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ABSTRACT

Chunhong Wang (Master of Science in Petroleum Engineeing)

Production Optimization in the Closed-Loop Reservoir Management

Directed by Dr. Gaoming Li and Dr. Albert C. Reynolds

84 pp., Chapter 6: Conclusions

(303 words)

Modern instrumentation providing essentially continuous data streams com-

bined with smart well technology which allows for changes in the operational settings

of wells gave rise to the concept of closed-loop reservoir management (CLRM). In

CLMR, one periodically updates the reservoir models by integrating production

data, and then solves an optimal control problem to determine optimum operating

conditions to maximize production or net present value (NPV) for the remaining

expected life of the reservoir. The cycle of updating and optimization is repeated

through the whole production time of reservoir.

Here, we use the ensemble Kalman filter (EnKF) for reservoir model update to

account for geological uncertainty. Three different optimization algorithms (EnKF,

SPSA and steepest ascent method) for solution of the well control optimization are

tried and compared. Two simple but representative synthetic examples, indicate

that the steepest ascent method is the best of those tried. For the small case used

for CLMR, it is shown that EnKF provides a reliable characterization of geological

uncertainty by integrating production data. At the same time, it is also shown that

NPV is a nonlinear function of the controls, the final controls from cases with both

known true geology and uncertain geology present “Bang-Bang” behavior.

In the process of reservoir development, we always wish to drill wells at the

optimal locations so that more hydrocarbons can be extracted at a lower cost. This

can be treated as an optimization problem. Well locations in the reservoir simulator
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are normally treated as discrete variables, gradient-based optimization algorithms

can not be used for this problem. Here we present a novel method of converting

the problem of optimizing on discrete variables into an optimization problem on

continuous variables and use gradient based optimization algorithms for the optimal

well placement. This method is tested and validated by two simple synthetic cases.
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CHAPTER 1

INTRODUCTION

With the increase of world population and development of world economy,

the demand for oil and gas is increasing every year. At the same time, the number

of new significant discoveries of oilfields is decreasing greatly every year and most

existing major oilfields are already on their later production stage. In order to

satisfy the increasing worldwide demand for oil and gas, it is becoming more and

more imperative to recover the existing reservoirs as efficiently as possible, while

simultaneously decreasing development and operating costs.

Waterflooding is a popular secondary recovery method. In waterflooding,

water is injected into the reservoir to displace oil towards producing wells to recover

the remaining oil after primary recovery. However, because of heterogeneity of the

reservoir, efficiency has a big impact on the recovery of water flooding. Since the

injected water finds its way more easily through conductive fractures or high perme-

ability channels, which will result in early water breakthrough, therefore it is crucial

to consider the heterogeneity when we design a waterflooding project. The aim of

this study is to improve the recovery efficiency of waterflooding by adjusting the well

controls considering the geological heterogeneity and uncertainty. The well controls

can be bottom hole pressure (BHP) of producers, injection rate of injectors or fluid

production rate of producers etc.

1.1 Literature Review

In recent years, the concept of “closed-loop” reservoir management has at-

tracted intensive research interest (3; 18; 33; 32). This approach enables one to

adjust the reservoir production control parameters to optimize the reservoir produc-

tion performance with geological uncertainty, while assimilating dynamic production
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data in real-time. There are two optimization steps in this approach: the first step

is the dynamic data assimilation (history matching), which is to reduce reservoir

model uncertainty by integrating dynamic production data and the second step is to

optimize the reservoir production performance by adjusting the well controls based

on the history-matched uncertain reservoir models (production optimization). Stud-

ies in the literatures have been focusing on one of the steps of closed-loop reservoir

management. A few researchers investigated the conjunction of the two. Brouwer

(10) demonstrate how the combination of the ensemble Kalman filter for continuous

model updating with automated adjoint-based water flood optimization algorithm

leads to significant improvements in net present value (NPV) of the waterflooding

process. Sarma (34) discussed a simplified implementation of the closed-loop ap-

proach that combines efficient optimal control and model-updating algorithms for

real-time production optimization. An adjoint model is applied to determine optimal

well setting and Bayesian inversion theory is used in combination with an optimal

representation of the unknown parameter field in terms of a Karhunen-Loeve expan-

sion.

For data integration problems of interest in reservoir modeling and charac-

terization, Bayesian statistics provides a convenient framework for characterizing

and evaluating geological uncertainty. The method introduced into reservoir char-

acterization by Oliver et al.(30) and also considered by Kitanidis(19), which is now

most commonly referred to as Randomized Maximum Likelihood (RML). RML has

frequently been used to generate an approximate sampling of the pdf for a reser-

voir model conditional to production and/or seismic data(45; 46; 9). However, this

method often takes the computational equivalent of 50 to 100 reservoir simulation

runs to generate a single plausible reservoir model (realization) and its implemen-

tation requires an efficient adjoint code. The implementation of the adjoint method

is not a trivial task and it appears that an optimal implementation of the adjoint

can only be done with detailed knowledge of the reservoir simulator. It is imprac-

tical and time consuming for large scale and complicated reservoirs. In contrast,

the ensemble Kalman filter (EnKF) method requires only one reservoir simulation

2



run per ensemble member. EnKF was proposed by Evensen(12) in the context of

ocean dynamics literature as a Monte Carlo approximation of the Kalman filter.

Since its introduction into the petroleum engineering literature(26; 23), it has been

used by many researchers for assimilating production and seismic data to update

reservoir variables including gridblock rock properties(15; 43), boundaries between

facies(47) and initial fluid contacts(37). Ensemble Kalman filter (EnKF) is a se-

quential data assimilation algorithm. This sequential algorithm includes two steps:

The first step is a forecast step which is equivalent to running the simulation to

predict data at the next time step, the second step is an analysis or updating step

which updates the reservoir model(s) considering the difference between predicted

data and measurement data.

Although production optimization can be applied to any time of the reservoir

life, most of the studies in this area focus on optimizing the reservoir performance

under waterflooding(3; 18; 33; 32; 1). One of the reasons for this trend is because

waterflooding is by far the most commonly used method to enhance oil recovery

after primary depletion. The efficiency of a water flooding project relies largely on

sweep efficiency, which strongly depends on the heterogeneity of the reservoir (i.e.

the distribution of the high or low permeability streaks). Therefore, previous efforts

on optimizing water flooding projects focus on controlling the water front by limit-

ing the water injection into high permeability streaks, which will slow down water

breakthrough into producers and increase oil recovery. The problem of production

optimization requires the maximization of a certain objective function. Generally

net present value (NPV) or accumulative oil production is employed as the objective

function of production optimization problems. Asheim(2) investigated the optimiza-

tion of the net present value (NPV) of water flooding with multiple vertical injectors

and a vertical producer by rate allocation based on permeability-thickness product.

Brouwer et al.(4) studied static water flooding optimization, in which they kept the

inflow control valves constant during the displacement process until water break-

through. Later, Brouwer et al.(3) explored the dynamic water flooding optimization.

The gradient calculated with the adjoint method was used to dynamically optimize

3



the production performance with optimal control theory in an horizontal injector-

producer system. In the paper, they consider the simple constraint where the total

field injection rate is equal to the total field production rate. Sarma et al.(32) stud-

ied production optimization with adjoint gradient under nonlinear constraint. This

paper compared different existing methods for nonlinear path constraints and fo-

cuses on the approximate feasible direction algorithm, which lumps all the nonlinear

path constraints into one equation and hence requires only one adjoint for the con-

straint part. The implementation of the adjoint method is not an easy task, and

it requires detailed knowledge of the reservoir simulator. To overcome this disad-

vantage, Lorentzen et al.(24) proposed to use EnKF as an optimization algorithm.

Nwaozo(29) extended the concept and used an average gradient of net present value

(NPV) to control variables from the ensemble of realizations. However, they did not

consider constraints of the control variables in this optimization process.

Sudaryanto and Yortsos (41; 42) suggest that the optimal solution of wa-

terflooding problems is a “Bang-Bang” control, i.e. each component of the control

vector takes either its minimum or maximum allowed values. Zandvliet et al.(11; 44)

investigated why and under what conditions waterflooding problems have optimal

solutions at “Bang-Bang” control. They derived the sufficient and necessary condi-

tions for “Bang-Bang” control optimal solutions and concluded that the waterflood-

ing problems with simple upper and lower bound constraints where valve settings are

the controls sometimes have “Bang-Bang” optimal solutions, while problems with

other general inequality and/or equality constraints where rates are the controls will

have a smooth optimal solution.

Production optimization not only includes the optimization of well control

variables (bottom hole pressure, flow rate, valve setting etc.) but also incorporates

the well placement optimization. In the process of reservoir development, the de-

termination of the number and location of wells to be drilled is very crucial. Since

the drilling cost of a new well is very expensive, the number of wells should be kept

as small as possible to decrease the development cost. While at the same time, the

ideal location of wells is also subject to optimization to achieve the high oil and/or
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gas recovery. The determination of well location is very complicated since the well

locations in the reservoir simulator are discrete variables. Therefore well placement

optimization problem has a non-differential objective function and gradient-based

optimization algorithms are not applicable. Generally, non-gradient based opti-

mization algorithm is used for well placement optimization. A hybrid optimization

algorithms based on generic algorithm (GA) was proposed by Baris at al.(13) to

optimize placement of water-injection wells. Their result shows an increase of NPV

of about $154 million after optimal location of three injectors has been determined.

Burak at al.(40) have done some research about well placement optimization includ-

ing well type and trajectory for nonconventional wells. They use GA algorithms

combined with other advanced methods such as artificial neural network in the op-

timization process. Up to 30% increase in NPV has been achieved. But all the work

has been done using non-gradient based optimization algorithms.

