
T H E U N I V E R S I T Y O F T U L S A

THE GRADUATE SCHOOL

APPLICATION OF SPSA-TYPE ALGORITHMS TO

PRODUCTION OPTIMIZATION

by
Sy Thanh Do

A dissertation submitted in partial fulfillment of

the requirements for the degree of Doctor of Philosophy

in the Discipline of Petroleum Engineering

The Graduate School

The University of Tulsa

2012



T H E U N I V E R S I T Y O F T U L S A

THE GRADUATE SCHOOL

APPLICATION OF SPSA-TYPE ALGORITHMS TO

PRODUCTION OPTIMIZATION

by
Sy Thanh Do

A DISSERTATION

APPROVED FOR THE DISCIPLINE OF

PETROLEUM ENGINEERING

By Dissertation Committee

, Co-Chair
Albert Reynolds

, Co-Chair
Gaoming Li

Mauricio Prado

William Coberly

ii



ABSTRACT

Sy Thanh Do (Doctor of Philosophy in Petroleum Engineering)

Application of SPSA-Type Algorithms to Production Optimization

Directed by Albert Reynolds and Gaoming Li

156 pp., Chapter 5: Conclusions

(565 words)

Our objective is to devise an efficient optimization algorithm for estimating

optimal well controls during the production optimization step of closed-loop reservoir

management where the optimization algorithm does not require an adjoint method

for the calculation of derivatives. Research within the TUPREP group strongly sug-

gests that gradient-based algorithms will be the most efficient and reliable methods

for estimating well controls to maximize the net present value (NPV), or cumula-

tive oil recovery of an oil field. However, most major oil companies use commercial

reservoir simulators to make future predictions of production, and such commercial

simulators generally lack efficient gradient-based production optimization algorithms

where computational efficiency demands that the gradient of the cost function (e.g.,

NPV or cumulative oil production over the life of the field) be computed by an ad-

joint method. Adding an adjoint solution without access to the source code is not

feasible. Therefore, it is important to implement optimization algorithms that can be

easily coupled with a commercial simulator simply by using the simulator as a black

box. While many such gradient-free optimization algorithms are available, based

on the excellent performance of gradient-based methods, it is desirable to develop

a procedure that mimics the property of methods that use a gradient. One such
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method is the simultaneous perturbation stochastic approximation (SPSA) method

which estimates a stochastic gradient by a procedure that is far more efficient than

estimating the derivative with a finite difference approximation.

The purpose of this study is to develop a computationally efficient version of

the SPSA algorithm for the constrained production optimization problem involved

in the optimal control step of closed-loop reservoir management. The SPSA is a

stochastic optimization algorithm, which obtains its stochastic gradient by simul-

taneously perturbing all components of the well control vector in a stochastic way.

Although the SPSA gradient is stochastic, it is always uphill for a sufficiently small

perturbation size and its expectation is equal to the true gradient as the perturba-

tion size goes to zero. The most challenging problem in production optimization

is to honor state-control constraints which are nonlinear. The SPSA algorithm has

been applied to production optimization problems with only bound constraints and

implementations used in previous published work were computationally inefficient.

In this study, the focus will be developing and implementing a computationally ef-

ficient SPSA algorithm for production optimization problems with general equality,

inequality and bound constraints. Here, the bound constraints are converted into the

new unbounded control variables using a log-transformation. Although the results

are not shown in this work, simply truncating control variables at their bounds con-

sistently yields slightly lower NPVs values than are obtained with the log-transform

method used here. All constraints are incorporated into the objective function to be

maximized using the augmented Lagrangian function. The advantage of this method

is that the general inequality and equality constraints can conceptually be handled

using suitable values of the penalty parameter and Lagrange multipliers. In addition

to the basic SPSA algorithm, which uses samples from the symmetric Bernoulli dis-

tribution as perturbations, a SPSA type algorithm that uses samples from Gaussian

distribution is also tested. To improve the efficiency of the SPSA algorithm, a com-
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bined search direction SPSA algorithm is proposed, in which the search direction is

a combination of the current SPSA gradient and the “best” SPSA gradient or some

“good” former SPSA gradients calculated in the last few iterations.
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CHAPTER 1

INTRODUCTION

1.1 Background and Literature Review

Production optimization is a process to identify the optimal well operating

conditions in order to maximize total hydrocarbon recovery over the life of a reservoir

or to maximize net present value (NPV) of production. Production optimization is

an essential element in closed-loop reservoir management, which alternates produc-

tion optimization with data assimilation to form a real-time reservoir management

strategy (Brouwer and Jansen, 2004; Jansen et al., 2005; Sarma et al., 2005, 2008;

Chen et al., 2009; Wang et al., 2009; Peters et al., 2009; Chen et al., 2010). Closed-

loop or real-time reservoir management alternates data assimilation with a step in

which optimal well controls are estimated. Starting with an initial reservoir model

(at time zero), one estimates how to operate production and injection wells on each

of NC predefined control steps to maximize NPV or some other cost function. Dur-

ing the first control step, one operates the wells at the estimated optimal controls

(well pressures and/or rates) and during production for this first control step, one

collects production data and updates the reservoir model(s) by assimilating (history-

matching) these data. At the end of the first control step, based on the updated

model(s), one estimates the optimal well controls for the remaining NC − 1 control

steps by again maximizing NPV (or some other cost function) using an optimiza-

tion algorithm. Then we produce the field during the time interval corresponding to

the second control step, and during this production, we again update the reservoir

model(s) by assimilating measured data. This process of alternating data assimila-
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tion with production optimization by estimating optimal well controls is continued

throughout the life of the reservoir.

Our work focuses on the production optimization step of closed-loop reser-

voir management. In the production optimization literature, well controls are often

adjusted using the gradient as the search direction. The gradient can be the true

gradient obtained through the adjoint procedure (Brouwer and Jansen, 2004; Jansen

et al., 2005; Sarma et al., 2005, 2008; Chen et al., 2010), a stochastic gradient (Wang

et al., 2009), or an ensemble-derived average gradient (Chen et al., 2009). It can be

shown that the ensemble-derived gradient is very similar to the well-known simplex

gradient (Zhao et al., 2011). To obtain the simplex gradient, one first predicts a set

of NPV values using a set of different control vectors. If the number of control vec-

tors is the same as the dimension of the control vector, the simplex gradient can be

easily calculated by solving a linear system of equations, as long as the set of control

vectors is linearly independent. If the relationship between the NPV and the control

vector is truly linear, the calculated simplex gradient will be the true gradient (Zhao

et al., 2011). However, the number of control vectors is usually far less than the

dimension of the control vector (or gradient), and in this case the simplex gradient

calculation is performed with a singular value decomposition procedure (Bortz and

Kelley, 1998; Kelley, 1999; Tseng, 1999; Conn et al., 2006; Custsódio and Vicente,

2007).

In reality, the NPV has a nonlinear relationship with the control vector, so

the simplex gradient or ensemble-derived gradient can only give a rough estimate of

the true gradient. The efficiency of a simplex gradient-based optimization algorithm

depends on the number of control vectors used for the simplex gradient calculation. In

general, algorithms based on the adjoint gradient provide the most computationally

efficient optimization algorithms, as the gradient of NPV with respect to all the

control variables can be computed in one backward adjoint run, which takes about
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one third of the time required by one forward simulation run. Unfortunately, the

development of an adjoint code requires detailed knowledge of the reservoir simulator

numerics, and an adjoint gradient calculation is only available in limited commercial

reservoir simulation software for a small set of reservoir processes and in some in-

house simulators at some major oil companies and research institutes.

Another way of calculating the true gradient is to use the finite-difference

method, which perturbs one control variable at a time. This method requires a for-

ward simulation run for each perturbation, so the method is very time consuming

if the number of control variables is large. An alternative to the finite-difference

calculation of the gradient is the simultaneous perturbation method used in Simul-

taneous Perturbation Stochastic Approximation (SPSA) (Spall, 1992, 1998, 2003;

Wang and Spall, 2008). Instead of perturbing one control variable at a time as in

the finite-difference method, the SPSA algorithm perturbs the whole control vector

using a random vector of perturbations. The SPSA gradient is hence a stochas-

tic gradient instead of the true gradient. However, the expectation of the SPSA

gradient is the true gradient as the perturbation size goes to zero, and the search

direction of the SPSA gradient is always an uphill direction for a sufficiently small

perturbation. Li and Reynolds (2011) proposed calculating an SPSA gradient using

a Gaussian perturbation vector sampled from a normal distribution with mean equal

to the dimensional zero vector and covariance matrix. The modified SPSA algo-

rithm based on Gaussian perturbations have been successfully applied in a variety

of petroleum engineering applications (Li and Reynolds, 2011; Zhao et al., 2011).

In our work, the use of the augmented Lagrangian function as the objective

function is proposed to maximize a constrained production optimization problem

with the SPSA algorithm. To deal with the bound constraints, the log-transformation

is applied to convert the optimization problem with bound constraints into one with-

out bound constraints. The augmented Lagrangian function which incorporates all
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the equality and inequality constraints, is suitable for large-scale optimal well control

problems, and can easily handle nonlinear control-state constraints. Moreover, the

method is easy to implement and easy to couple with any commercial reservoir sim-

ulator as long as gradients can be approximated outside of the reservoir simulator.

In the results presented here, we consider only the two phase flow of oil and water.

1.2 Problem formulation

To solve production optimization problems, we maximize NPV by adjusting

well controls. For a two-phase (oil and water) flow reservoir under water-flooding,

NPV is defined as:

J(u, y) =
N∑
n=1

Nprod∑
i=1

(roq
n
o,i − rwqnw,i)−

Nwinj∑
i=1

rwinjq
n
winj,i

 ∆tn

(1 + b)tn/365
, (1.1)

where u is the nu-dimensional column vector containing all well controls at all time

steps; y = y(u,m) denotes the vector of primary variables solved for during the

simulation run; y is a function of both the vector of all well controls u, as well as a

function of the reservoir model m, which is assumed known or at least fixed during

production optimization; N is the total number of reservoir simulation time steps;

Nprod is the total number of producers; Nwinj is the total number of water injection

wells; ro is the oil revenue ($/STB); rw is the water production cost ($/STB); rwinj

is the water injection cost ($/STB); qno,i is the average oil production rate of the ith

producer (STB/D) during the nth time step; qnw,i is the average water production

rate of the ith producer (STB/D) during the nth time step; qnwinj,i is the average

water injection rate of the ith injection well (STB/D) during the nth time step; b is

the annual discount rate; tn is the cumulative time (days) up to the nth time step;

and ∆tn (days) is the time interval of the nth simulation time step.

Because well rates depend on the vector of control variables, u, the NPV
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defined in Eq. 1.1 is a function of the well control vector u and the dynamic state

vector y, which is the vector of variables solved by the reservoir simulator, e.g., pres-

sures and saturations. The control variables may include water injection rates or the

producer bottomhole pressure (BHP) or/and other type of rate. The maximization

of the NPV in Eq. 1.1 is usually subject to some equality, inequality, and bound

constraints given, respectively, as:

ej(u, y) = 0, j = 1, .., ne, (1.2)

cj(u, y) ≤ 0, j = 1, .., nine, (1.3)

and

ulowi ≤ ui ≤ uupi , i = 1, 2, ..., nu. (1.4)

In production optimization, common equality constraints (Eq. 1.2) are the

field rate constraints, where the field water injection rate and the field total liquid

production rate are fixed at constant values. Common inequality constraints (Eq. 1.3)

might be due to the physical limitations of the production and injection facilities.

For example, the water treatment facility might be able to provide only a certain

amount of injection each day at maximum, or the capacity of the separation facilities

might limit the total liquid production from the field. When a well is operated on

rate control, the lower bound for the rate is zero, which corresponds to shut-in. When

the well is producing under BHP control, we may wish to keep the BHP above the

bubble point pressure or above the minimum BHP required to produce fluid to the

surface. For injection wells, it is normally preferable to have the injection BHP lower

than the parting pressure to control sweep efficiency.

1.2.1 Simple bound constraints

One way to deal with the upper and lower bounds of the control variables
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is to use a log-transformation. This method guarantees that the control variables

always remain within the upper and lower bounds during optimization (Gao et al.,

2007; Wang et al., 2009; Zhao et al., 2011). In the log-transformation method, the

new variable si is defined as:

si = ln

(
ui − ulowi
uupi − ui

)
, i = 1, 2, ..., nu. (1.5)

As the control variable ui approaches its lower bound ulowi , the transformed variable

si approaches −∞, and as ui approaches its upper bound uupi , si approaches +∞.

By using this log-transformation, a simple bound constrained problem can be trans-

formed into an unconstrained optimization problem. When the log-transformation

is applied during optimization, all operations are done in the transformed domain,

and the actual control variables are obtained using the inverse log-transformation:

ui =
exp(si)u

up
i + ulowi

1 + exp(si)
=
uupi + ulowi exp(−si)

1 + exp(−si)
. (1.6)

It is critical to note that although the algorithm is applied in the log-transformation

domain, i.e., in terms of the new control vector s throughout, we simply use a vector

of control variables u instead of s to denote the control variable vector.

Chen et al. (2010) proposed using the gradient-projection method for pro-

duction optimization problems with bound constraints. The gradient-projection

method Nocedal and Wright (1999) handles the bound constraints in two steps. In

the first step, we search for minimization along the steepest descent direction. When

a bound is encountered, the search direction is “bent” or projected onto the bound

constraint so that all points along the search path become feasible. The search path

then becomes piecewise linear. The first local minimizer along this piecewise search

direction is called the Cauchy point. The second step of the gradient-projection

method is to search the face on which the Cauchy point is located for a new (im-
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proved) minimum. During this second step in optimization, the variables that form

the active bound constraints at the Cauchy point are fixed and optimization is done

in the space of the variables of the inactive bound constraints. Initially, in our work,

we also attempted to use gradient projection to handle bound constraints, but we

were unsuccessful. Apparently, the very approximate gradient generated with SPSA

are not accurate enough to apply the gradient projection methodology reliably.

1.2.2 Control-only constraints and state-control constraints

Chen (2011) defined two types of constraints which normally need to dealt

with in production optimization: linear control-only constraints and state-control

constraints.

Linear control-only constraints consist solely of control variables, and are ex-

plicit linear functions of those control variables. The general idea of Rosen’s gradient-

projection method (Luenberger, 1984; Rao, 1965) is to project an unconstrained gra-

dient onto the hyperplane of a linear equality constraint or a linear active inequality

constraint, which ensures that any point on the search direction will satisfy the con-

straints. Zhang et al. (2010) and Forouzanfar et al. (2010) applied this method to

handle a linear total injection rate constraint together with bound inequality con-

straints in their well-placement problem.

State-control constraints are nonlinear functions of the primary state vari-

ables and control variables. For example, the production liquid rate constraint is

an implicit nonlinear function of the producer BHP controls. The most troublesome

constraints are nonlinear state-control equality and inequality constraints. As the

inequality constraints can be converted easily to equality constraints using active set

method or slack variables (Nocedal and Wright, 1999), here we discuss only equality

constraints. In the production optimization literature, two adjoint-gradient-based

strategies have been applied to the nonlinear state-control equality of constraints:
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generalized reduced gradient (GRG) (Zakirov et al., 1996; de Montleau et al., 2006)

and approximate feasible direction (Sarma et al., 2008).

1.3 Introduction to Algorithms Applied in Production Optimization

In production optimization, we can use both gradient-free optimization algo-

rithms and gradient-based optimization algorithms to obtain the optimal well con-

trol. Gradient-free algorithms, such as the finite-difference method, simultaneous

perturbation stochastic approximation (SPSA) algorithm (Spall, 1998), ensemble-

based optimization (EnOpt) algorithm (Chen et al., 2009), new unconstrained opti-

mization algorithm (NEWUOA) (Powell, 2006), bound optimization by quadratic

approximation (BOBYQA) (Powell, 2009), and quadratic interpolation model with

an approximate gradient (QIM-AG) (Zhao et al., 2011), treat the reservoir simula-

tor as a black box and evaluate the approximate gradient based on the output of

the estimated objective values plus the input of perturbations of control variables.

The finite-difference method requires evaluation of at least nu + 1 objective function

values for each optimization iteration and the computational cost is extremely ex-

pensive. SPSA is a “simplified” finite-difference method where all the parameters are

perturbed at one time stochastically and the SPSA gradient is then calculated from

one-sided or two-sided difference equation. Although the SPSA gradient is stochas-

tic, its expectation is equal to the true gradient, and the search direction is always

uphill (Spall, 1998, 2003) as the magnitude of the perturbation goes to zero. The

SPSA algorithm has been applied in optimal well control (Wang et al., 2009; Zhao

et al., 2011), optimal well placement (Bangerth et al., 2006) and history matching

(Gao et al., 2007; Li and Reynolds, 2011).

EnOpt was first applied in the optimal well control problem in (Lorentzen

et al., 2006) and then developed by Nwaozo (2006) and Chen et al. (2009). EnOpt

requires generating an ensemble of control vectors and running the reservoir simulator
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for each of these control vectors in order to calculate the gradient from the cross-

correlation between the control vectors and NPV’s. In EnOpt, the controls for each

well are usually assumed to be correlated in time, which leads to smooth optimal

control settings.

NEWUOA and BOBYQA are quadratic model-based derivative-free algo-

rithms proposed by Powell (2006, 2009). In NEWUOA, construction of the quadratic

model is based on quadratic interpolation. The coefficients in the quadratic function

are determined based on the quadratic function and the objective function being

equal at a set of interpolation points. To promote computational efficiency in large-

scale optimization problems, the number of interpolation points is usually much less

than the number of coefficients in the quadratic model. The extra degrees of free-

dom are used to minimize the Frobenius norm of the difference between the term

representing the approximate Hessian matrix in the quadratic model at the previous

iteration and the Hessian in the updated quadratic model at the current iteration,

i.e.,

‖G` −G`−1‖2F =
nu∑
i=1

nu∑
j=1

(G`
ij −G`−1

ij )2, (1.7)

where ‖ · ‖F represents the Frobenius norm, G` is the approximate Hessian matrix

at the `th iteration and the subscripts “i” and “j” refer to the entry in the ith row

and jth column of the matrix. The updated quadratic model is then maximized

using a trust-region method. This quadratic model is updated during iteration as

more and better interpolation points become available. To optimize the objective

function with simple bound constraints without derivatives, Powell (2009) proposed

the BOBYQA algorithm. While NEWUOA builds an initial quadratic model based

on at least nu + 2 interpolation points before the optimization starts, BOBYQA

needs the prescribed number of interpolation point to be greater than or equal to

2nu + 1 to build quadratic models. However, both NEWUOA and BOBYQA are

very inefficient when the number of control variables is very large.
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To overcome this limitation in NEWUOA and BOBYQA, Zhao et al. (2011)

proposed the Quadratic Interpolation Model with Approximate Gradient (QIM-AG)

algorithm based on a dynamic quadratic interpolation model for the maximization

of the NPV. When the EnOpt preconditioned gradient is used, the algorithm is

referred to as QIM-EnOpt, whereas when the SPSA gradient is used, the algorithm

is referred to as QIM-SPSA. The QIM-AG algorithm uses all available evaluated

points to construct dynamically a quadratic interpolation model along the iterative

process. Both NEWUOA and QIM-AG build a quadratic approximate model based

on a set of interpolation points and then seek the optimum for the quadratic model.

While NEWUOA and BOBYQA construct the quadratic model by minimizing the

Frobenious norm resulting from the difference between two approximate Hessian’s in

two consecutive iterations, the QIM-AG method constructs the quadratic model by

minimizing the Frobenius norm of the approximate Hessian at the current iteration,

subject to the constraint which the quadratic model is equal to the objective function

evaluated at all the interpolation points.

Throughout the contemporary literature of production optimization, most

of the gradient-free algorithms such as SPSA and QIM-AG are applied in order

to handle the optimization problem using simple bound constraints. Chen et al.

(2009) claim EnOpt is able to handle the problem with linear constraints as well

as with simple bound constraints. In their application, the total water injection

rate and the total production liquid rate are linear functions of control variables

consisting of well injection rate and well production liquid rates. The total injection

rate and total production liquid rate are truncated once they are violated, and then

the total rate constraint is honored by reallocating proportionally the rates among

wells according to the truncated values. Although this truncation technique seemed

to give good results in their examples, it is not able to handle more complicated

constraint types, e.g. state-control constraints. Dehdari and Oliver (2011) used
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EnOpt to find the gradient and then used localization to improve the estimate of

the gradient. To deal with the constraints, they used a method which eliminated

non-negative constraints to decrease computation time, and an updating procedure

to solve each iteration of SQP much faster than the base case. Shuai et al. (2011)

applied multiscale regularization for both the EnOpt algorithm and the BOBYQA

algorithm to estimate optimal well controls. After multiscale regularization, both

methods obtained a NPV that equalled or exceeded the one from unregularized

optimization. Wang et al. (2009) compared three different optimization algorithms:

ensemble-based algorithm, SPSA algorithm, and the steepest ascent algorithm using

finite-difference method and they concluded that the steepest ascent algorithm is the

most efficient one and it gives reasonable results. In their study, an average of 10-20

SPSA gradients was used to generate the SPSA gradient, and this gradient was used

as the search direction in the steepest ascent method. SPSA method resulted in the

same NPV and well control variables obtained as when using the true gradient, but

the SPSA method required far more reservoir simulation runs.

Gradient-based optimization algorithms require computation of the objective

function’s gradient with respect to control variables. As NPV and state-related

constraints are implicit functions of the control variables, we are not able to calculate

the gradient of the objective function explicitly. Sarma et al. (2008) applied the

adjoint technique similar to the one used by Li et al. (2003) in history matching

to calculate the gradient of NPV with respect to control variables and applied the

adjoint gradient in the GRG algorithm and in the approximate feasible direction

method. The adjoint gradient calculation with respect to well controls has significant

computational advantages when the number of variables is large, as the number of

adjoint runs does not depend on the number of variables. Therefore, it is suitable

for problems with a large number of well controls to be adjusted, which is often the

case when many wells and/or many sections of wells (smart wells) are involved with
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many control steps during the expected life the reservoir. Chen et al. (2010) used the

augmented Lagrangian method to handle the nonlinear constraints, and the gradient-

projection method to deal with bound constraints. They obtained excellent results,

but they computed the gradient of the augmented Lagrangian function using the

adjoint method which was implemented in an in-house limited application simulator.

As mentioned earlier, commercial simulators do not generally have adjoint capability,

and (to our knowledge) no commercial simulator incorporates implementation of the

augmented Lagrangian method for production optimization. Our objective in this

study is to develop implementation of the SPSA algorithm which can be used with

the augmented Lagrangian method.

1.4 Research Objectives and Dissertation Outline

1.4.1 Research Objectives

The primary objective of our research is to develop practical optimization

methods which can efficiently deal with large scale production optimization problems

with bound, linear and nonlinear constraints. Specific elements in our project are:

1. To develop a code to approximate the gradient of the augmented Lagrangian

function using the SPSA algorithm under various linear and nonlinear con-

straints on variables such as WOR, GOR, production and injection rates, and

well-bore pressures.

2. To improve the SPSA algorithm using samples not only from a Bernoulli dis-

tribution but also from a Gaussian distribution in order to obtain a smoother

approximate gradient.

3. To develop a method for estimating the SPSA parameters for both Bernoulli

distribution and Gaussian distribution using experimental computation, and
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to develop a combined search direction to improve the efficiency of the SPSA

algorithm.

4. To develop a method for the scaling of different constraints for the SPSA algo-

rithm, as well as to solve the tolerance convergence condition of the inner loop

and the outer loop in the augmented Lagrangian algorithm.

5. To develop a theoretical comparison between several derivative-free algorithms

in production optimization.

1.4.2 Dissertation Outline

There are five chapters. In Chapter 2, we present the SPSA algorithm using

both a Bernoulli distribution and a Gaussian distribution, after which we present

the experimental computation used to estimate the SPSA parameters in several case

studies. In Chapter 3, we introduce the augmented Lagrangian method, including

a discussion of methods for updating the Lagrangian multipliers and the penalty

parameter. And then we use the augmented Lagrangian method with the SPSA

gradient to solve constrained production optimization problems. In that chapter,

we maximize the NPV subject to equality, and inequality constraints, as well as

nonlinear constraints. In Chapter 4, we compare results obtained from the SPSA,

EnOpt and simplex gradient methods for problems using simple bound constraints.

Chapter 5 presents our conclusions and summarizes the research contributions of this

study.
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CHAPTER 2

COMPUTATIONAL EXPERIMENT ON SPSA PARAMETERS

The SPSA is a stochastic optimization algorithm, which obtains its stochas-

tic gradient by simultaneously perturbing all components of the control vector in a

stochastic way. Although the SPSA gradient is stochastic, it is always uphill for a

sufficiently small perturbation size and its expectation is equal to the true gradient

as the perturbation size goes to zero. We note that SPSA algorithm (Spall, 1992,

1998, 2003) provides an efficient alternative to the finite-difference method for esti-

mating the gradient of an objective (cost) function when the number of optimization

variables is large. The SPSA method and a derivative of SPSA based on Gaussian

perturbations have been successfully applied in a variety of petroleum engineering

applications (Bangerth et al., 2006; Li and Reynolds, 2011; Zhao et al., 2011).

This chapter introduces a general review about the SPSA algorithm devel-

oped by (Spall, 1992, 1998, 2003) where the symmetric ±1 Bernoulli distribution is

applied to generate an approximate gradient. We also present the modified SPSA

proposed by Li and Reynolds (2011). The modified SPSA has the main desirable

features similar to those of the SPSA, i.e., the approximate gradient generated by the

modified SPSA algorithm gives an uphill direction for sufficiently small perturbation

size, and the expectation of the modified SPSA gradient is equal to a smoothing

covariance matrix times the true gradient with a bias in the approximation that goes

to zero as the perturbation size goes to zero. Moreover, preconditioned steepest-

ascent algorithm is proposed to estimate the optimal well controls when using the

modified SPSA algorithm. The most important goal of this chapter is to investigate
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a general way to estimate SPSA parameters when we want to use the SPSA algo-

rithm to maximize NPV of production. To solve the bound constraints, we apply

the log-transformation to convert the optimization problem with bound constraints

into one without bound constraints. Experimental computations on some specified

cases are implemented to investigate a good choice of SPSA parameters when we

want to maximize constrained production optimization problems on the production

optimization step of closed- loop reservoir management.

2.1 The Basic SPSA Algorithm

For maximizing a general objective or cost function O(u), the basic SPSA al-

gorithm (Spall, 1992, 1998, 2003) updates the control vector using the SPSA gradient

ĝk as the search direction,

uk+1 = uk + akĝk, (2.1)

where k is the iteration index and ak is the step size. In production optimization,

we denote the NPV, J(u, y(u,m)), simply by J(u). Here y = y(u,m) denotes the

vector of primary variables solved for during the simulation run; y is a function of

both the vector of all well controls u, as well as a function of the reservoir model m,

which is assumed known or at least fixed during production optimization. The SPSA

gradient at uk is denoted by ĝk and can be obtained using a one-sided simultaneous

perturbation,

ĝk =
J(uk + ck∆k)− J(uk)

ck
∆−1k , (2.2)

or a two-sided simultaneous perturbation,

ĝk =
J(uk + ck∆k)− J(uk − ck∆k)

2ck
∆−1k , (2.3)

where ck > 0 is the perturbation size, ∆k = [∆k1,∆k2, ...,∆kn]T is a random per-

turbation vector and its inverse is defined as an element-wise inverse, i.e., ∆−1k =
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[∆−1k1 ,∆
−1
k2 , ...,∆

−1
kn ]T . It is important to note that here uk denotes the vector u at the

kth iteration of the optimization algorithm, not the kth component of u. The com-

mon choice for the random vector ∆k is a sample from the symmetric ±1 Bernoulli

distribution, i.e., ∆ki can only takes values of 1 or -1. In this case, by definition, ∆−1k

is equal to ∆k. Here, the SPSA algorithm is denoted as B-SPSA when the Bernoulli

distribution is used to generate the SPSA gradient. It is shown (Spall, 2003) that

the expectation of the SPSA gradient is the true gradient and the SPSA gradient is

always an uphill direction as ck goes to zero.

