re-

search is to develop a methodology that requires ten thousand or less reservoir simulation

runs to characterization of the posterior pdf with the Metropolis-Hastings MCMC sampling

algorithm.

To obtain sufficient computational efficiency to promote the use of MCMC for uncer-

tainty quantification, this research investigates the use of a proxy model as a replacement for

the reservoir simulator. The proxy model investigated is the least-squares-support-vector-

regression (LS-SVR) model. The proxy model is given as an analytical expression which

allows one to directly compute the reservoir predictions, necessary to evaluate the posterior

pdf for a given reservoir model, up to the normalizing constant, without running the reser-

voir simulator. As knowledge of the posterior pdf’s normalizing constant is not required to

evaluate the acceptance probability of the Metropolis-Hastings MCMC sampling algorithm,

MCMC can be applied to characterize the posterior pdf without ever running the reservoir

simulator. As an evaluation of the analytical expression for the LS-SVR proxy requires a

tiny fraction of the time required to run the full reservoir simulation model, the cost of

generating Markov chains is relatively small, even if it proves necessary to construct chains

of lengths on the order of tens of thousands to several millions for the chain to converge to

the posterior pdf.

The first step of the proposed approach resembles one used in the works of Li and

Reynolds [69] and Rafiee and Reynolds [95], i.e., we first construct an approximation of the

posterior, then we use it as the proposal distribution in a Metropolis-Hastings MCMC frame-

work. We use a Gaussian mixture model (GMM) [100, 138] to approximate the posterior pdf.

We construct the GMM approximation centered at modes of the posterior pdf. However, the
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procedure we use to find modes is completely different than those of Li and Reynolds [69]

and Rafiee and Reynolds [95]. To find the modes, we solve several minimization problems,

starting at different initial guesses. To avoid the need of the adjoint solution, we propose

instead to use the gradient information from the LS-SVR proxy model. To achieve good

accuracy in the proxy predictions, we propose to solve all minimization problems simultane-

ously and use the model updates to iteratively enhance the proxy prediction. After finding

the modes needed to construct the GMM approximation, we obtain a computationally effi-

cient and sufficiently accurate LS-SVR proxy model which is used to replace the reservoir

simulator when generating the Markov chains, consequently, our algorithm does not require

any reservoir simulation runs to construct the Markov chain in order to characterize the pos-

terior pdf of reservoir model parameters conditioned to production data. Thus, uncertainty

quantification requires no runs of the reservoir simulator, only evaluations of the analytical

form of the LS-SVR which is very fast. Training of the LS-SVR proxy may require a few

thousand reservoir simulation runs, but this is computationally feasible. The main contri-

bution of this research is the development of methodology based on the LS-SVR proxy to

makes the application of MCMC practical for realistic problems.

1.3 Dissertation Organization

This dissertation is organized into five chapters and two appendices. In this Chapter

1, we present a statement of the history matching and uncertainty quantification prob-

lem, a pertinent literature review of the randomized maximum likelihood method, ensemble

methods originated from the Kalman filter, Markov chain Monte Carlo sampling and sup-

port vector regression, and state the research objectives. In Chapter 2, we discuss the

mathematical background for the Bayesian framework for history matching and uncertainty

quantification, the Gaussian mixture model as an approximation of the posterior pdf, and

the Metropolis-Hastings Markov chain Monte Carlo sampling algorithm. In Chapter 3, we

present the least-squares-support-vector-regression formulation and discuss the influence of

its training parameters, we present our proposed methodology which consists of two steps,
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firstly, we conduct several minimization problems to find modes of the posterior pdf, then we

use the modes to construct a Gaussian mixture model approximation of the posterior pdf,

secondly, we use the Gaussian mixture model approximation as the proposal distribution to

construct a Markov chain using the proxy model, we also present how to apply the proposed

methodology to large scale problems and present a tentative of improve the proxy predictions

using analytical solutions. In Chapter 4, we present applications of the developed method for

five cases, a toy problem, an one-dimensional reservoir model, a two-dimensional reservoir

model, the PUNQ-S3 case, and a large scale model based on the PUNQ-S3 case. In Chapter

5, we present the conclusions. In Appendix A, we present the training procedure for the

least squares support vector regression proxy model. Finally, in Appendix B, we discuss the

trust region minimization algorithm which is used to find modes of the posterior pdf.
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CHAPTER 2

MATHEMATICAL BACKGROUND

As discussed in the Chapter 1, the oil industry relies on reservoir simulation predic-

tions to assess the reservoir future performance. The predicted performance support the

key decisions related to the development of an oil field. Unfortunately, the simulation mod-

els, which are used to evaluate the reservoir future performance, are uncertain. One must

consider the influence of this uncertainty in the reservoir simulation predictions. In this

Chapter 2, we introduce and discuss some of the practical approaches adopted by the indus-

try to quantify this uncertainty, with focus on those embedded in the theoretical framework

of Bayesian statistics.

2.1 History Matching and Uncertainty Quantification in a Bayesian

Framework

Normally, an initial reservoir simulation model is constructed using available static

data. The static data usually include a geological model developed for the oil field, seismic-

based reservoir geometry, reservoir rock petrophysical properties derived from seismic in-

version data and calibrated with log and core data from drilled wells, and reservoir fluid

properties acquired from reservoir fluid samples collected during well testing procedures.

Most information employed to construct the initial reservoir model is uncertain. Some un-

certainty remains throughout the development cycle of the field. To rely on the reservoir

simulator predictions as an instrument to support decisions, one must quantify how the

uncertainty in the initial information is propagated to the reservoir simulator predictions.

As dynamic data from drilled wells became available, the initial reservoir model is

modified and calibrated so that its predictions became consistent with the observed dynamic
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data. The assimilation of dynamic data into the reservoir simulation model is called history-

matching. In the oil industry, history matching is the main technique employed to reduce

the uncertainty in the reservoir simulator predictions. Hence, in a reservoir history-matching

framework, given a mathematical representation of the fluid flow in the porous media, which

we regard here as the forward model, and some measurable reservoir response, regarded as

the observed data, one seeks to determine which physical properties of the reservoir, regarded

as a model, enables the reservoir simulator predictions to reproduce the measured reservoir

response.

Originally, the basic idea of history matching was to find a particular reservoir model

so that the forward model predictions were in good agreement with a given observed data.

Modern history matching is more nuanced. First, it is now well established that for a

reservoir model to be considered an acceptable history-matched model, it must not only

give predicted data in reasonable agreement with observed data, but the model must also

be consistent with seismic data, log data, core data or more generally a geological model

developed from static data. Secondly, it is now widely recognized that there exist numerous

models, in fact an infinite number, that are in acceptable agreement with both observed

data and some geological model. In practice, due to limited and noisy observed data, one is

unable to determine the real nature of the reservoir, therefore the true reservoir model is never

completely known. Thereby, the main objective has now switched to select a representative

ensemble of models from the total set of plausible reservoir history-matched models. The

selected ensemble can be used to provide a meaningful characterization of the uncertainty in

the reservoir properties, and perhaps more importantly, the reservoir simulator predictions

from the selected ensemble of models can provide an useful quantification of uncertainty

in future reservoir performance prediction. For the uncertainty characterization problems

addressed in this dissertation, the approach of Bayesian statistics is appropriate [122, 89].

The history-matching problem of finding a reservoir model that allows the reservoir

simulator to reproduce within the noise level the observed reservoir response is an inverse

problem. Inverse problems are usually ill-posed and in particular, for problems addressed in
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this dissertation, generally have multiple solutions. Here, the history matching problem is

approached from the Bayesian point of view. Consequently, instead of looking for a particular

best solution for the reservoir model which reproduces the observed reservoir response, we

characterize the solution of the inverse problem by means of a probability density function

(pdf) for the reservoir model parameters, conditioned to the observed data. The conditional

pdf is the so-called posterior pdf for the reservoir model parameters, whereas pdf for the

reservoir model parameters, which is constructed from static data, is referred to as the prior

pdf and is assumed to be known. In this context, the quantification of uncertainty in the

reservoir future performance reduces to the characterization of the posterior pdf for the

reservoir model parameters. In practice, the characterization of the posterior pdf translates

to the generation of a sample from this pdf, which results in a suite of realizations containing

highly probable and history-matched reservoir models that honor the observed data and are

also consistent with the prior reservoir model. Reservoir simulation runs are performed using

the generated samples, then the resulting predictions are used to quantify the uncertainty

in future reservoir performance.

Throughout, we represent the properties of the reservoir model, which will be cal-

ibrated to dynamic data, by the Nm−dimensional column vector of model parameters m,

and the forward model for the history-matching period by some function “gh” acting on the

model m, the predicted reservoir simulator response corresponding to the observed data, for

a given model m, is given by

dh = gh(m) . (2.1)

In Eq. 2.1, the Ndh−dimensional column vector dh represents the predicted data for a

given particular model m, which corresponds to observed data collected during the history-

matching period.

To simplify the formulation and enable a formal mathematical treatment of the prob-

lem, we make the normal assumption that the prior pdf for the uncertain vector m can be

well approximated by a multivariate Gaussian distribution, with prior mean denoted by mpr
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and prior Nm × Nm covariance matrix denoted by CM , i.e., m ∼ N (mpr, CM), with pdf

f(m) given by

f(m) =
1√

(2π)Nm |CM |
exp

[
−1

2
(m−mpr)

T C−1
M (m−mpr)

]
. (2.2)

In Eq. 2.2 and throughout this dissertation, | · | denotes the determinant of a given matrix.

Thus, in Eq. 2.2, |CM | denotes the determinate of CM . Throughout this dissertation, the

superscript “T” represents the transpose of a given matrix or vector, i.e., (m −mpr)
T in

Eq. 2.2 represents the transpose of the difference between the vectors m and mpr. Also in

Eq. 2.2 and throughout, the superscript “−1” represents the inverse of a given matrix, that

is, C−1
M represents the inverse of the matrix CM .

Normally, both mpr and CM are assumed known. The prior mean mpr usually rep-

resents an expectation for the reservoir properties based on static data, or, when little data

is available, based on knowledge from similar oil fields. The prior covariance CM is usually

constructed based on a previously selected covariance function which is also estimated from

static data.

Assuming that the function gh(m) truly describes the response of the real reservoir

during the history-matching period, and that the properties of the reservoir can be properly

parameterized by the model vector m, i.e., assuming that the modeling errors are negligible,

the Ndh−dimensional column vector of actual observed data, dh,obs, is given by

dh,obs = gh(mtrue) + ξtrue . (2.3)

In Eq. 2.3, mtrue represents the vector of true model parameters and ξtrue represents the

true Ndh− dimensional column vector of measurement errors. In this dissertation, following

Oliver et al. [89], it is further assumed that the vector of measurement errors follows a

multivariate Gaussian distribution, with zero mean and Nd×Nd covariance matrix CD, i.e.,

ξ ∼ N (0, CD). For production data measured at monthly intervals, the measurement errors

are usually assumed to be independent, and thus the covariance matrix CD is a diagonal
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matrix. Several authors [1, 111, 141, 30] have propose ways to estimate CD. Emerick and

Reynolds [30] actually applied a procedure to estimate covariance functions to estimate the

covariance function of measurements errors necessary to construct CD for both production

data, where CD turned out to be diagonal, and for a seismic data, where CD is generally

not diagonal. For water rate data, Emerick and Reynolds [30] found that measurement

errors tend to be proportional to the magnitude of the actual measurement acquired and

we generally use this assumption in the computational examples presented later in this

dissertation.

In the Bayesian approach for the history-matching inverse problem, one assumes that

some prior knowledge about the uncertain nature of the model m is known. Here, this

prior information is represented by the prior pdf given by f(m) in Eq. 2.2. Furthermore, in

the Bayesian approach the posterior pdf for the model m, i.e., the pdf conditioned to the

actual observed data dh,obs, denoted by f(m | dh,obs), or simply by π(m), is given by Bayes’

theorem as

π(m) ≡ f(m | dh,obs) =
f(dh,obs |m) f(m)

f(dh,obs)
= ad L(m | dh,obs) f(m) . (2.4)

In Eq. 2.4, L(m | dh,obs) ≡ f(dh,obs |m) represents the likelihood function of the model m

given a specific observed data vector dh,obs; again f(m) denotes the prior pdf for the model

m, and ad is the normalizing constant.

We have assumed that the measurement error vector ξ in Eq. 2.3 is multivariate

Gaussian with zero mean and covariance matrix CD, therefore, from Eq. 2.3 we get

L(m | dh,obs) =
1√

(2π)Nd |CD|
exp

[
−1

2

(
gh(m)− dh,obs

)T
C−1
D

(
gh(m)− dh,obs

)]
. (2.5)

Using Eqs. 2.2 and 2.5, the posterior pdf π(m) in Eq. 2.4 becomes

π(m) ≡ f(m | dh,obs) = a∗d exp
[
−O(m)

]
, (2.6)
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where a∗d is the normalizing constant, and the so-called objective function O(m) is given by

O(m) = +
1

2
(m−mpr)

T C−1
M (m−mpr)

+
1

2

(
gh(m)− dh,obs

)T
C−1
D

(
gh(m)− dh,obs

)
. (2.7)

From the Bayesian point of view, a sampling from the posterior pdf π(m) of Eq. 2.6 rep-

resents, in some sense, the solution of the history-matching inverse problem [89]. A set of

samples from the posterior pdf characterizes the uncertainty in the model parameters m,

conditioned to observed data, and is used to quantify the uncertainty in future forecasts

computed using the forward model gh(m), which is represented by a numerical reservoir

simulator in the petroleum industry.

The objective function O(m) of Eq. 2.7 is the summation of two terms, a model

mismatch term which originates from the prior pdf, and a data mismatch term which orig-

inates from the pdf for measurement errors. As discussed earlier, a history-match model

must provide reservoir predictions in a good agreement with the observed data. Hence, the

data mismatch part of the objective function evaluated for a history-match model results in

a small numerical value. How small this value should be to consider a model as a history-

match model is often not rigorously defined in practice. Besides, the history-matched model

must still represent a plausible sample from the posterior pdf, which means that the history-

matched model should provide a small value of the model mismatch part of the objective

function. Thus, in practice, finding a history-matched model means finding a minimum of

O(m) of Eq. 2.7. In this sense, the model mismatch term behaves as a regularization term

in the minimization problem designed to find a model which allows the reservoir simulator

to reproduce the observed data, which mitigates the ill-posedness of the history-matching

inverse problem [93].

Most minimization approaches applied to find minima of the objective function O(m)

of Eq. 2.7 require the gradient and the Hessian of the objective function. From Eq. 2.7, the

gradient, ∇mO(m), and the Hessian, H(m), of the objective function O(m) are given,
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respectively, by

∇mO(m) = C−1
M (m−mpr) +Gh(m)T C−1

D

(
gh(m)− dh,obs

)
(2.8)

and

H(m) = C−1
M +Gh(m)T C−1

D Gh(m) . (2.9)

In Eqs. 2.8 and 2.9, the Ndh × Nm matrix Gh(m) denotes the so-called sensitivity matrix,

which is given by

Gh(m) =
[
∇m

(
gh(m)T

)]T
. (2.10)

Consequently, the entry in the ith row and jth column of the sensitivity matrix Gh(m)

represents the partial derivative of the ith predicted datum (i.e., the ith entry of the data

vector dh) with respect to the jth model parameter (i.e., the jth entry of the model vector

m). For large scale reservoir history-matching problems, a computationally efficient and

sufficient accurate method to compute the sensitivity matrix Gh(m) for a particular reservoir

model m is to solve the adjoint problem [20, 19, 67, 98, 89]. In the adjoint formulation,

basically one needs to solve two systems of equations. First one solves the flow equations

forward in time to determine the reservoir predictions. During the solution of the flow

equations, the Jacobian matrix (or the values of the primary simulator variables necessary

to compute the Jacobian), at each time step, is preserved. Then, one solves the adjoint

equations backward in time to compute the sensitivity matrix. The main coefficient matrix

of the adjoint equations is given by the transpose of the Jacobian matrix at each time step

[67, 98]. Unfortunately, the majority of the commercial reservoir simulators adopted by the

oil industry are not capable of solving the adjoint problem. For practical applications, one

must resort to approximate techniques to determine the sensitivity matrix, as we discuss

later in this dissertation.

For petroleum reservoir applications, the vector of reservoir model parameters, m,

incorporates different reservoir properties [98]. Normally, these properties have different
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numerical scales, thus, their variances also have different numerical scales. Consequently,

the Hessian of the objective function can be ill conditioned, which impacts the convergence

of the adopted algorithm used for minimizing the objective function. To alleviate this issue,

the following normalization of the vector m can be applied

m̂ = C
−1/2
M (m−mpr) . (2.11)

In Eq. 2.11, m̂ represents the dimensionless counterpart of the vector m, and C
−1/2
M denotes

the inverse of the square root of the prior covariance matrix CM . The calculation of C
−1/2
M is

computationally expensive for large scale problems. Usually, it is assumed that a computa-

tionally feasible calculation of C
−1/2
M can be accomplished by Cholesky decomposition [6, 89].

The adopted minimization algorithm is then conducted using the dimensionless vector m̂,

instead of the original vector m.

For similar reasons, the vector of predicted data corresponding to the history-matching

period, dh, is also normalized as

d̂h(m̂) = C
−1/2
D

(
gh(m)− dh,obs

)
. (2.12)

In Eq. 2.12, d̂h(m̂) represents the dimensionless counterpart of dh = gh(m), and C
−1/2
D

denotes the inverse of the square root of the measurement error covariance matrix CD. As

discussed earlier, CD is usually assumed to be diagonal for production data, therefore, the

computation of C
−1/2
D is straightforward.

Using the dimensionless transformations of Eqs. 2.11 and 2.12, the objective function

O(m), given by Eq. 2.7, can be rewritten as

OD(m̂) =
1

2
m̂T m̂+

1

2
d̂h(m̂)T d̂h(m̂) . (2.13)

It is straightforward to verify that objective function O(m), given by Eq. 2.7, and the

dimensionless objective function OD(m̂), given by Eq. 2.13, yield exactly the same numerical
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value for m and m̂, respectively, provided that the vectors m and m̂ are related by Eq. 2.11.

The gradient of OD(m̂) with respect to m̂ and the Hessian of OD(m̂) are given,

respectively, by

∇m̂OD(m̂) = m̂+Gh,D(m̂)T d̂h(m̂) , (2.14)

and

H(m̂) = INm +Gh,D(m̂)T Gh,D(m̂) , (2.15)

In Eqs. 2.14 and 2.15, INm denotes the Nm × Nm identity matrix, and Gh,D(m̂) represents

the dimensionless sensitivity matrix. The dimensionless sensitivity matrix can be defined as

Gh,D(m̂) =
[
∇m̂

(
d̂h(m̂)T

)]T
. (2.16)

The dimensionless sensitivity matrix Gh,D(m̂) is related to Gh(m) by [140]

Gh,D(m̂) = C
−1/2
D Gh(m)C

1/2
M , (2.17)

where the right-hand-side of Eq. 2.17 is the conventional definition of the dimensionless

sensitivity matrix.

2.1.1 The Maximum a Posteriori Estimate

Until fairly recently, the history-matching problem was focused on finding the best

reservoir model able to reproduce the observed data, while consistent with the prior reservoir

model. This best model represents the global minimizer of the objective function O(m) of

Eq. 2.7, which is called the maximum a posteriori (MAP) estimate.

For virtually all practical applications, the relationship between the model m and the

data predictions dh is nonlinear. Consequently, the MAP estimate itself does not characterize

the posterior pdf, and in fact, a global minimizer of O(m) of Eq. 2.7 may not be unique.

However, the MAP estimate plays an important role for the case of a linear relationship

between the model m and the predictions dh, i.e., for the case of linear forward model, as
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presented next.

For a linear function gh(m), Eq. 2.1 reduces to

dh = gh(m) = Gh,Lm , (2.18)

where the Ndh×Nm matrix Gh,L denotes the sensitivity matrix for the linear case. As before,

the entry in the ith row and jth column of the sensitivity matrix Gh,L represents the partial

derivative of the ith predicted datum (i.e., the ith entry of the data vector dh) with respect

to the jth model parameter (i.e., the jth entry of the model vector m). Note that Gh,L does

not depend on the model m for the linear forward model case.

With the linear relationship of Eq. 2.18, the posterior pdf of Eq. 2.6 becomes

πL(m) = a∗d exp

[
−1

2
(m−mpr)

T C−1
M (m−mpr)

]
×

exp

[
−1

2

(
Gh,Lm− dh,obs

)T
C−1
D

(
Gh,Lm− dh,obs

)]
, (2.19)

which can be rewritten as [89]

πL(m) = a∗d exp

[
−1

2
(m−mpos)

T C−1
M,pos (m−mpos)

]
, (2.20)

where

mpos = mpr − (C−1
M +GT

h,LC
−1
D Gh,L)−1 GT

h,LC
−1
D (Gh,Lmpr − dh,obs) , (2.21)

and

CM,pos = (C−1
M +GT

h,LC
−1
D Gh,L)−1 . (2.22)

The posterior pdf πL(m) of Eq. 2.20 represents a multivariate Gaussian distribution with

posterior mean mpos and posterior covariance matrix CM,pos. Hence, under Gaussian as-

sumption for both the prior and measurement errors pdf, for linear relationship between the
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model m and the data predictions dh, the posterior pdf for the reservoir model parameters

is a Gaussian distribution. In this case, the posterior pdf is completely characterized by its

mean and covariance matrix given, respectively, by Eqs. 2.21 and 2.22. Under the uncertainty

quantification problem addressed here, it is theoretically easy to generate samples from a

Gaussian distribution to quantify the uncertainty in future reservoir performance [26, 6, 22].

However, when CM,pos becomes extremely large, it is still not be computational feasible to

sample πL(m) because sampling requires computation of a square root or Cholesky decompo-

sition of CM,pos [6, 89]. It is evident from Eq. 2.20 that mpos represents the global minimizer

of the objective function for the linear forward model case. Therefore, the posterior mean

mpos also represents the MAP estimate. This is an expected result, since in the linear case,

mpos represents the “most probable” reservoir model.

2.1.2 The Randomized Maximum Likelihood

To generate samples from the posterior pdf, Oliver et al. [87] introduced the random-

ized maximum likelihood (RML). A similar approach was also independently proposed by

Kitanidis [64]. To generate Ne samples from the posterior pdf π(m) of Eq. 2.6, the RML

method first samples Ne unconditioned realizations from the prior pdf. We denote each

unconditioned realizations as muc,`, for ` = 1, 2, . . . , Ne, i.e., muc,` ∼ N (mpr, CM). Then,

under Gaussian assumption for both the prior and measurement errors pdf, the method

proceeds by solving Ne minimization problems in the form

minimize
m

O`(m |muc,`, dh,uc,`) = +
1

2
(m−muc,`)

T C−1
M (m−muc,`)

+
1

2

(
gh(m)− dh,uc,`

)T
C−1
D

(
gh(m)− dh,uc,`

)
, (2.23)

for ` = 1, 2, . . . , Ne. In Eq. 2.23, the vector dh,uc,` represents a perturbation of the actual

observed data dh,obs, which is obtained by adding a random realization ξ` ∼ N (0, CD) of
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the measurement errors to the actual observed data, that is

dh,uc,` = dh,obs + ξ` for ` = 1, 2, . . . , Ne , (2.24)

consequently, dh,uc,` ∼ N (dh,obs, CD).

For the linear forward model case, the resulting set of Ne minima of O`(m) in Eq. 2.23,

for ` = 1, 2, . . . , Ne, represent proper samples of the posterior pdf π(m) of Eq. 2.6 [97].

Unfortunately, for nonlinear forward model there is no guarantee that the samples generated

with RML properly characterize the posterior pdf.

2.2 Gaussian Mixture Model Approximation using the Distributed

Gauss-Newton Method

An approximate approach to generate samples from the posterior π(m) of Eq. 2.6 was

proposed by Gao et al. [39]. The proposed methodology proceeds by first constructing an ap-

proximation of the posterior pdf π(m) of Eq. 2.6 using the Gaussian mixture model (GMM)

probability distribution [100, 138]. Then, the authors proposed to generate an approximate

set of samples from the posterior pdf by simply sampling its GMM approximation.

A GMM is a probability distribution which is formed by a weighted summation of a

certain number of Gaussian distributions [100]. Hence, representing the GMM probability

distribution by πGMM(m), we have

πGMM(m) =

Ng∑
`=1

w` N (m`, CM`) . (2.25)

In Eq. 2.25, Ng represents the number of Gaussian distributions, N (m`, CM`) denotes a

Gaussian distribution with mean m` and covariance matrix CM`, and w` > 0, for ` =

1, 2, . . . , Ng, represents the weight of each Gaussian distribution. In order for πGMM(m) of
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Eq. 2.25 to be a probability distribution, the constraint

Ng∑
`=1

w` = 1 (2.26)

must be satisfied.

Gao et al. [39] advocated that a properly constructed GMM probability distribution

could satisfactorily represent the posterior pdf for practical applications. However, Rafiee

[93] has shown that this statement does not hold for several applications. Gao et al. [39]

suggested to build the GMM approximation centered around modes of the posterior pdf

π(m) of Eq. 2.6. Modes of a pdf represent local points of maximum probability. Therefore,

the modes of the posterior pdf π(m) of Eq. 2.6 represent minima of the objective function

O(m) of Eq. 2.7, or equivalently, minima of the dimensionless objective function OD(m̂) of

Eq. 2.13. Consequently, in the methodology proposed by Gao et al. [39], one needs to find

several minima of the objective function OD(m̂) of Eq. 2.13. Each different minimum of

OD(m̂) which is found can be used as the mean of one Gaussian distribution in the GMM

approximation. Furthermore, to construct each Gaussian in the GMM approximation one

must be able to determine the corresponding covariance matrix in a feasible manner. This

is accomplished by using the inverse Hessian, as presented later in this dissertation.

2.2.1 The Distributed Gauss-Newton Method

To find the minima of the objective function OD(m̂) of Eq. 2.13, Gao et al. [39]

recommend that we use the distributed Gauss-Newton (DGN) optimization method [41].

Basically, the DGN method employs a set of reservoir models and its corresponding reservoir

simulation predictions to compute an approximation of the sensitivity matrix for a given

model. The approximated sensitivity matrix is used to compute both the gradient and the

Hessian of the dimensionless objective function, as presented in Eqs. 2.14 and 2.15.

Using the approximate sensitivity matrix, the DGN method proceeds by solving sev-

eral minimization problems, each one stating from a different selected initial guess. During
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the minimization process, the original data set used to compute the approximation of the

sensitivity matrix is dynamically updated. The same data set is shared among all mini-

mization problems which are being performed. At the end of the minimization process, the

minima found which yield values of the dimensionless objective function less than a given

threshold are used to construct the GMM approximation of the posterior pdf. Furthermore,

the covariance matrix for each Gaussian is given by the inverse Hessian of the objective

function computed at each minimum found. The Hessian is calculated for each minimum

using the approximate sensitivity matrix computed at the respective minimum using the

final data set. Gao et al. [39] suggested the use of a trust region algorithm [40] to solve each

minimization problem, as we describe latter in this section.

In an attempt to find Ne distinctive modes of OD(m̂) of Eq. 2.13, the DGN method

proceeds by first randomly selecting Ne initial base-cases, m`, for ` = 1, 2, . . . , Ne, from the

prior pdf for the reservoir model parameters, i.e., the pdf f(m) of Eq. 2.2. Each one of the Ne

selected base-cases represent an initial guess for the Ne trust-region minimization problems

which are solved simultaneously. To improve the initial approximation of the sensitivity

matrix, additional reservoir models can also be randomly selected from the prior pdf. The

additional reservoir models together with the Ne initial base-cases form a set of Nt reservoir

models.

The DGN methods assumes that Nt is greater than the number of uncertain parame-

ters. For the Bayesian framework adopted in this dissertation, the total number of uncertain

parameters is given by Nm, i.e., the dimension of the reservoir model parameters m. For

practical application, Nm can potentially be equal to or larger than the number of reservoir

simulation grid-blocks. To obviate this difficulty, Gao et al. [41] suggested applying the DGN

method together with some dimension-reduction technique, such as the principal component

analysis (PCA) [137, 110].

We discuss the PCA method in detail later in this dissertation. For now, let us assume

that one is able to apply some dimension-reduction technique and represent the vector m

by its reduced-dimension counterpart z. We assume that the resulting dimension Nz of the
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vector z is such that Nz � Nm. In this case, the corresponding objective function is given

by

O(z) =
1

2
(z − zpr)

T C−1
Z (z − zpr) +

1

2

(
gh(z)− dh,obs

)T
C−1
D

(
gh(z)− dh,obs

)
. (2.27)

In Eq. 2.27, zpr represents the prior mean of the Nz−dimensional uncertain vector z, CZ

denotes the Nz × Nz prior covariance matrix of z, and gh(z) represents the reservoir sim-

ulator predictions as a function of the reduced dimension vector z. As we present later

in this dissertation, since we assume that m follows a multivariate Gaussian distribution,

by applying the PCA method the reduced dimension vector z also follows a multivariate

Gaussian distribution, i.e., z ∼ N (zpr, CZ).

Applying similar normalization as in Eqs. 2.11 and 2.12, i.e.,

ẑ = C
−1/2
Z (z − zpr) , (2.28)

and

d̂h(ẑ) = C
−1/2
D

(
gh(z)− dh,obs

)
, (2.29)

the dimensionless objective function is given by

OD(ẑ) =
1

2
ẑT ẑ +

1

2
d̂h(ẑ)T d̂h(ẑ) . (2.30)

In Eq. 2.30, ẑ denotes the dimensionless counterpart of the vector z, and d̂h(ẑ) represents the

dimensionless reservoir predictions as a function of ẑ. The dimensionless objective function

OD(ẑ) of Eq. 2.30, as a function of ẑ, is the objective function that is indeed minimized to

find the modes of the posterior pdf.

Following the DGN methodology, one converts all Nt models in the data set to their

respective dimensionless counterparts. Hence, the initial base-cases are denoted as z`, for

` = 1, 2, . . . , Ne. Next, the forward model, i.e., the reservoir simulator, is run for all Nt
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reservoir models to generate the reservoir predictions. The Nt reservoir models together

with each respective reservoir simulation predictions form the initial data set which is used

to approximate the sensitivity matrix. It is worth to stress here that using the PCA method

the relation between m and z is a bijection. Therefore, although the vector ẑ is used in the

minimization process, as explained below, when one needs to run the reservoir simulation,

the unique corresponding reservoir model m is used.

For a particular reduced dimension reservoir model zp, the DGN method approxi-

mates the sensitivity matrix at zp as follows. First, we select the Nz reservoir models zc,

for c = 1, 2, . . . , Nz, among the Nt reservoir models in the data set which are closest to

the given model zp. The distance between any two models is computed using the Euclidean

norm. With the selected Nz closest models, the approximate sensitivity matrix, Gh,A(zp),

for the model zp is computed as discussed below.

For each zc, for c = 1, 2, . . . , Nz, in the set of Nz closest models to zp, a first order

Taylor series expansion gives

dh(z`) = dh(zp) +Gh,A(zp) [z` − zp] for ` = 1, 2, . . . , Nz . (2.31)

Letting ∆Dp
dh

denotes the Ndh ×Nz matrix whose `th column is given by dh(z`) − dh(zp),

and ∆Zp denotes the Nz×Nz matrix whose `th column is given by z`−zp, the linear system

given in Eq. 2.31 can be rewritten as

∆Dp
dh

= Gh,A(zp) ∆Zp , (2.32)

or equivalently

(∆Zp)T (Gh,A(zp))
T =

(
∆Dp

dh

)T
, (2.33)

which can be solved for the columns of (Gh,A(zp))
T in order to find Gh,A(zp). Note this

assumes that the Nz×Nz matrix ∆Zp is non-singular, which is only the case if no two of the

selected models z` are identical. However, to attempt to ensure that the matrix (∆Zp)T is

34



not ill-conditioned, we would make sure that the z`’s chosen to compute Gh,A(zp) are not too

close. Note the entry in ith row, for i = 1, 2, · · · , Ndh , and `th column, for ` = 1, 2, · · · , Nz,

of matrix ∆Dp
dh

is given by dh,i(z`) − dh,i(zp), where dh,i denotes the ith entry component,

for i = 1, 2, · · · , Ndh , of the column vector of predicted data, dh. Similarly, the entry in jth

row, for j = 1, 2, · · · , Nz, and `th column, for ` = 1, 2, · · · , Nz, of matrix ∆Zp is given by

z`,j − zp,j, where z`,j is the jth entry of the column vector z`, and zp,j is the jth entry of the

column vector zp.

Gao et al. [41] adopted a trust region minimization algorithm to minimize OD(ẑ) of

Eq. 2.30. The trust region algorithm is presented in Appendix B. At each iteration of each

Ne minimization problem conducted, the trust region algorithm search for minima of the ob-

jective function OD(ẑ) of Eq. 2.30 by constructing a local quadratic approximation of OD(ẑ)

around the current dimensionless updated base-case. Denoting the quadratic approximation

for the `th minimization problem, for ` = 1, 2, . . . , Ne, at the nth iteration, as q
(n)
` (δẑ), one

gets

q
(n)
` (δẑ) = OD(ẑ

(n)
` ) +∇ẑOD(ẑ

(n)
` )T δẑ +

1

2
δẑT H(ẑ

(n)
` ) δẑ . (2.34)

In Eq. 2.34, δẑ represents the search direction, ẑ
(n)
` denotes the current estimate of ẑ of

the `th minimization problem at the nth iteration, which is the current estimate of the

minimum of OD(ẑ) of Eq. 2.30 for the `th minimization problem. As discussed earlier, ẑ
(n)
`

is the dimensionless counterpart of z
(n)
` , where these two vectors are related by

ẑ
(n)
` = C

−1/2
Z (z

(n)
` − zpr) ⇐⇒ z

(n)
` = C

1/2
Z ẑ

(n)
` + zpr . (2.35)

In this context, z
(n)
` represents the current estimate of the minimum of the minimum of O(z)

of Eq. 2.27 for the `th minimization problem at the nth iteration. Notice that for n = 0, the

required z
(0)
` , for ` = 1, 2, . . . , Ne, are given by the initial selected base-cases.