Recently Handels et al.(17) uses the gradient directly to solve the optimal

well placement problem. The method of Handels et al. is explained most simply

by considering the problem of determining the optimal location of a single infill

well, e.g., the location of a new water injection well in a reservoir that already

has completely-penetrating production and injection wells. Assuming flow is only

in the x − y plane, we use a 2D simulation grid. In this case, given the current

proposed (initial condition) placement of the injection well, which is not in a grid

block adjacent to the reservoir boundary, a “pseudo-well” produced at a low rate

is placed in each of the eight “neighboring” grid blocks. Then the gradient of net

present value (NPV) over the reservoir production life with respect to the rate at

each pseudo-well is computed. The largest positive value among these eight gradient

values determines the direction in which we should move the actual well to increase

NPV the fastest, i.e., we should move the injection well in the direction defined by

the line segment connecting the (x, y) coordinates of the center of the current well

grid block to the (x, y) coordinates of the pseudo-well grid block corresponding to

the largest gradient value.
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1.2 Research Scope

In this work, we focus on production optimization under bound constraints on

the control variables while geological description is uncertain. EnKF is implemented

to update the reservoir geological models as data become available during produc-

tion. This model updating step will typically reduce the geological uncertainty by

integrating dynamic production data. Based on the updated geological model with

reduced uncertainty, the control variables are optimized by a certain optimization al-

gorithm to maximize net present value (NPV). Three different types of optimization

algorithms (EnKF, SPSA and steepest ascent method) are considered and compared

for this purpose. In this study, we consider bottom hole pressure (BHP) of produc-

ers as control variables with only upper and lower bound constraints. A simple

synthetic case is used for the production optimization in the closed-loop reservoir

management. By analysis of final results, we show that the updated permeabil-

ity and porosity fields can capture the main geological features of the true fields.

Moreover, the final control variables obtained from production optimization with

geological uncertainty is similar to those obtained with the true geology.

A novel idea for a gradient based solution of the optimal well placement prob-

lem is presented here. We actually initialize the optimization problem by putting

an injection well in every gridblock that does not contain a producing well. The

injection rates of injectors are optimized by maximizing the net present value. Some

wells are eliminated when well rate becomes zero. The net present value (NPV) is

subtraction of the traditional NPV term and cost term of drilling injection wells.

The steepest ascent algorithm is used to optimize injection rates of injector wells to

maximize objective function over a specified reservoir lifetime. As the optimization

proceeds, some injection well rates are decreased to zero and are removed from the

system. The number of injection wells decreases during the optimization process.

The optimal location of injection well(s) can be determined in the end.
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CHAPTER 2

OPTIMIZATION ALGORITHMS

2.1 Problem Formulation

For production optimization problems, net present value (NPV) is gener-

ally used as an objective (cost) function. The well control variables are adjusted

to maximize this objective function (NPV). Generally, net present value (NPV) is

formulated as:

J =
N∑

n=1

Nprod∑
j=1

(
roq

n
o,j − rwqn

w,j

)
−

Ninj∑
l=1

rw,injq
n
inj,l

 ∆tn

(1 + b)tn
(2.1)

where, N is the total number of simulation time steps; Nprod is the total number

of producers; Ninj is the total number of injectors; ro is oil revenue ($/STB); rw is

water production cost ($/STB); rw,inj is water injection costs ($/STB); qn
o,j and qn

w,j

are average oil and water production rates of the jth producer (STB/day) over the

nth simulation time step, respectively; qn
inj,l is the average injection rate of injector l

(STB/day) over the nth simulation time step; b is annual interest rate (%); tn is the

cumulative time up to the nth simulation time step (year); ∆tn is the time interval

of the nth simulation time step (day). For the production optimization problem

considered here, we put zero cost on the water injection i.e. rw,inj = 0, so the second

term in the bracket of Eq. 2.1 is neglected.

Since oil and water production rates in the NPV of Eq. 2.1 are functions of

the dynamic state vector x of the system, which includes pressure and saturation

in every gridblock, as well as the well control vector u, the net present value (J) of

Eq. 2.1 can be written as a function of x and u,

J = J [x, u]. (2.2)
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Where, control vector u has elements of control variables to be optimized.

For the production optimization problem, we wish to maximize the net

present value J of Eq. 2.1 by adjusting the control vector u subject to the con-

straints shown in the following equations:

g[x, u, m] = 0 (2.3)

Au ≤ b (2.4)

ulow ≤ u ≤ uup (2.5)

Eq. 2.3 represents the dynamic system, i.e., the reservoir simulation equation.

Here m refers to model parameters (permeability, porosity, etc.). Eq. 2.4 and Eq. 2.5

give the constraints on the well control vector u, where ulow and uup are lower and

upper bounds of the control vector u. In this study, for simplicity, we only consider

upper and lower bound constraints while ignoring all other inequality constraints.

With the upper and lower bounds of the well control variables, production

optimization is a constrained optimization problem, which is hard to handle. One

way to approach the problem is to transform the constrained optimization problem

into a unconstrained optimization problem. One way to deal with the upper and

lower bound of the control variables is to use a log-transformation as Gao et al.(14).

For the ith control variable ui, we define the transformed new variable si such that

si = ln
(ui − ulow

i

uup
i − ui

)
. (2.6)

From Eq. 2.6, as ui approaches its lower bound ulow
i , the transformed variable

si approaches −∞ and as ui approaches its upper bound uup
i , si approaches +∞.

If the upper and lower bounds are the only constraints on the control variables, the

constrained optimization problem can be transformed to an unconstrained optimiza-

tion problem using this log-transformation. When the log-transformation is applied

8



during optimization, all the operations are done in the transformed domain and the

actual control variables are obtained using the inverse log-transformation:

ui =
exp(si)u

up
i + ulow

i

1 + exp(si)

=
uup

i + ulow
i exp(−si)

1 + exp(−si)

(2.7)

2.2 Optimization Algorithms

For the production optimization problems, various optimization algorithms

have been investigated by many researchers. Two major categories of optimization

algorithms have been developed: gradient-based algorithms and stochastic algo-

rithms. Gradient-based algorithms require an efficient technique to calculate the

gradient of the objective function with respect to control variables. Gradient-based

methods using adjoint equations require explicit knowledge of the simulation model

equations used to describe the dynamic system. Another way to obtain the gradient

is by the finite difference method. However, practical production optimization prob-

lems typically involve large, highly complex reservoir models, thousands of unknowns

and many nonlinear constraints, which make the numerical calculation of the gra-

dients for the optimization process impractical. On the other hand, the stochastic

algorithms such as genetic algorithm and simulated annealing require many forward

model evaluations but are theoretically capable of finding a global optimum with

a sufficiently large number of simulation runs. Relationship between the objective

function and control variables can be obtained from several forward models. How-

ever, this method becomes inefficient when the number of control variables are large.

In our research, we test three kinds of optimization algorithms for produc-

tion optimization: steepest ascent method, SPSA and EnKF. In the steepest ascent

method, since we do not have adjoint code to obtain the gradient of the objective

function with respect to control variables, we temporarily use the finite-difference

method to derive the gradient. Simultaneous Perturbation Perturbation Stochastic

Approximation (SPSA), as its name implies, simultaneously perturbs all the vari-

ables to calculate a stochastic gradient. The expectation of the stochastic gradient
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from SPSA is the true gradient. For ensemble Kalman filter (EnKF), the average

gradient is derived from the ensembles using statistics.

2.2.1 Steepest Ascent Method

Steepest ascent method finds uphill direction to maximize the objective func-

tion. For the steepest ascent method, we use the finite-difference method (pertur-

bation method) to calculate the gradient. To obtain the gradient of the net present

value J with respect to control variable ui, we use the central two-sided perturbation:

dJ

dui

=
J(u)|ui+δui

− J(u)|ui−δui

δui

, i = 1, . . . , Nu, (2.8)

where Nu is the total number of control variables and δui is the perturbation size.

Since control variable is perturbed two times to get the gradient and each gradi-

ent calculation requires two simulation runs to evaluate J(u)|ui+δui
and J(u)|ui−δui

,

therefore, the method is not applicable when there is a large number of controls to

adjust, although it is easy to be coupled with any reservoir simulator. However,

when the control variable reaches its bound, one-sided perturbation is employed to

calculate the gradient. In this study, our focus is not to find an efficient way for gra-

dient calculation, but to compare the steepest ascent method to other optimization

algorithms assuming one can obtain the gradient efficiently.

After the gradient of the net present value to all the control variables are

calculated using Eq. 2.8, we maximize the objective function (J) with the steepest

ascent method:

uk+1 = uk + αk∇ukJ, (2.9)

where αk is the step size for the kth iteration. In Eq. 2.9, ∇ukJ is the gradient of

the net present value J with respect to the actual control vector u evaluated at uk,

i.e.

∇ukJ =
[ dJ

du1

, . . . ,
dJ

duNu

]T
uk

. (2.10)

When there are upper and lower bounds on the control variables, we use
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log-transformation (Eq. 2.6) to eliminate this linear constraint and do production

optimization based on the transformed domain. The gradient of the net present

value (J) to the transformed control variable si is calculated using Eq. 2.11 similar

to Eq. 2.8

dJ

dsi

=
J(s)|si+δsi

− J(s)|si−δsi

δsi

, i = 1, . . . , Nu, (2.11)

where, δsi is the perturbation size on the transformed control variable. Since the

log-transformation is a nonlinear transformation, attention needs to be paid to the

choice of the perturbation size of the transformed control variables, especially when

the actual control variable is close to its boundary. A small perturbation of the

control variable when it is close to the boundary will give a negligible change on

the actual control, which hence results in no change on the net present value and

zero gradient. For this reason, the perturbation size on the transformed variable

is calculated using a fixed perturbation size on the actual control variable. Based

on experiments, we choose 0.01 psi for the perturbation of the BHP controls of

producers in the following example. This ensures that each perturbation on the

transformed variable influences the net present value.

The transformed control vector is updated with steepest ascent formulation:

sk+1 = sk + αk∇skJ, (2.12)

After the transformed control vector is updated, it is transformed back to the actual

control variable before it is input into the simulator for net present value evaluation.

When the optimization is done in the transformed space, a trial step size is

used in Eq. 2.12 to update the transformed control vector s, followed by a quadratic

fit to determine αk. If objective function J(sk+1) increases with the αk determined

by quadratic fit, we accept this αk as step size for kth iteration and go to the next

iteration. If the objective function J(sk+1) does not increase with this step size, αk

is cut by half until the objective J(sk+1) is greater than J(sk).
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2.2.2 Simultaneous Perturbation Stochastic Approximation (SPSA)

The SPSA algorithm uses stochastic simultaneous perturbation of all model

parameters to generate a search direction at each iteration. Although the direction

appears to be random, it can be chosen so that it is downhill for history matching

or uphill for production optimization problems. Most importantly, the expectation

of the search direction is the steepest descent direction. SPSA algorithm also can

be easily combined with any reservoir simulator and easy to implement. Explicit

knowledge of the simulator is not required.