2.2 SPSA Gradient Using a Gaussian Perturbation

2.2.1 Smoothed stochastic search direction

Li and Reynolds (2011) suggested calculating an SPSA gradient using a

Gaussian perturbation vector sampled from a normal distribution with mean equal

to the dimensional zero vector and covariance matrix, CU , i.e, δuk ∼ N(0, CU). Using

this procedure gives a one-sided simultaneous perturbation,

ĝk =
J(uk + ckδuk)− J(uk)

ck
δuk, (2.4)

and a two-side simultaneous perturbation,

ĝk =
J(uk + ckδuk)− J(uk − ckδuk)

2ck
δuk. (2.5)

We can use either one-sided or two-sided approximation of Eqs. 2.4 and 2.5 to com-

pute a stochastic gradient. The random vector, δuk, is calculated by

δuk = C
1/2
U Zk, (2.6)

where Zk is an nu-dimensional column vector and its components are independent
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standard random normal deviates, C
1/2
U is a “square root” of the prior covariance

matrix CU . In our computations, we use C
1/2
U = L where L is the lower triangular

matrix from the Cholesky decomposition of CU , i.e., CU = LLT . The “steepest ascent

algorithm” with the search direction calculated with Eqs. 2.4 and 2.5 is denoted by

G-SPSA where the G refers to Gaussian. Although using a perturbation δuk from

the normal distribution N(0, CU) does not yield an SPSA gradient in the sense of

Spall (1992), Li and Reynolds (2011) show that the stochastic gradient of Eq. 2.4

gives an uphill direction for sufficiently small ck and that when ĝk is given by Eq. 2.4,

its expectation is

E[ĝk] = CU∇O(uk) +O(ck), (2.7)

and when ĝk is the random vector defined by Eq. 2.5, the expectation of ĝk is given

by

E[ĝk] = CU∇O(uk) +O(c2k), (2.8)

assuming that the objective function O(u) is three time continuously differentiable.

Thus, the “modified SPSA algorithm” of Li and Reynolds (2011) shares important

characteristics of the SPSA algorithm of Spall (1992, 1998, 2003). Moreover, for

history matching problems, Li and Reynolds (2011) found that generating ĝk from

Eq. 2.4 (or Eq. 2.5) results in a more robust optimization algorithm than the one

obtained by calculating ĝk from Eq. 2.2 (or Eq. 2.3) using a perturbation sampled

from the Bernoulli distribution and multiplied by CU and using −CU ĝk as the search

direction. Li and Reynolds (2011) were concerned with minimizing rather than max-

imizing an objective function and in their history matching application, a covariance

from the prior model is always available. However, in the optimal well control prob-

lem of interest here, there is no natural prior model for the vector of well controls

u. Thus, we are effectively creating an ad hoc covariance which serves to gener-

ate a smoothed stochastic search direction vector ĝk from Eq. 2.4 with expectation
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CU∇O(uk).

2.2.2 Covariance matrix in the G-SPSA algorithm

We propose the algorithm

uk+1 = uk + ĝk (2.9)

with ĝk computed from Eq. 2.4. Taking the expectation of Eq. 2.9 and using Eq. 2.7,

it follows that as ck goes to zero

E[uk+1] = E[uk] + CU∇O(uk), (2.10)

where E[·] denotes expectation. Thus Eq. 2.9 is similar to a smoothed or precondi-

tioned steepest ascent algorithm. Thus the resulting vector of controls are expected

to be smoother when they are generated with G-SPSA than with an SPSA using a

Bernoulli distribution assuming that CU is generated from a covariance function that

has a correlation length with length greater than or equal to two control steps. Al-

though it is not desirable to have controls at different wells correlated, we may wish

to have the well controls at an individual well vary smoothly with time. This may be

desirable from a practical view; the operator does not want short term fluxuations

in the well controls (rate or pressure). From a theoretical viewpoint, using CU can

provide regularization that could possibly lead to a more robust algorithm. There is

however a caveat. If we use a covariance matrix CU with a long correlation length,

it will be difficult to produce a bang-bang optimal solution where, for example, the

optimal water injection rate can be the maximum allowable rate at one control step

and zero at the next control step, (Zandvliet et al., 2007; Wang et al., 2009). Never-

theless, the examples shown here are based on using a covariance matrix CU to force

some degree of smoothness on the estimated optimal well controls on a well by well
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basis, i.e., CU is a block diagonal matrix of the form

CU =



CU1 0 0 0

0 CU2 0 0

. . . .

0 0 0 CUnw


, (2.11)

where nw is the number of wells and CU` , ` = 1, 2, ...nw, is the covariance matrix used

to force some degree of smoothness on the well controls for well `. We let u` denote

the vector of well controls at well `, u` = [u`1, u
`
2, ..., u

`
Nc

]T where u`i denotes the well

control (rate or pressure) for the ith control step at well `. Note with this notation,

the complete control vector u has the form

u =



u1

u2

.

.

unw


, (2.12)

and

CUu =



CU1u1

CU2u2

.

.

CUnwu
nw


. (2.13)
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With the gradient ordered the same way as u in Eq. 2.12,

CU∇uO(uk) =



CU1∇u1O(uk)

CU2∇u2O(uk)

.

.

CUnw∇unwO(uk)


, (2.14)

i.e., multiplying the gradient ∇u`O(uk) by CU` effectively smooths u`. Denoting the

(i, j) entry of CU` by C`
ij, smoothing based on the spherical model is given by

C`
i,j =


σ2
`

[
1− 3

2

(
|i− j|
N `
s

)
+

1

2

(
|i− j|
N `
s

)3
]
, if |i− j| < N `

s ,

0, otherwise.

(2.15)

Here, i and j respectively refer to control step i and control step j and N `
s is the

number of control steps over which we wish the control at well ` to be correlated.

Finally, σ` is the standard deviation in the control of well `. Note that CU not only

promotes smoothness of the controls but also is used to generate the perturbation for

calculating the stochastic gradient. Because of this, we set σ` equal to about 2 percent

of the maximum range for the well control (original control) used at the particular

well. For example, if producing well ` is controlled by bottom hole pressure, pwf,`

and we require that pwf,` satisfy the bound

0 ≤ a ≤ pwf,` ≤ b, (2.16)

at all control steps, then σ` = 0.02[b − a] is appropriate. This recommendation

is for the case where we do not transform to the log-transform domain. How to

choose σ` for all ` when we transform to the log-transform domain using Eq. 1.5 will
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be discussed more detail later. In the log-transform domain, the covariance should

properly be denoted by CS but as mentioned previously, even when working in the

log-transform domain, we still denote the optimization vector by u and the covariance

matrix by CU . For all examples presented here, the optimization is done in terms

of the transformed variables (Eq. 1.5) because via many experimental computations

we found that this procedure yields a higher NPV than is obtained by enforcing

bounds by truncation. In truncation, whenever, a component of uk+1 computed

from Eq. 2.21 is greater than its upper bound we set that component equal to its

upper bound and whenever a component of uk+1 is less than its specified bound, we

set that component equal to its lower bound.

2.3 Choice of The Stepsize ak and Perturbationsize ck

As the expectation of the stochastic gradient is the true gradient (or CU times

the true gradient), we expect to obtain a better approximation of the desired search

direction by generating M stochastic gradients from Eq. 2.2 (or Eq. 2.4) by using M

different ∆k’s (or δuk’s) and then computing an average stochastic gradient ĝk by

ĝk(uk) =
1

M

M∑
j=1

ĝk,j(uk). (2.17)

Then we replace Eq. 2.1 by

uk+1 = uk + akĝk. (2.18)

According to Spall (1998, 2003), the step size ak and perturbation size ck are defined

by the following equations:

ak =
a

(k + A+ 1)α
, (2.19)

ck =
c

(k + 1)γ
, (2.20)

where a,A, c, α and γ are positive real numbers which satisfy A ≥ 0, α− 2γ > 0 and
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3γ − α/2 > 0. The choice of these parameters can have a fairly significant effect on

the performance of the SPSA algorithm (Spall, 2003).

We find it easier to specify valves of a,A and c if we first scale the stochastic

gradient. Specifically, we normalize the search direction by its infinity norm so that

uk+1 = uk + ak
ĝk

‖ĝk‖∞
. (2.21)

With such a normalization, we have a better idea of how to choose an initial value of

A and a, and then ak so that we can potentially vary the components of uk+1 over its

expected range. Our guideline for choosing parameters is discussed in the following

steps:

• In all cases, we set α = 0.602 and γ = 0.101, these choices result from a

theoretically based recommendation of Spall (1998).

• To choose A, we first set the maximum number of allowable iterations, kmax.

Then, we choose a value of A equal to 10% of the maximum number of allowable

iterations. As discussed later, choosing kmax should be based on the total

number of control variables in the specific problem. If there are sufficient

computation resource available, using kmax greater than or equal to the number

of control variable is recommended.

• Next we choose a0 equal to the maximum change in any component of u we

allow at the first iteration. Typically, this could be on the order of 1/2 the

distance to the nearest bound. But since we work in term of the log-transform

variables, we suggest the initial stepsize in the range from 1.0 to 3.0 works fine.

• After choosing A and a0, one can choose a such that at k = 0, a satisfies

a0 = a/(1 + A)α, i.e., a = a0(1 + A)α.
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• To estimate the value of c in Eq. 2.20 after setting the maximum number of

allowable iterations, kmax, we let the minimum allowable change in the pertur-

bation size be denoted by cmin, then calculate c0 from cmin = c0/(kmax + 1)γ.

When optimizing in the log-transform domain, we have found via experiment

that cmin from 0.01 to 0.1 is appropriate, assuming a Bernoulli perturbation is

used or covariance matrices CU (Eq. 2.15) have variance on the order of 1.0.

If we work in the original domain instead of the log-transform domain, one

can scale each variable ui of the overall control vector u by defining

ûi =
ui − ulowi
uupi − ulowi

, i = 1, 2, ..., nu, (2.22)

and then the bounds on all ûi’s become 0 and 1, i.e.,

0 ≤ ûi ≤ 1. (2.23)

Assuming with this rescaling, we optimize using û instead of u as the vector

of optimization variables (transformed well controls) and then cmin from 0.01 to 0.1

is still appropriate. If working in terms of the original optimization variables u and

using Bernoulli perturbation, we see that in order for the calculation of ĝk from

Eq. 2.2 to be meaningful, we must have the calculation δJk = J(uk + ck∆k)− J(uk)

to be meaningful, i.e., if we can calculate the two values of J accurate to 6 digits, and

we generate a perturbation size ck so small that J(uk + ck∆k) and J(uk) agree to six

or more digits, then δJk will have no correct digits and ĝk computed from Eq. 2.2 will

just reflect noise, i.e., round off error. To obtain a meaningful ĝk, we must ensure

all ck ≥ cmin where cmin is chosen so that J(uk + cmin∆k) − J(uk) has at least a

couple of correct digits. To ensure this happens for every optimal well control, the

optimization problem could require costly computational experiments. Fortunately,

we have found that a value of cmin between 0.01 and 0.1 works reasonably well when
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we work in the log-transform domain or in term of û, see Eq. 2.22.

2.4 Combined Search Direction SPSA Algorithm

Due to the influence of noise and the stochastic nature of the gradient ap-

proximation, ĝk or ĝk may not always be the best iterative direction, especially if

the function to be maximized has long narrow valleys. In such a case, the conjugate

gradient (CG) method often works better than the steepest ascent method in deter-

ministic optimization (Schraudolh and Graepel, 2002). Based on this idea, Xu (2010)

proposed a combined direction stochastic approximation algorithm. At each itera-

tion of this algorithm, a weighted combination of the current approximate gradient

and some former gradient is chosen as the direction. This method may work worse

than steepest ascent at a specified iteration. However, it may work better overall, if

a “good” former gradient can be chosen. A good gradient at iteration k−1 is defined

as one which at iteration k gives a gradient close to zero because if we calculated the

true gradient, at a maximum of the cost function, the gradient would be zero. Xu

(2010) recommended the following procedure:

uk+1 = uk + akp̂k, (2.24)

where

p̂k = ĝk +
ĝTk ĝf(k)
‖ĝf(k)‖2

ĝf(k). (2.25)

Here, f(k) is an integer subscript which satisfies f(k) ≤ k − 1; ak is still computed

from Eq. 2.19 using the guideline for the parameters that we presented previously.

The choice of f(k) is the key point of this method. If the norm of the approximate

gradient is close to zero at some ut where t is the iteration index, then the gradient

or search direction at ut−1 is a “good” direction at least at that iteration, i.e., it is

reasonable to believe that the direction ĝt−1 is a good ascent direction. Therefore,
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ĝt−1 can be used to correct the current approximate gradient ĝk. In this case, the

procedure to choose f(k) = t− 1 is

f(k) =


(arg min ‖ĝi‖)− 1 for k − r + 1 ≤ i ≤ k, if k > r,

(arg min ‖ĝi‖)− 1 for 1 ≤ i ≤ k, if k < r,

(2.26)

where r is a positive integer specified by the user. In our example, we use r = 10.

We refer to this method as ComSPSA1. Note that p̂k is a linear combination of

ĝk, the normal SPSA or GSPSA search direction and a search direction ĝf(k) that

was a good search direction at a previous iteration. Also note that Eq. 2.25 can be

rewritten as

p̂k = ĝk + cos θ
‖ĝk‖
‖ĝf(k)‖

ĝf(k), (2.27)

where θ is the angle between ĝk and ĝf(k). Note the norm of the vector

ν ≡ cos θ
‖ĝk‖
‖ĝf(k)‖

ĝf(k), (2.28)

added to ĝk to form p̂k satisfies ‖ν‖ ≤ ‖ĝk‖.

Using this procedure to combine search directions, we cannot guarantee the

combined search direction p̂k is always uphill at every iteration. Recall that the SPSA

gradient is always an uphill direction if we use either the Bernoulli distribution (Spall,

2003) or the Gaussian distribution (Li and Reynolds, 2011) to generate the SPSA

gradient and ck is sufficiently small. Furthermore, if the current gradient is in the

opposite direction of a “good” former gradient ĝf(k), the current combined search

direction would be equal to zero. However, Xu (2010) believed that this algorithm

may work better over several iterations. Xu (2010) also proved that under standard

assumptions (Fabian, 1968; Bertsekas and Tsitsiklis, 2003) either O(uk) → −∞

or O(uk) converges to a finite value and limk→+∞∇O(uk) = 0 with probability 1.

In this study, we propose a new way to calculate a search direction by combining
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all previous SPSA gradients that have an angle relative to the current stochastic

gradient of less than ±90 degrees. This is similar to the ComSPSA1 algorithm in

that we cannot guarantee that the new search direction is uphill at each iteration.

With this procedure (referred to as ComSPSA2), the search direction is defined as

p̂k =


ĝk +

k−1∑
j=k−r+1

max

(
0,
ĝTk ĝj
‖ĝj‖2

)
ĝj if k > r,

ĝk +
k−1∑
j=1

max

(
0,
ĝTk ĝj
‖ĝj‖2

)
ĝj if 1 < k ≤ r,

(2.29)

where r is a given positive integer, r = 10 in the examples considered later.

Because ĝTk ĝj = ‖ĝk‖‖ĝj‖ cos θ where θ is the angle between ĝk and ĝj, the

vector ĝj is multiplied by zero unless −π/2 < θ < π/2. Eqs. 2.25 and 2.26 are also

considered when all the ĝk’s are replaced by ĝk’s using Eq. 2.17.

2.5 Computational Results

2.5.1 Production Optimization with simple bound constraints for a three-channel

reservoir

In this example, we implement production optimization for a horizontal reser-

voir which has a uniform grid system, 25×25×1 with ∆x = ∆y = 100 ft (Zhao et al.,

2011). The thickness of the reservoir is 20 ft. We consider only the two-phase flow

of water and oil. The porosity is homogeneous. The log-permeability distribution is

shown in Fig. 2.1 with high permeability channels. The initial reservoir pressure is

3800 psi and the initial water saturation is 0.2. There are a total of 13 vertical wells

with 4 production wells and 9 injection wells arranged in a five-spot well pattern as

shown in Fig. 2.1. We set each injection well under water injection rate control with

a lower bound of 0 STB/D and an upper bound of 2000 STB/D, and each production

well under bottom hole pressure (BHP) control with a lower bound of 1500 psi and
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an upper bound of 6000 psi. The anticipated total project life is 1800 days and the

control step size is set equal to 180 days so we have 10 control steps. The total

number of control variables is (4 + 9)× 10 = 130. To optimize NPV, the oil price is

set at $50/STB, the water injection rate cost at $0/BBL, the water production cost

at $5.56/STB, and the annual discount rate is 0%.
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Figure 2.1: ln(k) distribution.
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number of simulation
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The initial guess for water injection rate control of each injection well is set

to 300 STB/D, and the initial guess for BHP control of each production well is set

to 3500 psi. To deal with the bound constraints, we use the log-transformation to

convert the bound control variables into the unbounded control variables. The con-

strained problem turn into an unconstrained problem. The condition for terminating

the algorithm is based on the maximum number of allowable iterations.

To compare the SPSA algorithm’s performance resulting from a Bernoulli per-

turbation and a Gaussian perturbation, we use the average of five SPSA gradients

(Eq. 2.17) calculated by one-sided simultaneous perturbation and two-sided simul-

taneous perturbation (Eqs. 2.2, 2.3, 2.4 and 2.5). The normalized search direction

(Eq. 2.21) is applied to update the control vector. In the G-SPSA algorithms, we use

a variance pair of (1,1), of which the first number corresponds to the transformed

variable of BHP control and the second number corresponds to the transformed vari-
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able of water injection rate control, and a correlation length of Ns = 10 to generate

the covariance matrix CU (Eq. 2.15). The value of α and γ in these equations is

similar to the value suggested by Spall (1998), α = 0.602 and γ = 0.101. By

setting the maximum number of allowable iterations, kmax, equal to 200 which is

almost two times the number of control variables (130), then we obtain the value of

A = 20. Since we compute the search direction as an average of five SPSA gradients,

kmax = 200 corresponds to 1200 simulation runs. By setting the value of a0 equal to

2.0, we obtain the value of a = 13.0. We set cmin equal to 0.0585 which gives c = 0.1.

We will discuss in more detail a procedure for choosing the SPSA parameters using

experimental computations in the later parts of this example.

Table 2.1: The performance of different algorithms from one optimization of each
algorithm with one initial random seed (M = 5, kmax = 200, A = 20,
a0 = 2.0, and c0 = 0.1; Ns = 10 and σ2 = (1, 1)).

Algorithm No. of simulations Final NPV,×107$
B-SPSA(One-Sided) 1200 6.235
B-SPSA(Two-Sided) 1200 5.976
ComB-SPSA1(One-Sided) 1200 6.154
ComB-SPSA2(One-Sided) 1200 6.024

G-SPSA(One-Sided) 1200 6.462
G-SPSA(Two-Sided) 1200 6.413
ComG-SPSA1(One-Sided) 1200 6.153
ComG-SPSA2(One-Sided) 1200 6.337

The comparison of the performance of the SPSA algorithms is presented in

Fig. 2.2 and Table 2.1. Note that all values of NPV are compared at the 1200th

simulation run. The G-SPSA algorithm using one-sided simultaneous perturbation

gives the highest final NPV $6.462 × 107 which is about 0.7% greater than that of

G-SPSA algorithm using two-sided simultaneous perturbation, and is about 3.6%

greater than that of B-SPSA algorithm using one-sided simultaneous perturbation,

and 8.0% greater than that of B-SPSA algorithm using two-sided simultaneous per-
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Table 2.2: Average NPV obtained from five runs of each algorithm with five different
initial seeds (M = 5, kmax = 200, a0 = 2.0, and c0 = 0.1; Ns = 10 and
σ2 = (1, 1)).

Algorithm No. of simulations Final NPV,×107$
B-SPSA(One-Sided) 1200 6.249
B-SPSA(Two-Sided) 1200 6.006
ComB-SPSA1(One-Sided) 1200 6.152
ComB-SPSA2(One-Sided) 1200 6.094

G-SPSA(One-Sided) 1200 6.433
G-SPSA(Two-Sided) 1200 6.408
ComG-SPSA1(One-Sided) 1200 6.387
ComG-SPSA2(One-Sided) 1200 6.407

turbation. The most important thing to note is that the NPV from any SPSA

algorithms using a one-sided simultaneous perturbation is always greater than that

obtained from the corresponding two-sided simultaneous perturbation. Also the NPV

of the G-SPSA algorithm increases faster than that of the B-SPSA algorithm in the

sense that G-SPSA achieves a value close to its final maximum value in fewer iter-

ations. Although we expect that the combined search direction based on conjugate

gradient can result in a better NPV, the results in Table 2.1 show that the NPV of

combined search direction algorithm is always less than that of the corresponding

SPSA algorithm.

Table 2.3: Average NPV obtained from five runs of each algorithm with five differ-
ent initial seeds when we change the value of kmax at fixed number of
simulation runs, 1200 (M = 5, a0 = 2.0, and c0 = 0.1; Ns = 10 and
σ2 = (1, 1)).

Algorithm Simulations kmax A Final NPV,×107$
B-SPSA(One-Sided) 1200 kmax = 200 A = 20 6.249
B-SPSA(Two-Sided) 1200 kmax = 110 A = 11 5.982

G-SPSA(One-Sided) 1200 kmax = 200 A = 20 6.433
G-SPSA(Two-Sided) 1200 kmax = 110 A = 11 6.434
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As all the algorithms have a stochastic component, drawing conclusions based

on the results of one specific case may not be meaningful. Thus, we applied each

of the stochastic algorithms with five different initial random seeds for generating

the first stochastic perturbation. The computational results for these five runs are

summarized in Table 2.2. The results shown in Table 2.2 represent the average NPV

obtained from five runs of each stochastic algorithm with five different initial random

seeds. From Table 2.2, we see that the conclusions drawing from one optimization

run with one initial random seed apply for the average result of different seeds, i.e.,

the SPSA algorithm using Gaussian perturbations gives the best NPV and one-sided

simultaneous perturbation is more computationally efficient than two-sided simul-

taneous perturbation, i.e., for a fixed number of iteration one-sided simultaneous

perturbations yields a higher NPV. Moreover, the two ComG-SPSA algorithms did

not prove superior to the Li-Reynolds G-SPSA method so the ComG-SPSA algo-

rithms will not be discussed further. To make the above conclusion more strong,

we run the SPSA algorithm using two-sided simultaneous perturbation with another

maximum number of allowable iterations, kmax = 110, which corresponds to the fixed

number of simulation runs equal to 1200 and the number of SPSA gradients equal

to 5 (M = 5). Because when we use the value of M = 5, at each iteration, the

SPSA algorithm using two-sided simultaneous perturbation needs (2×M + 1) = 11

reservoir simulation runs to generate a steepest-ascent direction, and to obtain an

updated NPV value. With kmax = 110, we obtain the value of A = 11. Note that

we still keep the initial step size and perturbation size constant, i.e., a0 = 2.0 and

c0 = 0.1. The average NPV’s obtained from five runs of each algorithm with five

different initial seeds in Table 2.3 show that the B-SPSA algorithm with one-sided

simultaneous perturbation works better than that using two-sided simultaneous per-

turbation. Meanwhile, for the G-SPSA algorithm, the NPV obtained using two-sided

simultaneous perturbation is slightly greater than is obtained with one-sided simulta-
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Figure 2.3: NPV versus the number of simulation runs with different values of M
(kmax = 200, A = 20, a0 = 2.0, and c0 = 0.1; Ns = 10 and σ2 = (1, 1);
the results obtained from one run of each algorithm wit one initial seed).

neous perturbation. From the preceding comparisons, we can find that the G-SPSA

and B-SPSA algorithms using one-sided simultaneous perturbation is more compu-

tationally efficient than those using two-sided simultaneous perturbation, so from

this point on we focus on the algorithms using one-sided simultaneous perturbation.

Fig. 2.3 presents NPV versus the number of simulation runs of the B-SPSA

and G-SPSA algorithms as the number of B-SPSA gradients or G-SPSA gradients

used to generate the average stochastic gradient ĝk (see Eq. 2.17) changes. Except

for changing the number of SPSA gradients which are averaged to compute the

average stochastic gradient ĝk (see Eq. 2.17), all other parameters are kept the same,

i.e., A = 20, a0 = 2.0 and c = 0.1. The normalized search direction (Eq. 2.21) is

used to update control variables. When the number of SPSA gradient changes, the

total number of simulation runs required to compute ĝk changes. To be consistent

when comparing the results, the NPV of each case will be compared at the 1200th

simulation runs, so the total computational work of each algorithm is the same.

When the number of SPSA gradients is set equal to 1, the obtained NPV is always

the worst. As we increase the value of M , the NPV becomes better. The value of

M = 5 or M = 10 gives better NPV results than other values of M when we use
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Table 2.4: Average NPV obtained from five runs of each algorithm with five different
initial random seeds when we change the value of M (kmax = 200, A = 20,
a0 = 2.0, c0 = 0.1; Ns = 10 and σ2 = (1, 1)).

Algorithm No. of simulations Final NPV,×107$
B-SPSA (M = 1) 1200 5.380
B-SPSA (M = 5) 1200 6.249
B-SPSA (M = 10) 1200 6.184
B-SPSA (M = 20) 1200 6.131
B-SPSA (M = 30) 1200 6.167
B-SPSA (M = 50) 1200 6.111

G-SPSA (M = 1) 1200 6.256
G-SPSA (M = 5) 1200 6.433
G-SPSA (M = 10) 1200 6.454
G-SPSA (M = 20) 1200 6.316
G-SPSA (M = 30) 1200 6.348
G-SPSA (M = 50) 1200 6.198

both Bernoulli distribution and Gaussian distribution to perturb control variables.

However, increasing M does not necessarily mean that NPV will increase. For the

value of M is greater than or equal to 20, the NPV obtained is less than the NPV

obtained with M = 5 or M = 10, especially for the Bernoulli distribution case.

The results shown in Table 2.4 for each stochastic optimization algorithm

represent the average NPV obtained from the five optimization runs of each algorithm

with five different initial random seeds when we change the value of M . Note that

the same initial random seed is used for each optimization algorithm. For the B-

SPSA algorithm, the value of M = 5 results in the best NPV of $6.249×107 which is

about 16% greater than that obtained with M = 1, and is about 2.3% greater than

is obtained with M = 50. For the G-SPSA algorithm, the value of M = 10 leads to

the best NPV of $6.454 × 107 which is about 3.1% greater than the NPV obtained

with M = 1, and is about 4.1% greater than the NPV obtained with M = 50,

and is slightly better than the NPV obtained with M = 5. Again, we fix the total

number of simulation runs at 1200, corresponding to each value of M , we obtain
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Table 2.5: Average NPV obtained from five runs of each algorithm with five different
initial random seeds when we change the value ofM and the corresponding
value of kmax at fixed number of simulation runs, 1200 (a0 = 2.0, c0 = 0.1;
Ns = 10 and σ2 = (1, 1)).

Algorithm Simulations kmax A Final NPV,×107$
B-SPSA (M = 1) 1200 kmax = 600 A = 60 5.267
B-SPSA (M = 5) 1200 kmax = 200 A = 20 6.249
B-SPSA (M = 10) 1200 kmax = 110 A = 11 6.249
B-SPSA (M = 20) 1200 kmax = 57 A = 5 6.231
B-SPSA (M = 30) 1200 kmax = 39 A = 3 6.163
B-SPSA (M = 50) 1200 kmax = 24 A = 2 6.083

G-SPSA (M = 1) 1200 kmax = 600 A = 60 6.238
G-SPSA (M = 5) 1200 kmax = 200 A = 20 6.433
G-SPSA (M = 10) 1200 kmax = 110 A = 11 6.416
G-SPSA (M = 20) 1200 kmax = 57 A = 5 6.325
G-SPSA (M = 30) 1200 kmax = 39 A = 3 6.395
G-SPSA (M = 50) 1200 kmax = 24 A = 2 6.221

one value of kmax which is used to estimate the value of A in Eq. 2.19. Note that

we use the SPSA algorithm with one-sided simultaneous perturbations, therefore, at

each iteration we need M + 1 reservoir simulation runs to generate a steepest-ascent

direction, and to obtain an updated NPV value. Corresponding to each value of M ,

we obtain a maximum number of allowable iterations by roughly using the following

equation: kmax = 1200/(M + 1) (see Table 2.5). We again keep the initial step size

and perturbation size constant, i.e., a0 = 2.0 and c0 = 0.1. Fig. 2.4 presents NPV

versus the number of simulation runs of the G-SPSA algorithm as the value of M

used to generate the average stochastic gradient ĝk (see Eq. 2.17) changes and the

corresponding kmax changes. Note that Fig. 2.4 present the results obtained from one

optimization run with one initial random seed. The average NPV ’s obtained from

five runs of each algorithm with five different initial seeds are presented in Table 2.5.

The results from Fig. 2.4 and Table 2.5 show that the value of M = 5 or M = 10

gives better NPV results after 1200 reservoir simulation runs than other values of M
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when we use the corresponding maximum number of allowable iterations.

0 200 400 600 800 1000 1200

3.5

4

4.5

5

5.5

6

6.5

7
x 10

7

Simulation runs

N
P

V
, 

$

 

 

G−SPSA (M=1, A=60)
G−SPSA (M=5, A=20)
G−SPSA (M=10, A=11)
G−SPSA (M=20, A=5)
G−SPSA (M=30, A=3)
G−SPSA (M=50, A=2)

Figure 2.4: NPV versus the num-
ber of simulation runs
with different values
of M and kmax .
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Figure 2.5: NPV versus the num-
ber of simulation runs
with different correla-
tion lengths, Ns.

