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ABSTRACT

Chaohui Chen (Doctor of Philosophy in Petroleum Engineering)

Adjoint-Gradient-Based Production Optimization With The Augmented Lagrangian

Method

Directed by Gaoming Li and Albert C. Reynolds

163 pp., Chapter 6: Conclusions

(452 words)

The production optimization step of the “closed-loop” reservoir management

is an optimal well control problem determining optimal operating conditions to max-

imize hydrocarbon extraction or net present value (NPV) for the remaining expected

life of a reservoir. The most challenging part of production optimization is to honor

the nonlinear constraints or state-control constraints, such as WOR, GOR and pro-

duction rates. In this research, we implemented an augmented Lagrangian method for

solving the production optimization problem under linear and nonlinear constraints.

In our implementation, the objective function to be maximized is defined as the aug-

mented Lagrangian function consisting of the NPV and all constraints except the

bound constraints. At each iteration of the optimization procedure, the objective

function is approximated by a quadratic model based on the adjoint gradient and the

approximate Hessian matrix obtained using a quasi-Newton method. The quadratic

model is then maximized subject to the bound constraints using a gradient-projection

trust-region method. This step ensures all the bound constraints are satisfied. Once

the controls that maximize the quadratic function are obtained at this iteration, we

update the Lagrange multipliers or penalty parameter depending on how well the
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constraints are satisfied, and move to the next iteration. The above process is re-

peated until convergence. The advantage of the above procedure is that the bound

constraints are easily handled using the gradient-projection method for a quadratic

approximation of the objective function. Compared to the generalized reduced gradi-

ent (GRG) method which is implemented in Eclipse 300, our method does not require

the controls to be feasible at every iteration, but the constraints are satisfied within

a reasonable tolerance at convergence.

We extend the augmented Lagrangian method to solve the robust production

optimization problem. The technique is applied to synthetic reservoir problems to

demonstrate its efficiency and robustness. When reservoir description is uncertain,

experiments show that the optimal NPV obtained based on a single reservoir model

may not be the optimal NPV for the true geology, whereas the application of ro-

bust optimization significantly reduces this risk. Another challenging problem for

production optimization is to solve multi-objective optimization problems, such as

long-term and short-term optimization. Robust long-term optimization maximizes

the expected life-cycle net-present value (NPV) over a set of geological models, which

represent the uncertainty of reservoir description. As the life-cycle optimal controls

may be in conflict with the operator’s objective of maximizing short-time production,

the method is adapted to maximize the expectation of short-term NPV over the next

one or two years subject to the constraint that the life-cycle NPV will not be sub-

stantially decreased. Experimental results also show robust sequential optimization

on each short-term period is not able to achieve an expected life-cycle NPV as high

as the one obtained with robust long-term optimization.
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CHAPTER 1

INTRODUCTION

Production optimization is an optimal well control problem determining op-

timal operating conditions to maximize hydrocarbon extraction or net present value

(NPV) for the remaining expected life of a reservoir. It is an important step in the

context of closed-loop reservoir management [6, 23, 39, 40], which is defined as a com-

bination of production optimization and data assimilation (history matching or model

calibration). Fig. 1.1 demonstrates the work flow of the closed-loop reservoir manage-

ment. The “reservoir system” represents the actual reservoir oil field from which we

collect production data (e.g., well production rates, bottom hole pressure, etc.; The

“data assimilation” step calibrates the geological models with available data (e.g.,

production and time-lapse seismic data) to reduce the geological uncertainty which

is usually represented by a set of reservoir models shown in Fig. 1.1; Then a set of

optimal well controls are determined based on the new geological model(s) with the

production optimization process and these optimal well controls will be used to oper-

ate the field. For the data assimilation step, the current popular choice is the ensemble

Kalman filter (EnKF), in which a set of geological models are all sequentially updated

[18, 19, 48]. EnKF avoids calculation of sensitivities and iteration and is thus far more

computationally efficient than the randomized likelihood method [16, 33, 52]. Model

calibration and production optimization alternate in the “closed-loop” reservoir man-

agement process. However, the focus of this study is on the production optimization

step of the closed-loop reservoir management.

Most of the past studies on production optimization [1, 2, 6, 7, 15, 23, 24, 29,

32, 39, 40, 47, 49] focus on optimizing the reservoir performance under waterflood-
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Figure 1.1: Closed-loop reservoir management.

ing, because waterflooding is by far the most commonly used method to enhance oil

recovery after primary depletion. Poor recovery from waterflooding techniques may

be caused by high permeability channels between injectors and producers and hence

early water breakthrough. In early studies, the well controls are usually adjusted to

maximize the recovery factor or sweep efficiency; see, for example, Asheim [2], who

investigated the optimization of the net present value (NPV) of waterflooding with

multiple vertical injectors and a vertical producer by rate allocation. There are two

major challenges in production optimization: one is how to honor the physical con-

straints (e.g., the maximum allowable water injection rate or production liquid rate,

the minimum allowable producer BHP constraint) and an economic limit on WOR or

GOR when maximizing the NPV and another one is how to obtain a set of optimal

control settings when reservoir uncertainty exists.

1.1 Constraint Types in Production Optimization

The constraints encountered in production optimization may be categorized

into three types: 1) simple bound constraint which is the lower limit or the upper

limit on the control variables; 2) control-only constraints which are explicit functions

of the control variables only; 3) and state-control constraints which are functions of
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the control variable through the reservoir simulator, hence nonlinear functions of the

primary variables (state) and control variables. Constraints on WOR, GOR and total

fluid voidage are of the last type of constraints, which is the most challenging part of

the production optimization problem.

1.1.1 Simple bound constraint

Simple bound constraints on the control variables are sometimes dealt with by

limiting the step size during optimization [24]. Although the method is simple, only

one variable reaches its bound at a time, which can be very inefficient for a problem

with “Bang-Bang” control behavior [42, 43]. For the “Bang-Bang” control behavior,

each component of the control vector takes either its minimum or maximum allowed

values. As shown in [50], the optimal controls are “Bang-Bang” if the objective

function is linear in the controls and there are only simple bound constraints for the

control variables. Unfortunately, the objective function to be maximized is usually

a non-linear function of control variables and there are other physical or economic

limits in additional to the simple bound constraints. Instead of simply limiting the

step size during optimization, Wang et al. [47] and Zhao et al. [54] applied a simple

log-transformation to ensure the control variables stay within their bounds during

the optimization. For the log-transformation method, a transformed new variable si

is defined as

si = ln

(
ui − ulowi
uupi − ui

)
, (1.1)

for i = 1, 2, ..., Nu, where Nu is the total number of controls; and ulowi and uupi , re-

spectively, denote the lower bound and the upper bound of control variable ui. The

simple bound constrained problem can be transformed to an unconstrained optimiza-

tion problem by mapping the control from the original domain to the log domain.

When the log-transformation is applied during optimization, all the operations are

done in the log domain and the actual control variables are obtained using the inverse
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log-transformation:

ui =
exp(si)u

up
i + ulowi

1 + exp(si)
. (1.2)

The log-transformation is an easy way to deal with the bound constraints,

which eliminates these constraints in the optimization process. The ith control vari-

able ui approaches its lower bound (or upper bound), the transformed variable si

approaches −∞ (or +∞). Another method to handle the bound constraint is to sim-

ply truncate the variables when they are out of bound. Simple truncation sometimes

gives good results although the generally recommended optimization procedure for

enforcing bound constraints is the more general gradient-projection method [31].

The basic idea of the projection gradient method is to handle the bound con-

straints in two steps. Assume we have a minimization problem; without losing gener-

ality, the maximization problem is converted to a problem of minimizing the negative

objective function of maximization problem. In the first step, we search along the

steepest descent direction for minimization. When a bound is encountered, the search

direction is “bent” or projected onto the bound constraint so that all the points along

the search path are feasible. The search path is then the piecewise linear search path;

see Fig. 1.2. Note that this piecewise search direction is still downhill [30]. The

first local minimizer along this piecewise search direction is called the Cauchy point.

Finding the Cauchy point along the piecewise search direction requires the evaluation

of the objective function at each location where the search direction is “bent”, so

this method can only be efficiently implemented with models that do not require ex-

pensive function evaluations, e.g. a quadratic approximation model of the nonlinear

function. The second step of the gradient-projection method is to search the face

on which the Cauchy point is located for a new (improved) minimum. During the

second step in optimization, the variables that form the active bound constraints at

the Cauchy point are fixed and optimization is done in the space of the variables of

the inactive bound constraints.
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Figure 1.2: The piecewise-linear path for the gradient-projection method.

1.1.2 Control-only constraint

Control-only constraints consist of only control variables and are explicit lin-

ear function of control variables. For example, total water injection rate constraint

is linear function of water injection rate controls. Control-only constraints are eas-

ily handled with Rosen’s gradient-projection method [30, 37]. The general idea for

Rosen’s gradient-projection method is to project the unconstrained gradient onto the

hyperplane of the linear equality constraints or the linear active inequality constraints,

which ensures that any points on the search direction will satisfy the constraints.

Zhang et al. [53] and Forouzanfar et al. [20] applied this method to handle a linear

total injection rate constraint together with bound inequality constraints in their well

placement problem.

1.1.3 State-control constraint

State-control constraints are nonlinear functions of the primary variables (state)

and control variables. For example, the production liquid rate constraint is implicit

nonlinear function of the producer BHP controls. The most troublesome constraints

are the nonlinear state-control equality and inequality constraints. As the inequality
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constraints can be easily converted to equality constraints with active set method or

slack variables [30, 31], here we only discuss the equality constraints without loss of

generality. The only problem with this conversion is that it brings more variables

into the optimization problem and increases the optimization problem size. In the

production optimization literature, two adjoint-gradient-based strategies, generalized

reduced gradient [15, 24, 49] and approximate feasible direction [40], have been ap-

plied to the nonlinear state-control equality of constraints.

In the generalized reduced gradient method (GRG), the control variables are

divided into free (independent) and dependent control variables. In order to satisfy

the constraints, the dependent variables are made dependent on the free variables

which are completely independent. de Montleau et al. [15] claims the choice of the

free variables is arbitrary. The search direction is composed of two parts: the free con-

trol part and the dependent control part. The free control part is the gradient of the

objective function (NPV) with respect to the free control variables solved backward in

time using adjoint formulation. The dependent control part of the search direction is

then approximated using the linearized system (simulation) equations together with

the linearized constraint equations forward in time at the current iteration. As the

state-control constraints are nonlinear in nature, the approximation with linearization

for the constraint equation cannot ensure the new controls along the search direction

will satisfy the equality constraints and this forward solution may involve inversion

of a large matrix [15, 49]. Kraaijevanger et al. [24] introduced slack variables to con-

vert inequality constraints to equality constraint and these slack variables are treated

as parameters to be optimized, which hence increases the size of the optimization

problem. Zakirov et al. [49] and de Montleau et al. [15] only considered the situation

when inequality constraints become active, which avoids using slack variables. As

inactive constraints are not considered, it is possible to violate these constraints with

a big step size. Therefore, Zakirov et al. [49] and de Montleau et al. [15] limited
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the step size to ensure that the constraints are satisfied during optimization itera-

tions. The major disadvantage of the generalized reduced gradient method is that

it requires modification of the Jacobian matrix in the reservoir simulator in order to

get the coefficient matrix of the adjoint equations. Another disadvantage is that the

initial control variables have to be carefully chosen to ensure they are in the feasible

region. Otherwise, the inequality constraints are violated and cannot be converted to

active equality constraints which will result in a premature stop in the optimization

procedure.

The approximate feasible direction algorithm has its roots in the feasible direc-

tion methods [37]. Sarma et al. [40] compared different existing methods for nonlinear

path constraints and proposed the approximate feasible direction algorithm. The ba-

sic idea for the feasible direction method is that it starts with a feasible point and

then moves to a better feasible point with a usable feasible direction [37] for the it-

eration. If no constraints are active and there are no equality constraints, the search

direction in the method is the steepest ascent direction, conjugate-gradient direction

or the BFGS direction. However, in the presence of the equality constraints or active

inequality constraints, the search direction (feasible direction) is obtained by solving

a linear programming problem [37], which involves the gradient of the objective func-

tion and the gradient of the constraints to ensure the new points along the feasible

direction do not violate the constraints within the neighborhood of the current points.

The method requires the gradient of all the active constraints, which can be compu-

tationally expensive as each constraint needs one adjoint solution for gradient. Thus,

Sarma et al. [40] lumped the constraints into one, which requires only one backward

adjoint run for the gradient of the lumped constraint and saves computational time.

Because of the constraint lumping, the individual constraints are not guaranteed to

be satisfied at convergence.

The augmented Lagrangian method is implemented in LANCELOT [13, 31],
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where the authors suggest combining the penalty function method and Lagrangian

multiplier method for the equality and inequality constraints and implement the

gradient-projection method to deal with the bound constraints. The pure penalty

method may result in ill-conditioning and numerical problems when the penalty pa-

rameter approaches 0 and hence the penalty term becomes significantly large. In

Nocedal and Wright [31], it is shown that the augmented Lagrangian method avoids

some numerical difficulties associated with the pure penalty method by introducing

the Lagrangian function. Another advantage is the efficiency of gradient calculation.

As all the constraints are incorporated into the objective function to be maximized

with Lagrangian variables and penalty function, only one backward adjoint run is

required for gradient calculation. At convergence, all the constraints are satisfied.

This research will focus on the application of the augmented Lagrangian method

to the production optimization problem. Note that our implementation of the aug-

mented Lagrangian method is different from Doublet et al. [17], in which the authors

proposed to combine flow equations with the NPV function into an augmented La-

grangian function. The computational saving of their algorithm arises from the fact

that the simulation equations are not solved fully until convergence for each iteration

of the optimization process, instead only an approximate solution for the simulation

primary variables are obtained for the simulation equations. The simulation equations

converge to the right solution when the optimization process reaches convergence.

1.2 Objective Functions of Production Optimization

Most work on production optimization [1, 2, 6, 7, 15, 23, 24, 29, 32, 39, 40,

47, 49] is based on a single reservoir model which may be the mean of the ensemble

of reservoir models or any single reservoir model from an ensemble. Throughout,

optimization based on a single reservoir model will be referred to as nominal opti-

mization. As a single reservoir model may be far from the true geology, applying the

optimal controls obtained from a single model to the actual field may not achieve the
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maximum NPV. To reduce the risk arising from the uncertainty in the geological de-

scription, van Essen et al. [46] proposed to optimize the expectation of NPV over a set

of reservoir models. This procedure is referred to as robust optimization. van Essen

et al. [46] compared robust optimization over 100 geological realizations with nominal

optimization using a channelized synthetic reservoir example. They concluded that

robust optimization yields not only a higher expected NPV but also a much smaller

variance of NPV than is obtained with nominal optimization when the optimal con-

trols obtained from nominal optimization are applied to the 100 realizations. Chen et

al. [9, 10] applied robust optimization with an ensemble-based optimization scheme

to closed-loop reservoir management. In the production optimization of [9, 10, 46],

only simple linear constraints (e.g. constant total injection/production rates) and

bound constraints are considered and their algorithms cannot easily be extended to

handle general nonlinear constraints. In this study, we investigate the applicability of

the robust optimization under bound, linear and nonlinear physical constraints (e.g.

maximum allowable water-oil ratio) using the augmented Lagrangian method.

We define the long-term (or life-cycle) net-present-value (NPV), JL, as

JL(yj, u,mj) =

NL∑
n=1

[ Np∑
i=1

(
rno q

n
o,i − rnwqnw,i + rng q

n
g,i

)
−

Nwi∑
i=1

rnwiq
n
wi,i −

Ngi∑
i=1

rngiq
n
gi,i

]
∆tn

(1 + b)tn/365
,

(1.3)

where mj is a column vector of the reservoir model parameters for the jth geological

realization of the reservoir; u is the control vector; yj is the state vector consisting

of the reservoir simulation primary variables for all simulation time steps calculated

with the vector of well controls u and the jth realization of the vector of model

parameters; NL is the total number of simulation time steps; Np is the total number of

producers; Nwi is the total number of water injection wells; the superscript n denotes

the nth simulation step; ro is the oil revenue ($/STB); rw is the water production
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cost ($/STB); rg is the gas production revenue ($/SCF); rwi is the water injection

cost ($/STB); rgi is the gas injection cost ($/SCF) qno,i is the average oil production

rate over the nth time step of the ith producer (STB/day); qnw,i is the average water

production rate over the nth time step of the ith producer (STB/day); qng,i is the

average gas production rate over the nth time step of the ith producer (SCF/day);

qnwi,i is the average water injection rate over the nth time step of the ith water injector

(STB/day); qngi,i is the average gas injection rate over the nth time step of the ith gas

injector (SCF/day); b is the annual discount rate; tn is the cumulative time up to and

including the nth simulator time step (days); ∆tn is the length of the nth simulator

time step (days).

For the nominal life-cycle production optimization based on the jth realization

mj, we maximize the NPV, JL(yj, u,mj), i.e., the nominal optimization problem is

max JL(yj, u,mj), (1.4)

subject to the following constraints,

ei(yj, u,mj) = 0, i = 1, 2, ..., ne; (1.5)

ci(yj, u,mj) ≤ 0, i = 1, 2, ..., ni; (1.6)

ulowi ≤ ui ≤ uupi , i = 1, 2, ..., nb. (1.7)

Here Eq. 1.5, Eq. 1.6 and Eq. 1.7, respectively, represent the equality, inequality and

bound constraints.

For robust production optimization, we maximize the expectation of NPV,

which is approximated as the average NPV over Ne reservoir models, i.e., the robust

production optimization problem is given by

max E[JL(y, u,m)] = max
1

Ne

Ne∑
j=1

JL(yj, u,mj), (1.8)
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subject to the constraints in Eqs. 1.5 through 1.7 applied for j = 1, 2, ..., Ne, where

Ne is the number of plausible reservoir models available. As pointed out in Ben-Tal

and Nemirovski [5], in robust optimization, the constraints should be satisfied for all

realizations.

Moreover, the objective function of production optimization can be divided

into two types based on the length of production period: life-cycle optimization and

short-term optimization. Typically, the objective function for production optimiza-

tion is the NPV of production over the expected reservoir life. This is referred to as

long-term (or life-cycle) production optimization. From the operator’s point of view,

it may be more important to maximize NPV over the next one or two years. The

optimization of the NPV or its expectation over the next one or two years is referred

to as short-term production optimization. Following long-term optimization, we max-

imize the expectation of the short-term NPV, where for a given mj, the short-term

NPV Js(yj, u,mj) is defined by

Js(yj, u,mj) =
Ns∑
n=1

[ Np∑
i=1

(
rno q

n
o,i − rnwqnw,i + rng q

n
g,i

)
−

Nwi∑
i=1

rnwiq
n
wi,i

]
∆tn

(1 + b)tn/365
,

(1.9)

with the total number of simulation time steps NL replaced by Ns. Ns is the total

number of simulation time steps for the short-term NPV and Ns < NL. It is shown

in [45] that long-term production optimization may be ill-posed and we may still be

extra degrees of freedom in the control variables at the estimate of the maximum of

NPV. van Essen et al. [45] proposed a hierarchical production optimization, in which

they first maximize the life-cycle NPV and then maximize the short-term NPV using

the extra degrees of the freedom in the estimate of optimal controls obtained by life-

cycle optimization. As the hierarchical production optimization requires that we find

an optimal control strategy for short-term NPV within the null space of the approx-

imate Hessian estimated at the optimal controls obtained by life-cycle optimization,
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the procedure of [45] involves the computation of the Hessian matrix and its null

space, which is very computationally expensive. The requirement for an accurate

Hessian matrix makes the method infeasible for any realistic reservoir production op-

timization problems as current reservoir simulators are not capable of calculating the

Hessian matrix and computing it from a finite-difference approximation is extremely

expensive. van Essen et al. [45] proposed an alternative method (switching method)

to avoid calculating explicitly the extra degrees of freedom in the control variables.

Following the life-cycle optimization, the authors simply optimize the short-term NPV

or the life-cycle NPV alternatively, i.e. if the life-cycle NPV is greater than or equal

to the optimal life-cycle NPV, the short-term optimization is executed; otherwise,

they switch to optimize the life-cycle NPV. The switching method is straightforward

to implement; however, the authors point out the convergence of the method is slow

due to the infeasible solution steps.

1.3 Algorithms Applied in Production Optimization

Based on how one calculates or approximates the gradient of the objective

function with respect to the well controls, we categorize the current production op-

timization algorithms into two groups: gradient-free optimization algorithms and

gradient-based optimization algorithms.

The gradient-free algorithms, such as finite-difference method, simultaneous

perturbation stochastic approximation (SPSA) algorithm [41], ensemble-based opti-

mization algorithm (EnOpt) [9, 10, 32], new unconstrained optimization algorithm

(NEWUOA) [36] and quadratic interpolation model with an approximate gradient

(QIM-AG) [54], treat the reservoir simulator as a black box and evaluate the approx-

imate gradient based on the output of estimated objective values and the input of

perturbations of control variables. The finite-difference method requires evaluation

of at least Nu + 1 objective function values for each optimization iteration and the

computational cost is extremely expensive. SPSA is a “simplified” finite-difference
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method as all the parameters are perturbed at one time stochastically and the SPSA

gradient is then calculated from one-side or two-side perturbation. Although the

SPSA gradient is stochastic, its expectation is proved to be the true gradient and

always an uphill direction [47]. The SPSA algorithm has been applied in optimal well

control [47, 54], optimal well placement [4] and history matching [22, 25]. EnOpt was

first applied in the optimal well control problem in [29] and then developed by Nwaozo

[32] and Chen et al. [9, 10]. EnOpt requires generating an ensemble of control vectors

and running the reservoir simulator for each of these control vectors in order to cal-

culate the EnOpt gradient from the cross-correlation between the control vector and

NPV’s. In EnOpt, the controls for each well are usually assumed to be correlated in

time, which leads to the smooth optimal control settings. The implementation details

of the EnOpt algorithm can be found in Appendix C. NEWUOA is a quadratic model-

based derivative-free algorithm proposed by Powell [36]. In NEWUOA, constructing

the quadratic model is based on quadratic interpolation, where the coefficients in the

quadratic function are determined by a condition that the quadratic function and

the objective function are equal at a set of interpolation points. To promote compu-

tational efficiency in large-scale optimization problems, the number of interpolation

points is usually much less than the number of coefficients in the quadratic model.

The extra degrees of freedom are used to minimize the Frobenius norm of the differ-

ence between the term representing the approximate Hessian matrix in the quadratic

model at the previous iteration and the Hessian in the updated quadratic model for

the current iteration, i.e.

‖ Gl −Gl−1 ‖2F=
Nu∑
i=1

Nu∑
j=1

(Gl
ij −Gl−1

ij )2, (1.10)

where the operator ‖ · ‖2F represents the Frobenius norm, Gl is the approximate

Hessian matrix at the lth iteration and the subscripts “ij” refer to the entry in the

ith row and jth column of the matrix. The updated quadratic model is then maxi-
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mized using a trust-region method. This quadratic model is updated during iteration

as more and better interpolation points become available. As NEWUOA builds an

initial quadratic model based on at least Nu + 2 interpolation points before the opti-

mization starts, it is very inefficient when the number of control variables is very large.

To overcome this limitation in NEWUOA, Zhao et al. [54] proposed the Quadratic

Interpolation Modeling with Approximate Gradient (QIM-AG) algorithm based on a

dynamic quadratic interpolation model for the maximization of the NPV. When this

EnOpt preconditioned gradient is used, the algorithm is referred to as QIM-EnOpt,

whereas when the SPSA gradient is used, the algorithm is referred to as QIM-SPSA.

QIM-AG algorithm uses all available evaluated points to construct dynamically a

quadratic interpolation model along the iterative process. For NEWUOA and QIM-

AG, they all build a quadratic approximate model based on a set of interpolation

points and then seek the optimum for the quadratic model. NEWUOA constructs

the quadratic model by minimizing the Frobenious norm of the difference of the

approximate Hessian between two consecutive iterations, but QIM-AG method con-

structs the quadratic model by minimizing the Frobenius norm of the approximate

Hessian at the current iteration subject to the constraints that the quadratic model

is equal to the objective function evaluated at all the interpolation points.

Currently, most of the gradient-free algorithms, such as SPSA and QIM-AG,

are applied to handle the optimization problem with simple bound constraints in the

literature of petroleum engineering. [9, 10] claim their ensemble-based optimization

algorithm (EnOpt) is able to handle the problem with linear constraints as well as

simple bound constraints. In the application of [9, 10], the total water injection rate

and the total production liquid rate are linear functions of the control variables con-

sisting of well injection rate and well production liquid rate. The total injection rate

and total production liquid rate are truncated once they are violated, and then the

total rate constraint is honored by reallocating the rates among wells proportionally
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according to the truncated values. Although this truncation technique seemed to give

good results for their examples, it is not able to handle more complicated constraint

types, e.g. state-control constraint.

Wang et al. [47] compared three different optimization algorithms: ensemble-

based algorithm, SPSA algorithm, and the steepest ascent algorithm using finite-

difference method and they concluded that the steepest ascent algorithm is the most

efficient one and it gives reasonable results. In the examples of [47], using an aver-

age of 10-20 SPSA gradients as the search direction in the steepest ascent method,

the SPSA method resulted in the same net present values (NPV) and well control

obtained as using the true gradient, but the SPSA method required far more reser-

voir simulation runs. Zhao et al. [54] compared the QIM-AG algorithm with the

adjoint-gradient-based gradient-projection method and several other gradient-free al-

gorithms, including NEWUOA, SID-PSM (Pattern Search Method guided by Simplex

Derivatives), PSO (Particle Swarm Optimization), EnOpt and SPSA. The optimiza-

tion results in Zhao et al. [54] indicate that the QIM-AG algorithm is better than

other gradient-free methods but the adjoint-gradient-based optimization method is

still the most efficient method in terms of the number of simulation runs and also

achieved the highest NPV for their examples.

The gradient based optimization algorithms require the computation of the

gradient of the objective function with respect to control variables. As the NPV

and the state-related constraints are implicit functions of the control variables, we

are not able to calculate the gradient of the objective function explicitly. In the

context of data assimilation (or history match), Li [26], Li et al. [27] and Gao [21]

developed an adjoint procedure to obtain the gradient of the objective function by

solving adjoint equations. de Montleau et al. [15], Kraaijevanger et al. [24] and Sarma

et al. [40] developed the adjoint technique to calculate the gradient of NPV with

respect to control variables and applied the adjoint gradient in the GRG algorithm
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and the approximate feasible direction method. The adjoint gradient calculation with

respect to well controls has significant computational advantages when the number

of variables is large, as the number of adjoint runs does not depend on the number of

variables. Therefore, it is suitable for problems with a large number of well controls to

be adjusted, which is often the case when many wells and/or many sections of wells

(smart wells) are involved with many control steps during the expected reservoir

life. In this study, we further develop the gradient-based optimization algorithm for

production optimization problem.

1.4 Research Objectives and Dissertation Outline

1.4.1 Research Objectives

The major objective of this research is to develop practical optimization meth-

ods that can efficiently deal with large scale production optimization problems with

bound, linear and nonlinear constraints. The specific items in plan are:

1. To develop the adjoint code that can efficiently calculate the gradient of the

augmented Lagrangian function with respect to the control variables considering

various constraints on WOR, GOR, production and injection rates.

2. To develop a large scale optimization code, in which the augmented Lagrangian

method is used to ensure the general equality and inequality constraints and the

gradient-projection trust-region method is used to ensure the bound constraints.

3. To develop methods dealing with scaling problems of different constraints, which

can be a serious problem when the values of different constraints differ by several

orders of magnitude, such as water oil ratio and rate constraints.

4. To develop methods to maximize the NPV of production on a set of reservoir

models considering geological uncertainty.
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5. To develop methods that can optimize multi-objective functions (e.g. life-cycle

NPV and short-term NPV).

