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ABSTRACT

Ćıntia Gonçalves Machado (Doctor of Philosophy in Petroleum Engineering)

Analytical Solutions for Pressure Transient Analysis of Injection, Falloff and Flowback Data
for Two-Phase Flow Problems

Directed by Albert Coburn Reynolds Jr.

210 pp., Chapter 5: Discussions and Conclusions

(301 words)

In the petroleum industry, well testing is a common practice. A well test consists of

wellbore pressure and flow rate data acquisition to estimate parameters that govern flow in

the reservoir rock. Well tests give insight into the oil and gas field production potential and

profitability, allow the estimation of reservoir parameters and inform the decision of whether

a well needs to be stimulated. Multiphase flow is the norm in petroleum reservoirs, where

water - but also gas and gas dissolved in or alternated with water - injection is commonly

used to displace oil to a producing well. An injection-falloff test consists of a period of

fluid injection into an reservoir, followed by a period of shut-in (zero flow rate). Injection-

falloff testing is particularly important for offshore reservoirs containing high amount of

harmful gases like carbon dioxide and sulfur dissolved in the oil. In this environment, a

conventional test (production test) on an exploratory well cannot be run because the emission

of these gases to the atmosphere is harmful to the environment; hence, there is a need to

develop techniques for analyzing pressure data from injection-falloff tests. If we can return

a well to production subsequent to an injection-falloff test, then during the flowback period,

the sandface will be exposed to a range of water saturations. Consequently, the wellbore

pressure during the flowback period must be influenced by the changing water saturation

in the near wellbore region and hence must contain information about the two-phase oil-

water relative permeability and capillary pressure curves. This work presents a procedure to
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generate analytical solutions to model multiphase tests involving different physical processes

to provide an accurate and fast forward-model for well test analysis of injection-falloff and

injection-falloff-production tests, considering hysteresis and capillary pressure effects on the

wellbore pressure response.
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“The Guide is definitive. Reality is frequently inaccurate.”

— Douglas Adams in The Restaurant at the End of the Universe
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CHAPTER 1

INTRODUCTION

“Isso de começar não é fácil.

Muito mais simples é acabar.

Pinga-se um ponto final e pronto;

ou então escreve-se um latinzinho: FINIS.

Mas começar é terŕıvel.”

— “Emı́lia” in Memórias de Emı́lia by Monteiro Lobato

1.1 Background and Literature Review

In the petroleum industry, well testing is a common practice which consists of wellbore

pressure and flow rate data acquisition to estimate parameters that govern flow in the porous

media, i.e., the reservoir rock which stores the hydrocarbons. Well tests give an insight into

the oil and gas field production potential and profitability, allow the estimation of reservoir

parameters and provide the information necessary to decide whether a well needs to be

stimulated. Estimated parameters can also be used to calibrate the reservoir simulation

model, used to describe these reservoirs and forecast their performance as well as to maximize

the productivity of the wells.

Multiphase flow is the norm in petroleum reservoirs and an injection-falloff test con-

sists of a period of water or gas injection into an oil reservoir, technique known as water-

flooding or gasflooding that is commonly used to displace oil to a producing well, followed

by a period of shut-in (zero wellbore flow rate) (Figs. 1.1a, 1.1b and 1.1c). Data from an

injection-falloff test can be used to estimate reservoir rock absolute permeability, skin zone

permeability, i.e., the permeability in the damaged/stimulated zone around the well, and
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the end-point mobilities. Injection and falloff are important tests on reservoirs contain-

ing high amount of harmful gases like carbon dioxide and sulfur dissolved in the oil, which

make conventional production testing in the exploratory phase of offshore fields development

inviable.

The injection-falloff-production test was originally proposed in Chen et al. [30] and

Chen et al. [31] as a well test for the in situ estimation of two-phase relative permeability

curves to be used for simulating multiphase flows in porous media. Chen et al. [29, 30, 31]

and Machado and Reynolds [67] showed that if the well is produced after the injection-falloff

test (Fig. 1.1d), the sandface will be exposed to a range of water saturations. Conse-

quently, the wellbore pressure must be influenced by the changing water saturation in the

near wellbore region and hence must contain information about the two-phase oil-water rela-

tive permeability curves. In essence, the injection-falloff-production test is a three-stage well

test for the in situ estimation of oil-water relative permeability curves, absolute permeability

and the skin factor. Chen et al. [30] developed an approximate semi-analytical solution for

the saturation distribution during the flowback period of an IFPT, using the front tracking

approach [15, 16, 56] by applying Euler’s method to the find the shock path numerically.

Although this solution gives saturation distributions and pressure data that are in excellent

agreement with corresponding results from a reservoir simulator, the saturation solution of

Chen et al. [31] is not consistent with the mathematical theory of waves and his analysis

procedure requires very small time steps to get an accurate shock path. In this work, we

correct this deficiency; in fact, we show that the weak solution we construct for the satu-

ration equation for the flowback period by applying the method of characteristics satisfies

the Oleinik entropy condition [74] and hence is unique. Another novel feature of our work

is that we allow the governing relative permeabilities during the flow back period (drainage)

curves and their end points (points at critical saturations) to be different from the relative

permeabilities during injection (imbibition curves). Note; we have assumed throughout this

work a water-wet reservoir. Chen et al. [32] have given a few suggestions on how to run

these test in practice, as the use of flowmeters before fluid separation for better metering
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accuracy and the use of artificial lift systems, as an electrical submersible pump, to keep the

total flow rate stable.

In this work, we show how to generate a semi-analytical solution for the wellbore

pressure response during an the injection-falloff-production test (IFPT). In the pursuance of

modeling the IFPT, the Buckley-Leverett equation is used to determine the water saturation

distribution in the reservoir as a function of time by assuming a one-dimensional homoge-

neous medium containing incompressible fluids. The corresponding pressure solution can be

obtained by integrating the expression for the pressure gradient, given by Darcy’s law, from

the wellbore radius to infinity while assuming an infinite-acting reservoir. To actually evalu-

ate this integral which represents the pressure solution, however, we must first solve for water

saturation. Because Darcy’s law does not assume incompressible flow, the pressure solution

is transient and does not assume incompressible flow even though the saturation profile is

generated from a Buckley-Leverett solution. It is also important to note that the analytical

solution for pressure is derived under the assumption that the “steady-state theory” devel-

oped by [98] applies. For a water-oil system, where water is injected at a constant rate, this

steady-state theory does not assume that steady-state flow exists throughout the reservoir;

instead it assumes that, the following three conditions hold throughout the infinite-acting

radial flow period, (i) at any time t, there is a radius rss(t) such that the total flow rate

(qt(r, t)) as a function of r, is approximately constant for rw ≤ r ≤ rss(t), (ii) that rss(t)

increases as t increases and (iii) that any time t, the radius rf,inj(t) of the water front (radius

of the zone invaded by water) satisfies rf,inj(t) < rss(t), i.e., the zone in which two phases

are mobile is within the zone in which the profile of the total flow rate is constant. The ana-

lytical solution we generate does not require knowledge of rss(t), only that rf,inj(t) < rss(t).

This is fortunate because determining rss(t) at a given time t would require defining rss(t) as

the maximum radius at which qt(rss(t), t) ≈ qt(rw, t) where, qt(rw, t) is equal to the wellbore

injection/production rate, and then, determining rss(t) would depend on defining precisely

what qt(rss(t), t) ≈ qt(rw, t) means. The so-called steady-state theory is only approximate

because, given a fixed time t̂ > 0, and the corresponding rss(t̂), it implies that for any time
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t > t̂, the total flow rate out of the volume between [rw, rss(t̂)] is equal to the total flow

rate into the volume, i.e., equal to the injection/production rate. These two rates cannot be

exactly equal unless total compressibility is zero so the steady-state theory is approximate.

Based on this preceding discussion, intuition suggests that the assumption of the existence

of the steady-state zone is more tenuous if the total compressibility of the system is large.

However, this steady-state assumption has been shown to yield accurate semi-analytical

pressure solutions even for gas-condensate systems [99]. For a gas-condensate reservoir, the

steady-state assumption must be interpreted to mean the total mass rate into and the total

mass rate out of the steady-state zone are equal. While steady-state theory (conditions (i)

(ii) and (iii)) can only be verified using numerical solutions, [79] has given a semi-theoretical

argument that for any reasonable values of reservoir parameters, assumption (iii) will hold,

i.e., the radius of the two-phase flow zone will always be within the steady-state zone.

The Thompson and Reynolds [98] steady-state approach has been used previously to

generate approximate solution for injection-falloff testing [79, 82, 13], but these papers did not

consider a production test conducted subsequent to the falloff test. For injection tests, Peres

and Reynolds [79] developed an semi-analytical solution for the wellbore pressure during

water injection for both horizontal and vertical wells using the Thompson and Reynolds

[98] steady-state theory. In the vertical well case, Peres and Reynolds [79] showed that

their solution yields the injection solution of Bratvold and Horne [17] provided one makes

the Bratvold and Horne assumption that the injection solution is a unique function of the

Boltzmann transform which is valid for a finite wellbore radius well except at early times.

Bratvold and Horne [17] as well as Abbaszadeh and Kamal [1] generated an approximation to

the falloff pressure response by analogy with the shut-in solution for a single-phase composite

reservoir, whereas Peres et al. [82] approximated the falloff pressure solution by applying

superposition in an approximate way. None of these authors cited in this paragraph used

data to approximate in situ relative permeabilities curves. However, under their assumption

that the pressure and saturation are functions of the Boltzmann transform, Serra et al. [91]

and Al-Khalifa et al. [4] showed that it is possible to obtain effective permeabilities from a
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drawdown test of a homogeneous reservoir under two-phase flow (oil and gas) conditions;

this idea that was pursued further by Hatzignatiou and Reynolds [49] under the assumption

that the true in situ relative permeabilities can be accurately represented by Standing [96]

or Corey [37] equations.

This work focus on developing a procedure to generate analytical and semi-analytical

solution to model injection-falloff and and injection-falloff-production tests by showing how

to solve the nonlinear system of partial differential equations arising in testing of injection

wells in different scenarios of multiphase flow and physical phenomena. The analytical and

semi-analytical solutions developed here can be used to match pressure and water flow rate

data from an injection-falloff tests or injection-falloff-production tests, and this provides an

accurate and fast forward model compared to a numerical model, which requires extraor-

dinarily small time steps and a highly refined radial grid around the well to generate an

accurate solution. Water injection is commonly used to displace oil to a producing well, but

we also consider the in injection of gas or gas dissolved in water.

Regarding the injection of gas dissolved in water, Pope [84] presented an analytical

solution to saturation and concentration distributions during carbonated water injection into

an oil reservoir, but he ignored the CO2 adsorption phenomenon and the dependence of the

water-oil surface tension on carbon dioxide concentration in his solution. Bedrikovetsky [11]

presented an analytical solution to the hyperbolic system that governs oil displacement by

chemical solutions considering the phenomena that Pope [84] neglected, but none of these

authors cited in this paragraph has considered the effect of CO2 in the wellbore pressure

response as in Machado et al. [69, 70].

1.2 Research Objectives and Dissertation Outline

1.2.1 Research Objectives

The objectives of this research can be delineated as follows:

1. To develop a procedure to generate analytical and semi-analytical solutions to model
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wellbore pressure response during injection-falloff and and injection-falloff-production

tests involving different physical processes.

2. Consider hysteresis effects in the relative permeability curves, i.e., allow the governing

relative permeabilities during the flowback period to be different from the relative

permeabilities during injection, with water as the injected fluid.

3. Incorporate capillary pressure effects on the wellbore pressure response during injection-

falloff and and injection-falloff-production tests.

4. To investigate whether that we can match data from injection-falloff and injection-

falloff-production tests using the solutions developed and its derivatives to estimate

absolute permeability, skin factor, in-situ relative permeabilities and capillary pressure

curves.

1.2.2 Dissertation outline

This dissertation contains 5 chapters that proceed as follows:

In Chapter 2, we present a procedure to generate semi-analytical solutions for the

wellbore pressure response during an injection-falloff-production test which allows the gov-

erning relative permeabilities during the flow back period to be different from the relative

permeabilities during injection.The weak solution we construct for the saturation equation

for the flowback period satisfies the Oleinik entropy condition [74] and hence is unique [7].

By comparing results with those from a commercial simulator, we show that our approx-

imate semi-analytical solution yields an accurate prediction of the saturation profile and

bottom-hole pressure during an IFPT. Finally, we show that our analytical model can be

used to match pressure and water flow rate data from an synthetic multiphase well test in

order to estimate absolute permeability, skin factor and the parameters for in-situ relative

permeabilities..

In Chapter 3, we extend of the work presented in Chapter 2 to include capillary

pressure effects and investigate the effect of this phenomenon when estimating reservoir
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parameters from multiphase well test data.

In Chapter 4, we present a continuation of the previous solutions by considering the

possibility of a component being dissolved in the injected water. We develop an approximate

analytical solution for wellbore pressure response during a gas injection and falloff well test

in a reservoir containing oil and immobile gas considering the temperature difference between

the injected fluid and the reservoir. The gas component in the solution can be any gas, where

the oil industry usually injects carbon dioxide, nitrogen or lean gas. After validating our

solution by comparing the bottom-hole pressure data calculated from the analytical model

with the bottom-hole pressure obtained from a commercial numerical simulator GEM, we

show that our solution can be used as the forward model in a least-squares optimization

algorithm in order to estimate skin factor, reservoir absolute permeability and end-point

relative permeabilities.

We summarize the main results of this study and present recommendations for future

work in Chapter 5.

In the Appendix 1, we show the numerical details to compute the solutions developed

in this work while in Appendix 2 we provide the analytical derivatives for the solution

presented in Chapter 2.
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CHAPTER 2

ANALYTICAL SOLUTION OF PRESSURE RESPONSE

DURING IFPT

“No intelligent idea can gain general acceptance

unless some stupidity is mixed in with it.”

— Fernando Pessoa

In this chapter, we show how to develop a semi-analytical solution for the wellbore

pressure response during an the injection-falloff-production test (IFPT). In the pursuance

of modeling the IFPT, the Buckley-Leverett equation is used to determine the water sat-

uration distribution in the reservoir as a function of time by assuming a one-dimensional

homogeneous medium containing incompressible fluids. The corresponding pressure solution

can be obtained by integrating the expression for the pressure gradient, given by Darcy’s

law, from the wellbore radius to infinity while assuming an infinite-acting reservoir. To ac-

tually evaluate this integral which represents the pressure solution, however, we must first

solve for water saturation. Because Darcy’s law does not assume incompressible flow, the

pressure solution is transient and does not need to assume incompressible flow even though

the saturation profile is generated from a Buckley-Leverett solution.

As mentioned in Chapter 1, the injection-falloff-production test was originally pro-

posed in Chen et al. [30] and Chen et al. [31] as a well test for the in situ estimation of

two-phase relative permeability curves to be used for simulating multiphase flows in porous

media. Chen et al. [30] did developed an approximate semi-analytical solution for the satu-

ration distribution during the flowback period of an IFPT, using the front tracking approach

[15, 16, 56] by applying Euler’s method to the find the shock path numerically. Although

this solution gives saturation distributions and pressure data that are in excellent agreement
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with corresponding results from a reservoir simulator, the saturation solution of Chen et al.

[31] is not consistent with the mathematical theory of waves and his analysis procedure re-

quires very small time steps to get an accurate shock path. In this work, we correct this

deficiency; in fact, we show that the weak solution we construct for the saturation equa-

tion for the flowback period by applying the method of characteristics satisfies the Oleinik

entropy condition and hence is unique. Another novel feature of our work is that we allow

the governing relative permeabilities during the flow back period (drainage) curves and their

end-points (points at critical saturations) to be different from the relative permeabilities

during injection (imbibition curves).

2.1 Mathematical model

In this section, we present the semi-analytical solution for the wellbore pressure during

an Injection-Falloff-Production Test. As depicted in Fig. 1.1, the IFPT problem can be

decoupled into three stages - injection, falloff and production. At the beginning of the test,

the reservoir is assumed to be at a constant initial pressure with water saturation equal

to irreducible water saturation. First, water is injected at a constant flow rate leading to

a pressure change that propagates outward from the well. Then, the well is shut; and the

wellbore pressure tends to return to its initial condition while the saturation does not change

assuming that capillary pressure effects are negligible. Subsequently, fluids are produced at

constant total flow rate causing a pressure drop in the wellbore; this period is the production

or flowback period. The water-oil ratio (WOR) varies during the flowback period, and a range

of saturations is observed at the sandface as a function of time. For each of these stages

(three tests), the nonlinear PDE’s that describe the flow of oil and water are solved for the

water saturation distribution (Sw(r, t)), for a sequence of times and then solved for pressure.

2.1.1 Saturation Profile

We assume a one-dimensional radial flow. The mass balance equation, in radial
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coordinates, leads to the following [21] equation:

∂Sw
∂t

+
θqt

2πrhφ

dfw(Sw)

dSw

∂Sw
∂r

= 0, (2.1)

which is a first order nonlinear hyperbolic equation. Throughout, we assume porosity (φ) is

homogeneous. qt is the total liquid rate in RB/D; r and h, respectively, represent the radius

and reservoir thickness in feet ; θ represents in general a unit conversion factor where in the

oil field units used here, θ = 5.6146/24; time, t, is in hours. Neglecting capillary and gravity

effects, the water fractional flow curve is

fw(Sw) =

krw(Sw)
µw

krw(Sw)
µw

+ kro(Sw)
µo

, (2.2)

where the water and oil viscosities (µw and µo) are in centipoise and assumed to be constant.

For simplicity, we assume relative permeabilities are represented by the power-law model,

also known as the modified Brooks-Corey functions [19], given by

krw = aw

(
Sw − Siw

1− Siw − Sor

)nw
(2.3)

and

kro = ao

(
1− Sw − Sor
1− Siw − Sor

)no
, (2.4)

where aw = krw(Sw = 1− Sor), ao = kro(Sw = Siw), 0 < aw < 1 (for a water-wet reservoir),

ao is defined as 1, the exponents no and nw to range from 1 to 6. Sor denotes residual

oil saturation, and Siw denotes irreducible water saturation. Although we have assumed

a power-law model, our solution does not require any specific form of the relative perme-

ability curves, but to estimate the relative permeabilities from measured pressure data by

nonlinear regression, the relative permeability function must be parameterized because non-

linear regression routine is inherently a parameter estimation procedure; the parametrization

could be quite general, for example using B-splines [28, 31, 43]. Defining the oil and water
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mobilities, respectively by

λo =
kro
µo

(2.5)

and

λw =
krw
µw

, (2.6)

it follows that

dfw
dSw

=
dλw
dSw

(λo + λw)
−
λw
(
dλw
dSw

+ dλo
dSw

)
(λo + λw)2

. (2.7)

From

dλo
dSw

=
noao
µo

(
1− Sw − Siw
1− Siw − Sor

)no−1

= noλo

(
1− Siw − Sor
1− Sw − Siw

)
, (2.8)

dλw
dSw

=
awnw
µw

(
Sw − Siw

1− Siw − Sor

)nw−1

= nwλw

(
1− Siw − Sor
Sw − Siw

)
(2.9)

and Eq. 2.2, Eq. 2.7 can be rewritten as

dfw
dSw

= nwfw

(
1− Siw − Sor
Sw − Siw

)
−fw

[
nwfw

(
1− Siw − Sor
Sw − Siw

)
+nofo

(
1− Siw − Sor
1− Sw − Siw

)]
. (2.10)

Using fo = 1− fw, Eq. 2.10 can be rearranged as

dfw
dSw

= (fw − f 2
w)

[
nw − no

(
Sw − Siw

1− Sw − Sor

)]
. (2.11)

Taking the derivate of Eq. 2.11 with respect to Sw, yields

d2fw
dS2

w

= (1− 2fw)
fw
dSw

[
nw − no

(
Sw − Siw

1− Sw − Sor

)]
. (2.12)

Fig. 2.1 shows a plot of fw and dfw
dSw

for the case where initial water saturation, Swi, is equal

to the irreducible water saturation, Siw.
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Figure 2.1: Water fractional flow curve (dark solid curve) and its derivative (dotted curve).

The injection period of the IFPT is represented by the following Riemann problem,



∂Sw
∂t

+
θqinj
2πrhφ

∂fw(Sw)
∂r

= 0,

Sw(r, 0) =


1− Sor, r2 6 r2

w

Siw, r2 > r2
w,

(2.13)

where qinj > 0 during the injection period. Problem Eq. 2.13 has the unique admissible

entropy weak solution for a S-shaped water fractional flow curve (monotonically increasing

function with a single inflection point) can be obtained by the application of the Method of

Characteristics and is given by [21],

Sw(r, t) =



1− Sor, r2 6 θqinj
πhφ

dfw(1−Sor)
dSw

t+ r2
w( dfw

dSw

)−1( πhφ
θqinj

(r2−r2w)
t

)
,

θqinj
πhφ

dfw(1−Sor)
dSw

t < r2 − r2
w 6 θqinj

πhφ
dfw(Swf )
dSw

t

Siw, r2 >
θqinj
πhφ

dfw(Swf )
dSw

t+ r2
w,

(2.14)

where Swf represents the water front saturation, expressed in the implicit form as

dfw(Swf )

dSw
=
fw(Swf )− fw(Siw)

Swf − Siw
. (2.15)
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Note this solution consists of a uniform region at the injection well saturation condition,

1 − Sor, a family of rarefaction waves followed by a stable shock wave and then a uniform

region at initial saturation, Siw. The details of this solution can be found in [21]. Fig. 2.2

shows the shock jump slope tangent to the fractional flow curve at Sw = Swf and the

saturation distribution in the reservoir at a some time t. The rarefaction waves family spans

from 1 − Sor to Swf from rw to r = 25 ft, the water front position, i.e., the shock front

position, rs. Ahead of the water front position, there is immobile water.

During the falloff stage, to determine the saturation and the total mobility distribu-

tions, it is assumed that there is no fluid movement in the reservoir, which is reasonable

because we neglect the effects of capillary pressure, gravitational force and fluid compress-

ibilities. Consequently, to compute the water saturation profile during the production period

of the IFPT, we need to solve the following Cauchy problem:


∂Sw(r,∆tprod)

∂t
+

θqt,prod
2πrhφ

∂fw(Sw(r,∆tprod))

∂r
= 0

Sw(r, 0) = Sw(r, tinj)

(2.16)

which has a weak solution because the initial condition (Sw(r, 0)), which is given by the

saturation distribution at the end of the injection period (Sw(r, tinj)), is bounded and mea-

surable [7]. Here, tinj is the total time at the end of the injection period and ∆tprod denotes

the time during production with ∆tprod = 0 at the beginning of the production period, and

qt,prod < 0.

For the purpose of applying the method of characteristics to solve the initial value

problem given by Eq. 2.16, Eq. 2.1 can be rewritten as

∂Sw
∂t

+
θqt,prod
πhφ

dfw(Sw)

dSw

∂Sw
∂(r2)

= 0. (2.17)

The total derivative of water saturation with respect to time is given by

dSw(r2(t), t)

dt
=
∂Sw
∂t

+
∂Sw
∂(r2)

d(r2)

dt
. (2.18)
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When dSw
dt

= 0, the right hand side of Eq. 2.18 must be equal to the left hand side of Eq. 2.17

and it then follows easily that

dr2

dt
=
θqt,prod
πhφ

dfw(Sw)

dSw
, (2.19)

where dr2

dt
defines the speed of the saturation waves. Also along any characteristic curve

defined by Eq. 2.19, dSw
dt

= 0, implies that Sw is constant along this curve. Solving Eq. 2.19,

we find the characteristic curve

r2(ξ, t) =
θqt,prod
πhφ

dfw(Sw(ξ, tinj))

dSw
(t− tfoff ) + ξ (2.20)

for any starting point (ξ, tfoff ) in the (r2, t) plane. Here, t = ∆tprod + tfoff . Since during

production qt,prod < 0, the radius decreases as time increases. Note that in Figs. 2.3a,

2.3b and 2.3c, the falloff period is not considered, since we assumed no fluid motion during

falloff. Therefore, the time at which production actually begins corresponds to the total

time, tfoff , which is the total elapsed time since the beginning of the injection test and is

greater than 16 hours. Then, the production time would be the time t represented in those

figures plus the falloff period duration. If we propagate the waves from the initial condition

for the Cauchy problem given in Eq. 2.16 - Sw(r, 0) = Sw(r, tinj) - in the r-t diagram using

Eq. 2.20, we see that there is a region which contain no characteristics. Fig. 2.3a shows the

construction of these characteristic curves in the rt-plane, where the bottom curves are for

injection (0 ≤ t ≤ 16) and the top curves are for flowback (t > 16). If we fill this “void”

of information with rarefaction waves by applying Eq. 2.20 from the initial saturation to

the front saturation (Swf ), we will see that the rarefactions curves of the expansion waves

will cross the rarefaction lines of the compression waves, as a consequence of the inflection

point in the fractional flow curve between those two saturations (Fig. 2.3b), i.e., there is a

saturation discontinuity, or shock, between those two families of waves (Fig. 2.3c). The shock

is a jump in saturation and the shock speed must satisfy the Rankine-Hugoniot condition,
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i. e., we must have [66]

dr2
s

dt
=

θqt
πhφ

[fw]

[Sw]
≡ θqt,prod

πhφ

[fw(S−w )− fw(S+
w )]

[S−w − S+
w ]

, (2.21)

where rs is the shock position, while S−w and S+
w are the saturations downstream and upstream

of the shock, respectively.

The above discussion indicates that if we apply Eq. 2.20 to obtain the saturation

profile, we obtain a multivalued saturation function which is non-physical. This happens

because, as we can notice from a S-shaped of the water fractional flow curve, some waves

traveling to the producer well have higher speed than some waves corresponding to large

saturations which are also traveling to the well. Consequently, the slower waves are caught

up to by the faster ones immediately, causing a gradient catastrophe, i. e., a discontinuity in

the solution at the beginning of the production period. The resulting discontinuous solution,

must satisfy the weak form of Eq. 2.1, i. e.,

∞∫
0

∞∫
0

(
Sw(r, t)Tt(r, t) + fw(r, t)Tr(r, t)

)
2πrdrdt

+

∞∫
0

Sw(r, 0)T (r, 0)2πrdr +

∞∫
0

fw(0, t)T (0, t)2πdt = 0, (2.22)

for every test function T (r,t). Eq. 2.22 was obtained following the derivations presented in

[58] for the weak form in Cartesian coordinates. To qualify as a test function, T (r,t) must

have compact support and the derivatives Tr and Tt must exist and be continuous for all

(r, t) [58].

A question that arises now is how to determine the shock that satisfies the weak form

of Buckley-Leverett conservation equation (Eq. 2.22) and the Oleinik entropy condition for

the flowback period. To satisfy the weak form of the Buckley-Leverett equation, the area

under the discontinuous saturation profile (weak solution) must be the same as the area

under the multivalued wave profile, which we know satisfies conservation of mass. For that
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to be true, the area of the lobes of the multivalued profile cut by the shock (dashed line

in Fig. 2.4) must be the same [102]. Specifically, if we divide the saturation profile for the

production stage (flowback period) in Fig. 2.4 into three curves: Sw1(r, t) ∈ [Sw(rw, t), Swf ],

Sw2(r, t) ∈ [SwIP , Swf ] and Sw3(r, t) ∈ [SwIP , Siw], where SwIP is the inflection point (IP) of

the water fractional flow curve and Swf is the shock saturation during injection period, the

conservation law implies that at any time t we must have

rSwf∫
rs

(Sw1 − Sw2)2πrdr =

rs∫
rIP

(Sw2 − Sw3)2πrdr, (2.23)

where rs is the shock position at a time t so that A1 = A2 (Fig. 2.4), where rSwf = r(Swf , t)

and rIP = r(SwIP , t). To obtain the shock position expression for the flowback period,
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Eq. 2.23 can be rearranged as

r2Swf∫
r2s

Sw1d(r2)−

r2Swf∫
r2IP

Sw2d(r2) +

r2s∫
r2IP

Sw3d(r2) = 0. (2.24)

We can evaluate each integral in Eq. 2.24 by the following integration by parts formula:

b∫
a

Swjd(r2) = Swj(r, t)r
2|ba −

Swj(b)∫
Swj(a)

r2dSwj, j = 1, 2, 3. (2.25)

Substituting the expression for r given by Eq. 2.20 into Eq. 2.25 gives

b∫
a

Swjd(r2) = Swj(r, t)r
2|ba −

Siw(b)∫
Swj(a)

(
r2
inj +

θqt,prod∆tprod
πhφ

dfw
dSwj

)
dSwj. (2.26)

Eq. 2.26 applies at for any time t greater than the time at which the falloff period ends. We

neglect any changes in the saturation profile during the falloff period. The saturation radius

position at the end of the injection period (rinj) is defined as

r2
inj ≡ r2

inj(Sw1, tinj) = r2
w +

θqinjtinj
πhφ

dfw(Sw1)

dSw1

(2.27)

for curve Sw1 and as

r2
inj(Sw2,3, tinj) ≡ r2

f,inj = r2
w +

θqinjtinj
πhφ

dfw(Swf )

dSw2,3

(2.28)

for curves Sw2 and Sw3, where rf,inj is the radius of the water front at the end of injection

period. By using Eqs. 2.27 and 2.28 in Eq. 2.26 with j = 1 and inserting Sw1(rs, t) = S+
w
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and Sw3(rs, t) = S−w in the resulting equation, we obtain

I ≡

r2Swf∫
r2s

Sw1d(r2) = Swfr
2
f,inj − S+

w r
2
s

−
Swf∫
S+
w

(
r2
w +

θqinjtinj
πhφ

dfw(Sw1)

dSw1

+
θqt,prod∆tprod

πhφ

dfw(Sw1)

dSw1

)
dSw1, (2.29)

and by integrating the last term in Eq. 2.29, it follows that

I ≡ Swfr
2
f,inj −S+

w r
2
s − r2

w(Swf −S+
w )− θ(qinjtinj + qt,prod∆tprod)

πhφ
(fw(Swf )− fw(S+

w )). (2.30)

For the second term in Eq. 2.24, we use Eq. 2.26 with i = 2 to obtain

II ≡ −

r
S2w∫

r2IP

Sw2d(r2) =SwIP r
2
IP − Swfr2

w

−
SwIP∫
Swf

(
r2
w +

θqinjtinj
πhφ

dfw(Swf )

dSw
+
θqt,prod∆tprod

πφh

dfw(Sw2)

dSw2

)
dSw2,

(2.31)

and after integrating, it follows that

II ≡SwIP r2
IP − Swfr2

f,inj −
(
r2
w +

θqinjtinj
πhφ

dfw(Swf )

dS

)
(SwIP − Swf )

− θqt,prod∆tprod
πφh

(fw(SwIP )− fw(Swf )). (2.32)
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For the third term of Eq. 2.24, we use Eq. 2.26 with i = 3 to obtain

III ≡
r2s∫

r2IP

Sw3d(r2) = r2
sS
−
w − r2

IPSwIP

−
S−
w∫

SwIP

(
r2
w +

θqinjtinj
πφh

dfw(Swf )

dSw
+
θqt,prod∆tprod

πhφ

dfw(Sw3)

dSw3

)
dSw3 (2.33)

which after integrating yields

III ≡ r2
sS
−
w − r2

IPSwIP −
(
r2
w +

θqinjtinj
πhφ

dfw(Swf )

dS

)
(S−w − SwIP )

− θqt,prod∆tprod
πhφ

(fw(S−w )− fw(SwIP )). (2.34)

From Eq. 2.24, I + II + III = 0, which is equivalent to

r2
s(S

−
w − S+

w )− r2
w(S−w − S+

w )− θqt,prod∆tprod
πhφ

(fw(S−w )− fw(S+
w ))

− θqinjtinj
πhφ

(fw(Swf )− fw(S+
w )− dfw(Swf )

dS
(Swf − S−w )) = 0 (2.35)

and finally, solving Eq. 2.35 for rs, gives

rs(∆tprod) =

{
r2
w +

θqt,prod∆tprod
πhφ

[fw(S−w )− fw(S+)]

[S−w − S+
w ]

+

θqinjtinj
πhφ

[fw(Swf )− fw(S+
w )− (Swf − S−w ) dfw

dSw
(Swf )]

[S−w − S+
w ]

} 1
2

. (2.36)

subject to the bounds

rw ≤ rs ≤ rf,inj. (2.37)

Because gravity, capillarity and compressibilities effects are neglected when computing Sw,

Sw = Siw for r > rf,inj(tinj), which means we have only single-phase flow of oil for any

r > rf,inj(tinj). Here, S+
w is the saturation ahead of the shock and S−w is the saturation
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behind the shock, both located at rs at ∆tprod, where during production the shock is moving

towards the wellbore ,i.e, in the negative r-direction. This pair of saturations determines

the instantaneous shock speed, via the standard formula; see Eq. 2.45 which is presented

later. In addition to Eq. 2.36, we also know that the compression wave ahead of the shock

is defined by

r2
inj(S

+
w , tinj)− r2

s(∆tprod) = −θqt,prod∆tprod
πhφ

dfw
dSw

(S+
w ), (2.38)

which is obtained from Eq. 2.20 at t = ∆tprod with τ = 0 and ξ = r2(S+
w , tfoff ); i.e., ξ is the

position where the shock saturation S+
w exists at the end of the falloff, which is the same

time as the beginning of production. Since at ∆tprod = 0 we have a saturation distribution

from 1 − Sor at the well to Swf at the water front and the shock moves towards the well

during production, S+
w cannot be smaller than Swf , which means that Eq. 2.38 is subject

to the bounds

Swf ≤ S+
w (rs,∆tprod) ≤ 1− Sor. (2.39)

The expansion wave behind the shock also comes from Eq. 2.20 at t = ∆tprod with τ = 0,

but in this case, ξ is the shock front position at the end of the injection period:

r2
inj(Swf , tinj)− r2

s(∆tprod) = −θqt,prod∆tprod
πhφ

dfw
dSw

(S−w ), (2.40)

subject to the bounds

Siw ≤ S−w (rs,∆tprod) ≤ SwIP . (2.41)

Note; here the inflection point saturation, SwIP , is the upper bound. From the multivalued

function (Fig. 2.4), it is clear that there are three saturations located at the shock position,

but we need only to find S+
w and S−w , the highest and lowest saturations, respectively. The

values of S−w (t), S+
w (t) and rs(t) can be found by solving numerically the system of equations

given by Eqs. 2.36, 2.38 and 2.40 at each total time t during the flowback period. After“oil”

breakthrough, i.e., after the shock reaches the producing well, the saturation distribution will

be obtained from curve Sw3, i.e., from the expansion wave. Note that at oil breakthrough,
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rs = rw, therefore we set rs = rw in Eqs. 2.36, 2.38 and 2.40 and solve for ∆tprod, S
−
w and

S+
w at breakthrough, where this ∆tprod represents the time of breakthrough itself.

