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ABSTRACT

Alexandre Anozé Emerick (Doctor of Philosophy in Petroleum Engineering)

History Matching and Uncertainty Characterization Using Ensemble-based Methods

Directed by Albert C. Reynolds

339 pp., Chapter 10: Conclusions

(554 words)

In the last decade, ensemble-based methods have been widely investigated and

applied for data assimilation of flow problems associated with atmospheric physics

and petroleum reservoir history matching. Among these methods, the ensemble

Kalman filter (EnKF) is the most popular one for history-matching applications. The

main advantages of EnKF are computational efficiency and easy implementation.

Moreover, because EnKF generates multiple history-matched models, EnKF can

provide a measure of the uncertainty in reservoir performance predictions. However,

because of the inherent assumptions of linearity and Gaussianity and the use of

limited ensemble sizes, EnKF does not always provide an acceptable history-match

and does not provide an accurate characterization of uncertainty. In this work, we

investigate the use of ensemble-based methods, with emphasis on the EnKF, and

propose modifications that allow us to obtain a better history match and a more

accurate characterization of the uncertainty in reservoir description and reservoir

performance predictions.

When EnKF is applied to reservoir history matching, it is necessary to keep

the size of the ensemble small in order to obtain computational efficiency. However,

a small ensemble size introduces sampling errors and limits the degrees of freedom

to assimilate data, which deteriorate the results of the data assimilation. In this
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work, we introduce a distance-based covariance localization procedure to reduce these

problems. The proposed method is applied to several synthetic cases and one real

field case, and the results show significant improvements compared to the standard

EnKF and other choices of covariance localization. In addition, we investigate other

methods proposed in the literature to ameliorate the negative effects of a small

ensemble. We conclude that distance-based covariance localization is, to date, the

most effective method.

Another problem that often occurs when EnKF is applied to reservoir history-

matching problems is that the values of the objective function obtained by the fi-

nal ensemble are relatively high, especially when compared to gradient-based his-

tory matching. High values of the objective function are associated with poor data

matches. More importantly, a model that results in high value of the objective func-

tion gives a small value of the posterior probability density function, which suggests

that this model is a sample from a low probability region. In this work, we intro-

duce a procedure that combines EnKF and Markov chain Monte Carlo (MCMC)

for the purpose of improving the final data matches and obtaining a more accurate

characterization of uncertainty. We also introduce a procedure based on multiple

assimilations of the same data with an inflated covariance of the measurement er-

rors. This procedure forms the basis of a new iterative form of ensemble smoother

(ES-MDA). We applied ES-MDA to history match production and/or seismic data in

synthetic reservoir problems and in a real field case. The results show that ES-MDA

outperforms EnKF in terms of the quality of data matches with a computational

cost comparable with EnKF.

In this work, we also investigate the use of an adjoint-based implementation

of the randomized maximum likelihood (RML) method and propose a new param-

eterization based on an ensemble of prior realizations to reduce the computational

cost of RML.
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Finally, we present a comparative study among eight ensemble-based methods

in terms of the quality of the data matches, characterization of uncertainty and

computational cost. Among the ensemble-based methods, ES-MDA obtained the

best performance and resulted in a quantification of uncertainty comparable to an

adjoint-based RML.
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CHAPTER 1

INTRODUCTION

Reservoir simulation is a valuable tool for the decision-making process in-

volved in the development and management of petroleum reservoir exploitation

projects. A reservoir simulation model combines rock and fluid properties with a

mathematical formulation to describe the fluid flow in the porous media. This model

is then used to predict the performance of the reservoir under various operating con-

ditions. However, in order to improve the predictive capability of a reservoir model,

it is necessary to incorporate in this model all relevant information available about

the field. The process of incorporating dynamic data in reservoir models is known

in the petroleum literature as history matching.

History matching is an ill-posed problem because the amount of independent

data available is much less than the number of variables. Hence, there exists an

infinite number of combinations of the unknown reservoir properties that results

in reservoir models which are able to match the observations. Besides that, the

information available about the reservoir is always inaccurate and sometimes incon-

sistent. As a result, reservoir models are constructed with uncertain parameters;

consequently, their predictions are also uncertain.

Over the last decade, increased importance has been attributed to the quan-

tification of uncertainty in reservoir performance predictions and reservoir description

in order to manage risk. Because of this interest in the characterization of uncer-

tainty, it is now more commonplace to generate multiple history-matched models.

However, generating multiple history-matched models in of itself does not necessarily

lead to a correct assessment of uncertainty. In reality, uncertainty has no scientific
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meaning outside the realm of statistics and probability. Bayesian statistics provides a

straightforward theory for dealing with uncertainty. In the application of interest in

this dissertation, Bayes’ theorem allows one to write down the posterior probability

density function (pdf) for reservoir model parameters conditional to field measure-

ments such as production and seismic data. Then, the problem of characterizing the

uncertainty in reservoir model parameters is reduced to the problem of sampling this

posterior pdf. If a set of realizations of the vector of model parameters represents a

set of samples from the posterior pdf, then a correct assessment of the uncertainty in

specific outcomes of reservoir performance predictions can be generated by making a

prediction with each model and then constructing statistics for the set of outcomes.

For example, one can estimate the pdf for a well’s predicted oil rate at each time

from a histogram of the set of predictions.

Markov chain Monte Carlo (MCMC) provides a theoretically attractive method

for sampling the posterior pdf for reservoir model parameters. It is well known that

a properly designed MCMC method will sample this pdf correctly in the limit as the

number of states in the chain goes to infinity [73, 169]. However, for high-dimensional

problems, MCMC typically requires a large number of iterations to provide a reason-

able sampling of the target pdf. When using MCMC to estimate the posterior pdf

of reservoir model parameters conditional to observed production data, calculation

of the probability of accepting the transition from the current state to the proposed

state requires a run of the reservoir simulator to evaluate the likelihood part of the

posterior pdf. This requirement makes the direct application of MCMC to realistic

reservoir problems prohibitively expensive in terms of the computational cost.

The randomized maximum likelihood (RML) [96, 134, 142] is a method de-

signed for sampling a posterior pdf of a vector of model parameters conditional to

a set of measurements. Although RML can be proved to sample correctly only if

the predicted data are linearly related to the vector of model parameters [142], RML
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generates samples from different modes of the distribution so that it can approximate

a non-Gaussian posterior pdf. The application of RML to generate Ne realizations

requires the minimization of Ne objective functions, which, in general, can only be

done efficiently with a gradient-based optimization algorithm, e.g., a quasi-Newton

method [192, 59]. However, the efficient calculation of the gradients needed in a quasi-

Newton method requires the implementation of the adjoint method [21, 19, 188, 105],

and, unfortunately, adjoint code is not commonly available in commercial reservoir

simulators.

Recently, the ensemble Kalman filter (EnKF) [43, 18, 80] has emerged as an

attractive option for reservoir history-matching problems because it is easy to im-

plement and computationally efficient. Moreover, because EnKF generates multiple

history-matched models, EnKF can provide a measure of the uncertainty in reser-

voir performance predictions. Perhaps more importantly, when applied to field cases,

EnKF appears to perform reasonably well and has typically given better results than

a model based on a manual history matching [158, 14, 48, 74, 37]. In addition, EnKF

does not require adjoint implementation for computing gradients, which makes the

method easy to adapt to different types of model parameters and commercial reser-

voir simulators. Another attractive feature of the EnKF is the sequential data assim-

ilation, which makes the method well suited for closed-loop reservoir management

problems [87, 88, 180, 23, 20].

Even though there has been an intense interest and investigation of EnKF

for reservoir history-matching problems in the last decade, because of the inherent

assumptions of linearity and Gaussianity and the use of limited ensemble sizes, some

problems remain with the method, including the following:

• Excessive and incorrect reduction in the ensemble variance after data assimi-

lation.

• Limited number of degrees of freedom to history-match data.
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• Nonphysical updates in model parameters and state variables.

• Inconsistency between updated model parameters and primary reservoir simu-

lator variables.

• Relatively poor data matches when compared to gradient-based history match-

ing methods.

• Difficulty to preserve more complex geological features, e.g., channels and fa-

cies.

• Inability to correctly characterize uncertainty in reservoir model parameters

and production predictions.

1.1 Literature Review

1.1.1 Ensemble Kalman filter

Since its introduction by Evensen [43], the number of publications about

EnKF became quite extensive. EnKF has been applied in diverse research fields,

including oceanography [13, 94], atmospheric modeling [187], numerical weather pre-

diction [82, 163], hydrology [140, 25, 107, 161] and petroleum reservoir history match-

ing [1, 132]. Evensen [46] presents a chronological list of applications of EnKF. The

first application for petroleum problems was presented by Lorentzen et al. [111],

where EnKF was applied to a two-phase flow in a wellbore to improve predictions of

pressure behavior. The first reservoir application of EnKF was presented by Nævdal

et al. [125], where EnKF was used to update permeability fields for near-well reser-

voir models. After these pioneering applications, the interest and frequency of use

of EnKF as a history-matching technique increased significantly. Some recent field

applications of EnKF for history matching can be found in [158, 14, 48, 74, 37]. Two

recent review papers [1, 132] summarize the main developments and applications of

the EnKF in reservoir problems from 2001 to early 2010.
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The sequential data assimilation characteristic of EnKF requires the mod-

ification of the traditional history-matching problem from a parameter-estimation

problem to a parameter-state-estimation problem. Specifically, when applying EnKF

for history matching, it is necessary to update a combined parameter-state vector,

which includes the reservoir model parameters (uncertain reservoir rock properties)

and the primary variables of the reservoir simulator (typically gridblock pressure,

fluid saturations and bubble-point pressure in a standard black-oil reservoir sim-

ulator). The reason for updating primary variables, which represent the state of

the dynamical system, is to avoid running the reservoir simulations from time zero

(initial reservoir condition) after every data assimilation time-step. The underlying

assumption is that the updated primary variables are statistically consistent with the

ones that would be obtained by running the reservoir simulator with the updated set

of model parameters from time zero. However, this consistency can be proved only

for problems with Gaussian statistics, linear relation between model and predicted

data and negligible model error [167]. However, the reservoir simulator equations

are highly nonlinear. Hence, the assumption of consistency is invalid, which may

deteriorate the performance of the data assimilation [167, 182]. In practice, after

data assimilation at time tn, the reservoir simulations may be restarted at time tn

with wrong pressure and saturation values, thereby violating the historical material

balance of the field. In the extreme case, the analysis step in the EnKF may result in

non-physical values for these variables, e.g., negative pressures or saturations larger

than one. Wen and Chen [184] introduced the “confirming step,” which consists of

rerunning the simulator starting from the previous data assimilation time-step with

the updated set of model parameters obtained at the current data assimilation time-

step to obtain physically plausible state variables. However, Zafari and Reynolds

[191] showed that this procedure is inconsistent for the linear case and should not

be used. Some iterative procedures have been proposed to overcome inconsistency
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because of the nonlinearity [143, 70, 103]. Most of these methods can be viewed as

ensemble approximations of the RML method [1]. Reynolds et al. [143] and Li and

Reynolds [103] presented two iterative forms of EnKF based on adjoint-gradients.

The ensembles are used to approximate the Hessian in a Gauss-Newton type update

equation. Because each ensemble member is updated based on a different gradient,

these two methods are expected to be able to sample multimodal distributions, as the

standard RML does. The main difficulty encountered in these two iterative methods

is the dependency on the adjoint implementation. Gu and Oliver [70] proposed an

iterative method called ensemble randomized maximum likelihood (EnRML), which

uses the ensemble to estimate an average sensitivity matrix. With this procedure,

Gu and Oliver [70] avoided the need of adjoint-based gradients. However, because all

models are updated using the same average sensitivity, EnRML is not expected to

sample multiple modes of a posterior distribution. In fact, EnKF is also not expected

to sample multimodal distributions correctly because all models are updated based

on the same Kalman gain. Moreover, because EnRML uses a rough approximation

of the sensitivity matrix, the search direction is not guaranteed to be “downhill.”

If EnRML encounters an “uphill” search direction, the iterative procedure fails to

improve the data matches. The computational cost of these iterative procedures is

typically much higher than that of the standard EnKF. Perhaps the simplest proce-

dure to overcome problems with inconsistency between updated model parameters

and primary variables is to rerun the reservoir simulator with the latest ensemble

of model parameters from time zero after each data assimilation. This procedure

ensures consistency but requires a considerable increase in the computational time.

Wang et al. [182] refers to this procedure as half-iteration EnKF (HI-EnKF). To im-

prove computational efficiency, Wang et al. [182] proposed rerunning the ensemble

from time zero after a data assimilation time-step only if the average relative change

in the ensemble mean model is larger than a threshold value. Using the PUNQ-S3
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case [55], Wang et al. [182] concluded that HI-EnKF and EnRML resulted in similar

results. However, HI-EnKF requires much less computational time than EnRML.

One important advantage of EnKF is the fact that it does not require adjoint

implementation for computing gradients. This makes EnKF easy to adapt to different

types of reservoir model parameters, different types of data and different commercial

reservoir simulators. Oliver and Chen [132] pointed out that there is a tendency to

increase the types of model parameters estimated with EnKF. Gridblock porosities

and permeabilities are the typical model parameters considered. However, other

types of parameters including net-to-gross ratio [137], fluid contacts [167, 156, 182],

fault transmissibilities [48, 156], end points of relative-permeability curves [23, 182],

facies [3, 195], prior means [102, 27] and even structural parameters [155], where

the simulation grid is deformed to update the top and base of the model, have been

considered as model parameters using EnKF.

Although EnKF has been successfully applied to history match field cases,

EnKF often fails to provide a reasonable characterization of uncertainty. In fact,

to theoretically establish that the ensemble generated by assimilation of data with

EnKF represents a correct sampling of the posterior pdf for the state vector re-

quires one to assume a Gaussian prior model for the state vector, a linear relation

between predicted data and the state vector, Gaussian measurement errors, which

are uncorrelated in time, and that the dynamical system (forward model) represents

a first-order Markov process. Even when the preceding assumptions hold, it is also

necessary to let the size of the ensemble approach infinity to show that EnKF sam-

ples correctly because covariances are estimated from the ensemble of state vectors.

Mandel et al. [119] present a rigorous proof that, under the above conditions, EnKF

converges to the standard Kalman filter (KF) when the ensemble size goes to in-

finity. Mandel et al. [119] also point out that EnKF introduces dependence in the

ensemble because the covariances are estimated based on all ensemble members. As
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a result, the members of the final ensemble do not represent independent samples

of the posterior pdf. In fact, earlier in 1998, Houtekamer and Mitchell [80] pointed

out that because EnKF uses the same Kalman gain to update all ensemble mem-

bers, EnKF introduces an inbreeding in the analysis. Houtekamer and Mitchell [80]

proposed a variant of EnKF using two ensembles, where the statistics computed in

one ensemble is used to update the other. In a comment on this paper, van Leeuwen

[172] gave a theoretical justification for the inbreeding effect. However, van Leeuwen

[172] pointed out that the main concern in the EnKF is related to the use of small

ensemble sizes. Small ensembles are necessary for computational efficiency, but they

introduce sampling errors and limit the degrees of freedom to assimilate data [1]. As

a result, the ensemble variance obtained after data assimilation with EnKF tends to

be greatly underestimated [172, 57, 6]. The underestimation of posterior variances is

an important limitation of EnKF. Firstly, the low variance in the ensemble can make

it difficult to assimilate new independent data. Secondly, but equally or more im-

portant, underestimation of posterior variances effectively indicates underestimation

of uncertainty in the reservoir model parameters after data assimilation.

Besides the possible underestimation of uncertainty in the reservoir model pa-

rameters, EnKF also seems to fail to provide reasonable uncertainty quantification

in the reservoir performance predictions. Using the PUNQ-S3 case, Lorentzen et al.

[113] found that running EnKF with different initial ensembles resulted in cumula-

tive distributions of forecasted field oil production which are not mutually consistent,

i.e., the estimated distributions for each ensemble are too different to represent ap-

proximations of the same cumulative density function (cdf). Thulin et al. [168] also

concluded that with only a single EnKF run, there is no control over the Monte Carlo

error in the estimate of the conditional pdf. Thulin et al. [168] proposed repeating

the data assimilation with EnKF multiple times using different prior ensembles and

using the average cdf computed from all EnKF runs as the final distribution of pre-
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dictions. Comparing EnKF with RML, Tavakoli and Reynolds [166] concluded that

EnKF results in unreasonably high values of the objective function after data assim-

ilation. A high value of the objective function is typically associated to poor data

matches. However, and perhaps more importantly, high values of the objective func-

tion mean that the realizations of vectors of model parameters are of extremely low

“probability,” i.e., give a low value of the posterior pdf compared to those obtained

with gradient-based optimization algorithms.

1.1.2 Sampling errors and rank deficiency in the EnKF

The relatively small ensemble size used in practice to represent covariances

in the EnKF introduces sampling errors that produce spurious long-distance corre-

lations between elements of the state vector and predicted data, whereas in reality,

variables and data at gridblocks far apart should be uncorrelated. Spurious cor-

relations can result in a non-negligible change in a component of the EnKF state

vector due to assimilation of data at a location far away from the spatial location

of this component, whereas if covariances were accurately represented, no change in

the component would occur. When this incorrect change occurs during the EnKF

analysis step, the variance of the state component is also incorrectly reduced. This

loss of variance can make it difficult to modify properly the state component by

assimilating later time data [80, 81, 46, 1].

Representing covariances with finite samples also limits the degrees of freedom

available to update the state vector. In particular, the subvector corresponding

to model parameters in any realization of the EnKF analyzed state vector at any

data assimilation time-step is a linear combination of the corresponding initial Ne

vectors of model parameters [1]. Thus, there are at most Ne coefficients that can be

adjusted to make any particular realization consistent with all observed data. More

generally, any updated vector of model parameters lies in the subspace spanned by

the members of the prior ensemble. In addition, Lorenc [110] showed that if we
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assimilate a perfect observation, i.e., noise free with the variances of measurement

errors set to zero in the update equations, we lose at least one degree of freedom.

Although we never assimilate perfect data, it is reasonable to expect that, after

several data assimilation time-steps, we will experience a reduction in the available

degrees of freedom left to assimilate subsequent data. This problem is critical in

situations in which it is necessary to assimilate a large number of independent data,

e.g., reservoirs with several wells [137] or time-lapse seismic data [158]. Although

increasing the ensemble size reduces problems caused by sampling errors and limited

degrees of freedom, computational efficiency requires the use of a small ensemble.

A standard procedure for reducing the spurious correlations due to sampling

errors is to replace the prior (forecast) covariance at each data assimilation time-

step by the Schur (element-wise) product of a correlation matrix, having compact

support, and the forecast covariance matrix. This procedure is referred to as covari-

ance localization. The first application of localization was presented in Houtekamer

and Mitchell [80], where a distance cutoff was applied to the Kalman gain such that

only model parameters within a critical distance of the observation were updated.

According to the results in [80], the optimal radius of the cutoff increased as the

ensemble size increased. The use of the Schur product for covariance localization

was introduced by Houtekamer and Mitchell [81]. In this work, the authors pointed

out that localization using the Schur product resulted in relatively smoother mod-

els compared to those obtained using the distance cutoff or using no localization at

all. Another standard procedure to attenuate problems related to sampling errors

and limited degrees of freedom is called local analysis [46]. In the local analysis

procedure, we update a component of the state vector associated with a particular

gridblock location using only the data in some local neighborhood of this gridblock.

However, because components are updated independently, local analysis may intro-

duce some discontinuities in the updated states. Nevertheless, Sakov and Bertino

10



[150] showed that if we also apply a correlation function for tapering the updates in

the local analysis procedure, the results obtained are similar to those obtained from

covariance localization. Both procedures, local analysis and covariance localization,

require choosing a “localization region,” and the performance of these methods is

highly dependent on this choice.

Arroyo-Negrete et al. [10] proposed a localization procedure for petroleum

reservoir applications based on streamlines. In this paper, the authors used stream-

lines to associate gridblocks with regions of influence of well data for each model of

the ensemble. Then, a common region of influence that encompasses all individual

regions of influence is defined and then used for covariance localization. In this pro-

cedure, an entry of the correlation matrix is defined as one if the gridblock is within

the region of influence of the well and, otherwise, the entry is set equal to zero. In a

synthetic problem, this procedure reduced the effect of spurious correlations on the

updated permeability field. Devegowda et al. [31] modified the procedure proposed

by Arroyo-Negrete et al. [10] by using the values of normalized streamline sensitivi-

ties so that the values of the correlation matrix for localization vary between zero and

one. Streamline-based localization is intuitive and attractive because it incorporates

some of the physics of the fluid transport into the localization procedure. However,

if the localization is based only on those regions of influence, there is a possibility

of keeping the model changes too localized around wells, especially when the prior

model covariance has a long correlation range [1].

There exists some attempts to define localization schemes for general covari-

ance structures without making the assumption that covariance depends on the dis-

tance between variables. One potential advantage of these non-distance dependent

localization schemes is that, unlike distance-based localization methods, they can be

applied to “localize” non-spatial variables, e.g., aquifer strength and end points of

relative permeability curves. Furrer and Bengtsson [57] showed that it is possible to
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minimize term-by-term the norm of the difference between the true forecast covari-

ance matrix and the localized estimate ignoring the positive-definiteness constraint.

Based on this procedure, Furrer and Bengtsson [57] obtained a simple expression that

can be used as a non-distance localization procedure. Anderson [6] also presented

a non-distance based localization procedure, which is called hierarchical ensemble

filter. In the hierarchical ensemble filter, a small number of different ensembles is

used to compute confidence factors, which are used to correct the regression coeffi-

cients (entries of the Kalman gain matrices). Zhang and Oliver [194] modified the

method proposed by Anderson [6], such that instead of using multiple ensembles, we

resample a single ensemble with replacement to generate bootstrapped ensembles.

Another procedure that has appeared in the literature to compensate for

the underestimation of posterior variances in the EnKF is covariance inflation [7].

Covariance inflation is often used in oceanography and numerical weather prediction

applications [7, 71, 138, 181, 5, 104], but has rarely been applied in reservoir history-

matching problems. Covariance inflation uses an inflation factor to increase the

covariance in the forecast ensemble without changing the mean. The inflation factor

is a tuning parameter, and the “optimal” inflation factor is problem dependent.

Evensen [47] proposed an adaptive covariance inflation procedure which computes the

inflation factor based on the size of the ensemble and the measurements configuration.

1.1.3 Ensemble square root filters

Ensemble square root filter (EnSRF) is a generic terminology for a set of

ensemble-based implementations of the Kalman filter which do not require to per-

turb the observations during the data assimilation [151]. There is an extensive litera-

ture about square root filters in the oceanography and numerical weather prediction

research areas; see, e.g., [170, 151] and reference therein. Similar to covariance infla-

tion, these methods have rarely been used in reservoir history-matching applications.

The main motivation for these methods is to avoid additional sampling errors caused

12



by the perturbed observation scheme used in the EnKF [186, 170].

1.1.4 Ensemble smoother

The ensemble smoother (ES) was proposed by van Leeuwen and Evensen

[174]. Unlike EnKF, ES does not assimilate data sequentially in time. Instead, ES

computes a global update by simultaneously assimilating all data available. Other

than that, the ES formulation is similar to EnKF. van Leeuwen and Evensen [174]

found that EnKF performed better than ES when applied to an ocean circulation

model. Evensen and van Leeuwen [49] compared ES and EnKF with Lorenz equa-

tions and concluded that EnKF outperforms ES because the recursive updates in the

EnKF keep the ensemble of states on track and closer to the true solution. Recently,

Skjervheim et al. [159] also compared ES and EnKF and concluded that both meth-

ods gave similar results for the reservoir history-matching problems considered in that

paper. The main advantage of ES is that it avoids restarts of the reservoir simulator,

which are necessary with the EnKF sequential data assimilation procedure. This

makes ES much faster and easier to implement than EnKF when applied to reservoir

history-matching problems. The elimination of simulation restarts also makes ES an

attractive option for data assimilation workflows which integrate different parts of

the reservoir modeling process, including seismic, structural and geological modeling

with flow simulation; see, e.g., Zachariassen et al. [190]. These workflows typically

require one to integrate different geomodeling softwares and may include upscaling

of the rock properties, which makes the simulation restarts required by EnKF very

inconvenient if not impossible.

Unlike oceanic and atmospheric models, which present chaotic and unstable

dynamics [46, Chap. 6], reservoir simulation models are typically stable functions

of the rock property fields. If we also neglect model uncertainty, which is a com-

mon assumption in reservoir history-matching problems, we only need to consider

the parameter-estimation problem when applying ES. In this case, ES removes the
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parameter-state consistency issue observed in the sequential data assimilation with

EnKF. However, Reynolds et al. [143] showed that EnKF is similar to applying, at

each data assimilation time-step, one Gauss-Newton iteration with a full step with

the sensitivity matrix replaced by an average sensitivity matrix estimated from the

ensemble. Sequential data assimilation seems to be one of the reasons why, in most

cases, EnKF performs better than ES. Specifically with EnKF, at each data as-

similation time-step, one Gauss-Newton correction is done to each realization in the

ensemble of states, but because there are production data for several consecutive data

assimilation time-steps, which typically have overlapping information content, EnKF

accumulates several Gauss-Newton corrections, keeping the ensemble conditioned to

the production history. With ES, on the other hand, all data are assimilated simulta-

neously, which means that a single Gauss-Newton correction is applied to condition

the ensemble to all data available. Hence, ES may not be able to provide reasonable

data matches when applied to reservoir history-matching problems.

1.1.5 Markov chain Monte Carlo

In the MCMC, a sequence of realizations (states) is obtained by simulating a

Markov chain, i.e., the probability of introducing a new state in the chain depends

only on the current state. Feller [53], Tierney [169] and Nummelin [128] present

theoretical results that guarantee that asymptotically the states of the Markov chain

represent samples of the target distribution. Ripley [144] provides a summary of the-

oretical results. However, for high-dimensional problems, MCMC typically requires

a large number of proposals to provide a reasonable sampling of the target pdf.

Inspired by the early work of Tjelmeland et al. [171] and Hegstad and Omre

[77, 78], Oliver et al. [133] explored the application of MCMC methods to sample the

posterior pdf for the log-permeability field conditional to pressure data for a small

two-dimensional single-phase flow problem. The forward model was a finite-difference

simulator on a 15×15 grid. The proposal mechanisms considered were based on local
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and global perturbations drawn from the prior Gaussian pdf for the log-permeability

field, as well as from a Gaussian pdf centered at the maximum a posteriori (MAP)

estimate with covariance matrix given by the inverse Hessian matrix evaluated at

the MAP estimate. If the Gaussian pdf linearized about the MAP estimate is a good

approximation of the target pdf (the posterior pdf for the log-permeability field), then

proposing new states from this Gaussian pdf should result in a higher acceptance

rate than would be achieved by proposing from the prior Gaussian pdf for the log-

permeability field. Although for the example considered by Oliver et al. [133], this

higher acceptance rate was achieved, the number of independent states in the Markov

chains generated was quite small. In “the high variance case,” (prior variance of each

gridblock log-permeability equal to 1.0), for each proposal probability distribution

considered, fewer than 15 independent states (log-permeability fields) were obtained

in the Markov chain generated with 50,000 proposed transitions.

Ma et al. [117] and Ma et al. [118] introduced a two-stage MCMC method

for sampling a posteriori distribution for the permeability field conditional to water-

cut and gas-oil ratio data. In these two papers, the objective was to sample the

conditional distribution for the permeability field defined on a fine-grid model. For

each new proposed permeability field, they compute the data mismatch term by

running a very coarse grid simulation model using an upscaled permeability field

and then use either a linear relation or a nonparametric regression-based statistical

function to compute what the data match on the fine grid would be. If the estimated

fine-grid data match is better than the fine-grid data match obtained for the current

state in the Markov chain, they run the fine grid reservoir simulation model to

generate the true fine-grid data matches, which are needed to apply the Metropolis-

Hastings condition for deciding whether to accept the proposed permeability field

as the new state in the chain. By using the coarse grid to “pre-screen” proposed

realizations, they improved computational efficiency. For a synthetic two-dimensional
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problem, they achieved an acceptance rate of approximately 30% and use only about

1,000 proposals to generate the chain. It is not clear, however, that the chain of

permeability fields generated by this procedure is well-mixed. For example, the four

samples of the permeability field (four states in the chain) shown in Fig. 13 of [118]

are very similar. If the chain is, in fact, poorly mixed, then it means that MCMC

has not explored the full posterior distribution, i.e., MCMC generated samples from

only a local region of the posterior pdf.

1.1.6 Randomized maximum likelihood

RML was independently proposed by Kitanidis [96] and Oliver et al. [134]

as an approximate sampling method. Oliver et al. [134] originally introduced the

method as a proposal mechanism for MCMC. However, because the acceptance cri-

terion was difficult to evaluate and the acceptance rate was very high, the authors

suggested accepting all proposals, which results in the procedure now known as RML

method. Reynolds et al. [142] showed that when the prior pdf is Gaussian and the

relationship between the vector of model parameters and predicted data is linear,

RML provides a correct sampling of the posterior pdf. Reynolds et al. [142] also in-

vestigated the case in which the prior mean is uncertain and showed that if the prior

mean is properly incorporated as a model variable, realistic realizations of the rock

properties fields are obtained with RML. For the nonlinear case, RML is not guaran-

teed to sample the posterior pdf correctly. However, it has been shown that RML is

able to sample multiple modes in nonlinear univariate “toy problems” [134, 191, 165],

which suggests that RML can approximate non-Gaussian distributions.

Liu and Oliver [109] considered a one-dimensional single-phase flow problem

on a simulation grid consisting of twenty gridblocks. Pressure data were available

at a single producing well and two observation wells. The objective was to compare

methods for sampling the posterior pdf for the porosity and log-permeability fields.

Markov chains were generated from a Metropolis-Hastings MCMC implementation
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with proposals for the rock property fields generated from the prior Gaussian pdf

for these fields using a local perturbation procedure. The chains generated displayed

extremely slow mixing. For example, Fig. 6 of [109] indicates that the values of the

objection function may be correlated over as many as one million successive states

of the chain. Because of this, they generated a very long Markov chain consisting

of 320 million states and assumed that states in this chain obtained subsequent to

the burn-in period represented the correct target distribution. They were able to

generate this long chain because running the reservoir simulator for their problem

required less than 1/4 of a second of CPU time. They used the results of this very

long chain as a reference to compare the following approximate sampling methods:

linearization about the MAP, RML and pilot point method [29, 99, 100, 189, 185]. Liu

[108] included the gradual deformation method [148, 83] in this comparative study.

The results presented in [109] and [108] show that RML was the only approximate

sampling method which gave an acceptable characterization of uncertainty.

RML requires one minimization of an objective function to generate each sam-

ple of the posterior pdf. Conceptually, any optimization method could be applied

to minimize this objective function. However, it seems that only gradient-based

optimization methods are computationally feasible for large-scale reservoir mod-

els. Newton-like methods, including Gauss-Newton (GN) and Levenberg-Marquardt

(LM) have been applied for generating conditional realizations with RML [188, 105,

192]. These methods require the computation of the whole sensitivity matrix, i.e.,

they require the derivative of predicted data with respect to each model parameter

in order to build the Hessian matrix. Two methods commonly used for comput-

ing sensitivity coefficients are the direct method, also known as gradient simulator

method [9, 147], and the adjoint method [21, 19, 188, 105]. In the direct method,

the computation of the sensitivity matrix requires the solution of one matrix prob-

lem at the end of each reservoir simulation time-step for each reservoir model pa-
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rameter [147]. In the adjoint method, the computation of the sensitivity matrix

requires solving one matrix problem for each datum [188, 105, 147]. Thus, unless

the number of data points or the number of reservoir model parameters is small,

methods based on the whole sensitivity matrix are impractical for large field cases.

Zhang and Reynolds [192] compared the computational efficiency of GN and LM

with a nonlinear conjugate gradient method [54] and the limited memory Broyden-

Fletcher-Goldfarb-Shanno (LBFGS) method [126]. The last two methods require

only the gradient vector of the objective function during the minimization process.

The gradient vector can be computed efficiently with the adjoint method with the

solution of a single matrix problem for each time-step (backward in time). Zhang and

Reynolds [192] concluded that LBFGS is the most promising optimization method

for large-scale reservoir problems. Perhaps the main difficulty associated with the

application of gradient-based RML to large reservoir problems is the dependency

on adjoint-code implementation, which, unfortunately, is not commonly available in

commercial reservoir simulators.

In spite of the fact that the number of publications on reservoir applications

of the EnKF is quite large, very few [60, 191, 165] compare EnKF with RML. Zafari

and Reynolds [191] concluded that EnKF failed to provide a reasonable sampling of

a bi-modal posterior pdf of a nonlinear “toy problem.” For the same problem, RML

resulted in a nearly perfect sampling. Gao et al. [60] concluded that EnKF and RML

resulted in similar uncertainty quantifications for reservoir production predictions in

the PUNQ-S3 test case [55]. However, Tavakoli and Reynolds [165] concluded that

RML resulted in much better data matches and uncertainty characterization than

EnKF when applied to estimate the permeability field in a simple reservoir problem.

1.1.7 Parameterization methods for history matching

In a history-matching problem, the number of uncertain reservoir model pa-

rameters can be on the order of tens to hundreds of thousands. For this reason,
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parameterizing the history matching to search for solutions in a lower dimensional

space is very common in the petroleum literature. Perhaps the first parameterization

method applied for history matching is zonation [85, 86, 63, 157]. In zonation, the

reservoir engineer chooses regions (zones) of the model in which the rock properties

are allowed to be adjusted during history matching. Zonation is also the base proce-

dure for manual history matching [2, 69, 129]. The main criticisms about zonation

include the sometimes arbitrary choices of the zones, which may not reproduce the

geological understanding of the reservoir; discontinuities introduced in the rock prop-

erties between zones; and the inability to achieve good data matches because of the

limited number of parameters. The gradzone [16] and multiscale [68, 67] parameter-

ization methods can be considered as “automatic” implementations of the zonation

parameterization. Another parameterization commonly used in the petroleum and

ground water literature is the pilot point method [29, 99, 100, 189, 185]. In the

pilot point method, the properties of a few reservoir gridblocks are selected as model

parameters (pilot points). The values at the remaining gridblocks are obtained by

kriging. However, this parameterization tends to result in extreme values of param-

eters in the pilot points and to create nonphysical artifacts in the rock properties

[109]. Oliver [130] and Reynolds et al. [141] applied the Karhunen-Lòeve expansion

(eigen-decomposition) of the prior covariance matrix for parameterization of history-

matching problems. However, the eigen-decomposition of a covariance matrix can

be very expensive, or even not computationally feasible, for large reservoir problems.

Sarma et al. [152] avoided this difficulty in the Karhunen-Lòeve expansion using a

kernel eigenvalue decomposition. In this approach, the covariance matrix is replaced

by an ensemble approximation based on a large number of unconditional realizations.

Although parameterizations based on eigen-decomposition of the covariance matrix

can be very efficient in reducing the dimensionality of the problem, there is a ques-

tion of whether keeping only the main eingenpairs of the prior covariance results in
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models which are “too smooth” because the high frequency components, which are

associated with local reservoir heterogeneities, are discarded; see, e.g., Oliver and

Chen [131], where it is shown that realizations resulting from the main eigenvectors

of the prior covariance matrix are too smooth to be considered samples of the prior

pdf. Gradual deformation [148, 83] also parameterizes the history matching in terms

of the prior covariance. This method tends to result in reasonable geological models,

however, it seems to encounter problems in obtaining good data matches [58]. Sarma

et al. [153] introduced the use of kernel principal component analysis as a parame-

terization for preserving higher order statistical moments. In this paper, the authors

claim that using polynomial kernels of order n corresponds to preserving statistical

moments of order 2n in a transformed space. The method requires inverting the

model back from the transformed to the original space, which is called the pre-image

problem. However, there is no guarantee that this inversion is unique or that an

inverse exists [154]. Besides that, there is no assurance that the higher-order statisti-

cal moments will be preserved after the “solution” of the pre-image problem. Sarma

et al. [153] applied this procedure to channelized models generated with multipoint

geostatistics [162]. Although the method was able to obtain a model with channel-

ized features after history matching, the model does not give a good match of water

cut data. Rodrigues [147] presented a parameterization based on the main singular

values of the dimensionless sensitivity matrix GD [193]. He also described how to

compute the singular vectors corresponding to the largest singular values using the

Lanczos algorithm [65, 177] without explicitly forming GD. Tavakoli and Reynolds

[166] extended the ideas presented in Rodrigues [147] and provided a theoretical ar-

gument showing that the parameterization in terms of the truncated singular value

decomposition (TSVD) of GD is optimal in terms of reduction of uncertainty. In

[165], the same authors implemented the TSVD-based parameterization with the

RML method, which seems to be the most efficient RML implementation presented
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to date. In the same paper, they also suggest that EnKF can be used as a “first

guess” for RML. EnKF can also be interpreted as a parameterization method in

which each realization of the final ensemble is represented by a linear combination

of the Ne realizations in the initial ensemble.

1.1.8 History matching of time-lapse seismic data

Time-lapse (4D) seismic consists of a sequence of 3D seismic acquisitions

obtained at different times of the production period of a reservoir. By comput-

ing the difference between time-lapsed surveys, it is possible to identify changes in

the reservoir caused by production. For example, time-lapse seismic allows us to

identify waterflooded regions and areas with bypassed oil in the reservoir, which

helps to define target locations for infill wells. The number of publications on

field applications of time-lapse seismic in the petroleum literature is large; see, e.g.,

[160, 116, 178, 91, 90, 129, 56].

Using time-lapse seismic data for reservoir history matching is not a new sub-

ject in the petroleum literature. The number of publications on this subject is quite

extensive. One of the first applications of time-lapse seismic data for history match-

ing was presented in Huang et al. [84]. This paper uses a perturbation method similar

to simulated annealing [95, 175] to match production and time-lapse amplitude data.

A similar method was also applied by Waggoner et al. [179] to history match pro-

duction and acoustic impedance data in a gas-condensate reservoir in the Gulf of

Mexico. Mezghani et al. [123] presented a procedure to history match time-lapse

seismic data by perturbing the geostatistical model using the gradual deformation

method [148, 83]. The derivatives required by the optimization method were com-

puted using a finite-difference approximation. Gosselin et al. [66] implemented the

Levenberg-Marquardt method for the simultaneous history matching of production

and time-lapse seismic data. The derivatives were calculated using the gradient

simulator method [9, 147]. Dong and Oliver [32] presented a gradient-based imple-
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mentation for history matching time-lapse impedance data using the adjoint method

for computing gradients and the LBFGS method for optimization. Skjervheim et al.

[158] presented the first application of EnKF for history matching time-lapse seismic

data. In this paper, the authors applied EnKF to a small synthetic case and con-

cluded that the incorporation of seismic data resulted in a better estimation of the

permeability field. They also presented an application to a real field case, where they

were able to improve the seismic data match without deterioration of the production

data match.

History matching time-lapse seismic data requires the capability to compute

seismic data from a given reservoir model. This task can be accomplished by intro-

ducing a rock-fluid model to convert the reservoir properties and the simulator pri-

mary variables (pressure and saturations) into modeled elastic properties. The most

widely used model to predict the seismic response of a reservoir due to production

is the Gassmann model [62]. Among the elastic properties typically used for seismic

data history matching, the most common choices are pressure-wave impedance (P-

impedance or acoustic impedance) and Poisson’s ratio; see, e.g, [179, 66, 75, 158, 50].

However, other seismic attributes, such as amplitudes [76] and time-shifts [97, 159],

have also been used. Fahimuddin et al. [51] investigated different kinds of seismic

data for history matching with EnKF. They concluded that time-difference imped-

ance data performed better than time-difference amplitude data.

1.2 Research Objectives

The main objectives of this research are as follows: (i) investigate the use of

ensemble-based methods, with emphasis on the EnKF, for history matching and un-

certainty characterization in petroleum reservoir models; (ii) propose improvements

for the problems commonly observed with the EnKF, with a focus on preserving the

main advantages of the method, namely, easy implementation and computational

efficiency.
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1.3 Dissertation Organization

This dissertation is organized into ten chapters, including the Introduction

and Conclusions. Chapter 2 presents the theoretical fundamentals of history match-

ing as a Bayesian estimation problem. In this chapter, we present the formulation of

the EnKF and its variants. Chapter 3 is dedicated to covariance localization. In this

chapter, we introduce a distance-based covariance localization procedure for reservoir

history-matching problems. Chapter 4 presents a comparison between covariance

localization and other methods for dealing with the underestimation of posterior

variances in the EnKF. Chapter 5 presents a method which combines EnKF with

MCMC for improving the sampling results obtained by EnKF. Chapter 6 introduces

a procedure in which the same data is assimilated multiple times with an inflated

covariance of the measurement errors. In this chapter, we investigate the use of mul-

tiple data assimilation of time-lapse seismic and production data using the ensemble

smoother. Chapter 7 presents a real field history-matching case. For this field, we

assimilate 3D and 4D seismic data together with production data using EnKF and

ES with multiple data assimilation. Chapter 8 introduces an ensemble-based param-

eterization to reduce the computational cost of an adjoint-based RML. Chapter 9

presents the results of a comparative study among eight ensemble-based methods and

an adjoint-based RML for a small but highly nonlinear reservoir history-matching

problem. The objective of this study is to compare the performance of these meth-

ods in terms of the quality of the data matches, uncertainty characterization and

computational cost. The last chapter of this dissertation presents the conclusions.
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CHAPTER 2

BAYESIAN FORMULATION OF THE HISTORY MATCHING

PROBLEM

Bayesian statistics provides an adequate framework for dealing with poorly

known model parameters and conditioning these parameters to inaccurate data.

The starting point is Bayes’ theorem which allows us to write the conditional pdf,

f(m|dobs), of aNm-dimensional vector of model parameters, m, given aNd-dimensional

vector of observations, dobs, as

π(m) ≡ f(m|dobs) =
f(dobs|m)f(m)

f(dobs)
=

f(dobs|m)f(m)∫
D
f(dobs|m)f(m)dm

= aL(m|dobs)f(m).

(2.1)

In the above equation, f(m) is the prior pdf of the vector of model parameters and

f(dobs) is the pdf of the vector of observations. f(dobs|m) is the conditional pdf of

dobs given m. This pdf corresponds to the likelihood function, which is denoted by

L(m|dobs); a is a normalizing constant. Assuming that the prior pdf is Gaussian and

that measurement errors have also a Gaussian distribution, we can write f(m|dobs)

as
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f(m|dobs) = a exp

{
−1

2
(m−mpr)

T C−1
M (m−mpr)

}
× exp

{
−1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs)

}
= a exp

{
−1

2
(m−mpr)

T C−1
M (m−mpr)

− 1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs)

}
= a exp {−O(m)} , (2.2)

where

O(m) = Om(m) +Od(m), (2.3)

with

Om(m) =
1

2
(m−mpr)

TC−1
M (m−mpr) (2.4)

and

Od(m) =
1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs) . (2.5)

In the above equations, O(m) is the so-called objective function. In a history-

matching problem, we typically want to find a minimum of this objective function

because minimizing O(m) is equivalent to maximizing the posterior pdf f(m|dobs).

In the above equations, mpr is the Nm-dimensional vector containing the prior mean;

CM is the Nm×Nm prior covariance matrix of model parameters; CD is the Nd×Nd

covariance matrix of measurements errors and g(m) is the vector of predicted data

for a given vector m. For the applications of interest in this dissertation, g(m) is ob-

tained from a reservoir simulation run. Note that the objective function is composed

of two parts: Om(m), which is the model mismatch part and Od(m), which is the data

mismatch part. Typically, mpr corresponds to a very smooth model, often flat (when
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the prior mean is constant). Hence, if an estimate m gives a high value of Om(m),

this estimate is a rough model, i.e., the model possibly presents unrealistically high

(overshooting) or low (undershooting) values of gridblock rock properties. If m gives

a high value of Od(m), this estimate corresponds to a poor data match. Perhaps

more importantly, if m corresponds to a high value of O(m) = Om(m)+Od(m), then

m has low “probability,” i.e., m gives a low value of the posterior pdf.

In the posterior pdf derived in Eq. 2.2, we neglected the uncertainty associated

with model errors. However, it can be shown that Eq. 2.2 is still valid for the case with

model errors if we assume that the model errors also follow a Gaussian distribution

[164, Chap. 1]. In this case, the covariance matrix CD in the objective function of

Eq. 2.3 corresponds to the sum of the covariance matrix of the measurement errors

and the covariance matrix of the model error.

Typically in a reservoir history-matching problem, the number of unknown

model parameters greatly exceeds the number of independent data. This makes the

problem of minimizing the mismatch between predicted and observed data ill-posed,

and some regularization is often needed. However, the objective function (2.3), which

was obtained from a direct application of Bayes’ theorem, already contains a built-in

regularization term Om(m). Besides regularizing the minimization problem, Om(m)

has another very important significance, namely, it represents the prior geostatistical

knowledge of the reservoir.

2.1 The Maximum a Posteriori Estimate

The maximum a posteriori (MAP) estimate is the model that maximizes

f(m|dobs), or equivalently minimizes the objective function (Eq. 2.3) [135, p. 143],

i.e.,

mMAP = arg min
m

O(m). (2.6)
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Because the functional g(m) is nonlinear, the posterior pdf f(m|dobs) is not

Gaussian even when the prior f(m) is Gaussian. In this case, f(m|dobs) may have

multiple modes, where each mode corresponds to a local minimum of O(m). In fact,

O(m) may even have multiple global minima, and, in this case, the MAP estimate

is not unique.

If the theoretical relation between data and model parameters is linear, the

posterior pdf given by Eq. 2.2 is also Gaussian. In the linear case, we write the

relation between model and predicted data as

g(m) = Gm, (2.7)

where G is the Nd×Nm sensitivity matrix. For the linear case, the posterior mean is

equivalent to the MAP estimate, which can be obtained by using Eq. 2.7 in Eq. 2.3

and requiring the gradient of O(m) to vanish, i.e.,

0 = ∇mO(m)

= C−1
M (m−mpr) +GTC−1

D [Gm− dobs −Gmpr +Gmpr]

=
(
C−1

M +GTC−1
D G

)
(m−mpr) +GTC−1

D (Gmpr − dobs) . (2.8)

Solving Eq. 2.8 for m and denoting the result as mMAP, we obtain

mMAP = mpr −
(
C−1

M +GTC−1
D G

)−1
GTC−1

D (Gmpr − dobs) . (2.9)

Following Oliver et al. [135, Chap. 7], Eq. 2.9 can be written as

mMAP = mpr + CMG
T
(
CD +GCMG

T
)−1

(dobs −Gmpr) , (2.10)

which is particularly useful when the number of data is considerably less than the
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number of model parameters, i.e., Nd � Nm. Note that in Eq. 2.10, we have the

inverse of a Nd × Nd matrix while in Eq. 2.9, we have the inverses of Nm × Nm

matrices.

Expanding O(m) about mMAP, we can write

O(m) = O(mMAP) + (∇mO(mMAP))T (m−mMAP)

+
1

2
(m−mMAP)T BMAP (m−mMAP) , (2.11)

with BMAP denoting the Hessian matrix. Using the linear relationship (2.7) in the

objective function (2.3) and taking the gradient of O(m) with respect to m twice,

we obtain

BMAP = ∇m

[
(∇mO(mMAP))T

]
= C−1

M +GTC−1
D G. (2.12)

Eq. 2.12 shows that for the linear case, BMAP is a constant matrix. Hence, the

expansion (2.11) in exact. Using ∇mO(mMAP) = 0 and using the expansion (2.11),

we can write the posterior pdf as

f(m|dobs) = a exp {−O(mMAP)} exp

{
−1

2
(m−mMAP)TBMAP (m−mMAP)

}
= â exp

{
−1

2
(m−mMAP)T BMAP (m−mMAP)

}
, (2.13)

which is a Gaussian distribution for m with mean mMAP and covariance given by
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CMAP = B−1
MAP

=
(
C−1

M +GTC−1
D G

)−1

= CM − CMG
T
(
GCMG

T + CD

)−1
GCM, (2.14)

where the last equality can be obtained by using the matrix inversion lemmas as

described in [135, Chap. 7].

2.2 Markov Chain Monte Carlo

For the nonlinear case, the posterior pdf given by Eq. 2.2 is not Gaussian and

cannot be fully described by the mean and covariance. Nevertheless, for the purpose

of evaluating uncertainty, it suffices to generate a sampling of this pdf. MCMC is

a procedure for generating samples of a target pdf, π(m), using a Markov chain

mechanism, i.e., the probability of introducing a new state in the chain depends only

on the current state. The proposal/acceptance criteria are constructed so that states

of the chain are more likely to remain for a longer time, i.e., for more iterations, in

high probability regions of the target pdf. Relevant theoretical results that guarantee

that, asymptotically, the states of the chain are samples of π(m) can be found in

Feller [53], Tierney [169] and Nummelin [128]. Ripley [144] provides a summary

of theoretical results. Most MCMC implementations define transition probabilities

based on the idea of Metropolis et al. [122], who proposed defining the probability of

a transition from state m to m̂ as the product of proposing this transition, q(m, m̂),

times the probability of accepting the proposed transition, α(m, m̂). In a recent

survey, the Metropolis algorithm was selected as one of the ten algorithms that have

had the greatest influence on the development and practice of science and engineering

in the 20th Century [26]. Hastings [73] extended the Metropolis algorithm to what is

perhaps the most popular MCMC method, the Metropolis-Hastings algorithm. The
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Metropolis-Hastings MCMC method is presented in the Algorithm 2.1.

Algorithm 2.1 Metropolis-Hastings MCMC

1. Set ` = 0, where ` is the iteration index of the Markov chain. Select the initial
state of the chain, m` = m0.

2. Generate a sample m̂`+1 from the pdf q(m`, m̂`+1). m̂`+1 represents the new
proposed state in the chain and q(m`, m̂`+1) represents the “probability” of
proposing a transition from state m` to m̂`+1.

3. Compute the probability of accepting the proposed state as

α(m`, m̂`+1) = min

{
1,
q(m̂`+1,m`)π(m̂`+1)

q(m`, m̂`+1)π(m`)

}
. (2.15)

4. Sample u from a uniform distribution on [0, 1]. If u ≤ α(m`, m̂`+1), accept the
new state, i.e., set m`+1 = m̂`+1. Otherwise, repeat the old state in the chain,
i.e., set m`+1 = m`.

5. Set ` = `+ 1 and return to step 2.

As long as the proposal mechanism is such that it is possible to reach any

state m that has π(m) 6= 0 in a finite number of transitions, the states in the chain

constructed from the Metropolis-Hastings algorithm will asymptotically represent

samples from π(m) independent of the initial state, m0, as long as π(m0) 6= 0.