1.4.2 Dissertation Outline

There are six chapters and three appendices in this dissertation. In Chapter 2,

we introduce the augmented Lagrangian method, including a discussion of updating

the Lagrangian multipliers and the penalty parameter and a discussion of the gradient-

projection trust-region algorithm. In Chapter 3, we briefly present the basic equations

for a fully-implicit black oil reservoir simulator and the adjoint method for calculating

the gradient of the augmented Lagrangian function. In Chapter 4, we use three

synthetic reservoir models for production optimization and discuss the effect of scaling

factors. For the case of only bound constraints, we also compare computational results

of SPSA and EnOpt algorithms with gradient-based gradient-projection method in

this chapter. In Chapter 5, we discuss the robust optimization for the life-cycle

production optimization and the short-term production optimization. We extend

the augmented Lagrangian method to multi-objective optimization, i.e., maximize

the short-term objective without compromising the life-cycle objective. Chapter 6

presents the conclusions and summarizes the research contributions of this study. In

Appendix A, we derive the equations for computing the derivatives of the augmented

Lagrangian function with respect to the reservoir primary variables. In Appendix B,

we briefly present the Generalized Reduced Gradient (GRG) method which is involved

in Chapter 4. In Appendix C, we discuss the ensemble-based optimization method

(EnOpt).
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CHAPTER 2

CONSTRAINED OPTIMIZATION WITH AUGMENTED

LAGRANGIAN METHOD

Augmented Lagrangian method is commonly used in the general literature

dealing with equality and inequality constraints. In our implementation, the ob-

jective function to be maximized is defined as the augmented Lagrangian function

consisting of the NPV and all constraints except the bound constraints. Although

the augmented Lagrangian function is implemented in the LANCELOT package, the

gradient of each term in the augmented Lagrangian function needs to be specified for

its input deck, which is not practical as each gradient of the specified term requires

one backward adjoint solution for the adjoint gradient calculation. In our imple-

mentation, the computation of the gradient of the augmented Lagrangian function

(objective function) requires only one adjoint solution for one specified geological

model.

The augmented Lagrangian method has two loops: outer-loop iterations and

inner-loop iterations. At each outer-loop iteration of the optimization procedure,

we only update either the Lagrange multipliers (λ’s) or the penalty parameter (µ)

presented in the formulation of augmented Lagrangian function. Once the controls

that maximize the augmented Lagrangian function are obtained in the inner-loop

iterations, we update in the outer-loop iteration the Lagrange multipliers or penalty

parameter, depending on how well the constraints are satisfied, and move to the next

inner-loop iteration. The above process is repeated until convergence. We discuss

the procedure of the outer-loop iteration in the section 2.1. In the inner-loop iter-

ations, both λ’s and µ are fixed and the augmented Lagrangian function is to be
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maximized within the bound constraints. At each inner-loop iteration, the objective

function is approximated by a quadratic model based on the adjoint gradient and the

approximate Hessian matrix obtained using a quasi-Newton method. The quadratic

model is then maximized subject to the bound constraints using a gradient-projection

trust-region method [8, 13, 31, 44]. This step ensures all the bound constraints are

satisfied. We discuss the gradient-projection trust-region method in the section 2.2.

The advantage of the above procedure is that the bound constraints are easily handled

using the gradient-projection method for a quadratic approximation of the objective

function. Unlike the generalized reduced gradient method [15, 24, 49] and the ap-

proximate feasible direction method [40], the augmented Lagrangian method does

not require the control vector to be feasible during optimization and hence one can

start with any initial guess. However, the constraints are satisfied within a speci-

fied tolerance at convergence. We summarize our implementation of the augmented

Lagrangian method in section 2.3.

2.1 The Augmented Lagrangian Function

For nominal optimization with a single reservoir model, we incorporate the

general equality and inequality constraints into an augmented Lagrangian function,

which is formulated as

βL =JL[y, u]−
ne∑
i=1

[
λe,iei(y, u) +

se,i
2µ

(ei(y, u))2
]

−
ni∑
i=1

[
λc,i(ci(y, u) + vi) +

sc,i
2µ

(ci(y, u) + vi)
2

]
,

(2.1)

where JL[y, u] is the life-cycle NPV defined in Eq. 1.3; The vi is a positive slack variable

used to convert the ith inequality constraint (ci ≤ 0) into an equality constraint; The

λ’s are the Lagrange multipliers; µ is the penalty parameter. The subscripts, e and

c, respectively, represent the equality and inequality constraints. As the constraints
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may be of different scales, we rescale the constraints with scaling factors se,i and sc,i.

We observed from the results of experiments shown in Chapter 4 that the convergence

rate of the method can be slowed appreciably by poor scaling of the constraints. In

this study, we use the following scaling factors:

se,i =
1

E2
i

, (2.2)

and

sc,i =
1

C2
i

, (2.3)

where Ei and Ci, respectively, are the nonzero constraint values of the ith equality and

the ith inequality constraints. For example, if the ith inequality constraint is WOR

< 9.0, Ci is set to 9.0. If the ith equality constraint on the total water injection

rate is 4000 STB/D, Ei is set to 4000.0. The Ei’s and Ci’s do not change during the

optimization process. In fact, using the scaling factors is equivalent to using different

penalty parameters for the constraints of different scales. It can be clearly seen that

if we use

µe,i = µ/se,i (2.4)

and

µc,i = µ/sc,i, (2.5)

the augmented Lagrangian function in the formulation of Eq. 2.1 can be rewritten as

βL =JL[y, u]−
ne∑
i=1

[
λe,iei(y, u) +

1

2µc,i
(ei(y, u))2

]
−

ni∑
i=1

[
λc,i(ci(y, u) + vi) +

1

2µc,i
(ci(y, u) + vi)

2

]
.

(2.6)

Eq. 2.6 indicates that we can also rescale the constraints by using different penalty

parameters.
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In the formulation of Eq. 2.1, the slack variables (vi’s) are additional adjustable

parameters for optimization. The algorithm used in LANCELOT [14] treats the slack

variables as the optimization variables, which requires an update of the slack variables

at every iteration. However, it is possible to have inequality constraints on a group of

wells and the field for a general production optimization problem (e.g., the produced

fluids from a group of wells or the wells from the whole field flow into a separator,

which has some certain maximum allowable capacity). Therefore, the number of slack

variables may be equal to or even greater than the number of actual controls in the

vector u, which increases the size of the production optimization problem using the

augmented Lagrangian function defined in Eq. 2.1. Following Nocedal and Wright

[31], we eliminate the slack variables for the inequality constraints in the augmented

Lagrangian function. Note that the Lagrangian function of Eq. 2.1 is a concave

quadratic function of the slack variable vi. We denote the term in the last bracket in

Eq. 2.1 as ψi, i.e.,

ψi = λc,i(ci(y, u) + vi) +
sc,i
2µ

(ci(y, u) + vi)
2. (2.7)

The optimal value for vi satisfies,

∂βL
∂vi

= −∂ψi
∂vi

= −λc,i −
sc,i
µ

(ci(y, u) + vi) = 0. (2.8)

Solving Eq. 2.8 for the slack variable vi yields,

vi = −ci(y, u)− µλc,i
sc,i

. (2.9)

If ci(y, u) > −µλc,i/sc,i, the slack variable calculated in Eq. 2.9 is negative and we set

it equal to its lower bound of 0, i.e.,

vi = 0, when ci(y, u) > −µλc,i/sc,i. (2.10)
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Using Eqs. 2.9 and 2.10 in Eq. 2.7 yields,

ψi =


− µ

2sc,i
λ2c,i, ci(y, u) ≤ −µλc,i/sc,i,

λc,ici(y, u) +
sc,i
2µ

(ci(y, u))2, otherwise.

(2.11)

Eq. 2.11 indicates that the inequality constraint term ψi will become a constant if

ci ≤ −µλc,i/sc,i is satisfied, otherwise the term ψi will become a quadratic function

of ci. With ψi given by Eq. 2.11, Eq. 2.1 can be rewritten as

βL = JL(y, u)−
ne∑
i=1

[λe,iei(y, u) +
se,i
2µ

(ei(y, u))2]−
ni∑
i=1

ψi(y, u), (2.12)

In the augmented Lagrangian method, we usually need to update the Lagrange

multipliers (λ’s) or the penalty parameter (µ) a few times before the optimization

converges. This procedure of updating the λ’s or the µ is referred to as the outer

loop. With fixed value of the Lagrangian multipliers and a fixed value of the penalty

parameter, we maximize the augmented Lagrangian function in Eq. 2.12 subject to

the bound constraints, i.e., we solve the subproblem

max βL(u),

subject to ulowi ≤ ui ≤ uupi , i = 1, 2, ..., nb.

(2.13)

This maximization is performed using a gradient-projection trust-region method,

where the objective function βL is approximated by a quadratic function and the

bound constraints are enforced explicitly when the quadratic function is maximized

using the gradient-projection method. The quadratic function is updated iteratively

to yield a more accurate representation of the objective function βL to be maximized.

This procedure is referred to as the inner loop.
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2.2 Outer-loop Iteration

For the outer-loop iterations, we update the Lagrange multipliers λ’s or the

penalty parameter µ depending on the violation of the constraints. When the con-

straint violation is small, we update the Lagrange multipliers and do not change the

value of the penalty parameter for the next step. When the constraint violation is

large, we keep the Lagrange multipliers fixed and decrease the penalty parameter

µ, which allows the algorithm to minimize the constraint violation during the next

inner-loop step. Conn et al. [13] used an infinity norm of the constraint violation

to determine whether the Lagrange multipliers or the penalty parameter is updated.

Here, for production optimization with a single reservoir model, we define an average

constraint violation parameter σcv by

σcv =



√√√√ 1

nv

[ ne∑
i=1

se,ie2i +

ni∑
i=1

sc,i(max[0, ci])2
]
, nv > 0,

0, nv = 0,

(2.14)

where nv is the total number of violated constraints. If σcv is less than or equal to the

tolerance η` [12, 13], which is also updated in the outer loop, we update the Lagrange

multipliers λ’s and η without changing µ as

λ`+1
e,i = λ`e,i +

se,iei(y
`, u`)

µ`
, i = 1, 2, ..., ne, (2.15)

λ`+1
c,i = max[0, λ`c,i +

sc,ici(y
`, u`)

µ`
], i = 1, 2, ..., ni, (2.16)

and

η`+1 = η`(µ`)βη , (2.17)

where ` is the outer-loop iteration index and βη is a free parameter. Conn et al. [12]

suggests to using βη = 0.9 for well-scaled problems. Conn et al. [12] proved that by

23



updating η with Eq. 2.17, the algorithm is guaranteed to achieve convergence without

driving the penalty parameter to zero. The updating equations for the λ’s in Eqs. 2.15

and 2.16 are obtained from comparing the gradient of the augmented Lagrangian

function and the first-order necessary Karush-Kuhn-Tucker (KKT) conditions [31].

The gradient of β at the `th iteration can be written as

∇uβ
`
L = ∇uJ

`
L −

ne∑
i=1

[(
λ`e,i +

se,i
µ
ei(y

`, u`)

)
∇uei(y

`, u`)

]
−

ni∑
i=1

∇uψi(y
`, u`), (2.18)

where

∇uψi(y
`, u`) =


0, ci(y

`, u`) ≤ −µλ`c,i/sc,i,

[λ`c,i +
sc,i
µ
ci(y

`, u`)]∇uci(y
`, u`), otherwise.

(2.19)

Let u∗ denotes the local solution of the maximization problem. If the optimal

solution is achieved at the (`+ 1)th iteration, i.e. u`+1 = u∗, the first-order necessary

KKT condition requires the gradient of a Lagrangian function of the NPV and the

equality and inequality constraints at the local solution u∗ to be zero, i.e.

∇uJL(y∗, u∗)−
ne∑
i=1

[λ∗e,i∇uei(y
∗, u∗)]−

ni∑
i=1

[λ∗c,i∇uci(y
∗, u∗)] = 0,

λ∗c,i ≥ 0,

(2.20)

where y∗ is the reservoir primary variables evaluate at u∗ and λ∗e,i and λ∗c,i are the

corresponding Lagrangian multipliers that satisfy the KKT condition. Conn et al. [12]

show that if we use the updating equations defined in Eqs. 2.15, then λ`+1
e,i approaches

λ∗e,i. As inequality constraints can be converted to equality constraints with slack

variables, we can deduce that λ`+1
c,i approaches λ∗c,i when using the updating equations

defined in Eqs. 2.16.

Currently, there does not appear to be any theoretical results on how to ini-

tialize the Lagrange multipliers. One choice is to set the initial λ’s equal to 0 so the
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augmented Lagrangian function in the first outer-loop iteration is actually the NPV

plus a penalty term. Another choice follows from Eq. 2.15 and Eq. 2.16, where we

estimate the initial λ’s as

λ0e,i =
se,iei(y

0, u0)

µ0
, i = 1, 2, ..., ne, (2.21)

and

λ0c,i = max[0,
sc,ici(y

0, u0)

µ0
], i = 1, 2, ..., ni. (2.22)

This requires one simulation run to obtain values for ei(y
0, u0) and ci(y

0, u0) with the

initial guess of the control vector u0. Chapter 4 will show the experimental results

on the effect of the initial values of Lagrange multipliers.

If σcv is larger than η`, we update µ and η without changing λ’s as

µ`+1 = τµ`, (2.23)

and

η`+1 = η0(µ`+1)0.1, (2.24)

where τ is a constant between 0.1 and 0.5 and η0 is the initial value of η. We use

τ = 0.1 and η0 = 0.1 in the results presented in this dissertation. Overall, once

σcv ≤ 0.01 (2.25)

or

nv/(ne + ni) ≤ 0.001, (2.26)

we stop the optimization.

How to choose the initial guess for the penalty parameter µ can be a challenging

task and the choice can have an impact on the performance of the algorithm. We
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have found that when doing robust optimization a significant saving in the overall

computational time can be achieved by first examining the effect of the initial value

of µ on a related nominal optimization problem. The initial value of µ for robust

optimization is based on the results of experiments. We illustrate this procedure

later in Chapter 5.

2.3 Inner-loop Iteration

This subsection details the inner-loop iteration. As mentioned earlier, the

inner-loop maximizes the augmented Lagrangian function with fixed Lagrangian mul-

tipliers and penalty parameter. As the code was built for solving a minimization prob-

lem, β (β = −βL for long-term production optimization) is minimized with upper and

lower bound constraints with fixed Lagrange multipliers and penalty parameter, i.e.,

Min β(u),

Subject to ulow ≤ u ≤ uup,

(2.27)

where u denotes the control vector with its lower and upper bound constraints ulow

and uup. For each inner-loop iteration, β(u) is first approximated with a quadratic

function using the gradient information. The quadratic function is then minimized

using a projection-gradient trust-region method, which ensures the solution within

the bounds.

The quadratic function at the kth inner-loop iteration is

Qk(u) = β(uk) + (u− uk)Tgk +
1

2
(u− uk)TBk(u− uk), (2.28)

where gk is the gradient of the objective function β with respect to u evaluated at uk

and Bk is the approximate Hessian matrix which is an Nu × Nu symmetric matrix

obtained using the BFGS method. The update equation for Bk at the kth iteration
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is

Bk = Bk−1 +
yk−1(yk−1)T

(yk−1)T sk−1
− Bk−1sk−1(sk−1)TBk−1

(sk−1)TBk−1sk−1
(2.29)

where sk−1 = uk − uk−1 and yk−1 = gk − gk−1 and B0 = I. If the curvature condition

(sk−1)Tyk−1 > 0 and Bk−1 is real symmetric positive definite, then Bk is real sym-

metric positive definite [30, 51]. To precisely ensure that Bk is positive definite, [11]

suggests to update Bk only when

(yk−1)T sk−1/(yk−1)Tyk−1 ≥ 10−8. (2.30)

The gradient-projection trust-region method solves the following constrained

minimization problem,

min Qk(u),

subject to max[uki −∆k, ulowi ] ≤ ui ≤ min[uki + ∆k, uupi ], i = 1, 2, ..., Nu

(2.31)

where ∆k is the trust-region radius at the kth iteration. Note that we use the infinity

norm to define the shape of the trust region. This minimization problem is done in

two stages [31]. During the first stage, a local minimizer (Cauchy point) is obtained by

searching along the projected gradient direction. Starting with the steepest descent

search direction from the current point, the search direction is “bent” when a bound is

encountered so that the control vector stays within the trust-region and the upper and

lower bound constraints. The first local minimizer of Qk along the piecewise linear

search path is referred to as the Cauchy point. In the second stage, the elements

that have encountered the bounds during the Cauchy point calculation are fixed at

their bounds and the quadratic function is then minimized in the subspace of the free

variables, which are not at the bound, using a conjugate gradient method.
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2.3.1 Cauchy point calculation

For the Cauchy point calculation, the search path before any bound is encoun-

tered is defined as

u(t) = uk − tgk, (2.32)

where t is the step size and gk is the gradient of the quadratic model evaluated at uk,

which is equal to the gradient of β at uk. The step size for the ith entry of u to reach

its bound is calculated by

t̃i =


(uki −min[uki + ∆k, uupi ])/gki , gki < 0,

(uki −max[uki −∆k, ulowi ])/gki , gki > 0,

∞, gki = 0.

(2.33)

where uki is the ith component of control vector uk. These step sizes {t̃i} (i =

1, 2, ..., Nu) are then sorted in increasing order into a series {tj} (j = 1, 2, ..., Nu)

where tj ≤ tj+1. Along the search path, u(tj) is called a break point at which

a control variable reaches its bound. The line segment of the search path on the

interval [tj−1, tj) can be written as

u(∆t) = uk(tj−1) + ∆tpkj−1, (2.34)

where uk(tj−1) is the (j − 1)st break point at the kth iteration, ∆t = t − tj−1 > 0

and pkj−1 is the projected gradient after encountering (j − 1) bounds. The projected

gradient pkj−1 is defined as

pkj−1 = −Aj−1 ◦ gk, (2.35)

where ◦ is the Schur product and Aj−1 is an Nu-dimensional vector. The vector Aj−1

has (j − 1) “0” elements corresponding to the (j − 1) control variables that have

encountered the bounds and the rest of the components in Aj−1 are “1”.
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Substituting Eq. 2.34 into the quadratic model (Eq. 2.28) for the interval

[tj−1, tj) yields

Qk
(
u(∆t)

)
=β(uk) + (uk(tj−1) + ∆t pkj−1 − uk)Tgk

+
1

2
(uk(tj−1) + ∆t pkj−1 − uk)TBk(uk(tj−1) + ∆t pkj−1 − uk)

=fj−1 + f ′j−1∆t+
1

2
f ′′j−1∆t

2,

(2.36)

where ∆t ∈ [0, tj − tj−1]; fj−1, f ′j−1 and f ′′j−1, respectively, are given by

fj−1 = β(uk) + (uk(tj−1)− uk)Tgk +
1

2
(uk(tj−1)− uk)TBk(uk(tj−1)− uk),

f ′j−1 = (gk)Tpkj−1 + (uk(tj−1)− uk)TBk(pkj−1),

f ′′j−1 = (pkj−1)
TBk(pkj−1).

(2.37)

Note that f ′′j−1 is always positive as Bk is positive definite.

Suppose that no local minimizer is found yet after searching all the line seg-

ments before tj−1. To check if there is a local minimizer at the interval [tj−1, tj),

differentiating Qk
(
u(∆t)

)
with respect to ∆t and setting it equal to zero yields,

∆t∗ = −f ′j−1/f ′′j−1. (2.38)

If ∆t∗ ∈ [0, tj − tj−1), there is a local minimizer of Qk
(
u(∆t)

)
at t∗ = tj−1 + ∆t∗.

If f ′j−1 > 0, then Qk(∆t) is a monotone increasing function in ∆t∗ ∈ [0, tj − tj−1).

Therefore, there is a local minimizer at t∗ = tj−1 when f ′j−1 > 0. Then the Cauchy

point is uc = u(t∗). In all other cases, there is no local minimizer in this interval and

the search is moved to the next interval [tj, tj+1).

If the Cauchy point is identified in the interval [tj−1, tj) and j < Nu, there are

still some free variables and the subspace minimization is solved using a conjugate

gradient method to obtain a better minimizer within the intersection of the trust
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region and the original bounds. If j = Nu, all the control variables are fixed at their

bounds and no subspace minimization is necessary.

2.3.2 Subspace minimization

The components of the control vector that have reached the bounds (including

upper and lower bounds and the trust-region bounds) at the Cauchy point uc are fixed

at their bounds. These components are defined as the active bound constraint set

A(uc) = {i|uci = min[uki + ∆k, uupi ] or uci = max[uki −∆k, ulowi ]}, (2.39)

where ui denotes the ith component in the vector of u. The subspace minimization

problem minimizes Qk(u) by adjusting the control variables that are not in the active

bound constraint set A(uc) subject to the trust-region and bound constraints. Let û

denote a column vector which consists all the components of u that are not in A(uc).

The quadratic function Qk(û) can be rewritten as

Qk(û) = β(uk) + (û− uk)T ĝk +
1

2
(û− uk)T B̂k(û− uk), (2.40)

where ĝk and B̂k are, respectively, the gradient and the Hessian of β with respective

to ûk. Note that it is not necessary to recalculate the gradient ĝk and the Hessian

matrix B̂k, as ĝk is a sub-vector of the gradient gk and B̂k is a sub-matrix of the

approximate Hessian matrix Bk. The components of ĝk and B̂k correspond to the

control sub-vector û. Then this minimization problem becomes

min Qk(û),

subject to max[ûkj −∆k, ûlowj ] ≤ ûj ≤ min[ûkj + ∆k, ûupj ],

(2.41)

where ûj is the jth component in the vector of û. Note that the components in

the active set are fixed at the Cauchy point, i.e., ui = uci , i ∈ A(uc) during sub-
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space minimization. The subspace minimization is performed using the constrained

conjugate-gradient algorithm in [11]. Let r̂ denote the gradient of the quadratic

function Qk(û),

r̂ = ĝk + B̂k(û− ûk). (2.42)

For an unconstrained problem, the minimizer is found when the gradient of the ob-

jective function is zero. In this case, the minimization problem becomes a problem of

solving the linear system of equations,

ĝk + B̂k(û− ûk) = 0. (2.43)

Therefore, r̂ is also referred to as the “residual”. However, for the constrained problem

in Eq. 2.41, the minimizer is found when the `2 norm of r̂ is smaller than certain

convergence tolerance.

In the constrained conjugate gradient algorithm [11], the conjugate gradient

search direction at the (ν)th iteration is a combination of the current residual r̂ν and

the previous conjugate gradient search direction p̂ν−1,

p̂ν = −r̂ν +
(r̂ν)T (r̂ν)

(r̂ν−1)T (r̂ν−1)
p̂ν−1. (2.44)

Note that for initialization, p̂0 = 0, i.e., the search direction is the negative gradient

direction of the quadratic model. The control sub-vector is then updated as

ûν = ûν−1 + αp̂ν , (2.45)

where α is the step size. If the curvature is not positive in the direction p̂ν , i.e.,

(p̂ν)T B̂k(p̂ν) ≤ 0, the minimum of the quadratic function should be found at either

the upper bound or the lower bound. Precisely, α takes the maximum allowable

step size α1 and the subspace minimization is terminated at û∗ = ûν−1 + α1p̂
ν . The
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maximum allowable step size α1 is calculated such that the trust-region bounds and

the original control vector bounds are not violated.

α1 = min (αmax,j), (2.46)

where

αmax,j =


(max[ûkj −∆k, ûlowj ]− ûν−1j )/p̂νj , if p̂νj < 0,

(min[ûkj + ∆k, ûupj ]− ûν−1j )/p̂νj , if p̂νj > 0.

(2.47)

If (p̂ν)T B̂k(p̂ν) > 0, then the step size α is calculated as

α = min(α1, α2), (2.48)

where α2 is calculated by

α2 =
(r̂ν)T (r̂ν)

(p̂ν)T B̂k(p̂ν)
. (2.49)

If the step size takes the control vector to the bound, i.e., α1 ≤ α2, the subspace

minimization is terminated at û∗ = ûν . Otherwise, the subspace minimization con-

tinues to the next iteration ν + 1. If no bound is encountered during the subspace

minimization, the conjugate gradient algorithm is terminated when the square root

of the `2 norm of the residual is smaller than a prescribed value εk,

√
(r̂ν)T (r̂ν) ≤ εk. (2.50)

To assure a superlinear convergence rate, Conn et al. [11] suggests to using the con-

vergence criterion parameter εk determined by

εk = min

(
0.1,

√
‖ gk ‖∞

)
‖ gk ‖∞, (2.51)
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where gk is the projected gradient

gkj =


ûkj −max[ûkj −∆k, ûlowj ], if ûkj − ĝkj ≤ max[ûkj −∆k, ûlowj ],

ûkj −min[ûkj + ∆k, ûupj ], if ûkj − ĝkj ≥ min[ûkj + ∆k, ûupj ],

− ĝkj , Otherwise.

(2.52)

2.3.3 The non-monotone trust-region method

Once the minimizer of the quadratic function in Eq. 2.31 is found using the

above gradient-projection trust-region method, the objective function β is evaluated

by running the reservoir simulator. Before moving to the (k + 1)st iteration, the

trust-region radius for the next iteration ∆k+1 is updated according to the quality of

the quadratic approximation to the objective function. The quality of the quadratic

approximation is defined as

ρ
(k)
1 =

β(uk)− β(ũk+1)

Qk(uk)−Qk(ũk+1)
, (2.53)

where ũk+1 is the minimizer of quadratic function. Large positive ρ
(k)
1 value indicates

that the objective function β decreases as the quadratic function decreases and the

quadratic function is a good approximation to the objective function. A small or

negative value of ρ
(k)
1 value indicates the quality of the quadratic function is poor.

The method which directly uses the quality parameter, ρ
(k)
1 , to obtain the trust-

region radius for the next iteration is called a monotone type method, in which the

algorithm only accepts ũk+1 if ρ
(k)
1 is greater than or equal to a specified positive value,

e.g. 0.2. However, for a large-scale problem with a large number of control variables,

the quadratic model may be a very poor approximation to the objective function and

the quality parameter ρ
(k)
1 can be significantly smaller than the specified value, e.g.

0.2, for two consecutive iteration. In this case, the trust-region radius will shrink

very quickly and hence the optimization converges quickly to a local solution. Toint
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[44] proposed a non-monotone trust-region method, which checks the quality of the

quadratic approximation using not only two successive iterations as in Eq. 2.53 but

also a quadratic approximation quality parameter ρ
(k)
2 within the past few iterations.

The quality parameter, ρ
(k)
2 , is defined as

ρ
(k)
2 =

βh − β(ũk+1)

Qh −Qk(ũk+1)
, (2.54)

where βh is the maximum objective function value between the (k − h)th iteration

and the kth iteration and Qh is the value of quadratic model corresponding to the

iteration where βh is computed. In Toint [44], the trust-region radius is updated

according to the quadratic approximation quality parameter ρk = max[ρ
(k)
1 , ρ

(k)
2 ] as

follows

∆k+1 =


α1∆

k, ρk < ξ1,

∆k, ξ1 ≤ ρk < ξ2,

α2∆
k, Otherwise,

(2.55)

where 0 < ξ1 ≤ ξ2 < 1 and 0 < α1 < 1.0 < α2. If ρk ≥ ξ1, the trial point

ũk+1 is accepted, i.e. uk+1 = ũk+1; otherwise, uk+1 = uk. For the examples in this

dissertation, the following values are used: ξ1=0.2, ξ2=0.8, α1=0.0625, α2=2.0.

2.4 Summary of Algorithm

Here we summarize the steps of the augmented Lagrangian algorithm.

Step 1: Initialize the outer-loop by setting ` = 0, where ` is the outer-loop

iteration index. Set η0 = 0.1 and choose an initial value for the penalty parameter

µ. Note that the initial Lagrange multipliers are either set equal to zero or computed

using Eqs. 2.21 and 2.22.

Step 2: Inner-loop optimization. We minimize a function β`, which is the

negative of the augmented Lagrangian function βL defined by Eq. 2.12 with the
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Lagrange multipliers and the penalty parameter determined in the outer loop. The

minimization problem in the inner-loop is given by Eq. 2.27.

Step 2.1: Initialization of inner loop. Set the initial trust-region radius ∆0 and

k = 0, where k is the iteration index for the inner-loop iterations. The initial Hessian

matrix B0 is set to the identity matrix.