The shock is a jump in saturation that must satisfy the Rankine-Hugoniot condition,

which can be derived from the integral form of Eq. 2.1, i.e., the mass balance equation

d

dt

b2∫
a2

Sw(r, t)πd(r2) =
θqt,prod
φh

(fw(a, t)− fw(b, t)), (2.42)

which we split into two regions for a fixed point (rs(t), t) ∈ (a, b) to obtain

d

dt

( r2−s∫
a2

Sw(r, t)πd(r2) +

b2∫
r2+s

Sw(r, t)πd(r2)
)

=
θqt,prod
φh

(fw(a, t)− fw(b, t)), (2.43)

where r−s = rs − ε and r+
s = rs + ε, with constant ε. Applying Leibniz rule in the integrals

of Eq. 2.43 and dividign by π gives

r2−s∫
a2

∂Sw(r, t)

∂t
d(r2) + Sw(r2−

s , t)
dr2−

s

dt
+

b2∫
r2+s

∂Sw
∂t

(r, t)d(r2)− Sw(r2+
s , t)

dr2+
s

dt

=
θqt,prod
φπh

(fw(a, t)− fw(b, t)), (2.44)

Letting a→ r−s , b→ r+
s and ε→ 0 in Eq. 2.44 and simplifying,

dr2
s

dt
=
θqt,prod
φπh

[fw]

[Sw]
=
θqt,prod
πφh

[fw(S−w )− fw(S+
w )]

[S−w − S+
w ]

, (2.45)

which is the Rankine-Hugoniot condition. By taking the partial derivative with respect to

time of Eq. 2.36

∂r2
s

∂t
(∆tprod) =

θqt,prod
πφh

[fw(S−w )− fw(S+
w )]

[S−w − S+
w ]

. (2.46)

To prove that the solution developed satisfies the Rankine-Hugoniot condition, we can take
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the total derivative of r2
s with respect to time,

dr2
s

dt
(∆tprod) =

∂r2
s

∂t
+

∂r2
s

∂S−w

dS−w
dt

+
∂r2

s

∂S+
w

dS+
w

dt
, (2.47)

and because dS−
w

dt
(r, t) = 0 and dS+

w

dt
(r, t) = 0 since along any characteristic curve defined by

Eq. 2.19, dSw
dt

= 0, it follows that

dr2
s

dt
(∆tprod) =

∂r2
s

∂t
(∆tprod), (2.48)

which shows that Eq. 2.46 is the same as Eq. 2.45. Using Eq. 2.20 from 1−Sro to Siw, we can

plot the non-physical multivalued saturation profile for the flowback (Fig. 2.5). Fig. 2.6 shows

the saturation profile during the production period until the breakthrough time obtained by

applying the area equality shocking fitting method, where the shock jumps are represented

in the fractional flow curve in Fig. 2.7.

Unlike the injection period, we have an unstable shock, i.e., the shock saturations

(S−w (t) and S+
w (t)) are not constant with time. This phenomenon occurs because the shock

speed is higher than the speed of the saturations ahead of it and it is lower than the speed of

saturations behind it. Consequently, the shock is caught up to by the waves behind it and

the shock catches up to the waves ahead of it, thus increasing the jump in saturation and

reducing the speed of the shock. This can be seen in Fig. 2.6, which shows the saturation

at the end of the falloff period and some specified saturation profiles obtained during the

production period up to breakthrough. These profiles were obtained by applying the area

equality shocking fitting method, where the shock jumps are represented in the fractional

flow curve in Fig. 2.7. These shock jumps in addition to satisfying the weak form of the

conservation equation, they also satisfy the Oleinik entropy condition [74], which is given by

fw(S−w )− fw(Sw)

S−w − Sw
≥ fw(S−w )− fw(S+)

S−w − S+
w

≥ fw(Sw)− fw(S+)

Sw − S+
w

, (2.49)

as we can see in Fig. 2.8a and 2.8b, for any Sw ∈ (S−w , S
+
w ), and thus the solution that we
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have constructed is the unique admissible entropy solution, according to the Theorem of

Uniqueness presented in [7]. Thus, we can conclude that the saturation distribution solution

during the production period consists of a (1− Sor)− S+
w → S−w − Siw configuration, where

− represents a rarefaction fan and → represents a shock or discontinuity. In another words,

the solution consists of a family of compression waves, an unstable shock wave, a family

of rarefaction waves and a uniform region at initial condition, Siw. Translating into the

language of mathematics, the unique weak solution for the flowback period has the form

Sw(r,∆tprod) =


Sw1(r,∆tprod) =

(
dfw
dSw

)−1
( πhφ
θqt,prod

r2inj(Sw,tinj)−r2

∆tprod
), r2

w ≤ r2 6 r2
s(∆tprod)

Sw3(r,∆tprod) =
(
dfw
dSw

)−1
( πhφ
θqt,prod

r2inj(SwfInj ,tinj)−r2

∆tprod
), r2

s(∆tprod) < r2 < r2
f,inj

Siw, r2
f,inj ≤ r2,

(2.50)

where Sw1(r,∆tprod) represents the family of compression waves ahead the shock position

and Sw3(r,∆tprod) represents the family of expansion/rarefaction waves behind of it.

By analogy to the injection Riemann problem, one might think that during production

period, the shock speed would also be tangent to the water fractional flow curve, i.e.,

dfw(S−w )

dSw
=

[fw(S−w )− fw(S+
w )]

[S−w − S+
w ]

. (2.51)

Eq. 2.51 was assumed to hold in [30], but we show that, in general, Eq. 2.51 is not valid.

Substituting r2
s from Eq. 2.40 into Eq. 2.36, after squaring both sides of Eq. 2.36, yields

r2
inj(Swf , tinj)−

θqt,prod∆tprod
πhφ

dfw(S−w )

dSw
= r2

w −
θqt,prod∆tprod

πhφ

[fw(S−w )− fw(S+)]

[S−w − S+
w ]

+

θqinjtinj
πφh

[fw(Swf )− fw(S+
w )− dfw(Swf )

dSw
(Swf − S−w )]

[S−w − S+
w ]

, (2.52)
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which is equivalent to

r2
w +

θqinjtinj
πhφ

dfw(Swf )

dSw
− θqt,prod∆tprod

πhφ

dfw(S−w )

dSw
= r2

w −
θqt,prod∆tprod

πhφ

[fw(S−w )− fw(S+
w )]

[S−w − S+
w ]

+

θqinjtinj
πhφ

[fw(Swf )− fw(S+
w )− dfw(Swf )

dSw
(Swf − S−)]

[S−w − S+
w ]

, (2.53)

since r2
inj(Swf , tinj) = r2

w +
θqinjtinj
πhφ

dfw(Swf )

dSw
. Eq. 2.53 can be rearranged to obtain

− θqt,prod∆tprod
πhφ

dfw
dSw

(S−w ) = −θqt,prod∆tprod
πφh

[fw(S−w )− fw(S+
w )]

[S−w − S+
w ]

+

θqinjtinj
πhφ

[fw(Swf )− fw(S+
w )− dfw(Swf )

dSw
(Swf − S−)]− dfw(Swf )

dSw
(S−w − S+

w )

[S−w − S+
w ]

, (2.54)

or, equivalently,

− θqt,prod∆tprod
πhφ

dfw
dSw

(S−w ) = −θqt,prod∆t
πhφ

[fw(S−w )− fw(S+
w )]

[S−w − S+
w ]

+

θqinjtinj
πhφ

(fw(Swf )− fw(S+
w )− dfw(Swf )

dSw
Swf +

dfw(Swf )

dSw
S+
w )

[S−w − S+
w ]

. (2.55)

By simply grouping the terms that are multiplied by
dfw(Swf )

dSw
, we obtain

− θqt,prod∆tprod
πhφ

dfw
dSw

(S−w ) = −θqt,prod∆tprod
πhφ

[fw(S−w )− fw(S+
w )]

[S− − S+]

+

θqinjtinj
πhφ

(fw(Swf )− fw(S+
w )− dfw(Swf )

dSw
(Swf − S+

w )

[S−w − S+
w ]

, (2.56)

which is equivalent to

− θqt,prod∆tprod
πhφ

dfw
dSw

(S−) = −θqt,prod∆tprod
πhφ

[fw(S−)− fw(S+)]

[S−w − S+
w ]

+
θqinjtinj

πhφ[S−w − S+
w ]

(
fw(Swf )− fw(S+)− dfw(Swf )

dSw
[Swf − S+]

)
. (2.57)

27



From Eq. 2.57, we can see that Eq. 2.51 is true if and only if

[fw(Swf )− fw(S+
w )]

[Swf − S+
w ]

=
dfw(Swf )

dSw
, (2.58)

which is not possible for the S-shaped fractional flow curve, since the segment between Swf

and S+
w is concave. Consequently, Eq. 2.51 does not hold for the flowback solution, i.e.,

Eq. 2.51 is not consistent with Eqs. 2.36, 2.38 and 2.40, meaning that the shock speed is

not the slope of an tangent line to the water fractional flow curve. Distinct from injection,

in the production (flowback) period, we have an unstable shock, which results from the

non-uniform saturation distribution at the beginning of the production period. The speed

of the saturations behind the oil front are higher than the speed of the shock itself, which

has higher speed than the saturations ahead of it. Consequently, the shock is caught up to

by the waves behind it and also catches up to the waves ahead of it.

Note on Hysteresis Effects: It is important to note that in our model, the fluid satu-

ration distribution for the IFPT can indeed be determined assuming two different fractional

curves (Fig. 2.9b), which arise as a consequence of two sets of relative permeability curves,

imbibition and drainage (Fig. 2.9a). In this case, as we can see in Fig. 2.9b, the speed of each

saturation wave during production will be different than the speed of the corresponding wave

from the injection period. After applying the area equality shocking fitting method, we can

find the saturation profile from the end of the falloff period until breakthrough (Fig. 2.10),

where the shock jumps in the fractional flow curve are shown in Fig. 2.11. In this case, the

speed of the compression wave ahead of the shock is higher than the speed of the expansion

wave behind the water front during the injection, so the saturation at r = rw will not be

constant and equal to 1− Sor at times prior to breakthrough. In fact, the oil saturation at

the sandface drops below 1− Sor as soon as production begins.
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Figure 2.5: Non-physical multivalued saturation profile during production until BT.
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Figure 2.7: Shock jumps in the water fractional flow curve (solid black line) during flowback
(solid red lines) determined by the area equality method. The blue solid line is the shock
jump during the injection period, which is tangent to the fw curve at the point Swf .

2.1.2 Wellbore Pressure History

As mentioned previously, after finding the saturation distribution, we can obtain the

wellbore pressure by applying the pressure solutions presented by [82, 28, 31].

Injection: During injection at a constant flow rate qinj = qt(rw, t) RB/D, where t = 0

at the beginning of the water injection, by integrating Darcy’s law as in [98] and [79], the

bottom hole pressure difference from the reservoir initial pressure (pi) can be expressed as

∆pwf (t) = pwf (t)− pi =

∞∫
rw

αqt(r, t)

hλt(r, t)k(r)

dr

r
, (2.59)

where α is a unit conversion factor with α = 141.2 when oil field units are used. For injection,

qinj > 0 and

k(r) =


kskin, rw < r ≤ rskin

k, r > rskin,

(2.60)
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Figure 2.8: A graphical representation of the Oleinik entropy condition.
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Figure 2.9: Hysteresis in the relative permeability curves and its effects on the water frac-
tional flow curve.

32



r(ft)
5 10 15 20 25

S
w

0

0.2

0.4

0.6

0.8

1

∆ t
prod

Figure 2.10: Saturation profile during production period using distinct fractional flow curves
for imbibition and drainage periods.
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Figure 2.11: Shock jumps during injection and flowback using different fractional flow curves
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where rskin is the radius of the damaged zone and kskin is the permeability in the skin zone.

Let rf,inj(t) be the radius of the water front at injection time t. Using the Thompson

and Reynolds [98] steady theory, which assumes that, qt(r, t) = qinj, for r ≤ rf,inj(t), Eq. 2.59

becomes

∆pwf (t) =
αqinj
h

rf,inj(t)∫
rw

1

λt(r, t)k(r)

dr

r
+
α

h

∞∫
rf,inj(t)

qt(r, t)

λt(r, t)k(r)

dr

r
, (2.61)

Adding and subtracting the term

α

h

rf,inj(t)∫
rw

qinj

λ̂ok(r)

dr

r
,

where λ̂o = kro(Siw)
µo

is the endpoint oil mobility at Sw = Siw, Eq. 3.228 can be rewritten as

∆pwf (t) =
α

h

∞∫
rw

qt(r, t)

λ̂o(r, t)k(r)

dr

r
+
αqinj
h

rf,inj(t)∫
rw

(
1

λt(r, t)
− 1

λ̂o

)
dr

k(r)r

=∆p̂o(t) +
αqinj
h

rf,inj(t)∫
rw

(
1

λt(r, t)
− 1

λ̂o

)
dr

k(r)r
. (2.62)

Throughout, ∆p̂o(t) is the single-phase oil transient pressure drop, the known pressure drop

solution that is obtained if we inject oil into an oil reservoir. The single-phase oil transient

pressure drop (∆p̂o) can be approximated as

∆p̂o(t) = pwf,o(t)− pi =
αqinj

khλ̂o

[
1

2
ln

(
βkλ̂ot

φĉtor2
w

)
+ 0.4045 + s

]
, (2.63)

where is β is a unit conversion factor which in oil field units is 0.0002637 and

ĉto = co(1− Siw) + cwSwi + cr. (2.64)
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Falloff: During falloff, assuming that the saturation distribution remains constant

and equal to the distribution at the end of injection period (Sw(r,∆tfoff ) = Sw(r, tinj)) so

that

λt(r,∆tfoff ) = λt(r, tinj) =
krw(Sw(r, tinj))

µw
+
kro(Sw(r, tinj))

µo
. (2.65)

Following [82, 28, 31], the bottom hole pressure drop can be expressed as

∆pws(∆tfoff ) = pws(∆tfoff )− pi =

∞∫
rw

αqs(r,∆tfoff )

hλt(r, tinj)k(r)

dr

r
, (2.66)

where ∆tfoff = 0 at the beginning of the falloff period and pws(∆tfoff ) denotes the falloff

pressure at time ∆tfoff . Eq. 2.66 can be rewritten as

∆pws(∆tfoff ) =
α

h

rf,inj(tinj)∫
rw

qs(r,∆tfoff )

λt(r, tinj)k(r)

dr

r
+
α

h

∞∫
rf,inj(tinj)

qs(r,∆tfoff )

λt(r, tinj)k(r)

dr

r
, (2.67)

where qs(r,∆tfoff ) is the total flow rate profile at shut-in time, ∆tfoff . Following Peres et al.

[81] and Chen [28], we add and subtract the term

α

h

rf,inj(t)∫
rw

qos(r,∆tfoff )

λ̂ok(r)

dr

r

to Eq. 2.67 and rearrange the resulting equation to obtain

∆pws(∆tfoff ) = pws(∆tfoff )− pi

=

∞∫
rw

αqs(r,∆tfoff )

hλ̂ok(r)

dr

r
+

α

hλ̂o

rf,inj(tinj)∫
rw

(
λ̂o

λt(r, tinj)
qs(r,∆tfoff )− qos(r,∆tfoff )

)
1

k(r)

dr

r

= ∆p̂os(∆tfoff ) +
α

hλ̂o

rf,inj(tinj)∫
rw

(
λ̂o

λt(r, tinj)
qs(r,∆tfoff )− qos(r,∆tfoff )

)
1

k(r)

dr

r
. (2.68)
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Here qs(r,∆tfoff ) = qos(r,∆tfoff ) in the uninvaded zone, i.e., for r > rf,inj(tinj), where

qos(r,∆tfoff ) is the single-phase rate profile obtained during falloff after injecting oil at the

rate qinj [82]. Since we are considering only infinite-acting behavior, where the single oil

phase pressure drop that would be obtained if we had injected oil and then shut the well can

be defined from the superposition of two constant sandface flow rates solutions, i.e.,

∆p̂os(r,∆tfoff ) = ∆p̂o(r, tinj + ∆tfoff )−∆p̂o(r,∆tfoff ), (2.69)

which gives

∆p̂os(r,∆tfoff ) = pwf,o(∆tfoff )− pi =
αqinj

2khλ̂o
ln

(
tinj + ∆tfoff

∆tfoff

)
, (2.70)

with the rate schedule

qt(rw, t) =


qinj > 0, 0 < t ≤ tinj

0, tinj < t ≤ tinj + tfoff ,

(2.71)

where tfoff is the total time at the end of the falloff period and ∆tfoff = 0 at the beginning

of the falloff period. As rate superposition applies for single-phase flow, following Peres et al.

[81] and Chen [28], we use rate superposition to approximate the rate profiles as

qs(r,∆tfoff ) = qinj

[
exp

(
− φct(r, tinj)r

2

4βkλt(r, tinj)(tinj + ∆tfoff )

)
− exp

(
− φct(r, tinj)r

2

4βkλt(r, tinj)∆tfoff

)]
(2.72)

and the single oil phase flow rate

qos(r,∆tfoff ) = qinj

[
exp

(
− φĉtor

2

4βkλ̂o(tinj + ∆tfoff )

)
− exp

(
− φĉtor

2

4βkλ̂o∆tfoff

)]
, (2.73)

with

ct(r, tinj) = coSo(r, tinj) + cwSw(r, tinj) + cr. (2.74)
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Production: During production at a constant flow rate qprod = qt(rw,∆tprod) RB/D,

where ∆tprod = 0 at the beginning of the flowback period, the bottom hole pressure drop

can be expressed as [28, 31]

∆pwf (∆tprod) = pi − pwf (∆tprod) = −
∞∫

rw

αqt(r,∆tprod)

hλt(r,∆tprod)k(r)

dr

r
, (2.75)

Let rf,inj be the radius of the water front at the end of injection period, then for any time

∆tprod, such that, qt(r, t) = qprod for r ≤ rf,inj(tinj), Eq. 2.75 becomes

∆pwf (∆tprod) = −αqprod
h

rf,inj(tinj)∫
rw

1

λt(r,∆tprod)k(r)

dr

r
− α

h

∞∫
rf,inj(tinj)

qt(r,∆tprod)

λt(r,∆tprod)k(r)

dr

r
,

(2.76)

where the Thompson and Reynolds [98] steady-state theory was applied to calculate the

pressure drop with time in each stage of well testing by integrating Darcy’s equation, ignoring

capillary and gravitational effects. Obviously, the former assumption is not valid for the

whole production process. However, as shown by Chen [28], the steady-state solution will

be reached in a short time after the production starts, if the injected water bank is not

extensive. By adding and subtracting the term

α

h

rf,inj(tinj)∫
rw

qprod

λ̂ok(r)

dr

r
,
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where λ̂o is the endpoint oil mobility at Sw = Swi, which means that λt(r,∆tprod) = λ̂o for

r > rf,inj, Eq. 2.76 can be rewritten as

∆pwf (∆tprod) =− αqprod
h

rf,inj(tinj)∫
rw

(
1

λt(r,∆tprod)
− 1

λ̂o

)
dr

k(r)r
− α

h

∞∫
rw

qt(r,∆tprod)

λ̂ok(r)

dr

r

= −∆p̂op(∆tprod)−
αqprod

hλ̂o

rf,inj(tinj)∫
rw

(
λ̂o

λt(Sw(r,∆tprod))
− 1

)
1

k(r)

dr

r
,

(2.77)

where we have assumed that ∆tprod is sufficiently large so that qt(r,∆tprod) = qprod for

r ≥ rf,inj(tinj). The single-phase oil solution that would be obtained if we had injected oil

into a oil reservoir, shut the well and the produced it, ∆p̂op(∆tprod), can be determined by

the superposition of three constant sandface flow rate solutions, i.e.,

∆p̂op(∆tprod) =∆p̂o(r, tinj + tfoff + tinj)−∆p̂o(r, tfoff + ∆tprod)

+
αqprod

khλ̂o

[
1

2
ln

(
βkλ̂ot

φĉtor2
w

)
+ 0.4045 + s

]
, (2.78)

which gives

∆p̂op(∆tprod) =
α

khλ̂o

{
qinj
2

ln

(
tinj + tfoff + ∆tprod

tfoff + ∆tprod

)
+ qprod

[
1

2
ln

(
βkλ̂o
φĉtor2

w

∆tprod

)
+ 0.4045 + s

]}
, (2.79)

with the rate schedule:

qt(rw, t) =


qinj > 0, 0 < t ≤ tinj

0, tinj < t ≤ tfoff

qprod < 0, t > tfoff .

(2.80)

Figs. 2.12 and 2.13 show the bottomhole pressure behavior for the IFPT with and
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Figure 2.12: Wellbore pressure during IFP well testing with and without skin effect.

without skin and hysteresis effects, respectively.

2.2 Validation

“There he is, bent over the page, with a monocle in his right eye,

wholly devoted to the noble but rugged task of ferreting out the error.”

— “Brás Cubas”

in Memórias Póstumas de Brás Cubas by Machado de Assis

The semi-analytical solution developed for the IFPT was compared with the solution

from the commercial numerical simulator IMEX, using the properties shown in Table 2.1.

To obtain IMEX results which matched our semi-analytical, we were forced to use very small

time steps as well as highly refined radial grids in the IMEX simulator. In the results shown,

we set the grid size in the area invaded by injected water equal to 0.01 ft then increased

it geometrically by the factor of 1.013 until reaching the outer radius of the reservoir. We

choose an initial time step of 10−7 days to get convergence at the first time step and then

39



0 10 20 30 40 50 60
1900

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900
Injection−Falloff−Production

time (hrs)

p w
f (

ps
i)

 

 
w/o Hyst
w/ Hyst

Figure 2.13: Wellbore pressure during IFP well testing with and without hysteresis effect.

increase the time step geometrically using a factor of 1.05. After each rate change, we

reinitialized the time step to 10−7 days and then increased it again using 1.05 as the time

step multiplier. Fig. 2.14 compares the bottom hole pressure obtained from our analytical

solution with the reservoir simulation results and Fig. 2.15 presents the comparison between

the saturation profiles from IMEX and our analytical solution. Note the two sets of results

are in excellent agreement.

Although the assumption of the steady-state zone has been verified previously for in-

jection and production tests, Figures 2.16a and 2.16b are provided to illustrate the feasibility

of using the steady-state theory for both the injection and flowback periods. Note that these

two figures show the relationship between the water saturation and total flow rate profile

at two different times during injection and production; these results were generated from a

reservoir simulator using fine spatial grids and small time steps. Both figures show that the

total rate profile is approximately constant in a region close to the wellbore and that the

radius of the region in which the total rate is constant increases with time. Moreover, as

illustrated in Fig. 2.16a, the computational results show that for t > 0 hours, the two-phase
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flow region lies with the constant total rate steady-state zone. However, in Fig. 2.16b, we see

that, flowback period, the total rate is not constant inside the two-phase zone until sometime

after 0.3 hour where in this plot, t = 0 corresponds to the time as which the production

period begins. The fact that steady-state theory is not applicable at very early-times during

the production period emanates from the fact that, when the production begins, there is

already a sizable region where two-phase are mobile due to the preceding water injection

period.

Table 2.1: Reservoir, rock and fluid properties for simulation and analytical solution.

Property Value Unit

qinj 3000 RB/DAY
qprod -3000 RB/DAY
h 60 ft
rw 0.35 ft
re 6800 ft
k 300 md
s 0
aw 0.5
ao 1
nw 2
noI 2
no 1.5
Siw 0.1
Sor 0.25
pi 2500 psi
φ 0.22
Bo 1.003 RB/STB
Bw 1.002 RB/STB
co 8.0× 10−6 ft
cw 3.02× 10−6 ft
cr 5.0× 10−6 ft
µo 3.0 cp
µw 0.5 cp
tinj 16 h
tfoff 32 h
tprod 56 h

Using the saturation profile at the end of the water injection as the initial condition,

we showed that the saturation profile in the reservoir at different production times can be
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Figure 2.16: Relationship between water saturation and total flow rate profile during injec-
tion (a) and production (b).
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Figure 2.17: Comparison of shock path obtained from front tracking (FT) and area equality
(EA) shocking fitting methods.

obtained. Figs. 2.17 and 2.18 compare the solution we obtained based on area equality with

the front tracking method which has as its basis the integration of Eq. 2.45.
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Figure 2.18: Comparison of shock saturations obtained from front tracking (FT) and area
equality (EA) shocking fitting methods.

In the front tracking approach, Euler’s method can be applied to find the shock path
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numerically, with initial conditions given by

IC : S−w (r, 0) = Siw, S+
w (r, 0) = Swf , rs(0) = rf,inj. (2.81)

We assume that shock speed is constant throughout each time step (∆tn = tn − tn−1), and

integrating Eq. 2.45 over the time step gives the change in the radius square of the shock

over the time step ∆tn,

∆r2
s(t

n) ≡ r2
s(t

n)− r2
s(t

n−1) =
θqt,prod∆t

πhφ

[fw(S−w (tn−1))− fw(S+
w (tn−1))]

[S−w (tn−1)− S+
w (tn−1)]

. (2.82)

From Eq. 2.82, it follows that the updated shock position squared at the end of the time

step is given by,

r2
s(t

n) = r2
s(t

n−1) +
θqt,prod∆t

πhφ

[fw(S−w (tn−1))− fw(S+
w (tn−1))]

[S−w (tn−1)− S+
w (tn−1)]

. (2.83)

Given r2
s , S

−
w and S+

w can be obtained by solving

r2
inj(S

+
w , tinj)− r2

s(t
n) = −θqt,prodt

n

πhφ

dfw
dSw

(S+
w (tn)) (2.84)

and

r2
inj(Swf , tinj)− r2

s(t
n) = −θqt,prodt

n

πhφ

dfw
dSw

(S−w (tn)), (2.85)

for dfw
dSw

(S+
w (tn)) and dfw

dSw
(S−w (tn)) and then S+

w and S−w can be computed from the water

fractional flow derivative curve. The only disadvantage of this method is that it is necessary

to use a small time step to obtain an accurate shock path because the method assumes ∆tn is

sufficiently small so the shock speed does not change within the time step. The best approach

(less expensive computationally) to use depends on the amount of data to be matched in

the well testing application. If successive data points in time are closely spaced so that very

small time steps must be used to predict data at observations, the front-tracking procedure

would be more efficient than the area equality method.
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Figure 2.19: Shock path for the production period obtained from quadratic polynomial
fitting.

Fig. 2.19 shows the shock path for the production period obtained from quadratic

polynomial fitting using 10, 5 and 3 points obtained from the area equality approach. As

we can see, by only solving the system of Eqs. 2.36, 2.38 and 2.40 at one point (rs(t), t)

with time t = 0 at the beginning of the production period and fitting a quadratic curve,

rs(t) = at2 + bt+ c, by using also the initial and breakthrough points, we can find the shock

path for the whole flowback period. We can use this polynomial curve to determine rs(t) at

each data time, and then apply Eqs. 2.38 and 2.40 to find S−w and S+
w .

2.3 Example

“The reader, like his fellows, doubtless prefers action to reflection,

and doubtless he is wholly in the right.

So we shall get to it.”

— “Brás Cubas”

in Memórias Póstumas de Brás Cubas by Machado de Assis

In this section, we exemplify how the analytical solutions developed in this chapter
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can be applied to estimate reservoir parameters. In the example presented here, we match

pressure data generated from commercial numerical reservoir simulators by using nonlinear

regression where our analytical solution is the forward model. The model parameters to be

estimated are the absolute permeability, the skin factor and the coefficients and exponents

in power law relative permeability curves; the critical saturations are assumed to be known

since, as discussed previously in this Chapter 2, the work of [28] indicates that it cannot

always obtain good estimates of the critical saturations.

The approximate analytical and semi-analytical solutions for the wellbore pressure

presented here and in the next two chapters can be used as the forward model when analyzing

pressure data by nonlinear regression (assisted history matching). In this procedure, start-

ing with an initial guess for reservoir parameters, we minimize the least-squares objective

function,

O(~m) =
1

2

Nd∑
k=1

(pwf,obs(tk)− pwf (~m, tk))
σ2
k

, (2.86)

where the model parameters to be estimated are the components of the vector ~m, Nd is the

number of observed pressure data used for analysis, where pwf,obs(tk), k = 1, 2, · · ·Nd denote

these measured pressure data, 0 < t1 < · · · < tNd represent the times of these observations;

pwf (~m, tk) denotes the corresponding pressure computed from our analytical solution at

time tk for the current estimate of ~m, and σ2
k denotes the variance of the measurement error

at time tk. In our procedure, we minimize the objective function using the Trust-Region-

Reflective Least Squares Algorithm (TRR) algorithm [35] to obtain an estimates of ~m so that

pwf (~m, tk) honors the observed data, pwf,obs(tk) for k = 1, 2, · · · , Nd. The TRR algorithm

requires upper and lower bounds on all variables; these bounds may be specified arbitrarily

but should of course be such that the resulting bounds cover all physically plausible values of

the parameters. Convergence of the TRR algorithm is assumed when the relative change in

the objective function between two successive iterations is less than a specified tolerance, ε. In

our example, with ε = 10−6, i.e., for convergence we require that |O(~mk+1)−O(~mk)| ≤ 10−6.

The overall history-matching (nonlinear regression) procedure is illustrated in Fig. 2.20. If
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Figure 2.20: Data analysis procedure.

all σk’s are equal, they can be deleted from the definition of the objective function without

changing the values of corresponding minimizing parameters.

In this example, we applied our semi-analytical approximate solution as a forward

model to estimate absolute permeability, skin factor and relative permeability parameters for

the rock and fluid properties described in Table 2.1. The observed well pressure data with

time (pwf,obs(tk), k = 1, ..., n) were obtained from an IFPT simulation using a commercial

numerical simulator by adding uncorrelated Gaussian noise with mean zero and variance 1

psi2 and using data only for times more than 0.5 hour after each flow rate change to avoid

matching data that might be masked by wellbore storage. The model parameters to be

estimated were the component of the vector ~m, given by

~m = [k, s, aw, nw, noI , noD]T , (2.87)
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Table 2.2: Parameter bounds for IFPT.

Parameter k (md) Skin Factor aw nw noI noD

Lower bound IFPT 5 -8 0.05 0.5 0.5 0.5
Upper bound IFPT 4000 25 1.00 4.5 4.5 4.5

where, as mentioned previously, the skin factor, s, is related to the skin permeability, ks,

via the Hawkins’s formula [50], where the skin zone radius need to be fixed. The last

four elements in ~m are the parameters for the relative permeabilities curves represented by

the power law model given by Eqs. 2.3 and 2.4. It is important to note that the critical

saturations could conceptually be included as parameters to be estimated when matching

data by nonlinear regression; in fact, [28] showed that, for some examples, critical saturations

can be reasonably estimated. However, as explained by [28], including critical saturations

as parameters when matching data tends to make the problem more ill-conditioned and it

can be difficult to resolve these parameters accurately. To reproduce the simple explanation

provided by [28], we temporarily neglect hysteresis. Then if all parameters except endpoint

saturations are fixed but Siw and Sor are varied but the sum Siw + Sor is held constant,

then the fractional flow curve is a function of the saturation change, Sw − Siw; thus, if

coSo + cwSw + cr is close to constant, which is the case if c0 ≈ cw, then the pressure response

generated with one set of relative permeability curves can be well approximated with any

other set of relative permeability curves obtained by shifting the original set by varying only

Siw and Sor keeping Siw+Sor constant. With this reasoning, it follows that it can be difficult

to estimate accurate values of end-point saturations together with the parameters specified

in Eq. 2.87 by matching pressure data.

Fig. 2.21 shows the bottom-hole pressure match for the IFPT data while Fig. 2.22

shows the estimated relative permeability curves, assuming hysteresis affects only the oil

relative curve. Table 2.3 presents the values of model parameters estimated based on the set

of bounds on parameters shown in Table 2.2.
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Figure 2.21: Data match for the IFPT test; (a) injection and falloff, (b) production (flow-
back). The dashed green curves represent the computed pressure based on the initial guess
for model parameters, the black circles the true noisy data and the red solid curves the data
predicted from the estimated parameters.
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Table 2.3: Estimated model parameters based on the approximate analytical solution of
IFPT.

Parameter k (md) Skin Factor aw nw noI noD

True 300.00 5.00 0.50 2.00 2.00 1.50
Initial Guess 600.00 0.00 0.80 1.20 1.20 1.20
IFPT 298.92 4.43 0.48 1.79 2.11 1.52
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Figure 2.22: Estimated imbibition (black solid curves) and oil drainage (red solid curve)
relative permeability curves based on model parameters obtained from IFPT data match.
The green dashed lines represent the relative permeability curves computed based on the
initial guess for model parameters and the circles, represents the true curves.
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2.4 Note on Data Sensitivity

Through sensitivity analysis, derivations and examples, Nanba and Horne [71], Peres

and Reynolds [77], Chen [28] have showed in details that data from an injection test can be

used to estimate the reservoir rock absolute permeability, the skin zone permeability and the

water end-point relative permeability. Although the flowback pressure data are necessary

to estimate the drainage relative permeability curves parameters, Nanba and Horne [71]

states that the imbibition curves and skin and absolute permeability can indeed be found

uniquely from falloff tests data. However, although the falloff data are somewhat sensitive to

the power law exponents, Nanba and Horne [71] have attributed themselves their successful

examples on estimating imibibiton relative permeability curves to the fact that their data -

synthetic data - were obtained from numerical simulation ignoring wellbore storage effects.

Taking the derivative of Eq. 2.66 with respect to the logarithm of time, ln ∆tfoff , we have

∂∆pws(∆tfoff )

∂ ln ∆tfoff
=
α

h

∞∫
rw

1

r

∂qs(r,∆tfoff )

∂ ln ∆tfoff

1

k(r)λt(r, tinj)
dr, (2.88)

Eq. 2.88 indicates that the pressure derivative at a given time during falloff reflects a weighted

harmonic average of the permeability-total mobility. The regions in the reservoir where the

total flow rate, qs, is changing most rapidly with time is weighted most heavily. Consequently,

the bottom-hole pressure data during falloff at the very earlier times - when the flow rate

front (the position where the flow rate is changing abruptly from qs ≈ 0 to qinj) is crossing

the invaded zone - would reflect the fluid distribution in the invaded zone, i.e, , in a similar

way the bottom-hole pressure would reflect the reservoir heterogeneities (as in [98]). If

the measured data is distorted by wellbore storage effects, the relative permeability curve

parameters information would most probably be masked. Chen [28] has showed that the

addition of not only the production wellbore pressure response but also the oil rate (or water

rate) together with injection-falloff pressure data to the wellbore pressure history matching

process would lead to the correct estimation of imbibition parameters. Chen [28] recommends

to cut off the very early times from falloff and production data to guarantee that no fragment
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of the observed data is distorted by wellbore storage. In addition, Chen [28] recommends

the use of the cumulative oil rate, given by

Qo(t) =

∫ t

tfoff

(1− fw(rw, t))qproddt (2.89)

instead of the instantaneous oil flow rate,

qo(rw, t) = (1− fw(rw, t))qprod. (2.90)

The derivative of the Eq. 2.89 with respect of the relative permeability curve parameters

show smoother variations than the derivative of the Eq. 2.90. The cumulative oil rate is

insensitive to skin and absolute permeabilities; remember that Sw (and consequently fw(Sw))

is governed by the Buckley-Leverett equation (Eq. 2.1), which does not include permeability

as a parameter. For a deeper discussion on the sensitivities of the injection-falloff-production

test data to skin, absolute permeabilities and relative permeability curve parameters, please

see Peres and Reynolds [77], Chen [28].
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CHAPTER 3

PRESSURE RESPONSE DURING IFPT WITH CAPILLARY PRESSURE

“No meio do caminho tinha uma pedra...”