Note that the computation of the acceptance probability requires that we know

the target pdf only up to the normalization constant. This is a distinct advantage

when π(m) is a conditional pdf generated from Bayes’ theorem with an unknown

normalizing constant. The main difficultly encountered when using MCMC is the

slow convergence typically observed for high-dimensional problems. However, some

choices of the proposal distribution, q(m, m̂), may result in higher rates of acceptance

of new states in the chain and reduce the number of iterations (proposals) to converge

to the target distribution; see, e.g., Oliver et al. [133].

If the proposal mechanism is based on a prior Gaussian pdf, the transition

probability in the Markov chain, q(m, m̂), can be written as
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q(m, m̂) = b exp

(
−1

2
(m̂−mpr)

TC−1
M (m̂−mpr)

)
= b exp

(
−1

2
zT
mzm

)
, (2.16)

where b is a normalizing constant, which we do not need to compute, and z ∼

N (0, INm). Note that the probability of proposing a transition from the current

state, m, to m̂ is independent of m. In this case, we can write the proposal as

m̂ = mpr + C
1/2
M zm. (2.17)

From Eq. 2.17, the proposal of a new state in the chain can be done by

sampling the random vector zm. We refer to this procedure as global perturbation.

However, for high-dimensional problems, this procedure typically leads to very low

acceptance rates in the chain. In this case, most of the proposals occur in low-

probability regions of the target pdf, causing the Markov chain to repeat states for

several iterations. To avoid the large number of rejected proposals, Oliver et al. [133]

applied a local perturbation procedure where, at each iteration, they randomly select

one component of the random vector zm corresponding to the current realization of

the chain, and then replace this component by a sample from N (0, 1). Gelman et al.

[64] presents an alternative local perturbation procedure where instead of changing

one single component of the random vector zm, we write the transition probability,

q(m, m̂), as a Gaussian centered at the current state m with a scaled covariance

σ2CM, where σ < 1 denotes the scaling factor. For this case, the proposed state can

be written as

m̂ = m+ C
1/2
M δz. (2.18)

The random vector δz is a sample from N (0, σ2INm). This procedure leads to

a symmetric transition probability, i.e., q(m, m̂) = q(m̂,m), and thus, the probability
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of accepting the proposed state simplifies to

α(m, m̂) = min

{
1,
π(m̂)

π(m)

}
. (2.19)

The scaling factor, σ, controls the performance of the chain; small values of σ

lead to high acceptance rates, but the chain will move very slowly through the target

pdf and thus gives poor mixing. High values for σ, on the other hand, will lead to

low acceptance rates. Although the optimal choice of σ depends on the target pdf,

several authors (e.g., Gelman et al. [64], Roberts et al. [145], Roberts and Rosenthal

[146]) have provided theoretical and empirical results which indicate that in high

dimensions, it is optimal to choose σ such that the acceptance rate of the chain is

approximately 0.234.

2.3 The Randomized Maximum Likelihood Method

The RML method [96, 134, 142] provides a correct sampling of the posterior

pdf for the linear-Gaussian case [134]. For the nonlinear case, computational evidence

indicates that RML provides an approximate sampling [134, 109, 135]. In fact,

RML was designed to generate samples of different modes of the pdf so that it can

approximate non-Gaussian distributions.

To obtain the jth sample, mc,j, of the posterior pdf using RML, we solve the

minimization problem

mc,j = arg min
m

Oj(m), (2.20)

where

Oj(m) =
1

2
(m−muc,j)

T C−1
M (m−muc,j) +

1

2
(g(m)− duc,j)

T C−1
D (g(m)− duc,j) .

(2.21)
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In the above equation, muc,j is a sample from N (mpr, CM) and duc,j is a sample from

N (dobs, CD). A conditional sample, mj, obtained with RML will be close to the

prior sample, muc,j, unless the minimization of Oj(m) requires large corrections in

mj. Conceptually, the RML method can be applied with any optimization method.

However, efficient implementations often require gradient-based optimization algo-

rithms [192, 60] with adjoint-based gradient calculation [21, 19, 188, 105].

2.4 Sequential Data Assimilation

Sequential data assimilation (SDA) is the process of updating dynamical sys-

tems by incorporating data sequentially in time. Because the dynamic data in petro-

leum reservoirs, e.g., production, pressure and time-lapse seismic data, are available

sequentially in time, the reservoir history-matching problem fits in the SDA context.

Moreover, SDA can also be adequately described in a Bayesian framework.

So far, the history-matching problem was presented in terms of a parameter

estimation problem, i.e., find the posterior distribution of a vector of model parame-

ters m, given a set of observations dobs. However, in a SDA process, it is convenient

to rewrite the problem as a parameter-state estimation problem [46], i.e., we define

a state vector y as

yn =

 mn

pn

 , (2.22)

where, as before, m is a Nm-dimensional vector of model parameters and p is a Np-

dimensional vector representing the dynamical state of the system. The superscript

n was introduced to indicate the time dependence on the model and states, which

we assumed to be discretized in time. As before, the conditional pdf can be written

using the Bayes’ theorem

f(y|dobs) ∝ f(y)f(dobs|y). (2.23)
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Let us assume that at the time tn, we have updated the distribution of y by incor-

porating all data available up to the time tn simultaneously. In this case, we write

the posterior pdf as

f(yn|dnobs, . . . , d
1
obs) ∝ f(yn)f(dnobs, . . . , d

1
obs|yn), (2.24)

where f(yn) represents our prior knowledge about the distribution of the state y at

time-step tn. Now if we want to incorporate a new observation at time tn+1, we could

start afresh and write

f(yn+1|dn+1
obs , d

n
obs, . . . , d

1
obs) ∝ f(yn+1)f(dn+1

obs , d
n
obs, . . . , d

1
obs|yn+1), (2.25)

or we could claim that just before the time tn+1, the knowledge about y is summarized

in the distribution f(yn|dnobs, . . . , d
1
obs). Hence, we can just use f(yn+1|dnobs, . . . , d

1
obs)

as the distribution prior the assimilation of dn+1
obs and update the pdf of y as

f(yn+1|dn+1
obs , d

n
obs, . . . , d

1
obs) ∝ f(yn+1|dnobs, . . . , d

1
obs)f(dn+1

obs |d
n
obs, . . . , d

1
obs, y

n+1).

(2.26)

It turns out that these two procedures, Eqs. 2.25 and 2.26, are equivalent

under the assumption that the measurement errors of the individual observation

vectors {dn+1
obs , . . . , d

1
obs} are uncorrelated in time and that the model evolution is

a first order Markov process, i.e., yn+1 depends only on yn and not on any of the

preceding states yn−1, . . . , y0 [46, Chap. 7]. This equivalence follows from
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f(yn+1|dn+1
obs , d

n
obs, . . . , d

1
obs) ∝ f(yn+1|dnobs, . . . , d

1
obs)f(dn+1

obs |d
n
obs, . . . , d

1
obs, y

n+1)

∝ f(yn+1)f(dnobs, . . . , d
1
obs|yn+1)f(dn+1

obs |d
n
obs, . . . , d

1
obs, y

n+1)

∝ f(yn+1)f(dn+1
obs , d

n
obs, . . . , d

1
obs|yn+1), (2.27)

where the last part was obtained by the assumption of uncorrelated measurement

errors in time, i.e.,

f(dn+1
obs |d

n
obs, . . . , d

1
obs, y

n+1) = f(dn+1
obs |y

n+1) (2.28)

and

f(dnobs . . . , d
1
obs|yn+1)f(dn+1

obs |y
n+1) = f(dn+1

obs . . . , d
1
obs|yn+1). (2.29)

In summary, under assumptions of a first-order Markovian process with un-

correlated measurement errors, assimilating data sequentially in time is equivalent

to assimilating all data simultaneously.

2.4.1 Sequential data assimilation for linear problems with Gaussian prior – The

Kalman filter

Under the restrictions of a Gaussian prior, a linear relation between state

and predicted data, Gaussian noise in the measurements and Gaussian model error,

the Kalman filter (KF) [92] is the optimal sequential data-assimilation scheme. In

the KF, the mean, µny , and the covariance, Cn
Y, of the state vector, yn, are updated

sequentially in time using

µn,ay = µn,fy +Kn

(
dnobs −Hnµ

n,f
y

)
(2.30)
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and

Cn,a
Y =

(
INy −KnHn

)
Cn,f

Y , (2.31)

where

Kn ≡ Cn,f
Y HT

n

(
HnC

n,f
Y HT

n + Cn
D

)−1

. (2.32)

Eqs. 2.30–2.32 are known as the KF analysis equations. In these equations,

Kn is known as the Kalman gain matrix. Hn is the Nn×Ny sensitivity matrix, which

defines the linear relation between the state vector and predicted data, i.e.,

dn,f = Hny
n,f . (2.33)

Cn
D is the covariance matrix of the measurement errors at the time tn. INy is the

Ny×Ny identity matrix, where Ny denotes the dimension of the state vector yn. The

superscripts a and f denote analysis and forecast, respectively.

Kalman [92] derived the KF as a minimum variance estimator. However, the

KF equations can also be obtained from a Bayesian formulation [46]. In fact, if we

write the KF analysis equations only for the model parameters part, m, and use the

Kalman gain definition (2.32) in Eqs. 2.30 and 2.31, we obtain

µn,am = µn,fm + Cn,f
M GT

n

(
GnC

n,f
M GT

n + Cn
D

)−1 (
dnobs −Gnµ

n,f
m

)
(2.34)

and

Cn,a
M = Cn,f

M − Cn,f
M GT

n

(
GnC

n,f
M GT

n + Cn
D

)−1

GnC
n,f
M . (2.35)

In Eqs. 2.34 and 2.35, we use Gn to denote the linear relationship between the vector

of model parameters m and the predicted data. Comparing Eqs. 2.34 and 2.35 with

Eqs. 2.10 and 2.14 and noting the equivalence between simultaneous and sequential

data assimilation previously established, we conclude that the KF updated mean,

µn,am , corresponds to the MAP estimate, i.e., µn,am = mMAP, and the analyzed model
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covariance, Cn,a
M , corresponds to CMAP.

2.5 The Ensemble Kalman Filter

In the KF, both the mean and covariance are updated whenever new data are

available. However, even for linear problems, updating the states covariance matrix

using Eq. 2.31 may not be computationally feasible if the dimension of the state is

large. Moreover, if the problem is nonlinear, the posterior pdf is not Gaussian, and

the KF equations are no longer applicable. For nonlinear problems, the extended

Kalman filter (EKF) is an alternative to the KF. The EKF uses linearizations of the

model and observation equations around the estimated mean of the state. However,

for highly nonlinear problems, these linearizations may lead to unbounded insta-

bilities in the covariance updates [46, Chap. 4]. Moreover, the EKF still requires

updating the whole states covariance matrix, which becomes computationally infea-

sible for high-dimensional problems.

Evensen [43] introduced the ensemble Kalman filter (EnKF) as an alterna-

tive to overcome the problems of the EKF in high-dimensional nonlinear dynamical

systems. The EnKF is a Monte Carlo method in which an ensemble of states is em-

ployed to represent the mean and covariance, which are updated sequentially in time.

Although the EnKF was originally introduced in [43], the method was later clarified

in [18, 80], where the concept of updating each ensemble member with independently

perturbed observations was introduced, resulting in the current implementation of

the EnKF. Typically in the EnKF, the number of ensemble members is much smaller

than the number of unknowns so that the problem of updating a large state covari-

ance matrix is managed by using the low-rank ensemble approximation. Hence, in

the EnKF, the uncertainty is represented and propagated using an ensemble of states.

This is different from KF and EKF, where uncertainty is propagated updating the

states covariance matrix. The initial ensemble in the EnKF represents a sampling

from the prior distribution, which, to a certain degree, tends to reduce the depen-
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dence on Gaussian assumptions. However, the analysis step is still based on the first

and second order moments of the distributions, so the performance of EnKF may

deteriorate if the distributions are too far from Gaussian [1]. Unfortunately, the en-

semble representation is also the main approximation introduced by EnKF. In order

to achieve computational efficiency, it is necessary to limit the size of the ensemble.

However, small ensembles introduce sampling errors, which lead to spurious correla-

tions. Moreover, the size of the ensemble limits the space in which the solutions can

be represented. As a result, we observe excessive reduction in posterior covariances

after the assimilation of data [80, 81, 46, 1]. This problem will be further discussed

in Chapters 3 and 4 of this dissertation.

The EnKF equations are typically introduced by defining an augmented state

vector, yn, in which the predicted data vector, dn, is also included, i.e.,

ynj =


mn
j

pnj

dnj

 , (2.36)

where the subscript j denotes the jth ensemble member. As before, mn
j and pnj are,

respectively, the vectors of model parameters and states of the dynamical system.

For reservoir applications, m includes all model parameters required in the history

matching, typically gridblock porosities, permeabilities, end points of relative per-

meability curves, etc.; p includes the primary variables of the reservoir simulator,

typically gridblock pressure, fluid saturations and bubble-point pressure in a stan-

dard black-oil reservoir simulator. For simplicity in notation, we assume that data

assimilation steps correspond to reservoir simulation time-steps. Then, we define the

matrix Hn as

Hn ≡
[
O INn

]
, (2.37)
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where O is the Nn× (Nm +Np) null matrix and INn is the Nn×Nn identity matrix.

Note that the dimension of Hn depends on the number of data to be assimilated at

the nth assimilation time-step, denoted by Nn. Using the definition (2.37), we can

write the predicted data vector, dn,fj , as we did for KF, i.e.,

dn,fj = Hny
n,f
j . (2.38)

This “trick” of augmenting the state vector with the predicted data allows

us to derive the EnKF equations in a similar fashion to the standard KF equations.

The trick turns a nonlinear relation between data and the original state vector into

a linear relationship between the vector of predicted data and the augmented state

vector, making it possible to write down the formula for the analysis step analytically

[103]. However, this trick does not remove the effect of the nonlinearity. As shown

in Li and Reynolds [103], augmenting the state vector with data results in a correct

procedure for sampling the pdf if, and only if, at every data assimilation time-step,

the predicted data vector is a linear function of the combined (unaugmented) state

vector.

Using the augmented state vector, the EnKF analysis equations can be written

in a similar form as the KF equations. Unlike the KF, where we update directly the

mean and covariance matrix, in the EnKF, we update each ensemble member using

yn,aj = yn,fj + K̃n

(
dnuc,j − d

n,f
j

)
, for j = 1, 2, · · ·Ne, (2.39)

and

K̃n = C̃n,f
Y HT

n

(
HnC̃

n,f
Y HT

n + Cn
D

)−1

. (2.40)

In the above equations, Ne is the number of state vectors in the ensemble, i.e., the

ensemble size; dnuc,j is a sample from the Gaussian distribution N (dnobs,C
n
D). We can
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interpret dnuc,j as a perturbed (or randomized) observed data vector as we do in the

RML method. We introduced the tilde in the matrices K̃n and C̃n,f
Y to emphasize

that these matrices are estimated from an ensemble. Throughout this dissertation,

we use the tilde whenever a matrix is estimated from an ensemble. The ensemble

approximation of the states covariance matrix is given by

C̃n,f
Y =

1

Ne − 1

Ne∑
j=1

(yn,fj − yn,f )(y
n,f
j − yn,f )T =

∆Y n,f
(
∆Y n,f

)T

Ne − 1
, (2.41)

where the columns of ∆Y n,f are the ensemble members minus the mean, i.e.,

∆Y n,f = Y n,f − Y n,f
=
[
yn,f1 − yn,f , . . . , yn,fNe − y

n,f
]
, (2.42)

where

yn,f =
1

Ne

Ne∑
j=1

yn,fj . (2.43)

One advantage of the EnKF is that the states covariance matrix Cn,f
Y does

not need to be explicitly formed. Instead, we partition C̃n,f
Y as

C̃n,f
Y =


C̃n,f

MM C̃n,f
MP C̃n,f

MD

C̃n,f
PM C̃n,f

PP C̃n,f
PD

C̃n,f
DM C̃n,f

DP C̃n,f
DD

 , (2.44)

and note that in Eq. 2.40, we only need the products

C̃n,f
Y HT

n =


C̃n,f

MM C̃n,f
MP C̃n,f

MD

C̃n,f
PM C̃n,f

PP C̃n,f
PD

C̃n,f
DM C̃n,f

DP C̃n,f
DD


 O

INn

 =


C̃n,f

MD

C̃n,f
PD

C̃n,f
DD

 = C̃n,f
YD (2.45)
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and

HnC̃
n,f
Y HT

n = C̃n,f
DD. (2.46)

Thus, the EnKF analysis equation directly involves only the two cross-covariance

matrices, C̃n,f
YD and C̃n,f

DD, which are represented by the following approximations:

C̃n,f
YD =

1

Ne − 1

Ne∑
j=1

(yn,fj − yn,f )(d
n,f
j − d

n,f
)T (2.47)

and

C̃n,f
DD =

1

Ne − 1

Ne∑
j=1

(dn,fj − d
n,f

)(dn,fj − d
n,f

)T. (2.48)

Using Eqs. 2.45 and 2.46, we can rewrite the EnKF analysis equation (2.39)

as

yn,aj = yn,fj + C̃n,f
YD

(
C̃n,f

DD + Cn
D

)−1 (
dnuc,j − d

n,f
j

)
, for j = 1, 2, · · ·Ne. (2.49)

In terms of practical implementation, even the cross-covariance matrix C̃n,f
YD

does not need to be completely formed or stored. In fact, after computing the Nn×Nn

matrix
(
C̃n,f

DD + Cn
D

)
, we can compute the vector xj by solving the linear problem

xj ≡
(
C̃n,f

DD + Cn
D

)−1 (
dnuc,j − d

n,f
j

)
. (2.50)

Then, the analysis equation (2.49) can be written as
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yn,aj = yn,fj + C̃n,f
YDxj

= yn,fj +
1

Ne − 1

Ne∑
k=1

(yn,fk − y
n,f )(dn,fk − d

n,f
)Txj

= yn,fj +
1

Ne − 1

Ne∑
k=1

αk(y
n,f
k − y

n,f ), (2.51)

where the αk’s are real numbers given by

αk = (dn,fk − d
n,f

)Txj; (2.52)

thus the calculation of yn,aj requires only vector sums and inner products.

2.5.1 Inversion and rescaling

As noted before, the EnKF analysis equation (Eq. 2.49) requires the inversion

of the Nn ×Nn matrix C given by

C = C̃f
DD + CD. (2.53)

In order to simplify the notation, we dropped the superscript n in the equations of

this and the next two sections (Sections 2.6 and 2.7.4), noting that all equations

refer to the same data assimilation time-step. Because C̃f
DD is a real-symmetric

positive semi-definite matrix, C given by Eq. 2.53 is real-symmetric positive-definite

as long as CD is positive-definite, which means that C is invertible. However, C

may be poorly conditioned [46, Chap. 14]. Hence, EnKF implementations typically

use a pseudo-inverse of C computed using a truncated singular value decomposition

(TSVD), i.e,

C+ = UrΛ
−1
r UT

r , (2.54)
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where C+ denotes the pseudo-inverse of C. Ur is the Nn × Nr matrix with its jth

column equal to the left singular vector of C corresponding to the jth singular value.

Λr is a diagonal matrix containing the Nr largest nonzero singular values of C. Nr is

typically defined by sorting the singular values, λi, in a decreasing order and finding

the maximum Nr such that

∑Nr
i=1 λi∑Nn
i=1 λi

≤ ξ, (2.55)

where ξ is a number typically between 0.9 and 1.0. However, C may also be poorly

scaled as it may be constructed based on data with different magnitudes, e.g., pres-

sure and water-cut data. In this case, one may lose the information necessary to

match data when truncating small singular values; see, e.g., Wang et al. [182] where

an example is shown in which water-cut data could not be matched because of trun-

cation. For this reason, it is important to rescale the components of the matrix

C before applying the TSVD. This rescaling can be done by using the Cholesky

decomposition of CD, i.e.,

CD = C
1/2
D C

T/2
D (2.56)

and writing Eq. 2.53 as

C = C
1/2
D ĈC

T/2
D , (2.57)

where

Ĉ = C
−1/2
D C̃f

DDC
−T/2
D + INn . (2.58)

The TSVD is now applied to the matrix Ĉ to obtain

Ĉ = ÛrΛ̂rÛ
T
r , (2.59)
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and the pseudo-inverse of C becomes

C+ = C
−T/2
D ÛrΛ̂

−1
r ÛT

r C
−1/2
D . (2.60)

This rescaling procedure can be justified by defining the dimensionless sensi-

tivity matrix, GD, [193] as

GD = C
−1/2
D GC

1/2
Y , (2.61)

where G is the Nn × Ny sensitivity matrix. For the linear case, we can write the

vector of predicted data df in terms of the state vector yf as

df = Gyf , (2.62)

so that the cross-covariance matrix Cf
DD can be written as

Cf
DD = GCf

YG
T. (2.63)

Using Eqs. 2.61 and 2.63 in Eq. 2.58, we can write Ĉ as

Ĉ = GDG
T
D + INn . (2.64)

Let ωi be the ith singular value of GD. It is straightforward to show that the ith

singular value of Ĉ, denoted by λ̂i, is given by

λ̂i = ω2
i + 1. (2.65)

The results of Tavakoli and Reynolds [166] imply that the singular values of GD

govern the reduction in uncertainty in the state vector due to the assimilation of

data with the Kalman filter. In addition, Tavakoli and Reynolds [166] showed that

small singular values of GD have a negligible influence on the reduction of uncertainty.
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From Eq. 2.65, we note that the singular values of Ĉ are defined by the singular values

of GD so that truncating small values of λ̂i corresponds to eliminating small singular

values of GD, which have the smallest influence on the reduction of uncertainty. In

this sense, the rescaling procedure presented in this section is optimal.

2.5.2 Subspace inversion

The inversion procedure presented in the previous section requires the TSVD

of a Nn × Nn matrix. However, when the number of data points is large, as in the

case when assimilating seismic data, the computational cost of this SVD procedure

is too high. Evensen [45] introduced a subspace inversion procedure, which is com-

putationally more efficient in the case where Ne � Nn. Here, we briefly review the

subspace inversion proposed by Evensen [45] and rewrite this procedure for the case

in which rescaling is applied.

In the subspace inversion, we define C? = (Ne − 1)C, where C is given by

Eq. 2.53 and write C? in the following form:

C? = ∆Df (∆Df )T + (Ne − 1)CD. (2.66)

Here, ∆Df = Df − Df
, where Df denotes the Nn × Ne matrix of predicted data,

i.e., the columns of Df correspond to the vectors of predicted data obtained by the

ensemble members. D
f

is the Nn × Ne matrix with all its columns equal to the

mean ensemble prediction. Instead of computing the pseudo-inverse of C? directly

by TSVD, we apply SVD to ∆Df and truncate with the Nr largest singular values,

i.e.,

∆Df ≈ UrWrV
T
r , (2.67)

where Ur is the Nn × Nr matrix containing as its columns the left singular vectors

of ∆Df corresponding to its first Nr largest singular values; Vr is the Ne × Nr
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corresponding matrix of right singular vectors, and Wr is a diagonal matrix with the

Nr largest singular values of ∆Df as its diagonal entries. Because we can choose any

Nr ≤ min{Nn, Ne − 1}, we write Eq. 2.67 as an approximation; equality holds when

we keep all nonzero singular values. Using Eq. 2.67 in Eq. 2.66, we obtain

C? ≈ UrWr

[
INr + (Ne − 1)W−1

r UT
r CDUrW

−1
r

]
WrU

T
r . (2.68)

In Eq. 2.68, we introduced the additional approximation that UrU
T
r ≈ INn . Defining

the Nr ×Nr symmetric matrix X as

X ≡ (Ne − 1)W−1
r UT

r CDUrW
−1
r , (2.69)

we can write Eq. 2.68 as

C? ≈ UrWr [INr +X]WrU
T
r . (2.70)

Because X is real-symmetric positive semidefinite, the SVD of X is equivalent

to a Schur decomposition,

X = ZrΓrZ
T
r , (2.71)

where Γr is a Nr ×Nr diagonal matrix with the ith diagonal entry equal to the ith

eigenvalue of X, which is real and non-negative, and Zr is a Nr × Nr orthogonal

matrix with its ith column equal to the ith eigenvector of X. Using Eq. 2.71 in

Eq. 2.70 and the fact that Zr is an orthogonal matrix, we obtain

C? ≈ (UrWrZr) [INr + Γr] (UrWrZr)
T . (2.72)

Because Wr and Γr are diagonal matrices, it is trivial to compute their inverses and

the pseudo-inverse of C? becomes
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(C?)+ =
(
UrW

−1
r Zr

)
[INr + Γr]

−1 (UrW−1
r Zr

)T
, (2.73)

which is the pseudo-inverse using the subspace inversion scheme of Evensen [45].

As before, we may still have scaling problems when truncating the small

singular values of ∆Df . Hence, we present a subspace inversion scheme for the case

in which we rescale ∆Df before applying TSVD. This rescaling can be done by

rewriting Eq. 2.66 as

C? = C
1/2
D

[
C
−1/2
D ∆Df (∆Df )TC

−T/2
D + (Ne − 1)INn

]
C

T/2
D . (2.74)

Instead of using the TSVD of ∆Df , we calculate the following TSVD:

C
−1/2
D ∆Df ≈ ÛrŴrV̂

T
r . (2.75)

Using the same procedure as before, we obtain

C? ≈ C
1/2
D ÛrŴr

[
INr + (Ne − 1)Ŵ−1

r Ŵ−1
r

]
ŴrÛ

T
r C

T/2
D . (2.76)

Finally, the pseudo-inverse of C? can be written as

(C?)+ =
(
C
−T/2
D ÛrŴ

−1
r

) [
INr + Γ̂r

]−1 (
C
−T/2
D ÛrŴ

−1
r

)T

, (2.77)

where Γ̂r is the Nr ×Nr diagonal matrix given by

Γ̂r = (Ne − 1)Ŵ−1
r Ŵ−1

r . (2.78)

This rescaling procedure requires that we factor the covariance matrix of

the measurement errors as CD = C
1/2
D C

T/2
D . However, this factorization can be

computationally expensive if the number of measurement errors is large, which is the

case when we have seismic data. An alternative procedure is to perform rescaling
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based only on the diagonal elements of CD. In this case, we write

CD = SĈDS, (2.79)

where S is the Nn×Nn matrix containing the square root of the diagonal components

of CD, i.e., S = diag
[
C

1/2
D

]
; ĈD is the correlation matrix of the measurement errors.

Using Eq. 2.79, we rewrite Eq. 2.74 as

C? = S
[
S−1∆Df (∆Df )TS−1 + (Ne − 1)ĈD

]
S, (2.80)

and calculate the following TSVD:

S−1∆Df ≈ ÛrŴrV̂
T
r . (2.81)

Similarly to Eq. 2.70, we can write Eq. 2.80 as

C? ≈ SÛrŴr

[
INr + X̂

]
ŴrÛ

T
r S, (2.82)

where X̂ is the Nr ×Nr symmetric matrix given by

X̂ ≡ (Ne − 1)Ŵ−1
r ÛT

r ĈDÛrŴ
−1
r . (2.83)

Writing the Schur decomposition

X̂ = ẐrΓ̂rẐ
T
r , (2.84)

and using Eq. 2.84 in Eq. 2.82, we obtain

C? ≈
(
SÛrŴrẐr

) [
INr + Γ̂r

] (
SÛrŴrẐr

)T

. (2.85)

Thus, the pseudo-inverse of C? becomes
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(C?)+ =
(
S−1ÛrŴ

−1
r Ẑr

) [
INr + Γ̂r

]−1 (
S−1ÛrŴ

−1
r Ẑr

)T

. (2.86)

2.5.3 Ensemble representation of CD

Evensen [44] suggested that the use of a low-rank ensemble representation of

the covariance matrix of the measurement errors, CD, presents numerical advantages

in terms of reduction of the computational cost of the analysis in the EnKF. The

ensemble representation of CD can be written as

C̃D =
1

Ne − 1
∆Duc∆D

T
uc, (2.87)

where ∆Duc = Duc − Duc, with Duc denoting the Nn × Ne matrix containing the

ensemble of perturbed observations, i.e., the jth column of Duc is equal to duc,j which

corresponds to the vector of perturbed observations used to update jth ensemble

member; and Duc denotes the Nn ×Ne with all columns equal to the average of the

ensemble perturbed observations, duc.

However, Kepert [93] showed that the use of C̃D leads to loss of rank in the

ensemble if Nn ≥ Ne and ensemble collapse if Nn ≥ 2Ne− 2. In fact, if Nn ≥ Ne, C̃D

has at most Ne−1 nonzero singular values. In this case, it can be shown that the use

of C̃D in the analysis is equivalent to assimilating Nn −Ne + 1 perfect observations,

i.e., observation where the corresponding measurement errors are zero. Lorenc [110]

showed that the assimilation of a perfect observation removes one degree of freedom

of the ensemble. Therefore, for Nn ≥ Ne, we lose Nn−Ne+1 degrees of freedom and

if Nn = 2Ne − 2, we lose all degrees of freedom so the ensemble collapses. Evensen

[45] showed that if we project the matrix ∆Duc onto the subspace spanned by the

left singular vectors of ∆Df , we do not observe the loss of rank. In this case, the

EnKF analysis with subspace inversion corresponds to updating the ensemble using

the vectors of data mismatches, δdj = duc,j − dfj , also projected onto the subspace

49



spanned by the left singular vectors of ∆Df . According to Skjervheim et al. [158], this

procedure tends to reduce loss of ensemble rank when assimilating a large number

of independent data, which can be useful, for example, when we assimilate seismic

data. However, Aanonsen et al. [1] pointed out that there is no assurance that this

procedure generates realizations of model parameters that honor all observed data,

and, in this case, the estimate of model parameters may be considerably less accurate

than the estimate that could be obtained by using a larger ensemble size.

2.6 Ensemble Square Root Filter

The EnKF analysis equation is based on the KF equations (Eqs. 2.30–2.32).

In the KF, the forecast covariance matrix of the state vector is updated using

Ca
Y =

(
INy −KH

)
Cf

Y. (2.88)

According to Whitaker and Hamill [186], because EnKF uses an updating scheme

based on perturbed observations, the KF covariance analysis equation (2.88) is satis-

fied in a statistical sense only. This may result in a suboptimal filter behavior, which

is particularly evident for small ensembles [186]. In an attempt to avoid this subopti-

mal behavior, several implementations of ensemble square root filters (EnSRF) have

been proposed in the literature [15, 4, 186, 45]. These methods allow deterministic

updates of the ensemble so that the analyzed covariance exactly satisfies Eq. 2.88

[170, 151]. For EnSRF, we first update the ensemble mean using

ya = yf + K̃(dobs − d
f
); (2.89)

then, we update the ensemble changes, ∆Y a, using

∆Y a = ∆Y fTR. (2.90)
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In Eq. 2.90, TR is the Ne × Ne ensemble transform matrix (ETM). This EnSRF

scheme is referred to as a right-multiplied scheme [170, 151]. This scheme requires

the factorization (square root) of a Ne×Ne matrix, which is computationally feasible

for the typical ensemble sizes employed in reservoir history-matching applications.

The ETM is defined such that Eq. 2.88 is exactly satisfied. The computation of the

ETM depends on the square root implementation [170]. One difficulty with right-

multiplied schemes is that it is not clear how to apply the Schur product for covariance

localization, as discussed in Chapters 3 and 4 of this dissertation. However, there

also exists left-multiplied schemes of EnSRF [151]. These schemes require an ETM,

TL, such that

∆Y a = TL∆Y f , (2.91)

where TL is a Ny ×Ny matrix. The following sections present two EnSRF formula-

tions, the right-multiplied scheme proposed by Evensen [45] and the left-multiplied

scheme proposed by Whitaker and Hamill [186].

2.6.1 Right-multiplied ensemble square root filter

In order to derive the square root scheme proposed by Evensen [45], we first

use the definition of the Kalman gain (Eq. 2.32) in the covariance analysis equation

(Eq. 2.88) and rewrite Eq. 2.88 in the following form:

Ca
Y = Cf

Y − C
a
YH

T
[
HCf

YH
T + CD

]−1

HCf
Y. (2.92)

Then, we use the ensemble representations of the states covariance matrices, C̃a
Y =

1
Ne−1

∆Y a(∆Y a)T, C̃f
Y = 1

Ne−1
∆Y f (∆Y f )T, C̃f

YH
T = 1

Ne−1
∆Y f (∆Df )T andHC̃f

YH
T =

1
Ne−1

∆Df (∆Df )T in Eq. 2.92, which results in
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∆Y a(∆Y a)T = ∆Y f (∆Y f )T −∆Y f (∆Df )T

×
[
∆Df (∆Df )T + (Ne − 1)CD

]−1
∆Df (∆Y f )T. (2.93)

As before, defining the Nn ×Nn matrix

C? = ∆Df (∆Df )T + (Ne − 1)CD, (2.94)

we write Eq. 2.93 as

∆Y a(∆Y a)T = ∆Y f
[
INe − (∆Df )T (C?)−1 ∆Df

]
(∆Y f )T. (2.95)

Because C? is real-symmetric positive-definite, we can write its Schur decom-

position as

C? = XΛXT, (2.96)

and its inverse as

(C?)−1 = XΛ−1XT, (2.97)

where X is the Nn ×Nn matrix containing the orthonormal eigenvectors of C? and

Λ is a Nn × Nn diagonal matrix with the eigenvalues of C? as its diagonal entries.

Using Eq. 2.97 in Eq. 2.95 and writing Λ−1 = Λ−1/2Λ−1/2, we obtain

∆Y a(∆Y a)T = ∆Y f
[
INe − (∆Df )TXΛ−1/2Λ−1/2XT∆Df

]
(∆Y f )T, (2.98)

or equivalently
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∆Y a(∆Y a)T = ∆Y f
[
INe − (Λ−1/2XT∆Df )T(Λ−1/2XT∆Df )

]
(∆Y f )T. (2.99)

Now, we write the SVD of Λ−1/2XT∆Df as

Λ−1/2XT∆Df = UWV T, (2.100)

where U is the Nn×Nn orthogonal matrix of left singular vectors, W is the Nn×Ne

matrix with non-zero values corresponding to the singular values and V is the Ne×Ne

matrix of right singular vectors. Using Eq. 2.100 in Eq. 2.99,

∆Y a(∆Y a)T = ∆Y f
[
INe − (UWV T)T(UWV T)

]
(∆Y f )T

= ∆Y f
[
INe − VWTUTUWV T

]
(∆Y f )T

= ∆Y fV
[
INe −WTW

]
V T(∆Y f )T

=
[
∆Y fV

(
INe −WTW

)1/2
] [

∆Y fV
(
INe −WTW

)1/2
]T

.(2.101)

Thus, we can define

∆Y a ≡ ∆Y fV
(
INe −WTW

)1/2
, (2.102)

and the ETM as

TR ≡ V
(
INe −WTW

)1/2
. (2.103)

Sakov and Oke [151] showed that the above square root scheme is biased, i.e.,

it does not preserve the mean. Leeuwenburgh et al. [101] concluded that this scheme

also leads to outliers that contain most of the ensemble variance. Redefining the
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ETM as

TR = V
(
INe −WTW

)1/2
V T, (2.104)

makes the analysis unbiased and resolves the issue with outliers.

2.6.2 Left-multiplied ensemble square root filter

The left-multiplied EnSRF requires an ETM, TL, such that

∆Y a = TL∆Y f , (2.105)

where TL is a Ny × Ny. A left-multiplied ETM can be obtained by writing the

posterior covariance matrix as

Ca
Y =

[
(Cf

Y)−1 +HTC−1
D H

]−1

. (2.106)

The equivalence between Eq. 2.92 and Eq. 2.106 can be shown by using the matrix

inversion lemmas as described in [135, Chap. 7]. We can rewrite Eq. 2.106 as

Ca
Y =

[
INy + Cf

YH
TC−1

D H
]−1

Cf
Y. (2.107)

Hence, the square root of Ca
Y becomes

(Ca
Y)1/2 =

{[
INy + Cf

YH
TC−1

D H
]−1

Cf
Y

}1/2

. (2.108)

Replacing the covariance matrix Ca
Y by its ensemble approximation, C̃a

Y, given by

C̃a
Y =

1

Ne − 1
∆Y a(∆Y a)T, (2.109)

and considering the general equation, C̃a
Y = (C̃a

Y)1/2(C̃a
Y)T/2, we can write
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(C̃a
Y)1/2 =

1√
Ne − 1

∆Y a. (2.110)

Using Eq. 2.110 in Eq. 2.108 and following the same procedure for the square root

of Cf
Y, we obtain

∆Y a =
[
INy + C̃f

YH
TC−1

D H
]−1/2

∆Y f . (2.111)

Thus, we define the ETM as

TL ≡
[
INy + C̃f

YH
TC−1

D H
]−1/2

. (2.112)

However, this scheme requires the square root of a Ny ×Ny matrix, which is

not feasible for typical reservoir history-matching applications. Whitaker and Hamill

[186] introduced a left-multiplied EnSRF scheme which does not require the explicit

computation of a Ny×Ny matrix. In this scheme, we define a modified Kalman gain

matrix, K̃?, such that

∆Y a =
[
INy − K̃?H

]
∆Y f (2.113)

exactly satisfies the analysis covariance equation (2.88). From Eq. 2.113, we have

∆Y a(∆Y a)T =
[
INy − K̃?H

]
∆Y f (∆Y f )T

[
INy − K̃?H

]T

, (2.114)

and using C̃a
Y = 1

Ne−1
∆Y a(∆Y a)T and C̃f

Y = 1
Ne−1

∆Y f (∆Y f )T, we obtain

C̃a
Y =

[
INy − K̃?H

]
C̃f

Y

[
INy − K̃?H

]T

=
[
INy − K̃H

]
C̃f

Y, (2.115)
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where the last equality came from Eq. 2.88. This procedure leads to a nonlinear

equation whose solution was first presented by Andrews [8], and it is given by

K̃? = C̃f
YH

T
[
HC̃f

YH
T + CD

]−T/2
[(
HC̃f

YH
T + CD

)1/2

+ C
1/2
D

]−1

. (2.116)

The interesting feature of this equation is that it requires square roots of Nn × Nn

matrices only. For individual observations, the matrices Cf
DD and CD reduce to

scalars, and the computation of K̃? can be simplified. Denoting these scalars by

HC̃f
YH

T = C̃f
DD = σ2

dd (2.117)

and

CD = σ2
d, (2.118)

we can rewrite Eq. 2.116 as

K̃? = C̃f
YH

T

(
1√

σ2
dd + σ2

d

)
×

(
1√

σ2
dd + σ2

d + σd

)
, (2.119)

and write the original Kalman gain as

K̃ = C̃f
YH

T

(
1

σ2
dd + σ2

d

)
. (2.120)

Whitaker and Hamill [186] found a scalar, α, such that we can write

K̃? = αK̃. (2.121)

From Eqs. 2.119 and 2.120, we find that α is given by
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α =

√
σ2
dd + σ2

d√
σ2
dd + σ2

d + σd
. (2.122)

From Eq. 2.122, we note that α is a positive number less than one. It would

be one for a noise-free measurement. Although here we use a different notation, the

coefficient α from Eq. 2.122 is the same coefficient given by Eq. 13 of Whitaker and

Hamill [186]. According to Whitaker and Hamill [186], if the measurement errors are

uncorrelated, i.e., CD is diagonal, then the observations may be assimilated one at a

time. Therefore, we can assimilate data using K̃? = αK̃ and the EnSRF requires no

more computation than the traditional EnKF.

2.7 Iterative Forms of EnKF

Even though the EnKF was originally proposed as an alternative to the ex-

tended Kalman filter for applications in nonlinear dynamical systems, the update

step in the EnKF is still linear. This linear update may result in a suboptimal

performance for highly nonlinear problems. In these situations, EnKF may fail to

provide reasonable data matches. This fact motivated the development of several

iterative forms of EnKF in the last few years. In this section, we present some of

iterative methods which were proposed in the context of reservoir history matching.

In Chapter 9, we present a comparative study of these methods.

2.7.1 Half-iteration EnKF

When applied to reservoir history-matching problems, EnKF requires us to

update a combined parameter-state vector, which includes model parameters and

primary variables of the reservoir simulator. Hence, there is an underlying assump-

tion of statistical consistency between the updated vectors of model parameters and

states, where “consistency” is defined in [167]. However, because the reservoir simu-

lator equations are highly nonlinear, this assumption can be invalid and the results

obtained by EnKF can be unreliable. A simple procedure to avoid inconsistency is
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to rerun the simulator with the latest ensemble of model parameters from time zero

after each data assimilation time-step. This procedure is referred to as half-iteration

EnKF (HI-EnKF) [182]. To improve computational efficiency, Wang et al. [182] pro-

posed rerunning the ensemble from time zero only if the average relative change in

the ensemble mean model is larger than a threshold value.

2.7.2 Lorentzen-Nævdal iterative EnKF

Lorentzen and Nævdal [112] introduced an iterative procedure to improve the

estimates obtained by EnKF for highly nonlinear problems. Here, we refer to this

method as LN-IEnKF. Algorithm 2.2 presents the LN-IEnKF procedure.

In this procedure, the state vector at the `th iteration is updated using

Eq. 2.123, which corresponds to the EnKF analysis equation (Eq. 2.49) with dn,fj

replaced by dn,`j , and C̃n,`
YD and C̃n,`

DD computed based on dn,`j . In Eq. 2.124, (Cn,f
Y )−1

is the inverse of the forecast state covariance matrix, which is fixed during the it-

erations. However, Lorentzen and Nævdal [112] do not mention how they compute

(Cn,f
Y )−1. For reservoir history-matching problems, the only feasible option is to

approximate Cn,f
Y based on the forecast ensemble and compute its inverse by SVD.

The LN-IEnKF method requires one to compute the predicted data vector,

dn,`j , for a given updated state vector, yn,`j , i.e., dn,`j = h(yn,`j ). For a typical reservoir

history-matching application, the observations correspond to data at wells; e.g., well

water-cut or bottomhole pressure data. In this case, h(yn,`j ) can be computed using

Peaceman’s equation [136]. Note that we use h(·) to denote the nonlinear relationship

between the state vector and the predicted data, which is different from our previous

notation where we used g(·) to denote the nonlinear relationship between the vector

of model parameters and the predicted data.

2.7.3 Krymskaya-Hanea-Verlaan iterative EnKF

Krymskaya et al. [98] also proposed an iterative form of EnKF for reservoir
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Algorithm 2.2 LN-IEnKF

1. At the nth data assimilation time-step, update the forecast state vector, yn,fj ,
using the standard EnKF equation (Eq. 2.49).

2. Set ` = 1 and yn,1j = yn,aj , for j = 1, 2, . . . , Ne.

3. Repeat

(a) For j = 1 to Ne:

• Compute the predicted data dn,`j = h(yn,`j ), where h(yn,`j ) denotes a

nonlinear function of the state vector yn,`j .

• Compute

yn,`+1
j = yn,`j + C̃n,`

YD

(
C̃n,`

DD + Cn
D

)−1 (
dnuc,j − d

n,`
j

)
, (2.123)

• Compute

On,`+1
j =

(
yn,`+1
j − yn,fj

)T

(Cn,f
Y )−1

(
yn,`+1
j − yn,fj

)
+

(
h(yn,`+1

j )− dnuc,j

)T

(Cn
D)−1

(
h(yn,`+1

j )− dnuc,j

)
(2.124)

• If (On,`+1
j ≥ On,`

j ) set yn,`+1
j = yn,`j , i.e., do not update the state.

end (for).

(b) Set ` = `+ 1.

until (On,`+1
j ≥ On,`

j , for j = 1, 2, . . . , Ne), i.e., no states are updated; or (` >
maximum number of iterations).
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history-matching problems. Here, we refer to this method as KHV-IEnKF. In this

method, we assimilate data with standard EnKF and use the final ensemble mean

of model parameters as the “prior mean” for a subsequent data assimilation. Algo-

rithm 2.3 presents the KHV-IEnKF procedure:

Algorithm 2.3 KHV-IEnKF

1. Initialize m0 = mpr and ` = 0.

2. Generate the ensemble of model parameters by sampling m`
j ∼ N (m`, CM), for

j = 1, 2, · · · , Ne.

3. Assimilate data using EnKF and set m`+1
j = ma

j , for j = 1, 2, · · · , Ne, where
ma
j is the analyzed vector of model parameters.

4. Rerun the ensemble from time zero and compute the average objective function:

O
`+1

= 1
Ne

∑Ne
j=1O(m`+1

j ), where O(m`+1
j ) is computed using Eq. 2.3.

5. If
(∣∣∣O`+1−O`

O
`
+10−8

∣∣∣ < εo

)
or (` = maximum number of iterations) then:

• Stop data assimilation.

Else:

• Compute the ensemble mean: m`+1 = 1
Ne

∑Ne
j=1m

`+1
j .

• Set ` = `+ 1.

• Return to step 2.

end (if).

In [98], the authors use the “confirming step” [184] option to avoid non-

physical values of pressure and saturation when restarting simulations. However,

this procedure is inconsistent for the linear-Gaussian case [191]. Unfortunately, the

KHV-IEnKF is also inconsistent for the linear-Gaussian case. By simple inspection of

the algorithm, we can conclude that KHV-IEnKF will not provide a correct sampling

of the posterior pdf for the linear-Gaussian case because we use the posterior mean

from the previous iteration as the “prior mean” for the next iteration, which is clearly

statistically incorrect.
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2.7.4 Ensemble randomized maximum likelihood

The ensemble randomized maximum likelihood (EnRML) method was intro-

duced by Gu and Oliver [70] as an iterative EnKF. EnRML uses a Gauss-Newton

update equation with an “average sensitivity matrix” estimated by the ensemble. In

the EnRML, each model of the ensemble is updated using

m`+1
j = m`

j + β`δm
`+1
j , (2.125)

with

δm`+1
j = mf

j −m`
j − C̃

f
MG̃

T
`

(
G̃`C̃

f
MG̃

T
` + CD

)−1 [
d`j − duc,j − G̃`

(
m`
j −m

f
j

)]
.

(2.126)

In the above equations, ` denotes the iteration index and β` denotes the step

size. During the iterative process, C̃f
M is fixed and estimated based on the forecast

ensemble, i.e.,

C̃f
M =

1

Ne − 1

Ne∑
j=1

(
mf
j −mf

)(
mf
j −mf

)T

=
∆M f (∆M f )T

Ne − 1
. (2.127)

The average sensitivity matrix, G̃`, is computed using

G̃` = ∆D`
(
∆M `

)+
, (2.128)

where the superscript “+” denotes the pseudo-inverse of ∆M ` computed by SVD.

∆D` = D` − D
`
, where D` is the matrix with the ensemble of predicted data at

the `th iteration, i.e., the jth column of D` corresponds to the predicted data from

the jth ensemble member. D
`

is the matrix with all columns equal to d
`
, which

represents the average of all columns of D`. Similarly, ∆M ` = M ` −M `
, where the
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jth column of M ` contains the vector of model parameters corresponding to the jth

ensemble member at the `th iteration. M
`

is the matrix with all columns equal to

m`, which represents the average of all columns of M `.

The EnRML procedure is presented in Algorithm 2.4. Apparently, the last

termination criterion in Algorithm 2.4, i.e., maximum number of step size cuts, was

not used in Gu and Oliver [70]. In fact, [70] gives very little information about the

line-search procedure. In our implementation, we use an initial step size β0 = 1, a

step size increasing/reduction factor of α = 2, and a maximum number of step size

cuts equal to five.

In the EnRML there is no guarantee that the search direction is downhill.

When the search direction obtained is not downhill, the iterative procedure fails

to improve the data matches. Moreover, because all models are updated using the

same average sensitivity, similar to the standard EnKF, EnRML is not expected to

sample multiple modes of the posterior distribution. In the original EnRML, during

an iteration, all ensemble members are updated with the same step size. Wang et al.

[182] suggested computing a different step size for each ensemble member. Although

this procedure seems to be more efficient, the results presented in [182] do not show

significant differences between the two line-search procedures.

2.8 Ensemble Smoother

The ensemble smoother (ES) was proposed by van Leeuwen and Evensen

[174]. Unlike EnKF, ES does not assimilate data sequentially in time. Instead, ES

computes a global update including all data available. Because ES assimilates all

data simultaneously, we only need to consider the parameter estimation problem.

Other than that, ES formulation is similar to EnKF. For ES, we write the analyzed

vector of model parameters, ma, as

ma
j = mf

j + C̃f
MD

(
C̃f

DD + CD

)−1 (
duc,j − dfj

)
, (2.129)
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Algorithm 2.4 EnRML

1. Run the ensemble from time zero until the next data assimilation time-step.

2. Initialize: ` = 0, Ncuts = 0, β0 and m0
j = mf

j for j = 1, 2, . . . , Ne.

3. Compute G̃` (Eq. 2.128).

4. For j = 1 to Ne:

(a) Compute m`+1
j (Eqs. 2.125 and 2.126).

(b) Rerun ensemble from time zero.

(c) Compute O`+1
d,j = 0.5

(
d`+1
j − duc,j

)T
C−1

D

(
d`+1
j − duc,j

)
.

end (for).

5. Compute O
`+1

d = 1
Ne

∑Ne
j=1O

`+1
d,j .

6. If O
`+1

d < O
`

d then:

(a) Accept the step and increase the step size for the next iteration, β`+1 =
αβ`.

(b) Set Ncuts = 0.

(c) Increase the iteration index, ` = `+ 1.

Else:

(a) Reduce the step size, β` = β`/α.

(b) Set Ncuts = Ncuts + 1.

(c) If Ncuts ≤ Ncuts,max then return to step 4.

end (if).

7. Check termination criteria.

8. If any one of the termination criteria is satisfied, then go to the next data
assimilation time-step. Otherwise, return to the step 3.

The termination criteria include the following:

• max |m`+1
i,j −m`

i,j| < εm for i = 1, 2, . . . , Nm and j = 1, 2, . . . , Ne .

•
∣∣∣O`+1

d −O`d
O
`
d

∣∣∣ < εo.

• Maximum number of iterations.

• Maximum number of step size cuts (Ncuts,max).
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for j = 1, 2, · · ·Ne. The notation is similar to the one presented for EnKF. C̃f
MD

is the cross-covariance matrix between the prior vector of model parameters, mf ,

and the vector of predicted data, df ; C̃f
DD is the Nd ×Nd auto-covariance matrix of

predicted data. Note that we use Nd to denote the total number of measurements

assimilated, which is different from our previous notation for EnKF, where we used

Nn to denote the number of measurements at the nth data assimilation time-step.