Step 2.2: Calculate the gradient of βk,` and update the quadratic model Qk

which approximates βk,`. Note that we update the approximate Hessian matrix Bk

using the BFGS method.

Step 2.3: Use the infinity norm to define the shape of the trust region. Apply

the gradient-projection trust-region method to find an optimal solution uk,` for the

minimization problem given by

min Qk(u),

subject to max[uk,`i −∆k, ulowi ] ≤ ui ≤ min[uk,`i + ∆k, uupi ], i = 1, 2, ..., Nu.

(2.56)

Step 2.4: Check the convergence criteria for the inner-loop iterations. The

stopping criteria used here are: k is greater than the maximum allowable iteration

number; Or the relative change in the function β is less than or equal to 10−4, i.e.

β(uk,`)− β(uk+1,`)

β(uk,`)
≤ 10−4, (2.57)

and the relative change of the `2 norm of control vector is smaller than or equal to

10−3, i.e.

‖uk+1,` − uk,`‖
max(‖uk,`‖, 1.0)

≤ 10−3; (2.58)

Or the trust-region radius is smaller than a minimum allowable value rmin; rmin is

generally set to a very small value, e.g. 10−5; however, a very small trust-region

radius is not a good choice for production optimization, as the objective function

may not be sensitive to a small change of control variables. In this study, we choose
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to use rmin defined by

rmin = 0.001× min
1≤i≤Nu

[uupi − ulowi ]. (2.59)

If the criteria are not satisfied, then set k = k + 1, update trust region radius

with Eq. 2.55 and go back to Step 2.2; otherwise, exit the inner loop and continue to

Step 3.

Step 3: Check the average constraint violation parameter σcv defined in Eq. 2.14.

If σcv ≤ 0.01 or nv/[Ne × (ne + ni)] is less than 0.001, the outer loop converges and

the whole algorithm is terminated; otherwise, then do the following:

Step 3.1: If 0.01 ≤ σcv ≤ η`, keep the penalty parameter unchanged, i.e.

µ`+1 = µ`, update the Lagrange multipliers based on Eq. 2.15 and Eq. 2.16 and

update η`+1 = η`(µ`)0.9.

Step 3.2: If σcv > η`, keep the Lagrange multipliers unchanged and update

the penalty parameter µ`+1 = τµ` and η`+1 = η0(µ`+1)0.1.

Step 3.3: Set ` = `+ 1, go back to Step 2.

The above algorithm follows the idea in the LANCELOT [13]. The major

differences are:

1. The inequality constraints are handled following the idea introduced in [31] as

shown in Eqs. 2.11 and 2.12. We do not introduce the slack variable explicitly.

However, LANCELOT uses the slack variables to convert the inequality con-

straints to equality constraints and treats the slack variables as pseudo control

variables. Although the gradient of objective function with respect to the slack

variables is easy to calculate, it will inevitably enlarge the dimension of the

gradient and the approximate Hessian matrix and possibly make the problem

more ill-posed.

2. To check convergence of the inner-loop iteration, LANCELOT only check whether
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the `2 or infinity norm of projected gradient to the original bounds, uup and

ulow, is smaller than a tolerance (e.g. 10−3). The projected gradient onto the

original bounds can be formulated as

gi =


ui − ulowi , if uki − gki ≤ ulowi ,

ui − uupi , if uki − gki ≥ uupi ,

− gi, otherwise.

(2.60)

In many experiments, the trust-region radius reduces to a small value due to

the poor approximation of quadratic model to original objective function. The

trust-region radius restricts the change of control variables for the next iteration.

In this case, the ` − 2 or infinity norm of the projected gradient onto original

bounds may be much larger than the distance between the current control vector

and the trust-region bounds. As a result, the inner-loop iteration will not

stop until the convergence criteria is satisfied. The gradient projection onto

the original bound as in Eq. 2.60 makes the inner-loop convergence criterion

very stringent, especially at the early outer-loop iterations, where an accurate

solution to an inaccurate approximation is not necessary. This criterion makes

the algorithm very inefficient, as many simulation runs are required for these

inner-loop iterations. In this study, we relax the convergence criterion for the

inner-loop iteration and use the stopping criteria described in Step 2.4. Our

limited experiments show this modification results in a more efficient algorithm

for production optimization.

3. Another difference is that LANCELOT requires the gradient of each constraint,

which requires one adjoint solution per constraint, whereas our algorithm only

requires the gradient of the whole augmented Lagrangian function, which re-

quires only one adjoint run.
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CHAPTER 3

ADJOINT GRADIENT CALCULATION

In this chapter, we develop the adjoint procedure for the gradient calculation of

the augmented Lagrangian function with respect to the control variables for a black-

oil simulator. Although all our examples pertain to a two-phase water-oil system, the

adjoint procedure is developed for a general three-phase system.

3.1 The Reservoir Simulator

We use an in-house simulator, Chevron Limited Application Simulation Sys-

tem (CLASS), for this research. This simulator is based on a fully-implicit, finite-

difference formulation of three-phase flow black-oil equations which is considered in

a three-dimensional (x− y− z coordinate) system. We suppose there are Nx, Ny and

Nz gridblocks in the x−, y− and z− directions, respectively. Let N denote the total

number of grid blocks so N = Nx ×Ny ×Nz. Capillary pressures and gravity effects

are included in the simulator but will be neglected in the adjoint formulation. At the

ith gridblock, there are three unknown primary variables, i.e., the grid block pressure

(pi), oil saturation (So,i) and gas saturation (Sg,i) for Sg,i > 0 or dissolved gas oil

ratio (Rs,i) for Sg,i = 0. Throughout, we let x denote gas saturation or dissolved gas

oil ratio at the ith gridblock, i.e.,

xi =


Sg,i, for Sg,i > 0,

Rs,i, for Sg,i = 0.

(3.1)

In addition, the flowing wellbore pressure (pwf,l) at the lth well at a specified

depth is also considered as a primary variable. At each gridblock, we apply three

38



basic finite-difference equations, each of which represents the mass balance for each

of the three components, i.e., oil, water and gas. In addition, a constraint is applied

at each of the Nw wells to yield Nw additional equations. At each well and each

simulation time step, either an individual phase flow rate, the total flow rate or the

wellbore pressure may be specified as a well constraint.

Throughout, we let the superscript n denote the simulation time step and

yn denote a column vector consisting of the set of primary variables at time tn.

The total number of simulation time steps is denoted by NL. The total number of

primary variables in yn is 3×N +Nw. For each time step tn, we obtain the primary

variable vector yn from the simulator CLASS and compute all the derivatives required

for constructing the adjoint system based on the rock and fluid property tables.

Let Un be a column vector which contains a set of control variables at simulation

time step n. Note that the control vector u in Eq. 1.3 contains control variables at

each control step which may have several corresponding simulation steps; however,

U = [(U1)T , (U2)T , ..., (UNL)T ]T contains control variables at each simulation time

step, so the dimension of u is not the same as the dimension of U . We first calculate

the gradient with respect to U and then convert to the gradient with respect to control

vector u, which will be discussed later. Following Zhang [51], the finite difference

equations for phase π (π = o, w, g) at gridblock i can be written as

fn+1
π,i = fπ,i(y

n+1, yn, Un+1) = 0, (3.2)

for n = 0, 1, ..., NL − 1. The well constraints are represented by

fn+1
wf,l = fwf,l(y

n+1, yn, Un+1) = 0, (3.3)

for l = 1, 2, ..., Nw and n = 0, 1, ..., NL−1. If the flowing wellbore pressure pn+1
wf,l at the

datum depth is specified to be equal to pn+1
wf,l,0, which can be a component in Un+1,
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the well constraint equations can be simplified to

fn+1
wf,l = pn+1

wf,l − p
n+1
wf,l,0 = 0. (3.4)

In CLASS, the three equations for three-phase problem that are solved at

gridblock i are

fn+1
1,i = fn+1

o,i + fn+1
w,i + fn+1

g,i = 0, (3.5)

fn+1
2,i = fn+1

o,i = 0, (3.6)

fn+1
3,i = fn+1

g,i = 0, (3.7)

where n = 0, 1, ..., NL − 1. As the rock properties are specified or assumed to be

known, the complete system of simulation equations can be formally written as

fn+1 = f(yn+1, yn, Un+1) =



fn+1
1,1

fn+1
o,1

fn+1
g,1

fn+1
1,2

...

fn+1
g,N

fn+1
wf,1

...

fn+1
wf,Nw



= 0. (3.8)

In CLASS, Eq. 3.8 is solved by the Newton-Raphson method [3].

3.2 Adjoint Gradient Calculation

Maximization of the augmented Lagrangian function defined Eq. 2.12 in the

inner loop iterations using the gradient-projection trust-region method requires com-

putation of the gradient of the augmented Lagrangian function, β[y, u], for the speci-
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fied geological model mj. As the augmented Lagrangian function consists of the NPV

and terms representing constraints, the objective function, β[y, u], is an expression

of the well flow rates, which are functions of some primary variables, y1, ..., yNL , and

the control variables, u1, u2, ..., uNc , where Nc is the number of control steps. The

primary variables and the control variables are independent variables during adjoint

gradient derivation.

As each control step may contain several simulation time steps, the control

variables at a specified control step are identical to the control variables at the corre-

sponding simulation time steps. We first calculate the gradient of β with respect to

U and then convert to the gradient of β with respect to u. If we use ki to denote the

number of simulation steps for the ith control step, then

Nc∑
i=1

ki = NL, (3.9)

and

u1 =U0 = U1 = ... = Uk1 ,

u2 =Uk1+1 = ... = Uk1+k2 ,

...

uNc =Uk1+...+k(Nc−1) = ... = UNL .

(3.10)

Therefore, β[y, u] can also be written as β[y, U ] which is the function of the control

variables, Un, at each simulation time tn, n = 1, 2, ..., NL. To calculate the gradient

of the the functional for the specified geological model mj, we define the Lagrangian

function as

Φ = β[y, U ] +

NL∑
n=0

(λn+1)Tfn+1, (3.11)

where λn+1 is a vector of adjoint variables at simulation time tn+1, and is given by

λn+1 = [λn+1
1 , λn+1

2 , ..., λn+1
3×N+Nw

]T . (3.12)
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The total derivatives of Φ is

dΦ =dβ +

NL∑
n=0

{
(λn+1)T [∇yn+1(fn+1)T ]Tdyn+1 + (λn+1)T [∇Un+1(fn+1)T ]TdUn+1

}
+

NL∑
n=0

(λn+1)T [∇yn(fn+1)T ]Tdyn

=dβ +

NL∑
n=1

{
[(λn)T [∇yn(fn)T ]T + (λn+1)T [∇yn(fn+1)T ]T ]dyn

+ (λn)T [∇Un(fn)T ]TdUn
}

+ (λ1)T [∇y0(f
1)T ]Tdy0

+ (λNL+1)T [∇yNL+1(fNL+1)T ]TdyNL+1 + (λNL+1)T [∇UNL+1(fNL+1)T ]TdUNL+1.

(3.13)

The initial conditions are fixed and independent of the model parameters and

the control variables, i.e., dy0 = 0. Choosing λNL+1 = 0 in Eq. 3.13 yields

dΦ =dβ +

NL∑
n=1

{[
(λn)T [∇yn(fn)T ]T + (λn+1)T [∇yn(fn+1)T ]T

]
dyn

+ (λn)T [∇Un(fn)T ]TdUn
}
.

(3.14)

The total differential of β can be written as

dβ =

NL∑
n=1

{[∇ynβ]Tdyn + [∇Unβ]TdUn}. (3.15)

Therefore, the total derivatives of Φ can be rewritten as

dΦ =

NL∑
n=1

{[∇ynβ]T + (λn)T [∇yn(fn)T ]T + (λn+1)T [∇yn(fn+1)T ]T}dyn

+

NL∑
n=1

{
(λn)T [∇Un(fn)T ]T + [∇Unβ]T

}
dUn.

(3.16)

To obtain the adjoint gradient of β with respect to Un, we first choose λ’s as
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the solution of

[∇ynβ]T + (λn)T [∇yn(fn)T ]T + (λn+1)T [∇yn(fn+1)T ]T = 0. (3.17)

Taking the transpose of Eq. 3.17 gives the adjoint system

[∇yn(fn)T ]λn = −[∇yn(fn+1)T ]λn+1 −∇ynβ, (3.18)

where

∇yn(fn)T =



∂fn1,1
∂pn1

∂fno,1
∂pn1

∂fng,1
∂pn1

· · · ∂fng,N
∂pn1

∂fnwf,1
∂pn1

· · · ∂fnwf,Nw
∂pn1

∂fn1,1
∂Sno,1

∂fno,1
∂Sno,1

∂fng,1
∂Sno,1

· · · ∂fng,N
∂Sno,1

∂fnwf,1
∂Sno,1

· · · ∂fnwf,Nw
∂Sno,1

∂fn1,1
∂xn1

∂fno,1
∂xn1

∂fng,1
∂xn1

· · · ∂fng,N
∂xn1

∂fnwf,1
∂xn1

· · · ∂fnwf,Nw
∂xn1

...
...

... · · · ...
... · · · ...

∂fn1,1
∂xnN

∂fno,1
∂xnN

∂fng,1
∂xnN

· · · ∂fng,N
∂xnN

∂fnwf,1
∂xnN

· · · ∂fnwf,Nw
∂xnN

∂fn1,1
∂pnwf,1

∂fno,1
∂pnwf,1

∂fng,1
∂pnwf,1

· · · ∂fng,N
∂pnwf,1

∂fnwf,1
∂pnwf,1

· · · ∂fnwf,Nw
∂pnwf,1

...
...

... · · · ...
... · · · ...

∂fn1,1
∂pnwf,Nw

∂fno,1
∂pnwf,Nw

∂fng,1
∂pnwf,Nw

· · · ∂fng,N
∂pnwf,Nw

∂fnwf,1
∂pnwf,Nw

· · · ∂fnwf,Nw
∂pnwf,Nw



,

(3.19)

∇yn(fn+1)T =



∂fn+1
1,1

∂pn1

∂fn+1
o,1

∂pn1

∂fn+1
g,1

∂pn1
· · · ∂fn+1

g,N

∂pn1

∂fn+1
wf,1

∂pn1
· · · ∂fn+1

wf,Nw

∂pn1
∂fn+1

1,1

∂Sno,1

∂fn+1
o,1

∂Sno,1

∂fn+1
g,1

∂Sno,1
· · · ∂fn+1

g,N

∂Sno,1

∂fn+1
wf,1

∂Sno,1
· · · ∂fn+1

wf,Nw

∂Sno,1

∂fn+1
1,1

∂xn1

∂fn+1
o,1

∂xn1

∂fn+1
g,1

∂xn1
· · · ∂fn+1

g,N

∂xn1

∂fn+1
wf,1

∂xn1
· · · ∂fn+1

wf,Nw

∂xn1
...

...
... · · · ...

... · · · ...

∂fn+1
1,1

∂xnN

∂fn+1
o,1

∂xnN

∂fn+1
g,1

∂xnN
· · · ∂fn+1

g,N

∂xnN

∂fn+1
wf,1

∂xnN
· · · ∂fn+1

wf,Nw

∂xnN
∂fn+1

1,1

∂pnwf,1

∂fn+1
o,1

∂pnwf,1

∂fn+1
g,1

∂pnwf,1
· · · ∂fn+1

g,N

∂pnwf,1

∂fn+1
wf,1

∂pnwf,1
· · · ∂fn+1

wf,Nw

∂pnwf,1
...

...
... · · · ...

... · · · ...

∂fn+1
1,1

∂pnwf,Nw

∂fn+1
o,1

∂pnwf,Nw

∂fn+1
g,1

∂pnwf,Nw
· · · ∂fn+1

g,N

∂pnwf,Nw

∂fn+1
wf,1

∂pnwf,Nw
· · · ∂fn+1

wf,Nw

∂pnwf,Nw



,

(3.20)
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and

∇ynβ =

(
∂β
∂pn1

, ∂β
∂Sno,1

, ∂β
∂xn1

, · · · , ∂β
∂xnN

, ∂β
∂pnwf,1

, · · · , ∂β
∂pnwf,Nw

)T
(3.21)

Note that the coefficient matrix, ∇yn(fn)T , in the adjoint system is simply

the transpose of the Jacobian matrix evaluated at yn which must be saved from the

forward simulation run. The details on the evaluation of the terms in Eq. 3.19 and

Eq. 3.20 can be found in [26, 51]. The augmented Lagrangian function β consists

of two parts: the NPV and the augmented Lagrangian terms of constraints. The

derivative of β with respect to primary variables can be written as

∇ynβ = ∇ynJL −
ne∑
i=1

[(
λe,i +

se,i
µ
ei(y

n, Un)

)
∇ynei(y

n, Un)

]
−

ni∑
i=1

∇ynψi(y
n, Un),

(3.22)

where

∇ynψi(y
n, Un) =


0, ci(y

n, Un) ≤ −µλc,i/sc,i,

[λc,i +
sc,i
µ
ci(y

n, Un)]∇ynci(y
n, Un), otherwise.

(3.23)

In order to obtain the derivative of β with respect to the primary vector at the time

step n, we need to calculate the derivatives of NPV and constraints with respect to

yn. For three-phase flow, the life-cycle NPV is given by

JL(y, u) =

NL∑
n=1

[ Np∑
i=1

(
rno q

n
o,i − rnwqnw,i + rng q

n
g,i

)
−

Nwi∑
i=1

rnwiq
n
wi,i −

Ngi∑
i=1

rngiq
n
gi,i

] ∆tn

(1 + b)tn/365
.

(3.24)

The derivative of life-cycle NPV with respect to yn should be a summation of the

derivatives of flow rates with respect to yn over all the time steps. Similarly, the

physical constraints, such as the field injection rate constraint, producing water oil

ratio constraint or production well liquid rate, can be written as the functions of flow
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rates. For example, the water oil ratio (WOR) of the ith production well at time step

n is given by

WORn
i =

qnw,i
qno,i

. (3.25)

Therefore, to calculate the derivatives of flow rates with respect to the primary vector

yn, it is essential to obtain ∇ynβ. We will provide the derivatives of flow rates with

respect to the reservoir primary variables in Appendix A. We solve Eq. 3.18 with

the condition λNL+1 = 0 backward in time (for n = NL, NL − 1, ..., 1) for the adjoint

variables, λn, n = NL, ..., 1. The matrices in Eq. 3.18 are independent of the adjoint

variables, which indicates that the computational cost of solving the linear adjoint

system is cheaper than that of solving the forward simulation equations which are

nonlinear.

Once the adjoint solutions, λn, n = 1, 2, ..., NL are available, we can calculate

the total differential of Φ with

dΦ =

NL∑
n=1

{
(λn)T [∇Un(fn)T ]T + [∇Unβ]T

}
dUn, (3.26)

which is obtained by using Eq. 3.17 in Eq. 3.16. The gradient of the functional Φ

with respect to Un is

∇UnΦ = [∇Un(fn)T ]λn +∇Unβ, (3.27)

where ∇Unβ represents the explicit partial derivative of the augmented Lagrangian

function with respect to control Un, while ∇UnΦ represents the final gradient of the

augmented Lagrangian function with respect to control Un. Note that β is a function

of the flow rates and we treat the flow rates as the functions of the primary variables.

If a well flowing BHP, denoted by pwf , is specified, phase flow rates of that

well are computed by Peaceman’s Equation [34]. Throughout, we let Bm and µm

(m = o, w, g) denote, respectively, the phase formation volume factor and the phase

viscosity. The phase flow rates of a production well l at a completion of layer k (the
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wellbore gridblock with z−direction gridblock index equal to k) are

qno,il,jl,k = WIil,jl,k

(
kro
Boµo

)n
il,jl,k

(pnil,jl,k − pnwf,il,jl,k), (3.28)

qnw,il,jl,k = WIil,jl,k

(
krw
Bwµw

)n
il,jl,k

(pnil,jl,k − pnwf,il,jl,k), (3.29)

and

qng,il,jl,k = WIil,jl,k

(
krg
Bgµg

+Rs
kro
Boµo

)n
il,jl,k

(pnil,jl,k − pnwf,il,jl,k), (3.30)

where (il,jl) indicates the location of the producer well l; WIil,jl,k denotes the well

index term which represents the well geometry. The rates qno,il,jl,k and qnw,il,jl,k are in

units of STB/D, and the gas rate qng,il,jl,k has units of SCF/D. Similarly, the injection

rate, qnwi,il,jl,k, of an injection well l is

qnwi,il,jl,k = WIil,jl,k

(
krw
Bwµw

)n
il,jl,k

(pnwf,il,jl,k − pnil,jl,k). (3.31)

Note that we use a positive value for injection rate in NPV defined in Eq. 3.24. The

flow rates in the functional β are actually the prediction data obtained with the

forward simulation run and they are not explicit expressions of the control variables.

Therefore, ∇Unβ is always equal to 0. With ∇Unβ = 0, the gradient of functional

with respect to Un (Eq. 3.27) is rewritten as

∇UnΦ = [∇Un(fn)T ]λn. (3.32)

Again, as the flow rates in flow equations are not explicit expressions for control

variables, the derivatives of flow equations with respect to control variables are 0.

The derivatives of well equations with respect to the controls are always −1. For
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example, if oil rate is specified in lth well, i.e. Un
l = qno,l, the well equation is

fnwf,l =
∑
k

WIil,jl,k

(
kro
Boµo

)n
il,jl,k

(pnil,jl,k − pnwf,il,jl,k)− qno,l = 0. (3.33)

The derivative of the well equation with respect to qno,l is −1. If the bottom hole

pressure is specified in the lth well, i.e. Un
l = pnwf,l, the well equation is

fnwf,l = pnwf,il,jl − pnwf,l = 0. (3.34)

The derivative of the well equation with respect to pnwf,l is −1.

As each control step may contain several simulation time steps, the control

variables at each simulation time step can be treated as functions of the control

variables at the corresponding control step. According to chain rule, the gradient of

Φ with respect to the control variable for a specified well at the control step should be

a summation of partial derivatives of Φ with respect to the control variables evaluated

at the simulation time steps within the control step interval. From Eq. 3.10, we have

ui = Uk1+...+ki−1 = ... = Uk1+...+ki , (3.35)

so

∇uiΦ =

k1+...+ki∑
n=k1+...+ki−1

∇ui(U
n)T∇UnΦ. (3.36)

From Eq. 3.35, we deduce that ∇ui(U
n)T is equal to an identity matrix. Therefore,

∇uiΦ =

k1+...+ki∑
n=k1+...+ki−1

∇UnΦ =

k1+...+ki∑
n=k1+...+ki−1

{
[∇Un(fn)T ]λn

}
. (3.37)
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CHAPTER 4

PRODUCTION OPTIMIZATION FOR A SINGLE RESERVOIR

MODEL

We provide three cases in this chapter to study the performance of the aug-

mented Lagrangian method for a single reservoir model. In the first case, we optimize

NPV and test the choice of scaling factors, initial values for Lagrange multipliers and

the penalty parameter, with a 2-dimensional reservoir. In the second case, we optimize

NPV with two horizontal wells (one injector and one producer) in a waterflooding

project and consider the optimization under an equality or inequality constraints.

As the in-house simulator, CLASS (CHEVRON LIMITED APPLICATIONS SIM-

ULATION SYSTEM), does not have a horizontal well model, we apply a vertical

well for each segment in the horizontal well. We also compare the results obtained

with the gradient-projection trust-region method to the results obtained from the

ensemble-based optimization (EnOpt) algorithm for this case. In the third case, we

optimize NPV for the Brugge field case which was a benchmark case set up by TNO

(an independent research organization) in 2008 in order to test different optimization

algorithms [35]. We compare the generalized reduced gradient (GRG) algorithm ap-

plied in simulator Eclipse 300 with the augmented Lagrangian method. The first two

cases are done with the simulator CLASS, as the constraints are nonlinear functions

of control variables. The third case is done with the simulator Eclipse 300, as the

Brugge reservoir model has faults, CLASS is not able to handle this model.

4.1 Example 1: A 2D Fluvial Reservoir

In this example, we consider the optimization of waterflooding of a two-
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dimensional synthetic reservoir with a simulation model defined on a 25 × 25 × 1

grid. The grid block size is defined as ∆x = ∆y = 200 ft and the thickness of the

reservoir is 20 ft. The porosity for the reservoir is homogeneous and fixed equal to

0.2. Fig. 4.1 shows the log-permeability distribution and the well locations. The

reservoir is under waterflooding with 4 five-spot patterns as shown in Figs. 4.1, where

the injectors INJ2, INJ4, INJ6 and INJ8 and the producers Pro2 and Pro3 are lo-

cated in the high permeability region. As a result, water breakthrough would tend

to occur earlier in Pro2 and Pro3 than in the other two producers. The reservoir has

two phases, oil and water, and the water-oil relative permeability curves are shown

in Fig. 4.2. The related reservoir properties are summarized in Table 4.1.
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Figure 4.2: The water and oil relative
permeability curve.

Table 4.1: Reservoir properties

Grid block size 200 ft
Thickness 20 ft
ρosc 56 lb/ft3

ρwsc 62.4 lb/ft3

µo 1.4 cp at 3601.5 psi
µw 0.5 cp
Bo 1.22 RB/STB at 3601.5 psi
Bw 1.0042 RB/STB
Rock Compressibility 3× 10−5 psi−1

Top Depth 4800 ft
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All the producers are at BHP control with an upper bound of 6000 psi and a

lower bound of 2000 psi. Each injector is under injection rate control with an upper

bound of 1500 STB/D and a lower bound of 0. The anticipated total reservoir life is

1800 days and the control step size is set to 60 days so we have 30 control steps. The

total number of controls is 13 × 30 = 390. In order to discuss the effect of scaling

factors, we impose an average water/oil ratio (WOR) constraint over each control

step for each producer and a field injection rate constraint. The WOR constraint

(WOR ≤ 9.0) is a nonlinear function of the control variables through the reservoir

simulator. The maximum allowable field injection rate is set to 5000 STB/D. Each

control step has 4 WOR constraints plus 1 field injection rate constraint so the total

number of inequality constraints is 5× 30 = 150. The oil and water prices are set to

ro = $50 /STB, rw = $5.56 /STB, b = 10% and rw,inj = $0. As there is no equality

constraint, the augmented Lagrangian function can be rewritten as

β[u, λc, µ] = JL −
150∑
i=1

ψi, (4.1)

where ψi is defined by Eq. 2.11 and the inequality ci for field injection rate constraint

is defined by

ci =
9∑
j=1

qkinj,j − 5000 ≤ 0, k = 1, 2, ..., 30, (4.2)

for the kth control step and the inequality for WOR constraint is defined by

ci = qkw,j/q
k
o,j − 9 ≤ 0, k = 1, 2, ..., 30, (4.3)

for the jth producer at the kth control step.

The initial guesses for all the producer BHP controls are equal to their lower

bound of 2000 psi. The initial guesses for all the injection well rate controls are 560

STB/D. The initial total injection rate for the field is 560× 9 = 5040 STB/D, which

is a small violation of 40 STB/D over the constraint value. The purpose is to test
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whether our proposed estimate equation defined in Eq. 2.16 for the initial Lagrange

multipliers λ’s is suitable.

The comparison of the final NPVs is shown in Table 4.2. As WOR is compara-

tively a small value, a violation of the WOR constraint is negligible at early iterations

of the optimization process unless we increase its weight by using a large scaling pa-

rameter or use an excessively small value of the penalty parameter. However, if we

use an excessively small penalty parameter, the penalty term on field water injection

rate is a large negative value, which makes the other parts in augmented Lagrangian

function negligible. Rescaling reduces the number of iterations necessary to obtain

convergence, which can be seen from Table 4.2. The entries from the 2nd through the

7th row show the results for the case we do not use the scaling factors or sc,i = 1 for

i = 1, 2, ..., 150, and the entries of the remaining rows show the results for the case

we use the scaling factors set equal to 1/C2
i for i = 1, 2, ..., 150. Overall, by using

scaling factors, we are able to obtain higher NPVs with fewer simulation runs. For the

case without the scaling factors, the code fails to converge when the initial penalty

parameter is less than 10−4 due to some overflow problems in the adjoint gradient

calculation. Both the 2nd row and the 8th row show the optimization procedure does

not converge. As we set the maximum allowable number of outer-loop iterations to

10, the optimization iterations of the cases corresponding to the 2nd row and the

8th row are stopped. The constraints are not satisfied after 10 outer-loop iterations.

