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ABSTRACT

Bonet-Cunha, L. S. (Doctor of Philosophy in Petroleum Engineering)
Sampling the a Posteriori Probability Density Function for Permeability Fields Conditioned
to the Variogram and Well-Test Pressure Data (291 pp. - Chapter VI)

Co-Directed by Dr. Albert C. Reynolds, Jr. and Dr. Dean S. Oliver

(327 words)

To investigate the uncertainty in reservoir performance, it is necessary to formulate
the classical inverse problem of generating a random permeability field that is consistent
with observed pressure data, a known mean and a variogram model in a probabilistic way.
This requires the definition of an a posteriori probability distribution that combines prior
information (mean and variogram) with new information represented here by pressure
data.

If one can generate a set of realizations of the permeability field which represents a
correct sampling of the a posteriori probability density function, then by making a flow
simulation with each realization and analyzing the set of outcomes, one can evaluate the

uncertainty in predicted reservoir performance.
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We present efficient Markov chain Monte Carlo procedures to sample the correct
probability distribution. i.e., to generate realizations of the permeability field that correctly
sample the true a posteriori probability distribution. The efficiency of our methods results
from our procedures for proposing perturbations in the permeability field and from
constructing a starting model that at least approximates a realization of the correct
probability distribution. The proposed perturbations are such that the acceptance rate is
extremely high.

Realizations of the permeability field constructed from Markov chain Monte Carlo
methods are not equally probable, but we adopt the viewpoint that equally probable
realizations are not desirable if one wishes to evaluate the uncertainty in reservoir
performance by simulating from the set of reservoir realizations. Instead, one should
construct realizations from the correct probability distribution (or correct probability
density function) in order to quantify the uncertainty in reservoir performance.

In addition, two implementations of simulated annealing are presented that can be
used to sample from the set of most probable models. The first method is derived from the
classical theory of simulated annealing with a properly defined objective function. The
second simulated annealing method is based on our new ideas for proposing perturbations

of the log-permeability field at each iteration of a Markov chain Monte Carlo method.

v
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CHAPTERI

INTRODUCTION

1.1 The Inverse Problem

Reservoir description is an integral part of reservoir management and performance
prediction. With a growing emphasis on the enhancement of hydrocarbon reserves by
developing mature fields, the need for more accurate reservoir descriptions is crucial. A
better description of the distribution of reservoir rock properties will improve our ability
to evaluate hydrocarbon reserves, select infill well locations, and design and predict
displacement processes.

In constructing a reservoir description, certain data must be honored. Data obtained
at sampled locations can be divided into two categories: static and dynamic. Static data,
such as core, log, seismic and geologic interpretation do not evolve significantly over time.
On the other hand, dynamic data obtained at the well, such as production and pressure
history, are functions of time.

It is now recognized that proper integration of static data with dynamic data is
critical for reservoir description. For example, it is known that ignoring information

obtained from static data when history matching production data yields nonunique
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solutions, i.e., different estimates of the set of reservoir properties may all yield an
acceptable match of the production history.

When considering the problem of incorporating both static and dynamic data into
reservoir description, it is necessary to solve a classical inverse problem in which limited
information is available to the geologist or reservoir engineer. Because of that, in practice,
it is impossible to accurately specify the distribution of reservoir properties. As a result of
this uncertainty, we can only expect to generate probabilistic answers to questions of
reservoir performance. We want to be able to quantify the probability of certain reservoir
performance levels. Because the flow and transport in petroleum reservoirs are not linear
functions of reservoir parameters, it is not possible to calculate directly the probability
distribution for future reservoir performance. Instead, we are forced to estimate the
probability distribution from the outcomes of flow predictions for a large number of
possible realizations of the reservoir. For this method to work, it is essential that the
permeability and porosity realizations used in the flow simulation adequately reflect the
uncertainty in reservoir properties. It is necessary that the permeability and porosity
realizations used in the flow simulation are truly samples for a probability density function
representative of the possible arrangement of reservoir properties.

As a first step, it is necessary to formulate this inverse problem in a probabilistic
way. This can be accomplished by using inverse problem theory'. In what follows, the
forward problem for generating pressure responses for a given permeability distribution is
solved using a reservoir simulator. Thus, the permeability field is represented by the values
of permeability in the gridblocks. We represent the natural logarithm of these

permeabilities as random variables, assume the associated random function is stationary
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and assume these random variables satisfy a multinormal distribution. Any given set of

log-permeability values representing our physical system. is called a model. Every model
m can be considered as a point in the model space M. We will define different probability
densities over M. For instance, a probability density pau(m) will represent our priori
information on models, and another probability density, m(m) will represent our a
posteriori information, deduced from pu(m) and from the degree of fit between data
predicted from models and observed data. As shown if Ref. 1, ®(m) = apu(m)L(m), where
L(m) denotes the likelihood function, which is a measure of the degree of fit between data
predicted from the model m and the observed data (a is an appropriate normalization
constant.) Typically, the likelihood function is related to a misfit function S(m), through an
expression like L(m) = kexp(-S(m)).

In terms of the a posteriori probability density on the model space, it is in general
possible that there exists a multitude of local maxima as well as a set of global maxima
which represents the set of most probable models. In our work, any estimate constructed
for one of these most probable models will be referred to as the maximum a posteriori
estimate or the most probable model.

When the goal is to obtain the maximum a posteriori estimate, it is possible to use
methods that rely on using local information on the gradient of the misfit function to
improve upon some starting model in an iterative fashion. In such cases, a local search for
the maximum a posteriori estimate can be performed using a gradient method. Although
gradient methods®* have been recently successfully applied in the context of inverse
problem theory to generate rock property fields conditioned to prior means, the

variograms and multiwell pressure data, we believe that gradient methods may fail for
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some problems, i.e., fail to converge to a physically feasible solution or converge to a local
minimum which does not represent a maximum a posteriori estimate. In Refs. 2-4, such
convergence problems were not encountered, which suggests that convergence problems
may not be as bad as previously anticipated. However, multiphase flow problems have not
yet been considered. Anticipated convergence problems in the application of gradient
methods provided the original motivation for investigating the method of simulated
annealing to determine the most probable model.

When analyzing the inverse problem, obtaining a maximum a posteriori estimate is
usually not sufficient because we normally also wish to have some information on the
uncertainty of the estimate. Because the flow in petroleum reservoirs is not a linear
function of reservoir parameters, it is not possible to calculate directly the probability
distribution from the outcomes of the flow simulation. But it is possible to
pseudorandomly generate a large collection of models according to the a posteriori
probability distribution and analyze and display models in such a way that information on
the relative likelihoods of model properties is conveyed to the spectator. This can be

accomplished by means of efficient simulated annealing and Monte Carlo methods.

1.2 Probabilistic Formulation of the Inverse Problem

In our application, the model m represents the set of gridblocks values of log-
permeability (In(k)). Based on our assumption of a multinormal distribution, the prior
distribution has a probability density function satisfying the following proportionality

relation:
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P gy (1) o< exp(—%(m—mO)TC;,'(m—mU)). (1. H

Throughout, 1 is the prior mean (expected value) of m and Cy is the covariance matrix
obtained from the variogram model.

In the problem considered here, doss is the vector of measured pressure data, and
includes all measured wellbore pressure data used as conditioning data. The relationship
between the vector d of calculated data and the vector m of model reservoir parameters is

written as

d=g(m). (1.2)
The functional relationship of Eq. 1.2 represents the generation of d from a
reservoir simulator for a given model m. If m is the true model (actual values of gridblock
log-permeabilities), then Eq. 1.2 would give the “true” pressure data d, which will
generally differ from d,s due to pressure measurement errors. Here, pressure
measurement errors are assumed to be independent identically distributed Gaussian
random variables with zero mean and variance o,. Thus, the covariance matrix for these
errors is a diagonal matrix Cp with all diagonal entries equal to o4

For a given set of data, the likelihood function for the model is given by the

following equation:

1 -
L(m) oc exp(”'i’(g(m) - dobs )1‘C‘Dl (g(m) - dobs )) . ( 1. 3)

As shown in Refs. 1-4, it follows from Bayes’s theorem that the a posteriori probability

density function for our model, denoted 7(m), satisfies the following relation:
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T (m) = al(m)p,,(m), (.4

or using Egs. 1.1 and 1.3,

t(m) = aexpli—%((m - ’no)TC;]l (m—my)+

(8(m) =) C' (g(m) = )] (1.5)

where a is a constant. The most probable model, referred to as the maximum a posteriori

estimate, is the one that maximizes n(m), or equivalently, minimizes

S(m) =%[(m—mo)’0;,'(m—mo)+

(g(m)—d,,,)" Cp'(g(m) - d,,)]. (1.6)

Among all models that are conditioned to or *“honor” the prior mean and covariance
(variogram), the maximum a posteriori estimate is the most probable model. Put another
way, the most probable model is the one that minimizes the objective function O = S(m).
Here, our language suggests that there is a unique global minimum of our objective
function, but, as noted previously, it is possible that there exist a set of global minima (set
of most probable models or set of maximum a posteriori estimates.)

In Refs. 2-4, the maximum a posteriori estimate is estimated using a gradient
method. In this work, we show that the maximum a posteriori estimate can also be
approximated by simulated annealing.

It is important to realize that although we have made the assumption that the errors
in the data are normally distributed, m(m) is generally not a multivariate normal

distribution unless g(m) = Gm where G is a linear operator. As shown in Ref. 1 if g(m) =
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Gm. then we can write directly a formula for the a posteriori probability distribution for

our model as

t(m) o< exp[—%(()n—rnm)rqf,',r,(m—mw)):|. (1.7

In this case the a posteriori probability distribution for the random variable m is
multivariate normal with mean, m.., and covariance, Cypr. Because this is a very simple
distribution, it is possible to use any number of standard geostatistical methods of
simulation, including an LU decomposition method to sample this distribution. For this
case we can sample 1t (m) by generating models m; , j = 1,....,n (n = number of desired

samples) such that

m;j = me. + LZ;, (1. 8)

where Cyp= LL" and Z; is a vector of standard normal deviates.

However, in this work we assume that the relationship between the model
parameters and the data is not linear and then the a posteriori distribution to be sampled is
the one given in Eq. 1.5. To do this it is necessary to have a sampling procedure that does
not assume that the a posteriori probability density function is a multivariate Gaussian
distribution or has any other special form. A simple, but general, method that satisfies this
characteristic, and can be used to sample from nonlinear probability distribution functions,
is a exhaustive search. A systematic exploration of the discretized model space is
performed, and all models within the considered model subspace are visited. Although this

method may be possible for problems with low dimensionality (i.e., with few parameters),
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the task is not computationally feasible for problems which have a large number of model
parameters.

For our problem, evaluation of Eq. 1.5 requires the calculation of a misfit function
which requires a flow simulation for each choice of the random variables. Since, in the
simplest case, there will be thousands to tens thousands of gridcells, each with a value of
permeability assigned to it, and since a complete evaluation of the probability distribution
would require a flow simulation for every possible combination of permeabilities, it is
clearly impossible to exhaustively sample the parameter space.

When analyzing the nonlinear inverse problem, associated with Eq. 1.5, and the
number of model parameters is large, it is therefore necessary to severely restrict the
number of misfit calculations and consequently flow simulations. As will be shown in this

work, one way to do this is to use a Markov chain Monte Carlo search.

1.3 Monte Carlo Markov Chains and Simulated Annealing Overview

The idea behind Markov chain Monte Carlo methods is old, and its actual
application to the solution of scientific problems is closely connected to the advent of
modern electronic computers. The ideas that form the basis of these methods were first
published by Metropolis et al’(1953) in a algorithm, now known as the Metropolis
algorithm, that was able to (asymptotically) sample a space according to a Gibbs-
Boltzmann distribution. This algorithm was a biased random walk whose individual steps

(iterations) were based on very simple probabilistic rules.
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The main features of these methods for sampling trom a distribution with density

(i) are:

e A sequence of samples is obtained by simulating a Markov chain; i.e., the probability
of generating some particular new state depends only on the preceding state in the
sequence. This transition probability is careful chosen in such a way that, after a finite
number of transitions, the chain samples converge to the desired mt(m) distribution. In
practice, it often takes a large number of transitions to reach the stationary distribution
and this is called the transient period of the chain;

e The computations depend on 7t(m) only through ratios of the form n(m))g;/ ®(mi) gy,
where m; and m; are sample points and g; is the probability of proposing a transition
from state m; to m;. Thus, the normalizing constant for m(m) does not need to be
known and the methods are very easily implemented on a computer;

e Since a sequence of samples is obtained by simulating a Markov chain, the resulting
samples may be correlated and calculation of statistics based on the sampling requires

some care.

Around the same time that the Metropolis algorithm was introduced, another thread
of development began. Alder and Wainwrigth®(1959) introduced the “molecular
dynamics” method as a means of simulating physical systems in which new states are
found by simulating the dynamical evolution of the system. Recently, this idea and the
Metropolis algorithm have been united in the hybrid Monte Carlo method of Duane,
Kennedy, Pendleton, and Roweth’(1987) and some of its variants like the method

proposed by Horowitz® (1991).
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Basically, the hybrid Monte Carlo differs from the usual Monte Carlo applications
by two factors. First, the a posteriori distribution to be sampled is expanded by the
introduction of a set of ‘fictitious’ variables, p, in one-to-one correspondence with the
model parameter variables. The sampling process gives pairs of sampled model and
fictitious variables. However, the distribution of the model parameters is the marginal
distribution of this expanded distribution. This means that, after the end of the sampling
process we need only consider the samples obtained for the model parameters, while
ignoring the values obtained for the fictitious variables. Second, the transitions from one
state to another in the Markov chain is performed by combining an equation of motion
method based on Hamiltonian dynamics with the Metropolis algorithm. As will be
demonstrated later, these two main features of the hybrid Monte Carlo procedure make it
efficient by eliminating the random walk behavior that is present in conventional Monte
Carlo applications.

A wide variety of problems have been, or are being, approached using Markov
chain Monte Carlo methods for sampling. Useful references on the application of Markov
chain Monte Carlo methods to the earth sciences include publications by Tjelmeland et al’
(1994) and Hegstad et al.'®(1993) One of the first applications in this area was done by
Smith and Freeze''(1979) in groundwater flow. They conducted a stochastic analysis of
two-dimensional steady-state groundwater flow in a bounded domain by means of Monte
Carlo techniques. In their study, the flow domain was divided into a set of square blocks.
A nearest-neighbor stochastic process model was used to generate a multilateral spatial
dependence between hydraulic conductivity values in the block system. Both statistically

isotropic and anisotropic autocorrelation functions were considered. This model led to a
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realistic representation of the spatial variations in hydraulic conductivity in a discrete block
medium. Results of the simulations provided estimates of the output distribution in
hydraulic head. They concluded that uncertainties in the predicted hydraulic head values
were strongly influenced by the presence of spatial trends in the mean hydraulic
conductivity. They also concluded that in evaluating the concept of an effective
conductivity for a heterogeneous medium, both the nature of the spatial heterogeneities in
hydraulic conductivity and the flow system operating within the flow domain must be
considered.

One recent example of using Bayes theorem and a Markov chain Monte Carlo
algorithm for generating a posteriori probabilities for an inverse problem is given by
Neal'?(1995). He used an implementation of the hybrid Monte Carlo method when
developing a Bayesian approach to learning for neural networks. At first, he addressed the
problem of defining classes of prior distributions for network parameters since his
Bayesian approach requires an explicit formula for the prior distribution. As he pointed
out, predictions of future observations when using a Bayesian approach are made by
integrating the model’s prediction with respect to the a posteriori parameter distribution
obtained by updating this prior to account for the data. For neural networks, the task of
integration over the a posteriori distribution is computationally demanding. He solved this
problem using Markov chain Monte Carlo methods. More specifically, he demonstrated
that the use of the hybrid Monte Carlo algorithm, which is based on dynamical simulation,
is superior to methods based on simple random walks.

A technique based also on the Metropolis algorithm, proposed independently by

Kirkpatrick et al."® (1983) and Cemy'* (1985), for use in statistical mechanics, known as
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simulated annealing has been widely applied to optimization problems. The main goal of
simulated annealing is to find near-optimal solutions to complex optimization problems.
To clarify the basis of simulated annealing let us assume that the probability density

function for an hypothetical problem is given by

p(m) = aexp[-O(m)]. (1.9)

In the simulated annealing technique, the state m of the system being optimized is
identified with the state of a statistical mechanical system; the objective function O(m)
being minimized is identified with the physical energy (E), and the optimization process is
controlled by a parameter T which can be identified with the physical temperature. The
system to be optimized is allowed to ‘equilibrate’ by applying a set of moves, i.e. a set of
system pertubations, and accepting or rejecting the moves according to the Metropolis
algorithm; if the move cause the energy to decrease (AE < 0), the perturbation is accepted;
if AE is positive, then the perturbation is accepted with probability P(AE) = e5™. This
conditional acceptance is easily implemented by choosing a random number o uniformly
distributed between 0 and 1. If o < P(AE), then the perturbation is accepted; otherwise the
existing value for the parameter is retained.

The mathematical formalism of the simulated annealing algorithm is based on the
theory of finite Markov chains. By exploiting the connection between simulated annealing
and Markov chains, it is possible to prove that the system will converge to “thermal
equilibrium” if the Metropolis rule is used and the following two assumptions hold: (1.)

Any state of the system to be optimized can be reached from any other state of the system,
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using the prescribed move criteria, (2.) There is a non-zero probability of staying in the
current state in a given move; see Refs. 15 and 16.

In thermal equilibrium at temperature T, the states m of a hypothetical, large
statistical ensemble of systems, identical to the considered system, are distributed
according to the following distribution t(m) = b(T)e"E"""T which can be related to the
probability density function for our hypothetical problem (Eq. 1.9) when T = 1. This
suggests that it is possible to use the simulated annealing technique to sample a certain
probability distribution. However, although is possible to use simulated annealing in
probabilistic inference the same way a Markov chain Monte Carlo is used, most of the
literature on annealing assumes that the goal is to find a minimum energy state by cooling
to a temperature of zero.

Using Markov chain theory it is also possible to prove that by reducing the value of
the temperature parameter T according to specific rules, the system will converge to one
of the most probable models of the probability distribution given by Eq. 1.9. In this
respect, the use of a global search algorithm like simulated annealing can be advantageous
for nonlinear problems in which several local and/or global minima for the misfit function
exist. In this case, methods that rely on local information from the objective function
derivative can lead to a local minimum since the local geometry of the misfit function
surface in the model space may not directly contain information about the direction to
follow in a search for the global minimum.