Similar to the EnKF case, duc ∼ N (dobs, CD) where dobs denotes the Nd-dimensional

vector of observed data and CD denotes the Nd ×Nd covariance matrix of observed

data measurement errors.

2.9 Normalized Objective Function

According to Tarantola [164, p. 74] and discussed in more detail in the history

matching context in [193, 59], for the linear case, the minimum of 2O(m) at the

MAP estimate has a χ2 distribution with Nd degrees of freedom. For Nd large, this

χ2 distribution can be approximated by a Gaussian distribution with mean equal to

Nd and variance equal to 2Nd. Assuming that any legitimate realization of this χ2

distribution should be within five standard deviations of the mean implies that the

final objective function at the MAP estimate should satisfy

1− 5

√
2

Nd

≤ 2O(mMAP)

Nd

≤ 1 + 5

√
2

Nd

. (2.130)

Although this criterion is strictly valid only for the linear case, we expect that it

approximately holds for the nonlinear case. According to Oliver et al. [135], failure

to satisfy Eq. 2.130 may indicate convergence to a local minimum, in which case,

we should question whether a reasonable MAP estimate was obtained. Based on

Eq. 2.130, Gao et al. [58] defined the normalized objective function at the MAP

estimate as
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ON(mMAP) ≡ 2O(mMAP)

Nd

. (2.131)

According to Eqs. 2.130 and 2.131, as the number of data points increases, we expect

ON(mMAP) ≈ 1.

When we use RML for obtaining samples of the posterior pdf, we minimize

the modified objective function given by Eq. 2.21. According to Oliver et al. [135,

p. 149], because we use muc and duc instead of mpr and dobs in Eq. 2.21, the criterion

of Eq. 2.130 should be modified to

1− 5

√
2

Nd

≤ O(mc)

Nd

≤ 1 + 5

√
2

Nd

, (2.132)

where, mc denotes a conditional realization obtained by RML. The same argument is

valid for EnKF. In fact, as shown in [143], the EnKF analysis equation can be derived

from RML so that both methods are equivalent for the linear-Gaussian case when

the size of the ensemble used in the EnKF goes to infinity. Hence, it is convenient

to re-define the normalized objective function for a RML or EnKF sample as

ON(mc) ≡
O(mc)

Nd

. (2.133)

2.10 Normalized Variance

For the linear-Gaussian case, the posterior covariance, CMAP, is given by

Eq. 2.14. The last equality in Eq. 2.14 shows that CMAP is given by the prior, CM,

minus a matrix ∆CM, i.e,

CMAP = CM −∆CM, (2.134)

where

65



∆CM = CMG
T
(
GCMG

T + CD

)−1
GCM. (2.135)

Because ∆CM is a positive semidefinite matrix [135, Chap. 9], its diagonal

entries are non-negative. Hence, the posterior variances, i.e., the diagonal entries

of CMAP are less than or equal to the prior variances. Therefore, dividing a poste-

rior variance by the corresponding prior variance results in a number less or equal

to one, which can be interpreted as an approximate measure of reduction in uncer-

tainty [135, Chap. 9]. However, it is clear that the normalized variances ignore the

change in uncertainty due to the change in the covariances [135]. Nevertheless, in

this dissertation, we use the sum of normalized variances (SNV) as an indication of

reduction in uncertainty due to data assimilation. We compute the SNV using

SNV =
Nm∑
i=1

var[ma
i ]

var[mf
i ]
, (2.136)

with ma
i and mf

i denoting the values of the ith model parameter after and before

data assimilation.
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CHAPTER 3

COVARIANCE LOCALIZATION

Covariance localization is a standard procedure for reducing the spurious cor-

relations caused by sampling errors in the EnKF. Another advantage of covariance

localization is that it increases the degrees of freedom available to assimilate data.

Most of the localization procedures are distance-dependent, i.e., they assume that

only measurements positioned within a certain distance from a gridblock should af-

fect the analysis in that gridblock. Covariance localization is done by forming the

Schur (or Hadamard) product between a correlation matrix with compact support

and the covariance of the forecast state vector. Hence, the most important decision

required for distance-based covariance localization is the choice of the correlation

length to build the correlation matrix. Throughout, we refer to this correlation

length as critical length. This chapter presents a procedure that combines the cor-

relation lengths from the prior geological model and the region of data sensitivity

to define the critical lengths. In addition, this chapter presents the results of a real

field application of EnKF with the proposed covariance localization procedure. The

results presented in this chapter were published in Emerick and Reynolds [36] and

Emerick and Reynolds [37].

3.1 EnKF Analysis with Covariance Localization

For covariance localization, we replace the forecast covariance matrix, C̃n,f
Y ,

by the Schur product between a correlation matrix, ρn, and C̃n,f
Y , i.e.,

C̃n,f
Yρ

= ρn ◦ C̃n,f
Y , (3.1)
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where “◦” denotes the Schur product, which is an element-wise product between ρn

and C̃n,f
Y .

By computing eigenvalues of estimated covariance matrices, Hamill et al. [71]

showed that the covariance matrix estimated by an ensemble becomes full rank when

this Schur product is employed. This is a consequence of the Schur Product Theorem

[79]: If the matrix A is positive-definite and the matrix B is positive semi-definite with

all of its main diagonal entries positive, then the product A ◦ B is positive-definite.

Because the sampled covariance matrix is positive semi-definite with positive values

on the diagonal, Schur’s Product Theorem guarantees that the Schur product of

the sampled covariance with a positive-definite correlation matrix will result in a

positive-definite matrix. As a consequence, localization allows the model update to

be obtained from a much larger space than the one spanned by the ensemble. Fig. 3.1

illustrates this fact by showing the singular values of a 300× 300 covariance matrix

estimated from ensembles before and after the Schur product with a positive-definite

correlation matrix for different ensemble sizes. This figure shows that the number of

nonzero singular values of the ensemble covariance matrices is limited by the size of

the ensemble. After the Schur product, the matrices become full rank, i.e., there are

300 nonzero singular values.
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Figure 3.1: Singular values of covariance matrices estimated by ensembles before
and after the Schur product with a positive-definite correlation matrix.

For covariance localization, we replace the EnKF analysis (Eq. 2.39) by
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yn,aj = yn,fj + (ρn ◦ C̃n,f
Y )HT

n

[
Cn

D +Hn(ρn ◦ C̃n,f
Y )HT

n

]−1 (
dnuc,j − d

n,f
j

)
. (3.2)

Similarly to C̃n,f
Y , the correlation matrix ρn also can be partitioned as

ρn =


ρnMM ρnMP ρnMD

ρnPM ρnPP ρnPD

ρnDM ρnDP ρnDD

 . (3.3)

It follows that

(ρn ◦ C̃n,f
Y )HT

n =


ρnMD ◦ C̃

n,f
MD

ρnPD ◦ C̃
n,f
PD

ρnDD ◦ C̃
n,f
DD

 = ρnYD ◦ C̃
n,f
YD , (3.4)

and

Hn(ρn ◦ C̃n,f
Y )HT

n = ρnDD ◦ C̃
n,f
DD. (3.5)

Using Eqs. 3.4 and 3.5, the EnKF analysis equation with covariance localiza-

tion (3.2) becomes

yn,aj = yn,fj +
(
ρnYD ◦ C̃

n,f
YD

)(
Cn

D + ρnDD ◦ C̃
n,f
DD

)−1 (
dnuc,j − d

n,f
j

)
. (3.6)

Eq. 3.6 indicates that to perform localization, we need to compute only the

submatrices, ρnMD, ρnPD and ρnDD. Although we have made a distinction between ρnMD,

ρnPD and ρnDD, in the results considered in this dissertation, we use correlations which

are distance-dependent only; and the entries of these three localization matrices are

calculated using the same correlation function and the same critical length.
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Alternatively, we can apply the Schur product directly to the Kalman gain.

We refer to this procedure as Kalman gain localization. In this case, we write the

EnKF analysis equation as

yn,aj = yn,fj +
(
ρnYD ◦ K̃n

)(
dnuc,j − d

n,f
j

)
, (3.7)

where, K̃n is the regular Kalman gain given by Eq. 2.40. Note that the subspace

inversion procedure described in Section 2.5.2 does not allow use of covariance local-

ization because the matrix C̃n,f
DD is not formed. In this case, Kalman gain localization

can be used.

Eq. 3.6 shows that only the last Nn columns of ρn ◦ C̃n,f
Y directly affect the

analysis step, and these last Nn columns are given by ρnYD ◦ C̃
n,f
YD ; see Eq. 3.4. Ideally,

we wish the Nn columns of ρnYD◦C̃
n,f
YD to be linearly independent because the updated

state vector is a linear combination of the columns of ρnYD ◦ C̃
n,f
YD . Assuming that

Ny > Nn, the maximum rank of ρnYD◦C̃
n,f
YD is Nn. When the rank of ρnYD◦C̃

n,f
YD is equal

to Nn, we obtain the maximum number of degrees of freedom available to assimilate

the Nn observations. The Schur product ρn ◦ C̃n,f
Y is positive-definite as long as we

employ a positive-definite matrix ρn. Unfortunately, we cannot guarantee that the

composite localization matrix defined in Eq. 3.3 is positive-definite. However, even

if the last block column of ρn does not have rank Nn, it is plausible that ρnYD ◦ C̃
n,f
YD

will have rank Nn.

Chen and Oliver [22] concluded that for reservoir problems, the cross-covariance

between data and state variables, C̃n,f
PD , may be very different from the cross-covariance

between data and model parameters, C̃n,f
MD. Thus, one should apply different localiza-

tion for C̃n,f
MD and C̃n,f

PD . Because the sensitivity of predicted data to model parameters,

say gridblock permeabilities, is different from the sensitivity of data to primary vari-

ables, say pressure and fluid saturations, the use of different localization functions

seems preferable. However, unless we can accurately calculate cross-covariances,
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which is not computationally feasible, we would not be able to design proper local-

ization functions. Thus, in the localization procedure introduced in this chapter, we

apply the same localization function to modify the two cross-covariances, C̃n,f
MD and

C̃n,f
PD . For the auto-covariance of predicted data, C̃n,f

DD, we also apply the same local-

ization function. It is important to observe that the motivation for including primary

variables in the state vector in the EnKF is to avoid the need to run the simulator

from time zero before each data assimilation time-step. In this case, there is an un-

derlying assumption that the ensemble of updated primary variables obtained with

EnKF are statistically consistent with the ensemble of primary variables that would

be obtained by running the reservoir simulator from time zero using the ensemble of

updated vectors of model parameters as input. Once localization is applied, we can

not guarantee this consistency even for the linear-Gaussian case. Nevertheless, the

computational results presented in this chapter indicate that the proposed localiza-

tion procedure does not increase inconsistency problems. In fact, the results indicate

that localization improves the data matches obtained by EnKF.

3.1.1 Correlation matrix for localization

The most important decision to be made in the correlation matrix for localiza-

tion is the choice of the critical length(s). Based on sensitivities [188, 105], we expect

that each type of data has a different region of influence. For example, bottomhole

pressure data at a flowing well are strongly sensitive only to gridblock permeabilities

and porosities fairly close to the well, but water-cut data at a producing well are

sensitive to porosities and permeabilities along streamlines connecting a producing

well to a water injection well. It is intuitive that we should consider the region of

influence of data when selecting the critical length(s) for localization. Using a local-

ization region significantly smaller than the actual region of influence may lead to

unreasonably large local changes in model parameters. Besides that, the localization

region is expected to be affected by the geological structure, e.g., the covariance
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function for a prior probability density function for the vector of model parameters.

Applying localization to restrict changes in the state vector to a region smaller than

the region based on the correlation length(s) inherent in the geological model may

lead to model changes that destroy the geological realism of the EnKF estimates.

Therefore, the appropriate choice of the critical length(s) should be based both on

the underlying correlation length(s) of the geological model and data sensitivity.

In order to analyze our conjecture on the choice of the critical length, we

consider the linear case. For the linear case, the covariance Cn,f
MD in the analysis

equation reduces to the product Cn,f
M GT

n , where Cn,f
M denotes the forecast covariance

matrix of model parameters and GT
n denotes the transpose of the sensitivity matrix.

Assume that for a particular well datum, nonzero sensitivities correspond to a circular

region with radius Lg (Fig. 3.2a) and the model covariance at this location can be

described by the correlation lengths Lx and Ly (Fig. 3.2b). For this case, the resulting

correlation lengths of the product Cn,f
M GT

n are the sums Lg + Lx and Lg + Ly, as

illustrated in Fig. 3.2c. Assuming that instead of computing the product Cn,f
M GT

n =

Cn,f
MD, we use the ensemble approximation C̃n,f

MD. For this case, if we apply localization

to C̃n,f
MD, there is no reason to choose critical lengths larger than the prior principal

critical lengths plus the length (radius) of the region of sensitivity, i.e., Lg + Lx and

Lg + Ly. If the distance between a model parameter and a datum is greater than

these critical lengths, we know that the covariance must be zero. On the other hand,

if we choose critical lengths much smaller than Lg+Lx and Lg+Ly, we may eliminate

actual nonzero covariances, which is clearly undesirable. Thus, using critical lengths

equal to the sum of prior principal correlation lengths and the sensitivity “range” is a

reasonable and simple choice. Moreover, this choice is easy to implement in practice.

In the linear case, Cn,f
DD = GnC

n,f
M GT

n , so using this same procedure to approximate

the critical lengths for ρnDD is also reasonable. Although our motivating assumption

that the sensitivity region corresponding to a particular datum is a circular region
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centered on the datum is rarely realistic, the results presented in this chapter show

that the localization procedure based on this assumption effectively eliminates the

detrimental results commonly associated with sampling error when applying the

EnKF.

One might argue that because covariances are sequentially updated at each

EnKF analysis step, basing critical correlation lengths on the covariance of the prior

geological model is inappropriate because at each data assimilation time-step, the

ensemble of forecasts implicitly represents the prior covariance for the subsequent

data assimilation (analysis) step. Thus, the critical correlations lengths used to up-

date model parameters at the data assimilation time-step tn should depend on the

critical lengths inherent in the analyzed covariance matrix at time tn−1 plus the sen-

sitivity matrix at time-step tn. Nevertheless, we argue that the correlation lengths

inherent in the initial ensemble of vectors of model parameters should be essentially

maintained after each data assimilation time-step assuming of course that the initial

model is based on a reasonable geological description. Even though we expect the ini-

tial critical correlation lengths in the model will be roughly preserved, it is clear that

the initial prior covariance matrix for model parameters multiplied by the transpose

of the sensitivity matrix at time-step tn may be numerically very different than the

posterior covariance for model parameters at time-step tn−1 multiplied by the trans-

pose of the sensitivity matrix at time-step tn. The last statement is illustrated by

the 1D immiscible flow example in the recent paper of Chen and Oliver [22]. Never-

theless, we argue that the incorporation of the principal correlation lengths inherent

in the initial ensemble of vectors of model parameters in conjunction with sensitivity

ranges at each data assimilation time-step provides a reasonable localization proce-

dure even though this means that any change in the localization critical lengths with

time must be accounted for entirely by changes in the ranges of sensitivities with

time.
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(a) Sensitivity (Gn) (b) Prior covariance
(Cn,fM )

(c) Product Cn,fM GT
n

Figure 3.2: Example illustrating that the ranges of the product Cn,f
M GT

n are equal
to the sum of the radius of influence of the sensitivity matrix and the correlation
lengths of the prior covariance.

In general, sensitivities are not readily computed with commercial reservoir

simulators, and even when they are available, their computation is expensive. There-

fore, computing sensitivities simply for the purpose of defining critical lengths for lo-

calization is not an attractive option. Arroyo-Negrete et al. [10] and Devegowda et al.

[31] proposed a localization procedure that used streamlines to quantify the region

of influence of model parameters on the observed data. The main attraction of their

idea is that using streamlines, one can identify the region of influence of well data

with a relatively low computational cost. In a recent paper, Watanabe and Datta-

Gupta [183] modified the procedure proposed in [10] by using phase-streamlines

instead of total-streamlines to obtain the localization region. By comparing phase-

streamlines with cross-covariances between permeability and water and gas-oil ratio

data estimated by an ensemble of 2,000 models, Watanabe and Datta-Gupta [183]

concluded that phase-streamlines approximates reasonably well the regions of high

cross-covariances. Watanabe and Datta-Gupta [183] used this result to justify the use

of phase-streamlines for covariance localization. However, the ensemble of permea-

bility used in [183] was uncorrelated. Therefore, for this case, basing the localization

only on the phase-streamlines, which roughly represents the region of data sensitivity,

is reasonable. In fact, this result does not contradict our conjecture that localization

needs also to consider the correlation lengths in the prior geological model.
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Damiani [28] proposed a method based on calculation of a pseudo-tracer con-

centration to define drainage areas (or irrigated areas in case of injection) associated

with each well. The procedure assumes the injection of a pseudo-tracer which is

fully miscible with the reservoir fluid. The computations are performed as a post-

processing of results of a reservoir simulation using the velocity fields stored during

the simulation. As shown by Damiani [28], the drainage areas obtained with this

procedure are equivalent to the ones obtained by tracing the streamlines (Fig. 3.3).

(a) Streamlines (b) Pseudo-tracer
concentration. P1

(c) Pseudo-tracer
concentration. P2

(d) Pseudo-tracer
concentration. P3

Figure 3.3: Comparison between drainage areas obtained by streamlines and
pseudo-tracer [28].

We propose the following approach for covariance localization in reservoir

simulation applications: at each data assimilation time-step, compute the region of

influence of each well based on the ensemble mean model; the region of influence

can be calculated either by using streamlines or by using the procedure proposed by

Damiani [28]. Next, compute the area for each region and then calculate the radius

of the circle with the same area. Alternatively, instead of using a circular region, we

can generate an ellipse centered on each datum location that “best” represents the

drainage region in a least squares sense. Then, the radii of influence are added to the

principal correlation lengths of the prior geological model to obtain the final critical

lengths that will be applied for localization using the fifth-order compact correlation

function proposed by Gaspari and Cohn [61]
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where L is the critical length and h is the Euclidean distance between any grid point

and an observation location. Note that ρ is zero for h ≥ 2L, and when h = L,

ρ ≈ 0.21. Fig. 3.4 illustrates the shape of the Gaspari-Cohn correlation function.
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Figure 3.4: Correlation functions.

This localization procedure is applied on a layer-by-layer basis, i.e., each layer

may have different critical lengths. When using ellipses, as opposed to simply circles

to represent the drainage regions, we compute the lengths of the axes of each ellipse,

L1 and L2, by minimizing a least-squares function. In our implementation, this

minimization is carried out using the downhill simplex method [139, Chap. 10]. The

least-squares function is defined by

F (L1, L2) =
Nx∑
i=1

Ny∑
j=1

(cij − e(h))2 (3.9)
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where Nx and Ny are the number of gridblocks in the x- and y-directions; cij is the

pseudo-tracer concentration in the gridblock with index (i, j). The values of pseudo-

tracer concentration vary between zero and one, but in most of the drainage region

they are either one or very close to one. Values lower than one are typically observed

at the edges of the drainage region. In Eq. 3.9, e(h) is the “ellipse” function, defined

by

e(h) =


0, h > 1

1, h ≤ 1

, (3.10)

where

h =

√(
δx′

L1

)2

+

(
δy′

L2

)2

. (3.11)

In Eq. 3.11, L1 and L2 are the axes of the ellipse rotated by the angle θ (Fig. 3.5);

δx′ and δy′ are the distances from the well location in the rotated directions x′ and

y′, respectively. First, we compute the distances in the x- and y-directions and then

compute the rotated distances using

δx′
δy′

 =

 cos θ sin θ

− sin θ cos θ


δx
δy

 . (3.12)

In computing the axes of each ellipse, we assume that the rotation angle, θ, is the

same one defined by the prior geological model so that the axes, L1 and L2, can be

directly added to the prior correlation lengths to define the final localization region.

Fig. 3.6 illustrates two “ellipses” obtained for the drainage region shown in Fig. 3.6a

assuming θ = 0 (Fig. 3.6b) and θ = 45o (Fig. 3.6c).
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L1L2

x

y

θ

x’y’

Figure 3.5: Ellipse defining anisotropic directions in the prior model.

(a) Drainage region

L1

L2

(b) Ellipse matched for
θ = 0

L1L2

(c) Ellipse matched for
θ = 45o

Figure 3.6: Illustration of ellipses generated from a drainage region with different
anisotropic directions in the prior model.
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3.2 Examples

3.2.1 Example 1 – Linear model

The first example is a 2D linear model on a 50× 50 uniform grid. The model

parameters are gridblock porosities. The measured data correspond to the average

porosity of the 11 × 11 gridblocks centered on each well position as illustrated in

Fig. 3.7a. The total number of wells is 144. At each data assimilation time-step, we

assimilate the datum from one well, such that the first datum assimilated corresponds

to well number 1, the second to well 2 and so on, until the assimilation of the datum

from the 144th well. To generate the measurements, we added to the well data

predicted by the true model Gaussian random noise with zero mean and standard

deviation equal to 3% of the true data. We assumed that the measurement errors are

uncorrelated, so that the covariance matrix CD is diagonal. The true porosity field

was generated using an isotropic exponential covariance function with a correlation

length of 5 gridblocks, i.e., equal to 5∆x where ∆x is the width of a gridblock.

The prior mean porosity of every gridblock is 0.20 and the prior variance is 0.052.

Fig. 3.7b shows the true porosity field.

(a) Grid with well
locations

(b) True porosity field

Figure 3.7: Well locations and true model. In (a), the black dots represent the
well locations and the red square illustrates the size of the sensitivity region for well
W65.

The initial ensemble was generated using the same covariance function and

prior mean specified above. We use EnKF to assimilate data with two ensemble sizes,
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25 and 50, with and without covariance localization. For covariance localization, we

consider three cases: (1) applying the Gaspari-Cohn correlation function with a

critical length of 5 gridblocks, which is equal to the underlying correlation length of

the prior geostatistical model from which the initial ensemble and the true model were

generated. Note that 5 gridblocks also approximately corresponds to the distance of

influence of the sensitivity; (2) the critical length of 10 gridblocks, which corresponds

to the correlation length of the prior model plus the distance of influence of the

sensitivity (our recommended procedure); (3) critical length of 15 gridblocks.

Figs. 3.8 and 3.9 show the ensemble mean after data assimilation for ensemble

sizes of 25 and 50, respectively. For comparison, the MAP estimate and the EnKF

ensemble mean obtained with an ensemble of 1,000 models are also presented. Note

that with this large ensemble, the EnKF ensemble mean and the MAP estimate

share many features. Also, note that for this case, the MAP estimate corresponds

to the correct posterior mean and the ensemble mean from EnKF will converge to

the MAP estimate when Ne → ∞. Compared to the MAP estimate, the ensemble

mean from EnKF with Ne = 25 and Ne = 50 without localization are very rough.

The ensemble means from the localization cases, on the other hand, are smoother

and closer to the MAP estimate. Each of the three localization procedures yields an

estimate (ensemble mean) of the porosity field that shows the main features of the

MAP estimate, even for an ensemble of 25 models.

In order to have statistically more significant results, we repeated the data

assimilation with 10 different initial ensembles. Table 3.1 presents the mean and

standard deviation of the objective function for each case. The objective functions

were evaluated based on the ensemble mean model. For this example, we have

Nd = 144 observed data points. Hence, according to the quality criterion of Eq. 2.130,

the normalized objective function (Eq. 2.131) should be less than 1.589. According

to Table 3.1, most of the EnKF results do not satisfy this quality criterion. Except
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Table 3.1: Objective function. For EnKF cases with ensembles of 25 and 50 models,
this table presents the mean and standard deviation for 10 different initial ensembles.

Case Om(m) Od(m) ON = 2O(m)
Nd

mean std. dev. mean std. dev. mean std. dev.

Ne = 25, no local. 1310.4 318.4 228.0 71.7 21.366 4.768
Ne = 25, local. 1 105.3 5.1 46.8 2.7 2.112 0.084
Ne = 25, local. 2 187.8 11.5 24.5 2.6 2.944 0.154
Ne = 25, local. 3 293.8 20.8 24.5 3.9 4.412 0.268

Ne = 50, no local. 1359.9 375.6 102.2 29.7 20.308 5.532
Ne = 50, local. 1 56.7 2.0 44.7 2.8 1.408 0.054
Ne = 50, local. 2 98.4 3.5 20.4 1.8 1.650 0.060
Ne = 50, local. 3 150.1 5.6 17.2 1.8 2.324 0.084

MAP 19.8 – 7.6 – 0.380 –
Ne = 1,000 82.1 – 9.0 – 1.265 –

for the ensemble of 1,000 models, EnKF cases without localization gave very high

values of the objective function. Cases with localization, on the other hand, resulted

in values of the objective function that come close to satisfying the quality criterion.

Besides the normalized objective function, in Table 3.1, we present the mean values of

the two parts of the objective function, Om and Od. EnKF cases without localization

resulted in large values of Om, meaning very rough models. Besides that, these

cases resulted in larger values of Od, indicating poor data matches. Localization

improved both parts of the objective function. Note that as the specified critical

length increased, EnKF resulted in rougher models, but with better data matches.

Figs. 3.10 and 3.11 present the final posterior covariance between the center

gridblock and gridblocks on a horizontal line passing through the center gridblock.

For EnKF cases, the posterior covariances were estimated using the standard ap-

proximation, i.e.,

C̃a
M =

1

Ne − 1

Ne∑
j=1

(ma
j −ma)(ma

j −ma)T. (3.13)
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(a) MAP (b) Ne = 1,000 (c) No localization

(d) Localization case 1
(5 gridblocks)

(e) Localization case 2
(10 gridblocks)

(f) Localization case 3
(15 gridblocks)

Figure 3.8: Ensemble mean after data assimilation. Ensemble size 25.

(a) MAP (b) Ne = 1,000 (c) No localization

(d) Localization case 1
(5 gridblocks)

(e) Localization case 2
(10 gridblocks)

(f) Localization case 3
(15 gridblocks)

Figure 3.9: Ensemble mean after data assimilation. Ensemble size 50.

Note that these posterior covariances correspond to the final ensemble of models, and

they are not multiplied by the localization correlation matrices. For comparison, we

computed the correct posterior covariance using Eq. 2.14. According to Figs. 3.10a

and 3.11a, EnKF without localization clearly results in a significant underestimation
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of the posterior covariances, i.e., EnKF overestimates the reduction in uncertainty

obtained by the assimilation of data. Note that for the ensemble of 25 models, the

posterior covariances are very close to zero, which indicates that the final ensemble

has almost collapsed to a single model. Localization resulted in better estimates

of the posterior covariances. Note that localization case 2 (our recommended pro-

cedure) gave posterior covariances very close to the correct ones in the vicinity of

the central gridblock. A smaller critical length for localization tends to result in

an overestimation of the posterior covariance while a larger length tends to give an

underestimation of the covariances. As observed by other investigators [80, 71, 57],

as we increase the size of the ensemble, we may need to increase the critical length in

the localization function in order to obtain optimal results. We observe this behavior

in this example; i.e., using a critical length of 15 gridblocks, we approximate very well

the posterior covariance for the ensemble size of 50, while for the ensemble size of 25,

we underestimate it. However, even for an ensemble of 50 models, a critical length

defined by prior plus sensitivity (10 gridblocks) provides a good approximation of

the posterior covariance.

Furrer and Bengtsson [57] derived a relationship between a nearly optimal

localization function and the true covariance. In this paper, they compared the true

covariance matrix, CM, with a covariance matrix C̃M generated from an ensemble

using the expectation of the norm of the difference between these two matrices defined

by

E
[
‖CM − C̃M‖2

]
= E

[
trace

(
(CM − C̃M)2

)]
. (3.14)

According to this definition, the smaller the norm of the difference, the closer C̃M

is to the true covariance. Using the same metric, we computed the norm of the

prior and posterior covariances with and without localization. Table 3.2 presents

the average values of the expectations of the norms based on 10 different ensembles
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Figure 3.10: Posterior covariances for the center gridblock of the model. Ensemble
of 25 models.
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Figure 3.11: Posterior covariances for the center gridblock of the model. Ensemble
of 50 models.
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considering the prior, Cf
M, and the posterior, Ca

M, covariance matrices. The results

in Table 3.2 indicate that the best approximation of the true prior covariance matrix

is for the case with localization using a critical length of 5 gridblocks (localization

case 1), because it yields the lowest value for the norm ‖Cf
M − C̃f

M‖2. Fig. 3.12

presents the prior covariances for the first ensemble between the center gridblock

of the model and gridblocks in a horizontal line passing through the center grid-

block. The results presented in this figure agree with the results of Table 3.2, i.e.,

the best approximation of the prior covariance is for the case with localization with

5 gridblocks.
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Figure 3.12: Prior covariances. Ensemble of 25 models.

Using a matrix norm for comparing the posterior covariances may not be

definitive. For example, consider the results of Fig. 3.10. If we define the best result

based on the norm of the difference (third column of Table 3.2), as we did for the

prior, the best approximation would be the case without localization. However, as

illustrated in Fig. 3.10a, the posterior covariances for the case without localization

are almost zero everywhere. As the true values are also close to zero except in a small
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region around the central gridblock, at most gridblocks, EnKF without localizaiton

gives a good approximation of the true covariance. In fact, however, the EnKF-

generated ensemble almost collapsed and we obtained a poor data match as well as

an overly rough approximation of the MAP estimate. The posterior covariances ob-

tained with localization (Figs. 3.10b, 3.10c and 3.10d) give better approximations of

the correct covariances near the central gridblock, even though they are noisy. Thus,

the matrix norm of Eq. 3.14 may not be a good metric for comparing the posterior

covariances. The results of Fig. 3.10 and Table 3.1 suggest that the best results were

obtained by using a critical correlation length equal to the prior correlation length

plus the sensitivity range.

In fact, in order to obtain a good estimate of the posterior mean and posterior

covariance with EnKF, we need to have good approximations for the products Cf
MG

T

and GCf
MG

T. If an exact representation of the sensitivity matrix G is available, we

can improve the estimate of Cf
MG

T by improving the estimate of the prior covariance

Cf
M, which, for example 1, could be done by selecting the prior correlation length (5

gridblocks) for localization. However, this is not true whenever we use sample ap-

proximations. In this case, the spurious correlations are distributed over the product

Cf
MG

T. Therefore, a proper selection of correlation length(s) for localization should

consider both the principal correlation ranges of the initial prior covariance and the

range of sensitivities reflected in the sensitivity matrix.

Table 3.2: Expectation of the norm of the difference between the true and sampled
covariances.

Case E
[
‖Cf

M − C̃
f
M‖2

]
E
[
‖Ca

M − C̃a
M‖2

]
Ne = 25, no local. 23.61 4.67
Ne = 25, local. 1 3.82 17.93
Ne = 25, local. 2 6.24 13.33
Ne = 25, local. 3 8.46 9.39
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3.2.2 Example 2 – Single phase pressure data

The second example corresponds to a single-phase flow in a one-dimensional

horizontal reservoir partitioned into 300 gridblocks for the purpose of numerical

simulation. Only one well is completed in the reservoir, a producing well in the 300th

gridblock as illustrated in Fig. 3.13. The porosity is assumed constant and equal to

0.2. The well is operated at a specified oil rate, and the observed data are bottomhole

pressures. The production history consists of 246 days with alternating periods of

flow and build-up as illustrated in Fig. 3.14. Independent Gaussian random noise

with zero mean and standard deviation of 5 psi was added to the data generated from

the simulator with the true permeability field in order to generate the observed data

for history matching. We assumed that the measurement errors are uncorrelated, so

that the covariance matrix CD is diagonal.

 q 

1 2 3 300
100 ft 

⋅⋅⋅

Figure 3.13: Grid of example 2.

The model parameters are the gridblock log-permeabilities. We generated

the true model and the initial ensemble of log-permeability using an exponential

correlation function with prior mean of 5.0, variance of 1.0 and correlation length of
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Figure 3.14: Well data. Red dots are the history (bottomhole pressure measure-
ments), solid red curve is the bottomhole pressure and solid blue curve is the oil flow
rate obtained by running the true model.
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50 gridblocks (5,000 ft). We assimilate data using EnKF with and without covari-

ance localization. For covariance localization, we use the Gaspari-Cohn correlation

function with two different critical lengths: (1) 50 gridblocks, which corresponds to

the prior correlation length of the true model; (2) 50 gridblocks (from prior corre-

lation) plus the “range” of the dimensionless sensitivity at the MAP estimate. The

dimensionless sensitivity matrix, GD, is defined by [192]

GD = C
−1/2
D GC

1/2
M , (3.15)

where G is the sensitivity matrix evaluated at some particular m, C
1/2
M denotes the

square root of the prior model covariance matrix and C
−1/2
D denotes the inverse

of the square root of data error covariance matrix. We define the “range” of the

dimensionless sensitivity at each data assimilation time as the distance from the well

to the closest gridblock where the sensitivity of predicted pressure to the gridblock

log-permeability is less than 0.1% of the maximum sensitivity. Fig. 3.15a shows the

dimensionless sensitivity obtained for the MAP estimate at different times. The

sensitivities were calculated using the adjoint method. As we can see in Fig. 3.15a,

the range of this sensitivity increases as the time increases. Fig. 3.15b shows the

ranges obtained based on the dimensionless sensitivity in terms of the number of

gridblocks. Interestingly, the sensitivity range during a build-up period is slightly

higher than the range during the preceding flow period.

Fig. 3.16a shows the true model and the MAP estimate. The observed data

can resolve quite well the model parameters (log-permeability) up to approximately

100 gridblocks from the producing well. At distances more than 150 gridblocks

away from this well, the estimated log-permeabilities are equal to the prior mean.

Fig. 3.16b compares the MAP estimate and the ensemble mean from EnKF with

Ne = 999. For this ensemble size, EnKF provides a good estimate of the MAP.

Figs. 3.17 and 3.18 present the final ensemble mean from EnKF with ensemble
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Figure 3.15: Sensitivity range used for covariance localization.
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Figure 3.16: Log-permeability fields. In red, the true model; in black, the MAP
estimate; in blue, the ensemble mean and in gray the final models from EnKF with
Ne = 999.
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Figure 3.17: Log-permeability fields. In black, the MAP estimate; in blue, the
ensemble mean and in gray the final models from EnKF cases. Ne = 25.

89



2

3

4

5

6

7

8

0 50 100 150 200 250 300

Gridblock number

LN
 K

(a) No localization

2

3

4

5

6

7

8

0 50 100 150 200 250 300

Gridblock number

LN
 K

(b) Local. 1 (prior)

2

3

4

5

6

7

8

0 50 100 150 200 250 300

Gridblock number

LN
 K

(c) Local. 2 (prior + sens.)

Figure 3.18: Log-permeability fields. In black, the MAP estimate; in blue, the
ensemble mean and in gray the final models from EnKF cases. Ne = 50.

sizes of 25 and 50, respectively. An ensemble size of 50 is relatively large if we consider

that the number of model parameters is only 300. For cases without localization,

EnKF gave very rough estimates of the log-permeability field with values far from

the prior mean at locations farther than 150 gridblocks from the producing well. A

critical length of 50 gridblocks for localization is clearly too small, while a critical

length defined by the sensitivity range plus the prior correlation length gave an

ensemble mean which is in reasonable agreement with the MAP estimate. Note

that for the ensemble of 50 models, by doing localization, we obtained an estimate

comparable to the one obtained using an ensemble of 999 models (compare Figs. 3.16b

and 3.18c).

Fig. 3.19 presents the bottomhole pressure obtained from the true model and

from EnKF cases with Ne = 50. For EnKF the results presented in Fig. 3.19 were

obtained by running the simulator from time zero using the final ensemble. In all

cases, a good data-match was obtained. However, for the case with localization using

the critical length of 50 gridblocks, the forecasts (t > 246 days) deviate slightly from

the truth because this critical length restricted the model changes to a too small

region around the well.

3.2.3 Example 3 – Synthetic reservoir

The third example corresponds to a 2D reservoir model on a 60× 60 uniform
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(a) Initial ensemble (b) No localization

(c) Local. 1 (prior) (d) Local. 2 (prior + sens.)

Figure 3.19: Bottomhole pressure (history and forecast) in psi. Red dots are the
history; red solid curve represents the true model; solid green curve is the ensemble
mean and solid gray curves represent all models of the ensemble. The dashed vertical
black line indicates the end of the history and beginning of forecast. Ne = 50.

grid. The model parameters are gridblock log-permeabilities. The true model was

generated from an anisotropic exponential correlation function with major correlation

length of 3,000 ft (which corresponds to the width of 30 gridblocks) and minor

correlation length of 1,000 ft oriented at 45o. The prior mean is 5.0 and the prior

variance is 1.0 for all gridblock log-permeabilities. Fig. 3.20 shows the true per-

meability field used as the reference to generate the observed data. The observed

data corresponds to oil and water production rates and water injection rates. To

generate the observed data, we added to the well data predicted by the true model

Gaussian random noise with zero mean and standard deviation equal to 5% of the

true data. We assumed that the measurement errors are uncorrelated, so that the

covariance matrix CD is diagonal. For this problem, 3 producing wells, P1, P2, P3,

and one injection well, I1, start producing or injecting water at the beginning of the

simulation time. Another well, P4, starts production at 6,000 days and the other

two wells, P5 and P6, start production after 9,000 days. The total production time

is 12,000 days. The observed data are oil and water production rates and water
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injection rates. During simulations, all wells are controlled by specified bottomhole

pressure, 1,500 psi for the producers and 4,000 psi for the water injector well. This

situation in which we introduce new measurements at different locations after some

period of data assimilation is potentially unfavorable for EnKF. We expect that

spurious correlations will result in changes in model parameters pertaining to grid-

blocks far from the observation locations. When a measurement at a new location is

introduced, the variability in the model parameters at this gridblock and nearby grid-

blocks may be too small to allow for the proper changes necessary to assimilate these

measurements. Thus, this is an example in which localization should be beneficial

and it is also a situation that occurs very often in practice.

The EnKF was applied using an ensemble of 100 models considering four

cases: (1) no localization; (2) localization based on the drainage areas defined by

the pseudo-tracer concentration calculated from the method proposed by Damiani

[28]; (3) localization using the Gaspari-Cohn correlation function with critical length

equal to the prior model correlation lengths (3,000 ft in the principal direction and

1,000 ft in the orthogonal direction with anisotropy angle of 45o); (4) localization

using the Gaspari-Cohn correlation function with critical lengths for the localization

function equal to the prior model principal correlation lengths plus the radius of the

circle with area equal to the drainage region calculated with the pseudo-tracer (our

recommended procedure). For comparisons, the results from EnKF with an ensemble

of 1,000 models without localization and the MAP estimate are also presented. For

the EnKF case 2, the values of the pseudo-tracer concentration were used as the

entries of the localization matrix, ρn. These values are close to one inside the drainage

area and zero outside this area. Fig. 3.21 shows the estimated drainage areas at

12,000 days based on the true model. These areas change with time; for example, a

big change is observed when a new producing well is opened. The drainage areas used

in the EnKF process were calculated based on the ensemble mean model, so that a
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different localization was applied at each data assimilation time. Fig. 3.22 illustrates

the Gaspari-Cohn correlation function values using the prior model’s correlation

lengths (case 3) and the prior correlation lengths plus drainage radius at 12,000 days

(case 4), respectively.

Figs. 3.23 and 3.24. compare the sensitivities and drainage areas for wells P1

and P4. In these figures, both sensitivities and drainage areas were calculated based

on the true permeability field. The sensitivities were calculated using the adjoint

method. Clearly, the drainage areas do not correspond exactly to the sensitivities,

but a well’s drainage area describes fairly well the region around the well with high

sensitivity values, which we believe is sufficient for the purpose of doing localization.

In Figs. 3.23 and 3.24, we also observe high sensitivity at other well locations. These

high sensitivities indicate that oil and water rate at a particular well are also sensitive

to log-permeability at gridblocks where other wells are completed. For this example,

as producing wells operate at a fixed bottomhole pressure, increasing the perme-

ability in a gridblock containing a well increases the flow rates at this well, and

thus by material balance, causes a decrease in the flow rates at other producing

wells. With the proposed localization procedure, depicted in Fig. 3.22b, the perme-

ability at most other gridblocks containing producing wells will not be updated by

assimilating oil and water flow rate data at well P2. Although strictly speaking the

failure to update permeabilities near other producing wells is not correct, increasing

the critical lengths in our localization procedure so that these permeabilities would

be updated would effectively eliminate localization and thus reintroduce the problem

of spurious correlations.

Fig. 3.25 presents the ensemble mean permeability fields for all EnKF cases

considered. Note that the permeability field obtained by EnKF without localization

and Ne = 100 displays several regions with overshooting an undershooting of the

permeability. In some gridblocks, permeability values greater than 35,000 mD were
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Figure 3.20: True permeability field (mD).

(a) P1 (b) P2 (c) P3 (d) P4

(e) P5 (f) P6 (g) I1

Figure 3.21: Drainage areas obtained using the pseudo-tracer concentration at
12,000 days for the true model.

obtained. Localization improved the estimate of the permeability field and gave

smoother models. Figs. 3.26–3.31 present the results in term of the predicted oil

and water rates for wells P1 and P4. Results shown in these figures were obtained

by running the final ensembles from time zero. EnKF with Ne = 100 without

localization did not give a reasonable data match of either oil or water rate at either

well. Besides that, all models of the final ensemble gave almost the same prediction

indicating a significant loss of variability in the ensemble.

Table 3.3 shows the average objective function obtained by each case. For

this example, we have 651 observed data points. Thus, according to the quality

criterion of Eq. 2.132, the final normalized objective function should not exceed 1.277.

However, according to Table 3.3 none of the cases, including the MAP estimate itself,
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(a) Case 3 (prior) (b) Case 4 (prior +
drainage radius)

Figure 3.22: Correlations values for localization in cases 3 and 4 at well P2. For
case 4 this figure illustrates the localization at 12,000 days.

(a) Oil rate (b) Water rate (c) Drainage area

Figure 3.23: Comparison between sensitivities of oil and water rates with respect
to log-permeability and drainage area for well P1 at 12,000 days.

(a) Oil rate (b) Water rate (c) Drainage area

Figure 3.24: Comparison between sensitivities of oil and water rates with respect
to log-permeability and drainage area for well P4 at 12,000 days.

satisfy this quality criterion, which is strictly valid only for the linear case. The EnKF

results violate the 1.277 quality criterion value by more than a factor of ten in all

cases, and the violation is mainly because of the data mismatch part of the objective

function, Od. Except for the case of localization using only the prior correlation

length, localization improved the data match compared to the no localization case.

The third localization case (prior principal correlation lengths plus sensitivity radius),

performed better in terms of data match than all other EnKF cases, including the

case with Ne = 1,000.

From the results of Table 3.3, it is clear that localization using only the
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drainage areas gave inferior results to those obtained from EnKF with critical lengths

based on the sum of the prior principal correlation lengths and the sensitivity range

estimated from the drainage areas. Assuming that the drainage areas are somewhat

related to the sensitivities, when we keep only the drainage areas for localization, we

are selecting too small a region, unless all model parameters are completely uncorre-

lated in the prior model. A second argument for using a correlation matrix instead

of drainage areas is that the value of the correlation function smoothly decreases to

zero as the distance from the well location increases; this smooth variation tends

to produce smoother model changes. The drainage areas, on the other hand, have

sharp boundaries, and as we move across a boundary, the concentration calculated

from the pseudo-tracer changes abruptly from one to zero, which can even introduce

discontinuities in the estimated rock properties. A third argument for using a cor-

relation function is that if we take sufficient care to ensure the correlation function

ρ is positive definite, then we can obtain the maximum possible degrees of freedom

when assimilating data.

It is important to observe that in this example, the drainage areas were calcu-

lated based on the ensemble mean model. Arroyo-Negrete et al. [10] and Devegowda

et al. [31], on the other hand, have used the region of influence defined by stacking

regions calculated for each model of the ensemble. Considering that each model may

have different streamlines, the final region of influence based on their procedure may

be larger than the one that would be obtained from the mean model. This fact could

possibly alleviate problems that can arise by not considering the correlation lengths

of the prior geological model when applying localization.
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Table 3.3: Average objective function.

Case Om(m) Od(m) ON = O(m)
Nd

(1) No localization 4,833 11,467 25.04
(2) Local. using drainage area 2,613 10,803 20.61
(3) Local. using prior corr. 1,584 13,844 23.70
(4) Local. using prior plus drainage radius 2,016 5,955 12.25
(5) No local. Ne = 1,000 1,912 8,988 16.75
(6) MAP 73 1,369 4.43 1

(a) MAP (b) Ne = 1,000
without localization

(c) No localization

(d) Localization using
drainage areas

(e) Localization using
prior correlation

length

(f) Localization using
prior plus drainage

area radius

Figure 3.25: Final mean permeability fields (mD). Blank areas represent overshoot-
ing or undershooting on the permeability values. In cases (c)–(f), Ne = 100.

1For the MAP estimate, we use ON (mMAP) = 2O(mMAP)/Nd.
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(a) P1 – Oil rate (b) P1 – Water rate (c) P4 – Oil rate (d) P4 – Water rate

Figure 3.26: Predicted well data from the MAP estimate. Red dots are the history,
solid green curve is the MAP estimate.

(a) P1 – Oil rate (b) P1 – Water rate (c) P4 – Oil rate (d) P4 – Water rate

Figure 3.27: Predicted well data running final ensemble from time zero (stb/day).
Ne = 1,000 without localization. Red dots are the history; solid green curve is the
ensemble mean and solid gray curves represent all models of the ensemble.

(a) P1 – Oil rate (b) P1 – Water rate (c) P4 – Oil rate (d) P4 – Water rate

Figure 3.28: Predicted well data running final ensemble from time zero (stb/day).
No localization. Ne = 100. The colors in this figure have the same meaning as in
Fig. 3.27.

(a) P1 – Oil rate (b) P1 – Water rate (c) P4 – Oil rate (d) P4 – Water rate

Figure 3.29: Predicted well data running final ensemble from time zero (stb/day).
Localization using drainage areas. Ne = 100. The colors in this figure have the same
meaning as in Fig. 3.27.
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(a) P1 – Oil rate (b) P1 – Water rate (c) P4 – Oil rate (d) P4 – Water rate

Figure 3.30: Predicted well data running final ensemble from time zero (stb/day).
Localization using prior correlation length. Ne = 100. The colors in this figure have
the same meaning as in Fig. 3.27.

(a) P1 – Oil rate (b) P1 – Water rate (c) P4 – Oil rate (d) P4 – Water rate

Figure 3.31: Predicted well data running final ensemble from time zero (stb/day).
Localization using prior plus drainage area radius. Ne = 100. The colors in this
figure have the same meaning as in Fig. 3.27.

3.3 Field Case

3.3.1 Reservoir model

The field case corresponds to a turbidite heavy-oil field in the Campos Basin

in water depths between 600 and 1,100 meters. To this date, this is one of the largest

producing fields in Brazil. Reservoir facies consist of amalgamated graded beds of

poorly consolidated sandstone with very low silt and clay content and high porosity

and permeability [89]. In this field, there are two turbidite systems with depositional

directions as illustrated in Fig. 3.32. According to Lorenzatto et al. [115], “because

of the reservoir continuity, the relative scarcity of gas, the favorable characteristics

of the relative permeability curves and the deepwater location, the recovery method

employed in this field is water injection in the oil zone.” More details about this field

can be found in Bruhn et al. [17], Lorenzatto et al. [115] and Oliveira et al. [129].

The engineers of the asset team modified the permeability field of the reservoir

simulation model to match the production history. In this manual history-matching
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process, the reservoir simulator was run with each producing well constrained to its

historical oil rate and each injector well constrained to its historical water injection

rate. For most of the time, wells produce with the original gas-oil ratio and the

main objective of the history matching is to match water rate at producing wells.

Although this manually history-matched model gives a reasonable data match of

water production rate, the permeability field is very artificial, with several “patches”

and a few artificial high permeability streaks connecting injectors to producing wells,

as illustrated in Fig. 3.33.

The original reservoir simulation model has 200× 240× 14 gridblocks. Cur-

rently, there are 136 wells operating in this field. However, we decided to limit the

scope of this study to only the upper production zone of the field, which corresponds

to turbidite system 2 (Fig. 3.32). In this zone there are 17 producing wells and

12 water injectors. We extracted a submodel with 165 × 86 × 4 gridblocks where

20,258 are active. This zone is hydraulically isolated from the rest of the field. How-

ever, there are two wells (P-147 and P-150) with commingled production from both

the upper and the lower zones. For these two wells, we divided the historical oil

production rates between the two zones based on the layer rates obtained from the

manually history-matched model. We included the production rate of these two wells

in the submodel, but we did not match data (water production rate) from these two

wells. We considered only the turbidite system 2 because the primary objectives of

this application were to illustrate that a proper implementation of EnKF could yield

a reasonable history matching that was consistent with known geology and could

“automatically” produce a data match as good as or superior to the one obtained

from a tedious manual history matching exercise. Secondly, we wanted to compare

EnKF with and without localization and consider the usefulness of HI-EnKF. As we

envisioned that we would have to make several runs to do all the comparisons, we

wanted to limit the size of the problem, which was easy to do since the two turbidite
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systems are hydraulically isolated.

Figure 3.32: Turbidite systems 1 and 2. The red arrows indicate the main deposi-
tional direction of each system [129].

Figure 3.33: Permeability field (mD) of the manually history-matched model (layer
4). This figure indicates the names of the producing wells with a history of water
production. The producing wells are shown in black and the water injector wells in
blue. Dots represent vertical wells and lines represent horizontal wells. Data from
producers P-147 and P-150 (in gray) were not history-matched.

3.3.2 History matching with EnKF

Typically, an ensemble size of the order of 100 has been used in reservoir

applications [74, 14, 156]. However, there is no guarantee that 100 realizations are

always adequate to avoid problems with insufficient degrees of freedom and spurious

correlations, especially when we do not apply covariance localization. Here, we chose

an ensemble size of 200 for applying EnKF with and without covariance localization.

Although we did not experiment different ensemble sizes, 200 seemed to be a rea-
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sonable choice for comparing EnKF with and without covariance localization in this

field case. As will be shown, with this ensemble size, we were able to match data

with and without localization, but we still observed problems related to spurious

correlations in EnKF without localization, namely, significant loss of variance in the

final ensemble and a rough final ensemble mean.

In order to make the results comparable to the manually history-matched

model, we selected as model parameters for history matching only the gridblock hor-

izontal log-permeabilities, which are the same parameters used to perform the manual

history matching. The vertical permeability was calculated using a fixed anisotropic

ratio, kv/kh = 0.3. This ratio is the same as in the manually history-matched model.