Due to the updates (reduction) of penalty parameter (only the penalty parameter is

updated at each outer-loop iteration for the cases corresponding to the 2nd row and

the 8th row in Table 4.2), the augmented Lagrangian function has big weights on the

terms, ψ’s, and then the augmented Lagrangian function reduces dramatically. If the

violation of constraint is significantly large, the penalty parameter is always decreased

and the augmented Lagrangian method is actually the pure penalty method, which

is very likely to have the ill conditioning and numerical problems for small values of
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the penalty parameter. As shown in Fig. 4.3(a), the augmented Lagrangian function

starts oscillating after 110 simulation runs because the constraints are not satisfied

in the inner-loop iterations.

Table 4.2: The performance of different parameters. Nµ: Number of µ updated; Nλ:
Number of λ updated.

sc,i µ0 λ0c,i Simu- Final Outer- Nµ Nλ Converge
lations NPV, $ Loop

1 10−1 0 123 1.94×108 10 9 0 No

1 10−1 max[0,
sc,ic

0
i

µ0
] 85 1.89×108 9 8 0 Yes

1 10−3 0 44 1.87×108 5 4 0 Yes

1 10−3 max[0,
sc,ic

0
i

µ0
] 31 1.85×108 5 4 0 Yes

1 10−4 0 28 1.85×108 4 3 0 Yes

1 10−4 max[0,
sc,ic

0
i

µ0
] 29 1.83×108 4 3 0 Yes

1/C2
i 10−6 0 74 1.93×108 10 9 0 No

1/C2
i 10−6 max[0,

sc,ic
0
i

µ0
] 74 1.96×108 8 7 0 Yes

1/C2
i 10−7 0 26 1.98×108 5 3 1 Yes

1/C2
i 10−7 max[0,

sc,ic
0
i

µ0
] 41 1.91×108 5 3 1 Yes

1/C2
i 10−8 0 26 1.97×108 3 1 1 Yes

1/C2
i 10−8 max[0,

sc,ic
0
i

µ0
] 17 1.81×108 1 0 0 Yes

Another comparison is done for initial Lagrange multipliers. With an ini-

tial penalty parameter µ0 = 10−1 and the initial Lagrange multipliers λ0c,i = 0, the

optimization requires a total of 123 simulation runs to obtain the optimal NPV of

$1.94×108. A careful check shows that the augmented Lagrangian function diverges

during late iteration and the FWIR does not satisfy the constraint value of 5000

STB/D. Also, we found the penalty parameter is updated at every outer-loop it-

eration, which means the optimization with µ0 = 10−1 and λ0c,i = 0 is purely the

penalty method which can sometimes lead to divergence problem. Another trial us-

ing the same µ0 and λ0c,i = max[0,
sc,ic

0
i

µ0
] obtains a lower NPV of $1.89×108 with 85

simulation runs. For the cases (the 8th and 9th rows) that we use sc,i = 1/C2
i and

µ0 = 10−6, using the initial Lagrange multipliers estimated from the violation at the
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first iteration guarantee the optimization to converge and even achieve 1.6% higher

NPV than using the initial Lagrange multiplier set equal to 0. However, in other

cases using sc,i = 1/C2
i and µ0 = 10−7 (or sc,i = 1/C2

i and µ0 = 10−8), using the

initial Lagrange multiplier set equal to 0 obtains a higher NPV with fewer simulation

runs than using the Lagrange multipliers estimated from Eq. 2.22. The comparison

indicates that estimating initial Lagrangian multipliers using λ0c,i = max[0,
sc,ic

0
i

µ0
] does

not offer clear advantages.

4.1.1 Optimization results without scaling factors

In this subsection, we provide the optimization results obtained with the scal-

ing factors set equal to 1, i.e. we do not consider rescaling the constraints in the

optimization problem.

Fig. 4.3 shows the optimization results obtained with µ0 = 10−1 and λ0c,i = 0.

Fig. 4.3(a) shows how the augmented Lagrangian function and NPV change as a

function of the number of simulation runs during optimization. The scale of the

augmented Lagrangian function is much larger than NPV during late iterations, so

the NPV curve appears as a line in Fig. 4.3(a). From Fig. 4.3(a), we can see that the

augmented Lagrangian function diverges during late iterations. Fig. 4.3(b) through

Fig. 4.3(e) show how WOR of each producer at each control step changes as a function

of the number of simulation runs. Each curve corresponds to the WOR of the specified

producer at a specified control step versus simulation runs. Note that the WOR

curves during late iterations are oscillating. Fig. 4.3(f) shows how FWIR at each

control step changes as a function of the number of simulation runs and each curve

corresponds to the FWIR at one specified control step. The highest FWIR at the

last simulation run is 5092 STB/D, which does not satisfy the constraint value 5000

STB/D. The algorithm keeps reducing the penalty parameter during the outer-loop

iterations, which results in decreasing the augmented Lagrangian function when the

constraints are not satisfied; see Fig. 4.3(a).
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Figure 4.3: The optimization results with µ0 = 10−1 and λ0c,i = 0.

Fig. 4.4 shows the optimization results using the initial penalty parameter µ0 =

10−1 and estimate initial Lagrange multiplier using Eq. 2.22, i.e. λ0c,i = max[0,
sc,ic

0
i

µ0
].

Fig. 4.4(a) shows how the augmented Lagrangian function and NPV change as a

function of the number of simulation runs during optimization. The augmented La-

grangian function converges within 85 simulation runs. Fig. 4.4(b) through Fig. 4.4(e)

show how WOR of each producer at each control step changes as a function of the
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number of simulation runs. Note that the WOR constraints at many control steps

for Pro1 are not satisfied before the 78th simulation runs, due to the weight on the

penalty term of WOR constraints during the early iterations is too small. Fig. 4.4(f)

shows how FWIR at each control step changes as a function of the number of simu-

lation runs. The highest FWIR at the last simulation run is 5044 STB/D, which is

within the tolerance (1% of the constraint value 5000 STB/D).
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Figure 4.4: The optimization results with µ0 = 10−1 and λ0c,i = max[0,
sc,ic

0
i

µ0
].

55



We also provide the optimization results with µ0 = 10−4 and λ0c,i = 0 in Fig. 4.5

and results with µ0 = 10−4 and λ0c,i = max[0,
sc,ic

0
i

µ0
] in Fig. 4.6. In these two cases,

it can be seen that the augmented Lagrangian function takes less than 30 simulation

runs to converge. The augmented Lagrangian function decreases sometimes along

the simulation number as we update the Lagrangian multipliers and the penalty

parameters. At the end of optimization, all the constraints are satisfied within certain

tolerance.
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Figure 4.5: The optimization results with µ0 = 10−4 and λ’s equal to 0.
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Figure 4.6: The optimization results with µ0 = 10−4 and λ0c,i = max[0,
sc,ic

0
i

µ0
].

Fig. 4.7 shows the estimated optimal injection well controls for different initial

penalty parameter and Lagrange multipliers. The x-axis corresponds to the control

steps and the y-axis corresponds to index of the injectors. It can be seen that the

injection rates in Fig. 4.7(a) and Fig. 4.7(b) are similar, and the same observation in

Fig. 4.7(c) and Fig. 4.7(d). It seems that the initial value of the Lagrangian multipliers

does not affect the optimal control that much compared to the initial value of penalty
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parameter. In the case we use µ0 = 10−1, INJ2 and INJ7 use low injection rate for

most of the control steps; however, in the case we use µ0 = 10−4, the optimal injection

rates for each injector are fairly close to each other.
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Figure 4.7: The estimated optimal injection well controls. (a) µ0 = 10−1, λ0 = 0; (b)

µ0 = 10−1, λ0c,i = max[0,
sc,ic

0
i

µ0
]; (c) µ0 = 10−4, λ0 = 0; (d) µ0 = 10−4,

λ0c,i = max[0,
sc,ic

0
i

µ0
].

Fig. 4.8 shows the estimated optimal BHP well controls for different initial

penalty parameter and Lagrange multipliers. The x-axis corresponds to the control

steps and the y-axis corresponds to index of the producers. In the case we use

µ0 = 10−1, Pro1 uses high BHP control between the 13th and the 22nd control steps;

however, in the case we use µ0 = 10−4, all the producers use similar BHP controls,

which are close to the lower bound of BHP control.

Fig. 4.9 shows the remaining oil saturation distribution after optimization for

different initial penalty parameter and Lagrange multipliers. The red color represents
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Figure 4.8: The estimated optimal optimal BHP well controls. (a) µ0 = 10−1, λ0 = 0;

(b) µ0 = 10−1, λ0c,i = max[0,
sc,ic

0
i

µ0
]; (c) µ0 = 10−4, λ0 = 0; (d) µ0 = 10−4,

λ0c,i = max[0,
sc,ic

0
i

µ0
].

high oil saturation while the blue color represents high water saturation. Overall, they

are fairly similar to each other. However, it can be seen that the remaining oil in

the case with µ0 = 10−1 (Fig. 4.9(a)) is comparatively less than other cases, which is

consistent with the NPV shown in Table 4.2.

Fig. 4.10 shows the comparison of NPV for the cases with different µ0 and λ0.

The blue curve corresponds to the NPV obtained with µ0 = 10−1 and λ0 = 0. As this

choice of µ0 and λ0 makes the terms, ψ’s in Eq. 4.1, comparatively negligible during

early iterations, the optimization honors the NPV part during these iterations and

hence the NPV increases fairly fast to $2.0×108. The optimization starts to honor the

terms, ψ’s, after updating the Lagrangian multipliers or penalty parameter. The NPV

decreases gradually but the oscillation happens to NPV during the late iteration. As
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Figure 4.9: Remaining oil saturation distribution after optimization. (a) µ0 = 10−1,

λ0 = 0; (b) µ0 = 10−1, λ0c,i = max[0,
sc,ic

0
i

µ0
]; (c) µ0 = 10−4, λ0 = 0; (d)

µ0 = 10−4, λ0c,i = max[0,
sc,ic

0
i

µ0
].

explained above, the augmented Lagrangian method this case (µ0 = 10−1 and λ0 = 0)

is the pure penalty method and numerical difficulty (e.g. divergence) happens when

the penalty parameter µ is too small. The black curve corresponds to the NPV

obtained with µ0 = 10−1 and λ0c,i = max[0,
sc,ic

0
i

µ0
]. As λ0 is not zero in the first

outer-loop, the optimization has a larger weight on the terms, ψ’s, and NPV does

not increase as fast as in the case of µ0 = 10−1 and λ0 = 0. The NPV in the case

(µ0 = 10−1 and λ0c,i = max[0,
sc,ic

0
i

µ0
]) finally converges to $1.89×108, which shows

the augmented Lagrangian method is more stable than the pure penalty method.

Although the NPV in the case (µ0 = 10−1 and λ0c,i = max[0,
sc,ic

0
i

µ0
]) seems oscillating

at end, a close check shows the algorithm does not accept the control variables at

last two iterations so the augmented Lagrangian function is flat at end. If we use a
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too small µ0, the NPVs (green and red curves) have limited increase from the initial

points due to the fact that the terms, ψ’s, in the augmented Lagrangian function are

heavily weighted. This phenomenon indicates it is better to start with a large initial

penalty parameter.
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Figure 4.10: NPV comparison for different µ0 and λ0. (a) µ0 = 10−1, λ0 = 0; (b)

µ0 = 10−1, λ0c,i = max[0,
sc,ic

0
i

µ0
]; (c) µ0 = 10−4, λ0 = 0; (d) µ0 = 10−4,

λ0c,i = max[0,
sc,ic

0
i

µ0
].

4.1.2 Optimization results with scaling factors

In this subsection, we provide the optimization results obtained with the scal-

ing factors set equal to 1/C2
i , i = 1, 2, ..., 150. Fig. 4.11 shows the optimization results

obtained with µ0 = 10−7 and λ0c,i = 0. Fig. 4.11(a) shows how the augmented La-

grangian function and NPV change as a function of the number of simulation runs

during optimization. The augmented Lagrangian function converges within 26 sim-

ulation runs and the final NPV is $1.98×108 which is the highest value in all the

optimization cases for this example; see Table 4.2. Note that there is a significant

decrease of the augmented Lagrangian function at the 24th simulation run, which

is the result of reducing the penalty parameter. Fig. 4.11(b) through Fig. 4.11(e)

show how WOR of each producer at each control step changes as a function of the

number of simulation runs. Each curve corresponds to the WOR of the specified

producer at a specified control step versus simulation runs. Compared to the WOR
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constraints in Fig. 4.5(b) through Fig. 4.5(e) , the WOR constraints when using the

scaling factor during the early iterations are satisfied very well, which means the

penalty terms of WOR constraints are allocated a reasonable weight during these

iterations. Fig. 4.11(f) shows how FWIR at each control step changes as a function

of the number of simulation runs and each curve corresponds to one FWIR at one

specified control step. The FWIR constraints are satisfied in the end of optimization.
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Figure 4.11: The optimization results with µ0 = 10−7 and λ0c,i = 0.
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Fig. 4.12 shows the optimization results when using λ0c,i = max[0,
sc,ic

0
i

µ0
] with

the same initial penalty parameter µ0 = 10−7. Fig. 4.12(a) shows how the augmented

Lagrangian function and NPV change as a function of the number of simulation runs

during optimization. As shown in Eq. 2.11, the augmented Lagrangian function is

equal to NPV minus the ψ terms which may take on either positive or negative values.

Therefore, the augmented Lagrangian function (green curve) is sometimes below the

NPV (red curve) or above the NPV. The augmented Lagrangian function converges

within 41 simulation runs. Fig. 4.12(b) through Fig. 4.12(e) show how WOR of each

producer at each control step changes as a function of the number of simulation runs.

Fig. 4.12(f) shows the FWIR of each control step changes as a function of the number

of simulation runs.
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Figure 4.12: The optimization results with µ0 = 10−7 and λ0c,i = max[0,
sc,ic

0
i

µ0
].
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Fig. 4.13 shows the estimated optimal injection well controls for different initial

penalty parameter and Lagrange multipliers. These four subfigures show qualitatively

similar injection rate controls. Compared to Fig. 4.7, INJ1, INJ2 and INJ3 use lower

injection rates at most of the control steps due to that fact that these three injectors

are connected to Pro2 by a high permeability channel. Using high injection rates

would result in early water breakthrough in Pro2. Fig. 4.14 shows the estimated

optimal BHP well controls for different initial penalty parameter and Lagrange mul-

tipliers. In the case we use µ0 = 10−6, Pro1 uses high BHP control between the 10th

and the 20th control steps; however, in the case we use µ0 = 10−7, Pro1 uses lower

BHP controls within the corresponding control steps than for the case with µ0 = 10−6.
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Figure 4.13: The estimated optimal injection well controls. (a) µ0 = 10−6, λ0 = 0;

(b) µ0 = 10−6, λ0c,i = max[0,
sc,ic

0
i

µ0
]; (c) µ0 = 10−7, λ0 = 0; (d) µ0 = 10−7,

λ0c,i = max[0,
sc,ic

0
i

µ0
].

Fig. 4.15 shows the remaining oil saturation distribution after optimization for
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Figure 4.14: The estimated optimal optimal BHP well controls. (a) µ0 = 10−6, λ0 =

0; (b) µ0 = 10−6, λ0c,i = max[0,
sc,ic

0
i

µ0
]; (c) µ0 = 10−7, λ0 = 0; (d)

µ0 = 10−7, λ0c,i = max[0,
sc,ic

0
i

µ0
].

different initial penalty parameter and Lagrange multiplier values. Overall, they are

fairly similar to each other. However, it can be seen that the remaining oil saturation

in the case with µ0 = 10−7 and λ0c,i = max[0,
sc,ic

0
i

µ0
] (Fig. 4.15(d)) is comparatively

higher than the other three cases, which corresponds to a relatively low NPV of

$1.91×108 (see Table 4.2).
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Figure 4.15: Remaining oil saturation distribution after optimization. (a) µ0 = 10−6,

λ0 = 0; (b) µ0 = 10−6, λ0c,i = max[0,
sc,ic

0
i

µ0
]; (c) µ0 = 10−7, λ0 = 0; (d)

µ0 = 10−7, λ0c,i = max[0,
sc,ic

0
i

µ0
].

4.2 Example 2: Waterflooding with Two Horizontal Wells

This synthetic water flooding example is similar to that used in [6, 40]. The

reservoir model is based on a 45× 45× 1 grid and the gridblock dimension is equal to

32.8 ft in all directions. The model consists of a horizontal smart water injector and

a horizontal smart producer. The horizontal injector and producer are, respectively,

along the west and the east side of the reservoir. Similar to Sarma et al. [40], we use

45 vertical pseudo-wells to simulate a smart horizontal well with 45 segments, as our

in-house simulator is not able to set up smart horizontal wells. There are two phases,

water and oil with a unit mobility ratio. The porosity is homogenous throughout the

reservoir and the permeability field is shown in Fig. 4.16 with two high permeability
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channels indicated by the dark red color. The blue regions represent low permeability.

The initial reservoir pressure is 5800 psi and the connate water saturation and residual

oil saturation are both 0.1. Other parameters are the same as in [6, 40]: the oil price

is at $12.72/BBL, water injection costs are $0, water production costs are $3.18/BBL,

and the annual discount rate is 0. In order to compare the result with that in [40],

we set each injector segment under rate control with 0 ≤ qwinj ≤ 300 STB/D and

set each producer segment under BHP control with 3500 ≤ pwf ≤ 6000 psi. The

optimization essentially results in a redistribution of this water among the injector

segments. The anticipated total project life is 950 days and the control time step

size is set to 190 days so we have 5 control steps. The total number of control

variables is (45 + 45)× 5 = 450. In the following subsections, we will discuss: 1) the

optimization results for the situation that there is an additional equality constraint

for the total injection rate, i.e., FWIR=2700 STB/D; 2) the optimization results for

the situation that we have an additional inequality constraint, FWIR≤2700 STB/D;

3)the optimization results with only bound constraints and compare to the results

obtained with an ensemble-based gradient-free algorithm, EnOpt.
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Figure 4.16: Log-permeability distri-
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Figure 4.17: Remaining oil saturation
distribution with reactive
control.

4.2.1 Optimization with bound and equality constraints

In this subsection, we impose an equality constraint on the field water injection
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rate, FWIR=2700 STB/D, for the maximization problem. With 5 control steps, the

total number of constraints is 5. We have no inequality constraints so the augmented

Lagrangian function can be rewritten as

βL[u, λe, µ] = JL −
5∑
i=1

[λe,iei(y, u) +
se,i
2µ

(ei(y, u))2], (4.4)

where ei is defined by

ei =
45∑
j=1

qiinj,j − 2700 = 0, i = 1, ..., 5, (4.5)

for the jth smart injection segment at the ith control step. In this case, although the

total injection rate constraint is the only equality constraint for each control step and

there is no scaling problem, we still use the scaling factor, se,i = 1/27002.

To show how production optimization improves the recovery, we first set up

a reference case, which is run with reactive controls. A production segment is shut

in when the water oil ratio reaches its economic limit, i.e., when rwq
n
w,j ≥ roq

n
o,j. For

this example, the economic limit is reached when WOR ≥ 4.0. The injection rate for

the jth segment with the reactive controls is set as

qinj,j =
1

kj

2700∑45
l=1 1/kl

, (4.6)

where kj is the permeability value of the well gridblock at the jth injection well seg-

ment. Therefore, the injection rates for the well segments are distributed inversely

proportional to the well segment gridblock permeability. The bottomhole pressure

(BHP) of production segments is set to 5500 psi for each control step. Typically, re-

active control requires to produce oil under the lowest allowable BHP; however, due

to the fact that setting producer BHP to 3500 psi leads to divergence in simulation

run, we set producer BHP to 5500 psi. Fig. 4.18 shows a comparison of average reser-
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voir pressure for the reactive control case and the optimization case. The blue curve

corresponds to the reactive case. The reservoir pressure keeps almost constant from

day 1 to day 570 and then builds up from day 571 to day 950. As water injection rate

is fixed during production life and some producer segments are shut-in after day 571,

the reservoir pressure increases gradually after day 571. The red curve corresponds

to the optimization case. The reservoir pressure keeps constant for each control step,

which means this well control scenario basically balances the total injection rate and

total production rate during each control step (i.e., it reaches steady-state). Fig. 4.17

shows the final oil saturation distribution with reactive control, in which the blue

color represents high water saturation and red color represents high oil saturation.

It can be seen that the area close to injection well and the area corresponding to

the high permeability channels are well swept by the injected water. However, water

breaks through early in the production segments located in the two high permeability

channels and the non-channel area near the producing well is hardly touched by the

injected water, which results in a low areal sweep and poor oil recovery.
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Figure 4.18: Average reservoir pres-
sure for optimized case.

 

 

10 20 30 40

10

20

30

40 0.2

0.4

0.6

0.8

Figure 4.19: Final oil saturation for
optimized case.

The final oil saturation distribution obtained with the final optimal controls

using the augmented Lagrangian method is shown in Fig. 4.19. Our initial guess for

the controls is that each injection segment is allocated 60 STB/D of water with a

total injection rate of 2700 STB/D, and the producer has a constant BHP of 5780
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psi for the expected reservoir life. Compared to the reference case, the final optimal

controls yield a much better sweep efficiency and oil recovery. The low permeability

region between the channels is much better swept. The average reservoir pressure for

the case with the final optimal controls is shown in Fig. 4.18 as the red solid line.

It shows that average reservoir pressure during the expected reservoir life basically

remains constant, which indicates that voidage ratio is almost one and the total

injection balances the total production for the reservoir life.

Fig. 4.20 shows the final controls for the injectors. The y-axis of this plot

corresponds to the 45 injector segments and x-axis corresponds to the 5 control steps.

The white region represents zero injection rate, which occurs around the north high

permeability channel (segment 10) for the first 4 control steps. The injection rate for

the well segments around the lower high permeability channel (segment 36) is low only

for the first control step. The injection rates for these segments remain high for control

steps 2 to 4. The injection rates among all the 45 segments are almost identical for the

fifth control step. Fig. 4.21 shows the final BHP controls for the producer segments.

As in the Fig. 4.20, y-axis of the plot corresponds to the 45 producer segments and

x-axis corresponds to the 5 control steps. White color means a high BHP value about

5900 psia, which is higher than the average reservoir pressure (5800 psia). As the well

gridblock pressure is almost at the average reservoir pressure, the producer segments

that have a BHP value of 5900 psia (white color) indicates that segment is shut-in.

It can be seen from the plot that many producer segments between the two high

permeability channels (segment 9 and segment 37) have high BHP (shut-in in white

color) for all control steps. The fact that the injection segments corresponding to the

south channel have high injection rates and no production helps the redistribution of

the injected water, i.e. sweep oil from south to north. It is surprising to see so many

control segments remain shut-in for most part of the reservoir life, especially some

segments corresponding to the low permeability segments. This may be the reason
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that some oil is not swept by the injected water at the north and south bound area

of the reservoir.
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Figure 4.20: Injection rate controls af-
ter optimization.
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Figure 4.21: Producer BHP controls
after optimization.

Fig. 4.22 shows the field water injection rate, the field oil and water production

rates for both the reference case and optimized case. The reference case is denoted

by lines with open circles and the optimized case is denoted by solid lines. Compared

to the reference case in the first three control steps, production optimization gives

higher oil production rate (red curves) and lower water production rate (blue curves).

The oil and water production rates go very high (shown as spikes) at the beginning

of each control step. In the reference case, this is caused by the fact we reduce the

production BHP at the beginning of each control step. For the optimized case, the

spikes in the production rates at the beginning of some control steps are due to the

fact that some segments at some control steps are reopened. By visual inspection, we

see that the equality constraints for total injection rates (green curves) are satisfied

thoughout the whole reservoir life. Fig. 4.23 shows the cumulative oil and water

production for both the reference and optimized cases. At the end of reservoir life of

950 days, the optimized case produces about 290,000 STB more oil than the reference

case and about 340,000 STB less water than the reference case. Although the final

saturation distribution and NPV in the optimized case are very close to the result

obtained by [6, 40], the control strategies are quite different.
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Figure 4.22: Comparison of field rates between optimized and reference cases. Curves
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sults. Red: oil production rate; Green: water injection rate; Blue: water
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Figure 4.23: Comparison between optimized and reference cases. FOPT: Field oil
cumulative production; FWPT: Field water cumulative production.

Fig. 4.24 shows a plot of the augmented Lagrangian function and the NPV

versus the number of simulation runs. Starting from a feasible initial guess, the

algorithm reaches a final NPV of $2.067×107. The first inner-loop consists of the first
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22 simulator runs. At the 13th simulator run, there is a deviation in the augmented

Lagrangian function because the violation of the field water injection rate constraint

is significantly large, which can be seen in Fig. 4.25 as a spike. The control variables

for this iteration are not accepted. Each curve in Fig. 4.25 corresponds to the field

injection rate at a certain control step. The plot shows that the field water injection

rate for each control step are very close to 2700 STB/D at covergence, which indicates

the equality constraints are satisfied.
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Figure 4.24: Augmented Lagrangian
function and NPV versus
simulation runs for equal-
ity constraint case.
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Figure 4.25: Field water injection rate
versus simulation runs.

Table 4.3 shows the penalty parameters and the Lagrangian multipliers cor-

responding to the outer-loop iterations. Note the second row in this table shows the

number of inner-loop iterations for each outer-loop iteration. Except for the bound

constraints, there is only a single constraint so we simply use λi to denote the La-

grangian multiplier for this single equality constraint at the ith control step. We only

consider the constraint at each control step so the total number of λi’s is 5. Note

that the updated λ can be negative for the equality constraint.

4.2.2 Optimization with bound and inequality constraints

In this subsection, we impose an inequality constraint on the field injection
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Table 4.3: Penalty parameter and Lagrangian multipliers during optimization

Outer-loop iter. No. 1 2 3
Inner-loop iter. Numbers 22 5 7

µ 10−8 10−8 10−9

λ1 0 -117.7 -117.7
λ2 0 -15.6 -15.6
λ3 0 17.9 17.9
λ4 0 -77.6 -77.6
λ5 0 8.6 8.6

rate, FWIR≤2700STB/D, for the maximization problem. We have no equality con-

straints so the augmented Lagrangian function can be rewritten as

β[u, λc, µ] = JL −
5∑
i=1

ψi, (4.7)

where ψi is defined by Eq. 2.11 and the inequality constraint is defined by

ci =
45∑
j=1

qiinj,j − 2700 ≤ 0, i = 1, ..., 5. (4.8)

Our initial guess for the controls is that each injection segment is allocated 60.1

STB/D of water with a total injection rate of 2704.5 STB/D, and the producer has a

constant BHP of 5780 psi for the expected reservoir life. We use an infeasible point

as the initial guess of injection segment rate because we want to test two situations:

λ0c,i = 0 and λ0c,i = max[0, sc,ic
0
i /µ

0].

Table 4.4 lists the optimization results with different initial parameters. As

there is only one constraint type and all the constraint values are the same, we fix the

scaling factor equal to 1/27002 and only test the effects of different penalty parameter

and Lagrange multipliers. Here, we set the maximum number of outer-loops to 10.

When using λ0 = 0, the optimization with either µ0 = 10−6 or µ0 = 10−8 (row

1 and row 5 in Table 4.4) does not converge due to the fact that the violation of
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the constraints does not satisfy the convergence tolerance after the number of outer-

loop iterations reaches the maximum allowable value (10). However, when we use

the same initial penalty parameter, the optimization converges to a higher NPV

with fewer simulation runs by setting λ0c,i = max[0, sc,ic
0
i /µ

0]. The least number of

simulation runs, where the final NPV is $2.08×107, is obtained by setting µ0 = 10−7

and λ0c,i = max[0, sc,ic
0
i /µ

0]. From Table 4.4, it is very clear that choosing λ0c,i =

max[0, sc,ic
0
i /µ

0] in this two-channel case outperforms choosing λ0c,i = 0. Table 4.4

also lists the updated number of µ and λ during outer-loop iteration. The number of

µ updated is larger than or equal to the number of λ updated except in a case with

µ0 = 10−7 and λ0c,i = max[0,
sc,ic

0
i

µ0
].