Also in Eq. 2.34, OD(ẑ
(n)
` ) is computed using Eq. 2.30 for ẑ = ẑ

(n)
` . Furthermore, the

required gradient, ∇ẑOD(ẑ), and Hessian, H(ẑ), of OD(ẑ) of Eq. 2.30 are given, respectively,
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by

∇ẑOD(ẑ) = ẑ +Gh,D(ẑ)T d̂h(ẑ) , (2.36)

and

H(ẑ) = INz +Gh,D(ẑ)T Gh,D(ẑ) , (2.37)

In Eqs. 2.36 and 2.37, INz denotes the Nz ×Nz identity matrix, and Gh,D(ẑ) represents the

dimensionless Ndh ×Nz sensitivity matrix computed by

Gh,D(ẑ) = C
−1/2
D Gh(z)C

1/2
Z , (2.38)

where Gh(z) denotes the Ndh ×Nz sensitivity matrix given by

Gh(z) =
[
∇z

(
gh(z)T

)]T
. (2.39)

In the DGN method, the gradient, ∇ẑOD(ẑ
(n)
` ), and Hessian, H(ẑ

(n)
` ), required in

Eq. 2.34 are computed, respectively, using Eqs. 2.36 and 2.37 for ẑ = ẑ
(n)
` , with the approxi-

mate sensitivity matrix Gh,A(zp), computed by solving the system of Eq. 2.33 for zp = z
(n)
` ,

as a replacement of the sensitivity matrix Gh(z) in Eq. 2.38.

To apply the complete procedure with the equations described in Appendix B, one

should set x
(n)
p = ẑ

(n)
` , δx = δẑ, O(x

(n)
p ) = OD(ẑ

(n)
` ), G(x

(n)
p ) = ∇ẑOD(ẑ

(n)
` ) and H(x

(n)
p ) =

H(ẑ
(n)
` ), for ` = 1, 2, . . . , Ne, so Eqs. 2.34 and B.5 exactly correspond.

As described in Appendix B, when the quadratic approximation q
(n)
` (δẑ) of Eq. 2.34

represents a reasonable approximation of OD(ẑ) of Eq. 2.30, the updated model replaces the

current dimensionless base-case ẑ
(n)
` (see Algorithm B.1), as described next. Notice that to

assess the quality of the quadratic approximation, one needs to run the reservoir simulator

to compute the predictions for the updated model. For the `th minimization problem at the

nth iteration, the current dimensionless base-case, which represents the current estimate of
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the minimum of OD(ẑ) of Eq. 2.30, is updated by

ẑ
(n+1)
` = ẑ

(n)
` + δẑ∗ for ` = 1, 2, . . . , Ne . (2.40)

In Eq. 2.40, δẑ∗ represents the solution of the trust region sub-problem (see Eqs. B.5 and

B.6).

In the DGN methodology, the data set used to evaluate the approximation of the

sensitivity matrix is dynamically updated by the incorporation of the updated base-case

z
(n+1)
` at each iteration of each minimization problem. z

(n+1)
` is computed from ẑ

(n+1)
` using

Eq. 2.35. However, Gao et al. [41] suggested that one first verify that the distance of the

updated base-case tor the models already in the data set is not too small. Specifically, they

compute

d
(n)
`,min = arg min

zt ∈Data Set

∥∥∥z(n+1)
` − zt

∥∥∥
2
, (2.41)

where zt, for t = 1, 2, . . . , Nt, represents the models in the current data set, and ‖ · ‖

denotes the Euclidean norm. The model z
(n+1)
` is added to the current data set whenever

d
(n)
`,min > dmin, where the parameter dmin is a minimum distance specified by the user. Gao

et al. [41] indicated that at each iteration, each updated model in the data set become closer

to one of the minima of OD(ẑ) of Eq. 2.30, consequently, the approximate sensitivity matrix

becomes more accurate as the minimization process proceeds. It is important to emphasize

that in order to incorporate the model z
(n+1)
` into the current data set, one needs to run the

reservoir simulation to compute the corresponding predictions. However, these predictions

were already computed when assessing the quadratic approximation, thus no extra reservoir

simulation is required to add the updated model to the data set.

Gao et al. [41] suggested that we regard a particular minimization problem as con-

verged whenever no improvement of the estimate of the minimum is observed or the updated

trust region radius becomes smaller than a given threshold δmin (see Algorithm B.1). The

parameter δmin is defined by the user. Following the procedure presented in Appendix B, we
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evaluate the improvement of the estimate of the minimum of OD(ẑ) of Eq. 2.30 as

ρ
(n)
`,stop ≡

abs
[
OD(ẑ

(n+1)
` )−OD(ẑ

(n)
` )
]

abs
[
OD(ẑ

(n+1)
` )

] . (2.42)

We consider that no improvement is obtained whenever ρ
(n)
`,stop ≤ εmin, where εmin is an

accuracy parameter defined by the user. A numerical value in the order of εmin = 1.0E − 6

seems to suffice for practical problems. The DGN method is regarded as converged when all

minimization problems converge. Algorithm 2.1 summarizes the DGN method.

2.2.2 The Gaussian Mixture Model Approximation of the Posterior

Using the DGN method one can find up to Ne local minima of the objective function

OD(ẑ) of Eq. 2.30, or equivalently, find Ne local minima of the objective function O(z)

of Eq. 2.27. Gao et al. [39] recommended that one construct the GMM approximation

of the posterior pdf using only those minima found which result in an objective function

value less than a given threshold. Let zs, for s = 1, 2, . . . , Ns, represent the Ns selected

modes of the posterior among the Ne minima found. Consequently, the values of O(zs)

computed using Eq. 2.27 with z = zs, for s = 1, 2, . . . , Ns, have numerical value less

than a given threshold. Furthermore, Gao et al. [39] suggested separating the Ns selected

minima into distinct clusters. By clustering the modes found of the posterior pdf, one avoids

having essentially the same mode represented by more than one Gaussian in the GMM

approximation.

The procedure suggested by Gao et al. [39] to cluster the Ns minima found was to first

compute the approximated sensitivity matrix Gh,A(zs) for each selected mode. Therefore, for

a particular mode the approximated sensitivity matrix is computed using Eq. 2.33 and the Nz

closest models to the mode, which are selected among the models in the final updated data

set which was obtained at the end of the minimization process. For two different selected
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Algorithm 2.1: The DGN Method

1. Select Ne base-cases m`, for ` = 1, 2, . . . , Ne, by sampling the prior pdf for m. If
required/desired, sample additional models to obtain a total of Nt reservoir models.

2. Apply a dimension-reduction technique to transform the Nt reservoir models to their
reduced-order counterparts z’s. The base-cases become z`, for ` = 1, 2, . . . , Ne.

3. Run the reservoir simulator for all Nt reservoir models and assemble the initial data
set.

4. Define the trust region parameters η1 , η2 and δmax (see Algorithm B.1), the minimum
distance for updating the data set, dmin, and the convergence criteria εmin and δmin.

5. Set n = 0 , rconv = 0 , and z
(n)
` = z` , for ` = 1, 2, . . . , Ne.

6. While ( rconv < Ne )

• For ( ` = 1 to Ne − rconv )

◦ Select the Nz models in the data set which are closest to z
(n)
` and compute the

approximate sensitivity matrix Gh,A(z
(n)
` ) by solving Eq. 2.33 with zp = z

(n)
` .

◦ Compute ẑ
(n)
` by using Eq. 2.35. Compute Gh,D(ẑ

(n)
` ) by using Eq. 2.38 for

Gh(z) = Gh,A(z
(n)
` ). Compute OD(ẑ

(n)
` ), ∇ẑOD(ẑ

(n)
` ), and H(ẑ

(n)
` ) by using,

respectively, Eqs. 2.30, 2.36 and 2.37 for ẑ = ẑ
(n)
` .

◦ Assemble the quadratic approximation q
(n)
` (δẑ) of Eq. 2.34, and solve ONE

iteration of the trust region minimization algorithm to compute ẑ
(n+1)
` and

the updated trust region radius δ
(n)
` (see Algorithm B.2). Compute ρ

(n)
stop by

using Eq. 2.42.

◦ Compute d
(n)
`,min by using Eq. 2.41. If d

(n)
`,min > dmin, ADD z

(n+1)
` to the data

set. Set Nt = Nt + 1.

◦ If ( ρ
(n)
stop ≤ εmin or δ

(n)
p ≤ δmin )

− Set rconv = rconv + 1 .
− REMOVE the `th minimization problem from the minimization loop, and

reorder the remaining (non-converged) minimization problems from 1 to
Ne − rconv.

End If

End For

• Set n = n+ 1
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minima zsi and zsj , for 1 ≤ si 6= sj ≤ Ns, whenever

∥∥∥Gh,A(zsi)−Gh,A(zsj)
∥∥∥
F
< δF , (2.43)

and ∥∥∥zsi − zsj∥∥∥ < δE , (2.44)

one puts zsi and zsj in the same cluster. Otherwise, zsi and zsj belong to two distinct

clusters. In Eqs. 2.43 and 2.44, ‖ · ‖F represents the Frobenius norm [45], and δF and δE

represents two user defined precision parameters.

By comparing the Ns selected minima, one determines the total number of clusters,

which is denoted by Nc. Then, Gao et al. [39] recommend averaging the modes and approx-

imate sensitivity matrices within each distinct cluster, i.e.,

zc =
1

Nct

Nct∑
ν=1

zs,cν for c = 1, 2, . . . , Nc , (2.45)

and

Gh,A(zc) =
1

Nct

Nct∑
ν=1

Gh,A(zs,cν ) for c = 1, 2, . . . , Nc . (2.46)

In Eqs. 2.45 and 2.46, zc and Gh,A(zc), for c = 1, 2, . . . , Nc, represents, respectively, the

average mode and average sensitivity matrix for the cth cluster, Nct represents the total num-

ber of modes which belongs to the cth cluster, and zs,cν represents the νth mode belonging

to the cth cluster.

The GMM approximation of the posterior pdf is then constructed using all clusters

found, which results in

πGMM(z) =
Nc∑
c=1

wc N (zc, Czc) . (2.47)

In Eq. 2.47, wc must satisfy the condition given by Eq. 2.26, each Gaussian’s mean zc, for

c = 1, 2, . . . , Nc, is given by Eq. 2.45, and each Gaussian’s Nz ×Nz covariance matrix Czc,
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for c = 1, 2, . . . , Nc, is computed as

Czc =
[
H(zc)

]−1

=
[
C−1
Z +Gh,A(zc)

T C−1
D Gh,A(zc)

]−1

, (2.48)

that is, Czc is given by the inverse of the Hessian H(zc) of the objective function O(z) of

Eq. 2.27, computed at z = zc, for c = 1, 2, . . . , Nc.

The pdf πGMM(z) of Eq. 2.47 is the GMM probability distribution used by Gao et al.

[39] to approximate the posterior pdf for reservoir model parameters. Gao et al. [39] sug-

gested that one simply needs to sample this GMM to quantify the uncertainty in reservoir

predictions.

2.3 Sampling the Posterior Probability Distribution Function using Markov

Chain Monte Carlo

A rigorous technique to sample any given pdf is the Markov chain Monte Carlo

(MCMC) method. In this research, we adopt the Metropolis-Hastings [76, 56] MCMC al-

gorithm to sample the posterior pdf π(m) of Eq. 2.6. The Metropolis-Hastings algorithm

is given in Algorithm 2.2. As discussed earlier, starting from any initial plausible state,

the Metropolis-Hastings algorithm is guaranteed to converge [125]. Hence, after the burn-in

period ends, subsequently generated states represent samples from the target distribution.

A prominent characteristic of the Metropolis-Hastings algorithm is that the Metropolis-

Hastings acceptance probability of Eq. 2.49 only depends on ratios of the target pdf. Con-

sequently, one only needs to know the target pdf up to a normalizing constant. This is an

important feature for petroleum reservoir applications, since it is computationally infeasible

to determine the normalizing constant a∗d of the posterior pdf π(m) of Eq. 2.6.

As one can see in Algorithm 2.2, the Metropolis-Hastings algorithm requires the se-

lection of a proposal distribution. The proposal distribution is used for both proposing a new

candidate state in the chain and evaluating the Metropolis-Hastings acceptance probability

of Eq. 2.49. It is widely recognized that the computational efficiency of the the Metropolis-
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Algorithm 2.2: Metropolis-Hastings MCMC algorithm

1. Select the proposal distribution, q(m̃s+1|ms), which gives the probability of proposing
a candidate for the new state in the chain, m̃s+1, given the current state ms.

2. Set the state counter s = 0 and choose the initial state, m0, in the chain.

3. From the current state, ms, propose a new candidate state in the chain, m̃s+1, by
sampling the proposal distribution.

4. Evaluate the Metropolis-Hastings acceptance probability, α(ms, m̃s+1), which is given
by

α(ms, m̃s+1) = min

{
1,
π(m̃s+1) q(ms| m̃s+1)

π(ms) q(m̃s+1|ms)

}
. (2.49)

5. Generate a random number us from the uniform distribution U [0, 1].

6. If us < α(ms, m̃s+1), the proposed candidate is accepted as the new state in the
chain, i.e., set

ms+1 = m̃s+1 .

If us ≥ α(ms, m̃s+1), the proposed candidate is rejected and the current state is
repeated in the chain, i.e., set

ms+1 = ms .

7. Increase the chain counter by making s = s+ 1 and return to Step 3 until the desired
chain length is achieved.

Hastings algorithm, i.e., its convergence rate, greatly depends on the particular choice of the

proposal distribution. In fact, Metropolis et al. [76] recognized that the performance of their

newly proposed algorithm was greatly dependent on the particular tuning choice of their

proposal distribution parameters. For practical applications, the burn-in period can also

represent a challenge. An excessively long burn-in period can render the method infeasible

for cases in which the evaluation of the target pdf is computationally expensive, as is the

case for the posterior pdf consider in this dissertation. A judicious selection of the proposal

distribution can potentially reduce the burn-in period, which can significantly increase the

computational efficiency of the Metropolis-Hastings algorithm.

2.3.1 The Random Walk Metropolis-Hastings Algorithm
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Many variants of the Metropolis-Hastings algorithm adopt a Gaussian proposal dis-

tribution, qgp(m̃s+1|ms), which is centered at the current state ms, i.e.,

qgp(m̃s+1|ms) =
1√

(2π)Nm |Cgp|
exp

[
−1

2
(m̃s+1 −ms)

T C−1
gp (m̃s+1 −ms)

]
. (2.50)

This approach is normally referred to as the random walk Metropolis-Hastings algorithm.

The covariance matrix Cgp in the pdf of Eq. 2.50 has to be defined beforehand. When

a prior pdf is available, normally a scaled prior covariance matrix is adopted in the proposal

distribution qgp(m̃s+1|ms) of Eq. 2.50, i.e., Cgp = σ2CM , for some scaling factor σ. When no

reasonable prior covariance matrix is known, usually Cgp is set equal to the identity matrix

multiplied by some scaling factor, i.e.,

Cgp = σ2 INm . (2.51)

In Eq. 2.51, the scaling factor is represented by σ, and INm denotes the Nm−dimensional

identity matrix. In this case, the efficiency of the Metropolis-Hastings algorithm depends on

the particular choice of the scaling factor σ. It is well recognized that using a scaling factor

that is small results in a high acceptance rate. In this context, the acceptance rate denotes

the ratio between the number of accepted new states in the chain and the total number

of states proposed, i.e., the current length of the Markov chain. Although a small scaling

factor will give a high acceptance rate, the resulting Markov chain will not be well mixed.

The main reason is that for a small scaling factor the proposed new candidate states in the

chain will potentially be close to the current state. Consequently, it will take an excessive

large number of states in the chain to properly investigate and characterize the target pdf.

Conversely, using a too large value of the scaling factor tends to result in a small acceptance

rate. Basically, with a large scaling factor the proposed candidates to new state in the

chain tend to be far from the current state, which could represent regions of low probability.

Therefore, the resulting Markov chain often tends to remain trapped at the same state for a

long period, i.e., for many iterations. Hence, again an excessive large number of states may
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be required to properly characterize the target pdf.

For a multivariate target pdf in which the components of the random vector are

independent, Roberts et al. [102] and Gelman et al. [43] showed that the optimal acceptance

rate, for the random walk Metropolis-Hastings algorithm, approaches the numerical value of

0.234 as the dimension of the multivariate random vector approaches infinity. The numerical

examples presented in the latter work showed that an acceptance rate of approximately 0.234

enables good performance of the random walk Metropolis-Hastings algorithm for dimensions

of the random vector as low as 6. Although the proof of Roberts et al. [102] and Gelman

et al. [43] only applies for a restrictive condition, some numerical results suggest that an

acceptance rate of approximately 0.234 is close to optimal for more general conditions [106].

Nevertheless, Roberts and Tweedie [104] and Roberts and Rosenthal [101] suggested that

an efficient random walk Metropolis-Hastings algorithm can be accomplished by using an

acceptance rate between 0.20 and 0.50. Following this recommendation, we chose to tune

our proposed algorithm to deliver an acceptance rate between 0.20 and 0.50 to achieve good

performance, as we discuss later in this dissertation.

2.4 Two-Level Markov Chain Monte Carlo Metropolis-Hastings Algorithm

For a multi-modal target pdf, as is likely the case for petroleum reservoir applications,

the selection and tuning of the proposal distribution is a challenging assignment. However,

a close examination of the Metropolis-Hastings acceptance probability of Eq. 2.49 reveals

that if one was able to propose states directly from the target pdf, any proposed state would

be accepted with probability one. Based on this observation, it is widely accepted that a

choice of proposal distribution which is close to the target pdf results in an efficient MCMC

Metropolis-Hastings sampling algorithm. Furthermore, with such a proposal distribution

one expects a reduction in the burn-in period, resulting in a more computational affordable

algorithm for practical cases, for which applying the forward model is computationally ex-

pensive. This idea motivated the work of Oliver et al. [88, 12], however, their efforts to build

a good proposal distribution were not highly successful.
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Guided by this idea and motivated by the work of Gao et al. [39], Li and Reynolds

[69, 68] proposed an efficient two-level MCMC Metropolis-Hastings sampling algorithm. The

conceptual main difference between Li and Reynolds [69, 68] developments, and the original

idea of Gao et al. [39] is that Li and Reynolds suggested to construct the GMM approximation

of the posterior pdf to use as a proposal distribution in a MCMC framework, while Gao

et al. advocated directly sampling the GMM approximation. The methodology proposed by

Li and Reynolds [69, 68] consists of two steps. In the first step, one constructs the GMM

approximation of the posterior pdf. Then, in the second step, one samples the posterior

pdf with the MCMC Metropolis-Hastings algorithm and the GMM approximation as the

proposal distribution, as we discuss in the next subsection.

2.4.1 Two-Level Markov Chain Monte Carlo using a Reservoir Simulator with Adjoint Ca-

pability

Similar to Gao et al. [39], Li and Reynolds [69, 68] suggested the construction of

a GMM approximation of the posterior pdf π(m) of Eq. 2.6. In the Li and Reynolds

[69, 68] approach, one starts from Ne distinct initial reservoir models. Then, one solves

Ne minimization problems to find minima of the objective function O(m) of Eq. 2.7, in an

attempt to find modes of the posterior pdf. The Ne initial reservoir models are samples from

the prior pdf. Each initial reservoir model represents the initial guess in each one of the

Ne minimization problems conducted. Li and Reynolds [69, 68] adopted a gradient based

optimization method to solve the minimization problems. The gradient and Hessian of the

objective function are given, respectively, by Eqs. 2.8 and 2.9. To compute the required

sensitivity matrix of Eq. 2.10, the authors adopted an in-house reservoir simulator with

adjoint capability.

At the end of the minimization process, Li and Reynolds [69, 68] suggested keeping

only the modes which result in an objective function values less than a given threshold. The

authors recommended clustering the selected modes into Nc clusters using the k-medoids

clustering algorithm [63]. Using the Nc clusters, Li and Reynolds [69, 68] construct a GMM
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approximation of the posterior pdf as

πGMM(m) ≡
Nc∑
`=1

w` N (m∗` , C
∗
M`)

=
Nc∑
`=1

w`√
(2π)Nm |C∗M`|

exp

[
−1

2
(m−m∗`)T C∗−1

M` (m−m∗`)
]
. (2.52)

In Eq. 2.52, w` > 0, for ` = 1, 2, . . . , Nc, represents a positive weight which satisfies the

constraint in Eq. 2.26, m∗` represents the `th cluster, which is used as the mean of the

`th Gaussian, and the matrix C∗M` is given by the inverse of the objective function Hessian

evaluated at m∗` . For each Gaussian in the GMM approximation, the required Hessian (see

Eq. 2.9) is calculated using the sensitivity matrix computed with the adjoint method at the

respective cluster m∗` , for ` = 1, 2, . . . , Nc.

In the second step of the Li and Reynolds [69, 68] approach, one samples the posterior

pdf using the Metropolis-Hastings algorithm presented in Algorithm 2.3. As one can see,

the proposal distribution qLR(m̃s+1|ms) of Eq. 2.53 is independent of the current state ms.

This is a prominent characteristic of the proposal distribution introduced by Li and Reynolds

[69, 68]. Importantly, it promote good mixing of the resulting Markov chain [69]. Using the

qLR(m̃s+1|ms) of Eq. 2.53 the proposed candidates for the new state in the chain tend to

come from different regions of the target pdf, which results in a better investigation of the

posterior pdf. Furthermore, since the proposal distribution is constructed around the modes

of the posterior pdf, for cases where the modes of the posterior pdf are separated by regions

of low probability, the independent proposal distribution of Eq. 2.53 mitigates the problem

of having the Markov chain trapped at the same mode for a large number of iterations. For

reservoir petroleum applications, this characteristic of the proposal distribution of Li and

Reynolds results in considerable reduction in the duration of the burn-in period [69, 68].

Monitoring the Convergence of the Markov Chain:

As discussed earlier in this dissertation, under reasonable conditions, starting from

any randomly selected initial sate, the Metropolis-Hastings algorithm is guaranteed to con-
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Algorithm 2.3: Li and Reynolds [69, 68] Metropolis-Hastings MCMC algorithm

1. Construct the GMM proposal distribution using the clusters found in the first step

qLR(m̃s+1|ms) =
Nc∑
`=1

w`√
(2π)Nm |C∗M`|

exp

[
−1

2
(m̃s+1 −m∗`)T C∗−1

M` (m̃s+1 −m∗`)
]
.

(2.53)
The proposal distribution qLR(m̃s+1|ms) gives the probability of proposing a new can-
didate state in the chain, m̃s+1, given the current state ms.

2. Set the state counter s = 0 and choose the initial state, m0, in the chain by sampling
the proposal distribution qLR(m̃s+1|ms) of Eq. 2.53.

3. From the current state, ms, propose a new candidate state in the chain, m̃s+1, by
sampling the proposal distribution qLR(m̃s+1|ms) of Eq. 2.53.

4. Evaluate the Metropolis-Hastings acceptance probability, α(ms, m̃s+1), given by

α(ms, m̃s+1) = min

{
1,
π(m̃s+1) qLR(ms| m̃s+1)

π(ms) qLR(m̃s+1|ms)

}
. (2.54)

5. Generate a random number us from the uniform distribution U [0, 1].

6. If us < α(ms, m̃s+1), the proposed candidate is accepted as the new state in the
chain, i.e., set

ms+1 = m̃s+1 .

If us ≥ α(ms, m̃s+1), the proposed candidate is rejected and the current state is
repeated in the chain, i.e., set

ms+1 = ms .

7. Increase the chain counter by making s = s+ 1 and return to Step 3 until the desired
chain length is achieved.
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verge and asymptotically samples from the target distribution [35, 125]. The states which

are generated before the convergence of the chain are regarded as the burn-in period. The

states belonging to the burn-in period do not represent a sample of the target distribution,

hence one must discard them. Therefore, when running a Markov chain, one must be able to

determine the duration of the burn-in period. Usually, this is accomplished by monitoring

the convergence of the Markov chain.

To monitor the performance of their Metropolis-Hastings MCMC sampling algorithm,

Li and Reynolds [69, 68] resort to the common recommendation that one run several Markov

chains in parallel. Furthermore, Li and Reynolds [69, 68] suggest monitoring the convergence

of the chains by using the multivariate potential scale reduction factor (MPSRF) [14]. Each

parallel chain is started from a distinct randomly selected initial state.

For a total of Np parallel Markov chains, the MPSRF proceeds by first computing

the within-sequence covariance matrix WNs , which is defined at the Nsth iteration, i.e., after

Nsth state is generated in each chain, as [14]

WNs =
1

Np(Ns − 1)

Np∑
p=1

Ns∑
s=1

(
mp,s −mp,Ns

)(
mp,s −mp,Ns

)T
. (2.55)

In Eq. 2.55, mp,s, for p = 1, 2, . . . , Np and s = 1, 2, . . . , Ns, represents the sth sampled

state of the pth parallel chain, and mp,Ns represents the mean of all Ns sampled states of

the pth parallel chain, i.e.,

mp,Ns =
1

Ns

Ns∑
s=1

mp,s for p = 1, 2, . . . , Np . (2.56)

Next, one computes the between-sequence covariance matrix BNs , which is defined for the

Nsth iteration as [14]

BNs =
1

Np − 1

Np∑
p=1

(
mp,Ns −mNs

)(
mp,Ns −mNs

)T
, (2.57)
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where

mNs =
1

Np

Np∑
p=1

mp,Ns . (2.58)

Subsequently, one computes the posterior covariance matrix VNs at the Nsth iteration as [14]

VNs =
Ns − 1

Ns

WNs +
Np + 1

Np

BNs . (2.59)

Then, the MPSRF at the Nsth iteration, R̂Ns , is computed as [14]

R̂Ns =
Ns − 1

Ns

+
Np + 1

Np

λNs , (2.60)

where λNs denotes the largest eigenvalue of the matrix W−1
Ns
BNs .

The factor R̂Ns approaches unity from above. When R̂Ns stabilizes close to unity, one

considers that the chains have converged [14]. The underlying idea is that for R̂Ns ≈ 1, the

within-sequence covariance matrix, WNs , and the posterior covariance matrix, VNs , are close

[14], which implies that the parallel chains represent distinct samples of the same target

distribution. Using the MPSRF method, the burn-in period is regarded as the period before

the factor R̂Ns stabilizes. The states belonging to the burn-in period are discarded and the

remaining states represent samples from the posterior pdf.

Covariance Matrix Adaptation:

As discussed earlier, the performance of many Metropolis-Hastings MCMC algorithms

is greatly dependent on the choice of the proposal distribution. For many practical applica-

tions, it is difficult to correctly tune the selected proposal distribution to deliver an efficient

MCMC algorithm. In opposition to a fixed proposal distribution, several previous works

have proposed to instead automatically tune the chosen proposal distribution concomitantly

with the MCMC sampling procedure.

Haario et al. [50, 51] suggested adapting the mean and the covariance matrix of a

Gaussian proposal distribution based on the empirical mean and the empirical covariance
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matrix which can be obtained using the states already proposed in the chain. Haario et al.

[51] introduced a computationally efficient recursive formula to adapt the covariance matrix.

Atchadé and Rosenthal [9] and Andrieu and Moulines [8] generalized the ideas of Haario

et al. [51]. The works of Haario et al. [51], Atchadé and Rosenthal [9], Andrieu and Moulines

[8], and Roberts and Rosenthal [103] discuss and prove convergence conditions for these

adaptive approaches, see also Rosenthal [106] and Liang et al. [70].

The mean and covariance matrix adaptation proposed by Haario et al. [51], Atchadé

and Rosenthal [9] and Andrieu and Moulines [8] are summarized in Liang et al. [70] as

θ̄s+1 = θ̄s + γs+1(θs+1 − θ̄s) , (2.61)

and

CΘ,s+1 = (1− γs+1) CΘ,s + γs+1 (θs+1 − θ̄s) (θs+1 − θ̄s)T , (2.62)

In Eqs. 2.61 and 2.62, θ̄ and CΘ represent, respectively, the mean and the covariance matrix

of the random vector θ, and the subscript s refers to the sth state in the chain. Also, the

parameter γs is referred to as the leaning rate or the gain factor and should be selected to

satisfy [70]
∞∑
s=1

γs =∞ , (2.63)

and
∞∑
s=1

γ1+δ
s <∞ , (2.64)

for some δ ∈ (0, 1]. Haario et al. [51] suggested choosing γs = 1/s. The condition adopted

by Haario et al. [51] can be generalized to γs = O(1/s), and is referred to as diminishing

adaptation.

Li and Reynolds [69, 68] suggested to adapt the GMM proposal distribution to fur-

ther enhance the performance of their sampling algorithm. However, as pointed out by

Rafiee and Reynolds [95], the mean of all the Gaussian distributions in the GMM proposal

represent modes of the posterior pdf. Consequently, there is no need to adapt the mean of
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the Gaussian distributions in the GMM proposal, only the covariance matrices need to be

adapted. Since the GMM proposal distribution is independent of the current state in the

chain, the diminishing adaptation can be relaxed [58]. Hence, following Rafiee and Reynolds

[95], at the sth iteration in the chain, if ms+1 comes from the cth Gaussian in the GMM,

we adapt only the covariance matrix of the cth Gaussian distribution in the GMM proposal

using the following recursive rank-one covariance matrix adaptation:

C∗M,c,s+1 = (1− γs+1) C∗M,c,s + γs+1 (ms+1 −m∗c) (ms+1 −m∗c)T . (2.65)

In Eq. 2.65, we adopt a constant learning rate of γs = µγ/N
2
m, as suggested by Hansen

[54, 53]. Furthermore, we tune the parameter µγ in such a way that the resulting MCMC

algorithm delivers an acceptance rate between 0.20 and 0.50, as suggested by Roberts and

Tweedie [104] and Roberts and Rosenthal [101]. Following Li and Reynolds [69, 68], we run

several short length chains in order to select the parameter µγ which delivers the sought

acceptance rate.

We emphasis that, each iteration of the Markov chain, we only adapt the covariance

matrix of one Gaussian among the Nc Gaussian in the GMM approximation. The covariance

matrix which is indeed adapted is the covariance matrix C∗M,c,s for the Gaussian from which

the model ms+1 was actually sampled. Hence, in Eq. 2.65 it is understood that the model

ms+1 is sampled from the cth Gaussian N (m∗c , C
∗
M,c) in the GMM proposal distribution.

2.4.2 Two-Level Markov Chain Monte Carlo Metropolis-Hastings Algorithm using the Dis-

tributed Gauss-Newton Method

The approach of Li and Reynolds [69, 68] requires a reservoir simulator with adjoint

capability, which limits its application since most commercial reservoir simulators have lim-

ited or no adjoint solution capability. To circumvent this limitation, Rafiee and Reynolds

[95, 93] extended the Li and Reynolds [69, 68] approach by using a modification of the DGN

method [41] to compute the sensitivity matrix; their method does not require an adjoint

solution.
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The DGN modification introduced by Rafiee and Reynolds [95, 93] follows the original

DGN method of Gao et al. [41]. However, to compute an approximation of the sensitivity

matrix for a particular reservoir model mp, Rafiee and Reynolds [95, 93] suggested selecting

the Nc < Nm models in the data set, mc, for c = 1, 2, . . . , Nc, which are the closest

to the model mp, and computing an approximate sensitivity matrix by solving the under-

determined problem

(∆Mp)T (Gh,A(mp))
T =

(
∆Dp

dh

)T
. (2.66)

Similarly to Eq. 2.33, in Eq. 2.66, ∆Dp
dh

denotes the Ndh ×Nc matrix whose cth column is

given by dh(mc) − dh(mp), for c = 1, 2, . . . , Nc, and ∆Mp denotes the Nm × Nc matrix

whose cth column is given by mc−mp, for c = 1, 2, . . . , Nc. As before, note the entry in ith

row, for i = 1, 2, · · · , Ndh , and cth column, for c = 1, 2, · · · , Nc, of matrix ∆Dp
dh

is given by

dh,i(mc)−dh,i(mp), where dh,i denotes the ith entry component, for i = 1, 2, · · · , Ndh , of the

column vector of predicted data, dh. Similarly, the entry in jth row, for j = 1, 2, · · · , Nm,

and cth column, for c = 1, 2, · · · , Nc, of matrix ∆Mp is given by mc,j −mp,j, where mc,j is

the jth entry of the column vector mc, for c = 1, 2, · · · , Nc, and mp,j is the jth entry of

the column vector mp.

To solve Eq. 2.66, Rafiee and Reynolds [95, 93] applied the singular value decompo-

sition (SVD) [46] to the transpose of matrix ∆Mp, which results in

(∆Mp)T = UΛV T . (2.67)

In Eq. 2.67, the Nm × Nm matrix U contains in its columns the left singular vectors of

(∆Mp)T , the Nc×Nc matrix V contains in its columns the right singular vectors of (∆Mp)T ,

and the Nm×Nc diagonal matrix Λ contains the singular values of (∆Mp)T on its diagonal.

Representing the singular values as λc, for c = 1, 2, . . . , Nc, the diagonal elements of the

matrix Λ are ordered such that λ1 ≥ λ2 ≥ . . . ≥ λNc . To compute the pseudo-inverse of

(∆Mp)T , Rafiee and Reynolds [95, 93] resorted to the truncated singular value decomposition
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(TSVD) [55]

(∆Mp)T ∼= Up Λp V
T
p , (2.68)

where the Nm×Np matrix Up is formed using the first p columns of the matrix U , the Nc×Np

matrix Vp is formed using the first p columns of the matrix V , and the Np × Np diagonal

matrix Λp has as its pth diagonal entry the pth highest singular values of the matrix (∆Mp)T .

Rafiee and Reynolds [95, 93] suggested that we chose p such that the relation λp/λ1 is less

than an user given threshold. From Eq. 2.68, the pseudo-inverse of (∆Mp)T is given by

(∆Mp)T+ ∼= Up Λ−1
p V T

p . (2.69)

Using Eq. 2.69, the approximate sensitivity matrix is computed from Eq. 2.66 as

(Gh,A(mp))
T = Up Λ−1

p V T
p

(
∆Dp

dh

)T
. (2.70)

Using Eq. 2.70 to compute the approximate sensitivity matrix for any given model

mp, Rafiee and Reynolds [95, 93] followed the same procedure for the DGN method de-

scribed earlier in order to find modes of the posterior pdf. Similar to Li and Reynolds

[69, 68], to quantify the uncertainty in reservoir predictions, Rafiee and Reynolds [95, 93]

constructed a GMM approximation of the posterior pdf with the modes found, then used

this approximation as the proposal distribution in a Metropolis-Hastings MCMC sampling

framework.
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CHAPTER 3

COMBINING LEAST-SQUARES SUPPORT VECTOR REGRESSION AND

MARKOV CHAIN MONTE CARLO FOR HISTORY MATCHING AND

UNCERTAINTY QUANTIFICATION

In this chapter, we describe the proposed methodology for combining the LS-SVR

method and the Metropolis-Hastings MCMC sampling algorithm for history matching and

uncertainty quantification. We employ a similar approach of the two-level MCMC algorithm

introduced by Li and Reynolds [69, 68]. However, we replace the reservoir simulator by

a LS-SVR proxy when evaluating the Metropolis-Hastings acceptance probability and this

makes the method orders of magnitude faster than the method of both Li and Reynolds

[69, 68] and Rafiee and Reynolds [95, 93]. Moreover, we first use the analytical gradient of

the LS-SVR proxy model to find modes of the posterior probability density function (pdf),

and then, the modes are used to construct an approximation of the posterior pdf. Finally, we

generate a Markov chain using the GMM approximation of the posterior pdf as the proposal

distribution. During the MCMC sampling, we replace the required reservoir simulation runs

by the LS-SVR proxy model predictions. The details are presented throughout this chapter.