Other reservoir properties are kept as the same as the manually history-matched

model. The initial ensemble of log-permeability fields was obtained using sequential

Gaussian simulation [30, Chap. V] conditioned to interpreted pressure transient data

using an approximate covariance function. In this case, we simply assigned the val-

ues of log-permeabilities obtained from pressure transient analysis at 13 wells to the

gridblocks corresponding to each well location in order to define the “hard data” for

sequential Gaussian simulation. Based on these data, we expect very high values of

horizontal permeability in this field, including permeabilities around 20,000 mD. For

turbidite system 2, the geologists of this field expect a higher correlation length in

the x-direction, which approximately corresponds to the depositional direction. As

we do not have a geological model for the permeabilities in this field, we chose the

prior correlation lengths by visual inspection of the manually history-matched model.

We chose an anisotropic exponential correlation function with ranges of 2,000 meters

(corresponding to the size of 20 gridblocks) in the x-direction, and 1,000 meters (10

gridblocks) in the y-direction. Fig. 3.34a illustrates the correlation function used

for building the initial ensemble. The choice of the prior correlation lengths im-

pacts the generation of the initial ensemble as well as the covariance localization
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procedure. Therefore, it is desirable to define the prior model based on a realistic

geological model. Unfortunately, in the present field application, we do not have

a prior geological model that allows stochastic generation of plausible permeability

fields. Nevertheless, we obtained good results for this field case with our choice of

correlation lengths.

For covariance localization, we defined the critical lengths as the prior correla-

tion lengths plus the lengths of the axes of the ellipses centered at the well locations

that “best” represent the drainage region (in a least squares sense) of each well cal-

culated with the pseudo-tracer approach proposed by Damiani [28]. Fig. 3.34 shows

the drainage area, the ellipse obtained by matching the drainage area and the final

localization region for well P-103 at the last data assimilation time-step. Note that

as the drainage areas change with time, the localization regions also change with

time. Also note that as we assumed a long correlation length in the prior model,

the final localization region is relatively large, as illustrated in Fig. 3.34d. If we had

chosen the localization based only on the sensitivity region, as in Arroyo-Negrete

et al. [10], the localization would be considerably smaller as illustrated in Fig. 3.34b.

(a) Prior correlation
(exponential

correlation function)

(b) Drainage area (c) Ellipse (d) Localization
region (Gaspari-Cohn
correlation function)

Figure 3.34: Localization for well P-103. (a) Prior correlation; (b) drainage areas
at 2,770 days (last data assimilation time); (c) ellipse matched from the drainage
area and (d) the corresponding correlation values used for localization (layer 4).

Recall that the data used for history matching is the water production rate at

the labeled producing wells shown in Fig. 3.33. The total number of producing wells

with a water production history is 14 and the total production time is 3,621 days.

From the total production period, we assimilated data only for the first 2,770 days.
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The manually history-matched model was also obtained considering only the first

2,770 days of history. The remaining 851 days of history were used for comparing

the predictions from the history-matched models.

The measurement errors were assumed to be Gaussian with zero mean and

standard deviation estimated as 10% of the water production rate for each well. The

measurement errors were also assumed to be uncorrelated in time and space. We esti-

mated the standard deviation of the measurement errors by smoothing the observed

data using a moving average and subtracting the observations from the smoothed

data. Then, we computed the relative errors by dividing each data difference by

the value corresponding to the smoothed data. After that, we simply computed the

standard deviation of the relative errors. As we have measurements of water rate

every 30 days, we chose the length of the averaging window to be 120 days (five data

points centered at each datum). During the smoothing process, we removed outliers

and did not smooth across sharp changes in the production data. We applied this

procedure for each well. The final average standard deviation of relative measure-

ment errors was 10%. Fig. 3.35a shows the field water production rate (all wells)

and the smoothed data obtained by using the averaging window. In this figure, the

gray dots correspond to data not used in the smoothing process. Fig. 3.35b shows

the corresponding relative errors indicating that, for the total field production, the

estimated standard deviation is 8%. Even though we have data with a frequency of

30 days, we assimilate data every 90 days with EnKF. Note that we also include zero

water production rate data as observed data in the history-matching process. In this

case, we assume a constant measurement error of 1 std m3/d.

In the simulation model, there are 136 gridblocks with local refinements.

These refined grids are located around seven producing wells. The permeabilities

of these refined grids are the same as for the coarse gridblock that contains the re-

fined grid. During data assimilation with EnKF, we also update the pressure and
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Figure 3.35: (a) Field water production (all wells) in std m3/day. Red dots are the
observed data points and the solid blue curve is the smoothed data obtained with a
moving averaging window. The grey dots were not used in the smoothing process.
(b) Relative errors.

saturations at these refined grids in order to be able to restart the simulations after

each data assimilation time-step.

Fig. 3.36 presents the initial ensemble mean permeability field and the mean

permeability fields obtained by data assimilation using EnKF with and without co-

variance localization. For comparison, the manually history-matched permeability

field is also included in this figure. According to the results in Fig. 3.36, the result-

ing mean permeability field from EnKF without localization has several regions with

high permeability (25,000 mD). On the other hand, EnKF with covariance localiza-

tion obtained a smoother ensemble mean permeability field, and the main changes

were concentrated in regions near wells. Note that in the south and southeast part

of the field, where there are no producing wells, EnKF with covariance localization

did not significantly change the values of permeabilities, i.e., these values are close

to those from the prior mean. This indicates that the effect of spurious correlations

in EnKF was reduced by the application of covariance localization. Also note that

the estimated permeability field obtained from EnKF with localization shows none

of the high permeability streaks connecting injector/producer pairs that appeared

in the manually history-matched model. Fig. 3.37 presents the standard deviation

of log-permeability for the initial ensemble and after data assimilation using EnKF

with and without covariance localization. As illustrated in Fig. 3.37, EnKF without
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(a) Manual history matching (b) Prior mean

(c) Posterior mean. EnKF (d) Posterior mean. EnKF with
localization

Figure 3.36: Permeability fields (mD) for layer 4. Producing wells are shown in
black and water injector wells are shown in blue.

localization resulted in a significant reduction in the ensemble standard deviations,

including at locations far from wells, while EnKF with covariance localization re-

sulted in higher values of standard deviation, i.e., there is higher variability in the

final ensemble after data assimilation. Note that avoiding excessive loss of variance

in the ensemble is important for assimilating later data and for obtaining reasonable

estimations of the uncertainty in the predictions.

(a) Initial (b) EnKF (c) EnKF with localization

Figure 3.37: Standard deviation of log-permeability (layer 4).

In order to compare the final data matches, we reran the final models from

time zero (initial reservoir condition) and computed the normalized data mismatch
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objective function, ON,d = Od(m)/Nd. Fig. 3.38a shows the box plots of ON,d for

the initial ensemble, EnKF and EnKF with covariance localization. Note that these

values of ON,d consider only the history used for data assimilation (2,770 days). For

comparison, we also include the ON,d obtained by the manually history-matched

model (horizontal dashed line in Fig. 3.38a). All box plots presented in this dis-

sertation follow the description presented in Fig. 3.39. According to the results in

Fig. 3.38a, covariance localization gave better data matches than the standard EnKF.

The data matches obtained by EnKF with covariance localization are also slightly

better than those obtained with the manually history-matched model. In order to

compare the forecasts, we also computed the ON,d considering only the forecast pe-

riod (851 days) and the results are presented in Fig. 3.38b. According to the results

in Fig. 3.38b, both EnKF and EnKF with covariance localization gave better pre-

dictions than were obtained with the manually history-matched model. EnKF with

covariance localization also gave better predictions than standard EnKF. Figs. 3.40–

3.46 present the predicted water production rate for seven wells. Fig. 3.47 shows

the total predicted water production rate (all wells). In these figures, we include

both the history for data assimilation period (2,770 days) and the forecast period

(851 days). These figures illustrate that EnKF with covariance localization resulted

in the best data matches and most accurate “future” predictions. Although the over-

all data matches obtained for each well seem reasonable, for wells P-85 and P-101,

the breakthrough times are not matched well even when EnKF with covariance lo-

calization is used. We believe that most of the difficulty in matching breakthrough

time arises from the fact that the initial ensemble does not give a set of breakthrough

times that spans the actual breakthrough time adequately (Figs. 3.40b and 3.41b),

i.e., most of the ensemble members in the initial ensemble predict the beginning of

water production after the observed breakthrough time. As shown by Reynolds et al.

[143], EnKF is similar to applying Gauss-Newton sequentially, with a full step and
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replacement of the sensitivity matrix by an average sensitivity matrix obtained from

the ensemble. Therefore, if none of the ensemble members produce water before the

observed breakthrough time, the estimated sensitivity of water rate at times near

breakthrough will be zero. If sensitivity is zero, EnKF cannot adjust parameters to

match the water breakthrough. Even with imperfect matches of some breakthrough

times, the overall data matches are reasonably good; thus, we did not choose to incur

the additional computational time necessary to obtain a better initial ensemble.
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Figure 3.38: Box plots of the normalized data mismatch objective function. The
horizontal dashed lines correspond to the ON,d obtained by the manually history-
matched model. The numbers next to each box plot correspond to the values of
the median of ON,d and the numbers in the beginning of the horizontal dashed lines
correspond to the values of ON,d obtained by the manually history-matched model.
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Figure 3.39: Box plot description.
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(a) Manual history
matching

(b) Prior (c) EnKF (d) EnKF with
localization

Figure 3.40: Well P-85. Predicted water production rate obtained by running the
final ensembles from time zero (std m3/day). Red dots are the data points used
for data assimilation; solid red curve is the production history; solid blue curve is
the prediction from the manually history-matched model; solid green curves are the
mean predictions from the ensembles; solid light blue curves represent predictions
from all models of the ensembles. The dashed vertical black line indicates the end
of the history and beginning of the forecast period.

(a) Manual history
matching

(b) Prior (c) EnKF (d) EnKF with
localization

Figure 3.41: Well P-101. Predicted water production rate obtained by running
final ensembles from time zero (std m3/day). The colors in this figure have the same
meaning as in Fig. 3.40.

(a) Manual history
matching

(b) Prior (c) EnKF (d) EnKF with
localization

Figure 3.42: Well P-104. Predicted water production rate obtained by running the
final ensembles from time zero (std m3/day). The colors in this figure have the same
meaning as in Fig. 3.40.
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(a) Manual history
matching

(b) Prior (c) EnKF (d) EnKF with
localization

Figure 3.43: Well P-111. Predicted water production rate obtained by running the
final ensembles from time zero (std m3/day). The colors in this figure have the same
meaning as in Fig. 3.40.

(a) Manual history
matching

(b) Prior (c) EnKF (d) EnKF with
localization

Figure 3.44: Well P-141. Predicted water production rate obtained by running the
final ensembles from time zero (std m3/day). The colors in this figure have the same
meaning as in Fig. 3.40.

(a) Manual history
matching

(b) Prior (c) EnKF (d) EnKF with
localization

Figure 3.45: Well P-149. Predicted water production rate obtained by running the
final ensembles from time zero (std m3/day). The colors in this figure have the same
meaning as in Fig. 3.40.
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(a) Manual history
matching

(b) Prior (c) EnKF (d) EnKF with
localization

Figure 3.46: Well P-152. Predicted water production rate obtained by running the
final ensembles from time zero (std m3/day). The colors in this figure have the same
meaning as in Fig. 3.40.

(a) Manual history
matching

(b) Prior (c) EnKF (d) EnKF with
localization

Figure 3.47: Field water production (all wells). Predicted water production rate
obtained by running the final ensembles from time zero (std m3/day). The colors in
this figure have the same meaning as in Fig. 3.40.

3.3.3 Half-iteration EnKF

Here, we present the results of history matching the field case using HI-EnKF

with covariance localization considering two cases: (1) rerunning the ensemble every

data assimilation time-step and (2) rerunning the ensemble if the average relative

change in the updated ensemble mean is larger than 1%. In this case, we rerun the

ensemble from time zero if any one the following three the conditions is satisfied:

1

Ng

Ng∑
i=1

∣∣∣∣∣ ln k
a

i − ln k
f

i

ln k
f

i

∣∣∣∣∣ ≥ 0.01, (3.16)

or

1

Ng

Ng∑
i=1

∣∣∣∣∣pai − pfipfi

∣∣∣∣∣ ≥ 0.01, (3.17)
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or

1

Ng

Ng∑
i=1

∣∣∣∣∣So
a

i − So
f

i

So
f

i

∣∣∣∣∣ ≥ 0.01. (3.18)

where Ng is the number of active gridblocks, ln k, p and So are the ensemble mean

vectors of gridblock log-permeabilities, pressures and oil saturations, respectively.

Fig. 3.48 presents the ensemble mean permeability fields obtained by data

assimilation using HI-EnKF with covariance localization for the two cases considered.

As illustrated in this figure, there are no significant differences between the two perm-

eability fields. In addition, they are both very similar to the mean permeability field

obtained using EnKF with localization without half-iteration (Fig. 3.36c). Fig. 3.49

shows the box plots of ON,d obtained by the two HI-EnKF cases considering the

history and forecast periods. For visual comparison, we also include the box plot

of ON,d obtained by EnKF with covariance localization and the ON,d obtained by

the manually history-matched model in Fig. 3.49. Comparing the two HI-EnKF

procedures, we observe that the quality of the final data matches and predictions are

basically the same, but they are considerably better than the ones obtained using

EnKF with localization without half-iteration and the manually history-matched

model. Fig. 3.50 shows the total predicted water production rate (all wells) for the

two HI-EnKF cases. This figure also illustrates the similarity in the results obtained

by the two HI-EnKF procedures. The major difference between these two cases is

the computational cost. In the first case, we reran from time zero after each data

assimilation time-step, but in the second case, we reran from time zero only five times.

The total number of data assimilations time-steps is 29. The data assimilation time-

steps in which the ensemble was rerun from time zero are indicated in the Fig. 3.50b

as blue circles. Note that four of the five data assimilations that resulted in rerunning

from time zero according to the criteria of Eqs. 3.16, 3.17 and 3.18, occurred at the

beginning of the water production; the fifth rerun was at the last data assimilation

time-step.
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(a) Posterior mean. HI-EnKF
rerunning all data assimilation

time-steps

(b) Posterior mean. HI-EnKF
rerunning if average change in the
ensemble mean is larger than 1%

Figure 3.48: Permeability fields for layer 4 (mD). Producing wells are shown in
black and water injector wells are shown in blue.
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Figure 3.49: Box plots of the normalized data mismatch objective function. The
numbers next to each box plot correspond to the value of the median of ON,d. The
horizontal dashed line corresponds to the manually history-matched model.

(a) HI-EnKF
rerunning after each

data assimilation
time-steps

(b) HI-EnKF
rerunning if average

change in the
ensemble mean is
larger than 1%

Figure 3.50: Field water production (all wells). Predicted water production rate
obtained by running the final ensembles from time zero (std m3/day). The blue
circles in (b) indicate the data assimilation time-steps with rerun from time zero.
The colors in this figure have the same meaning as in Fig. 3.40.
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CHAPTER 4

STRATEGIES TO REDUCE LOSS OF VARIANCE DUE TO

SAMPLING ERRORS IN THE ENSEMBLE KALMAN FILTER

Besides covariance localization, other methods for reducing the negative ef-

fects of a small ensemble have been proposed in the literature. This chapter presents

a comparative evaluation of some of those methods, namely, distance-based covari-

ance localization, non-distance dependent localization and covariance inflation. We

also consider the ensemble square root filter (EnSRF), which typically exhibits a

smaller loss of variance than occurs with EnKF.

4.1 Non-distance Dependent Covariance Localization

4.1.1 Furrer and Bengtsson taper

Furrer and Bengtsson [57] showed that it is possible to minimize term-by-

term the norm of the difference between the true forecast covariance matrix and

the localized estimate ignoring the positive-definiteness constraint. Based on this

procedure, Furrer and Bengtsson [57] obtained the following expression to compute

the components of the correlation matrix for localization,

ρij =
c2
ij

c2
ij + (c2

ij + ciicjj)/Ne

, (4.1)

where cij is the forecast covariance between the ith and and jth variables. In practice,

cij is the (i, j) entry of the matrix C̃n,f
YD , which corresponds to the cross-covariance

between the ith element of the forecast augmented state vector, yn,f (Eq. 2.36), and

the jth element of the predicted data vector dn,f . In [57], the authors suggest that
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sparseness can be introduced by zeroing “small” values of cij. Although the definition

of “small” is problem-dependent, a reasonable choice is set ρij = 0 if

|cij| < ε
√
ciicjj, (4.2)

with ε = 10−2 to 10−3.

4.1.2 Hierarchical ensemble filter

Anderson [6] also presented a non-distance dependent localization procedure,

which is referred to as hierarchical ensemble filter. This procedure computes confi-

dence factors, α’s, to “localize” the Kalman gain based on groups of Nh independent

ensembles. The confidence factor, αi, corresponding to the ith entry in the Kalman

gain matrix, [K̃]i, is defined as the minimizer of

√√√√ Nh∑
j=1

Nh∑
l=1,l 6=j

(
αi[K̃l]i − [K̃j]i

)2

, (4.3)

which leads to

αi = max

 1

Nh − 1


(∑Nh

j=1[K̃j]i

)2

∑Nh
j=1[K̃j]2i

− 1

 , 0
 . (4.4)

In the above equation, a confidence factor αi is truncated to zero if the αi computed

by minimizing Eq. 4.3 is negative, as proposed in [6]. The “localized” Kalman gain

matrix, K̃α, for each of the Nh ensembles, is computed by multiplying each Kalman

gain matrix with a matrix of confidence factors, A, in an element-wise manner

K̃j,α = A ◦ K̃j, for j = 1, 2, · · ·Nh. (4.5)

One difficulty with this approach is that it requires assimilation of data with Nh

ensembles simultaneously, which increases the computational cost of the process.
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Zhang and Oliver [194] proposed that instead of Nh ensembles of Ne members, we

resample a single ensemble with replacement to generate Nb bootstrapped ensembles.

Then, the confidence factors can be computed with same expression (4.4) using Nb

instead of Nh. In this procedure, the Nb bootstrapped ensembles are used only

to compute the confidence factors; the data assimilation is done with the original

ensemble, i.e., before resampling.

4.2 Covariance Inflation

Another procedure that has appeared in the literature to compensate for the

underestimation of posterior variances in the EnKF is covariance inflation [7]. In

covariance inflation, we replace the forecast ensemble by

yn,fj = γ(yn,fj − yn,f ) + yn,f , for j = 1, 2, · · · , Ne, (4.6)

where γ is the inflation factor and yn,f is the forecast ensemble mean state vector

at the nth data assimilation step. Note that Eq. 4.6 increases the variance but does

not change the mean of yn,f .

Typically the inflation factor is a number slightly greater than one. The

optimal inflation factor is problem dependent. One possible advantage of covariance

inflation over localization is that, because we multiply the whole state by a constant

factor, we do not artificially change the correlation coefficient between each pair of

variables, only the variance is changed. For distance-based localization on the other

hand, this is not true. In fact, depending on the choice of the critical length, we may

even destroy the geological realism of the estimates.

4.2.1 Adaptive inflation

Evensen [47] proposed an adaptive covariance inflation procedure which can

be described as follows. For each data assimilation step, we generate the additional

Nr × Ne matrix Bf with random normally distributed numbers, i.e., samples from
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N (0, 1). Then, we update B using the standard analysis equation of EnKF. However,

as the columns of Bf are uncorrelated with the data measurements, the variance

among the Ne columns of Bf should be preserved after analysis, i.e., we should have

var[bai ] = var[bfi ] = 1.0, for i = 1, 2, . . . , Nr; where bai and bfi denote the ith row of Ba

and Bf respectively. However, because of sampling errors, this is not true and we

observe some reduction on var[bai ]. Thus, we seek for an inflation factor to correct

this variance reduction. This inflation factor is given by,

γ =
1

1
Nr

∑Nr
i=1 σi

, (4.7)

where

σi =
√

var[bai ] (4.8)

is the standard deviation for the ith row of Ba. The same inflation factor, γ, is

applied in the whole state. Evensen [47] does not mention the size of Nr that one

should select to compute the inflation factor. Here, we set Nr equal to the size of

the state vector, Ny.

4.2.2 Adaptive inflation for distance-based localization

Although covariance localization reduces the underestimation of posterior

variances, we still observe some underestimation, especially when the localization

region is large. In fact, for distance-based localization, we have a trade-off: re-

ducing the critical length tends to increase the posterior variances, but it removes

true long distance correlations. Increasing the critical length, we keep long distance

correlations, but we may observe some underestimation in the posterior variances.

This suggests that one could apply both localization and inflation simultaneously.

However, when we apply localization only states within a pre-defined distance are

updated. Therefore, if we also apply inflation, we may inflate states that were not
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even updated during the data assimilation, which is not desirable. This suggests

that one should apply inflation only in the region corresponding to entries of yn,fj

influenced by the measurements, i.e., the localization region.

Considering that, we introduced a modification of the covariance inflation

procedure proposed by Evensen [47] that is suitable for application in cases in which

a distance-based localization procedure is also applied. Algorithm 4.1 presents the

proposed local-inflation procedure.

In this procedure, we first compute the inflation factors, apply inflation to the

forecast state and then, we perform the analysis of the state with covariance local-

ization. One drawback of this approach is that we change the correlation coefficient

between each pair of variables because we do not multiply the whole state by the

same inflation factor. Another problem is the extra computational time required to

perform the Nr iterations of the EnKF analysis routine. However, some computation

time can be saved if we consider that part of the EnKF analysis equation does not

change from iteration to iteration. In fact, it is easy to show that the EnKF analysis

with localization can be written as

Ba = Bf + ρBD ◦
[
∆Bf

(
∆Dn,f

)T
] 1

Ne − 1

[
Cn

D +
(
ρDD ◦ C̃n,f

DD

)]−1 (
Dn

uc −Dn,f
)
,

(4.15)

or simply,

Ba = Bf + ρBD ◦
[
∆Bf

(
∆Dn,f

)T
]
X, (4.16)

where

X ≡ 1

Ne − 1

[
Cn

D +
(
ρDD ◦ C̃n,f

DD

)]−1 (
Dn

uc −Dn,f
)
. (4.17)

Note that the Nn × Ne matrix X does not change from iteration to iteration, and
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Algorithm 4.1 Adaptive inflation for distance-based localization

1. For ` = 1 to Nr:

(a) Define a Ng × Ne matrix Bf , where each entry of Bf is generated as an
independent standard normal deviate. Ng denotes the number of active
gridblocks of the model. Each column of the matrix Bf correspond to an
ensemble member and each row of Bf corresponds to a gridblock location.

(b) Correct the matrix Bf such that each row has exactly zero mean and
variance equal to one. This can be done by replacing the entries of Bf

according to

bf,corr
ij =

bfij − b
f

i

σfi
, for i = 1, 2, · · ·Ng, (4.9)

where

b
f

i =
1

Ne

Ne∑
j=1

bfij (4.10)

and

σfi =

√√√√ 1

Ne − 1

Ne∑
j=1

(
bfij − b

f

i

)
. (4.11)

(c) Compute Ba using the EnKF analysis equation with covariance localiza-
tion (Eq. 4.15).

(d) Compute:

σai,` =

√√√√ 1

Ne − 1

Ne∑
j=1

(
baij − b

a

i

)
, for i = 1, 2, · · ·Ng. (4.12)

end (for).

2. Compute:

σai =
1

Nr

Nr∑
`=1

σai,`, for i = 1, 2, · · ·Ng. (4.13)

3. Compute the Ng-dimensional vector of inflation factors, where each entry, γi,
is given by

γi =
1

σai
. (4.14)

4. Apply the inflation factor vector to the forecast state considering that each
gridblock location has a different inflation factor.
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thus it needs be computed only once. In the above equations, ∆Bf = Bf − B
f

where B
f

denotes the Ng ×Ne matrix with all columns equal to the ensemble mean

and ρBD denotes the Ng ×Nn correlation matrix for localization. This matrix is the

same one employed to update model parameters. Dn,f denotes the Nn ×Ne matrix

of predicted data, ∆Dn,f = Dn,f − D
n,f

, and Dn
uc denotes the Nn × Ne matrix of

perturbed observations.

Another aspect of this method is the number of iterations, Nr, required to

estimate an appropriate inflation factor. Instead of defining a fixed number of it-

erations, we define the maximum number of iterations and check to see if there is

convergence in the inflation factor. We use the following convergence criterion

max
1≤i≤Ng

∣∣∣∣γ`i − γ`−1
i

γ`−1
i

∣∣∣∣ ≤ 10−4. (4.18)

The maximum allowed number of iterations is 1,000.

4.3 Ensemble Square Root Filter

The perturbed observation scheme used in the standard EnKF is often iden-

tified as another source of sampling errors [186]. In the square root filters [170], the

ensemble is updated using deterministic formulations, which is believed to reduce

sampling errors, resulting in smaller underestimation of posterior variances [186]. In

the results presented in the next section, we use the left-multiplied EnSRF scheme

proposed by Whitaker and Hamill [186]. The reason we chose this scheme is be-

cause it allows covariance localization, which can be done by simply replacing C̃n,f
Y

in Eq. 2.116 by the Schur product ρn ◦ C̃n,f
Y . Eq. 2.116 with covariance localization

can be written as
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K̃?
n,ρ = ρnYD ◦ C̃

n,f
YD

[
ρnDD ◦ C̃

n,f
DD + Cn

D

]T/2
[(
ρnDD ◦ C̃

n,f
DD + Cn

D

)1/2

+ (Cn
D)1/2

]−1

.

(4.19)

As discussed in Section 2.6.2, for the case of uncorrelated measurement errors,

we can assimilate one datum at time, which simplifies the calculation of K̃?. In this

case, we can localize the Kalman gain matrix, i.e.,

K̃?
n,ρ = α

(
ρnYD ◦ K̃n

)
, (4.20)

where α is the scalar given by Eq. 2.122. In the results presented in the next section,

we assimilate one data at a time with EnSRF.

4.4 Examples

4.4.1 Example 1 – Linear model

The first example is the same linear case considered in Chapter 3 (Sec-

tion 3.2.1). Recall that the model parameters are gridblock porosities and the mea-

sured data correspond to the average porosity of the 11× 11 gridblocks centered on

each well position as illustrated in Fig. 3.7a. The total number of data points is 144

and we assimilate one datum each time-step. We use an ensemble size of 50 and

consider the following cases: (1) standard EnKF; (2) EnKF with adaptive inflation

[47]; (3) EnKF with distance-based localization; (4) EnKF with distance-based lo-

calization and adaptive inflation; (5) EnKF with Furrer and Bengtsson non-distance

dependent localization; (6) bootstrap hierarchical EnKF [194]; (7) left-multiplied

EnSRF [186]; (8) left-multiplied EnSRF with distance-based localization. The cases

with distance-based localization use the Gaspari-Cohn correlation function with crit-

ical length equal 10 gridblocks, which corresponds to the correlation length of the

prior model plus the distance of influence of the data (sensitivity region).
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Fig. 4.1 shows the ensemble mean after data assimilation for all cases con-

sidered. For comparison, the maximum a posteriori (MAP) estimate and the EnKF

ensemble mean obtained with an ensemble of 1,000 models are also presented. Ac-

cording to the results in this figure, EnKF (Fig. 4.1c) and EnSRF (Fig. 4.1i) obtained

very rough ensemble means. The application of adaptive inflation (Fig. 4.1d) did not

improve the results in terms of the ensemble mean. Distance-based localization, on

the other hand, clearly resulted in significant improvements in the ensemble mean

(Figs. 4.1e, 4.1f and 4.1j). The non-distance dependent localization cases (Figs. 4.1g

and 4.1h) did not improve significantly the results in terms of the ensemble mean.

Table 4.1 presents the values of the sum of normalized variances (SNV) for

all cases. EnKF with Ne = 1,000 gave a value of SNV 8.4% lower than the value

obtained with the MAP. Note that the SNV obtained for the MAP corresponds to

the correct value. Standard EnKF (case 1) resulted in a severe underestimation of

the SNV, i.e., EnKF greatly overestimated the reduction in uncertainty due to data

assimilation. For this case, the final ensemble almost collapsed to a single model.

Inflation (case 2), non-distance dependent localization (cases 5 and 6) and EnSRF

(case 7) approximately doubled the SNV obtained with EnKF, but they still give

a severe underestimation of SNV. Significant improvements were obtained only for

the cases with distance-based localization. EnKF with localization (3) results in a

SNV 13% less than the correct value, while for EnSRF with localization (case 8),

the SNV is only 7.6% less than the correct value, and is closer to the correct SNV

than the result obtained using EnKF with Ne = 1,000. The combined application

of localization and inflation (case 4) resulted in a very small overestimation of the

SNV (2.3% greater than the correct value).

Table 4.2 presents values of the objective function obtained for each case. For

this example, we have 144 observed data points, which results in a value of 1.589

for the upper limit of the data-match quality criterion (Eq. 2.130). According to
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(a) MAP (b) EnKF (Ne = 1,000) (c) Case 1: EnKF

(d) Case 2: EnKF with
adaptive inflation

(e) Case 3: EnKF with
distance-based

localization

(f) Case 4: EnKF with
distance-based

localization and
inflation

(g) Case 5: EnKF +
Furrer and Bengtsson

(h) Case 6: Bootstrap
hierarchical EnKF

(i) Case 7: EnSRF

(j) Case 8: EnSRF with
distance-based

localization

Figure 4.1: Ensemble mean after data assimilations. Note that some figures have
different color scale.
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Table 4.1: Sum of normalized variances of porosity.

Case SNV

MAP 0.764
EnKF with Ne = 1,000 0.697

Case 1: EnKF 0.079
Case 2: EnKF with inflation 0.188
Case 3: EnKF with dist. local. 0.664
Case 4: EnKF with dist. local. and infl. 0.794
Case 5: EnKF with F-B non-dist. local. 0.150
Case 6: Bootstrap hierarchical EnKF 0.147
Case 7: EnSRF 0.176
Case 8: EnSRF with dist. local. 0.706

Table 4.2, except for the MAP estimate and EnKF with Ne = 1,000, none of the cases

satisfy this quality criterion. However, the cases with distance-based localization

(cases 3, 4 and 8) resulted in values of the objective function which come very

close to satisfying the quality criterion. All cases without distance-based localization

resulted in high values of Om, indicating rough ensemble means, and high values of

Od, indicating poor data matches.

Fig. 4.2 presents the inflation factors obtained for case 2. In order to illustrate

the effect of ensemble size, Fig. 4.2 also includes the inflation factors obtained for an

ensemble of 25 models. According to the results in Fig. 4.2, increasing the size of the

ensemble reduces the inflation factors, which is consistent with the conjecture that

larger ensembles need less inflation. However, for both ensembles sizes, the values

of the inflation factor shows a very oscillatory behavior over the data assimilation

steps. Fig. 4.3 presents the inflation factors obtained for the 10th well data using the

combined application of localization and inflation. The values of the inflation factors

show a behavior similar to the localization used, i.e., the inflation factor is higher

closer to the well location and decreases to one, outside the localization region. Also,

increasing the size of the ensemble, reduced the inflation factors.
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Table 4.2: Average objective function.

Case Om(m) Od(m) ON = 2O(m)
Nd

MAP 19.8 7.6 0.380
EnKF with Ne = 1,000 82.1 9.0 1.265

Case 1: EnKF 1483.4 97.8 21.961
Case 2: EnKF with inflation 1771.4 85.3 25.788
Case 3: EnKF with dist. local. 100.0 20.2 1.668
Case 4: EnKF with dist. local. and infl. 103.3 18.8 1.696
Case 5: EnKF with F-B non-dist. local. 920.3 61.6 13.632
Case 6: Bootstrap hierarchical EnKF 1131.9 62.6 16.590
Case 7: EnSRF 995.8 55.1 14.597
Case 8: EnSRF with dist. local. 94.3 20.2 1.591
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Figure 4.2: Inflation factors (case 2).

(a) Ne = 25 (b) Ne = 50

Figure 4.3: Inflation factor for well 66.
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Fig. 4.4 presents the localization values obtained for the non-distance depen-

dent localization methods (cases 5 and 6). This figure shows that the localization

values are closer to one around the well location, but they do not decrease monoton-

ically to zero as we increase the distance from the well. In fact, the average value of

the localization coefficients far away from the well is around 0.5. Besides that, the

localization values are very noisy. As a result, both procedures failed to eliminate

spurious correlations.

(a) Case 5 – Well 1 (b) Case 6 – Well 1

(c) Case 5 – Well 66 (d) Case 6 – Well 66

(e) Case 5 – Well 144 (f) Case 6 – Well 144

Figure 4.4: Localization values obtained using the non-distance dependent local-
ization procedures.

4.4.2 Example 2 – Synthetic reservoir

The second example corresponds to 2D synthetic reservoir on a 60× 60 uni-

form grid. The model parameters are gridblock log-permeabilities. The true model
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was generated from an anisotropic exponential correlation function with major corre-

lation length of 2,400 ft (which corresponds to the width of 12 gridblocks) and minor

correlation length of 1,200 ft; the direction of maximum correlation length is oriented

at 45o to the horizontal direction. The prior mean is 5.0 and the prior variance is 1.0

for all gridblock log-permeabilities. Fig. 4.5 shows the true permeability field used as

the reference to generate the observed data. For this reservoir, there are 16 produc-

ing wells and 9 water injectors placed in five-spot patterns. During simulations, the

producing wells operate at a specified maximum liquid rate. However, a minimum

bottomhole pressure constraint of 1,000 psi is also imposed. The observed data at

the producers are oil and water flow rates and bottomhole pressures. The water

injectors operate at constant water injection rate and the measurements are bottom-

hole pressures. For the flow rate data, random normally distributed noise with zero

mean and standard deviation corresponding to 5% of the true data was added to the

true data to define the the random variables that represent the measurements. For

pressure data, a constant measurement error of 10 psi was considered. This example

was designed to have a large number of measurements, which is the typical situation

where problems related to sampling errors and limited degrees of freedom are more

severe.

Figure 4.5: True permeability field.

The initial ensemble was generated using the same covariance function and
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prior mean specified above. Data assimilations were performed using an ensemble

of 100 models considering the following cases: (1) EnKF; (2) EnKF with adaptive

inflation; (3) EnKF with distance-based localization; (4) EnKF with distance-based

localization and inflation; (5) EnSRF; (6) EnSRF with distance-based localization.

Cases with localization use the procedure described in Chapter 3.

Fig. 4.6 shows the ensemble mean permeability fields obtained after data

assimilations. For comparison, the true model and the ensemble mean from EnKF

with Ne = 2,000 models are also included in this figure. The ensemble mean per-

meability field obtained by EnKF (case 1) and EnSRF (case 5) are very rough and

display several regions with permeability equal to 50,000 mD, which corresponds to

the truncation value we use during data assimilations. Note that the color scale is not

the same for all the cases. Inflation (case 2) did not improve the final ensemble mean

permeability field and we still observe several regions of overshooting. Distance-based

localization (cases 3, 4 and 6), on the other hand, gave smoother ensemble means,

which resembles geologically the true model and the Ne = 2,000 result.

Table 4.3 presents the values of SNV for all cases. Compared to the ensemble

of 2,000 models, EnKF (case 1) and EnSRF (case 5) clearly result in severe under-

estimation of the posterior variances. The application of covariance inflation (case

2) did not improve the results. EnKF with localization (case 3) gave a significant

increase in the SNV, although there is still an underestimation. EnSRF with local-

ization (case 6) gave a higher value of SNV compared to case 1, but still 32% less

than the value obtained with Ne = 2,000. Localization with inflation (case 4) gave

SNV 50% higher than EnKF with Ne = 2,000. Although EnKF with Ne = 2,000

does not correspond to the correct value of SNV, it seems that case 4 overestimated

the SNV.
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(a) True (b) Ne = 2,000 (c) Case 1: EnKF

(d) Case 2: EnKF with
inflation

(e) Case 3: EnKF with
distance-based localization

(f) Case 4: EnKF with
distance-based localization

and inflation

(g) Case 5: EnSRF (h) Case 6: EnSRF with
distance-based localization

Figure 4.6: Final average permeability fields.
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Table 4.3: Sum of normalized variance of log-permeability.

Case SNV

Ne = 2,000 0.5631

Case 1: EnKF 0.0003
Case 2: EnKF with inflation 0.0005
Case 3: EnKF with dist. local. 0.3411
Case 4: EnKF with dist. local. and infl. 0.8499
Case 5: EnSRF 0.0022
Case 6: EnSRF with dist. local. 0.3829

Table 4.4 shows the average objective function for each case. For this ex-

ample, we have Nd = 1,352 observed data points. Thus, according to the quality

criterion of Eq. 2.132, the final normalized objective functions should not exceed

1.192. However, according to results in Table 4.4, none of the cases satisfy this qual-

ity criterion. EnKF with Ne = 2,000 violates the quality criterion value by a factor

of 17. EnKF (case 1) and EnSRF (case 5) gave a very high value of Om, indicating

very rough models, and very high values of the data mismatch, Od. In fact, for these

cases, we obtained ensemble collapse. Inflation (case 2) did not improve the results.

Distance-based localization, on the other hand, gave smoother models and signifi-

cantly better data matches. EnSRF with localization (case 6) gave better results

than EnKF with localization (case 3). The combined application of covariance local-

ization and inflation resulted in higher values of the objective function than EnKF

with covariance localization only. A possible explanation for the worse data matches

in this case is that inflation might have increased inconsistency between the updated

model parameters and the updated primary variables during the data assimilation.

Figs. 4.7–4.14 show the predicted data for well P11. In these figures, besides the

historical period, we also include 10 years of forecast. The results presented in these

figures illustrate that reasonable data matches were obtained only by the cases with

covariance localization and the case with Ne = 2,000.
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Table 4.4: Average objective function.

Case Om(m) Od(m) ON = O(m)
Nd

Ne = 2,000 1,709 25,891 20.42
Case 1: EnKF 49,547 27,198,550 20,153.92
Case 2: EnKF with inflation 47,381 17,134,080 12,708.23
Case 3: EnKF with dist. local. 1,416 41,274 31.58
Case 4: EnKF with dist. local. and infl. 2,705 157,900 118.79
Case 5: EnSRF 14,727 3,324,514 2,469.86
Case 6: EnSRF with dist. local 1,413 23,981 18.79

(a) Oil rate (b) Water rate (c) Bottomhole pressure

Figure 4.7: Prior ensemble. Predicted data for well P11. Red dots are the history;
solid red line is the true model; solid green curve is the ensemble mean and solid
gray curves represent all models of the ensemble.

(a) Oil rate (b) Water rate (c) Bottomhole pressure

Figure 4.8: EnKF with Ne = 2,000. Predicted data for well P11 running final
ensemble from time zero. The colors in this figure have the same meaning as in
Fig. 4.7.
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(a) Oil rate (b) Water rate (c) Bottomhole pressure

Figure 4.9: Case 1: EnKF. Predicted data for well P11 running final ensemble from
time zero. The colors in this figure have the same meaning as in Fig. 4.7.

(a) Oil rate (b) Water rate (c) Bottomhole pressure

Figure 4.10: Case 2: EnKF with adaptive inflation. Predicted data for well P11
running final ensemble from time zero. The colors in this figure have the same
meaning as in Fig. 4.7.

(a) Oil rate (b) Water rate (c) Bottomhole pressure

Figure 4.11: Case 3: EnKF with distance-based localization. Predicted data for
well P11 running final ensemble from time zero. The colors in this figure have the
same meaning as in Fig. 4.7.
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(a) Oil rate (b) Water rate (c) Bottomhole pressure

Figure 4.12: Case 4: EnKF with distance-based localization and inflation. Pre-
dicted data for well P11 running final ensemble from time zero. The colors in this
figure have the same meaning as in Fig. 4.7.

(a) Oil rate (b) Water rate (c) Bottomhole pressure

Figure 4.13: Case 5: EnSRF. Predicted data for well P11 running final ensemble
from time zero. The colors in this figure have the same meaning as in Fig. 4.7.

(a) Oil rate (b) Water rate (c) Bottomhole pressure

Figure 4.14: Case 6: EnSRF with distance-based localization. Predicted data for
well P11 running final ensemble from time zero. The colors in this figure have the
same meaning as in Fig. 4.7.
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CHAPTER 5

COMBINING ENSEMBLE KALMAN FILTER AND MARKOV

CHAIN MONTE CARLO

One problem that often occurs when EnKF is applied to reservoir history-

matching problems is that the values of the objective function corresponding to

the models of the final ensemble are relatively high, especially when compared to

gradient-based history matching. In fact, for most of the reservoir history-matching

examples considered in the previous two chapters, we observed that the final values

of the normalized objective function obtained by EnKF cases did not come close to

satisfying the criterion of Eq. 2.132. Large values of the objective function occur

because of poor data matches, or rough models, or both. However the statistical

interpretation of high values of the objective function is perhaps more important. A

model which gives a high value of the objective function corresponds to a sample of

a low probability region of the posterior pdf, which is clearly undesirable, especially

if the objective is to generate a good sampling of the posterior pdf in order to have

a reliable characterization of uncertainty.

This chapter presents a procedure which combines EnKF and MCMC for the

purpose of improving the final data matches and obtaining a more accurate sampling

of the posterior pdf for reservoir model parameters. The results presented in this

chapter were published in Emerick and Reynolds [38].
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5.1 EnKF-MCMC

5.1.1 Proposing realizations from the square root

For multivariate Gaussian variables, it is possible to generate realizations from

a square root of the covariance matrix. Based on that fact, Emerick and Reynolds

[35] proposed computing the square root of the posterior covariance based on the final

ensemble obtained from EnKF and using this square root to generate independent

conditional realizations. The outline of the procedure is as follows: (i) Generate an

ensemble of vectors of model parameters by assimilating data with EnKF. (ii) Apply

SVD to estimate the square root of the covariance matrix approximated from this

ensemble of model parameters. (iii) Use this square root and the ensemble mean

to propose new states in the Markov chain in the implementation of MCMC. Note

that this mechanism for proposing transitions in the Markov chain means that the

proposed states in the chain are generated from a Gaussian pdf with a mean equal

to the ensemble mean and a covariance matrix given by the approximate covariance

matrix estimated from the final EnKF ensemble of model parameters. In a syn-

thetic reservoir problem, the EnKF-MCMC method suggested in [35] gave better

data matches and a better characterization of uncertainty in reservoir performance

predictions than were obtained by EnKF even though it is clear that the Markov

chains generated were not sufficiently long to complete the burn-in period.

There are two main problems associated with the EnKF-MCMC algorithm

described in the previous paragraph. (a) First, applying the Metropolis-Hastings cri-

terion for determining whether to accept a proposed transition in the chain requires

running the reservoir simulator to evaluate the likelihood part of the posterior pdf.

Thus, for a realistically-sized simulation model, it is not computationally feasible to

consider more than a few thousand proposals at the very most. Because of the high

computational cost, Emerick and Reynolds [35] considered only chains generated

using 1,000 proposed transitions and thus, as mentioned above, MCMC was termi-
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nated while it was still in the burn-in period. (b) Secondly, because a new state (new

vector of model parameters) is proposed from the square root of the approximate

covariance matrix in step (iii), any proposed state is a vector in the subspace spanned

by the final ensemble of vectors of model parameters obtained with EnKF. Thus, it

is doubtful that we can generate an accurate characteristic of the posterior pdf for

any predicted outcome, e.g., cumulative water production at some future time or the

predicted oil rate at a well, if states in the chain are restricted to this subspace. This

difficulty in correctly characterizing uncertainty is to be expected because EnKF is a

stochastic process, and the mean and covariance for the vector of model parameters

estimated from the final EnKF ensemble depends on the initial ensemble.

In this chapter, we extend the basic ideas of Emerick and Reynolds [35] in

a way that eliminates problem (a) of the preceding paragraph and at least amelio-

rates the negative effects that arise from problem (b). In the modified algorithm

presented here, after assimilating data with EnKF, we run the simulator with each

member of the ensemble of vectors of model parameters from time zero to compute

the corresponding primary simulator variables associated with each realization of

model parameters. Then, we compute the square root of the covariance of the re-

sulting state vector which includes both model parameters and primary variables.

Next, somewhat similar to the original Emerick and Reynolds [35] EnKF-MCMC

algorithm outlined above, the ensemble mean and the square root of this covariance

matrix are used to propose new states in the Markov chain. As the proposed states

include values of the simulation primary variables, the predicted well data associ-

ated with the proposed state can be calculated by a direct application of Peaceman’s

equation [136]. With these predicted data, the likelihood part of the objective func-

tion can be evaluated without running the simulator and so the Metropolis-Hastings

probability of accepting the proposal as the next state in the Markov chain can be

calculated without running the simulator. Thus, the computational cost of running
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a very long chain is reasonable. This eliminates problem (a) of the original EnKF-

MCMC algorithm proposed in [35]. To reduce the effects of problem (b) and further

improve the method, three more modifications are introduced. First, we apply EnKF

multiple times, where each time we start with a different initial ensemble of state vec-

tors. Secondly, from each final ensemble, we generate Ne Markov chains, each chain

starting with a different initial state, and simply select the final state in each chain

as a sample of the posterior pdf. If EnKF is applied Nf times, then Ns = Nf × Ne

samples are obtained. Thirdly, we run the reservoir simulation with each vector of

model parameters in the combined ensemble of Ns samples and resample based on

the actual values of the normalized objective function.

From this point, we refer to this method simply as EnKF-MCMC. The de-

scription of the EnKF-MCMC follows: After data assimilation with EnKF, we rerun

the final ensemble of vectors of model parameters from time zero (initial reservoir

condition) to compute the corresponding simulator primary variables. Then, we

build the matrix

∆Y = Y − Y =



∆M

∆P 1

∆P 2

...

∆PNt


. (5.1)

Here, ∆M = M −M , where M is the Nm×Ne matrix with the jth column equal to

the jth realization of the vector of model parameters obtained by data assimilation

with EnKF, and M is the Nm × Ne matrix with all columns equal to m, which

represents the average of all columns of M , i.e., the ensemble mean. Similarly,

∆P n = P n − P n
, where P n is the Np ×Ne matrix with its jth column equal to the

jth vector of reservoir simulator primary variables at the nth data assimilation step.
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Each column of P
n

is equal to pn, the average of the columns of P n. Nt denotes the

total number of data assimilation time-steps. We include primary variables in ∆Y

so that we can compute predicted well data corresponding to observed data using

Peaceman’s equation [136] without running the reservoir simulator when applying

the MCMC algorithm. Thus, we need to include in P n only the primary simulation

variables at gridblock locations in which there are wells completed, and by doing so,

we reduce significantly the size of the matrix ∆Y . An alternative approach would

be to include in the matrix ∆Y only the predicted data obtained by running the

ensemble from time zero. In this case, one could estimate directly the well data

without applying Peaceman’s equation. While this procedure would be much easier

to implement, we believe that our approach tends to give better predictions because

the relation between model parameters and primary reservoir simulator variables

tends to be more linear than the relation between model parameters and predicted

well data.

Let Ny = Nm + Nt × Np denote the number of rows of the matrix ∆Y .

Assuming that the final ensemble describes a Gaussian distribution, we can propose

independent conditional realizations, ŷ, using

ŷ = y + C̃
1/2
Y z. (5.2)

Here, y is the average of the columns of Y ; z is a Ny-dimensional column vector of

random independent standard normal deviates, i.e., z ∼ N (0, INy); and C̃
1/2
Y is the

square root of the posterior covariance matrix, which is estimated using the final

ensemble from EnKF. To compute C̃
1/2
Y , we first calculate the SVD of ∆Y , which

can be written as

∆Y = UΛV T, (5.3)

where U is the Ny ×Ny orthogonal matrix with its jth column equal to the jth left
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singular vector; Λ is the Ny × Ne matrix with all nonzero entries corresponding to

singular values, and V is the Ne × Ne orthogonal matrix of right singular vectors.

Considering only the Nr nonzero singular values of ∆Y , we can write the posterior

covariance matrix as

C̃Y =
∆Y∆Y T

Ne − 1
=

(UrΛr)(UrΛr)
T

Ne − 1
= C̃

1/2
Y C̃

T/2
Y , (5.4)

where Ur is the Ny × Nr matrix of left singular vectors corresponding to nonzero

singular values, and Λr is the Nr×Nr diagonal matrix with nonzero singular values.

From Eq. 5.4, one can define the square root of the posterior covariance as

C̃
1/2
Y =

UrΛr√
Ne − 1

, (5.5)

which is a Ny × Nr matrix and thus not square. Instead, we define the square root

of C̃Y as

C̃
1/2
Y =

UrΛrU
T
r√

Ne − 1
, (5.6)

which is a Ny ×Ny symmetric matrix. Because UT
r Ur = INr , where INr denotes the

Nr ×Nr identity matrix, C̃
1/2
Y given by Eq. 5.6 is still a square root of C̃Y.

In realistic reservoir history-matching applications, we have Ne � Ny and

thus Nr ≤ Ne. Typically, we have Nr = Ne − 1. Note that Ny may be very large.

However, we do not need to compute or store the Ny ×Ny matrix C̃
1/2
Y . Instead, we

store only the Ny ×Nr matrix Ur and the Nr diagonal elements of Λr corresponding

to the nonzero singular values of ∆Y . Then, we compute the Nr-dimensional vector

x by

x = ΛrU
T
r z (5.7)

and compute the new proposal for the Markov chain using
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ŷ = y +
1√

Ne − 1
Urx, (5.8)

which involves the product of a Ny ×Nr matrix and a Nr-dimensional vector.

We use Eq. 5.8 to propose states for the MCMC method. From Eq. 5.8, we

note that any state proposed during MCMC is in the subspace spanned by the Nr

left singular vectors of ∆Y contained in Ur. After proposing the new state ŷ, we

effectively have a new model and the corresponding values of primary simulation

variables at gridblocks that contain wells at all data assimilation time-steps. At this

point, we have made the underlying assumption that those primary variables are

statistically consistent with the model parameters. A similar assumption is present

in the EnKF method. Once we compute the vector ŷ, we can easily compute the

predicted well data by the standard application of Peaceman’s equation. For exam-

ple, for a well completed in a single gridblock, we could compute the predicted oil

rate, qo, at the nth time-step using

qno = WI
kro(Sno )

Bo(pn)µo(pn)
(pn − pnwf) , (5.9)

where WI is the well index computed with Peaceman’s equivalent radius; kro(Sno )

is the oil relative permeability, which is a function of the gridblock oil saturation,

Sno ; Bo(pn) is the oil formation volume factor and µo(pn) is the oil viscosity, which

are both functions of the gridblock pressure, pn; pnwf is the specified well bottomhole

pressure. The values of pn and Sno are components of the state vector ŷ, computed

using the square root scheme discussed before.