—Carlos Drummond de Andrade, No Meio do Caminho

“Why the devil couldn’t it have been blue?”

— “Brás Cubas”

in Memórias Póstumas de Brás Cubas by Machado de Assis

In this chapter, we include capillary pressure effects in our semi-analytical model.

In summary, we develop a semi-analytical approximate solution for the wellbore pressure

response and the wellbore water/oil flow rates, which accounts for capillary and hysteresis

effects. This solution can be used as a forward model during non-linear regression analy-

sis to estimate in-situ rock-fluid properties from data collected during an injection-falloff-

production (IFPT). If we simply use the saturation profile obtained during an IFPT without

considering the dispersive effects caused by capillary pressure, we find a discrepancy between

the saturation distributions with and without capillary pressure in terms of the calculated

oil breakthrough time. As we can see in Fig. 3.1, when capillary pressure is neglected, the

oil front takes longer to reach the wellbore during the flowback. This retardation is caused

mainly by the difference between the saturation profiles at the beginning of the flowback,

caused by the capillarity dispersive effect during injection and falloff (Fig. 3.16). Conse-

quently, the wellbore pressure response is affected during the flowback in the breakthrough

“period”. The breakthrough period refers to the time interval when the saturation at the

sandface changes rapidly. Fig. 3.2 compares the wellbore pressure history obtained from

IMEX during an IFPT with and without capillary pressure. During flowback it is observed
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a 200 psi discrepancy in the wellbore pressure when capillary pressure effects are neglected,

this discrepancy represents 8% of the initial pressure, pi = 2500 psi. The wellbore pressure

data measured during this breakthrough period represent those data that are most sensitive

to the relative permeability parameters. In addition, it is possible to estimate not only in-

situ relative permeability curves but also in-situ capillary pressure curves from these data.

The solutions presented assume infinite-acting radial flow from and to a fully-penetrating

vertical well.

3.1 Mathematical model

We apply the method of matched asymptotic expansions to solve the one-dimensional

saturation convection-dispersion equation, a non-linear pseudo-parabolic partial differential

equation. This equation is one of the governing equations for two-phase flow in a porous

media when including capillary pressure effects, for the specific initial and boundary con-

ditions arising when injecting water in an infinite radial piecewise homogeneous horizontal

medium containing oil and water. The method of matched asymptotic expansions combines

inner and outer expansions to construct the global solution. In here, the outer expansion

corresponds to the solution of the nonlinear first-order hyperbolic equation obtained when

the dispersion effects driven by capillary pressure became negligible. This equation has a

monotonic flux function with an inflection point; and its weak solution can be found by

applying the method of characteristics. The inner expansion corresponds to the shock layer,

which is modeled as a traveling wave obtained by a stretching transformation of the partial

differential equation. If the total flow rate becomes equal to zero as in a falloff test, the

saturation convection-dispersion equation reduces to a non-linear parabolic equation, which

contains only a dispersion (diffusion) term. In this case, we find a closed form solution for

the saturation by applying the perturbation theory together with a Green‘s function, treat-

ing the non-linearity as a source term. By combining the solution for saturation with the

so-called Thompson-Reynolds steady-state theory, one can obtain an approximate analytical

solution for the wellbore pressure.
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Figure 3.1: Saturation profile after 3 hours (a) and 12 hours (b) flowing back with and
without capillary pressure from IMEX. Note, the saturation profile at the end of the falloff,
i.e., the initial condition for the flowback for the cases with and without pc are distinct. To
obtain these profiles we have run a full test (injection-falloff-production) with and without
capillarity.
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Figure 3.2: Wellbore pressure history during an IFPT with versus without capillary pressure
from IMEX (a) and the zoom in the wellbore pressure history during flowback (b) to show
the discrepancy on pressure caused by neglecting capillary pressure effects. X corresponds
to time while Y corresponds to pressure. At X = 45.46 there is a 200 psi discrepancy in
the wellbore pressure when neglecting capillary pressure effects, which represents 8% of the
initial pressure, 2500 psi.
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3.1.1 Saturation Profile

Once again, let us start by finding the saturation distribution in the reservoir for each

test period: injection, falloff and production. The water mass balance equation, in radial

coordinates, leads to the following non-linear partial differential equation [21]:

∂Sw
∂t

+
θqt

2πrhφ

∂Fw(Sw)

∂r
= 0, (3.1)

where throughout we assume porosity, φ, is homogeneous. qt is the total liquid rate in

RB/D; θ represents in general a unit conversion factor where in the oil field units used here,

θ = 5.6146/24; the reservoir thickness, h, and the radius, r , are in ft; time, t, is in hours.

Let us use Darcy’s equation in radial coordinates without gravity for the oil flow rate in

RB/D is given by

qo = −k(r)hλo(Sw)

α

(
r
∂po
∂r

)
, (3.2)

and the water flow rate (RB/D) is

qw = −k(r)hλw(Sw)

α

(
r
∂pw
∂r

)
. (3.3)

to find the water fractional flow, Fw. For field units used throughout, α = 141.2. pw and

po are the water and oil phase pressures, respectively. The λw and λo are the water and oil

mobilities, respectively, given by the ratio of the water/oil permeability (krw and kro), which

are functions of the water saturation by the water/oil viscosity, µw and µo. We can subtract

Eq. 3.3 from Eq. 3.2, to get

αqo
k(r)hλo(Sw)

− αqw
k(r)hλw(Sw)

= −
(
r
∂po
∂r
− r∂pw

∂r

)
. (3.4)

Rearranging Eq. 3.4 and substitution the capillary pressure pc given by the difference of the
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oil pressure (po) and the water pressure (pw), leads to

qo −
qwλo(Sw)

λw(Sw)
= −k(r)hλo

α

(
r
∂pc(Sw)

∂r

)
. (3.5)

We assume throughout that water is the wetting phase. Dividing Eq. 3.5 by the total flow

rate, qt, yields

Fo −
Fwλo(Sw)

λw(Sw)
= −k(r)hλo(Sw)

αqt

(
r
∂pc(Sw)

∂r

)
, (3.6)

where Fo and Fw are the oil and water fractional flow given by qo
qt

and qw
qt

, respectively.

Finally, substituting Fo = 1 − Fw in Eq. 3.6 and solving for Fw, we have the following

expression for the water fractional flow including capillary pressure effects,

Fw(Sw) =

1 + k(r)hλo(Sw)
αqt

(
r ∂pc
∂r

)
1 + λo(Sw)

λw(Sw)

=
1

1 + λo(Sw)
λw(Sw)

+

k(r)hkro
αqtµo

(
r ∂pc
∂r

)
1 + λo(Sw)

λw(Sw)

= fw + εrk(r)fw(Sw)kro(Sw)
∂pc(Sw)

∂r
, (3.7)

where fw is the water mobility ratio (Fig. 2.1), i.e., the ratio of water mobility and the total

mobility (λt), given by

fw(Sw) =
1

1 + λo(Sw)
λw(Sw)

=
λw(Sw)

λo(Sw) + λw(Sw)

λw(Sw)

λo(Sw) + λw(Sw)
, (3.8)

which usually assumes a S-shape. ε is the perturbation parameter, defined by

ε =
h

αqtµo

[
T 2

ML

]
(3.9)
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versus water saturation.

and the permeability is a function of radius because we consider a skin damaged zone,

k(r) =


ks, rw ≤ r < rskin

k, r ≥ rskin,

(3.10)

where rw is the wellbore radius, rskin is the radius of the damaged zone and ks is the perme-

ability in the skin zone. Grouping all the parameters the are function of water saturation,

we can define (Fig. 3.3),

dΨ

dSw
(Sw) = −fw(Sw)kro(Sw)

dpc
dSw

(Sw), (3.11)

and rewrite Eq. 3.12 as,

Fw(Sw) = fw(Sw)− εrk(r)
dΨ(Sw)

dSw

∂Sw
∂r

. (3.12)

For simplicity, we use the Brooks and Corey model [20] given by,

pc(Sw) = pt

(
Sw − Siw

1− Siw − Sor

)− 1
λ

, (3.13)
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to represent capillary pressure. Here Swi is the immobile water saturation and Sor is the

residual oil saturation. λ, where 0.4 ≤ λ ≤ 4.0, is a measure of the pore size distribution

(the greater the λ value, the more uniform is the pore size distribution) and pt, the threshold

pressure. The threshold pressure is a measure of the maximum pore size [53], i.e., the

minimum capillary pressure at which a continuous nonwetting phase exists in the imbibition

case and a continuous wetting phase exists in the drainage case [64]. The greater is the

maximum pore size, smaller is the pressure threshold. According to Donaldson et al. [40],

the extrapolation of the capillary pressure curve obtained from experimental data to Sw = 1

yields the correct threshold value. In practice, we introduce a small variable, sv, to limit the

maximum value of pc to a finite value, i.e., replace Eq. 3.13 by

pc(Sw) = pt

(
sv +

Sw − Swi
1− Swi − Sor

)− 1
λ

. (3.14)

We can relate the relative permeabilities and the capillary pressure through the pore size

distribution index, λ, by using the Purcell [85] model for the water phase (wetting phase),

krw = aw

(
Sw − Siw

1− Siw − Sor

) 2+λ
λ

, (3.15)

and the Brooks and Corey [20] model for the oil phase (nonwetting phase) [65],

kro =

(
1− Sw − Siw

1− Siw − Sor

)2[
1−

(
Sw − Siw

1− Siw − Sor

) 2+λ
λ
]
. (3.16)

The capillary pressure derivative is given by

dpc(Sw)

dSw
= −1

λ
pt

(
sv +

Sw − Swi
1− Swi

)− 1
λ
−1

= −pc
λ

(
sv +

Sw − Swi
1− Swi − Sor

)−1

, (3.17)
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and the second derivative is

d2pc(Sw)

dS2
w

=
1

λ

(
1

λ
+ 1

)
pt

(
sv +

Sw − Swi
1− Swi − Sor

)− 1
λ
−2

= − dpc
dSw

(
1

λ
+ 1

)(
sv +

Sw − Swi
1− Swi − Sor

)−1

= pc

(
1 + λ

λ2

)(
sv +

Sw − Swi
1− Swi − Sor

)−2

. (3.18)

Now that we have defined the fractional flow rate and its parameters, let us go back to

our governing equation for saturation, Eq. 3.1. Inserting Eq. 3.12 into Eq. 3.1 leads to the

Rapoport and Leas [86] equation,

∂Sw
∂t

+
θqt

2πrhφ

∂fw
∂r
− ε θqt

2πrhφ

∂

∂r

(
rk(r)

∂Ψ

∂r

)
= 0. (3.19)

For simplicity we can define

C =
θqt
πhφ

(3.20)

and rewrite Eq. 3.19 as

∂Sw
∂t

+
C

2r

∂fw
∂r
− ε C

2r

∂

∂r

(
rk(r)

∂Ψ

∂r

)
= 0, (3.21)

which is the non-linear “pseudo-parabolic” governing equation for saturation.

Injection: Although the wellbore pressure during injection seems to be insensitive to

capillarity effects (as can be seen in Fig. 3.2), i.e., insensitive to the accuracy of the calculated

saturation distribution in the reservoir, knowledge of the correct saturation profile at the

end of injection represents the initial condition for the falloff period (Fig. 3.4), and hence

is required to calculate the saturation distribution during falloff. Let us start by inserting

same common values for the parameters in Eq. 3.9 to have an idea of its order of magnitude,

O(ε) = O
(

h

αqtµo

)
∼ O

(
101

141.2× 103 × 100

)
∼ O(10−5) << 1, (3.22)
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Figure 3.4: Saturation profile at the end of the injection period with (orange solid curve
)and without capillary pressure (blue solid curve) from IMEX.

where we use h ≈ 101, qt ≈ 103 and µo ≈ 100. We can see that epsilon is a very small

number. By looking in approximate order of magnitude of each term in Eq. 3.21, we have

O
(
∂Sw
∂t

)
∼ O

(
∆Sw
∆t

)
∼ O

(
100

101

)
∼ O(10−1), (3.23)

O(C) ∼ O
(
θqt
πhφ

)
∼ O

( 5.6146
24
× 103

3.14159× 101 × 10−1

)
∼ O(101), (3.24)

O
(
C

2r

∂fw
∂r

)
= O

(
C
∂fw
∂(r2)

)
∼ O

(
C

∆fw
∆(r2)

)
∼ O

(
101 × 101 × 100

103

)
∼ O(10−1) (3.25)
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and

O
(
ε
C

2r

∂

∂r

(
rk
∂Ψ

∂r

))
∼ O

(
εCk

(
1

2

∂2Ψ

∂r2
+

∂Ψ

∂(r2)

))
∼ O

(
10−5 × 101 × 102

(
1

2

∆Ψ

∆r2
+

∆Ψ

∆r2

))
∼ O

(
10−5 × 101 × 102

(
1

2

10−1

103
+

10−1

103

))
∼ O(10−6), (3.26)

where we use k ≈ 102 ≈ constant and time is in the order of hours. We can see that last term,

Eq. 3.26 is far smaller than the others (Eqs. 3.23 and 3.25). This suggests that the effect

of the third term in Eq. 3.21 may be treated as a perturbation to the first-order hyperbolic

equation [21], given by

∂Sw
∂t

+
C

2r

∂fw
∂r

= 0, (3.27)

where fw, the the ratio of the water mobility over total mobility, is considered to be a S-

shaped function - a monotonically increasing function with a single inflection point - along

this chapter. During injection, for a partially water wet reservoir, the capillary pressure

dispersive effect will be non-negligible only in a small region around the water front (hy-

podispersion phenomenon) [6, 73] where the capillary pressure derivative and the saturation

gradient are significant (Fig. 3.5.). The capillary pressure smears the water front during

injection balancing the self-sharpening tendency of the shock. Yortsos and Fokas [105] have

developed an exact analytical solution for linear waterflood including the effects of capillary

pressure, but their solution is limited to a particular functional form to represent relative

permeabilities and capillary pressure curves and does not consider radial flow, which makes

their solution very restrictive. As done by Barenblatt et al. [8], Bedrikovetsky et al. [10]

for Cartesian coordinates and by Deng and King [38] for streamlines and streamtubes, the

perturbation caused by the capillary pressure effects can be modeled as a shock layer (water

front) which moves with the same speed as the shock wave. By applying the method of

matched asymptotic expansions [101, 52], Machado and Reynolds [68] combined the solu-
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tion of the Buckley-Leverett equation (Eq. 3.27) with this steady travelling wave to gener-

ate an approximate solution of the Rappaport and Leas equation, i.e., the solution of the

convection-dispersion saturation equation. To solve the Rapoport and Leas [86] equation for

the injection period, with the following initial,

Sw(r, 0) = Siw (3.28)

and boundary conditions,

Fw(Sw(rw, t)) = fw(Sw(rw, t))− εrwk(rw)
dΨ(Sw(rw, t))

dSw

∂Sw(rw, t)

∂r
= 1 (3.29)

and

lim
r→∞

Sw(r, t) = Siw, (3.30)

we divide the domain into two regions, outer and inner regions (Fig. 3.6), where the inner

region, the region around the water front, is modeled as a shock layer which propagates

with the same speed as the shock that would be obtained when ε → 0, i.e., when the

capillary pressure effects are null. The combination of the self-sharping tendency of the

shock (Swf > Siw) with the dispersive effect from the capillary pressure balance against each

other leading to the shock layer [87]. King and Dunayevsky [57] presented the idea of using

the method of matched asymptotic equations to solve the Rapoport-Leas equation while

Bedrikovetsky et al. [10], Hussain et al. [54], Deng and King [38] showed how the mass balance

could be used to present a closed solution for the saturation distribution. Hussain et al. [54]

derived an approximate solution for the Rapoport and Leas [86] in Cartesian coordinates for

both water and oil injection into a core considering end effects by also applying the method

of matched asymptotic expansions. The method of asymptotic expansions uses the inner

and outer saturation solutions combined with a matching function to obtain a composite

solution which avoids abruptly switching from the outer to the inner solution or vice-versa.

The inner and outer solutions are each capable of representing the real solution in two distinct
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Figure 3.5: Capillary pressure curve (a) and saturation profile at the some time t during
water injection (b). The dashed green lines represent the capillary pressure derivative (a)
and the saturation gradient (b) at the water front.
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(SBLw ) and the inner solution (SSLw ). The dashed square show the saturation transition zone
between the outer and the inner solution where none of these two solution are capable of
approximate the true solution, Sw.

regions - the“inner region” and the “outer region” of the boundary layer (Fig. 3.6). Similarly,

we approximate the saturation solution of Rapoport-Leas equation by forming a composite

solution given by the combination of three saturations: SBLw , the solution obtained when the

capillary pressure effects are neglected; SSLw , the saturation distribution in the shock layer

obtained by magnifying the dispersion effects in the saturation governing equation; SSHw , the

shock wave represented by a Heaviside function,

Sw(r, t) ' SBLw (r, t) + SSLw (r, t)− SSHw (r, t), (3.31)

where BL stands for Buckley-Leverett, SL for Shock Layer and SH for Shock function.

Outer Solution, SBL
w The outer solution, SBLw , is obtained by letting ε→ 0 in Eq. 3.21,

SBLw (r, t) = lim
ε→0, (r,t) fixed

Sw(r, t, ε). (3.32)
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That is the non-linear hyperbolic equation convection equation known as the Buckley-

Leverett saturation equation which is obtained when capillary and gravity effects are ne-

glected. Letting ε→ 0 in Eq. 3.29, Fw(SBLw (rw, t)) = fw(SBLw (rw, t)) = 1, which implies that

we must have SBLw (rw, t) = 1− Sor. The well known unique admissible weak solution of this

Riemann problem, 

∂SBLw
∂t

+ θq
φ2πrh

∂fw(SBLw )
∂r

= 0,

SBLw (rw, t) = 1− Sor, t > 0,

SBLw (r, 0) = Siw, rw ≤ r ≤ ∞,

(3.33)

can be obtained by the application of the Method of Characteristics and is given by [21]

SBLw (r, t) =


1− Sor, r2 6 r2

w(
dfw
dSw

)−1(φπh
θqt

(r2−r2w)
t

)
, r2

w < r2 6 r2
w +Dt

Siw, r2 > Dt+ r2
w,

(3.34)

i.e., by a family of rarefaction waves, semi-shock wave and a constant saturation zone where

water is immobile. The shock jump seen in the solution is caused by the S-shaped form of

the fractional flow curve, which leads to a gradient catastrophe, and consequently a shock

solution. This semi-shock has constant speed, satisfying the Rankine-Hugoniot condition

[58],

D =
θqt
φπh

[fw(Swf )− fw(Siw)]

[Swf − Siw]
, (3.35)

where Swf and Siw are the shock saturations. In this case, to satisfy the conservation of

mass, the shock speed should correspond to the slop of a tangent line to the water fractional

flow curve, i.e.,

θqt
φπh

fw(Swf )− fw(Siw)

Swf − Siw
=

θqt
φπh

dfw(Swf )

dSw
. (3.36)

The details of this solution can be found in Buckley and Leverett [21]. Fig. 3.7 shows

the shock jump slope tangent to the fractional flow curve at Sw = Swf and the saturation

distribution in the reservoir at a some time t. The rarefaction waves family spans from 1−Sor
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to Swf from rw to r = 25 ft, the water front position, i.e., the shock front position, rs. Ahead

of the water front position, there is immobile water. Fig. 3.8 compares this solution, the

outer solution, with the true solution, there is, the convection-dispersion saturation profile.

Here; we call the true solution the solution obtained from a numerical simulator.

Inner Solution, SSL
w As mentioned, the inner solution intends to represent the saturation

profile in the ”inner” region around the water front, which a shock layer (a boundary layer)

around the shock traveling with the same speed as the shock itself (Fig. 3.9). To find SSLw ,

we magnify the shock layer by using a stretching traveling wave coordinate [23]. Similarly

as defined in Hussain et al. [54], Bedrikovetsky et al. [10], Deng and King [38],

w = w(r, t) =
r2 − r2

s(t)

ε
, (3.37)

where rs is the shock front position,

r2
s(t) = r2

w +
θqt
φπh

dfw(Swf )

dSw
t = r2

w + CDt, (3.38)

with C given by Eq. 3.20 and D by Eq. 3.35. w is zero at r = rs and goes to ±∞ as ε→ 0.

w is a moving coordinate traveling with the same speed as the shock which expands the

length scale in the vicinity of shock. Note, in this case w is not a space variable but has

the following dimension w[L
3M
T 2 ]. We wish to rewrite Eq 3.21 in term of moving coordinates,

(r, t)→ (w, τ), where τ = τ(t) = t. To do so, we first use the chain rule to find the derivative

s as follows

∂Sw
∂t

=
∂Sw
∂τ

dτ

dt
+
∂Sw
∂w

∂w

∂t
=
∂Sw
∂τ
− CD

ε

∂Sw
∂w

, (3.39)

∂Sw
∂(r2)

=
∂Sw
∂w

∂w

∂(r2)
=

1

ε

∂Sw
∂w

(3.40)
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Figure 3.7: The shock jump slope tangent (blue curve) to the S-shaped fractional flow curve
at Sw = Swf (a) and the saturation profile in the reservoir at a some time t (b). The
rarefaction waves family spans from 1 − Sor to Swf from rw to r = 25 ft, the water front
position, i.e., the shock front position, rf,nj. Ahead of the water front position, there is
immobile water.
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Figure 3.8: Saturation distribution during the injection period for the outer solution (SBLw ),
without capillary pressure, and for the true solution (Sw), with capillary pressure. Both
profiles agree in the region far from the water front, the region outside the dashed square.
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Figure 3.9: Saturation distribution during the injection period for the inner solution (SSLw ),
the travelling wave, and for the true solution (Sw), with capillary pressure. Both profiles
agree in the region around the water front, i.e., in the shock boundary layer which we have
defined as the inner region.
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and

1

2r

∂

∂r

(
rk
∂Ψ

∂r

)
=

1

2r

d

dw

(
rk
∂Ψ

∂r

)
∂w

∂r
=

2r

ε2r

d

dw

(
rk
∂Ψ

∂w

∂w

∂r

)
=

1

ε2
∂

∂w

(
2r2k(w)

∂Ψ

∂w

)
.

(3.41)

Using Eq. 3.39, Eq. 3.40 and Eq. 3.41, Eq 3.21 can be rewritten as follows

∂Sw
∂τ
− CD

ε

∂Sw
∂w

+
C

ε

∂fw
∂w
− C

ε

∂

∂w

(
2r2k(r)

∂Ψ

∂w

)
= 0. (3.42)

Multiplying Eq. 3.42 by ε
C

and using Eq. 3.37, Eq. 3.42 becomes

ε

C

∂Sw
∂τ
−D∂Sw

∂w
+
∂fw
∂w
− ∂

∂w

[
2(εw + r2

s(τ))k(εw + r2
s(τ))

∂Ψ

∂w

]
= 0. (3.43)

The inner solution, SSLw , is obtained by letting ε→ 0 in Eq. 3.43,

SSLw (w, τ) = lim
ε→0,(w,τ) fixed

Sw(εw + r2
s(τ), τ, ε), (3.44)

as presented in Nayfeh [72]. Neglecting the terms of order ε in Eq. 3.43, yields

−D∂S
SL
w

∂w
+
∂fw
∂w
− ∂

∂w

(
2r2

s(τ)k(r2
s(τ))

∂Ψ

∂w

)
= 0. (3.45)

Note that here we are treating the permeability k as function of the shock position radius,

rs, only, by assuming that in the limit of the inner solution, ε(r → rs(τ)). Intuitively,

this assumption does not seem to be valid when the shock layer is crossing heterogeneities

interfaces, i.e., interfaces between two different permeabilities zones. However, for the water

injection in a field scale, the skin zone will be crossed by the water front in a very short time

and we will only need to use the pseudo-parabolic equation (Eq. 3.21) to find saturation for

the end of injection period (to be used as initial condition for falloff and flowback testes, as

mentioned in the introduction). Consequently, we can simplify the problem as shown above.

Integrating the ordinary differential equation given by Eq. 3.45 with respect to w for any
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Figure 3.10: Travelling wave saturation distribution (inner solution), SSLw versus the moving
coordinate w. SSLw goes asymptotically to the shock saturations Siw and Swf as w goes to
±∞.

fixed time τ and applying the chain rule, gives

−DSSLw + fw(SSLw )− 2r2
s(τ)k(r2

s(τ))
dΨ(SSLw )

dSw

∂SSLw (w, τ)

∂w
= a(τ), (3.46)

where a(τ) is a constant for the injection case, as we will show later. As mentioned, the

inner solution is modeled as a travelling wave with a constant speed - the shock speed - and

the boundary conditions (for the inner solution) given by

w →∞ : SSLw = Siw,
∂SSLw
∂w

= 0 (3.47)

and

w → −∞ : SSLw = Swf ,
∂SSLw
∂w

= 0, (3.48)

as the inner solution goes asymptotically to the shock saturations (Fig. 3.10). This necessity

of this behavior will be clearer very soon when we compare the inner solution with the

matching saturation solution. Using the boundary condition given by Eq. 3.47 in Eq. 3.46
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leads to,

a(τ) = −DSiw, (3.49)

while using the boundary condition given by Eq. 3.48 yields,

a(τ) = −DSwf + fw(Swf ), (3.50)

implying

−D(Siw − Swf )− fw(Swf ) = 0, (3.51)

which it is indeed correct from the definition of D in Eq. 3.35. As we can see from Eq. 3.49

and 3.50, a(τ) is a constant and it will be called simply by a from now on. Substituting the

constant a (Eq. 3.49) in Eq. 3.46 and dividing it by D(Siw − SSLw ) + fw(SSLw ), yields

2r2
s(τ)k(r2

s(τ))

dΨ(SSLw )
dSw

D(Siw − SSLw ) + fw(SSLw )

∂SSLw (w, τ)

∂w
= 1. (3.52)

Integrating Eq. 3.52 from wwell = w(rw, τ) to any w at any time τ using the separation of

variables method, gives us the relationship between any SSLw and w,

2r2
sk(r2

s)

∫ SSLw

SSLw (wwell)

dΨ(SSLw )
dSw

D(Siw − SSLw ) + fw(SSLw )
dSSLw =

∫ w

wwell

dw. (3.53)

At SSLw = Swf and SSLw = Siw, the integral in the left side diverges as the denominator goes to

0. This behavior is consistent with our boundary conditions assumptions for SSLw (Eqs. 3.47

and 3.48). Note, we still do not know the value of SSLw at wwell. To find a closed form for

this problem, mass balance can be used, but first let us present the matching saturation,

since this solution will be necessary for the mass balance.
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Matching Solution, SSH
w The matching saturation SSHw is defined using the matching

principle by applying Prandtl’s technique [72]:

lim
r2→r2w+CDt

SBLw (r, t) = lim
w→±∞

SSLw (w, t). (3.54)

and in the injection case is given by,

SSHw (r, t) =


Siw, r2 ≥ r2

s(t) = r2
w + CDt,

Swf , r2
w ≤ r2

s(t).

(3.55)

which is plotted in Fig. 3.11. Figs. 3.12 and 3.13 compare the matching saturation with

the outer and inner solutions, respectively. As we were searching for, SSHw matches with the

region outer solution in the inner region and with the inner solution in the outer solution,

being able to subtract their effect in the composite solution in their “non-correspondents”

zones.

Figs.3.14 compares the saturation distribution during the injection period for the

true solution obtained from the numerical simulator IMEX with the outer solution, inner

solution and the matching saturation while Fig. 3.15 shows saturation profile obtained by
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Figure 3.12: Saturation distribution without capillary pressure (outer solution), SBLw , and
the matching saturation function, SSHw . SSHw matches with the region outer solution in the
inner region, the region around the water front.
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Figure 3.13: Travelling wave saturation distribution (inner solution), SSLw and the matching
saturation function, SSHw . SSHw matches with the region inner solution in the outer region,
the region far from the water front.
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Figure 3.14: Saturation distribution during the injection period with (true solution) and
without capillary pressure (outer solution), the travelling wave (inner solution) and the
matching saturation.

the combination of the outer, inner and matching saturation (Eq. 3.31).

Material Balance Now that we have defined all the three saturations that composes

the approximate solution for the convection-dispersion saturation equation, let us try to

find a closed form for the saturation distribution based in the mass balance. Since both

the Buckley-Leverett (SBLw ) solution and the composite solution (Sw) must obey material

balance, the two following equations must hold:

∫ ∞
r2w

(Sw(r, t)− Siw)πhd(r2) = qtt (3.56)

and ∫ ∞
r2w

(SBLw (r, t)− Siw)πhd(r2) = qtt. (3.57)

From Eqs. 3.31, 3.56 and 3.192 it follows that

∫ ∞
r2w

(SBLw + SSLw − SSHw − Siw)πhd(r2) =

∫ ∞
r2w

(SBLw (r, t)− Siw)πhd(r2), (3.58)
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Figure 3.15: Saturation distribution during the injection period with capillary pressure which
is composed by the outer, inner and matching saturation.

which, upon simplification gives

∫ ∞
r2w

(SSLw − SSHw )d(r2) = 0. (3.59)

Rearranging Eq. 3.59 using Eq. 3.55 for SSHw gives

∫ ∞
r2w

SSLw d(r2) =

∫ r2s

r2w

Swfd(r2) +

∫ ∞
r2s

Siwd(r2)

= Swf (r
2
s − r2

w) +

(
Siw

∫ ∞
r2w

d(r2)− Siw
∫ r2s

r2w

d(r2)

)
. (3.60)

Using Eq. 3.38 in Eq. 3.60, it follows that

∫ ∞
r2w

SSLw d(r2) = (Swf − Siw)CDt+ Siw

∫ ∞
r2w

d(r2). (3.61)

Transforming Eq. 3.61 from (r, t)→ (w, τ) and using Eq. 3.37, Eq. 3.61 becomes

ε

∫ ∞
−CDτ

ε

SSLw (w)dw = (Swf − Siw)CDτ + εSiw

∫ ∞
−CDτ

ε

dw. (3.62)
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From Eq. 3.52,

dw = 2r2
sk(r2

s)
dΨ
dSw

D(Siw − SSLw ) + fw
dSSLw . (3.63)

Substituting Eq. 3.63 in Eq. 3.62 gives

ε2r2
sk(r2

s)

∫ Siw

SSLw (−CDτ
ε

)

SSLw

dΨ
dSw

D(Siw − SSLw ) + fw
dSSLw = (Swf − Siw)CDτ + εSiw

∫ ∞
−CDτ

ε

dw.

(3.64)

Dividing Eq. 3.64 by εSiw and solving the resulting equation for
∫∞
−CDτ

ε
dw gives

∫ ∞
−CDτ

ε

dw =
2r2

sk(r2
s)

Siw

∫ Siw

SSLw (−CDτ
ε

)

SSLw

dΨ
dSw

D(Siw − SSLw ) + fw
dSSLw −

(Swf − Siw)CDτ

εSiw
. (3.65)

Setting Sw = Siw in the upper limits of the integrals of Eq. 3.53 and exchanging the two

sides of the equation yields,

∫ ∞
−CDτ

ε

dw = 2r2
sk(r2

s)

∫ Siw

SSLw (−CDτ
ε

)

dΨ
dSw

D(Siw − SSLw ) + fw
dSSLw . (3.66)

As the left sides of Eqs 3.65 and 3.66 are the same, the right sides of these two equations

must be equal which gives

2r2
sk(r2

s)

∫ Siw

SSLw (−CDτ
ε

)

dΨ
dSw

D(Siw − SSLw ) + fw
dSSLw =

2r2
sk(r2

s)

Siw

∫ Siw

SSLw (−CDτ
ε

)

SSLw

dΨ
dSw

D(Siw − SSLw ) + fw
dSSLw −

(Swf − Siw)CDτ

εSiw
, (3.67)

Multiplying Eq. 3.67 by εSiw and rearranging the resulting equation gives

2r2
sk(r2

s)ε

∫ Siw

SSLw (−CDτ
ε

)

(SSLw − Siw)
dΨ
dSw

D(Siw − SSLw ) + fw
dSSLw = (Swf − Siw)CDτ. (3.68)

Once the value SSLw (−CDτ
ε

) (i.e., the inner solution saturation in the wellbore, SSLw (wwell))

is determined numerically by solving Eq. 3.68 using the bisection method [90] at each time

τ , Eq. 3.53 is used to determine the saturation profile in the stabilized zone. It is important
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to note that, as SSLw should reach Swf and Siw asymptotically as w → ±∞, here we did not

have to fix a finite distance in which the traveling wave would reach its open bounds as done

by Bedrikovetsky et al. [10], Deng and King [38], Hussain et al. [54]. With our approach, as

shown in the Section Validation (Fig. 3.26), we can obtain essentially a perfect match with

the numerical solution, with a “smother” water front, which is expected from the dispersive

effect of capillary pressure, contrary to the sharp transition between the saturation at the

water front foot (rwf ) - which is the finite position at which water can be considered immobile

- and the initial water saturation in the oil zone exhibited by solutions of previous authors.

Note on the Inner Boundary Condition As inner boundary condition during water

injection, we assume that the water fractional flow is equal to 1 (Eq. 3.29). To satisfy the

inner boundary condition, we allow Sw(rw, t) to be less than 1 − Sor, which contradicts

Chen [28] assumption that Sw(rw, t) must be equal to 1 − Sor. Since ∂Sw(rw,t)
∂r

< 0 and

dΨ(Sw(rw,t))
dSw

> 0, the second term in the right side of Eq. 3.29,

Fw(Sw(rw, , t)) = 1 = fw(Sw(rw, , t))− εrwk(rw)
dΨ(Sw(rw, t))

dSw

∂Sw(rw, t)

∂r
, (3.29 revisited)

is greater than 0. Considering fw(Sw(rw, , t)) ∈ [0, 1] and that −εrwk(rw)dΨ(Sw(rw,t))
dSw

∂Sw(rw,t)
∂r

can be estimated to be much less than one (vide the order of magnitude analysis presented

earlier) outside the inner region, 1 − Sor is not the only saturation that satisfies Eq 3.29.

When Sw(rw, t) = 1− Sor, from our approximate solution given by Eq. 3.31 at (rw, t),

Sw(rw, t) = 1−Sor = SBLw (rw, t)+SSLw (rw, t)−SSHw (rw, t) = 1−Sor+SSLw (rw, t)−Swf , (3.69)

we should have SSLw (rw, t) = Swf , which would not be possible since SSLw (r, t) → Swf as

w → ∞, i.e., SSLw (rw, t) = Sw(−CDt
ε
, t) 6= Swf unless when ε → 0 (when capillary pressure

effects became negligible). Although it can be argued that pc
!