Table 2.6: Average NPV obtained from five runs of each algorithm with five different
initial random seeds when we change correlation lengths, Ns (M = 5,
kmax = 200, A = 20, a0 = 2.0, c0 = 0.1; and σ2 = (1, 1)).

Algorithm No. of simulations Final NPV,×107$
G-SPSA (Ns = 1) 1200 6.102
G-SPSA (Ns = 4) 1200 6.383
G-SPSA (Ns = 6) 1200 6.434
G-SPSA (Ns = 8) 1200 6.411
G-SPSA (Ns = 10) 1200 6.433

From the two preceding comparisons and other results not shown, we find

that the G-SPSA algorithm’s performance is virtually always better than that of

the B-SPSA algorithm, so from this point we focus on the G-SPSA algorithm. We

first investigate the effect of the values of variances and correlation length in the

covariance matrix, CU (Eq. 2.15), on the G-SPSA algorithm.

In considering the effect of correlation length, Ns, we use the average of five

G-SPSA gradients calculated by one-sided simultaneous perturbations and apply the

steepest-ascent direction of Eq. 2.21 to update the control variables. We emphasize
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Figure 2.6: The estimated optimal water injection rate well controls obtained from
G-SPSA when we change correlation lengths, Ns (M = 5, kmax = 200,
A = 20, a0 = 2.0, c0 = 0.1; and σ2 = (1, 1)).
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Figure 2.7: The estimated optimal BPH controls obtained from G-SPSA when we
change correlation lengths, Ns (M = 5, kmax = 200, A = 20, a0 = 2.0,
c0 = 0.1; and σ2 = (1, 1)).

again that optimization is always done in the log-transform domain. The control

variables are perturbed with the Gaussian distribution which has a pair of variances

(1,1), of which the first number corresponds to the transformed variable of BHP

control and the second number corresponds to the transformed variable of water

injection rate control. Other parameters are the same as used in the two previous

comparisons, i.e, M = 5, a0 = 2.0 and c0 = 0.1. The relationship between the NPV

versus the number of simulation runs is shown in Fig. 2.5 for the various correlation

lengths. When the correlation length is equal to 1, there is no temporal (or spatial)

correlation between control variables. Note that Ns = 1 yields the lowest NPV as well

as the lowest convergence rate. In addition, Ns = 1 results in the roughest optimal

well controls (see Figs. 2.6 and 2.7). The correlation lengths Ns = 6, Ns = 8, and
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Ns = 10 result in similar NPV’s as well as similar convergence rates, and perform

better than Ns = 4. From Figs. 2.6 and 2.7, we can see that the longer correlation

length is, the smoother optimal well controls are. The average NPV obtained from

five different runs of each algorithm with five different initial random seeds is shown

in Table 2.6 when we change correlation lengths. The correlation length of Ns = 6

results in the best NPV of $6.434 × 107 which is about 5.4% greater than that

obtained from correlation length of Ns = 1. From the results of Table 2.6, we can

see that there is not a great difference in the NPV’s as long as the correlation length

satisfies Ns ≥ 4. The estimated optimal control vector becomes smoother in time as

Ns increases (see Figs. 2.6 and 2.7). However, if we keep increasing the correlation

length, we effectively decrease the variability in time which can prevent us from

obtained an optimal solution if the optimal well controls is a bang-bang optimal

solution, where, for example, the optimal water injection rate can be the maximum

allowable rate at one control step and zero at the next control step.

As we work in the log-transform domain, it is less clear what a good value

of variance should be. If si = ln
(
ui−ulowi
uupi −ui

)
, i = 1, 2, ..., nu, close to zero, choosing

perturbation on the order of 0.1 might be appropriate so that δJ = J(s+ckδs)−J(s)

is meaningful. But if si is equal to 20, it may require a variance on the order of 15

to ensure that the calculation of δJ is numerically meaningful. We might expect

truncation might alleviate the problem in the latter cases. Note, however, that the

stochastic gradient is

ĝk =
J(uk + ckδuk)− J(uk)

ck
δuk, (2.30)

where we have now returned to using u as the optimization variables after applying

the log-transformation. In Eq. 2.30, δuk is defined by

δuk = C
1/2
U Zk, (2.31)
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where Zk ∼ N(0, I). Letting ĝk be the average of several stochastic gradients, G-

SPSA is given by

uk+1 = uk + ak
ĝk

‖ĝk‖∞
. (2.32)

Eq. 2.32 indicates the magnitude of the change in any component of u is controlled

by ak. So the choice of variance is used to define CU affect only the accuracy of

δJk = J(uk + ckδuk)− J(uk). (2.33)

As we increase the variance in defining CU with ck fixed, the difference between E[ĝk]

and ∇J(uk) increases but the computation of δJk is less likely to be inaccurate due

to cancellation of leading digits when performing the subtraction on the right hand

side of Eq. 2.33. Note what determines the accuracy of δJk is the magnitude of ckδuk,

i.e.,

ck‖δuk‖ = ck‖C1/2
U Zk‖, (2.34)

and of course the sensitivity of J to change in uk. As any change in the variance

in CU can be compensated by changing ck, we simply set all variances in CU equal

to 1 and investigate the effect of ck on the results. As the values of the ck’s are

determined by the values of c (see Eq. 2.20) and the value of c is determined by the

value of cmin (see the discussions above Eq. 2.20), we only need to investigate the

effect of cmin on the results.

Li and Reynolds (2011) show that the stochastic gradient of Eq. 2.4 gives an

uphill direction for sufficiently small ck. The goal of this section is to find how small

cmin should be to result in a better NPV as well as a better convergence rate. We keep

the maximum number of allowable iterations equal to 200, which means the value of

A is equal to 20. The initial step size of a0 is set equal to 2.0, so we obtain the value

of a = 13. The transformed variables are perturbed using Gaussian distribution with

a variance pair of (1,1), of which the first number corresponds to the transformed
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variable of BHP control and the second number corresponds to the transformed

variable of water injection rate control, and a correlation length of Ns = 10. The

steepest-ascent direction is calculated by an average of five G-SPSA gradients. The

normalized search direction (Eq. 2.21) is applied to update the control vector. We

choose a various values of cmin (Table. 2.7) to run experimental computations with the

hope that we can find a common way for choosing a reasonable minimum allowable

change in perturbation size. Fig. 2.8 shows the relationship between NPV versus

the number of reservoir simulation runs (obtained from one optimization run of each

algorithm with one initial random seed) when we use different values of cmin. The

results in Fig. 2.8 show that there is little difference between NPV’s obtained from

a variety of cmin. Table. 2.7 presents the G-SPSA algorithm’s performance using

different values of cmin. The average NPV’s in Table. 2.7 are obtained from five runs

of each algorithm with five different initial random seeds. The value of cmin = 0.1

results in the best NPV of $6.482×107 which is about 2.7% greater than that resulting

from cmin = 0.0001 and is about 1.6% greater than that resulting from cmin = 1.0.

Note that the NPV is not extremely sensitive to the value of cmin.
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ber of simulation runs
with different values
of cmin.
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We know that SPSA parameters in Eq. 2.19 effect the SPSA algorithm’s
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Table 2.7: Average NPV obtained from five runs of each algorithm with five different
initial random seeds when we use different values of cmin (M = 5, kmax =
200, A = 20, a0 = 2.0; and Ns = 10 and σ2 = (1, 1)) .

Algorithm No. of simulations c0 Final NPV,×107$
G-SPSA (cmin = 0.0001) 1200 0.000178 6.310
G-SPSA (cmin = 0.001) 1200 0.00178 6.424
G-SPSA (cmin = 0.01) 1200 0.0178 6.436
G-SPSA (cmin = 0.1) 1200 0.178 6.482
G-SPSA (cmin = 1.0) 1200 1.78 6.378

performance. However, it is hard to investigate a general way to estimate a good

value of A as well as a. Spall (2003) suggests that experimental computation is a

suitable method to calculate these values in each specified case study. In the next

part of this example, we will discuss the experimental computation to estimate some

SPSA parameters such as A and a for a production optimization problem with only

bound constraints that was converted into the unbounded control variables using

the log-transformation. To do this, we use an average of five G-SPSA gradients to

approximate the steepest ascent direction. The controls are sampled from a Gaussian

distribution with a variance pair of (1,1), of which the first number corresponds to
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the transformed variable of BHP control and the second number corresponds to

the transformed variable of water injection rate control, and a correlation length of

Ns = 10. The normalized search direction is used to update the unbounded control

variables (Eq. 2.21). As discussed previously, as the maximum number of allowable

iterations changes, the value of cmin is adjusted but we keep constant (see discussion

above Eq. 2.20). Based on the results of Table. 2.7, we fix c0 = 0.1 regardless of the

maximum number of allowable iterations specified.

Table 2.8: Average NPV obtained from five runs of each algorithm with five different
initial random seeds when we use different values of A and a0 (M = 5,
and c0 = 0.1; and Ns = 10 and σ2 = (1, 1)).

Stepsize a0
A = 6.0 A = 13.0 A = 26.0

Simul- Final NPV Simul- Final NPV Simul- Final NPV
a0 = 1.0 360 6.342×107 780 6.419×107 1560 6.442×107

a0 = 1.5 360 6.351×107 780 6.423×107 1560 6.470×107

a0 = 2.0 360 6.324×107 780 6.398×107 1560 6.449×107

a0 = 2.5 360 6.354×107 780 6.399×107 1560 6.364×107

a0 = 3.0 360 6.251×107 780 6.334×107 1560 6.335×107

a0 = 4.0 360 6.212×107 780 6.254×107 1560 6.206×107

To choose a good value of A, we normally set A equal to 10% of the maximum

number of allowable iterations. However until now, we do not have any information

to choose the maximum number of allowable iterations for each specified problem

because each production optimization problem may have a different optimal value.

After working with a lot of experimental computations, we find the information

for choosing this value might come from the total number of control variables. In

this example, the total number of control variables is equal to 130. Therefore, we

tentatively choose three values of the maximum allowable iterations:

• kmax = 60, which is about one half the total number of control variables, and

then we obtain A=6. The maximum allowable simulation runs is equal to

60× 6 = 360, because the computation of each search direction is based on the
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average of five stochastic gradients requires six reservoir simulation runs as we

use one-sided simultaneous perturbation.

• kmax = 130, which is identical to the total number of control variables, and

then we obtain A= 13. The maximum allowable simulation runs is equal to

130× 6 = 780.

• kmax = 260 which is double the total number of control variables, and then we

obtain A= 26. The maximum allowable simulation runs is equal to 260× 6 =

1560.

We consider various values of initial stepsize a0 = 1.0, a0 = 1.5, a0 = 2.0

a0 = 2.5, a0 = 3.0, and a0 = 4.0 to run the G-SPSA algorithm. Figs. 2.8, 2.9,

and 2.10 respectively present the relationship of NPV and the number of simulation

runs corresponding to A=6, A=13, and A=26. Note that, in these three figures

(Figs. 2.8, 2.9, and 2.10), we plot the NPV obtained from one optimization with one

initial random seed. We can observe the same trend in three different values of A is

that the biggest value of a0 in this example gives the worst value of NPV as well as

convergence rate.

Table 2.8 presents the algorithm’s performance with different values of A and

a0 at different maximum numbers of allowable reservoir simulation runs. In all cases,

A is equal to 10% of the maximum number of reservoir simulation allowable. Note

that Table. 2.7 presents the average NPV’s obtained from five runs of each algorithm

with five different initial random seeds. The values of “simul” in Table 2.8 gives

the number of simulation runs corresponding to the maximum number of allowable

iterations, i.e., in the kmax = 60 case (simul= 360), the kmax = 130 case (simul= 780)

and the kmax = 260 case (simul= 1560). The NPV values corresponding to those

values of “simul” will be compared against other results. Overall, a0 = 1.5 gives

the best results but there is not much variation in the NPV’s for the three cases
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a0 = 1.5, a0 = 2.0, and a0 = 2.5. Moreover, for each of these three values of a0, the

NPV increases as the maximum number of allowable iterations increases.

Table 2.9 gives the comparison of results based on stopping simulation runs

at 1200 in all kmax cases, i.e., we actually let iterations continue beyond the value

of kmax when kmax = 60 and kmax = 130. The NPV values corresponding to those

obtained after 1200 reservoir simulation runs are shown in Table 2.9. We can see a

suitable value of initial step szie a0 should be in the range from 1.0 to 2.5.

Table 2.9: Average NPV obtained from five runs of each algorithm with five different
initial random seeds at fixed 1200 reservoir simulation runs when we use
different values of A and a0 (M = 5, and c0 = 0.1; and Ns = 10 and
σ2 = (1, 1)).

Stepsize a0 Simulations
A = 6.0 A = 13 A = 26

(Final NPV) (Final NPV) (Final NPV)
a0 = 1.0 1200 6.445×107 6.442×107 6.440×107

a0 = 1.5 1200 6.486×107 6.464×107 6.464×107

a0 = 2.0 1200 6.429×107 6.372×107 6.429×107

a0 = 2.5 1200 6.457×107 6.429×107 6.364×107

a0 = 3.0 1200 6.381×107 6.356×107 6.326×107

a0 = 4.0 1200 6.300×107 6.339×107 6.217×107

Before going to conclusion, we set up two cases of kmax (kmax = 130 and

kmax = 200) with other optimal parameters coming from the previous analysis to see

how these parameters perform the G-SPSA algorithm (see Table 2.10). The results

in Table 2.10 show that with optimal parameters based on the previous results, the

G-SPSA algorithm corresponding to each kmax always gives the best NPV.

Finally, we can draw some conclusions from this example. The results from

Table 2.2 to Table 2.10 are based on the average value of NPV from five optimiza-

tions corresponding to five different initial random seeds. Therefore, the following

conclusions are be reasonable.

• The one-sided simultaneous perturbation with both Bernoulli distribution and
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Table 2.10: Average NPV obtained from five runs of each algorithm with five dif-
ferent initial seeds When we use two values of kmax and other optimal
paramtes.

Optimal parameters No. of simulations Final NPV,×107$
M = 5, kmax = 130, A = 13, a0 = 1.5

780 6.442
and cmin = 0.1; Ns = 6, σ2 = (1, 1)
M = 5, kmax = 200, A = 20, a0 = 1.5

1200 6.487
and cmin = 0.1; Ns = 6, σ2 = (1, 1)

Gaussian distribution results in a more computationally efficient algorithm than

is obtained with a two-sided simultaneous perturbation;

• The performance of the algorithm with Gaussian perturbation is always better

than the algorithm’s performance with Bernoulli perturbation;

• The performance of ComG-SPSA1 and ComG-SPSA2 is not better than the

G-SPSA algorithm’s performance;

• For both Bernoulli perturbation and Gaussian perturbation, optimal number

(M) of SPSA gradients to use in construction the search direction on steepest-

ascent algorithm is on the order of 5 to 10;

• When we use the Gaussian perturbation, a small correlation length results in

very rough final well controls (which may not be very practical). Larger cor-

relation lengths give smoother final control values. Based on our experimen-

tations, the correlation length should be at least one half the number of the

control steps. However, the correlation length equal to the number of control

step is not suggest as it leads to a very smooth and sub-optimal final control

variables.

• We can say that a good value of cmin is from 0.01 to 1.0 for this example;
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• In a production optimization problem which has an undefined given number of

control variables, the maximum allowable iteration should be greater or equal

to the total number of control variables, say 1 to 2 times the number of control

variables if sufficient computation time is available. We can set the initial

stepsize in the range from 1.0 to 2.0.

2.5.2 Optimization with simple bound constraints for PUNQ case

Here, we first consider the PUNQ-S3 reservoir (Floris et al., 2001; Barker

et al., 2001; Gao et al., 2006; Zhao et al., 2011). PUNQ-S3 is a three-phase, three-

dimensional reservoir simulation model. The well locations for producers and in-

jectors are shown in the layer-1 horizontal log-permeability field in Fig. 2.12. The

reservoir has five simulation layers and it is bounded to the east and north by faults.

A small gas cap is located in the center of the dome shaped structure. The origi-

nal model has a fairly strong aquifer at the south and west sides, but in the model

considered here, the aquifer has been eliminated and water injection wells have been

added as shown in Fig. 2.12. There are 7 vertical producing wells and 7 vertical water

injection wells. The reservoir life is set to 7600 days. The length of each control step

is set to 190 days. Thus, there are 40 control steps and the total number of control

variables is equal to (7 + 7) × 40 = 560. During optimization, the injection wells

are placed under water injection rate control with a lower bound of 0 STB/D and

an upper bound of 5000 STB/D. The producer wells are placed under bottom hole

pressure (BHP) control with a lower bound of 1000 psi and an upper bound of 3000

psi. The oil price is $80.0/STB, the water production cost is $8.9/STB, the water

injection cost is $0.0/STB, and the annual discount rate is 0.

The initial guess for the well controls is equal to 2500 STB/D for each in-

jection rate control and 1500 psi for each producer BHP control. In this example,

the log-transformation is still applied to convert the bound constraints into the un-
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Figure 2.12: Well locations (Layer-1
horizontal log permeabil-
ity field).
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Figure 2.13: NPV versus the number
of simulation runs.

bounded control variables. During optimization, we work in the log-transform do-

main. However, the transformed control variables will be converted back the true

control variables to use in simulator. The algorithm terminates when the number of

iterations reaches the maximum allowable value.

In this example, the performance of the SPSA algorithms using the Bernoulli

distribution will be compared with the algorithm’s performance using the Gaussian

distribution. To do this, we apply an average of five SPSA gradients (M = 5)

estimated by one-sided simultaneous perturbation or two-sided simultaneous per-

turbation (Eqs. 2.2, 2.3, 2.4 and 2.5) to approximate the steepest ascent direction.

The normalized search direction (Eq. 2.21) is used to update control variables for all

SPSA algorithms. For the G-SPSA algorithms, control variables are sampled from

Gaussian distribution based on a Spherical covariance function with a variance pair

of (1,1), of which the first number corresponds to the transformed variable of BHP

control and the second number corresponds to the transformed variable of water

injection rate control, and a correlation length of Ns = 40 (Eq. 2.15). Note that

this is a very long correlation length and is expected to yield smooth well controls.

The value of α and γ in these equations is similar to the value suggested by Spall

(1998), α = 0.602 and γ = 0.101. By setting the maximum number of allowable
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iterations equal to 280, which is one half the total number of control variables (560),

we obtain the value of A = 28. When the value of M is equal to 5, we need six reser-

voir simulation runs to obtain an approximate gradient and an updated NPV value.

So the maximum number of allowable simulation runs with one-sided simultaneous

perturbation is equal to 6× 280 = 1680. By setting the value of a0 equal to 2.0, we

obtain the value of a = 15.5. We set cmin equal to 0.05658 which gives c = 0.1.

Table 2.11: Average NPV obtained from five runs of each algorithm with five differ-
ent initial random seeds (M = 5, kmax = 280, A = 28, a0 = 2.0, c0 = 0.1;
Ns = 40 and σ2 = (1, 1)).

Algorithm No. of simulations Final NPV,×109$
B-SPSA(One-Sided) 1680 4.298
B-SPSA(Two-Sided) 1680 4.297
ComB-SPSA1(One-Sided) 1680 4.317
ComB-SPSA2(One-Sided) 1680 4.308

G-SPSA(One-Sided) 1680 4.398
G-SPSA(Two-Sided) 1680 4.386
ComG-SPSA1(One-Sided) 1680 4.400
ComG-SPSA2(One-Sided) 1680 4.392

Table 2.12: Average NPV obtained from five runs of each algorithm with five dif-
ferent initial seeds when we change values of kmax at fixed number of
simulation runs, 1680 (M = 5, a0 = 2.0, and c0 = 0.1; Ns = 40 and
σ2 = (1, 1)).

Algorithm Simulations kmax A Final NPV,×109$
B-SPSA(One-Sided) 1680 kmax = 280 A = 28 4.298
B-SPSA(Two-Sided) 1680 kmax = 152 A = 15 3.987

G-SPSA(One-Sided) 1680 kmax = 280 A = 28 4.398
G-SPSA(Two-Sided) 1200 kmax = 152 A = 15 4.375

Fig. 2.13 presents NPV versus the number of simulation runs resulting from

one optimization run with one initial random seed. Note that when the average of five

SPSA gradients is calculated by two-sided simultaneous perturbation using Eqs. 2.3
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and 2.5, corresponding to the maximum number of allowable iterations equal to 280,

we obtain the total number of reservoir simulation runs is equal to 11× 280 = 3080.

However, we still compare the NPV values after 1680 simulation runs. The G-SPSA

algorithm using one-sided simultaneous perturbation gives the highest final NPV

and convergence rate. Similar to example 1, the NPV’s obtained from the SPSA

algorithm using one-sided simultaneous perturbation is always greater than those

obtained from the SPSA algorithm using two-sided simultaneous perturbation. The

results of Fig. 2.13 suggest that the NPV of the G-SPSA algorithm increases faster

than that of the B-SPSA algorithm. Table 2.11 presents the SPSA algorithm’s per-

formance when we calculate the average NPV’s from five runs of each algorithm

with five different initial random seeds. In this example, the one-sided simultaneous

perturbation results in a better NPV than the two-sided simultaneous perturbation.

As in example 1, the performance of each SPSA algorithm with Gaussian pertur-

bation is always better than the performance of the corresponding SPSA algorithm

with Bernoulli perturbation. The ComG-SPSA1 algorithm using one-sided simulta-

neous perturbation gives the best final NPV of $4.400×109 but this is essentially the

same as the NPV of $3.398×109 obtained with one-sided simultaneous perturbation.

Again, to make the above conclusion more strong, we run the SPSA algorithm using

two-sided simultaneous perturbation with another maximum number of allowable it-

erations, kmax = 152, which corresponds to the fixed number of simulation runs equal

to 1680 and the number of SPSA gradients equal to 5 (M = 5). Because when we

use the value of M = 5, at each iteration, the SPSA algorithm using two-sided simul-

taneous perturbation needs (2 ×M + 1 = 11) reservoir simulation runs to generate

a steepest-ascent direction, and to obtain an updated NPV value. With kmax = 152,

we obtain the value of A = 15. Note that the initial stepsize and perturbationsize

is kept constant, i.e., a0 = 2.0 and c0 = 0.1. The average NPV’s obtained from five

runs of each algorithm with five different initial random seeds in Table 2.12 show
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Figure 2.14: NPV versus the number of simulation runs obtained from one opti-
mization run with one initial random seed when we change values of M
(kmax = 280, A = 28, a0 = 2.0, c0 = 0.1; Ns = 40 and σ2 = (1, 1)).

that the SPSA algorithm using one-sided simultaneous perturbations works better

than that using two-sided simultaneous perturbation. This is consistent with exam-

ple 1, so from this point on we focus on the algorithms using one-sided simultaneous

perturbation.

Another comparison is done using different numbers of SPSA gradients, M .

Except for changing the number of SPSA gradients which are averaged to compute

the average stochastic gradient ĝk (see Eq. 2.17), all other parameters are kept the

same, i.e., A = 280, a0 = 2.0 and c = 0.1. The normalized search direction (Eq. 2.21)

is used to update control variables. When the number of SPSA gradient changes, the

total number of simulation runs required to compute ĝk changes, however, the NPV

obtained from each M value at the 1680th simulation run is still used to compare

results. Fig. 2.14 shows the relationship between NPV and the number of simulation

runs. The average NPV ’s obtained from five runs of each algorithm with five different

initial seeds are presented in Table 2.13. From Fig. 2.14 and Table 2.13, we see that

the relationship between NPV and the number of simulation runs in this example

is similar to that of example 1. For the B-SPSA algorithm, when the value of M

is equal to 1, we obtain the worst NPV of $4.138 × 109. When the value of M is
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equal to 20, we obtain the largest NPV of $4.370×109, however, this value is smaller

than the NPV’s obtained with the G-SPSA algorithm with M = 5 and M = 10.

Thus as in example 1, G-SPSA with M = 5 and M = 10 gives a better NPV

than B-SPSA with any value of M . To make the above conclusion more logical,

we again fix the total number of reservoir simulation runs at 1680, corresponding to

each value of M , we obtain one value of kmax which is used to estimate the value

of A in Eq. 2.19. The SPSA algorithm using one-sided simultaneous perturbations

is applied to generate an approximate gradient, therefore, at each iteration we need

M+1 reservoir simulation runs to generate a steepest-ascent direction, and to obtain

an updated NPV value. Corresponding to each value of M , we obtain a maximum

number of allowable iterations by roughly using the following equation: kmax =

1680/(M + 1) (see Table 2.14). We again keep the initial step size and perturbation

size constant, i.e., a0 = 2.0 and c0 = 0.1. Fig. 2.15 presents NPV versus the number

of simulation runs of the G-SPSA algorithm as the value of M used to generate the

average stochastic gradient ĝk (see Eq. 2.17) changes as well as the corresponding

kmax also changes. The average NPV ’s obtained from five runs of each algorithm

with five different initial seeds are presented in Table 2.14. The results from Fig. 2.15

and Table 2.14 show that the value of M = 5 always gives better NPV results at

1680 reservoir simulation runs than other values of M when we use the corresponding

maximum number of allowable iterations.

The next step in this example is to find a reasonable correlation length, Ns.

Therefore, we consider various values of correlation lengths to run the G-SPSA al-

gorithm (see Table 2.15). We keep other SPSA parameters constant, i.e., M = 5,

kmax = 280, a0 = 2.0, and c0 = 0.1. Control variables are sampled from Gaussian

distribution based on a Spherical covariance function with a variance pair of (1,1), of

which the first number corresponds to the transformed variable of BHP control and

the second number corresponds to the transformed variable of water injection rate
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Table 2.13: Average NPV obtained from five runs of each algorithm with five differ-
ent initial random seeds when we change the value of M (kmax = 280,
A = 28, a0 = 2.0, c0 = 0.1; Ns = 40 and σ2 = (1, 1)).

Algorithm No. of simulations Final NPV,×109$
BSPSA (M = 1) 1680 4.138
BSPSA (M = 5) 1680 4.298
BSPSA (M = 10) 1680 4.340
BSPSA (M = 20) 1680 4.370
BSPSA (M = 30) 1680 4.362
BSPSA (M = 50) 1680 4.369

GSPSA (M = 1) 1680 4.378
GSPSA (M = 5) 1680 4.398
GSPSA (M = 10) 1680 4.397
GSPSA (M = 20) 1680 4.399
GSPSA (M = 30) 1680 4.394
GSPSA (M = 50) 1680 4.389

control. The G-SPSA algorithm using one-sided simultaneous perturbation is used

to generate the steepest-ascent direction. The normalized search direction (Eq. 2.21)

is used to update control variables. The NPV values versus the number of reservoir

simulation runs when the value of Ns changes is presented in Fig. 2.16. In Fig. 2.16,

there are five curves corresponding to five different values of Ns, these curves shows

that NPV is a function of simulation runs. When there are no correlation among

well controls at different control steps, i.e., Ns is equal to 1, the NPV obtained is

the worst value. When we increase the correlation length of Ns, the NPV and con-

vergence rate tends to increase. However, the full correlation length does not give

the best NPV as well as the convergence rate. Figs. 2.17 and 2.18 present the final

well controls obtained from the G-SPSA algorithm using different values of Ns. We

see that Ns = 1, i.e., there is no temporal (or spatial) correlation between control

variables, yields the roughest final well controls. Similar to example 1, as we increase

the value of Ns, the final well controls become more smooth. The final well con-

trols is the most smooth when the full correlation length, Ns = 40, is applied (see
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Table 2.14: Average NPV obtained from five runs of each algorithm with five dif-
ferent initial random seeds when we change the value of M and the
corresponding value of kmax at fixed number of simulation runs, 1680
(a0 = 2.0, c0 = 0.1; Ns = 40 and σ2 = (1, 1)).

Algorithm Simulations kmax A Final NPV,×109$
B-SPSA (M = 1) 1680 kmax = 840 A = 84 3.882
B-SPSA (M = 5) 1680 kmax = 280 A = 28 4.298
B-SPSA (M = 10) 1680 kmax = 152 A = 15 3.909
B-SPSA (M = 20) 1680 kmax = 80 A = 8 4.056
B-SPSA (M = 30) 1680 kmax = 54 A = 5 4.100
B-SPSA (M = 50) 1680 kmax = 32 A = 3 4.082

G-SPSA (M = 1) 1680 kmax = 840 A = 84 4.333
G-SPSA (M = 5) 1680 kmax = 280 A = 28 4.398
G-SPSA (M = 10) 1680 kmax = 152 A = 15 4.381
G-SPSA (M = 20) 1680 kmax = 80 A = 8 4.383
G-SPSA (M = 30) 1680 kmax = 54 A = 5 4.380
G-SPSA (M = 50) 1680 kmax = 32 A = 3 4.371

Figs. 2.17 and 2.18). Repeating the experimental computation with five different

initial random seeds, and then computing the average NPV gives the results shown

in Table 2.15. In Table 2.15, we compare the NPV resulting from different values of

Ns after 1680 simulation runs. The correlation length of Ns = 20 results in the best

NPV of $4.418×109, which is slightly greater than the NPV resulting from Ns = 40.