As discussed in Chapter 2 (Section 2.2), for reservoir history-matching prob-

lems, the application of MCMC with global perturbations does not seem to be feasible

because the acceptance rate is too small to sample the posterior pdf in a reasonable

number of proposals. Therefore, it is far more efficient to generate chains using local

perturbations. Here, we use the local perturbation procedure described in Section 2.2
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(Eq. 2.18). Unfortunately, in a Markov chain built using local perturbations, most

of the states are correlated, an thus we obtain only a few “independent” samples

of the posterior pdf. One option to ameliorate this problem is to run an extremely

long chain to try to ensure that enough independent samples are generated in this

chain. Here, we consider an alternative approach. To obtain Ne new samples, we

run Ne chains starting from different models. We run each chain long enough to pass

through the burn-in period and select only one model as a sample, the last accepted

state in the chain. Because we start each chain from an independently proposed

initial state, we obtain Ne independent samples using this procedure. Note that it

is more efficient to run several small chains than one single very long chain because

we can run the chains in parallel on multiple computers, reducing the time required

to generate the new samples.

5.1.2 Comments on underestimation of posterior covariance

The proposed procedure uses the final ensemble from EnKF to estimate the

posterior covariance of model parameters. As we use the square root of this covari-

ance matrix, any model proposed during MCMC is in the subspace spanned by the

vectors of model parameters corresponding to the final ensemble from EnKF. Thus, if

the final ensemble from EnKF does not span the whole pdf, MCMC will not provide

samples which span the whole pdf either. This is an important limitation because

EnKF tends to underestimate posterior variances of reservoir model parameters after

data assimilation [172, 57, 6]. Covariance localization usually reduces this problem,

but we still expect some underestimation.

As will be shown in the example section, if we apply EnKF for the same

problem with different initial ensembles, we obtain very different distributions of

predicted cumulative oil and water production, which indicates that the resulting

models from EnKF are not samples of the same pdf, or, at least, they are samples

from different parts of the same pdf. Therefore, uncertainty is not reasonably char-
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acterized by a single ensemble of 100 models using EnKF. The same conclusion was

obtained by Lorentzen et al. [113] using the PUNQ-S3 case [55]. Thulin et al. [168]

also concluded that with only a single EnKF run, there is no control over the Monte

Carlo error in the estimate of the conditional pdf. They proposed performing various

data assimilations with EnKF and using as the final distribution of predictions, the

average cdf from all data assimilations. Although this procedure may improve the es-

timate of the conditional cdf, there is still a problem related to the poor data matches

obtained by EnKF. As shown later, applying EnKF-MCMC results in better data

matches and predictions, but the resulting distributions are still different. In order

to alleviate this problem, we propose repeating EnKF-MCMC with different initial

ensembles so that we expect to generate samples of different parts of the posterior

pdf.

5.1.3 Resampling based on the normalized objective function

As discussed in the previous section, in order to improve sampling, we apply

EnKF-MCMC with different initial ensembles. Then, we can assume that all the

resulting models of all EnKF-MCMC runs provide the final sampling of the posterior

pdf. However, because our MCMC procedure is based on an approximate likelihood,

we cannot expect to sample the posterior pdf correctly, although we do expect to

improve the sampling compared to EnKF. In practice, we observe that some models

resulting from EnKF-MCMC will not provide reasonable data matches after we run

the reservoir simulator. As a result, we observe unreasonably high variance in the

distributions of reservoir predictions (e.g., a high variance in predicted cumulative

oil production). Hence, in order to have a reasonable characterization of uncertainty,

we need to eliminate models with unacceptable data matches. From a Bayesian

viewpoint, we wish to eliminate the samples from negligible probability regions of

the posterior pdf.

The obvious way to remove these low probability samples is by using impor-
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tance sampling (IS) [120, 33, 34]. IS is the basis of particle filters [33, 34] where

the samples (particles) are re-weighted based on the likelihood (or the target pdf)

evaluated at the sample. In this case, it is straightforward to show that each sample

get an importance weight wj given by

wj =
π(mj)∑Ns
k=1 π(mk)

=
exp(−O(mj))∑Ns
k=1 exp(−O(mk))

, for j = 1, 2, · · ·Ns, (5.10)

where O(m) is the objective function given by Eq. 2.3. However, when the objective

function values of the samples are unevenly distributed, computing weights using

Eq. 5.10 leads to a situation in which most of the samples have weights essentially

equal to zero and only very few samples have non-negligible weights. In the particle

filter literature, this phenomenon is known as particle degeneracy [34]. In the extreme

case, the sampling collapses to a single particle. In practice, we observe that re-

weighting the history-matched models based on the likelihood (or even the on target

pdf) results in sampling collapse. This problem is well known in the literature, and

it is often attributed to the so-called “curse-of-dimensionality” [12], which states

that the sample size needs to increase exponentially with the dimensionality of the

problem to avoid collapse of the particles.

Here, we propose an approximate procedure inspired by IS and particle fil-

ters. We re-weight the samples based on the target pdf evaluated at the normalized

objective function, i.e., we compute the weights using

wj =
exp(−ON(mj))∑Ns
k=1 exp(−ON(mk))

, for j = 1, 2, · · ·Ns, (5.11)

where ON(m) = O(m)/Nd is the normalized objective function. Re-weighting based

on the normalized objective function does not represent a rigorous resampling proce-

dure because one no longer can prove that the resulting weights results into a correct
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sampling of the posterior pdf. However, this procedure approximately does what

we wish. First, normalizing the objective function by the number of data points

significantly reduces the sampling collapse problem. Secondly, with this procedure,

we are still able to remove models which result in unreasonable data matches and

increase the importance of more probable models when generating distributions of

reservoir predictions. We use the normalized objective function because the values

of ON(m) for models that result in a good history match are typically of the same

order of magnitude regardless of the problem and the number of data assimilated.

5.1.4 Summary of EnKF-MCMC procedure

Algorithm 5.1 presents the EnKF-MCMC procedure applied in this chap-

ter. This procedure is repeated for Nf different initial ensembles so that a total of

Ns = Nf × Ne samples are generated. Then, we run the reservoir simulator for all

resulting models, compute the normalized objective function for each model and re-

sample using Eq. 5.11. If the final data matches obtained after running the reservoir

simulator are still not satisfactory, we can repeat steps 2 and 3 of Algorithm 5.1

until we do not observe significant improvements in the objective functions, i.e., the

algorithm can be applied iteratively.

Algorithm 5.1 EnKF-MCMC

1. Perform data assimilation using EnKF with covariance localization.

2. Run the final ensemble from time zero, build the matrix ∆Y (Eq. 5.1) and com-
pute the matrices Ur and Λr using SVD. These matrices are used to estimate
the square root of the state covariance matrix (Eq. 5.6).

3. Build Ne Markov chains to generate Ne samples of the posterior pdf. For each
Markov chain,

• Propose the first state using Eq. 5.2 (or equivalently, Eq. 5.8).

• Propose the remaining states using local perturbations.

• Keep the last accepted state as one sample.
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5.2 Example

The example is a synthetic reservoir case on a 15× 30× 3 uniform grid. The

dimensions of the gridblocks are 200 ft × 200 ft × 25 ft. The model parameters

are gridblock log-permeabilities. The true model was built using an exponential

covariance function with the geostatistical parameters given in Table 5.1. Note that

Table 5.1 indicates that the geostatistical parameters of each layer are different.

There is no correlation between layers.

Table 5.1: Geostatistical parameters for the reservoir model.

Layer 1 Layer 2 Layer 3

Prior mean of ln(k) 5.0 3.5 4.5
Prior variance of ln(k) 1.0 1.0 1.0
Major correlation length 12,000 ft 2,000 ft 12,000 ft
Minor correlation length 1,000 ft 2,000 ft 1,000 ft
Azimuth 45o 0o 135o

Fig. 5.1 shows the “true” permeability field used as reference to generate the

observed data. For this reservoir, there are six producing wells and two water injec-

tors forming two five spots. All producing wells are controlled by a fixed bottomhole

pressure of 2,500 psi. The injectors are controlled by a fixed bottomhole pressure

of 3,500 psi. The observed data are 11 years of oil and water production rates and

water injection rates. To generate the observed data, we added to the well data

predicted by the true model Gaussian random noise with zero mean and standard

deviation equal to 5% of the true data. We assumed that the measurement errors

are uncorrelated so that the covariance matrix CD is diagonal. We assimilated data

every 150 days so for the total historical period, the number of observed data points

is Nd = 378. The value of the normalized objective function of the true model is

ON(mtrue) = 2.32.
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(a) Layer 1 (b) Layer 2 (c) Layer 3

Figure 5.1: True permeability field (mD).

5.2.1 Single ensemble

Using the same geostatistical parameters presented in Table 5.1, we generated

an ensemble of 100 models and performed data assimilation using EnKF with and

without covariance localization. Because localization tends to keep the variability

in the final ensemble higher, we used the final ensemble from EnKF with covariance

localization to propose states for the Markov chain. For localization, we used the

procedure described in Chapter 3 based on the prior correlation and drainage areas.

Before applying the complete EnKF-MCMC algorithm, we performed a sen-

sitivity study to define the parameters of the Markov chains. We ran four chains

with a total length of 20,000 proposals each. The first 3 chains were run using local

perturbations with different scaling factors, 0.005, 0.01 and 0.04. The fourth chain

was run with global perturbations. Fig. 5.2a presents the values of the normalized

objective function of the accepted models in the chains. Table 5.2 summarizes the

results for each chain. According to the results in Fig. 5.2a and Table 5.2, the chain

with local perturbations and a scaling factor of 0.005 seems to be still in the tran-

sition period after 20,000 proposals. For scaling factors of 0.01 and 0.04, on the

other hand, the chains seem to stabilize after approximately 10,000 proposals for

σ = 0.01 and 4,000 proposals for σ = 0.04. We assume that this stabilization period

represents the burn-in period so that from this point onward, the accepted models
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represent samples of the target pdf. The number of accepted proposals in the three

chains with local perturbations is very high (see third column of Table 5.2). For

σ = 0.04, we obtained an acceptance rate of 0.268, which is close to the “optimal”

value of 0.234. However, as each new proposal is obtained by a small perturbation

around the current state, we expect consecutive states in the chain to be highly cor-

related. It is important to have a high acceptance rate in the Markov chain, but it

is more important to have good mixing, i.e., it is necessary to generate samples from

all parts of the distribution so that the variability is correct, rather than having a

very large number of similar successive states. For global perturbations, all accepted

models are independent, but, in this case, only 6 states were accepted and based on

the objective function values obtained, the chain does not seem to converge after

20,000 proposals. Although the results are not presented here, we performed some

additional experimentation using chains with global perturbations, and we observed

that, even for very long chains (more than one million proposals), the number of

accepted states after the burn-in period is very small (on the order of 5 to 10 mod-

els). In order to evaluate the number of independent states in the chains with local

perturbations, we computed the root mean squared (RMS) of the difference between

the initial state and all accepted states in the chains. The RMS was computed using

RMSj =

√
1

Nm

‖mj −m0‖2
2, for j = 1, 2, · · ·Nacc, (5.12)

with j denoting the jth accepted state and Nacc denoting the number of accepted

states in the chains. We can interpret RMSj as a measure of the distance between

the first and the jth state in the chain. Fig. 5.2b presents the RMS values obtained

for each chain with local perturbations. According to the results in this figure, for

the chains with σ = 0.005 and σ = 0.01, the values of RMS are still increasing at

the end of the chain. This suggests that all states in these chains are correlated with

the first state m0. For σ = 0.04 after approximately 2,000 accepted states, RMS
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(a) Normalized objective function of
accepted states

(b) RMS

Figure 5.2: Markov chains for different proposal procedures.

stops increasing and oscillates around 0.87, which suggests that after this point,

the states are independent of the first state although any two particular states may

be correlated. Because of these long correlation lengths in the chains with local

perturbations, only a small percentage of the accepted states are independent.

Table 5.2: Summary of Markov chains.

Case Burn-in Average ON Accepted states Acceptance rate

Local (σ = 0.005) > 20,000 3.897 15,959 0.798
Local (σ = 0.01) ' 10,000 3.618 14,602 0.730
Local (σ = 0.04) ' 4,000 3.556 5,365 0.268
Global pert. � 20,000 8.378 6 0.0003

To apply the complete EnKF-MCMC algorithm, we use chains based on local

perturbations (σ = 0.04) and 10,000 proposals, which, based on the results of Fig. 5.2,

is long enough to pass through the burn-in period. Each new sample generated

from EnKF-MCMC was obtained by running a new Markov chain starting from an

independently proposed initial state. Thus, we ran 100 chains to generate 100 new

samples. Fig. 5.3 shows the normalized objective function obtained for each model

using EnKF, EnKF with covariance localization and EnKF-MCMC. Note that the

values of the normalized objective function presented in Fig. 5.3 correspond to the
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Figure 5.3: Normalized objective function.

actual ones, i.e., they were obtained by running the final set of models from time zero.

Table 5.3 presents the average values of the objective functions for each case. In this

table, we present model mismatch, Om(m), the data mismatch, Od(m), the total,

O(m) = Om(m) + Od(m), and the normalized objective function, ON = O(m)/Nd.

According to the results in Fig. 5.3 and Table 5.3, EnKF gave models with relatively

high values of the objective function, especially in the data mismatch part, Od(m).

The final values of the objective function after MCMC are more than three times

smaller than the values obtained with the two EnKF procedures. This means that

EnKF-MCMC generated samples that have much higher values of posterior pdf than

the samples obtained with EnKF.

Table 5.3: Average objective function.

Case Om(m) Od(m) O(m) ON = O(m)
Nd

EnKF 2429.0 8550.2 10979.0 29.05
EnKF with localization 1056.5 7412.7 8469.2 22.41
EnKF-MCMC 862.7 1612.0 2474.7 6.55

For comparisons, we ran a Markov chain with two million states proposing

models from the square root of the prior covariance matrix, computed using Cholesky

decomposition [135, p. 288–289]. In this chain, we used the local perturbation pro-
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cedure presented by Oliver et al. [133]. In this procedure, one entry of the random

vector corresponding to the current state in the chain is replaced by a sample from

N (0, 1). For this chain, each proposal required a reservoir simulation to apply the

Metropolis-Hastings acceptance criterion. The total number of accepted states was

206,059 which corresponds to an acceptance rate of 0.103. We initialized the chain

with the model obtained by EnKF without covariance localization which gave the

lowest value of objective function. Fig. 5.4a presents the normalized objective func-

tion of the accepted states in this chain. According to the results in this figure, the

transition period lasts until we have accepted about 20,000 proposals; after that, the

values of ON oscillate around 2.4. Here, we assume that this Markov chain is long

enough to provide a reasonable approximation of the conditional distributions for

predicted cumulative oil and water production. In the rest of this paper, we refer to

this case as long MCMC case. Fig. 5.4b presents the root mean square (RMS) of the

difference between the initial state and the first 5,000 accepted states in this chain.

The results presented in this figure show that after approximately 2,000 accepted

states, the RMS stops increasing, which indicates that after this point onward, the

models are independent of the initial state. Assuming that this number approxi-

mately holds for the whole chain, as we have a total of 206,059 accepted states, we

can roughly assume that we have about 103 independent samples. Fig. 5.5 shows the

resulting histograms of predicted cumulative oil and water production for the long

MCMC case. These histograms are based on a total time of 21 years, 11 years of his-

torical data and 10 years of future predictions. The cumulative production obtained

from the true model is also included in these and all other histograms presented in

this chapter.

Fig. 5.6 presents the histograms of cumulative oil and water production ob-

tained from EnKF, EnKF with localization and EnKF-MCMC. According to the

results shown in Fig. 5.6, EnKF with and without covariance localization resulted
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(a) Normalized objective function of
accepted states

(b) RMS

Figure 5.4: Long Markov chain proposing model from prior.
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Figure 5.5: Histograms of cumulative oil and water production for the long MCMC
case.
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Figure 5.6: Histograms of cumulative oil and water production. Figures also include
the cumulative oil and water production for the true model (in red).
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in histograms with a much larger spread of predicted oil and water production com-

pared to those for the long MCMC case (Fig. 5.5). These large spreads are a con-

sequence of the poor data matches obtained in the EnKF cases. EnKF-MCMC

narrowed the spread of predicted oil and water production, resulting in histograms

much closer to the ones obtained with the long MCMC case (compare Figs. 5.6c and

5.6f with Figs. 5.5a and 5.5b). Also note that for this example, the histograms from

the EnKF cases are biased compared to the long MCMC (see Figs. 5.6a and 5.6e).

Figs. 5.7–5.9 present the predicted water rate for EnKF, EnKF with localization and

EnKF-MCMC. These figures clearly illustrate the improvement in the data matches

obtained with EnKF-MCMC. Unfortunately, it is also clear from these figures that

EnKF-MCMC underestimated the uncertainty in the predictions. For example, for

wells P1 and P6, none of the methods resulted in predictions that span the water

production rate obtained by running the true model.

In summary, the application of EnKF-MCMC improved the sampling results

obtained from EnKF by generating samples from higher probability regions of the

posterior pdf. However, because the proposed models for MCMC are restricted to the

subspace spanned by the final ensemble obtained from EnKF, EnKF-MCMC cannot

generate samples from all parts of the posterior pdf, which results in underestimation

of uncertainty.
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(a) P1 (b) P2 (c) P3 (d) P4

(e) P5 (f) P6 (g) I1 (h) I2

Figure 5.7: EnKF. Predicted water rate by running the final ensemble from time
zero (stb/day). Red dots are the history; solid red curve is the true model; solid
green curve is the mean prediction computed from the ensemble; and solid light blue
curves represent all ensemble predictions. The dashed vertical black line indicates
the end of the history and beginning of the forecast period.

(a) P1 (b) P2 (c) P3 (d) P4

(e) P5 (f) P6 (g) I1 (h) I2

Figure 5.8: EnKF with covariance localization. Predicted water rate by running
the final ensemble from time zero (stb/day). The colors in this figure have the same
meaning as in Fig. 5.7.
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(a) P1 (b) P2 (c) P3 (d) P4

(e) P5 (f) P6 (g) I1 (h) I2

Figure 5.9: EnKF-MCMC. Predicted water rate by running the final ensemble from
time zero (stb/day). The colors in this figure have the same meaning as in Fig. 5.7.

5.2.2 Multiple ensembles

From the results of the previous section, we conclude that with one ensemble

of 100 models, it is not always possible to obtain a reasonable quantification of the

uncertainty in production predictions using EnKF with or without localization, or

even with EnKF-MCMC. Here, we extend this example by repeating the process of

the previous section with ten different initial ensembles of 100 models each. Then,

we combine the results from all ten ensembles and resample based on the normalized

objective function. Here, we also consider the case with a single ensemble of 1,000

models. This ensemble was obtained by combining the ten initial ensembles of 100

models. For this single ensemble of 1,000 models, we applied EnKF-MCMC after

EnKF with covariance localization by generating 1,000 chains starting with 1,000

different initial states. Fig. 5.10 shows box plots of ON obtained for each ensem-

ble using EnKF, EnKF with covariance localization and EnKF-MCMC. According

to the results in Fig. 5.10, EnKF-MCMC improved significantly the data matches

for all ensembles. It is interesting to note that increasing the ensemble size from

100 to 1,000 did not improve the data matches for EnKF and EnKF with localiza-

tion. We suspect that this happens because, even though a large ensemble improves
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(c) EnKF-MCMC

Figure 5.10: Box plots of the normalized objective function for different initial
ensembles.

the estimates of cross-covariances, EnKF still requires assumptions of linearity and

statistical consistency between model parameters and updated primary simulator

variables during data assimilation.

Fig. 5.11 presents the ensemble mean model for each of the first three ensem-

bles obtained with EnKF, EnKF with covariance localization and EnKF-MCMC.

According to the results in Fig. 5.11, EnKF resulted in relatively rough ensemble

mean models for the first and third ensemble. In this figure, the white areas repre-

sent regions of overshooting or undershooting in the permeability fields. Note that it

is reasonable to expect that the posterior mean models should be smooth, which is

not the case for EnKF. Localization has the effect of regularization on the estimates

of cross-covariances during data assimilation, which results in smoother ensemble

means. As we started MCMC from the ensembles obtained using EnKF with lo-

calization, the final ensemble mean models from EnKF-MCMC exhibit some of the
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(a) Ens. # 1, EnKF (b) Ens. # 2, EnKF (c) Ens. # 3, EnKF

(d) Ens. # 1, EnKF with
localization

(e) Ens. # 2, EnKF with
localization

(f) Ens. # 3, EnKF with
localization

(g) Ens. # 1, EnKF-MCMC (h) Ens. # 2,
EnKF-MCMC

(i) Ens. # 3, EnKF-MCMC

Figure 5.11: Mean permeability fields for the first three ensembles (mD). First row
shows models from EnKF; second row shows models from EnKF with covariance
localization and third row shows models from EnKF-MCMC.

features of the mean models from EnKF with localization. However, as indicated

in Fig. 5.10, these models give data matches approximately three times better than

EnKF with localization, and, based on the posterior pdf, they are models with a

much higher probability.

Figs. 5.12 and 5.13 present box plots of cumulative oil and water production

for all cases, including the long MCMC. These box plots are based on a total time

of 21 years, 11 years of historical data and 10 years of future predictions. According

to the results in these figures, we observe that different initial ensembles gave very

different final distributions of predictions, and, in some cases, the predictions do not

span the cumulative oil and water production obtained by the true permeability field,

157



which is represented by the dashed horizontal black line. In addition, the spreads

of the predictions obtained with EnKF and EnKF with localization are too large

compared to the spreads in the long MCMC case, which we assume to be correct.

Besides that, EnKF with and without localization resulted in biased distributions

of cumulative water production for most of the ensembles, i.e., the distributions

represented by the box plots underestimate the true water production for most of the

ensembles. In summary, we can conclude that, even for such a simple reservoir model,

EnKF did not result in a reasonable characterization of uncertainty. Considering

the results obtained for an ensemble of 1,000 models, we observe that predictions

obtained with EnKF and EnKF with localization span the cumulative oil and water

production obtained from the true model. However, again the spreads of theses

predictions are too large because most of the models give poor data matches. EnKF-

MCMC narrowed the spread of predictions for all ensembles, but we still observe the

problem that different initial ensembles resulted in different final distributions.

Figs. 5.14–5.17 present the histograms of cumulative oil and water production

obtained by combining all ensembles. These figures include the cases with ten ensem-

bles of 100 models and one single ensemble with 1,000 models. First, we consider the

case in which we combine the ensembles by simply taking the predictions of all mod-

els without resampling. These results are labeled in each plot as “before resampling.”

As expected, this procedure gives unrealistic distributions of predicted cumulative oil

and water production for EnKF cases. The resulting histograms largely overestimate

the variance of the distributions obtained for the long MCMC case. This is also true

for the cases with a single ensemble of 1,000 models. Again, this happens because

EnKF cases give several models with poor data matches, resulting in an unrealistic

large spread of predictions. In fact, we should not consider the predictions from mod-

els with poor data matches, or at least, these predictions should be assigned a very

low probability, i.e., they should have lower weights when generating the histograms.
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(a) EnKF
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(b) EnKF with localization
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(c) EnKF-MCMC

Figure 5.12: Box plots of cumulative oil production for different initial ensembles.
The dashed horizontal black line indicates the truth prediction.
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(c) EnKF-MCMC

Figure 5.13: Box plots of cumulative water production for different initial ensem-
bles. The dashed horizontal black line indicates the truth prediction.

The resampling procedure based on the values of ON aims to correct the sampling

based on the importance of each model, and the resulting histograms are presented

in Figs. 5.14–5.17 labeled as “after resampling.” When applied to the case with ten

ensembles obtained after EnKF-MCMC, the resampling procedure resulted in his-

tograms of cumulative oil and water production that are close to those obtained from

the long MCMC case (compare Figs. 5.14f and 5.16f with Figs. 5.5a and 5.5b). How-

ever, the application of the resampling procedure to the ensembles generated from

EnKF cases still results in histograms very different from the ones obtained with

the long MCMC. The problem is that EnKF cases resulted in several models with

high values of ON . Thus, after resampling, only a few models have non-negligible

importance weights. This situation is often referred to as sample impoverishment in

the particle filter literature [33, Chap. 1]. A typical measure of the degree of sample

impoverishment is the effective sample size, Neff [34], which is given by
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Neff =
1∑Ns

j=1w
2
j

. (5.13)

Table 5.4 presents the values of Neff for all cases. According to the results in this

table, because EnKF-MCMC generated more samples with similar values of ON , it

resulted in a larger value of Neff. For the same reason, the Neff is larger for the

case with ten ensembles of 100 models than for the case with one ensemble of 1,000

models. As a result, the final histograms from EnKF-MCMC with ten ensembles are

much closer to those from the long MCMC case than are the histograms generated

with all other procedures. Figs. 5.18–5.20 present the water production rate for wells

P3, P4 and P6 for all cases after resampling. In these plots, we show the mean and

one and two standard deviations around the mean for each case. The water rate

obtained by the long MCMC case is also presented in these figures. These figures

illustrate that the best data matches and predictions were obtained by combining

the ten ensembles from EnKF-MCMC.

Table 5.4: Effective sample size.

Case Ten ens. 100 models One ens. 1,000 models

EnKF 92 15
EnKF with localization 11 13
EnKF-MCMC 386 86

Fig. 5.21 presents the final mean permeability fields obtained with EnKF,

EnKF with covariance localization, EnKF-MCMC and long MCMC. For the first

three cases, the mean permeability fields presented in this figure were obtained using

the ten ensembles of 100 models and resampling. According to the results in Fig. 5.21,

all cases resulted in mean permeability fields in reasonable agreement with the long

MCMC case. In addition, these models present the main features of the true model

(Fig. 5.1), namely, the high permeability channel connecting injector I1 to producers
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P2 and P3 in the first layer, and the channel connecting injector I2 to producer P6

in the third layer.

Fig. 5.22 presents the final standard deviations of log-permeability, ln(k),

obtained with EnKF, EnKF with covariance localization, EnKF-MCMC and long

MCMC. For the first three cases, the standard deviations presented in Fig. 5.22 were

obtained using the ten ensembles of 100 models with resampling. According to the

results in Fig. 5.22, all cases overestimate the standard deviations of the ln(k)’s com-

pared to those obtained from the long MCMC case. However, this overestimation

is clearly much higher for the EnKF case. Note that EnKF resulted in standard

deviations larger than one in several gridblocks of the reservoir, which is clearly too

high considering that the prior standard deviation of ln(k) is one. Note that the

results presented in Fig. 5.22 were obtained after resampling. Table 5.5 presents the

corresponding values of SNV for all cases. According to the results in Table 5.5,

combining the final ten ensembles resulting from data assimilation with EnKF re-

sulted in a SNV greater than one. This indicates an unreasonable overestimation

of uncertainty in the log-permeability field for this case. The SNV obtained with

EnKF-MCMC, on the other hand, is much closer to the SNV obtained with the long

MCMC case, even though there is still an overestimation of posterior variances.

Table 5.5: Sum of the normalized variances of log-permeability.

Case SNV

EnKF 1.244
EnKF with localization 0.666
EnKF-MCMC 0.594
Long MCMC 0.380

It is important to note that the values of SNV presented in Table 5.5 were

computed by combining the ten ensembles of 100 models and then resampling based

on ON . If we consider each of the ten ensembles individually, we observe that the
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Figure 5.14: Histograms of cumulative oil production. Results for ten ensembles
of 100 models. Figures also include the cumulative oil production for the true model
(in red).

163



0.00

0.10

0.20

0.30

0.40

14.50 14.73 14.95 15.18 15.40 15.63 15.85

Cum. Oil (MM STB)

R
el

at
iv

e 
Fr

eq
.

0%

20%

40%

60%

80%

100%

Cu
m

ul
at

iv
e 

Fr
eq

.

True = 15.09
Mean = 15.10
Std. dev. = 0.42
P10 = 14.59
P50 = 15.08
P90 = 15.63

(a) EnKF before resampling

0.00

0.10

0.20

0.30

0.40

14.50 14.73 14.95 15.18 15.40 15.63 15.85

Cum. Oil (MM STB)

R
el

at
iv

e 
Fr

eq
.

0%

20%

40%

60%

80%

100%

Cu
m

ul
at

iv
e 

Fr
eq

.

True = 15.09
Mean = 15.15
Std. dev. = 0.29
P10 = 14.80
P50 = 15.14
P90 = 15.51

(b) EnKF with localization before
resampling

0.00

0.10

0.20

0.30

0.40

14.50 14.73 14.95 15.18 15.40 15.63 15.85

Cum. Oil (MM STB)

R
e
la
ti
v
e
 F
re
q
.

0%

20%

40%

60%

80%

100%
C
u
m
u
la
ti
v
e
 F
re
q
.

True = 15.09

Mean = 15.37

Std. dev. = 0.29

P10 = 15.00

P50 = 15.39

P90 = 15.72

(c) EnKF-MCMC before resampling

0.00

0.10

0.20

0.30

0.40

14.50 14.73 14.95 15.18 15.40 15.63 15.85

Cum. Oil (MM STB)

R
el

at
iv

e 
Fr

eq
.

0%

20%

40%

60%

80%

100%

Cu
m

ul
at

iv
e 

Fr
eq

.

True = 15.09
Mean = 15.10
Std. dev. = 0.40
P10 = 14.62
P50 = 15.08
P90 = 15.69

(d) EnKF after resampling

0.00

0.10

0.20

0.30

0.40

14.50 14.73 14.95 15.18 15.40 15.63 15.85

Cum. Oil (MM STB)

R
el

at
iv

e 
Fr

eq
.

0%

20%

40%

60%

80%

100%

Cu
m

ul
at

iv
e 

Fr
eq

.

True = 15.09
Mean = 15.32
Std. dev. = 0.28
P10 = 15.02
P50 = 15.45
P90 = 15.54

(e) EnKF with localization after
resampling

0.00

0.10

0.20

0.30

0.40

14.50 14.73 14.95 15.18 15.40 15.63 15.85

Cum. Oil (MM STB)

R
e
la
ti
v
e
 F
re
q
.

0%

20%

40%

60%

80%

100%

C
u
m
u
la
ti
v
e
 F
re
q
.

True = 15.09

Mean = 15.41

Std. dev. = 0.23 

P10 = 15.06

P50 = 15.43

P90 = 15.67

(f) EnKF-MCMC after resampling

Figure 5.15: Histograms of cumulative oil production. Results for one ensemble of
1,000 models. Figures also include the cumulative oil production for the true model
(in red).
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Figure 5.16: Histograms of cumulative water production. Results for ten ensembles
of 100 models. Figures also include the cumulative water production for the true
model (in red).
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(f) EnKF-MCMC after resampling

Figure 5.17: Histograms of cumulative water production. Results for one ensemble
of 1,000 models. Figures also include the cumulative water production for the true
model (in red).
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(a) EnKF
(10 ens. of 100 models)

(b) EnKF with localization
(10 ens. of 100 models)

(c) EnKF-MCMC
(10 ens. of 100 models)

(d) EnKF
(one ens. of 1,000 models)

(e) EnKF with localization
(one ens. of 1,000 models)

(f) EnKF-MCMC
(one ens. of 1,000 models)

(g) Long MCMC

Figure 5.18: Well P3. Predicted water rate by running the final ensemble from
time zero (stb/day). Red dots are the history; solid red curve is the true model;
solid green curve is the mean prediction computed from the ensemble considering
the importance weights. The light blue region corresponds to one standard deviation
around the mean. The black lines correspond to two standard deviations around the
mean. The dashed vertical black line indicates the end of the history and beginning
of the forecast period.
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(a) EnKF
(ten ens. of 100 models)

(b) EnKF with localization
(ten ens. of 100 models)

(c) EnKF-MCMC
(ten ens. of 100 models)

(d) EnKF
(one ens. of 1,000 models)

(e) EnKF with localization
(one ens. of 1,000 models)

(f) EnKF-MCMC
(one ens. of 1,000 models)

(g) Long MCMC

Figure 5.19: Well P4. Predicted water rate by running the final ensemble from
time zero (stb/day). The colors in this figure have the same meaning as in Fig. 5.18.

168



(a) EnKF
(ten ens. of 100 models)

(b) EnKF with localization
(ten ens. of 100 models)

(c) EnKF-MCMC
(ten ens. of 100 models)

(d) EnKF
(one ens. of 1,000 models)

(e) EnKF with localization
(one ens. of 1,000 models)

(f) EnKF-MCMC
(one ens. of 1,000 models)

(g) Long MCMC

Figure 5.20: Well P6. Predicted water rate by running the final ensemble from
time zero (stb/day). The colors in this figure have the same meaning as in Fig. 5.18.
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(a) EnKF (b) EnKF with localization

(c) EnKF-MCMC (d) Long MCMC

Figure 5.21: Mean permeability fields. For cases (a)–(c) the mean permeability
fields were obtained using ten ensembles of 100 models and resampling.

(a) EnKF (b) EnKF with localization

(c) EnKF-MCMC (d) Long MCMC

Figure 5.22: Standard deviation of log-permeability. For cases (a)–(c) the standard
deviations were obtained using ten ensembles of 100 models and resampling.
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posterior variances are greatly underestimated. Table 5.6 presents the SNV obtained

for each ensemble. The values of SNV presented in Table 5.6 were computed before

resampling. According to the results present in this table, for each ensemble, EnKF

resulted in SNV’s approximately 60% less than the SNV obtained by the long MCMC

case. Covariance localization increased significantly the posterior variances resulting

in an average SNV approximately 15% less than the SNV obtained by the long

MCMC case. After EnKF-MCMC the variance of each ensemble was greatly reduced.

The average SNV is 85% less than the one obtained by the long MCMC case. This

result shows that we cannot obtain a sampling that reasonably describes uncertainty

for this problem using a single ensemble of 100 models. This significant reduction

in the ensemble variance occurs because during MCMC, the proposals are restricted

to a subspace spanned by the state vectors corresponding to the final ensemble of

models obtained by EnKF with covariance localization. Consequently, the variance

of the ensemble after MCMC is reduced because there are not many “independent”

samples in the subspace spanned by the EnKF ensemble that provide reasonable

data matches.

Table 5.6: Sum of the normalized variances of log-permeability for each ensemble.

Ensemble # EnKF EnKF with local. EnKF-MCMC

1 0.152 0.301 0.048
2 0.169 0.334 0.036
3 0.143 0.308 0.053
4 0.141 0.330 0.054
5 0.164 0.311 0.118
6 0.173 0.332 0.074
7 0.146 0.319 0.042
8 0.159 0.325 0.063
9 0.172 0.321 0.036
10 0.161 0.323 0.072

mean 0.158 0.320 0.060
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5.2.3 MCMC iterations

In the proposed EnKF-MCMC method, we start with the models resulting

from EnKF with covariance localization as an initial sampling. Then, we apply the

MCMC procedure where we propose transitions based on the square root of the

state vector’s covariance matrix to improve sampling. Even though MCMC samples

correctly in the limit, the proposed EnKF-MCMC procedure is not guaranteed to

sample the correct pdf because we are not computing the correct likelihood. For the

example presented in the previous section, this procedure resulted in a significant

improvement in the objective functions obtained for all ten ensembles considered.

The final average ON obtained after EnKF-MCMC is 5.77. However, for the long

MCMC case, the average ON is 2.40. Therefore, most of the models obtained with

EnKF-MCMC are still samples of regions with lower probability compared to the

samples obtained in the long MCMC case, which we assume to be a correct sam-

pling. To improve the accuracy of the sampling procedure, here, we extend the

example considered in the previous section by performing additional MCMC pro-

cedures. For each of the ten ensembles, we repeated the MCMC procedure staring

with the set of models obtained in the previous MCMC procedure. This approach

can be viewed as an iterative procedure, which can be repeated until we do not

observe significant improvements in the values of the objective function. Fig. 5.23

presents two alternative workflows summarizing this iterative procedure. In the

first workflow (EnKF-MCMC, Fig. 5.23a), we start the process using EnKF with

covariance localization and then apply multiple iterations of MCMC. The second

workflow (MCMC-only, Fig. 5.23b) is similar to the first one, but instead of starting

with EnKF with covariance localization, we simply start from the prior ensemble.

Here, we applied three iterations of MCMC for EnKF-MCMC and six iterations for

MCMC-only. Note that each new iteration requires running the ensemble of models

from time zero and then generating the Markov chains, which increases significantly
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the computational cost. In Section 5.2.4, we present some comparisons in terms of

computational cost for each procedure.

EnKF with localization

Square root of 
state vector's

covariance matrix

Run models from
time zero

MCMC

Maximum number
of iterations?

iter = 1

iter = iter +1

no

End

yes

(a) EnKF-MCMC

Initial ensemble

Square root of 
state vector's

covariance matrix

Run models from
time zero

MCMC

Maximum number
of iterations?

iter = 1

iter = iter +1

no

End

yes

(b) MCMC-only

Figure 5.23: Workflows for MCMC iterations.

Fig. 5.24 shows the box plots of the values of ON obtained for each ensemble

after EnKF-MCMC with three iterations and after six iterations of MCMC-only. In

this figure, the horizontal dashed line indicates ON = 2.4, which is the average nor-

malized objective function obtained in the long MCMC case. Table 5.7 presents the

average and standard deviation of ON considering all ensembles together. According

to the results in Fig. 5.24 and Table 5.7, additional iterations of MCMC resulted in

further improvements in the normalized objective functions. For the EnKF-MCMC,

after three iterations the average ON obtained is 2.78. For MCMC-only, after six

iterations the average ON obtained is 3.00.

Figs. 5.25 and 5.26 present the histograms of cumulative oil and water produc-

tion obtained for EnKF-MCMC and MCMC-only. For comparisons, we also include

the histograms obtained with EnKF-MCMC with one iteration and with the long

MCMC case in each figure. As indicated in Fig. 5.25b, after three iterations, the
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Figure 5.24: Box plots of the normalized objective function for different initial
ensembles after MCMC iterations. The dashed black line indicates ON = 2.4, which
is the average normalized objective function obtained in the long MCMC case.

Table 5.7: Normalized objective functions for EnKF-MCMC.

Case Mean Std. deviation

EnKF-MCMC (3rd iteration) 2.78 0.81
MCMC-only (6th iteration) 3.00 1.26

histogram of cumulative oil production obtained by EnKF-MCMC shows a second

small mode. This mode is caused mainly by the predictions obtained by ensemble

number three. After three iterations, the average ON of the models of this third

ensemble decreased from 5.6 to 2.5, thereby increasing the relative weight of those

models in the final distributions. Despite the appearance of this second mode, which

is not observed in the long MCMC case, the final histograms of cumulative oil and

water production obtained after three iterations, are in better agreement with the his-

tograms obtained with the long MCMC case. Note that after the first iteration, the

histogram of cumulative oil production (Fig. 5.25a) slightly overestimates the cumu-

lative production compared to the histogram for the long MCMC case (Fig. 5.25d).

After three iterations, the main mode of the distribution corresponds to the true

cumulative production, which is also the case for the histogram obtained by the long

MCMC case. The same comments are valid for the histogram of cumulative water
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production (Fig. 5.26b). The histograms obtained after six iterations of MCMC-only

slightly overestimate the distributions of the cumulative production of oil and water

when compared to the long MCMC case. This may indicate that six iterations were

not enough in this case. Fig. 5.27 presents the cumulative distributions of cumulative

oil and water production obtained by EnKF, EnKF with localization, EnKF-MCMC

(one and three iterations), MCMC-only and long MCMC. This figure shows that the

distributions obtained with EnKF-MCMC (three iterations) are the ones that best

approximate the distributions obtained for the long MCMC case, although results of

roughly the same quality were obtained with six iterations of MCMC-only.

Fig. 5.28, 5.29 and 5.30 present the water production rates for wells P3, P4

and P6 for EnKF-MCMC and MCMC-only after resampling. For comparisons we

also include the results after the first iteration of EnKF-MCMC. In these plots, we

show the mean and one and two standard deviations around the mean for each

case. These figures show the improvements in the data matches obtained for EnKF-

MCMC with additional iterations (compare Fig. 5.28a with Fig. 5.28b, Fig. 5.29a

with Fig. 5.29b).

Fig. 5.31 presents the final mean permeability fields obtained for EnKF-

MCMC and MCMC-only. This figure indicates that there were not significant

changes in the final mean permeability fields after additional iterations for the EnKF-

MCMC cases (compare Figs. 5.31a and 5.31b). Besides that, all results are in reason-

able agreement with the mean permeability field obtained by the long MCMC case.

Fig. 5.32 presents the final standard deviation of ln(k) obtained for EnKF-MCMC

and MCMC-only. The final standard deviations still overestimate the ones obtained

with the long MCMC case. The same conclusion can be found by comparing the

values of the SNV presented in Table 5.8, which indicate an overestimation of the

uncertainty in the permeability fields for EnKF-MCMC and MCMC-only.
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Figure 5.25: Histograms of cumulative oil production. Results for ten ensembles
of 100 models using MCMC with iterations and resampling. Figures also include the
cumulative oil production for the true model (in red).

Table 5.8: Sum of the normalized variances of log-permeability.

Case SNV

EnKF-MCMC (1st iter.) 0.594
EnKF-MCMC (3rd iter.) 0.619
MCMC-only (6th iter.) 0.468
Long MCMC 0.380
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Figure 5.26: Histograms of cumulative water production. Results for ten ensembles
of 100 models using MCMC with iterations and resampling. Figures also include the
cumulative oil production for the true model (in red).
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Figure 5.27: Final cumulative distributions. Results for ten ensembles of 100
models and resampling.
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(a) EnKF-MCMC (1st iter.) (b) EnKF-MCMC (3rd iter.) (c) MCMC-only (6th iter.)

Figure 5.28: Well P3. Predicted water rate by running the final ensemble from
time zero (stb/day). Results for the case with ten ensembles of 100 models. Red
dots are the history; solid red curve is the true model; solid green curve is the mean
prediction computed from the ensemble considering the importance weights. The
light blue region corresponds to one standard deviation around the mean. The black
lines correspond to two standard deviations around the mean. The dashed vertical
black line indicates the end of the history and beginning of the forecast period.

(a) EnKF-MCMC (1st iter.) (b) EnKF-MCMC (3rd iter.) (c) MCMC-only (6th iter.)

Figure 5.29: Well P4. Predicted water rate by running the final ensemble from
time zero (stb/day). Results for the case with ten ensembles of 100 models. The
colors in this figure have the same meaning as in Fig. 5.28.

(a) EnKF-MCMC (1st iter.) (b) EnKF-MCMC (3rd iter.) (c) MCMC-only (6th iter.)

Figure 5.30: Well P6. Predicted water rate by running the final ensemble from
time zero (stb/day). Results for the case with ten ensembles of 100 models. The
colors in this figure have the same meaning as in Fig. 5.28.
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(a) EnKF-MCMC (1st iter.) (b) EnKF-MCMC (3rd iter.)

(c) MCMC-only (6th iter.) (d) Long MCMC

Figure 5.31: Mean permeability fields. For EnKF-MCMC cases the mean perme-
ability fields were obtained using ten ensembles of 100 models and resampling.
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(a) EnKF-MCMC (1st iter.) (b) EnKF-MCMC (3rd iter.)

(c) MCMC-only (6th iter.) (d) Long MCMC

Figure 5.32: Standard deviation of log-permeability. For EnKF-MCMC cases the
mean permeability fields were obtained using ten ensembles of 100 models and re-
sampling.

5.2.4 Computational cost

For this example, we estimated the computational cost of each method in

terms of equivalent simulation runs. Table 5.9 summarizes the computational cost

of generating one ensemble with 100 realizations. The computational costs were es-

timated by measuring the actual time required for each method divided by the time

required to run one ensemble of 100 models from time zero without data assimilation.

Note that the number of equivalent simulation runs of EnKF is 385, which is 3.85

times larger than the cost of simply running the ensemble from time zero. This dif-

ference is caused mainly by the additional CPU time required to restart the reservoir

simulations at every data assimilation step. The computational cost of EnKF with

covariance localization is 9% greater than the computational cost of EnKF mainly

because, in our implementation, at the end of every data assimilation step, we run

the ensemble mean model and compute the drainage areas, which requires calling

an external program that reads the simulator results and performs the drainage area
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calculations. The computational costs of the EnKF-MCMC cases include the time

for the data assimilation using EnKF with covariance localization, the time required

to rerun the final ensemble from time zero and the time required during the MCMC

procedure. Note that all computational costs presented in Table 5.9 are based on

serial simulations; we do not consider the fact that during EnKF and MCMC we can

run simulations or propose states in parallel using multiple computers. According to

the results in Table 5.9, the computational cost for one iteration of EnKF-MCMC

was approximately three times the cost of running one data assimilation with EnKF.

For three iterations, the cost of EnKF-MCMC increased to approximately seven

times the cost of one data assimilation with EnKF. For MCMC-only the computa-

tional cost was approximately 12 times the cost of running one data assimilation with

EnKF. These results indicate that MCMC-only is computationally more expensive

than EnKF-MCMC. In fact, MCMC-only required six iterations to obtain roughly

the same level of data match obtained by EnKF-MCMC with three iterations.

Note that the computational costs presented in Table 5.9 correspond to one

ensemble. Thus, the final computational costs for generating the results presented in

Section 5.2.2, which are based on combining ten different initial ensembles, are ten

times the values presented in the Table 5.9. It is important to emphasize though,

that the relative computational costs for the methods presented in Table 5.9 are not

generally valid. Because the simulation model was very small, which takes only 10

seconds to run, the computational cost to generate Markov chains, which do not

require reservoir simulations, became relatively more important.
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Table 5.9: Summary of computational costs in terms of equivalent reservoir simu-
lation runs.

Case Number of equivalent Number of equivalent
simulation runs EnKF runs

EnKF 385 1.00
EnKF with localization 418 1.09
EnKF-MCMC (1st iteration) 1,183 3.07
EnKF-MCMC (3rd iteration) 2,711 7.05
MCMC-only (6th iteration) 4,585 11.92
Long MCMC 2,000,000 5,194.80
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CHAPTER 6

MULTIPLE DATA ASSIMILATION

Even though the EnKF was originally proposed as an alternative to the ex-

tended Kalman filter [46, Chap. 4] for applications to nonlinear dynamic systems,

the update step in the EnKF is still linear. This linear update may result in a

sub-optimal performance for highly nonlinear problems. Although the measurement

errors have no relation to the model nonlinearity, it is well known that they influence

the level of correction in the states. For example, with EnKF it is typically more

difficult to assimilate very reliable data (i.e., with small measurement errors) than

data with larger measurement errors.

This chapter presents a procedure in which the same data are assimilated

multiple times with the covariance matrix of the measurement errors, CD, increased.

This procedure is motivated by the equivalence between single and multiple data

assimilation (MDA) for the linear-Gaussian case. In the next section, we establish

this equivalence for the case where we assimilate the same data Na times with CD

multiplied by the number of data assimilations, i.e., αi = Na. Then, we investigate

the use of MDA for assimilating time-lapse seismic data with EnKF. After that,

we generalize the MDA procedure by deriving the condition that the multiplication

coefficients of the data covariance matrix must satisfy in order to guarantee the

equivalence between single and multiple data assimilation. Then, we investigate the

use of MDA with the ensemble smoother (ES) to assimilate production data.

This work was motivated by the comments made on pages 44, 45, 86 and 109

of Rommelse [149]. Rommelse suggested that when assimilation of accurate data

requires a “large jump” between the forecast and analyzed states, the magnitude of
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the jump is overestimated by the linear update used in EnKF. He suggested that

this overestimation of the magnitude of the jump could be reduced by assimilating

the same data multiple times with increased measurement errors. Rommelse derived

equations for determining the number of times that the data should be assimilated

with increased measurement errors in order to obtain the same posterior variance

for the state. His derivation, however, was based on a one-dimensional forecast

vector, with a single datum and sensitivity matrix equal to the 1×1 identity matrix.

Rommelse applied this idea in a multi-dimensional example, but he did not compare

multiple assimilations of data with standard EnKF. He also did not discuss important

implementation details. In a sense, the work presented here extends the theoretical

equations on pages 44 and 45 of Rommelse [149] to multi-dimensional problems

with an arbitrary sensitivity matrix and a general measurement error covariance

matrix. However, our derivations assume that we multiply the covariance matrix of

the measurement errors by the number of data assimilations, whereas it appears that

Rommelse assimilated data one by one using an ensemble square root filter [186]. In

this case, each covariance matrix of the measurement errors at each data assimilation

is 1×1. Thus, he could assimilate each individual datum a different number of times.

The results presented in this chapter were published in Emerick and Reynolds

[41] and Emerick and Reynolds [39].

6.1 Multiple Data Assimilation for the Linear-Gaussian Case

In this section, we show the equivalence between single and multiple data

assimilation for the linear case using the Kalman filter (KF), where the full-rank

covariance Cf
Y is updated.

Proposition: For the linear case, with a Gaussian prior and Gaussian noise in

the measurements (linear-Gaussian problem), applying the KF to assimilate data Na

times with the measurement error covariance matrix multiplied by Na is equivalent to

assimilating the same data only once with the original measurement error covariance
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matrix.

Proof : First, we note that as shown in Chapter 2 (Section 2.1), for the linear-

Gaussian problem the posterior pdf of model parameters conditional to the obser-

vations is also Gaussian [135, Chap. 7]. Hence, to prove the proposition, it is only

necessary to show that both procedures lead to the same posterior covariance matrix

and the posterior mean.

The linear problem refers to the case in which the relation between the vector

of predicted data, df , and the state vector, yf , is expressed in the form

df = Hyf , (6.1)

where H is the Nn × Ny sensitivity matrix. For the linear-Gaussian problem the

posterior covariance, Ca
Y, and posterior mean, µay, are given by [135, Chap. 7]

Ca
Y =

(
(Cf

Y)−1 +HTC−1
D H

)−1

= Cf
Y − C

f
YH

T
(
CD +HCf

YH
T
)−1

HCf
Y (6.2)

and

µay = Ca
Y

(
(Cf

Y)−1µfy +HTC−1
D dobs

)
= µfy + Cf

YH
T
(
CD +HCf

YH
T
)−1 (

dobs −Hµfy
)
. (6.3)

To assimilate data Na times with the measurement error covariance multiplied

by Na, we define
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d̂obs ≡


dobs

...

dobs

 , (6.4)

Ĥ ≡


H

...

H

 (6.5)

and

ĈD ≡



NaCD 0 · · · 0

0 NaCD · · · 0

...
. . .

...