3.1 Least-Squares Support Vector Regression Formulation

As discussed earlier in this dissertation, the support vector regression method employs

a suite of input vectors and its correspondent outputs, which are referred to as a training set,

to construct an approximation of some unknown function, which can be used to compute

outputs for input vectors not present in the original training set. In this research, we adopt

the LS-SVR as introduced by Suykens and Vandewalle [119] and Suykens [117].

For application in the oil industry, the unknown function represents the reservoir
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simulator. In this case, the input is given by the vector of reservoir simulator parameters,

and the output represents the reservoir simulator predictions. Normally, in a conventional

reservoir simulator one can easily format and establish the given inputs and the corresponding

needed predictions. However, the LS-SVR proxy model is constructed based on a training

set, which means that the composition of both input vectors and corresponding outputs is

fixed beforehand. Thus, the resulting proxy provides predictions related to the kind of output

used in the training procedure. Whenever one needs to predict a different type of output,

unfortunately a new proxy model needs to be trained, which may require additional reservoir

simulation runs to compute the necessary outputs, if these are not available. As will be clear

in the following explanations, we intend to use the proxy predictions for both the history

matching, where we estimate modes of the posterior pdf, and forecasting periods, where

we evaluate the Metropolis-Hastings acceptance probability. Consequently, even though

during the history matching process we only need the predictions which correspond to the

observed data, we need to train the LS-SVR proxy model for both the history matching and

forecasting periods. Therefore, we use an augmented vector of reservoir predictions to train

the proxy model, the augmented vector includes the forecasting period. Accordingly, we need

to extend the time of the reservoir simulator runs, which is used to generate the training set

of inputs and outputs, to include the forecast period. We denote the reservoir simulation

predictions corresponding to the forecasting period as the Ndf−dimensional column vector

df . Hence, the augmented vector of reservoir predictions, denoted as d, which is used to

train the LS-SVR proxy model is defined as

d = [ dTh , d
T
f ]T = g(m) . (3.1)

In Eq. 3.1, the function g(m) represents the reservoir predictions, generated with the reser-

voir simulator model m, for both the history matching and forecasting periods. In this

dissertation, we refer to dimension of the vector d as Nd = Ndh +Ndf , where Ndh represents

the dimension of the vector dh, and Ndf represents the dimension of the vector df .
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For a given relationship d = g(m) representing the reservoir simulator predictions,

including both history-matching and forecasting periods, which relates the Nm−dimensional

column vector of input parameters, m, to the Nd−dimensional column vector of output data,

d, the LS-SVR regression method employs a given training set to generate an ensemble

of Nd one-dimensional functions ĝi(m), for i = 1, 2, . . . , Nd. Each function ĝi(m), for

i = 1, 2, . . . , Nd, represents one entry of the augmented vector of reservoir predictions,

precisely, the corresponding ith entry. Concisely, we train an one-dimensional LS-SVR proxy

model for each entry of the output vector d. The entire ensemble of Nd one-dimensional

LS-SVR proxy models is what we refer to, in this dissertation, as the LS-SVR proxy model.

We denote a given training set as Ts = {(mk,dk), k = 1, 2, . . . , Nt}. The size of

the training set is denoted as Nt, i.e., the training set contains Nt training examples in the

form of a pair of input and corresponding output vectors, (mk,dk), for k = 1, 2, . . . , Nt.

For each training example, it holds that dk = g(mk), for k = 1, 2, . . . , Nt, i.e., the vector

dk is obtained by running the reservoir simulator, g(·), for the corresponding input vector

mk, for k = 1, 2, . . . , Nt.

For most real applications, usually both the input vector, m, and the output vector,

d, are composed of different physical quantities, which may have different numerical scales.

Significantly different numerical orders of magnitude between the entries of the vectors may

result in a biased proxy model, i.e., the training process may be dominated by the physical

quantities which have larger numerical values. To circumvent this numerical issue, usually

the entries in both input and output vectors are normalized before the training procedure.

In this dissertation, we adopt the usual normalization between zero and one, as described

next.

We defined mlow by

mlow = [mlow
j ]Nmj=1 ≡ [mlow

1 , mlow
2 , . . . , mlow

Nm ]T ,

which is the Nm−dimensional column vector formed by selecting the corresponding lowest
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entries in each component of the set of all input vectors that compose a given training

set. Hence, the jth entry of the vector mlow, for j = 1, 2, . . . , Nm, represents the lowest

value among all jth entries from all the vectors mk, for k = 1, 2, . . . , Nt, i.e., for j =

1, 2, . . . , Nm, the jth entry of the vector mlow, denoted by mlow
j , is given by

mlow
j = arg min

1≤k≤Nt

{
mk,j

}
,

where mk,j represents the jth entry of the vector mk, for k = 1, 2, . . . , Nt.

Similarly, we defined mup by

mup = [mup
j ]Nmj=1 ≡ [mup

1 , m
up
2 , . . . , m

up
Nm

]T ,

which is the Nm−dimensional column vector formed by selecting the corresponding largest

entries in each component of the set of all input vectors that compose a given training

set. Hence, the jth entry of the vector mup, for j = 1, 2, . . . , Nm, represents the largest

value among all jth entries from all the vectors mk, for k = 1, 2, . . . , Nt, i.e., for j =

1, 2, . . . , Nm, the jth entry of the vector mup, denoted by mup
j , is given by

mup
j = arg max

1≤k≤Nt

{
mk,j

}
,

where again mk,j represents the jth entry of the vector mk, for k = 1, 2, . . . , Nt.

For the output vectors, we proceed in a similar manner. Specifically, we define

dlow = [dlow
i ]Ndi=1 ≡ [dlow

1 , dlow
2 , . . . , dlow

Nd
]T

as the Nd−dimensional column vector formed by selecting the corresponding lowest entries

in all output vectors that compose a given training set, i.e., the ith entry of the vector dlow,

for i = 1, 2, . . . , Nd, represents the lowest value among all ith entries from all the vectors
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dk, for k = 1, 2, . . . , Nt, in a given training set. Finally, we define

dup = [dup
i ]Ndi=1 ≡ [dup

1 , d
up
2 , . . . , d

up
Nd

]T

as the Nd−dimensional column vector formed by selecting the corresponding largest entries

in all output vectors that compose a given training set, i.e., the ith entry of the vector dlow,

for i = 1, 2, . . . , Nd, represents the largest value among all ith entries from all the vectors

dk, for k = 1, 2, . . . , Nt, in a given training set.

We denote by m̃k, for k = 1, 2, . . . , Nt, the kth normalized input vector of reser-

voir parameters, and as d̃k, for k = 1, 2, . . . , Nt, the kth normalized vector of reservoir

predictions. The entries of the normalized vectors m̃k and d̃k are computed, respectively,

by

m̃k,j =
mk,j − mlow

j

mup
j − mlow

j

, for j = 1, 2, . . . , Nm and k = 1, 2, . . . , Nt , (3.2)

and

d̃k,i =
dk,i − dlow

i

dup
i − dlow

i

, for i = 1, 2, . . . , Nd and k = 1, 2, . . . , Nt . (3.3)

In Eqs. 3.2 and 3.3, m̃k,j and mk,j represent, respectively, the jth entry of the vectors m̃k

and mk, similarly, d̃k,i and dk,i represent, respectively, the ith entry of the vectors d̃k and

dk. Clearly, the entries of the vectors m̃k and d̃k are between zero and one.

We represent the normalized training set as T̃s = {(m̃k, d̃k), k = 1, 2, . . . , Nt}. For

the normalized training set, it holds that

d̃k = g̃(m̃k) . (3.4)

In Eq. 3.4, g̃(·) represents the unknown relationship between the normalized vectors d̃k and

m̃k.

With the normalization, we now construct a LS-SVR proxy model for the function
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g̃(·), using the normalized training set. The overall training procedure is presented in Ap-

pendix A. To apply the equations and procedure described in Appendix A for the normalized

training set, one should set y ≡ d̃, x ≡ m̃ and f(x) ≡ g̃(m̃) in the equations of Appendix A,

so that Eq. 3.4 coincides with Eq. A.1.

Following the procedure presented in Appendix A, the resulting LS-SVR model is

given by (see Eq. A.16)

ˆ̃gi(m̃) =
Nt∑
k=1

αi,kKi(m̃k, m̃) + bi , for i = 1, 2, . . . , Nd . (3.5)

In Eq. 3.5, the vector αi = [αi,k]
Nt
k=1 = [αi,1, αi,2, . . . , αi,Nt ]

T is computed using Eq. A.13, bi

is computed using Eq. A.12, and the set of Nd functions ˆ̃gi(m̃) represents the LS-SVR proxy

approximation for the unknown normalized relationship d̃ = g̃(m̃).

As discussed in Appendix A, Ki(m̃k, m̃) in Eq. 3.5, for i = 1, 2, . . . , Nd, represents

a given kernel function. The kernel function has to be specified by the user [112]. Currently,

there is no clear methodology available to identify the best choice of a kernel function for a

given problem. When no further information is available, it is commonly recommended [112]

that one use the radial basis function (RBF) kernel [16]. For any two given vectors m̃k and

m̃`, the RBF kernel is defined as

Ki(m̃k, m̃`) = exp

(
−‖m̃k − m̃`‖2

2

σ2
i

)
. (3.6)

In Eq. 3.6, ‖ ·‖2 represents the Euclidean norm of a given vector, and σi represents a positive

parameter defined beforehand by the user.

The RBF kernel sole parameter σi governs the complexity of the resulting function

ˆ̃gi(m̃). It is well established that a small values of σi leads to a more complex regression

function. If a value of σi that is too small is used, the regression function can over-fit the

data, which should be avoided, particularly for noisy data. Conversely, increasing the value

of σi increases the smoothness of the corresponding support vector model. Typically, σi is
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assumed to be correlated with the bounds of the input vector domain, i.e., it has the form

σi = cσi‖m̃max − m̃min‖2 , for i = 1, 2, . . . , Nd . (3.7)

In Eq. 3.7, cσi denotes a real-valued constant. Also in Eq. 3.7, m̃max represents the vector

formed by selecting the maximum values among all normalized input vectors, i.e., the jth

entry of m̃max, for j = 1, 2, . . . , Nm, is given by the maximum value among all the jth entries

from all normalized input vectors m̃k, for k = 1, 2, . . . , Nt. Similarly, m̃min represents the

vector formed by selecting the minimum values among all normalized input vectors, i.e., the

jth entry of m̃min, for j = 1, 2, . . . , Nm, is given by the minimum value among all the jth

entries from all normalized input vectors m̃k, for k = 1, 2, . . . , Nt. Since the vectors are

normalized between zero and one, it holds that

m̃max = [1, 1, . . . , 1]T and m̃min = [0, 0, . . . , 0]T . (3.8)

Consequently, its follows that Eq. 3.7 is equivalent to

σi = cσi
√
Nm , for i = 1, 2, . . . , Nd . (3.9)

A common recommendation is to use cσi = 0.50, for i = 1, 2, . . . , Nd. With this assumption,

all the RBF kernel functions Ki(m̃k, m̃`), for i = 1, 2, . . . , Nd, which are used in Eq. 3.5,

collapse to a single kernel function given by

Ki(m̃k, m̃`) ≡ K(m̃k, m̃`) = exp

(
−‖m̃k − m̃`‖2

2

σ2

)
, for i = 1, 2, . . . , Nd , (3.10)

where σ is computed using Eq. 3.9 with cσ = 0.50, i.e., σ = 0.50
√
Nm .

From experience, we note that cσ = 0.50 does not work well for every case. Actually,

one could even adopt different cσi for each one-dimensional LS-SVR proxy model ˆ̃gi(m̃)

in Eq. 3.5. However, different kernel functions require the computation and inversion of
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different kernel matrices (see Appendix A), which increases the computational cost of the

training procedure. In this research, we adopt a single kernel function for all one-dimensional

LS-SVR proxy model. However, we use numerical experiments to determine an optimal value

for cσ, as we discuss later in this dissertation.

The main advantage a LS-SVR proxy model has is that the analytical expression of

Eq. 3.5 can be evaluated in orders of magnitude less time than is required to run the reservoir

simulator once. Furthermore, an analytical expression for the gradient of the LS-SVR proxy

model can easily be computed from Eq. 3.5 as

∇m̃
ˆ̃gi(m̃) =

Nt∑
k=1

2αi,k
σ2

K(m̃k, m̃)(m̃k − m̃) , for i = 1, 2, . . . , Nd . (3.11)

An analytical expression for computing the Hessian can also be found. The availability of

an analytical gradient ceases the need for the adjoint solution, which allows a computa-

tional efficient application of a gradient-based optimization algorithm in the trust region

minimization algorithm that we adopt in this research to find modes of the posterior pdf.

Obviously, the LS-SVR proxy model ˆ̃gi(m̃), given by Eq. 3.5, which is constructed

for the normalized relationship of Eq. 3.4, provides normalized values. To apply the LS-SVR

proxy predictions, one need to convert the results using

ĝi(m) = dlow
i + (dup

i − dlow
i )× ˆ̃gi(m̃) , for i = 1, 2, . . . , Nd . (3.12)

In Eq. 3.12, ĝi(m) denotes the LS-SVR proxy approximation of the corresponding reservoir

prediction, gi(m), which includes both the historical and future prediction forecasts periods.

Similarly, Eq. 3.11 provides the gradient of ˆ̃gi(m̃) with respect to m̃, the required

gradient of ĝi(m) with respect to m is computed using

[∇m ĝi(m)]j =
[∇m̃

ˆ̃gi(m̃)]j × (dup
i − dlow

i )

mup
j −mlow

j

, for i = 1, 2, . . . , Nd . (3.13)

In Eq. 3.13, [∇m ĝi(m)]j and [∇m̃
ˆ̃gi(m̃)]j, for j = 1, 2, . . . , Nm, represent, respectively, the
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jth component of the gradients ∇m ĝi(m) and ∇m̃
ˆ̃gi(m̃).

3.1.1 Influence of the Least-Squares-Support-Vector-Regression Training Parameters

As presented in the previous section and in Appendix A, the LS-SVR training pro-

cedure depends on two parameters, γ (see Eq. A.3) and σ (see Eq. 3.10). For the training

procedure using normalized input and output vectors, a common recommendation on the

literature is to adopt γ = 200 and use cσ = 0.50 to compute σ (see Eq. 3.9).

The aim of this section is to investigate those recommendations and provide some

insight on how the LS-SVR regression function works. For this purpose, we study the LS-

SVR behavior using the one-dimensional function given by

f(x) =− 0.00381x6 + 0.1513x5 − 2.223x4 + 14.95x3 − 45.0x2 + 46.8x

+ 0.50 sin(8.0x+ 0.50π) + 10.0 . (3.14)

To assess the effect of different values of γ and σ, we train a LS-SVR proxy model

for the function f(x), of Eq. 3.14, using the input x’s presented in Table 3.1 to construct

a training set. Then, the performance of the resulting LS-SVR is assessed using both the

original training set and the test set examples presented in Table 3.2. To measure the

performance of different values of γ and σ, we compute the root-mean-square error (RMSE)

for the LS-SVR proxy predictions for both training and test examples presented in Tables 3.1

and 3.2. The RMSE is defined as

RMSE =

√√√√∑Ns
s=1

[
f̂(xs)− f(xs)

]2

Ns

. (3.15)

In Eq. 3.15, Ns represent the total number of training examples (Ns = 31 for this case, see

Table 3.1) or the total number of test examples (Ns = 30 for this case, see Table 3.2), xs,

for s = 1, 2, . . . , Ns, denotes the sth training or test example, f̂(xs) represents the proxy

predictions for the sth example, and f(xs) the respective predictions of the function f(x) of
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Example Input Example Input Example Input Example Input
1 0.000 9 2.667 17 5.333 25 8.000
2 0.333 10 3.000 18 5.667 26 8.333
3 0.667 11 3.333 19 6.000 27 8.667
4 1.000 12 3.667 20 6.333 28 9.000
5 1.333 13 4.000 21 6.667 29 9.333
6 1.667 14 4.333 22 7.000 30 9.667
7 2.000 15 4.667 23 7.333 31 10.000
8 2.333 16 5.000 24 7.667

Table 3.1: Input x’s used create a training set to construct the LS-SVR proxy for the function
f(x) of Eq. 3.14.

Test Input Test Input Test Input Test Input Test Input
1 0.1667 7 2.1667 13 4.1667 19 6.1667 25 8.1667
2 0.5000 8 2.5000 14 4.5000 20 6.5000 26 8.5000
3 0.8333 9 2.8333 15 4.8333 21 6.8333 27 8.8333
4 1.1667 10 3.1667 16 5.1667 22 7.1667 28 9.1667
5 1.5000 11 3.5000 17 5.5000 23 7.5000 29 9.5000
6 1.8333 12 3.8333 18 5.8333 24 7.8333 30 9.8333

Table 3.2: Input x’s used as test examples to assess the LS-SVR proxy for the function f(x)
of Eq. 3.14.

Eq. 3.14. No noise is added to the predictions of f(xs) values.

In Figs. 3.1 and 3.2 we present the LS-SVR proxy performance when varying param-

eter γ, and for six different values of parameter σ, σ = 0.040 (red curve), σ = 0.062 (blue

curve), σ = 0.080 (gray curve), σ = 0.120 (orange curve), σ = 0.160 (magenta curve), and

σ = 0.200 (green curve). In Fig. 3.1 we present the RMSE computed using the training set

examples presented in Table 3.1, and in Fig. 3.2 we present the results using the test set

examples presented in Table 3.2. As one can see from Figs. 3.1 and 3.2, the effect of increas-

ing the value of γ is to reduce the value of the respective RMSE, i.e., by increasing γ one

obtain a better match of the data, as one can see in Fig. 3.1, which presents the results for

the training set examples. Furthermore, notice that the overall performance does not vary

considerably for values of γ greater than γ = 800. Also, notice that the common recommen-

dation of γ = 200 is somehow conservative. Although this conclusion is based on the data

presented on Figs. 3.1 and 3.2, we observed similar behavior in all LS-SVR proxy trained in
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Figure 3.1: Effect of parameter γ on the LS-SVR proxy model performance for different
values of parameter σ: σ = 0.040 (red curve), σ = 0.062 (blue curve), σ = 0.080
(gray curve), σ = 0.120 (orange curve), σ = 0.160 (magenta curve), and σ =
0.200 (green curve). RMSE computed using the training set data presented in
Table 3.1.
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Figure 3.2: Effect of parameter γ on the LS-SVR proxy model performance for different
values of parameter σ: σ = 0.040 (red curve), σ = 0.062 (blue curve), σ =
0.080 (gray curve), σ = 0.120 (orange curve), σ = 0.160 (magenta curve), and
σ = 0.200 (green curve). RMSE computed using the test set data presented in
Table 3.2.
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Figure 3.3: True predictions of function f(x) of Eq. 3.14 compared to the LS-SVR proxy
predictions for σ = 0.062 and different values of γ (γ = 100, γ = 800, γ = 1, 000,
and γ = 10, 000). In figures (a) through (d) are presented the true function f(x)
of Eq. 3.14 (black curve), the LS-SVR proxy predictions (red curve), the training
set examples (blue circles), and the test set examples (magenta circles).

this dissertation. Some argue that increasing the value of γ could result in over-fitting the

data. However, we observed that increasing the value of γ has the sole effect of improving

the data match. This is the behavior observed in Fig. 3.3, in which we compare the function

f(x) of Eq. 3.14 with the LS-SVR proxy trained for σ = 0.062 and four different values of γ,

γ = 100, γ = 800, γ = 1, 000, and γ = 10, 000. Notice that increasing the value of γ results

in a better data match, and even for the extremely high value of γ = 10, 000 in Fig. 3.3(d) no

over-fitting behavior is observed. Based on the results presented, we recommend and adopt

a fixed value of γ = 800 in all LS-SVR training procedure conducted in this dissertation.

In Figs. 3.4 and 3.5 we present the LS-SVR proxy performance when varying param-

eter σ, and for six different values of parameter γ, γ = 50 (blue curve), γ = 200 (red curve),

γ = 400 (gray curve), γ = 800 (orange curve), γ = 1, 000 (magenta curve), and γ = 2, 000

(green curve). In Fig. 3.4 we present the RMSE computed using the training set examples
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Figure 3.4: Effect of parameter σ on the LS-SVR proxy model performance for different
values of parameter γ: γ = 50 (blue curve), γ = 200 (red curve), γ = 400
(gray curve), γ = 800 (orange curve), γ = 1, 000 (magenta curve), and γ =
2, 000 (green curve). RMSE computed using the training set data presented in
Table 3.1.
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Figure 3.5: Effect of parameter σ on the LS-SVR proxy model performance for different
values of parameter γ: γ = 50 (blue curve), γ = 200 (red curve), γ = 400 (gray
curve), γ = 800 (orange curve), γ = 1, 000 (magenta curve), and γ = 2, 000
(green curve). RMSE computed using the test set data presented in Table 3.2.
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presented on Table 3.1, and in Fig. 3.5 we present the results using the test set examples

presented on Table 3.2. The behavior that the LS-SVR proxy presented in Fig. 3.4 reflects

the fact that small values of σ leads to over-fitting the data, thus the value of the computed

RMSE using the training set data will reduce, but when the resulting proxy is applied to the

test set data, we get a large RMSE, as shown in Fig. 3.5, reflecting the fact that the over-

fitting regression function cannot represent the test set data properly. Conversely, increasing

the value of σ leads to a smooth LS-SVR proxy, which results in an increasing RMSE value.

A more interesting behavior is observed on Fig. 3.5, in which the test set data is used, as

one can observe, all RMSE curves have a minimum. A small value of RMSE in this case

translates to a good LS-SVR proxy model, i.e., the LS-SVR proxy provides good predictions

for data not present in the original training set. Therefore, one should select the optimal

value of σ by finding the value which minimizes the RMSE (or some other measure) for some

given test set. Nevertheless, notice that for γ = 800, the minimum value occurs at σ = 0.062,

which for the normalizing training procedure corresponds to a cσ = 0.062. Hence, for this

particular case, the optimal value of cσ is almost one order of magnitude different from the

common recommendation cσ = 0.50. Based on this results, we recommend that one select

an optimal value of cσ by minimizing the RMSE for a given test set. To accomplish this,

we adopt numerical experiments, which consist of generating the RMSE data for several

values of σ and selecting the minimum based on the generated data. Finally, in Fig. 3.6,

we compare the function f(x) of Eq. 3.14 with the LS-SVR proxy trained for γ = 800 and

four different values of σ, σ = 0.010, σ = 0.062, σ = 0.400, and σ = 1.000, in which one can

observe the over-fitting behavior for the case with σ = 0.010, see Fig. 3.6(a), the optimal

fitting for σ = 0.062, see Fig. 3.6(b), and the smooth LS-SVR proxy as we increase the value

of σ, such as σ = 1.000, see Fig. 3.6(d).

3.2 History Matching and Uncertainty Quantification using the Least-Squares

Support Vector Regression Proxy and Markov Chain Monte Carlo

In this research, we follow Li and Reynolds [69, 68] and Rafiee and Reynolds [95, 93]
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Figure 3.6: True predictions of function f(x) of Eq. 3.14 compared to the LS-SVR proxy
predictions for γ = 800 and different values of σ (σ = 0.001, σ = 0.062, σ =
0.400, and σ = 1.000). In figures (a) through (d) are presented the true function
f(x) of Eq. 3.14 (black curve), the LS-SVR proxy predictions (red curve), the
training set examples (blue circles), and the test set examples (magenta circles).

and construct a GMM approximation of the posterior pdf to use as proposal distribution in a

Metropolis-Hastings MCMC sampling framework. The GMM approximation is constructed

centered at some modes of the posterior pdf for reservoir model parameters. However, our

objective is to achieve computational efficiency when applying MCMC to quantify uncer-

tainty in reservoir simulator predictions. To accomplish this goal, we adopt a LS-SVR proxy

model as a suitable replacement to the reservoir simulator. The use of the LS-SVR proxy

model is twofold. Firstly, similarly to Li and Reynolds [69, 68] and Rafiee and Reynolds

[95, 93], we conduct several parallel gradient-based minimization problems in order to find

modes of the posterior pdf π(m), of Eq. 2.6, to construct a GMM approximation. However,

we make use of the analytical gradient of the LS-SVR proxy model, as presented in Eqs. 3.11

and 3.13, to compute an approximation of the required sensitivity matrix G(m) of Eq. 2.10.

Consequently, our approach does not require a reservoir simulator which is able to solve the
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adjoint problem. Second, different from Li and Reynolds [69, 68] and Rafiee and Reynolds

[95, 93], we advocate the use of the LS-SVR proxy model as a replacement of the real reservoir

simulator during the MCMC sampling procedure. Inasmuch as the LS-SVR proxy model is

faster to evaluate when compared to the the real reservoir simulator, our method results in a

significant reduction in the total computational time required to apply the MCMC sampling

process, which leads to a computational efficient MCMC sampling algorithm.

One crucial aspect of the use of a proxy model is the accuracy of the adopted proxy

predictions. The LS-SVR proxy adopted here is constructed based on a given training set.

Consequently, the accuracy of the resulting LS-SVR proxy depends on the training examples

which are selected to compose the training set. However, it is extremely difficult to determine

before hand which training examples should be included in the training set to achieve the

desired accuracy for any given application. To address this difficulty, we propose here to

start with an initial training set, then modify and adapt it during the minimization process

which is conducted to find the modes of the posterior pdf. The strategy adopted is to

include in the original training set the updates obtained when performing the minimization

problems. The underlying main idea is that as the iterates of the multiple minimization

problems approach the modes, the iterates added to the training set will come from regions

of increasing probability of the posterior pdf. Furthermore, the points added to the training

set will be concentrate around the modes of the posterior pdf. As a consequence, the LS-SVR

proxy which is trained with such a training set is expected to deliver accurate predictions

around the modes of the posterior pdf. This particular property of the resulting LS-SVR

proxy is precisely the desirable feature for a proxy intended to replace the reservoir simulator

in a MCMC sampling framework. In the next sections, we delineate the details of how to

construct and adapt the training set, as well as the details of our proposed Metropolis-

Hastings MCMC sampling algorithm.

3.2.1 First Step: Finding Modes of the Posterior Probability Density Function

We intend to construct a GMM distribution centered at the modes of the posterior pdf
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π(m) of of Eq. 2.6. Therefore, we need to find modes of the posterior pdf, which means we

need an affordable process to find several minima of the objective function O(m) of Eq. 2.7.

As discussed earlier, normally the vector of model parameters m is composed with different

reservoir properties [98], and the number of parameters is very large. As a consequence, the

direct minimization O(m) of Eq. 2.7 can result in an ill-conditioned problem. To circumvent

this issue, we follow Rafiee and Reynolds [95] and adopt the dimensionless transformation

of the vectors m and dh as presented, respectively, on Eqs. 2.11 and 2.12. Therefore, the

minimization process to find modes of the posterior pdf is actually conducted by minimizing

the dimensionless objective function O(m̂) as defined on Eq. 2.13. As discussed earlier, both

O(m), of Eq. 2.7, and O(m̂), of Eq. 2.13, share the same minima, when both m and m̂ are

related by Eq. 2.11.

As we present next, the minimization algorithm used in this research to find minima

of O(m̂), of Eq. 2.13, requires the the gradient, ∇m̂O(m̂), and Hessian, H(m̂), of the

dimensionless objective function. For our case, the gradient and Hessian are computed,

respectively, by Eqs. 2.14 and 2.15. Furthermore, the required dimensionless sensitivity

matrix, GD(m̂), is computed using Eq. 2.17. Notice that to use Eq. 2.17, one must be

able do assemble the sensitivity matrix G(m), which can be accomplished by solving the

adjoint problem, which was the procedure adopted by Li and Reynolds [69, 68]. Nevertheless,

commercial reservoir simulators usually do not solve the adjoint problem, thus one needs to

approximate the sensitivity matrix. As stated earlier, in this research we take advantage of

the analytical gradient of the LS-SVR proxy model to approximate the sensitivity matrix

G(m) of Eq. 2.17, which then is given by (see Eq. 3.13)

G(m) ∼= Gapp(m) =
[
∇m ĝ1(m), ∇m ĝ2(m), . . . , ∇m ĝNdh (m)

]T
, (3.16)

where the ĝi(m)’s, for i = 1, 2, . . . , Ndh , and their gradients are evaluated based on the

LS-SVR proxy.

In this research, the minimization algorithm used to find minima of O(m̂) of Eq. 2.13
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is the trust-region minimization algorithm which is described in Appendix B. To apply

the procedure and use the equations described in Appendix B, one should set x ≡ m̂,

y(x) ≡ d̂h(m̂) and O(x) ≡ O(m̂), so that Eqs. 2.13 and B.1 exactly correspond. Also,

one should set G(x) ≡ G(m̂), so that Eqs. 2.14 and B.2 correspond. Finally, one should set

H(x) ≡ H(m̂), so Eqs. 2.15 and B.3 become equivalent. The required sensitivity matrix is

approximated using Eq. 3.16, as discussed above.

As discussed earlier, the aim in solving several minimization problems is to attempt

to find modes of the posterior pdf. Let us assume that Ne modes are sought. In an effort to

find the Ne modes, we randomly select Ne models by sampling the prior pdf. One concern

here is how representative this initial sample of the prior pdf is. Although Li and Reynolds

[69, 68] and Rafiee and Reynolds [95, 93] simply directly sampled the Gaussian prior pdf,

we advocate taking advantage of some design of experiment technique would achieve a more

representative initial sample. Therefore, we choose instead to select the initial sample from

the prior pdf by using a well know statistical method called Latin hypercube sampling (LHS)

(see McKay et al. [74]). The LHS sampling method tries to spread a predefined total number

of samples to better cover the support of a given pdf, thus, one guarantees that even for a

small sized sample, the tails of the pdf are represented, which for our applications better

represent the original available information, i.e., the prior pdf.

After selecting the Ne initial samples from the prior pdf, we then conduct Ne min-

imization problems. Each minimization problem uses one of the Ne sampled models as its

initial guess. Motivated by the work of Gao et al. [41] and Rafiee and Reynolds [95], we solve

all Ne minimization problems simultaneously, iteration by iteration. Here, we regard the pro-

cess of solving all Ne minimization problems as the minimization loop. At each iteration of

the minimization loop, we perform exactly one iteration of the trust region algorithm (see

Appendix B) for each minimization problem. By one iteration of the trust region we mean

that we solve the trust-region sub-problem given by Eqs. B.5 and B.6 (see Appendix B).

The reasons for solving the minimization problems simultaneously is to take advantage of

the LS-SVR proxy model, as will become clear in the following explanation.
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To compute the LS-SVR proxy gradient in Eq. 3.16, which is needed to solve the

trust-region sub-problem, we need to define an initial training set to train an initial LS-SVR

proxy model. One could use the already selected Ne initial guesses to train an initial LS-

SVR proxy model. However, including additional models in the training set results in an

initial LS-SVR proxy with improved predictions. Thus, in addition to the Ne selected initial

guesses, we propose to sample additional Na models from the prior pdf to compose the initial

training set. As before, we adopt the LHS to sample these additional Na models. In the

applications presented in this dissertation, we found using a Na value on the order of two to

four times the total number of minimization problems, Ne, gives a good performance of the

initial LS-SVR proxy. The resulting initial training set has Nt = Ne +Na training examples.

We start each iteration of the minimization loop by training a LS-SVR proxy model

using the current available training set. The initial LS-SVR proxy is trained using the

initial training set, as described above. Then, for all minimization problems in the loop,

we solve the trust region sub-problem to compute the updated estimate of the minimum of

O(m̂) of Eq. 2.13. The updated estimates are then added to the training set following a

minimum distance procedure explained later in this dissertation. Notice that, we use the

same LS-SVR proxy model at the same iteration of the minimization loop to approximate

the required sensitivity matrix for all minimization problems in the loop. The updated

training set from one iteration is then used to train a new LS-SVR proxy model for the next

iteration of the minimization loop. After every iteration of the minimization loop, we add

the updated estimates of the minima to the training set, until the convergence criteria are

satisfied. Details of the minimization process are described next.

As described in Appendix B, at the nth minimization iteration and for each mini-

mization problem in the minimization loop, we construct a quadratic approximation of the

objective function O(m̂), of Eq. 2.13, around the current estimate of the minimum. To

construct the quadratic approximation we use the LS-SVR proxy gradient to compute an

approximation, Gapp(m), for the required sensitivity matrix, G(m), as shown is Eq. 3.16.
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Then we solve the trust-region minimization sub-problem given by

minimize
δm̂

(n)
e

q(n)
e (δm̂(n)

e ) = O(m̂(n)
e ) + G(m̂(n)

e )T δm̂(n)
e +

1

2
δm̂(n)T

e H(m̂(n)
e ) δm̂(n)

e , (3.17)

for e = 1, 2, . . . , Ne, subject to

‖δm̂(n)
e ‖ ≤ δ(n)

e . (3.18)

In Eqs. 3.17 and 3.18, m̂(n)
e represents the current estimate of the minimum for the eth

minimization problem at the nth iteration, δm̂(n)
e represents the search direction, q

(n)
e (δm̂(n)

e )

represents the quadratic approximation of O(m̂) for the eth minimization problem at the

nth iteration, and δ
(n)
e represents the trust region radius for the eth minimization problem

at the nth iteration (see Appendix B).