In the previous section, we have calculated the gradient of NPV with respect

to control variables using a finite difference method, since we do not have the adjoint

code coupled with the reservoir simulator Eclipse. As we mentioned, this method

is very time-consuming due to the fact that each perturbation requires at least one

simulation run. SPSA is a compromised solution to the finite-difference method, in

which all the parameters are perturbed at one time stochastically. As a result of

this stochastic perturbation, the calculated gradient is also stochastic, however, it

can be chosen so that it is downhill direction for history matching or uphill direction

for production optimization problems. Most importantly, the expectation of the

stochastic gradient is the true gradient. Since all the parameters are perturbed

together, SPSA only requires two simulation runs for the one-sided perturbation

and three for the central difference, which greatly saves the number of simulation

runs compared to the finite-difference gradient calculation of the previous section.

Since all the problems we are dealing with here have upper and lower bounds, we

optimize on the log-transformed control vector s.

The stochastic gradient is calculated using a central difference based on si-

multaneous perturbation of the transformed control vector s as follows,

ĝk(s
k) =

J(sk + ck∆k)− J(sk − ck∆k)

2ck

×∆−1
k , (2.13)
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where ∆k is an Nu dimensional random column vector,

∆k = [∆k,1, ∆k,2, . . . , ∆k,Nu ]T , (2.14)

and ∆−1
k is defined as

∆−1
k =

[
∆−1

k,1, ∆
−1
k,2, . . . , ∆

−1
k,Nu

]T
, (2.15)

and ∆k,i, i = 1, 2 · · ·Nu represents independent samples from the symmetric ±1

Bernoulli distribution. This means that ∆k,i can only take either +1 or −1 and the

probability of taking each value is 0.5, so the expectation of ∆k,i is zero (E[∆k,i] = 0).

Note that due to the fact that ∆k,i can only take either +1 or −1, ∆−1
k = ∆k. In

Eq. 2.13, ck is a positive coefficient, which controls the size of perturbation and is

chosen in the same way as the perturbation size in the finite-difference method of

the last section.

Similar to the steepest ascent method, the transformed control vector s is

updated at the kth iteration using the following equation:

sk+1 = sk + αkĝk(s
k). (2.16)

Note that ĝk(s
k) is a random vector due to the fact that ∆k is a random vector,

therefore Eq. 2.16 seems to be a random search direction, however this random

direction is always uphill from Eq. 2.13. If ∆−1
k = ∆k is an uphill direction, then the

scalar J(sk+ck∆k)−J(sk−ck∆k)
2ck

is positive, so ĝk has the same direction as ∆−1
k , the uphill

direction. If ∆−1
k = ∆k is an downhill direction, then the scalar J(sk+ck∆k)−J(sk−ck∆k)

2ck

is negative, therefore, ĝk and ∆−1
k are in the opposite directions, i.e. ĝk has the uphill

direction. .

Because the expectation of the stochastic gradient ĝk(s
k) is the true gradient,

we also tried to use the average of several samples of the stochastic gradient by
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generating samples of ∆k as a search direction, i.e.

sk+1 = sk + αkĝk(sk), (2.17)

where ĝk(sk) is defined as,

ĝk(sk) =
1

M

M∑
i=1

ĝi(s
k), (2.18)

with M samples of the stochastic gradient.

When the transformed control vector is updated using a single stochastic

gradient of Eq. 2.16, αk is determined by a quadratic fit along the stochastic gradient

direction with three points J(sk − ck∆k), J(sk) and J(sk + ck∆k). If the net present

value does not increase with fitted step size, we simply reject this step, generate

a new ∆k, and repeat the above process until the increase in net present value is

achieved.

When the average stochastic gradient is used to update the transformed con-

trol vector s with Eq. 2.17, the same line search used for the steepest ascent method

is applied.

2.2.3 Ensemble Kalman Filter (EnKF)

For the closed-loop reservoir management, the ensemble Kalman filter (EnKF)

is usually used to update the geological fields by integrating dynamic production

data. However, some people have used it as an optimization algorithm for produc-

tion optimization purposes. We first give a short introduction of ensemble Kalman

filter (EnKF) as a data assimilation method, followed by its application in produc-

tion optimization.

The ensemble Kalman filter (EnKF) has recently gained popularity as a

method for updating reservoir models by assimilating dynamic production data.

Several studies show that the ensemble Kalman filter (EnKF) is a promising al-

ternative to other traditional history matching methods. EnKF is a Monte-Carlo

method in which an ensemble of initial reservoir models are generated by sampling
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from the prior probability density function and these models are kept up-to-date as

data are assimilated sequentially. Zafari and Reynolds(43) have shown that EnKF

is approximately equivalent to one iteration of the Gauss-Newton method with an

average sensitivity of the production data to the model parameters calculated using

statistics.

The process consists of two steps : a forecast step (giving Y f ) and an analysis

step (giving Y a). Here Y represents the ensemble of state vector and its jth column

is defined by:

yj =


mj

pj

dj

 (2.19)

Here mj is state vector and includes model parameters, such as gridblock

permeabilities and porosities, Nm is the dimension of the model vector, pj is the

vector of primary variable, including pressure, saturation and dissolved GOR, Np

is dimension of the primary variable for every ensemble, dj refers to predicted data

from the jth ensemble. Similarly, state vector Y is:

Y =

(
y1 y2 · · · yNe

)
(2.20)

Here Ne is the number of ensembles.

A numerical reservoir simulator is used to perform the forecast step to prop-

agate the state vectors (ensemble) from time step n− 1 to time step n:

yf
n,i = f(ya

n−1,i), (2.21)

for i = 1, 2, · · · ,Ne .

In the analysis step, the forecast state vectors yf
n are updated by taking into

account the mismatch between measurement data and the corresponding predictions

from the ensemble members.
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The analyzed state vector are now computed as:

ya
n,i = yf

n,i + Kn(dobs,n,i −Hny
f
n,i), (2.22)

and

Kn = Cf
Y,nH

T
n (HnC

f
Y,nH

T
n + CD,n)−1. (2.23)

H =

[
O INd

]
(2.24)

Where Hn is a matrix that is a trivial matrix with only 0 and 1 as its components

and selects measured variables from the state vector. CD,n is the data measurement

error covariance matrix and is diagonal matrix. Cf
Y,n is the covariance matrix for the

state vectors and can be estimated from the ensemble using the standard statistical

formula:

CY =
1

Ne − 1

Ne∑
i=1

(yf
n,i − yf

n)(yf
n,i − yf

n)T (2.25)

Here, yf
n represents the average of the ensemble at the forecast time step n and is

calculated by:

yf
n =

1

Ne

Ne∑
i=1

yf
n,i (2.26)

Recently the ensemble Kalman filter (EnKF) technique has been adapted to

maximize the net present value (NPV) for production optimization problems (29).

It is a modified form of the ensemble Kalman filter (EnKF) used in history matching.

This approach does not require the solution of the adjoint equations. No knowledge

of the simulator equations is required and the simulator is run as a black box. The

relationship between the objective function (NPV) and the set of control variables

is obtained from the ensemble of realizations of the state vector. In this study, an

ensemble of Ne realizations of the controls was generated and continuously updated

after each reservoir simulation run until optimum control variables were obtained.
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The optimum control variables are the control variables at which the net present

value (NPV) is at its maximum.

Let u be a random vector for the well controls. Assuming the random vector

follows a Gaussian distribution, its mean at the kth iteration can be approximated

by Ne realizations

uk =
1

Ne

Ne∑
j=1

uk
j , (2.27)

and its covariance is given by

Cuk = E[(uk − uk)(uk − uk)T ], (2.28)

which can be approximated using the Ne samples of the control vector u by

Cuk =
1

Ne − 1

Ne∑
j=1

[
(uk

j − uk)(uk
j − uk)T

]
. (2.29)

Notice that the subscript j represents the jth sample for the control vector

instead of the jth element of the control vector. With each sample of the control

vector uk
j , we evaluate the net present value J(uk

j ). From Taylor’s series following

Zafari and Reynolds(43), J(uk
j ) is approximated by,

J(uk
j ) = J(uk) +∇J

T
(uk

j − uk), j = 1, 2, . . . , Ne, (2.30)

where ∇J is the gradient of the net present value with respect to the control vector

evaluated at uk. The mean of the net present value is estimated by

J
k

=
1

Ne

Ne∑
j=1

J(uk
j ). (2.31)

As in Zafari and Reynolds(43), we use the following approximation

J
k

= J(uk). (2.32)
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The covariance between the control vector u and the net present value J at

the kth iteration can be approximated using the Ne samples of the control vector

and the corresponding net present values as follows,

CukJ = cov(uk, J(uk)) ≈ 1

Ne − 1

Ne∑
j=1

[
(uk

j − uk)(J(uk
j )− J

k
)T
]
. (2.33)

Using Eqs. 2.30 and 2.32 in Eq. 2.33 gives

CukJ ≈
1

Ne − 1

Ne∑
j=1

[
(uk

j − uk)(uk
j − uk)T

]
∇J. (2.34)

Substitution of Eq. 2.29 into Eq. 2.34 yields

CukJ ≈ Cuk∇J. (2.35)

The average gradient can be obtained by

∇J ≈ C−1
uk CukJ , (2.36)

where Cuk is approximated using Eq. 2.29 and CukJ is approximated using Eq. 2.33.

If Cuk is rank deficient, its pseudo inverse is calculated using singular value decomposition(21).

For production optimization, we use this approximate average gradient for control

vector update. The well control vector can be obtained by

uk+1 = uk + αk∇J, (2.37)

where the step size αk is determined in the same way as in steepest ascent method.