0 · · · NaCD


. (6.6)

In the above definitions, we simply repeated the vector dobs and the matrices H

and CD Na times. For assimilating data multiple times, the linear relation (Eq. 6.1)

becomes

d̂f = Ĥyf . (6.7)

Now, we develop an expression for Ĉa
Y, which denotes the posterior covariance

for the case with MDA. From Eq. 6.2, we can write Ĉa
Y as

Ĉa
Y =

(
(Cf

Y)−1 + ĤTĈ−1
D Ĥ

)−1

= Cf
Y − C

f
YĤ

T
(
ĈD + ĤCf

YĤ
T
)−1

ĤCf
Y. (6.8)

Using definitions (6.4), (6.5) and (6.6) in Eq. 6.8, we can write this posterior

covariance matrix as
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Ĉa
Y = Cf

Y −
[
Cf

YH
T · · · Cf

YH
T

]
C−1


HCf

Y

...

HCf
Y

 . (6.9)

In Eq. 6.9, the matrix C is defined by

C ≡



NaCD 0 · · · 0

0 NaCD · · · 0

...
. . .

...

0 · · · NaCD



+



HCf
YH

T HCf
YH

T · · · HCf
YH

T

HCf
YH

T HCf
YH

T · · · HCf
YH

T

...
. . .

...

HCf
YH

T · · · HCf
YH

T



=



NaCD + Cf
DD Cf

DD · · · Cf
DD

Cf
DD NaCD + Cf

DD · · · Cf
DD

...
. . .

...

Cf
DD · · · NaCD + Cf

DD.


. (6.10)

In Eq. 6.10, we used Cf
DD = HCf

YH
T to simplify notation.

We need to develop an expression for C−1 in Eq. 6.9. As C is a real-symmetric

positive-definite matrix, its inverse is also real-symmetric positive-definite. Hence,

we can write the product CC−1 = I as
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I = CC−1

=



NaCD + Cf
DD Cf

DD · · · Cf
DD

Cf
DD NaCD + Cf

DD · · · Cf
DD

...
. . .

...

Cf
DD · · · NaCD + Cf

DD



×



A B · · · B

B A · · · B

...
. . .

...

B · · · A


=



INn 0 · · · 0

0 INn · · · 0

...
. . .

...

0 · · · INn


, (6.11)

where INn denotes the Nn ×Nn identity matrix. Thus, in order to compute C−1, it

is only necessary to develop expressions for the submatrices A and B. From (6.11),

it is straightforward to obtain

(
NaCD + Cf

DD

)
A+ (Na − 1)Cf

DDB = INn (6.12)

and

Cf
DDA+

(
NaCD + Cf

DD

)
B + (Na − 2)Cf

DDB = 0. (6.13)

Subtracting (6.13) from (6.12), we obtain

A =
1

Na

C−1
D +B, (6.14)

and using this result in (6.13), we obtain

B = − 1

N2
a

(
CD + Cf

DD

)−1

Cf
DDC

−1
D . (6.15)

Using Eqs. 6.14 and 6.15 in Eq. 6.9, we obtain
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Ĉa
Y = Cf

Y −
[
Cf

YH
T · · · Cf

YH
T

]

×



1
Na
C−1

D +B B · · · B

B 1
Na
C−1

D +B · · · B

...
. . .

...

B · · · 1
Na
C−1

D +B




HCf

Y

...

HCf
Y



= Cf
Y −

[
Cf

YH
T · · · Cf

YH
T

]
(

1
Na
C−1

D +NaB
)
HCf

Y

...(
1
Na
C−1

D +NaB
)
HCf

Y


= Cf

Y −NaC
f
YH

T

(
1

Na

C−1
D +NaB

)
HCf

Y

= Cf
Y − C

f
YH

T

[
C−1

D −
(
CD + Cf

DD

)−1

Cf
DDC

−1
D

]
HCf

Y

= Cf
Y − C

f
YH

T

[
INn −

(
CD + Cf

DD

)−1

Cf
DD

]
C−1

D HCf
Y

= Cf
Y − C

f
YH

T

[(
CD + Cf

DD

)−1 (
CD + Cf

DD

)
−
(
CD + Cf

DD

)−1

Cf
DD

]
C−1

D HCf
Y

= Cf
Y − C

f
YH

T
(
CD + Cf

DD

)−1 [
CD + Cf

DD − C
f
DD

]
C−1

D HCf
Y

= Cf
Y − C

f
YH

T
(
CD +HCf

YH
T
)−1

HCf
Y

= Ca
Y. (6.16)

Eq. 6.16 shows that the posterior covariance matrix obtained by assimilating

data Na times with the measurement error covariance matrix multiplied by Na is the

same as the posterior covariance matrix obtained by assimilating data only once with

the original measurement error covariance matrix. Following the same procedure, it

is straightforward to show the equivalence of the posterior mean by starting with

Eq. 6.3 and using the results in Eqs. 6.14 and 6.15.

EnKF becomes equivalent to the KF for the linear-Gaussian case as the size of
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the ensemble goes to infinity [46, Chap. 4]. Thus, the equivalence between single and

multiple data assimilation established in this section guarantees that as Ne → ∞,

EnKF with MDA is still consistent with the KF.

6.1.1 Sampling the posterior pdf with multiple data assimilation for the linear case

In the previous section, we showed the equivalence between single and multiple

data assimilation for the linear-Gaussian case using the KF. In the KF, the mean and

covariance are updated sequentially in time. For the EnKF, on the other hand, we

sequentially update an ensemble of augmented state vectors generated by sampling

the prior distribution in order to obtain a sampling of the posterior distribution.

In this section, we demonstrate that for the linear-Gaussian case, MDA samples

the posterior pdf correctly if we use the full-rank forecast covariance matrix Cf
Y.

The derivation presented here explicitly shows that in the multiple data assimilation

case, we need to perturb the observations based on the measurement error covariance

matrix multiplied by the number of data assimilations. The derivation presented here

follows Reynolds et al. [142], where it is shown that RML samples the posterior pdf

correctly for the linear-Gaussian case.

For sampling the posterior pdf with MDA, we start with a sample from the

prior (forecast) pdf, denoted by yf , i.e., yf ∼ N (µfy , C
f
Y). In addition, we perturb

the observations by sampling duc ∼ N (dobs, NaCD). As before, to assimilate data Na

times, we define

d̂uc ≡


d1

uc

...

dNauc

 , (6.17)

where d`uc ∼ N (dobs, NaCD), for ` = 1, 2, · · ·Na.

The derivation has two parts. In the first part, we define the vector ŷa as

the minimizer of the RML objective function [142] modified for the multiple data
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assimilation case, i.e.,

ŷa = arg min
y
Ô(y), (6.18)

where

Ô(y) =
1

2

(
y − yf

)T
(Cf

Y)−1
(
y − yf

)
+

1

2

(
Ĥy − d̂uc

)T

Ĉ−1
D

(
Ĥy − d̂uc

)
. (6.19)

Ĥ and ĈD were defined before (Eqs. 6.5 and 6.6). Minimizing Ô(y) is equivalent

to assimilating d̂uc using µfy = yf with the KF [191]. In the second part of the

derivation, we show that ŷa has the correct posterior pdf. Note that ŷa is a Gaussian

random vector because yf and d̂uc are Gaussian random vectors.

Part 1: Finding ŷa:

Requiring the gradient of Ô(y) to vanish, we obtain

0 = ∇yÔ(y)

= (Cf
Y)−1

(
y − yf

)
+ ĤTĈ−1

D

(
Ĥy − d̂uc

)
. (6.20)

Solving Eq. 6.20 for y and denoting the result as ŷa, we obtain

ŷa =
(

(Cf
Y)−1 + ĤTĈ−1

D Ĥ
)−1 (

(Cf
Y)−1yf + ĤTĈ−1

D d̂uc

)
= Ca

Y

(
(Cf

Y)−1yf + ĤTĈ−1
D d̂uc

)
. (6.21)

The last equality of Eq. 6.21 follows from Eqs. 6.2 and 6.16.

The vectors yf and d̂uc are samples of Gaussian distributions and can be
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obtained using the square roots of the respective covariance matrices, i.e.,

yf = µfy + (Cf
Y)1/2zy (6.22)

and

d̂uc = d̂obs + Ĉ
1/2
D ẑd. (6.23)

In Eqs. 6.22 and 6.23, zy and ẑd are normally distributed random vectors, i.e., zy ∼

N (0, INy) and ẑd ∼ N (0, INd), where INy is the Ny × Ny identity matrix and INd is

the Nd×Nd identity matrix, with Nd = Nn×Na denoting the number of data points

at the nth data assimilation time-step multiplied by the number of times these data

are assimilated.

Using Eqs. 6.22 and 6.23 in Eq. 6.21 results in our final expression for ŷa:

ŷa = Ca
Y(Cf

Y)−1
(
µfy + (Cf

Y)1/2zy

)
+ Ca

YĤ
TĈ−1

D

(
d̂obs + Ĉ

1/2
D ẑd

)
. (6.24)

Part 2: Proving that the pdf for ŷa is the correct posterior pdf :

In the second part of the derivation, we show that sampling ŷa using Eq. 6.24 is

equivalent to sampling the posterior pdf, i.e., ŷa ∼ N (µay, C
a
Y). Because the posterior

pdf is Gaussian, we only need to show that

E [ŷa] = µay (6.25)

and

cov [ŷa] = E
[
(ŷa − µay)(ŷa − µay)T

]
= Ca

Y. (6.26)

Using E[zy] = 0 and E[ẑd] = 0 and Eq. 6.3, it follows that the expectation of

ŷa is given by
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E [ŷa] = Ca
Y(Cf

Y)−1
(
µfy + (Cf

Y)1/2E[zy]
)

+ Ca
YĤ

TĈ−1
D

(
d̂obs + Ĉ

1/2
D E[ẑd]

)
= Ca

Y(Cf
Y)−1µfy + Ca

YĤ
TĈ−1

D d̂obs

= Ca
Y(Cf

Y)−1µfy + Ca
Y

[
HT · · · HT

]
1
Na
C−1

D dobs

...

1
Na
C−1

D dobs


= Ca

Y

(
(Cf

Y)−1µfy +HTC−1
D dobs

)
= µay. (6.27)

Note that embedded in Eq. 6.27 is the equality

µay = Ca
Y

(
(Cf

Y)−1µfy + ĤTĈ−1
D d̂obs

)
. (6.28)

To obtain the posterior covariance, we first compute ŷa − µay by subtracting

Eq. 6.28 from Eq. 6.24, which leads to

ŷa − µay = Ca
Y

[
(Cf

Y)−T/2zy + ĤTĈ
−T/2
D ẑd

]
. (6.29)

In Eq. 6.29, we allowed the possibility that the square root of the covariance matrices

Cf
Y and ĈD are based on the Cholesky decomposition, i.e., Cf

Y = (Cf
Y)1/2(Cf

Y)T/2 and

ĈD = Ĉ
1/2
D Ĉ

T/2
D , instead of requiring the symmetric square roots from the spectral

decomposition of Cf
Y and ĈD. For this reason, we obtained the transposes in Eq. 6.29.

Using Eq. 6.29 in Eq. 6.26, we obtain
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cov [ŷa] = E
[
(ŷa − µay)(ŷa − µay)T

]
= Ca

Y(Cf
Y)−1/2E[zyz

T
y ](Cf

Y)−T/2Ca
Y + Ca

Y(Cf
Y)−1/2E[zyẑ

T
d ]Ĉ

−T/2
D ĤCa

Y

+ Ca
YĤ

TĈ
−1/2
D E[ẑdz

T
y ](Cf

Y)−T/2Ca
Y + Ca

YĤ
TĈ
−1/2
D E[ẑdẑ

T
d ]Ĉ

−T/2
D ĤCa

Y.

Noting that

E
[
zyz

T
y

]
= INy , (6.30)

E
[
ẑdẑ

T
d

]
= INd , (6.31)

E
[
zyẑ

T
d

]
= 0 (6.32)

and

E
[
ẑdz

T
y

]
= 0, (6.33)

Eq. 6.30 reduces to

cov [ŷa] = Ca
Y

(
(Cf

Y)−1 + ĤTĈ−1
D Ĥ

)
Ca

Y. (6.34)

In the previous section, we showed that

Ĉa
Y =

(
(Cf

Y)−1 + ĤTĈ−1
D Ĥ

)−1

= Ca
Y. (6.35)

Using this result in Eq. 6.34, we obtain

cov [ŷa] = Ca
Y (Ca

Y)−1Ca
Y = Ca

Y, (6.36)
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which completes the proof.

This result shows that in order to sample the posterior pdf for the linear-

Gaussian case with EnKF-MDA, we need to perturb the observations using the

inflated covariance matrix, ĈD. Again, the proof was presented assuming the correct

full-rank matrix Cf
Y, but will apply for EnKF when Ne →∞.

6.2 Interpretation of Multiple Data Assimilation for the Nonlinear

Case

In the previous sections, we established the equivalence between single and

multiple data assimilation for the linear-Gaussian case. However, for the nonlinear

case, this equivalence does not hold. Intuitively, we can expect some benefit from

assimilating data multiple times because we replace one potentially large update in

the state vector with multiple smaller updates.

It is well known that when using the Gauss-Newton (GN) method for history

matching reservoir models, convergence problems can occur due to overcorrection in

the model parameters at early iterations. This overcorrection may result in unreason-

ably small or large values of some model parameters [188, 105]. This is particularly

true when the initial guess for the GN iterative process gives predicted data far from

the observations. Reynolds et al. [143] showed that EnKF is similar to applying

GN sequentially with a full step and replacing the sensitivity matrix by an average

sensitivity matrix obtained from the ensemble. Because of this similarity between

the EnKF and GN method, it is reasonable to expect that EnKF analysis may also

result in overcorrection in the states, especially if the predicted data are far from the

observations at a particular data assimilation time-step.

One way to ameliorate overcorrection when applying gradient-based mini-

mization is to increase the variance of the measurement errors [188, 59]. By using

an artificially high value of data measurement errors during early iterations, the ob-

jective function that we minimize becomes more nearly quadratic so Newton-type
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methods work well. As the algorithm improves the data match, we can eventually

use the correct measurement error covariance matrix [59].

Li et al. [105] showed that the Levenberg-Marquardt (LM) algorithm provides

a natural way to avoid these convergence difficulties observed in the GN method, but

it is clear that any trust-region method [124, 127] could be used to achieve the same

result. For the case where the number of measurements is less than the number of

model parameters, a convenient way to write the LM update equation for sampling

with RML is [192]

y`+1
j = y`j +

yfj − y`j
1 + λ`

+ Cf
YH

T
`

[
(1 + λ`)CD +H`C

f
YH

T
`

]−1

×

H`

(
y`j − y

f
j

)
1 + λ`

+ duc,j − d`j

 , (6.37)

where λ` ≥ 0 is the LM parameter. Note that by choosing λ` = 0, Eq. 6.37 becomes

the GN update equation with a full step. Because we can interpret EnKF as one

GN iteration with an initial guess y0
j = yfj and average sensitivity matrix, Ĥ, we can

write the EnKF analogous LM equation as

y1
j = yfj + C̃f

YĤ
T
[
(1 + λ0)CD + ĤC̃f

YĤ
T
]−1 (

duc,j − dfj
)
. (6.38)

The similarity between Eq. 6.38 and the EnKF analysis equation (Eq. 2.49) is ev-

ident. Using y1
j = yaj , C̃

f
YĤ

T = C̃f
YD and ĤC̃f

YĤ
T = C̃f

DD, Eq. 6.38 represents the

EnKF analysis equation with the covariance of measurement errors increased by the

factor 1 + λ0. Note that we introduced the tilde in the matrices C̃f
Y, C̃f

YD and C̃f
DD

to emphasize that for EnKF, these matrices are approximated using the ensemble

members. From this similarity between Eqs. 6.38 and 2.49, we can interpret the

EnKF with MDA as applying the first iteration of the LM method Na times with

196



λ0 = Na−1. Note that because Eq. 6.38 is missing terms involving y`j−y
f
j (Eq. 6.37),

applying Eq. 6.38 is not the same as applying multiple consecutive LM iterations.

Another well-known advantage of the LM algorithm over the GN method is

that increasing λ` tends to decrease the condition number of the matrix inverted in

Eq. 6.37. A similar argument can be used for EnKF with MDA. To illustrate this

argument, consider the case where the covariance matrix of the measurement errors

is a diagonal matrix given by CD = σ2
dINn . It is straightforward to show that in this

case the condition number of the matrix C = C̃f
DD + CD is given by

κ(C) =
βmax + σ2

d

βmin + σ2
d

, (6.39)

where βmax and βmin, respectively, are the largest and the smallest eigenvalues of

C̃f
DD. For MDA, we have a matrix Ĉ = C̃f

DD +NaCD with its condition number given

by

κ(Ĉ) =
βmax +Naσ

2
d

βmin +Naσ2
d

, (6.40)

which is a decreasing function of Na. Thus, κ(Ĉ) < κ(C) for Na > 1. Also note that

κ(Ĉ)→ 1 as Na →∞.

6.3 Implementation of EnKF with Multiple Data Assimilation

Algorithm 6.1 presents the general procedure of EnKF with multiple data

assimilation (EnKF-MDA).
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Algorithm 6.1 EnKF-MDA

1. Choose the number of data assimilations, Na.

2. Set ` = 1, mn,1
j = mn,f

j and pn−1,1
j = pn−1,f

j .

3. While ` ≤ Na do:

(a) For j = 1 to Ne do:

i. Run the forward model from the last data assimilation time-step, tn−1,
until the next data assimilation time-step, tn, and store the predicted
data vector dn,`j .

ii. If ` < Na, then build the forecast state vector, yn,`j , as

yn,`j =

 mn,`
j

pn−1,`
j

dn,`j

 . (6.41)

else, build yn,`j as

yn,`j =

 mn,`
j

pn,`j
dn,`j

 , (6.42)

(See comment 4 of Section 6.3.1.)

iii. Perturb the observation vector using

dnuc,j = dnobs +
√
Na(C

n
D)1/2zn, (6.43)

where zn ∼ N (0, INn).

iv. Update the state vector using EnKF analysis with NaC
n
D instead of

Cn
D:

yn,`+1
j = yn,`j +C̃n,`

Y HT
n

(
NaC

n
D +HnC̃

n,`
Y HT

n

)−1 (
dnuc,j − d

n,`
j

)
. (6.44)

end (for).

(b) ` = `+ 1

end (while).

4. Set yn,aj = yn,`j and go to the next data assimilation time-step.
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6.3.1 Comments about the EnKF-MDA algorithm

1. The algorithm presented above refers to one data assimilation time-step. The

same algorithm is applied for all time-steps.

2. Perhaps the most important thing to clarify about the implementation of the

EnKF-MDA algorithm is that dn,`j is included in yn,`j to keep the notation

consistent with Eqs. 2.36 and 2.49, where we used the augmented state vector

to present EnKF equations. However, dn,`j and pn,`j are computed by running

the forward model from time-step tn−1 to tn using the reservoir state pn−1,`
j at

time-step tn−1. Additional clarification is given below.

3. With EnKF-MDA, at each data assimilation time-step, we do not assimilate

the observed data Na times simultaneously. Instead, we assimilate data Na

times consecutively and, after each of the Na data assimilations, we rerun the

forward model (reservoir simulator) starting from the previous time-step for

the ensemble with the updated state vectors. With this procedure, we are

effectively updating the “average sensitivity” before the next data assimila-

tion. In a sense, EnKF-MDA can be interpreted as an iterative form of EnKF

where the number of iterations is chosen a priori. Note that in the derivations

presented for the linear-Gaussian case, we assimilate data Na times simulta-

neously. However, for the linear-Gaussian case, consecutive and simultaneous

data assimilations are equivalent [46, Chap. 7]. Hence, the derivations are still

valid for assimilating data Na times consecutively for the linear-Gaussian case.

4. In order to use MDA sequentially in time, it is necessary to introduce an

additional modification in the data assimilation process to keep the updated

ensemble of model parameters statistically consistent with the state of the

dynamical system (primary variables of the reservoir simulator). The rigorous

way to do this would be to rerun the reservoir simulator from time zero after

199



each data assimilation, but this is computationally expensive. Instead, in our

EnKF-MDA algorithm, we update the primary variables (pn−1,`
j ) at time-step

tn−1 with Eq. 6.44 for the first Na − 1 data assimilations. These primary

variables are used to restart the reservoir simulations during the MDA loop.

In the last data assimilation, we update the vector of primary variables at the

time-step tn, i.e., pn,`j , which is used to restart simulations in the next time-step.

5. As in standard implementations of EnKF, dn,`j does not need to be updated

when using Eq. 2.49.

6. The computational cost of the proposed method is roughly Na times the com-

putational cost of data assimilation with standard EnKF.

7. For each of the Na data assimilations, we recompute the perturbed observa-

tion vector, i.e., we resample dnuc,j ∼ N (dnobs, NaC
n
D) instead of using the same

dnuc,j for all Na data assimilations. Intuitively, we expect that this procedure

improves sampling because we reduce bias possibly introduced by matching

“outliers” generated when sampling dnuc,j. Recall that the development pre-

sented in Section 6.1.1 indicates that we should resample duc at each of the Na

consecutive data assimilations.

6.4 Multiple Data Assimilation for Seismic Data

Reservoir production data are typically scarce spatially, but dense in time. As

shown in Reynolds et al. [143], the application of EnKF is similar to one GN iteration

using an average sensitivity matrix and full step in the search direction. Based on this

analogy, we conjecture that sequential assimilation is one of the reasons that EnKF

gives acceptable results when assimilating production data that are fairly closely-

spaced in time. The process works such that at each data assimilation step, one GN

correction is done to each realization in the ensemble of states, but because we have

production data for several consecutive data assimilation time-steps, we accumulate
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several GN corrections, keeping the ensemble conditioned to the production history.

In contrast, seismic data are characterized by the large amount of data, spatially

dense, but available at only a few times. Thus, we no longer have the beneficial effect

of several consecutive data assimilation steps as observed in the production data case.

While our conjecture that assimilating production data that are fairly closely spaced

in time with EnKF provides an approximation of multiple GN iterations is based on

intuition, it is well known that taking a full step at early iterations in the GN method

when matching production data can lead to significant overcorrection (overshooting

and undershooting) of reservoir parameters and result in unrealistically rough rock

property fields [105, 59]. This overcorrection can be avoided either by applying some

form of damping or constraining changes in model parameter at early iterations or

by inflating the covariance matrix associated with measurement errors. This fact

provides a strong motivation for the procedure considered in this paper, in which

we apply EnKF to assimilate the same data multiple times with inflated covariance

matrices.

6.4.1 Example 1 – Waterflooding

The first example is a two-phase (oil and water) synthetic reservoir model on

a 2D uniform grid with 60 × 60 gridblocks. The dimensions of the gridblocks are

150 ft × 150 ft × 25 ft. The model parameters are gridblock log-permeabilities,

ln(k)’s. The true model was generated from an anisotropic exponential correlation

function with a major correlation length of 3,750 ft (which corresponds to the width

of 25 gridblocks) and a minor correlation length of 1,050 ft (i.e, seven gridblocks)

oriented at 45o. The prior mean of ln(k) is 5.0 and the prior variance is 1.0 for

all gridblocks. Fig. 6.1 shows the true permeability field used as the reference to

generate the observed data. The porosities are constant and equal to 0.25 for all

gridblocks. The compressibility of the rock, oil and water are also constant and

equal to 5× 10−6 psi−1, 10−5 psi−1 and 10−6 psi−1, respectively. In this model, there
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are five producing wells and two water injectors. All producing wells are controlled

by a fixed bottomhole pressure of 1,000 psi. The injectors are controlled by a fixed

bottomhole pressure of 3,000 psi.

Figure 6.1: True permeability field (mD).

Assimilation of seismic data:

Synthetic time-lapse seismic data were generated based on the true reservoir

model. The seismic data correspond to the P-impedance difference (∆IP ) between a

monitor survey after 3,900 days of production and a base survey before the beginning

of the production. Fig. 6.2a presents the true ∆IP data. Correlated random noise

was added to the ∆IP predicted by the true model to generate the synthetic observed

data. The noise was generated using an isotropic spherical covariance function with a

range equal to 750 ft (five gridblocks) and a standard deviation corresponding to 30%

of the average ∆IP data (σd,s = 17, 320 lb/ft2s). Fig. 6.2b shows the resulting seismic

data with noise added. The seismic data used for history matching correspond to

one datum per simulation gridblock.

Data assimilations with standard EnKF and EnKF-MDA assimilating data

(a) True seismic (b) Seismic with noise

Figure 6.2: P-impedance difference (lb/ft2s). True and data with noise.
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two, four and eight times were performed to history match the time-lapse seismic

with an ensemble size of 100. The models of the initial ensemble were generated

using the same prior mean and covariance function used to generate the true model.

During data assimilations, we used subspace inversion with rescaling. Truncation

was done by retaining the largest singular values corresponding to 99.9% of the sum

of the nonzero singular values when applying Eq. 2.75.

Fig. 6.3 presents the mean ensemble predictions of ∆IP obtained with the

prior ensemble and the final ensembles after EnKF and EnKF-MDA. For visual

comparison, we also include the true ∆IP in this figure. For EnKF and EnKF-MDA,

the predicted ∆IP was obtained by running the final ensembles from time zero. This

figure shows clearly the improvement in the predicted ∆IP compared to the prior

ensemble. However, it is difficult to see the differences between EnKF and the EnKF-

MDA cases. These differences are better visualized in the cross-plots presented in

Fig. 6.4. This figure shows that increasing the number of data assimilations improved

the match of time-lapse seismic. For four and eight data assimilations, the differences

between the true and predicted seismic from the updated permeability fields are less

than twice the standard deviation of the measurement errors for almost all reservoir

gridblocks. Fig. 6.5 presents the final mean permeability fields obtained for each

case. It is interesting to note that all permeability fields present some features of the

true permeability, e.g., the low permeability in the region between the wells I1 (at the

center of the reservoir) and P4 (at the lower left corner of the reservoir). However,

the mean permeability fields obtained with MDA appear to be smoother than the

one obtained with single data assimilation. Note, for example, that the case with

single data assimilation (Fig. 6.5a) resulted in a relatively high permeability region

between wells I1 and P2 (at the upper right corner of the reservoir), whereas after

four data assimilations, the permeability in this region is considerably reduced.

In order to further compare the data matches, we repeated the data assim-
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(a) True (b) Prior (c) EnKF

(d) EnKF-MDA (2×) (e) EnKF-MDA (4×) (f) EnKF-MDA (8×)

Figure 6.3: P-impedance difference (lb/ft2s). True seismic data and mean ensemble
predictions.

Figure 6.4: Cross-plots between true and mean predicted P-impedance changes
(lb/ft2s). The dashed lines correspond to +/− two standard deviations of the mea-
surement errors.
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(a) EnKF (b) EnKF-MDA (2×)

(c) EnKF-MDA (4×) (d) EnKF-MDA (8×)

Figure 6.5: Mean permeability fields (mD) after assimilation of seismic data.

ilations with ten different initial ensembles. For each ensemble, we computed the

normalized seismic data mismatch objective function, ON,s = Od(m)/Nd,s, where

Nd,s = 3,600 is the number of data points. Fig. 6.6 presents the box plots of the nor-

malized seismic objective function obtained for each ensemble. Table 6.1 summarizes

the results for the ten ensembles. The results presented in Fig. 6.6 and Table 6.1

indicate that increasing the number of data assimilations resulted in a consistently

better seismic data match. Again, the main improvement occurred by increasing

the number of data assimilations from one (average ON,s = 4.086) to two (average

ON,s = 1.335).

Table 6.1: Mean and standard deviation of ON,s for ten different initial ensembles

Case Mean Standard deviation

Prior 33.195 14.261
EnKF 4.086 1.504
EnKF-MDA (2×) 1.335 0.323
EnKF-MDA (4×) 0.885 0.198
EnKF-MDA (8×) 0.764 0.144
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(d) EnKF-MDA (4×)
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(e) EnKF-MDA (8×)

Figure 6.6: Box plots of the normalized seismic objective function for ten different
initial ensembles. Note that the vertical scales in the plots are different.
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(a) Prior (b) EnKF (c) EnKF-MDA (2×)

(d) EnKF-MDA (4×) (e) EnKF-MDA (8×)

Figure 6.7: Field water production rate (stb/day) after assimilation of seismic data.
The vertical dashed line indicates the end of the history. The red dots represent the
production historical data; the red curve is the prediction from the true model;
the green curve is the mean ensemble prediction and the light blue curves are the
predictions from the ensemble members.

Production data prediction after assimilation of seismic data:

Fig. 6.7 presents the field water production rate obtained by simulation from

time zero with the prior ensemble and the final ensembles after assimilation of the

seismic data for the first of the ten ensembles considered in the previous section. In

this figure, besides the historical period (3,900 days), we also include 3,750 days of

forecast. It is important to emphasize that, even though Fig. 6.7 includes the produc-

tion historical data, only seismic data were assimilated. Note that the assimilation of

∆IP data with standard EnKF resulted in an ensemble which overestimated the field

water production (Fig. 6.7b). Increasing the number of data assimilations of seismic

data reduced the variance in the ensemble predictions of field water rate. After eight

data assimilations, the ensemble underestimates the field water production. This

may be surprising considering that we obtained a better match of seismic data with

eight data assimilations. Note, however, that the results presented in Fig. 6.7 are

after assimilating seismic data only; no production data were used.
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Assimilation of production data:

In order to further investigate the effect of a better seismic data match on the

production predictions, we now assimilate production data using the standard EnKF

(i.e, single data assimilation) starting from the final ensembles obtained after assim-

ilation of seismic data. For comparison, we also consider the case with assimilation

of only production data with standard EnKF. The observed production data corre-

spond to 3,900 days of oil and water production rates and water injection rates. The

frequency of data assimilation corresponds to one data assimilation every 150 days.

Random normally-distributed noise with zero mean and standard deviation equal to

5% of the true data was added to the true data to define the noisy observations.

Fig. 6.8 presents the field water production rate obtained by running final

ensembles after assimilation of the production data for the ensemble correspond-

ing to the results of Figs. 6.3–6.7. The results in this figure indicate that assim-

ilation of seismic data improved the match of water production rate, especially

at the breakthrough time (compare Fig. 6.8a with Figs. 6.8b–6.8e). Also, better

matches of seismic data resulted in slightly better matches of water rate data (com-

pare Figs. 6.8b and Figs. 6.8e), although the differences are not large. Table 6.2

presents the mean and standard deviation of the normalized production objective

function, ON,p = Od(m)/Nd,p, obtained for the ten ensembles. Nd,p = 299 is the

number of observed production data points. According to the results presented in

Table 6.2, the ensembles obtained with multiple assimilations of seismic data resulted

in better production data matches as well. Fig. 6.9 presents the final mean permea-

bility fields for the first of the ten ensembles. Comparing Fig. 6.9 with Fig. 6.5, we

observe that for the case with a single assimilation of the seismic data, it was neces-

sary to make larger changes in the permeability field to history match the production

data, which resulted in a rougher mean permeability field. Table 6.3 presents the

mean and standard deviation of the normalized model mismatch objective function,
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(a) EnKF (production data
only)

(b) EnKF (production and
seismic data)

(c) EnKF-MDA (2×)
(production and seismic

data)

(d) EnKF-MDA (4×)
(production and seismic

data)

(e) EnKF-MDA (8×)
(production and seismic

data)

Figure 6.8: Field water production rate (stb/day) after assimilation of production
data. The colors in this figure have the same meaning as in Fig. 6.7. Note that
EnKF-MDA refers to multiple assimilations of seismic data only. The production
data were assimilated with standard EnKF for all cases.

ON,m = Om(m)/Nd, obtained for the ten ensembles. Nd = Nd,s + Nd,p is the total

number of data points. The results of Table 6.3 indicate that EnKF-MDA resulted

in smoother permeability fields.

Table 6.4 presents the mean and standard deviation of the normalized seismic

data mismatch objective function obtained after the assimilation of the production

data. The results presented in this table indicate only a small deterioration in the

seismic data matches. However, the multiple data assimilation cases still present

better seismic data matches compared to standard EnKF.

6.4.2 Example 2 – Brugge case

We also tested MDA in the Brugge field (Fig. 6.10) [137]. The Brugge case

is a synthetic reservoir designed as a benchmark problem for evaluating methods for

waterflooding optimization combined with history matching in a closed-loop work-
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Table 6.2: Mean and standard deviation of ON,p for ten different initial ensembles

Case Mean Standard deviation

EnKF (production data only) 7.183 1.253
EnKF (prod. and seis.) 2.893 2.946
EnKF-MDA (2×) (prod. and seis.) 2.230 1.806
EnKF-MDA (4×) (prod. and seis.) 1.780 1.460
EnKF-MDA (8×) (prod. and seis.) 1.533 1.135

Table 6.3: Mean and standard deviation of ON,m for ten different initial ensembles

Case Mean Standard deviation

EnKF (production data only) 0.402 0.438
EnKF (prod. and seis.) 0.501 0.134
EnKF-MDA (2×) (prod. and seis.) 0.388 0.078
EnKF-MDA (4×) (prod. and seis.) 0.365 0.058
EnKF-MDA (8×) (prod. and seis.) 0.358 0.056

(a) EnKF (production
data only)

(b) EnKF (production
and seismic data)

(c) EnKF-MDA (2×)
(production and seismic

data)

(d) EnKF-MDA (4×)
(production and seismic

data)

(e) EnKF-MDA (8×)
(production and seismic

data)

Figure 6.9: Mean permeability fields (mD) after assimilation of production data.
Note that EnKF-MDA refers to multiple assimilations of seismic data only. The
production data were assimilated with standard EnKF for all cases.
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Table 6.4: Mean and standard deviation of ON,s for ten different initial ensembles
after assimilation of production data

Case Mean Standard deviation

EnKF (production data only) 12.643 3.404
EnKF (prod. and seis.) 4.104 0.997
EnKF-MDA (2×) (prod. and seis.) 2.043 0.679
EnKF-MDA (4×) (prod. and seis.) 1.343 0.430
EnKF-MDA (8×) (prod. and seis.) 1.187 0.416

flow. A description of the case can be found in [137]. In the original Brugge dataset,

there are 104 realizations of rock properties (porosity, horizontal and vertical per-

meabilities and net-to-gross ratio), ten years of production history and a synthetic

time-lapse seismic. The time-lapse seismic corresponds to pressure and oil saturation

changes due to the 10 years of production. According to Peters et al. [137], from the

nine research groups that participated in the original benchmark study, six used the

seismic data in the history matching. However, no results or discussions about the

seismic data matches are presented in [137] nor in other papers published by some

of the groups [23, 114, 20].

Figure 6.10: Brugge field. In blue the aquifer and in red the oil zone. Water
injection wells in pink and oil producing in black.

According to Peters et al. [137], an unintentional bias was introduced in the

pressure data because the seismic data were calculated based on an upscaled model.
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For this reason, here, we consider only the oil saturation data. The seismic data

were provided as vertically averaged data, corresponding to the four geological zones

of the reservoir. The provided seismic data were corrupted with an unknown level

of noise. Here, we estimated the noise level by smoothing the observed data with a

window averaging for each of the reservoir zones and computing the residual between

the observed and smoothed data. We tried different sizes of the averaging window

and, for each case, we computed empirical variograms. The results indicated that

the noise added to the seismic seems to be spatially uncorrelated in the horizontal

plane with an average standard deviation of 0.025.

Here, we assimilated only the seismic data (∆So) using standard EnKF and

EnKF-MDA assimilating data two and four times (no production data are included).

Fig. 6.11 presents a cross-plot between observed and the mean predicted ∆So ob-

tained with the prior ensemble and the ensembles after data assimilation. This figure

indicates a slight improvement in the predicted ∆So using two and four data assim-

ilations. Table 6.5 presents the average values of ON,s for each case. Note that the

values of the normalized objective function for the Brugge case are relatively small,

even for the prior ensemble. This happens mainly because in the Brugge case, there

is a large aquifer in which the oil saturation change is zero, and thus seismic data

pertaining to the aquifer is automatically well matched. Nevertheless, the results

in Table 6.5 show improvements on the order of 10% (EnKF-MDA 2×) and 15%

(EnKF-MDA 4×) in the values of ON,s compared to the standard EnKF. Figs. 6.12–

6.16 present the observed ∆So and the mean predicted ∆So obtained with the prior

ensemble and the posterior ensembles obtained with EnKF assimilating data one,

two and four times. In these figures, the oil saturation changes are presented for

the four reservoir zones (Schelde, Waal, Maas and Schie). In these figures, the neg-

ative values (green to blue colors) represent a decrease in oil saturation due to the

displacement of oil by injected water.
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Figure 6.11: Cross-plot between observed and mean predicted oil saturation
changes. The dashed lines correspond to +/− two standard deviations of the mea-
surement errors.

Figure 6.12: Observed seismic (∆So).

Figure 6.13: Average predicted seismic (∆So) from the prior ensemble.
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Figure 6.14: Average predicted seismic (∆So) from the final ensemble after EnKF.

Figure 6.15: Average predicted seismic (∆So) from the final ensemble after EnKF-
MDA (2×).

Figure 6.16: Average predicted seismic (∆So) from the final ensemble after EnKF-
MDA (4×).
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Table 6.5: Mean and standard deviation of ON,s for the Brugge case

Case Mean Standard deviation

Prior 0.766 0.053
EnKF 0.606 0.005
EnKF-MDA (2×) 0.540 0.002
EnKF-MDA (4×) 0.510 0.001

6.5 Multiple Data Assimilation as an Iterative Ensemble Smoother

Another potential application of MDA is for the ensemble smoother (ES) [174,

173]. The ES was recently introduced for reservoir history matching by Skjervheim

et al. [159]. In the ES, all data are assimilated at once, which means that only

a single approximate GN iteration is done to history match all data. One advan-

tage of ES over the standard EnKF is that in ES there is no need to restart the

reservoir simulations after every data assimilation time-step. This makes ES much

easier to implement and significantly faster than EnKF. Skjervheim et al. [159], for

example, reported that ES required approximately 10% of the CPU time required

by EnKF. Besides that, ES is an attractive option for data assimilation workflows

which integrate different parts of the reservoir modeling process, including seismic,

structural and geological modeling with flow simulation, such as the one presented by

Zachariassen et al. [190]. These workflows typically require integrating different ge-

omodeling softwares and may include upscaling of the rock properties, which makes

the simulation restarts required by EnKF very inconvenient or impossible. However,

because in ES all data are assimilated at once, it may result in poor data matches

even compared to standard EnKF. In this section, we investigate the use of multiple

data assimilation with ES. This procedure can be interpreted as a simple iterative

form of ES, which is still reasonably computationally efficient.
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6.5.1 Generalization of the MDA procedure

In Section 6.1, we proved for the linear-Gaussian case the equivalence between

a single assimilation of data and multiple data assimilation with the covariance ma-

trix of measurement errors, CD, multiplied by the number of data assimilations.

Here, we generalize this procedure to the case where CD is increased by a different

coefficient, αi, each time we assimilate data, i.e., we define ĈD as

ĈD ≡



α1CD 0 · · · 0

0 α2CD · · · 0

...
. . .

...

0 · · · αNaCD


. (6.45)

Using Eq. 6.45 in Eq. 6.24 and computing the expectation of ŷa, we obtain

E [ŷa] = Ca
Y

{(
Cf

Y

)−1
(
µfy +

(
Cf

Y

)1/2

E[zy]

)
+ ĤTĈ−1
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The last expression of Eq. 6.46 is equal to the correct posterior mean if, and only if,
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Na∑
i=1

1

αi
= 1. (6.47)

Note that the choice αi = Na for i = 1, 2, . . . , Na satisfies the condition of Eq. 6.47,

but there are infinitely many possible choices for the αi’s. By choosing a set of αi’s

that satisfies Eq. 6.47, MDA yields the correct posterior mean for the linear-Gaussian

case. i.e.,

E [ŷa] = µay. (6.48)

The equivalence for the posterior covariance follows from

cov [ŷa] = Ca
Y
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6.5.2 ES-MDA procedure

Algorithm 6.2 presents the ES-MDA general procedure. One difficultly with

the proposed ES-MDA method is that Na and the coefficients αi’s must be selected

prior to the data assimilation. The simplest choice for α is αi = Na for all i.

However, intuitively, we expect that choosing αi in a decreasing order can improve

the performance of the method. In this case, we start assimilating data with a large

value of α, which corresponds to reducing the magnitude of the initial updates, then,

we gradually decrease α.
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Algorithm 6.2 ES-MDA

1. Choose the number of data assimilations, Na, and the coefficients αi for i =
1, 2, . . . , Na.

2. For i = 1 to Na:

(a) Run the ensemble from time zero.

(b) For each ensemble member, perturb the observation vector using duc =

dobs +
√
αiC

1/2
D zd, where zd ∼ N (0, INd).

(c) Update the ensemble using the ES analysis equation (Eq. 2.129) with CD

replaced by αiCD.

end (for).

6.5.3 Example 1 – Waterflooding

The first example corresponds to the same reservoir model used in Sec-

tion 6.4.1. For this case, we performed data assimilations using EnKF, ES and

ES-MDA to assimilate the production data. For ES-MDA, we considered the follow-

ing cases:

• 2×: ES assimilating data twice (α1 = α2 = 2.0).

• 4×-a: ES assimilating data four times (α1 = α2 = α3 = α4 = 4.0).

• 4×-b: ES assimilating data four times (α1 = 9.333, α2 = 7.0, α3 = 4.0 and

α4 = 2.0).

Fig. 6.17 presents the box plot of the normalized objective function (ON)

obtained from each case. These box plots were computed based on combining the

results of the ten different initial ensembles. The numbers next to each box plot

correspond to the value of the median.

According to the results in Fig. 6.17, ES gave relatively high values of ON

compared to EnKF. This fact supports our conjecture that EnKF performs reason-

ably well when history matching production data because the sequential assimilation
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Figure 6.17: Box plots of the normalized objective function. The numbers next to
each box plot correspond to the value of the median of ON .

approximately corresponds to accumulating several GN corrections. Increasing the

number of data assimilations improved the data matches and, consequently, reduced

the values of ON obtained by ES. After four data assimilations, the values of ON

are slightly lower than the ones obtained by EnKF. Selecting the coefficients αi’s in

a decreasing order resulted in further reduction in the values of ON although the

difference is not large. We tried other combinations of the coefficients αi’s, but no

significant differences were obtained.

Fig. 6.18 presents the field water production rate for the first of the ten

ensembles. Besides the historical period (3,900 days), we also include 3,750 days of

forecast. For comparison, we also show the prediction obtained by the true model

in each plot. The results presented in Fig. 6.18 were obtained by running the final

ensembles after data assimilation from time zero. Fig. 6.18 shows that ES failed in

matching the water breakthrough time for most of the ensemble members. Two data

assimilations were not enough to obtain good data matches of the water production

rate. Four data assimilations, on the other hand, resulted in very good water rate

data matches, which are better than the ones obtained by EnKF. Although we showed

the water production curves only for the first of the ten ensembles, these results are

representative of what is observed in the other nine ensembles.

We estimated the average computational cost of each procedure in terms of the

number of equivalent simulation runs, and the results are presented in Table 6.6. The
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(a) Prior (b) EnKF (c) ES

(d) ES-MDA (2×) (e) ES-MDA (4×-a) (f) ES-MDA (4×-b)

Figure 6.18: Field water production rate. The vertical dashed line indicates the
end of the historical period. Red dots are the history; red curve is the prediction
from the true model; green curve is the ensemble mean prediction and blue curves
are the ensemble members.

CPU time required by the data assimilation with EnKF is 4.58 times larger than the

CPU time used to run an initial ensemble from time zero without data assimilation.

This difference occurs mainly because of the additional CPU time required by EnKF

to restart reservoir simulations. The CPU time required by ES is practically the same

as the CPU time used to run an ensemble without data assimilation. MDA increases

the CPU time of ES by the factor equal to the number of data assimilations. For

this example, the CPU time of ES-MDA (4×) is slightly lower than the the CPU

time used by EnKF. For this example, we used observations at 150 days intervals.

Note that increasing the frequency of data would increase the computational cost of

EnKF (because we would have more simulation restarts), but would have a small

impact on the computational cost of ES-MDA.

6.5.4 Example 2 – Production-logging data

The second example is a single-phase synthetic reservoir model on a 3D uni-

form grid with 11× 11× 40 gridblocks. The dimensions of the gridblocks are 200 ft
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Table 6.6: Average computational costs.

Case Number of equivalent
simulation runs

Run prior ensemble 100
EnKF 458
ES 101
ES-MDA (2×) 203
ES-MDA (4×) 405

× 200 ft × 25 ft. In this model, there is a single producing well at the center of the

reservoir completed in all 40 layers operating at a constant rate of 1,000 stb/day. The

observed data correspond to the oil rate from individual layers at the specific time

of 30 days, mimicking the data obtained from a production-logging acquisition. The

noise level added to each datum corresponds to 2% of the layer-rate predicted by the

true model. We chose a small noise level to make the problem more challenging for

data assimilation. The model parameters are the log-permeabilities for each of the

40 layers. Each layer of the reservoir has homogeneous and isotropic permeabilities.

The log-permeability of each layer of the true model and the initial ensemble was

obtained by sampling N (5.0, 1.0). Hence, there is no correlation in the permeability

between layers. This problem was designed to test our conjecture that sequential

assimilation of data with overlapping information content is one of the reasons for

the good performance of EnKF when history matching production data. For the

problem considered in this section, the production-logging data are available at only

one time. In this situation, EnKF becomes equivalent to ES.

We assimilated the production-logging data using ES and ES-MDA with two

and four data assimilations. For ES-MDA (2×), we used α1 = α2 = 2.0. For ES-

MDA (4×), we used α1 = 9.333, α2 = 7.0, α3 = 4.0 and α4 = 2.0. The ensemble size

is 100. Fig. 6.19 presents the box plot of the normalized data mismatch objective

function (ON,d) obtained for each case. According to the results in Fig. 6.19, ES with
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single data assimilation resulted in an unreasonably high value of ON,d. ES-MDA

significantly improved the data matches. After four data assimilations, ON,d was

reduced to 6.7, which is 219 times smaller than the value obtained with the standard

ES. Fig. 6.20 presents the predicted layer-rates for each case. Fig. 6.20b suggests

that ES resulted in overcorrection when matching the data from layers 5 and 17.

ES-MDA (4×), on the other hand, resulted in excellent data matches. Fig. 6.21

presents the corresponding values of permeability for each reservoir layer showing

that ES-MDA (4×) captured the correct permeability field.
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Figure 6.19: Box plots of the normalized data mismatch objective function. The
numbers next to each box plot corresponds to the median value of ON,d.

222



1

6

11

16

21

26

31

36

0 50 100 150 200 250
Liquid rate (STB/D)

La
ye

r

(a) Prior

1

6

11

16

21

26

31

36

0 50 100 150 200 250
Liquid rate (STB/D)

La
ye

r

(b) ES

1

6

11

16

21

26

31

36

0 50 100 150 200 250
Liquid rate (STB/D)

La
ye

r

(c) ES-MDA (2×)

1

6

11

16

21

26

31

36

0 50 100 150 200 250
Liquid rate (STB/D)

La
ye

r

(d) ES-MDA (4×)

Figure 6.20: Predicted liquid rate for each reservoir layer. Red dots are the history;
green curve is the ensemble mean prediction and gray curves are the prediction from
the ensemble members.
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(d) ES-MDA (4×)

Figure 6.21: Layer-permeabilities. Red curve with squares is the truth; green curve
is the ensemble mean and gray curves are the ensemble members.

224



6.5.5 Example 3 – Brugge case

Here, we consider the history matching of production data for the ten year

period provided in the original Brugge case dataset. The production data correspond

to “measurements” of the oil and water rates at the producing wells and the bottom-

hole pressure at producing and water injection wells. We assume that the noise level

corresponds to 3% for oil rate data and 5% for water rate data. For bottomhole pres-

sure, we assume a constant measurement error of 0.5 bars (7.25 psi). Even though

data are available with a frequency of 30 days, we assimilated data every 120 days

using EnKF, ES and ES-MDA (4×). For this last case, the coefficients αi’s are the

same as in the case ES-MDA (4×-b) of example 1. Because the number of wells in

the Brugge field is large (20 producers and 10 water injectors), we used localization

to reduce problems related to sampling errors and limited degrees of freedom. We

defined the localization regions using the procedure described in Chapter 3.

Fig. 6.22 presents the box plot of the normalized data mismatch objective

function (ON,d) obtained for each case. According to the results presented in Fig. 6.22,

ES resulted in values of ON,d about four times larger than those based on results from

EnKF. ES-MDA (4×) significantly improved the final data matches, and the values

of ON,d are about three times lower than EnKF. Figs. 6.23 and 6.24 present the data

matches obtained for two producing wells (P5 and P14). These figures illustrate

that ES was not able to achieve reasonable data matches. Also, the predictions from

the ES-MDA (4×) are in better agreement with the historical data than the ones

obtained by EnKF; see, for example, Figs. 6.23a and 6.23b, which show that EnKF

results in slightly biased predictions compared to the historical data.

Table 6.7 presents the computational cost in terms of the equivalent number of

reservoir simulation runs for EnKF and ES-MDA (4×). The results in this table were

obtained by measuring the actual CPU time required during the data assimilations

divided by the average CPU time required for one reservoir simulation run. According
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Figure 6.22: Box plots of the normalized data mismatch objective function. The
numbers next to each box plot correspond to the value of the median of ON,d.

Table 6.7: Computational costs.

Case Number of equivalent
simulation runs

Run prior ensemble 104
EnKF 367
ES-MDA (4×) 430

to the results in Table 6.7, the CPU time of ES-MDA (4×) was 17% higher than

the CPU time of EnKF, but resulted in far better data matches than were obtained

with EnKF.

6.5.6 Comments

The proposed ES-MDA method was motivated by our conjecture that when

sequential data have similar information content, the sequential assimilation of data

employed by EnKF provides an approximation of multiple Gauss-Newton iterations.

This conjecture yields a second conjecture, namely, EnKF will typically give a better

data match than ES because the smoother effectively represents a single Gauss-

Newton iteration with an average sensitivity matrix [143]. Although we have not

provided a proof of these conjectures, all results we have presented here are consistent

with these conjectures.
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(a) Prior (bottomhole pressure) (b) Prior (water rate)

(c) EnKF (bottomhole pressure) (d) EnKF (water rate)

(e) ES (bottomhole pressure) (f) ES (water rate)

(g) ES-MDA (4×) (bottomhole
pressure)

(h) ES-MDA (4×) (water rate)

Figure 6.23: Data matches for well P5. Red dots are the history; green curve is
the ensemble mean prediction and blue curves are the ensemble members.
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(a) Prior (bottomhole pressure) (b) Prior (water rate)

(c) EnKF (bottomhole pressure) (d) EnKF (water rate)

(e) ES (bottomhole pressure) (f) ES (water rate)

(g) ES-MDA (4×) (bottomhole
pressure)

(h) ES-MDA (4×) (water rate)

Figure 6.24: Data matches for well P14. Red dots are the history; green curve is
the ensemble mean prediction and blue curves are the ensemble members.
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For ES-MDA, we only consider the parameter-estimation problem. Thus,

unlike EnKF, the parameters and states are always consistent [167]. This fact helps

to explain the better data matches obtained by ES-MDA compared to EnKF.
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CHAPTER 7

HISTORY MATCHING OF PRODUCTION AND SEISMIC DATA

FOR A REAL FIELD CASE

In this chapter, we present the history matching results of a real field case

using EnKF and ES-MDA. The field case corresponds to the upper zone (turbidite

system 2) of the same field considered in Chapter 3 (Section 3.3). However, we now

consider the assimilation of 3D and 4D seismic data in conjunction with production

data. In Chapter 3, we adjusted only the permeability field while history matching

the production data. Here, we also include the porosity and net-to-gross ratio (NTG)

as model parameters. The focus on Chapter 3 was to compare EnKF with and

without localization. Here, we compare the performance of EnKF and ES-MDA.