Also in Eq. 3.17, O(m̂(n)
e ), G(m̂(n)

e ) and H(m̂(n)
e ) represent, respectively, the objec-

tive function, its gradient and its Hessian, which are computed, respectively, by Eqs. 2.13,

2.14 and 2.15, for m̂ = m̂(n)
e using the LS-SVR approximate sensitivity matrix Gapp(m)

of Eq. 3.16. Hence, for each minimization problem, the required dimensionless sensitivity

matrix is computed using Eq. 2.17 for the following approximate sensitivity matrix

Gapp(m(n)
e ) =

[
∇m ĝ1(m(n)

e ), ∇m ĝ2(m(n)
e ), . . . , ∇m ĝNdh (m(n)

e )
]T
, (3.19)

for e = 1, 2, . . . , Ne. In Eq. 3.19, ∇m ĝi(m
(n)
e ), for i = 1, 2, . . . , Ndh , is computed using

Eq. 3.13 for m = m
(n)
e in the current LS-SVR proxy model. Note that to use Eq. 2.17,

one needs to compute m
(n)
e , i.e., the corresponding dimensional counterpart of m̂(n)

e for the

reservoir parameters vector, using

m(n)
e = mpr + C

1/2
M m̂(n)

e for e = 1, 2, . . . , Ne . (3.20)

We denote the solution of the eth trust region sub-problem given by Eqs. 3.17 and

3.18, at the nth iteration, as δm̂(n)∗
e . Then, we define the updated estimate of the minimum,
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for the eth minimization problem at the nth iteration, as

m̂
(n)
e,upd = m̂(n)

e + δm̂(n)∗
e for e = 1, 2, . . . , Ne . (3.21)

The trust region radius, δ
(n)
e , for the eth minimization problem at the nth iteration,

is updated depending on the performance of the quadratic approximation q
(n)
e (δm̂(n)

e ), as

described in Appendix B. The performance of q
(n)
e (δm̂(n)

e ) is measured by (see Eq. B.7)

ρ(n)
e (δm̂(n)∗

e ) =
O(m̂(n)

e ) − O(m̂
(n)
e,upd)

q
(n)
e (0) − q

(n)
e (δm̂(n)∗

e )
for e = 1, 2, . . . , Ne . (3.22)

Details on how to update the trust region radius are given in Appendix B (see Algorithm B.1).

Notice that to compute O(m̂
(n)
e,upd) in Eq. 3.22, we need to run the reservoir simula-

tor for the corresponding reservoir model m
(n)
e,upd, where m̂

(n)
e,upd and m

(n)
e,upd are related by

Eq. 3.20. To compute O(m̂
(n)
e,upd), requires the reservoir predictions for the history-matching

period only. However, because the model m
(n)
e,upd may be added to the training set, when

running the reservoir simulator with m
(n)
e,upd, we needed to extend the reservoir simulation

total time to include the forecast period.

When the performance of the quadratic approximation q
(n)
e (δm̂(n)

e ) is satisfactory (see

Appendix B), we update the current estimate of the minimum as

m̂(n+1)
e = m̂

(n)
e,upd = m̂(n)

e + δm̂(n)∗
e for e = 1, 2, . . . , Ne . (3.23)

Otherwise, we repeat the trust region minimization using the same current estimate, i.e.,

m̂(n+1)
e = m̂(n)

e , with a reduced the trust region radius (see Appendix B). Nevertheless, we

add m̂
(n)
e,upd to the training set. Notice that to add a model to the training set, we need to

run the reservoir simulator. However, for m̂
(n)
e,upd we already have the reservoir simulation

results, which were computed when calculating O(m̂
(n)
e,upd), as discussed above. Thus, no

extra reservoir simulation run is indeed required.

As one can see, the training set is updated at each iteration of the minimization
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loop. The training examples added to the training set at each iteration are expected to come

from regions of increasing probability or at least regions near the modes, given that the

minimization step was able to improve the minimum estimate. Consequently, the proposed

methodology adapts the training set to the regions around the modes of the posterior pdf.

At the end of the minimization process, it is expected that a LS-SVR proxy model trained

with the final training set will provide good predictions around the modes of the posterior

pdf. Hence, it is expected that the resulting LS-SVR proxy model is a suitable proxy to

replace the true reservoir simulator during the MCMC sampling procedure.

As presented in Appendix A, the training procedure for the LS-SVR proxy model

requires the computation and inversion of a square matrix with dimension equal to the size

of the corresponding training set. Hence, large training sets increase the computational cost

of training the LS-SVR proxy model. To avoid an excessively large training set, we adopt a

minimum distance criterion to decide when update the training set. The underlying idea is

that we wish to avoid adding to the training set points that are too close to those already in

the current training set, as such points do not aggregate new information when training the

LS-SVR proxy model. To accomplish this, when a new model m
(n)
e,upd is obtained, to decide

whether it is to be added to the training set, we first compute

d∗min = arg min
mk ∈ TS

∥∥m(n)
e,upd −mk

∥∥
2
. (3.24)

In Eq. 3.24, mk, for k = 1, 2, . . . , Nt, represents the models which are already in the current

training set. Consequently, d∗min represents the distance between m
(n)
e,upd and the model in the

training set which is the closest to m
(n)
e,upd. Let us denote this closest model in the training

set as m∗k. Then, whenever

d∗min√
Nm

> dmin , (3.25)

where dmin represents a minimum distance defined by the user, we add m
(n)
e,upd to the current

training set. Notice that we choose to normalize the distance by the square root of the

dimension of m, i.e., square root of Nm, as in Rafiee and Reynolds [95]. Additionally, for
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the cases where

d∗min√
Nm

≤ dmin , (3.26)

but the model m
(n)
e,upd provides a value of the objective function less than the value obtained

for m∗k, we opt to replace the training example which contains m∗k by the training example

with m
(n)
e,upd in the current training set, since we believe that a point which provides lower

value of the objective function represents a better option to use in the training set.

Whenever a minimization problem converges, we remove the corresponding mini-

mization problem from the minimization loop, and we continue to iterate for the remaining

problems. We adopt four criteria to control the convergence of the minimization problems.

The first convergence criterion is related to the trust region radius. We regard a minimiza-

tion problem as converged whenever the trust region radius becomes less than a minimum

threshold, i.e., when δ
(n)
e < δmin, with δmin defined by the user. The reason is that, since

the trust region radius is reduced whenever the quadratic approximation does not repre-

sent a good approximation of the objective function, the fact that the trust region radius

becomes too small is an indication that the quadratic approximation is unable to correctly

represent the objective function for that particular minimization problem. Hence, whenever

δ
(n)
e < δmin, we consider the corresponding eth minimization problem as converged, although

the current estimate of the minimum, for this particular minimization problem, probably

does not represent a good minimum of the objective function.

The second convergence criterion is related to the magnitude of the objective function

value. We define the normalized objective function, ON(m̂∗), as the double of the value of

the objective function computed at m̂∗ and divided by the total number of observed data.

For any reasonable minimum m̂min of the objective function, one expects that [89]

ON(m̂min) ≡ 2O(m̂min)

Ndh

≤ 1 + 5

√
2

Ndh

. (3.27)

Hence, we regard a minimization problem as converged whenever ON(m̂(n+1)
e ) satisfies the

condition given by Eq. 3.27.
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The third convergence criterion is related to the improvement in the value of the

objective function. First we compute the relative change in the objective function value, at

the nth iteration for the eth minimization problem, as (see Eq. B.22)

ρ
(n)
e,stop ≡

abs
[
O(m̂(n+1)

e )−O(m̂(n)
e )
]

abs
[
O(m̂(n+1)

e )
] . (3.28)

In Eq. 3.28, “abs[·]” represents the absolute value function. We regard the corresponding

minimization problem as converged whenever ρ
(n)
e,stop ≤ εmin, where the precision parameter

εmin is defined by the user.

Finally, the fourth stop criterion is regarded to the norm of the model update. When

the norm of the model update δm̂(n)∗
e becomes less than a given threshold, we consider

the corresponding minimization problem as converged, i.e., when ‖δm̂(n)∗
e ‖2 < εm, with the

precision εm defined by the user. The idea here is that too small update indicates that the

trust region algorithm already reached a local minimum, therefore, no further improvement

is expected.

When any of the four convergence criteria is satisfied, we consider the corresponding

minimization problem as converged. We stop the minimization loop when a given percentage,

pconv, of all Ne minimization problems has converged. We adopt the percentage pconv since

some of the minimization problems may take too many iterations in order to converge and

we do not need all Ne modes in order to construct the GMM approximation, as we discuss

later in this dissertation.

As discussed earlier, the computational cost of training a LS-SVR proxy model in-

creases with the training set size. We already use the minimal distance to update the training

set in an attempt to avoid excessively large training sets. However, depending on the values

of the objective function for the initial guesses, several iterations may be required for the

minimization loop to converge. The training examples which provide high values of the ob-

jective function are important in the initial iterations, since one needs a LS-SVR proxy that

is able to provide a reliable sensitivity matrix for these initial guesses with high objective
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function value. However, after some iterations are conducted, the training examples which

provide high objective function values represent an unnecessary computational burden. To

circumvent this issue, when the training set contains more than Ncut training examples, with

Ncut defined by the user, we propose to remove from the current training set the training

examples which have normalized objective function values greater than a given threshold

ON,cut. Eliminating the training examples which provide high normalized objective function

values improves the computational efficiency of the minimization loop and does not affect

the quality of the resulting LS-SVR proxy model for the MCMC sampling procedure. The

reason for this latter statement is that the posterior pdf computed for this high normalized

objective function values represent regions of very low probability, i.e., those models repre-

sent models with very low probability of occurrence. The details of the minimization process

are given in Algorithm 3.1, where rconv represents the number of minimization problems that

still running, and ONcut and Ncut are used to reduce the total training set size during the

minimization process, as discussed earlier, also, γ and σ represent the LS-SVR parameters,

selected as described earlier.

At the end of the minimization process, the resulting training set is used to train a

final LS-SVR proxy model. This final LS-SVR proxy model is used to replace the reservoir

simulator in the next step, i.e., during the MCMC sampling procedure. It is worth mentioning

here that, before training the final LS-SVR, the final training set can be further reduced to

improve the computational cost. Depending on the results of the minimization process, we

recommend reducing the size of the training set using a more restrictive normalized objective

function threshold, ONmax, defined by the user. As we comment on before, during the MCMC

sampling procedure, relatively high values of the objective function represents regions of very

low probability. Furthermore, it is expected that the models from those regions are seldom

proposed, and once proposed will most probably be rejected. Hence, the impact of a more

restrictive normalized objective function threshold will be nil. We do not recommend using

the more restrictive threshold during the minimization process because it could affect the

ability of the proxy to provide good search directions for some of the minimization problems
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Algorithm 3.1: Find modes of the posterior pdf and construct the training set

1. Set Ne, Na, dmin, εm, εmin, Ncut, ONcut, pconv and the LS-SVR parameters γ and σ. Set
the trust region radii δmin and δmax (see Algorithm B.1).

2. For e = 1, . . . , Ne : sample an initial guesses m
(1)
e from the prior pdf and convert it

to m̂(1)
e using Eq. 2.11, set the initial trust region radius δ

(1)
e .

3. Sample Na models from the prior pdf. Set Nt = Ne +Na. For k = 1, . . . , Nt : run the
reservoir simulator for mk to compute the corresponding output dk, save the training
example (mk,dk) in the initial training set TS.

4. Set rconv = 0 and n = 1

5. While (rconv < pconv ×Ne)

• If (Nt > Ncut)

◦ For k = 1, . . . , Nt : if O(mk) > ONcut, REMOVE (mk,dk) from the TS.

End If
• Train a LS-SVR proxy model using the available TS.
• For (e = 1 to Ne − rconv)

◦ Compute the dimensionless sensitivity matrix for m̂(n)
e using Eq. 2.17 and

the available LS-SVR proxy model.

◦ From m̂(n)
e and δ

(n)
e , solve the trust-region minimization sub-problem of

Eqs. 3.17 and 3.18 to compute δm̂(n)∗
e (see Appendix B).

◦ Compute m̂
(n)
e,upd using Eq. 3.21. Compute m

(n)
e,upd using Eq. 3.20 and run the

reservoir simulator to compute the corresponding output d
(n)
e,upd. Compute

ρ
(n)
e (δm̂(n)∗

e ) using Eq. 3.22. Compute ρ
(n)
e,stop using Eq. 3.28.

◦ Determine m̂(n+1)
e and δ

(n+1)
e (see Algorithms B.1 and B.2).

◦ Compute d∗min for m
(n)
e,upd using Eq. 3.24, and also find the training example

(mk,close,dk,close) in the TS which is the closest to m
(n)
e,upd:

If (d∗min > dmin)

. ADD the training example (m
(n)
e,upd,d

(n)
e,upd) to the TS.

. Set Nt = Nt + 1.

Else If (O(mk,close) > O(m
(n)
e,upd) )

. REPLACE (mk,close,dk,close) by (m
(n)
e,upd,d

(n)
e,upd) in the TS.

End If

◦ If ( ρ
(n)
e,stop ≤ εmin or ‖δm̂(n)∗

e ‖2 < εm or δ
(n+1)
e < δmin or ON(m̂(n+1)

e ) satisfies
Eq. 3.27)

. Set rconv = rconv + 1, REMOVE the current minimization problem from
the minimization loop and reorder the remaining (non-converged) mini-
mization problems from 1 to Ne − rconv.

End If

End For
• Set n = n+ 1.
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being conducted.

Additionally, it is worthwhile to mention that different approaches for further reducing

the training set could also be investigated, for example, to eliminate points in the training

set unnecessarily concentrate in the same region. Here we propose a simple procedure. After

the minimization loop converges, whenever the size of the final training set is considerable,

we adopt a normalized objective function threshold to select some representative converged

minima from all the converged minimization problems. Those minima are used as seed

models to generate the final training set. After selecting the seed models, we run a loop

comparing the models in the training set one by one with the seed models. Whenever the

model is to close to the seed models, we remove the model. Conversely, whenever the model

is far from the models in the seed set, we add the model to the seed set. At the end, we use

the models as the final training set to train the final LS-SVR proxy model. To compare the

models from the training set with the models in the seed set, we use the same approach as

in Eq. 3.24, however with a less restrictive value than dmin which was use as a threshold to

add models to the training set during the minimization loop.

As a final note, it is worth stressing here that every time a given model mk is added

to the training set, one must run the forward model (the reservoir simulator) to compute the

respective predictions dk. Our LS-SVR does not incorporate time as an input value, which

means that we need to run the reservoir simulator up to any time we are going to consider.

When minimizing the objective function (Eq. 2.13) corresponding to the history-matching

period, we only need the predictions corresponding to the observed data period. However,

as the final aim is to quantify the uncertainty for predictions of future reservoir performance,

for every model added to the training set, we extend the corresponding reservoir simulator to

include the forecasting period, and the LS-SVR model is trained to reproduce all the desired

production history, including both the history-matching and the forecasting periods.

3.2.2 Second Step: MCMC Sampling Procedure

As discussed earlier, Li and Reynolds [69] suggested the use of a GMM approximation
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of the posterior pdf as the proposal distribution in a Metropolis-Hastings MCMC sampling

framework. A GMM is a probability distribution which is formed by a weighted summation of

a certain number of Gaussian distributions [100]. Denoting the GMM probability distribution

by πGMM(m), one gets

πGMM(m) =

Ng∑
`=1

w` N (m`, CM`) . (3.29)

In Eq. 3.29, Ng represents the selected number of Gaussian distributions, N (m`, CM`) de-

notes a Gaussian distribution with mean m` and corresponding covariance matrix CM`, and

w` > 0, for ` = 1, 2, . . . , Ng, represents the weight of each Gaussian distribution. In order

for πGMM(m) of Eq. 3.29 represent a proper probability distribution, the constraint

Ng∑
`=1

w` = 1 (3.30)

needs to be satisfied.

Following Li and Reynolds [69], we build the GMM approximation centered on some

modes of the posterior pdf. As suggested by Li and Reynolds [69], we cluster the modes

found in the minimization process into Nc clusters. By clustering these modes, one avoids

having essentially the same mode represented by more than one Gaussian in the GMM

approximation. Not all converged minimization problems solutions are used in the clustering

procedure, we only select the representative ones by using a normalized objective function

threshold. Therefore, from the Ne minimization problems solutions, we select the respective

modes which provide normalized objective function less than a given threshold ON,cluster.

Although one could use the constraint presented in Eq. 3.27 to define the threshold ON,cluster,

we believe that including more models in the clustering process results in a GMM which

better approximates the posterior pdf. Therefore, we recommend that one use a threshold

ON,cluster less restrictive than the constraint of Eq. 3.27.

We cluster the selected modes into Nc clusters using the k-medoids clustering algo-

rithm proposed by Kaufman and Rousseeuw [63]. The k-medoids proceeds by dividing all
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points in a given set into a predetermined number of clusters. Then, for each cluster, the

algorithm selects the point which is the closest to the center of the cluster. Those selected

points are the medoids, which are used to represent the clusters. The total number of clusters

are predefined by the user, which could be consider a drawback of the method. Nevertheless,

for the results presented in this dissertation, we follow Li and Reynolds [69] and adopt a

total number of clusters given by Nc = 25. We denote the resulting clusters as m∗c , for

c = 1, 2, . . . , Nc. Thus, each cluster m∗c represents the mean of one Gaussian in the GMM

approximation, i.e., Ng = Nc in Eq. 3.29. The respective corresponding covariance matrix

for each Gaussian in the GMM approximation is given by the inverse Hessian of the objective

function [69]. Each Hessian is computed for the respective cluster m∗c , for c = 1, 2, . . . , Nc,

using Eq. 2.9. Consequently, denoting by C∗M,c the covariance matrix corresponding to the

cluster m∗c , one obtains

C∗M,c ≡
[
H(m∗c)

]−1

=
[
C−1
M +Gapp(m∗c)

TC−1
D Gapp(m∗c)

]−1

, (3.31)

for c = 1, 2, . . . , Nc. In Eq. 3.31, the required approximate sensitivity matrix Gapp(m∗c) is

computed using Eq. 3.19 for m∗c and the final LS-SVR proxy model which is trained at the

end of the minimization process.

Using the GMM approximation of Eq. 3.29 for the computed mean and covariance

matrix given by the clusters, as described above, our proposal distribution q(ms|m`) for the

Metropolis-Hastings algorithm is given by

q(ms|m`) = πGMM(ms)

=
Nc∑
c=1

wc√
(2π)Nm |C∗M,c|

exp

(
−1

2
(ms −m∗c)T C∗−1

M,c (ms −m∗c)
)
. (3.32)

Following the recommendation of Rafiee and Reynolds [95], in Eq. 3.32 we adopt wc = 1/Nc,

for c = 1, 2, . . . , Nc.

The proposal distribution q(ms|m`) of Eq. 3.32 gives the probability of proposing
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a transition from the state m` to a new state ms in the chain. As pointed out by Li and

Reynolds [69], with the proposal distribution of Eq. 3.32, the probability of proposing the

new state ms is independent of the current state m`, i.e., q(ms|m`) does not depend on

m`. As a consequence, the proposal distribution promotes good mixing in the chain, which

tends to avoid having the chain trapped near the same mode for a large number of states.

This is a desirable characteristic when sampling from a complex non-Gaussian pdf, such as

the posterior pdf for reservoir simulator parameters.

The results presented by Li and Reynolds [69] and Rafiee and Reynolds [95] showed

that the GMM proposal distribution of Eq. 3.32 indeed accelerates the convergence of the

corresponding Markov chain. As discussed before, to evaluate the Metropolis-Hastings accep-

tance probability one reservoir simulation run is required (see Algorithm 2.2). Consequently,

the Li and Reynolds [69] and Rafiee and Reynolds [95] approaches result in a considerable

reduction in the total number of required reservoir simulation runs. However, they found

that tens of thousands of reservoir simulations runs were still required to properly investigate

the target pdf, i.e., the posterior pdf, when sampling with MCMC.

The critically important difference between the methodology developed in this re-

search and those of Li and Reynolds [69] and Rafiee and Reynolds [95] is that we use the

final LS-SVR model to compute the Metropolis-Hastings acceptance probability. As a conse-

quence, we do not need to run the reservoir simulator during the MCMC sampling procedure.

However, by using the LS-SVR proxy model, instead of sampling the true posterior pdf π(m)

of Eq. 2.6, we are sampling from the following approximation, πapp(m), of the posterior pdf

πapp(m) = ad exp
[
−Oapp(m)

]
. (3.33)

In Eq. 3.33, ad represents the normalizing constant, and Oapp(m) represents the approxi-

mated objective function which is obtained by replacing the reservoir simulator predictions
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with the LS-SVR proxy predictions. Therefore

Oapp(m) =
1

2
(m−mpr)

TC−1
M (m−mpr) +

1

2

(
ĝh(m)− dobs

)T
C−1
D

(
ĝh(m)− dobs

)
. (3.34)

In Eq. 3.34, ĝh(m) = [ĝ1(m), ĝ2(m), . . . , ĝNdh (m)]T denotes the column vector of predic-

tions from the LS-SVR proxy model which correspond to the history matching period. The

entries ĝi(m), for i = 1, 2, . . . , Ndh , are computed using Eq. 3.12 for the final LS-SVR proxy

model.

As evaluating the analytical expression for LS-SVR proxy is significantly faster than

running the real reservoir simulator, the computational cost of running a long Markov chain

is feasible when using the proxy predictions to compute the Metropolis-Hastings acceptance

probability. Algorithm 3.2 gives the proposed MCMC sampling methodology.

As discussed earlier, the performance of many Metropolis-Hastings MCMC algorithms

is greatly dependent on the choice of the proposal distribution. For many practical appli-

cations it is difficult to correctly tune the selected proposal distribution in order to deliver

an efficient MCMC algorithm. Several previous works have proposed to automatically tune

the proposal while the MCMC sampling is conducted. Here, we follow Rafiee and Reynolds

[95] and use the covariance matrix adaptation as presented in Eq. 2.65. As discussed be-

fore, we chose the parameter µγ (see the discussion after Eq. 2.65) such that the resulting

Metropolis-Hastings MCMC sampling algorithm delivers an acceptance rate between 0.20

and 0.50 [104, 101].

To monitor the convergence of the resulting Markov chain, we follow Li and Reynolds

[69] and adopt the MPSRF procedure as described in Sub-Section 2.4.1.

3.3 Least-Squares Support Vector Regression and Markov Chain Monte Carlo

for Large Scale Problems

For Li and Reynolds [69] and Rafiee and Reynolds [95] approach, which uses the

reservoir simulator, using a MCMC sampling framework for uncertainty quantification is
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Algorithm 3.2: Proposed Metropolis-Hastings MCMC algorithm

1. Cluster the found modes into Nc clusters and build a GMM approximation of the
posterior pdf to use as proposal distribution (see Eq. 3.32).

2. Set the state counter s = 0 and choose the initial state m0 in the chain by sampling
the GMM approximation of Eq. 3.32.

3. Propose a candidate to new state in the chain, m̃s+1, by sampling the GMM proposal
distribution of Eq. 3.32.

4. Evaluate the Metropolis-Hastings acceptance probability using the approximate objec-
tive function πapp(m) of Eq. 3.33

α(ms, m̃s+1) = min

{
1,
πapp(m̃s+1) πGMM(ms)

πapp(ms) πGMM(m̃s+1)

}
. (3.35)

5. Generate a random number u from the uniform distribution U [0, 1].

6. If u < α(ms, m̃s+1), the proposed candidate is accepted as the new state in the
chain, i.e., set ms+1 = m̃s+1. Otherwise, the proposed candidate is rejected and the
current state is repeated in the chain, i.e., set ms+1 = ms.

7. Increase the chain counter by making s = s+ 1 and return to Step 3 until the desired
chain length is achieved.

virtually infeasible for large scale problems. Here, large scale problems refer to the cases for

which the reservoir simulation model is composed of tens of thousands to millions parameters,

i.e., the cases for which Nm is large.

Although the methodology presented in this dissertation seemingly allows one to

apply MCMC even for large scale problems, direct application of the proposed methodology

for large scale problems represent a computational burden for both the LS-SVR training

procedure and the minimization process depicted in the previous sections. In particular, large

scale problems results in large covariance matrices, which makes it computationally difficult

to sample from and evaluate the GMM proposal distribution, besides the high computational

cost to adapt the covariance matrices.
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To circumvent this issues and handle large scale problems, an order reduction tech-

nique is applied. Here, we adopt the principal component analysis (PCA) [137, 110]. The

basic idea of the PCA method is to decompose a given matrix into its respective main di-

rections. The decomposition is conducted in such a way that each main direction is related

to a principal variance direction. By principal variance directions, we mean the directions

which have more influence in the linear transformation represented by the given matrix.

Conventionally, the first main direction is related to the highest variance, the second main

direction to the second highest variance, and so on. To effectively reduce the order of a

problem, the PCA must be able to accurately reconstruct the given matrix by using only

few main directions, the ones which are related to the highest variances, i.e., the ones which

have more influence in the linear transformation represented by the given matrix.

In our history matching and uncertainty quantification applications, one could apply

PCA to the prior covariance matrix CM (see Eq. 2.7) to reduce the order of the input vector

m, see, for example, Reynolds et al. [96]. However, the prior covariance matrix may pertain

to variables which have vastly different variances. By applying PCA directly to the prior

covariance matrix, one could potentially eliminate the dependence on important uncertain

quantities, not because they have low influence in the given problem, but instead because of

the different numerical scales. To circumvent this limitation, we advocate to instead apply

PCA to the corresponding prior correlation matrix. The correlation matrix is obtained from

the covariance matrix when dividing each entry by the product of the corresponding standard

deviations. Consequently, all entries of the correlation matrix have numerical values less than

or equal to unity, and all diagonal entries are equal to unity.

Denoting the prior correlation matrix as C̃M , it follows that

C̃M = S−1
M CM S−1

M ⇒ CM = SM C̃M SM . (3.36)

In Eq. 3.36, SM denotes the standard deviation matrix, which is the diagonal matrix for

which the jth entry of the diagonal is given by the standard deviation of the jth parameter,
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i.e., the standard deviation for the jth entry of the vector of reservoir model parameters m,

and S−1
M denotes the inverse of SM . Since SM is a diagonal matrix, it is symmetric. Since

CM is a symmetric positive definite matrix, it is easy to verify that C̃M , defined in Eq. 3.36,

is also a symmetric positive definite matrix.

To apply PCA, we start by decomposing the correlation matrix C̃M using the singular

value decomposition (SVD) [46]

C̃M = U W V T . (3.37)

In Eq. 3.37, the Nm × Nm matrix U denotes the orthogonal matrix of left singular vectors

of C̃M , i.e., the columns of U represent the unit length left singular vectors uj, for j =

1, 2, . . . , Nm, of the correlation matrix C̃M . Similarly, the Nm × Nm matrix V denotes

the orthogonal matrix of right singular vectors of C̃M , i.e., the columns of V represent the

unit length right singular vectors vj, for j = 1, 2, . . . , Nm. Since C̃M is symmetric positive

definite, it holds that U ≡ V , and the columns of U also represent the eigenvectors of the

symmetric positive definite matrix C̃M . The matrix U ≡ V is orthogonal, i.e.,

U UT = UT U = INm , (3.38)

where INm denotes the Nm ×Nm identity matrix.

Also in Eq. 3.37, the Nm×Nm diagonal matrix W has the jth singular value, denoted

by wj, of the correlation matrix C̃M , as its jth diagonal entry. Again, since C̃M is symmetric

positive definite matrix, wj also represents the jth eigenvalue of the matrix C̃M . The diagonal

elements of the matrix W are ordered such that w1 ≥ w2 ≥ . . . ≥ wNm . The magnitude of

the singular values define the principal variance directions, i.e., the highest singular value,

i.e., the first element in the diagonal of matrix W , corresponds to the highest principal

variance direction. In this case, the principal variance direction points in the direction of the

first left singular vector, i.e., the direction given by the first column of the matrix U . The

second highest principal variance direction corresponds to the second highest singular value,

i.e., the second element in the diagonal of matrix W . Again, the second principal variance
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direction points in the direction given by the second column of matrix U , and so on.

Using Eq. 3.38, one can manipulate Eq. 3.37 to obtain

C̃M = U W UT = U W 1/2 W T/2 UT = U W 1/2 UT U W T/2 UT . (3.39)

In Eq. 3.39, the Nm×Nm diagonal matrix W 1/2 represents the square root of the matrix W ,

and W T/2 represents the transpose of W 1/2. Since W is a positive definite diagonal matrix,

W 1/2 = W T/2. Furthermore, the jth entry of the diagonal of W 1/2 is given by w
1/2
j , for

j = 1, 2, . . . , Nm.

To apply the PCA method, we reconstruct the correlation matrix C̃M using only the

Nv directions which are related to the highest variance. To accomplish this, we keep only

the first Nv columns of the matrix U and only the first Nv diagonal elements of the matrix

W , i.e.,

C̃M = UNv WNv U
T
Nv = UNv W

1/2
Nv

W
T/2
Nv

UT
Nv = UNv W

1/2
Nv

UT
Nv UNv W

T/2
Nv

UT
Nv . (3.40)

In Eq. 3.40, UNv represents the Nm×Nv matrix formed by the first Nv columns of the matrix

U . Similarly, WNv represents the Nv×Nv diagonal matrix which is composed of the first Nv

elements of the diagonal of the matrix W . It is well known that

UT
Nv UNv = INv , (3.41)

where INv denotes the Nv×Nv identity matrix, but when Nv < Nm, normally UNvU
T
Nv

= INm .

As will be clear in the following development, Nv represents the dimension of the

reduced order problem. Usually, one determines Nv based on some percentage pNv of the

total variance, which is defined as

pNv =

∑Nv
j=1wj∑Nm
j=1wj

. (3.42)
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Then one determines Nv as the smallest dimension for which pNv is greater than an user

given threshold.

Combining Eqs. 3.36 and 3.40, gives

CM = SM UNv W
1/2
Nv

UT
Nv UNv W

T/2
Nv

UT
Nv S

T
M

=
(
SM UNv W

1/2
Nv

UT
Nv

) (
SM UNv W

1/2
Nv

UT
Nv

)T
. (3.43)

Conventionally, to determine a suitable square root of the covariance matrix, normally

the following properties are enforced:

CM = C
1/2
M C

T/2
M and C−1

M = C
−T/2
M C

−1/2
M . (3.44)

In Eq. 3.44, C
1/2
M denotes the square root of the matrix CM and C

T/2
M denotes the transpose

of C
1/2
M , while C

−1/2
M denotes the inverse of C

1/2
M and C

−T/2
M denotes the transpose of C

−1/2
M

which is also the inverse of C
T/2
M .

From Eq. 3.43, a suitable square root of CM is given by

C
1/2
M = SM UNv W

1/2
Nv

UT
Nv , (3.45)

which implies that its pseudo-inverse is given by

C
−1/2
M = UNv W

−1/2
Nv

UT
Nv S

−1
M , (3.46)

where C
−1/2
M represents the Moore-Penrose [78, 90] pseudo-inverse of C

1/2
M . It is a pseudo

inverse because, although Eq. 3.41 holds for UT
Nv
UNv , in general, UNv U

T
Nv

is not equal to the

identity matrix INm for the case where Nv < Nm.

Based on Eqs. 3.45 and 3.46, we adopt the following linear transformation of the
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reservoir parameter vector m

z = W
−1/2
Nv

UT
Nv S

−1
M (m−mpr) . (3.47)

Notice that z is a Nv−dimensional column vector. Therefore, the original dimension of

the problem, which is given by the dimension of the vector m, is effectively reduced to Nv.

Furthermore, since m ∼ N (mpr, CM), it holds that z ∼ N (0, INv), i.e., z follows a Gaussian

distribution with zero mean and identity covariance matrix.

With the linear transformation given by Eq. 3.47, the objective function O(m) of

Eq. 2.7 reduces to

O(z) =
1

2
zT z +

1

2

(
gh(z)− dobs

)T
C−1
D

(
gh(z)− dobs

)
. (3.48)

In Eq. 3.48, we consider the reservoir simulator gh(·) as a function of the input vector z, since

for any vector m, the reduced order vector z can be computed using Eq. 3.47. Conversely,

for a given reduced order vector z, the corresponding vector m counterpart is computed

using

m = mpr + SM UNv W
1/2
Nv
z , (3.49)

which is obtained using the pseudo-inverse as described above.

The use of PCA with our proposed methodology is straightforward. Foremost, instead

of training the LS-SVR for the reservoir vector of parameters m, we train the LS-SVR proxy

using its reduced order counterpart z. Consequently, the training procedure presented in

Appendix A is conducted for the training examples (zk, dk), for k = 1, 2, . . . , Nt, where

dk = gh(zk). It can be verified that the reduction in order also represents a reduction in the

computational cost of the training procedure. Although most of the computational cost for

training a LS-SVR model is due the inversion of the kernel matrix, some computational gain

is expected when using the reduced order vector, mainly because the computational cost of

computing inner products for the reduced order vector is small.
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With the LS-SVR proxy model trained for the reduced order vector z, we conduct

the minimization process described earlier with the vector m replaced by its reduced order

counterpart z. Notice that in the objective function, the covariance matrix CM is replaced by

the identity matrix INv , which tends to reduce the ill-posedness of the minimization problem

and enhances the convergence. Therefore, for large scale problems, the objective function

which is indeed minimized is O(z) of Eq. 3.48, with the LS-SVR proxy model trained in

terms of zk and dk.

Finally, in the MCMC sampling procedure, the GMM approximation of the poste-

rior pdf is constructed for the reduced order vector z. Consequently, the Markov chain is

constructed for the vector z. For the reduced order case, considerable reduction in the com-

putational burden is also expected during the MCMC sampling procedure when compared

with the case where the vector m is used instead. The advantage arises from sampling from

a lower order multivariate Gaussian distribution, as well as from adapting a lower order

covariance matrix.

It is worth pointing out here that by coupling the LS-SVR proxy with the PCA

method, or any other reduced-order method, the forward model used during the MCMC

sampling procedure, i.e., the LS-SVR proxy itself, is indeed a reduced order model. The same

may not be true for cases where PCA is coupled with the real reservoir simulator, i.e., one

can use the reduced order objective function during the minimization process, however, for

constructing the Markov chain one would still need to run the full scale reservoir simulation

model.

3.4 Improving the Least-Squares Support Vector Regression Predictions

As the results will show in the next section, building the training set in an iterative

framework, adapting it to the regions of interest, results in a LS-SVR proxy model sufficiently

accurate for the MCMC sampling procedure. However, as discussed earlier, for a given

application we adopt the RBF kernel since no clear procedure to select and/or derive a

kernel function is available in the literature [112].
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In an attempt to enhance the LS-SVR proxy model predictions, we introduce a novel

training procedure which tries to assimilate some physical insights of the problem. The

proposed approach is very simple. It consists of using some analytical solution, obtained

from a simplified geometry, to derive a mapping function. The mapping function is applied

to the input vectors before the training procedure is conducted, as depicted next.

As discussed earlier, the LS-SVR adopts a kernel function which represents the inner

product of some given input vectors in some high dimensional feature space [18, 112]. The

underlying idea is that the relationship between input vectors and corresponding outputs

is linear in the feature space [18, 112]. Theoretical results [92, 25, 115] suggests that for

any non-linear function, there exist a feature space which makes the relationship between

input vectors and corresponding outputs linear. The feature space is defined by selecting a

specific kernel function. However, no clear procedure is known to determine such a feature

space, i.e., no clear procedure of how to derive a kernel function for a given problem is

available. In practice, one adopts some kernel function family, such as the RBF kernel,

then tunes some parameters to adjust the chosen kernel function for a given problem. The

resulting kernel function does not necessarily represent a feature space where the relationship

between input and output vectors is linear, although historically the resulting SVR model

gives an acceptable performance for most applications. For the classification problem, [108]

present a methodology to incorporate prior knowledge about the data into the resulting SVM

by multiplying the input vectors by some pre-processing matrix. Recently, it has become

popular to combine multiple available kernels, instead of adopting a specific one [11, 10, 47].