For production optimization using the ensemble Kalman filter (EnKF), log-transform

is not used to delete the upper and lower bound of the well control variables. If up-

dated control variable is greater the upper bound, we just set the updated control

variable equal to upper bound. If the updated control variable is below the lower
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bound, we set the updated control variable equal to lower bound.
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CHAPTER 3

PRODUCTION OPTIMIZATION WITH TRUE GEOLOGY

In the previous chapter, we have given a very detailed introduction about

three optimization algorithms (steepest ascent method, SPSA and EnKF). Next, we

mainly focus on comparing three different optimization algorithms assuming the true

geology is known. Three optimization algorithms have been applied respectively to

two synthetic five-spot waterflooding reservoirs to do production optimization. Final

production optimization results are compared and the best optimization algorithm

for production optimization is chosen according to the magnitude of final net present

value (NPV) and convergence speed of optimization algorithms.

3.1 Case 1

3.1.1 Reservoir Description

A synthetic 2-D reservoir with no flow boundaries is used for production

optimization. The reservoir consists of 11 by 11 grid blocks and the grid block system

is uniform with ∆x = ∆y = 200 ft. The depth of the top surface of the reservoir

is 7800 ft with a net pay thickness of 10 ft. The true porosity and permeability

fields are shown in Figs. 3.1 and 3.2. The true porosity and permeability fields

are generated using Sequential Gaussian Cosimulation algorithm in the Geostatical

Software Library (GSLIB) (27) assuming log-normal distribution. The variogram

parameters for the permeability and porosity distribution are shown in Table3.3.

The reservoir is under five-spot waterflooding, with one injector located at the

center of the reservoir (6,6) and four producers placed at the four corners as shown

in the permeability distribution map of Fig. 3.1. There are two high permeability

channels in the reservoir: one runs from the lower left corner (P1) to the top right
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Table 3.1: Geostatistical parameters of permeability and porosity for case 1

(ln k)mean 0.2
(ln k)mean 4.0
σφ 0.0025
σln k 0.08
ρφ,ln k 0.8
α 40
r1 (ft) 40.0
r2 (ft) 2.0

corner (P4); one is a short channel at the top left corner. The high permeability

channel connecting the injector to the two producers P1 and P4 will cause early

water breakthrough in these two wells. There is a low permeability channel at the

lower right corner between the injector and the producer P2, which will slow water

movement towards P2. In the time period considered, there is no water breakthrough

at that producer. The water breakthrough time in P3 is after that of P1 and P4.

Similar features are shown in the porosity distribution since we use a correlation

of 0.8 between porosity and log-permeability to generate these two fields. During

the water flooding project, we optimize the bottom hole pressure (BHP) of four

producers while keeping the water injection rate constant at 1000 STB/day. The

anticipated water flooding project life is 960 days and we set the control step for

the producers to 120 days, so there are 8 control steps and 32 maximum number of

controls for production optimization. All the producers are at BHP control with an

upper bound of 6000 psi and a lower bound of 400 psi. There are only two phases

in the reservoir: water and oil. No free gas was present in the reservoir. In the

example, the following parameters are used: ro = 50$/STB, rw = 15$/STB and

b = 20% to calculate the objective function (NPV).

The relative permeability curve used in the reservoir model is shown in

Fig. 3.3. The reservoir properties are listed in Table 3.2.

3.1.2 Initial Bottom Hole Pressure

In order to compare three different optimization algorithms (steepest ascent
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Figure 3.3: Water and oil relative permeability curve for case 1.

method, SPSA and EnKF), first we need to generate initial bottom hole pressure

(BHP) profile (initial controls) for every optimization algorithm. For the steepest

ascent method and SPSA, we set the initial bottom hole pressure (BHP) of four

producers all equal to 1000 psi. For the EnKF method, similar to Nwaozo(29),

we generate Ne = 40 realizations of the initial BHP for four producers using the

following steps:

(i) The mean BHP for each realization of each well is independently sampled

from a uniform distribution between 1000 psi and 5500 psi. Figs. 3.4 to 3.7 show

the histogram of mean for the realizations of each producer.
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Table 3.2: Reservoir properties for case 1

Grid block size 200 ft
Thickness 10 ft
ρosc 56.93 lb/ft3

ρwsc 62.428 lb/ft3

µo 1.46 cp
µw 0.5 cp
Bo 1.2
Bw 1.0042 rb/stb
Rock Compressibility 3.103× 10−5 psi−1

Top Depth 7800 ft
Residual oil saturation 0.1
Irreducible water saturation 0.2
Initial water saturation 0.2
Initial reservoir pressure 3500 psi
Total production period 960 days
Control step length 120 days
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Figure 3.4: P1 initial distribution of
mean of BHP for case 1.
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Figure 3.5: P2 initial distribution of
mean of BHP for case 1.

(ii) With each realization of the mean of each well from step i, the BHP

distribution as a function of time is generated by sampling a Gaussian distribution

with the prescribed mean and the following covariance function:

Ci,j = σ2 exp

[
−3|i− j|

a

]
(3.1)

where σ is the standard deviation (200 psi for this case); a is the correlation range
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Figure 3.6: P3 initial distribution of
mean of BHP for case 1.
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Figure 3.7: P4 initial distribution of
mean of BHP for case 1.

(5 control steps are used); i, j are the control step indices.

Figs. 3.8 to 3.11 show the histogram of initial bottom hole pressure controls

for all four producers.
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Figure 3.8: Histogram for initial BHP
realizations of P1 for case
1.
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Figure 3.9: Histogram for initial BHP
realizations of P2 for case
1.

To show how the initial BHP realizations change as a function of the time, we

select the first ten realizations of BHP for each producer P1, P2, P3 and P4 from the

Ne realizations and display them in Figs. 3.12 to 3.15. As mentioned earlier, each

BHP profile follows a Gaussian distribution with its mean sampling from a uniform
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Figure 3.10: Histogram for initial
BHP realizations of P3
for case 1.
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Figure 3.11: Histogram for initial
BHP realizations of P4
for case 1.

distribution, variance of 200 psi, and correlation range of 5 as in Eq. 3.1.
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Figure 3.12: Ten realizations of initial
BHP profile for P1 for
case 1.
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Figure 3.13: Ten realizations of initial
BHP profile for P2 for
case 1.

3.1.3 Comparison of Optimization Algorithms

As described earlier, the ultimate objective of the production optimization

is to determine the optimum production scheme for oil and gas fields. This can

be achieved by combining a reservoir simulator with a numerical optimization algo-

rithm. The reservoir simulator in this study is Eclipse 100 from Schlumberger. In
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Figure 3.14: Ten realizations of initial
BHP profile for P3 for
case 1.
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Figure 3.15: Ten realizations of initial
BHP profile for P4 for
case 1.

this part, we mainly do production optimization based on the small synthetic reser-

voir introduced in the previous section using three different optimization algorithms.

Fig. 3.16 and Fig. 3.17 respectively show the NPV changes with iteration

number and number of simulation runs for different optimization algorithms. For

steepest ascent method, we assume that we have adjoint code to calculate the gra-

dient. The curve with squares shows the performance from the steepest ascent

method. The algorithm converges in 5 iterations and NPV increases from $1.34×107

to $1.59 × 107. Only 25 simulation runs are needed. The curve with circles is the

performance using the average of ten stochastic gradients from SPSA. Although this

method converges to the same NPV as the steepest ascent method for the same

initial guess, the convergence is slower than the steepest ascent algorithm and the

number of simulation runs is much more than that of steepest ascent method. The

algorithm with a single stochastic gradient from SPSA (curve with crosses) converges

to an NPV of $1.58× 107 in 80 iterations, a value only slightly lower than the value

obtained from the steepest ascent method and the average SPSA gradient method.

However, considering that the average SPSA gradient method uses 10 times the

number of simulation run to calculate the gradient, the efficiency of the two SPSA

gradient methods is about the same. The performance from EnKF is shown by the
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Figure 3.16: NPV as a function of iteration number for case 1.

curve with triangles. Since there are Ne realizations of BHP of producers, the NPV

plotted in the Fig. 3.16 is the highest among the Ne realizations. Note that in this

method the average gradient calculation (Eq. 2.36) requires Ne simulation runs (one

for each realization), therefore, the number of simulation runs for each iteration is

equal to Ne plus the number of trials for the line search. With an initial highest

NPV of $1.14 × 107, the EnKF method can increase the NPV to $1.54 × 107 in 70

iterations, the lowest NPV among all the methods. From Figs. 3.16 and 3.17, we

can see that the steepest ascent algorithm will be sufficiently efficient if the adjoint

gradient is available.

To show the robustness of the optimization algorithms, we have tested the

production optimization procedure with different initial guesses for the steepest as-

cent method and all of them ended up with the same final controls and the same

NPV. Fig. 3.18 shows the NPV versus iteration number of different initial guesses

for the steepest ascent method. All the cases converge to the same final NPV within

5 iterations, which indicates that steepest ascent method is fairly stable in terms of

convergence.

Fig. 3.19 shows the final BHP profile obtained from the steepest ascent
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Figure 3.17: NPV as a function of simulation runs for case 1.
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Figure 3.18: Optimization comparison of different initial BHP for steepest ascent
method for case 1.
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method. The results show a pure “Bang-Bang” solution to this problem. This is not

surprising according to the results from Zandvliet et al.(44) as the only constraints

on the BHP control are the upper and lower bound constraints. Producers P1 and

P4 stay at the lower bound of the BHP specified at early production time and then

are equal to the upper bound of the BHP specified at later production time. This

is because these two producers are connected to the injector by a high permeability

channel. At the early production time, before water breakthrough, BHPs of P1 and

P4 stay at their possible lowest value (lower bound of BHP) to produce more oil. The

increase in BHP at later production time corresponds to the increase in watercut,

as the BHPs increase to the upper bound, the wells are effectively shut-in to stop

water production. Producer P2 remains at the lower bound of the BHP specified

for the whole reservoir life, since this producer is separated from the injector by a

low permeability channel, which acts as a barrier for the water movement. Although

there is water breakthrough in Well P3, the BHP remains at its lower BHP bound

for the whole reservoir life of 960 days, which may seem unusual. However, a close

check on the gradient shows that the elements in the gradient corresponding to the

controls at the lower bound are negative and the elements in the gradient corre-

sponding to the controls at the upper bound is positive or zero, so the final control

is a local maxima. Note that the well is shut-in automatically whenever the BHP is

higher than the gridblock pressure in which it resides, and when the BHP reaches

its upper bound, we shut-in the well even if this upper bound is still lower than the

gridblock pressure. From a careful inspection of the results, we notice that at the

first iteration using the steepest ascent method, all the components of the gradient

are negative, except the ones corresponding to the last control step (between day 840

and day 960) of P1 and P4, which have water breakthrough time much earlier than

840 days, are positive. Early iterations will drive these controls of the last control

step to the upper bound and all the others to the lower bound. Once the the controls

of the last control step get to the upper bound, the ones next to them will be driven

to the upper bound. This continues until a local maxima is found. This explains

why the steepest ascent method with different initial guesses gave the same NPV at
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convergence: all the cases with different initial guesses have the same controls after

the first iteration. The above observation seems to coincide with the switching time

optimization(44), i.e. optimizing on the time to switch from the lower bound (“on”

status in valve setting) to the upper bound (“off” status in valve setting) or vice

versa. For this example, we have one switching time per producer and the switching

time starts from the end of the reservoir life and then moves backward in time during

optimization.