A global search method is not confined to uphill (or downhill) moves in the model
space and is therefore less influenced by the presence of local optima. In simulated

annealing, the high initial temperature reduces the effect of energy barriers, allowing free
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movement through state space. The hope is that as the temperature is then reduced, the
simulation will end up on the right side of the energy barriers, that is, on the side where it
is more likely to be under the canonical distribution at the final temperature. This is
illustrated by Fig. 1.1. The plot shows the behavior of the energy of a uni-dimensional
state at six different values of the temperature parameter. At high temperatures the energy
barrier can easily be transversed but, as the temperature is reduced, the simulation at the
final temperature will possibly end up in the region where there is the lowest energy value
or equivalently the highest probability. Fig. 1.2 shows the effect of the temperature
parameter in the corresponding probability function. (In Fig. 1.2 the probability density
functions are normalized to have a maximum value of unity.)

The hope that simulated annealing will end up generating states near the one of the
most probable modeis is based on the idea that the probability distribution at higher
temperatures is a good guide to the distribution at lower temperatures. This may often be
the case, but will not always be. Fig. 1.3 shows a problem presented by Neal'’(1993)
where this assumption fails. The plot shows the behavior of the energy of a uni-
dimensional state. The distribution at high temperatures is dominated here by the size of
the two low-energy regions, not by the depths of their lowest points. Since the global
minimum happens to be in the smaller region, annealing will in this case direct the
simulation away from the region where the equilibrium distribution will be concentrated at
very low temperatures.

Such examples are cause for caution in evaluating the prospects of success using
annealing, but they should not be taken as discouraging its general use, as no realistic

procedure can guarantee good results in all cases.
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One of the first examples of solving an inverse problem by means of the simulated
annealing method is given in the area of resolution of images by Geman and Geman'®
(1984). They discussed an application of simulated annealing to Bayesian image
restoration. For their particular inverse problem, a two-dimensional deconvolution
problem, they derived an expression for the a posteriori distribution from (1) the prior
distribution, (2) a model of the convolutional two-dimensional image blurring mechanism,
and (3) the parameters of the Gaussian noise model. By identifying this a posteriori
distribution with a Gibbs-Boltzmann distribution, they performed a maximum a posteriori
estimation in the model space, using a simulated annealing algorithm. In their paper, they
mention the possibility of using the simulated annealing algorithm, not only for maximum a
posteriori estimation, but also to sample the model space according to the a posteriori
distribution. However, they did not pursue this possibility further, nor did they describe
how to extend this idea to inverse problems in general.

Marroquin et al.'’ (1987) adopted an approach similar to that of Geman and
Geman. However, they used the Metropolis algorithm to generate the a posteriori
distribution, from which they computed model estimates. One of the problems noted by
them was that their Bayesian approach requires an explicit formula for the prior
distribution.

Geophysical examples of solution of inverse problems by means of the simulated
annealing method are given by Koren et al.® (1991), Mosegaard and Vestergaard®' (1991)
and Vestergaard and Mosegaard® (1991), who all used simulated annealing within the
difficult context of seismic waveform fitting. Koren et al. described the potential of

simulated annealing methods, not only for solving a model optimization problem, but also
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for performing an analysis of resolution in the inverse problem. By running a modified
simulated annealing method, samples from the model space were drawn in such a way that
their frequencies of occurrence approximate their a posteriori likelihoods. Using this
method, maximum likelihood estimation and uncertainty analysis of seismic background
velocity models are performed on multioffset seismic data. Another example is given by
Rothman®® (1985), who solved a strongly nonlinear optimization problem arising in
seismic reflection surveys by means of simulated annealing.

Several stochastic and combinatorial optimization techniques exist for generating
reservoir descriptions, but simulated annealing has rapidly become the dominant algorithm
in use; see Refs. 24-28 and their reference lists. Although the popularity of the algorithm

stems in part from its theoretical underpinnings™'*'®

(convergence to a global minimum
can be proved under stringent assumptions), its extensive use also arises from the fact that
additional data constraints can be incorporated by a simple modification of the objective
function and its apparent success in generating rock-property fields that yield good
approximations to the global minimum of the objective function. Unfortunately, if well-test
pressure data or production data are incorporated directly into the objective function, then
a forward problem must be solved at each iteration of simulated annealing in order to
update the objective function. In general, each solution of the forward problem requires
one run of a reservoir simulator, which is extremely expensive when one must perform
thousands of iterations in the simulated annealing algorithm.

To avoid this problem, when conditioning to the variogram and production data,

Hird*(1992) developed a conditional simulation method based on simulated annealing that

instead of a fluid flow simulator, uses functions defining the connectivity of a reservoir
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which are based on the spatial arrangement of permeability. These static connectivity
functions are correlated to production performance parameters, i.c., water oil ratios and
water breakthrough times. The connectivity functions and the spatial statistics are then
used as constraints to develop alternate reservoir descriptions. Thus, dynamic production
information about the reservoir is translated to quantifiable static information. The
assumption is that this procedure yields descriptions of reservoir heterogeneities sufficient
for future performance prediction.

To also avoid the problem of flow simulation runs, when conditioning to the
variogram and well-test pressure data, various authors (see for example, Refs. 25 and 26)
have incorporated pressure data by estimating an “average effective” permeability from
pressure data and then incorporating the difference between this fixed average value
computed from a simulated annealing image into the objective function. Thus, this method
yields permeability descriptions conditioned not to the well-test pressure data, but to an
interpretation of the pressure data. Although this approach avoids the solution of the
forward problem and is computationally convenient, the permeability field obtained by
simulated annealing may give a pressure response which is in poor agreement with the
actual pressure data®® and the two corresponding sets of pressure derivative data may be
completely differer.t.

It is important to note that current applications of simulated annealing in reservoir
description generate a realization of the permeability field that is consistent with observed
pressure data and a known variogram model. Unfortunately, the meaning of this resulting
realization is not clear. In this work, our main goal is to generate a large number of

realizations and ensure that the distribution of realizations represent a correct sampling of
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the a posteriori distribution for our model. This is necessary if one wants to investigate the

uncertainty of reservoir behavior.

1.4 Outline of the Remainder of the Thesis

The remainder of this thesis will deal with issues concerning sampling of
permeability fields conditioned to the prior mean, the variogram and multiwell pressure
data and is organized as follows.

In Chapter II, we address the problem of producing permeability fields conditioned
to multiwell pressure information, the prior mean and a model variogram that are truly
samples of the a posteriori distribution for our model by using Markov chain Monte Carlo
methods. We focus on improving computational efficiency relative to two aspects:
shortening the length of the transient period and increasing the number of accepted
transitions. As will be shown, the first objective can be obtained by using a method to
select the first state in the chain such that the probability for selecting any specific state is
approximately the same as the probability assigned to it by the a posteriori probability
distribution.

To design a random walk that will sample the a posteriori probability density
function is not difficult. However, in cases where the a posteriori probability density
function has narrow maxima, these maxima will be very sparsely sampled. In such cases,
sampling of the model space can be improved by importance sampling™ that is, by
sampling the model space with a probability density as close to the desired a posteriori

probability distribution as possible. One way to attempt to do this is to use a method
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which samples the model space according to the prior distribution. This approach is
superior to a uniform sampling by a crude Monte Carlo. However, due to the fact that the
two distributions, prior and a posteriori, may be completely different, it would be
preferable to draw sample models from the model space according to a probability
distribution which is closer to the a posteriori distribution.

A way to accomplish this is discussed in Chapter II, where we use specially tailored
perturbations to the states in such a way that the prior information (mean and model
variogram) is automatically satisfied and the pressure data are approximately matched at
every step with the objective being to increase the number of accepted transitions. These
perturbations make use of sensitivity coefficients (derivatives of pressure with respect to a
permeability gridblock value) calculated from the reservoir simulation.

Chapter III explores the connection between simulated annealing and Markov chain
Monte Carlo methods and provides procedures for generating realizations of the
permeability field. We consider various perturbatior mechanisms for generating states in a
simulated annealing process and show that, with a proper choice of the objective function,
we can find a temperature level T such that images generated with simulated annealing at
this temperature level correspond to states in a Markov chain that converges to yield a set
of realizations which represents a correct sampling of the a posteriori probability function
for our model.

Based on the theory described in Chapter III, it is possible to delineate two
techniques to sample from the set of most probable models. The first technique relies on a
proper definition of the objective function and uses the wellknown two-point swap as a

perturbation mechanism. The second is based on new ideas for proposing perturbations of
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the log-permeability field at each iteration of a Markov chain Monte Carlo method. In this
respect, we show that if simulated annealing is applied properly, one can obtain a
maximum a posteriori estimate that is in close agreement with the one obtained from a
gradient method>™. It is also possible to envision techniques that, using simulated
annealing, are able to overcome the transient period in a Markov chain and then can be
used in applications where the techniques described in other chapters do not work
properly. Here, the main advantage of simulated annealing would be to avoid convergence
to a local minimum.

In Chapter III, a discussion concerning the current practice of including the
variogram in the objective function in simulated annealing applications is also presented.
We show that variograms computed from realizations of permeability fields that are
samples from the correct probability distribution function do not necessarily give a good
match to the model variogram. This fact leads then to our argument that the variogram
should not be included in the objective function.

In Chapter 1V, we take a different approach for sampling the a posteriori
probability distribution of the permeability field. This is accomplished by using a hybrid
Monte Carlo method which is conceptually designed to improve the sampling process by
avoiding the random walk behavior that is present in simpler Markov chain Monte Carlo
method implementations.

Chapter V, considers the implementation of the techniques summarized in the
previous chapters and also presents a comparison between the methods described in this

work.
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In the concluding chapter the contributions of the dissertation are summarized and

areas for future research are outlined.
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CHAPTER II

MARKOV CHAIN MONTE CARLO METHODS FOR SAMPLING

In this chapter, a description of the basic concept of Markov chains is presented
and a Markov chain Monte Carlo implementation to generate a set of realizations of the
permeability field, which represents a true sample from the a posteriori distribution
described in Chapter I, is presented.

Generating realizations of the permeability field that are consistent with observed
pressure data and a known variogram model in order to investigate the uncertainty in
reservoir behavior is a difficult problem. At present, it appears that only the Markov chain
Monte Carlo methods offer any hope of producing results whose accuracy is reasonably
assured in a feasible amount of time, without the need for any questionable assumptions.

These methods have been used for many years to solve problems in statistical
physics, and have recently been widely applied to Bayesian models in statistics. Markov
chain Monte Carlo methods make no assumptions concerning the form of the distribution,
such as whether it can be approximated by a Gaussian. In theory at least, Markov chain
Monte Carlo methods account properly for multiple modes. The main disadvantage of
Markov chain methods commonly used for statistical applications is that they may in some

circumstances require a very long time to converge to the desired distribution.

25
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In this chapter, the focus of our efforts will be on improving the efficiency of the
overall method by reducing the number of perturbations to overcome the transient period

of the chain and increasing the acceptance rate of proposed states.

2.1 Theory of Markov Chains

A Markov chain is a sequence of random variables X‘*.X'"...., where the probability
distribution for X" is determined entirely by the probability distribution of X", The set of
all possible values for the X™'s is called the state space. If the state space is finite, then the
Markov chain is said to be finite. A Markov chain can also be thought of a sequence of
trials where the probability of the outcome of trial n depends only on the outcome of trial
n-1. The transition probability p;""" gives the probability that the process goes from
state { (or outcome m') to state j (or outcome m) at trial n. In this work, we often simply
refer to m' as state i. If the transition probabilities do not depend on n, the Markov chain is
said to be homogeneous. For a homogeneous Markov chain, the transition probabilities at

every step or trial, can be denoted by p;;. Since the p;’s are probabilities, we must have

Y.p =1, 2. 1)
J

for all i where the sum is over all states. A Markov chain is said to irreducible if for every
(ij), there exists n such that p";>0,where here p"; = Prob{Xm, = j | Xn = i} is the
probability of going from state i to j in n trials.

For all n, we let p,(m) denote the probability of obtaining state j as the outcome of

the nth trial so
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A stationary or invariant probability distribution n(m') over the states of the

Markov chain with transition probabilities p;; is one that satisfies

r(m’) = n(m')p; . (2.3)

A stationary distribution persists for ever'’ once it is reached. This means that once
we reach a point, where the states generated in the Markov chain represent samples of T,
all successive states generated in our Markov chain will also represent a sample from 7. In
our applications, we wish to ensure that there is only one stationary distribution and that
this stationary distribution represents the correct probability distribution for our model
(the log-permeability field on the gridblocks.)

Invariance with respect to 7 is implied by the stronger condition of a detailed

balance which means that for all m' and n?':

n(m')p; = T(m’)p;. (. 4)

A chain satisfying detailed balance is said to be reversible.

Summing Eq. 2.4 over i and using Eq. 2.1 gives
Y n(m)p; = Y, n(m’)p; = n(m’)Y pj; = n(m’). (2.5)

Note Eq. 2.5 indicates that ®t(m) is a stationary distribution for the Markov chain. In our

applications, we will use homogeneous Markov chains and require that the chain be

reversible.
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The following theorem can be found in Refs. 15 and 17.
Theorem: Let X" .n=0,1,... be a finite irreducible homogeneous Markov chain with

transition probabilities p; such
pi >0, (2.6)

for at least one i. If T(m) satisfies the detailed balance of Eq. 2.4, then n(m) is the unique

stationary distribution. Moreover, the Markov chain is ergodic, i.e.,

lim p, (m) = (m), (2.7)

for every probability distribution po(rm) on X9,

Eq. 2.7 indicates that in the limit, the states obtained in the Markov chain will represent
samples from the probability distribution m(m). A Markov chain that is ergodic has a
unique invariant distribution, its equilibrium distribution, to which it converges from any
initial state. In our application, the state space for m will be the set of all gridblock log-
permeability fields. Since in the limit, we will be sampling from the stationary distribution
n(m), we want to construct transition probabilities so that the detailed balance of Eq. 2.4
is satisfied when m(m) is the correct probability distribution for m.

The preceding theorem is for finite Markov chains. Neal'” indicates, however that
the preceding theorem holds for a countably infinite state space, and with appropriate
modification for continuous state spaces.

The one we consider is infinite (in fact continuous) in theory, but when
implemented on a computer, it is finite since only a finite number of log-permeability fields
defined on the gridblocks can be represented on a computer with finite word length. For

such problems, Hastings*°(1970) shows that we can use probability density functions in
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place of probabilities. Thus, in our application n(m') will be given by the correct
probability density function for the model m which is the field of log-permeabilities defined
on the gridblocks.

In constructing the Markov chain, at step n, we will determine a specific m,ie., a
state (outcome or realization) of X", It is important to note that the basic theorem
indicates that as n becomes sufficiently large, the actual states, will approximate
realizations or samples of the correct stationary probability distribution 7t(m). Approximate
convergence will be obtained when p,(m)=m(m). Once this result is obtained, from that
point on, all states generated in the Markov chain will represent realizations of the correct
probability distribution. In practice, it often takes a large number of transitions to reach the
stationary distribution. The early states represent the so called transient period and are
discarded, since they may not be representative of the equilibrium distribution.

To use the Markov chain Monte Carlo method to generate realizations that are
proper samples of some distribution (), we need to construct a Markov chain which is
ergodic, which has m(m) as its equilibrium distribution, which converges to this
distribution as rapidly as possible, and in which the states visited, once the equilibrium
distribution is reached, are not highly dependent.

To construct such a chain for a complex problem, we expect to converge to the
stationary distribution in fewer iterations if we begin the Markov chain by sampling from a
distribution po(rm) which is close to mt(m). Similarly, it is clear that convergence can also be
accelerated if our mechanism for proposing new states is such that the probability density
function for the set of proposed states is approximately equal to the a posteriori

probability density function.
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We will present procedures which use both approaches to accelerate convergence

of the Markov chains constructed by Monte Carlo techniques. Our methods allow us to
construct Markov chains where, after a short transition period, almost all states generated

in the chain represent samples from the correct stationary probability distribution.

2.2 Sampling the Log-Permeability Field

In the context of our problem, the state space of the Markov chain is the set of
distributions of log-permeabilities on the gridblocks. The model m is the vector of
gridblock values of log-permeability. A sequence of states or possible realizations will be a
Markov chain provided that the probability of generating a particular new state depends
only on the preceding state in the sequence. We denote a particular stochastic realization
of m as m'. Each possible state 7' will have a probability m;=mn(m’) associated with it,
where T is the probability of being in state m' based on the true probability distribution of
gridblock log-permeability values. As mentioned previously, we can use probability
density functions for &; instead of actual probabilities and will do so throughout. However,
for simplicity, we will speak of probability density functions as probabilities.

Our objective is to generate a sequence of states (sequence of m”s) which sample
the correct probability density function. Unfortunately, in most real applications, we
cannot easily characterize the probability of the ith realization so we must instead use a
method that relies only on the relative probabilities to generate realizations. This can be
done using Markov chains with a proper choice of the conditional probabilities p;, where

pijis the probability of generating n’ as the next state in the Markov chain given that the
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previous state was m'. The goal is to construct the Markov chain so that after a transition
period, states generated in the chain will represent samples (realizations) of the correct
probability distribution. As discussed in the preceding section, this requires that the p;
satisfy Egs. 2.4 and 2.6 (for at least one i) and p;>0.

Metropolis et al.’ were the first to observe that the problem of calculating a
permissible transition matrix (matrix with (i) entry equal to py) could be simplified by
requiring that the p;’s satisfy the reversibility condition or detailed balance of Eq. 2.4.

They also proposed partitioning p;; as
pj =;q;, (2.8)

where g; denotes the probability of proposing a transition from state m' to state n’ and o;
is the probability of accepting the proposed transition m as the next state in our Markov
chain. In our work, we will propose transitions such that the probability of accepting them
is high. We will also refer to m' simply as state i.

The o;’s are not uniquely determined by Egs. 2.4 and 2.8, but one fairly standard

choice® is

-1
T.g.
a,.,.=s,.j[1+ 'q”] . 2.9)

If the detailed balance of Eq. 2.4 holds, it can be shown that the matrix of s; must

be symmetric, i.e., we must require that
(2. 10)

for all (/). We must also require that
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O<s, <l+— Q2. 11)
;4

in order to ensure that the probability of accepting the proposed new state 7 is between
zero and one, (see Eq. 2.9.) Since [s;] is symmetric, Eq. 2.11 must also hold when i and j

are interchanged, and thus it follows that we must require

T.0.
0<s; <14—ii, 2. 12)
.q;

Hastings’ choice of s;’s that satisfy Eqgs. 2.10, 2.11 and 2.12 is

T.q. .G
s; = ming 1+ idy J+ i . (2. 13)
q;i T;q;

Using Eq. 2.13 in Eq. 2.9 and simplifying, we find that the probability of accepting the

proposed transition from state i to state j is given by

T.q -
oy = min{ 1,22 2. 14)
g

Note that if the mechanism for proposing transitions is symmetric, i.e., g;=gji, then
the probability of accepting the proposed state j depends only on the ratio of the
probability of state j to the probability of state i. The two-point swapping procedure often
used in simulated annealing is an example of a symmetric procedure for proposing
transitions.