= 0 in the wellbore interface

(at r = rw) to guarantee pressure continuity, Van Duijn et al. [100] discussed several cases

when pressure continuity is neither satisfied nor required. Using a Taylor expansion around
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SBLw , we can approximate the water fractional flow as

Fw(Sw) ≈ Fw(SBLw + SSLw − SSHw ) ≈ Fw(SBLw ) + (SSLw − SSHw )
dFw(SBLw )

dSw
. (3.70)

Since SBLw (rw, t) = 1 − Sor =⇒ Fw(SBLw (rw, t)) = fw(1 − Sor) = 1 and dFw(SBLw (rw,t))
dSw

=

dΨ(1−Sor)
dSw

= 0, Fw(rw, t) ≈ 1 in 3.70 and our approximation does satisfies Eq. 3.29, even

though SSLw (rw, t) 6= SSHw (rw, t). In our solution, SSLw (rw, t) does change with time and

is smaller than Swf . Consequently, Sw(rw, t) 6= (1 − Sor), but slightly smaller than it and

changes with time. Physically, is Sw(rw, t) indeed constant and equal 1−Sor during injection?

Falloff: During falloff, the total flow rate is assumed to be zero, leading to a non-

linear dispersion equation for saturation [6]. We can treat this non-linearity as a source term,

and by using a Green’s function together with regular perturbation theory, we are able to

develop a closed form approximate solution for the saturation distribution. Similarly to the

injection period, during the falloff period, the wellbore pressure response is insensitive to the

saturation change in the reservoir, but we need the profile at the end of the falloff to use as

the initial condition for the production period.

As mentioned above, during falloff the convection term will be assumed to be negli-

gible, since it is only not null in the multiphase zone for very early time period. As qt → 0,

Eq. 3.19 becomes,

∂Sw
∂t
− θ

2παrφµo

∂

∂r

(
rk(r)

∂Ψ

∂r

)
= 0. (3.71)

Defining

η0 =
θ

2παφµo
, (3.72)

we can write in Eq. 3.71, as the following non-linear dispersion equation:

1

r

∂

∂r

(
rk(r)

dΨ

dSw

∂Sw
∂r

)
=

1

η0

∂Sw
∂t

, (3.73)
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Figure 3.16: Saturation profile at the end of the falloff period with and without capillary
pressure from IMEX.

with the following auxiliary conditions:


Sw(r, 0) = Sw(r, tinj), rw ≤ r ≤ ∞,

Sw(r, t) = Sw(r, tinj), rw ≤ r ≤ rskin,

limr→∞ Sw = Siw, t ≥ 0

(3.74)

Note, the second condition of Eq. 3.74 assumes that the saturation dispersion will occur

mainly in the area around the water front, and thus not affect the skin zone, which is true

if the falloff period is sufficiently short, as we can see in Fig. 3.16. Analogous to the Al-

Hussainy et al. [3] pseudo-pressure representation, we can define a pseudo-saturation [41, 36]

by

m(Sw) =

∫ Sw

Siw

dΨ

dSw
dSw (3.75)

and then rewrite Eq. 3.73 in term of pseudo-saturation. Using the chain rule, to find

∂m(Sw)

∂t
=

dΨ

dSw

∂Sw
∂t

(3.76)

82



and

∂m(Sw)

∂r
=

dΨ

dSw

∂Sw
∂r

. (3.77)

Using Eqs. 3.76 and 3.77 in Eq. 3.73 gives

1

r

∂

∂r

(
rk
∂m(Sw)

∂r

)
=

1
dΨ(Sw)
dSw

η0

∂m(Sw)

∂t
. (3.78)

If we perform the integration in Eq. 3.75, we get

m(Sw) =

∫ Sw

Siw

dΨ

dSw
dSw =

∫ Ψ(Sw)

Ψ(Siw)

dΨ = Ψ(Sw)−Ψ(Siw) (3.79)

which means we can rewrite Eq. 3.78 as

1

r

∂

∂r

(
rk
∂Ψ(Sw)

∂r

)
=

1

η0H(Sw)

∂Ψ(Sw)

∂t
, (3.80)

where

H(Sw) =
dΨ(Sw)

dSw
(3.81)

and the auxiliary conditions given by Eq. 3.74 as


Ψ(r, 0) = Ψ(Sw(r, tinj)) = f(r), rw ≤ r ≤ ∞,

Ψ(r, t) = f(r), rw ≤ r ≤ rskin and t ≥ 0,

limr→∞Ψ(r, t) = Ψ(Siw), t ≥ 0.

(3.82)

Because of the second condition of Eq. 3.82, we only need to find the updated saturation

profile at each time only from rskin to ∞ , where k(r) = k. Let us define

η = kη0 (3.83)
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and rewrite Eq. 3.80 as

1

r

∂

∂r

(
r
∂Ψ(Sw)

∂r

)
=

1

ηH(Sw)

∂Ψ(Sw)

∂t
(3.84)

and modify Eq. 3.82 to obtain


Ψ(r, 0) = Ψ(Sw(r, tinj)) = f(r) rskin ≤ r ≤ ∞,

Ψ(rskin, t) = Ψ(Sw(rskin, 0)) = f(rskin), t ≥ 0,

limr→∞Ψ(r, t) = Ψ(Siw), t ≥ 0.

(3.85)

Note Eq. 3.85 means we need only to find the saturation distribution for rskin < r <∞ and

assumes the falloff is short enough so that the water saturation in the skin zone does not

change during falloff. Let us define,

H = −
∫ Sw(rskin,tinj)

Siw
fwkro

dPc
dSw

dSw

Sw(rskin, tinj)− Siw
(3.86)

and

Hmax = maxH(Sw). (3.87)

Note that H(Sw) is bounded for a partially water wet rock (Fig. 3.3), thus the choice of

defining a Hmax seems appropriate for the modeling a hypodispersion phenomenon. We can

add and subtract Hmax from H(Sw) in Eq. 3.84 and rearrange the result equation to obtain

(Hmax + (H(Sw)−Hmax))
1

r

∂

∂r

(
r
∂Ψ(Sw)

∂r

)
=

1

η

∂Ψ(Sw)

∂t
, (3.88)

which after dividing by Hmax can be further rearranged to obtain

1

r

∂

∂r

(
r
∂Ψ(Sw)

∂r

)
− 1

ηHmax

∂Ψ(Sw)

∂t
= Λ(Sw)

1

r

∂

∂r

(
r
∂Ψ(Sw)

∂r

)
, (3.89)
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where

Λ(Sw) =
(Hmax −H(Sw))

Hmax

∈ [0, 1]. (3.90)

From Eq. 3.79

Ψ(Sw) =

∫ Sw

Siw

dΨ

dSw
dSw + Ψ(Siw) (3.91)

and we can define

∆Ψ(Sw) = Ψ(Sw)−Ψ(Siw) =

∫ Sw

Siw

dΨ(Sw)

dSw
dSw (3.92)

or, dimensionless form

∆ΨD =
Ψ(Sw)−Ψ(Siw)

Ψ(Sw(rskin, tinj))−Ψ(Siw)
=

∆Ψ(Sw)

∆Ψ(Sw(rskin, tinj))
, (3.93)

We can also define the dimensionless variables,

rD =
r

rw
(3.94)

and

tD =
ηHmaxt

r2
w

, (3.95)

Using Eqs. 3.93, 3.94 and 3.95, Eq. 3.89 and 3.85, respectively, can be rewritten as,

1

rD

∂

∂rD

(
rD
∂∆ΨD

∂rD

)
− ∂∆ΨD

∂tD
= Λ(ΨD)

1

rD

∂

∂rD

(
rD
∂∆ΨD

∂rD

)
(3.96)

and 
∆ΨD(rD, 0) = f(rwrD)−Ψ(Siw)

Ψ(Sw(rskin,tinj))−Ψ(Siw)
= fD(rD), rD,skin ≤ rD ≤ ∞

∆ΨD(rD,skin = rskin
rw

, tD) = f(rskin)−Ψ(Siw)
Ψ(Sw(rskin,tinj))−Ψ(Siw)

= 1, tD ≥ 0,

limr→∞∆ΨD(rD, tD) = 0, tD ≥ 0.

(3.97)
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We can insert an artificially small number ε in Eq. 3.96,

1

rD

∂

∂rD

(
rD
∂∆ΨD

∂rD

)
− ∂∆ΨD

∂tD
= εΛ(∆ΨD)

1

rD

∂

∂rD

(
rD
∂∆ΨD

∂rD

)
. (3.98)

The regular perturbation theory can be used to solve Eq. 3.98 and then we can take the limit

when ε→ 1 of the resultant of the approximate solution of Eq. 3.98 to find an approximate

solution for Eq, 3.96. Applying the Fundamental Theorem of Perturbation theory [72], the

solution can be approximated as

∆ΨD(rD, tD) ' ∆Ψ0
D(rD, tD) + ε∆Ψ1

D(rD, tD) +O(ε2), (3.99)

which gives the approximation

∆ΨD(rD, tD) '


fD(rD), 1 ≤ rD < rD,skin

∆Ψ0
D(rD, tD) + ε∆Ψ1

D(rD, tD), r ≥ rD,skin.

(3.100)

When ε → 0, ∆ΨD = ∆Ψ0
D, where ∆Ψ0

D the solution of the one-dimensional transient

dispersion problem given by the following linear PDE

1

rD

∂

∂rD

(
rD
∂∆Ψ0

D

∂rD

)
− ∂∆Ψ0

D

∂tD
= 0, (3.101)

with auxiliary condition specified as


∆Ψ0

D(rD, 0) = fD(rD), rD,skin ≤ rD ≤ ∞,

∆Ψ0
D(rD,skin, tD) = 1, t ≥ 0,

limrD→∞∆Ψ0
D(rD, tD) = 0, t ≥ 0,

(3.102)

which can be solved in the Laplace domain applying the method of variation of parameters.
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Applying the Laplace transform to Eq.3.101, yields

1

r

∂

∂r

(
r
∂∆Ψ0

D

∂r

)
= s∆Ψ0

D − fD(r), (3.103)

where s is the Laplace variable. Taking the Laplace transform of the last two conditions in

Eq. 3.102 gives 
∆Ψ0

D(rD,skin, s) = 1
s
,

limrD→∞∆Ψ0
D(rD, s) = 0.

(3.104)

The solution of Eq. 3.103 is given by [39],

∆Ψ0
D =C1K0(rD

√
s) + C2I0(rD

√
s) +K0(rD

√
s)

∫ rD

rD,skin

(r′D
√
s)I0(r′D

√
s)fD(r′D)dr′D

− I0(rD
√
s)

∫ rD

rD,skin

(r′D
√
s)K0(r′D

√
s)fD(r′D)dr′D. (3.105)

Applying the second boundary condition of Eq. 3.104 to Eq. 3.105 and using limx→∞K0(x) =

0 [2], we have

lim
rD→∞

∆Ψ0
D = lim

rD→∞

[
I0(rD

√
s)

(
C2 −

∫ rD

rD,skin

(r′D
√
s)K0(r′D

√
s)fD(r′D)dr′D

)]
= 0. (3.106)

Because as x→∞, I0(x)→∞ [2], Eq. 3.106 can hold only if

C2 =

∫ ∞
rD,skin

r′D
√
sK0(r′D

√
s)fD(r′D)dr′D. (3.107)

Applying the first boundary condition of Eq. 3.104 to Eq. 3.105, gives

∆Ψ0
D(rD,skin, s) =C1K0(rD,skin

√
s) + C2I0(rD,skin

√
s)

+K0(rD,skin
√
s)

∫ rD,skin

rD,skin

r′D
√
sI0(r′D

√
s)fD(r′D)dr′D

− I0(rD,skin
√
s)

∫ rD,skin

rD,skin

r′D
√
sK0(r′D

√
s)fD(r′D)dr′D =

1

s
, (3.108)
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which leads to,

C1 =− C2
I0(rD,skin

√
s)

K0(rD,skin
√
s)

+
1

sK0(rD,skin
√
s)
. (3.109)

Using Eqs. 3.107 and 3.109 in Eq. 3.105, we find that the zeroth solution in the Laplace

space is then given by,

∆Ψ0
D =− K0(rD

√
s)I0(rD,skin

√
s)

K0(rD,skin
√
s)

∫ ∞
rD,skin

r′D
√
sK0(r′D

√
s)fD(r′D)dr′D

+
K0(rD

√
s)

sK0(rD,skin
√
s)

+ I0(rD
√
s)

∫ ∞
rD,skin

r′D
√
sK0(r′D

√
s)fD(r′D)dr′D

+K0(rD
√
s)

∫ rD

rD,skin

r′D
√
sI0(r′D

√
s)fD(r′D)dr′D

− I0(rD
√
s)

∫ rD

rD,skin

r′D
√
sK0(r′D

√
s)fD(r′D)dr′D, (3.110)

which can be rearranged as,

∆Ψ0
D = K0(rD

√
s)

(
1

sK0(rD,skin
√
s)

+

∫ rD

rD,skin

r′D
√
sI0(r′D

√
s)fD(r′D)dr′D

− I0(rD,skin
√
s)

K0(rD,skin
√
s)

∫ ∞
rD,skin

r′D
√
sK0(r′D

√
s)fD(r′D)dr′D

)
+ I0(rD

√
s)

(∫ ∞
rD,skin

r′D
√
sK0(r′D

√
s)fD(r′D)dr′D −

∫ rD

rD,skin

r′D
√
sK0(r′D

√
s)fD(r′D)dr′D

)
.

(3.111)

The solution in the real space is given by the inverse transform of Eq. 3.111, i.e.,

∆Ψ0
D(rD, tD) = L−1{∆Ψ0

D}. (3.112)

where this inverse will be obtained numerically using the Stehfest algorithm [97], presented

in Appendix 1. To find ∆Ψ1
D, we have to also approximate

∂∆ΨD(rD, tD)

∂tD
' ∂∆Ψ0

D(rD, tD)

∂tD
+ ε

∂∆Ψ1
D(rD, tD)

∂tD
+O(ε2) (3.113)
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and

∂∆ΨD(rD, tD)

∂rD
' ∂∆Ψ0

D(rD, tD)

∂rD
+ ε

∂∆Ψ1
D(rD, tD)

∂rD
+O(ε2). (3.114)

Starting with the definition of H(Sw) and ∆ΨD in Eq. 3.81 and 3.93, respectively, and

assuming that H(Siw) = dΨ(Siw)
dSw

= 0 for a partially water wet reservoir, we have

d∆ΨD(rD, tD)

dSw
=

d

dSw

(
Ψ(Sw(rD, tD))−Ψ(Siw)

Ψ(Sw(rD,skin, tD,inj))−Ψ(Siw)

)
=

d

dSw

(
∆Ψ(Sw(rD, tD))∆Ψ−1(Sw(rD,skin, tD)))

)
= ∆Ψ−1(rD,skin, tD,inj)H(∆ΨD(rD, tD))

−∆Ψ−2(rD,skin, tD,inj)H(∆ΨD(rD,skin, tD,inj))∆Ψ(rD, tD). (3.115)

Solving Eq. 3.115 for H(∆ΨD(rD, tD)) using Eq. 3.93, yields

H(∆ΨD(rD, tD)) = ∆Ψ(rD,skin, tD,inj)
d∆Ψ0

D(rD, tD)

dSw
+H(∆ΨD(rD,skin, tD,inj))∆Ψ0

D(rD, tD)

(3.116)

Defining

H0 = H(∆Ψ0
D) = ∆Ψ(rD,skin, tD,inj)

d∆Ψ1
D(rD, tD)

dSw
+H(∆ΨD(rD,skin, tD,inj))∆Ψ1

D(rD, tD)

(3.117)

and

H1 = H(∆Ψ1
D) = ∆Ψ(rD,skin, tD,inj)

d∆ΨD(rD, tD)

dSw
+H(∆ΨD(rD,skin, tD,inj))∆ΨD(rD, tD),

(3.118)
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we can approximate

H(∆ΨD(rD, tD)) = ∆Ψ(rD,skin, tD,inj)
d∆ΨD(rD, tD)

dSw
+H(∆ΨD(rD,skin, tD,inj))∆ΨD(rD, tD)

' ∆Ψ(rD,skin, tD,inj)

(
d∆Ψ0

D(rD, tD)

dSw
+ ε

d∆Ψ1
D(rD, tD)

dSw

)
+H(∆ΨD(rD,skin, tD,inj))(∆Ψ0

D(rD, tD) + ε∆Ψ1
D(rD, tD)) +O(ε2)

' H(∆Ψ0
D) + εH(∆Ψ1

D) +O(ε2)

' H0 + εH1 +O(ε2) (3.119)

and rewrite Eq. 3.90 as

Λ(∆ΨD(rD, tD)) = 1− H

Hmax

' 1− H0 + εH1 +O(ε2)

Hmax

= Λ(∆Ψ0
D)− ε H1

Hmax

. (3.120)

Neglecting O(ε2) terms and substituting Eqs. 3.113, 3.114 and 3.120 in Eq. 3.98, yields

1

rD

∂

∂rD

(
rD
∂∆Ψ0

D

∂rD
+ εrD

∂∆Ψ1
D

∂rD

)
−
(
∂∆Ψ0

D

∂tD
+ ε

∂∆Ψ1
D

∂tD

)
= ε

(
Λ(∆Ψ0

D)− ε H1

Hmax

)[
1

rD

∂

∂rD

(
rD
∂∆Ψ0

D

∂rD
+ εr

∂∆Ψ1
D

∂r

)]
(3.121)

with 
∆Ψ0

D(rD, 0) + ε∆Ψ1
D(rD, 0) = fD(rD), rD,skin ≤ rD ≤ ∞,

∆Ψ0
D(rD,skin, tD) + ε∆Ψ1(rD,skin, tD) = 1, tD ≥ 0,

limrD→∞∆Ψ0
D(rD, tD) + ε∆Ψ1(rD, tD) = 0, tD ≥ 0.

(3.122)

For ε1,

1

rD

∂

∂rD

(
rD
∂∆Ψ1

D

∂rD

)
− ∂∆Ψ1

D

∂tD
= Λ(∆Ψ0

D)
1

rD

∂

∂rD

(
rD
∂∆Ψ0

D

∂rD

)
, (3.123)
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where 
∆Ψ1

D(rD, 0) = 0, rD,skin ≤ rD ≤ ∞,

∆Ψ1
D(rD,skin, tD) = 0, tD ≥ 0,

limrD→∞∆Ψ1
D(rD, tD) = 0, tD ≥ 0.

(3.124)

Following Barreto [9] and Sousa [95], Sousa et al. [94] derivations to solve the pressure

diffusivity equation for gases, Eq. 3.123 can be rewritten in its integral form using a Green’s

function by treating the term on the right side of the Eq. 3.123 as a source term. We can

then write Eq. 3.123 as

1

rD

∂

∂rD

(
rD
∂∆Ψ1

D

∂rD

)
− ∂∆Ψ1

D

∂tD
= q̃(rD, tD), (3.125)

where

q̃(rD, tD) = Λ(∆Ψ0
D)

1

rD

∂

∂rD

(
rD
∂∆Ψ0

D

∂rD

)
, (3.126)

the associate Green’s function problem is [42, 34]

1

rD

∂

∂rD

(
rD
∂G(rD, rD0, tD, tD0)

∂tD

)
− ∂G(rD, rD0, tD, tD0)

∂tD
=
δ(rD − rD0)δ(tD − tD0)

2πrD
, (3.127)

where 
G(rD, rD0, tD, tD0) = 0, tD < tD0

G(rD,skin, rD0, tD, tD0) = 0

limrD→∞G(rD, rD0, tD, tD0)) = 0.

(3.128)

Note that the 1
2πrD

δ(rD − rD0) is the one-dimensional Dirac Delta function in cylindrical

coordinates [42] and the term 1
2πrD

δ(rD − rD0)δ(tD − tD0) corresponds to a impulse at rD0

and tD0 (source position). Applying the Laplace transform [2] to Eq. 3.127 and to the

boundary conditions, leads to

1

rD

∂

∂rD

(
rD

∂G

∂rD

)
− sG+G(rD, rD0, tD = 0, tD0) =

δ(rD − rD0) exp(−stD0)

2πrD
, (3.129)
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with 
G(rD,skin, rD0, s, tD0) = 0

limrD→∞G(rD, rD0, s, tD0)) = 0.

(3.130)

Using the initial condition in Eq. 3.129, yields

1

rD

∂

∂rD

(
rD

∂G

∂rD

)
− sG =

δ(rD − rD0) exp(−stD0)

2πrD
. (3.131)

We can solve Eq. 3.131 for any radius less than or greater than the source position, r0, where

the term on the right hand side of the equation is zero. For r < r0, we have

G = C1I0(rD
√
s) + C2K0(rD

√
s). (3.132)

Applying the first boundary condition in Eq. 3.132 yields

G(rD,skin, rD0, s, tD0) = C1I0(rD,skin
√
s) + C2K0(rD,skin

√
s) = 0, (3.133)

and thus,

C1 = −C2
K0(rD,skin

√
s)

I0(rD,skin
√
s)
, (3.134)

which gives,

G(rD, rD0, s, tD0) = C2

(
− K0(rD,skin

√
s)

I0(rD,skin
√
s)
I0(rD

√
s) +K0(rD

√
s)

)
, (3.135)

for r < r0. For r > r0, we have

G = C3I0(rD
√
s) + C4K0(rD

√
s). (3.136)

Applying the second boundary condition,

lim
rD→∞

G(rD, rD0, s, tD0) = lim
rD→∞

(
C3I0(rD

√
s) + C4K0(rD

√
s)

)
= 0 (3.137)
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To G(rD, rD0, s, tD0) to be bounded, we must have C3 = 0 and thus

G = C4K0(rD
√
s) (3.138)

for r > r0, considering limx→∞K0(x) → 0 and limx→∞ I0(x) → ∞. Since the Green’s

function must be continuous at r0, it follows from Eqs. 3.135 and 3.138 that

C2

(
− K0(rD,skin

√
s)

I0(rD,skin
√
s)
I0(rD0

√
s) +K0(rD0

√
s)

)
= C4K0(rD0

√
s). (3.139)

It follows immediately that

C4 = C2

(
− K0(rD,skin

√
s)

I0(rD,skin
√
s)
I0(rD0

√
s) +K0(rD0

√
s)

)
K0(rD0

√
s)

. (3.140)

Now only C2 is left to be determined. If we integrate the ordinary differential equation given

by Eq. 3.129 from r−D0 to r+
D0, we have

∫ r+D0

r−D0

1

r′D

∂

∂r′D

(
r′D

∂G

∂r′D

)
2πr′Ddr

′
D−
∫ r+D0

r−D0

sG2πr′Ddr
′
D = exp(−st0)

∫ r+D0

r−D0

δ(r′D − rD0)

2πr′D
2πr′Ddr

′
D,

(3.141)

which gives (
r′D

∂G

∂r′D

)
|r

+
D0

r−D0

−
∫ r+D0

r−D0

sr′DGdr
′
D =

exp(−stD0)

2π
. (3.142)

Taking the limit when r−D0, r
+
D0 → rD0, yields

lim
r−D0,r

+
D0→rD0

(
r′D

∂G

∂r′D

)
|r

+
D0

r−D0

=
exp(−stD0)

2π
. (3.143)

Taking the derivatives of Eqs. 3.135 and 3.138 with respect to rD0 using dI0(x)
dx

= I1(x) and
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dK0(x)
dx

= −K1(x) and inserting the results into in Eq. 3.143, we have

C2

(
− K0(rD,skin

√
s)

I0(rD,skin
√
s)
I0(rD0

√
s) +K0(rD0

√
s)

)
K0(rD0

√
s)

rD0

√
sK1(rD0

√
s)

+ C2rD0

√
s

(
− K0(rskin

√
s)

I0(rD,skin
√
s)
I1(rD0

√
s)−K1(rD0

√
s)

)
= −exp(−stD0)

2π
, (3.144)

which gives,

C2 =
exp(−stD0)

2πrD0

√
s
K0(rD,skin

√
s)

I0(rD,skin
√
s)

(
I0(rD0

√
s)

K0(rD0
√
s)
K1(rD0

√
s) + I1(rD0

√
s)

) . (3.145)

Substituting Eq. 3.145 in Eq. 3.140 gives

C4 =

exp(−stD0)

(
− K0(rD,skin

√
s)

I0(rD,skin
√
s)
I0(rD0

√
s) +K0(rD0

√
s)

)

2πrD0

√
s
K0(rD,skin

√
s)

I0(rD,skin
√
s)

(
I0(rD0

√
s)K1(rD0

√
s) + I1(rD0

√
s)K0(rD0

√
s)

) . (3.146)

Using the Wronskian given by

W{K0(z)I0(z)} = I0(z)K1(z) + I1(z)K0(z) =
1

z
, (3.147)

we can simplify Eqs. 3.107 and 3.146, respectively, to

C2 =
exp(−stD0)

2π

I0(rD,skin
√
s)

K0(rD,skin
√
s)
K0(rD0

√
s). (3.148)

and

C4 =
exp(−stD0)

2π

(
I0(rD,skin

√
s)

K0(rD,skin
√
s)
K0(rD0

√
s)− I0(rD0

√
s)

)
. (3.149)
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Substituting Eq. 3.148 in Eq. 3.135, yields

G(rD, rD0, s, tD0) =
exp(−stD0)

2π

(
I0(rD,skin

√
s)

K0(rD,skin
√
s)
K0(rD

√
s)− I0(rD

√
s)

)
K0(rD0

√
s),

(3.150)

for r < r0. Substituting Eq. 3.149 in Eq. 3.138, yields

G(rD, rD0, s, tD0) =
exp(−stD0)

2π

(
I0(rD,skin

√
s)

K0(rD,skin
√
s)
K0(rD0

√
s)− I0(rD0

√
s)

)
K0(rD

√
s),

(3.151)

for r > r0. G can be inverted to give G in real space to find

∆Ψ1
D(rD, tD) = 2π

∫ tD

0

∫ ∞
rD,skin

q̃(r′D, t
′
D)G(rD, r

′
D, tD, t

′
D)r′Ddr

′
Ddt

′
D. (3.152)

Note; the first term in Eq. 3.150 and 3.151 have to be inverted numerically while the last

term in these equations can be inverted analytically ([24] cited in[95]) using the translation

property of Laplace transform [2]:

L−1{−exp(−stD0)

2π
I0(rD

√
s)K0(rD0

√
s)} = L−1{−exp(−stD0)

2π
I0(rD0

√
s)K0(rD

√
s)} =

= − 1

4π(tD − tD0)
exp

(
− r2

D + r2
D0

4(tD − tD0)

)
I0

(
rDrD0

2(tD − tD0)

)
. (3.153)

Finally, taking the limit as ε→ 1 in Eq. 3.100 [80], yields

∆ΨD(rD, tD) =


fD(rD), 1 ≤ rD < rD,skin

∆Ψ0
D(r, t) + ∆Ψ1

D(rD, tD), rD ≥ rD,skin.

(3.154)

The saturation distribution during falloff obtained here analytically does agree with numer-

ical simulation results, as we will discuss in the Section Validation (Fig. 3.27).
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Production: Fortunately - for modeling it, not for trying to estimate it - the capillary

pressure effects cannot be noticed in the wellbore pressure response during injection, falloff

and early times of production period, as showed in Fig. 3.2. Consequently, we can neglect

the capillarity effects before the saturation wave breaking time (the breaking time is when

the a gradient catastrophe occurs and a shock appears in the solution; more details will be

given later), considering the injection time was sufficient long to guarantee that the wave

breaks far from the wellbore. The last four curves (from left to right) in n Fig. 3.17 represent

the saturation distribution in the reservoir at two times before the wave breaking time, with

and without capillary pressure effects. We can see that for both times, the saturation profile

with and without pc coincides. In another hand, we observe that the capillary dispersive

term in the Rapoport and Leas equation will became more and more negligible as the oil

front moves closer to the wellbore. Similarly to the injection period, during the flowback, the

capillary pressure dispersive effect will be non-negligible only in a small region around the

water front where the saturation gradient are significant (Fig. 3.18(b)). But, dissimilarly, in

this case, the capillary pressure derivative is not significant (Fig. 3.18(a)) - remember from

Chapter 2 that during the flowback the shock saturations change with time and are always

higher than the immobile water saturation. If we take a look in the Rapoport and Leas

equation,

∂Sw
∂t

+
C

2r

∂

∂r

(
fw − εkΨ

)
− εkC

2

∂2Ψ

∂r2
= 0, (3.155)

we see that as the radius decreases (flowback period), the convective term become more and

more significant, while the dispersive term coefficient remains the same, making the satu-

ration profile shaper. Consequently, at the breakthrough period, both saturations profiles

(with and without capillarity) will be almost the same, as we can confirm from simulations

results (Fig. 3.17). Consequently, if the injection time is sufficiently long so that during

injection the water front is far from the wellbore at the end of injection, then the satura-

tion distribution during flowback, when capillary pressure is included, becomes closer to the

solution obtained without capillarity effects as time increases during the flowback period.
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Figure 3.17: Saturation distribution obtained from IMEX, with and without capillary pres-
sure during flowback, at different times during flowback. Here, both profiles were obtained
from the same initial condition, i.e., the saturation profile at then of of falloff, where capillary
effects were considered during injection and falloff.

Considering this wave behavior in addition to the fact the wellbore pressure is not very

sensitive to slight variations in the saturation distribution at locations in the reservoir far

from the well, it may be possible to ignore capillarity effects on the wellbore pressure during

flowback, provided that the water front moves far from the well during injection. However,

this conjecture does not mean that capillary pressure can be ignored in constructing the in-

jection and falloff solutions as the solution at the end of falloff provides the initial condition

for constructing the solution during production.

Similarly to injection, during the production period we have a convection-dispersion

non-linear problem, but with the following initial and boundary conditions,


Sw(r, 0) = Sw(r, tfoff ) = Sw(r,∆tprod = 0), rw ≤ r ≤ ∞,

r ∂Sw(rw,t)
∂r

= 0 (pc = 0), t > 0,

limr→∞ Sw = Siw, t ≥ 0.

(3.156)

Note; here we neglect outlet end effect and assume that the water saturation gradient is
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Fw = fw + εkfwkro r
dPc
dSw

∂Sw
∂r

(3.2 revisited)
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Figure 3.18: Capillary pressure curve (a) and saturation profile (b) after 12 hours flowing
back.The dashed green lines represent the capillary pressure derivative (a) and the saturation
gradient (b) at the saturation at the shock front at time t during the flowback.
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Figure 3.19: Wellbore pressure history during an IFPT from IMEX (a) and the zoom in the
wellbore pressure history during flowback (b) to show the discrepancy on pressure caused
by neglecting capillary pressure effects during the flowback. Here, capillary pressure is
considered for the injection and falloff periods in both cases. X corresponds to time while Y
corresponds to pressure. At X = 45.46 there is a 125 psi discrepancy in the wellbore pressure
when neglecting capillary pressure effects, which represents 5% of the initial pressure, 2500
psi.
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zero at the wellbore (second condition in Eq. 3.156), which gives us an unique solution, but

not the true solution [5]. This assumption implies that the capillary pressure gradient is

zero at the wellbore, which does guarantee pressure continuity and means that Fw(rw, t) =

fw(rw, t). This equality will be useful later when developing a closed form for the inner

solution thorough material balance. Considering everything discussed, let us divide the

production period in three stages:

• Stage 1: Before wave breaking time, t ∈ (tfoff , tbt). In this period, the satura-

tion solutions with and without capillary pressure overlaps, we can use the Buckley-

Leverett hyperbolic equation (Eq. 3.1) to estimate saturation profile.

• Stage 2: Between wave breaking time and shock breakthrough, t ∈ (tbt, tBT ).

During this stage we do need to consider the dispersive term in the saturation governing

equation (Eq. 3.21). Similarly to injection, we can apply the method of matched

asymptotic expansion to find the saturation profile for any time after the wave breaking

time and before the oil front breakthrough.

• Stage 3: After shock breakthrough, t > tBT Here, as in Stage 1, we solve Eq. 3.1

to estimate the saturation distribution.

Now, before discuss each stage in details, let us show how to find the saturation wave

braking time, tbt. The breaking time is the earliest time at which a gradient catastrophe

occurs, .i.e., when a shock (the sharp oil front) is formed in the reservoir. Before the breaking

time, the physical and non-physical saturation distributions without capillary pressure effects

are the same, and the capillary effects could be considered negligible, as we can see in

Fig. 3.17, in which the last four curves (from left to right) corresponds to saturation profiles

for two different times before wave breaking time. We can see that for both times, the

saturation profile with and without capillary pressure overlaps.
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Breaking Time The breaking time is given by

tbt =
−1

min
dc(Sw0(r20))

d(r20)

, (3.157)

for
dc(Sw0(r20))

dr20
< 0, where

dc(Sw0(r0))

d(r2
0)

=
dc(Sw(r, tfoff ))

d(r2)
=
θqprod
πφh

d2fw
dS2

w

dSw
d(r2)

=
θqprod
πφh

d2fw
dS2

w

dSw
d∆ΨD

d∆ΨD

d(r2)
, (3.158)

with

d∆ΨD

dSw
= −

fwkro
dPc
dSw

∆Ψ(rskin, tfoff )
(3.159)

and

d∆ΨD

d(r2)
=
d∆Ψ0

D

d(r2)
+
d∆Ψ1

D

d(r2)
. (3.160)

The minimum is given by d
d(r20)

(dc(S0(r0))

d(r20)

)
= 0,

d2c(Sw0(r0))

d(r2
0)2

=
θqprod
πφh

[
d2fw
dS2

w

d2Sw
d(r2)2

+
d3fw
dS3

w

(
dSw
d(r2)

)2]
=
θqprod
πφh

{
d2fw
dS2

w

[
d2Sw
d∆Ψ2

D

(
d∆ΨD

d(r2)

)2

+
dSw
d∆ΨD

d2∆ΨD

d(r2)2

]
+
d3fw
dS3

w

(
dSw
d∆ΨD

d∆ΨD

d(r2)

)2}
. (3.161)

The breaking time expression can be derived following the derivation in Knobel [58] for

Cartesian coordinates. Defining the speed

c(Sw(r, t)) =
θqt
πφh

dfw(Sw(r, t))

dSw
, (3.162)

we can rewrite Eq. 3.1 as

∂Sw(r, t)

∂t
+ c(Sw(r, t))

∂Sw(r, t)

∂(r2)
= 0. (3.163)
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Characteristics are curves in the plan (r2,t) which transmit the initial saturation profile,

Sw(r2, 0) = Sw0(r2
0), forward in time. Along the characteristic curves, the partial differential

equation (Eq. 3.163) becomes an ordinary differential; dr2(t)
dt

= c(Sw(r2, t)). A characteristic

curve (r2(t),t) starting at the point (r2
0,0) is given by

r2 = c(Sw0(r2
0))t+ r2

0, (3.164)

where r2
0 = r2(0). Since dSw(r2(t),t)

dt
= 0 along dr2(t)

dt
= c(Sw(r2, t)), - i.e. Sw(r2(t), t) is

constant this particular curve starting at (r2
0,t) - we have Sw(r2, t) = Sw(r2

0, 0) = Sw0(r2
0) at

the point (r2, t). r2
0 = (r2, t) determines the strating point (r2

0, 0) of the characteristic passing

thorough (r2, t), defined implicitly by Eq. 3.164. Taking the partial derivative of Eq. 3.164

with respect to r2,

∂r2

∂(r2)
=
∂(c(Sw0(r2

0)t+ r2
0)

∂(r2)
, (3.165)

gives

1 =
∂(c(Sw0(r2

0))

∂(r2
0)

∂r2
0

∂(r2)
t+

∂r2
0

∂(r2)
. (3.166)

Solving Eq. 3.166 for
∂r20
∂(r2)

, we get

∂r2
0

∂(r2)
=

1

1 +
∂(c(Sw0(r20))

∂r20
t
. (3.167)

Substituting Eq. 3.167 in the derivative of Sw with respect to r2 and using Sw(r2, t) = Sw0(r2
0)

at (r2,t), yields,

∂Sw(r2, t)

∂(r2)
=
∂Sw0(r2

0)

∂(r2
0)

∂r2
0

∂(r2)
=

∂Sw0(r20)

∂(r20)

1 +
∂(c(Sw0(r20))

∂(r20)
t
. (3.168)

When the denominator in Eq. 3.168 goes to 0, we have a gradient catastrophe, i.e., ∂Sw
∂(r2)

→

∞. When
∂(c(Sw0(r20))

∂(r20)
≥ 0, that would not happen. The denominator goes to zero, as

t→ −1
∂(c(Sw0(r

2
0))

∂(r20)

, for
∂(c(Sw0(r20))

∂(r20)
< 0. Considering we are looking for the earliest time the wave

breaks, the breaking time (tbt) is given by Eq. 3.157. Fig. 3.20 shows water saturation profiles
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Figure 3.20: Physical water saturation profiles before and non-physical multivalued water
saturation profiles at different times before and after tbt, respectively, during the flowback
period. The last curve in the right side is the profile at the earliest time and the flow is
towards the well from right to left. We can see that the wave is breaking at time when the
“oil front” is about 600 ft2 in this case.

at different times before and after tbt obtained by flowing back the water saturations using

the characteristic equation (Eq. 3.164).