Table 4.4: The performance of different parameters. Nµ: Number of µ updated; Nλ:
Number of λ updated.

µ0 λ0c,i Simu- Final Outer- Nµ Nλ Converge
lations NPV, $ Loop

10−6 0 75 2.09×107 10 9 0 No

10−6 max[0,
sc,ic

0
i

µ0
] 44 2.09×107 6 4 1 Yes

10−7 0 24 2.08×107 3 1 1 Yes

10−7 max[0,
sc,ic

0
i

µ0
] 14 2.08×107 2 0 1 Yes

10−8 0 80 2.06×107 10 7 2 No

10−8 max[0,
sc,ic

0
i

µ0
] 33 2.07×107 4 2 1 Yes

Here, we only show the behaviour of the objective function and the field water

injection rate versus simulation runs for the initial parameters µ0 = 10−8 and λ0c,i =

max[0,
sc,ic

0
i

µ0
]. Fig. 4.26 shows the behavior of the objective function. The augmented

Lagrangian function and the NPV overlap before the simulation run No. 13. The

big decrease of the augmented Lagrangian function at simulation No. 13 is a result

of the significant constraint violation (see Fig. 4.27). Another big decrease occurs at

simulation No. 31, which is the third simulation run at the fourth outer-loop. The

reason is also due to the violation of the FWIR constraint at the 3rd control step.
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As shown in Fig. 4.27, all the constraints are satisfied at the end. We also list the

values of penalty parameter and Lagrange multipliers at each outer-loop in Table 4.5.

The optimization includes four outer-loop iterations, where the penalty parameter is

updated at the 3rd and the 4th outer-loop and the Lagrange multipliers are updated

at the second outer-loop. Recall that when we update the penalty parameter, we

keep the Lagrange multipliers unchanged.
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Figure 4.26: Augmented Lagrangian
function and NPV versus
simulation runs for in-
equality constraint case;
µ0 = 10−8, λ0c,i =
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Figure 4.27: Field water injection rate
versus simulation runs;
µ0 = 10−8, λ0c,i =

max[0,
sc,ic

0
i

µ0
].

Table 4.5: Penalty parameter and Lagrangian multipliers during optimization (µ0 =

10−8, λ0c,i = max[0,
sc,ic

0
i

µ0
])

Outer-loop iter. No. 1 2 3 4
Inner-loop iter. Numbers 18 5 4 5

µ 10−8 10−8 10−9 10−10

λ1 6.17 0 0 0
λ2 6.17 223.1 223.1 223.1
λ3 6.17 0 0 0
λ4 6.17 0 0 0
λ5 6.17 0 0 0

Fig. 4.28 shows the optimal injection well controls obtained with different ini-
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tial parameter settings: (a) µ0 = 10−6, λ0c,i = max[0,
sc,ic

0
i

µ0
]; (b) µ0 = 10−7, λ0c,i = 0;

(c) µ0 = 10−7, λ0c,i = max[0,
sc,ic

0
i

µ0
]; (d) µ0 = 10−8, λ0c,i = max[0,

sc,ic
0
i

µ0
]. Although

the optimal controls are different, the trend is similar. The injection segments corre-

sponding to the lower, high permeability channel have a high injection rate and the

injection segments corresponding to the upper channel are shut in or have very low

injection rate for the first several control steps. The purpose is to inject water from

lower part and then sweep oil from lower to upper part. Fig. 4.29 shows the optimal

producer BHP controls obtained with different initial parameter settings. The opti-

mal well controls are fairly different, although all of them lead to a similar NPV. This

indicates the optimal solution for the production optimization problem may not be

unique and there are extra degrees of freedom in the control variables which can be

used to optimize for a secondary objective function (e.g., short-term NPV). We will

discuss the short-term optimization after life-cycle optimization in the next chapter

by using the extra degrees of freedom.

4.2.3 Optimization with only bound constraints

The main purpose of this subsection is to compare the gradient-based op-

timization algorithm with an ensemble-based gradient-free algorithm, EnOpt. The

details of the EnOpt algorithm is given in Appendix C. As it is difficult to han-

dle the equality or the inequality constraints with EnOpt, the optimization problem

in this subsection is to maximize the life-cycle NPV subject to only the bound con-

straints on controls. Therefore, the augmented Lagrangian function has only the NPV

term, which is maximized with the gradient-projection trust-region method subject

to bound constraints. Note that this optimization requires only one outer-loop opti-

mization, as there are no Lagrangian multipliers or penalty parameter to be updated.

We tried both the log-transformation and truncation method to handle the bound

constraints when using EnOpt; see the discussion of the log-transformation and the

truncation method in Chapter 1. As the gradient of NPV with respect to well BHP
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Figure 4.28: The estimated optimal injection well controls. (a) µ0 = 10−6, λ0c,i =

max[0,
sc,ic

0
i

µ0
]; (b) µ0 = 10−7, λ0c,i = 0; (c) µ0 = 10−7, λ0c,i = max[0,

sc,ic
0
i

µ0
];

(d) µ0 = 10−8, λ0c,i = max[0,
sc,ic

0
i

µ0
].

controls obtained from Eclipse 300 does not seem to be right for this problem, we

use CLASS for the gradient-based production optimization. However, EnOpt is done

with Eclipse 100. To make the two results comparable, the NPV at each simulation

run in the gradient-based production optimization is obtained by running Eclipse 100

using the controls from each iteration of gradient-based optimization with CLASS.

Fig. 4.30(a) shows the NPV versus simulation runs with the simulator CLASS. As

shown in Fig. 4.30(a), it only takes 19 simulation runs to obtain the optimal NPV of

$2.10×107.

For EnOpt with the log-transformation, the ensemble size is 20 and the initial

step size is 1. We calculate the EnOpt gradient by a Gaussian perturbation from

N(0, CU). The correlation length in time in CU for the control variables is 2 control
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Figure 4.29: The estimated optimal optimal BHP well controls. (a) µ0 = 10−6, λ0c,i =

max[0,
sc,ic

0
i

µ0
]; (b) µ0 = 10−7, λ0c,i = 0; (c) µ0 = 10−7, λ0c,i = max[0,

sc,ic
0
i

µ0
];

(d) µ0 = 10−8, λ0c,i = max[0,
sc,ic

0
i

µ0
].

steps. The variance of the controls is 1. In EnOpt with the truncation, we set the

initial step size equal to 50 and the ensemble size is 10. The variance of the controls

is 100. Fig. 4.30(b) shows the comparison of NPV as a function of the number

of simulation runs during iteration between the augmented Lagrangian method and

EnOpt method. The initial guess for these methods is that water injection rate for

each injection segment is 60 STB/D and the producer has a constant 5780 psi for all

the control steps. The NPV at the initial guess for the controls is about $1.27× 107.

The performance of the algorithms are summarized in Table 4.6. The 38 simulation

runs in Table 4.6 required for the method based on an adjoint gradient consists of 19

forward reservoir simulation runs and 19 adjoint solutions for calculating the gradient

of NPV. This is the reason that the number of simulation runs in Table 4.6 required
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for the gradient-projection trust-region method is twice as the number of simulation

runs in Fig. 4.30(a).
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Figure 4.30: The objective function versus simulation runs. (a) Simulation with sim-
ulator CLASS; (b) Simulation with simulator Eclipse 100.

Table 4.6: The performance of different optimization algorithms.

Algorithm No. of simulations Final NPV,×107$
Adjoint Gradient 38 2.073
EnOpt (log-trans) 727 1.990
EnOpt (truncation) 777 2.036

The final controls for producers and injectors obtained with the different op-

timization algorithms are shown in Figs. 4.31 and 4.32. The final controls are quite

different for all the algorithms. Although most of the final producer BHP controls

shown in Fig. 4.32(a) are visually higher than the BHP controls in Fig. 4.32(b) and

Fig. 4.32(c), the gradient-based optimization keeps more production segments open.

Fig. 4.33 shows the final reservoir oil saturation obtained by reactive control

strategy and with the estimate of optimal well controls from the production opti-

mization. The results of Fig. 4.33 show that the estimated optimal controls obtained

with all the optimization algorithms result in much better sweep efficiency than is

obtained with reactive control. Visually, the oil saturations distributions from the two
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(c) EnOpt (truncation)

Figure 4.31: The estimated optimal injection well controls.
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(b) EnOpt (log-trans)
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Figure 4.32: The estimated optimal BHP well controls.

optimization algorithms are fairly similar, but the total water produced with the op-

timal well controls estimated with EnOpt are higher than the total water production

using the optimal controls from the gradient-based optimization algorithm. Thus,

EnOpt results in a much lower final NPV value than the gradient-based optimization

algorithm.

4.3 Example 3: Brugge Benchmark Case

In this example, we compare the results of production optimization from

the augmented Lagrangian multiplier method and the generalized reduced gradient

method (an option in the Eclipse 300 for production optimization, see Appendix B)

using the Brugge case. A detailed discussion of the Brugge field is given in Peters

et al. [35]. Here we provide only a brief summary from that paper. The stratigraphy

of the Brugge field is modeled after a typical North Sea Brent field and is an elongated

half-dome with one internal fault and one boundary fault. The top structure map
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Figure 4.33: Remaining oil saturation distribution after optimization.

with well locations is shown in Fig. 4.34. The Brugge reservoir contains 20 “smart”

producing wells and 10 “smart” water injection wells. All wells are vertical and each

well is equipped with inflow control valves to control flow into three different well

segments. The original model was constructed with approximately 20 million grid-

blocks and then upscaled to a 450,000 gridblock model which formed the true case

from which data were generated by TNO [35]. The true reservoir rock property fields

were known only to TNO professionals. The truth case was used to construct data

such as well logs and facies maps. Using this information, 104 geological realizations

upscaled to a 60,000 gridcell model were created and provided to participants.

The sandstone reservoir is bounded with faults and connected to a large

aquifer. The reservoir has four geological layers and is further divided into 9 sim-

ulation layers. The Schelde formation corresponds to the top two simulation layers,

the Waal formation to layer 3 to layer 5, the Maas formation to layer 6 to layer 8 and
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Figure 4.34: The top structure of Brugge field, Example 3.

the Schie formation to the bottom layer. The structure of the field and fault descrip-

tions were the same in all realizations. Each realization consisted of the following

properties on each gridblock: net-to-gross (NTG), porosity, initial water saturation

and absolute permeability in the x, y and z directions. Different geostatistical mod-

eling methods were used for different realizations. For example, some realizations of

properties in the first two layers were created with object-based modeling (channel

objects in a shale background) whereas other realizations were created with sequential

indicator simulation.

Throughout the reservoir life, only oil and water flow in the reservoir. Relative

permeability and capillary pressure curves were provided by TNO [35] but with seven

possible values of irreducible water saturation with the value of irreducible water

saturation depending on the gridblock value of porosity.

First, participants are required to history match the production history of the

first 10 years (the data to be matched are oil rates of the producers and BHPs of

all wells). During the first 10 years of production, wells did not have inflow control
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valves (ICV). The target total liquid rate for each producer during the first 10 years

was 2,000 STB/D with the minimum allowable bottomhole pressure equal to 725

psi. Water injection rates during this period were set equal to 4,000 STB/D with a

maximum injection pressure of 2,611 psi slightly more than 150 psi above the initial

pressure at datum. We were provided with well pressure, production and injection

rate data. We assimilated these observed data at six month intervals during the first

ten years using EnKF [8]. We simply use the mean model of the ensemble of the

updated geological models from EnKF for production optimization. We will expand

our discussion on robust optimization with this Brugge case in Chapter 5.

Fig. 4.35 shows the x-direction log-permeability for all the nine simulation

layers obtained with the EnKF after assimilating production data of the first 10

years. The first two layers are channelized reservoir and layers 6 to 8 are the relatively

homogeneous layers. All the producers are completed in the top 8 layers. Fig. 4.36

shows the oil saturation distribution after 10 years of production. The big blue region

is the aquifer and oil region is shown in all layers at the right middle part as yellow

to brown colors. Based on the mean model, we optimized the NPV for years 10-30.

As ICV’s are installed at year 10 to control the production rates and injection rates

for the Schelde, the Waal and the Maas formations, respectively, there are a total of

54 production segments and 30 injection segments. Note that Producer 9 has only a

single ICV (in the Schelde formation) and Producer 5, 10, 14 and 15 have two ICVs

(in the Schelde and Waal formations).

4.3.1 Optimization with bound and inequality constraints

The control variables are production segment liquid rates for producer seg-

ments and water injection segment rates for injection segments. We have 84 controls

at each control step. During production optimization, the following constraints were

imposed: The total liquid production rate for each well should not exceed 3000 STB/D

and the BHP for producers should not be less than 725 psi in any segment; the total
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Figure 4.35: ln(kx), x-direction log-
permeability after his-
tory match of period 0-
10.

Figure 4.36: Oil Saturation at year 10
before optimization.

water injection rate at each well should not exceed 4000 STB/D and the injection

pressure should not exceed 2611 psi in any segment; the liquid production rate for

each well segment should be constrained within 0.1 and 3000 STB/D; the injection

rate for each well segment should be within 0.1 and 4000 STB/D. The reason why

we use 0.1 STB/D as the lower bound for rate control is that Eclipse 300 will shut in

the well when its rate is set to zero, and the software does not output the gradient

of NPV when a well is shut in. The oil revenue price is $80/STB and both water

production and injection costs are $5/STB. The annual discount rate is 10%.

In setting up the Brugge case, TNO used a separate well for each segment in

the original smart well, so each smart well is actually modeled with three separate

wells; to be consistent we do the same, but we still refer to these three separate wells
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as three smart well segments. The control step for production optimization is 182.5

days (1/2 year). Although Eclipse 300 claims it is able to handle the optimization

problem with BHP control variables, we observed in our computational experiments

that Eclipse 300 does not always give the correct gradient of NPV with respect to

BHP control. Therefore, we choose the controls to be the liquid production rate

and the water injection rate for each smart well segment. With 40 control steps

for the Brugge test case, we have 3360 control variables for the 20-year production

optimization problem. We use two sets of initial guesses for this example: 1). the

initial guess for total liquid rate controls is 700 STB/D for each smart production

well segment and 1333.3 STB/D for each smart injection well segment; 2). the initial

guess for rate controls is 1001 STB/D for each smart production well segment and 1334

STB/D for each smart injection well segment. With the first set of initial guesses, the

rate constraints for producers and injectors are all satisfied at the first iteration so the

initial values for Lagrangian multipliers estimated with Eq. 2.22 are all equal to zero.

With the second set of initial guesses, we are able to obtain nonzero initial values for

Lagrangian multipliers estimated from Eq. 2.22. For each smart producer, we have

a total liquid rate constraint over the three segments, i.e., qLj,1 + qLj,2 + qLj,3 ≤ 3000

STB/D for j = 1, 2, · · · , 20 and for each smart injector, we have a total water injection

rate constraint over the three segments, i.e., qinjj,1 + qinjj,2 + qinjj,3 ≤ 4000 STB/D for

j = 1, 2, · · · , 10. With 40 control steps, the total number of constraints is 1200. We

have no equality constraints so the augmented Lagrangian function can be written as

β[u, λc, µ] = JL −
1200∑
i=1

ψi, (4.9)

where ψi is defined by Eq. 2.11. For k = 1, 2, ..., 40, ci is defined as

ci = qkLj,1 + qkLj,2 + qkLj,3 − 3000 ≤ 0, i = (k − 1) · 20 + j, (4.10)
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for the jth smart producer at the kth control step where j = 1, 2, ..., 20 and

ci = qkinjj,1 + qkinjj,2 + qkinjj,3 − 4000 ≤ 0, i = 800 + (k − 1) · 10 + j, (4.11)

for the jth smart injector at the kth control step where j = 1, 2, ..., 10.

If we apply the slack variables to convert these inequality constraints to equal-

ity constraints for the augmented Lagrangian method, we would have 3360 + 1200

= 4560 parameters to adjust during optimization with 3360 additional bound con-

straints on the control variables. However, with the method proposed in the Chapter

2, we have eliminated the slack variables and hence greatly reduced the size of the

optimization problem. As Eclipse 300 does not output the gradient of the bottom-

hole pressure constraint with respect to the control variable, we enforce constraints

on BHP during the forward simulation run, i.e., the simulator will put the well under

BHP control if the resulting BHP from rate control is beyond the BHP constraints.

For this example, it only happens for a few controls and does not seem to cause a

serious problem for the overall production optimization. The NPV’s are estimated

with the Eclipse 300 package.

Here we compare the results from the generalized reduced gradient (GRG)

method (see Appendix B) in Eclipse 300 for production optimization with the results

from our augmented Lagrangian multiplier method. As we do not have the true

Brugge reservoir model, we optimize NPV with the two methods using the model

shown in Fig. 4.35 and Fig. 4.36 as the true model. If all the inequality constraints

are inactive, the generalized reduced gradient method deals with the simple bound

constraints by limiting the step size. If some inequality constraints become active,

the generalized reduced gradient method in Eclipse 300 divides the control variables

set into “free” and “dependent” subsets. The gradient of the free control variables

are calculated using the backward adjoint run. The gradient of the dependent control

variables are obtained with the linearized simulation and active constraint equations.
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The search direction can be either steepest ascent direction or conjugate gradient

direction. In this study, we use the option of conjugate gradient direction as we

observed that the option of steepest ascent direction results in a bit lower optimal

NPV than the option of conjugate gradient direction.

For the augmented Lagrangian method, the gradient of the NPV, the first

term in Eq. 2.7 is calculated using the adjoint method embedded in Eclipse 300. The

gradient of the other two terms in Eq. 2.7 related to the constraints are calculated

analytically as all the constraints are linear functions of the rate control.

Figs. 4.37 shows the comparison of objective functions versus simulation runs

between the augmented Lagrangian method and the GRG method for the case we

try the first set of initial guesses. The GRG applied in Eclipse 300 converges with 20

simulation runs and obtains an NPV of $3.81×109. The augmented Lagrange method

shown in Fig. 4.37 obtains a much higher NPV of $4.24×109 than the GRG, although

it uses 57 simulation runs. We started with a feasible initial guess, the NPV and the

augmented Lagrangian function overlap between simulation run 0 to 5. There are

some significant decreases in the augmented Lagrangian function during simulation

runs while the NPV increased, due to significant violation of the constraints. The

significant decrease in the augmented Lagrangian function at the 14th, 25th, 34th,

38th, 43th and 51st simulation runs is due to the change in the penalty parameter or

the Lagrange multipliers in the new outer-loop iteration. While the first inner-loop

tried to increase NPV by violating the constraints, the second inner-loop tried to

satisfy all the constraints with a slight decrease in NPV. Fig. 4.38 shows the violation

of liquid rate constraints versus simulation runs. Each curve corresponds to one ci

defined in Eqs. 4.10 and 4.11. The positive value of ci indicates the ith constraint

is violated; otherwise, the constraint is satisfied. It can be seen from the figure that

all constraints are basically satisfied from the 30th simulation run onward. The final

estimated NPV using the mean geological model is equal to $4.23× 109.
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Figure 4.38: Violation versus simula-
tion runs; Initial guess 1.

Table. 4.7 shows the augmented Lagrangian method involves seven outer-loop

iterations. The penalty parameter is decreased by 0.1 at each outer-loop iteration

except the fourth outer-loop iteration, where the Lagrange multipliers are updated.

We only select several non-zero Lagrange multiplier to list in Table. 4.7. In fact, 90

percent of the Lagrange multipliers are still zero at the fourth outer-loop iteration.

Table 4.7: Penalty parameter and Lagrangian multipliers during optimization for
µ0 = 10−7.

Outer-loop iter. No. 1 2 3 4 5 6 7
Inner-loop iterations 13 11 9 4 5 8 7

µ 10−7 10−8 10−9 10−9 10−10 10−11 10−12

λc,1 0 0 0 7094 7094 7094 7094
λc,123 0 0 0 2527 2527 2527 2527
λc,481 0 0 0 5640 5640 5640 5640
λc,871 0 0 0 1113 1113 1113 1113

With the first set of initial guesses, the initial point is feasible so that the initial

Lagrange multipliers are zero even if we use Eq. 2.22 to estimate the initial Lagrangian

multipliers. Therefore, we pick the second set of initial guesses in order to compare the

optimization results obtained with λc,i = 0 and with max[0,
sc,ic

0
i

µ0
]. Figs. 4.39 shows

the comparison of objective functions versus simulation runs between the augmented

Lagrangian method and the GRG method for the case we try the second set of initial
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guesses and initial Lagrange multipliers estimated with Eq. 2.22. The GRG applied

in Eclipse 300 converges with 14 simulation runs and obtains an NPV of $3.74×109,

which is lower than the NPV obtained with the first set of initial guesses. However,

the augmented Lagrangian method shown in Fig. 4.39 obtains the same NPV of

$4.24×109 as that obtained with the first set of initial guesses, and it takes only 41

simulation runs to converge. It can be seen from Fig. 4.40 that the all constraints are

basically satisfied from the 35th simulation run onward.
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Figure 4.39: Objective functions ver-
sus simulation runs; Ini-
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Figure 4.40: Violation versus simula-
tion runs; Initial guess 2.

Table 4.8 summarizes the performance for the cases with or without scaling

factors and different initial penalty parameter and initial Lagrange multipliers. There

are two types of constraint values, Ci=3000 or 4000 STB/D. The first column indicates

whether we use the scaling factor; the second column shows the various initial penalty

parameter; and the third column indicates how the initial Lagrange multipliers are

obtained. They all obtain a final optimal NPV of around $4.24×109 except for the case

with µ0 = 10−1 and sc,i = 1, which yields that a final NPV 2.8% less than the highest

NPV of $4.25× 109. It can be seen from Table 4.8, the optimization cost is cheapest

when we use µ0 = 10−7 and sc,i = 1/C2
i . In terms of simulation runs, choosing λ0ci = 0

requires slightly fewer reservoir simulation runs than are required when we estimate

the initial values of Lagrange multipliers from Eq. 2.22. However, the difference in
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the number of simulation runs and estimated optimal NPV obtained using λ0c,i = 0

and λ0c,i = max[0,
sc,ic

0
i

µ0
] is very small so we conclude that the final optimization result

is not very sensitive to the choice of the initial Lagrange multipliers. Table 4.8 also

lists the updated numbers for µ and λ. For all the cases, the number of µ updated is

larger than or equal to the number of λ updated.

Table 4.8: The performance of different parameters (with initial guess 2). Nµ: Num-
ber of µ updated; Nλ: Number of λ updated.

sc,i µ0 λ0c,i Simu- Final Outer- Nµ Nλ Converge
lations NPV, $ Loop

1 1 0 45 4.23×109 5 3 2 Yes

1 1 max[0,
sc,ic

0
i

µ0
] 50 4.23×109 6 3 3 Yes

1 10−1 0 49 4.13×109 5 2 2 Yes

1 10−1 max[0,
sc,ic

0
i

µ0
] 50 4.15×109 5 2 2 Yes

1/C2
i 10−6 0 54 4.25×109 6 3 2 Yes

1/C2
i 10−6 max[0,

sc,ic
0
i

µ0
] 58 4.25×109 5 4 0 Yes

1/C2
i 10−7 0 40 4.23×109 5 3 1 Yes

1/C2
i 10−7 max[0,

sc,ic
0
i

µ0
] 41 4.23×109 5 3 1 Yes

Figs. 4.41 through 4.43 shows the comparison of the estimated optimal liquid

rates for production well segments. For the augmented Lagrangian method, the re-

sults provided here are obtained with µ0 = 10−7 and λ0c,i = max[0,
sc,ic

0
i

µ0
]. The final

controls obtained for the two sets of initial guesses are similar for both the augmented

Lagrangian method and the GRG method. Fig. 4.42 presents the final optimal con-

trols obtained from the Eclipse 300 optimizer for producers P1, P4 and P12. Fig. 4.43

shows the final optimal controls obtained from the augmented Lagrangian method for

these three producers. In both Fig. 4.42 and Fig. 4.43, the panels in the first col-

umn show the liquid production rate from each segment and the total well liquid

production rate. The column in the middle shows the resulting BHP values for each

segment and the right column shows the resulting water-cut values for each segment.

Day 1 of the x-axis corresponds to the first day of year 10. As Eclipse 300 does not
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provide the gradient when a well is shut in, we use 0.1 STB/D as the lower bound

for rate control and Eclipse 300 is able to output the water-cut for a well using 0.1

STB/D liquid production rate. The comparison from the plots shows that the final

optimal production strategy from both methods indicates some significant difference.

For example, the producer segments of P12 and P4 in Fig. 4.43 are shut-in when

water-cut is too high, however, the corresponding well segments in Fig. 4.42 are still

open. The third segment of P4 is shut in after year 17.5 but the water-cut is only

around 0.85. The optimal control shows a different strategy compared to reactive

control. If the reactive control based on the economic limit of the water-cut were

used, the well would not be shutin until the water-cut exceeds 0.94 .
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Figure 4.41: The estimated optimal liquid rates for production well segments. (a)
E300 optimizer, initial guess 1; (b) E300 optimizer, initial guess 2;
(c) Augmented Lagrangian method, initial guess 1; (d) Augmented La-
grangian method, initial guess 2.

Fig. 4.44 shows the comparison of the estimated optimal production liquid
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Figure 4.42: Liquid rate controls, BHP behaviors and well segment water-cut for three
producers; E300 optimizer; Initial guess 2.

rates of three producers obtained with the augmented Lagrangian method and the

Eclipse 300 optimizer. For the producer P1, which is located near the inner fault

and far from the injectors, the augmented Lagrangian method uses highest allowable

production liquid rate before day 7000 and reduces the liquid rate when the first and

second segments switch to BHP controls (shown in Fig. 4.43). It can be seen from

Fig. 4.44(a) that the total liquid rate of P1 obtained from E300 optimizer are around

the highest allowable value (3000 STB/D) during day 1 to day 1318 and then reduces

gradually after day 1318. The oscillation of this total liquid rate happens during day

500 to day 1318, which is a result that the GRG method implemented in Eclipse 300

attempts to avoid violation of the liquid rate constraint (3000 STB/D). However, the
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Figure 4.43: Liquid rate controls, BHP behaviors and well segment water-cut for three
producers; Augmented Lagrangian method; Initial guess 2.

Eclipse 300 optimizer limits line search step size (see discussion in Chapter 1) in order

to honor constraints, which may result in a small step size stopping the optimization

prematurely. The same oscillation happens for producer P4, shown in Fig. 4.44(b).

For the producer P12, which is located far from the inner fault and near the injectors

I8 and I9, the augmented Lagrangian method uses much lower total production liquid

rate than the GRG method.

Figs. 4.45 shows the estimated optimal rates for injection well segments. Fig. 4.45(a)

and (b) show the results obtained with the Eclipse 300 optimizer. Using the first set

of initial guesses, only three segments decrease the injection rate after control step

21; however, the injection rate controls are equal to the initial guesses for all the
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Figure 4.44: Comparison of the estimated optimal production liquid rates (Initial
guess 2). Black: Total rate with the augmented Lagrangian method;
Red: The 3rd segment rate with the augmented Lagrangian method;
Green: Total rate with the E300 optimizer; Blue: The 3rd segment rate
with the augmented Lagrangian method.

injection segments if using the second set of initial guesses. Fig. 4.45(c) and (d) show

the results obtained with the augmented Lagrangian method. Although there is some

small difference for the results obtained with different set of initial guesses, the con-

trol strategies are fairly similar and all the injection segments reduce water injection

gradually from high injection rates to low injection rates.

Fig. 4.46 show the estimated optimal injection rate controls from the injector

I2. In Fig. 4.46(a), the segment I2-3 is shut-in for the control step 20, which is not

reasonable. Fig. 4.46(b) shows that all the three injection segments use the same

control settings as their initial guesses, which indicates that the objective function

is insensitive to these injection segment rates. In Fig. 4.46(c) and (d), the curves

representing injection rates for the three segments of I2 are essentially identical, i.e.

the three segments of I2 use the same rate controls.