In our applications, we consider only procedures where Eq. 2.14 applies since this
choice is relatively efficient for sampling the desired probability distribution. Our emphasis

will be focused on increasing the acceptance probability for proposed transitions g;;. Since
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m, is a fixed, but unknown, function of the permeability distribution, we can only improve
the efficiency by improving the process of proposing transitions. The resulting samples of
the log-permeability field are conditioned to the prior mean, the prior covariance
(variogram) and the multiwell pressure data.

A state i is a vector of M log-permeability values given by

m = (my,my,...,my)", (2. 15)

where my is the value of In(k) in the /th gridblock.

2.2.1 Local Perturbations Based on the Variogram

We let

Cy =L, (2. 16)

be the Cholesky decomposition of the covariance matrix Cy derived from the variogram.
As noted previously, we assume the model is multivariate normal. Thus, states which

satisfy the prior mean and prior covariance (variogram) can be generated from
mi=m0+LZi, 2.17)

where my is the prior mean. In Eq. 2.17, Z' is an M-dimensional column vector where the
components of Z' are independent standard random normal deviates. The stochastic
variable defined by Eq. 2.17 honors the prior mean (mp) and variogram in the sense that

the expected value of m' is mg and the covariance of m' is Cy. This does not mean that the
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variogram computed for any particular m' generated from Eq. 2.17 will exactly match the
model variogram.

Because L is invertable, there is a one-to-one correspondence between m' and Z.
Thus, we can refer to either m' or Z' as the ith state.

In this subsection, we propose a transition from state i to state j by perturbing only

one element of Z'. Letting

Z =(Zy, 20 s Zp s Zyg) T (2. 18)

we propose a new state by randomly selecting the kth component from the uniform
distribution on the set {1,2,....M} and then generating a Z, from the standard univariate

normal distribution. We denote the proposed new state by
Zl =(Z,2Zy0 2, e Zyg)T (2. 19)

Since the Z;’s are independent and only one component is being changed, the probability

of proposing a transition from state i to state j is given by

1 PR
q; = MmexP( 2(Z,c) ) (2. 20)

Similarly, the probability of proposing a transition from state j to state i is given by

1 1 2
= -—(Z,)" |. 2.21
i M«/21texp( 2( ) ) ( )

The probabilities of state i and state j are specified by the probability density

function of Eq. 1.5, i.e., these probabilities are given by
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o'y = aexp[—-?lj((mi —/nO)TC;,l(mi —ng) + Acl'fC,—,'Azli)} . (2.22)
and

n(m') = aexp[—-%((mj —my)' Cyf (m! —my) + AdT CplAd? )}, (2.23)
where

Ad' = g(m')-d,,,, (2.24)

for all i. Note Ad' measures how close pressure data predicted using the log-permeability
distribution m' is to the observed data, and thus Ad7Ad' is sometimes referred to as the

pressure mismatch or the mismatch of pressure data. In this and in the next subsection, the

pressure mismatch actually refers to \/Ad'TCB'Ad" .

Since m' and m? satisfy Eq. 2.17 and Eq. 2.16 holds, it is easy to show that
T, =n(m') = aexp[—%(z”z‘ + Ad‘Tc,;'Ad")], (2.25)
and
T; = n(m’) = aexp[—%(ZjTZj + Adch,;'Adf)] : (2.26)

Using Egs. 2.20, 2.21, 2.25 and 2.26 and performing some simple algebra, it is easy to

show that

exp(——l—Ad jTCBlAd J )
T dji 2 _ 1 Tt agi iT = A i
= )—exp ~S(ATC A0 - adTCRiAd) | @.2D)

nl'qij exp(_%AdiTCBIAdi
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By using Eq. 2.27 in Eq. 2.14. we define the probability of accepting the proposed
transition from state i to state j when local perturbations are based on the variogram. Eq.
2.27 indicates that when local perturbations are proposed in this way, the acceptance
criterion depends only on the relative mismatch of the pressure data. If the proposed log-
permeability field generates pressure data that fit the observed data more closely than the
previous log-permeability field, then we accept the perturbation and update the field. If the
fit is worse, we accept the transition with probability given by Eq. 2.27. This is easily
implemented by choosing a random number B uniformly distributed between O and 1. If §
< mg;/miq;, then the perturbation is accepted; otherwise the existing value for the
parameter is retained, and is included in any time average that are being computed.

It is unnecessary to calculate the misfit to the variogram because all proposed log-
permeability fields honor the variogram (prior covariance). We expect that convergence of
the Markov chain to be accelerated compared to two-point swaps because all proposed
transitions are consistent with our prior information or the probability distribution for the
variogram.

Note that the o;’s and g;’s (see Egs. 2.27, 2.14 and 2.20) are such that the
corresponding p; of Eq. 2.8 satisfy p;>0 for all i#j and p;>0. Thus, since our selection of
the a; is always such that the detailed balance is satisfied, the conditions of our main
theorem are satisfied. This means in the limit, the sequence of m"”s will represent samples
from the correct a posteriori distribution for the model, nt(m).

Since we propose a new state in the Markov chain by randomly selecting and
perturbing only one component of the vector of standard normal deviates, the proposed

state n’ will not differ significantly from the previous accepted image m' in the Markov
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chain. Thus. the data mismatch for m' and »’ may be quite similar and Egs. 2.27 and 2.14
then indicate the probability of accepting the proposed image will be close to one. Thus,
the local perturbation procedure will result in a high acceptance rate.

Recall that the ultimate goal is usually not to simply generate possible reservoir
models but draw inferences based on predictions from realizations. These predictions are
often computationally expensive so it is usually better to have 10-100 independent
realizations from the a posteriori distribution than to have 10,000 dependent realizations.
Unfortunately, we do not just want to generate a high number of samples of the correct
probability density function. We want the samples to be independent. Since two successive
state Z' and Z will have all components identical but one, the two states will not be
independent. Thus, we wish to sort through the states generated in the Monte Carlo
Markov chain and choose a subset of independent images.

The effect of dependencies on the accuracy of a Monte Carlo estimate can be
quantified in terms of the experimental variogram obtained from the values of S(m), i.e.,
the absolute value of the argument of the exponential in Eq. 1.5 for the rth state at the
subset of states for which the transitions of the chain were accepted once equilibrium is

reached'?. The experimental variogram is calculated from

Np-1

Y6) = —— 3 (S(m) = S(m,,), (2.28)
2Np =0

where m,, 0 <t < N, is the set of accepted images.
Because the dependence decreases with ‘lag’, an approximately independent set of
realizations can be obtained by retaining every rth state from the chain, where r is the

value of the lag for which the autocorrelation is approximately zero. Once this lag r has
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been determined we can thin the set of accepted states {m,}, ] m. j = 1,2,...1 where [ is

the maximum integer such that i + jr < N, and m; is the first state accepted which
represents a sample from the stationary distribution. The thinned set of realizations should
represent independent samples of the a posteriori probability density function. However,
because this procedures assumes that if S(m,) and S(m,.;) are uncorrelated for j = r, then m;,

and my.; are also uncorrelated when j 2 r, thus our procedure is only approximate.

2.2.2 Global Perturbations Based on the Variogram

To overcome the problem of generating independent states, we can simply perturb
every component of Z when proposing transitions. In this case, we propose a transition
from state Z' to state Z by generating a new random normal deviate for each component
of the vector. In this case, Z is independent of Z' and the probability of proposing the

transition from state i to state j is given by

g; =@2m~™"? exp(—-;-zf’zf ) (2.29)
and the probability of proposing the reverse transition is

q;; =(2m)™M" exp(—%z”z‘ ) (2. 30)

The relation between a Z' and the state m' is still given by Eq. 2.17 and Z and n’
satisfy the same equation with i replaced by j. Moreover, it is easy to show that Eq. 2.27

still holds so the probability of accepting the proposed state m is still determined by the
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pressure mismatch. The detailed balance of Eq. 2.4 applies and the transition probabilities
(pi’s of Eq. 2.8) still satisfy the conditions that guarantee convergence of the Markov
chain to the correct stationary distribution.

The advantage of local perturbations is that a large number of proposed transitions
will be accepted, but the disadvantage is that many of them will not be independent. The
advantage of global perturbations is that every accepted transition results in an
independent state; the disadvantage is that significantly fewer proposed transitions will be

accepted.

2.2.3 Perturbations Based on Sensitivity Functions

Transitions proposed from the prior covariance matrix honor the variogram
automatically, but are not directly related to the pressure mismatch part of the a posteriori
probability density function. Thus, it seems clear that we can further increase the
probability of acceptance by proposing transitions that at least approximately represent
samples from the a posteriori probability density function. Sensitivity coefficients provide
a means to propose such transitions.

To do this, we choose a reference state m, and expand g(m) in a Talyor series about

m, to obtain
gm)=g(m,)+ G, (m—-m.)+¢e(m). (2.31)

Here the elements of the matrix G, are simply the sensitivity coefficients evaluated at m,;

see Refs. 3 and 31. From Eq. 2.31, it follows that
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g(m)=g(m)—gim)—=G.(m—m,). (2.32)

We define corresponding reference data d, by

d,=d,,~gm)+Gm,. (2.33)
From Egs. 2.32 and 2.33, it follows that

gim)—d, =G m+¢e(m)—d,. (2.34)

The a posteriori probability density function of Eq. 1.5 can now be written as

t(m) = aexp[—%((m - mO)TC;,'(m -my)+(d, — G,m)TCB‘ d, - G,m)):| X

exp[(d, - G,m) Cple(m) - —;—e(m)TCgle(m)]. (2. 35)

We now define a new reference “mean” and reference covariance matrix, respectively, by
w, =my +CyG' (G.C,GT + Cp)'(d, - G,my), (2. 36)
and
C,, =(GTC;'G. + ). (2.37)

Using basic resuits from inverse problem theory', Eq. 2.35 can be rewritten as

n(m) = a, exp[—%(m - l.l,)TC;,l,(m - p.,)] X

exp[(d, - G,m) Cple(m) - %8(m)TC5'8(m)], (2. 38)

where a, is a constant.

Denote the Cholesky decomposition of Cy, by
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Cy,=LL. (2.39)

Now we propose transitions by sampling from a multivariate normal distribution based on

Cu- and the reference mean p,, i.e., proposed transitions are generated from
m' =pu, +LZ, (2. 40)

where Z still represents a vector of independent standard random normal deviates. If
transitions are proposed by resampling all components of the vector of normal deviates,

then the probability of proposing a transition from state i to state j is given by
g; = 2my™M"? exp(-%z”zf ) (2. 41)
Using Eqgs. 2.39 and 2.40, Eq. 2.41 can be rewritten as
g; = @m~™" exp(——zl-[L:‘(mf —p L m — u,)]) =

(2m) "2 exp[-%(mf )Ly —u,)) -

Qm)~M"? exp(-—%(mj -u,) Cy(m! - P-,)) . (2.42)

Thus, when a new state is proposed from Eq. 2.40 by globally perturbing the vector of
random normal deviates, the proposed state honors the covariance Cy, and reference mean
W,. Similar to Eq. 2.42, we find that the probability of proposing a transition from state j to

state i is given by

q; =@r)y™"? exp(—-;—Z’TZ") =(2r)™M"? exp(-—%(mi -u) Cy(m' - u,)). (2.43)
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From Eq. 2.38, it follows that

n(m') = a, exp —%(mi - u,)TC;,',(mi - u,)] X

exp| (d, — G,mi)TC,','e(trzi) - %e(mi ) Cple(m' )] , (2. 44)

and
nm’) =a, exp[—-;—(mf ~,) Cogy(m” - u,)} x
exp[(d, -G.m') Crle(m’) - %e(mj Y Cle(m? )} . (2. 45)
From Egs. 2.41 through 2.45, it follows that

exp[(d, -G.mHT Cple(m’) - —l-s(mj ) Cple(m’ )]
;4 ji 2 |

= ; . (2. 46)
g, exp[(dr - Gm)TCple(m') - —2-€(mi)TC5'e(mi )]
Using Eqgs. 2.32, 2.33 and 2.34, Eq. 2.46 can be rewritten as
exp[(d,,,,s — g CRle(m!) + e (m!)T Cple(m’ )]
Sidi 2 . 2. 47)

Tl eXP[(dobs ~g(m")" Cple(m') + %e(m" ) Cpe(m’ )]

Using Eq. 2.46 or 2.47 in Eq. 2.14 defines Hastings’ acceptance probabilities for global
perturbations based on sensitivity matrices.

One can also do local perturbations based on the reference model and its associated
reference mean and covariance matrix. Given state m' in the Markov chain Monte Carlo,

as before a local perturbation corresponds to randomly selecting one component of Z and
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replacing it by a random standard normal deviate to obtain the proposed state Z'. This
method is referred to as local perturbations based on the sensitivity coefficients. Eqgs. 2.46
and 2.47 still apply.

If g(m) is approximately linear around a reference model m, , then €(m)=0 in Eq.
2.34. If all proposed perturbations are such that the proposed log-permeability field n
yields pressures close to the observed pressure data, then dops-g(m)=0. When these two
conditions are satisfied, Eq. 2.47 indicates that

g i
Rq;

~1, (2. 48)

and Hastings’ probability of acceptance also satisfies

o; =1, (2. 49)

y

for all (ij). This suggests we use the maximum a posteriori estimate, m.., generated from
the gradient method”* as m, and use the associated a posteriori covariance matrix Cyp as
Cwu- Again we can do either local or global perturbations.

When considering perturbation techniques based on sensitivities we implemented
two methods. The first method refers to proposing global perturbations with m,=m.. and
Cur=Cup. Perturbations are proposed by selecting a new vector of independent standard
normal deviates and proposing a new state from Eq. 2.40. The second method refers to
local perturbations with m,=m.. and Cy,=Cup. Given state m' corresponding to Z', we
propose a new state as follows: we randomly select one component of Z' and replace it
with a new standard random normal deviate; this gives Z, and the new proposed state is

then generated from Eq. 2.40.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Again global perturbations guarantee that the states of the computed Markov chain

are independent, but results in far fewer transitions accepted. For both types of

perturbations, the conditions for convergence of the Markov chain Monte Carlo are
theoretically satisfied.

A third method that could be considered, but was not investigated in this work.
corresponds to using global or local perturbations based on a reference model and
corresponding sensitivity coefficients generated from the simulator. In this case, the
reference model always corresponds to some previous state m' in the Markov chain.
Whenever, a new image n’ with a smaller pressure mismatch than is obtained with nt' is
accepted, the reference model can be updated to #i. If m,, is continuously updated, the
resulting Markov chain is not homogeneous. Thus, m, should only be updated until

achieving the following pressure misfit:

(g(m)~d,,) (g(m,)—d,,.)
\ Nd

<o, (2. 50)

where N, is the number of pressure data and oy is the variance of each pressure
measurement error. Once a reference model satisfies Eq. 2.50, it remains fixed. and thus
from this point on, a homogeneous Markov chain is generated. There are several other
procedures that could be used. e.g., we could actually use a cycle of reference models
continually repeated.

There is an important feature of starting a Markov chain from a state given by Eq.
2.40 where m, and Cy, are m. and Cyp obtained from a gradient method, or where m, is
given by simulated annealing (see Chapter III) and satisfies Eq. 2.50. As stated before

acceptance of a perturbation based on Hasting’s acceptance criterion, Eq. 2.14. does not
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45
necessarily mean that the resulting state is drawn from the correct probability distribution.

There is usually a transient period at the beginning of a Markov chain that must be
discarded on the grounds that equilibrium has not been reached. As illustrated by examples
presented in the next subsection, for the Markov chain Monte Carlo methods that use Cyp
to generate perturbations, the transient period is so short that it is difficult to see any

evidence of it.

2.3 Computational Examples

2.3.1 Example 1 - Variance = 0.25 Case

Here, we apply the techniques described in the previous subsections for sampling
from the correct a posteriori probability density function. All computational times given in
all chapters are for implementations written in FORTRAN and run on a Pentium-90. All
codes used were written with reasonable attention to efficiency, but were not carefully
tuned to achieve maximum computational efficiency.

The reservoir is assumed to be a rectangular parallelepiped of uniform thickness A.
We assume that the reservoir is produced by a fully-penetrating well located at the center.
There exist four wells which are shut-in at all times and constitute observation or
interference wells. We ignore gravity and capillary effects and consider only two-
dimensional (x-y) single-phase flow. The active well is produced at a constant rate. We
assume pressure data is measured not only at the active well but also at the observation

wells. Pressure responses are obtained by a finite-difference simulator, i.e., a simulator is
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used to generate synthetic multiwell pressure data and is also used at each iteration of the
Markov chain Monte Carlo methods to calculate the pressure data resulting from a
proposed perturbation of the permeability field.

The permeability field is assumed to be heterogeneous, but isotropic. It is assumed
that gridblock log-permeabilities can be modeled as random variables with log-normal
permeability distribution with known mean and variance and that the associated random
function is stationary. It is also assumed that the spatial variability in permeability can be
characterized by a known isotropic variogram (covariance function).

As is well known, unconditional simulation can be used to generate realizations
honoring the variogram, or more precisely the covariance function, from a LU
decomposition of the covariance matrix***. For the examples presented, the “true”
permeability field is given as an input and the simulator is run to generate synthetic well
test pressure data. This provides our observed or measured pressure data.

In the synthetic example considered here, a 1,500 ft x 1,500 ft square reservoir with
no flow boundaries was used. Reservoir performance was simulated using a uniform
spatial grid with 100 ft by 100 ft gridblocks. The total number of gridblocks is M = 225. It
was assumed that porosity is constant with ¢ = 0.2. We assume a slightly compressible
fluid at constant compressibility and viscosity with u = 0.5 cp and ¢= 107 psi”'. All well
bore radii are given by r, = 0.3 ft. In all cases, reservoir thickness is 2 = 100 ft and initial
pressure is p; = 6,000 psi. The permeability distribution is assumed to be log-normal with
log variance of 0.25 and log mean equal to 3.4. We assume the permeability field is
isotropic and spatial continuity can be described by a spherical variogram model with

range equal to 600 ft.
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The well locations for the five-well system considered is shown in Fig. 2.4.1 and
rates shown in Table 2.4.1. The location column in Table 2.4.1 gives the indices of the
gridblock location with the first index representing the x-direction index and the second
the y-direction index. The x-direction index increases from left to right and the y-direction
index increases from bottom to top. (This same ordering of indices is used in the
presentation of all realizations of the In(k) field shown in the figures.) We condition to the
drawdown pressures at the wells using pressure data from 0.05 to 5.7 days. The variance
of all pressure measurement errors was assumed to be given by 0% = 0.15 psi®. At each

well, we use 10 pressure data.