Stage 1: Before wave breaking time, t ∈ (tfoff , tbt) As discussed, before the wave

breaking time, .i.e., before a sharp oil front is formed in the reservoir, we can solve the

Buckley-Leverett equation (Eq. 3.1) instead of Eq. 3.21, since their solutions are equivalent

during this period. Letting ε→ 0 in Eq. 3.21, we have the following Cauchy problem,


∂Sw
∂t

+ θq
φ2πrh

∂fw(Sw)
∂r

= 0,

Sw(r, tfoff ) = Sw(r0), r > rw

(3.169)

whose strong solution can be obtained by the application of the Method of Characteristics

and is given by

r2(Sw, t) = r2
0 +

θqprod
πφh

dfw(Sw)

dSw
(t− tfoff ), (3.170)
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Figure 3.21: Saturation profile at a time t before the wave breaking time.

for any Sw ∈ (Siw, 1− Sor), where r0 = r(Sw, tfoff ). Remember that qprod < 0, which means

that the saturation waves are travelling towards the wellbore, they are flowing back.

Stage 2: Between wave breaking time and shock breakthrough, t ∈ (tbt, tBT ) We

can develop a solution analogue to the one described for the injection period by employing

the flowback solution presented in Chapter 2 as the outer solution, with same initial condition

for both outer and global solution, adopting a transient traveling wave as the inner solution.

This approximate solution obtained with the method of matched asymptotic expansion would

be valid for any time after the Buckley-Leverett saturation wave (outer solution) breaking

time. Fig. 3.21 shows the saturation profile in the reservoir at a time t before the wave

breaking time.

Outer solution, SBL
w After the gradient catastrophe occurs, we need to solve the system

of equations showed in Chapter 2 to get the shock position and the shock saturations. If

the initial condition for production was the same without pc, we would have the expression

derived in Chapter 2, which is untrue. So, we need to derive an equation to find the shock

position with the initial condition as the saturation distribution at the end of the falloff. As

explained in Chapter 2, since the solution must satisfy the weak form of the BL equation,

104



the area under the discontinuous saturation profile (weak solution) must be the same as the

area under the multivalued wave profile in Fig. 3.22, which we know satisfies conservation of

mass [102]. Therefore, the conservation law implies that we must have,

S∗
w∫

S+
w

(r2 − r2
s)dSw =

S−
w∫

S∗
w

(r2
s − r2)dSw, (3.171)

at a time t such that A1 = A2, where

r2 =

(
r2
foff −

θqprod∆tprod
πφh

dfw
dSw

)
. (3.172)

Eq. 3.171 can be rearranged as
S−
w∫

S+
w

(r2 − r2
s)dSw = 0. (3.173)

Inserting Eq. 3.172 into Eq. 3.174, yields

S−
w∫

S+
w

(r2
foff −

θqprod∆tprod
πφh

dfw
dSw

− r2
s)dSw = 0, (3.174)

leading to

r2
s(t) =

S−
w∫

S+
w

r2
foffdSw

[S−w − S+
w ]
− θqprod∆tprod

πφh

[fw(S−w )− fw(S+
w ]

[S−w − S+
w ]

. (3.175)

We also know that the saturation position ahead the shock is given by,

r2
s = r2

foff (S
+
w )− θqprod∆tprod

πφh

dfw
dSw

(S+
w ), (3.176)

while the saturation position behind the shock is,

r2
s = r2

foff (S
−
w )− θqprod∆tprod

πφh

dfw
dSw

(S−w ), (3.177)
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Figure 3.22: Non-physical multivalued saturation profile during flowback (a), area equality
shock fitting (b) and physical solution (c).
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where S+
w > S∗w > S−w . We can solve this system numerically using Newton-Raphson’s

method [90].

Inner Solution, SSL
w Once again, to find the inner solution, and subsequently, the global

saturation distribution, we define the traveling wave stretching coordinate w, defined by

Eq. 3.37 to transform the governing PDE (Eq. 3.21) from (r, t)→ (w, τ), where w = w(r, t)

and τ = t. In this case, Sw = Sw(w, τ) and w depends on τ . Using the chain rule and

Eq.3.37, we obtain

∂Sw
∂t

=
∂Sw
∂τ

+
∂Sw
∂w

∂w

∂τ
=
∂Sw
∂τ
− 1

ε

∂Sw
∂w

dr2
s

dτ
=
∂Sw
∂τ
− 1

ε

∂Sw
∂w

θqprod
πφh

[fw(S−w )− fw(S+
w )]

[S−w − S+
w ]

,

(3.178)

where the equality used Eq. 3.175 to find dr2s
dτ

= dr2s
dt

dt
dτ

. Rearranging Eq. 3.178 and using

Eq. 3.178, Eq. 3.40 and Eq. 3.41, Eq 3.21 can be rewritten as follows

ε
πφh

θqprod

∂Sw
∂τ
− [fw(S−w )− fw(S+

w )]

[S−w − S+
w ]

∂Sw
∂w

+
∂fw
∂w
− ∂

∂w

(
2r2k(r)

∂Ψ

∂w

)
= 0. (3.179)

Letting ε→ 0 in Eq. 3.179, we have

− [fw(S−w (τ))− fw(S+
w (τ))]

[S−w (τ)− S+
w (τ)]

∂Sw
∂w

+
∂fw
∂w
− ∂

∂w

(
2r2

s(τ)k(rs(τ))
∂Ψ

∂w

)
= 0, (3.180)

where r2 = εw + r2
S(τ)→ r2

s(τ) as ε→ 0; r2
s(τ) is

r2
s(τ) =

S−
w (τ)∫

S+
w (τ)

r2
foffdSw

[S−w (τ)− S+
w (τ)]

− θqprodτ

πφh

[fw(S−w (τ))− fw(S+
w (τ)]

[S−w (τ)− S+
w (τ)]

. (3.181)

Integrating Eq. 3.180 with to respect to w gives

− [fw(S−w (τ))− fw(S+
w (τ))]

[S−w (τ)− S+
w (τ)]

Sw + fw −
(

2r2
s(τ)k

∂Ψ

∂w

)
= b(τ), (3.182)
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We can find the b(τ) from the boundary conditions:

lim
w→∞

Sw(τ, w) = S−w (τ) (3.183)

and

lim
w→−∞

Sw(τ, w) = S+
w (τ), (3.184)

for τ > 0. Since, as discussed when developing the injection solution, we assume that Sw

goes asymptotically to Sw−(τ) and Sw+(τ), such that ∂Sw
∂w
→ 0 as w → ±∞, we have

∂Ψ
∂w

= ∂Ψ
∂Sw

∂Sw
∂w
→ 0 as w → ±∞. So, letting w → −∞ in Eq. 3.182 gives

b(τ) = − [fw(S−w (τ))− fw(S+
w (τ))]

[S−w (τ)− S+
w (τ)]

S+
w (τ) + fw(S+

w (τ)). (3.185)

Using Eq. 3.185 together with Eq. 3.182 and rearranging the resulting equation, yields

2r2
s(τ)k(r2

s(τ))
dΨ

dSw

∂Sw
∂w

= − [fw(S−w (τ))− fw(S+
w (τ))]

[S−w (τ)− S+
w (τ)]

(Sw − S+
w (τ)) + (fw − fw(S+

w (τ))),

(3.186)

which can be rearranged and integrated from wellbore to w to give

2r2
s(τ)k(r2

s(τ))

∫ Sw

Sw,well

dΨ
dSw

(fw − fw(S+
w (τ)))− [fw(S−

w r2s(τ))−fw(S+
w r2s(τ))]

[S−
w r2s(τ)−S+

w r2s(τ)]
(Sw − S+

w r
2
s(τ))

dSw = w−wwell,

(3.187)

at any τ > 0 where Sw = Sw(τ, w) and Sw,well = Sw(τ, wwell) = Sw(τ, w(rw, τ)). Sw,well can

be determined by a material balance analogous to what was done to derive the injection

period solution.
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Matching Saturation, SSH
w The matching saturation SSHw defined using the matching

principle by applying Prandtl’s technique [72] in the production period is given by

SSHw (r, t) =


S−w (t) r2 ≥ r2

s(t)

S+
w (t) r2

w ≤ r2 < r2
s(t).

(3.188)

Material Balance In this case, the amount of water injected minus the amount produced

must be the same as the amount of mobile water present in the reservoir, i.e,

qinjtinj −
∫ t

tfoff

qprodFw(Sw(rw, t))dt =

∫ ∞
rw

(Sw(r, t)− Siw)2πrhdr, (3.189)

where Sw(r, t) is the water saturation value during the flowback period. The same statement

is true for the saturation solution neglecting the capillary pressure effects:

qinjtinj −
∫ t

tfoff

qprodfw(SBLw (rw, t))dt =

∫ ∞
rw

(SBLw ((r, t))− Siw)2πrhdr. (3.190)

Solving both Eqs. 3.189 and 3.190 for qinjtinj, gives

∫ t

tfoff

qprodFw(Sw(rw, t))dt+

∫ ∞
rw

(Sw(r, t)− Siw)2πrhdr =∫ t

tfoff

qprodfw(SBLw (rw, t))dt+

∫ ∞
rw

(SBLw ((r, t))− Siw)2πrhdr. (3.191)

Using Eq. 3.31 in Eq. 3.191and rearranging the resulting equation gives

∫ ∞
r2w

(SSLw (r, t)−SSHw (r, t))πd(r2) + qprod

∫ t

tfoff

Fw(Sw(rw, t))− fw(SBLw (rw, t))dt = 0. (3.192)

At r = rw, we assumed that pc = 0, which means Fw = fw. So, we can rewrite Eq. 3.192 as

∫ ∞
r2w

(SSLw − SSHw )πd(r2) + qprod

∫ t

tfoff

fw(Sw(rw, t))− fw(SBLw (rw, t))dt = 0. (3.193)
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We can approximate the water fractional flow by using a Taylor expansion around SBLw ,

fw(Sw) ≈ fw(SBLw + SSLw − SSHw ) ≈ fw(SBLw ) + (SSLw − SSHw )
dfw(SBLw )

dSw
. (3.194)

Note that Eq. 3.194 is different from the approximation made by Deng and King [38] for the

injection case. In that they assumed that the term dfw(SBLw )
dSw

is a constant equal to the shock

speed by using the method of matched asymptotic expansion to find a composite solution

for fw. Their approximation is only valid and equivalent to the Taylor expansion for this

very specific injection case. Their procedure would give the incorrect water fractional flow

value for the production period, where both shock saturations are mobile. Using Eq. 3.194

in Eq. 3.193, yields,

∫ ∞
r2w

(SSLw − SSHw )d(r2) +
qprod
π

∫ t

tfoff

(SSLw (rw, t)− SSHw (rw, t))
dfw(SBLw (rw, t))

dSw
dt = 0,

(3.195)

which can be rearranged as

∫ ∞
r2w

SSLw d(r2) +
qprod
π

∫ t

tfoff

SSLw (rw, t)
dfw(SBLw (rw, t))

dSw
dt = S+

w (t)(r2
s − r2

w) + S−w (t)

∫ ∞
r2s

d(r2)

+
qprod
π

∫ t

tfoff

S+
w (t)

dfw(SBLw (rw, t))

dSw
dt,

(3.196)

using Eq. 3.188 and assuming SSHw (rw, t) = S+
w (t) for t < tBT . For t ≥ tTB, as mentioned

previously, we will not use the composition solution obtained using the method of asymptotic

expansion. So, we do not need to solve Eq. 3.195 after the oil shock breakthrough. When

neglecting hysteresis effects in the relative permeability curves, SBLw (rw, t) = 1 − Sor and
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Eq. 3.196 becomes

∫ ∞
r2w

SSLw d(r2) +
qprod
π

dfw(1− Sor)
dSw

∫ t

tfoff

SSLw (rw, t)dt = S+
w (t)(r2

s − r2
w) + S−w (t)

∫ ∞
r2s

d(r2)

+
qprod
π

dfw(1− Sor)
dSw

∫ t

tfoff

S+
w (t)dt.

(3.197)

Since dfw(1−Sor)
dSw

= 0 for our S-shaped fw curve, we have

∫ ∞
r2w

SSLw d(r2) = S+
w (t)(r2

s(t)− r2
w) + S−w (t)

∫ ∞
r2s(t)

d(r2), (3.198)

for t < tBT . tBT can be obtained from the solution without capillary pressure, the outer

solution, by solving the system of Eqs. 3.175, 3.176 and 3.177 for t at rs = rw. We can

rewrite Eq. 3.198 as

∫ ∞
r2w

SSLw d(r2) = S+
w (t)(r2

s(t)− r2
w) +

(
S−w (t)

∫ ∞
r2w

dr2 − S−w (t)

∫ r2s(t)

r2w

d(r2)

)
. (3.199)

Using Eq. 3.38 in Eq. 3.199, it follows that

∫ ∞
r2w

SSLw d(r2) = (S+
w (t)− S−w (t))(r2

s(t)− r2
w)CDt+ S−w (t)

∫ ∞
r2w

d(r2). (3.200)

Transforming Eq. 3.200 from (r, t)→ (w, τ) and using Eq. 3.37, Eq. 3.200 becomes

ε

∫ ∞
−CDτ

ε

SSLw (w)dw = (S+
w (t)− S−w (t))CDτ + εS−w (t)

∫ ∞
−CDτ

ε

dw. (3.201)

From Eq. 3.186,

dw = 2r2
s(τ)k(r2

s(τ))
dΨ
dSw

− [fw(S−
w (τ))−fw(S+

w (τ))]

[S−
w (τ)−S+

w (τ)]
(SSLw − S+

w (τ)) + (fw − fw(S+
w (τ)))

(3.202)
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Substituting Eq. 3.202 in Eq. 3.201 gives

ε2r2
sk(r2

s)

∫ S−
w

SSLw (−CDτ
ε

)

SSLw
dΨ
dSw

− [fw(S−
w (τ))−fw(S+

w (τ))]

[S−
w (τ)−S+

w (τ)]
(SSLw − S+

w (τ)) + (fw − fw(S+
w (τ)))

dSSLw

= (S+
w − S−w )CDτ + εS−w

∫ ∞
−CDτ

ε

dw. (3.203)

Dividing Eq. 3.203 by εS−w and solving the resulting equation for
∫∞
−CDτ

ε
dw gives

∫ ∞
−CDτ

ε

dw =
2r2

sk(r2
s)

S−w

∫ S−
w

SSLw (−CDτ
ε

)

SSLw
dΨ
dSw

− [fw(S−
w (τ))−fw(S+

w (τ))]

[S−
w (τ)−S+

w (τ)]
(SSLw − S+

w (τ)) + (fw − fw(S+
w (τ)))

dSSLw

− (S+
w − S−w )CDτ

εS−w
. (3.204)

Setting Sw = S−w in the upper limits of the integrals of Eq. 3.187 and exchanging the two

sides of the equation yields,

∫ ∞
−CDτ

ε

dw = 2r2
sk(r2

s)

∫ S−
w

SSLw (−CDτ
ε

)

dΨ
dSw

− [fw(S−
w )−fw(S+

w )]

[S−
w−S+

w ]
(SSLw − S+

w ) + (fw − fw(S+
w ))

dSSLw .

(3.205)

As the left sides of Eqs 3.204 and 3.205 are the same, the right sides of these two equations

must be equal which gives

2r2
sk(r2

s)

∫ S−
w

SSLw (−CDτ
ε

)

dΨ
dSw

D(Siw − SSLw ) + fw
dSSLw = −(S+

w − S−w )CDτ

εS−w

+
2r2

sk(r2
s)

S−w

∫ S−
w

SSLw (−CDτ
ε

)

SSLw
dΨ
dSw

− [fw(S−
w )−fw(S+

w )]

[S−
w−S+

w ]
(SSLw − S+

w ) + (fw − fw(S+
w ))

dSSLw , (3.206)

Multiplying Eq. 3.206 by εS−w and rearranging the resulting equation gives

2r2
sk(r2

s)ε

∫ S−
w

SSLw (−CDτ
ε

)

(SSLw − S−w ) dΨ
dSw

− [fw(S−
w )−fw(S+

w )]

[S−
w−S+

w ]
(SSLw − S+

w ) + (fw − fw(S+
w ))

dSSLw = (S+
w − S−w )CDτ.

(3.207)
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Once the value SSLw (−CDτ
ε

) (i.e., the inner solution saturation in the wellbore, SSLw (wwell))

is determined numerically by solving Eq. 3.207 using the bisection method [90] at each time

τ , Eq. 3.187 is used to determine the saturation profile in the stabilized zone.

Stage 3: After shock breakthrough, t > tBT After the oil front breakthrough, the

capillary pressure effects become negligible as the shock dematerializes (and consequently,

the high saturation gradient values that were present in the shock layer vanish). Thus, we can

use the saturation profile at t = tBT as initial condition to find the saturation distribution

during flowback after oil breakthrough by solving Sw(r, t) = SBLw (r, t), similarly as done

before the wave breaking time.

Here, as in Stage 1, we solve Eq. 3.1 to estimate the saturation distribution Sw(r, t)

for any t > tBT , where the initial condition is given by the saturation distribution at the

time of breakthrough. In this case we have the following Cauchy problem,


∂Sw
∂t

+ θq
φ2πrh

∂fw(Sw)
∂r

= 0,

Sw(r, tBT ) = Sw(r0), r > rw,

(3.208)

whose strong solution is given by

r2(Sw, t) = r2
0 +

θqprod
πφh

dfw(Sw)

dSw
(t− tfoff ), (3.209)

for any Sw ∈ (Siw, Sw,well), where r0 = r(Sw, tBT ). Remember, tBT can be obtained from the

solution without capillary pressure, the outer solution, by solving the system of Eqs. 3.175,

3.176 and 3.177 for t at rs = rw.

Note on Heterogeneity If there is a skin zone, the heterogeneity in the absolute perme-

ability will affect only the solution with capillary effect, which might leading to a difference

between both saturation distributions (with and without capillary effects) at the moment

those waves reach the skin radius and this discrepancy should reflect in the wellbore pressure
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drop as well. We would not be able to see that in numerical simulation if use skin factor

instead of actually“adding” a skin zone in the numerical grid. The steady-state theory pre-

dicts sharp changes in saturation when regions of permeability change are traversed. The

static capillary continuity criterion requires an a step-like change in saturation across the

jump from high permeability to low permeability [25, 26], i.e., across the skin zone interface.

Chaouche et al. [26] showed that heterogeneities effects mitigate as the flow rate increases.

Considering we are already assuming a steady-state condition around the wellbore and that

the well test flow rate condition is high enough, we have one more argument in favor of

neglecting capillary pressure while estimating saturation distribution and wellbore pressure

response during the flowback period. However, as we can see in Fig. 3.2, for a short period

of time around the oil front breakthrough time, there is a large discrepancy in the wellbore

pressure. If we want to estimate capillary pressure curves, we need to consider capillary

pressure. To do that, we have one more condition, mass conservation across the skin zone

interface, the fluid flux condition [100],

Fw(r−skin, t) = Fw(r+
skin, t), (3.210)

which is obtained form the integral form of integral form of Eq. 3.21,

d

dt

b2∫
a2

Sw(r, t)πd(r2) =
qt
φh

(Fw(a, t)− Fw(b, t)), (3.211)

which we split into two regions for a fixed point (rskin, t) ∈ (a, b) to obtain

d

dt

( r−2
skin∫
a2

Sw(r, t)πd(r2) +

b2∫
r+2
skin

Sw(r, t)πd(r2)
)

=
qt
φh

(Fw(a, t)− Fw(b, t)), (3.212)
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where r−skin = rskin − ε and r+
skin = rskin + ε, with constant ε. Applying Leibniz rule in the

integrals of Eq. 3.212

r−2
skin∫
a2

∂Sw(r, t)

∂t
d(r2) + Sw(r−skin, t)

dr−2
skin

dt
+

b2∫
r+2
skin

∂Sw
∂t

(r, t)d(r2)− Sw(r+
skin, t)

dr+2
skin

dt

=
qt
φπh

(Fw(a, t)− Fw(b, t)), (3.213)

Letting a→ r−skin, b→ r+
skin and ε→ 0 in Eq. 3.213 and simplifying,

Fw(Sw(r−skin, t))− Fw(Sw(r+
skin, t)) =

πφh

θqprod

dr2
skin

dt
(Sw(r−skin, t)− Sw(r+

skin, t)). (3.214)

Since
dr2skin
dt

= 0, we have

Fw(Sw(r−skin, t))− Fw(Sw(r+
skin, t)) = 0. (3.215)

Throughout this work we have assumed that porosity is homogeneous in the reservoir; that

is the basis for the analytical solutions derived for the Buckley-Leverett equation. When we

assume that the only rock property that changes in the skin zone is the absolute permeability,

we need to guarantee pressure continuity across the skin radius [100]. Here, as is typically

done, we assume that one capillary pressure curve applies throughout the reservoir including

the skin zone, which means there will not be a discontinuity at saturation in the interface,

i.e., S
(
wwskin) = S−w (wskin) = S+

w (wskin). We can use Eq. 3.53,

2r2
sk

∫ Sw

Siw

dΨ
dSw

D(Siw − Sw) + fw
dSw = w − w0, (3.216)

to find the saturation distribution in the non-skin zone region, then we need to solve Eq.

3.216 at wskin = w(rskin, t) to find Sw(rskin, t),

2r2
sk

∫ Sw(wskin)

Siw

dΨ
dSw

D(Siw − Sw) + fw
dSw = wskin − w0, (3.217)
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and then calculate the saturation distribution in the other region with,

2r2
sks

∫ Sw

Sw(wskin)

dΨ
dSw

D(Siw − Sw) + fw
dSw = w − wskin. (3.218)

When the reservoir permeability is modified by the drilling fluid invasion, it is usually

assumed that it does not affect the capillary pressure curve when running numerical simu-

lations. Therefore, we would not be able to see an interface jump in saturation across the

skin zone. However, we could only know if this assumption is indeed reasonable and how it

would affect the wellbore pressure response through real/lab data analysis. In the case of

considering two different capillary pressure curves, both given by

pc(Sw, r) = σ

√
φ

k(r)
J(Sw), (3.219)

for a damaged reservoir, to guarantee pressure continuity (i.e, pc(Sw(r−skin, t)) = pc(Sw(r+
skin, t))),

we must have [100],

J(Sw(r+
skin, t)) =

√
ks
k
J(Sw(r−skin, t)). (3.220)

So, if we knew the J-curve, we could find Sw(r+
skin, t).

3.1.2 Wellbore Pressure History

As shown in Chapter 2, the IFPT pressure solutions used in this work are derived

following the Peres and Reynolds [78] procedure, which assumes the validity the Thompson

and Reynolds [98] steady-state theory. As mentioned previously, after finding the saturation

distribution, we can obtain the wellbore pressure by applying the pressure solutions presented

by Peres et al. [82], Chen [28], Chen et al. [31].

Injection: During injection at a constant flow rate, qt(rw, t) RB/D, where t = 0 at

the beginning of the water injection, by integrating the pressure gradient expression for the

total liquid flow rate given by Darcy’s law as in Thompson and Reynolds [98], Peres and

116



Reynolds [79], given by

qt = −k(r)hr

α

(
λo
∂po
∂r

+ λw
∂pw
∂r

)
. (3.221)

Substituting pw = po − pc into Eq. 3.221, yields

qt = −k(r)hr

α

(
λo
∂po
∂r

+ λw
∂(po − pc)

∂r

)
, (3.222)

or equivalently

qt = −k(r)hr

α

(
λt
∂po
∂r
− λw

∂pc
∂r

)
. (3.223)

Eq. 3.223 can be rearranged to obtain

∂po
∂r

= − αqt
k(r)hrλt

+
λw
λt

dpc
dSw

∂Sw
∂r

. (3.224)

Integrating Eq. 3.224 assuming an infinite-acting reservoir, the bottom hole pressure differ-

ence from the reservoir initial pressure (poi) can be expressed as

∆pwf (t) = pwf (t)− poi =

∞∫
rw

αqt(r, t)

hλt(r, t)k(r)

dr

r
−
∞∫

rw

fw
dpc
dSw

∂Sw
∂r

dr, (3.225)

where it is assumed that po(rw, t) = pw(rw, t), i.e., pc = 0 at r = rw, to satisfy the compat-

ibility condition [92], i,e, to guarantee phases pressure continuity at the wellbore (r = rw).

Although this statement seems to contradict the discussion presented when solving for sat-

uration, it is an assumption that simplifies the pressure governing equation and gives us an

solution. Since the numerical simulator - our only validation tool available - assumes the

same as we do, it is not possible for us to show here that this assumption gives indeed an

accurate wellbore pressure response estimate. Eq. 3.225 can be rewritten as

∆pwf (t) =

∞∫
rw

αqt(r, t)

hλt(r, t)k(r)

dr

r
−

rwf(t)∫
rw

fw
dpc
dSw

∂Sw
∂r

dr, (3.226)
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by assuming that

−
∞∫

rwf(t)

fw
dpc
dSw

∂Sw
∂r

dr = 0, (3.227)

considering fw(Siw) = 0 and ∂Sw
∂r

= 0 for r > rwf (t), since the water in the region ahead

of the water front foot is assumed immobile. rwf can be defined as the position at which

Sw − Siw < δ, where δ is a very small number. Using the [98] steady-state theory, which

assumes that, qt(r, t) = q(rw, t), for r ≤ rwf (t), Eq. 3.226 becomes

∆pwf (t) =
αqrw,t
h

rwf (t)∫
rw

1

λt(r,∆tprod)k(r)

dr

r
+
α

h

∞∫
rwf (t)

qt(r, t)

λt(r, t)k(r)

dr

r
−

rwf(t)∫
rw

fw
dpc
dSw

∂Sw
∂r

dr,

(3.228)

where for any practical set of values of physical properties, [78] indicate that this assumption

is valid. Adding and subtracting the term

α

h

rwf (t)∫
rw

qt(rw, t)

λ̂ok(r)

dr

r
,

where λ̂o = kro(Swi)
µo

is the endpoint oil mobility at Sw = Swi, Eq. 3.228 can be rewritten as

∆pwf (t) =
α

h

∞∫
rw

qt(r, t)

λ̂o(r, t)k(r)

dr

r
+
αqt(rw, t)

h

rwf (t)∫
rw

(
1

λt(r, t)
− 1

λ̂o

)
dr

k(r)r
−

rwf(t)∫
rw

fw
dpc
dSw

∂Sw
∂r

dr

(3.229)

=∆p̂o(t) +
αqt(rw, t)

hλ̂o

rwf (t)∫
rw

( λ̂o
λt(r, t)

− 1
) 1

k(r)

dr

r
−

rwf(t)∫
rw

fw
dpc
dSw

∂Sw
∂r

dr.

∆p̂o(t) is the single-phase oil transient pressure drop, the known pressure drop solution

that is obtained if we inject oil into an oil reservoir (injection period), whose well known
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approximate solution is given by [89]

∆p̂o(t) = pwf,o(t)− poi =
αqt

khλ̂o

[
1

2
ln

(
βkλ̂ot

φĉtor2
w

)
+ 0.4045 + s

]
. (3.230)

Here, β is a unit conversion factor which in oil field units is 0.0002637 and the single-phase

total compressibility is

ĉto = co(1− Sor) + cwSwi + cr. (3.231)

Falloff: During falloff, differently as presented in Chapter 2, we de not assume that

the saturation distribution remains constant and equal to the distribution at the end of

injection period. Therefore, the bottom hole pressure drop during falloff can be expressed as

∆pws(∆tfoff ) = pws(∆tfoff )− poi =

∞∫
rw

αqs(r,∆tfoff )

hλt(r,∆tfoff )k(r)

dr

r
−
∞∫

rw

fw
dpc
dSw

∂Sw
∂r

dr, (3.232)

where ∆tfoff = 0 at the beginning of the falloff period and pws(∆tfoff ) denotes the falloff

pressure at time ∆tfoff . Eq. 3.232 can be rewritten as

∆pws(∆tfoff ) =
α

h

rwf (∆tfoff )∫
rw

qs(r,∆tfoff )

λt(r,∆tfoff ))k(r)

dr

r
+
α

h

∞∫
rwf (∆tfoff )

qs(r,∆tfoff )

λt(r,∆tfoff ))k(r)

dr

r

−
rwf (∆tfoff )∫

rw

fw
dpc
dSw

∂Sw
∂r

dr,

(3.233)

where qs(r,∆tfoff ) is the total flow rate profile at shut-in time, ∆tfoff . Following Peres et al.

[81] and Chen [28], we add and subtract the term

α

h

rwf (∆tfoff )∫
rw

qos(r,∆tfoff )

λ̂ok(r)

dr

r
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to Eq. 3.233 and rearrange the resulting equation to obtain

∆pws(∆tfoff ) = pws(∆tfoff )− poi

=

∞∫
rw

αqs(r,∆tfoff )

hλ̂ok(r)

dr

r
−

rwf (∆tfoff )∫
rw

fw
dpc
dSw

∂Sw
∂r

dr

+
α

hλ̂o

rwf (∆tfoff )∫
rw

(
λ̂o

λt(r,∆tfoff )
qs(r,∆tfoff )− qos(r,∆tfoff )

)
1

k(r)

dr

r

= ∆p̂os(∆tfoff )−
rwf (∆tfoff )∫

rw

fw
dpc
dSw

∂Sw
∂r

dr

+
α

hλ̂o

rwf (∆tfoff )∫
rw

(
λ̂o

λt(r,∆tfoff )
qs(r,∆tfoff )− qos(r,∆tfoff )

)
1

k(r)

dr

r
.

(3.234)

Here qs(r,∆tfoff ) = qos(r,∆tfoff ) in the uninvaded zone, i.e., for r > rwf (∆tfoff ), where

qos(r,∆tfoff ) is the single-phase rate profile obtained during falloff after injecting oil at the

rate qinj [82]. Since we are considering only infinite-acting behavior, where the single oil

phase pressure drop that would be obtained if we had injected oil and then shut the well can

be defined from the superposition of two constant flow rates solutions, i.e.,

∆p̂os = pwf,o(∆tfoff )− poi =
αqinj

2khλ̂o
ln

(
tinj + ∆tfoff

∆tfoff

)
, (3.235)

with the rate schedule

qt(rw, t) =


qinj > 0, 0 < t ≤ tinj

0, tinj < t ≤ tinj + tfoff ,

(3.236)

where tfoff is the total time at the end of the falloff period and ∆tfoff = 0 at the beginning

of the falloff period. As rate superposition applies for single-phase flow, following Peres et al.
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[81] and Chen [28], we use rate superposition to approximate the rate profiles as

qs(r,∆tfoff ) = qinj

[
exp

(
− φct(r,∆tfoff )r

2

4βkλt(r,∆tfoff )(tinj + ∆tfoff )

)
− exp

(
− φct(r,∆tfoff )r

2

4βkλt(r,∆tfoff )∆tfoff

)]
(3.237)

and the single oil phase flow rate

qos(r,∆tfoff ) = qinj

[
exp

(
− φĉtor

2

4βkλ̂o(tinj + ∆tfoff )

)
− exp

(
− φĉtor

2

4βkλ̂o∆tfoff

)]
, (3.238)

with

ct(r,∆tfoff ) = coSo(r,∆tfoff ) + cwSw(r,∆tfoff ) + cr. (3.239)

Production: During production at a constant flow rate qprod = qt(rw,∆tprod) RB/D,

where ∆tprod = 0 at the beginning of the flowback period, the bottom hole pressure drop

can be expressed as [28, 31]

∆pwf (∆tprod) = poi − pwf (∆tprod) = −
∞∫

rw

αqt(r,∆tprod)

hλt(r,∆tprod)k(r)

dr

r
+

∞∫
rw

fw
dpc
dSw

∂Sw
∂r

dr, (3.240)

Let rf,inj be the radius of the water front at the end of injection period, then for any time

∆tprod, such that, qt(r, t) = qprod for r ≤ rinj(tinj), Eq. 3.240 becomes

∆pwf (∆tprod) =− αqprod
h

rwf (tfoff )∫
rw

1

λt(r,∆tprod)k(r)

dr

r
− α

h

∞∫
rwf (tfoff )

qt(r,∆tprod)

λt(r,∆tprod)k(r)

dr

r

+

rwf (tfoff )∫
rw

fw
dpc
dSw

∂Sw
∂r

dr, (3.241)

where the Thompson and Reynolds [98] steady-state theory was applied to calculate the

pressure drop with time in each stage of well testing by integrating Darcy’s equation, ignoring

capillary and gravitational effects. Obviously, the former assumption is not valid for the
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whole production process. However, as shown by Chen [28], the steady-state solution will

be reached in a short time after the production starts, if the injected water bank is not

extensive. By adding and subtracting the term

α

h

rwf (tfoff )∫
rw

qprod

λ̂ok(r)

dr

r
,

where λ̂o is the endpoint oil mobility at Sw = Swi, which means that λt(r,∆tprod) = λ̂o for

r > rwf (tfoff ), Eq. 3.241 can be rewritten as

∆pwf (∆tprod) = −α
h

∞∫
rw

qt(r,∆tprod)

λ̂ok(r)

dr

r
+

rwf (tfoff )∫
rw

fw
dpc
dSw

∂Sw
∂r

dr

− αqprod
h

rwf (tfoff )∫
rw

(
1

λt(r,∆tprod)
− 1

λ̂o

)
dr

k(r)r

= −∆p̂op(∆tprod) +

rwf (tfoff )∫
rw

fw
dpc
dSw

∂Sw
∂r

dr

− αqprod

hλ̂o

rwf (tfoff )∫
rw

(
λ̂o

λt(Sw(r,∆tprod))
− 1

)
1

k(r)

dr

r
, (3.242)

where we have assumed that ∆tprod is sufficiently large so that qt(r,∆tprod) = qprod for

r ≥ rwf (tfoff ). The single-phase oil solution that would be obtained if we had injected oil

into a oil reservoir, shut the well and the produced it, ∆p̂o(∆tprod), can be determined by

the superposition of three constant flow rate solutions

∆p̂op(∆tprod) =
α

khλ̂o

{
qinj
2

ln

(
tinj + tfoff + ∆tprod

tfoff + ∆tprod

)
+ qprod

[
1

2
ln

(
βkλ̂o
φĉtor2

w

∆tprod

)
+ 0.4045 + s

]}
, (3.243)
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with the rate schedule:

qt(rw, t) =


qinj > 0, 0 < t ≤ tinj

0, tinj < t ≤ tfoff

qprod < 0, t > tfoff .