The final BHP controls obtained from the algorithm using an average of

ten stochatic gradients of SPSA are shown in Fig. 3.20, which are the same as the

ones from the steepest ascent method in Fig. 3.19. This shows that SPSA with an

average gradient might be promising for production optimization in the case that

the true gradient cannot be readily calculated. We need to note that there are only

32 controls in this production optimization example. The promising results may be

due to the fact the problem is so small that the average of ten stochastic gradient

of SPSA is sufficiently close to the true gradient. Fig. 3.21 shows the final BHP

obtained from a single SPSA gradient. Although the NPV increased to a value close

to that from the steepest ascent method as shown in Fig. 3.16, the final BHP does

not seem realistic with the nonsmooth behavior for well P2. The ”bumpy” behavior

is mainly because with a single SPSA gradient, SPSA is similar to a random search

direction. Other wells show earlier well shut-in (BHP controls at the upper bound)

than that from the steepest ascent method. Fig. 3.22 shows the BHP with the

highest NPV from the Ne realizations of the EnKF method. Note that in the final

control plots of Figs. 3.19 to 3.22, we plot the BHP at its upper bound as long as

the well is shut-in. The actual BHP from the production optimization might be

lower than the upper bound since the upper bound of BHP is much higher than the

average reservoir pressure.

3.2 Case 2
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Figure 3.19: Final BHP controls from steepest ascent method for case 1.

3.2.1 Reservoir Description

Similar to case 1, case 2 is also a 2-D reservoir with no flow boundaries. Only

water and oil are present in the reservoir. The reservoir consists of 25 × 25 × 1

grid system. There is only one injector (INJ) located at (13,13) and four produc-

ers located at P1 (1,1), P2 (25,1), P3 (1,25) and P4 (25,25). The numbers in the

parenthesis are the well grid block indices. Here the well locations are fixed and

they are not subject to optimization. The porosity of the reservoir is assumed to be

homogeneous with a constant value of 0.25 while permeability is heterogeneous with

an average value of 55 md. The permeability field is generated using the sequen-

tial Gaussian simulation (SGS) assuming a log-normal distribution. The variogram

parameters for permeability distribution are shown in Table 3.3. The permeabil-

ity distribution together with the well locations is shown in Fig. 3.23. Noted that

Fig. 3.23 shows the actual permeability distribution, not the log-permeability.

The reservoir properties are listed in Table 3.4. The anticipated total project

life is 10 years and the control time step size is set to 6 months, so there are 80

control variables (Nu = 80) in the control vector with 20 for each producer. All four

producers are under BHP control with upper bound 4000 psi and lower bound 200
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Figure 3.20: Final BHP controls from average SPSA gradient method for case 1.

Table 3.3: Variogram of the permeability distribution of case 2

(ln k)mean 4.0
σ 0.7
α 45
r1 (ft) 3500.0
r2 (ft) 500.0

psi. The injection rate is set to a constant of 5000 STB/day. The water and oil

relative permeability curve used in the reservoir model is shown in Fig. 3.2.1.

3.2.2 Initial Bottom Hole Pressure

Use the same method as in case 1, we also generate Ne = 40 realizations of

the initial BHP. Figs 3.25 to 3.28 show the histogram of mean for the realizations

of each producer.

Figs 3.29 to 3.32 show the histogram of initial wellbore pressure controls for

all four producers.

To show how the initial BHP varies with time, we select the first ten real-

izations of BHP for each producer P1, P2, P3 and P4 from the Ne realizations and

display them in Figs. 3.33 to 3.36.
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Figure 3.21: Final BHP controls from a single SPSA gradient method for case 1.

3.2.3 Comparison of Optimization Algorithms

Fig. 3.37 shows the net present value as a function of the iteration number

for different optimization algorithms. The curve with crosses shows the performance

from EnKF. The one plotted in the figure for each iteration is the highest NPV

obtained from the Ne realizations. With an initial NPV of $1.5 × 108, the EnKF

method is able to increase the NPV to $1.64 × 108 in about 25 iterations. The

performance from the steepest ascent algorithm is shown in the curve with squares.

The initial BHP is one of the initial realizations from EnKF. At initial conditions for

BHPs, net present value is about $1.46× 108, with the steepest ascent method, the

value obtained increases to about $1.66 × 108 in about 5 iterations, slightly larger

than that from EnKF. The same initial BHP is used for the SPSA optimization

method as in the steepest ascent method. Both SPSA optimization cases give slower

convergence compared to EnKF and steepest ascent methods, although the one using

the average gradient shows higher NPV at the end of 50 iterations. Fig. 3.37 suggests

that the steepest ascent algorithm can achieve the highest NPV in fewest iterations

compared to other optimization algorithms.

To investigate the robustness of the steepest ascent method, we start with
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Figure 3.22: Final BHP controls from EnKF for case 1.

different initial guesses to do production optimization. Fig. 3.38 shows the perfor-

mance of the steepest ascent algorithm with different initial guesses for the BHP. All

the cases converge to almost the same final NPV, which indicates that the algorithm

is fairly stable in terms of convergence.

Figs. 3.39 shows the optimal BHP profile from the steepest ascent method.

As in case 1, the final control variables have the ”bang-bang” behavior. Before water

breaks through into a producer, it will produce the most oil when the BHP is at its

lowest value possible. After water breakthrough, we need to increase the BHP as the

water cut increases. From the results of steepest ascent for P1, the BHP is always

at its lower bound (upper left panel of Fig. 3.39), since there is low permeability

barrier between the injector and this producer (Fig. 3.23) and no water has broken

through into this well. The optimal controls for other wells (P2, P3 and P4) reaches

the lower bound at early time and upper bound at the late time, because all these

wells have water breakthrough at late time. BHP at the upper bound tries to shut-in

these wells to lower the cost caused by high water production. At what point the

well should be shut-in depends on the water-cut and the contrast between the oil

price and the water disposal cost.
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Figure 3.23: Permeability distribution for case 2.
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Figure 3.24: Water and oil relative permeability curve for case 2.

The optimal BHP profiles from SPSA are shown respectively in Fig. 3.40 and

Fig. 3.41. The final controls from two SPSA methods look ”bumpy” although the one

with average gradient behaves better than that with a single stochastic gradient. The

”bumpy” behavior is mainly because that SPSA is somewhat similar to a random

search direction. From Figs. 3.42, we can see that EnKF shows somewhat similar

solutions to the steepest ascent method except that the BHP of P3 and P4 did not

increase to the upper bound at the later time. For P1, final BHP keeps very close
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Table 3.4: Reservoir properties for case 2

Grid block size 118 ft
Thickness 50 ft
ρosc 56 lb/ft3

ρwsc 62.4 lb/ft3

µo 2.4 cp
µw 0.96 cp
Bo 0.972
Bw 1.0034 rb/stb
Rock Compressibility 3× 10−6 psi−1

Porosity 0.25
Top Depth 10000 ft
Residual oil saturation 0.15
Irreducible water saturation 0.2
Initial water saturation 0.2
Initial reservoir pressure 4500 psi
Total production period 10 years
The control step 6 months
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Figure 3.25: P1 initial distribution of
mean of BHP for case 2.
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Figure 3.26: P2 initial distribution of
mean of BHP for case 2.

to lower bound during the whole production time. Optimal BHP of P2 is close to

the lower bound at the early production time and increases to upper bound at the

later production time.

3.3 Summary

For two synthetic cases, we compared three optimization algorithms (steepest
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Figure 3.27: P3 initial distribution of
mean of BHP for case 2.
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Figure 3.28: P4 initial distribution of
mean of BHP for case 2.
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Figure 3.29: Histogram for BHP ini-
tial realizations of P1 for
case 2.
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Figure 3.30: Histogram for BHP ini-
tial realizations of P2 for
case 2.

ascent method, SPSA and EnKF) based on true geology. In comparison with other

optimization algorithms, steepest ascent method always gives the best optimization

results: highest NPV and smooth BHP profile. The robustness of the steepest

ascent method is tested and it proves that steepest ascent method is very stable.

Therefore, steepest ascent method will be sufficiently efficient if the adjoint gradient

is available. As for SPSA, although SPSA with average gradient works better than

SPSA with a single stochastic gradient and gives very satisfactory results in case 1,

it seems that it does not work well for case 2 and a rough BHP profile is obtained
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Figure 3.31: Histogram for BHP ini-
tial realizations of P3 for
case 2.
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Figure 3.32: Histogram for BHP ini-
tial realizations of P4 for
case 2.
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Figure 3.33: Ten realizations of BHP
profile for P1 for case 2.
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Figure 3.34: Ten realizations of BHP
profile for P2 for case 2.

because of its random direction. The convergence speed of both SPSA methods ia

much slower than that of steepest ascent method. For EnKF, the average gradient

calculation requires Ne simulation runs (one for each realization), therefore, the

number of simulation runs for each iteration is equal to Ne plus the number of trials

for the line search. It is probably too computationally inefficient for real application.