Table 2.15: Average NPV obtained from five runs of each algorithm when we use
different correlation lengths, Ns (M = 5, kmax = 280, A = 28, a0 = 2.0,
c0 = 0.1; and σ2 = (1, 1)).

Algorithm No. of simulations Final NPV,×109$
G-SPSA (Ns = 1) 1680 4.304
G-SPSA (Ns = 10) 1680 4.405
G-SPSA (Ns = 20) 1680 4.418
G-SPSA (Ns = 30) 1680 4.406
G-SPSA (Ns = 40) 1680 4.398

In example 1, we found that the value of cmin (Eq. 2.20) has some effect on
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Figure 2.17: The estimated optimal water injection rate well controls obtained from
G-SPSA when we change correlation lengths, Ns (M = 5, kmax = 280,
A = 28, a0 = 2.0, c0 = 0.1; and σ2 = (1, 1)).

the performance of the G-SPSA algorithm. To find out a good value of cmin which

is robust for any production optimization problems, we also use several different

values of cmin to run the G-SPSA algorithm. After going through these results, a

reasonable and robust cmin is found. As we know that the G-SPSA algorithm is

working in log-transform domain, we tentatively choose various values of cmin from

0.0001 to 1.0. The G-SPSA algorithm using one-sided simultaneous perturbation is

applied to generate an approximate gradient. We use a variance pair of (1,1), of

which the first number corresponds to the transformed variable of BHP control and

the second number corresponds to the transformed variable of water injection rate

52



Control steps (1 step= 190 days)

P
ro

du
ce

r 
W

el
ls

 

 

10 20 30 40

1

2

3

4

5

6

7
1000

1500

2000

2500

3000

(a) Ns = 1

Control steps (1 step= 190 days)

P
ro

du
ce

r 
W

el
ls

 

 

10 20 30 40

1

2

3

4

5

6

7
1000

1500

2000

2500

3000

(b) Ns = 20

Control steps (1 step= 190 days)

P
ro

du
ce

r 
W

el
ls

 

 

10 20 30 40

1

2

3

4

5

6

7
1000

1500

2000

2500

3000

(c) Ns = 40

Figure 2.18: The estimated optimal BPH controls obtained from G-SPSA when we
change correlation lengths, Ns (M = 5, kmax = 280, A = 28, a0 = 2.0,
c0 = 0.1; and σ2 = (1, 1)).

control, and a correlation length of Ns = 40 to generate the covariance matrix CU

(Eq. 2.15). Five G-SPSA gradients is used to average a steepest-ascent direction to

update the control variables. The normalized search direction (Eq. 2.21) is used to

update control variables. We choose the maximum number of allowable iterations

equal to 280, i.e, the number of reservoir simulation runs is 1680, so A is equal to

28. We set the initial stepsize of a0 equal to 2.0.
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Figure 2.19: NPV versus the
number of simu-
lation runs with
different values of
cmin.
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Figure 2.20: NPV versus the
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lation runs with
A = 18 and different
values of a0.

Fig 2.19 shows NPV versus the number of reservoir simulation runs when

the value of cmin is adjusted. The value of cmin = 0.0001 results in the worst NPV

as well as the worst convergence rate. Otherwise, cmin = 1.0 and cmin = 0.1 give
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similar NPV’s and convergence rate. Table 2.16 present the average NPV’s obtained

from five optimization runs with five different initial random seeds. There is a big

difference among the NPV’s whenever we change cmin. In this example, we also realize

that a small cmin cannot result in a better NPV as well as a better convergence rate.

Significantly, cmin = 0.1 results in the best NPV of $4.422 × 109, but any value of

cmin between 0.01 and 1.0 gives similar results.

Table 2.16: Average NPV obtained from five runs of each algorithm when we use
different values of cmin (M = 5, kmax = 280, A = 28, a0 = 2.0; and
Ns = 40 and σ2 = (1, 1)) .

Algorithm No. of simulations c0 Final NPV,×109$
G-SPSA (cmin = 0.0001) 1680 0.0001766 4.225
G-SPSA (cmin = 0.001) 1680 0.001766 4.372
G-SPSA (cmin = 0.01) 1680 0.01766 4.390
G-SPSA (cmin = 0.1) 1680 0.1766 4.409
G-SPSA (cmin = 1.0) 1680 1.766 4.411

To find an optimal initial stepzise a0 (Eq. 2.19), we use the same procedure

as in example 1. Howewver, in this example, the total number of control variable is

equal to 560. We choose three different maximum numbers of allowable iterations,

kmax, and in each case set A = 0.1kmax:

• kmax = 180, which is around a third of the total number of control variables,

which gives A=18. The maximum number of allowable simulation runs is equal

to 180 × 6 = 1080, because throughout this example we average five G-SPSA

gradients to obtain the search direction;

• kmax = 280, which is equal to one half the total number of control variables,

so that A= 28. The maximum number of allowable simulation runs is equal to

280× 6 = 1680.

• kmax = 560, which is identical to the total number of control variables, and
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then we obtain A= 26. The maximum number of allowable simulation runs is

equal to 560× 6 = 3360.

We consider six different initial stepsizes (Table 2.17) to run the G-SPSA

algorithm. We again use the same parameters as we used in previous sections, i.e.,

M = 5, σ2 = (1, 1), and Ns = 40. Based on the results of Table. 2.16, we fix

c0 = 0.1 regardless of the maximum number of allowable iterations specified. The G-

SPSA algorithm using one-sided simultaneous perturbation is applied to generate a

steepest-ascent direction. Figs. 2.20, 2.21, and 2.22 (obtained from one optimization

run with one initial random seed) respectively present the relationship of NPV and

the number of simulation runs corresponding to A=18, A=28, and A=56. For each

value of A, we see that the NPV’s obtained from different initial step sizes are almost

the same. Table. 2.17 presents the average NPV’s obtained from five runs of each

algorithm with five different initial random seeds. Overall, a0 = 1.5 gives the best

results but there is not much variation in the NPV’s for the three cases a0 = 1.5,

a0 = 2.0, and a0 = 2.5. However, for each of these three values of a0, the NPV

increases little as the maximum number of allowable iterations increases.
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Figure 2.21: NPV versus the
number of simu-
lation runs with
A = 28 and different
values of a0.
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Table 2.18 gives the comparison of results based on stopping simulation runs
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at 1680 in all kmax cases, i.e., we actually let iterations continue beyond the value

of kmax when kmax = 180. The NPV values corresponding to each value of all

kmax cases after 1680 reservoir simulation runs are shown in Table 2.8. Note that

Table 2.18 presents the average NPV’s obtained from five optimizations with five

different initial random seeds. The results show that at least on this example the

results are essentially independent of A and a0 for the range of these variables that

are considered. Perhaps the most important point is that we can.

Table 2.17: Average NPV obtained from five runs of each algorithm when we use
different values of A and a0 (M = 5 and c0 = 0.1; and Ns = 40 and
σ2 = (1, 1)).

Stepsize a0
A = 18 A = 28 A = 56.0

Simul- Final NPV Simul- Final NPV Simul- Final NPV
a0 = 1.0 1080 4.395×109 1680 4.402×109 3360 4.412×109

a0 = 1.5 1080 4.395×109 1680 4.404×109 3360 4.410×109

a0 = 2.0 1080 4.391×109 1680 4.398×109 3360 4.412×109

a0 = 2.5 1080 4.391×109 1680 4.400×109 3360 4.403×109

a0 = 3.0 1080 4.382×109 1680 4.401×109 3360 4.395×109

a0 = 4.0 1080 4.387×109 1680 4.391×109 3360 4.401×109

Table 2.18: Average NPV obtained from five runs of each algorithm after 1680 reser-
voir simulation runs when we use different values of A and a0 (M = 5
and c0 = 0.1; and Ns = 10 and σ2 = (1, 1)).

Stepsize a0 Simulations
A = 18.0 A = 28 A = 56

(Final NPV) (Final NPV) (Final NPV)
a0 = 1.0 1680 4.403×109 4.402×109 4.397×109

a0 = 1.5 1680 4.402×109 4.404×109 4.401×109

a0 = 2.0 1680 4.398×109 4.398×109 4.396×109

a0 = 2.5 1680 4.398×109 4.400×109 4.389×109

a0 = 3.0 1680 4.387×109 4.401×109 4.406×109

a0 = 4.0 1680 4.401×109 4.391×109 4.394×109

Similar to example 1, we set up two cases of kmax (kmax = 280 and kmax =

560) with other optimal parameters coming from the previous analyzing to see how
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these parameters perform the G-SPSA algorithm (see Table 2.19). The results in

Table 2.19 show that with optimal parameters based on the previous results, the

G-SPSA algorithm corresponding to each kmax always gives the best NPV.

Table 2.19: Average NPV obtained from five runs of each algorithm with five dif-
ferent initial seeds When we use two values of kmax and other optimal
paramtes.

Optimal parameters No. of simulations Final NPV,×109$
M = 5, kmax = 280, A = 28, a0 = 1.5,

1680 4.421
and cmin = 0.5; Ns = 20, σ2 = (1, 1)
M = 5, kmax = 560, A = 56, a0 = 1.5,

3360 4.444
and cmin = 0.5; Ns = 20, σ2 = (1, 1)

Finally, we can draw some conclusions from experiments with this example.

Generally what happened with the NPV and convergence rate in this example when

SPSA parameters change is almost the same as in example 1. Based on the average

NPV and the number of simulation runs obtained from five optimizing operations

corresponding to five different initial random seeds, we can draw the following con-

clusions.

• The one-sided perturbation for both Bernoulli distribution and Gaussian dis-

tribution can give better results than the two-sided perturbation, this is the

same conclusion obtained for example 1;

• The performance of algorithm with Gaussian distribution is always better than

that with Bernoulli distribution, this is consistent with example 1;

• The performance of ComG-SPSA1 and ComG-SPSA2 is not any better than

the G-SPSA algorithm’s performance, this is also consistent with example 1.

• For Gaussian distribution, setting the number of SPSA gradients to generate

the average stochastic search direction in range from 5 to 10 is optimal. For
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Bernoulli distribution, M = 5 and M = 10 gave lower NPV’s than the NPV

from M = 20;

• When we use the Gaussian distribution, a small correlation length results in

very rough final well controls (which may not be very practical). Larger correla-

tion lengths give smoother final control values. Based on our experimentations,

a correlation length on the order of one half the number of the control steps

should be reasonable for this example;

• We can say that a good value of cmin is from 0.01 to 1.0 for this example, this

is also consistent with example 1;

• For this example, setting the maximum number of allowable iterations equal to

one half the number of control variables works as well as setting the maximum

number of allowable iterations equal to the number of control variables. As in

example 1, the initial stepsize from 1.0 to 2.5 works fine.

2.5.3 Optimization with simple bound constraints, Brugge case

The Brugge field is a synthetic reservoir developed by TNO (Peters et al.,

2010) as a benchmark study to test different algorithms in the closed-loop reservoir

management. The original model was constructed with approximately 20 million

gridblocks and then upscaled to a 450,000 gridblock model, which is used as the true

reservoir to provide observation data for history matching. The true case was used to

construct data such as well logs and facies maps. According to this information, 104

geological realizations were upscaled to a 60,048 gridcell reservoir simulation model

and provided to participants. The simulation model consists of nine layers, each

with 139× 48 gridblocks. The total number of active gridblocks is 44,550. The top

structure map and well locations are in Fig. 2.23. Full details about the geological

parameters of Brugge field are available in Peters et al. (2010).
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The reservoir is bounded by faults and connected to a large aquifer. The

reservoir has four geological layers and is further divided into 9 simulation layers. The

Schelde formation corresponds to the top two simulation layers, the Waal formation

corresponds to layer 3 through 5, the Maas formation corresponds to layer 6 to layer

8 and the Schie formation corresponds to the bottom layer. The structure of the field

and fault descriptions were the same in all realizations. Each realization consisted

of the following properties in each gridblock: net-to-gross (NTG), porosity, initial

water saturation and absolute permeability in the x, y and z directions. Different

geostatistical modeling methods were used for different realizations. For example,

some realizations of properties in the first two layers were created with object-based

modeling (channel objects in a shale background) whereas other realizations were

created with sequential indicator simulation.

Throughout the reservoir life, only oil and water flow in the reservoir. Relative

permeability and capillary pressure curves were provided by TNO (Peters et al.,

2010) but with seven possible values of irreducible water saturation depending on

the porosity of gridblock.

Here, we consider only the production optimization step of the closed-loop

reservoir management problem. There are 30 vertical wells in the Brugge reservoir

including 20 smart production wells and 10 smart water injection wells. Each well

has multiple segments that can be controlled individually.

We optimize the well controls for years 10 through 30 based on the mean model

obtained by Chen et al. (2010) using the ensemble Kalman filter with covariance

localization to assimilate production data for the first ten years of the reservoir

life (Fig. 2.24 and 2.25). This example is identical to the production optimization

results for year 10-30 with an adjoint-gradient method which is reported in Chen

et al. (2010).

The production period of the reservoir is divided into 40 control steps, i.e.,
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Figure 2.23: The top structure of Brugge field, Example 4.

each control step is 182.5 day. There are 84 control variables for each control step.

These control variables are the liquid production rate at each individual segment

of the production wells and the water injection rate at each individual segment of

the injection wells. The total number of control variables is 40 × 84 = 3360. The

maximum liquid production rate of each production segment is 3000 STB/D and,

the maximum injection rate of each injector segment is 4000 STB/D. The minimum

value for the rate of each segment in a production or an injection well is 0 STB/D.

The minimum BHP constraint for a production segment and the maximum BHP

constraint for an injection segment, respectively, are 725 psi and 2611 psi. The BHP

nonlinear constraints are implemented reactively by inputting them directly into the

simulator data file. The oil price is ro = $80.0/STB and both the water production

and the injection costs are rw = rwinj = $5.0/STB. The annual discount rate is 10%.

The initial value for the injection rate of each injection well segment is 1333.0

STB/D and the initial value for the liquid production rate of each production well
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Figure 2.24: ln(kx), x-direction
log-permeability
after history match
of period 0-10.

Figure 2.25: Oil Saturation at
year 10 before
optimization.

segment is 700 STB/D. To solve the bound constraint, we use log-transformation to

convert the optimization problem with bound constraints into one without bound

constraints. The algorithm will terminate as the iteration reaches the maximum

allowable value.

Here, we use the steepest-ascent method where the stochastic gradient is

approximated by the average of 10 G-SPSA gradients (Eq. 2.17). The controls of

each perturbation are sampled from a Gaussian distribution with a variance pairs

of (1,1), of which the first number corresponds to the transformed variable of water

injection rate control and the second number corresponds to the transformed variable

of liquid production rate, and two correlation lengths of Ns = 20 and Ns = 40. The

normalized search direction (Eq. 2.21) is applied to update the control vector. We
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set the maximum number of allowable iterations equal to 1120, which is about 1/3

of the total number of control variables, we obtain the value of A = 112. We choose

kmax = 1120 because for field scale problems, it is usually not feasible to do more

than 1000 or so reservoir simulation runs. In this example, we set several initial

stepsizes of a0 = 1.0, a0 = 2.0, a0 = 3.0, and a0 = 4.0. Corresponding to each value

of the initial stepsize, we obtain the value of a = 17.4, a = 35, a = 52, and a = 69.3.

Based on the experimental results of two previous examples, we know that a good

value of cmin is from 0.01 to 0.1. Therefore, we set the value of cmin = 0.06187 which

gives value of c = 0.1.

Table 2.20: Compare the performance of G-SPSA algorithms obtained from one op-
timization runs with one initial random seed when we change the value
of Ns and a0 (M = 10, kmax = 1120, A = 112, and c0 = 0.1; σ2 = (1, 1)).

Stepsize a0 Simulation runs
Final NPV Final NPV
(Ns = 20) (Ns = 40)

A = 112, a0 = 1.0 1232 5.117×109 5.128×109

A = 112, a0 = 2.0 1232 5.142×109 5.153×109

A = 112, a0 = 3.0 1232 5.143×109 5.137×109

A = 112, a0 = 4.0 1232 5.141×109 5.134×109
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Figure 2.26: NPV versus simulation runs obtained from one optimization runs with
one initial random seed when we change the value of Ns and a0 (M = 10,
kmax = 1120, A = 112, and c0 = 0.1; σ2 = (1, 1)).
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(d) a0 = 4.0, Ns = 40

Figure 2.27: The estimated optimal production well controls obtained from one op-
timization runs with one initial random seed (M = 10, kmax = 1120,
A = 112, and c0 = 0.1; σ2 = (1, 1)).

Fig. 2.26 presents NPV versus the number of simulation runs where the G-

SPSA algorithm is tested with different values of the initial stepsize and the corre-

lation length. Here, a0 = 1 results in slower convergence for some early iterations

but at simulation runs 1232 reaches a similar value of NPV as is obtained with the

other choices of a0. The NPV’s in Fig. 2.26 at simulation runs 1232 are given in

Table 2.20.

The final controls for the producers and injectors obtained by the G-SPSA

algorithm are shown in Figs. 2.28 and 2.27. Note that even though the final NPV’s

obtained by the G-SPSA algorithm with different SPSA parameters are not very

different, the estimates of the optimal controls (Figs. 2.28 and 2.27) are substantially

different. This suggests that sometimes there are multiple sets of controls which
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(c) a0 = 3.0, Ns = 40

Control steps (1 step= 182.5 days)
In

je
ct

or
 S

eg
m

en
ts

 

 

10 20 30 40

5

10

15

20

25

30
500

1000

1500

2000

2500

3000

3500

4000

(d) a0 = 4.0, Ns = 40

Figure 2.28: The estimated optimal injection well controls obtained from one opti-
mization runs with one initial random seed (M = 10, kmax = 1120,
A = 112, and c0 = 0.1; σ2 = (1, 1)).

can achieve essentially the same maximum value of NPV. The controls in Fig. 2.27

show high liquid production rates for the first 30 production well segments, which

correspond to the first ten producers. From the structure map (Fig. 2.23), these

producers are located at the edge of the main fault and are at the farthest locations

from the injectors. The wells that are close to the injectors (the segments after 30)

produce at much lower liquid rates. Fig. 2.28 show that the water injection rate of

almost all the injection segments is high at some of early time control steps. However,

there are some injection segments that have a small water injection rate for almost

all control steps. The estimates of the optimal total water injection rate and segment

rates for Injector 2 as a function of time are shown in Fig. 2.29. Although the final

injection controls obtained with different SPSA parameters are very different, the
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(b) a0 = 2.0, Ns = 40
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(c) a0 = 3.0, Ns = 40
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Figure 2.29: The estimated optimal well segment injection rates for Injector 2 ob-
tained from one optimization runs with one initial random seed (M =
10, kmax = 1120, A = 112, and c0 = 0.1; σ2 = (1, 1)).

total rate in the injection well is close to the upper bound of 4000 STB/D at the

early control steps, and becomes close to zero at the last control step. We see that

injection rate controls estimated from G-SPSA are not extremely smooth although

we use the full correlation length. Fig. 2.30 shows the optimized rate controls for

the three segments of producer P4 from all G-SPSA algorithms with different SPSA

parameters. The first segment of this producer, which produces from the top two

simulation layers, has a high liquid production rate for almost all control steps.

Meanwhile, the liquid production rate in the third segment of this producer, which

produces from the simulation layer 6 through 8, is always close to the upper bound

at early control steps but decreases to almost zero after the 10th control step, this is

the expected result.
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(a) a0 = 1.0, Ns = 40
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(b) a0 = 2.0, Ns = 40
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(c) a0 = 3.0, Ns = 40
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(d) a0 = 4.0, Ns = 40

Figure 2.30: The estimated optimal well segment liquid production rates for Pro-
ducer 4 obtained from one optimization runs with one initial random
seed (M = 10, kmax = 1120, A = 112, and c0 = 0.1; σ2 = (1, 1)).

After working with this example in which we wish to maximize the NPV

subject to the bound constraints, we can draw some following conclusions:

• The best NPV obtained in this experiment is the same as the NPV = $5.161×

109 obtained with the adjoint-gradient based algorithm (Chen, 2011). This is

an extremely encouraging result as our objective is to obtain an optimization

algorithm which does not require an adjoint code to computer the gradient but

can obtain a optimal NPV close to the one obtained using an accurate gradient

computed from the adjoint method;

• Based on experimental results, we suggest that the value of initial stepsizes

from 1.0 to 3.0 all work adequately although in this example the choice a0 = 1

performs slightly worse than a0 = 2 and a0 = 3 especially in term of conver-
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gence rate at early iterations (see Fig. 2.26);

• For this example specifying the maximum number of allowable iterations equal

to one-third the total number of control variables gave good results at least

compared to the NPV obtained using an accurate gradient (Chen, 2011).
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CHAPTER 3

AUGMENTED LAGRANGIAN FUNCTION WITH SPSA GRADIENT

The augmented Lagrangian function has proved to be successful in solving

nonlinear constrained problems as well as linear constrained problems. This method

can alleviate the possibility of ill conditioning by introducing explicit Lagrange mul-

tiplier estimates (Conn et al., 1992; Bertsekas, 1995; Nocedal and Wright, 1999). In

our implementation, we modify the augmented Lagrangian method used by Chen

et al. (2010) who successfully implemented an augmented Lagrangian algorithm to

solve the general constrained optimization problem. In the procedure of Chen et

al., all gradients required are computed with the adjoint method and the bound con-

straints were enforced using a standard gradient projection method. The constrained

optimization algorithm presented here modifies the Chen et al. procedure in two fun-

damental ways: (i)gradient projection is not used; instead bounds are enforced using

a log-transform, and (ii) the pre-conditioned gradient of the augmented Lagrangian

is approximated by an SPSA, and then a preconditioned steepest-ascent algorithm

is applied to estimate the optimal well controls subject to the constraints. In our

study, a log-transform is applied to each of the original well control variables, and

optimization is performed on the transformed variables. The log-transformation en-

sures that bound constraints are automatically satisfied so that the standard gradient

projection technique used to enforce bound constraints is not needed. Although it

will not be shown in this work, we have applied the SPSA gradient using the gradient

projection method to solve the bound constraints. After doing a lot of experimen-

tal computations, we see that the gradient projection method does not always yield
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reliable results. Thus, we were forced to find a way to avoid the use of gradient pro-

jection, which we could also do by transforming the bound constraints to inequality

constraints and incorporating them directly into the augmented Lagrangian function.

However, using the log-transform to ensure that bound constraints are satisfied has

proved to be superior to transforming bound constraints to inequality constraints for

all the examples that we have tried.

The augmented Lagrangian method has two loops, outer-loop iterations and

inner-loop iterations. Once the controls which maximize the augmented Lagrangian

function are obtained in the inner-loop iterations, we update in the outer-loop it-

eration either the Lagrange multipliers (λ’s) or penalty parameter (µ), depending

on how well the constraints are satisfied, before moving to the next inner-loop iter-

ation. The above process is repeated until convergence. We discuss the procedure

involved in the outer-loop iteration in Section 3.2. In the inner-loop iterations, both

λ’s and µ are fixed and the augmented Lagrangian function is to be maximized

within the bound constraints. We apply a log-transformation to handle the bound

constraints. The transformed variables are then adjusted using the SPSA algorithm

to maximize the augmented Lagrange function with fixed Lagrange multipliers and

a fixed penalty parameter. The inner-loop iteration is discussed in Section 3.3. We

then apply our implementation of the SPSA-based augmented Lagrangian method

for several specified cases in Section 3.4.

3.1 Introduction to The Augmented Lagrangian Function

The specific production optimization problem considered here pertains to es-

timating the optimal well controls when waterflooding an oil-reservoir. We assume

that there is no gas injection and ignore the income from, or cost of disposal of,

produced gas so that the net-present-value (NPV) functional is defined by Eq. 1.1.

The NPV defined in Eq. (1.1) is a function of the well control vector u and the
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dynamic state vector y = y(u,m), which is the vector of variables solved for by the

reservoir simulator, i.e., pressures and saturations, m is the reservoir model which is

assumed known or at least fixed during production optimization. The well control

variables include the water injection rate or the bottomhole pressure (BHP) of the

injection wells and the production rate or the BHP of the production wells. The

maximization of the NPV in Eq. (1.1) is usually subject to equality, inequality and

bound constraints, respectively, given by

ej(u, y) = 0, j = 1, .., ne, (3.1)

cj(u, y) ≤ 0, j = 1, .., nine, (3.2)

and

ulowi ≤ ui ≤ uupi , i = 1, 2, ..., nu, (3.3)

where ne, nine and nu, respectively, denote the number of equality, inequality and

bound constraints. Requiring the field water injection rate to be equal to field liquid

production rate is an example of a highly nonlinear equality constraint. Requiring

the field and individual water cut to be less than a prescribed value is a nonlinear

inequality constraint. The requirement that the sum of the rates at water injection

wells be equal to a specified value represents a linear equality constraint. Constraints

arise naturally due to the operational limits of the production and injection facilities.

To maximize constrained production optimization problems, we incorporate

all equality and inequality constraints into the augmented Lagrangian function (Bert-

sekas, 1995; Wang and Spall, 2008). Thus the augmented Lagrangian function β is
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defined as:

β(u, y, µ, λ) = J(u, y)−
ne∑
j=1

λe,jej(u, y)− 1

2µ

ne∑
j=1

se,je
2
j(u, y)

−
nine∑
j=1

λc,j [cj(u, y) + νj]−
1

2µ

nine∑
j=1

sc,j [cj(u, y) + νj]
2 ,

(3.4)

where J(u, y) is the NPV as defined in Eq. 1.1. The νj is a non-negative slack variable

used to convert the jth inequality constraint (cj ≤ 0) into an equality constraint.

λe,j denotes the Lagrange multipliers associated with the jth equality constraint,

λc,j denotes the Lagrange multipliers associated with the jth inequality constraint.

The argument λ in β denotes the vector λ = [λe,1, ..., λe,ne , λc,1, ..., λc,nine
]T . The

se,j’s and sc,j’s, respectively, denote the scaling factor for the equality and inequality

constraints, and µ is the penalty parameter. The convergence rate of the algorithm

can be adversely affected by poor scaling. We use the following scaling factors (Chen

et al., 2011a):

se,j =
1

E2
j

, j = 1, .., ne, (3.5)

and

sc,j =
1

C2
j

, j = 1, .., nine, (3.6)

where Ej and Cj, respectively, are the nonzero constraint values that reflect the

magnitude of the jth equality constraint and the jth inequality constraint, respectively

(Chen et al., 2011a). For example, if the jth inequality constraint is field water cuts

(FWCT) less than 0.9, Cj is set to 0.9. If the jth equality constraint on the total

water injection rate is 5000 STB/D, Ej is set to 5000.0. The Ej’s and Cj’s do not

adjust during the optimization process.

In the formulation of Eq. 3.4, the slack variables (νj’s) are additional ad-

justable parameters for optimization. Following Nocedal and Wright (1999), we elim-

inate the slack variables for the inequality constraints in the augmented Lagrangian
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function. Note that the Lagrangian function of Eq. 3.4 is a concave quadratic func-

tion of the slack variable νj.

The optimal value for νj satisfies

∂β

∂νj
= −λc,j −

sc,j
µ

[cj(u, y) + νj] = 0, (3.7)

i.e.,

νj = −cj(u, y)− λc,j
µ

sc,j
. (3.8)

Finally, we find that the optimal values of νj in Eq. 3.7 are

νj = max{−cj(u, y)− λc,j
µ

sc,j
, 0}, (3.9)

where zero includes because we must have νj ≥ 0.

Using Eq. 3.9 in Eq. 3.4 yields

β(u, y, µ, λ) = J(u, y)−
ne∑
j=1

λe,jej(u, y)− 1

2µ

ne∑
j=1

se,je
2
j(u, y)

−
nine∑
j=1

λc,j

[
max {cj(u, y),−λc,j

µ

sc,j
}
]
− 1

2µ

nine∑
j=1

sc,j

[
max {cj(u, y),−λc,j

µ

sc,j
}
]2
.

(3.10)

The convergence of the augmented Lagrangian method is guaranteed as the

penalty parameter is gradually reduced to zero, almost regardless of the values of the

Lagrangian multiplier estimates (Conn et al., 1992). However, it becomes difficult to

maximize the augmented Lagrangian function when the penalty parameter is small

as small values of µ make the optimization problem less well conditioned. A good

choice of Lagrange multipliers can ensure convergence for a fixed penalty parameter

provided the vector of current control variables, uk, is close to a local optimal control

vector, u∗. Thus, conceptually, we can decrease the penalty parameter until we are

in the neighborhood of u∗, from which point onward the penalty parameter is no
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longer changed, but rather the Lagrange multiplier estimates adjust to guarantee

convergence to u∗ and λ∗ satisfying the first order Karush−Kuhn−Tucker optimality

conditions (Conn et al., 2000).