We propose an alternative approach which tries to assimilate physical knowledge from

a given problem. The underlying idea is simplistic. Suppose one needs to build a LS-SVR

proxy model for a given reservoir simulator d = g(m), using the training set

Ts = {(mk,dk), k = 1, 2, . . . , Nt} . (3.50)

As before, in Eq. 3.50, dk = g(mk). For cases where the relationship defined by g(m) is
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very non-linear and complex, the RBF kernel may struggle to deliver a reasonable LS-SVR.

However, even for complex reservoirs, a simplified analytical solution may still able to provide

some useful insights on the fluid flow dynamics in the porous media. By simplified analytical

solutions, we mean solutions for uniform reservoir properties and simplified geometry, as well

as a simplified fluid model. Although simplified analytical solutions are able to only roughly

reproduce the real reservoir numerical simulator, it is possible to derive from an analytical

solution some dependency relationships. That is, one is able to relate how the pressure or

flow rates will depend on the permeability, for example.

Here we propose to derive a simplified analytical solution for a given problem. Then,

from the analytical solution we derive some one-dimensional dependence relationship, which

we denote by ψ(·), between the input properties of the reservoir model and some observed

quantity. For example, one could derive a dependence relation between permeability and

flow rate. Finally, we use ψ(·) as a mapping function for the entries of the vector m. By

applying this mapping, we intend to reduce the complexity between the input vector m and

the output predictions d. Consequently, instead of using the training set given by Eq. 3.50,

we propose to train the LS-SVR proxy model using the modified training set

Ts,map = {(ψ(mk),dk), k = 1, 2, . . . , Nt} . (3.51)

In Eq. 3.51, the jth entry of the Nm−dimensional vector ψ(mk) is given by ψ(mj), for

j = 1, 2, . . . , Nm, where mj represents the jth entry of the vector m.

By careful examination of the training procedure presented in Appendix A, one may

conclude that the only effect of the mapping presented above is to modify the chosen kernel

function. For the RBF kernel adopted here, the kernel function is modified to

K(mk,m) = K (ψ(mk), ψ(m)) = exp

(
−
∥∥ψ(mk)− ψ(m)

∥∥2

2

σ2

)
. (3.52)

Therefore, the proposed mapping procedure tries to adapt the kernel function to a particular

given problem.
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Although the results obtained so far indicates that the simplistic mapping procedure

described in this section indeed improves the proxy predictions, it is very hard to generalize

this mapping methodology. The main reason is that, for practical applications, both the

vectors m and d contain different physical entities as its entries, which makes the derivation

of a practical mapping very difficult. Besides, the mapping approach is incompatible with

the reducing order techniques, such as PCA. The reduced order vector z is a mathematical

entity and does not have a clear physical meaning, hence an analytical solution fails in

provide insights about the dependency on the vector z.
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CHAPTER 4

APPLICATIONS, RESULTS AND DISCUSSIONS

In this chapter we present the application of the proposed methodology for five cases.

The first case presented is an 1-D toy problem, which has only one parameter and only one

observed datum. As the second case, we present the application to a 1-D reservoir model

developed by Emerick and Reynolds [28] to evaluate the performance of different methods

for sampling the posterior probability density function (pdf). The third case is a synthetic

2-D reservoir model design by Li [68] to evaluate her two-level MCMC method. The fourth

case is the well known 3-D reservoir model PUNQ-S3. Finally, the fifth case is a large scale

3-D reservoir model that we generated based on the available data from the PUNQ-S3 case.

4.1 Application to a Toy Problem.

Although the toy problem presented here is a very simple example, with one parameter

and one observed datum, it is relatively easy to compute and visualize the posterior pdf for

this simple case. Therefore, it is possible to compare the approximated posterior pdf that

we sample with our proposed methodology with the real posterior pdf for this toy problem.

The toy problem presented here is similar to the one designed by Zafari and Reynolds

[139]. The one-dimensional forward model is given by

d = g(m) = 1.0− 4.5

[
m− 2π

3

]2

. (4.1)

In Eq. 4.1, m ∈ R represents the single model parameter. For this case, the prior pdf for the

parameter m is assumed Gaussian with mean equal to 2.30 and standard deviation of 0.20,

i.e., m ∼ N (2.30, 0.202). The true model parameter was sampled from the prior pdf and is

equal to mtrue = 1.8836. To generate a single observed datum, white noise, with standard
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deviation equal to 0.10, is added to the prediction obtained for the true model mtrue. The

resulting observed datum is dobs = 0.7942.

For Gaussian prior and Gaussian measurements error distributions, the posterior pdf

is given by π(m) of Eq. 2.6. As a consequence, the corresponding objective function is given

by

O(m) =
1

2

[
m− 2.30

0.20

]2

+
1

2

[
g(m)− dobs

0.10

]2

. (4.2)

To apply the proposed methodology and construct a GMM approximation for the

posterior pdf, we chose to solve Ne = 20 minimization problems. The required Ne = 20

initial guesses are sampled from the prior Gaussian pdf for m using LHS [74]. An additional

Na = 60 points are also sampled from the prior pdf, using LHS, to form an initial training

set with Nt = 80 training examples.

The minimization loop set up given next is based on the values adopted by Rafiee

[93]. The minimum distance to update the training set is selected equal to dmin = 1.0E− 5.

The trust-region parameters are set equal to δ
(1)
1 = 0.10, δmin = 1.0E − 5 and δmax = 0.50.

The convergence criteria are set equal to εmin = εm = 1.0E− 6 and pconv = 1.0, which means

that all minimization problems have to converge.

The LS-SVR parameters are set equal to γ = 800 and σ = 0.20, which means cσ =

0.20. As described earlier, this value of cσ was determined using numerical experiments.

The minimization loop results are presented in Fig. 4.1. As presented in Fig. 4.1(a),

the algorithm takes 25 iterations to converge, i.e., for all Ne = 20 minimization problems to

converge to a local minima. For this toy problem, all the points added to the training set

are used to train the final LS-SVR. As shown in Fig. 4.1(b), two distinct modes are found.

Note that two minimization problems converge to the mode at m = 1.9137 and eighteen

minimization problems converge to the second mode at m = 2.3077. Those two modes are

very close to the actual two modes of the posterior pdf, which can be computed from Eq. 4.2

as m1 = 1.9141 and m2 = 2.3077.

Following the proposed methodology of Chapter 3, we use the modes found to con-
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Figure 4.1: Results of the minimization loop for the toy problem case: (a) number of cases
that still running per each iteration, (b) histogram of converged models showing
the two distinct modes found.

struct a GMM approximation of the posterior pdf, which results in

πGMM(m) = 0.50 N (1.9137, 0.0032) + 0.50 N (2.3077, 0.0025) ; (4.3)

note that we use equal weights for each Gaussian as suggested by Rafiee and Reynolds [95].

The variances shown in the GMM approximation of Eq. 4.3 represent the inverse Hes-

sian of the objective function O(m) of Eq. 4.2 at the modes. For this single parameter case,

the Hessian represents the second derivative of the objective function. Computing the inverse

of the second derivative at the modes found, we obtain 0.0032 and 0.0025, which are precisely

the values shown in Eq. 4.3. A comparison between the resulting GMM approximation and

the true posterior pdf is presented in Fig. 4.2.

For the MCMC uncertainty quantification step, using the GMM approximation of

Eq. 4.3 as proposal distribution, we run our proposed Metropolis-Hastings algorithm for five

distinct chains. Each chain starts from a randomly select initial state, which is sampled

from the prior pdf. As discussed earlier, the purpose of running five chains is to monitor the

convergence using the MPSRF method described earlier. We chose to run each chain with a

total length of 50,000 states for this simple toy problem.

The MPSRF convergence criterion for the five chains is presented in Fig. 4.3(a). As
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Figure 4.2: Comparison between the GMM approximation of the posterior pdf (red curve)
and the real posterior pdf (black curve) for the toy problem case.

one can observe in Fig. 4.3(a), the MPSRF reaches unity after 400 states are generated, hence,

we regard all five chains as converged at state 400. For a bi-modal distribution, convergence

after only 400 states are generated, represents very fast convergence when sampling the

pdf with MCMC, and this result corroborates the efficiency of Li and Reynolds [69, 68]

proposition.

The uncertainty quantification results are presented in Fig. 4.3(b), in which we present

a comparison between the true posterior pdf and a pdf constructed using a sample of 20,000

states from each chain, i.e., in a total of 100,000 states. The 20,000 states are randomly

selected from each chain after the first 500 states. As one can conclude from Fig. 4.3(b),

there is a very good agreement between the true pdf and the pdf reconstructed using samples

from all five chains, which supports the applicability of our proposed methodology.

4.2 Application to an One-Dimensional Water-Flooding Model.

This one-dimensional water-flooding reservoir case was designed by Emerick and

Reynolds [28] to evaluate the performance of different methods for sampling the poste-

rior pdf. The 1-D reservoir geometry is composed of 31 gridblocks, with dimensions of

50 ft× 50 ft× 50 ft for each gridblock. A schematic of this one-dimensional reservoir model

is presented in Fig. 4.4, in which we also present the location of wells.

The reservoir properties description are given next. The initial reservoir pressure is
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Figure 4.3: Uncertainty quantification results for the toy problem: (a) convergence of the
five chains using the MPSRF method, (b) comparison between true posterior pdf
(black curve) and the pdf constructed using a sample of 20,000 states from each
chains (blue curve).
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Figure 4.4: One-dimensional water-flooding reservoir model schematic, also presenting the
wells locations.

assumed to be constant and equal to 3,500 psi. The porosity of each gridblock is also assumed

to be constant and equal to 0.25. Both oil and water viscosity are assumed to be constant

and equal to 2.0 cp and 1.0 cp, respectively. The first gridblock contains a water injection

well, which operates at a constant bottom-hole pressure of 4,000 psi. The last gridblock

contains a production well, which operates at a constant bottom-hole pressure of 3,000 psi.

For this one-dimensional water-flooding model, the vector of reservoir model parame-

ters considered for history matching, i.e., the vector m, is given by the natural logarithm of

each gridblock permeability. Consequently, Nm = 31 and mj = ln(kj), for j = 1, 2, . . . , Nm,

where kj represents the permeability of the jth gridblock, and mj represents the jth entry of

the vector m. The log-permeability is assumed to follow a multivariate Gaussian distribu-

tion with mean mpr = [5.0, . . . , 5.0]T , i.e., mpr,j = 5.0, for j = 1, 2, . . . , Nm. The variance

of each gridblock log-permeability is assumed equal to 1.0. The prior covariance matrix is
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the same one used by Emerick and Reynolds [28], which was generated using an exponential

covariance function with range set equal to 10 gridblocks.

The true model adopted here is the same one used by Emerick and Reynolds [28],

which was randomly sampled from the prior pdf. The dynamic data considered for history

matching are the bottom-hole pressure of a monitor well located at the middle of the reservoir,

i.e., in gridblock 16. A total of 360 days of operational time is considered. The monitor well

bottom-hole pressure is recorded at 30 days intervals, consequently, there are 12 observed

data, i.e., Ndh = 12. As in Emerick and Reynolds [28], we run the reservoir simulator

using the true model and add measurement errors to create the vector of observed data

dobs; this vector of observed data is identical to the one used by Emerick and Reynolds [28].

The measurement errors are assumed to be independent Gaussian variables with zero mean

and variance equal to 1.0 psi2. Consequently, the measurement error covariance matrix is

effectively an identity matrix. Besides the history-matching period, we consider a 390 days

forecasting period, with predictions also recorded every 30 days. Therefore, for this case, for

every model added to the training set we run the reservoir simulator for a total of 750 days,

with data acquired at every 30 days, i.e., Nd = 25.

To assess the efficiency and applicability of our proposed method, the results produced

with our proposed methodology are compared to the results generated by Li and Reynolds

[69]. For the same one-dimensional water-flooding case consider here, Li and Reynolds

[69] applied random walk Metropolis-Hastings MCMC, in which the real reservoir simulator

predictions was used to evaluate the posterior pdf in order to compute the Metropolis-

Hastings acceptance probability to quantify the uncertainty. They generated a Markov

chain composed of 23 million states. Their proposal distribution was a Gaussian distribution

centered on the current state in the chain and covariance matrix given by 0.0052×CM , where

CM represents the prior covariance matrix.

The random walk results of Li and Reynolds [69] are presented in Fig. 4.5. The

marginal distributions of gridblock permeability are presented in Fig. 4.5(a). In this figure,

and for similar figures shown later in this dissertation, the solid thick black curve represents
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Figure 4.5: Random walk Metropolis-Hastings MCMC results from Li and Reynolds [69]:
(a) marginal distributions of gridblock permeability, (b) marginal distributions of
water production rate at the production well. Both plots show the corresponding
true value (solid thick red curve), the mean of the marginal distribution (solid
thick black curve), the percentiles P25 and P75 of the marginal distribution (two
blue dashed curves), and the percentiles P5 and P95 of the marginal distribution
(two thin black curves).

the mean of the marginal distribution for each gridblock, also the two blue dashed curves

represents the 25% (P25) and 75% (P75) percentiles, while the two solid thin black curves

represent the 5% (P5) and 95% (P95) percentiles. Finally, the solid thick red curve represents

the true permeability field. Fig. 4.5(b) shows the associated marginal distributions for the

water production rate at the production well. In this latter figure, the solid thick red curve

represents the water production rate that is obtained running the reservoir simulator model

with the true permeability field, and the other curves follow the same color code as described

for Fig. 4.5(a). It is worthwhile to remember that the water production rate at the production

well was not used in the history matching process.

Following our proposed methodology, to find modes of the posterior pdf and build

the GMM approximation, we chose to solve a total of Ne = 200 minimization problems. The

required Ne = 200 initial guesses are sampled from the prior pdf using LHS [74]. For this

case, an additional Na = 600 models are also sampled from the prior with LHS, to compose

an initial training set with Nt = 800 training examples.

The minimization loop set up is again based on the values adopted by Rafiee [93].
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The minimum distance to update the training set is selected equal to dmin = 1.0E− 4, since

we normalize the distance using the dimension of the vector m, see Eq. 3.25, a numerical

values between 1.0E− 4 and 1.0E− 5 seems to work well for the problems addressed so far.

The trust-region parameters are set equal to δ
(1)
e = 1.0, for e = 1, . . . , Ne , δmin = 1.0E− 2

and δmax = 2.0, this numerical values seems to work well considering that the minimization

process is actually conducted for the dimensionless vector m̂, see Eq. 2.11. The convergence

criteria are set equal to εmin = εm = 1.0E− 6 and pconv = 0.95, i.e., we require that at least

95% of the minimization problems converge. While the minimization loop is conducted, we

set Ncut = 3, 200 and ON,cut = 100.0, which means that when the training set becomes larger

than 3,200 training examples, we remove from the training set the training examples which

provide normalized objective function values greater than 100.0.

For this one-dimensional problem, we apply our mapping approach to improve the

quality of the proxy predictions. To achieve this, we derive a mapping function ψ(m) from

a simplified one-dimensional analytical solution. The solution which is considered here is

for an one-dimensional, single-phase, semi-infinite, homogeneous reservoir. The resulting

analytical solution is given by

p(x, t) = pi −
qwµ

kAr

[(
4ηt

π

) 1
2

exp

(
− x2

4ηt

)
− xerfc

(
x

(4ηt)
1
2

)]
. (4.4)

In Eq. 4.4, p(x, t) denotes the reservoir pressure at the axial position x, at the time t,

pi denotes the initial reservoir pressure, qw represents the constant flow-rate, µ denotes the

fluid viscosity, k represents the reservoir permeability, Ar denotes the reservoir cross-sectional

area, and the hydraulic diffusivity η is given by

η =
k

φµct
, (4.5)

for any consistent system of units, where φ denotes the reservoir porosity and ct the reservoir

total compressibility.

In Eq. 4.4, the second term in brackets, i.e., the term involving the complementary
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error function, erfc(·), is dominated by the exponential term. Dropping the complementary

error function term, from Eq. 4.4 we get the following dependence relationship between

permeability and pressure

p(k) ∝
√
k

k
exp

(
−1

k

)
. (4.6)

We chose the dependence relation of Eq. 4.6 because, for this 1-D water-flooding model,

the reservoir parameters are represented by the log-permeability and the observed data by

the monitor well pressure. Hence, since the reservoir parameters are the log-permeability

k = exp(mj). Using this relation in Eq. 4.6 results in the following mapping function

ψ(mj) = exp
[
−mj

2
− exp(−mj)

]
, for j = 1, 2, . . . , Nm . (4.7)

To make use of the mapping function ψ(mj) of Eq. 4.7, before we training a LS-SVR proxy

model, we apply ψ(mj) to the entries of the input vector m.

To evaluate the derived mapping function and select the value of σ for training the

LS-SVR proxy model, as described earlier, we conduct some numerical experiments. The

results are presented in Fig. 4.6. As stated earlier, we adopted the value of γ = 800 in all

LS-SVR proxy training procedure. The plot presented in Fig. 4.6 represent the RMSE value

for several different values of sigma, see the discussion preceding Eq. 3.15. The blue curve

represents the case in which no mapping functions is used, and the red curve represents the

results for the case where the mapping function is used. As one can see, the use of the simple

mapping function consistently delivers lower values of the RMSE. This is an indication that

the mapping function indeed improves the quality of the LS-SVR proxy model, although

only marginally. From the behavior presented in Fig. 4.6, we selected the value of σ = 1.40,

which corresponds to cσ = 0.25, see Eq. 3.9. To generate the results presented in Fig. 4.6,

we use the Ne = 200 selected models as the test set to compute the RMSE value, and we

use the Na = 600 selected models to create the training set. We opt to split the selected

800 models in this way since each one of these individual sets, i.e., Ne = 200 models and

Na = 600 models, were independently sampled from the prior pdf, both using LHS.
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Figure 4.6: LS-SVR proxy behavior when varying the value of σ, for the one-dimensional
water-flooding case, comparing the case without using the mapping function
(blue curve), with the case using the mapping function (red curve).

In Fig. 4.7 we present the minimization loop results. As one can see, the final values

of the normalized objective function obtained after convergence are four orders of magnitude

lower than the corresponding values for the prior models. This is an indication that the LS-

SVR proxy gradient is indeed a good alternative to the adjoint solution, although Eq. 3.27,

which gives the approximate upper bound for the value of the normalized objective function

at the minima, which is 3.04 for this case, is satisfied for only nine cases. Nevertheless, the

LS-SVR proxy gradient is only a practical approximation and the overall results presented

in Fig. 4.7 are more than satisfactory for our applications.

As discussed in Chapter 3, to further improve the computational efficiency, at the

end of the minimization process, only the training examples which provide a normalized

objective function value less than ONmax = 80.0 are selected to form the final training set.

Then, we train a final LS-SVR proxy model using the resulting final training set. In order

for the minimization loop to converge, a total of 5,219 reservoir simulation runs are required

for this case. At the end, only 2,486 training examples give a normalized objective function

value less than ONmax = 80.0, and these models are selected to train the final LS-SVR proxy

model.
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Figure 4.7: Minimization loop results for the one-dimensional water-flooding case: prior
models (black dots), converged models (red dots).

Among the 200 minimization problems, 78 have converged to modes that give a

normalized objective function value less than 6.0 and are considered to construct the GMM

approximation. In Fig. 4.8 we present a comparison for these 78 history-matched models,

i.e., these 78 modes of the posterior pdf. The monitor well bottom-hole pressure predictions

using the final LS-SVR proxy model are presented in Fig. 4.8(a), while the predictions using

the reservoir simulator are presented in Fig. 4.8(b). In each figure, the solid thin cyan curves

represent the predictions for the 78 modes found using, respectively, the LS-SVR proxy

model, Fig. 4.8(a), and the reservoir simulator, Fig. 4.8(b). In both figures, the solid thick

red curve represents the predictions for the true reservoir model using the reservoir simulator.

As one can see, there is a good agreement between the final LS-SVR model predictions and

the reservoir simulator for all the modes found. It is worth mentioning here that the results of

Fig. 4.8(a) are obtained using the mapping function of Eq. 4.7 in the gridblock permeability,

not using the mapping function delivers a slightly worse quality of the history matching, as

we observed in results no showed in this dissertation.

These 78 modes are clustered into Nc = 25 clusters using the k-medoids clustering

algorithm [63]. Then, the clusters are used to build a GMM approximation for the posterior

pdf. The weights in the GMM approximation are all set equal to wc = 1/25 = 0.04, for
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Figure 4.8: History matched monitor well bottom-hole pressure for the one-dimensional
water-flooding case: (a) predictions using the LS-SVR proxy model, (b) pre-
dictions using the reservoir simulator for the same converged models as in part
(a). In both figures, the true bottom-hole pressure is represented by the solid
thick red curve, and the predictions for the history matched models is repre-
sented by the cyan curves. The vertical dashed black line divides the history
matched and the forecasting periods.

c = 1, . . . , Nc. Using the resulting GMM approximation as the proposal distribution, we

run five chains with a total of 100,000 states each. The value of the parameter µγ = 1.0, see

the discussion preceding Eq. 2.65, is selected based on a previous evaluation done by running

short chains. This choice of µγ results in a constant learning rate of γi = 1.04E − 3, which

delivers an overall acceptance rate of 21.4%. The convergence of the chains based on MPSRF

[14] is presented in Fig. 4.9. As one can see, the MPSRF reaches unity after 5,000 states are

generated. Thus, we regard the first 5,000 states on each chain as the burn-in period. Hence,

states subsequent to state 5,000 in each chain represent samples from the target distribution,

i.e., the sought samples from the posterior pdf. As commented earlier, reaching convergence

after only 5,000 states are generated, corroborates the good performance of MCMC sampling

when using the GMM approximation as the proposal distribution.

The MCMC uncertainty quantification results are presented in Fig. 4.10. The marginal

distributions of the gridblock permeability is presented in Fig. 4.10(a), while the associated

marginal distributions of the water production rate at the production well is presented in

Fig. 4.10(b). These marginal distributions are constructed using the last 80,000 states from
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Figure 4.9: MCMC sampling convergence based on the MPSRF for the one-dimensional
water-flooding case.

each of the five chains, i.e., in a total of 400,000 states. The comparison between the results

presented in Fig. 4.10 with those results from Fig. 4.5 seems to indicate that the methodol-

ogy proposed here delivers a reasonable uncertainty quantification for this 1-D water-flooding

case, with the advantage of employing only a tiny fraction of the reservoir simulations used

for the random walk MCMC results of Li and Reynolds [69]. More importantly, our results

are generated with a total of 5,219 reservoir simulation runs, while the results of Li and

Reynolds [69] using their GMM proposal distribution take over 505,000 reservoir simulation

runs.

4.3 Application to a Synthetic Two-Dimensional Reservoir Model.

This synthetic two-dimensional reservoir case was designed by Li [68]. The reservoir

simulation model has a 44×44×1 grid, with each gridblock having dimensions of 100×100×15

ft. The initial reservoir pressure is set to 3,000 psi. The reservoir porosity is set to a constant

value equal to 0.20 for all gridblocks.

Similar to the previous example, the reservoir model parameters, vector m, is given

by the natural logarithm of horizontal permeability of each gridblock. The horizontal per-

meability field is assumed to be isotropic. Therefore, Nm = 44×44 = 1936 and mj = ln(kj),

for j = 1, 2, . . . , Nm, where kj represents the permeability of the jth gridblock, and mj

represents the jth entry of the vector m. The log-permeability is assumed to follow a
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Figure 4.10: MCMC uncertainty quantification results for the one-dimensional water-
flooding case: (a) marginal distributions of gridblock permeability, (b) marginal
distributions of water production rate at the production well. The colors and
thickness of each curve have the same meaning as in Fig. 4.5. To generate the
marginal distributions presented here, all states after the 20,000st state in each
of the five chains are used, resulting in a total of 400,000 states.

multivariate Gaussian distribution with mean mpr = [5.0, . . . , 5.0]T , so mpr,j = 5.0, for

j = 1, 2, . . . , Nm. The variance of ln(kj) for each gridblock is assumed equal to 1.0. The

prior covariance matrix was constructed by Li [68] using an exponential covariance function

with major and minor rages of 2,500 ft and 1,100 ft, respectively. The main direction is

oriented at 45◦ to the positive y−axis.

The true reservoir model, i.e., the true permeability field generated by Li [68] is

presented in Fig. 4.11. The reservoir is operated with 13 wells, 9 production wells and 4

injection wells. The location of each well is also shown in Fig. 4.11. All 4 injection wells are

operated at a constant bottom-hole pressure of 4,500 psi. The production wells are operated

at a constant bottom-hole pressure of 2,800 psi for the first six months, and then operated

at a constant bottom-hole pressure of 2,500 psi for the remaining operational time.

The observed data considered for history-matching include the monthly water injec-

tion rate for each injection well and both the monthly water and oil production rates from

each production well. A total operational time of 36 months is considered in the history-

matching period, with a total of 792 observed data. The history matching period is followed

by an additional of 20 months of a forecasting period. Therefore, to include a training exam-
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Figure 4.11: The true log-permeability field of Li [68]. The wells locations are also presented:
black circles represent production wells, while red circles with a cross represent
injection wells.

ple in the training set, we run the reservoir simulator for a total of 56 months. The reservoir

simulator was run with the true reservoir model and the results added to measurement errors

to produce the vector of observed data, dobs, the same one adopted by Li [68]. The mea-

surement errors are assumed Gaussian, with zero mean and diagonal covariance matrix. To

construct the diagonal measurement errors covariance matrix, the standard deviations of the

measurement errors are set equal to 5% of the predicted flow-rates obtained by running the

true reservoir model. However, a minimum standard deviation of 2.0 STB/day is assumed.

Following the proposed methodology, we solve a total of Ne = 250 minimization

problems in order to find modes of the posterior pdf and build a GMM approximation.

The required Ne = 250 initial guesses are sampled from the prior pdf using LHS [74].

An additional Na = 500 models are also sampled from the prior pdf, with LHS, to form

an initial training set with Nt = 750 training examples. In the minimization loop, we

adopt a minimum distance to update the training set of dmin = 1.0E − 4, which seems

to work well when the distance is normalized using the dimension of the vector m, as

discussed earlier. The trust-region parameters are set to δ
(1)
e = 1.0, for e = 1, . . . , Ne ,

δmin = 1.0E − 2 and δmax = 2.0, which again seems to work well considering that the

minimization process is actually conducted for the dimensionless vector m̂, see Eq. 2.11.
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The convergence criteria are set to ε1 = ε2 = 1.0E− 6 and pconv = 0.95, so again a minimum

of 95% of all minimization problems have to converge. During the minimization loop, we set

Ncut = 4, 000 and ON,cut = 80.0, which means that when the training set becomes larger than

4,000 training examples, then at each iteration of the minimization loop, we remove from

the training set the training examples which provide normalized objective function values

greater than 80.0, see the discussion preceding Eq. 3.27.

To generate a mapping function for this two-dimensional case, we resort to the analyti-

cal solution for an infinite-acting radial flow reservoir geometry, with homogeneous properties

and single-phase flow, producing with constant bottom-hole pressure, which is given in the

Laplace space by [91]

q̄D(u) =
1

u

√
u K1(

√
u )

K0(
√
u )

. (4.8)

In Eq. 4.8, u denotes the Laplace space variable, K0(·) and K1(·) represents the modified

Bessel function of second kind of orders zero and one [3], respectively, and q̄D(u) denotes the

Laplace transform of the dimensionless wellbore flow-rate, qD(t), given by

qD(t) =
µ

k h (pi − po)
q(t) , (4.9)

where µ represents the fluid viscosity, k denotes the homogeneous reservoir permeability, h

represents the reservoir thickness, pi denotes the initial reservoir pressure, po represents the

wellbore constant bottom-hole pressure, and q(t) represents the wellbore flow-rate.

Unfortunately, there is no known analytical inverse transform of Eq. 4.8 to the real

domain. Hence, we opted to numerically invert the analytical solution back to the real

domain using the Gaver-Stehfest algorithm [114]. The results are presented in Fig. 4.12 for

three different production times, 30 days (red curve), 300 days (green curve) and 1,680 days

(blue curve). The production time of 30 days corresponds to the first observed datum, while

the production time of 1,680 days corresponds to the last prediction datum, therefore, the

times selected covers both the history matching and forecasting periods.

Note from Fig. 4.12 that there is no significant difference in the wellbore flow-rate
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Figure 4.12: Laplace numerical inversion of Eq. 4.8 showing the wellbore flow-rate as a func-
tion of the reservoir permeability. The red curve represents a production time
of 30 days, the green curve represents a production time of 300 days, and the
blue curve represents a production time of 1,680 days. The equations shown in
the plot represent curves fitted to the data.

behavior between the three plotted times. To select a mapping function, we opted to average

both coefficients and exponents of the fitted curve presented in Fig. 4.12, which results in

q(k) = 2.86 k0.967 . (4.10)

Since for this two-dimensional case the entries of the vector m are given by mj =

ln(kj), for j = 1, 2, . . . , Nm, from Eq. 4.10, we selected the following mapping function

ψ(mj) = 2.86 exp
(

0.967mj

)
, for j = 1, 2, . . . , Nm . (4.11)

As in the previous case, to use the derived mapping, we map the entries of the input vector

m using the mapping function defined in Eq. 4.11, before training a LS-SVR proxy model.

As before, to evaluate the derived mapping function and select the value of sigma

for training the LS-SVR proxy model, we conduct some numerical experiments. The results

are presented in Fig. 4.13. Again, we adopted the value of γ = 800 for all LS-SVR proxy
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Figure 4.13: LS-SVR proxy behavior when varying the value of σ, for the two-dimensional
reservoir case, comparing the case without using the mapping function (blue
curve), with the case using the mapping function (red curve).

training procedure. The results presented in Fig. 4.13 represent the RMSE value for several

different values of σ, see the discussion preceding Eq. 3.15. The blue curve represents the

case in which no mapping functions is used, and the red curve represents the results for

the case where the mapping function is used. As before, the use of the simple derived

mapping function consistently delivers lower values of the RMSE. This is an indication that

the mapping function indeed improves the quality of the LS-SVR proxy model. From the

behavior presented in Fig. 4.13, we selected the value of σ = 10.0, which corresponds to

cσ = 0.227, see Eq. 3.9. As in the first case, to generate the results presented in Fig. 4.13,

we use the Ne = 250 selected models as the test set to compute the RMSE value, and we

use the Na = 500 extra selected models to create the training set. Again, this split option is

based on the fact that the individual sets, i.e., Ne = 250 models and Na = 500 models, were

independently sampled from the prior pdf.

In Fig. 4.14 we present the minimization loop results, in which the mapping function of

Eq. 4.11 is used. As in the previous case, the final values of the normalized objective function

obtained after convergence are about four orders of magnitude lower than the corresponding

values for the prior models. This corroborates that the LS-SVR proxy gradient is indeed a
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Figure 4.14: Minimization loop results for the two-dimensional reservoir case: prior models
(black dots), converged models (red dots).

good alternative to the adjoint solution. However, the Eq. 3.27, which gives the approximate

upper bound for the value of the normalized objective function at the minima, provides an

upper bound of 1.25, and the minimum value obtained in the minimization loop is 3.24. The

performance for the LS-SVR gradient for this case is slightly inferior to the performance

observed in the one-dimensional case. Nevertheless, the overall results presented in Fig. 4.14

are more than satisfactory for our applications.

To further improve the computational efficiency, at the end of the minimization pro-

cess, only the training examples which result in a normalized objective function value less

than ONmax = 20.0 are selected to form the final training set. Then the final LS-SVR proxy

model is trained using the final training set. At the end of the minimization process, a total

of 7,001 reservoir simulation runs are required in order to obtain convergence for a minimum

of 95% of the 250 minimization problems. The 3309 training examples that gave a normal-

ized objective function value less than ONmax = 20.0 are selected to train the final LS-SVR

proxy model.

From the 250 minimization problems, 109 converge to modes that give a normalized

objective function value less than 4.8 and are considered to construct the GMM approxima-

tion. In Figs. 4.15 through 4.19 we present the history matching results for these 109 selected
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modes. The original prior predictions for the 109 models are compared to the predictions

after history matching. As one can see, although the numerical values of the normalized

objective function did not reach a value close to 1.25, the overall history matching perfor-

mance for these 109 selected model are satisfactory. In all figures, the solid thick red curve

represents the true value, the red dots represent the observed data, and the cyan curves

represents the corresponding models predictions.

The selected 109 modes are clustered into Nc = 25 clusters using the k-medoids

clustering algorithm [63]. Then, the clusters are used to build a GMM approximation for

the posterior pdf. The weights in the GMM approximation again are all set equal to w` =

1/25 = 0.04 for ` = 1, . . . , Nc. Using this GMM approximation as the proposal distribution,

we run five chains with a total of 100,000 states each. As before, we first run short chains

of length 2,000 states to tune the parameter µγ. Running the short chains is a trial and

error approach to tune the acceptance rate of the resulting Markov chain. For this case, we

selected a parameter µγ = 500.0, which gives a learning rate of γi = 1.33E−4, which delivers

an overall acceptance rate of approximately 30%. The convergence of the five chains based on

the MPSRF method [14] is presented in Fig. 4.20. As one can see, the MPSRF reaches unity

after 30,000 states are generated. Therefore, from state 30,000 onward, MPSRF indicates

that the chains have converged to the posterior pdf. Consequently, the subsequent states

after the state 30,000 are consider samples from the posterior pdf. As before, the GMM

approximation delivers a good performance for MCMC sampling procedure, since reaching

convergence even after 30,000 states is quite fast.

The results when applying our methodology for MCMC uncertainty quantification are

compared to the results of Li [68] and Rafiee and Reynolds [95]. For the same two-dimensional

case presented here, Li [68] used a reservoir simulator capable of solving the adjoint problem

to compute the gradient of the objective function in order to find modes of the posterior pdf.

In Li [68] work, the modes found which give a normalized objective function value less than

1.50 were clustered into 25 clusters to build a GMM approximation of the posterior pdf,

which was then used as the proposal distribution for MCMC sampling. During the MCMC
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(h) OPR P4: after history matching.