Also in two cases, EnKF does not always give the good results and its convergence is

very slow. So later we will focus on using the steepest ascent method for production

optimization assuming we will implement the adjoint gradient in the near future.
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Figure 3.35: Ten realizations of BHP
profile for P3 for case 2.
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Figure 3.36: Ten realizations of BHP
profile for P4 for case 2.
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Figure 3.37: Net present value as a function of the iteration number for case 2.
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Figure 3.38: Optimization comparison of different initial BHP for steepest ascent
method for case 2.
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Figure 3.39: Final BHP controls from steepest ascent method for case 2.
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Figure 3.40: Final BHP controls from average SPSA gradient method for case 2.
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Figure 3.41: Final BHP controls from a single SPSA gradient method for case 2.
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Figure 3.42: Final BHP controls from EnKF method for case 2.
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CHAPTER 4

PRODUCTION OPTIMIZATION WITH UNCERTAINTY

In the previous chapter, we considered production optimization with known

geological fields: porosity and permeability distributions, and compared three differ-

ent optimization algorithms (steepest ascent method, SPSA and EnKF). In reality,

we do not know the true geology and production optimization must be done based

on uncertain geology. In this chapter, we mainly deal with production optimization

with geological uncertainty, ”closed-loop” reservoir management (CLMR). CLMR

involves two steps: production optimization with geological uncertainty and data

assimilation (history-matching) to reduce the geological uncertainty as production

data become available. This is an iterative process with production optimization

and data assimilation alternating through the whole life time of the reservoir. For

the data assimilation (history matching) part, we use the ensemble Kalman filter

(EnKF) to reduce geological uncertainty by integrating dynamic production data.

As for production optimization, steepest ascent method is employed to obtain the

optimal control variables.

4.1 Result Analysis

Since adjoint code for gradient calculation is not available, we use the per-

turbation method to generate gradient for production optimization. If we apply

the ”closed-loop” reservoir management into large reservoir, this gradient genera-

tion will be very time-consuming. Therefore, we only do production optimization

with unknown geological fields in the first case of Chapter 3. With Sequential Gaus-

sian Cosimulation, we have generated 90 ensemble members of the porosity and

log-permeability fields from the prior geological information for data assimilation

with EnKF. The production optimization is done on the central model, which is the
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updated model obtained by assimilating measurements without perturbation using

the prior mean as its initial realization. For the linear case, the central model is

equivalent to the MAP estimate(43). The basic procedure is the following:

1. Optimize the control variables based on the prior mean model (central model)

for the whole reservoir life.

2. Generate true data using the final optimum control obtained at the previous

data assimilation to the time when there are measurement data. Note that we

have measurements every 30 days and the measurement data include oil and

water production rates from producer and the BHP from the injector. The

synthetic data are generated by adding noise to the true data. The standard

deviation for the measured oil and and water rates are 5 STB/day and for the

measured BHP of the injector is 10 psi.

3. Assimilate data with EnKF up to a point tn that production optimization is

requested, which occurs every 120 days.

4. Optimize the control variables based on the updated central model from tn to

the end of the reservoir life.

5. Repeat step 2, 3 and 4 until the end of the reservoir life.

Fig. 4.1 shows the evolution of the average horizontal log-permeability after

data assimilation at 60, 120 and 240 and 480. After data assimilation up to day

60, we start seeing the long high permeability channel connecting wells P1 and P3.

After day 120, the short high permeability channel between the injector and the

producer P3 becomes evident. After day 240, it seems that both high permeability

channels get wider than in the truth (Fig. 3.1).

Figs. 4.2 and 4.3 show the average log permeability and average porosity dis-

tribution after data assimilation at 960 days. Comparing Fig. 4.2 to the true perme-

ability distribution in Fig. 3.1, we see that the average log-permeability distribution

after data assimilation with EnKF captures the main geological features, especially
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Figure 4.1: Evolution of the average log-horizontal permeability during data assim-
ilation.

the long high permeability channel connecting the injector with the two producers

(P1 and P4), although the channel from EnKF is a little wider than the true. The

short high permeability channel close to producer P3 is much wider than the truth.

The high permeability area around producer P2 is more or less shown in the average

log permeability distribution, which is similar to the truth case. However, the low

permeability channel between the injector and the producer P2 is shifted towards

the injector. The average porosity distribution in Fig. 4.3 after data assimilation at

960 days roughly captures the true geological features, but the estimate is poorer

than that of the permeability distribution.

Fig. 4.4 shows the ensemble predictions of the oil production rate during data

assimilation compared to the truth. In all the similar figures, red curves represent

the truth case, blue curves are the central model and grey curves are the ensemble

predictions from each step of data assimilation. The central model refers to the
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Figure 4.2: Average horizontal log-
permeability distribution
after data assimilation to
960 days.
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Figure 4.3: Average porosity distri-
bution after data assimi-
lation to 960 days.

ensemble member in the EnKF data assimilation generated by starting with prior

mean as the initial model and using the observed data without noise in the assim-

ilation step. It can be seen that the ensemble predictions give large uncertainty

during early time data assimilation and the uncertainty band becomes smaller as

more data are assimilated. During the course of data assimilation, the truth case

is always within the uncertainty band, so the results do not appear to be biased.

Fig. 4.5 shows the ensemble predictions of the water production rate during data

assimilation compared to the truth. Similar behavior to the oil production rate is

observed. Fig. 4.6(a) show the ensemble prediction of the bottomhole pressure com-

pared to the truth. As in the water and oil production rate predictions, there is

a large uncertainty at early times and some of the ensemble members even reach

the maximum bottomhole pressure specified (10000 psi). After about 240 days, the

uncertainty band of the ensemble predictions is so narrow that we see the truth

essentially coincides with the ensemble predictions. The average reservoir pressure

in Fig. 4.6(b) shows the typical “saw tooth” behavior of sequential data assimila-

tion: the uncertainty band increases during prediction and then gets reduced after

data assimilation at late times. Compared to the ensemble predictions of the oil

and water production rates of individual well and the BHP of the injections wells,

the average pressure pressure shows a slightly bigger uncertainty. Figs. 4.6(c) and
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(d) present the cumulative oil production and cumulative water production for the

ensemble obtained during data assimilation compared to the truth. The uncertainty

band for the cumulative oil production (Fig. 4.6(c)) is much larger than that of

the cumulative water production (Fig. 4.6(d)), but the truth case is within the un-

certainty band for both results. The large uncertainty band for the cumulative oil

production is arises from the fact that the uncertainty in the oil rate (Fig. 4.4) is

large than the uncertainty in the water rate (Fig. 4.5) at times prior to 240 days.
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Figure 4.4: Ensemble oil production rate compared to the truth during data assim-
ilation from t=0 to t=960 days.

The final control variables from production optimization based on the cen-

tral model is exactly the same as the one we obtained based on the true geology of

Fig. 3.19. Although not shown here, the updated permeability and porosity distribu-

tion for the central model after 960 days is very much like the average permeability

and porosity distribution shown in Figs. 4.2 and 4.3, because all the models are close

to each other after data assimilation. It should be noted that every time when we

do production optimization, we use the same initial guess (500 psi) instead of the

final control from last step of production optimization. The reason for doing this is

because once the control goes higher than the grid block pressure at the first step of
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Figure 4.5: Ensemble water production rate compared to the truth during data as-
similation from t=0 to t=960 days.

production optimization, the producer will be shut-in due to the fact that the BHP

is higher than the grid block pressure. In this case, NPV is never sensitive to the

well control and cannot be adjusted during the optimization.

4.2 Nonlinearity

For the closed-loop reservoir management procedure, we also tried to use dif-

ferent initial guesses for the BHP during production optimization to test its stability.

Other than 500 psi, we have tried to use an initial BHP of 400 psi which is the lower

bound, 1000 psi, 2000 psi and 3000 psi. Surprisingly, different final controls are

obtained with different initial guesses. With the initial guess of 400 psi and 500 psi,

we obtained the same results as knowing the true geology. However, with an initial

guess of 1000 psi, 2000 psi and 3000 psi, we obtained slightly different final controls.

Fig. 4.8 shows the final controls when the initial BHP is 1000 psi with geological

uncertainty. Compared to the final control obtained with an initial guess of 500 psi,

which is the same as that with true geology shown in Fig. 3.19, the only difference is

that the well P1 was shut-in one control step earlier when the initial guess for BHP
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Figure 4.6: Ensemble prediction compared to the truth during data assimilation
from t=0 to t=960 days.
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Figure 4.7: Comparison of NPV with iteration number for true geology and updated
central model.
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is 1000 psi. All the other wells have the same final control in these two cases.

As mentioned earlier, the control shown in Fig. 3.19 is at least a local maxima

because all the controls at the lower bound have a negative component in the gradient

and all the controls at the upper bound have either zero (well shut-in) or a positive

component in the gradient. When we use the final controls from the case with initial

BHP 1000 psi and run the simulator with the true geology, we find that the NPV

is even higher that the maximum obtained with controls shown in Fig. 3.19. This

confirms that the maxima obtained from the steepest ascent method with the true

geology is only a local maxima. Since there is only one control that is different

between these two cases: one is at its lower bound and one is at its upper bound,

we plot the NPV as a function of that control from P1 between the lower bound

and upper bound with true geology. The result is shown in Fig. 4.9. Note that the

NPV is a nonlinear function of the control variable. When the control is at its lower

bound, it has a negative derivative, so it tends to increase NPV by lowering its BHP.

As the BHP increase, this derivative decreases and reaches zero at about 1350 psi

and then become positive as BHP further increases. The well is shut-in when the

BHP reach about 3000 psi, so the NPV becomes flat. A check on the gradients of

the control indicates that both solutions are local maxima, but setting this control

to the highest value (shut-in) gives the highest NPV as indicated by the results of

Fig. 4.9.

As mentioned earlier, there is one switching time per producer and during

optimization, the switching time (defined as the time the BHP control switches

from lower bound to upper bound) moves backward as a function of iteration for the

problem considered in the paper. Here we explore the behavior of the NPV versus

the switching time.