As in the implementation of the augmented Lagrangian method, the opti-

mization process involved an inner-loop iteration where the the maximization of

the augmented Lagrangian is done with fixed λ and µ and an outer-loop iteration

where, depending on the magnitude of the violation of the constraints, either all

the Lagrange multipliers are modified or the penalty parameter is modified. Nor-

mally to deal with the augmented Lagrangian method, the gradient-based method

is implemented, and in the inner-loop iteration the augmented Lagrangian function

with fixed λ and µ is maximized, subject to the bound constraints, using a gradient

projection method. It means that we want to solve the subproblem

max β(u, y, µ, λ),

subject to ulowi ≤ ui ≤ uupi , i = 1, 2, ..., nu.

(3.11)

In our work, we apply the SPSA gradient to generate approximate gradients

which are not accurate enough to ensure that the gradient projection method will

be reliable. To avoid the gradient projection method, the log-transformation is im-

plemented to remove the bound constraints. There are no bound constraints on the

transformed control vector u, in our inner-loop iteration we simply maximize the

augmented Lagrangian directly using the SPSA algorithm, i.e., letting λ` and µ`

denote the values of Lagrange multipliers and penalty parameter at outer loop ` at

the subsequent inner loop, λ` and µ` are held fixed and we maximize β(u, y, µ`, λ`).

3.2 Outer-loop Iterations

For the outer-loop iterations, we update either the Lagrange multipliers or the

penalty parameter, depending on the magnitude of the violation of the constraints.
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When the violation of the constraints is small, we update the Lagrange multipliers

but do not change the value of the penalty parameter for the next step. When the

violation of the constraints is large, we keep the Lagrange multipliers fixed but de-

crease the penalty parameter, which allows the algorithm to minimize the violation

of the constraints during the next inner-loop step. At the current `th outer-loop iter-

ation, where the inner-loop iteration has converged to uk, we estimate the violation

of the constraints (σcν ) by:

σcν = max

[
max

1≤j≤ne

{se,je2j(uk, yk)}, max
1≤j≤nine

{sc,j(max[cj(uk, yk), 0])2}
]
. (3.12)

Once the inner-loop iteration converges, we check the violation of the con-

straints using Eq. 3.13, where η∗ is the convergence criteria for terminating the

algorithm:

σcν ≤ η∗. (3.13)

If Eq. 3.13 is not satisfied, we go to the next outer-loop iteration and update either

the Lagrangian multipliers or the penalty parameter (Conn et al., 1992; Nocedal

and Wright, 1999). If Eq. 3.13 is satisfied, we next test convergence conditions for

control variables and the objective function using Eqs. 3.14 and 3.15, where ε∗ and

ξ∗ are the convergence criteria for terminating the algorithm.

∆β ≡ |β(uk+1,`)− β(uk,`)|
max(|β(uk+1,`)|, 1)

≤ ε∗, (3.14)

∆u ≡ ‖uk+1,` − uk,`‖2
max(‖uk+1,`‖2, 1)

≤ ξ∗. (3.15)

If Eqs. 3.14 and 3.15 are satisfied, we stop the algorithm. If Eqs. 3.14 and 3.15 are

not satisfied, we go to the next outer-loop iteration and update either the Lagrangian

multipliers or the penalty parameter. Note that although the optimization is working

in the log-transform domain, Eq. 3.15 is implemented in the original control variables.
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To update either the Lagrange multipliers or the penalty parameter in the

outer-loop iteration, we need to evaluate magnitude of the violation of the constraints

using Eq. 3.12. If the violation of constraints is less than η`, i.e., if σcν ≤ η`, the

tolerance for the violation of the constraints at the outer-loop iteration `, the current

value of penalty parameter is adequate to maintain near feasibility of the iterate uk.

In this case, we keep µ` fixed and update the Lagrange multipliers and tolerance of

constraint violation as shown here (Conn et al., 1992):

λ`+1
e,j = λ`e,j +

se,jej(uk,`, yk,`)

µ`
, j = 1, 2, ..., ne, (3.16)

λ`+1
c,j = max {0, λ`c,j +

sc,jcj(uk,`, yk,`)

µ`
}, j = 1, 2, ..., nine, (3.17)

µ`+1 = µ`, (3.18)

and

η`+1 = max(η`µ
βη
`+1, η

∗), (3.19)

where βη is a free parameter. Conn et al. (1992) suggests to using βη = 0.9 when

using an accurate gradient. However, in this study, after doing a lot of experimental

computations, we suggest that βη = 0.2 works fine for a stochastic gradient. Conn

et al. (1992) shows that by reducing the tolerance of the violation of the constraints,

η`, the convergence of the augmented Lagrangian function can be guaranteed without

driving the penalty parameter to zero. After updating the Lagrange multipliers and

tolerance of constraint violation, we decrease the inner-loop convergence criteria for

the iteration as

ε`+1 = max(ε`µ
βη
`+1, ε

∗), (3.20)

and

ξ`+1 = max(ξ`µ
βη
`+1, ξ

∗). (3.21)
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Chen et al. (2011a) proposed a new way to estimate the initial Lagrangian

multipliers for both equality constraints and inequality constraints using experimen-

tal results. The initial Lagrangian multipliers are defined as:

λ0e,j =
se,jej(u0, y0)

µ0

, j = 1, 2, ..., ne, (3.22)

λ0c,j = max{0, sc,jcj(u0, y0, )
µ0

}, j = 1, 2, ..., nine, (3.23)

where ej(u0, y0), and cj(u0, y0) are respectively the jth equality constraint and the

jth inequality constraint with the initial guess u0 and y0 = y(u0) where as always y

is the vector of primary variables solved by the reservoir simulation.

If the violation of the constraints is too severe, i.e., if σcν > η`, we reduce

the penalty parameter and do not change the Lagrange multipliers. By reducing µ`,

we ensure that the augmented Lagrangian function (β(u)) will place more emphasis

on decreasing the violation of the constraints. The following equations are used to

update the penalty parameter and tolerance of constraint violation:

µ`+1 = τµ`, (3.24)

and

η`+1 = max(η0µ
αη
`+1, η

∗), (3.25)

where the value of τ can be from 0.1 to 0.5 and αη is a free parameter. After

doing several experimental computations, we suggest that αη = 0.1 works well for a

stochastic gradient. The value of αη is the same as recommendation of Conn et al.

(1992). The convergence criteria for the next outer-loop iteration are reset according
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to the following equations (Conn et al., 1992):

ε`+1 = max(ε0µ
αη
`+1, ε

∗), (3.26)

and

ξ`+1 = max(ξ0µ
αη
`+1, ξ

∗). (3.27)

How to choose the initial guess for the penalty parameter µ0 is a challenging

task and the choice can have an impact on the performance of the algorithm. Chen

(2011) used experimental computations to estimate a good initial value of the penalty

parameter. However, in our work, by using the scaling factors (see Eqs. 3.5 and 3.6)

and the initial Lagrange multipliers (see Eqs. 3.22 and 3.23), we expect the violation

of constraints to be on the order of 1 so 1/µ0 times the violation should be roughly

in the order of the expected value of NPV. We suspect that ideally the value of 1/µ0

should be on the order of 1/10 the expected value of J .

3.3 Inner-loop Iterations

In the inner-loop iterations, the transformed variables are adjusted using the

SPSA algorithm to maximize the augmented Lagrange function with fixed Lagrange

multipliers and a fixed penalty parameter. The SPSA gradient is applied to approxi-

mate the gradient of the augmented Lagrangian function. To do this, the transformed

variables are perturbed using a Bernoulli distribution or a Gaussian distribution sam-

pled from a normal distribution with mean equal to the no-dimensional zero vector

and covariance matrix, CU (see Eq. 2.15). The normalized search direction is applied

to estimate the new transformed variables (see Eq. 2.21). In inner-loop iteration,

the value of step size and pertubation size are respectively updated using Eqs. 2.19

and 2.20. We do not terminate the inner-loop iteration using the magnitude of the

augmented Lagrangian function’s gradient as the gradient projection method did;
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instead the following convergence criteria are implemented:

∆β ≡ |β(uk+1,`)− β(uk,`)|
max(|β(uk+1,`)|, 1)

< ε`, (3.28)

and

∆u ≡ ‖uk+1,` − uk,`‖2
max(‖uk+1,`‖2, 1)

< ξ`, (3.29)

where k denotes the inner-loop iteration index, ` is the outer-loop iteration index,

and ε` and ξ` are the inner-loop convergence criteria. Note that in the inner-loop

iteration, the value of ` is fixed. We also note that although the optimization is

working in the log-transform domain, Eq. 3.29 keeps working in the original control

variables.

3.4 Case Study

3.4.1 Production optimization with equality and bound constraints

We consider a synthetic water flooding case that was considered previously

by Brouwer and Jansen (2004) and Sarma et al. (2008). We implement production

optimization with the true model represented by a horizontal reservoir with a uniform

grid system, 45 × 45 × 1 with ∆x = ∆y = 450 ft. The thickness of the reservoir

is 10 ft. The fluid system is two-phase flow of water and oil. The log-permeability

field is shown in Fig. 3.1 with two high permeability channels indicated in dark

red color. The porosity is homogeneous throughout the reservoir (φ = 0.25). The

initial reservoir pressure is 5800 psi and the connate water saturation and residual oil

saturation are both equal to 0.1. As done by Brouwer and Jansen (2004) and Sarma

et al. (2008), we use 45 injection wells at the left side of the system to simulate a

smart horizontal injection well with 45 injection segments and 45 production wells

at the right side of the reservoir to simulate a smart horizontal production well with

45 production segments. The anticipated water flooding project life is 960 days and
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we set each control step equal to 190 days. Thus, we have 5 control steps and the

total number of control variables is equal to (45 + 45)× 5 = 450.
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Figure 3.1: ln(k) distribution.
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Figure 3.2: Final oil saturation
with reactive control.

During production optimization, the injection segments are placed under rate

control with a lower bound of 0 STB/D and an upper bound of 500 STB/D. The

production segments are placed under bottom hole pressure (BHP) control with a

lower bound of 3500 psi and an upper bound of 6000 psi. Moreover, the total field

water injection rate (FWIR) at each control step should be equal to 2700 STB/D.

It means that the equality constraints in Eq. 1.2 are

ej =
45∑
i=1

qjwinj,i − 2700 (STB/D) = 0, j = 1, . . . , 5, (3.30)

where i denotes the injection well index, and j denotes the equality constraint index

which is the same as control step index. Therefore, we have 5 linear equality con-

straints which are added to the NPV functional to form the augmented Lagrangian

function in Eq. 3.10. In this work, we use the same cost data as in Brouwer and

Jansen (2004). The oil price is set at $12.7/STB, the water injection rate cost at

$0/BBL , the water production cost at $3.18/STB, and the annual discount rate is

10%.

The initial guess for control variables is 60 STB/D for each injection segment
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and 5750 psi for each production segment at all control steps. We set the scaling

factors for equality constraints se,j = 1/E2
j in which Ej is set to 2700 STB/D for

all j’s. The initial Lagrange multipliers are calculated by using Eq. 3.22, and the

initial penalty parameter, µ0, is set to 10−7. Note that with this choice, we expect

the violation of constraints to be on the order of 1 so 1/µ0 times the violation should

be roughly in the order of 107. We suspect that ideally this 107 value should be on

the order of 1/10 the value of J . The initial values of the convergence tolerances in

Eqs. 3.28 and 3.29, respectively, are set to ∆βk,` ≤ ε0 = 0.001, ∆uk,` ≤ ξ0 = 0.01, and

these values decrease very slowly from outer-loop iteration to outer-loop iteration.

The initial tolerance of the violation of the constraints, η0, is set to 0.0025. The

algorithm terminates when ∆βk,` ≤ ε∗ = 0.6ε0, ∆uk,` ≤ ξ∗ = 0.6ξ0 and σcν ≤ η∗ =

0.01η0.

Here, we use the steepest-ascent method where the stochastic gradient is

approximated by the average of five SPSA gradients (Eq. 2.17) calculated by one-

sided simultaneous perturbation (Eqs. 2.2 and 2.4). The normalized search direction

(Eq. 2.21) is used to update the control vector. For the G-SPSA algorithm, the

controls of each perturbation are sampled from a Gaussian distribution with the

correlation length of Ns = 2 and the variance of transformed variable of BHP control

and transformed variable of water injection rate control, respectively, of 25 and 5.

The choice of 25 and 5 for variance is a bit strange based on our early use of all

variances equal to 1.0. However, with the choice of cmin = 0.055 which gives c = 0.1,

we found these variances gave a better result than is obtained with all variances equal

to 1. By setting the maximum number of allowable iterations equal to 450 which is

identical to the total number of control variables, we obtain the value of A equal to

45. We set a0 = 1.0 which gives a = 14.1.

To show how production optimization improves the recovery, we first set up

a reference case, which is run with reactive controls. Reactive control refers to the
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procedure whereby we simply shut in well segment whenever the cost of disposing

of the produced water exceeds the oil revenue, i.e., when the water oil ratio (WOR)

at the well segment exceeds 12.7/3.18 = 4.0. As shown in Fig. 3.2, we obtain a very

poor sweep efficiency and poor oil recovery for the reactive control case.
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Figure 3.3: Remaining oil saturation distribution obtained from one optimization
run with one initial random seed (M = 5, kmax = 450, A = 45, a0 = 1,
and c0 = 0.1; Ns = 2 and σ2 = (25, 5); µ0 = 10−7).

The final oil saturation distribution after optimization from various SPSA

algorithms is shown in Fig. 3.3. Compared to the reactive control case (Fig. 3.2),

the SPSA optimal controls yield a much better sweep efficiency and oil recovery.

The low permeability region between two high permeability channels is much better

swept. The reasons leading to a better sweep efficiency can be easily explained by

analyzing the optimized controls, the water injection rate for injection segments and

the BHP’s for production segments. Fig. 3.4 presents the final control variables

of water injection rate obtained from SPSA algorithms. The y-axis in this figure

corresponds to the 45 water injection segments and the x-axis corresponds to the 5

control steps. The color scale corresponds to injection rates of the segments, with
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Figure 3.4: The estimated optimal water injection rate well controls obtained from
one optimization run with one initial random seed (M = 5, kmax = 450,
A = 45, a0 = 1, and c0 = 0.1; Ns = 2 and σ2 = (25, 5); µ0 = 10−7).

white representing a rate of approximately zero and red representing the highest

rate. It is clear that the water injector segments completed in or near the top high

permeability streaks are shut down at early times. The results that are clearest to

interpret are those obtained from G-SPSA, ComG-SPSA1, and ComG-SPSA2. In

these cases, we see that the injection rate into the top high permeability channel of

Fig. 3.1 is zero and more water is injected into the lower part of reservoir so the sweep

tends to be from bottom to top. The estimated pressure controls at the production

segment (Fig. 3.5) are somewhat surprising as only a few production segments are

active and produce at a pressure fairly close to the minimal allowable pressure of

3500 psi. In Figs. 3.5 and 3.4, white is used to indicate that a well is shut in.

Fig. 3.6 presents the violation of FWIR constraints versus the number of

simulation runs. In each sub-figure of Fig. 3.6, we have five curves of FWIR-2700

corresponding to five control steps. Whenever each of those curves is not equal to

0, the constraint is violated. Fig. 3.6 shows that for the B-SPSA algorithms, the
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Figure 3.5: The estimated optimal BHP well controls obtained from one optimization
run with one initial random seed(M = 5, kmax = 450, A = 45, a0 = 1,
and c0 = 0.1; Ns = 2 and σ2 = (25, 5); µ0 = 10−7).

constraints are still violated even when the iteration index reaches to the maximum

number of allowable iterations which is 450. However, the violation of constraints

obtaining from the G-SPSA algorithms becomes close to zero as simulation runs

increase. The G-SPSA algorithm terminates when ∆βk,` ≤ ε∗ = 0.0006 and ∆uk,` ≤

ξ∗ = 0.006. At the final iteration, the violation of constraints becomes less than

the final tolerance of constraint violation, i.e, σcν ≤ 0.000025. It means that the

violation of the constraints is satisfied within the specified tolerance at convergence.

The performance of the SPSA algorithms is presented in Table 3.1. Even

though the final three NPV’s based on using Bernoulli perturbations were only

slightly lower than those obtained using Gaussian perturbations, it is important

to note the optimization algorithm did not converge when the Bernoulli perturba-

tions were used because the violation of constraints was greater than the specified

tolerance. In B-SPSA, the violation of the constraints, σcν , is around 0.0002 after 450

iterations (2700 reservoir simulation runs). Note that this σcν value is greater than
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Figure 3.6: Constraint violation versus simulation run obtained from one optimiza-
tion run with one initial random seed (M = 5, kmax = 450, A = 45,
a0 = 1, and c0 = 0.1; Ns = 2 and σ2 = (25, 5); µ0 = 10−7).

the convergence tolerance of constraint violation, η∗ = 0.000025. As the physical

problem suggests that it is possible to obtain a higher NPV if constraints are not

imposed, the Bernoulli results are not meaningful. In addition, ComG-SPSA2 did

not converge and was terminated because the maximum number (2700) of allowable

simulation runs was reached. The ComG-SPSA1 algorithm did, however, satisfy the

convergence tolerance of constrain violation at termination. In Table 3.1, Nµ denotes

the number of times the penalty parameter was adjusted at an outer-loop iteration

and Nλ denotes the number of times the Lagrange multipliers were adjusted at an

outer-loop iteration. Nµ + Nλ is equal to the total number of outer-loop iterations.

As the results of Table 3.1 indicate when perturbations based on the Bernoulli dis-

tributions the Lagrange multipliers were never changed, only the penalty parameter

was updated at the outer-loop iterations. The failure to update the Lagrangian

multipliers means the algorithm is reduced to a penalty method rather than an aug-

mented Lagrangian procedure. The ComG-SPSA1 algorithm gives the best result
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Table 3.1: The performance of different algorithms obtained from one optimization
with one initial random seed (Nµ: Number of µ updated; Nλ: Number of
λ updated; M = 5, kmax = 450, A = 45, a0 = 1, and c0 = 0.1; Ns = 2 and
σ2 = (25, 5); µ0 = 10−7)

Algorithm
Simu- Final Outer

Nµ Nλ
Conver-

lations NPV,$ -loop gence
B-SPSA 2700 2.034×107 3 3 0 No
ComB-SPSA1 2700 2.017×107 3 3 0 No
ComB-SPSA2 2700 1.959×107 4 4 0 No

G-SPSA (Ns = 2) 2430 2.049×107 4 2 2 Yes
ComG-SPSA1 (Ns = 2) 2250 2.056×107 5 3 2 Yes
ComG-SPSA2 (Ns = 2) 2700 2.014×107 6 4 2 No

of NPV = $2.056 × 107 but it is essentially equal to the NPV= $2.049 × 107 from

G-SPSA required 2430 simulation runs to reach convergence compared to only 2250

simulation runs with ComG-SPSA1.

In summary, the results of the G-SPSA-based augmented Lagrangian al-

gorithm performanced well for this example but B-SPSA did not. The NPV =

$2.049× 107 is similar to the value of NPV= $2.01× 107 obtained by Brouwer and

Jansen (2004) who used gradient-based method and the value of NPV = $2.067×107

obtained by Chen (2011) who used the adjoint method and the standard gradient

projection method to solve the bound constraints.

3.4.2 Production optimization with inequality and bound constraints

Here, we use the same reservoir model and well data as in Subsection 3.4.1.

During production optimization, the injection segments are placed under rate control

with a lower bound of 0 STB/D and an upper bound of 500 STB/D. The production

segments are placed under bottom hole pressure (BHP) control with a lower bound

of 3500 psi and an upper bound of 6000 psi. However, the total water injection rate

(FWIR) of all injection wells at each control step is changed from an equality or

an inequality constraint, i.e., we require that the FWIR less than or equal to 2700
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STB/D. It means that the inequality constraints in Eq. 1.3 can be written as

cj =
45∑
i=1

qjwinj,i − 2700 ≤ 0 (STB/D), j = 1, . . . , 5, (3.31)

where i denotes the injection well index, and j denotes the inequality constraint index

as well as control step index. Therefore, we have five linear inequality constraints

which are added to the NPV functional to form the augmented Lagrangian function

in Eq. 3.4. We use the same cost data as in Subsection 3.4.1, i.e., the oil price is set

at $12.7/STB, the water injection rate cost is set at $0/BBL, the water production

cost is set at $3.18/STB, and the annual discount rate is 10%.

To maximize the NPV subject to linear inequality constraints, we compute

an average of five SPSA gradients calculated by Eqs. 2.2 and 2.4. Then, we use

the normalized search direction (Eq. 2.21) to update the control vector. Control

variables are sampled from Bernoulli distribution and Gaussian distribution which

has a variance pair of (1,1), of which the first number corresponds to the transformed

variable of BHP control and the second number corresponds to the transformed

variable of water injection rate control, and a correlation length of Ns = 2 (Eq. 2.15).

The value of α and γ in those equations is again α = 0.602 and γ = 0.101. By setting

the maximum number of allowable iterations equal to 450 which is identical to the

number of control variables, we obtain the value of A equal to 45. By setting a0 = 1.0,

we obtain a = 14.1. We set cmin equal to 0.055 which gives c = 0.1.

The initial guess for control variables is 60 STB/D for each injection segment

and 5750 psi for each production segment at all control steps (initial guess 1). We

set the scaling factors for inequality constraints scj = 1/Cj. For field water injection

rate constraints, Cj is set equal to 2700 STB/D for all j’s. The initial penalty

parameter is set to 10−7. As discussed previously, we suspect that ideally this 107

value should be on the order of 1/10 the expected value of J (NPV). The initial
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Lagrange multipliers are estimated by using Eq. 3.23. The initial values of the

convergence tolerances in Eqs. 3.28 and 3.29, respectively, are set to ∆βk,` ≤ ε0 =

0.001 and ∆uk,` ≤ ξ0 = 0.01, and these values decrease very slowly from outer-

loop iteration to outer-loop iteration. The initial tolerance of the violation of the

constraints is equal to 0.0025, i.e., η0 = 0.0025. The algorithm terminates when

∆βk,` ≤ ε∗ = 0.6ε0, ∆uk,` ≤ ξ∗ = 0.6ξ0 and the violation of the constraints is less

than or equal to 0.000025, i.e, σcν ≤ η∗ = 0.01η0.
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Figure 3.7: Remaining oil saturation distribution obtained from one optimization
run with one initial random seed (M = 5, kmax = 450, A = 45, a0 = 1,
and c0 = 0.1; Ns = 2 and σ2 = (1, 1); µ0 = 10−7; Initial guess 1).

The final oil saturation distribution using the final optimal controls obtained

from various SPSA algorithms with initial guess 1 is shown in Fig. 3.7. Compared to

the reactive control case (Fig. 3.2), the SPSA optimal controls yield a much better

sweep efficiency and oil recovery. The low permeability region between two high

permeability channels is much better swept. The reasons leading to the better sweep

in the optimization case can be easily explained by analyzing the optimized controls,

the water injection rate for injection wells and BHP’s for producer wells. Fig. 3.8
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presents the final control variables of water injection rate obtained from the SPSA

algorithms. The y-axis in this figure corresponds to the 45 water injection segments

and the x-axis corresponds to the 5 control steps. The color scale corresponds to

injection rates of the segments, with white representing a rate very close to zero

and red representing highest rate of 500 STB/D. It is clear that the water injector

segments completed in or near the top high permeability channels are shut-in at

early times, so that similar to the case with a equality constraint for the FWIR,

the sweep from bottom to the top. The estimated pressure controls at the producer

(Fig. 3.9) are somewhat surprising as only a few producers are active, however these

producers are at a pressure fairly close to the minimal allowable pressure of 3500 psi

as expected. In Figs. 3.9, white is used to indicate that the well is shut in.
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Figure 3.8: The estimated optimal water injection rate well controls obtained from
one optimization run with one initial random seed (M = 5, kmax = 450,
A = 45, a0 = 1, and c0 = 0.1; Ns = 2 and σ2 = (1, 1); µ0 = 10−7; Initial
guess 1).

Fig. 3.10 presents the relationship between the violation of the field water in-

jection rate constraints and the number of simulation runs using initial guess 1. Note

88



Control steps (1 step= 190 days)

P
ro

du
ce

r 
S

eg
m

en
ts

 

 

1 2 3 4 5

10

20

30

40

3500

4000

4500

5000

5500

6000

(a) B-SPSA

Control steps (1 step= 190 days)

P
ro

du
ce

r 
S

eg
m

en
ts

 

 

1 2 3 4 5

10

20

30

40

3500

4000

4500

5000

5500

6000

(b) ComB-SPSA1

Control steps (1 step= 190 days)

P
ro

du
ce

r 
S

eg
m

en
ts

 

 

1 2 3 4 5

10

20

30

40

3500

4000

4500

5000

5500

6000

(c) ComB-SPSA2

Control steps (1 step= 190 days)

P
ro

du
ce

r 
S

eg
m

en
ts

 

 

1 2 3 4 5

10

20

30

40

3500

4000

4500

5000

5500

6000

(d) GSPSA

Control steps (1 step= 190 days)

P
ro

du
ce

r 
S

eg
m

en
ts

 

 

1 2 3 4 5

10

20

30

40

3500

4000

4500

5000

5500

6000

(e) ComGSPSA1

Control steps (1 step= 190 days)

P
ro

du
ce

r 
S

eg
m

en
ts

 

 

1 2 3 4 5

10

20

30

40

3500

4000

4500

5000

5500

6000

(f) ComGSPSA2

Figure 3.9: The estimated optimal BHP well controls obtained from one optimization
run with one initial random seed (M = 5, kmax = 450, A = 45, a0 = 1,
and c0 = 0.1; Ns = 2 and σ2 = (1, 1); µ0 = 10−7; Initial guess 1).

that we plot the field water injection rate (FWIR) minus 2700 STB/D versus the

number of simulation runs, so whenever FWIR− 2700 (STB/D) > 0 the constraint

is violated. The five curves for FWIR−2700 (STB/D) correspond to the five control

steps. As the B-SPSA algorithms approach the maximum allowable iteration num-

bers, the violation of the constraints is still not satisfied. Meanwhile, the G-SPSA

algorithms terminate when ∆βk,` ≤ 0.0006 and ∆uk,` ≤ 0.006, and the constraints

of FWIR is less than or equal to 25 STB/D (0.5% of the constraint FWIR value

2700 STB/D), i.e., satisfy the specified tolerance on the violation of the constraints.

From the early simulation runs to around the 1000th simulation run, constraints are

significantly violated. However, after several outer-loop iterations, as the penalty

parameter reduces the constraint violation also decreases. At the final simulation

run, all constraints become less than 0 STB/D (see Fig. 3.10).

The performance of the SPSA algorithms is presented in Table 3.2. Generally,

all G-SPSA algorithms obtain convergence after three or four outer-loop iterations
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Figure 3.10: Constraint violation versus simulation runs obtained from one optimiza-
tion run with one initial random seed (M = 5, kmax = 450, A = 45,
a0 = 1, and c0 = 0.1; Ns = 2 and σ2 = (1, 1); µ0 = 10−7; Initial guess
1).

and do at least one update of the Lagrange multipliers. The ComG-SPSA2 algorithm

gives the best result in term of NPV = $2.074 × 107 with the smallest number

of reservoir simulation runs, 1578, but our basic algorithm, G-SPSA still performs

adequately. Table 3.3 presents the results obtained from a variance pair of (25,5)

and (1,1). Similar to the equality constraint case, the results for the variance (1,1)

are slightly worse than those for (25,5).

Table. 3.4 presents the performance of the G-SPSA algorithm with several

different initial penalty parameters. Whenever the constraint violation is not satis-

fied, the value of penalty parameter will be reduced by 0.1 in the next outer-loop

iterations. As long as the value of the initial penalty parameter is less than or equal

to 10−4, the algorithm converges. Overall µ0 = 10−7 gives the best result. The bigger

value of the initial penalty parameter is, the greater number of outer loop-iterations

is. As we require several reduction in µ before we do not significantly violate the
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Table 3.2: The performance of different algorithms obtained from one optimization
with one initial random seed (µ0 = 10−7; Var= 1, 1; Nµ: Number of µ
updated; Nλ: Number of λ updated; (M = 5, kmax = 450, A = 45, a0 = 1,
and c0 = 0.1; Ns = 2 and σ2 = (1, 1); µ0 = 10−7; Initial guess 1).

Algorithm
Simu- Final Outer

Nµ Nλ
Conver-

lations NPV,$ -loop gence
B-SPSA 2700 2.089×107 4 4 0 No
ComB-SPSA1 2700 2.087×107 4 4 0 No
ComB-SPSA2 2700 2.052×107 4 4 0 No

GSPSA (Ns = 2) 2184 2.062×107 4 2 2 Yes
ComGSPSA1 (Ns = 2) 1830 2.047×107 3 2 1 Yes
ComGSPSA2 (Ns = 2) 1578 2.074×107 3 2 1 Yes

Table 3.3: The performance of different algorithms obtained from one optimization
with one initial random seed when we change the value of variances ( Nµ:
Number of µ updated; Nλ: Number of λ updated; M = 5, kmax = 450,
A = 45, a0 = 1, and c0 = 0.1; Ns = 2; µ0 = 10−7; Initial guess 1).