TABLE 2.4.1

Locations and Flow Rates for Five-Well System

Well Number Location Rate (RB/D)
1 44) 0
2 (12,4) 0
3 (8.8) 750
4 (7,12) 0
5 (12,12) 0

The “true” permeability distribution represents an unconditional simulation

generated from a Cholesky decomposition of the prior covariance matrix. This truth case
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Fig. 2.4.1 - Well Numbers and Well Locations.
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+9
is shown in Fig. 2.4.2. The values of In(k) shown range from 2.0 to 5.0. i.e.. in terms of .

the scale ranges from 7 to 148 md.

Figure 2.4.3 shows a comparison between the local variogram obtained with the
“true” log-permeability distribution of in Fig. 2.4.2 and the theoretical variogram model.
Note the sill of the local variogram is less than the sill of the model variogram.

In this example, we compare three different Markov chain Monte Carlo methods
used to sample the a posteriori probability distribution. In the first method considered, the
proposed perturbations are local and are based on the Cholesky decomposition of the
prior covariance matrix, see Eq. 2.17, so they honor only the variogram. In the second and
third methods, the sensitivity coefficients corresponding to the maximum a posteriori
estimate are used to modify the direction and the magnitude of the proposed
perturbations; see Eq. 2.40. The perturbations in this second method are global; in the
third method they are local, meaning that the permeability in every gridblock is modified in
every transition.

One way to compare the three methods is to look at the rate of generation of
acceptable independent realizations for each. Fig. 2.4.4 shows the values of the “objective
function”, (i.e., the argument of the exponential in Eq. 1.5) versus the perturbation
number. Figure 2.4.5 shows a similar plot, but in this figure, the pressure misfit versus the

perturbation number is plotted. In all the examples, the pressure misfit actually refers to

\/Ad TAd'IN 4 Where Ny refers to the total number of pressure data used as conditioning

data. The perturbation number in Figs. 2.4.4 and 2.4.5 refers to the number of transitions
proposed, but only the values of accepted transitions are plotted. The state remains

unchanged between accepted transitions, but those states have not been displayed.
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The results of Figs. 2.4.4 and 2.4.5 allow us to discuss procedures for determining
when the transient period of the Markov chain has ended. Recall that based on our
previous discussions, the states generated early in the Markov chain Monte Carlo may not
correspond to samples from the stationary distribution. As we continue to generate states,
these states will eventually represent realizations of the stationary distribution, i.e., the a
posteriori probability density function. As convergence to the stationary distribution is
only guaranteed in the limit, i.e., as the number of states generated goes to infinity, it is
important to have a practical method to decide when states correspond to realizations of
the correct probability distribution. When we reach the stationary distribution, the values
of the objective function at the states will appear to oscillate around a constant value so
the overall plot will appear relatively constant, whereas, during the transient period, the
plot of the objective function, though oscillatory, will show a decreasing trend.

For the Markov chain Monte Carlo methods that use the a posteriori covariance
obtained from the gradient method to generate perturbations, the transient period is so
short that it is difficult to see any evidence of it in Fig. 2.4.4. It might appear, from Fig.
2.4.4 that the transient period for the first Markov chain Monte Carlo method, which used
local perturbations based only on the variogram, is also fairly short; however, as discussed
below, this does not appear to be the case. Thus, we have not reached the stationary
distribution. One way to check whether we have reached a stationary distribution is to
consider the pressure misfit of Fig. 2.4.5. If all data are consistent, we should be able to
obtain many states which give pressure mismatches less than the standard deviation of the
pressure measurement errors, i.e., pressure mismatches less than 0.15 psi. However, the

vast majority of the states generated using local perturbations based on the variogram do
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not satisfy this pressure tolerance. This suggests that we did not reach the stationary
distribution.

When the stationary distribution of the Markov chain is reached, the values of the
objective function cluster around a value greater than or equal to M/2 where M is the
number of model parameters. Because the pressure data used in these examples to
calculate the maximum a posteriori model were exact, and the prior model was close to
the a posteriori model, the average value of the objective function in the stationary phase
should be approximately equal to M/2 = 112.5. The observed mean of the objective
function, computed over the set of accepted realizations for the method that uses local
perturbations based on the a posteriori covariance is 119 with a corresponding estimate of
the standard deviation given by 10. The method that uses global perturbations based on
the a posteriori covariance resulted in a mean value of 111 and a standard deviation of 10.

Figures 2.4.7 and 2.4.8 show log-permeability values at four gridblock positions
(see locations depicted in Fig. 2.4.6) versus the perturbation number for the Markov chain
Monte Carlo methods that used global and local perturbations based on the a posteriori
covariance matrix. As before, the perturbation number in these figures refers to the
number of transitions proposed, but only the values of accepted transitions are plotted.
Regarding the areal location of the log-permeability gridblocks, we have a first location at
one of the observation well gridblocks (X1), a second at the producing well gridblock
(X2), a third location between the producing well gridblock and one observation well (X3)
and a fourth almost at the reservoir boundary (X4). The a posteriori variance for the first,

second third and fourth gridblocks were 0.17, 6x10®, 0.07 and 0.24, respectively. The
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Fig. 2.4.6 - Grid Locations for Log-Permeability Plot.
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Fig. 2.4.7a - Log-Permeability Values During Sampling with Global Perturbations
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maximum a posteriori estimates of log-permeability for the same gridblocks were 3.68,
2.87,2.54 and 3.43, respectively.

When looking to the behavior of the sampling of permeability at each block we
notice that the same features are common when using global and local perturbations. It is
possible to visualize the dominant influence that the a posteriori variances have on the
variability in realizations generated during the Markov chain Monte Carlo procedure. The
sampled value for the producing well gridblock location stays almost constant and equal to
the value encountered for the maximum a posteriori estimate for that gridblock through
the whole simulation. This reflects the fact that at the producing well location the
uncertainty is considerably reduced when incorporating pressure data together with the
prior model information. This can be seen by the very low value encountered for the a
posteriori variance.

At the gridblock between the producing and interference well, the pressure resolves
quite well the uncertainty (note the low value for the a posteriori variance.) However, a
larger variation in the log-permeability values for this gridblock during the sampling
procedure when compared to the obtained to the producing well gridblock is expected to
appear. This can be observed in Figs. 2.4.7 and 2.4.8.

On the other hand, at the observation well gridblock (X1), since the pressure data is
not sufficient to reduce the uncertainty in the permeability estimate (see the higher value
for the a posteriori variance when compared with the producing well gridblock; almost the
original prior variance of 0.25) as well as in the producing well gridblock, we can see that
a large variation in the log-permeability estimates during the sampling process occurs. This

is also the case for the gridblock located close to the corner of the reservoir.
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As depicted in Fig. 2.4.8 the permeability values sampled with the local
perturbation method are highly correlated.

In relation to the number of images accepted, the method that used local
perturbations based on the variogram did not generate any legitimate images of the
permeability field during the allowed sampling period. The Markov chain Monte Carlo
method that used global perturbations based on the a posteriori covariance matrix
generated the total number of 200 distinct, independent realizations. Using local
perturbations based on the a posteriori covariance matrix we obtained approximately
37500 distinct, but highly correlated images.

Recall that the ultimate goal is usually not to simply generate possible reservoir
models, but to draw inferences based on predictions from the realizations. These
predictions are often computationally expensive so its better to have fewer number of
independent images than a multitude of dependent realizations. As described earlier in this
chapter, we can use the variogram of S (the objective function variogram) to thin
dependent images produced in a Markov chain sampling process. Because the dependence
decreases with “lag”, it is possible to calculate the lag for which the autocorrelation is
approximately zero and based on this value thin the set of dependent images to obtain an
independent group of realizations.

In Figs. 2.4.9 and 2.4.10 we have plotted the “experimental variogram” of the chain
of values of the objective function for the Markov chain Monte Carlo methods that used
global and local perturbations based on the a posteriori covariance matrix, respectively. It
is clear from Figs. 2.4.9 and 2.4.10 that successive realizations generated using global

perturbations are uncorrelated while realizations generated from local perturbations are
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slightly correlated to lags of approximately 1200 for the third method. If. we retain only
every 1200th realizations we would be left with 31 independent realizations from local
perturbations compared to 200 from global perturbations for the method based on the a
posteriori covariance matrix.

Regarding computational time, each of the three methods required approximately
13 hours to attempt 50000 perturbations.

Figures 2.4.11a and 2.4.11b show two realizations obtained with the Markov chain
Monte Carlo method based on global perturbations generated from the a posteriori
covariance matrix. Note that both realizations capture reasonably well most of the major
trends in the true permeability field. For example, in both figures the low permeability
region in the center of the truth case is captured. Figure 2.4.12 shows a comparison
between the local variograms computed from the realizations of Figs. 2.4.11a and 2.4.11b
and the model variogram. Note that local variograms generated from legitimate
realizations do not exactly match the model variogram, which is expected, and it is going

to be detailed in a later discussion.

2.3.2 Example 2 - Variance = 1.0 Case

In this example, we increase the prior variance of the log-permeability field to 1.0.
All other information and data are the same as for Example 1.

Again the true log-permeability distribution was obtained from an unconditional
simulation using the prior covariance matrix and is shown in Fig. 2.4.13. The values of

In(k) shown range from 0.1 to 7.0, i.e., in terms of permeability, the scale ranges from 1.1
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Fig. 2.4.13 - True Log-Permeability Distribution (Variance=1.0).
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to 1,097 md. Fig. 2.4.14 shows a comparison between the local variogram obtained with
the true log-permeability field and the model variogram.

Fig. 2.4.15 presents a plot of the value of “objective function” of accepted states
versus the perturbation number for the same three Markov chain Monte Carlo methods
that were compared in the previous example. A corresponding plot of the pressure misfit
is shown in Fig. 2.4.16. As previously described, the sequence of states constructed using
local perturbations based on the variogram do not reach the stationary distribution. Also,
between accepted transitions the state remains unchanged, but those states have not been
displayed. We see more clearly, in this example, that the chain of states generated from
local perturbations of the variogram does not reach equilibrium in the first 50000
perturbations. Both methods based on using perturbations generated from the a posteriori
matrix obtained from the gradient method have transient periods that are too short to be
visible in Fig. 2.4.15.

Figures 2.4.17 and 2.4.18 shows log-permeability values at four gridblock positions
(see locations depicted in Fig. 2.4.6) versus the perturbation number for the Markov chain
Monte Carlo methods that used global and local perturbations based on the a posteriori
covariance matrix. As before, the perturbation number in these figures refers to the
number of transitions proposed, but only the values of accepted transitions are plotted.
Regarding the areal location of the log-permeability gridblocks, we have a first location at
one of the observation well gridblocks (X1), a second at the producing well gridblock
(X2), a third location between the producing well gridblock and one observation well (X3)
and a fourth almost at the reservoir boundary (X4). The a posteriori variance for the first,

second, third and fourth gridblocks were 0.59, 2.4x10°®, 0.24 and 0.93, respectively. The
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Fig. 2.4.14 - Local Variogram from Truth Case

1.0 and Range=600ft).
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maximum a posteriori estimates for the log-permeability values at the same gridblocks
were 3.69, 2.48, 2.00 and 3.51, respectively.

If we consider the behavior of the permeability samples at each block we notice that
the same features are common when using global and local perturbations. The sampled
value for the producing well gridblock location stays almost constant and equal to the
value encountered for the maximum a posteriori estimate for that gridblock through the
whole simulation. This reflects the fact that at the producing well location the uncertainty
is considerably reduced when incorporating pressure data together with the prior model
information. This can be seen by the very low value encountered for the a posteriori
variance.

At the gridblock between the producing and interference well the pressure resolves
the uncertainty quite well (note the low value for the a posteriori variance). However, a
larger variation in the log-permeability values for this gridblock during the sampling
procedure when compared to the obtained to the producing well gridblock is expected to
appear. This can be observed in Figs. 2.4.17 and 2.4.18.

On the other hand, at the analyzed observation well gridblock, since the pressure
data is not sufficient to reduce the uncertainty in the permeability estimate (see the higher
value for the a posteriori variance when compared with the producing well gridblock;
almost the original prior variance of 1.0) as well as in the producing well gridblock, we
can see that a large variation in the log-permeability estimates during the sampling process
occurs. This is also the case for the gridblock located close to the corner of the reservoir.

The values of the log-permeability are highly correlated when using local

perturbations to generate new states as can be seen by observing Fig. 2.4.18.
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In relation to the number of images accepted, the method that used local
perturbations based on the variogram did not generate any legitimate images of the
permeability field during the sampling period. The Markov chain Monte Carlo method that
used global perturbations based on the a posteriori covariance matrix generated 14
different, independent realizations but 6 had to be discarded because the chain had not
reached equilibrium. Because of the greater non-linearity of the model, only 25300
different, but highly correlated images were obtained when the perturbations were local.
As expected, using local perturbations increases the number of states accepted but
successive states, or realizations, differ only slightly. As mentioned before, in the case of
local perturbations it is necessary to thin the set of accepted images. To do this, we
calculated the objective function experimental variogram for the chain of values of the
objective function corresponding to the realization of the log-permeability field generated.

Fig. 2.4.19 shows the experimental variogram obtained. As we can conclude from
Fig. 2.4.19, realizations generated from local perturbations are slightly correlated to lags
of approximately 1800 for the third method. If, we retain only every 1800th realizations,
we retain 14 independent realizations from local perturbations compared to 8 from global
perturbations for the method based on the a posteriori covariance matrix.

Regarding computational time, each of the three methods required approximately
13 hours to attempt SO000 perturbations.

Figs. 2.4.20a and 2.4.20b show legitimate realizations of the log-permeability field
obtained from the Markov chain when global perturbations based on the a posteriori
matrix were used. Figs. 2.4.21a and 2.4.21b show two realizations obtained when using

the Markov chain Monte Carlo method when local perturbations based on the a posteriori
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covariance matrix were used. Note that all four realizations capture reasonably well most
of the major trends in the true permeability field. In all figures the low permeability region
in the center of the truth case is captured. Fig. 2.4.22 compares the local variogram

obtained from the realizations of Figs. 2.4.20a and 2.4.20b.
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CHAPTER III

RELATION BETWEEN SIMULATED ANNEALING AND A

MARKOV CHAIN MONTE CARLO METHOD

In this major section, we first give a brief overview of simulated annealing as
conventionally discussed. Then we discuss the classical results of Geman and Geman'® and
consider the notion of equiprobable realizations. Then we delineate the relationship
between simulated annealing and Monte Carlo Markov chains. Specifically, we consider
various perturbation mechanisms for simulated annealing and show that with a proper
choice of the objective function, we can find a temperature level T such that the images
generated with simulated annealing at temperature level T correspond to states in a
Markov chain Monte Carlo that converge to realizations of the a posteriori probability

density function for our model.

3.1 Theory of Simulated Annealing

Kirkpatrick et al.'* and Cemy'* independently introduced simulated annealing in an
attempt to solve apparently intractable optimization problems. Simulated annealing is a
special case of a wider class of global combinatorial optimization methods. We can say

that simulated annealing is a Monte Carlo optimization procedure based on chemical

87
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annealing. Annealing is the way in which crystals are grown - a melt is cooled very slowly
until a crystal is formed. The rate of cooling is important, because a noncrystalline.
metastable glass can form if cooling is too rapid. Kirkpatrick et al. and Cerny viewed the
growth of a crystal as analogous to finding the global minimum in a optimization problem,
and the development of a glass as the analog of incorrectly selecting a local minimum.
Their primary application was directed at the combinatorial optimization problems that
arise in the physical design of computers. At present, simulated annealing is being applied
in several areas. A very comprehensive bibliography of simulated annealing use, classified
by application area, has been produced by Collins ez al* (1987)

Simulated annealing is founded in concepts from statistical mechanics and the
annealing process. Therefore, even today, simulated annealing is often presented in the
original context which requires the definition of three components of a system which are
analogous to the energy, the temperature and the interactions of a molecular system.

These components are:

(i) the objective function, which is analogous to the energy of a system and represents the
function to be minimized (or maximized);

(ii) a control parameter, which is analogous to the temperature of the system and
represents the temperature of a system which is an independent parameter and not
necessarily related to any other parameter of the problem;

(iii) the interchange or perturbation mechanism, which corresponds to molecular
interactions, and consists of a finite set of perturbations of the independent variables which

produce a change in the objective function.
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89
When used in an optimization context the goal of the simulated annealing method is

to determine the configuration of the independent variables that yields a global minimum
of the objective function. The procedure to reduce the temperature and specify the number
of iterations or changes required at each value of the temperature is known as the
annealing schedule.

The method proposed by Kirkpatrick ez al. as well as Cerny is a variant of a Monte
Carlo integration procedure of Metropolis et al. Metropolis et al. addressed the problem
of random sampling from a Gibbs distribution at constant temperature, thereby simulating
the average behavior of a physical system at thermal equilibrium. The Metropolis et al.
algorithm proceeds in the following way. For each model parameter, a random
perturbation is made, and the change in energy AE is computed. If AE<O (i.e., if energy
decreases), the perturbation is accepted. If AE is positive, then the perturbation is
accepted with probability P(AE) = e“#T This conditional acceptance is easily implemented
by choosing a random number o uniformly distributed between O and 1. If o < P(AE),
then the perturbation is accepted; otherwise the existing value for the parameter is
retained.

Random perturbations according to these rules eventually causes the system to
reach equilibrium, in which configurations of the model are realized with a Gibbs
probability distribution. Because each step of the algorithm is dependent only on the
present and not the past, the algorithm can be formally studied using Markov chain theory.

Kirkpatrick et al’s and Cerny’s optimization technique slowly lowers the
temperature T during the execution of the Metropolis et al. algorithm. If the system is

cooled sufficiently slowly and equilibrium is maintained, the model parameters eventually
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90
converge to a state of minimum energy (maximum probability.) During this process an

inhomogeneous chain is formed. There has been a substantial amount of research into the
statistical behavior of the simulated annealing algorithm. The books by Aarts and Korst'?

and van Laarhoven and Aarts'® and the technical report of Neal'’

discuss many of the
theoretical convergence results and give a lengthy set of references. In general, theoretical
results exploit the relation between simulated annealing and Markov chains to obtain
convergence proofs. The essential characteristic of this optimization procedure is its ability
to escape from local minima.