In both cases, we use localization when assimilating the production and the seismic

data. In addition, in this chapter, we present a description of the construction of the

petroelastic model required to predict seismic data from the results of the reservoir

simulation. The results presented in this chapter are summarized in Emerick and

Reynolds [40].

7.1 Petroelastic Model

The petroleastic model (PEM) is a set of relationships used to predict the

seismic response of a reservoir model. The PEM combines the properties of the rock

and fluid in the reservoir to predict elastic properties of the combined media such as

pressure-wave impedance (P-impedance or acoustic impedance) and Poisson’s ratio.

The most widely used model to predict the seismic response of a porous media

saturated with fluids is the Gassmann model [62]. In the Gassmann model, the bulk
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(K) and shear (G) moduli of the saturated porous media are computed using

K = Kdry +

(
1− Kdry

Kmin

)2

φeff

Kfluid
+ 1−φeff

Kmin
− Kdry

K2
min

(7.1)

and

G = Gdry. (7.2)

In the above equations, Kdry is the bulk modulus of the dry rock, i.e., rock frame

without fluid in the porous space; Kmin is the bulk modulus of the mineral that

constitutes the rock; Kfluid is the bulk modulus of the fluid, i.e., the mixture of water

and hydrocarbons; φeff is the effective porosity, i.e., the porosity at the reservoir

pressure condition; and Gdry is the shear modulus of the dry rock. Eqs. 7.1 and 7.2

assume an isotropic and homogeneous media, fully saturated with fluid. Because

we apply the Gassmann model on a gridblock by gridblock basis when computing

seismic data from a reservoir model, we are effectively neglecting the anisotropy at

the gridblock scale. However, we allow the possibility of anisotropy in the reservoir

scale as the rock and fluid properties can vary from gridblock to gridblock [52].

Moreover, the Gassmann model assumes that the seismic frequencies are sufficiently

low such that wave-induced pressure gradients are negligible [121] and that the fluid

is of sufficiently low viscosity so that it is possible to neglect its effect in the shear

modulus.

The dry bulk and shear moduli of the rock are estimated using empirical

correlations or based on data from the reservoir (typically, rock cores and sonic logs).

Mavko et al. [121] present several empirical correlations between wave-velocities,

porosity and clay content that can be used to estimate the values of Kdry and Gdry.

Here, we estimate Kdry and Gdry using relationships obtained by linear regression

with interpreted data from sonic logs obtained in six wells in the field as shown in

Fig. 7.1.
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Figure 7.1: Relationship between dry bulk and shear moduli with effective porosity.

The bulk and shear moduli of the mineral that constitutes the reservoir rock

were estimated using the Hashin-Shtrikaman bounds model [72]. In this model, we

compute the upper and lower bounds of Kmin and Gmin for a mixture of two minerals

as a function of their volume fractions. For the field application considered in this

chapter, we computed Kmin and Gmin as the mixture of sandstone (quartz) and shale

(clay). In this case, the upper and lower bounds are given by

Kup
min = Kqtz +

fclay

(Kclay −Kqtz)
−1 + fqtz

(
Kqtz + 4

3
Gqtz

)−1 , (7.3)

K low
min = Kclay +

fqtz

(Kqtz −Kclay)−1 + fclay

(
Kclay + 4

3
Gclay

)−1 , (7.4)

Gup
min = Gqtz +

fclay

(Gclay −Gqtz)
−1 + 2fqtz(Kqtz+2Gqtz)

5Gqtz(Kqtz+ 4
3
Gqtz)

(7.5)

and

Glow
min = Gclay +

fqtz

(Gqtz −Gclay)−1 +
2fclay(Kclay+2Gclay)
5Gclay(Kclay+ 4

3
Gclay)

. (7.6)

In the above equations, Kqtz = 37.5 GPa is the bulk modulus of the quartz; Kclay =

22.78 GPa is the bulk modulus of the clay; Gqtz = 45.5 GPa is the shear modulus of
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the quartz; and Gclay = 12.62 GPa is the shear modulus of the clay. fqtz and fclay

are the volume fractions of quartz and clay, such that fqtz + fclay = 1. In this field

application, for each gridblock of the model, we use fqtz equal to the NTG and fclay

equal to 1−NTG. After computing the upper and lower bounds using Eqs. 7.3–7.6,

we compute the bulk and shear moduli of the mineral as

Kmin =
Kup

min +K low
min

2
(7.7)

and

Gmin =
Gup

min +Glow
min

2
. (7.8)

The bulk modulus of the fluid, Kfluid, is computed using Wood’s formula [121],

i.e.,

1

Kfluid

=
So

Ko

+
Sw

Kw

+
Sg

Kg

, (7.9)

where So, Sw and Sg are the saturations of the phases oil, water and gas, respectively.

Ko, Kw and Kg are the bulk moduli of each phase, which are computed using the

set of empirical correlations proposed by Batzle and Wang [11]. According to Batzle

and Wang [11], the bulk modulus of the oil can be estimated using

Ko = ρoV
2

o , (7.10)

and

Vo = 2,096

√
ρo

2,600− ρo

− (3.7T ) + (4.67p) + 0.0115

[(
4.12

√
1, 080

ρo

− 1

)
− 1

]
Tp.

(7.11)

In the above equations, ρo is the oil density at reservoir conditions in kg/m3; V 2
o is

the pressure-wave velocity in the oil in m/s; p is the reservoir pressure in MPa and

T is the reservoir temperature in oC. Using these units, Eq. 7.10 results in Ko given
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in Pa.

The bulk modulus of the water is given by

Kw = ρwV
2

w , (7.12)

and

Vw = Vwp + CSS +
(
780− 10p+ 0.16p2

)
S1.5 − 1, 820S2, (7.13)

where ρw is the water density at reservoir conditions in kg/m3; V 2
w is the pressure-

wave velocity in the water in m/s; p is the reservoir pressure in MPa; S is the water

salinity, which must be given as a fraction of unity; CS is a coefficient computed

using

CS = 1,170− 9.6T + 0.055T 2 − 8.5× 10−5T 3 + 2.6p− 0.0029Tp− 0.0476p2, (7.14)

where T is the reservoir temperature in oC. Vwp is the pressure-wave velocity in the

pure-water, which is estimated using

Vwp =
4∑
i=0

3∑
j=0

wijT
ipj. (7.15)

The coefficients wij’s are given in Table 7.1.

The bulk modulus of the gas is given by

Kg =
pγ

1−
(
pr
Z
∂Z
∂pr

)
T

, (7.16)

where

pr =
p

4.892− (0.4048SG)
, (7.17)
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Table 7.1: Coefficients wij of Eq. 7.15 [11].

HH
HHHHi

j
0 1 2 3

0 1.403× 103 1.524 3.437× 10−3 −1.197× 10−5

1 4.871 −1.110× 10−2 1.739× 10−4 −1.628× 10−6

2 −4.783× 10−2 2.747× 10−4 −2.135× 10−6 1.237× 10−8

3 1.487× 10−4 −6.503× 10−7 −1.455× 10−8 1, 327× 10−10

4 −2.197× 10−7 7.987× 10−10 5.230× 10−11 −4.614× 10−13

Z = a · pr + b+ c · d, (7.18)

∂Z

∂pr
= c · d ·m+ a, (7.19)

a = 0.03 + 0.00527 (3.5− Tr)3 , (7.20)

b = 0.642Tr − 0.007T 4
r − 0.52, (7.21)

c = 0.109 (3.85− Tr)2 , (7.22)

d = exp

{
−

[
0.45 + 8

(
0.56− 1

Tr

)2
]
p1.2
r

Tr

}
, (7.23)

m = −1.2

[
0.45 + 8

(
0.56− 1

Tr

)2
]
p0.2
r

Tr
, (7.24)

γ = 0.85 +
5.6

pr + 2
+

27.1

(pr + 3.5)2 − 8.7 exp {−0.65 (pr + 1)} , (7.25)
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Tr =
T + 273.15

94.72 + (170.75SG)
(7.26)

and SG is the specific gravity of the gas at standard conditions. In the above

equations, p is given in MPa and T is given in oC.

After computing the bulk and shear moduli with Gassmann model (Eqs. 7.1

and 7.2), we compute the pressure-wave velocity (VP ) using

VP =

√
K + 4

3
G

ρ
. (7.27)

Eq. 7.27 assumes a compatible unit system. We use SI units, which results in VP

given in m/s. In this equation, ρ is density of the saturated rock, which is estimated

using

ρ = ρfluidφeff + ρmin(1− φeff), (7.28)

where ρfluid is the fluid density at the pressure and temperature conditions of the

reservoir, which is computed using

ρfluid = Soρo + Swρw + Sgρg, (7.29)

In Eq. 7.28, ρmin is the density of the mineral that constitutes the reservoir rock. Here,

we estimate ρmin based on the NTG and the densities of the quartz (ρqtz = 2,650 kg/m3)

and clay (ρclay = 2,600 kg/m3), using

ρmin = ρqtzNTG + ρclay (1− NTG) . (7.30)

The effective porosity, φeff, is computed using

φeff = φ0 [1 + crock (p− p0)] , (7.31)
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where φ0 is the gridblock porosity specified at a reference pressure p0 and crock is the

rock compressibility.

The seismic data used in this field application correspond P-impedance (IP ),

which is given by

IP = ρVP . (7.32)

7.2 Initial Ensemble

In this history matching study, we consider as model parameters the porosity,

NTG and horizontal log-permeability for all reservoir gridblocks. The ensemble size

is 200 and the initial ensemble of the gridblock log-permeability field is the same

used in the history matching exercise presented in Chapter 3. Recall that this initial

ensemble of log-permeabilities was obtained using sequential Gaussian simulation

conditioned to interpreted pressure transient data. The initial ensemble of gridblock

porosities was also generated with sequential Gaussian simulation. In this case, we

used porosity data obtained from sonic logs at seven wells. The initial ensemble

of NTG was generated with sequential Gaussian co-simulation [176] with porosity

conditioned to NTG data at the same seven wells where we have porosity data. We

used the same covariance function for all gridblock properties, which corresponds to

an anisotropic exponential correlation function with practical ranges of 2,000 meters

(corresponding to the size of 20 gridblocks) in the x-direction and 1,000 meters

(10 gridblocks) in the y-direction. In the vertical direction, we assumed that rock

properties are correlated over the four reservoir layers by choosing a practical range

corresponding to the thickness of four gridblocks. The initial ensemble of log-perm-

eability is not correlated with the initial ensembles of porosity and NTG because we

did not find any meaningful correlation in the prior data (well logs and interpreted

pressure transient data).

Recall from Chapter 3 that the current model of this reservoir was obtained
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by “manually” modifying the permeability field to match the observed history of the

water production rate. During this manual-history-matching process, the reservoir

simulator was run with each producing well constrained to its historical oil rate and

each injector well constrained to its historical water injection rate. Here, we also

constrain our simulations to the historical oil and water injection rates. Similarly to

Chapter 3, here, we also use the manually history-matched model as reference for

comparison.

7.3 Assimilation of 3D Seismic Data

We first assimilated the seismic data from the 3D survey acquired in 1997,

before the beginning of production in this reservoir. The seismic data were provided

by Petrobras on the same grid used for the reservoir simulation model and inverted

to P-impedance. However, because of the low-frequency obtained in the base survey

acquisition, the seismic data have low vertical resolution [89]. For this reason, we

used for the purpose of data assimilation the average P-impedance over the four

reservoir simulation layers. The average P-impedance data were computed weighted

by the thickness of the reservoir gridblocks. Fig. 7.2a presents the P-impedance data

after the vertical average, while Fig. 7.2b presents a “map” of total thickness of the

reservoir. Figs. 7.2a and 7.2b show that regions with low thickness in the reservoir

(less than 20 meters) are associated with high values of P-impedance. These high

values of P-impedance seem to occur because of the low vertical resolution of the

seismic. In fact, for small reservoir thicknesses, the P-impedance data are likely to be

corrupted by the rocks above and below the reservoir, making these data unreliable.

Therefore, we removed the P-impedance data from regions of the reservoir with

a total thickness less than 20 meters in the data assimilation. The red regions

in Fig. 7.2c denote the locations corresponding to seismic data that are used for

data assimilation. In this figure, P-impedance data pertaining to regions colored

in red correspond to reservoir total thickness higher than 20 meters. On the other

238



(a) P-impedance data (kg/m2s) (b) Reservoir thickness (meters)

(c) Active seismic data

Figure 7.2: Observed 3D seismic data, reservoir thickness and active seismic data.
In (c), the region in red corresponds to the region with P-impedance data used for
data assimilation. The producing wells are shown in black and the water injector
wells in pink. Dots represent vertical wells and lines represent horizontal wells.

hand, P-impedance data pertaining to regions colored in blue are not used for data

assimilation. We estimated the noise level by smoothing the observed data with

window averaging and computing the residual between observed and smoothed data.

These residuals represent our estimate of the errors in the measurements. We used a

averaging window with size of 3×3 gridblocks. We computed empirical variograms of

the residuals and the results indicated that residuals were approximately correlated

over a distance corresponding to the width of five gridblocks (500 meters) with a

standard deviation on the order of 105 kg/m2s. Fig. 7.3 presents the residuals and

the corresponding experimental variograms.

We assimilate the 3D seismic data using EnKF and ES-MDA with four

data assimilations. For ES-MDA, we used the following multiplication coefficients:

α1 = 9.333, α2 = 7, α3 = 4 and α4 = 2, which are the same used in the examples
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(a) Residuals between observed and
smoothed P-impedance data (kg/m2s)
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Figure 7.3: Residuals between observed and smoothed P-impedance data used
to estimate the covariance of the measurement errors (3D seismic). In (b), the
variogram model is exponential with practical range of 5 gridblocks and sill of 1.1×
1010(kg/m2s)2.

of Sections 6.5.3–6.5.5. We assumed that the initial condition of the reservoir, i.e.,

initial pressure and saturation distributions, are known (without uncertainty) in this

case. Note that because the P-impedance data correspond to a 3D seismic acquisition

before the beginning of the reservoir production, there is no need to use sequential

data assimilation and EnKF becomes equivalent to ES. During the assimilation of

the 3D seismic data, we only update the porosity and NTG fields. There are three

main reasons for not including the permeability field in this case: first, because the

seismic acquisition was before the beginning of production, the P-impedance data

do not contain information about fluid transport. Therefore, the P-impedance data

are not sensitive to permeability. Secondly, the prior ensemble of log-permeability is

not correlated with the initial ensembles of porosity and NTG. Finally, even though

the ensemble of log-permeability is not correlated to the 3D seismic data, includ-

ing this ensemble in the data assimilation process could still cause some erroneous

reduction in the ensemble variance because of spurious correlations possibly intro-

duced by sampling errors. During the data assimilations, we used subspace inversion

(Section 2.5.2) because this method is more efficient when the number of data points

is large. In this case, we retained the largest singular values corresponding to 99.9%
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of the sum of the nonzero singular values when applying Eq. 2.75. We used Kalman

gain localization with critical lengths equal to the prior correlation lengths used to

build the initial ensemble, i.e., 2,000 meters in the x-direction and 1,000 meters the

y-direction. This choice of localization region is justified by the fact that there was

no production before the 3D seismic acquisition and the initial pressure and sat-

uration distribution of the reservoir were assumed known and independent of the

porosity and NTG fields. In this case, the P-impedance value at a particular grid-

block is sensitive only to the porosity and NTG at this gridblock. Therefore, by the

argument presented in Chapter 3, in which we defend that localization should be

based on both prior model and sensitivity region, we conclude that we only need to

include the prior correlations in the localization region to assimilate the 3D seismic

data. Fig. 7.4 presents the mean predicted P-impedance data obtained by the prior

ensemble and the ensembles after data assimilation with EnKF and ES-MDA (4×).

For comparison, we also include the P-impedance data predicted by the manually

history-matched model and the observed P-impedance data. Fig. 7.5 presents the

cross-plots between the observed and the predicted P-impedance data for all cases.

The results in Figs. 7.4 and 7.5 show that the predicted P-impedance data from the

manually history-matched model and from the prior ensemble are biased compared

to the observed seismic. EnKF and ES-MDA (4×) resulted in significant improve-

ments in the data matches, reducing the bias compared to the observations. After

four data assimilations, the differences between the observed and the mean predicted

P-impedance data are less than twice the standard deviation of the measurement er-

rors for most of the reservoir gridblocks. Table 7.2 presents the mean and standard

deviation of the seismic objective function normalized by the number of data points,

ON,s. The results in this table show that ES-MDA (4×) resulted in slightly better

data matches than standard EnKF. The manually history-matched model obtained

a value of ON,s similar to the mean ON,s from the prior ensemble, which may in-
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Table 7.2: Mean and standard deviation of ON,s (3D seismic)

Case Mean Standard deviation

Manual history matching 9.938 –
Prior 9.238 0.842
EnKF 1.050 0.023
ES-MDA (4×) 0.739 0.025

dicate that the information from the 3D seismic data were not directly used when

this model was generated. Figs. 7.6 and 7.7 present the ensemble mean porosity

and NTG fields before and after the assimilation of the P-impedance data. We also

include the porosity and NTG field from the manually history-matched model in

these figures. According to the results in Figs. 7.6 and 7.7, the prior mean porosity

and NTG fields were fairly homogeneous and significant changes were necessary to

match the P-impedance data. Compared to the manually history-matched model,

EnKF and ES-MDA (4×) resulted in some regions with significantly higher values

of porosity. Fig. 7.7a shows that the manually history-matched model presents low

values of NTG in the east part of the reservoir. However, we do not have hard-data

and we assumed that the 3D seismic data are unreliable in this part of the field

because of the small thicknesses of the reservoir. For these reasons, our prior model

and the resulting models from EnKF and ES-MDA (4×) do not contain these low

values of NTG observed in the manually history-matched model.
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(a) Observed data (b) Manual history matching

(c) Prior (d) EnKF

(e) ES-MDA (4×)

Figure 7.4: Predicted P-impedance data (3D seismic) in kg/m2s. For the prior,
EnKF and ES-MDA (4×), the predicted P-impedance data in this figure correspond
to the mean prediction from the corresponding ensembles. The producing wells are
shown in black and the water injector wells in pink. Dots represent vertical wells
and lines represent horizontal wells.
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Figure 7.5: Cross-plot between observed and predicted P-impedance data (3D
seismic). For the prior, EnKF and ES-MDA (4×), the predicted P-impedance data
in this figure correspond to the mean prediction from the corresponding ensembles.
The dashed lines correspond to +/− two standard deviations of the measurement
errors.

(a) Manual history matching (b) Prior mean

(c) Posterior mean. EnKF (d) Posterior mean. ES-MDA (4×)

Figure 7.6: Porosity fields. In this figure, (c) and (d) correspond to the posterior
means after assimilation of the 3D seismic data. The producing wells are shown in
black and the water injector wells in pink. Dots represent vertical wells and lines
represent horizontal wells.
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(a) Manual history matching (b) Prior

(c) EnKF (d) ES-MDA (4×)

Figure 7.7: Net-to-gross fields. In this figure, (c) and (d) correspond to the posterior
means after assimilation of the 3D seismic data. The producing wells are shown in
black and the water injector wells in pink. Dots represent vertical wells and lines
represent horizontal wells.
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7.4 Assimilation of Time-lapse Seismic and Production Data

In this field, the time-lapse seismic data correspond to two 3D seismic ac-

quisitions, the base 3D acquisition in 1997 and a monitor survey acquired in May

of 2005. Although there is a difference of eight years between these two surveys,

the production in the reservoir zone considered in this history matching study be-

gan only in June of 2000. Hence, there are approximately 4.9 years of production

between the two acquisitions. The two surveys were acquired using streamers with

the same azimuth. However, some acquisition parameters were different [89]. Even

though seismic processing partially compensated for these differences, the repeata-

bility of the two acquisitions is not ideal for a time-lapse seismic. Moreover, this

field produces to large FPSO – Floating Production Storage and Offloading – ves-

sels, which represented obstacles during the monitor acquisition. Specifically, one

FPSO vessel over the reservoir zone considered in this history matching study inter-

fered with the monitor seismic acquisition. A considerable effort was made to image

these areas with obstacles during the acquisition, however, the ocean currents were

very high during the time of the survey, which caused poor repeatability in these

areas [89]. Fig. 7.8a presents the time-lapse seismic in terms of the time-difference

P-impedance data (∆IP ). The green to red colors in this figure correspond to in-

crease in P-impedance due to the displacement of oil by injected water. We also

show in Fig. 7.8a the region of interference of the FPSO vessel during the monitor

seismic acquisition. Note that there are three water injection wells in this region of

interference; however, we do not observe a significant increase in the observed P-

impedance data inside this region. This indicates that the ∆IP data from this region

are not reliable in this region; hence, we they were not used for data assimilation.

Fig. 7.2b shows the regions of the reservoir with time-lapse seismic data used for his-

tory matching. Note that besides the region of interference of the FPSO vessel, we

also removed data from the areas of the reservoir with thickness less than 20 meters,
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as we did during the assimilation of the 3D seismic data. Similarly to what we did

for the 3D seismic data, we use an average ∆IP data over the four reservoir layer for

data assimilation. We estimated the noise level in the ∆IP data using the same pro-

cedure used for the 3D seismic. However, unlike the 3D seismic data, we did not find

spatial correlation in the noise of the ∆IP data. We obtained a standard deviation

of the noise of approximately 2.9× 104 kg/m2s. Fig. 7.9 shows the residuals and the

corresponding variograms indicating that the noise is spatially uncorrelated. This

result is surprising if we consider that both 3D acquisitions have correlated noise

over distances corresponding to approximately the width of 5 gridblocks. In order

to analyze this result, let dobs,1 and dobs,2 denote the base and monitor seismic data.

Let us assume that dobs,1 ∼ N (dobs,1, CD1) and dobs,2 ∼ N (dobs,2, CD2). Then, let us

define the random variable ∆dobs = dobs,2 − dobs,1, which correspond to the observed

time-lapse seismic data. The covariance of ∆dobs is give by

cov[∆dobs] = E[(∆dobs −∆dobs)(∆dobs −∆dobs)
T]

= E[dobs,2d
T
obs,2] + E[dobs,1d

T
obs,1]− 2E[dobs,2d

T
obs,1]

− dobs,2d
T

obs,2 − dobs,1d
T

obs,1 + 2dobs,2d
T

obs,1

= CD1 + CD2 − 2cov[dobs,1, dobs,2]. (7.33)

If dobs,1 and dobs,2 are independent samples of N (dobs,1, CD1) and N (dobs,2, CD2), re-

spectively, we have cov[dobs,1, dobs,2] = 0 and cov[∆dobs] becomes

cov[∆dobs] = CD1 + CD2. (7.34)

Therefore, as CD1 and CD2 have approximately the same correlation length, i.e., 5

gridblocks, we should expect cov[∆dobs] to be also correlated over a distance of 5 grid-

blocks. However, the results in Fig. 7.9 indicate that ∆dobs is spatially uncorrelated.
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(a) P-impedance difference (kg/m2s) (b) Active seismic data

Figure 7.8: Observed time-lapse and active seismic data. In (a) the red lines
indicate the region of interference of the FPSO during the seismic acquisition. In (b),
the region in red corresponds to the region with ∆IP data used for data assimilation.
The producing wells are shown in black and the water injector wells in pink. Dots
represent vertical wells and lines represent horizontal wells.

A possible explanation for the result of Fig. 7.9 is that dobs,1 and dobs,2 are not

independent samples. In fact, we believe that the inversion process from amplitude

to P-impedance might have introduced correlation between dobs,1 and dobs,2. In this

case, we have cov[dobs,1, dobs,2] 6= 0, which may explain the fact that we obtained

cov[∆dobs] with approximately zero correlation length. Although we cannot be sure

about the conjecture that the inversion process introduced correlation between the

base and monitor data, we used the results of Fig. 7.9 to define the covariance of the

measurement errors of the time-lapse seismic during data assimilation.

The production data used for history matching are the same used in Chap-

ter 3, i.e., water production rate at 14 wells. As before, from the total production

period of 3,621 days, we assimilated data only for the first 2,770 days. The remaining

851 days of history are used for comparing the predictions from the history-matched

models.

We assimilated the time-lapse seismic and the production data simultane-

ously using EnKF and ES-MDA (4×). During data assimilations, we update the

porosity, NTG and log-permeability fields. Note that the initial ensembles of poros-

ity and NTG used for assimilation of time-lapse seismic and the production data
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smoothed ∆IP data (kg/m2s)
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Figure 7.9: Residuals between observed and smoothed data used to estimate the
covariance of measurement errors of the ∆IP .

correspond to the posterior ensembles after the assimilation of 3D seismic data. We

used subspace inversion with rescaling and truncation based on 99.9% of the sum of

the nonzero singular values (Section 2.5.2). For localization of the production data,

we defined the critical lengths using the same procedure used in Chapter 3, which is

based on the prior correlation and drainage areas. For the time-lapse seismic data,

we do not have a simple procedure to estimate the sensitivity region, which makes

it difficult to design a proper localization strategy. In this case, we chose the crit-

ical lengths for localization as twice the correlation lengths of the prior geological

model. However, we did not experiment with different choices of critical lengths for

localization of the time-lapse seismic data.

Fig. 7.10 presents the mean predicted ∆IP data obtained by the prior en-

semble and the ensembles after data assimilation with EnKF and ES-MDA (4×).

For comparison, we also include the ∆IP data predicted by the manually history-

matched model and the observed ∆IP data in this figure. Fig. 7.11 presents the

cross-plots between the observed and the predicted ∆IP data and Table 7.2 presents

the mean and standard deviation of ON,s. The results in Figs. 7.10 and 7.11 and

Table 7.2 show that the ∆IP data predicted by the manually history-matched model

and the initial ensemble are in reasonable agreement with the observed time-lapse
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Table 7.3: Mean and standard deviation of ON,s (time-lapse seismic)

Case Mean Standard deviation

Manual history matching 1.834 –
Prior 1.775 0.236
EnKF 1.274 0.091
ES-MDA (4×) 1.258 0.038

seismic data. Nevertheless, the assimilation of time-lapse seismic data with EnKF

and ES-MDA resulted in improvements in the match of ∆IP data. For example, the

average values of ON,s was reduced by approximately 30% after data were assimi-

lated with EnKF and ES-MDA (4×). Compared to each other, EnKF and ES-MDA

(4×) resulted in approximately the same level of data match of ∆IP although the

ES-MDA (4×) obtained a slightly lower value of mean ON,s.

Fig. 7.12a presents the box plots of normalized production data mismatch

objective function, ON,p, obtained by the manually history-matched model, the prior

ensemble and the ensembles after data assimilation with EnKF and ES-MDA (4×).

Note that the results in this figure correspond to the historical period used for data

assimilation (2,770 days). Fig. 7.12a shows that ES-MDA (4×) resulted in signifi-

cantly better production data matches than EnKF. For example, the median value

of ON,p obtained by ES-MDA (4×) is almost seven times lower that the median value

of ON,p obtained by EnKF and five times lower than the ON,p obtained by the manu-

ally history-matched model. The results of Fig. 7.12b, which show the corresponding

box plots of ON,p for the forecast period (851 days), indicate that EnKF and ES-

MDA (4×) gave values of ON,p which are two times smaller that the ON,p value

corresponding to the manually history-matched model. Figs. 7.13–7.20 present the

predicted water production rate for eight wells. Fig. 7.21 shows the total predicted

water production rate (all wells). In these figures, we include both the historical

period (2,770 days) and the forecast period (851 days). These figures illustrate that
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(a) Observed data (b) Manual history matching

(c) Prior (d) EnKF

(e) ES-MDA (4×)

Figure 7.10: Predicted ∆IP data (time-lapse seismic) in kg/m2s. For the prior,
EnKF and ES-MDA (4×), the predicted P-impedance data in this figure correspond
to the mean prediction from the corresponding ensembles. The producing wells are
shown in black and the water injector wells in pink. Dots represent vertical wells
and lines represent horizontal wells.
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Figure 7.11: Cross-plot between observed and predicted ∆IP data (time-lapse
seismic). For the prior, EnKF and ES-MDA (4×), the predicted ∆IP data in this
figure correspond to the mean prediction from the corresponding ensembles. The
dashed lines correspond to +/− two standard deviations of the measurement errors.

EnKF and ES-MDA (4×) resulted in reasonable data matches and predictions of

water production rate for most of the wells, and that, in general, these matches

are better than the data matches and predictions obtained by the manually history-

matched model. The main differences between the results of EnKF and ES-MDA

(4×) occur for wells P-85 and P-86, in which ES-MDA (4×) gave significantly better

data matches, especially close to the water breakthrough time; and for well P-141, in

which EnKF resulted in better agreement with the observations during the forecast

period. Figs. 7.22, 7.23 and 7.24 present the final porosity, NTG and permeability

fields, respectively. These figures illustrates that even though significant changes in

the prior model were necessary in order to match the production and seismic data,

the final rock properties fields obtained by EnKF and ES-MDA (4×) seem plausi-

ble. For the porosity fields, the main changes were due to the assimilation of the

3D seismic; compare Fig. 7.6 with Fig. 7.22. For the NTG field, the assimilation of

the production and time-lapse seismic data incurred additional significant changes to

those observed after the assimilation of the 3D seismic data. The final permeability

fields obtained from EnKF and ES-MDA (4×) present some regions with values close

24,000 mD. Although these values are extremely high, they were expected consid-
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Figure 7.12: Box plots of the normalized production data mismatch objective func-
tion. The horizontal dashed lines correspond to the ON,p obtained by the manually
history-matched model. The numbers next to each box plot correspond to the values
of the median of ON,p and the numbers in the beginning of the horizontal dashed
lines correspond to the values of ON,p obtained by the manually history-matched
model

ering that the prior information from interpreted pressure transient data indicates

values around 20,000 mD. Besides that, these permeability fields are more geologi-

cally plausible than the permeability field of the manually history-matched model,

which presents several artifacts introduced by the engineers of the field to match the

water production rate data.
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(a) Manual history
matching

(b) Prior (c) EnKF (d) ES-MDA (4×)

Figure 7.13: Well P-85. Predicted water production rate obtained by running the
final ensembles from time zero (std m3/day). Red dots are the data points used
for data assimilation; solid red curve is the production history; solid blue curve is
the prediction from the manually history-matched model; solid green curves are the
mean predictions from the ensembles; solid light blue curves represent predictions
from all models of the ensembles. The dashed vertical black line indicates the end
of the history and beginning of the forecast period.

(a) Manual history
matching

(b) Prior (c) EnKF (d) ES-MDA (4×)

Figure 7.14: Well P-86. Predicted water production rate obtained by running the
final ensembles from time zero (std m3/day). The colors in this figure have the same
meaning as in Fig. 7.13

(a) Manual history
matching

(b) Prior (c) EnKF (d) ES-MDA (4×)

Figure 7.15: Well P-101. Predicted water production rate obtained by running the
final ensembles from time zero (std m3/day). The colors in this figure have the same
meaning as in Fig. 7.13
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(a) Manual history
matching

(b) Prior (c) EnKF (d) ES-MDA (4×)

Figure 7.16: Well P-104. Predicted water production rate obtained by running the
final ensembles from time zero (std m3/day). The colors in this figure have the same
meaning as in Fig. 7.13

(a) Manual history
matching

(b) Prior (c) EnKF (d) ES-MDA (4×)

Figure 7.17: Well P-111. Predicted water production rate obtained by running the
final ensembles from time zero (std m3/day). The colors in this figure have the same
meaning as in Fig. 7.13

(a) Manual history
matching

(b) Prior (c) EnKF (d) ES-MDA (4×)

Figure 7.18: Well P-141. Predicted water production rate obtained by running the
final ensembles from time zero (std m3/day). The colors in this figure have the same
meaning as in Fig. 7.13
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(a) Manual history
matching

(b) Prior (c) EnKF (d) ES-MDA (4×)

Figure 7.19: Well P-149. Predicted water production rate obtained by running the
final ensembles from time zero (std m3/day). The colors in this figure have the same
meaning as in Fig. 7.13

(a) Manual history
matching

(b) Prior (c) EnKF (d) ES-MDA (4×)

Figure 7.20: Well P-152. Predicted water production rate obtained by running the
final ensembles from time zero (std m3/day). The colors in this figure have the same
meaning as in Fig. 7.13

(a) Manual history
matching

(b) Prior (c) EnKF (d) ES-MDA (4×)

Figure 7.21: Field water production (all wells). Predicted water production rate
obtained by running the final ensembles from time zero (std m3/day). The colors in
this figure have the same meaning as in Fig. 7.13

256



(a) Manual history matching (b) Prior mean

(c) Posterior mean. EnKF (d) Posterior mean. ES-MDA (4×)

Figure 7.22: Final porosity fields. In this figure, (c) and (d) correspond to the
posterior means after assimilation of production and seismic data. The producing
wells are shown in black and the water injector wells in pink. Dots represent vertical
wells and lines represent horizontal wells.
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(a) Manual history matching (b) Prior mean

(c) Posterior mean. EnKF (d) Posterior mean. ES-MDA (4×)

Figure 7.23: Final net-to-gross fields. In this figure, (c) and (d) correspond to the
posterior means after assimilation of production and seismic data. The producing
wells are shown in black and the water injector wells in pink. Dots represent vertical
wells and lines represent horizontal wells.
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(a) Manual history matching (b) Prior mean

(c) Posterior mean. EnKF (d) Posterior mean. ES-MDA (4×)

Figure 7.24: Final permeability fields. In this figure, (c) and (d) correspond to the
posterior means after assimilation of production and seismic data. The producing
wells are shown in black and the water injector wells in pink. Dots represent vertical
wells and lines represent horizontal wells.
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Table 7.4: Computational costs.

Case Number of equivalent
simulation runs

Run prior ensemble 200
EnKF 850
ES-MDA (4×) 885

Table 7.4 presents the computational cost in terms of the equivalent number

of reservoir simulation runs for EnKF and ES-MDA (4×). The results in this table

were obtained by measuring the actual CPU time required during the data assimila-

tions divided by the average CPU time required to run one reservoir simulation and

to compute the corresponding predicted seismic data. According to the results in

Table 7.4, the CPU time of ES-MDA (4×) was only 4% higher than the CPU time

of EnKF.
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CHAPTER 8

ENSEMBLE-BASED PARAMETERIZATION FOR THE

RANDOMIZED MAXIMUM LIKELIHOOD METHOD

Even when adjoint code for computing the gradient of the objective function

of Eq. 2.21 is available, the randomized maximum likelihood (RML) method can be

computationally intensive. Therefore, the development of efficient parameterizations

for RML is highly desirable. This chapter introduces an ensemble-based parameteri-

zation to reduce the computational cost of RML. This parameterization is inspired by

the EnKF, which uses linear combinations of realizations of prior models to history-

match data. In addition, this chapter presents a comparison between RML and

EnKF for a small reservoir problem.

8.1 Parameterization Based on Ensembles of Prior Realizations

The parameterization is based on a linear combination of realizations gener-

ated from the prior model. We write the vector of reservoir model parameters, m,

as a linear combination of an ensemble of these realizations from the prior using

m = m+
1√

Ne − 1
∆Mθ, (8.1)

where, as usual, m is the prior ensemble mean vector; ∆M = M −M and M is the

Nm ×Ne matrix containing the ensemble of vectors of prior model parameters, i.e.,

each column of M corresponds to a prior realization. M is the Nm×Ne matrix with

all columns equal to the ensemble mean, m; θ is the Ne-dimensional column vector

of coefficients of the linear combination.
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As discussed in Chapter 2, the MAP estimate is the model that maximizes the

posterior pdf defined in the Eq. 2.2, or equivalently minimizes the objective function

of Eq. 2.3. Hence, in order to compute the MAP estimate, we look for the vector

θMAP such that

θMAP = arg min
θ
O, (8.2)

where O is given by Eq. 2.3. Recall that in Eq. 2.3, the model mismatch part of the

objective function, Om, is given by

Om =
1

2
(m−mpr)

TC−1
M (m−mpr). (8.3)

First note that m ≈ mpr. In fact, we correct the ensemble of prior realizations to

make m = mpr using

mcorr
j = mj − (m−mpr), for j = 1, 2, · · ·Ne, (8.4)

where mcorr
j is the jth prior realization corrected so that

1

Ne

Ne∑
j=1

mcorr
j = mpr. (8.5)

Then, using Eq. 8.1 in Eq. 8.3, we have

Om ≈
1

2

(
1√

Ne − 1
∆Mθ

)T

C−1
M

(
1√

Ne − 1
∆Mθ

)
. (8.6)

We can write the SVD of ∆M as

∆M = UΛV T (8.7)

where U is a Nm × Nm orthogonal matrix; V is a Ne × Ne orthogonal matrix and

Λ is a Nm × Ne matrix with nonzero elements corresponding to the singular values
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of ∆M . Assuming the ensemble approximation for the prior covariance matrix and

using Eq. 8.7, we can write the prior covariance matrix as

CM ≈ C̃M =
∆M∆MT

Ne − 1

=
(UΛV T)(UΛV T)T

Ne − 1

=
(UΛ2UT)

Ne − 1
. (8.8)

and its inverse becomes

C−1
M ≈ C̃+

M = (Ne − 1)(UΛ−2UT), (8.9)

where the superscript “+” means pseudo-inverse.

Using Eq. 8.9 in Eq. 8.6 leads to

Om ≈ 1

2

(
1√

Ne − 1
(UΛV T)θ

)T

(Ne − 1)(UΛ−2UT)

(
1√

Ne − 1
(UΛV T)θ

)
=

1

2
θT(V ΛUT)(UΛ−2UT)(UΛV T)θ

=
1

2
θTθ. (8.10)

Hence, for computing the MAP estimate the model mismatch part of the

objective function can be approximated using the 2-norm of the vector θ, i.e.,

Om ≈
1

2
‖θ‖2

2 =
1

2
θTθ. (8.11)

Using Eq. 8.11, we avoid solving the matrix problem x = C−1
M (m−mpr), which can

be computationally expensive for large reservoir models. For computing the MAP

estimate, we simply start the minimization with θ = 0 in Eq. 8.11.

For sampling the posterior pdf with RML, we look for the vector θj such that
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θj = arg min
θ
Oj, (8.12)

where Oj is the RML objective function given by Eq. 2.21. Similarly to the MAP es-

timate case, the model mismatch part of the objective function can be approximated

as

Om,j ≈
1

2
(θ − θuc,j)

T (θ − θuc,j) . (8.13)

In this case, the vector θuc,j can be obtained by two different procedures:

1. Sample θuc,j from N (0, INe), with INe denoting the Ne × Ne identity matrix.

For this case, the corresponding vector of model parameters, muc,j, is a sample

from N (m, C̃M).

2. Choose one of the Ne models from the prior ensemble and set the entry of the

vector θuc,j corresponding to this model to
√
Ne − 1. The remaining entries of

the vector θuc,j are set to zero.

Note that sampling θuc,j ∼ N (0, INe) is equivalent to sampling muc,j ∼

N (m, C̃M) because

E[muc,j] = E

[
m+

∆M√
Ne − 1

θuc,j

]
= m+

∆M√
Ne − 1

E[θuc,j]

= m (8.14)

and
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cov[muc,j] = E
[
(muc,j −m) (muc,j −m)T

]
= E

[(
∆M√
Ne − 1

θuc,j

)(
∆M√
Ne − 1

θuc,j

)T
]

=
∆M√
Ne − 1

E
[
θuc,jθ

T
uc,j

] ∆MT

√
Ne − 1

=
∆M∆MT

Ne − 1

= C̃M. (8.15)

The main motivation for this parameterization is to reduce the dimensionality

of the minimization problem, we have Ne instead of Nm parameters. However, this

parameterization also has some other attractive features including the following:

• Using Eq. 8.11 (or Eq. 8.13 for RML case), we avoid the need of solving the

matrix problem x = C−1
M (m−mpr), which can be computationally intensive for

large reservoir models. Besides that, for real field applications, typically the

geologist uses geostatistics to generate realizations conditional to well logs and

3D seismic. For these cases, we do not have a well defined model covariance

matrix and the use of the ensemble approximation of the model mismatch

objective function is a simple and effective alternative.

• The dimensionality reduction tends to introduce regularization in the mini-

mization problem helping to ameliorate convergence problems related to over-

correction in the model.

• This parameterization has similarities with the parameterization based on the

Karhunen-Lòeve expansion of the prior covariance matrix used in [130, 141].

However, this ensemble-based parameterization avoids the eigen-decomposition

of the prior covariance matrix, which can be computationally expensive. Be-
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sides that, parameterizations based on the main eingenpairs of the prior covari-

ance matrix tend to generate prior realization which are “too smooth” because

the high frequency components, which are associated with local reservoir het-

erogeneities, are discarded. The ensemble-based parameterization avoids this

difficulty and the prior realizations generated are visually indistinguishable

from realizations generated from the actual prior covariance matrix.

Considering that it is not necessary to run the ensemble of prior realizations

and the computational cost of generating an ensemble is low compared to the cost of

running simulations, we apply RML using a different initial ensemble for computing

each conditional realization. As a result, the final conditional models are linear

combinations of different prior models. With this procedure, we expect to obtain

independent samples of the posterior pdf, which is typically not the case for EnKF,

where the final ensemble is obtained by linear combinations of a single ensemble.

In our implementation, we solve the minimization problem required in the

RML method using the LBFGS algorithm [126, 192, 59] with scaling [106, 192] and

bracketing cubic line search [135, Chap. 8]. The gradients are computed using the

adjoint method [21, 19, 188, 105]. In the adjoint implementation, we compute the

gradient of the objective function with respect to the vector of model parameters m.

In order to perform the optimization in terms of the vector θ, we need to transform

the gradients, which can easily be done applying the chain rule:

∇θO = ∇θm
T∇mO. (8.16)

In the above equation, ∇θO denotes the Ne-dimensional gradient vector of the ob-

jective function with respect to θ and ∇mO denotes the Nm-dimensional gradient

vector of the objective function with respect to m. From Eq. 8.1 we can write

∇θm
T =

1√
Ne − 1

∆MT. (8.17)
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Therefore, the transformed gradients become

∇θO =
1√

Ne − 1
∆MT∇mO

=
1√

Ne − 1
∆MT (∇mOm +∇mOd) . (8.18)

where ∇mOm = C−1
M (m−mpr) and ∇mOd is the gradient vector of the likelihood part

of the objective function, which is obtained in the adjoint implementation. When

using the approximate model mismatch objective function, the expression of the

transformed gradients can be simplified to

∇θO = ∇θOm +∇θOd

= ∇θ

(
1

2
θTθ

)
+

1√
Ne − 1

∆MT∇mOd

= θ +
1√

Ne − 1
∆MT∇mOd, (8.19)

which can be calculated without solving the matrix problem x = C−1
M (m − mpr).

Eq. 8.19 was derived for the case of the MAP estimate. However, this expression is

the same for RML, where we only need to replace ∇mOd by ∇mOd,j.

For convergence, we require both the change in the objective function and the

change in θ over an iteration to be small, i.e.,

|O(θ`+1)−O(θ`)|
O(θ`+1)

< 10−4 (8.20)

and

max
1≤i≤Ne

∣∣∣∣ θ`+1
i − θ`i
θ`i + 10−8

∣∣∣∣ < 10−3, (8.21)

where the superscript ` denotes the iteration index.
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8.2 Example

The example is a 2D synthetic reservoir model on a 15 × 30 uniform grid

with two-phase (oil and water) flow. The model parameters are gridblock log-per-

meabilities, ln(k). The true model was generated from an anisotropic exponential

correlation function with major correlation length of 12,000 ft (which corresponds to

the width of 60 gridblocks) and minor correlation length of 1,000 ft oriented at 45o.

The prior mean of ln(k) is 5.0 and the prior variance is 1.0 for all gridblocks. Fig. 8.1

shows the true permeability field used to generate the observed data. In this model,

there are six producing wells and two water injectors which form two five spots. The

observed data are 11 years of oil and water production rates and water injection

rates. Random normally distributed noise with zero mean and standard deviation

correspondent to 5% of the true data was added to the true data to define the

observed data. We assumed that the measurement errors are uncorrelated, so that

the covariance matrix CD is diagonal. During simulations, all producing wells are

controlled by a fixed bottomhole pressure of 2,700 psi. The injectors are controlled

by a fixed bottomhole pressure of 3,200 psi.

Figure 8.1: True permeability field in mD.

We assimilated data using EnKF and EnKF with covariance localization with

an ensemble of 100 models. The prior ensemble was generated with the same covari-

ance matrix and prior mean of the true model. In addition, we applied the standard
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RML (with no parameterization) and the RML with the ensemble-based parameter-

ization to generate 100 conditional models. For RML with parameterization, each

conditional model is a linear combination of a different set of 100 prior models, and

during minimization, the model mismatch part of the objective function was com-

puted using Eq. 8.13. Finally, we also considered a case in which we use each model

from the final ensemble of EnKF with covariance localization as an initial guess for

RML with parameterization. We refer to this case as EnKF-RML. Again, each RML

iteration was performed using a linear combination of a different set of 100 prior

models. In order to guarantee that each model from EnKF could be exactly repre-

sented as a linear combination 100 models, we simply used the EnKF model as one of

the 100 models and set the entry of the initial vector θj corresponding to the EnKF

model to
√
Ne − 1. The remaining entries of the initial vector θj were set to zero.

In this case, we expect that conditional models after RML to be close to the models

from EnKF, unless the likelihood requires large corrections, which will be the case

when EnKF does not provide a reasonable data match.

Table 8.1 presents the mean and standard deviation of the normalized objec-

tive function (ON = O/Nd) for each case. For EnKF cases, the results presented in

the Table 8.1 were obtained by rerunning the final ensembles from time zero. For

this problem, the total number of data points in the history is Nd = 378. Hence,

according the Eq. 2.132, the value of ON should be less than 1.364 for samples of the

posterior pdf. According to the results in the Table 8.1, the values of ON obtained

by the EnKF cases are, in average, four times larger than the criterion of Eq. 2.132.

For the RML cases, on the other hand, the average ON satisfy this criterion.

Figs. 8.2–8.6 present the predicted water rate for wells P1, P4 and P5 obtained

running the final ensembles of models from time zero. In these figures, besides the 11

years of historical data, there are also ten years of forecast. According to the results

presented in the Fig. 8.2, EnKF had problems matching the water breakthrough time.
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Table 8.1: Normalized objective function

Case Mean Standard deviation

EnKF 5.770 1.287
EnKF with localization 5.256 3.517
RML 1.280 0.089
RML (ens. param.) 1.279 0.119
EnKF-RML 1.344 0.255

Covariance localization improved the match of water rate, but still gave a significantly

large spread (mismatch) of predicted water rate during the historical period. For the

RML cases, on the other hand, all models present an excellent match of water data.

If we compare the spread of predicted water rate for the forecast period, we note

that the EnKF cases result in similar spreads compared to the RML cases. The

similarity in the spread can lead to the erroneous conclusion that EnKF and RML

result in a similar characterization of uncertainty in the predicted water production

rate. However, it is clear from Figs. 8.2 and 8.3 that the spreads of predicted water

rate obtained by EnKF and EnKF with localization are mainly a consequence of

the fact that not all models of the final ensembles present a reasonable data match.

In fact, for both EnKF cases, approximately the same spread observed during the

forecast occurs during the history. For the RML cases, on the other hand, all models

match data very well and the spread of of predicted water rate increases in the

forecast period, which is the typical behavior that one would expect from a set of

independently history-matched models.

Figs. 8.7–8.11 present the first three models of the final ensembles for each

of the five cases considered. Figs. 8.7 and 8.8 illustrate that EnKF and EnKF with

covariance localization result in models that are very similar. This indicates that

the final ensembles from EnKF cases do not correspond to independent samples of

the posterior pdf. This fact is even more evident if we consider the results presented
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(a) P1 (b) P4 (c) P5

Figure 8.2: EnKF. Predicted water rate by running the final ensemble from time
zero (stb/day). Red dots are the history; red curve is the true model; green curve is
the mean prediction computed from the ensemble; and light blue curves represent all
ensemble predictions. The dashed vertical black line indicates the end of the history
and beginning of the forecast period.

(a) P1 (b) P4 (c) P5

Figure 8.3: EnKF with localization. Predicted water rate by running the final
ensemble from time zero (stb/day). The colors in this figure have the same meaning
as in Fig. 8.2.

(a) P1 (b) P4 (c) P5

Figure 8.4: RML (without parameterization). Predicted water rate by running the
final ensemble from time zero (stb/day). The colors in this figure have the same
meaning as in Fig. 8.2.
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(a) P1 (b) P4 (c) P5

Figure 8.5: RML with ensemble-based parameterization. Predicted water rate by
running the final ensemble from time zero (stb/day). The colors in this figure have
the same meaning as in Fig. 8.2.

(a) P1 (b) P4 (c) P5

Figure 8.6: EnKF-RML. Predicted water rate by running the final ensemble from
time zero (stb/day). The colors in this figure have the same meaning as in Fig. 8.2.
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in the Fig. 8.12, which show the ensemble standard deviation of ln(k) after history

matching. Note that the prior standard deviation of ln(k) is one for all gridblocks.

According to the results in Fig. 8.12, EnKF results in very low values of standard

deviation, i.e., low variability in the final ensemble, indicating that all models are

essentially small variations of the same model. Covariance localization increased the

variability in the final ensemble. However, the standard deviations are still much

smaller than those computed from the standard RML results (Fig. 8.12c) or RML

with parameterization (Fig. 8.12d). These two RML cases result in reasonably close

values of standard deviation of ln(k) (compare Figs. 8.12c and 8.12d). Fig. 8.12e

indicates that starting RML with the models resulting from EnKF with localization

results in a standard deviation of ln(k) higher than is obtained using only EnKF

with localization, but lower than is obtained using only RML. This probably hap-

pens because all initial guesses generated by EnKF are close to each other, making

most of the objective function minimizations for RML converge to the same region

of the posterior pdf. To further compare the variability in the final ensembles, we

computed the SNV for each ensemble and the results are presented in the Table 8.2.