Algorithm
Simu- Final Outer

Nµ Nλ
Conver-

lations NPV,$ -loop gence
G-SPSA (σ2 = 1, 1) 2184 2.062×107 4 2 2 Yes
G-SPSA (σ2 = 25, 5) 2112 2.092×107 4 2 2 Yes

constraints.

Another comparison is done for several different initial guesses as shown in

Table. 3.5. In this case study, we run the algorithm with several different initial

guesses of the control variables as shown in Tables 3.5. Here, the control variables

of initial guess 1 and initial guess 2 start from the middle of control variable range.

The water injection rate controls of initial guess 3, initial guess 4, initial guess 5 and

initial guess 6 start from the middle of control variable range. The BHP controls of

initial guess 3 and initial guess 4 start close to the lower bound. Meanwhile the BHP

controls of initial guess 5 and initial guess 6 start close to the upper bound. Note

that in this comparison, we keep the same initial penalty parameter, µ0 = 10−7,
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Table 3.4: The performance of different algorithms obtained from one optimization
with one initial random seed when we change initial penalty parameter
(Nµ: Number of µ updated; Nλ: Number of λ updated; M = 5, kmax =
450, A = 45, a0 = 1, and c0 = 0.1; Ns = 2 and σ2 = (1, 1); initial guess 1)

µ0 λ0c,j
Simu- Final Outer

Nµ Nλ
Conver-

lations NPV,$ -loop gence

10−1 max[0,
sc,jc

0
j

µ0
] 2700 2.023×107 10 9 1 No

10−2 max[0,
sc,jc

0
j

µ0
] 2670 2.018×107 10 9 1 Yes

10−3 max[0,
sc,jc

0
j

µ0
] 2700 2.077×107 7 6 1 No

10−4 max[0,
sc,jc

0
j

µ0
] 2424 2.021×107 8 7 1 Yes

10−5 max[0,
sc,jc

0
j

µ0
] 2502 1.996×107 6 4 2 Yes

10−6 max[0,
sc,jc

0
j

µ0
] 2268 1.922×107 5 4 1 Yes

10−7 max[0,
sc,jc

0
j

µ0
] 2184 2.062×107 4 2 2 Yes

10−8 max[0,
sc,jc

0
j

µ0
] 2346 2.063×107 2 1 1 Yes

and the initial Lagrange multipliers are estimated by Eq. 3.23. Control variables

are sampled from Gaussian distribution with a pair variances of (1,1), of which the

first number corresponds to the transformed variable of BHP control and the second

number corresponds to the transformed variable of water injection rate control, and

a correlation length of Ns = 2 (Eq. 2.15). Table. 3.6 present the performance of

the G-SPSA-based augmented Lagrangian function using different initial guesses. In

Table. 3.6, both initial guess 1 and initial guess 2 give a similar final NPV of around

$2.062 × 107 (Table. 3.6). Although the number of iterations required to obtain

convergence with initial guess 2 are far fewer. Here the results for initial guess 1 are

still inferior to the results for initial guess 2. Because the water injection rate controls

for initial guess 2 at each control step are equal to 65 STB/D, the initial FWIR’s

at each control step are greater than 2700 STB/D, so the constraint is violated,

whereas with initial guess 1 of 60 STB/D, FWIR≤ 2700 STB/D is satisfied at the

initial guess 1. Thus with initial guess 2, the initial Lagrange multipliers stat at
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Table 3.5: Several different initial guesses of control variables.

Initial Guess Producer BPH control - Water injection rate control
Initial Guess 1 5750 (psi) 60 STB/D
Initial Guess 2 5750 (psi) 65 STB/D
Initial Guess 3 3501 (psi) 60 STB/D
Initial Guess 4 3501 (psi) 65 STB/D
Initial Guess 5 5999 (psi) 60 STB/D
Initial Guess 6 5999 (psi) 65 STB/D

a non-zero value, whereas they are equal to zero with initial guess 1. It may be

that the augmented Lagrangian function is less likely to suffer from ill condition.

However, as these result are based on only one initial random seed, the result are far

from conclusions. Perhaps the most important observation obtained from the result

of Table. 3.6 is that we obtained significantly inferior NPV’s with initial guesses 3

through 6. For all of this cases the initial guesses are essentially at the upper or

lower bound so in the log-transform space the value of s is close to ±∞. For these

values a perturbation in s has essentially no effect on NPV, i.e., the sensitivity of

NPV to s is essentially zero so it is very difficult to change the value of the control

variables during optimization. Moreover, with the initial stepsize order of 1, it take

many iterations to move away from a bound. The most important lesson in this

example is that the initial guess should not be close to a bound.

Finally, the results of this example suggest that the G-SPSA-based augmented

Lagrangian algorithm can be applied effectively to maximize NPV subject to linear

inequality constraints and bound constraints.

3.4.3 Production optimization with nonlinear and linear constraints

In this example, we implement production optimization for a model of hori-

zontal reservoir which has a uniform grid system, 25×25×1 with ∆x = ∆y = 200 ft.

The thickness of the reservoir is 20 ft. The fluid system is incompressible two-phase

93



Table 3.6: The performance of different algorithms obtained from one optimization
with one initial random seed when change initial guess (Nµ: Number of µ
updated; Nλ: Number of λ updated; M = 5, kmax = 450, A = 45, a0 = 1,
and c0 = 0.1; Ns = 2 and σ2 = (1, 1)).

Algorithm
Simu- Initial Final Outer

Nµ Nλ
Conver-

lations NPV,$ NPV,$ -loop gence
Initial Guess 1 2184 1.246×107 2.062×107 6 4 2 Yes
Initial Guess 2 1248 1.264×107 2.066×107 5 3 2 Yes
Initial Guess 3 204 1.278×107 1.320×107 2 1 1 Yes
Initial Guess 4 912 1.295×107 1.501×107 5 3 2 Yes
Initial Guess 5 402 1.233×107 1.867×107 3 2 1 Yes
Initial Guess 6 324 1251×107 1.832×107 2 1 1 Yes

flow of water and oil. The porosity is homogeneous for the whole reservoir. The

log-permeability distribution is shown in Fig. 3.11 and exhibits high permeability

channels. The initial reservoir pressure is 3500 psi and the initial oil saturation is

0.2.
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Figure 3.11: ln(k) distribution.
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Figure 3.12: Final oil saturation
with reactive con-
trol.

There are a total of 13 vertical wells with 4 production wells and 9 injection

wells arranged in a five-spot well pattern, as shown in Fig. 3.11. The anticipated

total project life is 1800 days and the control step size is equal to 60 days so we have

30 control steps. The total number of control variables is (4 + 9) × 30 = 390. To
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optimize the NPV, we set each injection well under rate control with a lower bound

of 0 STB/D and an upper bound of 2000 STB/D. The producer wells are under

bottom hole pressure (BHP) control with a lower bound of 1500 psi and an upper

bound of 6000 psi. The field water cut (FWCT) at each control step is required

to be less than or equal to 0.7, i.e., the nonlinear constraint is FWCT − 0.7 ≤

0. The field water injection rate at each control step is required to be less than

or equal to 5000 STB/D, i.e., the linear constraint is FWIR − 5000 (STB/D) ≤

0. All these inequality constraints are combined with the NPV to make up the

augmented Lagrangian function. In this example, there is no equality constraint so

the augmented Lagrangian function can be written as

β(u, y, µ, λ) = J(u, y)−
60∑
j=1

λc,j

[
max {cj(u, y),−λc,j

µ

sc,j
}
]

− 1

2µ

60∑
j=1

sc,j

[
max {cj(u, y),−λc,j

µ

sc,j
}
]2
.

(3.32)

where thirty non-linear inequality constraints for FWCT are calculated by

cj = FWCTh − 0.7 ≤ 0; h = 1, . . . , 30 and j = h, (3.33)

and thirty linear inequality constraints for FWIR are calculated by

cj =
9∑
i=1

qhwinj,i − 5000 (STB/D) ≤ 0; h = 1, . . . , 30, and j = h+ 30, (3.34)

where i denotes the injection well index, h denotes the control step index, and j

denotes the constraint index. The oil price is set at $50/STB, the water injection rate

cost at $0/BBL, the water production cost at $5.56/STB, and the annual discount

rate is 10%.

Here, the average of five SPSA gradients (Eq. 2.17) calculated by one-sided

simultaneous perturbation is applied to generate a steepest-ascent direction. We use
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the normalized search direction (Eq. 2.21) to update control vector. After working

with both the B-SPSA gradient and the G-SPSA gradient in some previous examples,

we see that the results coming from the B-SPSA gradient is always worse than

those coming from the G-SPSA gradient. Therefore, from this example, we only

consider the G-SPSA-based augmented Lagrangian algorithm where control variables

are sampled from Gaussian distribution with a variances pair of (1,1), of which the

first number corresponds to the transformed variable of BHP control and the second

number corresponds to the transformed variable of water injection rate control, and

a correlation length of Ns = 30 (Eq. 2.15). The value of α and γ in those equations

is again α = 0.602 and γ = 0.101. By setting the maximum number of allowable

iterations equal to 390 which is identical to the number of control variables, then we

obtain the value of A equal to 39. By setting a0 = 1.5, we obtain a = 14.03. We set

cmin = 0.547 which gives c0 = 0.1.

The initial guess for control variables is 300 STB/D for each injection well

and 3500 psi for each production well at all control steps (initial guess 1). We

set the scaling factors for inequality constraints scj = 1/Cj for all j’s. For field

water injection rate constraints, Cj is set to 0.7, j = 1, . . . , 30, and for field water

injection rate constraints, Cj is set to 5000 STB/D, j = 31, . . . , 60. The initial

penalty parameter is set to 10−7. As discussed previously, we suspect that ideally this

107 value should be on the order of 1/10 the expected value of J . The initial Lagrange

multipliers are estimated by using Eq. 3.23. The initial values of the convergence

tolerances in Eqs. 3.28 and 3.29 are ∆βk,` ≤ ε0 = 0.001, ∆uk,` ≤ ξ0 = 0.05,

respectively, and these values decrease very slowly from outer-loop iteration to outer-

loop iteration. The initial tolerance of the violation of the constraints is set to

0.0025, i.e., η0 = 0.0025. The algorithm terminates when ∆βk,` ≤ ε∗ = 0.6ε0,

∆uk,` ≤ ξ∗ = 0.6ξ0 and σcν ≤ η∗ = 0.01η0.

Fig. 3.12 shows the remaining oil saturation distribution in the reservoir ob-
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tained with reactive control and Fig. 3.13 shows the corresponding results obtained

with optimization algorithms using initial guess 1. In this case, reactive control refers

to the procedure where we simply shut in a well whenever the cost of disposing of

the produced water exceeds the oil revenue, i.e., when the WOR at the production

well exceeds 50.0/5.56 = 9.0. All optimization algorithms clearly result in a better

sweep efficiency and oil recovery than are obtained by applying reactive control.
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Figure 3.13: Remaining oil saturation distribution obtained from one optimization
run with one initial random seed (M = 5, kmax = 390, A = 39, a0 = 1.5,
and c0 = 0.1; Ns = 30 and σ2 = (1, 1); µ0 = 10−7; Initial guess 1).
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Figure 3.14: The estimated optimal BHP well controls obtained from one optimiza-
tion run with one initial random seed (M = 5, kmax = 390, A = 39,
a0 = 1.5, and c0 = 0.1; Ns = 30 and σ2 = (1, 1); µ0 = 10−7; Initial
guess 1).

The final well controls for the production wells and injection wells obtained

by different algorithms using initial guess 1 are shown in Figs. 3.14 and 3.15. The

y-axis in each sub-figure of Fig 3.14 corresponds to the four BHP controls. The

x-axis in each sub-figure corresponds to the thirty control steps. The color scale
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Figure 3.15: The estimated optimal water injection rate well controls obtained from
one optimization run with one initial random seed (M = 5, kmax = 390,
A = 39, a0 = 1.5, and c0 = 0.1; Ns = 30 and σ2 = (1, 1); µ0 = 10−7;
Initial guess 1).

corresponds to bottom- hole pressure of the production wells, with blue representing

the lowest bottom-hole pressure of producer well (1500 psi) and red representing

highest allowable bottom-hole pressure at which the production well is shut-in. The

y-axis in each sub-figure of Fig 3.15 corresponds to the nine water injection controls,

and the x-axis corresponds to the thirty control steps. The color scale corresponds

to the injection rates, with white representing a rate essentially equal to close to zero

and red representing the highest rate.

For the G-SPSA and ComG-SPSA1 algorithms, in the area around the bottom

high permeability channel, the production well Pro4 is shut in at some of the later

control steps as the water approaches production well Pro4 (see Figs. 3.13 and 3.14).

Injection well Inj9 injects at the highest rate at early control steps (see see Figs. 3.13

and 3.15). When the water approaches production well Pro4, the injection rate of

injection well Inj9 reduces to a lower value. Injection well Inj7 also injects with

a high rate (around 2000 STB/D) at some early control steps. The injection well

Inj8 injects with a rate about 1200 STB/D at some middle control steps and the

injection well Inj5 and Inj6 still inject with a high injection rate around 2000 STB/D

in the middle control steps. Overall this strategy minimizes the water approaching

production well Pro3, and production well Pro3 remains open for the whole life of
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the reservoir.

For the ComG-SPSA2 algorithm, the results are quite different as production

well Pro3 is shut in at almost all control steps and the production well Pro4 is only

shut in at some of the last control steps. Production well Pro3 is shut-in at most

control steps is that injection well Inj7 and Inj9 operate at a high injection rate

at early control steps. In the top high permeability channel, for all algorithms the

production well Pro2 is shut in at some early control steps because Inj5 works with

a high injection rate at middle control steps. BPH controls of the production well

Pro1 always remain close to the lower bound of 2000 psi. Thus production well Pro1

produces throughout the whole life of reservoir as there is still oil around this well and

water does not breakthrough in the well. From these overall results, oil is primarily

swept from bottom to top. It is consistent with the remaining oil saturation result

of Fig. 3.13.
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Figure 3.16: Constraint violation of FWCT versus simulation runs obtained from one
optimization run with one initial random seed ((M = 5, kmax = 390,
A = 39, a0 = 1.5, and c0 = 0.1; Ns = 30 and σ2 = (1, 1); µ0 = 10−7;
Initial guess 1)) .

Fig. 3.16 presents the relationship between the violation of the field water

cut constraints and the number of simulation runs with initial guess 1. In Fig. 3.16,

whenever FWCT is greater than 0.7, the constraint is violated. The thirty curves

for FWCT correspond to the thirty control steps. Fig. 3.17 presents the relationship

between the violation of the field water injection rate constraints and the number of
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Figure 3.17: Constraint violation of FWIR versus simulation runs obtained from one
optimization run with one initial random seed ((M = 5, kmax = 390,
A = 39, a0 = 1.5, and c0 = 0.1; Ns = 30 and σ2 = (1, 1); µ0 = 10−7;
Initial guess 1)).

simulation runs. We plot the field water injection rate (FWIR) minus 5000 STB/D

versus the number of simulation runs, so whenever FWIR− 5000 (STB/D) > 0 the

constraint is violated. The thirty curves for FWIR−5000 (STB/D) correspond to the

thirty control steps. The algorithm terminates when ∆βk,` ≤ 0.0006, ∆uk,` ≤ 0.03,

the violation of the constraints of FWCT is less than or equal to 0.0035 (0.5% of

the constraint FWCT value 0.7), and the violation of FWIR constraints is less than

or equal to 25 STB/D (0.5% of the constraint FWIR value 5000 STB/D. Note that

with the initial guess 1, at some early simulation runs, many constraints are violated

at early iterations but ultimately the violation of the constraints is satisfied to within

the prescribed tolerance. Thus the results illustrate the G-SPSA-based augmented

Lagrangian function works well not only with linear constraints but also with non-

linear constraints.

The NPV value and the augmented Lagrangian function value are plotted

as a function of simulation runs in Fig. 3.18. The y-axis in each sub-figure of this

figure corresponds to the NPV value and the augmented Lagrangian function value.

The x-axis of these sub-figures corresponds to simulation runs. Note that significant

decreases in the augmented Lagrangian function correspond to reducing the penalty

parameter. Table 3.7 presents the performance of all G-SPSA-based augmented
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Figure 3.18: NPV versus simulation runs obtained from one optimization run with
one initial random seed (M = 5, kmax = 390, A = 39, a0 = 1.5, and
c0 = 0.1; Ns = 30 and σ2 = (1, 1); µ0 = 10−7; Initial guess 1).

Table 3.7: The performance of different algorithms obtained from one optimization
with one initial random seed (Nµ: Number of µ updated; Nλ: Number of
λ updated; M = 5, kmax = 390, A = 39, a0 = 1.5, and c0 = 0.1; Ns = 30
and σ2 = (1, 1); µ0 = 10−7; Initial guess 1).

Algorithm
Simu- Final Outer

Nµ Nλ
Conver-

lations NPV,$ -loop gence
G-SPSA (Ns = 30) 1872 1.941×108 7 5 2 Yes
ComG-SPSA1 (Ns = 30) 1572 1.911×108 5 3 2 Yes
ComG-SPSA2 (Ns = 30) 1338 1.934×108 4 3 1 Yes

Lagrangian algorithms. All three SPSA algorithms based on Gaussian perturbation

converged to similar estimates of optimal NPV’s although ComG-SPSA2 required

far fewer simulation runs to obtain convergence.

Table 3.8 compares G-SPSA algorithm’s performance variances of (1,1) and

(25,5) using initial guess 1. The first number in each pair of variance corresponds

to the transformed variables of BHP control and the second number corresponds to

the transformed variables of water injection rate control. The initial penalty param-

eter is set to 10−7 and the initial Lagrange multipliers are calculated by Eq. 3.23.

We see that for both pairs of variances, the G-SPSA-based augmented Lagrangian

algorithm converges. The variance pair of (1,1) gives a slightly higher NPV value

than is obtained with (25,5) variances but requires twice as many iteration to require

convergence.
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Table 3.8: The performance of different algorithms obtained from one optimization
with one initial random seed when we change the value of variances (Nµ:
Number of µ updated; Nλ: Number of λ updated; M = 5, kmax = 390,
A = 39, a0 = 1.5, and c0 = 0.1; Ns = 30 and σ2 = (1, 1); µ0 = 10−7;
Initial guess 1).

Algorithm
Simu- Final Outer

Nµ Nλ
Conver-

lations NPV,$ -loop gence
G-SPSA (σ2 = 1, 1) 1872 1.941×108 7 5 2 Yes
G-SPSA (σ2 = 25, 5) 780 1.929×108 5 4 1 Yes

The violation of FWCT and FWIR constraints with different initial penalty

parameters are respectively presented in Fig. 3.19 and 3.20. Again, the y-axis in

each sub-figure of these figures corresponds to the value of the constraint violation

of FWCT and FWIR, and the x-axis in these sub-figures corresponds to the number

of simulation runs. The 30 curves in each sub-figure of these figures corresponds

respectively to FWCT − 0.7 and FWIR − 5000 STB/D. We can see that when the

algorithm terminates the violation of FWCT and FWIR constraints are always less

than the final tolerance of constraint violation. For every initial penalty parameter

used in this example, the constraints are satisfied to within the given tolerance and

convergence is obtained. Table. 3.9 presents the performance of the G-SPSA algo-

rithm using several different initial penalty parameters, the final NPV’s are similar

in all cases but the µ0 = 10−6 and µ0 = 10−7 case are somewhat abnormal as they

require far fewer iterations to convergence. However, this results is not general and

the process is stochastic we cannot draw any hand conclusions from these results.

In this example, we also test the algorithm with several different initial guesses

as shown in Table. 3.10. Initial guess 1 and initial guess 2 start from the middle of

control variable range. However, the initial Lagrange multipliers corresponding to

FWIR constraints at the initial guess 1 is set to zero as they are estimated by Eq. 3.23.

Meanwhile, the initial Lagrange multipliers corresponding to FWIR constraints at
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Figure 3.19: Constraint violation of FWCT versus simulation runs obtained from
one optimization run with one initial random seed when we change the
initial penalty parameter (M = 5, kmax = 390, A = 39, a0 = 1.5, and
c0 = 0.1; Ns = 30 and σ2 = (1, 1); Initial guess 1).

the initial guess 2 is not equal to zero. The injection rate controls of the other initial

guesses also start from the middle of control variable range. Initial guess 3 and initial

guess 4 have the BHP control variables are approximately equal to the lower bound

of 1501 psi. The BHP control variables of initial guess 5 and initial guess 6 are

approximately equal to the upper bound of 5999 psi. Note that this comparison is

done while we keep the same initial penalty parameter, µ0 = 10−7, and the initial

Lagrange multipliers are estimated by Eq. 3.23. Control variables are sampled from

Gaussian distribution with a variance pair of (1,1), of which respectively corresponds

to the transformed variables of BPH control and the transformed variables of water

injection control, and a correlation range of Ns = 30.

Fig. 3.21 presents the final controls for injection wells as the water injection

rates for each initial guess are from the middle of the allowable range. There are

significant difference in the final BPH control variables between initial guesses, es-
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Figure 3.20: Constraint violation of FWIR versus simulation runs obtained from one
optimization run with one initial random seed when we change the
initial penalty parameter (M = 5, kmax = 390, A = 39, a0 = 1.5, and
c0 = 0.1; Ns = 30 and σ2 = (1, 1); Initial guess 1).

pecially from initial guess 3 to initial guess 6, which have the initial guess of BPH

control variables approximately equal to the upper bound or the lower bound (see

Fig. 3.22).

The performance of the G-SPSA-based augmented Lagrangian algorithm us-

ing different initial guesses is shown in Table 3.11. Similar to the example in Sub-

section 3.4.2, initial guess 1 and initial guess 2 yield by far the highest NPV’s about

$1.94× 108. However, with initial guess 2, the algorithm converges after 1248 simu-

lation runs, whereas with initial guess 1, 1823 reservoir simulation runs are required

to obtain convergence. Because the water injection rate controls of initial guess 2

at each control step are set to 560 STB/D, the initial FWIR’s at each control step

are greater than constraint of 5000 STB/D so the initial Lagrange multipliers are

non-zero. As in the example of subsection 3.4.2, starting from non-zero values of λ’s

seems to speed convergence possibility because it alleviates the effect of ill condition.
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Table 3.9: The performance of different algorithms obtained from one optimization
with one initial random seed when we change the initial penalty param-
eters (Nµ: Number of µ updated; Nλ: Number of λ updated; M = 5,
kmax = 390, A = 39, a0 = 1.5, and c0 = 0.1; Ns = 30 and σ2 = (1, 1);
µ0 = 10−7; Initial guess 1).

µ0 λ0c,j
Simu- Final Outer

Nµ Nλ
Conver-

lations NPV,$ -loop gence

10−1 max[0,
sc,jc

0
j

µ0
] 1614 1.930×108 10 9 1 Yes

10−2 max[0,
sc,jc

0
j

µ0
] 1692 1.976×108 9 8 1 Yes

10−3 max[0,
sc,jc

0
j

µ0
] 1410 1.959×108 8 7 1 Yes

10−4 max[0,
sc,jc

0
j

µ0
] 1434 1.932×108 8 7 1 Yes

10−5 max[0,
sc,jc

0
j

µ0
] 1620 1.950×108 6 6 0 Yes

10−6 max[0,
sc,jc

0
j

µ0
] 888 1.910×108 4 4 0 Yes

10−7 max[0,
sc,jc

0
j

µ0
] 1872 1.941×108 7 5 2 Yes

10−8 max[0,
sc,jc

0
j

µ0
] 1074 1.923×108 3 1 2 Yes

Note that with the value of the water injection rate controls of initial guess 1, the

initial Lagrange multipliers are equal to zero. Also as in the example of subsection

3.4.2, starting with initial guesses close to their bound is a poor choice even though

the some optimal well controls may be equal to their bounds (see Fig. 3.22).

Finally, as other examples of this chapter, this example illustrates that the G-

SPSA-based augmented Lagrangian algorithm can work well to maximize the NPV

problems subject to linear and non-linear inequality constraints. Also the initial

guesses for controls should not be set equal to the bounds for the controls. Initial

guesses where the BPH control variables are close to the upper bound or the lower

bound are also not a good choice. The results again suggest that for constrained

optimization problems, we should choose initial guesses that can make the initial

Lagrange multipliers calculated by Eq. 3.23 non-zero as this condition enhances the

performance of the algorithm. A good value of the initial penalty parameter is to

set 1/µ0 equal to 10% of the expected value of NPV.
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Table 3.10: Several different initial guess of control variables.

Initial Guess Producer BPH control - Water injection rate control
Initial Guess 1 3500 (psi) 300 STB/D
Initial Guess 2 3500 (psi) 560 STB/D
Initial Guess 3 1501 (psi) 300 STB/D
Initial Guess 4 1501 (psi) 560 STB/D
Initial Guess 5 5999 (psi) 300 STB/D
Initial Guess 6 5999 (psi) 560 STB/D

Although the immediately preceding conclusion is correct for this example, it

is not a valid conclusion for other examples. Moreover, to make a consistent conclu-

sion for this example, we also should run the G-SPSA-based augmented Lagrangian

algorithm with several different initial random seeds. The computational average

results might give a reasonable conclusion that is applicable for other examples as

well.

Table 3.11: The performance of different algorithms obtained from one optimization
with one initial random seed when we change initial guess (Nµ: Number
of µ updated; Nλ: Number of λ updated; M = 5, kmax = 390, A = 39,
a0 = 1.5, and c0 = 0.1; Ns = 30 and σ2 = (1, 1); µ0 = 10−7).

Algorithm
Simu- Initial Final Outer

Nµ Nλ
Conver-

lations NPV,$ NPV,$ -loop gence
Initial Guess 1 1872 0.975×108 1.941×108 6 4 2 Yes
Initial Guess 2 1248 1.176×108 1.954×108 5 3 2 Yes
Initial Guess 3 2340 1.656×108 1.833×108 4 3 1 No
Initial Guess 4 2340 1.797×108 1.863×108 3 2 1 No
Initial Guess 5 1638 0.234×108 0.611×108 5 4 1 Yes
Initial Guess 6 1686 0.476×108 0.632×109 5 3 2 Yes

3.4.4 Production optimization for Brugge case with inequality and simple bound

constraints

In this example, we use the same reservoir model and well data as in the
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Figure 3.21: The estimated optimal water injection rate well controls obtained from
one optimization run with one initial random seed when we change
initial guess (M = 5, kmax = 390, A = 39, a0 = 1.5, and c0 = 0.1;
Ns = 30 and σ2 = (1, 1)) .

Brugge case in Chapter 1. Recall that there are 30 vertical wells in the Brugge reser-

voir, including 20 smart producing wells and 10 smart water injection wells. Each

well has three segments that can be controlled individually by inflow control valves.

We optimize the well controls for years 10 through 30 based on the mean model

obtained by Chen et al. (2010) using the ensemble Kalman filter with covariance

localization to assimilate production data for the first ten years of the reservoir life.

This example is identical to the production optimization problem for years 10-30

solved with an adjoint-gradient method in Chen et al. (2010).

The production period of the reservoir is divided into 40 control steps, i.e.,

each control step is 182.5 days. There are 84 control variables for each control step.

These control variables are the liquid production rate at each individual segment

of the production wells and the water injection rate at each individual segment of

the injection wells. The total number of control variables is 40 × 84 = 3360. The
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Figure 3.22: The estimated optimal BHP well controls obtained from one optimiza-
tion run with one initial random seed when we change initial guess
(M = 5, kmax = 390, A = 39, a0 = 1.5, and c0 = 0.1; Ns = 30 and
σ2 = (1, 1))

maximum liquid production rate of each producer segment is 3000 STB/D, and the

maximum injection rate of each injector segment is 4000 STB/D. The minimum

value for the rate of each segment in a production or an injection well is 0 STB/D.

The minimum BHP constraint for a producer segment is 725 psi; the maximum BHP

constraint for an injection well segment is 2611 psi. The BHP nonlinear constraints

are considered reactively by inputting them directly into the simulator data file. In

addition to the bound constraints, we have a large number of inequality constraints.

The total liquid production rate of the three segments of each production well j must

be less than or equal to 3000 STB/D, i.e.,

qLj ,1 + qLj ,2 + qLj ,3 ≤ 3000 (STB/D), j = 1, 2, . . . , 20. (3.35)
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Similarly the water injection rates at three segments of each injector must satisfy

qinjj ,1 + qinjj ,2 + qinjj ,3 ≤ 4000 (STB/D), j = 1, 2, . . . , 10. (3.36)

These 1200 linear inequality constraints are incorporated into the augmented La-

grangian function of Eq. 3.10. The oil price is ro = $80.0/STB, and both the water

production and the injection costs are rw = rwinj = $5.0/STB. The annual discount

rate is 10%.