Most published attempts to condition permeability fields to production data rely on
either simulated annealing or the genetic algorithm to reduce the misfit error between
production data calculated from a theoretical model of the reservoir and the actual
production data. The most commonly used measure of misfit is the sum of the squared
differences. To fit this into the optimization framework an “objective function” is formed

from the weighted sum of the misfit terms. Typically, when the objective is to condition to

the variogram and pressure data, an objective function similar to the following one is used:

OSA = Wlol + W202, (3. l)
where
ny R
0, = Z('Ys(h,,m) =~ Ymodet(M))™» (3.2)
=1
and
Ng
0, = (d, ~dysn)? = (g(m) — ) (8(m) — ) . 3.3)
n=1
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Here. Yot denotes the model variogram, and 7ys(/;,m) denotes the variogram calculated
from a given estimate of the model i (log-permeability field) at a lag distance /.. The sum
in Eq. 3.2 is over n; lag distances. Also in our problem, N, denotes the total number of
pressure data, d,, is the jth pressure measurement and d; is the corresponding component
of calculated data for a given model m, see Eq. 1.2. The last equality of Eq. 3.3 follows
from Eq. 1.2, where throughout the superscript 7T on a matrix (or vector) denotes the
transpose of the matrix. Usually, the relative weights of the objective function, w; and w»
are obtained by running an initialization stage of I independent perturbations and then
setting

i=l1

I -
W =}2(0. -0, 3.4)

and

14 ;
W, =72(02 -0)). (3.5)
i=1

See, for example, Deutsch and Cockerham® (1994).

In Eqs. 3.4 and 3.5, O;, j=1,2, represent fixed values of the objective functions
obtained by evaluating these objective functions at an initial configuration of the model
parameters and O, j=1,2, represent the values of the objective functions evaluated at n',
where m' is the image of the model obtained by the ith perturbation. In determining the
relative weights, wy and w, the model is not updated from the initial configuration.

Typically, the annealing algerithm then uses the following steps.
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(1) Generate an initial, uncorrelated distribution of the simulation variable (permeability in
our case) by visiting each point in the simulation grid. This is usually done by sampling of
the cumulative distribution function or histogram.

(ii) The initial distribution is then rearranged until the objective function is minimized.

A typical procedure is one in which random pairs of gridblock values are swapped
(interchange mechanism) and the objective function is evaluated. The Metropolis
algorithm is then applied; i.e., if the value of the objective function is reduced, the swap is
accepted and the distribution is updated. If it is not reduced, the swap is accepted with
probability

AO*

{

p(AO*,T)) = exp(-

), (3.6)

where p is the probability function, AO* is the change in the objective function resulting
from the proposed swap and 7; is the value of the control parameter at the /th temperature
level.

(iii) Step ii is applied at decreasing set of values of 7;. Accepted, although heuristic,
procedures for determining the initial value of the control parameter (temperature) and
reducing the temperature are given in Appendix A. The number of iterations that should
be done at each temperature level is also heuristic, and one criterion that is used here is
also given in Appendix A. The algorithm terminates when the change in the objective
function is less than a specified tolerance or the acceptance ratio is less than a prescribed
value. The acceptance ratio is the number of accepted swaps (or, more generally accepted
perturbations) over the number of proposed swaps (proposed perturbations) at the /th

step, i.e., the step corresponding to 7.
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For our purposes. it is better to write Eq. 3.6 as

3.7)

j_ i
p(nzj,l})=exp[—M].

T

Here, O'=0(m’) is the objective function evaluated at the current image or configuration
of the model m' ,and O’=0(17) is the objective function evaluated at the proposed new
image of the model, #?, proposed by the perturbation mechanism. If the O’<0’, then 7 is
accepted with probability 1 and if @ > O', then n? is accepted with probability p(m;,T)).
When simulated annealing is viewed as a Markov chain at each temperature level, it will be
apparent that at temperature 7;, we are sampling from a probability distribution for the

model of the form

(m,T)) =a(7})exp(—9%), (3.8)

!

where a(T)) is a normalizing constant to ensure that probabilities sum to unity. The
normalizing constant actually plays no role in the acceptance criterion since Eq. 3.7 is

equivalent to

n(m;) (0’ - 0"
LT = = exp| — —— |. 3.
p(m;. 1)) Tm,) exp( T, ) (3.9

Thus, the acceptance criterion says that the proposed perturbation m’ will always be
accepted if the probability of »” is greater than the probability of m' and otherwise will be
accepted with a probability equal to the ratio of their probabilities. Often in this work, we

will use the notation 7; to denote Tt(m').
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94
Although our implementation of simulated annealing was not directly motivated by

the work of Geman and Geman'®, a brief discussion of their work is important for
historical purposes as they give detailed proofs of important theoretical results.
In addition to the probability distribution of Eq. 3.8, we also focus on the

associated probability distribution obtained at =1, i.e.,
n(m) = a(l)exp(-0O(m)), (3. 10)

where a(1) is still a normalizing constant.

Geman and Geman assume that if n,, t=1,2,...,0 denotes the order in which
perturbations of components of the model are considered, then there is a positive integer
jn such that for every ¢, perturbation of all components of the model are considered at
some point in the finite “sequence” {n..1,Mu2,...nn}. They also use the Gibbs sampler
(which will not be considered here) to generate values of each component of the model.
Under the preceding conditions, Geman and Geman show that when the Gibbs sampler is
used and temperature decreases sufficiently slowly to zero, then for any starting

configuration m’,

lim Prob(X(t)=m | X(0)=m") =1t ,(m). (3. 11)

1=

Here, X(¢) is a random variable which represents the state of the model (the distribution of
log-permeabilities for the problem of interest to us) after ¢ replacement opportunities, and
T is the uniform probability distribution on the set of most probable models for the
probability distribution given by Eq. 3.10, i.e., the set of models which minimize the
objective function. Prob(X(f)=m | X(0)=m°) represents the probability that X(f)=m given

that X(0) equals m’. The preceding theoretical result provides the fundamental basis for
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the concept of equally probable realizations. In the limit as 70 and 71—eo, the
permeability distributions generated by simulated annealing will converge to a realization
that is contained in the set of most probable models based on the probability distribution of
Eq. 3.10, or more precisely, we will obtain a sample from the uniform distribution on the
set of most probable models (models which give global minima of the objective function
O(m)). Since each of this most probable models are equally likely, if we are able to
generate several of them then we have generated a set of equally probable realizations. If
the objective function has only one global minimum, there is of course only one most
probable model.

This result means that in the limit, a proper application of simulated annealing will
generate a maximum a posteriori estimate. It is shown however, that the standard
procedure of incorporating the variogram into the objective function for simulated
annealing cannot be expected to give equally probable realizations.

Geman and Geman also show that if 7; is fixed equal to one and all components of

the model are visited for updating infinitely often, then

lim Prob(X(t)=m | X(0)=m") = (m), (3. 12)

=00

where w(m) is the probability distribution of Eq. 3.10. Note this means that if we continue
to sample at T=1, in the limit we will generate samples from the probability distribution
7(m). These samples will not be equally probable.

As a final remark, the results of Geman and Geman also assume that the state space
is finite, i.e., that the number of possible models is finite. This assumption does not

prohibit using the methodology for an infinite state space. In fact, since the procedure is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96
always applied on a computer, the number of permeability values that can be generated is

extremely large, but is finite.

3.2 General Relationship Between Markov Chain Monte Carlo and Simulated Annealing

In Appendix A, we discuss procedures for choosing the initial temperature in
simulated annealing, the schedule for reducing the temperature and the procedure for
determining the number of perturbations done at each temperature level. Recall that in
simulated annealing, a proposed change from the log-permeability field m' to a proposed
new configuration 7’ will be accepted with probability 1 if

0’ =0(m’)< 0' =0(m'), (3. 13)

and otherwise will be accepted with probability

p(m’,T)) =exp(—7';(0f - 0“)), 3. 14)
!

where O(m) denotes the objective function evaluated at m. The preceding criteria defines
the probability of accepting the transition from proposed m' to m’. The probability of

accepting the proposed change from image m' to 7, is denoted by

PG, j;T) = p(m’, T)). (3.15)

Defining r;(T}) by
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j
exp(—?f] | ' A
r(T) = ————<=exp —F(Of -0 |, (3. 16)

ex "Q— !
7

the criteria for accepting the proposed change from m' to n?, we see that the probability of

acceptance in simulated annealing is given by
p(i, j, 7)) = min{l,r, (7))} . (3. 17)
Recall that the probability of accepting a transition from state i to state j in our
Markov chain Monte Carlo procedure is given by

T.g.
Zidiy 3. 18)

a; = min{l,
R

where g; is the probability of proposing a transition and n; and 7, represent the a
posteriori probability density function evaluated at m' and m, respectively. From Egs. 3.16
and 3.17, it follows that the images generated with simulated annealing at T, will represent

states of a Markov chain if

(3.19)

We will find that Eq. 3.19 holds at a particular temperature level if the objective

function and perturbation mechanism are defined properly.
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3.3 Using Simulated Annealing to Determine the Initial State in a Markov Chain

3.3.1 Perturbations Based on_the Variogram

In this case, we begin simulated annealing from an initial configuration generated by
Eq. 2.17. At all temperature levels, we propose new log-permeability fields with the same
equation; i.e., perturbations are generated by unconditional simulation based on the
variogram and prior mean. In generating a Markov chain using this same perturbations

mechanism to propose transitions from state i to state j, we found that

2 _ exp(—%(Ad’TCB'Ad’ - Ad‘TC[,'Ad’)), (3. 20)

q;
where
Adi =g(mi)—d0bs’ (3’ 21)

is the pressure difference for state i. Since Cp is a diagonal matrix with all diagonal entries

equal to 6°4 Eq. 3.20 can be rewritten as

2624

T.g.: . . .
i exp(— L (AdTAd) — AdT AL )). (3.22)
We now define an objective function by

L
262

N4 s
S (ga(m)—d, ) (3. 23)

n=l

1
0 - 2 Zd (g(m) - dObs)T(g(m)— dobs) =

OC
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where g.(m) denotes the nth component of the calculated pressure data vector g(yn). and

d iy denotes the nth component of the observed pressure data vector d,.,. It follows that
om’y-0(m') = T‘;—(AdfTAdj -AdTAdY, (3.24)
20°4
and

’.7(T1)=eXP(—2TL_2 (Ad 7T AdY —Ad"’Ad")}. (3.25)
10 d

Comparing Eq. 3.25 and 3.22, it follows that Eq. 3.19 holds when T=1. Thus, if we
decrease the temperature through an annealing schedule until we reach T;=1 and do no
further temperature decreases, the images generated at T;=1 will represent states of a
Markov chain which has Eq. 1.5 as its stationary distribution. This result holds regardless
of whether we do local or global perturbations based on the variogram (prior covariance
matrix).

The preceding arguments also show that at temperatures 7;>1, we are actually

constructing a Markov chain which has

n - 1
T(m,T) = q, exp[—-é-(m - mo)r C;,‘(m —-my)

——'—(g(m)—dobsfc,;'(g(m»d,,,,s)] (3.26)
27,

as its stationary distribution, whereas in the next section we construct a procedure so that
at any T, the images generated with simulated annealing correspond to states of a Markov

chain which has
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n(m,T)=q exp[:——z—]f(m - my )TC;,l (m—imyg)
!

|
—>= (g(m)—d,,,,S)TCB'(g(m)—d,,b_‘)} (3.27)
27,

as its stationary distribution. Note at T; = 1, both Egs. 3.26 and 3.27 reduce to the correct
a posteriori probability density, m(m), that we wish to sample. Thus, if our objective is to
sample Tt(m) whether Eq. 3.26 or 3.27 is preferable depends on which probability density
best serves to achieve the following two objectives: (i) minimize the chances of getting
trapped at a local minimum and (ii) obtain an initial image at 7; = 1 so that the Markov
chain constructed at T; = 1 has a very short or no transient period. Intuition might suggest
that Eq. 3.26 is preferable for minimizing the possibility of getting trapped in a local
minimum since division of the pressure mismatch term by a 7, > 1 gives it less weighting in
the probability density function. That is, it may reduce the chances of getting trapped in a
local minimum which gives a good pressure mismatch.

On the other hand, if we wish to use simulated annealing to generate a maximum a
posteriori estimate by driving “temperature” to zero, it seems clear that at low temperature
(T; < 1), we wish to use simulated annealing to construct states of a Markov chain with
n(m,T; ) as its stationary distribution. As T; = 0, w(m,T;)— 0 for all models except those

constrained in the set of all maximum a posteriori estimates. If as 7; — 0, t(m,T;) = 0 we

construct a Markov chain with stationary distribution, then in the limit we approach one of

the most probable models based on a probability distribution satisfying

T (m) o< exp[—%(g(m) ~d,, ) Cpl(g(m)—d,,, )] (3.28)
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instead of one of the most probable models based on the correct a posteriori probability

density function of Eq. 1.5.

Sampling from a distribution with this approach can be seen as a two-phase
process. In the initial phase, we start irom some initial state, and use simulated annealing
until reaching a temperature equal to one. At this point we start the sampling phase, in
which we continue from the state reached at the end of the initial phase, using a Markov
chain as described in previous chapter, proceeding for long enough that a close
approximation to the equilibrium distribution has been reached, and enough subsequent
data has been collected to produce Monte Carlo estimates of adequate accuracy.

At first glance, it appears that this application has no advantages over simply
constructing a Markov chain. However, a Markov chain typically has a transitionary
(transient) period during which the states generated do not correspond to the a posteriori
probability density function which is the stationary distribution of the Markov chain. Our
view is that there may be cases where simulated annealing will help us generate an initial
state which approximately represents a sample from the stationary distribution and thus
decrease the length of the transient period. Such a procedure would be useful for cases
where the gradient method gets trapped in an unacceptable local minimum or does not
converge. Since simulated annealing algorithms are designed to sample from the set of
global minima, we should be able to apply the method to obtain a good starting point, m,
for the Markov chain where m, yields calculated pressure data which are in good

agreement with observed pressure data.
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3.3.2 Perturbations Based on Sensitivities

Here, we consider a Markov chain Monte Carlo method in which we propose a
transition from image m' to image m’ by sampling from a normal distribution of zero

mean and unit variance to obtain a vector of independent normal deviates Z and setting
m =u, +LZ, (3.29)

where L,L”, represents the Cholesky decomposition of Cy.
Setting m,=m’' we define one reference mean p, and corresponding reference

covariance Cy, . Instead of using Eq. 2.36 and 2.37 to compute [, and Cy,, we use
W, = my+Cy, G (G,C\,G! +T,Cp) ' (d, - G.my), (3. 30)

and
Cur = (-;:G,CB'G, +GH™, (3. 31)
!

where T; denotes the temperature. Using T; in Eq. 3.31 (compare with Eq. 2.37) broadens
the distribution associated with Cy, and allows us to propose new simulated annealing
images from a larger range around [i,.

The probability of proposing this transition is

g; = aexp(—%(mj -1, Cn(m’ - Hr)), (3.32)

where a is a constant. The probability of proposing the reverse transition is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



q; = aexp(—-%(m" -, Clm' - u,)). (3.33)

Similar to the derivation of Eq. 2.47, it can be shown that

M:ex ( ' (2Ad T e(m’) - 2AdTe(m’ )+e(m’)Te(m’)—e(m')Te(m'))J,

p
m(T))g; 27,05
(3. 34)
Thus, if we define a simulated annealing objective function by
O(m') = —-2—1—2-(2Adire(m‘) +e(m’) e(m')), (3. 35)
c

d

it follows that

o(m’)-0(m') = —%f[ZAdjre(mj Y +e(m)) e(m’) - (2AdTe(m') + e(m') e(m' )],
d

(3. 36)

and

1
T,o;

n(T) = exp[— > [2AdTe(m?) + e(m? ) e(m’) - (2AdT e(m’) + e(m’ ) e(m’ ))]) (3.37)

Comparing Eq. 3.37 and 3.34, it follows that Eq. 3.19 holds when T; = 1. Thus, if
we decrease the temperature through an annealing schedule until we reach 7; = | and do
no further temperature decreases, the images generated at this temperature level will
correspond to a state in a Markov chain which has the probability density function of Eq.

1.5 as its stationary distribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

The preceding arguments also show that at temperatures T; > 1, we are actually
constructing a Markov chain which has Eq. 3.26 as its stationary distribution. Based on
arguments presented in subsection 3.3.1, this approach may be more advantageous for
generating an initial state for the Markov chain while the procedure that will be described
in the next section is more advantageous when we are using simulated annealing to

construct a maximum a posteriori estimate.

3.4 Using Simulated Annealing to Sample from the Set of Most Probable Models

While, there are a wide variety of procedures to obtain a sample from the set of
most probable models that can be discussed based on the theoretical development
described in sections 3.2 and 3.3, we consider only two. As discussed previously, we wish
to generate a realization of the log-permeability field which corresponds to a global
minimum of the objective function defined in Eq. 1.6. We consider two simulated

annealing algorithms to obtain such a realization.

3.4.1 Perturbations Based on the Variogram

In this case, we define a probability density function by

1
n(m,T)) = anP(——z—T—(m—mO)TC;}(m— mo)
!

1
—=(g(m)~d,,)T C5'(8(m) —do,,s)], (3.38)
27,
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so for any log-permeability field on the gridblocks, i.e., for any m',

i | ; L 1
(7)) = Tt(m‘,T,) = cexp(—;(m‘ -mO)TCM'(m - ) — o
10 d

- l <

(Ad"'fAd")J. (3. 39)

Note the argument of the exponent in the probability density function of Eq. 3.38 is
equal to the argument in the a posteriori probability density function divided by 7). At T\=1
Eq. 3.38 gives the true a posteriori probability density function.

Now suppose in the Markov chain Monte Carlo method, we propose a transition
from state i to state j by sampling from a normal distribution of zero mean and unit

variance to obtain a vector of independent normal deviates Z and set

m! =my + [T, LZ’, (3. 40)

where LLT still represents the Cholesky decomposition of Cy. The expected value of n is

still mo, but the covariance matrix for 7 is now given by
Cy(T) =T,Cy. (3.41)

The probability of proposing this transition is given by
1 . L
q; =aexp(-2—7:(m’ —my)T Cy (m? ‘"’o))’ (3.42)

{

where a is a constant. The probability of proposing the reverse transition is

1 : i
qji =aexP("2'TT(m‘ "‘mo)TCMl(m “mo)). (3.43)
!
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The preceding procedure for proposing states is equivalent to generating each

component of Z from a Gaussian distribution with mean zero and variance 7; and deleting
J7; in Eq. 3.40. With the objective function defined in Eq. 3.23, it now follows easily that

nj(y;)qji - exp[—-

- (AdjTM}_M!TAdl)]::
TC,-(T})C]U “d1,

1
20'dl

= exp(—%(Oj —0")) =r(T). (3.44)
1

Thus, at each temperature level T}, the states generated from simulated annealing with the
objective function of Eq. 3.23 will correspond to states of a Markov chain that in the limit
represent realizations of the probability density function of Eq. 3.38. As discussed

previously, this approach may be more advantageous when 7; < 1 and we are using

simulated annealing to determine the maximum a posteriori estimate.