According to the results presented in this table, standard EnKF resulted in a signif-

icant underestimation of posterior variances of ln(k) compare to RML. Covariance

localization almost doubled the SNV of EnKF, but the variances are still greatly

underestimated. RML with parameterization, on the other hand, resulted in a SNV

reasonably close to RML without parameterization (7% difference). Starting RML

from EnKF models also resulted in underestimation of posterior variances.

These results show that RML with gradient-based optimization provides far

better data matching and more reliable characterization of uncertainty than EnKF.

However, the computational cost of RML is much higher than EnKF. Table 8.3

presents the total number of reservoir simulations required for the RML cases. Note

that each simulation also requires an adjoint solution for gradient computation. Es-
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Table 8.2: Sum of the normalized variances of log-permeability.

Case SNV

EnKF 0.132
EnKF with localization 0.232
RML 0.606
RML (ens. param.) 0.568
EnKF-RML 0.335

(a) Model # 1 (b) Model # 2 (c) Model # 3

Figure 8.7: First three models obtained after EnKF. Permeability fields in mD.

(a) Model # 1 (b) Model # 2 (c) Model # 3

Figure 8.8: First three models obtained after EnKF with covariance localization.
Permeability fields in mD.
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(a) Model # 1 (b) Model # 2 (c) Model # 3

Figure 8.9: First three models obtained after RML (without parameterization).
Permeability fields in mD.

(a) Model # 1 (b) Model # 2 (c) Model # 3

Figure 8.10: First three models obtained after RML with ensemble-based param-
eterization. Permeability fields in mD.

(a) Model # 1 (b) Model # 2 (c) Model # 3

Figure 8.11: First three models obtained after EnKF-RML. Permeability fields in
mD.
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(a) EnKF (b) EnKF with
localization

(c) RML

(d) RML with ens.
parm.

(e) EnKF-RML

Figure 8.12: Ensemble standard deviation of log-permeability.
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sentially, the adjoint solution requires the solution of one linear system for each

reservoir simulation time step. In our experience, each adjoint solution requires

around 50% of the simulation time required by a forward simulation run for a fully

implicit reservoir simulator. According to the results in Table 8.3, RML required

on average 205 reservoir simulations (and 205 adjoint solutions) for generating each

conditional realization, which correspond to a total of 20,536 reservoir simulations

to generate the 100 history-matched models. This computational cost is extremely

large compared to the cost of EnKF. Note that for EnKF, besides the computational

cost of the reservoir simulations, there is also the additional CPU time required

to restart the reservoir simulations every data assimilation step, including the time

required for reading and writing files, and the CPU time required by the matrix op-

erations of the EnKF method. In our experience, the computational cost of EnKF is

around 3 to 5 times the cost of running the whole ensemble from time zero without

data assimilation. This means that the computational cost of EnKF to generate 100

conditional realizations is around 300 to 500 reservoir simulations. Unfortunately,

these 100 realizations obtained by EnKF are correlated and do not represent inde-

pendent samples of the posterior pdf, and do not give a correct characterization of

uncertainty.

The ensemble parameterization for RML resulted in a significant reduction in

the required number of reservoir simulations compared to the standard RML. The

average number of reservoir simulations reduced from 205 (no parameterization)

to 106 (with parameterization) for generating each conditional realization. This

reduction is mainly explained by the reduction in the dimension of the minimization

problem from Nm to Ne. However, because we have a small reservoir model, the total

number of model parameters for the case without parameterization is relatively small,

Nm = 450. Hence, the reduction in the dimensionality of the minimization problem

was not large (for this case as we used Ne = 100). Nevertheless, the reduction
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in the required number of reservoir simulations was significant. We believe that

this parameterization also introduces regularization in the objective function, which

helps to improve the performance of the minimization algorithm. Note that for field

case applications, a reservoir simulation model can easily have tens or hundreds of

thousands of gridblocks. In these situations, the computational gain of using this

parameterization can be significant. Finally, using the models obtained from EnKF

with covariance localization as first guesses for RML resulted in a great reduction

in the computational cost. In this case, in average, only 26 reservoir simulations

were required to obtain the same level of data matches obtained with only RML.

But again, it seems that this procedure does not lead to independent samples of the

posterior pdf.

Table 8.3: Number of reservoir simulations for RML cases.

Case Total Per model

(100 models) Mean Std. dev.

RML 20,536 205 79
RML (ens. param.) 10,558 106 27
EnKF-RML 2,610 26 19

8.2.1 Discussion

Compared to RML, the main advantages of EnKF are computational effi-

ciency and easy implementation. EnKF does not require adjoint implementation for

computing gradients, which makes the method easy to adapt to different types of

reservoir model parameters, different types of data and different reservoir simula-

tors. To some extent, the intense attention that EnKF attracts in the petroleum

literature is due to the fact that EnKF can easily be coupled with commercial reser-

voir simulators. Compared to EnKF, RML requires much more computational time,

even with parameterization. However, the requirement of an adjoint implementa-
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tion seems to be the main obstacle to the routine application of RML to large-field

history-matching problems.

When we compare EnKF and RML in terms of the quality of the results,

RML presents a much better performance. First, the values of objective function

obtained by RML are much lower than the ones obtained by EnKF. In fact, the

reservoir history-matching examples presented in this dissertation indicate that the

final values of normalized objective function obtained by EnKF never come close to

satisfying the criterion of Eq. 2.132. Large values of the objective function occur

because of poor data matches, or rough models, or both. More importantly, a model

which gives a high value of the objective function corresponds to a sample of a low

probability region of the posterior pdf, which is clearly undesirable, especially if the

objective is to generate a good sampling of the posterior pdf, in order to have a

reliable characterization of uncertainty. A second important difference between the

RML and EnKF results can be seem by comparing the posterior variance of the final

set of realizations. Even with localization, EnKF greatly underestimates the posterior

variances obtained with RML. As a result, we observe that the final ensemble from

EnKF tends to underestimate the uncertainty in the model parameters.
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CHAPTER 9

INVESTIGATION ON THE SAMPLING PERFORMANCE OF

ENSEMBLE-BASED METHODS

As discussed in the previous chapters of this dissertation, EnKF often fails

to provide reasonable data matches for highly nonlinear problems. This fact moti-

vated the development of several iterative ensemble-based methods in the last few

years. However, there exists no study comparing the performance of these meth-

ods in the literature, especially in terms of their ability to characterize uncertainty

correctly. In this chapter, we compare the performance of eight ensemble-based

methods in terms of the quality of the data matches, characterization of uncertainty

and computational cost. For this purpose, we use a small but highly nonlinear reser-

voir model so that we can generate the reference posterior distribution of reservoir

properties using a very long chain generated by a Markov chain Monte Carlo sam-

pling algorithm. We consider the following ensemble-based methods: EnKF, half-

iteration EnKF (HI-EnKF) [182], Lorentzen-Nævdal iterative EnKF (LN-IEnKF)

[112], Krymskaya-Hanea-Verlaan iterative EnKF (KHV-IEnKF) [98], EnKF-MCMC

(Chapter 5), ES [174], ES-MDA (Chapter 6) and the ensemble randomized maximum

likelihood (EnRML) [70]. We also consider one adjoint-based implementation of the

randomized maximum likelihood method in the comparisons. The results presented

in this chapter are summarized in Emerick and Reynolds [42].

9.1 Test Problem

The test problem is a one-dimensional reservoir model under waterflooding

(Fig. 9.1). The number of gridblocks is 31 and the dimensions of all gridblocks
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are 50 ft × 50 ft × 50 ft. The model parameters are gridblock log-permeabilities,

ln(k). The “true” permeability field (Fig. 9.2a) was generated using an exponential

covariance function with a practical range corresponding to the size of 10 gridblocks.

The prior mean of ln(k) is 5.0 and the prior variance equal to 1.0 for all gridblocks.

The porosity is constant and equal to 0.25; the oil viscosity is 2 cp and the water

viscosity 1 cp. The initial reservoir pressure is 3,500 psi and the compressibility of

oil, water and rock are 10−5 psi−1, 10−6 psi−1 and 5 × 10−6 psi−1, respectively. In

this synthetic reservoir, there is a water injection well in the first gridblock which is

operated at a constant bottomhole pressure of 4,000 psi. In the last gridblock, there

is a producing well operated at a constant bottomhole pressure of 3,000 psi. The

observations correspond to gridblock pressures at a monitor well located in the center

of the reservoir (gridblock number 16). The historical period corresponds to 360 days,

with one pressure measurement every 30 days, which results in 12 data points. We

added random Gaussian noise with mean equal to zero and standard deviation equal

to 1 psi to the data predicted by the true model to define the “measurements.”

We chose a test case with small measurement errors to make the problem more

challenging for data assimilation. The historical period was defined such that we

have water breakthrough at the monitor well but not at the producing well. Fig. 9.2b

shows the water saturation distribution at the end of the history (360 days) and at

the end of a forecast period (750 days).

… …

Inj ProdMonitor

1 2 3 16 30 3129

Figure 9.1: Gridblocks and well locations.

Using the same covariance function and the same prior mean used to construct

the true model, we generated ten different prior ensembles of ln(k) with 100 models

each. These ensembles were used in all ensemble-based methods presented in the
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following sections.

(a) Permeability (b) Water saturation

Figure 9.2: Permeability of the true model and water saturation at the end of the
historical period (in blue) and at the end of the forecast period (in red). The vertical
dashed line indicates the position of the monitor well.

9.2 Markov Chain Monte Carlo

Using the Metropolis-Hastings MCMC algorithm [122, 73], we generated a

very long Markov chain with 20 million proposals. We used a proposal mechanism

based on local perturbations [64]. Note that each proposal requires one reservoir

simulation, but because we have an extremely small problem, where each reservoir

simulation takes approximately 0.2 seconds, it is feasible to generate a very long

chain. Here, we assume that this chain is long enough to provide a reasonable sam-

pling of the posterior pdf, which serves as the reference for our comparisons. Fig. 9.3

presents the values ON for the accepted models in the chain after a transitional

period (burn-in). The total number of accepted models is 458,648. This gives an

acceptance rate of 0.229, which is close to the “optimal” acceptance rate of 0.234

[64, 145, 146]. In MCMC, we used a scaling factor σ = 0.05. This scaling factor was

chosen after some experimentation.

Fig. 9.4a presents the distribution of permeability (percentiles P2, P25, P50,

P75 and P98) obtained from MCMC. The results in this figure show a narrow distri-

bution of permeability for the gridblocks to the left of the monitor well. The spread
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Figure 9.3: Normalized objective function of every 100th accepted model in the
Markov chain.

increases for the gridblocks to the right of the monitor well. Fig. 9.4b shows the

distributions (percentiles P2, P25, P50, P75 and P98) of predicted water rate at the

producing well (qw). This figures indicates that there is a relatively small uncertainty

in qw. Also, qw obtained with the true model is above the percentile P75 obtained

with MCMC.

(a) Permeability (b) Water production rate

Figure 9.4: Distributions of permeability and water production rate obtained from
MCMC. In (a), the red curve with solid squares is the true permeability field; the solid
black curve is the median; the area shaded gray corresponds to the region between
the percentiles P25 and P75; the external bounding curves are the percentiles P2
and P98. In (b), the solid red curve is the prediction obtained with the true model;
the dashed black curve is the median; the area shaded gray corresponds to the
region between the percentiles P25 and P75. The external bounding curves are the
percentiles P2 and P98.
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9.3 Randomized Maximum Likelihood

We used RML to sample the posterior pdf by generating ten ensembles of

100 models each. In our implementation, we solve this minimization problem using

the LBFGS algorithm [126, 192, 59] with scaling [106, 192] and bracketing cubic

line search [135, Chap. 8]. We control possible overcorrection in the model by

restricting the step size at early iterations. Specifically, we limit the maximum

step size normalized by the 2-norm of the search direction to 0.25 until we obtain

ON < 1,000. We also apply damping to the objective function [105, 59] by artificially

multiplying the standard deviation of the measurement errors by three until the

minimization reduces ON to 5.0. After that, we remove the damping and continue

the minimization with the actual standard deviations of the measurement errors. The

gradients are computed using the adjoint method [21, 19, 188, 105]. For convergence,

we require both the change in the objective function and the change in the vector of

model parameters over an iteration to be small, i.e.,

|O(m`+1)−O(m`)|
O(m`)

< 10−4 (9.1)

and

max
1≤i≤Nm

∣∣∣∣m`+1
i −m`

i

m`
i

∣∣∣∣ < 10−3, (9.2)

where the superscript ` denotes the iteration index.

Using RML, we sampled the posterior pdf by generating ten ensembles of 100

conditional realizations each. Fig. 9.5a presents the permeabilities of the first en-

semble, and Fig. 9.5b shows the distributions of permeability obtained by combining

the ten ensembles. The results in Fig. 9.5 indicate that RML obtains a distribution

of permeability reasonably close to the distribution obtained from MCMC. Fig. 9.6a

presents the box plots of cumulative water production (Wp) after 750 days obtained

from each of the ten RML ensembles. In this figure, we also present the box plot
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obtained from MCMC. Fig. 9.6a shows that RML results in distributions of Wp

very close to the distribution obtained with MCMC. It is important to note that

Fig. 9.6a also indicates that distributions obtained by the ten different RML runs

are mutually consistent, i.e., there are not significant differences between these ten

distributions. Although we did not present the results for all ten ensembles individ-

ually, the same conclusion about consistency applies to the resulting permeability

fields. This consistency indicates that one ensemble of 100 models suffices for the

purpose of characterizing uncertainty with RML for this test problem. Fig. 9.6b

presents the distribution of qw obtained by combining the ten RML ensembles. This

figure shows that RML also results in a distribution of qw that is in good agreement

with the distribution obtained from MCMC.

(a) First ensemble (b) All ensembles

Figure 9.5: Permeability after RML. In (a), the solid black curve is the ensemble
mean and the gray curves are the ensemble members. In (b), the solid black curve is
the median; the area shaded gray corresponds to the region between the percentiles
P25 and P75; the external bounding curves are the percentiles P2 and P98. The true
permeability field is included in both plots (red curve with solid squares).

9.4 Ensemble Kalman filter

Fig. 9.7 presents the permeabilities obtained for the first ensemble and the

distributions obtained by combining the ten ensembles after data assimilation with

standard EnKF. Compared to MCMC and RML, EnKF resulted in an unreasonably

large spread in the permeability distributions. Fig. 9.8 shows the EnKF results in
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(a) Cumulative water production, Wp (b) Water production rate, qw

Figure 9.6: Water production after RML. In (a), the horizontal dashed line indi-
cates the water production obtained with the true model. In (b), the distributions
obtained by combining the ten ensembles. The solid red curve is the prediction
obtained with the true model; the dashed curve is the median; the area shaded
gray corresponds to the region between the percentiles P25 and P75. The external
bounding curves are the percentiles P2 and P98.

terms of the predicted water production obtained by running reservoir simulations

from time zero with the final ensembles. According to the results in this figure,

EnKF also resulted in an unreasonably large uncertainty in Wp (Fig. 9.8a) and qw

(Fig. 9.8b). Besides that, we observed that the distributions of Wp are not mutually

consistent, i.e., each ensemble resulted in significantly different distributions. This

problem with EnKF has already been reported in previous studies [113, 168, 38]

and is related to the dependence on the prior ensemble. In fact, each EnKF run

“searches for solutions” in the specific subspace spanned by the members of the

particular initial ensemble for that EnKF run.

9.5 Half-iteration EnKF

As discussed in Sections 1.1.1 and 3.3.3, one problem that sometimes can

occur when EnKF is used for reservoir history matching is inconsistency between the

updated vectors of model parameters and states (primary variables of the reservoir

simulator). For example, Fig. 9.9 presents the analyzed ensemble of water saturation

(Sw) at 360 days (last data assimilation time-step) obtained from EnKF for the first

of the ten ensembles considered in this paper. These values of Sw are used by
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(a) First ensemble (b) All ensembles

Figure 9.7: Permeability after EnKF. The curves in this figure have the same
meaning as in Fig. 9.5.
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(a) Cumulative water production, Wp (b) Water production rate, qw

Figure 9.8: Water production after EnKF. The colors have the same meaning as
in Fig. 9.6.

EnKF to restart reservoir simulation for the assimilation of subsequent data. This

figure shows that even though the mean Sw curve is in good agreement with the

Sw profile obtained with the true model, some ensemble members will be restarted

with non-physical values of Sw; e.g., Sw less than 0.2, which corresponds to the

irreducible water saturation, and greater than 0.75, which corresponds to one minus

the residual oil saturation. A simple fix for this problem is to use the half-iteration

EnKF (HI-EnKF), in which case we simply rerun the reservoir simulator with the

latest ensemble of model parameters from time zero after each data assimilation

time-step.

We assimilated data using HI-EnKF and the results are presented in Figs. 9.10

and 9.11. These figures show that although HI-EnKF eliminates the parameter-state
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Figure 9.9: Updated ensemble of water saturation at the last data assimilation
time-step with EnKF. The red curve with squares is the Sw obtained by the true
model. The solid black curve is the ensemble mean and the grey curves are the
ensemble members.

consistency issue, the final results are not significantly better than those obtained

with the standard EnKF.

(a) (b)

Figure 9.10: Permeability after after HI-EnKF. (a) First ensemble. (b) All ensem-
bles. The curves in this figure have the same meaning as in Fig. 9.5.

9.6 Lorentzen-Nævdal Iterative EnKF

Figs. 9.12 and 9.13 present the results obtained after data assimilation with

LN-IEnKF [112]. These figures show that LN-IEnKF did not improve the results

obtained with the standard EnKF. The failure of LN-IEnKF to improve results can

be explained as follows: (i) the first step of the LN-IEnKF method is the analysis of

the forecast state vector using the standard EnKF; (ii) the predicted data correspond

to a component of the state vector yn,`j ; (iii) the measurement errors are small so that
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Figure 9.11: Water production after HI-EnKF. (a) Cumulative water production,
Wp. (b) Water production rate, qw. The colors in this figure have the same meaning
as in Fig. 9.6.

C̃n,f
DD +Cn

D ≈ C̃n,f
DD. In this case, it is straightforward to show that after EnKF analysis

we have

dn,aj = dn,fj + C̃n,f
DD

(
C̃n,f

DD + Cn
D

)−1 (
dnuc,j − d

n,f
j

)
≈ dn,fj + C̃n,f

DD

(
C̃n,f

DD

)−1 (
dnuc,j − d

n,f
j

)
≈ dnuc,j, (9.3)

provided that C̃n,f
DD is nonsingular, which is true for the test case because C̃n,f

DD is a 1×1

non-zero matrix at each data assimilation time-step. Hence, at the first iteration of

LN-IEnKF, we have dn,1j = h(yn,aj ) = dn,aj ≈ dnuc,j. This makes the subsequent

updates with Eq. 2.123 very small because dnuc,j−d
n,`
j ≈ 0. Consequently, LN-IEnKF

gives results close to those obtained with EnKF.

9.7 Krymskaya-Hanea-Verlaan Iterative EnKF

We assimilated data using KHV-IEnKF [98]. Each iteration of KHV-IEnKF

corresponds to one data assimilation with EnKF. Hence, we limited the number of

iterations to ten. In [98], the authors use the “confirming step” [184] procedure

to avoid non-physical values of pressure and fluids saturation when restarting the
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(a) (b)

Figure 9.12: Permeability after LN-IEnKF. (a) First ensemble. (b) All ensembles.
The curves in this figure have the same meaning as in Fig. 9.5.
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Figure 9.13: Water production after LN-IEnKF. (a) Cumulative water production,
Wp. (b) Water production rate, qw. The colors in this figure have the same meaning
as in Fig. 9.6.

reservoir simulations. However, here we do not use the confirming step option because

this procedure is inconsistent for the linear-Gaussian case [191]. Fig. 9.14 presents

the box plots of ON after each of the ten iterations of KHV-IEnKF. This figure shows

that KHV-IEnKF does not result in a continuously decreasing ON as a function of the

iteration number; however, the iteration does improve the data match. Nevertheless,

the largest decrease in ON occurs at the first iteration, which corresponds to the first

data assimilation with EnKF.

Fig. 9.15a presents the permeability obtained with KHV-IEnKF for the first

of the ten ensembles. This figure shows that the mean permeability is overly rough,

indicating possible overcorrections to the permeability field caused by the iterations.
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Figure 9.14: Box plots of the normalized objective function after each iteration
of KHV-IEnKF (first ensemble). The numbers next to the boxes correspond to the
median of ON .

Fig. 9.15b presents the permeability distribution obtained by combining the ten

ensembles. This figures shows that KHV-IEnKF resulted in a distribution very

different from the reference distribution obtained with MCMC. Fig. 9.16 presents the

distributions of predicted water production showing that KHV-IEnKF also resulted

in a large overestimation of uncertainty.

(a) (b)

Figure 9.15: Permeability after KHV-IEnKF. (a) First ensemble. (b) All ensembles.
The curves in this figure have the same meaning as in Fig. 9.5.

9.8 EnKF-MCMC

Algorithm 9.1 presents EnKF-MCMC procedure used in this test problem.

The setup of the Markov chains with 5,000 proposals and σ = 0.05 was obtained

a small number of experiments. The objective is to run each chain long enough

to pass through the transitional (burn-in) period and choose a single model as a
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Figure 9.16: Water production after KHV-IEnKF. (a) Cumulative water produc-
tion, Wp. (b) Water production rate, qw. The colors in this figure have the same
meaning as in Fig. 9.6.

sample. Fig. 9.17 presents the box plots of ON after each of the ten iterations of

EnKF-MCMC. This figure indicates that ON is a continuously decreasing function

of the iteration number, but after five iterations, the rate of decreasing is very slow.

Algorithm 9.1 EnKF-MCMC

1. Perform data assimilation using EnKF.

2. For ` = 1 to 10 (where 10 is the total number of iterations):

(a) Run the ensemble from time zero.

(b) Build the matrix ∆Y (Eq. 5.1) and compute the matrices Ur and Λr using

SVD. These matrices are used to estimate C̃
1/2
Y (Eq. 5.6).

(c) Build Ne = 100 Markov chains to generate the new ensemble. For each
Markov chain:

• Start the jth chain with the jth model of the ensemble at the previous
iteration.

• Propose 5,000 states using local perturbations with σ = 0.05.

• Keep the last accepted state as one sample.

end (for).

In Chapter 5, we applied EnKF-MCMC with ten different initial ensembles

and resampled the final models based on the value of ON . Here, we consider the

results of EnKF-MCMC before and after resampling.
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Figure 9.17: Box plots of the normalized objective function for each iteration of
EnKF-MCMC (first ensemble). The numbers next to each box plot correspond to
the value of the median of ON

Fig. 9.18 presents the permeabilities obtained for the first of the ten initial en-

sembles after EnKF-MCMC (Fig. 9.18a) and the permeability distributions obtained

by combining the ten ensembles before (Fig. 9.18b) and after (Fig. 9.18c) resampling.

The resampling was based on the values of ON (Eq. 5.11), as described in the Chap-

ter 5. Compared to MCMC, the spreads in the permeability distributions obtained

by EnKF-MCMC are slightly overestimated although the results can be considered

acceptable. Resampling based on ON did not improve significantly the permeability

distributions. Fig. 9.19 shows the results in terms of water production. Fig. 9.19a

shows that each ensemble resulted in significantly different distributions of Wp, and

the variance of each distribution is overestimated compared to MCMC. Fig. 9.19b

shows that before resampling, EnKF-MCMC greatly overestimates the uncertainty

in the predicted water production. After resampling (Fig. 9.19c), the distribution

of qw is in reasonable agreement with MCMC although some overestimation is still

observed.
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(a) First ensemble (no resampling) (b) All ensembles (no resampling)

(c) All ensembles (after resampling)

Figure 9.18: Permeability after EnKF-MCMC. The curves in this figure have the
same meaning as in Fig. 9.5.
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Figure 9.19: Water production after EnKF-MCMC. The colors have the same
meaning as in Fig. 9.6.
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9.9 Ensemble Smoother

Figs. 9.20 and 9.21 present the results obtained after data assimilation with

standard ES. For ES, the conclusions are essentially the same as the ones obtained

for EnKF, i.e., a large overestimation of uncertainty and inconsistent distributions of

Wp. In fact, the overestimation of uncertainty with ES is greater than with EnKF.

(a) First ensemble (b) All ensembles

Figure 9.20: Permeability after ES. The curves in this figure have the same meaning
as in Fig. 9.5.
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Figure 9.21: Water production after ES. The colors have the same meaning as in
Fig. 9.6.

9.10 Ensemble Smoother with Multiple Data Assimilation

Fig 9.22 presents the box plots of ON for ES with one, four, eight and ten

data assimilations. In these results, the following values of the coefficients αi’s were

used:
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Figure 9.22: Box plots of the normalized objective function for ES-MDA. The
numbers next to the boxes correspond to the median of ON .

• 4×: α1 = 9.333, α2 = 7.0, α3 = 4.0 and α4 = 2.0.

• 8×: α1 = 20.719, α2 = 19.0, α3 = 17.0, α4 = 16.0, α5 = 15.0, α6 = 9.0,

α7 = 5.0 and α8 = 2.5.

• 10×: α1 = 57.017, α2 = 35.0, α3 = 25.0, α4 = 20.0, α5 = 18.0, α6 = 15.0,

α7 = 12.0, α8 = 8.0, α9 = 5.0 and α10 = 3.0.

We have experimented with different coefficients, but we did not obtain any results

significantly different from those shown here. According to the results in Fig. 9.22,

after ten data assimilations, the median of ON is reduced from 1,448 to 10.6. Fig. 9.23

presents the permeabilities obtained by ES-MDA (10×). Unlike EnKF and ES,

ES-MDA resulted in a fairly low spread of permeabilities, which are in reasonable

agreement with the MCMC results. In terms of Wp (Fig. 9.24a), each ES-MDA

(10×) ensemble resulted in distributions with roughly the same variance obtained

from MCMC. However, there is still an inconsistency problem in the distributions

obtained for different ensembles, compare, for example, the box plots for the fourth

and seventh ensembles in Fig. 9.24a. This means that a single ensemble is not enough

to obtain a reliable characterization of uncertainty. Combining the results of multiple

ensembles, on the other hand, resulted in a distribution of qw very close to the one

obtained with MCMC.
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(a) First ensemble (b) All ensembles

Figure 9.23: Permeability after ES-MDA (10×). The curves in this figure have the
same meaning as in Fig. 9.5.
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Figure 9.24: Water production after ES-MDA. The colors have the same meaning
as in Fig. 9.6.

9.11 Ensemble Randomized Maximum Likelihood

The original EnRML method assimilates data sequentially in time. Here, we

refer to this method as EnRML-F, where “F” stands for filter. [24] proposed to use

EnRML as a smoother, in which case, all data is assimilated simultaneously. We

refer to this procedure as EnRML-S. The general EnRML procedure was presented

in Chapter 2 (Section 2.7.4). This procedure is essentially the same for EnRML-

F and EnRML-S; the only essential difference is that for EnRML-S, the procedure

presented in Section 2.7.4 is applied only once for the entire historical period. Here,

we used the following termination criteria:

• max |m`+1
i,j −m`

i,j| < 10−5 for i = 1, 2, . . . , Nm and j = 1, 2, . . . , Ne .
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•
∣∣∣O`+1

d −O`d
O
`
d

∣∣∣ < 10−4.

• Maximum number of iterations = 10.

• Maximum number of step size cuts = 5.

The first two termination criteria were chosen as the same as used in [70].

The estimate G̃ of the sensitivity matrix is clearly the main approximation

introduced in the EnRML method. Fig. 9.25 presents the values of G̃ calculated for

the first of the ten initial ensembles and the actual sensitivity matrix, G, computed

using the adjoint method evaluated at the prior mean. According to Fig. 9.25, G̃

is very noisy. However, if we consider the product C̃f
MG̃

T (Fig. 9.26), we observe

a smoother behavior and a qualitative agreement with the actual product, CMG
T,

computed with the adjoint method. Note that, for EnRML, we computed C̃f
MG̃

T

using the ensemble approximation for Cf
M while for the adjoint case, we used the

correct prior covariance matrix CM. Figs. 9.25 and 9.26 illustrate that while the G̃

estimated from EnRML using Eq. 2.128 is highly inaccurate, the resulting product

C̃f
MG̃

T is reasonably similar to the true CMG
T. In particular, each entry of C̃f

MG̃
T

has the same sign as the corresponding entries of the true CMG
T. In essence, [24]

made the same observation, but we provide a simple theoretical explanation of why

this occurs. In estimating C̃f
MG̃

T, we use

C̃f
M =

1

Ne − 1

Ne∑
j=1

(
mf
j −mf

)(
mf
j −mf

)T

=
1

Ne − 1
∆M f

(
∆M f

)T
, (9.4)

and from Eq. 2.128, we have

(
∆D`

)T
=
(
∆M `

)T
G̃T
` . (9.5)
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For the first iteration of EnRML, we have ∆M ` = ∆M f and ∆D` = ∆Df . Thus,

multiplying C̃f
M by G̃T

` , we obtain

C̃f
MG̃

T
` =

1

Ne − 1
∆M f

(
∆M f

)T
G̃T
`

=
1

Ne − 1
∆M f

(
∆Df

)T

= C̃f
MD. (9.6)

Therefore, the C̃f
MG̃

T
` used in the first EnRML iteration is equal to C̃f

MD used in

EnKF and ES. Because Reynolds et al. [143] showed that C̃f
MD can be approximated

by Cf
MG

T

` , where G` is the sensitivity matrix evaluated at mf , it follows that C̃f
MG̃

T
` ≈

Cf
MG

T

` so that the approximation C̃f
MG̃

T
` used in Eq. 2.126 should be reasonably

accurate. Thus, the most unreliable approximation in Eq. 2.126 is the product

G̃`(m
`
j − mf

j ). However, the inaccuracy in G̃` (Fig. 9.25) apparently is not bad

enough to destroy the utility of the method.

In EnRML, all ensemble members are updated with the same search direction

and step size. Unfortunately, there is no guarantee that the search direction is

downhill or the same step size is appropriate for all ensemble members. Fig. 9.27

illustrates this fact for EnRML-S. In Fig. 9.27, we present the values of the normalized

data mismatch objective function (ON,d) for the first iteration considering different

step sizes. Fig. 9.27 shows that a step size β0 = 1 corresponds to a decrease in

the average ON,d. Therefore, this step is accepted and used to update all ensemble

members. However, Fig. 9.27 indicates that a step size of unity does not always

yield a decrease in ON,d for all models. For example, ON,d increases for the third

and 13th ensemble members. In fact, the search direction is not even downhill for

the 13th ensemble member. A possible way to ameliorate this problem is to perform

a different line search for each ensemble member as suggested by Wang et al. [182].
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Figure 9.25: Sensitivity obtained from EnRML (in dark blue) and the adjoint
method (in red).
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Figure 9.26: Product of the prior covariance and transpose of sensitivity matrix
obtained from EnRML (in dark blue) and the adjoint method (in red).

However, here, we tested only the original EnRML procedure proposed by Gu and

Oliver [70].

We first considered the sequential formulation of EnRML (EnRML-F). How-

ever, we could not obtain reasonable data matches or estimates of the permeability

field with this method. In our tests, EnRML-F failed to update model parameters

for some consecutive data assimilation time-steps because five cuts in the step size

failed to give a decrease in O
`+1

d . In other data assimilation time-steps, EnRML-F

resulted in apparent overcorrections of the permeability field. In most cases, these

overcorrections occur after the 8th data assimilation time-step, which corresponds to

the water breakthrough in the monitor well. We tried different combinations of step

sizes and termination criteria. We even tried to use a Levenberg-Marquardt update
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first iteration of EnRML-S. This figure presents the values of ON,d for the mean (in
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vertical dashed line indicates the full step.

Figure 9.28: Permeability fields after EnRML-F for the first ensemble.

equation, instead of Gauss-Newton, to control the overcorrection issue. Despite these

efforts, we could not match data with EnRML-F. Fig. 9.28 shows the final permea-

bility field obtained for the first ensemble with EnRML-F. This figure illustrates the

overcorrections obtained in the permeability field close to the monitor well location.

For EnRML-S, on the other hand, we obtained more reasonable estimates

of the permeability field. No overcorrection was observed in this case. Fig. 9.29a

presents the resulting permeability fields obtained by the first ensemble with EnRML-

S while Fig. 9.29b presents the distribution of permeabilities obtained by combining

the ten ensembles. Compared to MCMC, EnRML-S resulted in an acceptable perme-

ability distribution although some overestimation in the spread is observed. In terms

of predicted water production (Fig. 9.30), EnRML-S resulted in significant overesti-

mation of uncertainty. Similar to the other ensemble-based methods, EnRML-S also
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(a) First ensemble (b) All ensembles

Figure 9.29: Permeability fields after EnRML-S. The curves in this figure have the
same meaning as in Fig. 9.5.
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Figure 9.30: Water production after EnRML-S. The colors have the same meaning
as in Fig. 9.6.

obtained inconsistent distributions of Wp when repeating the data assimilation with

ten different initial ensembles. Among the ten EnRML-S runs, eight stopped because

of the maximum number of iterations; i.e., after ten iterations. This indicates that

perhaps some improvements in the results of EnRML-S can be achieved if we allow

more iterations. However, we limited the number of iterations to make the methods

comparable in terms of computational cost. We also tried EnRML-S with an initial

step-size β0 = 0.5, but we did not obtain significantly different results from the ones

presented here, which use β0 = 1.

9.12 Overall Comparison

Fig. 9.31 presents the values of the variance of log-permeability, var[ln(k)],
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after data assimilation for all methods considered in this paper. In order to make

this figure clear, we divided the results from the methods into two plots. We as-

sume that MCMC results are correct, so we present the MCMC results in both plots

of Fig. 9.31. According to the results in Fig. 9.31a, EnKF, HI-EnKF, LN-IEnKF,

KHV-IEnKF and ES gave unreasonably high values of var[ln(k)]. There are almost

no differences between the var[ln(k)] obtained with EnKF, HI-EnKF and LN-IEnKF

so that the corresponding curves overlap in Fig. 9.31a. Among all methods, KHV-

IEnKF resulted in the largest overestimation of var[ln(k)]. According to the results

in Fig. 9.31a, KHV-IEnKF obtained var[ln(k)] values larger than one for most of

the reservoir gridblocks, i.e., variances higher than the prior variance. Fig. 9.31b

shows that, compared to each other, EnKF-MCMC and EnRML-S provided nearly

identical values of var[ln(k)] for the gridblocks to the left of the monitor well and

fairly similar variance values for the gridblocks to the right of the monitor well. How-

ever, EnKF-MCMC and EnRML-S overestimated the presumably correct variances

obtained from MCMC although to a much lesser extent than the methods presented

in Fig. 9.31a. The best results were obtained by ES-MDA and RML (Fig. 9.31b).

These two methods resulted in values of var[ln(k)] very close to the ones obtained

from MCMC for all gridblocks. Table 9.1 presents the same results in terms of the

sum of normalized variance (SNV) of log-permeability. This table shows that EnKF,

HI-EnKF, LN-IEnKF, KHV-IEnKF and ES largely overestimate the value of SNV

obtained from MCMC. EnKF-MCMC and EnRML-S also overestimate the SNV ob-

tained from MCMC significantly. ES-MDA, on the other hand, resulted in a value

of SNV closer to MCMC, but with an underestimation of approximately 15%. RML

resulted in a value of SNV very close to the one obtained from MCMC.

Fig. 9.32 presents the values of the variance of the oil production rate, var[qo],

after data assimilation for all methods considered in this paper. We divided the re-

sults into three plots in order to make the figure clear and included the results from
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Figure 9.31: Variance of log-permeability. Note that the vertical scale is different
in each plot.

Table 9.1: Sum of normalized variances of log-permeability.

Case SNV

EnKF 0.590
HI-EnKF 0.604
LN-IEnKF 0.592
KHV-IEnKF 1.161
EnKF-MCMC 0.387
ES 0.758
ES-MDA 0.209
EnRML-S 0.412
RML 0.248
MCMC 0.242

MCMC in all plots for comparison. EnKF, HI-EnKF, LN-IEnKF, KHV-IEnKF and

ES resulted in unreasonably high values of var[qo] (Fig. 9.32a). EnKF-MCMC and

EnRML-S overestimated the var[qo] obtained from MCMC (Fig. 9.32b). However,

after resampling, EnKF-MCMC resulted in var[qo] fairly close to the variance ob-

tained from MCMC although some overestimation is still observed for the forecast

period. ES-MDA and RML resulted in values of var[qo] in very good agreement with

the results obtained from MCMC (Fig. 9.32c).

Fig. 9.33 presents the box plots of ON for all methods considered in this paper.

In this figure, we sorted the methods in a decreasing order ofON . In this test problem,
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Figure 9.32: Variance of oil production rate in stb2/day2. The vertical dashed line
indicates the end of the period with observed data. Note that the vertical scale is
different in each plot.

we have 12 measurements and according to the criterion of Eq. 2.132, the values of

ON should be less than 3.06. However, only RML and MCMC were able to satisfy this

criterion. All other ensemble-based methods resulted in significantly higher values of

the objective function. High values of the objective function are associated with poor

data matches. More importantly, a model which results in high value of the objective

function gives a small value of the posterior pdf, which suggests that this model is

a sample from a low probability region. Among the ensemble-based methods, ES-

MDA obtained the lowest values of ON . ES-MDA is also the ensemble-based method

which gives the best characterization of uncertainty. In fact, there is a correlation

between the reliability of the uncertainty quantification and the final values of ON

obtained by the ensemble-based methods. Note that EnKF, HI-EnKF, LN-IEnKF,
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Figure 9.33: Box plots of the normalized objective function. The numbers next to
each box plot correspond to the value of the median of ON .

KHV-InEnKF and ES obtained very high values of ON and resulted in unreasonably

large overestimations of uncertainty. EnKF-MCMC, EnRML-S, ES-MDA and RML

obtained better data matches and more reliable uncertainty quantification.

Table 9.2 presents the estimated computational cost to generate an ensem-

ble of 100 realizations with each method. However, because we have a very small

simulation model, which requires about 0.2 seconds to run, the relative cost of writ-

ing/reading simulation files and matrix operations during the data assimilations be-

comes relatively important. Note that this is not the typical situation in reservoir

history-matching problems where the CPU time required by the reservoir simulation

largely dominates the total time of the data assimilation. For this reason, in Ta-

ble 9.2, we present the computational time in terms of the total number of reservoir

simulation runs and in terms of the actual measured CPU time divided by the mea-

sured CPU time of the ES method, which is the fastest method. Note that in the

results of Table 9.2, we count as one equivalent simulation run the simulation of the

total historical period; hence, we count 100 simulation runs for EnKF, even though

these simulations require several restarts. According to the results in Table 9.2, ES

is the fastest method in terms of both the number of reservoir simulation runs and
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the measured CPU time. Although EnKF also requires only 100 reservoir simula-

tions, the total CPU time is 7.5 larger than ES mainly because of the simulation

restarts. HI-EnKF requires running each reservoir simulation from time zero after

each data assimilation, which makes the equivalent number of reservoir simulations

6.5 times higher than the number required by EnKF. For LN-IEnKF, the iterative

process does not require additional reservoir simulations, but the total CPU time is

longer than EnKF because of the additional matrix operations required during the

iterations. The computational cost of KHV-IEnKF corresponds to ten data assimila-

tions with EnKF and ten reruns of the ensemble. For EnKF-MCMC, the total CPU

time includes the time required for one data assimilation with EnKF, ten reruns

of the ensemble and the time required to generate the Markov chains. This makes

the computational cost of EnKF-MCMC approximately 42 times the cost of data

assimilation with ES. ES-MDA with ten data assimilations requires ten times the

computational cost of ES. For EnRML-S, the iterative process often requires cutting

the step size and rerunning the ensemble, which results in an average of 2,100 reser-

voir simulations per data assimilation and a total CPU time 37.8 times greater than

that used with ES. For RML, each sample of the posterior pdf requires solving one

minimization problem. In our implementation, each minimization requires, on aver-

age, 245 reservoir simulations. Besides that, during RML, each simulation requires

the solution of an adjoint problem to compute gradients. Here, each adjoint solution

requires on the order of 50% of the time required for a simulation run. Therefore,

the final CPU time of RML is 350 times the CPU time of ES. The computational

cost of RML seems extremely high for this test problem. However, the final objective

function values obtained with RML are around 700 times lower than those from ES

(the fastest method) or four times lower than those from ES-MDA (the ensemble-

based method with the best performance). Moreover, RML was the only method

with consistent sampling results when we repeat the data assimilation ten times.
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This means that for RML, it would be sufficient to generate a single ensemble of 100

realizations. For MCMC, we ran a very long chain with 20 million proposals. We

did not measure the actual CPU time; however, it is clear that the direct application

of MCMC for any reasonably sized reservoir model is not computationally feasible.

Table 9.2: Estimated computational cost to generate an ensemble of 100 realiza-
tions.

Method Equivalent number Normalized
of simulation runs CPU time

EnKF 100 7.5
HI-EnKF 650 12.9
LN-IEnKF 100 9.9
KHV-IEnKF 2,000 84.9
ES 100 1.0
ES-MDA 1,000 10.0
EnKF-MCMC 1,100 41.9
EnRML-S 2,100 37.8
RML 24,500 350.1
MCMC 2 ×106 –

The data set used in this paper, including the reservoir simulator, the true

permeability field, the ten initial ensembles and the results from the long Markov

chain are available for download at http://www.tuprep.utulsa.edu/comparative_

study.html. The objective of this data set is to allow other research groups to

reproduce the results in this chapter, test their own implementations and extend the

comparative study to other methods.
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CHAPTER 10

CONCLUSIONS

The main objective of this dissertation was to investigate the use of ensemble-

based methods for history matching and uncertainty characterization in petroleum

reservoir models. The research focused on the limitations of these methods and

on proposing new improvements. In the following sections, we present the specific

conclusions for each chapter of the dissertation.

10.1 Covariance Localization

Chapter 3 introduced a distance-based covariance localization procedure for

reservoir history-matching problems. In this procedure, the critical lengths for lo-

calization are defined based on the correlation lengths of the underlying geological

model and the approximate regions of influence of the data (sensitivity regions). The

sensitivity regions are estimated using a pseudo-tracer to calculate drainage regions

for each well at each data assimilation time-step. Chapter 3 presented three distinct

examples, which demonstrate that the proposed covariance localization procedure

reduces long-distance spurious correlations and yields far better estimates of the

conditional mean and posterior covariances than are obtained with EnKF without

localization. The proposed covariance localization procedure also gives better esti-

mates of the conditional mean and posterior covariance than those that are obtained

using localization based only on the prior geology or localization based only on the

region of data sensitivity.

Chapter 3 also presented a real field application of the proposed covariance

localization procedure. For this field case, our covariance localization procedure
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gave a smoother ensemble mean, higher variability in the final ensemble, better data

matches and better predictions than were obtained with the standard EnKF. Com-

pared to a manually history-matched model, EnKF with localization resulted in far

more geologically realistic models with better data matches and better predictions.

We also assimilated data with the HI-EnKF with covariance localization. For this

field case, HI-EnKF gave significant improvements in the data matches and pre-

dictions. The results also showed that the computational cost of HI-EnKF can be

reduced without compromising the results by rerunning the ensemble from time zero

only when “large” changes in the state vector occur at a data assimilation time-step.

10.2 Strategies to Reduce Loss of Variance Due to Sampling Errors in

the EnKF

Chapter 4 presented a comparison among methods that appeared in the lit-

erature for reducing the negative effects of small ensembles by means of two simple

problems with a large number of measurements. Based on the results presented in

this chapter, we can state the following conclusions:

• For the two test problems considered in Chapter 4, standard EnKF and EnSRF

resulted in rough estimates of the posterior mean, poor data matches and

severe underestimation of the posterior variances although EnSRF resulted in

a smaller underestimation of posterior variances than did EnKF.

• Among the methods considered in Chapter 4, distance-based covariance local-

ization is the most effective. In fact, distance-based covariance localization was

the only method which provided significant improvements for the two problems

considered in this chapter.

• The two non-distance dependent localization procedures considered in Chap-

ter 4, namely, Furrer and Bengtsson taper and bootstrap hierarchical filter,
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failed to eliminate spurious correlations, and gave no appreciable improvements

of the results obtained with standard EnKF.

• Even though covariance inflation is often used in the numerical weather pre-

diction literature, it was ineffective for both problems considered in Chapter 4.

• In Chapter 4, we modified the adaptive covariance inflation procedure pro-

posed by Evensen [47] for the case where distance-based covariance localiza-

tion is also applied. However, this procedure deteriorated the data matches

and resulted in apparent overestimation of posterior variances for the reservoir

history-matching problem considered in Chapter 4.

10.3 Combining EnKF and MCMC

Chapter 5 introduced a procedure which combines EnKF and MCMC for the

purpose of obtaining a more accurate sampling of the posterior pdf for reservoir model

parameters and, consequently, a more accurate characterization of uncertainty than

can be obtained by EnKF itself. The proposed method is easy to implement, it does

not require adjoint implementations and it can be easily coupled with any commercial

reservoir simulator. The algorithm was applied to history match production data and

to predict future production for a three-dimensional two-phase reservoir problem.

This example problem was sufficiently small that the posterior pdf could be sampled

by generating a long Markov chain consisting of 2 million states (realizations of the

log-permeability field). The results from this long Markov chain are assumed to be

a correct sampling. Based on theoretical arguments and results from the example

problem, the following conclusions are warranted:

• EnKF gives relatively high values of the objective function. High values of the

objective function are associated with poor data matches. More importantly, a

model which results in high value of the objective function gives a small value
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of the posterior pdf, which suggests that this model is a sample from a low

probability region.

• Because we may obtain relatively poor data matches with EnKF, the uncer-

tainty in predictions of future production may be overestimated.

• For the example considered in Chapter 5, the proposed EnKF-MCMC method

decreased the final objective functions, resulting in “more probable” models,

i.e., higher values of the posterior pdf.

• Repeating the data assimilation with different initial ensembles resulted in dis-

tributions of reservoir predictions that are not mutually consistent, i.e., each

ensemble resulted in significantly different distributions. Therefore, the un-

certainty quantification provided by a single ensemble may be very unreliable.

This problem is related to the dependence on the prior ensemble. In fact, each

EnKF run “searches for solutions” in the specific subspace defined by the ini-

tial ensemble members. The proposed EnKF-MCMC does not ameliorate this

problem.

• In Chapter 5, we proposed assimilating data with different initial ensembles

and resampling the final set of models based on importance weights computed

from the values of the normalized objective function. This procedure did not

improve the sampling results obtained by EnKF because EnKF obtained un-

evenly distributed values of the objective function. Consequently, most of the

EnKF samples have weights essentially equal to zero. Because EnKF-MCMC

reduced significantly the values of the objective function obtained by EnKF, it

resulted in better approximations of the posterior distribution.

• Applying the EnKF-MCMC iteratively resulted in additional improvements in

the values of the objective function.
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10.4 Multiple Data Assimilation

Chapter 6 introduced a method in which the same data are assimilated multi-

ple times with an increased covariance matrix of measurement errors. In this chapter,

we proved that single and multiple data assimilations are equivalent for the linear-

Gaussian case and provided computational evidences that MDA improves the data

assimilation results for the nonlinear case. The initial motivation for introducing this

method was based on the problem of assimilating time-lapse seismic data. Unlike

production data, time-lapse seismic data are available only at a few times during

the reservoir production history. In this case, we no longer have the beneficial ef-

fect of several consecutive data assimilation time-steps as observed in the production

data case. The proposed EnKF-MDA procedure was applied to assimilate time-

lapse seismic data in two synthetic reservoir cases. The results showed significant

improvements in the final data matches compared to standard EnKF.

The results obtained with EnKF-MDA for time-lapse seismic data motivated

the use of MDA in conjunction with ES to assimilate production data. The resulting

method (ES-MDA) can be interpreted as an iterative form of ES, where the number

of “iterations” must be selected a priori. Even though the focus of this dissertation

is on reservoir history-matching problems, the ES-MDA method is general and has

potential applications in other research areas. Moreover, the method is easy to

implement as it requires few modifications to a standard ES implementation. Based

on the results from the three synthetic reservoir history-matching problems presented

in Chapter 6, the following conclusions are warranted:

• ES performed poorly compared to standard EnKF and ES-MDA.

• ES-MDA resulted in better data matches than were obtained with EnKF with

comparable computational cost.

• For the three history-matching problems considered in Chapter 6, four data

assimilations were enough for providing good data matches.
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• The use of the inflation coefficients, αi’s, in a decreasing order resulted in only

small improvements compared to using αi constant and equal to the number

of data assimilations.

10.5 History Matching of Production and Seismic Data for a Real

Field Case

Chapter 7 presented a field application of EnKF and ES-MDA for history

matching production and seismic data. The results showed that ES-MDA obtained

significantly better data matches than EnKF with a computational cost only 4%

higher than the computational cost of EnKF.

10.6 Ensemble-based Parameterization for the RML Method

Chapter 8 introduced an ensemble-based parameterization for gradient-based

history matching. This chapter described the parameterization for generating the

MAP estimate and for sampling the posterior pdf with RML. The parameterization

is general and requires very few modifications in a gradient-based implementation.

The ensemble-based parameterization was tested in a small reservoir problem and the

results suggest a significant improvement in the computational cost compared to a

standard RML implementation without parameterization. Chapter 8 also presented a

comparison between EnKF and gradient-based RML in terms of computational cost,

data matches and uncertainty characterization. The results in this chapter showed

that the computational cost of RML is much higher than that of EnKF. However, the

results are much more reliable. The main downside of RML is its dependence on the

availability on an adjoint implementation for efficient gradient calculation. On the

other hand, EnKF can be easily coupled with virtually any commercial simulator.

Moreover, EnKF is easy to adapt to different types of data and model variables.

These advantages make EnKF a very attractive method for history matching field

cases even though it may result in unreliable quantification of uncertainty.
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10.7 Investigation on the Sampling Performance of Ensemble-based

Methods

Chapter 9 presented a comparison between the adjoint-based RML and eight

ensemble-based methods in terms of the data matches, characterization of uncer-

tainty and computational cost for a small, but highly nonlinear, reservoir history-

matching problem. Most of the ensemble-based methods, including EnKF, failed to

obtain good data matches and resulted in a significant overestimation of uncertainty.

Among the ensemble-based methods, ES-MDA obtained the best performance. ES-

MDA provided an uncertainty quantification comparable to the adjoint-based RML

if we combine the results of the ten data assimilations with different initial ensem-

bles. However, RML was the only method that obtained as good a data-match as

the one generated from MCMC.
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