The initial value for the injection rate of each injection well segment is 1333.0

STB/D, and the initial value for the liquid production rate of each production well

segment is 700 STB/D. We set the scaling factors for inequality constraints sci =

1/C2
i . For the total liquid production rate constraints of the producers, Ci = 3000

STB/D, i = 1, 2, · · · , 800 and for the total injection rate of the injectors, Ci = 4000

STB/D, i = 801, 802, · · · , 1200. The initial Lagrange multipliers are calculated by

Eq. 3.23 and the initial penalty parameter is set equal to 10−7. The initial values

of the convergence tolerances in Eqs. 3.28 and 3.29, respectively, are set to ∆βk,` ≤

ε0 = 0.005 and ∆uk,` ≤ ξ0 = 0.05, and these values decrease very slowly from

outer-loop iteration to outer-loop iteration. The initial tolerance of the violation of

the constraints is equal to 0.0025, i.e., η0 = 0.0025. The algorithm terminates when

∆βk,` ≤ ε∗ = 0.4ε0 = 0.002, ∆uk,` ≤ ξ∗ = 0.4ξ0 = 0.02 and σcν ≤ η∗ = 0.01η0, i.e.,

the violation of the constraints is less than or equal to 30 STB/D. The search direction

in Eq. 2.18 is computed from Eq. 2.17 with M = 10. A variance pair of (1,1), of which

the first number corresponds to the transformed variable of liquid production rate

and the second number corresponds to the transformed variable of water injection

rate, and Ns = 40 are applied to generate the covariance matrix CU (Eq. 2.15)

which we use to generate perturbations for calculation of stochastic gradients and

for promoting temporal smoothness of the well controls at each individual well. We
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set α = 0.602 and γ = 0.101 which are the same as recommendation of Spall (1998).

The maximum number of iterations allowable is set to the number of controls, i.e.,

set equal to 3360, we obtain A = 336. By setting the initial stepsize equal to 1.5, we

obtain a = 50.0. By setting cmin = 0.05, we obtain c = 0.113.
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Figure 3.23: Objective functions
versus simulation runs
(µ0 = 10−7).
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Figure 3.24: Constraint violation
versus simulation runs
(µ0 = 10−7).
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Figure 3.25: The estimated optimal well segment liquid production rates

The G-SPSA-based augmented Lagrangian algorithm converged after 2882

simulation runs using three outer loop iterations. The NPV increased from $3.04×109

at the initial guess for optimal well controls to $4.25× 109 at convergence. Using an

augmented Lagrangian approach with gradients computed by the adjoint method,

Chen et al. (2010) achieved a realized NPV of $4.17× 109, which is about 2% lower
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than our final NPV value. The Chen et al. result, however, only required 30 reservoir

simulation runs, two orders of magnitude fewer simulation runs than we required to

achieve our result. It is important to realize, however, the preconditioned steepest

ascent algorithm does not require adjoint capability, and to the best of our knowl-

edge, no commercial reservoir simulator provides the user the gradient of general

nonlinear constraints. The constraints for the Brugge case are linear. The G-SPSA-

based augmented Lagrangian method presented here has been applied to problems

with general nonlinear constraints as shown in previous example. The augmented

Lagrangian function and NPV are plotted versus the number of reservoir simulation

runs in Fig. 3.23, and the violation for all the group liquid production rate (GLPR)

constraints and the group water injection rate (GWIR) constraints are shown in

Fig. 3.24, where each individual curve corresponds to a specific well at a specific

control step. At convergence, all the GLPR constraints and the GWIR constraints

are satisfied within the small tolerance specified. The estimated optimal well controls

at three production wells are shown in Fig. 3.26, corresponding results for the three

injection wells are shown in Fig. 3.27. Note that at the end of the reservoir life, most

injector well segments operate at or close to the lower bound of 0 STB/D.
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Figure 3.26: The estimated optimal well segment liquid production rates.
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Figure 3.27: The estimated optimal well segment injection rates.
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CHAPTER 4

THEORETICAL COMPARISON OF SOME DERIVA- TIVE-FREE

ALGORITHMS FOR PRODUCTION OPTIMIZATION

4.1 Ensemble-Based Optimization (EnOpt)

EnOpt (ensemble-based optimization) has its roots in the work of Nwaozo

(2006) and Lorentzen et al. (2006), but the name EnOpt was coined by Chen et al.

(2009). For bang-bang control problems (Sudaryanto and Yortsos, 2000; Zandvliet

et al., 2006), Wang et al. (2009) found that using “EnOpt” to compute an approxi-

mate gradient of the NPV function did not produce the optimal bang-bang controls;

however, in most cases, we expect and prefer that well controls vary smoothly in

time. When the number of control variables is large, there may be several sets of

controls that give the same optimal value of the NPV objective function (van Essen

et al., 2009). In this case, the optimization problem has additional degrees of freedom

which may be used to achieve a second objective, e.g., to optimize NPV over the

short-term without compromising the long term (life cycle) NPV of production (van

Essen et al., 2009; Chen et al., 2011b) or finding controls which are smooth in time

but still maximize the NPV of production over the life of the reservoir. For optimal

control problems which have multiple maxima, smoothly varying controls are desir-

able for field implementation and in this case, EnOpt, as implemented by Chen et al.

(2009), appears to be a reasonably good choice. With the standard implementation

of EnOpt for robust optimization, a realization of the vector of all well control vari-

ables is generated from a prescribed Gaussian N(ū, CU) for each reservoir model, and

the associated value of NPV is calculated by running the reservoir simulator for the
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expected life of the reservoir. An approximation of the gradient preconditioned by

multiplication by CU is then approximated from the covariance between the control

vector and NPV, where this covariance matrix is approximated from the ensemble of

pairs of controls and NPV’s. Even though we do not consider robust optimization,

we can still generate multiple perturbations of the control vector about the current

estimated optimum and use these perturbed control vectors with the corresponding

values of NPV to estimate a preconditioned gradient.

Applying EnOpt to maximize the NPV as a function of the well controls for

a given reservoir model requires the generation of an ensemble of controls. This is

done by specifying a covariance matrix CU for the control vector and generating an

ensemble of Ne perturbed controls

û`j = u` + C
1/2
U Zj, j = 1, 2, . . . , Ne, (4.1)

where Zj is an nu-dimensional vector with its components given by independent

standard random normal deviates and C
1/2
U is the square root of the prior covari-

ance matrix CU . In our work we use C
1/2
U = L where CU = LLT is the Cholesky

decomposition of CU . Therefore, û`j is a sample from the Gaussian N(u`, CU). The

perturbations (u`j’s) are used to generate an approximate gradient of CU∇J(u`) where

for simplicity we use J(u) for the net present value function J [u,m, y(u,m)] defined

in Eq. 1.1. This approximation comes about by first approximating the cross co-

variance between the control variable u ∼ N(u`, CU) and the net present value J(u)

represented by the set of values J(û`j), j = 1, 2, . . . , Ne. This cross-covariance matrix

is denoted by CU`,J` and defined by

C`
U,J = cov(u`, J(u`)) ≈ 1

Ne − 1

Ne∑
j=1

(û`j − û
`
)(J(û`j)− J

`
)T , (4.2)
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where the mean of control variables appearing in Eq. 4.2 is defined as

û
`

=
1

Ne

Ne∑
j=1

û`j, (4.3)

and the mean of the NPV is defined as

J
`

=
1

Ne

Ne∑
j=1

J(û`j). (4.4)

Somewhat similar to the work of Reynolds et al. (2006), who showed the ensemble

Kalman filter update is similar to one Gauss-Newton iteration using an average

sensitivity matrix to update each ensemble member, Chen et al. (2009) derived a

formula for ensemble-based optimization (EnOpt) by using the approximations of

the following two equations:

J
` ≈ J(û

`
) ≈ J(u`), (4.5)

J(û`j) ≈ J(u`) +
(
∇uJ(u`)

)T
(û`j − u`), (4.6)

where Eq. 4.6 is simply a first-order Taylor series approximation. Moreover, Chen

et al. (2009) observed that Eq. 4.1 implies that the mean of the sample of perturbed

controls should be approximately equal to the estimate of the vector of optimal

controls at the `th iteration , i.e.,

û
` ≈ u`. (4.7)

Using the approximations of Eqs. 4.5, 4.6 and 4.7 in Eq. 4.2 gives

C`
U,J =

1

Ne − 1

Ne∑
j=1

(û`j − û
`
)(û`j − û

`
)T∇uJ(u`) ≈ CU∇uJ(u`). (4.8)

Thus, the cross-covariance between the controls and the NPV function is approx-
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imately equal to CU times the gradient of NPV, i.e., represents a preconditioned

steepest ascent direction or Newton-type method with CU used to approximate the

inverse Hessian. Instead of using this preconditioned steepest descent direction as the

search direction, however, Chen et al. (2009), multiplied again by CU for additional

smoothing to obtain the search direction

d` = CUC
`
U,J ≈ C2

U∇uJ(u`). (4.9)

Then the following equation is used to update control variables

u`+1 = u` + α`d` = u` + α`CUC
`
U,J , (4.10)

where α` is the step size. If J(u`+1) ≤ J(u`), then u`+1 is not accepted as the new

estimate of the vector of optimal controls; instead we decrease the step-size and

reapply Eq. 4.10.

Chen et al. (2009) provided no information on how to initialize the stepsize

α`0 for each iteration or perhaps more importantly what to do if d` is not an uphill

direction. Because Eqs. 4.8 and 4.9 are approximate, the search direction d` given in

Eq. 4.9 is not always an uphill direction. When Eq. 4.9 gives a downhill direction,

cutting the step size cannot be expected to finally arrive at a control vector which

will increase the value of the NPV function, J . To resolve these issues, we use a

modified implementation presented in the following paragraph. This modification is

used in all results presented in this study.

Our implementation of EnOpt is as follows: First replace Eq. 4.10 by

u`+1 = u` + α`
CUC

`
U,J

‖ CUC`
U,J ‖∞

. (4.11)

After normalization of the search direction, we set the initial stepsize α`0 to be ap-
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proximately equal to around 1/10 of the length of the smallest interval specifying

bounds on a component of the control vector, i.e.,

α`0 =
1

10
min

1≤i≤nu
{uupi − ulowi }. (4.12)

For example, if bounds on well-bore pressure controls in psi are 1500 ≤ pwf ≤ 3500,

and the bounds on the liquid flow rate in STB/D at each well are 0 ≤ q` ≤ 10, 000,

then an appropriate value of α`0 would be 200. The choice of 1/10 allow the algorithm

to fully explore the range of feasible controls in a reasonable number of iterations.

If at 10 subsequent iterations ‖ CUC`
U,J ‖∞, were given by the same component of

C`
U,J then it would be possible to reach the closest upper or lower bound on the

corresponding wellbore pressure components of the control vector in ten or fewer

iterations. As the maximum component of C`
U,J may vary from iteration to iteration,

it will of course typically take far more iterations than ten to reach a bound. The

examples considered here use the initial value of the step size given in Eq. 4.12.

Although this choice is just a rule of thumb, it has proved to be a good choice for

the examples we have done. If min1≤i≤nu [uupi −ulowi ]� max1≤i≤nu [uupi −ulowi ], it may

be preferable to rescale variables by replacing each ui by

ûi =
ui − ulowi
uupi − ulowi

, i = 1, 2, . . . , nu. (4.13)

With this rescaling the bounding interval for each ûi is [0,1]. For the problems

considered here, we have not applied the rescaling of Eq. 4.13.

In the examples presented here, we simply define CU from a spherical co-

variance function with specified variance and correlation “length” which are defined

for each case considered in the example section. This covariance function is applied

on a well by well basis so there is no correlation between controls at any two well

pairs. If with α` = α`0, the u`+1 computed from Eq. 4.11 does not increase the NPV,
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then the step size is cut in half and u`+1 is recomputed with this reduced step size.

This process of cutting the step size continues until we have obtained an increase in

the NPV or we have performed the maximum number of step size reductions that

are allowable, which is five in the examples presented here. If with the maximum

number of stepsize cuts, a u`+1 has not been found such that J(u`+1) > J(u`), then

we generate a new set of perturbed controls from Eq. 4.1 for use in Eq. 4.2 to try to

find an uphill search direction. If after five successive perturbations, an uphill direc-

tion is not found, then the algorithm is terminated. This is our first termination or

“convergence” criterion.

We also terminate the algorithm whenever the relative increase in the objec-

tive function is less than 10−4, i.e.,

|J(u`+1)− J(u`)|
J(u`)

≤ 10−4, (4.14)

and the `2 norm of the relative change in the control vector is less than 10−3, i.e.,

‖u`+1 − u`‖
max(‖u`‖, 1.0)

≤ 10−3. (4.15)

This is our second termination criterion.

As the third termination criterion, we specify the number of maximum allow-

able simulation runs as 2000 in the examples presented in this work. For all examples

presented in the paper, our modification of EnOpt was terminated by the first cri-

terion. In fact, by adding this termination criterion as opposed to using only the

second and third termination criteria, we reduced the number of iterations required

for convergence by more that 50% in all cases with negligible change in the estimated

optimal NPV.
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4.2 Simplex Gradient (SG) Method

Simplex gradients (SG) are basically the first order coefficients of polynomial

interpolation or regression models, which, in turn, are used in derivative-free trust

region methods. However, simplex gradients (SG) were used by Bortz and Kelley

(1998) in their implicit filtering method, which can be viewed as a line search method

based on simplex gradients. Tseng (1999) developed a class of simplex-based direct

search methods imposing sufficient decrease conditions. He suggested the use of

the norm of a simplex gradient in a stopping criterion for his class of methods.

No numerical results were reported with this criterion, and no other use of the

simplex gradient was suggested. In the context of the Nelder−Mead simplex-based

direct search algorithm, Kelley (1999) used the simplex gradient norm in a sufficient

decrease-type condition to detect stagnation, and the simplex gradient signs to orient

the simplex restarts.

Calculation of a simplex gradient first requires the selection of a set of sample

points. The geometrical properties of the sample set determine the quality of the

corresponding simplex gradient as an approximation to the exact gradient of the

objective function. As discussed below, Custsódio and Vicente (2007) determined

simplex gradients under general conditions.

To obtain a unique simplex gradient of J(u) where u is the nu-dimension

column vector of control variables, we must evaluate the objective function at exactly

nu + 1 independent points. The convex hull of a set of nu + 1 affinely independent

points {u`, û`1, . . . , û`nu} is called a simplex. The nu + 1 points are the vertices of

the simplex. Since the points are affinely independent, the nu × nu matrix ∆U =

[û`1 − u`, . . . , û`nu − u
`] is nonsingular. Given a simplex of vertices u`, û`, . . . , û`nu , the

simplex gradient at u` is defined as ∇uJ(u`) = ∆U−T (∆J(u`))T , with ∆J(u`) =

[J(û`1)− J(u`), . . . , J(û`nu)− J(u`)].

The simplex gradient is intimately related to linear multivariate polynomial
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interpolation. In fact, letting g denote the simplex gradient, it is easy to see that the

linear model m(u) = J(u`) + gT (u − u`) centered at u` interpolates J at the points

û`1, . . . , û
`
nu .

In practical production optimization problems, nu is large and evaluation of

J(u`) requires a reservoir simulation run so it is not computationally feasible to

evaluate J at nu + 1 points. Thus, we must generate a simplex gradient using Ne

points whereNe � nu, one might haveNe+1 6= nu+1 points from which to compute a

simplex gradient. We say that a sample set is poised for a simplex gradient calculation

if ∆U is full rank, i.e., if rank(∆U) = min{Ne, nu}. (The notions of poisedness and

affine independence coincide for Ne < nu). Given the sample set {u`, û`1, . . . , û`Ne},

the simplex gradient ∇J(u`) of J at u` can be defined as the solution g of the system

(∆U `)Tg = (∆J `)T , (4.16)

where

∆U ` = [û`1 − u`, . . . , û`Ne − u
`], (4.17)

and

∆J ` = [J(û`1)− J(u`), . . . , J(û`Ne)− J(u`)]. (4.18)

Eq. 4.16 can be solved by singular value decomposition (SVD) solution. The SVD

solution is the minimum norm solution if Ne < nu.

We can avoid using the pseudo-inverse to solve Eq. 4.16 by using a precondi-

tioned simplex gradient is defined by

CUg ≈
1

Ne − 1
(∆U `)(∆U `)Tg =

1

Ne − 1
∆U `(∆U `)T (∆U `)−T (∆J `)T

=
1

Ne − 1
(∆U `)(∆J `)T =

1

Ne − 1

Ne∑
j=1

(û`j − u`)(J(û`j)− J(u`)).
(4.19)

Therefore, assuming again that û ≈ u` and J ≈ J(u`), and using Eq. 4.6, the search
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direction based on a preconditioned simplex gradient is given by

g`ps ≡
1

Ne − 1

Ne∑
j=1

(û`j − û
`
)(û`j − û

`
)T∇uJ(u`) ≈ CU∇uJ(u`). (4.20)

As an important comment, we note that we divided by Ne − 1 in Eq. 4.19 so that

Eq.4.20 has exactly the same the form as Eq. 4.8 for EnOpt.

Similar to the EnOpt algorithm, we can multiply the search direction in

Eq. 4.20 by CU for additional smoothing to obtain the search direction given by

d` = CU`g
`
ps ≈ C2

U`∇uJ(u`). (4.21)

We also normalize the search direction to update the control variables, i.e.,

iteration of the algorithm are denoted by

u`+1 = u` + α`
CU`g

`
ps

‖ CU`g`ps ‖∞
, (4.22)

where α` is stepzise. The procedure to choose an initial stepzise α`0 is identical to

that using in the EnOpt algorithm. The convergence criteria in Eq. 4.22 are identical

to the three termination conditions used in EnOpt.

4.3 The Theoretical Connection Between Derivative-Free Algorithms

Using Easily Calculated Approximations to The Gradient or The

Preconditioned Gradient

The purpose of this section is to show that the preconditioned gradient CU∇J

used in EnOpt, G-SPSA and SG are approximately the same and to explain the

differences in the application of the associated optimization algorithms.

Reynolds et al. (2006) showed that EnKF is approximately equivalent to ap-

plying one iteration of the Gaussian-Newton method with the same average sensitiv-
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ity matrix to update each ensemble member with the ensemble member used as the

initial guess in the Gauss-Newton algorithm. We will use the same type of analysis

to show that the basis EnOpt gradient, the simplex gradient and the SPSA gradi-

ent based on Gaussian perturbation represent three different approximations of the

preconditioned gradient CU∇J(u`)

To define the preconditioned simplex method, we start with a more general

approach. We generate Ne independent samples, δû`j, j = 1, · · · , Ne from the multi-

variate Gaussian distribution N(0, C`
U) and define

û`j = u` + δûj, j = 1, . . . , Ne, (4.23)

so û`j ∼ N(u`, C`
U). Define

δJ `j = J(u` + c`δûj)− J(u`), (4.24)

where c` is a constant but can change with the iteration index `.

For simplicity in notation, we assume J(u) is a position definite quadratic

with constant real symmetric positive definite matrix H. This assumption simply

avoids truncation in the following second order Taylor series

δJ `j = J(u` + c`δûj)− J(u`) = c`∇J(u`)T δû`j +
1

2
c2`(δû

`
j)
TH(δû`j), (4.25)

which holds for j = 1, . . . , Ne. Defining

∆J ` = [δJ `1, . . . , δJ
`
Ne ], (4.26)

it follows that

∆J ` = c`(∇J(u`))T [δû`1, δû
`
2, . . . , δû

`
Ne ] + c2`e

`, (4.27)
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where

e` =
1

2
[(δû`1)

THδû`1, . . . , (δû
`
Ne)

THδû`Ne ]. (4.28)

Defining δÛ ` by

δÛ ` = [δû`1, δû
`
2, . . . , δû

`
Ne ]. (4.29)

Eq. 4.27 becomes

∆J ` = c`(∇J(u`))T δÛ ` + c2`e
`. (4.30)

Taking the transpose of Eq. 4.30 and then multiplying by 1
Ne

(δÛ `) gives

1

Ne

(δÛ `)(∆J `)T = c`
1

Ne

(δÛ `)(δÛ `)T (∇J(u`)) + c2`h
`, (4.31)

where h` = 1
Ne

(δÛ `)(e`)T .

We write Eq. 4.31 as

1

Ne

Ne∑
j=1

(δû`j)[J(u` + c`δû
`
j)− J(u`)] =

[
1

Ne

Ne∑
j=1

c`(δû
`
j)(δû

`
j)
T

]
∇J(u`) + c2`h

`, (4.32)

where we used the fact that δJ `j is a scalar so (δJ `j )
T = δJ `j .

In the preconditioned simplex gradient, we actually set c` = 1, so Eq. 4.32

becomes

g`ps =
1

Ne

Ne∑
j=1

δû`j[J(u` + δû`j)− J(u`)] =
1

Ne

Ne∑
j=1

(δû`j)(δû
`
j)
T∇J(u`)] + h`, (4.33)

where the first equality of Eq. 4.33 defines the preconditioned simplex gradient at

the `th iteration which is denoted by g`ps.
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Since E[δû`j(δû
`
j)
T ] = C`

U , taking expectation in Eq. 4.33 gives

E[g`ps] = CU`∇J(u`) + E[h`]. (4.34)

The error term h` is given by

h` =
1

2Ne

δÛ `



(δû`1)
THδû`1

(δû`2)
THδû`2

.

.

(δû`Ne)
THδû`Ne


=

1

2Ne

Ne∑
j=1

δû`j
[
(δû`j)

THδû`j
]
. (4.35)

As all δû`j ∼ N(0, C`
U), E[δû`j] = 0, so ‖h`‖ may in practice be small but there

is no way to show this term goes to zero as `→∞.

Recall from Eq. 4.23 that

δûj = û`j − u`, j = 1, . . . , Ne, (4.36)

so we may write the simplex gradient as

g`ps =
1

Ne

Ne∑
j=1

(û`j − u`)(J(û`j)− J(u`)). (4.37)

Under the additional assumption that

û
`

=
1

2Ne

Ne∑
j=1

û` ≈ u`, (4.38)

where is reasonable and that

J
`

=
1

Ne

Ne∑
j=1

J(û`j) ≈ J(u`), (4.39)
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which is reasonable if J is not too nonlinear. Eq. 4.37 can be accurately approximated

by

g`ps =
1

Ne

Ne∑
j=1

(û`j − û
`
)(J(û`j)− J

`
), (4.40)

but the basic EnOpt gradient (Wang et al., 2009) is

g`EnOpt =
1

Ne − 1

Ne∑
j=1

(û`j − û
`
)(J(û`j)− J

`
) ≈ CU`J` =

Ne

Ne− 1
g`ps. (4.41)

The reason 1/(Ne − 1) was used in Eq. 4.41 is that the second term in Eq. 4.41 is

the standard estimate of the cross-covariance matrix CU`J` . Note in Eq. 4.41, we

estimate the mean û
`

from the sample, whereas in Eq. 4.37 we did not estimate a

mean. Nevertheless, the results of Eq. 4.41 indicate that the basic EnOpt and the

preconditioned simplex gradient both to approximate in expectation CU`∇(u`), the

gradient of J preconditioned by the covariance matric CU` . Although the error term

in this two methods is slightly different, there appears to be no way to guarantee

that this error term goes to zero as `→∞.

We now divide Eq. 4.32 by c` and write the resulting equation as

1

Ne

Ne∑
j=1

[
J(u` + c`δû

`
j)− J(u`)

c`

]
(δû`j) =

[
1

Ne

Ne∑
j=1

(δû`j)(δû
`
j)
T

]
∇J(u`)+c`h

`. (4.42)

Note that left side of Eq. 4.42 represents the average of Ne SPSA gradients generated

by Gaussian perturbations, i.e.,

ĝ(u`) =
1

Ne

Ne∑
j=1

[
J(u` + c`δû

`
j)− J(u`)

c`

]
(δû`j). (4.43)

From Eq. 4.42 and the fact that E[δû`j(δû
`
j)
T ] = CU` , we got

E[ĝ(u`)] = CU`∇J(u`) + c`E[h`]. (4.44)
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Now assuming E[h`] is uniformly bounded independent of ` and we require lim`→∞ c` =

0 it follow that

lim
`→∞

E[ĝ(u`)] = CU`∇J(u`), (4.45)

thus the SPSA algorithm has a theoretically attractive property that EnOpt and

steepest ascent with a preconditioned simplex gradient do not have.

4.4 Numerical Comparison of Algorithms

4.4.1 Production Optimization with simple bound constraints for a three-channel

reservoir

In this example, we use the same reservoir model and well data as example

1 of the Chapter 1 (Fig. 4.1). It means that there are a total of 13 vertical wells

with 4 production wells and 9 injection wells arranged in a five-spot well pattern.

The anticipated total project life is 1800 days and the control step size is set equal

to 180 days so we have 10 control steps. The total number of control variables is

(4 + 9) × 10 = 130. To optimize the NPV, we set each injection well under water

injection rate control with a lower bound of 0 STB/D and an upper bound of 2000

STB/D, and each production well under bottom hole pressure (BHP) control with

a lower bound of 1500 psi and an upper bound of 6000 psi. The oil price is set at

$50/STB, the water injection rate cost at $0/BBL, the water production cost at

$5.56/STB, and the annual discount rate is 0%.

The initial guess for the water injection rate control of each injection well

is equal to 300 STB/D, and the initial guess for BHP control of each production

well is equal to 3500 psi. As always to deal with the bound constraints, we use the

log-transformation to convert the bounded control variables into unbounded control

variables, i.e., the constrained problem is turned into an unconstrained problem.
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Figure 4.1: ln(k) distribution.

For the G-SPSA algorithm, we consider M = 5 and M = 10 where M de-

notes the number of G-SPSA gradients (Eq. 2.17) to approximate the steepest ascent

direction in order to update the control variables (see 2.21). The control variables

are sampled from Gaussian distribution with variances σ2 = (1, 1), of which the

first number corresponds to the transformed variable of BHP control and the second

number corresponds to the transformed variable of water injection rate control, and

two correlation lengths of Ns = 6 and Ns = 10 (Eq. 2.15). The values of α and γ

in these equations are similar to the values suggested by Spall (1998), α = 0.602

and γ = 0.101. We set the maximum number of allowable iterations equal to 200,

which is almost two times the number of control variables (130), then by the general

procedure in Section 2.3 we obtain A = 20. By setting the value of a0 equal to 2.0, we

obtain a = 13.0. We set cmin equal to 0.0585 which gives c = 0.1. The condition for

terminating the G-SPSA algorithm is based on the maximum number of allowable

iterations.

In addition, in this example, we use the smooth G-SPSA (SmG-SPSA) al-

gorithm to optimize the NPV function. The SmG-SPSA gradient is multiplied the

G-SPSA gradient by covariance matrix CU (Eq. 2.15), i.e., the search direction of

SmG-SPSA is approximately equal to C2
U∇J(u`). Other parameters used in SmG-
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Figure 4.2: NPV versus the number of simulation runs obtained from one optimiza-
tion run of each algorithm with one initial random seed (σ2 = (1, 1);
SPSA parameters: kmax = 200, a0 = 2.0, c = 0.1; EnOpt parameters:
a0 = 1.0; SG parameters: a0 = 1.0).

SPSA are the same as used in the G-SPSA algorithm. The condition for terminating

SmG-SPSA is also based on the maximum number of allowable iterations.

For the EnOpt and the SG (Simplex gradient) algorithms, we use an ensemble

size of Ne = 5 and Ne = 10 to generate an approximate gradient. To construct the

covariance CU , we use the variance σ2 = (1, 1), of which the first number corresponds

to the transformed variable of BHP control and the second number corresponds to

the transformed variable of water injection rate control, and two correlation lengths

of Ns = 6 and Ns = 10 (Eq. 2.15). The initial step size is equal to 1. The normalized

search directions in Eqs. 4.11 and 4.22 are used to update the control variables for the

EnOpt algorithm and the SG algorithm, respectively. The condition for terminating

EnOpt and SG, respectively, is based on discussion on Section 4.1 and Section 4.2.

To compare the performance of different algorithms, all algorithms have been

tested with five different initial random seeds. The average NPV and average simula-

tion run calculated by five different optimization runs will be compared against other

results. Recall that when M = 5, we require 6 reservoir simulation runs per iteration

but with M = 10 we require 11 reservoir simulation runs per iteration. However, the
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NPV obtained from the G-SPSA and SmG-SPSA algorithms at the 1200th simulation

run is used to compare against others NPV’s obtained from EnOpt and SG which

stop at different numbers of simulation runs.

Fig. 4.2 presents the NPV versus number of simulation run for all algorithms

when we change the value of M and correlation length Ns. Note that this figure

only present the relationship between the NPV and simulation obtained from one

optimization with one initial random seed. From Fig. 4.2, we can see that when

the value of M is equal to 5, the final NPV and the convergence rate obtained

from all algorithms are similar to each other, even when the correlation lengths Ns

are set to different values. Meanwhile, when the value of M is equal to 10, the

final NPV and the simulation runs obtained from the EnOpt and SG algorithms,

which have been tested with two values of correlation length, are almost similar

to each other. However, these NPV’s and convergence rates are better than those

obtained from the G-SPSA algorithm, which have also been tested with two different

correlation lengths. This may be because in SG and EnOpt we smooth twice, i.e.,

the search direction is approximately equal to C2
U∇J(u`) whereas in G-SPSA, it is

approximately CU∇J(u`). However, convergence rates obtained from SmG-SPSA

are less than those obtained from the SG and EnOpt algorithm even though the

search direction of SmG-SPSA is also approximately equal to C2
U∇J(u`).