The difference in NPV obtained from the two methods is also reflected in the

cumulative oil and water production results shown in Figs. 4.47 and 4.48. The plot

shows that the field cumulative oil production is about the same for both methods

although the augmented Lagrangian method gives a slightly higher value. However,

more water has been injected and produced with the final optimal controls in Eclipse

300. Because of this additional water, the optimization in Eclipse 300 results in a
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Figure 4.45: The estimated optimal rates for injection well segments. (a) E300 opti-
mizer, initial guess 1; (b) E300 optimizer, initial guess 2; (c) Augmented
Lagrangian method, initial guess 1; (d) Augmented Lagrangian method,
initial guess 2.

much lower value of NPV than is obtained with the augmented Lagrangian method.

4.3.2 Optimization with only bound constraints

For a maximization problem with only bound constraints, it is not necessary

to update the Lagrangian multipliers or penalty parameter. The augmented La-

grangian method is then the gradient-projection trust-region method. This section

is to compare the performance of the gradient-projection trust-region method and

the ensemble-based optimization algorithm [8]. We use both the truncation and the

log-transformation to deal with the bound constraints for EnOpt. Chen et al. [10]

provided no information on how to initialize the stepsize for each iteration or how

to quantify the correlation time length and the variance of control variables. In this
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Figure 4.46: The estimated optimal rates for Injector 2. (a) E300 optimizer, initial
guess 1; (b) E300 optimizer, initial guess 2; (c) Augmented Lagrangian
method, initial guess 1; (d) Augmented Lagrangian method, initial guess
2.
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Figure 4.47: Comparison of field cu-
mulatives; Initial guess 1.
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Figure 4.48: Comparison of field cu-
mulatives; Initial guess 2.

example, the control settings for a well are assumed to be correlated over 5 years

(10 control steps). The selection of the initial step size and the variance of controls

used here are based on a private discussion with Mr. Sy Do, who is a PhD student
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in Petroleum Engineering at University of Tulsa and has done many experiments

on implementing SPSA to this Brugge case. In the EnOpt algorithm using the log-

transformation, the variance σ2 = 1 and the correlation time length T = 10 are used

to construct the covariance CU ; the initial step size is set to equal to 1.0. In the

EnOpt algorithm using the truncation, the variance σ2 = 1 and the correlation time

length T = 10 are used to construct the covariance CU ; the initial step size is set

equal to 1000.0.

Chen et al. [10] provided no information on how to initialize the stepsize α0
` for

each iteration or perhaps more importantly what to do if d` is not an uphill direction.

Note because Eqs. C.73 and C.74 are based on a series of approximations, the gradient

that appears in Eq. C.73 is only an approximation to the true gradient. Thus, there

is no way to prove that d` given in Eq. C.73 is an uphill direction. When Eq. C.73

gives a downhill direction, cutting the stepsizes cannot be expected to finally arrive

at a control vector which will increase the value the NPV function, J . Our experience

is that Eq. C.73 sometimes gives a downhill direction.

The convergence performance of the gradient-projection trust-region method

and the EnOpt algorithm with the same initial guess are summarized in Table 4.9

and Fig. 4.49. In this example, the gradient-projection trust-region method has the

fastest convergence rate and highest final NPV compared to EnOpt optimization re-

sults. The gradient-projection trust-region method converged to the final NPV of

$5.161 × 109 which is 1.8% higher than the NPV obtained with the EnOpt algo-

rithm with truncation option. The 30 simulation runs in Table 4.9 required for the

gradient-projection trust-region method based on an adjoint gradient consists of 15

forward reservoir simulation runs and 15 adjoint solutions for calculating the gradient

of NPV. Although EnOpt, with truncation or log-transformation, is far slower than

the gradient-based optimization in this example, they all converge to a similar NPV

(about $5× 109) within about 840 reservoir simulation runs.
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Table 4.9: The performance of different optimization algorithms.

Algorithm Simulations Final NPV,×109$
Adjoint Gradient 30 5.161
EnOpt (truncation) 840 5.068
EnOpt (log-trans) 717 4.983
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Figure 4.49: NPV versus the number of iterations, Example 3.

The final controls for the producers and injectors obtained by the augmented

Lagrangian method and the EnOpt algorithm are shown in Figs. 4.50 and 4.51. Al-

though we apply a smoother for EnOpt algorithm and it usually guarantees the final

optimal controls to be smooth in time dimension, the figures show that the final con-

trols obtained by the augmented Lagrangian method without using a smoother are

even smoother than the final controls obtained from EnOpt. Another observation is

that even through the final value of NPV obtained by the algorithms are not very

different (Table 4.9), the estimates of the optimal controls (Figs. 4.50 and 4.51) are

substantially different. This suggests that there may exist multiple sets of controls

which can achieve essentially the same maximum value of NPV. The injection rate

controls in Figs. 4.50(a) show all the injection segments use high injection rates in

the beginning and then reduce gradually to the end of production. The controls

in Fig. 4.51 show high liquid production rates for the first 26 production segments,
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which correspond to the first ten producers. From the structural map (Fig. 4.34),

these producers are located at the edge of the main fault and are at the farthest

locations from the injectors. The wells (the segments after 26) that are close to the

injectors produce at much lower liquid rates.
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Figure 4.50: The estimated optimal rates for injection well segments.
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Figure 4.51: The estimated optimal rates for production well segments.

The estimates of the optimal total water injection rate and segment rates for

Injector 2 as a function of time are shown in Fig. 4.52. Fig. 4.52(a) shows the three

segment of Injector 2 use almost the same injection rate. The injection rate controls

in Figs. 4.52(b) and Figs. 4.52(c) show the injection segments are allowed to inject

water in waves, i.e. an injection segment inject alternatively high injection rate and

low injection rate.

Fig. 4.53 shows the optimal liquid rate controls for the three segments of

producer P4 from all the algorithms. We see that the total liquid rates before con-

trol step 15 estimated from EnOpt (truncation) and EnOpt (log-transformation) are
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(b) EnOpt (truncation)

10 20 30 40
0

2000

4000

6000

8000

10000

12000

Control steps

In
je

ct
io

n 
ra

te
, S

T
B

/D

 

 

I2−1
I2−2
I2−3
Total rate

(c) EnOpt (log-trans)

Figure 4.52: The estimated optimal well segment injection rates for Injector 2.

higher than that estimated from the augmented Lagrangian method. Another obser-

vation is that the controls in Fig. 4.53(c) are not able to reach the upper limit but the

rate controls in Fig. 4.53(a) and (b) reach the upper bounds for a few control steps.

Once a converted control variable in log-domain approaches to infinity, the change

of control variable in the original domain is not sensitive to the change of converted

control variable in the log-domain. As a result, the control variable in original domain

is not able to take the value of upper or lower limit.
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(b) EnOpt (truncation)
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Figure 4.53: The estimated optimal well segment liquid production rates for Producer
4.
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CHAPTER 5

ROBUST LONG-TERM AND SHORT-TERM OPTIMIZATION

In this chapter, we extend the augmented Lagrangian method to solve the

robust production optimization problem in which we maximize the expectation of

NPV. Here, we use Ne reservoir models to represent the uncertainty in the reservoir

description. The expectation of NPV is thus represented as the average NPV over

the Ne reservoir models, i.e., the robust production optimization problem is given by

Eq. 1.8 which is repeated here as

max E[JL(y, u,m)] = max
1

Ne

Ne∑
j=1

JL(yj, u,mj), (5.1)

subject to the constraints in Eqs. 1.5 through 1.7 applied for each reservoir model.

Therefore, the objective function to be maximized is defined as the augmented La-

grangian function consisting of the average NPV over a set of geological realizations

and all constraints except the bound constraints. To compute the gradient of the

augmented Lagrangian function requires running the simulator and then solving for

the adjoint gradient for each geological model. The augmented Lagrangian function is

then maximized subject to bound constraints, following the algorithm similar to that

outlined in section 2.4 for nominal production optimization. The outer-loop updates

the Lagrangian multipliers or penalty parameter while the inner-loop maximizes the

augmented Lagrangian function at its fixed Lagrangian multipliers and penalty pa-

rameter using a gradient-projection trust-region method. The following two sections

describe the robust long-term optimization and the robust short-term after long-term

optimization.

102



5.1 Robust Long-Term Optimization

To calculate the gradient of βL in Eq. 2.12, we run the simulator with each

geological realization mj, j = 1, · · · , Ne and apply the adjoint method to compute the

gradient of each individual augmented Lagrangian function, which can be formulated

as

βL,j = JL(yj, u,mj)−Ne

[ ne∑
i=1

[λe,i,jei(yj, u,mj) +
se,i
2µ

(ei(yj, u,mj))
2]

+

ni∑
i=1

ψi(yj, u,mj)

]
,

(5.2)

where yj = y(uj,mj) and ψi is defined in

ψi(yj, u,mj) =


− µ

2sc,i
λ2c,i,j, if ci(yj, u,mj) ≤ −

µλc,i,j
sc,i

,

λc,i,jci(yj, u,mj) +
sc,i
2µ

(ci(yj, u,mj))
2, otherwise.

(5.3)

Note that the number of the Lagrange multipliers can be extremely large, as the λ’s

are required for each constraint and each geological model. The objective function, βL,

is the expectation of the augmented Lagrangian function, which can be approximated

by

βL =
1

Ne

Ne∑
j=1

βL,j, (5.4)

so the gradient of βL is

∇uβL =
1

Ne

Ne∑
j=1

∇uβL,j. (5.5)

In the augmented Lagrangian method, we usually need to update the Lagrange

multipliers (λ’s) or the penalty parameter (µ) a few times before the optimization con-

verges. With fixed value of the Lagrangian multipliers and a fixed value of the penalty

parameter, we maximize the augmented Lagrangian function in Eq. 5.4 subject to the
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bound constraints, i.e., we solve the problem

max βL(u),

subject to ulowi ≤ ui ≤ uupi , i = 1, 2, ..., nb.

(5.6)

The objective function βL is first approximated by a quadratic model, in which the

Hessian matrix is approximated using BFGS method. The quadratic model together

with the bound constraints is maximized using the gradient-projection trust-region

method. Once the inner-loop iteration converges, we update the Lagrange multipliers

λ’s or the penalty parameter µ depending on the violation of the constraints evaluated

at the end of the inner-loop iteration. For robust production optimization, we define

an average constraint violation parameter σcv by

σcv =



√√√√ 1

nv

Ne∑
j=1

[ ne∑
i=1

se,ie2i (y
`
j, u

`,mj) +

ni∑
i=1

sc,i(max[0, ci(y`j, u
`,mj)])2

]
, nv > 0,

0, nv = 0,

(5.7)

where nv is the total number of violated constraints. Note that ei and ci are functions

of each geological model mj. If there is only one reservoir model or say Ne = 1, Eq. 5.7

can be rewritten as Eq. 2.14. If σcv is less than a tolerance [12, 13], η`, which is also

updated in the outer-loop, we update the Lagrange multipliers λ’s and η without

changing µ as

λ`+1
e,i,j = λ`e,i,j +

se,iei(y
`
j, u

`,mj)

µ`
, i = 1, 2, ..., ne, (5.8)

λ`+1
c,i,j = max[0, λ`c,i,j +

sc,ici(y
`
j, u

`,mj)

µ`
], i = 1, 2, ..., ni, (5.9)

for j = 1, 2, ..., Ne and

η`+1 = η`(µ`)0.9, (5.10)
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where ` is the outer-loop iteration index. Similar to discussion in Chapter 2, we may

choose to estimate the initial λ’s as

λ0e,i,j =
se,iei(y

0
j , u

0,mj)

µ0
, i = 1, 2, ..., ne, (5.11)

and

λ0c,i,j = max[0,
sc,ici(y

0
j , u

0,mj)

µ0
], i = 1, 2, ..., ni, (5.12)

for j = 1, 2, ..., Ne where y0j = y(u0,mj). This requires one simulation run for each

mj to obtain values for ei(y
0
j , u

0,mj) and ci(y
0
j , u

0,mj) with the initial guess of the

control vector u0.

If σcv is larger than η`, we update µ without changing λ as

µ`+1 = τµ`, (5.13)

and

η`+1 = η0(µ`+1)0.1. (5.14)

We use τ = 0.1 and η0 = 0.1 in the results presented here. Overall, once σcv is less

than 0.01 or nv/[Ne × (ne + ni)] ≤ 0.001, we stop the optimization.

In the example sections of this chapter, we compare the robust long-term

optimization results with those obtained with the reactive control method and those

obtained with nominal optimization method. Only the two-phase system of oil and

water is considered. For reactive control, the production wells are shut-in when the

production of that well reaches the specified economic limit. In nominal optimization,

the optimized controls are only guaranteed to honor the constraints for a single model;

some constraints may be violated for other realizations of the vector of reservoir model

parameters.
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5.2 Robust Short-Term After Long-Term Optimization

When the number of control variables is large, there may be several sets of

controls that give essentially the same optimal value of the objective function [45].

In this case, the optimization problem may have additional degrees of freedom which

can be used to achieve a second objective, e.g., to optimize NPV over the short-term

without compromising the long-term (life-cycle) NPV of production [45]. Letting u∗

denote the vector of optimal controls obtained with robust long-term optimization,

we approximate the expectation of the NPV at these life-cycle optimal controls by

E[JL(y∗, u∗,m)] =
1

Ne

Ne∑
j=1

JL(y∗j , u
∗,mj), (5.15)

where y∗j = yj(u
∗,mj).

Following the long-term optimization, we maximize the expectation of the

short-term NPV, where for a given mj, the short-term NPV, Js(yj, u,mj) is defined

by Eq. 1.3, i.e.

Js(yj, u,mj) =
Ns∑
n=1

[ Np∑
i=1

(
rno q

n
o,i − rnwqnw,i + rng q

n
g,i

)
−

Nwi∑
i=1

rnwiq
n
wi,i

]
∆tn

(1 + b)tn/365
,

(5.16)

with the total number of simulation time steps NL replaced by Ns. Ns is the total

number of simulation time steps for the short-term NPV and Ns < NL. The short-

term robust optimization problem is defined as

max E[Js(y, u,m)] = max
1

Ne

Ne∑
j=1

Js(yj, u,mj), (5.17)
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subject to the following constraints:

cL,j = JL(y∗j , u
∗,mj)− JL(yj, u,mj) ≤ 0, j = 1, 2, ..., Ne; (5.18)

ei(yj, u,mj) = 0, i = 1, 2, ..., ne, j = 1, 2, ..., Ne; (5.19)

ci(yj, u,mj) ≤ 0, i = 1, 2, ..., ni, j = 1, 2, ..., Ne; (5.20)

ulowi ≤ ui ≤ uupi , i = 1, 2, ..., nb, j = 1, 2, ..., Ne. (5.21)

Although the short-term NPV depends only on the controls up to time step Ns, the

constraints in Eqs. 5.18 to 5.21 are functions of the controls up to simulation time

step NL. The inequality constraints in Eq. 5.18 indicate that we wish to maximize

the short-term NPV without decreasing the long-term NPV.

Now we define the augmented Lagrangian function for the short-term opti-

mization problem as

βs(y, u, λ, µ,m) =
1

Ne

Ne∑
j=1

[Js(yj, u,mj)]−
Ne∑
j=1

[ ne∑
i=1

[λe,i,jei(yj, u,mj)

+
se,i
2µ

(ei(yj, u,mj))
2] +

ni∑
i=1

ψi(yj, u,mj) + ψL(yj, u,mj)

]
,

(5.22)

where ψi is defined in Eq. 5.3 and ψL is defined as

ψL(yj, u,mj) =


− µ

2sL,j
(λL,j)

2, cL,j < −
µλL,j
sL,j

,

λL,jcL,j +
sL,j
2µ

(cL,j)
2, otherwise.

(5.23)

Similar to the scaling factor in Eq. 2.3, we choose the scaling factor for the long-term

NPV constraint of the jth model as

sL,j =
1

(JL(y∗j , u
∗,mj))2

, (5.24)

where y∗j = yj(u
∗,mj). To perform the short-term robust optimization after long-term
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robust optimization, we maximize βs in Eq. 5.22 subject to the bound constraints

of Eq. 5.21. The optimization procedure is the same as the one discussed for life-

cycle production optimization. The constraint violation parameter for short-term

optimization is defined as

σcv =



√√√√ 1

nv

Ne∑
j=1

[ ne∑
i=1

se,ie2i +

ni∑
i=1

sc,i(max[0, ci])2 + sL,j(max[0, cL,j])2
]
, nv > 0,

0, nv = 0,

(5.25)

where ei = ei(y
`
j, u

`,mj), ci = ci(y
`
j, u

`,mj) and cL,j = cL,j(y
`
j, u

`,mj). As we discussed

in the previous section on robust long-term optimization, if σcv is within the prescribed

tolerance (η`), we update the Lagrange multipliers without changing µ. The λe,i,j,

λc,i,j and η are updated using Eqs. 5.8, 5.9 and 5.10, respectively. λL,j is updated as

λ`+1
L,j = max[0, λ`L,j +

sL,jcL,j(y
`
j, u

`,mj)

µ`
], (5.26)

for j = 1, 2, ..., Ne. If σcv is larger than the prescribed tolerance (η`), we update µ

and η without changing λ using Eqs. 5.13 and 5.14, respectively.

In the examples, we consider robust optimization where we alternate life-cycle

and short-term optimization. In practice, after each short-term optimization, we

would use the optimal short-term controls to “produce the reservoir” for the length

of the short-term control step and then do another long-term optimization step for

the remaining life of the reservoir followed by another short-term optimization for the

next short-term control step to determine the well controls for this short-term step.

This procedure would be repeated throughout the economic life of the reservoir. In the

examples considered here, we do not assign a true reservoir model but simply apply

the alternating long-term and short-term optimization steps to see if it is possible

to increase the expectation of short-term NPV while maintaining the value of the
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expected NPV obtained by life-cycle optimization. The NPV obtained by robust long-

term alternating with short-term optimization (LASTOpt) are compared with those

NPV obtained by robust sequential short-term optimization (SSOpt), NPV results

obtained by life-cycle nominal optimization and NPV results obtained by reactive

control. In robust SSOpt, we obtain optimal controls for each short-term sequentially

in time. After we obtain the final optimal controls for the whole reservoir life, we

run the simulator with all reservoir models to calculate the life-cycle NPV for each

reservoir model.

When the nominal optimization is done on a single reservoir model, production

from the other reservoir models is also calculated by running the simulator using

the optimal well controls found by nominal optimization. By simulating reservoir

production with the nominal well controls, one can quantify the maximum economic

loss that can occur when using nominal optimization. When the reservoir production

of the other models is simulated using the well controls from nominal optimization,

constraints may be violated. To make a fair comparison with the other optimization

procedures, a well is shut in if the water oil ratio (WOR) becomes high enough so that

the cost of disposing of the produced water exceeds the revenue that can be obtained

by selling the produced oil. To compare the results of nominal optimization with

the results from robust optimization, we simulate production from all other reservoir

models using the optimal well controls estimated by nominal optimization. In these

simulation runs, we force all constraints to be satisfied and shut in a well if its water

oil ratio (WOR) exceeds the bound specified for the WOR.

5.3 Example 1: A 2D Fluvial Reservoir

In this subsection, we consider the optimization of waterflooding of a two-

dimensional synthetic reservoir with a simulation model defined on a 25 × 25 × 1

grid. For the robust optimization, we generate 100 geological realizations to repre-

sent the uncertainty in the reservoir description. The reservoir models are generated
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using a combination of multi-point and two-point statistics. For each realization, we

first generate the channelized structure (all realizations are conditioned to observed

facies at the wells) using SNESIM [28]. Within each facies (the channel facies and

the nonchannel facies), we generate a log-permeability distribution using a spherical

covariance function with the parameters given in Table 5.1. In this table, r1 and r2

are, respectively, the correlation length in the principal direction and in the direction

orthogonal to the principal direction; α is the angle between the principal direction

and the x-direction measured in the clockwise direction. The mean of ln k in the

channel facies is 8.5 and the mean of ln k in the non-channel facies is 5. The variance

for log-permeability is 1. The porosity for the reservoir is homogeneous and fixed

equal to 0.2. Fig. 5.1 shows four realizations of the log-permeability distribution.

The mean model of log-permeability based on 100 realizations is shown in Fig. 5.2.

The reservoir has two phases, oil and water, and the water-oil relative permeability

curves are shown in Fig. 5.3. The reservoir is under waterflooding with 4 five-spot

patterns as shown in Figs. 5.1 and 5.2. From the mean model of Fig. 5.2, we can de-

duce that the injectors INJ2, INJ4, INJ6 and INJ8 and the producers Pro2 and Pro3

are located in the high permeability region. As a result, water breakthrough would

tend to occur earlier in Pro2 and Pro3 than in other two producers. The related

reservoir properties are listed in Table 5.2. We use an in-house simulator (CLASS)

as the forward model.

Table 5.1: Geological parameters

ln k Channel facies nonchannel facies
mean 8.5 5
variance 1.0 1.0
α 45 45
r1 (ft) 8000.0 5600.0
r2 (ft) 2000.0 1000.0

The oil and water prices are set to ro = $50 /STB, rw = $5.56 /STB, b = 10%
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Figure 5.1: Log-permeability distribution of four realizations.
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Figure 5.3: The water and oil relative
permeability curve.

and rw,inj = $0. We impose a water/oil ratio (WOR) constraint of WOR ≤ 9.0 for

each producer. The WOR constraint is a nonlinear function of the control variable

through the reservoir simulator. The anticipated total reservoir life is 1800 days and

the control step size is set to 60 days so we have 30 control steps. The total number

of controls is 13 × 30 = 390. All the producers are at BHP control with an upper
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Table 5.2: Reservoir properties

Grid block size 200 ft
Thickness 20 ft
ρosc 56 lb/ft3

ρwsc 62.4 lb/ft3

µo 1.4 cp at 3601.5 psi
µw 0.5 cp
Bo 1.22 RB/STB at 3601.5 psi
Bw 1.0042 RB/STB
Rock Compressibility 3× 10−5 psi−1

Top Depth 4800 ft
Porosity 0.2

bound of 6000 psi and a lower bound of 2000 psi. The injector is under injection rate

control with an upper bound of 1500 STB/D and a lower bound of 0.

We compare results from five strategies: reactive control, nominal optimiza-

tion, robust long-term optimization, robust LASTOpt and robust SSOpt. For re-

active control, the maximum allowable injection rate and the minimum allowable

producer BHP are used and a producer is shut in once it reaches the economic limit

(WOR=9.0). For nominal optimization, we maximize NPV for the expected reservoir

life using the specified geological realization with the bound and WOR constraints.

The optimal controls from nominal optimization are then applied to other realizations

and we shut-in the producers when the WOR reaches 9.0 for comparison purposes.

For robust long-term optimization, we maximize the average NPV for an ensemble

of 100 geological models under the WOR constraint (WOR ≤ 9.0) for each producer

and the bound constraints on the control variables. For robust LASTOpt, the objec-

tive is to maximize the expectation of the short-term NPV with the bound, WOR

and the long-term NPV constraints in Eq. 5.18, which ensures that the long-term

NPV does not decrease during short-term optimization. For short-term production

optimization, we divide the whole reservoir life into five short-term steps so that each

short term has six control steps. For robust SSOpt, we sequentially optimize the
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expectation of the short-term NPV on these five short-term steps. The initial guess

for all the producer BHP controls are equal to their lower bound of 2000 psi. The

initial guess for all the injection well rate controls is 1000 STB/D.

5.3.1 Results of nominal optimization

To choose a suitable initial value for the penalty parameter, we performed

nominal optimization on reservoir realization 1 (Fig. 5.1) with different initial values of

the penalty parameter ranging from 10−1 to 10−8. As there is only one constraint type

and all the constraint values are the same, we fix the scaling factor equal to 1/92 and

only test the effects of different penalty parameter and Lagrange multipliers. Table 5.3

summarizes the optimization results after applying different initial penalty parameter

and Lagrangian multipliers. The choice of µ0 = 10−7 and λ0c,i = 0 obtains the highest

NPV of $2.01×108 with 29 simulation runs. The choice with λ0c,i = 0 and µ0 = 10−6

also achieves better results than other choices in terms of computational cost. It seems

that in this example, λ0c,i = 0 gives better performance than λ0c,i = max[0,
sc,ic

0
i

µ0
], which

is different than the performance in Example 2 with inequality constraints in Chapter

4.

We provide below the optimization results obtained from choice of (a) µ0 =

10−1 and λ0c,i = max[0,
sc,ic

0
i

µ0
]; (b) µ0 = 10−4 and λ0c,i = max[0,

sc,ic
0
i

µ0
]; (c) µ0 = 10−5

and λ0c,i = max[0,
sc,ic

0
i

µ0
]; (d) µ0 = 10−7 and λ0c,i = 0. Figs. 5.4 through 5.7 show

how the objective function and WOR constraint change as a function of the number

of reservoir simulations for the four different values of the initial penalty parame-

ter and Lagrangian multipliers. The left panels (Fig. 5.4(a), Fig. 5.5(a),Fig. 5.6(a),

Fig. 5.7(a)) show how the augmented Lagrangian function and NPV change during

optimization and the right panels (Fig. 5.4(b), Fig. 5.5(b),Fig. 5.6(b), Fig. 5.7(b))

show how the WOR of each producer at each control step changes as a function of

the number of simulation runs during optimization. Each curve in the right panels

(Fig. 5.4(b), Fig. 5.5(b),Fig. 5.6(b), Fig. 5.7(b)) represents the WOR of each producer
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Table 5.3: The performance of different parameters for the nominal optimization with
realization No. 1. Nµ: Number of µ updated; Nλ: Number of λ updated.

µ0 λ0c,i Simu- Final Outer- Nµ Nλ Converge
lations NPV, $ Loop

10−1 0 60 1.95×108 9 8 0 Yes

10−1 max[0,
sc,ic

0
i

µ0
] 163 1.95×108 9 8 0 Yes

10−2 0 60 1.96×108 5 4 0 Yes

10−2 max[0,
sc,ic

0
i

µ0
] 76 1.93×108 9 7 1 Yes

10−3 0 106 1.96×108 7 6 0 Yes

10−3 max[0,
sc,ic

0
i

µ0
] 54 1.95×108 8 6 1 Yes

10−4 0 32 1.95×108 6 5 0 Yes

10−4 max[0,
sc,ic

0
i

µ0
] 50 1.93×108 6 5 0 Yes

10−5 0 104 1.95×108 5 4 0 Yes

10−5 max[0,
sc,ic

0
i

µ0
] 30 2.00×108 5 4 0 Yes

10−6 0 20 1.99×108 3 2 0 Yes

10−6 max[0,
sc,ic

0
i

µ0
] 19 1.91×108 1 0 0 Yes

10−7 0 29 2.01×108 5 3 1 Yes

10−7 max[0,
sc,ic

0
i

µ0
] 43 1.96×108 2 0 1 Yes

10−8 0 70 1.99×108 3 1 1 Yes

10−8 max[0,
sc,ic

0
i

µ0
] 19 1.67×108 8 7 0 Yes

at each control step during optimization. From Fig. 5.4, we can see that it takes 163

reservoir simulations to obtain convergence. In this case, there are 9 outer-loop itera-

tions and the penalty parameter is reduced to 10−9 at the end, which means the initial

penalty parameter is too large and it takes many outer-loop iterations to get suitable

weights on the augmented Lagrangian terms. For all the cases, the WOR constraints

are all satisfied at convergence. This example has only inequality constraints. If the

augmented Lagrangian function is less than the corresponding NPV, it suggests that

some constraints are violated. It can be clearly seen in Figs. 5.4 through 5.7 that

if the augmented Lagrangian function (green curve) is below the NPV (red curve),

some WOR curves are above 9.0 at the corresponding simulation number.