(3.244)

3.1.3 Note on Hysteresis Effects

As shown in Chapter 2, the fluid saturation distribution for the IFPT can be deter-

mined assuming two different fractional curves, as consequence of two pairs of relative per-

meability curves, imbibition and drainage, and also two capillary pressure curves (Fig. 3.23).

Figs. 3.24 and 3.25 show the wellbore water saturation the wellbore pressure response, respec-

tively, during an IFPT with and without hysteresis effect, with capillary pressure included

obtained, from a case run in IMEX.

3.2 Validation

We have compared our pressure and saturation solution solution including capillary

pressure effects with the commercial numerical simulator IMEX, using the properties shown

in Table 3.1. Fig. 3.26 compares the saturation distribution obtained from our analytical

solution with the one obtained with IMEX while Fig. 3.29 shows the comparison of the

wellbore pressure response from our analytical solution and IMEX during injection test. To

be able to match saturation and pressure obtained from our solution with IMEX, we have to

use a very refined grid (0.01 ft) around the wellbore - in the zone invaded by water -and then

increase it exponential to a very large external radius (10,000 times the wellbore radius) to

reproduce a a infinite acting reservoir. In addition, we have to start with very short time

steps, 10−7 day.
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Figure 3.23: Relative permeability and capillary pressure curves for first imbibition and
second drainage.
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Figure 3.24: Wellbore saturation during an IFPT with and without hysteresis effect. Results
obtained from IMEX. Here, tinj = 16h and tfoff = 32.
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Figure 3.25: Wellbore pressure response during an IFPT with and without hysteresis effect.
Results obtained from IMEX. Here, tinj = 16h and tfoff = 32
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Table 3.1: Reservoir, rock and fluid properties for simulation and analytical solution.

Property Value Unit

qt 3000 RB/DAY
h 60 ft
rw 0.35 ft
re 6800 ft
k 300 md
s 0
Siw 0.10
Sor 0.25
pi 2500 psi
φ 0.22
Bo 1.003 RB/STB
Bw 1.002 RB/STB
co 8.0× 10−6 1/psi
cw 3.02× 10−6 1/psi
cr 5.0× 10−6 1/psi
µo 3.0 cp
µw 0.5 cp
λ 2
pt 0.5 psi

r(ft)
5 10 15 20 25 30 35

S
w

0

0.2

0.4

0.6

0.8

1
TW
BL
Imex
Analytical

q
t

t
inj

Figure 3.26: Comparison of the saturation distribution from analytical solution and IMEX
during the injection period with capillary pressure. The discontinuous green line represents
the traveling wave (TW) while the continuous green line (BL) represents the outer solution,
i.e., the saturation distribution in the reservoir when there is no capillary pressure effects.
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Figure 3.27: Comparison of the saturation distribution from analytical solution and IMEX
during the falloff period with capillary pressure.
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Figure 3.28: Comparison of the saturation distribution from analytical solution and IMEX
during the production period with capillary pressure at two different times, before (right
curve) and after (left curve) wave breaking time.
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Figure 3.29: Comparison of the wellbore pressure response from analytical solution and
IMEX during the injection (t ∈ (0, 16)), falloff (t ∈ (16, 32)) and production (t > 32) test
with capillary pressure.

3.3 Example

“I wasn’t meant for reality, but life came and found me.”

— Fernando Pessoa, The Book of Disquiet

In the example, we use our expanded approximate analytical solution for the wellbore

pressure response durning an injection-falloff-production test including capillary pressure

effects as the forward model to estimate permeabilities, relative permeabilities curves and

capillary pressure curve, i.e, the

~m = [k, s, aw, pt, λ]T , (3.245)

using the procedure presented in Chapter 2. Here, we provide a synthetic example where we

first compute “true pressure data” by running a commercial simulator using a very fine grid

and very small time steps using specified (true) values. As in Chapter 2, we assume a skin

zone of a given radius and then for the given value of skin factor, compute the value of skin
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Figure 3.30: Bottom hole pressure data match for the injection-falloff-production test in-
cluding capillary pressure effects.

Table 3.2: Estimated model parameters based on the approximate analytical solution for
injection-falloff-production test.

Parameter k (md) Skin aw pt λ

True 300.00 5.00 0.5 0.5 2
Initial Guess 600.00 0.00 0.8 1 1
Estimate 299.5 5.02 0.48 0.51 1.97

zone permeability, ks, using Hawkins’s formula [50] for input into the reservoir simulator.

The radius of the skin zone is equal to1 foot and includes the 100 radial gridblocks closest

to the wellbore. The reservoir, rock and fluid properties are those shown in Table 2.1. The

observed pressure data are generated by adding uncorrelated Gaussian noise with mean

zero and variance 1 psi2 to the true pressure data. We only match observed pressure data

corresponding to times more 0.5 hour after each flow rate change. Table 3.2 presents the

values of model parameters estimated from the TRR algorithm where the bounds specified

on the parameters are given in Table 3.3; ε = 10−4 and sv = 10−3. Fig. 3.30 shows the

bottom hole pressure match for the IFPT data while Fig. 3.31 shows the estimated relative

permeability and capillary pressure curves.
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Table 3.3: Parameter bounds for the injection-falloff-production test.

Parameter k (md) Skin aw pt λ

Lower bound 0 -60 0.05 0.01 0.04
Upper bound ∞ 60 1.00 20 4.00
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Figure 3.31: Estimated relative permeability (a) and capillary pressure (b) curves based on
model parameters obtained from IFPT data match. The green dashed lines represent the
curves computed based on the initial guess for model parameters and the circles, represents
the true curves.
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CHAPTER 4

PRESSURE RESPONSE WITH CO2 PRESENCE

“Observe now with what skill, with what art,

I make the biggest transition in this book.”

— “Brás Cubas”

in Memórias Póstumas de Brás Cubas by Machado de Assis

In this chapter we provide analytical solutions for the wellbore pressure during an

injection-falloff test under radial flow conditions in a homogeneous porous media where the

injected fluid is carbonated water. For both the injection and falloff periods, we assume an

isothermal process with thermodynamic equilibrium, a linear adsorption isotherm and that

viscosities depend only on the CO2 concentration. We also neglect CO2 diffusion, gravity

effects and capillarity effects. For the injection period, we first determine the saturation and

concentration distributions with time in the reservoir by applying the method of character-

istics (MOC) to solve the appropriate system of hyperbolic conservation equations where

we assume incompressible fluids. In solving for water saturation and CO2 concentration

in water, we neglect the change in water volume due to the variation of the CO2 concen-

tration in water. Similar to what was done in the previous chapters, after solving for the

saturation and concentration profiles, the pressure solution can be obtained by integrating

Darcy’s law, from the wellbore radius to infinity while assuming an infinite-acting reservoir

and invoking the Thompson-Reynolds steady-state theory. Because Darcy’s law does not

assume incompressible flow, the pressure solution generated does not assume incompressible

flow. To obtain an analytical expression for the wellbore pressure, we again assume that for

injection and falloff, the total flow rate profile in the reservoir is constant in a region from

the wellbore to a radius greater than the radius of the flood front. During the falloff stage, it
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is assumed that there is no change in saturation in the reservoir, which is reasonable because

we neglect capillary pressure, the gravity force and fluid compressibilities when determining

the saturation profile. Based on this assumptions, we generate analytical solutions for a car-

bonated water injection and falloff test and compare these solutions to those obtained with a

commercial reservoir simulator using very fine spatial grids and very small time steps. This

comparison and results from matching data suggest that the analytical solutions presented

can be used reliably to analyze pressure data obtained during carbonated water injection

and falloff tests.

We focus on the development of an approximate analytical solution to calculate well-

bore pressure during a carbonated water injection and falloff test in a oil reservoir where the

connate water may or may not contain dissolved CO2. As we focus on carbonated water in-

jection (also known as orcoflooding), the straightforward application of the results is limited

to a special case; however, it is straightforward to apply the solution procedure developed

in this work to other EOR problems such as polymer injection or the problem where gas

(or water) is injected into an oil reservoir where the injected and in situ fluids are at dif-

ferent temperatures. Carbonated water injection (CWI) has been applied successfully since

the 1950’s, where results for some fields in Oklahoma and Texas showed that CWI gave an

incremental increase in oil recovery that was 50% to 80% higher than was achievable by con-

ventional waterflooding [51, 33]. Thus, it may prove useful to have analytical solutions that

can be used to analyze pressure data obtained during a carbonated water injection-falloff

test.

Injection-falloff testing when the injected fluid is either water or carbonated water is

particularly important for offshore reservoirs which contain oil and gas with very high CO2

content such the subsalt reservoirs offshore Brazil, where carbon dioxide concentrations can

exceed 50%. In this environment, a conventional well test on an exploratory well cannot

be run because the produced gas cannot be released since the emission of gas with a high

concentration of CO2 to the atmosphere is harmful to the environment as well as a significant

health hazard to workers; hence, there is a need to develop techniques for analyzing pressure
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data from injection-falloff tests. Injecting water which contains dissolved CO2 (carbonated

water) not only avoids the negative environmental impact that occurs with a drill-stem test

but also may increase oil recovery because any dissolved CO2 in the injected water that is

transferred to the oil phase decreases oil viscosity and residual oil saturation. There are

three different scenarios for the water injection when comparing the initial and injected CO2

concentration in the water phase ( Cwi
CO2

and Cw,inj
CO2

, respectively):

Case 1: Cw,inj
CO2

< Cwi
CO2

In this case, the residual oil saturation will increase during the

injection due to an increase in the interfacial tension due to the decrease in the CO2 concen-

tration in the oil and connate water phases. Similarly, the oil viscosity will increase while

the water viscosity will decrease, leading to a more unfavorable mobility ratio. We will not

consider this case in this work because it would not be recommended in practice.

Case 2: Cw,inj
CO2

= Cwi
CO2

In this case, we only have one fractional flow curve and the carbon-

ated water flooding problem reduces to solving the well-known Buckley-Leverett problem.

An analytical solution for injection-falloff wellbore pressure response can be found in Peres

and Reynolds [79] and Peres et al. [82].

Case 3: Cw,inj
CO2

> Cwi
CO2

This is the case we will focus on in this work. When injecting

water with a higher concentration of CO2 than in the connate water, some of the CO2 that

is contained in the injected water will transfer to the oil phase which causes the residual oil

saturation will decrease due to a lower interfacial tension. Moreover, the oil viscosity will

decrease while the water viscosity will increase, leading to a more favorable mobility ratio.

For injection tests, Peres and Reynolds [79] developed a analytical solution for the

wellbore pressure during water injection, for both horizontal and vertical wells, using the

Thompson and Reynolds [98] steady-state theory. Intuitively, the assumption that this

steady-state zone exists appears to be more tenuous as the total compressibility of the sys-

tem increases. However, it has been shown to yield accurate analytical pressure solutions
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even for gas-condensate systems [99]. In the vertical well case, Peres and Reynolds [79]

showed that their solution yields the injection solution of Bratvold and Horne [17] provided

one makes the Bratvold and Horne assumption that the injection solution is a unique func-

tion of the Boltzmann transform which is valid for a finite wellbore radius well except at

early times. Bratvold and Horne [17] as well as Abbaszadeh and Kamal [1] generated an

approximation to the falloff pressure response by analogy with the shut-in solution for a

single-phase composite reservoir, whereas Peres et al. [82] approximated the falloff pressure

solution by applying superposition in an approximate way. Pope [84] presented an analytical

solution to saturation and concentration distributions during carbonated water injection into

an oil reservoir, but he ignored the CO2 adsorption phenomenon and the dependence of the

water-oil surface tension on carbon dioxide concentration in his solution. Bedrikovetsky [11]

presented an analytical solution to the hyperbolic system that governs oil displacement by

chemical solutions considering the phenomena that Pope [84] neglected, but none of these

authors referenced in this paragraph has considered the effect of CO2 in the wellbore pressure

response as in Machado et al. [69, 70].

Here, we first present an approximate analytical solution for the wellbore pressure

during a water injection and falloff well test in a reservoir containing CO2-rich oil and irre-

ducible water saturation, where the carbon dioxide can be present at distinct concentrations

in both phases, water and oil. Then, we show that our analytical solution is highly accurate

by comparing it to the results obtained from a commercial numerical simulator. Finally,

using our analytical solution as the forward model, we show that the data obtained from

the commercial numerical simulator can be analyzed to estimate reservoir permeability, the

mechanical skin factor and end-point mobilities.
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4.1 Mathematical Model

“Young man, in mathematics you don’t understand things.

You just get used to them.”

— John von Neumann

4.1.1 Saturation/Composition Profile

We assume that the initial pressure is high enough so that no CO2 gas phase is formed

anywhere in the reservoir. Therefore, we have two-phase flow with three components, water,

oil and CO2. Assuming a one-dimensional homogeneous reservoir with incompressible fluids,

without capillary or gravity effects, the mass balance equation, using radial coordinates,

leads to the following Buckley and Leverett [21] equation:

∂Sw
∂t

+
θqt

2πrhφ

∂fw(Sw, C
w
CO2

)

∂r
= 0, (4.1)

which can be rewritten as

∂Sw
∂t

+
θqt
φπh

(
∂fw(Sw, C

w
CO2

)

∂Sw

∂Sw
∂r2

+
∂fw(Sw, C

w
CO2

)

∂Cw
CO2

∂Cw
CO2

∂r2

)
= 0, (4.2)

where Sw is the water saturation and Cw
CO2

is the CO2 concentration in the water in lbm
ft3

; time

is in hours; qt is the total liquid rate in RB/D; r and h, the reservoir radius and thickness,

are in feet, θ = 5.6146/24 is a unit conversion factor and φ is porosity. Neglecting capillary

and gravity effects, the water fractional flow curve is

fw =

krw
µw

krw
µw

+ kro
µo

, (4.3)

where the oil and water viscosities (µw and µo) are in centipoise and assumed to be a function

of CO2 concentration in each phase. Dissolved carbon dioxide changes the water fractional

flow curve (Fig. 4.1) by increasing water viscosity [55], decreasing oil viscosity and lowering

the interfacial tension between the two phases, i.e., reducing residual oil saturation [11],
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leading to

∂fw(Sw, C
w
CO2

)

∂Cw
CO2

=
∂fw
∂µw

∂µw
∂Cw

CO2

+
∂fw
∂µo

∂µo
∂Cw

CO2

+
∂fw
∂Sor

∂Sor
∂Cw

CO2

< 0, (4.4)

where the inequality follows from the fact that the terms ∂µw
∂CwCO2

, ∂fw
∂µo

and ∂fw
∂Sor

in Eq. 4.4 are

positive while the terms ∂fw
∂µw

, ∂µo
∂CwCO2

and ∂Sor
∂CwCO2

are negative. For simplicity, we again assume

that relative permeabilities can be represented by the power law model given by

krw = aw

(
Sw − Siw

1− Siw − Sor

)nw
(4.5)

and

kro = ao

(
1− Sw − Sor
1− Siw − Sor

)no
, (4.6)

with aw = krw(Sw = 1 − Sor) and ao = kro(Sw = Siw), where Sor denotes residual oil

saturation and Siw denotes irreducible water saturation.

Following the assumptions made by Pope [84] in his analytical model for saturation

distribution during carbonated waterflood, we assume an isothermal process with thermody-

namic equilibrium, neglecting the CO2 diffusion and the volume that carbon dioxide occupies

in water. The mass conservation equation for the carbon dioxide in radial coordinates is then

given by [45]

∂(SwC
w
CO2

+ SoC
o
CO2

+ CM
CO2

)

∂t
+

θqt
2πrhφ

∂(fwC
w
CO2

+ foC
o
CO2

)

∂r
= 0, (4.7)

where CM
CO2

is the mass of CO2 adsorbed in the rock per rock pore volume. We assume a

linear equilibrium relationship between Co
CO2

and Cw
CO2

defined by

Co
CO2

= Kwo−CO2C
w
CO2

, (4.8)

where Co
CO2

is the CO2 concentration in the oil phase in lbm/ft3 andKwo−CO2 is the water/oil-

CO2 partition coefficient [46] - which is assumed to be constant - with a linear adsorption
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Figure 4.1: Water fractional flow curves for initial and injection CO2 concentrations (a) and
its derivatives (b).
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isotherm [11] given by

CM
CO2

=
ρM(1− φ)

φ
KsC

w
CO2

, (4.9)

where ρM is the matrix density in lbm-rock/ft3 and Ks is the adsorption constant in ft3/lbm-

rock [59]. Using So + Sw = 1, fw + fo = 1 and Eq. 3.1, Eq. 4.7 can be rearranged as

(
Sw + (1− Sw)

dCo
CO2

dCw
CO2

+
dCM

CO2

dCw
CO2

)
∂Cw

CO2

∂t
+

θqt
φ2πrh

(
fw + (1− fw)

dCo
CO2

dCw
CO2

)
∂Cw

CO2

∂r

+

(
Cw
CO2
− Co

CO2

)(
∂Sw
∂t

+
θqt

φ2πrh

∂fw
∂r

)
= 0. (4.10)

From Eq. 4.1 we can see that the third term in E.q 4.10 vanishes, leading to

(
Sw +(1−Sw)

dCo
CO2

dCw
CO2

+
dCM

CO2

dCw
CO2

)
∂Cw

CO2

∂t
+

θqt
φ2πrh

(
fw +(1−fw)

dCo
CO2

dCw
CO2

)
∂Cw

CO2

∂r
= 0. (4.11)

Computing the ordinary derivatives in Eq. 4.11 from Eqs. 4.8 and 4.9, we can rewrite Eq. 4.11

as

∂Cw
CO2

∂t
+

θqt
πhφ

(
fw + (1− fw)Kwo−CO2

)
(
Sw + (1− Sw)Kwo−CO2 + ρM (1−φ)Ks

φ

) ∂Cw
CO2

∂(r2)
= 0. (4.12)

From Eqs. 4.2 and 4.12, the carbonated water flow is governed by the following system of

equations,

~ut + A~ur2 = ~0, (4.13)

where

~u =

 Sw

Cw
CO2

 , (4.14)

A =
θqt
πhφ

 ∂fw
∂Sw

∂fw
∂CwCO2

0
fw+(1−fw)Kwo−CO2

Sw+(1−Sw)Kwo−CO2
+
ρM (1−φ)Ks

φ

 , (4.15)

and the subscripts t and r2 in Eq. 4.13 refers to partial derivatives.To find the saturation and
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concentration profiles with time, we can use the eigenvalues of matrix A, which are given by

λ1 =
θqt
πhφ

∂fw
∂Sw

(4.16)

and

λ2 =
θqt
πhφ

(
fw + (1− fw)Kwo−CO2

Sw + (1− Sw)Kwo−CO2 + ρM
1−φ
φ
Ks

)
, (4.17)

with the corresponding left eigenvectors given by,

~l1 =

 λ1 − λ2

θqt
πhφ

∂fw
∂CwCO2

 (4.18)

and

~l2 =

0

1

 , (4.19)

obtained from ~lA = λ~l, which, as shown bellow, allows us to decouple the system of equations

given by Eq. 4.13 into

 λ2

Cw
CO2


t

+

λ1 0

0 λ2


 λ2

Cw
CO2


(r2)

= ~0. (4.20)

To transform Eq. 4.13 into Eq. 4.20, we need to decouple the system of hyperbolic equations

given in Eq. 4.13. The eigenvalues are not equal, the left eigenvectors (Eqs. 4.18 and 4.19)

are linearly independent and can be used to diagonalize A [63]. Therefore,

Λ = QAQ−1, (4.21)

where the rows vectors of Q are the transposes of the left eigenvectors of A and Λ is the
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diagonal matrix of eigenvalues of A. Substituting A = Q−1ΛQ into Eq. 4.13, yields

~ut +Q−1ΛQ~u(r2) = ~0. (4.22)

Multiplying Eq. 4.22 by Q, we get

Q~ut + ΛQ~u(r2) = ~0, (4.23)

or, equivalently,

λ1 − λ2
θqt
πhφ

∂fw
∂CwCO2

0 1


 Sw

Cw
CO2


t

+

λ1 0

0 λ2


λ1 − λ2

θqt
πhφ

∂fw
∂CwCO2

0 1


 Sw

Cw
CO2


(r2)

= ~0.

(4.24)

The first equation of the system in Eq. 4.23 is

(λ1− λ2)
∂Sw
∂t

+
θqt
πhφ

∂fw
∂Cw

CO2

∂Cw
CO2

∂t
+ λ1

(
(λ1− λ2)

∂Sw
∂(r2)

+
θqt
πhφ

∂fw
∂Cw

CO2

∂Cw
CO2

∂(r2)

)
= 0. (4.25)

Following Boughrara [14]’s solution for cold water injection, differentiating Eq. 4.17 with

respect to Cw
CO2

, we have

∂λ2

∂Cw
CO2

=
θqt
πhφ

1−Kwo−CO2

Sw + (1− Sw)Kwo−CO2 + ρM
1−φ
φ
Ks

∂fw
∂Cw

CO2

, (4.26)

or,

θqt
πhφ

∂fw
∂Cw

CO2

=
Sw + (1− Sw)Kwo−CO2 + ρM

1−φ
φ
Ks

1−Kwo−CO2

∂λ2

∂Cw
CO2

. (4.27)

Now taking the derivative of Eq. 4.17 with respect to Sw, leads to

∂λ2

∂Sw
=

θqt
πhφ

1−Kwo−CO2

Sw + (1− Sw)Kwo−CO2 + ρM
1−φ
φ
Ks

(
∂fw
∂Sw
− fw + (1− fw)Kwo−CO2

Sw + (1− Sw)Kwo−CO2 + ρM
1−φ
φ
Ks

)
,

(4.28)
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which can be rewritten as

∂λ2

∂Sw
=

1−Kwo−CO2

Sw + (1− Sw)Kwo−CO2 + ρM
1−φ
φ
Ks

(λ1 − λ2). (4.29)

Eq. 4.29 can be rearranged to obtain

λ1 − λ2 =
Sw + (1− Sw)Kwo−CO2 + ρM

1−φ
φ
Ks

1−Kwo−CO2

∂λ2

∂Sw
. (4.30)

Substituting Eqs. 4.27 and 4.30 in Eq. 4.25, yields

(
Sw + (1− Sw)Kwo−CO2 + ρM

1−φ
φ
Ks

1−Kwo−CO2

∂λ2

∂Sw

)
∂Sw
∂t

(4.31)

+
Sw + (1− Sw)Kwo−CO2 + ρM

1−φ
φ
Ks

1−Kwo−CO2

∂λ2

∂Cw
CO2

∂Cw
CO2

∂t

+λ1

[(
Sw + (1− Sw)Kwo−CO2 + ρM

1−φ
φ
Ks

1−Kwo−CO2

∂λ2

∂Sw

)
∂Sw
∂(r2)

+
θq

πhφ

∂fw
∂Cw

CO2

∂Cw
CO2

∂(r2)

]
= 0,

which, upon simplification using Eq. 4.27, gives

∂λ2

∂Sw

∂Sw
∂t

+
∂λ2

∂Cw
CO2

∂Cw
CO2

∂t
+ λ1

(
∂λ2

∂Sw

∂Sw
∂(r2)

+
∂λ2

∂Cw
CO2

∂Cw
CO2

∂(r2)

)
= 0. (4.32)

Eq. 4.32 can be rewritten as

∂λ2

∂t
+ λ1

∂λ2

∂(r2)
= 0. (4.33)

Also note that Eq. 4.12 is equivalent to

∂Cw
CO2

∂t
+ λ2

∂Cw
CO2

∂(r2)
= 0. (4.34)

Therefore, Eq. 4.23 is equivalent to the decoupled system given by Eqs. 4.33 and 4.34, which

can be written as

~vt + Λ~v(r2) = ~0, (4.35)

141



where

~v =

 λ2

Cw
CO2

 . (4.36)

Defining ~v = (λ2, C
w
CO2

)T , the total derivative of each element of the vector ~v with

respect to time is given by

dvi
dt

=
∂vi
∂t

+
dr2

i

dt

∂vi
∂(r2)

, for i = 1, 2. (4.37)

When dvi
dt

= 0, the right hand side of Eq. 4.37 must be equal to the i row in the left hand

side of Eq. 4.35,

dr2
i

dt
= λi, for i = 1, 2, (4.38)

where
dr2i
dt

defines the speed of the waves [58]. That means, this system of partial differential

equations (Eq. 4.35) can be reduced to a system of ordinary differential equations along the

families of characteristic curves
dr2i
dt

[66]. In this case,

dλ2

dt
= 0 along

dr2

dt
= λ1 (4.39)

and

dCw
CO2

dt
= 0 along

dr2

dt
= λ2, (4.40)

where integrating these differential equations along their characteristic direction, gives the

Riemann invariants, R1 = λ2 and R2 = Cw
CO2

, which are constants along their respective

families of characteristic curves.

Injection: The injection period of the test at a constant flow rate equal to qinj is a

non-strictly hyperbolic Riemann problem governed by Eq. 4.13 with the following initial and

boundary conditions (Fig. 1.1),
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t = 0, r ≥ rw : Sw = Siw, C

w
CO2

= Cwi
CO2

r = rw, t > 0 : Sw = 1− Sor(Cw
CO2

), Cw
CO2

= Cwinj
CO2

,

and can be solved with the method of characteristics. Solving Eq. 4.38, we find both families

of characteristic curves,

r2
i (t) = λi(t− τ) + ξ for i = 1, 2, (4.41)

for any starting point (ξ,τ) in the (r2, t) plane. To construct a physical solution for this

Riemann problem, the velocity constraint (or compatibility condition) must be satisfied.

The velocity constraint states that the wave velocities should decrease monotonically from

downstream to upstream [76]. As we can see in Fig. 4.2, where we have plotted the fractional

flow curves and the eigenvalues with saturation for both concentrations, initial and injected,

if we start from the initial point (I), the point most upstream from the wellbore, to satisfy the

monotonic condition, we have jump to Swf - whose slope is tangent to the initial fractional

flow curve - and then another jump from Siw to Sinjw , following the line λ2 = constant

and whose slop is tangent to the injected fractional flow curve. The former represents the

water saturation front - the moving boundary between noninvaded and invaded zone in

the reservoir - and the latter represents the discontinuity between initial concentration and

injection concentration. Any other path chosen satisfying the Oleinik entropy condition

[74] would not satisfy the compatibility condition (the velocity constraint), leading to a

multivalued non-physical saturation/composition profile in the reservoir. Therefore, the

solution to this problem will consist of two discontinuities: a contact discontinuity between

CO2 injection and initial concentrations and one semi-shock in saturation caused by the fact

that some saturation waves traveling from the wellbore moves with a higher speed than other

saturations which are also traveling from the well due the S-shape of the water fractional

flow curve. To be a unique admissible entropy solution, this semi-shock must satisfy the
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Oleinik Entropy condition [74], given by

fw(S−w , C
wi
CO2

)− fw(Sw, C
wi
CO2

)

S−w − Sw
≥
fw(S−w , C

wi
CO2

)− fw(Siw, C
wi
CO2

)

S−w − Siw
(4.42)

and

fw(S−w , C
wi
CO2

)− fw(Siw, C
wi
CO2

)

S−w − Siw
≥
fw(Sw, C

wi
CO2

)− fw(Siw, C
wi
CO2

)

Sw − Siw
, (4.43)

for any Sw ∈ (Siw, S
−
w ) [7], where S−w represents the saturation behind the shock. Fig. 4.2b

shows the unique wave velocity path from the initial saturation,Siw, to the injected satura-

tion, 1−Sinjor , that satisfies the velocity constraint, with the following switching points: Siw,

Swf , S
i
w, Sinjw and 1 − Sor. Fig. 4.2a presents the contact and semi-shock discontinuities in

the water fractional flow curves. The jump in Cw
CO2

concentration from Cwi
CO2

to Cwinj
CO2

will

occur in the contact between connate water and injected water along λ2 = constant,

λ2(Sinjw , Cwinj
CO2

) =
θqt
πhφ

(
fw(Sinjw )− fw(Siw)

Sinjw − Siw

)
= λ2(Siw, C

wi
CO2

). (4.44)

Shock waves and contact discontinuities are transition surfaces across which the mass flux is

continuous, but unlike shock discontinuities, there is no fluid flow or component transport

across contact discontinuity surfaces, i.e., mass flux is zero (velocity is zero) across the contact

discontinuity [93, 60]. In addition, we have a semi-shock - also known as tangent shock -

instead of shock by itself, because the saturation wave traveling behind the shock has the

same speed as the semi-shock [87, 88], i.e.,

θqt
πhφ

∂fw
∂Sw

(Swf ) =
θqt
πhφ

(
fw(Swf )− fw(Siw)

Swf − Siw

)
>

θqt
πhφ

∂fw
∂Sw

(Siw). (4.45)

The slope of the line contacting (Siw, C
wi
CO2

) to (Sinjw , Cwinj
CO2

) given by λ2 can only

be less or equal the slope of the injection water fractional curve at (Sinjw , Cwinj
CO2

), given

by
θqinj
φπh

∂fw(Sinjw ,CwinjCO2
)

∂Sw
. If λ2 <

θqinj
φπh

∂fw(Sinjw ,CwinjCO2
)

∂Sw
, the speed of the wave behind of contact
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Figure 4.2: Contact and semi-shock discontinuities in the water fractional flow curves (a)
and the wave velocity path solution from Siw to 1−Sinjor , showing the switching points - Swf ,
Siw and Sinjw - that satisfy the velocity constraint (b).
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discontinuity would be higher than the speed of the contact discontinuity, which goes against

the monotonic condition. Therefore, to satisfy the velocity constraint, λ2 must corresponds

to a line in the (Sw,fw) plane whose slope is tangent to f injw curve, i.e,

λ2 =
θqinj
φπh

∂fw(Sinjw , Cwinj
CO2

)

∂Sw
, (4.46)

which represents a line of slope
∂fw(Sinjw ,CwinjCO2

)

∂Sw
in the (Sw,fw) plane that passes through point

(Sw, fw) =

(
−
Kwo−CO2 + ρM

1−φ
φ
Ks

1−Kwo−CO2

,− Kwo−CO2

1−Kwo−CO2

)
. (4.47)

The jump in the CO2 concentration causes a jump in saturation, given by

λ2 =
θqinj
φπh

fw(Sinjw , Cwinj
CO2

)− fw(Siw, C
wi
CO2

)

Sinjw − Siw
. (4.48)

Once Eq. 4.46 and 4.47 are solved together numerically (or graphically) to find Sinjw and λ2,

Eq. 4.48 can be solved numerically (or graphically) to find Siw. Because Siw moves with a

higher speed than the contact discontinuity (λ2 <
θqinj
φπh

∂fw(Siw,C
wi
CO2

)

∂Sw
, as we can see in Fig. 4.2),

a region of constant saturation equal to Siw is formed ahead of the concentration front. The

speed of the semi-shock that is formed at the water front is given by

dr2
f,inj

dt
=
θqinj
φπh

fw(Swf , C
wi
CO2

)− fw(Siw, C
wi
CO2

)

Swf − Siw
, (4.49)

which does satisfy the Oleinik entropy condition [74] for any Sw ∈ (Siw, Siw); hence this shock

wave solution is the unique solution. Since this semi-shock has a higher speed than Siw, a

rarefaction wave is formed between the constant zone and the water front. In summary,

the saturation distribution solution during the injection period consists of a (1 − Sinjor ) −

Sinjw → Siw − Swf → Siw configuration, where Sinjor corresponds to Sor(C
w
CO2

). Here, “−”

represents a rarefaction fan and “→” represents a shock or discontinuity. In another words,

the solution consists of a family of rarefaction waves carrying the CO2 injection concentration,
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a contact discontinuity, a constant zone at Siw, a family of rarefaction waves carrying the CO2

initial concentration, a semi-shock and a uniform region at initial condition, Siw. The r2-t

diagram with the characteristic curves corresponding to this solution is shown in Fig. 4.3.

In Fig. 4.3, from upstream to downstream, the injection period is composed of a family

of rarefaction waves carrying Cwinj
CO2

, a contact discontinuity, a constant zone (Sw = Siw),

a family of rarefaction waves carrying Cwi
CO2

, a semi-shock and another region of constant

saturation equal to Siw. Translating into the language of mathematics, the unique solution

for the injection period has the form

Cw
CO2

(r, t) =


Cwinj
CO2

, r2
w ≤ r2 < r2

w +
θqinj
φπh

∂fw(Sinjw ,CwinjCO2
)

∂Sw
t

Cwi
CO2

, r2
w +

θqinj
φπh

∂fw(Sinjw ,CwinjCO2
)

∂Sw
t ≤ r2

(4.50)

and

Sw(r, t) =



(
df injw

dSw

)−1( φπh
θqinj

(r2−r2w)
t

)
, r2

w ≤ r2 < r2
w +

θqinjt

φπh

∂fw(Sinjw ,CwinjCO2
)

∂Sw

Siw, r2
w +

θqinjt

φπh

∂fw(Sinjw ,CwinjCO2
)

∂Sw
≤ r2 < r2

w +
θqinj
φπh

∂fw(Siw,C
wi
CO2

)

∂Sw( df iw
dSw

)−1( φπh
θqinj

(r2−r2w)
t

)
, r2

w +
θqinjt

φπh

∂fw(Siw,C
wi
CO2

)

∂Sw
≤ r2 < r2

w +
θqinjt

φπh

∂fw(Swf ,C
wi
CO2

)

∂Sw

Swi, r2
w +

θqinjt

φπh

∂fw(Swf ,C
wi
CO2

)

∂Sw
≤ r2.

(4.51)

The concentration and saturation profiles for the end of injection period are shown in Fig. 4.4,

where rd is the concentration front position, given by

r2
d(t) = r2

w +
θqinjt

φπh

∂fw(Sinjw , Cwinj
CO2

)

∂Sw
= r2

w +
θqinjt

φπh

fw(Sinjw , Cwinj
CO2

)− fw(Siw, C
wi
CO2

)

Sinjw − Siw
, (4.52)

riw is the position of the constant zone,

r2
iw(t) = r2

w +
θqinjt

φπh

∂fw(Siw, C
wi
CO2

)

∂Sw
, (4.53)
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Figure 4.3: Characteristic lines of the injection problem in the r2t-plane. From upstream
to downstream, the injection period is composed of a family of rarefaction waves carrying
Cwinj
CO2

, a contact discontinuity, a constant zone (Sw = Siw), a family of rarefaction waves
carrying Cwi

CO2
, a semi-shock and another region of constant saturation equal to Siw.

and rf,inj is the water front position,

r2
f,inj(t) = r2

w +
θqinjt

φπh

∂fw(Swf , C
wi
CO2

)

∂Sw
= r2

w +
θqinjt

φπh

fw(Swf , C
wi
CO2

)− fw(Siw, C
wi
CO2

)

Swf − Siw
. (4.54)

Note in in Fig. 4.4 that CO2 from the injected water is transfered to the oil in place in the

region behind the concentration front.