Similar to the final NPV and convergence rate obtained from all algorithms,

which is analyzed in the previous step, the final remaining oil saturation distributions

after optimization look very similar each other (Fig. 4.3). The final controls for

the producers and injectors obtained by different algorithms are shown in Figs 4.4

and 4.5. Note that even through the final NPV and the remaining oil distribution

obtained by different algorithms are not very different, the estimates of the optimal

controls (Figs 4.4 and 4.5) are substantially different. This again suggests that

sometimes there are multiple sets of controls which can achieve essentially the same
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∅  Pro1

∅  Pro3

∅  Pro2

∅  Pro4

⊗  Inj1 ⊗  Inj2 Inj3 ⊗

⊗  Inj4 ⊗  Inj5 Inj6 ⊗

⊗  Inj7 ⊗  Inj8 Inj9 ⊗
5 10 15 20 25

5

10

15

20

25 0.3

0.4

0.5

0.6

0.7

0.8

0.9
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Figure 4.3: Remaining oil saturation distribution obtained from one optimization run
of each algorithm (M = 5, σ2 = (1, 1); SPSA parameters: kmax = 200,
a0 = 2.0, c = 0.1; EnOpt parameter: a0 = 1.0; SG parameter: a0 = 1.0).

maximum value of NPV. Note that Sm-GSPSA, EnOpt and SG result in the smoother

final controls than those obtained from G-SPSA because Sm-GSPSA, EnOpt and SG

smooth twice. For all algorithms, when the correlation length increases, we obtain

a smoother final control variable. However, the full correlation length leads to very

smooth final control variables in the Sm-GSPSA, EnOpt and SG algorithms.

The performance of all algorithms is shown in Table 4.1. This table presents

the average NPV and the average number of simulation runs of five different opti-

mizations with five different initial random seeds. The final NPV obtained from the

SmG-SPSA and G-SPSA algorithm is always higher than the corresponding NPV
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(b) EnOpt(Ns = 6)
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Figure 4.4: The estimated optimal BPH controls obtained from one optimization
run of each algorithm (M = 5, Ns = 6 and Ns = 10, σ2 = (1, 1); SPSA
parameters: kmax = 200, a0 = 2.0, c = 0.1; EnOpt parameters: a0 = 1.0;
SG parameters: a0 = 1.0).

obtained from the EnOpt algorithm and the SG algorithm regardless of the value of

M . However, the total required number of simulation runs of the G-SPSA algorithm

is much more than those of the EnOpt and SG algorithms because it terminates only

when the maximum number of allowable simulation runs is reached. The NPV and

the total numbers of simulation runs obtained from the EnOpt algorithm are similar

to those obtained from the SG algorithm. The final NPV obtained from the G-SPSA

algorithm is always higher than that obtained from SmG-SPSA.

Finally, we summarize the results of the experimental computations.
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Figure 4.5: The estimated optimal water injection rate well controls obtained from
one optimization run of each algorithm (M = 5, Ns = 6 and Ns = 10,
σ2 = (1, 1); SPSA parameters: kmax = 200, a0 = 2.0, c = 0.1; EnOpt
parameters: a0 = 1.0; SG parameters: a0 = 1.0).

• In this example, the EnOpt and SG algorithms always terminate because no

further improvement can be made in NPV functional whereas the G-SPSA and

SmG-SPSA algorithm terminated when the maximum number of iterations

were reached. As a consequence, SmG-SPSA and G-SPSA always achieved a

higher NPV but at the expense of more reservoir simulation runs. The final

NPV’s obtained from G-SPSA are always greater than those obtained from

SmG-SPSA.

• The NPV’s and the number of simulation runs obtained with the EnOpt algo-
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Table 4.1: The performance of all algorithms obtained from five optimization runs of
each algorithm with five different initial seeds when we change the values
of M and Ns (σ2 = (1, 1); SPSA parameters: kmax = 200, a0 = 2.0,
c = 0.1; EnOpt parameters: a0 = 1.0; SG parameters: a0 = 1.0) .

Algorithm
Ns = 6 Ns = 10

Simulation Final NPV Simulation Final NPV
G-SPSA(M = 5) 1200 6.434×107 1200 6.433×107

SmG-SPSA(M = 5) 1200 6.411×107 1200 6.424×107

EnOpt(M = 5) 442 6.348×107 379 6.311×107

SGD(M = 5) 468 6.355×109 363 6.307×107

G-SPSA(M = 10) 1200 6.420×107 1200 6.427×107

SmG-SPSA(M = 10) 1200 6.414×107 1200 6.394×107

EnOpt(M = 10) 684 6.387×107 605 6.365×107

SGD(M = 10) 724 6.386×107 582 6.362×107

rithm are very close to those obtained from the SG algorithm. The final well

control are also fairly similar.

• Although the final NPV’s and the remaining oil distributions obtained from

different algorithms are not very different, the final control variables obtained

from G-SPSA are significantly different than those obtained from other algo-

rithms. This suggests that sometimes there are multiple sets of controls which

can achieve essentially the same maximum value of NPV.

• In this example using a correlation length equal to the number of control steps,

the SmG-SPSA, EnOpt and SG algorithms give very smooth final well controls

and lower NPV than is obtained with a shorter correlation length.

4.4.2 Optimization with simple bound constraints for PUNQ case

We test all algorithms with the PUNQ case used the same model and data

of Chapter 2 (Fig. 4.6). There are 7 vertical producing wells and 7 vertical water

injection wells. The reservoir life is set equal to 7600 days. The length of each control

step is set equal to 190 days. Thus, there are 40 control steps and the total number
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Figure 4.6: Well locations ( Layer-1 horizontal log permeability field), Example 1.

of control variables is equal to (7 + 7)×40 = 560. During optimization, the injection

wells are placed under water injection rate control with a lower bound of 0 STB/D

and an upper bound of 3000 STB/D. The production wells are placed under bottom

hole pressure (BHP) control with a lower bound of 1000 psi and an upper bound of

3000 psi. The oil price is $80.0/STB, the water production cost is $8.9/STB, the

water injection cost is $0.0/STB, and the annual discount rate is 0.

The initial guess for the controls is equal to 1500 STB/D for each injection rate

control and 1500 psi for each producer BHP control. The log-transformation is still

applied to hanlde the bound constraints. As always in this work, the optimization is

done in term of the transformed variables.

For G-SPSA and SmG-SPSA which smooths twice as multiplying the G-SPSA

gradient by covariance matrix CU (Eq. 2.15), the average of five (M = 5) and ten

(M = 10) G-SPSA gradients (Eq. 2.17) is used to approximate the steepest ascent

direction in order to update the control variables (Eq. 2.21). The control variables

are sampled from Gaussian distribution with variances of σ2 = (1, 1), of which the

first number corresponds to the transformed variable of BHP control and the second

number corresponds to the transformed variable of water injection rate control, and

two correlation lengths of Ns = 10 or Ns = 40 (Eq. 2.15). The values of α and γ
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Figure 4.7: NPV versus the number of simulation runs with different average num-
bers of SPSA (σ2 = (1, 1); SPSA parameters: kmax = 280, a0 = 2.0,
c = 0.1; EnOpt parameters: a0 = 1.0; SG parameters: a0 = 1.0).

in these equations are identical to the values suggested by Spall (1998), α = 0.602

and γ = 0.101. We set the maximum number of allowable iterations equal to 280,

which is one half the number of control variables (560), we obtain A = 28. By

setting the value of a0 equal to 2.0, we obtain a = 15.5. We set cmin equal to 0.0585

which gives c = 0.1. The condition for terminating the G-SPSA and SmG-SPSA

algorithms is based on the maximum number of allowable iteration. Note that when

5 SPSA gradients are used to calculate the average of SPSA gradient, 280 iterations

correspond to 1680 reservoir simulation runs, and when 10 SPSA gradients are used,

200 iterations correspond to 3080 simulation runs.

For the EnOpt and SG algorithms, we use two ensemble sizes of Ne = 5 and

Ne = 10 to generate an approximate gradients. The variance σ2 = (1, 1), of which the

first number corresponds to the transformed variable of BHP control and the second

number corresponds to the transformed variable of water injection rate control, and

two correlation lengths of Ns = 10 or Ns = 40 are used to construct the covariance CU

(Eq. 2.15). The initial step size is equal to 1 and the normalized search directions in

Eqs. 4.11 and 4.22 are used to update respectively the transformed variables for the

EnOpt algorithm and the SG algorithm, respectively. The condition for terminating
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EnOpt and SG, respectively, is based on discussion on Section 4.1 and Section 4.2.
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(a) G-SPSA(layer 2)
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(b) EnOpt(layer 2)
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(c) SGD(layer 2)
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(d) G-SPSA(layer 3)
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(e) EnOpt(layer 3)
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(f) SGD(layer 3)
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(g) SmG-GSPSA(layer 2)
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(h) SmG-GSPSA(layer 3)

Figure 4.8: Remaining oil saturation distribution obtained from one optimization
run of each algorithm (M = 5, σ2 = (1, 1); SPSA parameters: kmax =
280, a0 = 2.0, c = 0.1; EnOpt parameters: a0 = 1.0; SG parameters:
a0 = 1.0).

In this example, all algorithms also have been tested with five different initial

random seeds. We compare the average NPV and number of simulation runs calcu-

lated by five different optimizations with five different initial random seeds. For the

SmG-SPSA and G-SPSA algorithms, the NPV obtained at the 1680th simulation run

is used to compare with NPV’s obtained from other algorithms.

Similar to the previous example in Subsection 4.4.1, we plot the NPV versus

the number of simulation runs for all algorithms when we change the value of M

(number of perturbations used to estimate gradients) and the value of the correlation
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length Ns. Note that Fig. 4.7 only presents the relationship between the NPV and the

number of simulation runs obtained from one optimization with one initial random

seed but the results of Fig. 4.7 are consistent with those of Table 4.2 which are based

on the average of results from five optimizations with five different initial random

seeds. From the results of Fig. 4.7 and Table 4.2, we can see that the results obtained

from the SG and EnOpt algorithms are very similar. The final NPV obtained from

the G-SPSA algorithm is better than those of the other algorithms, but again, this

occurs because G-SPSA performs more reservoir simulation runs than the other two

algorithms do. For the EnOpt and SG algorithms, the higher the correlation length

is, the lower NPV obtained from these algorithms is. The performance of the SmG-

SPSA algorithm is worse than that of the other algorithms.

The final remaining oil saturation distributions after optimization are shown

in Fig. 4.8. There is little difference between the results obtained from the different

algorithms. The final controls for producers and injectors obtained by different algo-

rithms are shown in Figs 4.10 and 4.9. Although the final NPV and the remaining

oil distribution obtained by different algorithms are not very different, the estimates

of the optimal controls (Figs 4.10 and 4.9) obtained by G-SPSA are substantially

different from those obtained from Sm-GSPSA, SG and EnOpt because the last three

algorithms used a search direction which is approximately equal to C2
U∇J(u) which

is expected to yield less smooth controls as long is the correlation length of the co-

variance function on which CU is based has a correlation length greater than or equal

to the length of two control steps. This suggests that sometime there are multiple

sets of controls which can achieve essentially the same maximum value of NPV. For

the G-SPSA algorithm, almost all final control variables are close to either the lower

bound or the upper bound, especially, when the value of correlation length is less

than the full value. Note that SmG-SPSA, EnOpt and SG result in the smoother

final controls than those obtained from G-SPSA algorithm. For all algorithms, when
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the correlation length increases, we obtain a smoother final control variable.
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(a) G-SPSA(Ns = 10)
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(b) EnOpt(Ns = 10)
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(c) SGD(Ns = 10)
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(d) G-SPSA(Ns = 40)
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(e) EnOpt(Ns = 40)
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(f) SGD(Ns = 40)
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(g) SmG-SPSA(Ns = 10)
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(h) SmG-SPSA(Ns = 40)

Figure 4.9: The estimated optimal water injection rate well controls obtained from
one optimization run of each algorithm (M = 5, σ2 = (1, 1); SPSA
parameters: kmax = 280, a0 = 2.0, c = 0.1; EnOpt parameters: a0 = 1.0;
SG parameters: a0 = 1.0).

Finally, after working with all algorithms, we can draw some following con-

clusions based on experimental computations.

• For small values of Ns, the G-SPSA algorithm always gives a better NPV than

the EnOpt and SG algorithms but requires for more reservoir simulation runs

to obtain this result. The SmG-SPSA algorithm gives the worst results. As in

the previous example, a correlation length equal to the number of control steps

is used, the NPV obtained from the EnOpt and SG algorithms is always less
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(b) EnOpt(Ns = 10)
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(c) SGD(Ns = 10)
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(d) G-SPSA(Ns = 40)
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(e) EnOpt(Ns = 40)
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(f) SGD(Ns = 40)
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(g) SmG-SPSA(Ns = 10)
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(h) SmG-SPSA(Ns = 40)

Figure 4.10: The estimated optimal BPH controls obtained from one optimization
run of each algorithm (M = 5, σ2 = (1, 1); SPSA parameters: kmax =
280, a0 = 2.0, c = 0.1; EnOpt parameters: a0 = 1.0; SG parameters:
a0 = 1.0).

than that obtained using a small correlation length.

• The estimated optimal NPV and number of simulation runs used with the

EnOpt algorithm is very similar to those obtained with the SG algorithm.

• Although the final NPV and the remaining oil distribution obtained from differ-

ent algorithms are not very different, the final control variables are significantly

different. This suggests that sometime there are multiple sets of controls which

can achieve essentially the same maximum value of NPV.
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Table 4.2: The performance of all algorithms The performance of all algorithms ob-
tained from five optimization runs of each algorithm with five different
initial seeds when we change the values of M and Ns (σ2 = (1, 1); SPSA
parameters: kmax = 280, a0 = 2.0, c = 0.1; EnOpt parameters: a0 = 1.0;
SG parameters: a0 = 1.0).

Algorithm
Ns = 10 Ns = 40

Simulation Final NPV Simulation Final NPV
G-SPSA(M = 5) 1680 4.405×109 1680 4.398×109

SmG-SPSA(M = 5) 1680 4.398×109 1680 4.391×109

EnOpt(M = 5) 662 4.384×109 571 4.366×109

SG(M = 5) 776 4.397×109 608 4.361×109

G-SPSA(M = 10) 1680 4.418×109 1680 4.397×109

SmG-SPSA(M = 10) 1680 4.357×109 1680 4.361×109

EnOpt(M = 10) 672 4.394×109 588 4.359×109

SG(M = 10) 694 4.387×109 570 4.361×109

4.4.3 Optimization with simple bound constraints, Brugge case

In this example, we keep the same data and model for the Brugge case used

in the previous chapters. We consider only the production optimization step of

the closed-loop reservoir management problem. There are 30 vertical wells in the

Brugge reservoir including 20 smart production wells and 10 smart water injection

wells. Each well has multiple segments that can be controlled individually.

We optimize the well controls for years 10 through 30 based on the mean

model obtained by Chen et al. (2010), who used the ensemble Kalman filter with

covariance localization to assimilate production data for the first ten years of the

reservoir life. This example is identical to the production optimization problem for

year 10-30 with an adjoint-gradient method which is reported in Chen et al. (2010).

The production period of the reservoir is divided into 40 control steps, i.e.,

each control step is 182.5 day. There are 84 control variables for each control step.

These control variables are the liquid production rate at each individual segment

of the production wells and the water injection rate at each individual segment of
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the injection wells. The total number of control variables is 40 × 84 = 3360. The

maximum liquid production rate of each producer segment is 3000 STB/D and, the

maximum injection rate of each injector segment is 4000 STB/D. As we previously

explained, the control variables are transformed into the log-transform domain in

order to eliminate the bound constraints. The minimum value for the rate of each

segment in a production or an injection well is 0 STB/D. The minimum BHP con-

straint for a producer segment and the maximum BHP constraint for an injection

well segment, respectively, are 725 psi and 2611 psi. The BHP nonlinear constraints

are considered reactively by inputting them directly into the simulator data file. The

oil price is ro = $80.0/STB and both the water production and the injection costs

are rw = rwinj = $5.0/STB. The annual discount rate is 0.1. The initial value for the

injection rate of each injection well segment is 1333.3 STB/D and the initial value

for the liquid production rate of each production well segment is 700 STB/D.

For the G-SPSA and SmG-SPSA algorithms, we use the steepest-ascent method

where the stochastic gradient is approximated by the average of 10 G-SPSA gradi-

ents (Eq. 2.17). The controls of each perturbation are sampled from a Gaussian

distribution with variance σ2 = (1, 1), of which the first number corresponds to the

transformed variable of liquid production rate and the second number corresponds

to the transformed variable of water injection rate, and three correlation lengths of

Ns = 20, Ns = 30 and Ns = 40. We set the maximum number of allowable iterations

equal to 1120 which is about 1/3 the total number of control variables (3360). We

obtain the value of A = 112. Based on the previous experimental results, we choose

the initial step size a0 = 2.0, then we obtain the value of a = 35. We set the value

of cmin = 0.06187 which gives value of c = 0.1. The condition for terminating the

G-SPSA and SmG-SPSA algorithms is based on the maximum number of allowable

iterations. Note that when 10 G-SPSA gradients are used to calculate the average

gradient, 112 iterations correspond to 1232 reservoir simulation runs.
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Figure 4.11: NPV versus the number of simulation runs (M = 10, σ2 = (1, 1); SPSA
parameters: kmax = 112, a0 = 2.0, c = 0.1; EnOpt parameter: a0 = 2.0;
SG parameter: a0 = 2.0).

For the EnOpt and SG algorithms, we use the ensemble size Ne = 10 to

generate an approximate gradient. The variance σ2 = (1, 1), of which the first

number corresponds to the transformed variable of liquid production rate and the

second number corresponds to the transformed variable of water injection rate, and

three correlation lengths of Ns = 20, Ns = 30 and Ns = 40 are used to construct

the covariance CU . The initial step size is equal to 2.0 and the normalized search

directions in Eqs. 4.11 and 4.22 are used to update respectively the transformed

variables for the EnOpt algorithm and the SG algorithm, respectively. The condition

for terminating EnOpt and SG, respectively, is based on discussion on Section 4.1

and Section 4.2.

For the adjoint-gradient based algorithm (Chen et al., 2010), we set the initial

trust-region radius equal to 32 and the upper bound of the trust-region radius equal

to 512. The NPV obtained with the adjoint-gradient algorithm is about $5.162×109

after 30 simulation runs. For the adjoint-gradient algorithm, we need one forward

simulation to calculate NPV and one backward adjoint run to calculate the gradient.
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(d) EnOpt(Ns = 20)
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Figure 4.12: The estimated optimal injection well controls obtained from one opti-
mization run of each algorithm (M = 10, σ2 = (1, 1); SPSA parameters:
kmax = 112, a0 = 2.0, c = 0.1; EnOpt parameters: a0 = 2.0; SG param-
eters: a0 = 2.0).

The 30 simulation runs required for the method based on an adjoint gradient consists

of 15 forward reservoir simulation runs and 15 adjoint solutions for calculating the

gradient of NPV.

The performance of the derivative-free algorithms are summarized in Table 4.3

and Fig. 4.11. In this example, the G-SPSA algorithm using the correlation length of

Ns = 20 gives almost exactly the same NPV obtained with the SmG-SPSA, SG and

EnOpt algorithms after about 1230 reservoir simulation runs. However, when Ns =

30 and Ns = 40, the NPV’s obtained from G-SPSA with those correlation lengths

are better than those obtained from the other algorithms using the corresponding

correlation length.

The G-SPSA algorithm converged to the final NPV of $5.154 × 109 which

is slightly smaller than the NPV obtained with adjoint-gradient based algorithm.

The final controls for the producers and injectors obtained by the derivative-free
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Figure 4.13: The estimated optimal production well controls obtained from one opti-
mization run of each algorithm (M = 10, σ2 = (1, 1); SPSA parameters:
kmax = 112, a0 = 2.0, c = 0.1; EnOpt parameters: a0 = 2.0; SG param-
eters: a0 = 2.0).

algorithms and the adjoint-gradient based algorithm are shown in Figs. 4.12 and

4.13. Again, the results of Figs. 4.12 and 4.13 show that the final controls obtained

by SmG-SPSA, EnOpt and SG are smoother than the final controls obtained from

G-SPSA algorithm as expected. Note that not only are the final NPV’s obtained

by the EnOpt and SG algorithms are very different (Table 4.3), but the estimates

of the optimal controls obtained from these two algorithms (Figs. 4.12 and 4.13) are

also very similar. This suggests that sometimes there are multiple sets of controls

which can achieve essentially the same maximum value of NPV. The controls in

Fig. 4.13 show high liquid production rates for the first 30 producing segments, which

correspond to the first ten producers. These producers are located at the edge of the

main fault and are farther from the injectors than are the other producers. The wells

that are close to the injectors (the segments after 30) produce at much lower liquid

rates. The estimates of the optimal total water injection rate and segment rates
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(c) SmG-SPSA(Ns = 20)
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(d) EnOpt(Ns = 20)
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Figure 4.14: The estimated optimal well segment injection rates for Injector 2 ob-
tained from one optimization run of each algorithm (M = 10, σ2 =
(1, 1); SPSA parameters: kmax = 112, a0 = 2.0, c = 0.1; EnOpt param-
eters: a0 = 2.0; SG parameters: a0 = 2.0).

for Injector 2 as a function of time are shown in Fig. 4.14. We see that injection

rate controls estimated from G-SPSA are not as smooth as those estimated from the

other algorithms. Fig. 4.15 shows the optimized rate controls for the three segments

of producer P4 from all the algorithms.
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(b) G-SPSA(Ns = 40)
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(c) SmG-SPSA(Ns = 40)
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(d) EnOpt(Ns = 40)
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Figure 4.15: The estimated optimal well segment liquid production rates for Pro-
ducer 4 obtained from one optimization run of each algorithm (M = 10,
σ2 = (1, 1); SPSA parameters: kmax = 112, a0 = 2.0, c = 0.1; EnOpt
parameters: a0 = 2.0; SG parameters: a0 = 2.0).

Table 4.3: The performance of algorithms obtained from one optimization run of
each algorithm when we change the values of correlation length (M = 10,
σ2 = (1, 1); SPSA parameters: kmax = 112, a0 = 2.0, c = 0.1; EnOpt
parameters: a0 = 2.0; SG parameters: a0 = 2.0).

Algorithm
Ns = 20 Ns = 30 Ns = 40

Simul- Final NPV Simul- Final NPV Simul- Final NPV
G-SPSA 1232 5.142×109 1232 5.154×109 1232 5.153×109

SmG-SPSA 1232 5.140×109 1232 5.112×109 1232 5.093×109

EnOpt 1230 5.153×109 664 5.063×109 914 5.071×109

SGD 1230 5.152×109 664 5.063×109 914 5.071×109
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CHAPTER 5

DISCUSSION AND CONCLUSIONS

The main contribution of this work was the development and implementa-

tion of derivative-free optimization methods for large-scale production optimization

problems with bound, linear and nonlinear constraints. Here, we use the terminol-

ogy derivative-free rather loosely to return to methods that do not employ an adjoint

solution to calculate the gradient of the objective function. In reality, our algorithm

used approximation to the gradient or preconditioned gradient that can be calculated

far more efficiently than the finite-different approximation of each derivative in the

gradient. In the production optimization literature, well controls are often adjusted

using a gradient-based algorithm (Brouwer and Jansen, 2004; Jansen et al., 2005;

Sarma et al., 2005, 2008; Chen et al., 2010) with the gradient of the objective func-

tion that we wish to maximize computed by the adjoint method using an adjoint

formulation similar to the one presented by Li et al. (2003) for history matching.

Unfortunately, commercial simulators have limited capability for computing the gra-

dients needed for general constrained optimization with the adjoint method, which

provides the motivation for this work. In this work, we developed and applied com-

putationally efficient modification of the SPSA algorithm for constrained production

optimization problems. We also investigated combined direction stochastic approxi-

mation algorithms, including a novel one we developed, but the results obtained from

these algorithms never proved superior to the modified SPSA algorithm. Via com-

putational experiments we developed guidelines for choosing the parameters in the

SPSA algorithm. The modified SPSA algorithm which uses Gaussian perturbations
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to approximate a stochastic gradient was compared to the performance of an SPSA

algorithm which uses sample from the ±1 Bernoulli distribution. The computational

results clearly indicate that a more efficient and robust algorithm is obtained by

using Gaussian perturbations. We also compared the results of the modified SPSA

algorithm which uses Gaussian perturbations with an ensemble-based optimization

algorithm and an algorithm which uses a preconditioned simplex gradient. The

performance of the three algorithms were found to be similar and in Chapter 4,

we established a theoretical connection between the methods. In fact, we showed

that all algorithms generate an approximation of the same preconditioned gradi-

ents assuming Gaussian perturbations are used in all three algorithms. Although

the modified SPSA algorithm was originally developed for the unconstrained opti-

mization problems, we have shown that it can be applied in the inner-loop of the

augmented Lagrangian method for general nonlinear constraints as long as we first

remove the bound constraint by using a log-transformation of variables. Worked in

the log-transform domain, SPSA with Gaussian perturbations is used to estimate the

gradient of the augmented Lagrangian function at each inner-loop iteration. This

augmented Lagrangian algorithm was applied successfully to the well known Brugge

test case and was able to achieve an optimal NPV almost identical to one based on

an algorithm which used an accurate gradient computed with an adjoint method,

however, the adjoint-based algorithm was far more computationally efficient than

the SPSA-based procedure.

Based on the extensive computations we have done, we can reasonably state

that for production optimization problems of interest, the following conclusions are

valid

• The one-sided simultaneous perturbation with both Bernoulli distribution and

Gaussian distribution results in a more computationally efficient algorithm than

is obtained with a two-sided simultaneous perturbation;
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• The performance of the SPSA algorithm with a Gaussian perturbation (G-

SPSA) is always better than the algorithm’s performance with Bernoulli per-

turbation (B-SPSA);

• The performance of ComG-SPSA1 and ComG-SPSA2 is not better than the

G-SPSA algorithm’s performance;

• For both Bernoulli perturbation and Gaussian perturbation, the optimal num-

ber (M) of SPSA gradients to use to construct the search direction in a steepest-

ascent algorithm is on the order of 5 to 10;

• When we use the Gaussian perturbation, a small correlation length results in

very rough final well controls (which may not be very practical). Larger correla-

tion lengths give smoother final control values. Based on our experimentations,

a correlation length on the order of one half the number of the control steps

should be reasonable for a large class of problem.

• We can say that a good value of the implicit SPSA parameter cmin is from 0.01

to 1.0 for the bound constrained problems when we work on the log-transform

domain;

• In a production optimization problem, the maximum allowable iterations should

be roughly equal to the total number of control variables, if sufficient compu-

tation time is available. But when the number of control variables is large,

setting the maximum number of allowable iterations equal to 1/3 to 1/2 the

number of control variables will still achieve an acceptable net present value

(NPV). An initial stepsize in the range from 1.0 to 2.5 gave good results in all

examples.

• When bound constraints are removed by applying log-transformation, it is

best to use the initial guess for each control variable (in the original domain)
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ui ≈ (uupi +ulowi )/2, where uupi and ulowi , respectively, represent the upper bound

and lower bound on ui. Using uupi or ulowi is often a poor choice as it makes

difficult to escape the from the bound.

• Recall that Ns is equal to the number of perturbations used to estimate the

preconditioned gradient. For of Ns on the order of 5 to 10, the G-SPSA al-

gorithm always gives a better NPV than the EnOpt and SG algorithms do.

However, the total number of simulation runs of this G-SPSA algorithm are

always higher than those of other algorithms because SPSA continues until the

pre-specified number of iterations is reached.

• The performance of the EnOpt algorithm and the performance of the SG al-

gorithm are very similar which is expected based on the theoretical results

established in chapter 4.

• Although the final NPV and the remaining oil distribution obtained from differ-

ent algorithms are not very different, the final control variables are significantly

different. This suggests that sometimes there are multiple sets of controls which

can achieve essentially the same maximum value of NPV.

• In the Brugge case, the best NPV obtained in this experiment is the same

as the NPV obtained with the adjoint-gradient based algorithm (Chen et al.,

2011a). This is extremely encouraging result as our objective is to obtain an

optimization algorithm which does not require an adjoint code to computer the

gradient; For the Brugge example specifying the maximum number of allowable

iterations equal to one-third the total number of control variables gave good re-

sults at least compared to the NPV obtained using an accurate gradient (Chen

et al., 2011a).
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