Fig. 4.10 shows the NPV versus switching time for all the producers in the

vicinity of the final controls obtained with known true geology, i.e. change the

switching time of one producer while keeping all the controls of other wells as in

Fig. 3.19. The figures show that the highest NPV is obtained at the switching

time shown in Fig. 3.19 for P2 (day 960), P3 (day 960) and P4 (day 720), but not
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Figure 4.8: Final controls for well P1 with initial BHP= 1000 psi for closed-loop
reservoir management.
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Figure 4.9: NVP as a function of one BHP control for P1.

for P1. Note that the switching time at day 960 refers to keeping the BHP at its

lower bound for the whole reservoir life. The highest for P1 is obtained at day 720

instead of day 840 as shown in Fig. 3.19. The final controls in Fig. 3.19 are at a

local maxima according to the earlier discussion as we optimize based on the BHP
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controls. However, Fig. 4.10 shows that if we optimize based on the switching time,

the solution in Fig. 3.19 will not even be a local maxima. Fig. 4.11 shows the NPV

versus the switching time for all the producers in the vicinity of the final controls

obtained from the closed-loop reservoir management (Fig. 4.8). The highest NPV is

obtained at the switching time shown in Fig. 4.8 for P1 (day 720), P2 (day 960) and

P4 (day 720), but not for P3. The highest for P3 is obtained at day 840 instead of

day 960 as shown in Fig. 4.8. Fig. 4.11 also shows that the final controls in Fig. 4.8

can only be a local maxima when we optimize based on BHP and they will not be

a local maxima if we optimize on the switching time.

Figs. 4.10 and 4.11 show that the NPV versus the switching time has a

concave up shape, while the NPV versus a BHP control shown in Fig. 4.9 has a

concave down shape with maxima at the upper and lower bounds. This may be

an indication that optimization based the switching time might be easier than that

using the BHP controls if the assumption that there is one switching time per well

is true.
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Figure 4.10: NPV versus switching time in the vicinity of final controls with true
geology.
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Figure 4.11: NPV versus switching time in the vicinity of final controls of closed-loop
reservoir management.
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CHAPTER 5

WELL PLACEMENT OPTIMIZATION

In the optimization process, well locations in the reservoir are fixed and

known and are not subject to optimization. However, in the process of reservoir

development, the first key step is to determine the location of wells we want to

drill. We always wish to drill wells at optimal locations so that more hydrocarbons

can be extracted at a lower cost. Because well locations in a reservoir simulator

are commonly treated as discrete variables, standard implementations of a gradient

based optimization algorithm is difficult and not feasible so the optimization for this

problem is normally done with a non-gradient based method such as the genetic

algorithm. Here, we present a novel idea to convert the problem of optimizing

on discrete variables into an optimization problem on continuous variables for the

optimal well placement. The basic idea is to initialize the optimization problem by

putting a well in every gridblock and then optimize the well rate by maximizing

the objective function (NPV). As the cost of ”drilling a well” detracts from the

traditional expression of NPV for production optimization, when the new objective

function considering the cost of well drilling is optimized, some wells will be shutin

(eliminated) since well rate becomes zero. For two very simple cases where the

problem is to determine the optimal location of a water injection well, We can show

this problem formulation yields good results with a single injection well remaining

after the optimization process.

Gradient based optimization algorithms, with the gradient of a functional or

objective function to be optimized most commonly computed by the adjoint (optimal

control) method, have been used in both automatic history matching(7; 5; 6; 22;

31; 38; 39; 25; 16; 35) and production optimization(3; 18; 34; 8; 44; 20). However,

to the best of our knowledge, the only other work that uses the gradient directly to
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solve the optimal well placement problem is the recent paper of Handels et al.(17)

The novel idea for a gradient based solution of the optimal well placement

problem presented here is an alternate to the one considered by Handel et al. As

they consider only 2D problems, we will do the same. We consider only a very

simple example in which we wish to add one or more water injection wells to a 2D

reservoir that contains some producing wells. We initialize the optimization problem

by putting an injection well in every gridblock that does not contain a producing

well and constraining the problem by specifying a maximum total injection rate that

must be allocated among the wells remaining at each iteration of the optimization

process. For the objective function, besides the traditional definition of net present

value (NPV), a drilling cost is assigned for each injection well so the greater the

number of injection wells, the greater the drilling cost, the smaller the objective

function (NPV). Decreasing the number of injection wells decreases the drilling costs

which by itself results in an increase in the objective function but may also cause

a decrease in the objective function due to decreased oil production and increased

water production. If an injection well rate is decreased to zero, the injection well is

eliminated automatically from the system. Initially, all injection wells inject water

at the same rate which is determined by dividing the total allowable injection rate

by the number of injection wells. Then we use a steepest ascent algorithm to adjust

rates to maximize the objective function over a specified reservoir lifetime. As the

optimization proceeds, some well rates are decreased to zero and are removed from

the system. For the simple examples considered here, we end up with a single

injection well, but it is important to note that this will not always be the optimum

solution.

5.1 Problem Formulation

Consider a reservoir containing producing and possibly water injection wells,

determine the location of new water injection wells to maximize the net present

value (NPV) over a specified reservoir lifetime subject to the condition that the

total injection rate (qt STB/D) is fixed and given the oil revenue per unit volume
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(ro in $/STB), the production water disposal cost per unit volume (rw in $/STB),

the cost of drilling an injection well (Cinj in $/well) and the annual interest rate b

(discount factor is 1 + b).

The best way to formulate the objective function to include drilling costs is

not clear, here we try one simple expression for the objective function including the

cost of well drilling, which is given by

J(qinj) =
Nt∑

k=1

Nprod∑
j=1

(
roq

k
o,j − rwqk

w,j

(1 + b)tk

)∆tk −
Ninj∑
i=1

([
qinj,i

qinj,i + 10−10

]
Cinj

)
(5.1)

where Ninj is the total possible number of water injection wells, Nt is the total

number of reservoir simulator time steps, ∆tk represents the time interval of the

kth time step in days, tk representing the cumulative simulation time in days at the

end of the kth time step, and qk
o,j and qk

w,j, respectively represent the average oil

and water production rates of the jth producer on the kth simulation time step.

Here, we consider the simple problem where each water injection rate is fixed over

the total simulation time. We let qinj,i denote the injection rate of the ith injection

well and let qinj denote the column vector which has qinj,i as its ith component.

Note because the total water injection rate qt is fixed, there is no need to include

a term in the objective function for the cost of water injection. Now the optimal

well placement problem stated above can be stated mathematically. Maximize the

functional J defined in Eq. 5.1 subject to the constraint that

Ninj∑
i=1

qinj,i = qt (5.2)

where the total water injection rate, qt, is specified.

As stated in the introduction, we initialize the optimization problem by

putting a water injection well in every gridblock that does not contain a producing

well. Note that the first sum on the right side of Eq. 5.1 represents the traditional

term for net present value and the second sum represents the total cost of all injec-

tion wells drilled. Also note that each individual term in the second sum on the right
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side of Eq. 5.1 is a differentiable function of qinj,i, which decays to zero as qinj,i → 0.

One concern however is that this decay occurs over a small rate interval, [010−6] and

for large value of qinj,i, we can maximize the objective function (J) using a gradient

based optimization algorithm. Also note that if qinj,i ≥ 10−6 STB/D, the associated

coefficient of Cinj in Eq. 5.1 is for all practical purposes equal to unity. When ap-

plying a gradient based optimization algorithm to maximize the objective function

(J), some of the well injection rates go to zero, effectively eliminating the associated

terms from the sum that represents the cost of drilling the injection wells in Eq. 5.1.

At early iterations, we expect that the sum representing drilling costs will dominate

so that most of the increase in the objective function (J) will be due to eliminating

injection wells (setting injection rates to zero). However, at later iterations where

only a few injection wells are left, the first term may dominate and if this is the

case, it may be possible to increase NPV significantly by redistributing the total

water injection rate among injection wells. Because the total rate of water injection

is fixed, there must be at least one injection well left at the end of the iteration.

5.2 Optimization Algorithm

As stated above, the optimization problem for well placement has an explicit

equality constraint on the total water injection rate, but this also implies that the

injection rate of each injection well has to be between 0 and the total injection rate,

i.e.,

0 ≤ qinj,i ≤ qt. (5.3)

Because of the total injection rate constraint of Eq. 5.2, there are Ninj−1 independent

injection rates that can be used as controls to be optimized and one dependent

injection rate, which we select arbitrarily and denote by qinj,k. From Eq. 5.2, we

know that

qinj,k = qt −
Ninj∑

i=1,i6=k

qinj,i. (5.4)

The gradient of the objective function (J) in Eq. 5.1 with respect to the independent

controls (independent injection rates) is a column vector which, for i 6= k, has as its
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ith entry the total derivative of J with respect to qinj,i. By the chain rule, this total

derivative is given by

dJ

dqinj,i

=
∂J

∂qinj,i

+
∂J

∂qinj,k

∂qinj,k

∂qinj,i

. (5.5)

From Eq. 5.4, we can see that

∂qinj,k

∂qinj,i

= −1. (5.6)

Using Eq. 5.6 in Eq. 5.5, the total derivative of the objective function (J)

with respect to qinj,i for i 6= k is given by

dJ

dqinj,i

=
∂J

∂qinj,i

− ∂J

∂qinj,k

. (5.7)

The gradient of J , which represents the steepest ascent direction, can be expressed

as

p` ≡
(
∇qinj

J
)

q`
inj

=[
dJ

dqinj,1

, . . . ,
dJ

dqinj,k−1

,
dJ

dqinj,k

,
dJ

dqinj,k+1

, . . . ,
dJ

dqinj,Ninj

]T

q`
inj

, (5.8)

where the superscript ` is the iteration index.

The updating equation for the injection rate at the lth iteration is

q`+1
inj = q`

inj + α`p`, (5.9)

where the scalar α` is the step size in the steepest ascent direction which is discussed

later.