3.4.2 Perturbations Based on Sensitivities

Here, at each temperature level, 7;, we define one reference mean W, and
corresponding reference covariance Cy;, as in Eqs. 2.36 and 2.37. There are various ways
that these could be chosen. One way is to base them on the first simulated annealing image
m, accepted at 7;. Another way is to base them on the first image m, that decreases the
pressure misfit below the lowest pressure misfit obtained at the previous temperature
level. Once the reference model m,, i, and Cy, are chosen, we keep them fixed for all

iterations at temperature level 7.
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We now consider a Markov chain Monte Carlo method in which we propose a

transition from image m' to image »’ by sampling from a normal distribution of zero

mean and unit variance to obtain a vector of independent normal deviates Z and setting

mi=p + T LZ, (3. 45)

where L,L”, represents the Cholesky decomposition of Cy,. The probability of proposing

this transition is

1. .
9; = aexp(——z?(mf — 1) Cyp(m’ = llr)) , (3. 46)
{

where a is a constant. The probability of proposing the reverse transition is

1 . .
q;i = aexp(———(m‘ — 1) C (' —u,))- (3.47)
27,

Similar to the derivation of Eq. 2.47, it can be shown that

th( I)qj[ = exp 1 - (2AdJT8(mJ)_2MIT€(m1)+8(m1)7'8(ml)—S(m')Tg(m’)) »
m(5)g; 21,04

(3.48)

where m(7;) and m(7;) are obtained from Eq. 3.38. Thus, if we define a simulated

annealing objective function by

om') = ——2%(2Ad‘78(m") +e(m) e(m)), (3. 49)
d

then the images generated by simulated annealing at the temperature level 7; will

correspond to a states in a Markov chain which has the probability density function of Eq.
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3.38 as its stationary distribution. Again this approach may be more advantageous for 7; <

| when we are using simulated annealing to construct a maximum a posteriori estimate.

3.4.3 The Two-Point Swap Perturbation

Here, we consider a classical simulated annealing approach. In this procedure, the
objective function is still given by Eq. 1.6. An uncorrelated field of gridblock values of
In(k) is generated from the log-normal univariate distribution for permeability (histogram)
with given mean and variance. These values represent the only set of gridblock
permeability values that can be generated in the procedure. Perturbations to the log-
permeability field are proposed by randomly selecting two gridblocks and interchanging
their permeability values. The simulated annealing algorithm terminates when the desired
pressure mismatch is achieved or the acceptance ratio becomes too low. The problem with
this approach is that the state space is limited to all possible configurations of the set of M
permeability values drawn from the histogram so it may be difficult to converge to a image
that gives a very low pressure misfit. The final image obtained, however, will be an
approximation to the most probable model (maximum a posteriori) contained in this
reduced state space. One way to put this in the context of Markov chain is to use the

following objective function in simulated annealing:

O(m) = %[(m—mofcu(m—mo) +(gm)=d, ) C; gm—d,y)]. (3. 50)

From Eqgs. 3.38 and 3.50, it follows that
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n(T)qg,;: q; ey q.
LI TR T (_sz,_,r’j(m_ G s1)
t(T)g; g I, q;
Thus, Eq. 3.19 is satisfied if and only if
qi=4ji- (3.52)

If the two-point swap is used to propose a transition from state i to state j in the Markov
chain Monte Carlo method, then Egs. 3.51 and 3.19 hold and the images generated by
simulated annealing at temperature level 7; correspond to states in a Markov chain with
the probability density function of Eq. 3.38 as its stationary distribution.

It is important to note that using simulated annealing with two point swapping and
a final temperature of 7; = 1 does not appear to be a reliable way to sample the a posteriori
probability density function. Because all states generated at 7; = 1 simply represent
rearrangements of the M fixed permeability values originally drawn, these states cannot
represent a correct sampling of the a posteriori probability distribution. Intuitively, it
appears that one could generate N realizations which represent a proper sampling by
starting with N different initial configurations and applying simulated annealing with two-
point swaps N times, one time for each initial set of log-permeability values. Fcr each
simulated annealing run, one could select the final image accepted at 7; = 1. Even
assuming the validity of such a procedure, the computational expense would seem to rule
out this approach for the problems of interest in this work. Even though the two-point

swap does have the possible advantage that resulting realizations honor the histogram.
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3.4.4 Including the Variogram in the Simulated Annealing Objective Function

As mentioned previously, many practitioners use simulated annealing to minimize
objective functions that contain measures of the misfit of the variogram. For the problem
considered here, such an approach would utilize the two component objective function
defined by Egs. 3.1-3.3, with the weights determined by Egs. 3.4 and 3.5. The initial
distribution of gridblock values of In(k) is randomly selected from the log-normal
distribution for permeability and new simulated annealing images are proposed by
randomly selecting two gridblocks and swapping their log-permeability values. This
procedure represents a common simulated annealing procedure currently practiced, see for
example, refs. 24-28.

In this section, we show that the variogram computed from a realization of the
correct probability distribution function does not necessarily give a good match to the
model variogram. We also argue that the measure of variogram misfit should not be
included in the objective function in the traditional way.

As in Journel and Huijbregts®®(1978), we distinguish between three different
variograms: the theoretical variogram, the experimental variogram, and the local
variogram. The experimental variogram is the variogram that is calculated from a limited
sampling of a random function within a limited domain. The theoretical variogram is the
variogram that we would calculate by averaging the variograms calculated over the entire
ensemble of possible reservoirs or from exhaustive sampling of a reservoir whose

dimensions are many times larger than the range of the correlation.
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In practice, we can only estimate the theoretical variogram, based on a priori

knowledge of what is reasonable, on closely spaced measurements from an outcrop, on
limited samples obtained throughout the field, or on some combination of all of these. The
important point is that the variogram model used for kriging and simulation is an estimate
of the theoretical variogram for the ensemble of possible reservoirs or, equivalently, for a
reservoir of infinite extent.

The local variogram, y,(h), is the variogram that one would calculate from complete
knowledge of a single realization of the random field within a domain v of limited extent.
The expected value of the local variogram (for lags that can be calculated) is the depicted
theoretical variogram, but the local variogram can fluctuate substantially around the
expected value when the dimensions of the domain v are only a few times larger than the
practical range of the corresponding theoretical variogram denoted as y(%). Unfortunately,
the expected fluctuations in the calculated covariance are difficult to compute because
they involve the calculation of moments of order 4 of the random variable. It appears that,
for random variables whose spatial correlation is governed by a linear variogram, the
relative fluctuation variance, defined by E([y(h)-Y.(h)J*/[Y(h))® is o(h/L), i.e., approaches
zero as h/L—0 for lags A that are small compared to dimensions L of the local domain. We
would expect this same behavior to hold for other variogram models, including
exponential and spherical.

Instead of calculating the fluctuation variance for large lags, we can determine the
variability of the dispersion variance® of the random function for the domain v. Although
not shown here, the dispersion variance computed based on an exponential variogram

indicates that the variability in the sills of the local variogram will increase as the ratio of
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the practical range of the variogram to the characteristic length of the domain increases.

This ratio is denoted here by R. We expect that similar results will apply to other
variogram models.

To illustrate the preceding discussion, we consider a spherical isotropic variogram
for log-permeability with sill equal to 0.25 and range equal to 600 ft. For a two-
dimensional reservoir of dimensions 1,500 ft by 1,500 ft partitioned into 225 uniform 100
ft by 100 ft gridblocks, we computed the associated covariance matrix and then generated
1000 unconditional realizations and then computed the local variogram corresponding to
each realization. Fig. 3.1a illustrates the results. The top and bottom curves represent the
two extreme local variograms obtained; i.e., all other local variograms obtained fell
somewhere between these two. The curve between these two local variograms is the
theoretical variogram. Note there is considerable scatter in the local variograms and
except at small lag distances, a local variogram may differ significantly from the theoretical
variogram when the ratio of the range of the variogram to a characteristic dimension of
the domain is large. In this example, this ratio is given by R = 600/1500 = 0.4.

Next we repeated the experiment with range of the variogram decreased to 300 ft
so R = 0.2. Fig. 3.1b illustrates the variability in local variograms computed from a
thousand realizations. All other local variograms computed lie between the two local
variograms shown in Fig. 3.1b. Note in this case, the variability in the local variograms is
much smaller than for the previous example and local variograms are reasonably close to
the theoretical variogram.

Under our assumptions, the probability density function for the prior model is given

by Eq. 1.1 which is repeated here as
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Py (m)= bexp(—%(m —mg) Cyy (m— mO)J , (3.53)

where b is a constant. The most probable model, the maximum a posteriori estimate, is the

one that minimizes the objective function

O = 2 lm=my)" Cy(m—m). (3. 54)

Clearly, the most probable model is the prior mean my and this is what one would
obtain from a proper application of simulated annealing using the objective function oif
we drive the temperature to zero. Clearly, this is not what we want to determine since we
already know the prior mean. If we apply simulated annealing using as the objective
function O, of Eq. 3.1, we will obtain a log-permeability field which matches the model
variogram closely, but it will be neither a realization based on the correct probability
distribution nor the most probable model since the correct probability density function is

given by Eq. 3.53 which is equivalent to

Py (m) =bexp(=0). (3. 55)

When we are using O; as the objective function in simulated annealing, we are assuming

that the correct probability density function has the form
p(m) = aexp(-0,). (3. 56)

Most generally, if we use the objective function Oss of Eq. 3.1 in simulated
annealing, we will obtain the most probable model only if the true a posteriori probability

distribution is of the form

fag(m) = dexp[~b0g,]. (3.57)
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where aand b are constants. However, assuming we wish to condition a Gaussian random

field with covariance Cy and mean my to pressure data, the correct a posteriori probability
distribution is given by Eq. 1.5, and Eq. 3.57 is incorrect.
Based on the preceding arguments and the results of Figs. 3.la and 3.1b,

incorporating the variograms into the objective function is not recommended.

3.5 Computational Examples

3.5.1 Example 1 - Sampling from the Set of Most Probable Models with Simulated

Annealing

Here, we apply the methods discussed previously for sampling from the set of most
probable models. All data and information are the same as in the Example 1 described in
Chapter II. The only difference is that the variance of all pressure measurement errors was
assumed to be given by 6° 4= 0.25 psi’.

Fig. 3.2 shows the maximum a posteriori estimate obtained from the gradient
method and Fig. 3.3 compares the local variogram obtained from Fig. 3.2 with the model
variogram. Note that the sill of the variogram for the maximum a posteriori estimate is
much lower than the one for the model variogram. This is, as expected, a reflection of the
fact that the maximum a posteriori estimate of the permeability field is much smoother

than the true permeability field.
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Figure 3.4 shows our estimate of the most probable model obtained with the

procedure of section 3.4.2, i.e. starting with perturbations based on the variogram, once a

pressure misfit less than or equal to one psi (,/(Ad’TAd")/ N, <1psi) was obtained,

perturbations based on sensitivity coefficients (Eq. 3.45) were used with the objective
function of Eq. 3.49. Note the sample from the set of most probable models shown in Fig.
3.4 is very similar to the maximum a posteriori estimate obtained with the gradient
method. Generation of the realization of Fig. 3.4 required 9.0 hours of computer time,
whereas, it required one minute to compute the maximum a posteriori estimate of Fig. 3.2
using the gradient method. Fig. 3.5 shows the local variogram computed from the log-
permeability field of Fig. 3.4 compared to the model variogram.

Fig. 3.6 presents the estimate of a realization corresponding to the global minimum
of the objective function (i.e., the argument of the exponential in Eq. 1.5) obtained by
starting with an uncorrelated field of log-permeability defined on the gridblocks and
performing two-point swaps. This image only roughly approximates the ones obtained in
Figs. 3.2 and 3.4; 27 hours of computer time were used to achieve this estimate. Note in
this method, we only rearrange the original set of M values of In(k) drawn from the log-
normal distribution form permeability. Using this set the lowest pressure mismatch we
were able to obtain was 0.8 psi, whereas, using the preceding method, we were able to
obtain a pressure mismatch less than 0.5 psi. Evaluated at the log-permeability field of Fig.
3.6, the value of the “objective function” of Eq. 3.50 was 418. Since the value of this
objective function evaluated at the permeability field of Fig. 3.4 is 32.0 and the value of
this objective function at the maximum a posteriori estimate is 5.2, clearly, we have not

found an image which gives a global minimum of the objective function. Note, however,
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the results of Fig. 3.6 were obtained by starting with an uncorrelated log-permeability
distribution at the gridblocks and performing two-point swaps. For such a procedure, we
cannot expect to obtain a value of the objective function close to the true global minimum.
Fig. 3.7 compares the variogram computed from the results of Fig. 3.6 with the model
variogram.

Fig. 3.8 shows the log-permeability field obtained using simulated annealing with
the objective function of Eq. 3.1 and using two-point swaps beginning with a set of
gridblock values drawn from the log-normal distribution of permeability. Note this result
differs significantly from the maximum a posteriori estimate obtained from the gradient
method. This third method represents the standard simulated annealing approach. Since it
is based on an incorrect objective function, it is not expected to yield a reliable maximum a
posteriori estimate. The value of the objective function of Eq. 3.50 evaluated at this image
gives 800. Again, we have not found a global minimum of the correct objective function.
The lowest pressure mismatch obtained was 0.9 psi. The local variogram computed from

the distribution of Fig. 3.8 is compared with the model variogram in Fig. 3.9.

3.5.2 Example 2 -Using Simulated Annealing to Obtain the Initial State of a Markov Chain

In this example, we consider the use of simulated annealing to obtain an initial state
for the Markov chain. In this procedure, we begin simulated annealing at a high
temperature and gradually reduce the temperature using the procedures described in

Appendix A. At high temperatures, we use perturbations based on the variogram, and use
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the objective function of Eq. 3.23 which is related to the pressure misfit. This is performed

until we obtain a pressure misfit of 1 psi or less, i.., until we obtain an image m' in

simulated annealing such that \/(Ad‘TAd")/Nd < 1psi.

From this point on, we change the perturbation mechanism to use perturbations
based on the sensitivity coefficients. Setting m, =m’ we compute i, and Cu,, using Egs.
3.30 and 3.31. At each temperature level, we propose a local perturbation by resampling
one component of the vector of normal deviates to obtain Z, and then propose a new
image as in Eq. 3.29. At this point we use the objective function of Eq. 3.35. The
reference values ., and the associated covariance matrix (Cy,) are updated every time we
obtain a pressure misfit less than the previous one.

Once we have reduced the temperature to 7T)=1, we update the reference values
using the first image accepted which gives a pressure mismatch lower than the smallest
value obtained previously. From this point on Y, and Cy, are held fixed, i.e., i, is the last
reference mean calculated in the simulated annealing process. Thus, at this point, we begin
to construct a Markov chain using Hastings’ acceptance criterion (Eq. 2.14) determined
by Eq. 2.50. Local perturbations are used throughout the process so again, the set of
states in the Markov chain must be thinned.

In this example section, we compare four methods for sampling the correct a
posteriori probability density function expressed by Eq. 1.5. The first, second and third
methods are the Markov chain Monte Carlo methods discussed previously in Chapter II.
In the first method considered, the sampling is performed by using local perturbations that

are based on the Cholesky decomposition of the prior covariance matrix. Both, the second
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and third methods use perturbations which are based on the maximum a posterior estimate

and on the Cholesky decomposition of the a posteriori matrix (Cyp). The second method
uses global while the third uses local perturbations. The fourth method is the one
described in the beginning of this subsection and uses simulated annealing to overcome the

transient period that is present in a Markov chain run. In all that follows in this subsection,

the pressure misfit is given by 1/(Ad'7Adi) /N, .

3.5.2.1 Example 2a - Variance = 0.25

Here, all information and data are the same as for Example 1 described in Chapter
II. 50000 iterations were allowed for the sampling phase in each of the four methods
analyzed.

One way to compare the four methods is to look at the generation of acceptable
independent realizations for each. Fig. 3.10 presents a plot of the value of the “objective
function” of accepted states versus the perturbation number for all the four methods. A
corresponding plot of the pressure misfit is shown in Fig. 3.11. The perturbation number
in all the figures in this example refers to the number of transitions proposed, but only the
values of accepted transitions are plotted. Rejected transitions result in acceptable images
(the last accepted image), but those are not plotted. Although a total number of 50000
iterations were allowed for the sampling phase for each method. For the second and third
method that uses perturbations based on the a posteriori covariance matrix as well for the

fourth method that uses simulated annealing to initialize the Markov chain, only the result
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of the 10000 first iterations are plotted in Figs. 3.10 and 3.11. For the fourth method the

values plotted correspond to values obtained during the initial and sampling phases.

As mentioned before, the results of Figs. 3.10 and 3.11 allow us to discuss
procedures for determining when the transient period of the Markov chain has ended.
Based on previous arguments we see that for the Markov chain Monte Carlo methods that
use the a posteriori covariance obtained from the gradient method to generate
oerturbations, the transient period is so short that it is difficult to see any evidence of it in
Fig.3.10.The method developed here that uses simulated annealing reaches a stationary
distribution after about 31000 perturbations. The first Markov chain Monte Carlo method,
which used local perturbations based only on the variogram, has not reached the stationary
distribution after 50000 perturbations.

Figure 3.12 shows log-permeability values at four gridblock positions (see locations
depicted in Fig. 2.4.6) versus the perturbation number when using local perturbations
based on the a posteriori covariance matrix with simulated annealing to initialize the
Markov chain Monte Carlo method. The values of the log-permeability values are highly
correlated, as expected, when using local perturbations to generate new states as can be
seen by observing Fig. 3.12.

In relation to the number of images accepted, the method that used local
perturbations based on the variogram did not generate any legitimate images of the
permeability field during the 50000 iterations run. The Markov chain Monte Carlo method
that used global perturbations based on the a posteriori covariance matrix generated a
total of 200 distinct, independent realizations. Using local perturbations based on the a

posteriori covariance matrix we obtained approximately 37500 different, but

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50000

l
40000

I
30000

Perturbation Number

Block (9,10) - Not a Well Block
Fig. 3.12a - Log-Permeability Values During Sampling with Local Perturbations

Block (4,4) - Observation Well

I
20000

I
10000

Aujqesawsad-601

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.25).