Figure 4.15: History matching results for the two-dimensional reservoir case: oil production
rate at producer wells P1 through P4. A comparison between the original prior
models predictions (left column) with the predictions after the history matching
(right column) is presented. In all figures, we show the corresponding true value
(solid thick red curve), the observed data (red dots), and the models predictions
(cyan curves).
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Figure 4.16: Same as in Fig. 4.15 for producer wells P5 through P9.
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Figure 4.17: History matching results for the two-dimensional reservoir case: water produc-
tion rate at producer wells P1 through P4. A comparison between the original
prior models predictions (left column) with the predictions after the history
matching (right column) is presented. In all figures, we show the corresponding
true value (solid thick red curve), the observed data (red dots), and the models
predictions (cyan curves).
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Figure 4.18: Same as in Fig. 4.17 for producer wells P5 through P9.
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(h) WIR I4: after history matching.

Figure 4.19: History matching results for the two-dimensional reservoir case: water injection
rate at injector wells I1 through I4. A comparison between the original prior
models predictions (left column) with the predictions after the history matching
(right column) is presented. In all figures, we show the corresponding true value
(solid thick red curve), the observed data (red dots), and the models predictions
(cyan curves).
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Figure 4.20: MCMC sampling convergence based on the MPSRF for the two-dimensional
reservoir case.

procedure, Li [68] used the real reservoir simulator predictions to compute the Metropolis-

Hastings acceptance probability, i.e., for each proposed state in the chain, one reservoir

simulation run is required. Also for the same two-dimensional case, Rafiee and Reynolds

[95] applied the DGN method to approximate the gradient of the objective function in order

to find modes of the posterior pdf. In the Rafiee and Reynolds [95] work, the modes found

which result in a normalized objective function value less than 7.0 were clustered into 25

clusters to build a GMM approximation of the posterior pdf to use as a proposal distribution.

Similar to Li [68], Rafiee and Reynolds [95] then applied the Metropolis-Hastings MCMC

algorithm using the reservoir simulator predictions to compute the acceptance probability.

In Fig. 4.21, the posterior mean of the log-permeability field which is obtained when

applying our methodology is compared with the true log-permeability field, as well as the

posterior mean of Li [68] and Rafiee and Reynolds [95]. As one can see from this figure,

the posterior mean of all methods seems to capture some of the features of the true log-

permeability field, although it is not possible to draw any firm conclusions on the relative

sampling performance of the three methods from the results of Fig. 4.21.

The uncertainty quantification results are presented in Figs. 4.22 through 4.26. The

color code shown in all these figures is the same one as described in Fig. 4.5. To reconstruct

the marginal distributions presented in Figs. 4.22 through 4.26 we used all states after state

40,000 in the five chains, i.e., a total of 300,000 states.
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Figure 4.21: Posterior log-permeability mean compared to the true log-permeability field:
(a) true log-permeability field, (b) this work two-level MCMC, (c) two-level
MCMC of Li [68], (d) two-level MCMC of Rafiee and Reynolds [95].

The marginal distribution for oil production rate in all nine producer wells are pre-

sented in Figs. 4.22 and 4.23, in these figures the first column presents the results of our

two-level MCMC implementation, while the second and third columns present the results

of Li [68] and Rafiee and Reynolds [95], respectively. As one can see, the results of our

methodology using the LS-SVR proxy model are reasonably consistent with the results of

Li [68], who used the reservoir simulator to evaluate the Metropolis-Hastings acceptance

probability, except for production well P6, where our results gives far more uncertainty in

the oil rate than does the Li [68] method. Note that, other than well P6, Li [68] obtain

only a slightly smaller deviation between observed data and corresponding data predicted

from the history-matched models, even though Li [68] use a reservoir simulator with adjoint

capability for the gradient-based history-matching procedure.

The marginal distribution for water production rate in all nine producer wells are

presented in Figs. 4.24 and 4.25. As before, the first, second and third columns, respec-

tively, represent the results of this work, Li [68] and Rafiee and Reynolds [95]. Comparing

the marginal distribution for water production rate, one can see that our results are fairly

consistent with the results of Li [68].

Finally, Fig. 4.26 shows the marginal distribution for the water injection rate at all

four injector wells. The first, second and third columns, respectively, represent the results of

this work, Li [68] and Rafiee and Reynolds [95]. Although our procedure produces a wider

band of predicted water injection rates for wells I2 and I4 than is obtained by Li [68], the
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overall difference between the two sets of results is not practically large.

Until now, we have not commented on the Rafiee and Reynolds [95] results for this

two-dimensional case. However, we can see that, overall, the Rafiee and Reynolds [95] results

tend to produce a slightly wider uncertainty band than our method. It seems that when wide

uncertainty occurs, it appears primarily due to the slightly worse history-match obtained by

Rafiee and Reynolds [95]. The advantage that the Rafiee and Reynolds [95] method has over

the procedure of Li [69] is that no adjoint gradient is required. Like the work of Rafiee and

Reynolds [95], the method presented here does not require an adjoint gradient. Furthermore,

and most importantly, unlike the other two methods, our uncertainty quantification workflow

does not require any reservoir simulation runs when constructing the Markov chain. It is

worthwhile to stress here that our results are generating using 7,001 reservoir simulation runs,

while Li [68] and Rafiee and Reynolds [95] results required over 510,000 reservoir simulation

runs.

4.4 Application to a Three-Dimensional Model: the PUNQ-S3 Case.

In this section, we apply our developed methodology to a slight modification of the

well-known PUNQ-S3 model [36]. For this application, we modify the original well opera-

tional conditions. Furthermore, we consider only the horizontal and vertical reservoir natural

logarithm permeabilities of gridblocks as the history matching parameters. The PUNQ-S3

model model was developed based on a real field example which was made available by Elf

Exploratory & Production. The original reservoir model, geological description and overall

documentation can be found at the website

https://www.imperial.ac.uk/earth-science/research/research-groups/perm/standard-models.

The reservoir model is composed of five layers which are arranged in 19 × 28 ×

5 gridblocks. The reservoir model has a total of 1,761 active gridblocks. The reservoir

geometry is modeled using a corner-point mesh. The average areal gridblock dimensions are

590.55ft×590.55ft, which is equivalent to 180m×180m. The vertical thickness of gridblocks

corresponds to the local vertical thickness of the layer in which the gridblock is locates, which
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Figure 4.22: MCMC uncertainty quantification results for the two-dimensional case, com-
paring the marginal distribution for oil production rate of producer wells P1
through P6. The first, second and third columns present the results of this work,
Li [68] and Rafiee and Reynolds [95], respectively. In all figures, we show the
corresponding true value (solid thick red curve), the observed data (red dots),
the mean of the marginal distribution (solid thick black curve), the percentiles
P25 and P75 of the marginal distribution (two blue dashed curves), and the
percentiles P5 and P95 of the marginal distribution (two thin black curves). To
generate the marginal distributions presented here, all states after state 40,000
in the five chains are used, which gives a total of 300,000 states.
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Figure 4.23: Same as Fig. 4.22 for producer wells P7 through P9. The colors and thickness
of each curve have the same meaning as in Fig. 4.22.
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Figure 4.24: MCMC uncertainty quantification results for the two-dimensional case, com-
paring the marginal distribution for water production rate of producer wells
P1 through P3. The first, second and third columns present the results of this
work, Li [68] and Rafiee and Reynolds [95], respectively. The colors and thick-
ness of each curve have the same meaning as in Fig. 4.22. To generate the
marginal distributions presented here, all states after state 40,000 in the five
chains are used, which gives a total of 300,000 states.
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Figure 4.25: MCMC uncertainty quantification results for the two-dimensional case, com-
paring the marginal distribution for water production rate of producer wells
P4 through P9. The first, second and third columns present the results of this
work, Li [68] and Rafiee and Reynolds [95], respectively. The colors and thick-
ness of each curve have the same meaning as in Fig. 4.22. To generate the
marginal distributions presented here, all states after state 40,000 in the five
chains are used, which gives a total of 300,000 states.
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Figure 4.26: MCMC uncertainty quantification results for the two-dimensional case, compar-
ing the marginal distribution for water injection rate of injector wells I1 through
I4. The first, second and third columns present the results of this work, Li [68]
and Rafiee and Reynolds [95], respectively. The colors and thickness of each
curve have the same meaning as in Fig. 4.22. To generate the marginal distri-
butions presented here, all states after state 40,000 in the five chains are used,
which gives a total of 300,000 states.

126



Figure 4.27: Top structure of the PUNQ-S3 model, also presenting the well locations.

varies between 4 ft and 30 ft. In Fig. 4.27, which can be obtained in the website cited above,

we present the top structure of the PUNQ-S3 model. Fig. 4.27 also shows the well locations.

There are a total of six production wells which have been denoted as PRO-01, PRO-04,

PRO-05, PRO-11, PRO-12, and PRO-15, the five wells labeled X1, X2, X3, X4 and X5 are

infill wells from the original study which are not considered in this research. In Table 4.1,

we present the well completion information, i.e., the gridblocks where the wells are open

for flow from the reservoir. Different from the original PUNQ-S3 case, in this research, we

operate producers PRO-01, PRO-04, PRO-05, PRO-11, and PRO-12 at a constant oil flow

rate of 628.98 STB/day, which is equivalent to 100 m3/day. Producer PRO-15 is operated

at a constant oil flow rate of 503.19 STB/day, which is equivalent to 80 sm3/day.

As noted earlier, for the PUNQ-S3 case we consider history matching the natural

logarithm of both horizontal and vertical reservoir permeability for each active gridblock.

Consequently, the vector m is composed of the horizontal and vertical log-permeabilities,
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Well
gridblock Completion

x− dir y − dir z − dir
PRO-01 10 22 4 and 5
PRO-04 9 17 4 and 5
PRO-05 17 11 3 and 4
PRO-11 11 24 3 and 4
PRO-12 15 12 4 and 5
PRO-15 17 22 4

Table 4.1: Producer wells gridblock completion for the PUNQ-S3 case.

(a) (b) (c) (d) (e)

Figure 4.28: True horizontal log-permeability field for the PUNQ-S3 case: (a) first layer, (b)
second layer, (c) third layer, (d) fourth layer, and (e) fifth layer.

and Nm = 2 × 1, 761 = 3, 522. Furthermore, for j = 1, 2, . . . , 1, 761, mj = ln(kj), where

mj represents the jth entry of the vector m, and kj represents the horizontal permeability

of the jth gridblock. Similarly, for j = 1, 762, 1, 763, . . . , Nm, mj = ln(kz,j), where kz,j

denotes the vertical permeability of the jth gridblock. Both the horizontal and vertical true

permeability fields adopted here are the same as those developed by Gao et al. [37, 38] and

are presented in Figs. 4.28 and 4.29. A detailed description of how the true permeability

fields were generated can be found in Gao et al. [37, 38]. It is worth mentioning that Gao

et al. [37, 38] constructed a pdf different from the prior pdf in order to generate the true

permeability field, hence, the true permeability field is not a sample from the prior pdf.

The prior pdf is assumed to be a multivariate Gaussian distribution. To construct

the prior covariance matrix each reservoir layer is assumed independent, i.e., it is assumed

that there is no vertical correlation between layers for both the horizontal and vertical

log-permeability fields. The individual covariance for both horizontal and vertical log-
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(a) (b) (c) (d) (e)

Figure 4.29: True vertical log-permeability field for the PUNQ-S3 case: (a) first layer, (b)
second layer, (c) third layer, (d) fourth layer, and (e) fifth layer.

permeability is computed using a Gaussian covariance function. Since no vertical correlation

is considered, the Gaussian covariance function, within each layer, depends only on the hori-

zontal distance between gridblocks. For a given reservoir layer, representing the coordinates

of its jth gridblock on a horizontal xy−plane as the vector [xj, yj]
T , and representing the

coordinates of its `th gridblock as [x`, y`]
T , the corresponding covariance between gridblocks

j and ` is compute by

C
ln(k)
j,` (hj,`) = C

ln(kv)
j,` (hj,`) = σ2

xy exp
(
− 3 h2

j,`

)
, (4.12)

with hj,` given by

hj,` =

√√√√[x′
j − x

′
`

rx

]2

+

[
y

′
j − y

′
`

ry

]2

, (4.13)

where

x
′

a = cos(αxy)xa + sin(αxy) ya , for a = j and ` , (4.14)

and

y
′

a = cos(αxy) ya − sin(αxy)xa , for a = j and ` . (4.15)

In Eqs. 4.12 through 4.15, C
ln(k)
j,` denotes the horizontal log-permeability covariance between

gridblocks j and `, similarly, C
ln(kv)
j,` denotes the vertical log-permeability covariance between

gridblocks j and `, and hj,` represents the horizontal distance between gridblocks j and `
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Parameter Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
σxy 2.49 0.93 2.49 1.35 2.49
αxy -40 0 -40 40 -40
rx (m) 800 2,520 1,000 2,750 2,000
ry (m) 5,040 2,520 5,040 4,125 5,040

Table 4.2: Geostatistical data to compute horizontal and vertical log-permeability covariance
for the PUNQ-S3 case.

in an equivalent isotropic log-permeability Gaussian field. Moreover, σxy represents the

variance for both the gridblock horizontal and vertical log-permeability, the vectors [x
′
j, y

′
j]
T

and [x
′

`, y
′

`]
T denote, respectively, the rotation of the vectors [xj, yj]

T and [x`, y`]
T , which

are aligned with the log-permeability principal directions, i.e., the coordinate vectors in

the equivalent isotropic log-permeability Gaussian field, rx and ry denote, respectively, the

minimum and maximum correlation ranges, and αxy represents the angle between the positive

y−direction and the direction with maximum correlation range. The values used to compute

C
ln(k)
j,` and C

ln(kv)
j,` are the same given in Gao et al. [37, 38] and are presented in Table 4.2.

The cross-covariance between horizontal and vertical log-permeability, within each

layer, is computed using [23, 96]

C
ln(k),ln(kv)
j,` = ρk,kv C

ln(k)
j,` . (4.16)

In Eq. 4.16, C
ln(k),ln(kv)
j,` denotes the cross-covariance between horizontal and vertical log-

permeability for gridblocks j and `, and ρk,kv represents the correlation coefficient between

horizontal and vertical log-permeability. In this research, we follow Gao [37] and adopt the

value ρk,kv = 0.83. With the covariance and cross-covariance data for each layer, one can

assemble the prior covariance matrix. For the prior mean, we assume a constant value within

each layer, where the means within each layer are presented in Table 4.3 and are the same

as in Gao [37].

As pointed out by Gao et al. [37, 38], the samples generated using the prior pdf result

in some unrealistically low or high values of log-permeabilities. To circumvent the issue, Gao
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Prior Mean Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
[ln(k)]mean 4.54 3.91 4.54 4.37 4.54
[ln(kz)]mean 3.55 2.76 3.55 3.04 3.55

Table 4.3: Adopted constant prior mean per each reservoir layer for the PUNQ-S3 case.

Limit Value Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
ln(k)maxup 6.908 5.296 6.908 6.217 6.908
ln(k)limup 6.217 4.605 6.217 5.756 6.217
ln(k)limlow 0.000 0.000 0.000 0.000 0.000
ln(k)maxlow -2.303 -2.303 -2.303 -2.303 -2.303
ln(kv)maxup 6.217 3.914 6.217 4.605 6.217
ln(kv)limup 5.296 3.224 5.296 3.914 5.296
ln(kv)limlow 0.000 0.000 0.000 0.000 0.000
ln(kv)maxlow -2.303 -2.303 -2.303 -2.303 -2.303

Table 4.4: Low and high trim data limit values, see Eqs. 4.17 and 4.18, for the PUNQ-S3
case.

et al. [37, 38] proposed to trim the generated models using the following procedure

ξnew = ξmaxup +
(
ξlimup − ξmaxup

)
exp

[
− ξ − ξlimup

ξmaxup − ξlimup

]
, for ξ > ξlimup , (4.17)

and

ξnew = ξmaxlow +
(
ξlimlow − ξmaxlow

)
exp

[
− ξ − ξlimlow

ξmaxlow − ξlimlow

]
, for ξ < ξlimlow . (4.18)

In Eqs. 4.17 and 4.18, ξ stands for either ln(k) or ln(kv), and the corresponding low and high

trim data limit values, i.e., ξmaxlow, ξlimlow, ξmaxup and ξlimup, are given in Table 4.4 [37].

For this PUNQ-S3 case, the data considered for history matching are bottom-hole

pressures, the gas production rates and the water production rates for each one of the six

producers, where these data are acquired every 30 days. A total of 3 × 96 = 288 observed

data per well is considered, which is equivalent to a 96 × 30 = 2, 880 days, or almost a 8

year history matching period. Consequently, there are Ndh = 3 × 96 × 6 = 1, 728 observed

production data. The history matching period is followed by 48×30 = 1, 440days, or almost

4 years, of forecast period. Therefore, Nd = 3 × (96 + 48) × 6 = 2, 592. As a consequence,

131



to add a point to the training set, we run the reservoir simulator for (96 + 48)× 30 = 4, 320

days, or almost 12 years. The standard deviation of measurement errors for the bottom-hole

pressure is assumed equal to 10 bar for all six producers, which corresponds to approximately

4 to 5% of the actual observed data. Meanwhile, the standard deviation of measurement

errors for gas production rate is assumed equal to 50 m3/day for producers PRO-01 and

PRO-04, and assumed equal to 200 m3/day for producers PRO-05, PRO-11, PRO-12, and

PRO-15, which corresponds to approximately 3% of the actual observed data. Finally, the

standard deviation of measurement errors for water production rate is assumed equal to

1.0 m3/day for all six producers, the value of observed water production rate are small and

we decided to adopted a minimum value of 1.0 m3/day for the standard deviation. With

these data, one can construct the measurement error covariance matrix.

The reservoir model parameters vector, m, has dimension given by Nm = 3, 522 as

noted earlier. As described earlier in this dissertation, to promote computational efficiency,

we reduce the order of the input space vector by applying the PCA method to the prior

correlation matrix. The results are presented in Fig. 4.30, in which we present the first

300 singular values of the prior correlation matrix. For a pNv = 0.9966, see the discussion

preceding Eq. 3.42, we need to keep only 162 singular values, i.e., Nv = 162, see the discussion

preceding Eq. 3.40. The vertical dashed line in Fig. 4.30 marks the 162nd singular value

position.

For the PUNQ-S3 case, we chose to solve a total of Ne = 250 minimization problems

to find modes of the posterior pdf. The Ne = 250 initial guesses are sampled from the prior

pdf using LHS [74]. To form the initial training set, an additional of Na = 750 models are also

sampled from the prior pdf using LHS, resulting in an initial training set with Nt = 1, 000

training examples.

Similar to Gao et al. [37, 38], we opted to condition all Nt = 1, 000 selected models to

permeability hard data available from the drilled wells. In this dissertation, we use the RML

method [87, 64] to condition the model to the hard data, represented here by “measurements”

of log-permeabilities at gridblocks penetrated by wells. Therefore, we treat the hard data
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Figure 4.30: The SVD results of the prior correlation matrix for the PUNQ-S3 case: the red
curve represents the first 300 singular values, the dashed vertical line represents
the position of the 162nd singular value.

as a static observed data for the reservoir permeability fields. In this case, the relationship

between the vector of reservoir parameters, m, and the hard data is linear, and is given by

hhd = Ghd m . (4.19)

In Eq. 4.19, hhd represents the Nhd−dimensional column vector of hard data, i.e., a total of

Nhd hard data values are observed, and Ghd represents the Nhd ×Nm sensitivity matrix for

the hard data. The `th row of the matrix Ghd, for ` = 1, . . . , Nhd , has all entries equal to

zero, except for its jth entry which has a value equal to 1. In this context, the jth entry

of the `th row (note that j can assume the value j = 1, . . . , Nm ) represents the position

of the `th hard data, which should correspond to the jth entry on the vector of reservoir

parameters m.

With the linear relationship given by Eq. 4.19, the kth selected initial model mk,

for k = 1, . . . , Nt = 1, 000 , is conditioned to the available hard data using the following

equation from Oliver et al. [89]

mk,hd = mk + CM GT
hd

[
Ghd CM GT

hd + Chd

]−1(
hhd,obs + ξ

(uc)
k,hd −Ghdmk

)
. (4.20)
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Well PRO-01 PRO-04 PRO-05 PRO-11 PRO-12 PRO-15
Layer 1 - ln(k) 3.6743 6.5140 6.0850 4.0519 3.5502 5.5903
Layer 1 - ln(kz) 2.2059 5.2298 6.1176 3.7693 3.0413 6.1981
Layer 2 - ln(k) 3.2129 3.0137 2.5084 2.7883 4.2405 3.8122
Layer 2 - ln(kz) 1.2633 0.9875 1.0094 1.8578 3.4015 2.4284
Layer 3 - ln(k) 4.6476 3.8683 5.7408 6.2875 4.2277 4.7780
Layer 3 - ln(kz) 2.5500 3.3104 5.4433 5.5541 3.2929 4.6214
Layer 4 - ln(k) 5.5268 6.5330 4.8816 4.9159 5.6424 6.1363
Layer 4 - ln(kz) 4.3646 3.6502 4.1680 3.1715 3.5704 3.8065
Layer 5 - ln(k) 5.4004 6.1618 3.0654 4.8846 6.0195 7.3068
Layer 5 - ln(kz) 5.6233 5.9546 2.5284 2.9698 5.5591 6.0218

Table 4.5: Actual observed hard data considered for the PUNQ-S3 case.

In Eq. 4.20, mk,hd, for k = 1, . . . , Nt = 1, 000 , denotes the kth conditioned model, hhd,obs

represents the vector of actual available hard data, and Chd represents the measurement

errors covariance matrix for the hard data. In this dissertation, we construct a diagonal

matrix Chd by considering the standard deviation of the `th hard data equal to 20% of

the true log-permeability in the grid block corresponding to the hard data location. Also in

Eq. 4.20, the Nhd−dimensional column vector ξ
(uc)
k,hd, for k = 1, . . . , Nt = 1, 000 , represents a

perturbation to the vector of actual hard data hhd,obs. Each vector ξ
(uc)
k,hd, for k = 1, . . . , Nt =

1, 000 , is obtained by sampling a Gaussian distribution with zero mean and covariance matrix

equal to Chd [89]. The hard data used to conditioned the models are the same as those

developed by Gao et al. [37, 38]. These data consist of the horizontal and vertical gridblock

log-permeability for all five layers at each producer location, i.e., the five vertical gridblocks

penetrated by each vertical producer. The hard data which compose the vector hhd,obs are

presented in Table 4.5.

To construct the initial training set, we run the reservoir simulator for each one of

the conditioned initial models mk,hd, for k = 1, . . . , Nt = 1, 000 . Then, the conditioned

initial models are transformed to their reduced order counterparts, see Eq. 3.47, using

zk = W
−1/2
Nv

UT
Nv S

−1
M (mk,hd −mpr) , for k = 1, 2, . . . , Nt . (4.21)
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The initial training set is then constructed using the vectors zk, for k = 1, . . . , Nt = 1, 000 ,

and the associated reservoir predictions. It is worthwhile to mention that we only condition

the initial models to the hard data. Subsequent models added to the training set are from

the minimization steps and do not need to be conditioned to the hard data.

As explained earlier, we conduct the minimization problems in the reduced order

space of the vector z. When we need to add a new point to the training set, we convert the

corresponding z to its respective m, using Eq. 3.49, then we run the reservoir simulator.

For the PUNQ-S3 case, we adopt a minimum distance to update the training set of dmin =

1.0E − 5, which seems to work well when the distance is normalized using the dimension

of the vector z, as discussed earlier. The trust-region parameters are set to δ
(1)
e = 0.2, for

e = 1, . . . , Ne , δmin = 2.0E − 5 and δmax = 0.5, in this case, the reduced order vector z

resembles the dimensionless vector m̂, see the discussion preceding Eq. 2.11, thus similar

numerical values for the trust region minimization problem are used as in the previous

example. The convergence criteria are set to ε1 = ε2 = 1.0E − 6 and pconv = 0.90, so

a minimum of 90% of the minimization problems have to converge. As before, numerical

experiments using the Ne = 250 selected models as a test set and using the Na = 750 models

to construct a training set are conducted to determine the LS-SVR proxy parameters, which

results in a γ = 800 and σ = 4.1, corresponding to a cσ = 0.32, see Eq. 3.9. During

the minimization loop, we set Ncut = 4, 000 and ON,cut = 80.0, which means that when

the training set becomes larger than 4,000 training examples, then at each iteration of the

minimization loop, we remove from the training set the training examples which provide

normalized objective function values greater than 80.0, see the discussion preceding Eq. 3.27.

In Fig. 4.31 we present the minimization loop results. As in the previous cases, the

final values of the normalized objective function obtained after convergence are about four

orders of magnitude lower than the corresponding values for the prior models. Once more,

this corroborates that the LS-SVR proxy gradient is indeed a good alternative to the adjoint

solution. However, the Eq. 3.27, which gives the approximate upper bound for the value of

the normalized objective function at the minima, provides an upper bound of 1.17, and the
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Figure 4.31: Minimization loop results for the PUNQ-S3 case: prior models (black dots),
converged models (red dots).

minimum value obtained in the minimization loop is 1.29. The performance for the LS-SVR

gradient for this case is slightly inferior to the performance observed in the one-dimensional

case. More than 50 models present normalized objective function values less than 2.00.

At the end of the minimization loop, a total of 10,738 reservoir simulation runs were

required in order for 90% of the 250 minimization problems to converge. Furthermore, this

resulted in a training set with 9,454 training examples. Using a value of ONmax = 20.0,

the size of the training set is reduced to a total of 9,409 training examples, which is still

a large training set. To further reduce the training set size, we applied the seed procedure

described in Subsection 3.2.1 of Chapter 3. To do so, we selected the modes found which

give normalized objective function values less than 8.0, which represent 226 modes, to start

the seed for a new training set. Then, we compare the models from the training set with the

seed models using a normalized distance of 2.0E− 3; for the cases where the distance for the

models in the seed is larger than the adopted distance, the model is added to the seed. At

the end, 6,326 training examples were selected to form the final training set. Then, we use

this final training set to train the final LS-SVR proxy model.

From the 250 minimization problems, 54 converge to modes that give a normalized

objective function value less than 2.0 and these models are used to construct the GMM
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approximation. In Figs. 4.32 through 4.37 we present the history matching results for those

54 selected modes. The original prior predictions for the 54 models are compared to the

predictions after history matching. As one can see, the overall history matching performance

for these 54 selected model is reasonable. In all figures, the solid thick red curve represents

the true value, the red dots represent the observed data, and the cyan curves represents the

corresponding model predictions.

In Figs. 4.38 through 4.49 we compare the prior log-permeability horizontal and ver-

tical permeability fields with the corresponding conditioned models after history matching

for the first six selected modes. As one can see, although we conducted the minimization

problems in the reduced order space of the vector z, in which we kept only 162 principal

directions, the overall minimization results present permeability fields which are consistent

with the prior models, i.e., the minimization process preserved the geological information.

As before, the selected 54 modes are clustered into Nc = 25 clusters using the k-

medoids clustering algorithm [63]. Then, the clusters are used to build a GMM approxi-

mation for the posterior pdf. Again, the weights in the GMM approximation are all set

to w` = 1/25 = 0.04 for ` = 1, . . . , Nc. Using this GMM approximation as the proposal

distribution, we run five chains with a total of 100,000 states each. As before, we first run

short chains of length 2,000 states to tune the parameter µγ. For this case, we selected

a parameter µγ = 35.0, leading to a learning rate of γi = 1.33E − 3, which results in an

acceptance rate of 26.4%. The convergence of the five chains based on the MPSRF method

[14] is presented in Fig. 4.50. As one can see, the MPSRF reaches unity after 20,000 states

are generated. Therefore, from state 20,000 onward, MPSRF indicates that the chains have

converged to the posterior pdf, which is a fast convergence, as before.

In the Figs. 4.51 and 4.52 the posterior mean for, respectively, horizontal and vertical

gridblock log-permeability fields, which are obtained using our proposed methodology, are

compared to the respective true log-permeability fields. As is well known, the posterior mean

is too smooth to give a realization that shows detailed geological features like those shown

in the posterior log-permeability fields of Figs. 4.38 through 4.49, although, one can see that
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(a) BHP PRO-01: before history matching.
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(b) BHP PRO-01: after history matching.
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(c) BHP PRO-04: before history matching.
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(d) BHP PRO-04: after history matching.
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(e) BHP PRO-05: before history matching.
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(f) BHP PRO-05: after history matching.

0 1000 2000 3000 4000
Time (days)

0

50

100

150

200

250

W
B

H
P

 (
B

A
R

)

(g) BHP PRO-11: before history matching.
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(h) BHP PRO-11: after history matching.

Figure 4.32: History matching results for the PUNQ-S3 case: well bottom-hole pressure at
producers PRO-01, PRO-04, PRO-05, and PRO-11. A comparison between
the original prior models predictions (left column) with the predictions after
the history matching (right column) is presented. In all figures, we show the
corresponding true value (solid thick red curve), the observed data (red dots),
and the models predictions (cyan curves).
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(a) BHP PRO-12: before history matching.
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(b) BHP PRO-12: after history matching.
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(c) BHP PRO-15: before history matching.
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(d) BHP PRO-15: after history matching.

Figure 4.33: Same as in Fig. 4.32 for producers PRO-12 and PRO-15.
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(a) GPR PRO-01: before history matching.
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(b) GPR PRO-01: after history matching.
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(c) GPR PRO-04: before history matching.
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(d) GPR PRO-04: after history matching.

Figure 4.34: History matching results for the PUNQ-S3 case: gas production rate at pro-
ducers PRO-01 and PRO-04. A comparison between the original prior models
predictions (left column) with the predictions after the history matching (right
column) is presented. In all figures, we show the corresponding true value (solid
thick red curve), the observed data (red dots), and the models predictions (cyan
curves).
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(a) GPR PRO-05: before history matching.
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(b) GPR PRO-05: after history matching.
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(c) GPR PRO-11: before history matching.
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(d) GPR PRO-11: after history matching.
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(e) GPR PRO-12: before history matching.

0 1000 2000 3000 4000
Time (days)

0

5000

10000

15000

W
G

P
R

 (
S

M
3/

D
A

Y
)

(f) GPR PRO-12: after history matching.
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(g) GPR PRO-15: before history matching.
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(h) GPR PRO-15: after history matching.

Figure 4.35: History matching results for the PUNQ-S3 case: gas production rate at pro-
ducers PRO-05, PRO-11, PRO-12, and PRO-15. A comparison between the
original prior models predictions (left column) with the predictions after the
history matching (right column) is presented. In all figures, we show the corre-
sponding true value (solid thick red curve), the observed data (red dots), and
the models predictions (cyan curves).
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(a) WPR PRO-01: before history matching.
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(b) WPR PRO-01: after history matching.
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(c) WPR PRO-04: before history matching.

0 1000 2000 3000 4000
Time (days)

0

50

100

W
W

P
R

 (
S

M
3/

D
A

Y
)

(d) WPR PRO-04: after history matching.
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(e) WPR PRO-05: before history matching.
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(f) WPR PRO-05: after history matching.
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(g) WPR PRO-11: before history matching.
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(h) WPR PRO-11: after history matching.

Figure 4.36: History matching results for the PUNQ-S3 case: water production rate at pro-
ducers PRO-01, PRO-04, PRO-05, and PRO-11. A comparison between the
original prior models predictions (left column) with the predictions after the
history matching (right column) is presented. In all figures, we show the corre-
sponding true value (solid thick red curve), the observed data (red dots), and
the models predictions (cyan curves).
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(a) WPR PRO-12: before history matching.
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(b) WPR PRO-12: after history matching.
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(c) WPR PRO-15: before history matching.
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(d) WPR PRO-15: after history matching.

Figure 4.37: History matching results for the PUNQ-S3 case: water production rate at pro-
ducers PRO-12 and PRO-15. A comparison between the original prior models
predictions (left column) with the predictions after the history matching (right
column) is presented. In all figures, we show the corresponding true value (solid
thick red curve), the observed data (red dots), and the models predictions (cyan
curves).
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Figure 4.38: Horizontal log-permeability fields for the PUNQ-S3 case comparing the prior
model (top row) with the history matched model (bottom row) for the converged
model 1: (a)-(f) first layer, (b)-(g) second layer, (c)-(h) third layer, (d)-(i) fourth
layer, and (e)-(j) fifth layer.
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Figure 4.39: Vertical log-permeability fields for the PUNQ-S3 case comparing the prior
model (top row) with the history matched model (bottom row) for the con-
verged model 1: (a)-(f) first layer, (b)-(g) second layer, (c)-(h) third layer,
(d)-(i) fourth layer, and (e)-(j) fifth layer.
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Figure 4.40: Horizontal log-permeability fields for the PUNQ-S3 case comparing the prior
model (top row) with the history matched model (bottom row) for the converged
model 2: (a)-(f) first layer, (b)-(g) second layer, (c)-(h) third layer, (d)-(i) fourth
layer, and (e)-(j) fifth layer.
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Figure 4.41: Vertical log-permeability fields for the PUNQ-S3 case comparing the prior
model (top row) with the history matched model (bottom row) for the con-
verged model 2: (a)-(f) first layer, (b)-(g) second layer, (c)-(h) third layer,
(d)-(i) fourth layer, and (e)-(j) fifth layer.
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Figure 4.42: Horizontal log-permeability fields for the PUNQ-S3 case comparing the prior
model (top row) with the history matched model (bottom row) for the converged
model 3: (a)-(f) first layer, (b)-(g) second layer, (c)-(h) third layer, (d)-(i) fourth
layer, and (e)-(j) fifth layer.
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Figure 4.43: Vertical log-permeability fields for the PUNQ-S3 case comparing the prior
model (top row) with the history matched model (bottom row) for the con-
verged model 3: (a)-(f) first layer, (b)-(g) second layer, (c)-(h) third layer,
(d)-(i) fourth layer, and (e)-(j) fifth layer.
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Figure 4.44: Horizontal log-permeability fields for the PUNQ-S3 case comparing the prior
model (top row) with the history matched model (bottom row) for the converged
model 4: (a)-(f) first layer, (b)-(g) second layer, (c)-(h) third layer, (d)-(i) fourth
layer, and (e)-(j) fifth layer.
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Figure 4.45: Vertical log-permeability fields for the PUNQ-S3 case comparing the prior
model (top row) with the history matched model (bottom row) for the con-
verged model 4: (a)-(f) first layer, (b)-(g) second layer, (c)-(h) third layer,
(d)-(i) fourth layer, and (e)-(j) fifth layer.
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Figure 4.46: Horizontal log-permeability fields for the PUNQ-S3 case comparing the prior
model (top row) with the history matched model (bottom row) for the converged
model 5: (a)-(f) first layer, (b)-(g) second layer, (c)-(h) third layer, (d)-(i) fourth
layer, and (e)-(j) fifth layer.
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Figure 4.47: Vertical log-permeability fields for the PUNQ-S3 case comparing the prior
model (top row) with the history matched model (bottom row) for the con-
verged model 5: (a)-(f) first layer, (b)-(g) second layer, (c)-(h) third layer,
(d)-(i) fourth layer, and (e)-(j) fifth layer.
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Figure 4.48: Horizontal log-permeability fields for the PUNQ-S3 case comparing the prior
model (top row) with the history matched model (bottom row) for the converged
model 6: (a)-(f) first layer, (b)-(g) second layer, (c)-(h) third layer, (d)-(i) fourth
layer, and (e)-(j) fifth layer.
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Figure 4.49: Vertical log-permeability fields for the PUNQ-S3 case comparing the prior
model (top row) with the history matched model (bottom row) for the con-
verged model 6: (a)-(f) first layer, (b)-(g) second layer, (c)-(h) third layer,
(d)-(i) fourth layer, and (e)-(j) fifth layer.
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Figure 4.50: MCMC sampling convergence based on MPSRF for the PUNQ-S3 case.

some features of the true log-permeability field are represented in the posterior mean.