Fig. 5.8 and Fig. 5.9 show the optimal injection rates and producer BHP
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Figure 5.4: The optimization results for realization 1 with µ0 = 10−1 and λ0c,i =

max[0,
sc,ic

0
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Figure 5.5: The optimization results for realization 1 with µ0 = 10−4 and λ0c,i =

max[0,
sc,ic

0
i

µ0
].

controls obtained with nominal optimization based on the first realization of the

log-permeability field. Although we select different initial values for the penalty

parameter and Lagrangian multipliers, the optimal controls look fairly similar in

all cases. In reservoir model 1 (Fig. 5.1), there are two high permeability channels:

one connects INJ1, INJ2 and Pro2 and another one connects Pro3, Pro4 and INJ6.

The optimal injection rate from INJ2 is kept close to zero throughout the reservoir

life in order to reduce water production from Pro2. INJ1 also has a very low injection

rate from control step 7 to 16. For each case, the water injection rate of INJ4 is
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Figure 5.6: The optimization results for realization 1 with µ0 = 10−5 and λ0c,i =

max[0,
sc,ic

0
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µ0
].

0 10 20 30
1.4

1.6

1.8

2

2.2x 10
8

Simulation Runs

 

 

Aug. Lag. function
NPV($)

(a) Objective function

5 10 15 20 25
0

9

Simulation Runs

W
at

er
 o

il 
ra

tio

(b) WOR constraints

Figure 5.7: The optimization results for realization 1 with µ0 = 10−7 and λ0c,i = 0.

over 800 STB/D for the first 15 control steps, as INJ4 provides pressure support for

Pro1 and Pro3 and is not connected to any producer by a high permeability channel.

Similar to the role of INJ4, INJ8 injects more than 1200 STB/D for 6 control steps

and then continues to inject at a significant rate for 18 additional control steps. In

Fig. 5.9, all four cases have a similar control strategy for Pro1, i.e. Pro1 uses high

BHP control between control step 8 and step 16. Note that INJ4 has a high rate and

the permeability connectivity is fairly high between Pro1 and INJ4, so Pro1 has to

use high BHP control to reduce water production; as can be seen from Fig. 5.10, the

remaining oil saturation is low between Pro1 and INJ4. Pro2 is under lower bound
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BHP control for a short period and then changes to a fairly high BHP control, which

decreases the liquid production rate and delays the time of water breakthrough. Pro3

and Pro4 operate under the lower bound BHP controls for all control steps.

Control Steps

In
je

ct
or

s

 

 

10 20 30

2

4

6

8

0

500

1000

1500

(a)

Control Steps

In
je

ct
or

s

 

 

10 20 30

2

4

6

8

0

500

1000

1500

(b)

Control Steps

In
je

ct
or

s

 

 

10 20 30

2

4

6

8

0

500

1000

1500

(c)

Control Steps

In
je

ct
or

s

 

 

10 20 30

2

4

6

8

0

500

1000

1500

(d)

Figure 5.8: The optimal injection rate controls for realization No. 1. (a) µ0 = 10−1,

λ0c,i = max[0,
sc,ic

0
i

µ0
]; (b) µ0 = 10−4, λ0c,i = max[0,

sc,ic
0
i

µ0
]; (c) µ0 = 10−5,

λ0c,i = max[0,
sc,ic

0
i

µ0
]; (d) µ0 = 10−7, λ0c,i = 0.

Fig. 5.10 shows the comparison of remaining oil saturation at the day 1800

obtained for the four cases. The blue color represents high water saturation and the

red color represents high oil saturation. It can be seen that the optimal controls result

in a good areal sweep efficiency although there are a few sporadic spots not swept

by the injected water. The remaining oil saturation in Fig. 5.10(c) and Fig. 5.10(d)

looks lower than that in Fig. 5.10(a) and Fig. 5.10(b).

5.3.2 Results of robust long-term Optimization

For robust long-term optimization, we maximize the expectation of NPV based

117



Control Steps

P
ro

du
ce

rs

 

 

10 20 30

1

2

3

4

2000

2200

2400

2600

2800

3000

(a)

Control Steps

P
ro

du
ce

rs

 

 

10 20 30

1

2

3

4

2000

2200

2400

2600

2800

3000

(b)

Control Steps

P
ro

du
ce

rs

 

 

10 20 30

1

2

3

4

2000

2200

2400

2600

2800

3000

(c)

Control Steps
P

ro
du

ce
rs

 

 

10 20 30

1

2

3

4

2000

2200

2400

2600

2800

3000

(d)

Figure 5.9: The optimal producer BHP controls for realization No. 1. (a) µ0 = 10−1,

λ0c,i = max[0,
sc,ic

0
i

µ0
]; (b) µ0 = 10−4, λ0c,i = max[0,

sc,ic
0
i

µ0
]; (c) µ0 = 10−5,

λ0c,i = max[0,
sc,ic

0
i

µ0
]; (d) µ0 = 10−7, λ0c,i = 0.

on 100 realizations with WOR constraints (WOR ≤ 9.0) and bound constraints. The

total number of inequality constraints is Ne × ni = 100 × 120 = 12000. From the

optimization results listed in Table 5.3, we may choose either µ0 = 10−5, λ0c,i =

max[0,
sc,ic

0
i

µ0
] or µ0 = 10−7, λ0c,i = 0 for robust optimization because these initial

parameters give fairly good nominal optimization results. However, to check this

choice, we did perform robust life-cycle optimization with different initial µ0 and

λ0c,i and summarized the final results in Table 5.4. As we optimize the robust cases

for 100 geological models, the number of simulations is significantly larger than the

nominal optimization. From Table 5.4, the final expectations of NPV are very close

for each trial and they seem not sensitive to the choice of the initial penalty parameter.

However, we still notice that the number of simulation runs in the cases, µ0 = 10−4
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Figure 5.10: Remaining oil for realization No. 1 saturation after optimization. (a)

µ0 = 10−1, λ0c,i = max[0,
sc,ic

0
i

µ0
]; (b) µ0 = 10−4, λ0c,i = max[0,

sc,ic
0
i

µ0
]; (c)

µ0 = 10−5, λ0c,i = max[0,
sc,ic

0
i

µ0
]; (d) µ0 = 10−7, λ0c,i = 0.

and µ0 = 10−5, is less than the other two cases, µ0 = 10−6 and µ0 = 10−7.

We provide the robust life-cycle optimization results obtained with µ0 = 10−5

and λ0c,i = max[0,
sc,ic

0
i

µ0
] as the initial values of the penalty parameter and the Lagrange

multipliers. Fig. 5.11 shows results of the robust long-term optimization. Fig. 5.11(a)

shows the NPV and augmented Lagrangian function as a function of iteration number

for each realization. Each iteration involves 100 simulation runs as we have 100

geological models. The red curve is the expectation of NPV. The green curve is

the augmented Lagrangian function. The gray curves are the NPVs obtained from

different reservoir realizations. There are five outer-loop iterations and a total of 27

inner-loop iterations. In the first outer-loop (including 9 inner-loop iterations), the

expectation of NPV increases 6.3% from $1.76× 108 to over $1.87× 108. In the final
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Table 5.4: The performance of different parameters for the robust life-cycle optimiza-
tion with 100 geological realizations. Nµ: Number of µ updated; Nλ:
Number of λ updated.

µ0 λ0c,i Simu- Final Outer- Nµ Nλ Converge
lations NPV, $ Loop

10−4 0 2800 1.86×108 6 5 0 Yes

10−4 max[0,
sc,ic

0
i

µ0
] 2400 1.86×108 5 4 0 Yes

10−5 0 3000 1.87×108 5 4 0 Yes

10−5 max[0,
sc,ic

0
i

µ0
] 2700 1.87×108 4 3 0 Yes

10−6 0 3100 1.87×108 4 3 0 Yes

10−6 max[0,
sc,ic

0
i

µ0
] 4800 1.87×108 5 3 1 Yes

10−7 0 3300 1.86×108 5 3 1 Yes

10−7 max[0,
sc,ic

0
i

µ0
] 3800 1.86×108 2 1 0 Yes

outer-loop, the augmented Lagrangian function is less than the expectation of NPV

because some WOR constraints (WOR≤ 9) are slightly violated at some control steps;

see Fig. 5.12. However, the total number of violated constraints is less than 0.1% of

the total number of constraints so that the optimization converges. Figs. 5.11(b) and

(c) show the optimal injection rate and the producer BHP controls, which are quite

different from those obtained with the nominal optimization. The optimal injection

rates indicate that we need to inject over 1200 STB/D for INJ5 until control step

9 as INJ5 is located at the center and it offers pressure support and displace water

towards all the producers; see Fig. 5.2. In addition, INJ1, INJ4 and INJ9 have higher

injection rates during early time than all other injectors except INJ5.

Fig. 5.12 shows the WOR of the 4 producers as a function of the control step

obtained using the final optimal controls from the robust long-term optimization. The

red curves represent the mean of the ensemble of WOR values. Only a few realizations

slightly violated WOR ≤ 9.0 constraints at a few control steps. From the results of

Fig. 5.12, we can see that the water breakthrough time for Pro1 and Pro4 ranges

from the fifth control step to the final control step. None of the producers is shut-in
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Figure 5.11: Robust long-term optimization with µ0 = 10−5 and λ0c,i = max[0,
sc,ic

0
i

µ0
]:

(a) Long-term NPV versus iteration numbers (1 iteration=100 simula-
tion runs); red curve: mean of NPV; green curve: augmented Lagrangian
function; gray curves: ensemble; (b) Optimized injection rate controls;
(c) Optimized producer BHP controls.

at the end of the optimization and this indicates that robust optimization tries to

reduce water injection while keeping the producers open in order to satisfy the water

oil ratio constraint.
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Figure 5.12: The final WOR curves for robust long-term optimization with µ0 = 10−5

and λ0c,i = max[0,
sc,ic

0
i

µ0
].
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5.3.3 Results of one robust short-term after long-term optimization

For robust short-term after long-term optimization, we first consider the first-

short term optimization step to demonstrate the optimization results. The first short-

term optimization step consists of the first six control steps. In doing the robust

short-term optimization, the long-term result is used as an inequality constraint; see

Eq. 5.18. We use the optimal controls from the robust long-term optimization as our

initial guess.

Fig. 5.13 shows the results of the first robust short-term optimization. In

Fig. 5.13(a), the red curve is the expectation of the short-term NPV. The gray curves

are the short-term NPV for different reservoir realizations. Although not all individual

NPVs increase with iteration, the expectation of the short-term NPV increases from

$1.13×108 to $1.19×108, i.e., the short-term optimization results in 5.3% short-term

NPV increase on average. In Fig. 5.13(b), the gray curves are the long-term NPV for

different reservoir realizations and the red curve is the expectation of the long-term

NPV. As shown in Fig. 5.13(b), the mean of long-term NPV remains almost constant

during the iterations, which indicates that we have sufficient degrees of freedom to

increase the short-term NPV without sacrificing the previously optimized life-cycle

NPV.

Fig. 5.14(a) shows the estimated optimal injection rates of the 9 injectors at

the end of the robust short-term optimization step. Compared to the optimal water

injection rate from life-cycle optimization (Fig. 5.11(b)), all injectors have a higher

injection rate during the first six control steps. Fig. 5.14(b) shows the BHP controls

of producers after the first short-term optimization step and all the producers are

under the lower bound BHP control during the first six control steps. Compared

to the robust life-cycle optimization results(Fig. 5.11(c)), the BHP controls with the

robust short-term optimization are very similar. Fig. 5.15 shows the final WOR for

each producer obtained from the robust short-term optimization. From the results of
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Figure 5.13: A single robust short-term after long-term optimization with µ0 = 10−5

and λ0c,i = max[0,
sc,ic

0
i

µ0
]: (a) Short-term NPV versus iteration numbers

(1 iteration=100 simulation runs); red curve: mean of short-term NPV;
gray curves: ensemble; (b) Long-term NPV versus iteration numbers.

Fig. 5.15, we can see that one or two realizations slightly violate the WOR constraint

at some control steps. All realizations predict similar water breakthrough times for

Pro2 and Pro3. However, there is a large spread in the breakthrough time for Pro1

and Pro4.
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Figure 5.14: Optimal controls after one robust short-term optimization.

5.3.4 Comparison of optimization strategies

Table 5.5 compares statistics for NPV results obtained from reactive con-

trol strategy, nominal optimization, robust long-term optimization, a single robust
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Figure 5.15: The final WOR curves after one robust short-term optimization.

short-term after long-term optimization, robust LASTOpt and robust SSOpt. For

reactive control, the maximum allowable injection rate and the minimum allowable

producer BHP are used and a producer is shut in once it reaches the economic limit

(WOR=9.0). For comparison purposes, we shut-in a producer once its WOR reaches

9.0 when we apply the nominal optimal controls to all other the reservoir realizations.

In this synthetic case, the reactive control strategy obtains an expectation of NPV

equal to $1.52 ×108, which is the minimum value among all the optimization strate-

gies. For each nominal optimization, we have an expectation of NPV. For example,

nominal optimization with realization No. 1 achieves an expectation of NPV equal to

$1.75 ×108 and nominal optimization with realization No. 7 achieves an expectation

of NPV equal to $1.77 ×108. Although the expectation of NPV obtained from nom-

inal optimization with these two realizations are fairly close, the standard deviation

obtained from realization No. 7 is much higher than that obtained from realization
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No. 1. Robust long-term optimization obtains the highest expected NPV, which is

3.3% higher than the average of nominal optimization. A single robust short-term

after long-term optimization obtains 0.5% lower expected NPV than robust long-term

optimization does, because the short-term optimization aims at increasing the short-

term NPV while maintaining the long-term NPV close to the long-term optimization

results. However, robust long-term alternating with short-term optimization yields

the same expectation of NPV as robust long-term optimization, which means we

maintain the expected long-term NPV after we optimize through the five short-term

steps. For the STD comparison, robust LASTOpt obtains a 7.6% higher STD than

robust long-term optimization. Robust SSOpt does not yield an expectation of NPV

as high as robust long-term optimization. Another important observation is that

reactive control and nominal optimization result in the largest standard deviation

in NPV, which means that making decisions based on results obtained with these

optimization scenarios involves greater uncertainty and greater financial risk.

Table 5.5: Comparison of statistics of NPV (×108$)

Case Mean STD Minimum Maximum
Reactive control 1.52 0.186 1.08 1.87
Nominal with realization No. 1 1.75 0.123 1.43 1.99
Nominal with realization No. 7 1.77 0.158 1.34 2.19
Robust long-term 1.87 0.130 1.49 2.12
A single robust short-term after long-term 1.85 0.136 1.46 2.10
Robust LASTOpt 1.87 0.141 1.47 2.12
Robust SSOpt 1.82 0.144 1.42 2.10

Fig. 5.16 shows the cumulative distribution function (CDF) of NPV (based

on the 100 reservoir models) for reactive control (black curve), robust life-cycle opti-

mization (red curve), a single robust short-term after long-term optimization (yellow

curve), robust LASTOpt (blue curve) and robust SSOpt (green curve), nominal opti-

mization (gray curves). Note that we have 20 CDF curves for nominal optimization.
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Each CDF curve for nominal optimization is obtained by estimating optimal controls

by maximizing NPV based on a single reservoir model and then these optimal con-

trols are applied to the other 99 reservoir models. Robust long-term optimization

and robust LASTOpt yield higher expected NPVs than are obtained with reactive

control, nominal optimization and robust SSOpt.
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Figure 5.16: Cumulative density function of NPV with different strategies. Black:
Reactive control; Red: Robust life-cycle optimization; Yellow: A single
robust short-term after long-term optimization; Blue: Robust LASTOpt;
Green: Robust SSOpt; Gray: Nominal optimization.

Fig. 5.17 compares the optimal injection rates from robust long-term optimiza-

tion, robust LASTOpt and robust SSOpt. Overall, we see that robust LASTOpt and

robust SSOpt yield higher estimates of the optimal water injection rates, especially

for the first short-term step. Fig. 5.18 compares the optimal BHP controls from these

three different robust optimization procedures. From Fig. 5.18(b), the BHP controls

are always set to the lower limit in robust long-term alternating with short-term op-

timization (LASTOpt), which is different from the optimal BHP controls obtained

from one robust short-term after long-term optimization (Fig. 5.14(b)).

Figs. 5.19 through 5.21 compare the oil saturation distribution of three real-

izations and average oil saturation of 100 realizations at day 360 for robust long-term
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Figure 5.17: The optimal injection rates from different robust strategies.
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Figure 5.18: The optimal BHP controls from different robust strategies.

optimization, robust LASTOpt and robust SSOpt. Each short term step has six con-

trol steps. The blue color represents high water saturation and red represents high oil

saturation. From Figs. 5.20 and 5.21, it can be seen that robust LASTOpt and robust

SSOpt result in less remaining oil in the reservoir after the first short-term period

(360 days) than that when only robust life-cycle optimization applied (Fig. 5.19),

which indicates that short-term optimization yields a better sweep efficiency in the

first 360 days (or first six control steps). Comparing Figs. 5.22, 5.23 and 5.24, the

final oil saturation at day 1800 for all of these three robust optimization strategies

are quite similar.
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Figure 5.19: The oil saturation at day 360 obtained with applying optimal controls
from robust long-term optimization.

No. 1

 

 

∅  Pro1

∅  Pro3

∅  Pro2

∅  Pro4

⊗  INJ1 ⊗  INJ2 INJ3 ⊗

⊗  INJ4 ⊗  INJ5 INJ6 ⊗

⊗  INJ7 ⊗  INJ8 INJ9 ⊗

5 10 15 20 25

5

10

15

20

25

0.4

0.5

0.6

0.7

0.8

0.9

(a) Realization 1

No. 31

 

 

∅  Pro1

∅  Pro3

∅  Pro2

∅  Pro4

⊗  INJ1 ⊗  INJ2 INJ3 ⊗

⊗  INJ4 ⊗  INJ5 INJ6 ⊗

⊗  INJ7 ⊗  INJ8 INJ9 ⊗

5 10 15 20 25

5

10

15

20

25

0.4

0.5

0.6

0.7

0.8

0.9

(b) Realization 31

No. 71

 

 

∅  Pro1

∅  Pro3

∅  Pro2

∅  Pro4

⊗  INJ1 ⊗  INJ2 INJ3 ⊗

⊗  INJ4 ⊗  INJ5 INJ6 ⊗

⊗  INJ7 ⊗  INJ8 INJ9 ⊗

5 10 15 20 25

5

10

15

20

25

0.4

0.5

0.6

0.7

0.8

0.9

(c) Realization 71

 

 

∅  Pro1

∅  Pro3

∅  Pro2

∅  Pro4

⊗  INJ1 ⊗  INJ2 INJ3 ⊗

⊗  INJ4 ⊗  INJ5 INJ6 ⊗

⊗  INJ7 ⊗  INJ8 INJ9 ⊗

5 10 15 20 25

5

10

15

20

25

0.4

0.5

0.6

0.7

0.8

0.9

(d) Mean

Figure 5.20: The oil saturation at day 360 obtained with applying optimal controls
from robust LASTOpt.
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Figure 5.21: The oil saturation at day 360 obtained with applying optimal controls
from robust SSOpt.
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Figure 5.22: The oil saturation at day 1800 obtained with applying optimal controls
from robust long-term optimization.
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Figure 5.23: The oil saturation at day 1800 with applying optimal controls from ro-
bust LASTOpt.
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Figure 5.24: The oil saturation at day 1800 with applying optimal controls from ro-
bust SSOpt.

5.4 Example 2: Brugge Test Case

The reservoir description of the Brugge reservoir model is the same as the

example used in Chapter 3. Note TNO generated different realizations with different

geostatistical modeling methods. For example, some realizations of properties in the

first two layers were created with object-based modeling, i.e. channel objects in a

shale background (Fig. 5.25) whereas other realizations were created with sequential

indicator simulation (Fig. 5.26). We do not have the true reservoir model, which is

known only by TNO. We consider optimizing the expectation of NPV based on a

subset of the given ensemble of reservoir models.

Here we consider a total production life of 20 years and we run the first 10-

year production schedule given by TNO with the initial ensemble of reservoir models

generated by TNO to obtain the primary simulation variables at year 10. Our ob-

jective here is to discuss the results of robust optimization for the second 10 years of
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Figure 5.25: ln k at x direction of Realization No. 34.

Figure 5.26: ln k at x direction of Realization No. 16.

production. For the second 10 years of production, each well is equipped with two

or three inflow control valves that allow the operator to control the liquid flow rate

for each production segment and the water injection rate for each injection segment.

Here a well segment rate refers to the rate through one ICV. There are a total of

54 production segments and 30 injection segments. The upper bound constraint on

liquid rate is 3000 STB/D for each production segment and 4000 STB/D for each

injection segment. The lower bound constraint on rates for all the segments are 0.

The control step size is 1/2 year and the number of control variables is 1680. Fol-

lowing the original description in Peters et al. [35], we set the BHP constraint to

725.2 psi for producers and 2611 psi for injectors. The oil and water prices are set to

ro = $80/STB, rw = $5/STB, rw,inj = $5/STB and annual discount rate b = 10%.

For the initial guess, we use 700 STB/D for each production segment and 1333.3

STB/D for each injection segment. We divide the second 10-year production period

into four short-term steps, each of which has five control steps. As the computational

cost for robust optimization is very expensive, we choose 11 corresponding reservoir

130



models corresponding to P1, P10, P20,..., P90, P99 of the cumulative distribution

of NPVs obtained with the initial guess of controls. After we estimate the optimal

controls, we rerun the controls for these 11 reservoir models in order to plot the cumu-

lative distribution of NPVs, which is shown in Fig. 5.27(a). We also provide the CDF

of NPV based on all 104 realizations (Fig. 5.27(b)) based on these final optimal con-

trols. The black curve is the CDF of NPV obtained with reactive control; the green

curve is obtained from robust SSOpt; and the red curve is from robust long-term

optimization. Fig. 5.27(b) indicates the expectation of NPV obtained from robust

long-term optimization on 104 reservoir models is $3.63×109 which is 2% higher than

the expected value obtained from robust SSOpt. However, the standard deviation

of NPV obtained from robust long-term optimization based on 104 reservoir models

is 4% higher than from robust SSOpt. In this Brugge case, robust short-term af-

ter long-term optimization does not improve the short-term NPV so that we do not

provide the CDF of NPV from robust short-term after long-term optimization. The

possible reason that we cannot increase short-term NPV is that many segment rate

controls in the first short term step are converted to BHP controls during simulation,

which means the segment rate controls have already reached their true upper limits

determined by the corresponding BHP constraints, and then there are not enough

degrees of freedom remaining to increase the short-term NPV without sacrificing the

long-term NPV.

Table 5.6 summarizes the statistics of life-cycle NPV results based on 11 real-

izations. Robust life-cycle optimization yields the highest expected NPV ($3.65×109).

However, for the Brugge case, the standard deviation of NPV for each strategy is

about the same. Table 5.7 shows the statistics of the first short-term NPV obtained

with running the estimated optimal controls from robust life-cycle optimization and

robust SSOpt. Comparing the expectation of the first short-term NPV (shown in

Table 5.7), we found the expected NPV from robust SSOpt is only 1% higher than

131



2 3 4 5
x 10

9

0

0.2

0.4

0.6

0.8

1

NPV, $

C
D

F

 

(a) CDF based on 11 realizations

2 3 4 5
x 10

9

0

0.2

0.4

0.6

0.8

1

NPV, $

C
D

F

 

(b) CDF based on all 104 realizations

Figure 5.27: Cumulative density function of NPV. Black: reactive control; Green:
robust SSOpt; Red: robust long-term optimization.

from robust long-term optimization. This indicates that there is little room to im-

prove the first short-term NPV based on the optimal controls obtained from life-cycle

optimization. However, robust long-term optimization achieves a higher life-cycle

NPV.

Table 5.6: Comparison of statistics of life-cycle NPV (×109$) based on 11 reservoir
models

Case Mean STD Minimum Maximum
Reactive control 3.39 0.66 2.35 4.58
Robust life-cycle optimization 3.65 0.71 2.89 4.85
Robust SSOpt 3.56 0.68 2.86 4.70

Table 5.7: Comparison of statistics of first short-term NPV (×109$) based on 11
reservoir models

Case Mean STD Minimum Maximum
Robust life-cycle optimization 1.93 0.50 1.47 2.74
Robust SSOpt 1.95 0.50 1.48 2.76

Fig. 5.28 shows the comparison of field cumulative oil production, water pro-

duction and water injection with robust long-term optimization and robust sequential
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short-term optimization. Day 3649 in Fig. 5.28 corresponds to the starting day of

year 11. Fig. 5.28(a) shows field cumulative production or injection based on the

realization No. 16, which corresponds to P30 of the cumulative distribution of NPVs;

Fig. 5.28(b) shows the average field cumulative production or water injection over

all the 104 realizations. The final NPVs obtained with realization No. 16 are, re-

spectively, $3.22×109 for robust long-term optimization and $3.17×109 for robust

sequential short-term optimization. It can be clearly seen that for the first short

term (day 0 - day 912.5 or corresponding to day 3649 - day 4561.5 in Fig. 5.28(a)

and (b)), robust sequential short-term optimization leads to less water injection (pur-

ple curve) than robust long-term optimization (blue curve) but achieves almost the

same cumulative oil production and cumulative water production. As a result, for

the first short-term step, robust sequential short-term optimization obtains a higher

NPV than robust long-term optimization. However, at the end of the production life,

robust long-term optimization results in higher cumulative oil production (red curve)

than robust sequential short-term optimization and the oil revenue compensates the

cost of the additional water injected and produced in the robust long-term result.
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Figure 5.28: Field cumulative oil production, water production and water injection
with optimal controls. Blue: field water injection (life-cycle optimiza-
tion); Purple: field water injection (sequential short-term); Red: field
oil production (life-cycle optimization); Green: field oil production (se-
quential short-term); Light blue: field water production (life-cycle opti-
mization); Black: field water production (sequential short-term).
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Fig. 5.29 and Fig. 5.30 compare the optimal controls from robust long-term

optimization and robust sequential short-term optimization. White color represents

a zero segment rate. There is a significant difference between the two sets of injection

rates. The optimal injection rates from robust SSOpt require alternating periods of

high injection rates with zero rates, whereas with robust life-cycle optimization, the

injection rate for each segment is equal or close to its upper bound at early control

steps and then gradually decreases until it becomes zero at the last few control steps.

Both strategies show some “Bang-Bang” control behavior [50] on the injection rate

control. As we use injection rate and liquid production rate as well controls for this

waterflooding example with only upper and lower bound for the control variables, the

optimization problem may satisfy the “Bang-Bang” control conditions.
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Figure 5.29: Optimal controls from robust long-term optimization.
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Figure 5.30: Optimal controls from robust SSOpt.
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CHAPTER 6

DISCUSSION AND CONCLUSIONS

The main contribution of this work was the development of practical opti-

mization methods that can efficiently deal with large-scale production optimization

problems with bound, linear and nonlinear constraints. We tried to solve three chal-

lenging problems arising in the field of production optimization: production optimiza-

tion with a single reservoir model, production optimization with uncertain description

of reservoir models and dual-objective production optimization (i.e. maximizing both

the short-term NPV and the long-term NPV.

Following the idea from the LANCELOT method [13, 31], we implemented the

augmented Lagrangian method to deal with equality and inequality constraints and

the gradient-projection method to deal with the bound constraints. The augmented

Lagrangian function incorporates the equality and inequality constraints with La-

grangian multipliers and penalty parameters into the objective function, NPV. At

each outer-loop iteration, we update either the Lagrangian multipliers or penalty pa-

rameter depending on constraint violation. To maximize the augmented Lagrangian

function at its fixed Lagrangian multipliers and penalty parameter, we approximate

the function using a quadratic model, in which the Hessian matrix is approximated

using the BFGS method. This forms the inner-loop iteration. The bound constraints

are enforced using the gradient-projection method during the optimization of the ap-

proximate quadratic function. The major advantages are that it requires only one

backward adjoint run for the gradient calculation and the constraints are satisfied at

convergence. In LANCELOT, the gradient of each constraint term in the augmented

Lagrangian function needs to be specified for its input deck, which is not practical
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for problems with many constraints as each gradient of the specified term requires

one backward adjoint run for gradient calculation. Unlike LANCELOT, we calculate

the gradient of the augmented Lagrangian function with only one backward adjoint

run, which only requires to run one forward simulation and save the Jacobian matrix

evaluated at the primary variables.