Based on Sensitivities Coefficients with Simulated Annealing to

Initialize the Markov Chain (Variance

(9]
to



(o]
[

"(g2'0 = @2UBLRA) URYD AOYIB BY) SZI[eniu|
0} Buijeauuy pajeINWIS YiM SJUSI0IYS0D SBINANISUSS UO pased
suoneqInuad [evo yum Budwes Buung senjep Aljigeswiad-bo1 - gzi°e b4

laquinN uoneqiniiod

0000S 0000¥ 0000€ 00002 0000} 0
R U AT TR R SR N T
Noo|g ISM e ION - (PL'2) %oolg
lIom Buronpoid - (8'g) o018 O
4
W v
« v,
«‘ vw Vv vV 4«4 v Vv A4
(106~ 000008 " ¢4 200, 24,046 /0000, )0(0000.>>¢ PRV 0000000600 ” 360000000 BOSOOTLEOQROVONOR m
XA A o &

.<<¢«<< «a% v’ Q« »M.,«.< v 44 ﬁﬁ«%%gﬁ
Ww&%m%««%% A «««W«ﬁa««.ﬁ... ¢
%S ;

Ajjiqeswiad-601

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



134
highly correlated images. With the method that uses simulated annealing 37000 distinct,

but highly correlated images were obtained. As mentioned before, in the case of local
perturbations it is necessary to thin the set of accepted images.

The thinning of images is performed by means of the experimental variogram
computed from the chain of values of the objective function. Fig. 3.13 shows the
experimental variogram obtained for the method that uses simulated annealing. As we can
conclude from Fig. 3.13, the realizations generated are slightly correlated to lags of
approximately 800. If, we retain only every 800th realization we would be left with 46
independent realizations. Recall from Chapter II, that for this same example, the Markov
chain Monte Carlo method that uses local perturbations based on the a posteriori
covariance matrix generated, after the thinning of images, yielded 31 independent images.

Regarding computational time, each of the four methods required approximately 13
hours to attempt 50000 perturbations during the sampling phase. However, the fourth
method had an overhead of 9 hours to perform the 31000 iterations necessary to calculate
an initial state for the start of Markov chain sampling period.

Figs. 3.14a and 3.14b show legitimate realizations of the log-permeability field
obtained when, after using simulated annealing to overcome the transient period, a
Markov chain with local perturbations based on the a posteriori covariance matrix
sampling procedure was performed. Recall the true distribution is given in Fig. 2.4.2. Note
that, as in the previous methods, both realizations capture the major trends present in the

truth case.
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3.5.2.2 Example 2b - Variance = 1.0

In this example, all information and data is the same as for Example 2 described in
Chapter II. A total number of 50000 iterations for the sampling phase was allowed to each
of the four methods analyzed.

Fig. 3.15 presents a plot of the value of “objective function” of accepted states
versus the perturbation number for all the four methods. For the fourth method the values
plotted corresponds to values obtained during the initial and sampling phases. A
corresponding plot of the pressure misfit is shown in Fig. 3.16. Although a total number of
50000 iterations were allowed for the sampling phase for each method, for the second,
third and fourth methods only the result of the 10000 first iterations are plotted in Figs.
3.15 and 3.16. As previously, the sequence of states constructed using local perturbations
based on the variogram do not reach the stationary distribution. Between accepted
transitions the state remains unchanged, but those states have not been displayed. Both
methods based on using perturbations generated from the a posteriori matrix obtained
from the gradient method have transient periods that are too short to be visible in Fig.
3.15. The method developed here that uses simulated annealing reaches a stationary
distribution after about 30000 perturbations.

Figure 3.17 shows log-permeability values at four gridblock positions (see locations

in Fig. 2.4.6) versus the perturbation number for when using local perturbations based on
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the a posteriori covariance matrix with simulated annealing to initialize the Markov chain

Monte Carlo method.

With respect to the number of images obtained, recall from Chapter II, that the
Markov chain Monte Carlo method that used global perturbations based on the a
posteriori covariance matrix generated the total number of 8 different, independent
realizations. It is important to notice that rejected transitions result in acceptable images
(the image from the last transition accepted), but for global perturbations the number of
different images may be small. Using local perturbations based on the a posteriori
covariance matrix we obtained approximately 25300 distinct, but highly correlated images.
With the newly developed method that uses simulated annealing 19000 different, but
highly correlated images were obtained. As mentioned before, in the case of local
perturbations it is necessary to thin the set of accepted images. This is performed by means
of calculating the experimental variogram of the objective function for the accepted states.

Fig. 3.18 shows the experimental variogram obtained. As we can conclude from
Fig. 3.18, realizations generated from local perturbations are slightly correlated to lags of
approximately 1000. If, we retain only every 1000th realizations we would be left with 19
independent realizations. In Chapter II, for this same example, the Markov chain Monte
Carlo method that uses local perturbations based on the a posteriori covariance matrix
generated, after the thinning of images, 14 independent images.

Regarding computational time, each of the four methods required approximately 13
hours to attempt 50000 perturbations during the sampling phase. However, the fourth
method had an overhead of 8 hours to perform the 30000 iterations necessary to calculate

an initial state for the start of Markov chain sampling period.
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CHAPTER IV

THE HYBRID MONTE CARLO METHOD

As described in Chapter II the most useful technique for generating a sequence of
configurations with the desired distribution is to construct a Markov chain. A Markov
chain process is a stochastic procedure which, given state m' generates a new
configuration »/ with transition probability p;. Any Markov chain will converge to a
unique fixed point probability distribution =, i.e., is ergodic, provided it is irreducible (for

all (i,j) there exists n such that p";> 0), p;;> 0 for some i and it satisfies detailed balance

n(m')p; =n(m’)pj; . (4.1)

As shown previously, it is convenient to construct a Markov chain process by two

steps. First we propose a new configuration 7’ with some probability g; by some yet

unspecified procedure, and then we accept m’ with some probability o; or reject it and

keep the old configuration m' instead. One choice of ; which enables the detailed balance
to be satisfied for any g;; is a simple generalization®® of the Metropolis algorithm’

T.g-
o, = mind 1,22} 4.2)
g

As in Chapter II, the focus of our efforts here will be on improving the efficiency of

the overall method by increasing the acceptance probability for transitions proposed with

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



146
probability ¢;. Since m; is a fixed function of the permeability distribution, we can only

improve the efficiency by improving the process of proposing transitions. We require a
method for choosing candidate configurations that can be computed efficiently and that
minimizes the correlation between accepted configurations.

In Chapter II, we enhanced the process of proposing transitions by proposing
perturbations of a probability density function that approximate the true probability density
function. Despite the improvements achieved, we believe, based on computational
examples considered, that this algorithm decreases in performance and will be very slow
when a high variability in the permeability field is present and the problem is highly
nonlinear. For such problems, in order to achieve a reasonable acceptance probability, the
size of the changes must be very small or local, and consequently a large number of
iterations are required to reach and explore the stationary distribution because the images
will be highly correlated. Furthermore, recalculating the output of pressure data after
changing a single component is as expensive as calculating the output after changing all
components. Generating a candidate state by randomly perturbing all components at once
eliminates the correlation between accepted states, but is unlikely to be accepted.

These disadvantages of the “standard” Markov chain Monte Carlo method
motivated the investigation of the hybrid Monte Carlo method by Duane, Kennedy,
Pendleton, and Roweth’. The hybrid Monte Carlo method is an elaboration of the
stochastic dynamics method®’, which merges the Metropolis algorithm with perturbations
techniques based on dynamical simulation. These perturbations use gradient information
provided by sensivity coefficients from a flow simulator to find candidate directions in

which changes have a high probability of being accepted. The output of the algorithm is a
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sample of points drawn from some specified distribution. For our problem, we wish to

sample from the a posteriori probability density function, which incorporates multiwell
pressure data, the prior mean and the model variogram. This class of methods is believed
to perform better than simple Markov chain Monte Carlo methods, due to its avoidance of
random walk behavior. The hybrid Monte Carlo algorithm itself, and methods related to it,

have been reviewed by Toussaint’® (1989), Kennedy3°(l990) and Neal'” (1993).

4.1 The Stochastic Dynamics Method

The hybrid Monte Carlo method can be viewed as an extension of the stochastic
dynamics method. This class of algorithms is founded in concepts from statistical physics
and is usually expressed in terms of sampling from the canonical distribution for the state
of a physical system, which is defined in terms of an energy function. Therefore, it is
convenient to retain the physical terminology, even in non-physical contexts, by
formulating the problem in terms of an energy function for a fictitious physical system.

Accordingly, suppose we wish to generate an ensemble of configurations of a set of

“position” variables, g , which has n real-valued components, g; distributed according to

P(q) = ——exp(~E(q)) @.3)
Wg

where E(g) is the “potential energy” function.

In a real physical system, g would consist of the coordinates of all particles; in our

application, g will be the set of log-permeability values.
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Note that formerly, a Markov chain Monte Carlo method was presented and used
to sample from the probability distribution P(g), where in the problem of interest to us, the
log-permeability field plays the role of ¢, and the potential energy function is given by Eq.
1.6. Here, aiming to improve the sampling procedure, especially for higher variance cases,
we use the hybrid Monte Carlo algorithm. This algorithm incorporates dynamical methods
within the general framework of the Metropolis algorithm.

We wish to introduce a trick which allows large steps through configuration space,
in order to produce independent configurations, while maintaining a large acceptance rate.
We enlarge the space of field configurations by adding a “fictitious momentum” vector
variable, p, which has n real-valued components, p;, in one-to-one correspondence with
the components of g. For a molecular dynamics problem, the p; is the components of the
momentum for the various particles. For other problems, the p/’s are introduced
exclusively to allow the problem to be given a dynamical formulation.

The canonical distribution over the “phase space” of g and p together is defined to

P(q.p) = wiexp(—mq, ) 4. 4)
H

where H(q,p) = E(q) + K(p) is the “Hamiltonian” function, which gives the total energy.

K(p) is the “kinetic energy” due to the momentum, for which the usual choice is

n p?.
K(p)=) —/—. 4.5
Zﬂmf
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The m; are the “masses” associated with each component. As discussed later, adjustment

of these mass values can improve efficiency, but for the moment they can all be taken to
be equal to one.

The canonical distribution for the set of p; variables is

P(p) = ~—exp(—K(p) = 21) "2 exp(-~ T p?); (4. 6)
Wy 24

i.., the p;’s are independent, and have Gaussian distribution with zero mean and unit
variance.

In the distribution of Eq. 4.4, ¢ and p are independent, and the marginal distribution
for g is the same as that of Eq. 4.3, from which we wish to sample. This can be concluded

by writing the canonical distribution over phase space defined by the total energy function

as

P(q, p) = ——exp(~H(q.p))
Wy

E K

1
= [—exp(—E(q))].[—l—eXp(—K (P))]
w w

=P(q)P(p). 4.7

Therefore we can just as well define a Markov chain that converges to the

probability distribution for the extended system for g and p, and then simply ignore the p
values when estimating expectations of functions of g.

In the stochastic dynamics method, the Markov chain that gives samples from the

probability distribution for g and p given by Eq. 4.4 is generated using two types of
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transitions. The “‘dynamic™ transitions which are deterministic, and are used to sample

uniformly from values of g and p with a fixed total energy, H(gq,p). The “stochastic”

transitions allow the algorithm to sample states with different values of H.

4.1.1 Hamiltonian Dynamics

The dynamic transitions sample at a fixed total energy by simulating the
Hamiltonian dynamics of the system, in which the state evolves in fictitious time, T,

according to the following equations:

dg, _OH _»p (4.8)
dt dp;, m;
dp; __OH __OE 4.9)

dt agq; E]T ’

As pointed out by Refs. 12, 38 and 39, the motion defined by these equations has
three important properties. First, the motion leaves the total energy H constant. Second,
the motion is reversible - if following the dynamics for some period of time maps (p, g) to
(p*.g*), then it also maps (-p*,g*) to (-p, ). Finally, the motion satisfies Liouville’s
theorem, which says that the volume element in phase space is conserved. This means that
points, initially in some region of volume V moving according to the dynamical equations
will end up after some given time interval at a region that also has volume V. This is
important because for continuous variables we are really talking about probability
densities and the “probability of a state configuration” really means the probability density

times the volume element in phase space.
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As shown in Refs. 38 and 39, due to the preservation of phase volume and the time
reversibility properties, transitions based on Hamiltonian dynamics will generate a Markov
chain such that the detailed balance of Eq. 4.1 is satisfied. However, due to the
conservation of total energy property, such transitions are not sufficient to produce an
ergodic Markov chain since regions with different values of H are never visited. As it will
be described in subsection 4.1.3 the generation of an ergodic Markov chain is

accomplished by alternating dynamic with stochastic transitions.

4.1.2 The Leapfrog Discretization

In reality, Hamiltonian dynamics cannot be simulated exactly, but can only be
approximated by some discretization using finite time steps. The method that is commonly
used is the leapfrog method. In this scheme a single iteration calculates approximations to

the position and momentum, g and p, at time 1+€ from g and p at time 7 as follows:

€ € oF
p,-(‘c +§) = p,(7) —Ea_%(q‘(T))’ (4. 10)
(+3)
p\T+
g(t +e)=gq,(t) +¢ 2/, 4. 11)
m
p(T +€) = p,.(t +%)—%-§£—(q,-(‘t +8)). (4.12)

This iteration consists of a half-step for the p; , a full step for the g;, and another half-step

for the p;. To follow the dynamics for some period of time, AT, a value of € that is thought
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to be small enough to give an acceptable error is chosen, and equations 4.10-4.12 are

applied for L=At/e iterations in order to reach the target time.

The preservation of phase space and the reversibility properties presented by the
Hamiltonian dynamics remain true when using the leapfrog discretization'***°. However,
the value of H no longer stays exactly constant. Because of this, Monte Carlo estimates
found using the stochastic dynamics method will suffer from some systematic error, which
will go to zero only as the stepsize, €, is reduced to zero (with the number of steps needed

to compute each trajectory then going to infinity.)

4.1.3 Stochastic Transitions

In the stochastic dynamics method, an ergodic Markov chain is obtained by
alternately performing deterministic dynamical transitions and stochastic updates of the
momentum. Since g and p are independent, p may be updated without reference to g by
drawing a new value with probability density proportional to exp(-K(p)). For the kinetic
energy function of Eq. 4.5, this is easily done, since the p; have independent Gaussian
distributions. The p; are sampled from a Gaussian distribution with zero mean and unit
variance. These updates of p can change H, allowing the entire phase space to be
explored.

In physical terms, a stochastic transition can be viewed as representing the effect on
the system of contact with a heat reservoir. Such contact can be of varying strength,
suggesting that we might also try controlling how large an effect the stochastic transitions

have relative to that of the dynamical transitions. For stochastic transitions that completely
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replace the p; with newly chosen values, such control can be exercised by adjusting the
duration of the dynamical trajectories simulated between stochastic transitions. In this
case, the length in fictitious time of the trajectories is an adjustable parameter of the
stochastic dynamics method and, as it is going to be shown in a later section, it is best to
use trajectories that result in large changes to ¢. This avoids the random walk effects that
would result from randomizing the momentum after each short trajectory.

An alternative, as described by Horowitz, is to simulate only short trajectories
(perhaps just a single leapfrog iteration), but to use stochastic transitions of the following

form

pi’ = opi+ (1-0%)""n; (4.13)
where n; is drawn from a Gaussian distribution with zero mean and unit variance, p; are the
momentum variables obtained at the end of a previous dynamical transition, p;” are the
transformed momentum variables needed to start the current dynamical transition and
0<o0<1. Here, o is a parameter that controls the effect the of stochastic transitions.

Setting o to zero in Eq. 4.13 gives the previous method of just replacing the momenta. If
this is done after every leapfrog iteration, there is a large random walk aspect to the
motion, which is generally undesirable. When a. is set to a value only slightly less than one,
the momenta are only slightly altered in each stochastic transition, reducing the random
walk effect. In this method, the number of leapfrog iterations is kept equal to one but it is
necessary to have an estimate for the value of parameter .. A criterion to choose the value
of this parameter when using a hybrid Monte Carlo method with the variant described by

Horowitz to solve our problem are given in a later section.
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4.2 Hybrid Monte Carlo

In the stochastic dynamics method, if the dynamics were simulated exactly, the total
energy would be conserved and the change in H would always be zero. When the
dynamics is simulated with a non-zero stepsize, H may change, causing some systematic
errors in Monte Carlo estimates found by this method. The systematic errors coming from
the simulation of the dynamics with a non-zero stepsize can be eliminated using a method
developed by Duane ez al.”

Like the stochastic dynamics method, the hybrid Monte Carlo algorithm samples
points in phase space by means of a Markov chain in which stochastic and dynamical
transitions alternate. In the stochastic transitions, the momentum is replaced by resampling
the “momentum” variables p; from a Gaussian distribution with mean zero and variance
equal to one. The dynamical transitions in the hybrid Monte Carlo method are also similar
to those in the stochastic dynamics method, but with a change - the point reached by
following the dynamics is only a candidate for the new state, to be accepted or rejected
based on the change in total energy, as in the Metropolis algorithm. If the dynamics were
simulated exactly, the change in H would always be zero, and the new point would always
be accepted. When the dynamics is simulated using some approximate discretization, H
may change, and moves will occasionally be rejected. These rejections exactly eliminate
the bias introduced by the inexact simulation'’.

In detail, given values for the magnitude of the leapfrog stepsize, €, and the number

of leapfrog iterations, L, a dynamical transition consists of the following steps:
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Starting from the current state, (g.p)=(q(f0).p(ty)), perform L leapfrog iterations with a
stepsize of €, resulting in the state (q(eL),p(eL))=(q*.p*).
Regard (¢*,p*) as a candidate for the next state, as in the Metropolis algorithm, accepting
it with probability

min(1,exp{-[H(g*,p*)-H(q(to).p(t:))1}),
and otherwise letting the new state be the same as the old state.

As pointed out by Duane et al., it is not necessary for the Hamiltonian used in
simulating the dynamics to be the same as that which defines the canonical distribution
from which we wish to sample. The algorithm remains valid (i.e. it produces an ergodic
Markov chain) as long as the correct Hamiltonian is used when deciding whether to accept
a candidate state. Of course, generating candidate states by following trajectories based on
a drastically wrong Hamiltonian will lead to a very low acceptance rate.

The name Langevin Monte Carlo is given to hybrid Monte Carlo with L=1, that is,
in which candidates states are generated using only a single leapfrog iteration. Only when
L is reasonably large, however, does one obtain the principal benefit of hybrid Monte
Carlo - the avoidance of random walks. One might think that a large error in H would
develop over a long trajectory, leading to a very low acceptance rate. As described later,
for sufficiently small stepsizes, this usually does not occur. Instead, the value of H
oscillates along the trajectory, gnd the acceptance rate is almost independent of trajectory

length.
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4.3 Analysis of the Hybrid Monte Carlo Algorithm

In this section we concentrate in investigating the behavior of the hybrid Monte
Carlo algorithm when sampling from a Gaussian distribution. Typically, the hybrid Monte
Carlo algorithm is applied to more complex problems, but performance on Gaussian
distributions may be indicative of general performance and give a better understanding of

some of the specific features of the method.