The uncertainty quantification results are presented in Figs. 4.53 through 4.55. To

generate the results presented in Figs. 4.53 through 4.55, we reconstruct the marginal distri-

butions using all states after state 40,000 for each one of the five chains, which results in a

total of 300,000 states. The color code in all these figures is the same as described in Fig. 4.5,

i.e., the solid thick black curve represents the mean of the marginal distribution, the two blue

dashed curves represents the 25% (P25) and 75% (P75) percentiles, while the two solid thin

black curves represent the 5% (P5) and 95% (P95) percentiles and, finally, the solid thick

red curve represents the predictions using the true model and the red dots represent the ob-

served data. The marginal distribution for well bottom hole pressure (WBHP) is presented

in Fig. 4.53. The marginal distribution for well gas production rate (WGPR) is presented

in Fig. 4.54. Finally, the marginal distribution for well water production rate (WWPR) is

presented in Fig. 4.55. As one can see, the overall performance of the history matching is

reasonably good, except for the gas production rates at producers PRO-01 and PRO-04.

Although no base case is available for comparison, the uncertainty quantification results are

plausible. One additional difficulty for this case is the fact that Gao et al. [37, 38] generate

the true permeability field by sampling a probability distribution which was different from

the prior pdf, resulting in a true case somehow different from the samples of the prior pdf.
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Figure 4.51: Posterior mean for horizontal log-permeability compared to the true horizontal
log-permeability field: (a)-(e) shows, respectively, the first to fifth layers of the
posterior mean, (f)-(j) shows, respectively, the first to fifth layers of the true
permeability field.

4.5 Application to a Three-Dimensional Large Scale Reservoir Model Based

on the PUNQ-S3 Case.

One of the main purposes of this research is to reduce the computational cost when

quantifying uncertainty using the Metropolis-Hastings MCMC sampling algorithm, espe-

cially for large scale reservoir simulation models, i.e., cases where the reservoir parameter

vector, m, has a large dimension. However, the required data for applying the proposed

methodology to a real large scale reservoir model is seldom available, since those models

usually involves confidential and proprietary information.

To evaluate the performance of our proposed methodology when applied to a large

scale problem, we decided to use the information from the PUNQ-S3 case to develop a large

scale reservoir simulator model. We selected the PUNQ-S3 case since this particular model

was constructed based on real reservoir information. The approach adopted to construct

the large scale model was quite elementary, we simply divided each original gridblock into
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Figure 4.52: Posterior mean for vertical log-permeability compared to the true vertical log-
permeability field: (a)-(e) shows, respectively, the first to fifth layers of the
posterior mean, (f)-(j) shows, respectively, the first to fifth layers of the true
permeability field.
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Figure 4.53: Marginal distribution for well bottom hole pressure for producers PRO-01
through PRO-15. In all figures, we show the corresponding true value (solid
thick red curve), the mean of the marginal distribution (solid thick black curve),
the percentiles P25 and P75 of the marginal distribution (two blue dashed
curves), and the percentiles P5 and P95 of the marginal distribution (two thin
black curves). To generate the marginal distributions presented here, all states
after state 40,000 in the five chains are used, which gives a total of 300,000
states.
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Figure 4.54: Marginal distribution for well gas production rate for producers PRO-01
through PRO-15. In all figures, we show the corresponding true value (solid
thick red curve), the mean of the marginal distribution (solid thick black curve),
the percentiles P25 and P75 of the marginal distribution (two blue dashed
curves), and the percentiles P5 and P95 of the marginal distribution (two thin
black curves). To generate the marginal distributions presented here, all states
after state 40,000 in the five chains are used, which gives a total of 300,000
states.
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Figure 4.55: Marginal distribution for well water production rate for producers PRO-01
through PRO-15. In all figures, we show the corresponding true value (solid
thick red curve), the mean of the marginal distribution (solid thick black curve),
the percentiles P25 and P75 of the marginal distribution (two blue dashed
curves), and the percentiles P5 and P95 of the marginal distribution (two thin
black curves). To generate the marginal distributions presented here, all states
after state 40,000 in the five chains are used, which gives a total of 300,000
states.
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3× 3× 3 = 27 gridblocks. The original geometry of the PUNQ-S3 model is thus conserved.

The resulting reservoir model has a total of 57 × 84× 15 = 71, 820 gridblocks, with a total

of 47,547 active gridblocks. As in the previous case, the reservoir parameters considered for

history matching are the horizontal and vertical gridblock log-permeability. Consequently,

one gets two parameters for each active gridblock, which results in a total of 95,094 history-

matching reservoir parameters. The refined model with 95,094 parameters represents a limit

for the computational power available for conducting this research. That is the main reason

the applied refinement was selected, and no further refinement was sought.

Although all required information is available, for 95,094 parameters we were unable

to assemble the 95, 094× 95, 094 prior covariance matrix due to computational restrictions.

The prior covariance matrix is necessary to generate the sample from the prior pdf. Nev-

ertheless, in a real large scale reservoir problem, one is seldom able to assemble the prior

covariance matrix in order to generate samples. Usually, the best scenario for a history

matching problem is to have a finite number of samples, which are normally generated from

a geological model. Therefore, to mimic a real problem, we do not need the prior covariance

matrix, we just need a suitable way of generating samples from the prior pdf. To achieve

this, we chose instead to generate samples from the coarse original PUNQ-S3 geological

model, which we have available, then convert the generated samples to the refined grid.

This approach somehow mimics a real problem, since normally the only available prior in-

formation about the reservoir parameters is presented in the form of a finite set of reservoir

models. Naturally, simply converting the coarse samples to the refined grid will result in

repeated reservoir properties within the refined gridblocks which correspond to the same

original coarse gridblock. For this reason, we chose to add white noise to the resulting re-

fined samples. The standard deviation for the white noise was selected as 5% of the actual

gridblock log-permeability.

Assuming that a total of Ns samples are generated as described above, one can ap-
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proximate the prior covariance matrix, CM , using

CM ∼=
1

Ns − 1
∆M ∆MT . (4.22)

In Eq. 4.22, each column of the Nm×Ns matrix ∆M represents a different centered sample,

which is obtained by subtracting the sample mean from each individual sample, i.e., letting

[∆M ]s denote the sth column of the matrix ∆M , for s = 1, 2, · · · , Ns, and ms represent

the sth generated samples, for s = 1, 2, · · · , Ns, one gets

[∆M ]s = ms −
1

Ns

Ns∑
s=1

ms , for s = 1, 2, . . . , Ns . (4.23)

Notice that normally Ns � Nm, hence one is able to compute and assemble the matrix ∆M .

With our available computational power, we cannot compute the matrix product ∆M∆MT .

However, it is not necessary, as will become clear in the explanation below.

From Eq. 4.22, we compute the corresponding prior correlation matrix using

C̃M = S−1
M CM S−1

M
∼=

1

Ns − 1
S−1
M ∆M ∆MT S−1

M =
1

Ns − 1
S−1
M ∆M

(
S−1
M ∆M

)T
. (4.24)

As before, in Eq. 4.24, S−1
M denotes the inverse of the standard deviation matrix, which is the

diagonal matrix for which the jth entry of the diagonal is given by the inverse of the standard

deviation of the jth parameter, i.e., the inverse of the standard deviation for the jth entry

of the vector of reservoir model parameters m. We do not assemble the matrix S−1
M due

to computational restrictions, let alone to compute the matrix product S−1
M ∆M . However,

because the matrix S−1
M is diagonal, one is able to compute the matrix product S−1

M ∆M by

simply multiplying the elements of the jth row of matrix ∆M , for j = 1, 2, · · · , Nm, by the

jth diagonal element of the matrix S−1
M , which can be easily executed.

The aim in constructing the prior correlation matrix is to apply the PCA method

to reduce the order of the problem. Although we cannot assemble the prior correlation

matrix to apply PCA, the same result can be accomplished by applying SVD to the matrix
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S−1
M ∆M/

√
Ns − 1 , see Shlens [110]. The left singular vectors of the matrix S−1

M ∆M/
√
Ns − 1

are the same as the left singular vectors of the correlation matrix. Furthermore, the singular

values of the matrix S−1
M ∆M/

√
Ns − 1 represent the square root of the singular values of

the correlation matrix, as can be shown by

C̃M ∼=
1

Ns − 1
S−1
M ∆M

(
S−1
M ∆M

)T
= U∆ W∆ V T

∆ V∆ W∆ UT
∆ = U∆ W 2

∆ UT
∆ , (4.25)

since V T
∆ V∆ = INs . In Eq. 4.25, the matrices U∆, W∆ and V∆ represent, respectively, the

matrix of left singular vectors, the matrix of singular values and the matrix of right singular

vectors which are obtained by applying SVD to the matrix S−1
M ∆M/

√
Ns − 1 . Therefore,

by applying SVD to the matrix S−1
M ∆M/

√
Ns − 1 , all elements that we need to apply the

reduction order transformation of Eq. 3.47, see Section 3.3, become available, and we can

apply our proposed methodology.

To apply the above described approach for this case, we sampled Ns = 5, 000 models

from the coarse prior pdf, which is exactly the same model as described in Section 4.4.

Then, we convert the samples to the refined grid, and add white noise, to generate 5,000

samples for the large scale reservoir model. As commented earlier, this large scale model

has dimension Nm = 95, 094. Furthermore, for j = 1, 2, . . . , 47, 547, mj = ln(kj), where

mj represents the jth entry of the vector m, and kj represents the horizontal permeability

of the jth gridblock. Similarly, for j = 47, 548, 47, 549, . . . , Nm, mj = ln(kz,j), where kz,j

denotes the vertical permeability of the jth gridblock. Hence, as in the previous case, the

horizontal and vertical log-permeability are the parameters considered for history matching.

With the 5,000 samples, we approximate the correlation matrix as depicted above,

then we compute the matrix S−1
M ∆M/

√
Ns − 1 and apply SVD. The results are presented

in Fig. 4.56, in which we present the corresponding first 300 singular values of the prior

correlation matrix. For a pNv = 0.9679, see the discussion preceding Eq. 3.42, we need

to keep only 171 singular values, i.e., Nv = 171 for this case, see the discussion preceding

Eq. 3.40. The vertical dashed line in Fig. 4.56 marks the position of the 171st singular value.
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Figure 4.56: The SVD results of the prior correlation matrix for the large scale case: the red
curve represents the first 300 singular values, the dashed vertical line represents
the position of the 171st singular value.

Notice that we reduce the original dimension of the problem, i.e., Nm = 95, 094, to only 171.

For this large scale problem, we generated a new true horizontal and vertical per-

meability fields. The new true models was sampled from the coarse model prior pdf, then

converted to the refined grid. The resulting log-permeability fields are presented in Figs. 4.57

and 4.58

For this large scale problem, we use a total of eleven wells, six production wells and

five injection wells. As before, the producers are denoted as PRO-01, PRO-04, PRO-05,

PRO-11, PRO-12, and PRO-15. The injectors are denoted as INJ-01, INJ-02, INJ-03, INJ-

04, and INJ-05. The well gridblock completion information is presented in Table 4.6. Note

there are now 15 reservoir simulation model layers. The producers PRO-01, PRO-04, PRO-

05, PRO-11, and PRO-12 are operated at a constant oil flow rate of 628.98 STB/day, which

is equivalent to 100 m3/day. The producer PRO-15 is operated at a constant oil flow rate of

314.49 STB/day, which is equivalent to 50 m3/day. All injectors are operated at a constant

water flow rate of 691.88 STB/day, which is equivalent to 110 sm3/day.

For the large scale case, the data considered for history matching are the bottom-

hole pressure, the gas production rate and the water production rate for each one of the

six producers, and the bottom-hole pressure for each one of the five injectors. As in the

previous case, the data are acquired every 30 days. A total of 96× 30 = 2, 880 days (almost
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Figure 4.57: True horizontal log-permeability field for the large scale case.

8 years) history matching period is considered, which results in Ndh = 23 × 96 = 2, 208

observed production data, i.e., 3 × 6 data for producers and 5 × 1 data for injectors each

30 days. The history matching period is followed by 48 × 30 = 1, 440 days, or almost 4

years, of forecast period. Therefore, Nd = 23 × (96 + 48) = 3, 312. As a consequence, to

add a point to the training set we run the reservoir simulator for (96 + 48) × 30 = 4, 320

days, or almost 12 years. For this case, the standard deviation of measurement errors for

the bottom-hole pressure is set equal to 5 bars for all six producers and all five injectors.

Meanwhile, the standard deviation of measurement errors for gas production rate is set equal

to 100 sm3/day for all six producers. Finally, the standard deviation of measurement errors
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Figure 4.58: True vertical log-permeability field for the large scale case.

for water production rate is set equal to 0.50 sm3/day for all six producers. With these data,

one is able to construct the measurement error covariance matrix.

We consistently chose Ne = 250 and conducted 250 minimization problems as for

the previous cases. It is possible that for a more complex problem, such as this large scale

reservoir model, one should increase the value of Ne to achieve a better characterization of the

posterior pdf and find as many modes as possible. Nevertheless, each reservoir simulation for

this problem takes 5 to 8 minutes, so increasing the value of Ne is not computational feasible

for us. In fact, to be able to complete the minimization loop in an affordable time, we had to

reduce this value to Ne = 100 for this large scale problem. Performing only 100 minimization
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Well
gridblock Completion

x− dir y − dir z − dir
PRO-01 29 65 10, 11, 12, 13, 14 and 15
PRO-04 26 50 10, 11, 12, 13, 14 and 15
PRO-05 50 32 7, 8, 9, 10, 11 and 12
PRO-11 32 71 7, 8, 9, 10, 11 and 12
PRO-12 44 35 10, 11, and 12
PRO-15 50 65 10, 11, 12, 13, 14 and 15
INJ-01 29 20 10, 11, 12, 13, 14 and 15
INJ-02 14 38 10, 11, 12, 13, 14 and 15
INJ-03 8 53 10, 11, 12, 13, 14 and 15
INJ-04 8 71 10, 11, 12, 13, 14 and 15
INJ-05 20 80 10, 11, 12, 13, 14 and 15

Table 4.6: Producer and injectors wells gridblock completion for the large scale case.

problems may not be enough to approximately characterize the posterior pdf when searching

for modes, and it probably will affect the quality of the resulting uncertainty quantification.

However, the aim here is to evaluate the performance of the proposed methodology for a

large scale problem, which had to be done under a computational limitation. Nevertheless,

the results will show that the proposed methodology, using the LS-SVR proxy, was able

to find modes of the posterior pdf, which ultimately results in a reasonable uncertainty

quantification, although some bias is observed, most probably due to a lack of representation

of the modes of the posterior pdf. The Ne = 100 initial models are generated first from

sampling the coarse prior pdf using LHS [74]. An additional of Na = 400 models are

also generated in the same way to compose an initial training set with Nt = 500 training

examples, which is small compared with the size of the initial training set we adopted for

the other applications. As in the previous case, we opt to condition those Nt = 500 models

for log-permeability hard data. A new hard data was randomly generated from the new true

log-permeability field by adding white noise with standard deviation equal to 20% of the

actual gridblock permeability value. Due to computational limitations, we conditioned the

coarse models to the new hard data, then we converted them to the refined grid. Similarly

to the previous case, all vertical gridblocks penetrated by a producer well were consider as

the location for which the new hard data was generated. The procedure to condition the
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models to hard data is the same depicted in the previous case.

To construct the initial training set, we run the reservoir simulator for each one of the

conditioned to hard data initial models, mk,hd, k = 1, . . . , Nt = 500 . Then, as before, the

conditioned initial models are transformed to their reduced order counterparts, see Eq. 3.47,

using

zk = W
−1/2
Nv

UT
Nv S

−1
M (mk,hd −mpr) , for k = 1, 2, . . . , Nt . (4.26)

In Eq. 4.26, Nv = 171, as discussed earlier. The initial training set is then constructed

using the vectors zk, for k = 1, . . . , Nt = 500 , and the associated reservoir predictions.

Again it is worthwhile to mention that we only condition the initial models to the hard data.

Subsequent models added to the training set are from the minimization steps and are not

conditioned to the hard data.

Following the proposed methodology, we conduct the minimization problems in the

reduced order space of the vector z. When we need to add a new point to the training set,

we convert the corresponding z to its respective m, using Eq. 3.49, then we run the reservoir

simulator. For this large scale problem, we adopt a minimum distance to update the training

set of dmin = 1.0E− 4. The trust-region parameters are set to δ
(1)
e = 0.2, for e = 1, . . . , Ne ,

δmin = 2.0E − 4 and δmax = 1.0. Note that in this example, we adopt less restrictive

values than used before in order to accelerate the convergence of the minimization problems,

since each iteration takes a significantly time due to the considerable time required for each

reservoir simulation run. The convergence criteria are set to ε1 = ε2 = 1.0E − 4, which is

also less restrictive than used in the previous case. Finally, pconv = 0.90, so a minimum of

90% of the minimization problems have to converge. As before, numerical experiments using

the Ne = 100 selected models as the test set and using the Na = 400 models to construct

a training set are conducted to determine the LS-SVR proxy parameters, which results in a

γ = 800 and σ = 2.6, corresponding to a cσ = 0.20, see Eq. 3.9. During the minimization

loop, we set Ncut = 3, 500 and ON,cut = 80.0, which means that when the training set

becomes larger than 3,500 training examples, then at each iteration of the minimization
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Figure 4.59: Minimization loop results for the large scale case: prior models (black dots),
converged models (red dots).

loop, we remove from the training set the training examples which give normalized objective

function values greater than 80.0, see the discussion preceding Eq. 3.27.

In Fig. 4.59 we present the minimization loop results. As in the previous cases,

the final values of normalized objective function obtained after convergence are about four

orders of magnitude lower than the corresponding values for the prior models, even though

we considerably reduced the dimension of the problem from 95,094 to only 171. Although

the LS-SVR proxy model is trained for the reduced order vector, which has dimension 171,

the minimization results corroborates that the LS-SVR proxy gradient is indeed a good

alternative to the adjoint solution.

However, Eq. 3.27, which gives the approximate upper bound for the value of the

normalized objective function at the minima, provides an upper bound of 1.15 for this case,

and the minimum value obtained in the minimization loop is 1.89. Again, the performance

for the LS-SVR gradient for this case is slightly inferior to the performance observed in the

one-dimensional case. Nevertheless, 51 models give normalized objective function values less

than 6.0, which, considering that a small initial training set was adopted due computational

limitations, indicates a reasonably good performance of the proposed methodology.

At the end of the minimization loop, a total of 2,852 reservoir simulation runs were
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required in order for 90% of the 100 minimization problems to converge. This resulted in a

training set with 2,681 training examples. Using a value of ONmax = 20.0, we reduced the

size of the training set to a total of 1,636 training examples. To further reduce the training

set size, we applied the seed procedure described in Subsection 3.2.1 of Chapter 3. For this

case, we selected the found modes which presented normalized objective function values less

than 10.0, which represents 63 modes, to start the seed for a new training set. Then, we

compare the models from the training set with the seed models using a normalized distance

of 1.0E − 3, for the cases were the distance for the models in the seed is larger than the

adopted distance, the model is added to the seed. At the end, 1,441 training examples were

selected to form the final training set. Then, we use this final training set to train the final

LS-SVR proxy model.

From the 100 minimization problems, 51 converge to modes that give a normalized

objective function value less than 6.0 and are used to construct the GMM approximation.

In Figs. 4.60 through 4.67 we present the history matching results for those 51 selected

modes. The original prior predictions for the 51 models are compared to the predictions

after history matching. As one can see, even though we conducted the minimization loop

using a relatively small initial training set, the overall history matching performance for

these 51 selected model are quite good. In all figures, the solid thick red curve represents

the true value, the red dots represent the observed data, and the cyan curves represents the

corresponding models predictions.

In Figs. 4.68 through 4.103 we compare the prior horizontal and vertical log-permeability

fields with the corresponding conditioned models after history matching for the first six se-

lected modes. As before, even though we conducted the minimization problems using the

vector z, which has dimension 171, and the LS-SVR proxy models was trained using the

vector z, the overall minimization results show permeability fields which are consistent with

the prior models, i.e., again the minimization process preserved the geological information.

As before, the selected 51 modes are clustered into Nc = 25 clusters using the k-

medoids clustering algorithm [63]. Then, the clusters are used to build a GMM approxi-
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(a) BHP PRO-01: before history matching.
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(b) BHP PRO-01: after history matching.
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(c) BHP PRO-04: before history matching.
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(d) BHP PRO-04: after history matching.
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(e) BHP PRO-05: before history matching.
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(f) BHP PRO-05: after history matching.
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(g) BHP PRO-11: before history matching.
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(h) BHP PRO-11: after history matching.

Figure 4.60: History matching results for the large scale case: well bottom-hole pressure at
producers PRO-01, PRO-04, PRO-05, and PRO-11. A comparison between
the original prior models predictions (left column) with the predictions after
the history matching (right column) is presented. In all figures, we show the
corresponding true value (solid thick red curve), the observed data (red dots),
and the models predictions (cyan curves).
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(a) BHP PRO-12: before history matching.
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(b) BHP PRO-12: after history matching.
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(c) BHP PRO-15: before history matching.
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(d) BHP PRO-15: after history matching.

Figure 4.61: Same as in Fig. 4.60 for producers PRO-12 and PRO-15.
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(a) GPR PRO-01: before history matching.
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(b) GPR PRO-01: after history matching.
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(c) GPR PRO-04: before history matching.
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(d) GPR PRO-04: after history matching.

Figure 4.62: History matching results for the large scale case: gas production rate at pro-
ducers PRO-01 and PRO-04. A comparison between the original prior models
predictions (left column) with the predictions after the history matching (right
column) is presented. In all figures, we show the corresponding true value (solid
thick red curve), the observed data (red dots), and the models predictions (cyan
curves).
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(a) GPR PRO-05: before history matching.
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(b) GPR PRO-05: after history matching.
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(c) GPR PRO-11: before history matching.
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(d) GPR PRO-11: after history matching.
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(e) GPR PRO-12: before history matching.
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(f) GPR PRO-12: after history matching.
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(g) GPR PRO-15: before history matching.
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(h) GPR PRO-15: after history matching.

Figure 4.63: History matching results for the large scale case: gas production rate at pro-
ducers PRO-05, PRO-11, PRO-12, and PRO-15. A comparison between the
original prior models predictions (left column) with the predictions after the
history matching (right column) is presented. In all figures, we show the corre-
sponding true value (solid thick red curve), the observed data (red dots), and
the models predictions (cyan curves).
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(a) WPR PRO-01: before history matching.
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(b) WPR PRO-01: after history matching.
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(c) WPR PRO-04: before history matching.
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(d) WPR PRO-04: after history matching.
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(e) WPR PRO-05: before history matching.

0 1000 2000 3000 4000
Time (days)

0

20

40

60

W
W

P
R

 (
S

M
3/

D
A

Y
)

(f) WPR PRO-05: after history matching.
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(g) WPR PRO-11: before history matching.
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(h) WPR PRO-11: after history matching.

Figure 4.64: History matching results for the large scale case: water production rate at
producers PRO-01, PRO-04, PRO-05, and PRO-11. A comparison between
the original prior models predictions (left column) with the predictions after
the history matching (right column) is presented. In all figures, we show the
corresponding true value (solid thick red curve), the observed data (red dots),
and the models predictions (cyan curves).
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(a) WPR PRO-12: before history matching.
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(b) WPR PRO-12: after history matching.
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(c) WPR PRO-15: before history matching.
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(d) WPR PRO-15: after history matching.

Figure 4.65: Same as in Fig. 4.64 for producers PRO-12 and PRO-15.
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(a) BHP INJ-01: before history matching.
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(b) BHP INJ-01: after history matching.
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(c) BHP INJ-02: before history matching.
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(d) BHP INJ-02: after history matching.

Figure 4.66: History matching results for the large scale case: well bottom-hole pressure at
injectors INJ-01 and INJ-02. A comparison between the original prior models
predictions (left column) with the predictions after the history matching (right
column) is presented. In all figures, we show the corresponding true value (solid
thick red curve), the observed data (red dots), and the models predictions (cyan
curves).
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(a) BHP INJ-03: before history matching.
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(b) BHP INJ-03: after history matching.
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(c) BHP INJ-04: before history matching.
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(d) BHP INJ-04: after history matching.
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(e) BHP INJ-05: before history matching.
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(f) BHP INJ-05: after history matching.

Figure 4.67: History matching results for the large scale case: well bottom-hole pressure at
injectors INJ-03, INJ-04 and INJ-05. A comparison between the original prior
models predictions (left column) with the predictions after the history matching
(right column) is presented. In all figures, we show the corresponding true value
(solid thick red curve), the observed data (red dots), and the models predictions
(cyan curves).
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Figure 4.68: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 1, 4, 7, 10 and 13) with the history matched model
(bottom row, layers 1, 4, 7, 10 and 13) for the converged model 1.

mation for the posterior pdf. Again, the weights in the GMM approximation are all set

to w` = 1/25 = 0.04 for ` = 1, . . . , Nc. Using this GMM approximation as the proposal

distribution, we run five chains with a total of 100,000 states each. As before, we first run

short chains of length 2,000 states to tune the parameter µγ. For this case, we selected

a parameter µγ = 40.0, leading to a learning rate of γi = 1.37E − 3, which results in an

acceptance rate of 32.1%. The convergence of the five chains based on the MPSRF method

[14] is presented in Fig. 4.104. As one can see, the MPSRF reaches unity after 25,000 states

are generated. Therefore, from state 25,000 onward, MPSRF indicates that the chains have

converged to the posterior pdf, which again is a fast convergence.

Figs. 4.105 and 4.106 present, respectively, the resulting posterior mean for both

horizontal and vertical gridblock log-permeability fields. Comparing the posterior mean

with the corresponding true log-permeability fields of Figs. 4.57 and 4.58, one can see that

some features of the true log-permeability field are represented in the posterior mean, even
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Figure 4.69: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 2, 5, 8, 11 and 14) with the history matched model
(bottom row, layers 2, 5, 8, 11 and 14) for the converged model 1.

though as in the previous case, the posterior mean fields are smoother than the truth and

individual posterior realizations.

The uncertainty quantification results are presented in Figs. 4.107 through 4.110.

To generate the results presented in Figs. 4.53 through 4.55, we reconstruct the marginal

distributions using all states after state 40,000 for each one of the five chains, which results

in a total of 300,000 states. The color code in all these figures is the same as described in

Fig. 4.5, i.e., the solid thick black curve represents the mean of the marginal distribution, the

two blue dashed curves represents the 25% (P25) and 75% (P75) percentiles, while the two

solid thin black curves represent the 5% (P5) and 95% (P95) percentiles, finally, the solid

thick red curve represents the predictions using the true model and the red dots represent

the observed data. The marginal distribution for well bottom hole pressure (WBHP) at the

producers is presented in Fig. 4.107. The marginal distribution for well gas production rate

(WGPR) at the producers is presented in Fig. 4.108. The marginal distribution for well water
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Figure 4.70: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 3, 6, 9, 12 and 15) with the history matched model
(bottom row, layers 3, 6, 9, 12 and 15) for the converged model 1.

production rate (WWPR) at the producers is presented in Fig. 4.109. Finally, the marginal

distribution for well bottom hole pressure at the injectors is presented in Fig. 4.110. Except

for the well bottom hole pressure of PRO-01, PRO-04 and INJ-02, which present some bias,

the overall performance of the uncertainty quantification seems remarkably good. Again, no

base case is available for comparison, and we do believe that for a real case one should consider

more than 100 minimization problems and use a larger initial training set. Nevertheless, the

history matching results which can be achieved using the proposed methodology, and the

associated low computational cost, seems promising for practical applications.
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Figure 4.71: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 1, 4, 7, 10 and 13) with the history matched model
(bottom row, layers 1, 4, 7, 10 and 13) for the converged model 1.
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Figure 4.72: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 2, 5, 8, 11 and 14) with the history matched model
(bottom row, layers 2, 5, 8, 11 and 14) for the converged model 1.
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Figure 4.73: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 3, 6, 9, 12 and 15) with the history matched model
(bottom row, layers 3, 6, 9, 12 and 15) for the converged model 1.
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Figure 4.74: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 1, 4, 7, 10 and 13) with the history matched model
(bottom row, layers 1, 4, 7, 10 and 13) for the converged model 2.
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Figure 4.75: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 2, 5, 8, 11 and 14) with the history matched model
(bottom row, layers 2, 5, 8, 11 and 14) for the converged model 2.
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Figure 4.76: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 3, 6, 9, 12 and 15) with the history matched model
(bottom row, layers 3, 6, 9, 12 and 15) for the converged model 2.
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Figure 4.77: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 1, 4, 7, 10 and 13) with the history matched model
(bottom row, layers 1, 4, 7, 10 and 13) for the converged model 2.
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Figure 4.78: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 2, 5, 8, 11 and 14) with the history matched model
(bottom row, layers 2, 5, 8, 11 and 14) for the converged model 2.
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Figure 4.79: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 3, 6, 9, 12 and 15) with the history matched model
(bottom row, layers 3, 6, 9, 12 and 15) for the converged model 2.
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Figure 4.80: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 1, 4, 7, 10 and 13) with the history matched model
(bottom row, layers 1, 4, 7, 10 and 13) for the converged model 3.
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Figure 4.81: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 2, 5, 8, 11 and 14) with the history matched model
(bottom row, layers 2, 5, 8, 11 and 14) for the converged model 3.
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Figure 4.82: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 3, 6, 9, 12 and 15) with the history matched model
(bottom row, layers 3, 6, 9, 12 and 15) for the converged model 3.
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Figure 4.83: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 1, 4, 7, 10 and 13) with the history matched model
(bottom row, layers 1, 4, 7, 10 and 13) for the converged model 3.
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Figure 4.84: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 2, 5, 8, 11 and 14) with the history matched model
(bottom row, layers 2, 5, 8, 11 and 14) for the converged model 3.
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Figure 4.85: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 3, 6, 9, 12 and 15) with the history matched model
(bottom row, layers 3, 6, 9, 12 and 15) for the converged model 3.
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Figure 4.86: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 1, 4, 7, 10 and 13) with the history matched model
(bottom row, layers 1, 4, 7, 10 and 13) for the converged model 4.
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Figure 4.87: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 2, 5, 8, 11 and 14) with the history matched model
(bottom row, layers 2, 5, 8, 11 and 14) for the converged model 4.
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Figure 4.88: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 3, 6, 9, 12 and 15) with the history matched model
(bottom row, layers 3, 6, 9, 12 and 15) for the converged model 4.
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Figure 4.89: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 1, 4, 7, 10 and 13) with the history matched model
(bottom row, layers 1, 4, 7, 10 and 13) for the converged model 4.
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Figure 4.90: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 2, 5, 8, 11 and 14) with the history matched model
(bottom row, layers 2, 5, 8, 11 and 14) for the converged model 4.
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Figure 4.91: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 3, 6, 9, 12 and 15) with the history matched model
(bottom row, layers 3, 6, 9, 12 and 15) for the converged model 4.
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Figure 4.92: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 1, 4, 7, 10 and 13) with the history matched model
(bottom row, layers 1, 4, 7, 10 and 13) for the converged model 5.

182



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.93: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 2, 5, 8, 11 and 14) with the history matched model
(bottom row, layers 2, 5, 8, 11 and 14) for the converged model 5.
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Figure 4.94: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 3, 6, 9, 12 and 15) with the history matched model
(bottom row, layers 3, 6, 9, 12 and 15) for the converged model 5.
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Figure 4.95: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 1, 4, 7, 10 and 13) with the history matched model
(bottom row, layers 1, 4, 7, 10 and 13) for the converged model 5.
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Figure 4.96: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 2, 5, 8, 11 and 14) with the history matched model
(bottom row, layers 2, 5, 8, 11 and 14) for the converged model 5.
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Figure 4.97: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 3, 6, 9, 12 and 15) with the history matched model
(bottom row, layers 3, 6, 9, 12 and 15) for the converged model 5.
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Figure 4.98: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 1, 4, 7, 10 and 13) with the history matched model
(bottom row, layers 1, 4, 7, 10 and 13) for the converged model 6.
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Figure 4.99: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 2, 5, 8, 11 and 14) with the history matched model
(bottom row, layers 2, 5, 8, 11 and 14) for the converged model 6.
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Figure 4.100: Horizontal log-permeability fields for the large scale case comparing the prior
model (top row, layers 3, 6, 9, 12 and 15) with the history matched model
(bottom row, layers 3, 6, 9, 12 and 15) for the converged model 6.
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Figure 4.101: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 1, 4, 7, 10 and 13) with the history matched model
(bottom row, layers 1, 4, 7, 10 and 13) for the converged model 6.
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Figure 4.102: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 2, 5, 8, 11 and 14) with the history matched model
(bottom row, layers 2, 5, 8, 11 and 14) for the converged model 6.
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Figure 4.103: Vertical log-permeability fields for the large scale case comparing the prior
model (top row, layers 3, 6, 9, 12 and 15) with the history matched model
(bottom row, layers 3, 6, 9, 12 and 15) for the converged model 6.
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Figure 4.104: MCMC sampling convergence based on MPSRF for the large scale case.
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Figure 4.105: Posterior mean for horizontal log-permeability for the large scale case.
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Figure 4.106: Posterior mean for vertical log-permeability for the large scale case.
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Figure 4.107: Marginal distribution for well bottom hole pressure for producers PRO-01
through PRO-15. In all figures, we show the corresponding true value (solid
thick red curve), the mean of the marginal distribution (solid thick black
curve), the percentiles P25 and P75 of the marginal distribution (two blue
dashed curves), and the percentiles P5 and P95 of the marginal distribution
(two thin black curves). To generate the marginal distributions presented here,
all states after state 40,000 in the five chains are used, which gives a total of
300,000 states.
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Figure 4.108: Marginal distribution for well gas production rate for producers PRO-01
through PRO-15. In all figures, we show the corresponding true value (solid
thick red curve), the mean of the marginal distribution (solid thick black
curve), the percentiles P25 and P75 of the marginal distribution (two blue
dashed curves), and the percentiles P5 and P95 of the marginal distribution
(two thin black curves). To generate the marginal distributions presented here,
all states after state 40,000 in the five chains are used, which gives a total of
300,000 states.
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Figure 4.109: Marginal distribution for well water production rate for producers PRO-01
through PRO-15. In all figures, we show the corresponding true value (solid
thick red curve), the mean of the marginal distribution (solid thick black
curve), the percentiles P25 and P75 of the marginal distribution (two blue
dashed curves), and the percentiles P5 and P95 of the marginal distribution
(two thin black curves). To generate the marginal distributions presented here,
all states after state 40,000 in the five chains are used, which gives a total of
300,000 states.
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Figure 4.110: Marginal distribution for well bottom hole pressure for injectors INJ-01
through INJ-05. In all figures, we show the corresponding true value (solid
thick red curve), the mean of the marginal distribution (solid thick black
curve), the percentiles P25 and P75 of the marginal distribution (two blue
dashed curves), and the percentiles P5 and P95 of the marginal distribution
(two thin black curves). To generate the marginal distributions presented here,
all states after state 40,000 in the five chains are used, which gives a total of
300,000 states.
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CHAPTER 5

CONCLUSIONS

The methodology developed in this dissertation to apply the Metropolis-Hastings

Markov chain Monte Carlo (MCMC) algorithm is a computationally efficient instrument for

uncertainty quantification of reservoir model parameters and production forecasting. This

methodology constructs the Markov chain using the predictions from a proxy model as a

replacement of the reservoir simulator. As a consequence, no reservoir simulation run is

required to construct a Markov chain when quantifying uncertainty with MCMC. Naturally,

the proxy model runs far faster than the reservoir simulator, consequently, the computational

burden of MCMC is significantly reduced.