Up to now, we still do not know the total derivative of J with respect to

dependent injection rate qinj,k. It can be derived by considering the total injection

rate constraint. Summation of every component on both sides of Eq. 5.9 gives that

Ninj∑
i=1

q`+1
inj,i =

Ninj∑
i=1

q`
inj,i + α`

Ninj∑
i=1

dJ

dq`
inj,i

. (5.10)
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In Eq. 5.10, considering the total injection rate constraint,
∑Ninj

i=1
dJ

dq`
inj,i

and
∑Ninj

i=1
dJ

dq`+1
inj,i

are both equal to qt. In order to satisfy Eq. 5.10, the summation of the components

of α`p` is equal to zero, it means

α`

Ninj∑
i=1

dJ

dq`
inj,i

= 0. (5.11)

Step size α` is not equal to zero, so Eq. 5.11 can be written as

Ninj∑
i=1

dJ

dq`
inj,i

=
dJ

dq`
inj,k

+

Ninj∑
i=1,i6=k

dJ

dq`
inj,i

= 0. (5.12)

From Eq. 5.12, we can see that

dJ

dq`
inj,k

= −
Ninj∑

i=1,i6=k

dJ

dqinj,i`
. (5.13)

At this point, we have taken care of the total injection rate constraint. The

upper and lower bound constraint of Eq. 5.3 can be satisfied by limiting the step

size αl at each iteration so that it is not larger than α`
max defined by

α`
max = min(α`

max,i), (5.14)

where

α`
max,i =



−q`
inj,i

dJ

dql
inj,i

if dJ
dq`

inj,i
< 0,

qt−q`
inj,i

dJ

dq`
inj,i

if dJ
dq`

inj,i
> 0,

(5.15)

with the total derivatives in the preceding equation evaluated at q`
inj. In the line

search algorithm, we use step size α`
max determined by Eq. 5.14. If this step size

results in an increase in objective function (J), we accept it. Otherwise, we select a

new trial step size by cutting the original step size in half until we find a step size

which results in an increase in objective function (J). For the examples considered
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here, we are always able to select the step size given by α`
max. Note this step size

decreases the rate of one injection well to zero. Unfortunately, the above procedure

can only eliminate one injector at a time, which makes the optimization algorithm

very inefficient if we start with an injection well in every gridblock that is not pen-

etrated by a producing well, which is the initialization procedure used here. If the

injection rate q`
inj,i is zero, at the next iteration, we first evaluate dJ/dqinj,i at q`

inj.

If this derivative is negative, then we fix dJ
dqinj,i

equal to zero at subsequent iterations

which effectively deletes this well from the system. If the derivative we set to zero

corresponds to the dependent injection rate qinj,k then we must choose a new depen-

dent injection rate at the next iteration. Also note that if one of the injection rates

reaches its upper bound qt, this is the only well remaining and iteration terminates.

Although procedure appears to be robust, it suffers from the disadvantage that only

one potential injection well is removed at every iteration.

5.3 Case Study

For well placement optimization, we present only two simple synthetic cases

which do no more than serve to illustrate that our idea for well placement optimiza-

tion is worthy of further investigation. For both examples considered, the cost to

drill an injection well (Cinj) is $200,000.

5.3.1 Homogeneous Reservoir

We consider two-phase flow of oil and water in a homogeneous 2D reservoir

with four producers located at the corners. The reservoir consists of 15 by 15 grid

blocks and grid block system is uniform with 4x = 4y = 200 ft. The thickness

of the reservoir is 50 ft. Permeability is isotropic and equal to 500 md. Porosity

is constant and equal to 0.25. Each producer operates under bottom hole pressure

control with the bottom hole pressures all fixed equal to 400 psi. The total injection

rate is 10, 000 STB/D. The total production time is 10 years. The configuration of

the reservoir is shown in Fig. 5.1. Because the reservoir is homogeneous and the

well locations are symmetric and produced at the same value of flowing bottom hole
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Figure 5.1: Initial well placement and permeability distribution for homogeneous
reservoir.

pressure, it suffices to do the optimization on one quarter of the reservoir model.

The relative permeability curve used in the reservoir model is shown in

Fig. 5.2. The fluid properties are listed in Table 5.1.

We choose this problem because the solution is obvious, namely, if our opti-

mization algorithm works correctly, we should end up with only one water injection

well located at the center of the reservoir, and that is exactly what happened. As

shown in Fig. 5.3, there is a single injector left at the end of the optimization process

and it is at the center of the reservoir in gridblock (8, 8). NPV as a function of the

iteration number is shown in Fig. 5.4. As mentioned earlier, the algorithm generally

eliminates only one injector per iteration, but up to iteration 57, the increase in

NPV per iteration is much greater than the cost to drill one injection well. This

indicates that both terms in Eq. 5.1 are contributing to the increase in NPV at each

iteration. The large jump in NPV at iteration 7 corresponds to an iteration where a

large step size was used resulting in a significant reallocation of total injection rates

among injectors even though only one injection well was removed at this iteration.

From iteration 60 through iteration 69, no injector was deleted, the small increase

in NPV during these iterations is simply due to reallocating total injection rates
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Figure 5.2: Water and oil relative permeability curve .

among the three injectors that remain. At iteration 60, the injection rate at the

center injector (gridblock (8, 8)) is 4297 STB/D; at iteration 70, the optimization

algorithm reduces the number of injection wells to two and at iteration 71, we end

up with a single injector in gridblock (8, 8) with the injection rate equal to 10000

STB/day.

5.3.2 Heterogeneous Reservoir

The second example pertains to the placement of injection wells in a het-

erogeneous reservoir under 2D, two-phase (oil-water) flow. The reservoir contains

two producing wells at the locations shown in Fig. 5.5 which also depicts the known

permeability distribution. Porosity is constant and equal to 0.25 throughout the

reservoir. Note that the producers are in a zone of relatively high permeability.

The reservoir consists of 15 by 10 grid blocks and grid block system is uniform with

4x = 4y = 200 ft. The thickness of the reservoir is 50 ft. Again we initialize the

optimization problem by putting a water injection well in each of the 148 gridblocks

that does not contain a producing well. The initial injection rate of each injector

is set equal to qt/148 where the total injection rate (qt)is 5000 STB/day. the total

production time is 10 years.

62



4 5 0 . 0
4 6 2 . 5
4 7 5 . 0
4 8 7 . 5
5 0 0 . 0
5 1 2 . 5
5 2 5 . 0
5 3 7 . 5
5 5 0 . 0

P 1 P 2

P 3 P 4

I n j

Figure 5.3: Well placement optimization result for homogeneous reservoir.
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Figure 5.4: Net present value with iteration for homogeneous reservoir.
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Table 5.1: Reservoir properties for well placement optimization

Grid block size 200 ft
Thickness 50 ft
ρosc 56.0 lb/ft3

ρwsc 62.4 lb/ft3

µo 2.40 cp
µw 0.96cp
Bo 0.9724
Bw 1.0034 rb/stb
Rock Compressibility 4.0× 10−6 psi−1

Water Compressibility 3.0× 10−6 psi−1

Oil Compressibility 6.0× 10−6 psi−1

Top Depth 10000ft
Residual oil saturation 0.15
Irreducible water saturation 0.2
Initial water saturation 0.2
Initial reservoir pressure 4000 psi
Total production period 3650 days

The relative permeability curve and the fluid properties used in the hetero-

geneous reservoir model are same as those used in the homogeneous reservoir.

After optimization, we are again left with a single water injection well at

the location shown in Fig. 5.6, but in this case it is not intuitively obvious that a

single injection well at the location shown (gridblock (1, 1)) is the optimum solution.

But this injection well is far from the producers and the preferential permeability

direction is almost perpendicular to the flow from the injector to the producers, so

the result does seem to be reasonable. Fig. 5.7 shows the net present value as a

function of the iteration number. For about the first 60 iterations, the NPV graph

can be approximated by a straight line but the slope of this line is about twice the

cost of drilling one injection well. However, as only one injection well per iteration

is removed, again we conclude that the increase in NPV is due to both reducing the

drilling costs and a reallocation of rates among injectors. From iteration 60 to about

iteration 120, the slope of the NPV curve is even greater, which indicates that both

the reduction in the number of injection wells and the traditional NPV terms (first

sum on the right side of Eq. 5.1) are contributing to the increase in NPV but the
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Figure 5.5: Initial well placement and permeability distribution for heterogeneous
reservoir.

traditional NPV terms are having a more dominant effect. Note for the last 80 or

so iterations the increase in NPV per iteration is relatively small. During this stage

of the optimization algorithm, we are not eliminating any injector at each iteration.

Instead during most iterations, the numbers of wells are fixed, but the total injection

rates are being reallocated among the injectors. For example, at iteration 165, there

are four injection wells left, at grid blocks (1, 1), (1, 10), (11, 10) and (15, 10), but

the well at gridblock (1,1) has an injection rate equal to 4249 STB/D compared to

the total injection rate of 5000 STB/D. The lowest rate is 51 STB/D, but it requires

12 more steepest ascent iterations to eliminate this well.
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Figure 5.6: Well placement optimization result for heterogeneous reservoir.
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Figure 5.7: Net present value with iteration for heterogeneous reservoir.
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CHAPTER 6

CONCLUSIONS

Of the different optimization algorithms compared for production optimiza-

tion, the steepest ascent algorithm is the most efficient one and it always gives

reasonable results. EnKF, when it is treated as an optimization algorithm, requires

significantly more reservoir simulator runs and yields a poorer estimate of the opti-

mal controls. SPSA with average stochastic gradient works better than SPSA with

a single stochastic gradient, but convergence is slow. The final controls from SPSA

using a single stochastic gradient show ”bumpy” behavior and is not realistic.

Closed-loop reservoir management with EnKF for data assimilation and the

steepest ascent for production optimization based on the central model gives reason-

able results for a small test example. The updated permeability and porosity fields

capture the geological features of the true fields. The final control is similar to that

obtained assuming known geology. Production optimization is a nonlinear problem,

at least for the cases considered here. Local maxima are obtained when the controls

are at their upper and lower bounds.

As a recommendation for future work, when we optimize the BHP controls,

we need consider the constraints on the flow rates of producers. We should try to

keep a total injection rate more or less equal to the total production rate. In the

closed-loop reservoir management (CLRM), other controls (flow rates of producers,

Valve settings and etc ) can also be used for production optimization.

The novel idea of converting discrete well placement optimization problems

to continuous optimization problems is presented and has been validated by two

simple synthetic cases. Compared to traditional non-gradient based optimization

algorithms, we apply the gradient based optimization algorithm in the well place-

ment optimization. However, the optimization algorithm for well placement is not
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very efficient and generally only one one injector can be eliminated per iteration.

The idea we have presented for optimal well placement is both novel and worthy

of further serious investigation. In this regard, the first step is to develop a more

robust optimization and efficient algorithm than the one presented here.
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