In the derivations showed above, we have assumed that Swf < Siw. However, depend-

ing on the shape of the initial and injection fractional flow curves and on the point (Sw, fw)

given by Eq. 4.47 (i.e, depending on the rock-fluid properties combination), the point in the

initial fractional flow curve to which the slope of a line starting from Siw would be tangent

could be greater than Siw. In this case, Swf = Siw. If that is the case, the solution to the sys-

tem of hyperbolic equation is slightly different from the one we just described. The family of

rarefaction waves carrying the initial concentration vanishes but the solution still consists of

two discontinuities: a contact discontinuity between CO2 injection and initial concentrations
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Figure 4.4: CO2 concentration profile in the oil (a) and the water (b) phase together with
the saturation profile (c) at the end of the injection period. Note; CO2 from the injected
water is transfered to the oil in place in the region behind the concentration front.
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and one shock in saturation caused by the fact that the constant region moves with a higher

speed than the initial water saturation. In this case we have shock instead of semi-shock

since
θqinj
φπh

∂fw(Siw,C
wi
CO2

)

∂Sw
>

θqinj
φπh

fw(Siw,C
wi
CO2

)−fw(Siw,C
wi
CO2

)

Siw−Siw
>

θqinj
φπh

∂fw(Siw,C
wi
CO2

)

∂Sw
. Fig. 4.5b shows the

unique wave velocity path from from the initial saturation, Siw, to the injected saturation,

1− Sinjor , that satisfies the velocity constraint, with the following switching points: Siw, Siw,

Sinjw and 1− Sor. Fig. 4.5a presents the contact and shock discontinuities in the water frac-

tional flow curves. The speed of the shock which is formed ahead of the constant zone in

this case is given by

dr2
f,inj

dt
=
θqinj
φπh

fw(Siw, C
wi
CO2

)− fw(Siw, C
wi
CO2

)

Siw − Siw
, (4.55)

which does satisfy the Oleinik entropy condition [74] for any Sw ∈ (Siw, Siw); hence is unique.

In summary, the saturation distribution solution during the injection period in this case

consists of a (1 − Sinjor ) − Sinjw → Siw → Siw configuration. In another words, the solution

consists of a family of rarefaction waves, a contact discontinuity, a constant zone, a shock

and a uniform region at initial condition, Siw.

The( r2-t)-diagram with the characteristic curves corresponding to this solution is

shown in Fig. 4.6. In Fig. 4.6, from upstream to downstream, the injection period is com-

posed of a family of rarefaction waves, a contact discontinuity, a constant zone (Sw = Siw), a

shock and another region of constant saturation equal to Siw. Note; in this case, the region

corresponding to the family of rarefaction waves from Swf to Siw carrying the initial concen-

tration is not present, since Swf = Siw. Translating into the language of mathematics, the

unique solution for the injection period in this case has the form

Cw
CO2

(r, t) =


Cwinj
CO2

, r2
w ≤ r2 < r2

w +
θqinjt

φπh

∂fw(Sinjw ,CwinjCO2
)

∂Sw

Cwi
CO2

, r2
w +

θqinjt

φπh

∂fw(Sinjw ,CwinjCO2
)

∂Sw
≤ r2

(4.56)
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Figure 4.5: Contact and shock discontinuities in the water fractional flow curves (a) and the
wave velocity path solution from Siw to 1−Sinjor , showing the switching points - Siw and Sinjw

- that satisfy the velocity constraint (b) for the case when Swf = Siw.
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and

Sw(r, t) =



(
df injw

dSw

)−1( φπh
θqinj

(r2−r2w)
t

)
, r2

w ≤ r2 < r2
w +

θqinjt

φπh

∂fw(Sinjw ,CwinjCO2
)

∂Sw

Siw,
θqinjt

φπh

∂fw(Sinjw ,CwinjCO2
)

∂Sw
≤ r2 − r2

w <
θqinjt

φπh

fw(Siw,C
wi
CO2

)−fw(Siw,C
wi
CO2

)

Siw−Siw

Swi, r2
w +

θqinjt

φπh

fw(Siw,C
wi
CO2

)−fw(Swi,C
wi
CO2

)

Siw−Swi
≤ r2.

(4.57)

The concentration and saturation profiles for this case at the end of injection period

are shown in Fig. 4.7, where the water front position in this case is given by

r2
f,inj(t) = r2

w +
θqinjt

φπh

fw(Siw, C
wi
CO2

)− fw(Siw, C
wi
CO2

)

Siw − Siw
. (4.58)

Note in Fig. 4.7 that CO2 from the injected water is transfered to the oil in place in the

region behind the concentration front.
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Figure 4.7: CO2 concentration profile in the oil (a) and the water (b) phase together with
the saturation profile (c) at the end of the injection period for the case when Swf > Siw.
Note; CO2 from the injected water is transfered to the oil in place in the region behind the
concentration front.
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Falloff: During the falloff stage, it is assumed that there is no fluid movement in

the reservoir, which is reasonable as we neglect capillary pressure, gravity force and fluid

compressibilities. Although it is possible to consider the diffusion of CO2, for short falloff

periods, as we believe the wellbore pressure is be insensitive to this effect. Therefore, we

also neglect the component redistribution in the reservoir.

4.1.2 Wellbore Pressure History

Injection: During injection at a constant flow rate qinj = qt(rw, t) RB/D, where t = 0

at the beginning of the water injection, by integrating Darcy’s law as in Thompson and

Reynolds [98] and Peres and Reynolds [79], the bottom hole pressure difference from the

reservoir initial pressure (pi) can be expressed as

∆pwf (t) = pwf (t)− pi =

∞∫
rw

αqt(r, t)

hλt(r, t)k(r)

dr

r
, (4.59)

where α is a unit conversion factor with α = 141.2 when oil field units are used, qinj > 0,

k(r) =


kskin, rw < r ≤ rskin

k, r > rskin

(4.60)

and λt = kro
µo

+ krw
µw

. Taking the derivative of Eq. 4.59 with respect to the logarithm of time,

ln t, we have

∂∆pwf (t)

∂ ln t
=
α

h

∞∫
rw

1

r

(
∂qt(r, t)

∂ ln t
− qt(r, t)

λt(r, t)

∂λt(r, t)

∂ ln t

)
1

λt(r, t)k(r)
dr. (4.61)

Let rf,inj(t) be the radius of the water front at any time t during the injection period.

Using the Thompson and Reynolds [98] steady theory, which assumes that, qt(r, t) = qinj,
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for r ≤ rf,inj(t), Eq. 4.59 becomes

∆pwf (t) =
αqinj
h

rf,inj(t)∫
rw

1

λt(r, t)k(r)

dr

r
+
α

h

∞∫
rf,inj(t)

qt(r, t)

λt(r, t)k(r)

dr

r
, (4.62)

where for any reasonable set of parameters, Peres and Reynolds [79] indicate that the flood

front is within an steady-state zone. Adding and subtracting the term

α

h

rfinj(t)∫
rw

qinj

λ̂ok(r)

dr

r

to Eq. 4.62, where λ̂o =
kro(Siw,C

oi
CO2

)

µo(CoiCO2
)

is the endpoint oil mobility at Sw = Siw and Co
CO2

=

Coi
CO2

, Eq. 4.62 can be rewritten as

∆pwf (t) =
αqinj
h

rf,inj(t)∫
rw

(
1

λt(r, t)
− 1

λ̂o

)
dr

k(r)r
+
α

h

∞∫
rw

qt(r, t)

λ̂o(r, t)k(r)

dr

r

= ∆p̂o +
αqinj

hλ̂o

rwf (t)∫
rw

( λ̂o
λt(r, t)

− 1
) 1

k(r)

dr

r
. (4.63)

The single-phase oil transient pressure drop (∆p̂o) can be approximated as

∆p̂o = pwf,o(t)− pi =
αqinj

khλ̂o

[
1

2
ln

(
βkλ̂ot

φĉtor2
w

)
+ 0.4045 + s

]
, (4.64)

where β is a unit conversion factor which in oil field units with time in hours is equal to

0.0002637 and

ĉto = co(1− Siw) + cwSiw + cr, (4.65)

with the oil compressibility (co) and the water compressibility (cw) being functions of Coi
CO2

and Cwi
CO2

, respectively, are assumed to be known.
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Falloff: During falloff, assuming that the saturation distribution remains constant

and equal to the distribution at the end of injection period, the bottom hole pressure drop

can be expressed as

∆pws(∆tfoff ) = pws(∆tfoff )− pi =

∞∫
rw

αqs(r,∆tfoff )

hλt(r, tinj)k(r)

dr

r
, (4.66)

where ∆tfoff = 0 at the beginning of the falloff period, pws(∆tfoff ) denotes the falloff

pressure at time ∆tfoff and tinj is the time at the end of the injection period. Taking the

derivative of Eq. 4.66 with respect to the logarithm of time, ln ∆tfoff , we have

∂∆pws(∆tfoff )

∂ ln ∆tfoff
=
α

h

∞∫
rw

1

r

∂qs(r,∆tfoff )

∂ ln ∆tfoff

1

k(r)λt(r, tinj)
dr. (4.67)

Eq. 4.66 can be rewritten as

∆pws(∆tfoff ) =
α

h

rf,inj(tinj)∫
rw

qs(r,∆tfoff )

λt(r, tinj)k(r)

dr

r
+
α

h

∞∫
rf,inj(tinj)

qs(r,∆tfoff )

λt(r, tinj)k(r)

dr

r
, (4.68)

where qs is the total flow rate profile during the shut-in period. Following Peres et al. [82],

we add and subtract the term

α

h

rf,inj(t)∫
rw

qos(r,∆tfoff )

λ̂ok(r)

dr

r

to Eq. 4.68 and rearrange the resulting equation to obtain

∆pws(∆tfoff ) = ∆p̂os(∆tfoff ) +
α

hλ̂o

rf,inj(tinj)∫
rw

(
λ̂o

λt(r, tinj)
qs(r,∆tfoff )− qos(r,∆tfoff )

)
dr

k(r)r
.

(4.69)

This result assumes that for r > rf,inj(tinj), qs(r,∆tfoff ) = qos(r,∆tfoff ), where qos(r,∆tfoff )
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is the single-phase rate profile obtained during falloff after injecting oil at the rate qinj. We

are considering only infinite-acting behavior. So that the single oil phase pressure drop can

be defined from the superposition of two constant flow rate solutions is given by

∆p̂os(∆tfoff ) = pwf,o(∆tfoff )− pi =
αqinj

2khλ̂o
ln

(
tinj + ∆tfoff

∆tfoff

)
, (4.70)

with the rate schedule

q(rw, t) =


qinj > 0 0 < t ≤ tinj

0 tinj < t ≤ tinj + tfoff ,

(4.71)

where tfoff is the time at the end of the falloff period. As rate superposition applies for

single-phase flow [82],

qos(∆tfoff ) = qinj

[
exp

(
− φĉtor

2

4βλ̂o(tinj + ∆tfoff )

)
− exp

(
− φĉtor

2

4βλ̂o∆tfoff

)]
. (4.72)

Following Peres et al. [82], we use rate superposition to approximate the multiphase rate

profiles as

qs(∆tfoff ) = qinj

[
exp

(
− φct(r, tinj)r

2

4βλt(r, tinj)(tinj + ∆tfoff )

)
− exp

(
− φct(r, tinj)r

2

4βλt(r, tinj)∆tfoff

)]
,

(4.73)

with

ct(r,∆tfoff ) = co(C
o
CO2

(r, tinj))So(r, tinj) + cw(Cw
CO2

(r, tinj))Sw(r, tinj) + cr. (4.74)
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4.2 Validation

“The model is great but

there seems to be something wrong with the reservoir.”

—L. P. Dake in The Practice of Reservoir Engineering

We compared our analytical solution with the commercial numerical simulator GEM,

using the properties shown in Table 4.1. To match our solution with GEM, we have to use

very small time steps as well as highly refined radial grids. We also have to keep the water

viscosity independent of concentration and disregard the carbon dioxide adsorption in the

rock. Fig. 4.8 presents the comparison between the concentration (in molar fraction) and

saturation distributions obtained from our solution with the reservoir numerical simulator at

the end of the injection period. We can see, except near the contact discontinuity, there is a

very good agreement between the solution we developed and the numerical simulator results,

which suffers from numerical dispersion. The accentuated difference between our concentra-

tion/saturation distributions and the numerical distribution obtained from the commercial

simulator around the contact discontinuity is driven by the fact that while our solubility

model is linear, the solubility model used by the simulator is non-linear, which results in a

rarefaction wave. Although we could develop a solution using the same model as the simula-

tor, the wellbore pressure shown in Fig. 4.9 which is the variable of interest does not seems

to be sensitive to the difference between the two concentration/saturation profiles. Fig. 4.9

presents the comparison between the bottom hole pressure obtained from our solution with

the reservoir numerical simulator during the whole carbonated water injection and falloff

test. Our pressure solution is in agreement with the GEM result throughout the injection

period, we believe it is not necessary to complicate the analytical model. Our model under-

estimate the wellbore pressure in the early times of falloff period. We believe this occurs

because we assume an oil constant compressibility equal to the initial oil compressibility

for the single-phase pressure drop term (Eq. 4.70) while the wellbore pressure is reflecting

injected oil compressibility in the beginning of the falloff. Since in the falloff, the multiphase
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Table 4.1: Reservoir, rock and fluid properties for simulation and analytical solution.

Property Value Unit

qinj 3500 RB/DAY
h 60 ft
rw 0.35 ft
re 6800 ft
k 300 md
s 5
aw 0.5
ao 1
nw 2
no 2
Cwi
CO2

0.19 lb/ft3 (0.0013 molar fraction)

Cwinj
CO2

14.76 lb/ft3 (0.106 molar fraction)
Siw 0.10
Sor 0.25
pi 2500 psi
T 200 ◦F
φ 0.22
co(C

wi
CO2

) 8.0× 10−6 1/psi
cw(Cwi

CO2
) 3.02× 10−6 1/psi

cr 5.0× 10−6 1/ft
µo(C

wi
CO2

) 3.28 cp

µo(C
winj
CO2

) 1.06 cp
µw 0.5 cp
ρM 130 lb/ft3

Ks 0 ft3 /lb-rock
Kwo−CO2 0.11

pressure drop (last term in Eq. 4.69) is negligible compared to the the single-phase term, our

model fail to estimate the correct pressure. We could try to fix this disagreement by trying

to development and early and long time solution for falloff or using a numerical method to

calculate the wellbore pressure, but since we could estimate the reservoir parameters (as we

will show in the next section, Section Example), we believe that is unnecessary.

To be consistent with standard pressure transient analysis procedures, Fig. 4.10

presents the log-log diagnostic plots of injection (top) and falloff (bottom) of the pressure

data, with s = 0. We can see that at early times of injection, there is a plateau (stabilization)
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Figure 4.8: Comparison between the concentration (a) and saturation (b) distributions ob-
tained from our solution with the reservoir numerical simulator at the end of the injection
period.
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Figure 4.9: Comparison between the bottom hole pressure obtained from our solution with
the reservoir numerical simulator during carbonated water injection and falloff.

in the wellbore pressure derivative plot. The true original end-point oil mobility is

λo(Siw, C
wi
CO2

)true =
kro(Siw)

µo(Cwi
CO2

)
=

1

3.28
= 0.305 (4.75)

and the true end-point water mobility is

λw(1− Sor, Cw,inj
CO2

)true =
krw(1− Sor)

µw
=

0.5

0.5
= 1. (4.76)

As t→ 0, the integral in Eq. 4.63 becomes negligible and ∆pwf (t) ≈ ∆pwo(t). Consequently,

at very early times of injection, the solution reflects the the original total mobility (i.e., the

end-point oil mobility with initial CO2 concentration) through the semi-log slope exhibited

by the pressure derivative given by

λo(Siw, C
wi
CO2

)) =
αqinj

∂∆pwf (t)

∂ ln t
2kh

=
141.2× 3500

∂∆pwf (t)

∂ ln t
× 2× 300× 60

=
13.73
∂∆pwf (t)

∂ ln t

(4.77)

From Fig. 4.10(a), at very early times,

∂∆pwf (t)

∂ ln t
≈ 40. (4.78)
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Inserting Eq. 4.78 in Eq. 4.77 and comparing it with Eq. 4.75, we have λo(Siw, C
wi
CO2

)est =

0.343 ≈ 0.305 = λo(Siw, C
wi
CO2

))true. At late times, we find that the derivative shows sta-

bilized radial flow, which by inspection reflects the end-point water mobility at the CO2

concentration of the injected fluid. Let us use the Boltzmann transform given by ξ = r2

4t
to

change variables of Eq. 4.63 [12],

∆pwf

(r2
w

4t

)
= ∆pwf,o

(r2
w

4t

)
+
αqinj

khλ̂o

ξwf∫
r2w
4t

( λ̂o
λt(r, t)

− 1
)dξ

2ξ
, (4.79)

where

ξwf =
r2
wf

4t
=
r2
w

4t
+
θqinj
4φπh

∂fw(Swf , C
wi
CO2

)

∂Sw
. (4.80)

For a finite wellbore radius, at late times, r
2
w

4t
<<

θqinj
4φπh

∂fw(Swf ,C
wi
CO2

)

∂Sw
and ξwf ≈ θqinj

4φπh

∂fw(Swf ,C
wi
CO2

)

∂Sw
.

In this period, we can assume that the saturation profile can be approximated by the profile

that would be obtained if water were injected from a line source well; in this case ξwf is

stationary and λt(r, t) = λt(ξ). Under these assumptions, taking the derivative of Eq. 4.79

with respect of ln t by applying the Leibniz’s rule, yields

∂∆pwf

(
r2w
4t

)
∂ ln t

=
∂∆pwf,o

(
r2w
4t

)
∂ ln t

+
αqinj

khλ̂o

∂

∂ ln t

ξwf∫
r2w
4t

( λ̂o
λt(ξ)

− 1
)dξ

2ξ

=
∂∆pwf,o

(
r2w
4t

)
∂ ln t

+
αqinjt

2khλ̂o

(
− λ̂o

λt(
r2w
4t

)
+ 1
) 4t

r2
w

(− r
2
w

4t2
)

=
∂∆pwf,o

(
r2w
4t

)
∂ ln t

+
αqinj

2khλ̂o

( λ̂o

λt(
r2w
4t

)
− 1
)
. (4.81)

As λt(
r2w
4t

) = λw(1− Sor, Cw,inj
CO2

) and

∂∆pwf,o

(
r2w
4t

)
∂ ln t

=
αqinj

khλ̂o

∂

∂ ln t

[
1

2
ln

(
βkλ̂ot

φĉtor2
w

)
+ 0.4045 + s

]
=

αqinj

2khλ̂o
, (4.82)
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Eq. 4.81 can be rewritten as

∂∆pwf (t)

∂ ln t
=

αqinj

2khλ̂w
, (4.83)

which indicates that the solution does reflect the injected water properties through the semi-

log slope exhibited by the pressure derivative. We can evaluate the end-point water mobility

by rearranging Eq. 4.83:

λw(1− Sor, Cw,inj
CO2

) =
αqinj

∂∆pwf (t)

∂ ln t
2kh

=
141.2× 3500

∂∆pwf (t)

∂ ln t
× 2× 300× 60

=
13.73
∂∆pwf (t)

∂ ln t

. (4.84)

From Fig. 4.10(a), at late times,

∂∆pwf (t)

∂ ln t
≈ 13.6. (4.85)

Inserting Eq. 4.85 in Eq. 4.84 and comparing it with Eq. 4.76, we have λw(1−Sor, Cw,inj
CO2

)est =

1.01 ≈ 1 = λw(1 − Sor, Cw,inj
CO2

)true. During the falloff period, we can see that the pressure

derivative is constant at late times and; during this time period, the solution seems to reflect

the end-point oil mobility at initial CO2 concentration. At late times, as qs(r,∆tfoff ) →

0 and qos(r,∆tfoff ) → 0 for r ∈ (rw, rf,inj(tinj)), the integral in Eq. 4.69 vanishes and

∆pws(∆tfoff ) = ∆p̂os(∆tfoff ); which implies that, at late times, the solution reflects the

original oil in place properties through the semi-log slope exhibited by the pressure derivative

given by the derivative of Eq. 4.70 with respect of the logarithmic of te,

∂∆pws(∆tfoff )

∂ ln te
=
∂∆pos∆(∆tfoff )

∂ ln te
=

αqinj
2khλo(Siw, Cwi

CO2
)
, (4.86)

where

te =
tinj∆tfoff
tinj + ∆tfoff

. (4.87)

Solving Eq. 4.86 for the end-point oil mobility, we have

λo(Siw, C
wi
CO2

) =
αqinj

∂∆pws(∆tfoff )

∂ ln te
2kh

=
141.2× 3500

∂∆pwf (∆tfoff )

∂ ln te
× 2× 300× 60

=
13.73

∂∆pws(∆tfoff )

∂ ln te

(4.88)
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From Fig. 4.10(b), at late times,

∂∆pws(t)

∂ ln t
≈ 45.9. (4.89)

Inserting Eq. 4.89 in Eq. 4.88 and comparing it with Eq. 4.75, we have λo(Siw, C
wi
CO2

)est =

0.299 ≈ 0.305 = λo(Siw, C
wi
CO2

))true. These observations are consistent with results on wa-

ter injection obtained by [18] and [79]. For a detailed discussion on the wellbore pressure

information in the case s 6= 0, please see Peres and Reynolds [79], Boughrara [14].

4.3 Example

“And if there is something here,

just one little thing out of a whole mess of things,

maybe we can pass it on to someone else. ”

— “Guy Montag” in Fahrenheit 451 by Ray Bradbury

In this case, the approximate analytical solution for the wellbore pressure response

while injecting carbonated water injection followed by falloff is used as the forward model

with the model parameters k, s and aw to be estimated, i.e.,

~m = [k, s, aw]T , (4.90)

using the procedure presented in Chapter 2. Here, we provide a synthetic example where

we first compute “true pressure data” by running a commercial simulator using a very

fine grid and very small time steps using specified (true) values of absolute permeability,

skin factor and end-point mobilities (where ao is equal 1). In this simulation, again we

assume a skin zone of given radius and then for the given value of skin factor, compute the

value of skin zone permeability, ks, using Hawkins’s formula [50] for input into the reservoir

simulator. The radius of the skin zone is equal to 1 feet and includes the 100 radial gridblocks

closest to the wellbore. The reservoir, rock and fluid properties are those shown in Table

4.1. The observed pressure data are generated by adding uncorrelated Gaussian noise with
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Figure 4.10: Log-log diagnostic plots of injection (a) and falloff (b) of the wellbore pressure
(blue curves) and the wellbore pressure derivatives (red curves) with time.
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Figure 4.11: Bottom hole pressure data match for the injection-falloff test.

Table 4.2: Estimated model parameters based on the approximate analytical solution for
injection-falloff test.

Parameter k (md) Skin Factor aw

True 300.00 5.00 0.500
Initial Guess 600.00 0.00 0.800
Estimate 302.11 5.04 0.496

mean zero and variance 1 psi2 to the true pressure data. We only match observed pressure

data corresponding to times more 0.5 hour after each flow rate change. Table 4.2 presents

the values of model parameters estimated from the Trust-Region-Reflective Least Squares

Algorithm algorithm [35] where the bounds specified on the parameters are given in Table

4.3. ε = 10−4. Fig. 4.11 shows the bottom hole pressure match for the test data.

Table 4.3: Parameter bounds for the injection-falloff test.

Parameter k (md) Skin Factor aw

Lower bound 0 -60 0.05
Upper bound ∞ 60 1.00
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“Maybe I’ll leave out the previous chapter[s].

Among other reasons because in the last lines

there’s a phrase that’s close to being nonsense

and I don’t want to provide food for future critics.”

— “Brás Cubas”

in Memórias Póstumas de Brás Cubas by Machado de Assis
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CHAPTER 5

DISCUSSIONS AND CONCLUSIONS

“How much bettter it would have been to have said things smoothly,

without all these jolts!”

— “Brás Cubas”

“Given the possibility that one of my readers

might have skipped the previous chapter[s],

I must observe that it’s necessary to read it

in order to understand what I said...”

— “Brás Cubas”

in Memórias Póstumas de Brás Cubas by Machado de Assis

In this work an approximate semi-analytical solution was developed for an injection-

falloff-production test which allows the governing relative permeabilities during the flow back

period to be different from the relative permeabilities during injection. Contrary to what

[28] has concluded in his dissertation, we have shown that hysteresis effects does affect the

wellbore pressure during flowback, even when the reservoir is water wet. The weak solution

we construct for the saturation equation for the flowback period satisfies the Oleinik entropy

condition and hence is unique.

By comparing results with those from a commercial simulator, we show that our

approximate semi-analytical solution yields an accurate prediction of the saturation profile

and bottom-hole pressure during an IFPT. The saturation solution during flowback can

be constructed either with front-tracking or the simpler and more computationally efficient

area equality method derived in the text. Finally, we show that the approximate analytical
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pressure solution developed can be used to match data from an IFPT to estimate absolute

permeability, skin factor and the parameters for in-situ relative permeabilities. Next, we

were able to show the importance of capillary effects in wellbore pressure during flowback

and we successfully included these effects in the IFPT model.

In addition, an accurate approximate analytical solution was constructed for wellbore

pressure during carbonated water injection test followed by a falloff well test in a reservoir

containing oil and water where carbon dioxide can be present in both the in-situ oil and

water phases as well as in the injected water. After validating our solution by comparing

the bottom-hole pressure data calculated from the analytical model with the bottom-hole

pressure obtained from a commercial numerical simulator, we showed that our solution can

be used as the forward model in a least-squares optimization algorithm to estimate skin

factor, reservoir absolute permeability and fluid end-point mobilities. The wellbore pressure

data sensitivity to the exponents parameters of the relative permeability curves during an

injection-falloff test is insignificant. Therefore, trying to completely characterize relative

permeability without the flowback would be really difficulty. However, end-point mobilities

could be estimated.

5.1 Future Work

“E agora, José”

—Carlos Drummond de Andrade, José

“Si a partir de mañana decidiera vivir una vida tranquila

y dejara de ser soñador, para ser un sujeto más serio,

todo el mundo mañana me podŕıa decir: “se agotaron tus pilas,

te has quedado sin luz, ya no tienes valor, se acabó tu misterio”.”

—Alberto Cortez, A partir de mañana

We have developed analytical models for water injection and carbonated water in-

jection tests. The wellbore pressure profile when gases, such as CO2 and N2 are injected
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into an oil reservoir are also very relevant to the oil industry, and our method can be used

to develop models for this cases. To do that, we can solve the system of n-equations for n

components given by the mass balance equation, using radial coordinates [76]:

∂Ci
∂t

+
θqt

2πrhφ

∂Fi(Ci, T )

∂r
= 0, for i = 1, . . . , n (5.1)

where and T is the temperature in ◦F and Ci is the overall concentration of component i,

given by

Ci = cigSg + cio(1− Sg) (5.2)

and F1 is the overall fractional flow of component 1, given by

Fi = cigfg + cio(1− fg), (5.3)

defining the volume fraction of component i in the gas phase, cig, and in the oil phase, cio,

as

cip =

xi,p
ρci

ρm,p
, for p = g, o. (5.4)

Here, xi,p is the mole fraction of component i in the phase p, ρci is the component mo-

lar density and ρm,p is the phase molar density. We would again the Corey-type relative

permeabilities given by

krg =


0, Sg ≤ Sgc

( Sg−Sgc
1−Sgc−Sor )ng , Sgc < Sg ≤ 1− Sor

1, Sg > 1− Sor

(5.5)
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and

kro =


1, Sg ≤ Sgc

( 1−Sg−Sor
1−Sgc−Sor )no , Sgc < Sg ≤ 1− Sor

0, Sg > 1− Sor,

(5.6)

where Sg is the gas saturation and Sgc is the critical gas saturation. From Eqs. 5.5 and 5.6,

it follows that

fg =


0, Sg ≤ Sgc

(Sg−Sgc)ng
(1−Sg−Sor)no (1−Sgc−Sor)(ng−no)

µg
µo

+(Sg−sgc)ng
, Sgc < Sg ≤ 1− Sor

1, Sg > 1− Sor.

(5.7)

The system of equations in E.q 5.1 can be solved by using the method of characteristics,

assuming a one-dimensional homogeneous reservoir with incompressible fluids and constant

molar density, and neglect capillary effects, gravity effects, volume changing on mixing and

diffusion. Once we have the concentration distribution in the reservoir, we can integrate

the pressure gradient given by Darcy’s law, assuming viscosities depending on composition,

to find the wellbore pressure. Considering that water-alternating-gas flooding has shown

better performance than continuous gas flooding in many applications cases [27], it seems

necessary to extend the solutions for wellbore pressure response presented in this work, and

the solutions to be developed, to include the effects of three mobile phases in the reservoir.

This can be done by adding one more equation to the system of governing hyperbolic equa-

tions, and then, we can use the method of characteristics to find the three-phase saturation

distribution in the reservoir.

Thermal effects caused by the temperature difference between injected fluid and the

reservoir should also be considered, assuming convection is the only significant heat exchange

mechanism in the reservoir during injection [83] and falloff , i.e., neglecting heat loss and
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heat diffusion, the heat equation can be written as [59],

∂T

∂t
+

θqt
2πrhφ

(
(Mg −Mo)fg +Mo

(Mg −Mo)Sg +Mo + (1−φ)
φ
Mr

)
∂T

∂t
= 0, (5.8)

where M is the volumetric heat capacity defined by product of the phase density with the

phase specific heat, i.e.,Mphase = ρphaseCp,phase. The procedure for solving the system of

hyperbolic equations for the case of pure water injection or a 2-component reservoir (gas

and oil) is analogous to what was shown for carbonated water injection. This solution just

need to be validated against a thermal reservoir numerical simulator to verify that it can

used to be used as forward model to analyze injection-falloff tests.

Ultimately, if the goal is to pursue the estimation in-situ of relative permeabilities,

the flowback wellbore pressure solution must be developed for all cases. In doing that, we

will observe that there are characteristic curves of different families crossing each other in the

r-t plane. We have developed solutions for this problem intuitively, but the main challenge

is how to prove that these solutions are the unique solutions.

Finally, let us not forget that all the solutions developed in this work were based

on the assumption of an infinite acting homogeneous reservoir with radial flow from and

towards a vertical well with constant flow rate periods. Chen [28] has showed the IFPT test

and data analysis are still applicable under stable fluctuations in the flow rate, but large

rapid changes in the flow may affect the accuracy of the parameter estimates. The solutions

need to be expanded to be able applied to more complex tests, as to heterogeneous reservoir

rock characterization and to horizontal wells multiphase testing with diverse flow regimes.
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“Writing long books is a laborious and impoverishing act of foolishness:

expanding in five hundred pages an idea that could be perfectly explained in a few minutes.

A better procedure is to pretend that those books already exist

and to offer a summary,a commentary.”

— Jorge Luis Borges
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APPENDIX A

DETAILS ON THE NUMERICAL COMPUTATIONS

“It is a mistake to think you can solve any major problems just with

potatoes.”

— Douglas Adams in Life, the Universe and Everything

In this Appendix, we discuss the numerical methods used in this work to compute

our analytical solutions in Fortran 90 and to perform the pressure transient data analysis.

The numerical details that have been already discussed in the main text are not repeated

here.

A.1 Solving Single Equations

We have implemented the bisection method given in [22] with a convergence tolerance

on the relative error solution equal to 10−6 to solve Eqs. 2.15, 3.68, 3.207, 4.45, 4.46 and

4.47.

A.2 System of Equations to find the Shock Position

We implemented the Newton-Raphson method [90] with the analytical derivatives

(given by Eqs. A.14, A.15, A.16, A.17, A.18, A.19,A.20, A.21 and A.22) and a convergence

tolerance on the relative error of the solution equal to 10−6 to solve the non-linear system

of equations given by Eqs. 2.36, 2.38 and 2.40 to find the shock position and its saturation

at a time t. Note; as stated in Chapter 2, we only need to solve this system 3 times, then

we can fit a polynomial of order 2 that can be used to evaluate the shock positions and
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saturations explicitly at any time where they are needed. To constrain the equations, we use

a log-transform to replace each independent variable mi by

xi(mi) = ln
(mi −mi,lb

mi,ub −mi

)
, (A.9)

where mi,lb and mi,ub, respectively, are the lower and upper bounds on the variable mi

discussed in Chapter 2. The solution of the system of equations to find the shock position is

found in the log-transform space using an analytical Jacobian, J3x3. The residual equations

(Ri, for i = 1, 2, 3) - which given by Eqs. 2.36, 2.38 and 2.40 - are rewritten here as,

R1(r2
s , S

−
w , S

+
w , t) = r2

s − r2
w −

θqt,prod(t− tfoff )
πhφ

[fw(S−w )− fw(S+)]

[S−w − S+
w ]

− θqinjtinj
πhφ

(fw(Swf )− fw(S+
w )− (Swf − S−w ) dfw

dSw
(Swf ))

[S−w − S+
w ]

, (A.10)

R2(r2
s , S

+
w , t) = r2

s − r2
prod(S

+
w ) = r2

s − r2
w −

θ(qinjtinj + qt,prod(t− tfoff ))
φhπ

dfw(S+
w )

dSw
(A.11)

and

R3(r2
s , S

−
w , t) = r2

s − r2
prod(S

−
w ) = r2

s − r2
w −

θqinjtinj
φhπ

dfw(Swf )

dSw
− qt,prod(t− tfoff )

φhπ

dfw(S−w )

dSw
.