Although the augmented Lagrangian method offers a nice way to incorporate

all equality and inequality constraints into the objective function, some constraints

may be insensitive to the change in controls during optimization due to the scale

difference between the constraints and between constraints and NPV. We apply a

scaling factor for each constraint. The initial values of the Lagrangian multipliers

and penalty parameter and the choice of the scaling factor may effect the efficiency

of the optimization procedure. Therefore, we use three synthetic cases in Chapter 4

and one case in Chapter 5 to discuss the influence of the penalty parameter, Lagrange

multipliers and scaling factors. We observed from the results of Example 1 in Chap-

ter 4 that the convergence rates can be slowed appreciably by a poor scaling of the

constraints. By introducing the scaling factor, we are able to rescale the various type

of constraints to comparable levels. Example 1 in Chapter 4 shows we obtain higher

NPVs with fewer simulation runs with proper rescaling. For Lagrange multipliers,

we test two initial sets of the values, one is λ0 = 0 and another one is to evaluate

the initial Lagrange multipliers from the violation values based on the first simula-

tion run. All examples except one (Example 2 in Chapter 4) demonstrate that using

λ0c,i = max[0,
sc,ic

0
i

µ0
] is not better than simply using λ0c,i = 0. However, the results

in Example 2 of Chapter 4 show the choice of λ0c,i = 0 leads to divergence problem

but the choice of λ0c,i = max[0,
sc,ic

0
i

µ0
] gives higher NPVs with fewer simulation runs.

Therefore, there is no definite conclusion on which method of choosing the initial

set of Lagrange multipliers is better and it might be case-dependent. For the initial

penalty parameters, if µ0 is too large, the penalty term in the augmented Lagrangian
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function does not have enough weight during early iterations, which may cause large

constraint violations while getting a higher NPV during early iterations. But at late

iterations, the algorithm tries to satisfy the constraint as the penalty term becomes

more important. However, these constraints cannot be satisfied without reducing the

NPV. This makes the algorithm quite inefficient. But if µ0 is too small, the heavy

weight on the penalty term would limit the increase of NPV. Here, we suggest to use

0.1–10 per cent of the order of the NPV based on the initial simulation run. Estimat-

ing a good initial value of the penalty parameter and using proper scaling factors on

constraints improve the robustness and efficiency of the optimization algorithm.

As there is large uncertainty on the reservoir description for green fields, which

have not been fully developed, we apply the robust production optimization, where

the reservoir uncertainty is described with a set of geological models which may be

obtained from the data assimilation step of closed-loop reservoir management. In

the robust long-term optimization problem, the augmented Lagrangian function is

simply the average life-cycle NPV over the set of geological models with all equality

and inequality constraints from each geological model incorporated with Lagrangian

multipliers and penalty terms. The gradient of the augmented Lagrangian function

is a summation over the gradients of the individual augmented Lagrangian function

from each geological model. Experiments in Chapter 5 show that the field can not

always achieve the optimal NPV using the optimal well controls obtained based on a

single, but uncertain reservoir model, whereas the application of robust optimization

significantly reduces this risk.

Another major challenge is the multi-objective optimization problem arising

from the business need of reservoir development for life-cycle production optimization

and the objective of field operators for short-term NPV optimization. The require-

ment of short-term optimization is to maximize the short-term NPV without com-

promising the life-cycle NPV. Robust sequential short-term optimization (i.e. the
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optimization of short-term NPV is done one short-term step following another one)

generally results in a lower expected value of NPV over the reservoir life than is

achieved with robust life-cycle optimization. For the short-term NPV optimization

problem, we propose a two-stage production optimization procedure. We first solve

the life-cycle constrained optimization problem. Then, we optimize the short-term

NPV subject to the constraint that the long-term NPV is no less than the optimal

NPV obtained by life-cycle production optimization. This long-term NPV constraint

is incorporated into the short-term optimization together with the physical constraints

using the augmented Lagrangian method.

Example 1 in Chapter 5 shows the expected value of short-term NPV can be

increased with a negligible decrease in the expectation of life-cycle NPV if sufficient

degrees of freedom exist after life-cycle optimization. We compare results from five

strategies: reactive control, nominal optimization, robust long-term optimization,

robust LASTOpt (long-term alternating with short-term optimization) and robust

SSOpt (sequential short-term optimization). In the examples, the reactive control

strategy obtains the lowest expectation of NPV among all the optimization strate-

gies. When we apply estimated optimal controls from the nominal optimization based

on a randomly selected reservoir model to all the reservoir models, there is a large

variance in the final NPV from these different models, which indicates that making

decisions based on results obtained with the nominal optimization scenarios involves

large uncertainty and financial risk. Robust long-term optimization obtains the high-

est expected NPV. Robust LASTOpt yields the same (or very close) expectation of

NPV as robust long-term optimization, which can achieve the operator’s short-term

goal of maximizing the short-term NPV while maintaining the long-term NPV. The

robust SSOpt does not yield an expectation of the life-cycle NPV as high as the robust

long-term optimization.
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APPENDIX A

DERIVATIVES OF β WITH RESPECT TO PRIMARY VARIABLES

A.1 Derivatives of Flow Rates at the Production Well l

The flow equations have been given in Eqs. 3.28 through 3.31. Throughout,

we let k denote the layer index. For the derivative of flow rates with respect to the

gridblock pressure of the producer l, pnil,jl,k, we need to consider two situations. If

Sng,il,jl,k = 0, then the derivatives of flow rates with respect to the gridblock pressure

of a producer well l at a completion in layer k, pnil,jl,k, are

∂qno,il,jl,k
∂pnil,jl,k

=WIil,jl,k

[
−

knro,il,jl,k
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o,il,jl,kµ
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o,il,jl,k)

2
(µno,il,jl,k

∂Bn
o,il,jl,k

∂pnil,jl,k
+Bn

o,il,jl,k

∂µno,il,jl,k
∂pnil,jl,k

)
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]
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(A.1)

∂qnw,il,jl,k
∂pnil,jl,k

=WIil,jl,k

[
−

knrw,il,jl,k
(Bn

w,il,jl,kµ
n
w,il,jl,k)

2
(µnw,il,jl,k

∂Bn
w,il,jl,k

∂pnil,jl,k
+Bn

w,il,jl,k

∂µnw,il,jl,k
∂pnil,jl,k

)

(pnil,jl,k − pnwf,il,jl,k) + (
krw
Bwµw

)nil,jl,k

]
,

(A.2)

and
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(A.3)

If Sng,il,jl,k > 0, Eq. A.2 keeps the same equation and the derivatives of oil and gas
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rates with respect to the gridblock pressure are
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(A.4)
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(A.5)

The derivatives of flow rates with respect to the gridblock oil saturation of a

producer well l at a completion in layer k, Sno,il,jl,k, are
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∂Sno,il,jl,k

= WIil,jl,k
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(A.8)

For Sng,il,jl,k > 0, the derivatives of flow rates with respect to the gridblock gas

saturation of a producer well l at a completion in layer k, Sng,il,jl,k, are
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1
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(A.11)

For Sng,il,jl,k = 0, the derivatives of flow rates with respect to the gridblock dissolved

gas oil ratio, Rn
s,il,jl,k, are
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= 0, (A.13)

and
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(A.14)

Assume there are a total of K completions for the producer well l, then the

derivatives of flow rates with respect to the well flowing pressure, pwf,il,jl, are

∂qno,il,jl
∂pnwf,il,jl

= −
K∑
k=1

WIil,jl,k(
kro
Boµo

)nil,jl,k, (A.15)
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= −
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WIil,jl,k(
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)nil,jl,k, (A.16)
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and
∂qng,il,jl
∂pnwf,il,jl

= −
K∑
k=1

WIil,jl,k(
krg
Bgµg

+Rs
kro
Boµo

)nil,jl,k. (A.17)

A.2 Derivative of Water Rate at the Injection Well l

The derivatives of water rate with respect to the gridblock pressure, pnil,jl,k, is

∂qnwi,il,jl,k
∂pnil,jl,k

=WIil,jl,k[−
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)nil,jl,k],

(A.18)

As CLASS specifies krw = 1 for all the simulation steps for the injector, the

derivatives of water injection rates with respect to the gridblock oil saturation, Sno,il,jl,k,

is
∂qnwi,il,jl,k
∂Sno,il,jl,k

= 0, (A.19)

and the derivatives of water injection rates with respect to the gridblock gas saturation

is also zero.

Assume there are a total of K completions for the injection well l, then the

derivative of water rate with respect to the well flowing pressure, pwf,il,jl, is

∂qnwi,il,jl
∂pnwf,il,jl

=
K∑
k=1

WIil,jl,k(
krw
Bwµw

)nil,jl,k. (A.20)

A.3 Derivative of the NPV with Respect to Primary Variables

As the augmented Lagrangian function β is a combination of the NPV and

the terms of constraints, the derivative of β with respect to primary variables can be
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written as

∇ynβ = ∇ynJ −
ne∑
i=1

[(
λe,i +

se,i
µ
ei(y

n, Un)

)
∇ynei(y

n, Un)

]
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(A.21)

where

∇ynψi(y
n, Un) =


0, ci(y

n, Un) ≤ −µλc,i/sc,i,

[λc,i +
sc,i
µ
ci(y

n, Un)]∇ynci(y
n, Un), otherwise.

(A.22)

We first provide the derivative of NPV with respect to the reservoir primary

variables. The derivative of the NPV with respect to the gridblock pressure of a

producer well l at a completion in layer k, pnil,jl,k, is

∂J

∂pnil,jl,k
=
(
rno
∂qno,il,jl,k
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− rnw
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) ∆tn

(1 + b)tn/365
. (A.23)

The derivative of the life-cycle NPV with respect to the gridblock oil saturation of a

producer well l at a completion in layer k, Sno,il,jl,k, is

∂J

∂Sno,il,jl,k
=
(
rno
∂qno,il,jl,k
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) ∆tn
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. (A.24)

If Sng,il,jl,k > 0, the derivative of the life-cycle NPV with respect to the gridblock gas

saturation of a producer well l at a completion in layer k, Sng,il,jl,k, is

∂J

∂Sng,il,jl,k
=
(
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. (A.25)

If Sng,il,jl,k = 0, the derivative of the life-cycle NPV with respect to the gridblock

dissolved gas oil ratio, Rn
s,il,jl,k, is

∂J

∂Rn
s,il,jl,k

=
(
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. (A.26)
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The derivative of the life-cycle NPV with respect to the well flowing pressure of the

producer l, pwf,il,jl, is

∂J

∂pnwf,il,jl
=
(
rno
∂qno,il,jl,k
∂pnwf,il,jl

− rnw
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. (A.27)

The derivative of the life-cycle NPV with respect to the gridblock pressure of

an injection well l at a completion in layer k, pnil,jl,k, is

∂J

∂pnil,jl,k
= −

(
rnwi

∂qnwi,il,jl,k
∂pnil,jl,k

) ∆tn

(1 + b)tn/365
. (A.28)

The derivative of the life-cycle NPV with respect to the gridblock oil or gas saturation

of an injection well l at a completion in layer k are zeros. The derivative of the life-

cycle NPV with respect to the well flowing pressure of the injector l, pwf,il,jl, is

∂J

∂pnwf,il,jl
= −

(
rnwi

∂qnwi,il,jl,k
∂pnwf,il,jl

) ∆tn

(1 + b)tn/365
. (A.29)

A.4 Derivatives of Constraints with Respect to Primary Variables

The equality an inequality constraints are functions of flow rates. Here, we

only provide an example of derivative of the water-oil ratio at a single production

well l with respect to primary variables. The derivative of the WOR with respect to

the gridblock pressure of a producer well l at a completion in layer k, pnil,jl,k, is

∂

∂pnil,jl,k

(
qnw,il,jl
qno,il,jl

)
=

1
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2
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)
. (A.30)

The derivative of the WOR with respect to the gridblock oil saturation of a producer
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well l at a completion in layer k, Sno,il,jl,k, is

∂
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. (A.31)

If Sng,il,jl,k > 0, the derivative of the WOR with respect to the gridblock gas saturation

of a producer well l at a completion in layer k, Sng,il,jl,k, is

∂

∂Sng,il,jl,k

(
qnw,il,jl
qno,il,jl

)
=

1

(qno,il,jl)
2

(
qno,il,jl

∂qnw,il,jl,k
∂Sng,il,jl,k

− qnw,il,jl
∂qno,il,jl,k
∂Sng,il,jl,k

)
. (A.32)

If Sng,il,jl,k = 0, the derivative of the WOR with respect to the gridblock dissolved gas

oil ratio, Rn
s,il,jl,k, is

∂

∂Rn
s,il,jl,k

(
qnw,il,jl
qno,il,jl

)
=

1

(qno,il,jl)
2

(
qno,il,jl

∂qnw,il,jl,k
∂Rn

s,il,jl,k

− qnw,il,jl
∂qno,il,jl,k
∂Rn

s,il,jl,k

)
. (A.33)

The derivative of the WOR with respect to the well flowing pressure of the producer

l, pwf,il,jl, is

∂

∂pnwf,il,jl

(
qnw,il,jl
qno,il,jl

)
=

1

(qno,il,jl)
2

(
qno,il,jl

∂qnw,il,jl
∂pnwf,il,jl

− qnw,il,jl
∂qno,il,jl
∂pnwf,il,jl

)
. (A.34)
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APPENDIX B

GENERALIZED REDUCED GRADIENT METHOD

In the presence of state-control constraints, the set of control variables is di-

vided into two subsets, free (independent) and dependent control variables. Through-

out, let f and d, respectively, denote the free set and the dependent set, i.e., the control

vector u can be rewritten as u = [uTf , u
T
d ]T . The dimension of the dependent control

vector is determined by the total number of equality and inequality constraints. If

we apply the slack variables to convert these inequality constraints to equality con-

straints, we need the same number of slack variables as the number of inequality

constraints. Namely,

Nud = ne + nc = ne + nv, (B.35)

where Nud denotes the dimension of the dependent control vector; ne, nc and nv are,

respectively, the number of equality constraints, inequality constraints and the slack

variables. The above rule indicates that one constraint reduces one degree of freedom

assuming the slack vector is a free control vector. The life-cycle NPV defined in

Eq. 1.3 can be rewritten as the function of the simulation primary vector y, the free

controls and the dependent control vectors:

JL(y, u) = JL(y, uf , ud). (B.36)

The reservoir simulator equations are given in Eq. 3.8 as

fn+1 = f(yn+1, yn, un+1) = 0, (B.37)
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for n = 0, 1, ..., NL − 1. The dimension of yn is Ny × 1. We combine the simulation

equations at all time steps into one overall simulation equation

F (y, u) = F (y, uf , ud) = 0, (B.38)

i.e. we define

F (y, u) =



f 1(y1, y0, u1)

f 2(y2, y1, u2)

...

fNL(yNL , yNL−1, uNL)


=



f 1(y1, y0, u1f , u
1
d)

f 2(y2, y1, u2f , u
2
d)

...

fNL(yNL , yNL−1, uNLf , uNLd )


. (B.39)

Similarly, the equality and inequality can be formulated as

E(y, u) =



e1(y1, u1)

e2(y2, u2)

...

eNL(yNL , uNL)


= E(y, uf , ud) = 0, (B.40)

C(y, u) =



c1(y1, u1)

c2(y2, u2)

...

cNL(yNL , uNL)


= C(y, uf , ud) ≤ 0. (B.41)

Note that the bound constraints are not imposed in the equations of inequality con-

straints. The GRG method applied in Eclipse 300 deals with the simple bound con-

straints by limiting the step size.
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The Lagrangian function L is defined as,

L = JL + λTFF + λTEE + λTC(C − v)

= JL(y, uf , ud) + λTFF (y, uf , ud) + λTEE(y, uf , ud) + λTC(C(y, uf , ud)− v)

(B.42)

where v is a column vector of slack variables; λF , λE and λC are adjoint vectors

for, respectively, reservoir simulation system, equality constraints and inequality con-

straints. The dimensions of λF , λE and λC are, respectively, NLNy × 1, NLne× 1 and

NLnc × 1.

The total derivative of L is

dL = (Jy + λTFFy + λTEEy + λTCCy)dy + (Juf + λTFFuf + λTEEuf + λTCCuf )duf

+ (Jud + λTFFud + λTEEud + λTCCud)dud − λTCdv,
(B.43)

where

Jy = [(∇y1J)T , (∇y2J)T , ..., (∇yNLJ)T ]1×NLNy , (B.44)

Jud = [(∇u1d
J)T , (∇u2d

J)T , ..., (∇
u
NL
d

J)T ]1×NLNud , (B.45)

Fy =



(∇y1(f
1)T )T

(∇y1(f
2)T )T (∇y2(f

2)T )T

. . . . . .

(∇yNL−1(fNL)T )T (∇yNL (fNL)T )T


NLNy×NLNy

,

(B.46)

Ey =



(∇y1(e
1)T )T

(∇y2(e
2)T )T

. . .

(∇yNL (eNL)T )T


NLne×NLNy

, (B.47)
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Cy =



(∇y1(c
1)T )T

(∇y2(c
2)T )T

. . .

(∇yNL (cNL)T )T


NLnc×NLNy

, (B.48)

Fuf =



(∇uf 1(f
1)T )T

(∇uf 2(f
2)T )T

. . .

(∇uf
NL (fNL)T )T


NLNy×LNuf

, (B.49)

Euf =



(∇uf 1(e
1)T )T

(∇uf 2(e
2)T )T

. . .

(∇uf
NL (eNL)T )T


NLne×NLNuf

, (B.50)

Cuf =



(∇uf 1(c
1)T )T

(∇uf 2(c
2)T )T

. . .

(∇uf
NL (cNL)T )T


NLnc×NLNuf

, (B.51)

Fud =



(∇ud1(f
1)T )T

(∇ud2(f
2)T )T

. . .

(∇ud
NL (fNL)T )T


NLNy×NLNud

, (B.52)

Eud =



(∇ud1(e
1)T )T

(∇ud2(e
2)T )T

. . .

(∇ud
NL (eNL)T )T


NLne×NLNud

, (B.53)
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and

Cud =



(∇ud1(c
1)T )T

(∇ud2(c
2)T )T

. . .

(∇ud
NL (cNL)T )T


NLnc×NLNud

. (B.54)

In Eq. B.43, we set

Jy + λTFFy + λTEEy + λTCCy = 0, (B.55)

and

Jud + λTFFud + λTEEud + λTCCud = 0. (B.56)

After solving Eq. B.55 and Eq. B.56 for the adjoint vectors λF , λE and λC , the

gradient with respect to the free control vector and the slack vector can be obtained

as

∇ufL = Juf + λTFFuf + λTEEuf + λTCCuf (B.57)

and

∇vL = −λTC . (B.58)

To do optimization, we need the gradient of L with respect to dependent con-

trol variables, ∇udL, as well. As the equality and inequality constraints are nonlinear

in nature, the linearized simulation and constraint equations are solved forward in

time for the search direction of dependent variables as follows,

(∇yl−1(f l)T )T ·∆yl−1+(∇yl(f
l)T )T ·∆yl+(∇uf l(f

l)T )T ·∆ulf +(∇udl(f
l)T )T ·∆uld = 0,

(B.59)

(∇yl(e
l)T )T ·∆yl + (∇uf l(e

l)T )T ·∆ulf + (∇udl(e
l)T )T ·∆uld = 0, (B.60)

157



and

(∇yl(c
l)T )T ·∆yl + (∇uf l(c

l)T )T ·∆ulf + (∇udl(c
l)T )T ·∆uld = ∆vl, (B.61)

where ∆ulf = ∇ulf
L and ∆vl = ∇vlL and ∆y0 = 0. Eq. B.59 through Eq. B.61 can

be written in a matrix form as
(∇yl(f

l)T )T (∇udl(f
l)T )T 0

(∇yl(e
l)T )T (∇udl(e

l)T )T 0

(∇yl(c
l)T )T (∇udl(c

l)T )T −I




∆yl

∆uld

∆vl



=


−(∇yl−1(f l)T )T ·∆yl−1 − (∇uf l(e

l)T )T ·∆ulf

−(∇uf l(e
l)T )T ·∆ulf

−(∇uf l(c
l)T )T ·∆ulf

 ,

(B.62)

where I is an identity matrix with the same dimension of ∆vl. In [15, 49], only active

constraints are considered so the number of free variables is equal to the number of

active constraints. As a result, the dimension of Eq. B.62 is reduced. The choice of

free parameters is claimed to be arbitrary [15]. In Rao [37], the dependant variables

are directly solved by


∆yl

∆uld

∆vl

 =


(∇yl(f

l)T )T (∇udl(f
l)T )T 0

(∇yl(e
l)T )T (∇udl(e

l)T )T 0

(∇yl(c
l)T )T (∇udl(c

l)T )T −I


−1


−(∇yl−1(f l)T )T ·∆yl−1 − (∇uf l(e

l)T )T ·∆ulf

−(∇uf l(e
l)T )T ·∆ulf

−(∇uf l(c
l)T )T ·∆ulf

 .

(B.63)

This way may not be applicable in production optimization problem, as Eq. B.63

involves inversion of big matrix which is possibly singular. [15, 24, 49] do not provide
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details how to solve the linear equations in Eq. B.62. After solving for ∆yl, ∆uld, and

∆vl, the new control vector is updated with

ul+1 = ul + αdl, (B.64)

where dl = [(∆ulf )
T , (∆uld)

T ]T is the search direction and α is the step size and ul+1

is the updated control vector at the (l+ 1)th iteration. α is determined by a limiting

step size method which ensures all the constraints to be satisfied. As the limiting

step size method is very inefficient, Zakirov et al. [49] points out it is necessary to

loose the constraint within a certain tolerance in order to accelerate the convergence.

In Eclipse reference manual (version 2006.1), it claims that it uses the following

convergence criteria: 1) objective function convergence tolerance between optimiza-

tion iterations is 10−6; 2) minimum RMS gradient of objective function is 10−6; 3)

line search step size convergence tolerance is 10−6; 4) convergence tolerance for con-

trol parameter between optimization iterations is 10−6. In the examples using Eclipse

300, we use these default settings for the termination criteria.
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APPENDIX C

ENSEMBLE-BASED OPTIMIZATION METHOD

Applying ensemble-based optimization (EnOpt) method to maximize the NPV

as a function of the well controls for a given reservoir model requires the generation

of an ensemble of controls. This is done by specifying a covariance matrix CU for the

control vector and generating an ensemble of Ne perturbed controls

û`j = u`opt + C
1/2
U Zj (C.65)

for j = 1, 2, · · ·Ne. Here, each vector Zj is sampled from the Gaussian distribution

N(0, I) where I is the Nu ×Nu identity matrix. The entries in CU are generated by

a spherical covariance function for each well given by,

Ci,j =


σ2

[
1− 3

2

(
|i− j|
T

)
+

1

2

(
|i− j|
T

)3
]
, if |i− j| < T,

0, otherwise,

(C.66)

where σ is the standard deviation, T is the correlation time lag and i, j are the control

step indices.

These perturbations of controls are used to generate an approximate gradient

of NPV (J) at the previous estimate of the optimal set of controls (u∗opt). To do so,

one approximates the cross-covariance between u and J as

C`
U,J =

1

Ne − 1

Ne∑
j=1

(û`j − û`)(J(û`j)− J̄ `)T , (C.67)
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where the two sample means appearing in Eq. C.67 are defined by

û` =
1

Ne

Ne∑
j=1

û`j and J̄ ` =
1

Ne

Ne∑
j=1

J(û`j). (C.68)

Somewhat similar to the work of Reynolds et al. [38], who showed the ensemble

Kalman filter update is similar to one Gauss-Newton iteration using an average

sensitivity matrix to update each ensemble member, [9, 10] derived a formula for

ensemble-based optimization (EnOpt) by using the approximations of the following

two equations:

J̄ ` ≈ J(û`) ≈ J(u`opt), (C.69)

J(û`j) ≈ J(u`opt) +
(
∇uJ(u`opt)

)T
(û`j − u`opt). (C.70)

Note Eq. C.70 is simply a first-order Taylor series approximation. Finally, [9, 10]

observed that Eq. C.65 implies that the mean of the sample of perturbed controls

should be approximately equal to the estimate of the vector of optimal controls at

iteration `, i.e.,

û` ≈ u`opt. (C.71)

Using the approximations of Eqs. C.68, C.69 and C.70 in Eq. C.67, it follows that

C`
U,J =

1

Ne − 1

Ne∑
j=1

(û`j − û`)(û`j − û`)T∇uJ(u`opt) ≈ CU∇uJ(u`opt). (C.72)

Thus, the cross-covariance between the controls and the NPV function is approxi-

mately equal to CU times the gradient, i.e., a preconditioned steepest ascent direction

or a Newton-type method with CU used to approximate the inverse Hessian. Instead

of using this preconditioned steepest descent direction as the search direction, how-

ever, [9, 10] multiplied again by CU for additional smoothing to obtain the search
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direction

d` = CUC
`
U,J ≈ C2

U∇uJ(u`opt), (C.73)

so that the EnOpt algorithm has the form

u`+1
opt = u`opt + α`d` = u`opt + α`CUC

`
U,J , (C.74)

where α` is the step size. If J(u`+1
opt ) ≤ J(u`opt), then u`+1

opt is not accepted as the

new estimate of the vector of optimal controls; instead we decrease the step-size and

reapply Eq. C.74.

Chen et al. [10] provided no information on how to initialize the stepsize α0
` for

each iteration or perhaps more importantly what to do if d` is not an uphill direction.

Note because Eqs. C.73 and C.74 are based on a series of approximations, the gradient

that appears in Eq. C.73 is only an approximation to the true gradient. Thus, there

is no way to prove that d` given in Eq. C.73 is an uphill direction. When Eq. C.73

gives a downhill direction, cutting the stepsizes cannot be expected to finally arrive

at a control vector which will increase the value the NPV function, J . Our experience

is that Eq. C.73 sometimes gives a downhill direction.

Because of the comments of the preceding paragraph, our implementation of

EnOpt is as follows: First replace Eq. C.74 by

u`+1
opt = u`opt + α`

CUC
`
U,J

‖ CUC`
U,J ‖∞

. (C.75)

After normalization of the search direction, we set the initial stepsize α0
` to be ap-

proximately equal to around 1/10 of the length of the smallest interval specifying

bounds on a component of the control vector, i.e.,

α0
` =

1

10
min
i
{uupi − ulowi }. (C.76)
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For example, if bounds on wellbore pressure controls in psi are 1500 ≤ pwf ≤

3500, and the bounds on the liquid flow rate in STB/D at each well are 0 ≤ q` ≤ 10000,

then an appropriate value of α0
` would be 200. Unfortunately, this is just a rule

of thumb and setting the initial step size inappropriately can severely decrease the

computational efficiency of the algorithm as well as result in a suboptimal value of

the NPV. Although a good value of α0
` can usually be found by experimentation with

a couple of test runs, such experimentation is also computationally expensive. The

choice of CU is also somewhat ad hoc and also effects the performance of the algorithm.

In the examples presented here, we simply define CU from a spherical covariance

function with specified variance and correlation “length” given in the example section.

This covariance function is applied on a well by well basis so there is no correlation

between controls at any two different wells. If with α` = α0
` , the u`+1

opt computed

from Eq. C.75 does not increase the NPV, then the step size is cut in half and u`+1
opt is

recomputed with this reduced step size. This process of cutting the stepsize continues

until we have obtained an increase in the NPV or we have performed the maximum

number of step size reductions that are allowed, which is 6 in the examples presented

here. If with the maximum number of stepsize cuts, a u`+1
opt has not been found

such that J(u`+1
opt ) > J(u`opt), then we generate a new set of perturbed controls from

Eq. C.65 for use in Eq. C.67 until we find an uphill search direction. The algorithm

is terminated when 1) the relative increase of the objective function is less than 10−4,

i.e.,
J(u`+1

opt )− J(u`opt)

J(u`opt)
≤ 10−4, (C.77)

and 2) the `2 norm of the relative change in the control vector is less than 10−3, i.e.,

‖u`+1
opt − u`opt‖

max(‖u`opt‖, 1.0)
≤ 10−3. (C.78)
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