Similar to Li and Reynolds [69], we construct a Gaussian mixture model (GMM)

approximation of the posterior probability density function (pdf) to employ as the proposal

distribution for the Metropolis-Hastings MCMC sampling algorithm. The GMM approxi-

mation is constructed centered at modes of the posterior pdf. The modes are found using a

gradient-based minimization framework, but to alleviate the need of an adjoint solution, we

instead use the analytical proxy gradient to conduct the minimization process. The history

matching results we achieve using the proxy gradient corroborate that the proxy gradient is

a suitable computational efficient alternative to the adjoint solution.

The proxy model investigated in this dissertation is the machine learning technique

known as least-squares support vector regression (LS-SVR). The LS-SVR method constructs

an approximate function using a given training set. The training examples which are included

in the training set dictates the quality of the resulting LS-SVR model. To achieve a reliable

proxy, capable of replacing the reservoir simulator, we construct the training set with an

adaptive approach. For this, we dynamically update an initial training set by conducting
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several minimization problems simultaneously. We conduct the minimization problems with

the purpose of finding the modes of the posterior pdf to construct the GMM proposal dis-

tribution. By conducting all minimization problems simultaneously, we take advantage of a

LS-SVR proxy gradient, which is dynamically updated at each minimization iteration. We

update the training set by adding the estimates of the minima to a current training set at each

iteration of the minimization problem. At the end of each iteration, an improved LS-SVR

proxy model is trained using the current available training set, and the gradient of this proxy

is used in the next minimization iteration. The underlying idea is that while the minimiza-

tion proceeds, the estimates of the minima come from regions of increasing probability of the

posterior pdf, consequently, the training set is adapted to regions of high probability. When

conducting the MCMC sampling procedure, one is interested in regions of high probability,

which are precisely the regions in which the LS-SVR proxy model constructed using the up-

dated training set will provide accurate predictions. Hence, the LS-SVR proxy constructed

becomes a suitable replacement of the reservoir simulator. The uncertainty quantification re-

sults presented in this dissertation corroborates this idea, with the advantage of considerably

reducing the required number of reservoir simulator runs.

For large scale problems, we first apply principal component analysis (PCA) to the

correlation matrix to reduce the dimension of a given problem, then we train the LS-SVR

proxy model for the reduced-order input vector. A fortunate consequence of this approach

is a further reduction in the computational burden, since the proxy constructed using the

reduced-order vector runs faster than an equivalent LS-SVR proxy trained using the full di-

mensional input vector. Moreover, the MCMC sampling algorithm is faster, because we

sample from a lower-dimensional multivariate Gaussian distribution and adapt a lower-

dimensional covariance matrix. The computational efficiency and history matching and

uncertainty quantification obtained when applying the developed methodology for a large

scale reservoir model shows promising results, and should enable the application of the pro-

posed methodology to real reservoir cases. We actually have assembled data for a large-scale

field case, but do not have the computational resources to run the reservoir simulation model
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several hundred to a few thousand times needed to build the training set.

5.1 Future Work

Motivated from the results presented in this dissertation, we intend to apply the

developed methodology for a large-scale field case.

One open question for the machine learning support vector machines is the selection

of the kernel function. Although the common recommendation is to use some available family

of well-known kernel functions, which is natural for techniques developed for case where no

clear physical model is available, we intend to investigate how one can use a given physical

model to derive/improve a kernel function.

We also intend to investigate how one can couple the developed methodology with

the ES-MDA method to further improve the quality of the uncertainty quantification, while

reducing the computational burden.
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APPENDIX A

TRAINING PROCEDURE FOR THE LEAST SQUARES SUPPORT

VECTOR REGRESSION

To construct a least-squares support vector regression (LS-SVR) approximation for

some nonlinear function f(x), which acts on a Nx−dimensional column vector of input

parameters, x, to generate the Ny−dimensional column vector of output data, y, i.e.,

y = f(x) , (A.1)

the LS-SVR regression method requires a training set. A training set is composed by a suite

of vectors of input parameters and their respective vectors of output data which are related

by Eq. A.1.

The LS-SVR method proceeds by constructing an ensemble of Ny regression functions,

denoted by f̂i(x), for i = 1, 2, . . . , Ny. Note we have one independent regression function

f̂i(x) for each entry yi, for i = 1, 2, . . . , Ny, of the column vector of output data y. The set

of Ny regression functions f̂(x) = [f̂1(x), f̂2(x), . . . , f̂Ny(x)]T emulates the original function

f(x) of Eq. A.1 when computing outputs for input vectors not present in the original training

set. A particular set o regression functions f̂(x), constructed using a given training set, is

what we collectively denote as a LS-SVR proxy model approximation for the original function

f(x) of Eq. A.1.

As proposed by Vapnik [129, 130], the nonlinear LS-SVR method adopted in this

research simply applies a linear LS-SVR on some high-dimensional feature space. Hence, the

LS-SVR algorithm for nonlinear functions starts by first mapping the input vectors x, of a
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given training set, from its original input space into a high-dimensional feature space using a

chosen nonlinear mapping. One can define the resulting feature space by a particular choice

of the nonlinear mapping. However, the selected mapping does not need to be explicitly

defined, as we discuss later.

The underlying key idea of the nonlinear LS-SVR method is to choose a nonlinear

mapping which defines a feature space where the relationship between the mapped input

vectors and their respective outputs becomes linear. Considering that a particular nonlinear

mapping ϕi(x) defines a feature space where the relationship between x and yi, where yi

denotes the ith entry of the vector of outputs, y, for i = 1, 2, . . . , Ny, becomes linear, one

searches for a linear relationship on the feature space in the form

f̂i(x) = ωTi ϕi(x) + bi for i = 1, 2, . . . , Ny , (A.2)

where ωi represents the column vector of coefficients of ϕi(x), and bi is the bias term. Hence,

the LS-SVR training algorithm effectively reduces to determine the coefficients ωi and bi of

Eq. A.2.

The dimension of the vector ωi depends on the chosen feature space. For some choices

of feature spaces, ωi may be infinite dimensional. This could be a challenger for the training

procedure, however ωi is not explicitly determined as shown below.

A.1 Determining the Least Squares Support Vector Regression Coefficients

In this research, we focus on the LS-SVR methodology proposed by [119] and [117], in

which a least squares loss function is used as regularization term in a minimization problem

designed to determining the coefficients ωi and bi of Eq. A.2.

Given a particular training set Ts = {(xk,yk), for k = 1, 2, . . . , Nt}, where xk and

yk are related by Eq. A.1, i.e., yk = f(xk), one needs to solve the Ny minimization problems
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[120, 121] given by

minimize
ωi,bi,ei

Ji(ωi, ei | γi) =
1

2
ωTi ωi +

1

2
γi

Nt∑
k=1

e2
i,k for i = 1, 2, . . . , Ny , (A.3)

subject to

ei,k = yk,i − ωTi ϕi(xk)− bi , for k = 1, 2, . . . , Nt . (A.4)

In Eqs. A.3 and A.4, yk,i represents the ith entry of the kth column vector of output data

yk = f(xk) from the given training set Ts, and ei = [ei,k]
Nt
k=1 ≡ [ei,1, ei,2, . . . , ei,Nt ]

T denotes

the ith column vector of mismatch between the true output value yk,i and its respective

prediction f̂i(xk) given by Eq. A.2, i.e., the kth entry of the vector ei, for i = 1, 2, . . . , Ny,

is given by

ei,k = yk,i − f̂i(xk) , for k = 1, 2, . . . , Nt . (A.5)

The second term in the right hand side of Eq. A.3 represents the least-squares feature

of the algorithm, as mentioned earlier. The positive parameter γi controls the trade off

between the flatness of the function f̂i(x) and how much deviation between yi,k and f̂i(xk) is

allowed [112]. The parameter γi has to be determined before the training procedure, which

could be considered a drawback of the method. However, as discussed in the main text

of this dissertation, numerical experiments reveal that for values of γi > 200, the training

procedure is nearly insensitive to the parameter γi. In this research, we adopt a constant

value of γi ≡ γ = 800, for i = 1, 2, . . . , Ny, in all training procedures which are performed.

The set of Ny minimization problems given by Eqs. A.3 and A.4, for i = 1, 2, . . . , Ny,

are solved using the method of Lagrange multipliers, see Nocedal and Wright [83]. The

Lagrangian is constructed from Eqs. A.3 and A.4, which leads to

Li(ωi, bi, ei;αi) =
1

2
ωTi ωi +

1

2
γi

Nt∑
k=1

e2
i,k −

Nt∑
k=1

αi,k

[
ei,k − yk,i + ωTi ϕi(xk) + bi

]
,

for i = 1, 2, . . . , Ny , (A.6)
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where αi = [αi,k]
Nt
k=1 ≡ [αi,1, αi,2, . . . , αi,Nt ]

T denotes the vector of Lagrange multipliers for

the ith minimization problem.

An optimal solution of the minimization problems defined by Eqs. A.3 and A.4 needs

to satisfy the Karush–Kuhn–Tucker (KKT) conditions [83]. Hence, at an optimal solution

we must have ∇Li = 0 [83], which, from Eq. A.6, for i = 1, 2, . . . , Ny, implies that

∇ωiLi = 0 → ωi =
Nt∑
k=1

αi,k ϕi(xk) , (A.7a)

∂Li
∂bi

= 0 →
Nt∑
k=1

αi,k = 0 , (A.7b)

∂Li
∂ei,k

= 0 → αi,k = γi ei,k , for k = 1, 2, . . . , Nt , (A.7c)

∂Li
∂αi,k

= 0 → ei,k − yk,i + ωTi ϕi(xk) + bi = 0 , for k = 1, 2, . . . , Nt . (A.7d)

Substituting Eq. A.7a into Eq. A.7d, for i = 1, 2, . . . , Ny, one gets

yk,i =
Nt∑
`=1

αi,` ϕi(x`)
Tϕi(xk) + bi + ei,k , for k = 1, 2, . . . , Nt . (A.8)

For i = 1, 2, . . . , Ny, substituting Eq. A.7c into Eq. A.8, leads to

yk,i =
Nt∑
`=1

αi,` ϕi(x`)
Tϕi(xk) + bi +

αi,k
γi

, for k = 1, 2, . . . , Nt . (A.9)

The set of Nt equations in Eq. A.9, for i = 1, 2, . . . , Ny, can be rewritten in matrix-

vector form as

bi 1Nt +

(
Ωi +

1

γi
INt

)
αi = Y i . (A.10)

In Eq. A.10, 1Nt = [1, 1, . . . , 1]TNt denotes a Nt−dimensional column vector with all compo-

nents equal to unity; INt represents the Nt×Nt identity matrix; Ωi denotes the Nt×Nt matrix

with entry in the kth row and `th column given by the inner product Ωi,k,` = ϕi(xk)
Tϕi(x`);

αi = [αi,1, αi,2, . . . , αi,Nt ]
T again represents the column vector of Lagrange multipliers for
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the ith minimization problem; and Y i = [yk,i]
Nt
k=1 ≡ [y1,i, y2,i, . . . , yNt,i]

T denotes the column

vector with kth entry equal to the ith entry of the kth vector of output data, yk, from the

training set Ts.

Combining Eqs. A.7b and A.10, for i = 1, 2, . . . , Ny, one gets the following linear

system 
0 1TNt

1Nt Ωi + 1
γi
INt



bi

αi

 =


0

Y i

 , (A.11)

which the solution provides

bi =
1TNt

(
Ωi + 1

γi
INt

)−1

Y i

1TNt

(
Ωi + 1

γi
INt

)−1

1Nt

, (A.12)

and

αi =

(
Ωi +

1

γi
INt

)−1

Y i − bi

(
Ωi +

1

γi
INt

)−1

1Nt . (A.13)

For the ith LS-SVR regression function f̂i(x) of Eq. A.2, for i = 1, 2, . . . , Ny, the

coefficient bi is given by Eq. A.12, while the coefficient ωi is implicitly determined from

Eq. A.7a using the Lagrange multiplier αi given by Eq. A.13. Thus, there is no need to

explicitly compute ωi. This is a key result because ωi could be infinite dimensional for some

choices of the mapping ϕi(x).

Note that to compute Eqs. A.12 and A.13, one needs to solve a Nt × Nt matrix

problem. To solve the Nt×Nt matrix problem of Eqs. A.12 and A.13, we use the conjugated

gradient method [83].

A.2 The Kernel Trick

Finally, substituting Eq. A.7a into Eq. A.2, for i = 1, 2, . . . , Ny, we obtain

f̂i(x) =
Nt∑
k=1

αi,k ϕi(xk)
Tϕi(x) + bi , (A.14)
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where bi is obtained from Eq. A.12 and αi,k is the kth entry of the vector αi from Eq. A.13.

To compute Eq. A.14 for a given vector x, one only needs inner products between

the mapped vectors ϕi(x) and ϕi(xk). It may appear that one needs to specify the mapping

ϕi(x) before computing such an inner products. However, one can select a kernel function

to provide the required inner products, i.e., given two vectors xr and xs, we define

Ki(xr,xs) = ϕi(xr)
Tϕi(xs) , for i = 1, 2, . . . , Ny . (A.15)

Therefore, it is not necessary to explicitly compute the mapping ϕi(x). That is the main

advantage of any support vector method. Replacing the inner products in the feature space

by some kernel function became known as the kernel trick. In practice, the kernel function

Ki(xr,xs) of Eq. A.15 is defined as a function of the vectors xr and xs only. It is believed

that, for any nonlinear function, one can always determine a kernel function that defines a

feature space in which the relationship between input and output vectors becomes linear,

see Pérez-Cruz and Bousquet [92], for example. However, a general clear procedure of how

to derive such a kernel function is yet to be discovered, see Smola and Schölkopf [112],

for example. The selection of a determined kernel function for a specific given problem is

discussed in the main text of this dissertation.

Using the kernel trick of Eq. A.15, Eq. A.14 reduces to

f̂i(x) =
Nt∑
k=1

αi,kKi(xk,x) + bi for i = 1, 2, . . . , Ny , (A.16)

which is used to compute f̂i(x) for any given vector x.
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APPENDIX B

TRUST REGION MINIMIZATION ALGORITHM

In this Appendix, we present a trust region algorithm to minimizing a particular

real-valued function, O(x), of the form

O(x) =
1

2
xTx+

1

2
y(x)Ty(x) , (B.1)

for which the gradient, G(x), and Hessian, H(x), are given respectively by

G(x) ≡ ∇xO(x) = x+G(x)Ty(x) (B.2)

and

H(x) = INx +G(x)T G(x) . (B.3)

In Eqs. B.1 through B.3, x represents a Nx−dimensional column vector of inputs, y rep-

resents a Ny−dimensional column vector of outputs, which is assumed to depend on some

nonlinear functional of x, and INx denotes the Nx×Nx identity matrix. The Ny×Nx matrix

G(x) denotes a sensitivity matrix, i.e.,

G(x) =
[
∇x

(
y(x)T

)]T
. (B.4)

Hence, the entry in the ith row and jth column of the sensitivity matrix G(x) represents

the partial derivative of the ith entry of the output vector y with respect to the jth entry

of the input vector x.

The Gauss-Newton trust region minimization algorithm presented here was developed
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by Rafiee [93] and is based on the work of Gao et al. [40]. The trust region algorithm proceeds

by minimizing a quadratic approximation of the function O(x) of Eq. B.1 in a hyper-sphere

region centered at the current estimate of the minimum of O(x), as follows

minimize
δx

q(n)
p (δx) = O(x(n)

p ) + G(x(n)
p )T δx +

1

2
δxT H(x(n)

p ) δx , (B.5)

subject to

‖δx‖ ≤ δ(n)
p , (B.6)

In Eqs. B.5 and B.6, δx represents the search direction, q
(n)
p (δx) represents the quadratic

approximation of O(x) of Eq. B.1 at the nth iteration of the trust-region minimization

problem, x
(n)
p represents the current estimate of the minimum of O(x) at the nth iteration

of the trust-region minimization problem, and δ
(n)
p represents the radius of the trust region

at the nth iteration. Also in Eq. B.5, the required values of O(x
(n)
p ), G(x

(n)
p ) and H(x

(n)
p )

are computed, respectively, by Eqs. B.1, B.2 and B.3 for x = x
(n)
p .

The hyper-sphere region defined by the constraint of Eq. B.6 represents the so-called

trust region. The trust region is the region where is believed that the quadratic approx-

imation q
(n)
p (δx) properly represents the true function O(x). Therefore, the minimum of

q
(n)
p (δx) in the hyper-sphere region represents a good estimate for the minimum of O(x) in

the same region.

B.1 Updating the Trust Region Radius

The trust region radius δ
(n)
p is updated at each iteration based on the performance

of the quadratic approximation of O(x). The quality of the quadratic approximation is

measured based on the mismatch between the true function O(x) and the quadratic approx-

imation, as follows [79]

ρ(n)
p (δx∗) =

O(x
(n)
p ) − O(x

(n)
p + δx∗)

q
(n)
p (0) − q

(n)
p (δx∗)

. (B.7)
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In Eq. B.7, ρ
(n)
p (δx∗) measures the performance of the quadratic approximation q

(n)
p (δx) in

Eq. B.5 at the nth iteration, and δx∗ represents the solution of the trust region minimization

problem given by Eqs. B.5 and B.6, i.e., δx∗ is the minimizer of q
(n)
p (δx) in the trust region,

as we discuss later in the Section B.2. Notice that q
(n)
p (0) = O(x

(n)
p ). As one can see from

Eq. B.7, for a perfect quadratic approximation one gets ρ
(n)
p (δx∗) = 1.0.

In practice, for ρ
(n)
p (δx∗) < η1, with the parameter η1 ∈ (0, 1/4] defined by the user,

one considers that the quadratic approximation q
(n)
p (δx) represents a poor approximation

of the true function O(x) [83]. For this case, we disregard the solution δx∗ and repeat

the trust region minimization iteration using the same estimate for the minimum of O(x),

i.e., x
(n+1)
p = x

(n)
p . However, we reduce the trust region radius by cutting it by half, i.e.,

δ
(n+1)
p = δ

(n)
p / 2. Conversely, for ρ

(n)
p (δx∗) > η1 one considers that the quadratic approxima-

tion q
(n)
p (δx) properly represents the true function O(x) [83]. For this latter case, we update

the current estimate of the minimum of O(x) as

x(n+1)
p = x(n)

p + δx∗ . (B.8)

Also, if ρ
(n)
p (δx∗) > η2, with the parameter η2 ∈ [1/2, 1] defined by the user, and

‖δx∗‖ > δ
(n)
p / 2, we update the trust region radius by δ

(n+1)
p = min(2δ

(n)
p , δmax). Otherwise,

we repeat the same trust region radius in the next iteration, i.e., δ
(n+1)
p = δ

(n)
p . The parameter

δmax is defined by the user and represents a limit for the maximum trust region radius. The

Algorithm B.1 details the update of the trust region radius and current estimate of the

minimum for the trust region minimization problem. In this dissertation, all trust region

minimization problems are conducted using η1 = 1/20 and η2 = 3/4. In the case that the

current trust region radius becomes small than a minimum value δmin defined by the user,

we regard the minimization problem as converged.

B.2 Solving the Trust Region Minimization Sub-Problem

The Hessian defined by Eq. B.3 is a real symmetric positive definite matrix. Conse-
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Algorithm B.1: Update the Trust Region Radius and Current Estimate of the Minimum

1. Select η1 ∈ (0, 1/4] , η2 ∈ [1/2, 1] and δmax .

2. Given the current estimate of the minimum, x
(n)
p , and the current trust region radius,

δ
(n)
p , solve the trust region minimization problem of Eqs. B.5 and B.6 to determine δx∗

(details on Section B.2).

3. Compute ρ
(n)
p (δx∗) using Eq. B.7.

4. If ( ρ
(n)
p (δx∗) < η1 )

• Set δ
(n+1)
p = δ

(n)
p / 2 .

• Set x
(n+1)
p = x

(n)
p

Else If ( ρ
(n)
p (δx∗) > η2 and ‖δx∗‖ > δ

(n)
p / 2 )

• Set δ
(n+1)
p = min(2δ

(n)
p , δmax).

• Update x
(n)
p using Eq. B.8.

Else

• Set δ
(n+1)
p = δ

(n)
p .

• Update x
(n)
p using Eq. B.8.

quently, the quadratic approximation q
(n)
p (δx) of Eq. B.5 has an unique and global minimum

at [83]

δxglobal = −H(x(n)
p )−1 G(x(n)

p ) . (B.9)

In the case that ‖δxglobal‖ ≤ δ
(n)
p , the global minimizer δxglobal represents the solution of

the trust region sub-problem given by Eqs. B.5 and B.6, i.e., δx∗ = δxglobal. Otherwise,

‖δxglobal‖ > δ
(n)
p and the solution of the trust region sub-problem has to be at the boundary

of the corresponding trust region, i.e., ‖δx∗‖ = δ
(n)
p . Since the Hessian is symmetric positive

definite, we apply the method of Lagrange multipliers [83] to find the minimum of q
(n)
p (δx)

in the trust region. From Eqs. B.5 and B.6, we define the Lagrangian as [113]

L(δx;λ) = O(x(n)
p ) + G(x(n)

p )T δx+
1

2
δxT H(x(n)

p ) δx+
1

2
λ
[
δxT δx− (δ(n)

p )2
]
. (B.10)
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In Eq.B.10, λ ≥ 0 represents the Lagrange multiplier. For the case λ = 0, the minimizer

of L(δx;λ) in Eq.B.10 satisfy the constraint in Eq. B.6 and, similarly as before, is given by

Eq.B.9. At an optimal solution we must have ∇L = 0 [83], which, from Eq. B.10, implies

that [113]

∇δx L(δx;λ) = 0 →
(
H(x(n)

p ) + λINx

)
δx = −G(x(n)

p ) , (B.11a)

∂L(δx;λ)

∂λ
= 0 → δxT δx = (δ(n)

p )2 . (B.11b)

The Eqs. B.11a and B.11b are solved simultaneously to determine the minimizer of L(δx;λ)

in Eq.B.10, which we shall denoted here as δx∗ and λ∗. To solve Eqs. B.11a and B.11b,

we resort to the singular value decomposition (SVD) [46] of the symmetric positive definite

Hessian H(x
(n)
p ) [83]

H(x(n)
p ) = U W UT . (B.12)

In Eq. B.12, the Nx × Nx matrix U denotes the orthogonal matrix of singular vectors, i.e.,

the columns of U represent the singular vectors uj, for j = 1, 2, . . . , Nx, of the Hessian

H(x
(n)
p ), and the jth entry in the diagonal of the Nx ×Nx diagonal matrix W contains the

jth singular value, wj, of the Hessian. Using Eq. B.12, Eq. B.11a, reduces to [83]

δx = −
Nx∑
j=1

uTj G(x
(n)
p )

wj + λ
uj . (B.13)

Defining fλ(λ) ≡ δxT δx, from Eq. B.13 one gets

fλ(λ) ≡ δxT δx =
Nx∑
j=1

[
uTj G(x

(n)
p )

wj + λ

]2

. (B.14)

In Eq. B.14 we use the fact that uTj u` = 0, for any j 6= `, and that uTj uj = 1.

Using Eq. B.14 into Eq. B.11b results in

fλ(λ)− (δ(n)
p )2 = 0 . (B.15)
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We can find the solution λ∗ of Eq. B.15 by defining

θ(λ) ≡ fλ(λ)− (δ(n)
p )2 , (B.16)

and applying the Newton-Raphson method to solve θ(λ) = 0, i.e., to find the zero of θ(λ) of

Eq. B.16 [93]. Using Eq. B.14, the derivative of θ(λ) with respect to λ is given by

θ′(λ) ≡ dθ(λ)

dλ
= −2

Nx∑
j=1

[
uTj G(x

(n)
p )
]2

(wj + λ)3
. (B.17)

For this case, λ > 0 and wj > 0, for j = 1, 2, . . . , Nx, consequently θ′(λ) in Eq. B.17

is always negative. As discussed earlier, we are considering the case that for λ = 0 the

constraint in Eq. B.6 is violated. Therefore, fλ(λ = 0) > (δ
(n)
p )2 (see Eq. B.14), which

implies that θ(λ = 0) > 0. Consequently, since θ′(λ) < 0, the Eq. B.15 has an unique

solution in the interval (0,∞), which is given by the unique zero of θ(λ) of Eq. B.16 for

λ > 0. Moré and Sorensen [80] showed that redefining Eq. B.16 as

θ(λ) ≡ 1

δ
(n)
p

− 1√
fλ(λ)

, (B.18)

one achieves faster convergence when applying the Newton-Raphson method. It is straight-

forward to verify that for θ(λ) in Eq. B.18, it holds that θ(λ = 0) > 0 and θ′(λ) < 0, thus

θ(λ) = 0 has an unique solution for λ > 0. Gould et al. [48] generalized the ideas of Moré

and Sorensen [80] and proposed to redefining Eq. B.18 as

θ(λ) ≡ [fλ(λ)]β/2 − [δ(n)
p ]β . (B.19)

The main ideal of Gould et al. [48] is to choose an exponent β such that θ(λ) in Eq. B.19

represents an approximate linear function of λ. Consequently, one achieves faster convergence
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of the Newton-Raphson method. Gao et al. [40] modified Eq. B.19 and suggested

θ(λ) ≡

[√
fλ(λ)

δ
(n)
p

]β
− 1 . (B.20)

Furthermore, Gao et al. [40] proposed a methodology to estimate an optimal value for the

exponent β in Eq. B.20 by imposing the second derivative of θ(λ) in Eq. B.20 equal to

zero, which is a necessary condition for θ(λ) behave as a linear function of λ. Nevertheless,

following Rafiee [93], we adopt β = −1.5, which provides an efficient Newton-Raphson

implementation for the problems considered in this dissertation. The required derivative of

θ(λ) in Eq. B.20 is given by

θ′(λ) ≡ dθ(λ)

dλ
= − 1

[δ
(n)
p ]β

β
Nx∑
j=1

[
uTj G(x

(n)
p )
]2

(wj + λ)3

 Nx∑
j=1

[
uTj G(x

(n)
p )

wj + λ

]2
β/2−1

. (B.21)

Applying the Newton-Raphson method to solve θ(λ) = 0, for θ(λ) given by Eq. B.20 with

β = −1.5, one finds the optimal solution λ∗. Using λ∗ into Eq. B.13, one determines the

optimal solution δx∗ for the trust region sub-problem. The current estimate, x
(n)
p , of the

minimum of O(x) and the current trust region radius, δ
(n)
p , at the nth iteration are then

updated using Algorithm B.1.

The trust region algorithm is regarded as converged when no improvement of the

estimated minimum of O(x) is observed, i.e., when

ρ
(n)
stop ≡

abs
[
O(x

(n+1)
p )−O(x

(n)
p )
]

abs
[
O(x

(n+1)
p )

] ≤ εmin . (B.22)

In Eq. B.22, “abs[·]” represents the absolute value function, ρ
(n)
stop represents the stop criterion,

and the precision parameter εmin is defined by the user. Details of the trust region algorithm

are presented at the Algorithm B.2.

B.3 Trust Region Algorithm for Large Scale Reservoir Problems
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Algorithm B.2: Trust Region Minimization Sub-Problem

1. Select x
(0)
p , δ

(0)
p , δmin and εmin . Set n = 0.

2. While ( ρ
(n)
stop > εmin and δ

(n)
p > δmin )

• Compute O(x
(n)
p ) , G(x

(n)
p ) and H(x

(n)
p ) using Eqs. B.1, B.2 and B.3, respectively.

• Compute δxglobal using Eq. B.9.

• If ( ‖δxglobal‖ ≤ δ
(n)
p )

◦ Set δx∗ = δxglobal .

◦ Update x
(n)
p and δ

(n)
p using Algorithm B.1.

◦ Compute ρ
(n)
stop using Eq. B.22.

◦ Set n = n+ 1 .

Else

◦ Solve θ(λ) = 0 (for θ(λ) in Eq. B.20) to find λ∗.

◦ Compute δx∗ using Eq. B.13.

◦ Update x
(n)
p and δ

(n)
p using Algorithm B.1.

◦ Compute ρ
(n)
stop using Eq. B.22.

◦ Set n = n+ 1 .

End If

To assembly Eq. B.20 in order to solve θ(λ) = 0, one must compute the SVD of a

Nx × Nx matrix. For practical petroleum reservoir applications, the dimension Nx can be

considerable large, which impacts the computational efficiency of the trust region algorithm

presented above. However, the dimension Ny (e.g. see Eq. B.3) is much smaller than Nx for

most practical applications. Motivated by the fact that Ny � Nx, Gao et al. [40] used the

follow matrix inversion identity [89]

[
C−1
X +G(x)T C−1

Y G(x)
]−1

= CX − CX G(x)T
[
CY +G(x)CX G(x)T

]−1

G(x)CX , (B.23)

to take advantage of the structure of the Hessian H(x) in Eq. B.3 and introduced a trust

region algorithm for large scale problems. In Eq. B.23, CX represents a given Nx × Nx

symmetric positive definite real matrix, and CY represents a given Ny × Ny symmetric

positive definite real matrix. The proof of the matrix inversion identity of Eq. B.23 can be
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found in Oliver et al. [89].

Gao et al. [40] trust region algorithm is computationally efficient for the cases in

which Ny � Nx. Their development starts from Eq. B.11a and uses Eq.s B.3 and B.23 to

derive

δx = −
(
H(x(n)

p ) + λINx

)−1

G(x(n)
p )

= −
(
INx +G(x(n)

p )T G(x(n)
p ) + λINx

)−1

G(x(n)
p )

= −
(

(1 + λ)INx +G(x(n)
p )T G(x(n)

p )
)−1

G(x(n)
p )

= −

[
1

1 + λ
INx −

1

(1 + λ)2
G(x(n)

p )T
[
INy +

1

1 + λ
G(x(n)

p )G(x(n)
p )T

]−1

G(x(n)
p )

]
G(x(n)

p )

= − 1

1 + λ
G(x(n)

p ) +
1

(1 + λ)2
G(x(n)

p )T
[
INy +

1

1 + λ
G(x(n)

p )G(x(n)
p )T

]−1

G(x(n)
p )G(x(n)

p ) .

(B.24)

In Eq. B.24, INy denotes the Ny ×Ny identity matrix.

Following Gao et al. [40], we rewrite Eq. B.24 as

δx = − 1

1 + λ
G(x(n)

p ) +
1

(1 + λ)2
G(x(n)

p )Tz(λ) . (B.25)

In Eq. B.25, s(x
(n)
p ) and z(λ) are defined, respectively, as

s(x(n)
p ) = G(x(n)

p )G(x(n)
p ) , (B.26)

and

z(λ) =

[
INy +

1

1 + λ
G(x(n)

p )G(x(n)
p )T

]−1

s(x(n)
p ) . (B.27)
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From Eq. B.27, one gets

s(x(n)
p ) =

[
INy +

1

1 + λ
G(x(n)

p )G(x(n)
p )T

]
z(λ)⇒

s(x(n)
p )− z(λ) =

1

1 + λ
G(x(n)

p )G(x(n)
p )Tz(λ) . (B.28)

Similarly as before, we define fλ(λ) ≡ δxT δx, which, using Eqs. B.25 and B.28, is

given by [93]

fλ(λ) ≡ δxT δx =
1

(1 + λ)2
G(x(n)

p )TG(x(n)
p )− 1

(1 + λ)3

[
s(x(n)

p ) + z(λ)
]T
z(λ) . (B.29)

As before, to find the optimal solution, λ∗, we solving θ(λ) = 0, with θ(λ) defined

by Eq. B.20 and fλ(λ) given by Eq. B.29. Note that to find z(λ) we solve Eq. B.27, which

requires only the inverse of a Ny×Ny matrix. In order to apply the Newton-Raphson method,

the required derivative of fλ(λ) with respect to λ is given by [93]

f ′λ(λ) ≡ dfλ(λ)

dλ
=− 2

(1 + λ)3
G(x(n)

p )TG(x(n)
p )

+
1

(1 + λ)4

[
s(x(n)

p )T
[
w(λ) + 2z(λ)

]
+ z(λ)T

[
2w(λ) + z(λ)

]]
, (B.30)

where

w(λ) =

[
INy +

1

1 + λ
G(x(n)

p )G(x(n)
p )T

]−1

z(λ) . (B.31)

Once λ∗ is calculated, the optimal δx∗ is computed using Eq. B.25 for λ = λ∗.

In this dissertation, for large scale problems, i.e., when Ny < Nx, we replace Eqs. B.13

and B.14, respectively, by Eqs. B.25 and B.29 and apply the trust region algorithm as

described in Sections B.1 and B.2.
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