(A.12)

The derivative of the residual equations with respect to each transformed model parameter

xi are computed by the chain rule and are be given by

∂Ri

∂xi
=
∂Ri

∂mi

∂mi

∂xi
=
∂Ri

∂mi

(mi,ub −mi)(mi −mi,lb)

mi,ub −−mi,lb

, for i = 1, 2, 3. (A.13)

The derivative of A.10 with respect of r2
s is given by

∂R1(r2
s , S

−
w , S

+
w , t)

∂r2
s

= 1, (A.14)
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the derivative of A.10 with respect of S+
w is given by

∂R1(r2
s , S

−
w , S

+
w , t)

∂S+
w

= −θqt,prod(t− tfoff )
πhφ

(−∂fw(S+)
Sw+

[S−w − S+
w ] + [fw(S−w )− fw(S+)]

[S−w − S+
w ]2

)
− θqinjtinj

πhφ

{−∂fw(S+)
Sw+

[S−w − S+
w ] + [fw(Swf )− fw(S+

w )− (Swf − S−w ) dfw
dSw

(Swf )]

[S−w − S+
w ]2

}
(A.15)

and the derivative of Eq. A.10 with respect of S−w is given by

∂R1(r2
s , S

−
w , S

+
w , t)

∂S−w
= −θqt,prod(t− tfoff )

πhφ

( ∂fw(S−)
Sw− [S−w − S+

w ]− [fw(S−w )− fw(S+)]

[S−w − S+
w ]2

)
− θqinjtinj

πhφ

{ dfw
dSw

(Swf )[S
−
w − S+

w ]− [fw(Swf )− fw(S+
w )− (Swf − S−w ) dfw

dSw
(Swf )]

[S−w − S+
w ]2

}
. (A.16)

The derivative of Eq. A.11 with respect of r2
s is given by

∂R2(r2
s , S

+
w , t)

∂r2
s

= 1, (A.17)

the derivative of Eq. A.11 with respect of S+
w is given by

∂R2(r2
s , S

+
w , t)

∂S+
w

= −
∂r2

prod(S
+
w )

∂S+
w

= −θ(qinjtinj + qt,prod(t− tfoff ))
φhπ

∂

∂S+
w

(
dfw(S+

w )

dSw

)
(A.18)

and the derivative of Eq. A.11 with respect of S−w is given by

∂R2(r2
s , S

+
w , t)

∂S−w
= 0. (A.19)

The derivative of Eq. A.12 with respect of r2
s is given by

∂R3(r2
s , S

−
w , t)

∂r2
s

= 1, (A.20)

the derivative of Eq. A.12 with respect of S+
w is given by

∂R3(r2
s , S

−
w , t)

∂S+
w

= 0 (A.21)
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and the derivative of Eq. A.12 with respect of S−w is given by

∂R3(r2
s , S

−
w , t)

∂S−w
= −

∂r2
prod(S

−
w )

∂S−w
= −θqt,prod(t− tfoff )

φhπ

∂

∂S−w

(
dfw(S−w )

dSw

)
. (A.22)

To find the breakthrough time, rs = rw is fixed and the time became the independent variable

m1. In this case, the derivative of A.10 with respect of tBT is given by

∂R1(r2
s , S

−
w , S

+
w , t)

∂tBT
= −θqt,prod

φhπ

[fw(S−w )− fw(S+
w )]

[S−w − S+
w ]

, (A.23)

the derivative of Eq. A.11 with respect of tBT is given by

∂R2(r2
s , S

+
w , t)

∂tBT
= −

∂r2
prod(S

+
w )

∂t
= −θqt,prod

φhπ

dfw(S+
w )

dSw
(A.24)

and the derivative of Eq. A.12 with respect of tBT is given by

∂R3(r2
s , S

−
w , t)

∂tBT
= −

∂r2
prod(S

−
w )

∂t
= −θqt,prod

φhπ

dfw(S−w )

dSw
. (A.25)

The reader should keep in mind that qinj > 0 and qt,prod < 0.

A.3 Wellbore Pressure drop

We generate an array of N points of equally spaced saturations and then calculate

their positions explicitly using Eq. 2.19 instead of using an uniformly-spaced array for radius

to avoid the computational cost of solving 2.19 numerically for water saturation at each

point r. We have modified the numerical integration method Simpson 1/3 Rule [48] to use

this non-uniformly spaced points for the radius array that is obtained from the uniform

saturation array by using a polynomial interpolation of order 2 with varying hi = ri+1 − ri
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given by

P2(r, ~m, Sw, t) =
i+2∑
i

f(ri, ~m, Sw(ri), t)

i+2∏
k=i,k 6=i

(r − rk)

i+2∏
k=i,k 6=i

(ri − rk)

= f(ri, ~m, Sw(ri), t)
(r − ri+1)(r − ri+2)

(ri − ri+1)(ri − ri+2)

+ f(ri+1, ~m, Sw(ri+1), t)
(r − ri)(r − ri+2)

(ri+1 − ri)(ri+1 − ri+2)

+ f(ri+2, ~m, Sw(ri+2), t)
(r − ri+1)(r − ri)

(ri+2 − ri)(ri+2 − ri+1)
, (A.26)

where f(ri, ~m, Sw(ri), t) is the integrand which varies for each test period. Remember that

each ri is obtained from its corresponding saturation at time t. Integrating Eq. A.26 from

ri to ri+2, yields

∫ ri+2

ri

P2(r, ~m, Sw, t)dr =

∫ ri+2

ri

[
f(ri, ~m, Sw(ri), t)

(r − ri+1)(r − ri+2)

(ri − ri+1)(ri − ri+2)

+ f(ri+1, ~m, Sw(ri), t)
(r − ri)(r − ri+2)

(ri+1 − ri)(ri+1 − ri+2)

+ f(ri+2, ~m, Sw(ri+2), t)
(r − ri+1)(r − ri)

(ri+2 − ri)(ri+2 − ri+1)

]
dr

=

[
f(ri, ~m, Sw(ri), t)

( r
3

3
− r2

2
(ri+2 + ri+1) + r(ri+1ri+2))

(ri − ri+1)(ri − ri+2)

+ f(ri+1, ~m, Sw(ri+1), t)
( r

3

3
− r2

2
(ri+2 + ri) + r(riri+2))

(ri+1 − ri)(ri+1 − ri+2)

+ f(ri+2, ~m, Sw(ri+2), t)
( r

3

3
− r2

2
(ri + ri+1) + r(ri+1ri))

(ri+2 − ri)(ri+2 − ri+1)

]ri+2

ri

= f(ri, ~m, Sw(ri), t)
(

(r3i+2−r3i )

3
− (r2i+2−r2i )

2
(ri+2 + ri+1) + (ri+2 − ri)(ri+1ri+2))

(ri − ri+1)(ri − ri+2)

+ f(ri+1, ~m, Sw(ri+1), t)
(

(r3i+2−r3i )

3
− (r2i+2−r2i )

2
(ri+2 + ri) + (ri+2 − ri)(riri+2))

(ri+1 − ri)(ri+1 − ri+2)

+ f(ri+2, ~m, Sw(ri+2), t)
(

(r3i+2−r3i
3
− r2i+2−r2i

2
(ri + ri+1) + (ri+2 − ri)(ri+1ri))

(ri+2 − ri)(ri+2 − ri+1)
. (A.27)
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Finally, using Eq. A.27, we can approximate the integral of the function f(r, ~m, Sw, t)

in the interval (r0, rN) by

∫ rN

r0

f(r, ~m, Sw, t)dr ≈
l=N

2∑
l=1

∫ r2l

r2l−2

P2(r, ~m, Sw, t)dr

=

l=N
2∑

l=1

[
f(r2l−2, ~m, Sw(r2l−2), t)

(
(r32l−r

3
2l−2)

3
− (r22l−r

2
2l−2)

2
(r2l + r2l−1) + (r2l − r2l−2)(r2l−1r2l))

(r2l−2 − r2l−1)(r2l−2 − r2l)

+ f(r2l−1, ~m, Sw(r2l−1), t)
(

(r32l−r
3
2l−2)

3
− (r22l−r

2
2l−2)

2
(r2l + r2l−2) + (r2l − r2l−2)(r2l−2r2l))

(r2l−1 − r2l−2)(r2l−1 − r2l)

+ f(r2l, ~m, Sw(r2l), t)
(

(r32l−r
3
2l−2

3
− r22l−r

2
2l−2

2
(r2l−2 + r2l−1) + (r2l − r2l−2)(r2l−1r2l−2))

(r2l − r2l−2)(r2l − r2l−1)

]
.

(A.28)

Note; N =
∑N

0 i - where i specifies our integration points - must be even. We have used

N = 100 in this work. We first have tried to use the trapezoidal rule, but to be able to

obtain an accurate pressure solution with the trapezoidal rule (in this case to be able to

validate our solution with IMEX) led to an expensive computational cost, we needed to use

10 times more points than we use in this modified Simpson’s rule.

To obtain a more accurate integration, we divide our integrand into segments to avoid

integrating over discontinuities. For the pure water injection problems, if the water/oil front

is inside the skin zone, we use the 3 segments: (rw, rs), (rs, rskin) and (rskin, rf,inj). If the

water/oil front is outside the skin zone, we have: (rw, rskin), (rskin, rs) and (rs, rf,inj). For

the carbonated water problems, we solve in similar way but we increment the number of

segments accordingly with the saturation self-similar solution “number of segments” (see

Figs. 4.4 and 4.7 in Chapter 4).

To check our pressure matching while regressing at each iteration, we call the open-

source software Gnuplot [103] from our Fortran code. The final estimated data is exported

to DAT files to be stored and also may be upload in the software Matlab.
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A.4 Saturation during Falloff with pc

To evaluate the saturation distribution during falloff, we first need to evaluate ∆Ψ0
D(r, s)

and ∆Ψ1
D(r, s) in the Laplace domain and then invert it numerically. Once we haveG(r, tfoff ),

we need to perform a two-dimensional numerical integration from tinj to tfoff and from rw

to r to find ∆Ψ1
D(r, tfoff ) for each radius r.

Modified Bessels Funtions We have implemented the zeroth and first order modified

Bessel functions of first and second kind by using the polynomial approximations given in

Abramowitz and Stegun [2] to evaluate ∆Ψ0
D(s) and ∆G(s) in the Laplace domain.

Numerical Laplace Inversion To invert Eq. 3.111 and the first term in Eqs. 3.150 and

3.151 for the saturation distribution during at end of the falloff period given in Chapter 3,

we implemented the well-known Stehfest Algorithm [97], with N = 14. This algorithm is

appropriate for smooth functions, without rapid oscillations. Given a function F (s), F (t) at

any time t can be obtained from

F (t) =
ln 2

t

N∑
i=1

ViF

(
ln 2

t
i

)
, (A.29)

where

Vi = (−1)i+
1
2

ln 2

t

min(i,n
2

)∑
i=1

, for i = 1, ..., N (A.30)

and N ∈ [8, 16] must be pair. The propety
∑N

i=1 Vi = 0 can be used to validate the imple-

mentation of Eq. A.30.

Multidimensional Numerical Integration For the two-dimensional numerical integra-

tion, we use the Vegas algorithm from CUBA library [47] with relative error equal to 10−6.

As Hahn [47] stated,

“Vegas algorithm is a Monte Carlo algorithm that uses importance sampling as

a variance-reduction technique. Vegas iteratively builds up a piecewise constant
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weight function, represented on a rectangular grid. Each iteration consists of

a sampling step followed by a refinement of the grid. The exact details of the

algorithm can be found in [61, 62] and shall not be reproduced here.”

We would like to point out that while our full non-linear regression can be run within

a few seconds for the cases without capillary pressure and within minutes for the cases that

include capillary pressure, the numerical simulator take minutes just to run one forward

model simulation.

A.5 History Matching

For the pressure transient data analysis,to avoid finding the second-order derivatives,

the Hessian was approximated as

H(~m) ≈ GTC−1
D G, (A.31)

where G is the sensitivity matrix whose individual elements are

g(~m)ij =
∂∆pwf (~m)

∂mj

. (A.32)

and CD, the covariance of error matrix, is a diagonal matrix with the i diagonal given by σ2
1

and ~m the vector of model parameter to be estimated [75]. Following the procedure adopted

by Chen [28] and Gao and Reynolds [44], an unconstrained optimization process is obtained

by applying a logarithmic transformation to replace each model parameter mi by

xi(mi) = ln
(mi −mi,min

mi,max −mi

)
, (A.33)

to avoid obtaining non-physical values of the parameters, where mi,min and mi,max are the

minimum and maximum values allowed to parameter mi. The injection pressure drop deriva-
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tives with respect to each new model parameter will be given by

∂∆pwf
∂xi

=
∂∆pwf
∂mi

∂mi

∂xi
=
∂∆pwf
∂mi

(mi,max −mi)(mi −mi,min)

mi,max −mi,min

, (A.34)

where solving Eq. A.33 for mi gives

mi(xi) =
exp(xi)mi,max +mi,min

1 + exp(xi)
. (A.35)

The history matching is done in the log-transform space using the gradient-based method

Levenberg-Marquadt, which was implemented in Fortran 90 together with the analytical

derivatives presented in for the the transient data analysis of IPFT when neglecting capillary

pressure. The Levenberg-Marquadt method first choose a step size and then the direction

while line search first choose a step direction and then the size [104]. The Levenberg-

Marquadt algorithm is similar to the gradient-based Gauss-Newton method, but more robust,

since it handle the situation when the approximate Hessian matrix might be singular. where

each iteration of the non-linear regression is given be the solution of the following equation,

(λkI +Hk(~xk))δ~xk+1 = −∇O(~xk), (A.36)

where λ > 0 may vary along iterations and O(~xk) is the least-square objective function at

iteration k. A factor of 10 was used to decreased or increased λ, according to the drop or

rise in the objective function, where we start with 105. The convergence criteria for the

minimization of the objective function was defined as

| O(xk)−O(xk−1) |
| O(xk) | +10−8

< ε1 (A.37)

or

| xk − xk−1 |
| xk | +10−8

< ε2, (A.38)

with ε1 = 10−3 and ε2 = 10−4.
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APPENDIX B

ANALYTICAL DERIVATIVES FOR THE IFPT WITHOUT CAPILLARY

PRESSURE

“Of course this is the material that goes in the second appendix.

What did you expect to find here?”

— Richard Redner in TU thesis template

In this appendix, we provide the derivatives for the IFPT analytical solution presented

in Chapter 2 to be used within optimization gradient-based methods. Although the finite

difference method to evaluate the gradients of our analytical functions is simpler to implement

and not computationally expensive, it can be unstable and it may require some experiments

to find the appropriate perturbation values for each parameter to be estimated. Therefore,

we recommend the use of analytical derivatives derivatives when evaluating the sensitivity

matrix for the non-linear regression. However, one should be careful when deriving and

implementing the analytical derivatives, since they lead to complex and lengthly expressions.

B.1 Injection

For the injection period the observed data is the bottom hole pressure and the model

parameters to be estimated may be the components of the vector ~minj, given by

~minj = [k, s, aw, nw, no]
T , (B.39)

where the last 6 paramaters pertain to the imbibition water-oil relative permeability curves.

The derivative of the pressure drop with respect to the model parameter k is obtained by
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differentiating Eq. 2.62 and is given by

∂∆pwf
∂k

=
∂∆p̂o
∂k

+
αqinj

hλ̂o

∂

∂k

rf,inj(t)∫
rw

( λ̂o
λt(r, t)

− 1
) 1

k(r)

dr

r
, (B.40)

where differentiating Eq. 3.230 with respect to absolute permeability we find that

∂∆p̂o
∂k

=− αqinj

k2hλ̂o

[
1

2
ln

(
βkλ̂ot

φĉtor2
w

)
+ 0.4045 + s

]
+

αqinj

2k2hλ̂o

= − αqinj

k2hλ̂o

[
1

2
ln

(
βkλ̂ot

φĉtor2
w

)
− 0.0955 + s

]
. (B.41)

Substituting Eq. B.41 into Eq. B.40 and taking the derivative of the second term on the

right-hand side of Eq. B.40 yields

∂∆pwf
∂k

=
∂∆p̂o
∂k

− αqinj

hλ̂ok2

[( s

ln( rskin
rw

)
+ 1
) rskin∫

rw

( λ̂o
λt(r, t)

− 1
)dr
r

+

rf,inj(t)∫
rskin

( λ̂o
λt(r, t)

− 1
)dr
r

]
,

(B.42)

for rf,inj(t) ≥ rskin. Otherwise,

∂∆pwf
∂k

=
∂∆p̂o
∂k

− αqinj

hλ̂ok2

(
s

ln( rskin
rw

)
+ 1

) rf,inj(t)∫
rw

( λ̂o
λt(r, t)

− 1
)dr
r
. (B.43)

The derivative of the permeability with respect to the skin permeability is given by

ks =
k

s
ln(

rskin
rw

)
+ 1

(B.44)

and the derivative of the skin permeability with respect to the skin factor is given by

∂ks
∂s

= − k

ln( rskin
rw

)

1(
s

ln(
rskin
rw

)
+ 1
)2 , (B.45)
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Here, we applied the Hawkin’s formula [1956]

s =

(
k

ks
− 1

)
ln

(
rskin
rw

)
, (B.46)

where s is the skin factor, k is the absolute permeability, ks is the the permeability within

the skin radius, i.e., r ≤ rskin. The pressure drop derivative with the model parameter s is

given by

∂∆pwf
∂s

=
∂∆p̂o
∂s

+
αqinj

hλ̂o

∂

∂s

rf,inj(t)∫
rw

( λ̂o
λt(r, t)

− 1
) 1

k(r)

dr

r
, (B.47)

where the single oil phase pressure drop derivative with respect to skin is

∂∆p̂o
∂s

=
αqinj

khλ̂o
. (B.48)

Substituting Eq. B.48 in Eq. B.47 and taking the derivative of its second term in the

right-hand side yields

∂∆pwf
∂s

=
αqinj

khλ̂o
+
αqinj

hλ̂ok2
s

k

ln( rskin
rw

)

1(
s

ln(
rskin
rw

)
+ 1
)2

rint(t)∫
rw

( λ̂o
λt(r, t)

− 1
)dr
r
, (B.49)

where

rint(t) =


rf,inj(t) rf,inj(t) < rskin

rskin rf,inj(t) ≥ rskin.

(B.50)

The derivative of the pressure drop with respect to the model parameter aw is given by

∂∆pwf
∂aw

=
αqinj

hλ̂o

∂

∂aw

rf,inj(t)∫
rw

( λ̂o
λt(r, t)

− 1
) 1

k(r)

dr

r
. (B.51)
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Applying the Leibniz rule to the right-hand side of Eq. B.51 yields

∂∆pwf
∂aw

=
αqinj

hλ̂o

[ rf,inj(t)∫
rw

∂

∂aw

( λ̂o
λt(r, t)

− 1
) dr

k(r)r
+

(
λ̂o

λt(rf,inj ,t)
− 1
)

k(rf,inj)rf,inj

∂rf,inj
∂aw

]
, (B.52)

where the total mobility and water front radius derivative with respect aw are

∂λt
∂aw

=
1

µw

(
Sw − Siw

1− Siw − Sor

)nw
(B.53)

and

∂rf,inj
∂aw

=

θqinjt

φπh
∂
∂aw

(
dfw(Swfinj)

dSw

)
2
(
r2
w +

θqinjt

φπh

dfw(Swfinj)

dSw

) 1
2

. (B.54)

Inserting Eqs. B.53 and B.54 in Eq. B.52, we have

∂∆pwf
∂aw

=− αqinj
h

rf,inj(t)∫
rw

1

λt(r, t)2

1

µwk(r)

(
Sw(r, t)− Swi
1− Swi − Sor

)nw dr
r

+
αθq2

injt

πh2λ̂oφ

( λ̂o
λt(rf,inj, t)

− 1
) 1

k(rf,inj)rf,inj

∂
∂aw

(
dfw
dSw

(Swfinj)
)

2
(
r2
w +

θqinjt

φπh
dfw
dSw

(Swfinj)
) 1

2

, (B.55)

where

∂

∂aw

(
dfw
dSw

)
= aoµoµw

(
Sor + Swfinj − 1

Siw + Sor − 1

)no ( Siw − Swfinj
Siw + Sor − 1

)nw
× [Siwno + nw(Sor + Swfinj − 1)− noSwfinj]

×

{ [
µoaw

(
Siw−Swfinj
Siw+Sor−1

)nw
− aoµw

(
Sor+Swfinj−1

Siw+Sor−1

)no]
(Siw − Swfinj)(Sor + Swfinj − 1)

[
aoµw

(
Sor+Swfinj−1

Siw+Sor−1

)no
+ µoaw

(
Siw−Swfinj
Siw+Sor−1

)nw]3

}
.

(B.56)
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The derivative of the pressure drop with respect to the model parameter nw is given by

∂∆pwf
∂nw

=
αqinj

hλ̂o

∂

∂nw

rf,inj(t)∫
rw

( λ̂o
λt(r, t)

− 1
) 1

k(r)

dr

r
. (B.57)

Applying the Leibniz rule to the right-hand side of Eq. B.57 yields

∂∆pwf
∂nw

=
αqinj

hλ̂o

[ rf,inj(t)∫
rw

∂

∂nw

( λ̂o
λt(r, t)

− 1
) dr

k(r)r
+

(
λ̂o

λt(rf,inj ,t)
− 1
)

k(rf,inj)rf,inj

∂rf,inj
∂nw

]
, (B.58)

where the derivative of total mobility and water front radius with respect to nw are

∂λt
∂nw

=
aw
µw

(
Sw − Siw

1− Siw − Sor

)nw
ln

(
Sw − Siw

1− Siw − Sor

)
(B.59)

and

∂rf,inj
∂nw

=

θqinjt

φπh
∂

∂nw

(
dfw
dSw

(Swfinj)

)
2
(
r2
w +

θqinjt

φπh

dfw(Swfinj)

dSw

) 1
2

. (B.60)

Inserting Eqs. B.59 and B.60 into Eq. B.58, we have

∂∆pwf
∂nw

=− αqinj
h

rf,inj(t)∫
rw

1

λt(r, t)2

aw
µw

(
Sw − Siw

1− Siw − Sor

)nw
ln

(
Sw − Siw

1− Siw − Sor

)
dr

k(r)r

+
αθq2

injt

πh2λ̂oφ

( λ̂o
λt(rf,inj, t)

− 1
) 1

k(rf,inj)rf,inj

∂
∂nw

(
dfw
dSw

(Swfinj)
)

2
(
r2
w +

θqinjt

φπh
dfw
dSw

(Swfinj)
) 1

2

, (B.61)
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where

∂

∂nw

(
dfw
dSw

(Swfinj)

)
= −aoµoµwaw

(
Sor + Swf − 1

Siw + Sor − 1

)no ( Siw − Swf
Siw + Sor − 1

)nw
×
{ (Sor + Swf − 1)

[
aoµw

(
Sor+Swf−1

Siw+Sor−1

)no
+ µoaw

(
Siw−Swf
Siw+Sor−1

)nw]
(Siw − Swf )(Sor + Swf − 1)

[
aoµw

(
Sor+Swf−1

Siw+Sor−1

)no
+ µoaw

(
Siw−Swf
Siw+Sor−1

)nw]3 +

− ln
(

Siw−Swf
Siw+Sor−1

)
(Siwno + nw(Sor + Swf − 1)− noSwf )

(Siw − Swf )(Sor + Swf − 1)
[
aoµw

(
Sor+Swf−1

Siw+Sor−1

)no
+ µoaw

(
Siw−Swf
Siw+Sor−1

)nw]3

×
[
µoaw

(
Siw − Swf

Siw + Sor − 1

)nw
− aoµw

(
Sor + Swf − 1

Siw + Sor − 1

)no]}
. (B.62)

The pressure drop derivative with the model parameter no is given by

∂∆pwf
∂no

=
∂

∂no

[
αqinj

hλ̂o

rf,inj(t)∫
rw

( λ̂o
λt(r, t)

− 1
) 1

k(r)

dr

r

]
. (B.63)

Applying the Leibniz rule to the second term on the right-hand side of Eq. B.63 yields

αqinj

hλ̂o

{ rf,inj(t)∫
rw

∂

∂no

( λ̂o
λt(r, t)

−1
) 1

k(r)

dr

r
+

[( λ̂o
λt(rf,inj, t)

−1
) 1

k(rf,inj)

1

rf,inj

]
∂rf,inj
∂no

}
, (B.64)

where the derivative of the total mobility and the water front radius with respect to no are

∂λt
∂no

=
ao
µo

(
1− Sw − Sor
1− Siw − Sor

)no
ln

(
1− Sw − Sor
1− Siw − Sor

)
(B.65)

and

∂rf,inj
∂no

=

θqinjt

φπh
∂
∂no

(
dfw
dSw

(Swfinj)
)

2
(
r2
w +

θqinjt

φπh
dfw
dSw

(Swfinj)
) 1

2

. (B.66)

199



Then, using Eqs. B.65, B.66 and Eq. B.64 in Eq. B.63, we have

∂∆pwf
∂no

=− αqinj

hλ̂o

rf,inj(t)∫
rw

(
λ̂o

λt(r, t)2

)
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(
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)no
ln
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)
1

k(r)

dr

r

+
αθq2

injt

πh2λ̂oφ

( λ̂o
λt(rf,inj, t)

− 1
) 1

k(rf,inj)rf,inj

∂
∂no

(
dfw
dSw

(Swfinj)
)

2
(
r2
w +

θqinjt

φπh
dfw
dSw

(Swfinj)
) 1

2

, (B.67)

where

∂

∂no

(
dfw
dSw

(Swfinj)

)
= aoµoµwaw

(
Sor + Swf − 1

Siw + Sor − 1

)no ( Siw − Swf
Siw + Sor − 1

)nw
×
{ (Swf − Siw)

[
aoµw

(
Sor+Swf−1

Siw+Sor−1

)no
+ µoaw

(
Siw−Swf
Siw+Sor−1

)nw]
(Siw − Swf )(Sor + Swf − 1)

[
aoµw

(
Sor+Swf−1

Siw+Sor−1

)no
+ µoaw

(
Siw−Swf
Siw+Sor−1

)nw]3 +

− ln
(
Sor+Swf−1

Siw+Sor−1

)
[Siwno + nw(Sor + Swf − 1)− noSwf ]

(Siw − Swf )(Sor + Swf − 1)
[
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(
Sor+Swf−1

Siw+Sor−1

)no
+ µoaw

(
Siw−Swf
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×
[
µoaw

(
Siw − Swf

Siw + Sor − 1

)nw
− aoµw

(
Sor + Swf − 1

Siw + Sor − 1

)no]}
. (B.68)

B.2 Falloff

For the pressure drop equation for the falloff period, the derivatives with respect to

model parameters can be obtained in a similar way to those for the injection period. First,

we can take the derivative of the single oil phase pressure drop with respect to k,

∂∆p̂o
∂k

= − αqinj

2k2hλ̂o
ln

(
tinj + ∆tfoff

∆tfoff

)
, (B.69)

and with respect to ao,

∂∆p̂o
∂ao

= − αqinj

2khλ̂2
oµo

ln

(
tinj + ∆tfoff

∆tfoff

)
. (B.70)
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The derivative of the pressure drop with respect to the model parameter k is given by

∂∆pwf
∂k

=
∂∆p̂o
∂k

+
α

hλ̂o

∂

∂k

rf,inj(tinj)∫
rw

(
λ̂o

λt(r, tinj)
qs(r,∆tfoff )−qos(r,∆tfoff )

)
1

k(r)

dr

r
. (B.71)

Taking the derivative of the second term in the right-hand side of Eq. B.71 yields

∂∆pwf
∂k

=
∂∆p̂o
∂k

− α

hλ̂ok2

[( s

ln( rskin
rw
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+ 1
) rskin(tinj)∫
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r
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]

+
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λt(r, tinj)

∂qs
∂k

(r,∆tfoff )
∂qos
∂k

(r,∆tfoff )

)
dr

rk(r)
, (B.72)

for rf,inj(tinj) > rskin. Otherwise, i.e., for rf,inj(tinj) ≤ rskin

∂∆pwf
∂k

=
∂∆p̂o
∂k

− α

hλ̂ok2

( s

ln( rskin
rw

)
+ 1
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, (B.73)

where

∂qos
∂k

=
qinjφĉtor

2

4βk2λ̂o

[exp
(
− φĉtor2

4βkλ̂o(tinj+∆tfoff )

)
tinj + ∆tfoff

−
exp

(
− φĉtor2

4βkλ̂o∆tfoff

)
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]
(B.74)

and

∂qs
∂k

=
qinjφct(r, tinj)r

2

4βk2λt(r, tinj)

[exp
(
− φct(r,tinj)r

2
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)
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−
exp

(
− φct(r,tinj)r

2
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]
. (B.75)
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The pressure drop derivative with respect to the model parameter s can be written as

∂∆pwf
∂s

=
α

hλ̂o

∂

∂s

rf,inj(tinj)∫
rw
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, (B.76)

which yields

∂∆pwf
∂s

=
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hλ̂ok2
s
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1
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r
,

(B.77)

with

rint(tinj) =


rf,inj(tinj) rf,inj(tinj) ≤ rskin

rskin rf,inj(tinj) > rskin.

(B.78)

For model parameter aw, the pressure drop derivative is expressed as

∂∆pwf
∂aw

=
α

hλ̂o
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∂aw
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rw
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λ̂o
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1
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r
, (B.79)

which yields

∂∆pwf
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(B.80)
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The pressure drop derivative with respect to the model parameter nw is given by

∂∆pwf
∂nw

=
α

hλ̂o
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rw
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r
, (B.81)

which leads to

∂∆pwf
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(B.82)

The pressure drop derivative with respect to the model parameter no is given by

∂∆pwf
∂no

=
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, (B.83)

which leads to
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(B.84)
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B.3 Production

For the production period, in addition to the bottom hole pressure, the observed data

includes the water cut. The model parameters to be estimated are expressed by the vector

~mprod

~mprod = [k, s, aw, nw, no]
T , (B.85)

where the last 3 parameters refer to a drainage process. Again, the pressure drop derivatives

with respect to the model parameter can be derived in a similar way to the injection period.

The pressure drop derivative with respect to the model parameter k is given by

∂∆pwf
∂k

=− α

k2hλ̂o

{
qinj
2
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]}
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+ 1
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− 1
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− 1
)dr
r

]
,

(B.86)

for rf,inj(tinj) ≥ rskin. Otherwise,
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r
. (B.87)

The pressure drop derivative with respect to the model parameter s is defined as

∂∆pwf
∂s

=
αqprod

khλ̂o
+
αqprod

hλ̂ok2
s

k

ln( rskin
rw

)

1

( s
ln(
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)
+ 1)2
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( λ̂o
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− 1
)dr
r
. (B.88)

The pressure drop derivative with respect to the model parameter aw is calculated according
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to

∂∆pwf
∂aw

=− αqprod
h

rf,inj(tinj)∫
rw

1

λt(r, t)2

1

µwk(r)

(
Sw(r, t)− Siw
1− Siw − Sor

)nw dr
r
. (B.89)

The pressure drop derivative with respect to the model parameter nw is given by

∂∆pwf
∂nw
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rw
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(B.90)

The pressure drop derivative with respect to the model parameter no is given by

∂∆pwf
∂no

=− αqprod

hλ̂o
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(B.91)

If we want to estimate the parameters using all data for the whole IFPT together, we also

have to consider the production pressure drop with respect to the imbibition parameters,

since rf,inj(tinj) is a function of them.

The water production flow rate (qw,well) during the production period of the IFPT is

given by

qw,well = qprodfw(Sw,well), (B.92)

where the water saturation in the well (Sw,well) can be found by solving the following equation

Rprod(Sw,well, tinj) = r2
w − r2

inj(Sw,well, tinj) +
θqprod∆tprod

πφh

dfw
dSw

(Sw,well) = 0 (B.93)

at each time before breakthrough, and

Rprod(Sw,well, tinj) = r2
w − r2

inj(Swf , tinj) +
θqprod∆tprod

πφh

dfw
dSw

(Sw,well) = 0, (B.94)
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after the production shock breakthrough. The water flow rate derivative does not depend

on the absolute permeability or skin permeability. Therefore, the derivatives with those

two parameters are zero. The well water flow rate derivative with respect to the model

parameters mi, where, in this case,

~mprod = [aw, nw, no]
T , (B.95)

are given by

∂qw
∂mi

= qprod

(
∂fw(Sw,well,mi)

∂mi

+
∂fw(Sw,well,mi)

∂Sw,well

∂Sw,well
∂mi

)
, for i = 1, 2, 3, (B.96)

where the derivative of the well water saturation with respect to the model parameter m at

a particular time,

∂Sw,well
∂mi

= −
∂Rprod
∂mi

∂Rprod
∂Sw,well

, (B.97)

comes from

dRprod

dmi

=
∂Rprod

∂mi

+
∂Rprod

∂Sw,well

∂Sw,well
∂mi

= 0. (B.98)

The derivative of the water fractional flow with respect to aw is given by

∂fw(Sw,well, ~mprod)

∂aw
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while the derivative with respect to nw is

∂fw(Sw,well, ~mprod)
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and the derivative with respect to no is given by

∂fw(Sw,well, ~mprod)
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= −
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)nw]2 . (B.101)

The derivative of the function Rprod with respect to the well water saturation or any model

parameter mi is given by

∂Rprod

∂(Sw,well/mi)
=

∂r2
inj
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+
θqprod∆tprod
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)
,

(B.102)

where before the breakthrough, we have

∂r2
inj

∂Sw,well
= 0 (B.103)

and
∂r2

inj

∂m
=
θqinj∆tinj
πφh

∂

∂m

(
∂fw
∂Sw
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)
(B.104)

After breakthrough, we have

∂r2
inj

∂Sw,well
=
θqinj∆tinj
πφh

∂
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∂fw
∂Sw

(Sw,well(m),m)

)
(B.105)

and
∂r2

inj

∂m
=
θqinj∆tinj
πφh

∂

∂m

(
∂fw
∂Sw

(Sw,well(m),m)

)
. (B.106)

The derivative of the water front saturation with respect to the any model parameters mi

can be found from the derivative of the expression,

RSwf (Swf ) =
∂fw(Swf )

∂Sw
− fw(Swf )− fw(Siw)

Swf − Siw
= 0, (B.107)
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used to estimate Swf . If we take the derivative of Eq. B.107 with respect to Swf , we find

dRSwf

dmi

=
∂RSwf

∂m
+
∂RSwf

∂Swf

∂Swf
∂mi

= 0. (B.108)

By isolating
∂Swf
∂mi

in Eq. B.108, we have

∂Swf
∂mi

= −
∂RSwf
∂mi
∂RSwf
∂Swf

, (B.109)

which leads to
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(B.110)

from

∂RSwf

∂Swf
=

∂

∂Swf

(
fw(Swf )

∂Sw

)
−
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∂Swf
− fw(Swf )−fw(Siw)

Swf−Siw

Swf − Siw
=

∂
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(
fw(Swf )
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)
, (B.111)

where Eq. B.107 was applied, and

∂RSwf

∂mi

=

∂fw(Swf )

∂mi
− ∂fw(Siw)

∂mi

Swf − Siw
− ∂

∂mi

(
fw(Swf )

∂Sw

)
. (B.112)

B.4 Validation

“In cases of major discrepancy it’s always reality that’s got it wrong.”

— Douglas Adams in The Restaurant at the End of the Universe

To validate the derivatives presented in this Appendix, the analytical derivatives of

the observed data with respect to the model parameters were compared with the gradient

obtained using finite-difference,

∇mi∆pwf,FD =
∆pwf (mi + εi)−∆pwf (mi)

εi
, (B.113)
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where we tried to guarantee that the relative errors, given by

Rel Errori =
∇mi∆pwf,FD −∇mi∆pwf
∇mi∆pwf,FD + 10−14

, for i = 1, ..., n (B.114)

were less than 0.01. To be able to match our analytical derivatives with the derivatives

obtained with finite-difference, we had to use a distinct perturbation parameters εi for each

model parameter mi; we had to performed an extensive numerical experimentation to find

the appropriate values for ε. We noticed that in same cases, by varying ε in one order

of magnitude, the relative error could increase up to several orders of magnitude. There-

fore, we recommended the use of analytical derivatives whenever is available or at least the

implementation of a robust algorithm to find the perturbation parameters.
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“Finally, from so little sleeping and so much reading,

his brain dried up and he went completely out of his mind.”

— Miguel de Cervantes Saavedra, Don Quixote
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