4.3.1 The Hybrid Monte Carlo Algorithm to Sample a Univariate Gaussian Distribution

A univariate Gaussian distribution with mean zero and variance ¢ can be
represented as the marginal distribution for a “position” variable g with respect to the

canonical distribution given by the following Hamiltonian:

1 5, 1,
H(q,p) =—=q* +—p°. 4. 14
(¢.p) 202" P ( )

A single iteration of the leapfrog method applied with this Hamiltonian produces a

linear mapping from (g(t),p(t)) to (g(T+€),p(T+€)) that can be written as follows:

€)Y _ _E4(T)
p(‘t+2)—p(‘t) 2o 4.15)
g(t +e)=q(t)+ep(1: +§) @. 16)
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8)_3(1(‘t+8) @ 17)

p(T+€)= P(T'*; P

or in matrix form as

q(t +¢€) 1-¢2 /20 € q(t)
[p(’t +e)} - [-—(e /o3)(1-€%/40%) 1-¢° /202]'[p<r)}' (4. 18)
As described in Ref. 12, H(g,p) diverges, that is to say that the numerical solution of the
difference equation is unstable, if this leapfrog iteration is repeatedly applied with € > 20,
but H remains bounded when it is applied with € < 2G.

Several conclusions may be drawn from this analysis. First, when the hybrid Monte
Carlo method is used with long trajectories, consisting of many leapfrog iterations, it is
essential that the stepsize be small enough to ensure stability, as otherwise the value of H
will rapidly diverge, resulting in a increase of the rejection rate. Second, as long as the
stepsize is in the stable region, the error in H, at least for this example, does not grow
larger and larger as the number of leapfrog iterations is increased.

Figure 4.1 shows the error in energy for trajectories computed with different
stepsizes, £ which were defined as € = 1.0 where, 1| is referred to as the stepsize
adjustment factor and for this univariate example, ¢ = 1. Each point plotted in the figure
shows the change in total energy (H) for a trajectory of fifty leapfrog iterations in which
the stepsizes were adjusted by the factor in the horizontal axis. Changes in the total energy
greater than ten were plotted at ten. Note that, as long as € < 20, the solution is stable.
This result was the same for several trajectory lengths tested reflecting the insensibility of

the stability criterion to the number of the leapfrog iterations. As we can observe, for
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stepsizes past the limit of stability, the leapfrog discretization becomes unstable, which will

result in an acceptance rate close to zero. The optimal strategy is usually to select a

stepsize just a bit below the point of instability.

4.3.2 The Hybrid Monte Carlo Algorithm to Sample a Multivariate Gaussian Distribution

The system studied before, with the Hamiltonian of Eq. 4.14, can be generalized to

a system with several position variables, with the following Hamiltonian:

2 2

q; p;
Hg,p)=Y 2 +Yy 2, 4.19
(9.p) 267 T 20m ( )

In the canonical distribution, this defines the marginal distribution for g as a multivariate
Gaussian in which the components are independent, with component g; having mean zero
and standard deviation 6;. When the leapfrog method is used with this Hamiltonian, there
is no interaction between the different pairs of position and momentum variables. Each
such pair, (g;,p;), evolves independently of the other pairs, since the value of dE/dg; does
not depend on g; for j#i. Once the end of the trajectory is reached, however, a decision to
accept or reject the final state is made based on the total error in H, which is the sum of
the errors due to the inaccuracies in the simulation with respect to each pair of variables.
A large error resulting from inaccurate simulation with respect to any of these coordinate
pairs will likely lead to the trajectory being rejected. If the proposed state is rejected then
the new state is the old state.

If we set m; = 1 for all i and use the same stepsize for all components in this system,

then to keep the rejection rate low, we will have to use a stepsize less than 20, where
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G, 1s the smallest of the o;, as otherwise the error in A due to one or more components
will diverge as the trajectory length increases. If the other o; are much larger than G,
then with this small stepsize a large number of leapfrog steps will be required before these
other components change significantly.

This problem can be better illustrated if we construct the leapfrog iteration, with m;

= 1, for the Hamiltonian of Eq. 4.19. In this case we can write

Pi('r"'i) = p;(T) 'EM, 4. 20)
2 2 o;
2
gt +8)=£pi(T)+[l—2Z?_)qi(T), 4. 21)

g? £ g2
pi(t +€)=(I—E&?)pi(T)_c_f[l—m)qi(T)' 4. 22)

Let us analyze the effect in sampling components g;. To do this, suppose we have a
distribution with two components only, i.e. i = 1,2 and pi(t) = 0 at the beginning of the
leapfrog step and that 6, <<0G,. Using this in Eq. 4.21 we can write

2
gt +e)= (1 —%)q, ), (4. 23)

g, (T+E) = (1 - 2:2 )qz(‘c). 4. 24)

2

If we use the same stepsize for all components in this system, then to keep the

rejection rate low, we will have to use a stepsize less than 26, as otherwise the error in H
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due to one or more components will diverge as the trajectory length increases. If we use €

= ¢,/2 for example, Eqgs. 4.23 and 4.24 will give that
7
(T +e)=2aq(®), (4. 25)

)

g,(T +s:)=(1—2°0'~2 qu(t). (4. 26)

2

Since 6; << 62 Egs. 4.25 and 4.26 show that in a leapfrog step, component g: will be
essentially unchanged, i.e., leapfrog iterations will not sample the direction of the higher
variance component well.

As mentioned before the adjustment of “masses” values, m;, associated with each
component can avoid this problem and improve the method efficiency. A basis for
choosing optimal values for m; can be found by examining the behavior of a leapfrog
method applied to a system with the Hamiltonian described by Eq. 4.19. When
incorporating the masses, m; the leapfrog method applied to this system gives

e e’
q;(T +e)=—p,.('c)+(l————2)q,-(t), 4.27)
m; 2mo

i (]

g2 g g’
pi(T +&)= (1 —m)pi(‘[)—c—g(l —'m{)qi(t) . (4. 28)

i0 i

Let us analyze the effect in sampling of components g;. To do this we will consider a
distribution with only two components, i.e. i = 1,2 and that G, = 01 < G2 and p(T) = 0 at
the beginning of one leapfrog step. For stability purposes we know that £ < 26. Defining

m; = Comin /G = O /o*; and assuming that € = o, we have for each component that
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g (t+€)=05¢/(t) and ¢q,(T+€)=0.5q,(t). This final resuit shows that when

considering the mass terms, all the directions are investigated adequately.

This means that if the “‘mass” terms are considered, and the leapfrog scheme as
described in Egs. 4.20-4.22, is applied to the Hamiltonian of Eq. 4.19 the sampling
process will be optimized if m; = G'min /0% and € < 20, Note that in this case the
stochastic transitions will have to be made by sampling the momentum variables p; from a
Gaussian distribution with mean zero and variance m;.

One way to make the computation more efficient is to recast the choice of masses,
m;, and stepsize, €, as a choice of individual stepsizes, €;, that are applied when updating
each component of the position and momentum. To better explain this, it is convenient to

rewrite the leapfrog method of equations as follows:

€
p"(ﬁi)_ p(t) & 0

E
= (1)), 4.
Ry e U (4.29)

pi(T +§‘)
2

€
| oyt 2) 4.30
q;(t +¢€) Q.(t)"‘\/a: \/F’ ( )
p.(’t+i)
pa+e) N\ T2) & E ... . 31)

\/—m_i - ni; —2\/7”73‘11‘

Rather than applying the leapfrog equations to update p; and g; , we can therefore store

the values p, /\/—I;L_ instead of the p;, and update these values (along with the g;) using
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leuptrog steps in which different components have different stepsizes, given by

g, =€/ /m; . In this case we can define a variable

- Pi

= , 4. 32
and the leapfrog equations can be rewritten as follows:
. e) . g, OF
lt+=|=p(x)-=+—(g.(7)), 4.33
p,( 2) pi(t) 2% (g;(t) (4.33)
g,(t +€) = g,(%) +e,-;3,.(1: +%) 4.34)
. o e) ¢;0E
px+e)=p;|T+=|-="—(g(T +€)). 4. 35)
2) 29dq;

As seen before, for stability purposes we require € < 20, and an appropriate choice for
the i mass is m; = G*mix /0% Consequently €; < 26; or for the ith component, we can set
the stepsize, €, to a value a bit less than 20;, with the result that even short trajectories
transverse the full range of all components.

Previously the stochastic transitions had to be made by sampling the momentum

variables p; from a Gaussian distribution with mean zero and variance m;. With this re-
expression of the leapfrog method the canonical distribution of p; / /m; is independent of
m; and the stochastics transitions are performed by sampling p; from a Gaussian

distribution with zero mean and variance equal to one. This reduces slightly the amount of
computation required since its not necessary to convert a standard normal variable to a

Gaussian distribution with mean zero and variance m;.
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Fig. 4.2 illustrates the operation of the leaptrog method on a bivariate Gaussian

distribution and the effect of the use of the mass term. In this example, 6| = Guix = 0.1 and
o, = 1.5, the stepsize adjustment factor used was n = 0.1 and a single trajectory consisting
of ten leapfrog iterations is shown. In Fig. 4.2a, the mass term m; is considered equal to
one; i.e. we use the same stepsize for all components in the system, and to ensure stability
the stepsizes used were €, = €; = N\Gmin = N\O1. Previously (see Egs. 4.20-4.26), we showed
that if any of the o; are much larger than Gis, the need to limit the stepsize to NGpmin in all
the directions slows the rate at which the algorithm can explore the distribution in
directions corresponding to components with a higher standard deviation. This fact is
reflected in Fig. 4.2a, in which the direction of the second component (the one associated
with the higher standard deviation) does not change significatively during the ten leapfrog.
In Fig. 4.2b, the mass term component is taken into account by using different stepsizes
for each direction. In this case the stepsizes used were €, = no; for the first component
and €= 1o, for the second component. As described previously (see Egs. 4.27 and 4.28)
and as shown in Fig. 4.2b, the use of a different stepsize for each component (equivalently
a different mass) improves the sampling efficiency. Here, for the same number of leapfrog
steps given in the example described in Fig. 4.2a, the component with the higher standard
deviation (the second component) changes significantly during the dynamical simulation
steps.

Figure 4.3 shows the error in energy for trajectories computed with different
stepsizes, €;, where €; = no;. Each point plotted in the figure shows the change in total
energy (H) for a trajectory of fifty leapfrog iterations for the same bivariate example (G; =

0.1 and o, = 1.5) for a given value of the stepsize adjustment factor, 11. Changes in the
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total energy greater than ten were plotted at ten. As we can observe, for stepsizes past the

limit of stability, the leapfrog discretization becomes unstable, which will result in an
acceptance rate very close to zero. The optimal strategy is usually to select a stepsize just
a bit below this point of instability.

This simple system serves as an approximate model for the behavior of the leapfrog
method when applied to a more complex system whose potential energy can locally be
approximated by a quadratic function of ¢g. By a suitable translation and rotation of

coordinates such a quadratic energy function can be put in the form

E(q)=Y. 4} /20}. (4. 36)

If the energy can be written as in Eq. 4.36 then, as described by the previous bivariate
example a good choice for the stepsize is to use different stepsizes, €;, defined by & =na..
As illustrated in Fig. 4.3 this criterion will give the same stability result encountered when
sampling a univariate Gaussian distribution and will be optimum when using 1 = 2, i..
each component will be sampled efficiently and a high acceptance rate will be obtained
during the sampling process.

In practice, as shown later, it is not possible to take full advantage of the
straightforward stepsize calculation criteria for a multivariate Gaussian, both because the
potential energy is at best only approximately quadratic, and because we do not know how
to translate and rotate the coordinate system so as to remove the interactions between
components of g. When the different components interact, the stepsizes €;, defined by &; =
no; may be too large, and it is necessary to use a small value for 1y in order to achieve a

high acceptance rate.
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The hybrid Monte Carlo method requires, besides the estimate of an optimal ¢; . the

determination of one tunable parameter - the length of the trajectory defined by the
number of steps L during dynamical transitions (or the frequency in simulation time with
which we resample the momenta variables.) Fig. 4.4 schematically illustrates the
considerations in determining this parameter. In this bivariate example, 6,=0.10, 6:=1.5
and €; = 0.10;. In Fig. 4.4a, we only perform one leapfrog step (L = 1) before resampling
p, and p,. Thus, the coordinates g; do not change significantly during a single dynamical
simulation (Egs. 4.33-4.35). When we resample the momenta again, the g’s will move in a
different direction. The result is basically a random walk, and the root-mean-square
distance moved in the coordinate space in L steps is proportional to VL (see Refs. 12,17
and 38.) This fact in illustrated in Fig. 4.4a which shows the progress of ten Langevin
Monte Carlo iterations. Between each leapfrog step, new values for the momentum
variables are chosen at random. Consequently, the less confined direction is in this case
explored via a random walk.

If we perform longer trajectories without refreshing the momenta, the ¢’s continue
moving in the same direction, and at least for short times the distance moved in coordinate
space is proportional to L. This is illustrated in Fig. 4.4b which shows the results of ten
hybrid Monte Carlo trajectories each consisting of ten leapfrog iterations, with the
momentum being randomized only at the start of each trajectory. Note that the path taken
does not resemble a random walk. Instead, each trajectory transversed a large distance in
phase space.

However, if we use very long trajectories, we are likely to wastefully transverse the

whole distribution several times, ending finally at a point similar to one that might have
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been reached by a shorter trajectory. In this case, simulating a long trajectory would
simply be a waste of time because the final state may be close to the initial state.
Mackenzie™ (1989) has pointed out that the hybrid Monte Carlo method can fail to be
ergodic for problems of this sort. This will occur if the stepsize and the number of leapfrog
iterations used are such that the trajectory returns exactly to its starting point. This
potential problem can easily be avoided by choosing the stepsize or the number of leapfrog
iterations at random from within some range. We will see below that this fact was taken
into account when using the variant developed by Horowitz. As mentioned before, since
the dynamical steps conserve the total energy, we obviously cannot cover the whole phase
space without refreshing the momenta. The optimal strategy is to choose L large enough
so that successive samples are not correlated, i.e., so that we transverse the whole
probability distribution instead of generating, all samples from a small region. Here, we
used an heuristic approach to estimate a minimum value for L which is based on the
bivariate case described in Eq. 4.19 and shown in Fig. 4.2b. As illustrated in Fig. 4.2b we
see that, for the given stepsize value, a minimum value for L equal to ten is sufficient to
transverse the whole distribution. In fact, we can say that we would like Lg; = ;. If we
adopt the choice of stepsize that €; = f6; we have that Ln = 1. We used this criterion to
estimate a minimum value for L, and as described later, although heuristic, it provided

good results during the sampling process, i.e. generated uncorrelated samples.
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4.4 A Variant of the Hybrid Monte Carlo Method

Horowitz® introduced a modified form of the hybrid Monte Carlo algorithm in
which the momenta are not completely replaced in the stochastic transitions, but are
instead perturbed only slightly using the update of Eq. 4.13. This is coupled with the use
of very short trajectories, consisting of only a single leapfrog step (L = 1).

In detail, given values for the magnitude of the leapfrog stepsize, € and a value for
o, a transition with the Horowitz variant consists of the following steps:

Starting from the current state, (g.p)=(q(%).p(t)), given o, a normal deviate n with mean
zero and variance one and p(f), a stochastic transition is performed using Eq. 4.13, and a
new set of momentum variables p’ is calculated. A dynamical step with one leapfrog
iteration starting with (q(),p’), with a stepsize of € is performed, resulting in the state
(q(€),p(e))=(q*,p*). Regard (g*,p*) as a candidate for the next state, as in the Metropolis
algorithm, accepting it with probability

min(1.exp{-[H(g*,p*)-H(q(t0).p")1}),

and otherwise letting the new state have the same position variable as the old state with a
different procedure for the momentum variables. The momentum variables for the new
state in case of a rejection must be equal to -p’. This operation does not affect the
Hamiltonian value obtained at the end of the dynamical transition but, as described by
Horowitz®, is necessary to make the process of updating the momentum variables by

means of Eq. 4.13 satisfy the detailed balance.
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Again, the analysis of the operation of ten hybrid Monte Carlo updates applied to

the Hamiltonian of Eq. 4.14, with 6 =1, € = 1.0 and o = 0.9 shown in Fig. 4.5 can give
insight into the main features of this variant. In this example, all the proposed (p.q) states
were accepted. The starting point is shown at the point marked in the upper right
quadrant, the values of variables p(f), p’, p*, q(to) and g* at each trajectory are plotted
and the circle where the initial trajectory lies is depicted.

Since after each update of the momentum variables by means of Eq. 4.13, these
variables do not change very much, the total energy at the beginning of a hybrid Monte
Carlo update changes only slightly from the value at the last state. Thus, the combination
of stochastic and dynamical steps with this modified method is nearly equivalent to
performing a single long trajectory of the standard algorithm (see Fig. 4.5). Since
rejections will cause the subsequent transition to start with a negated value for the
momentum variables, approximately preserves total energy, it is necessary to keep the
rejection rate low. Later, we will take advantage of this nice feature of the Horowitz
variant when sampling from the a posteriori probability distribution for our problem.

This simple example also helps to establishes a criteria to estimate of the parameter
o.. If the knowledge of the number of steps, L, necessary to generate an independent
image at the end of a dynamical step for a given stepsize is available, it is possible to
obtain a rough estimate of the parameter .. Recall that in the standard hybrid Monte Carlo
algorithm, after L dynamical steps a stochastic transition is performed in which all the
momentum variables are resampled. This operation provides a change in the total energy
H and allows the algorithm to sample at this new level. Here, we want to calculate the

parameter o, that, given a value of L, makes the Horowitz method perform like the
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standard algorithm. This can be accomplished assuming that after L hypothetical

operations described by Eq. 4.13, we wish to change completely the momenta in order to
reach a new total energy level, simulating then the standard hybrid Monte Carlo algorithm.
For example, if the value desirable for L is 1000, we can conclude that using o equal to
0.99, we expect to completely change the original momenta vector in 1000 operations of

Eq. 4.13.

4.5 Hybrid Monte Carlo Implementation

To apply the hybrid Monte Carlo method, we must formulate the desired
distribution in terms of a potential energy function. Since we wish to sample from the a
posteriori distribution for log-permeability fields, the energy will be a function of these
parameters, which now play the role of the “position” variables, g, of an imaginary
physical system. For the generic case described by Eq. 1.5, the potential energy is derived

from the log of the expression for the a posteriori distribution as follows:
E(g) = -In[n(q)}. (4.37)
The canonical distribution for this energy function, which is proportional to exp(-E(q)),

will then produce the a posteriori probability density for g.

For our problem the potential energy function is
1 - -
E(m) = —((m~ my)T Cy (m — my) +(g(m) — d,,. )" Cp'(g(m)—d,,)) . (4.38)

This energy function is similar to the objective function that is minimized with the use of a

gradient method in Refs. 2-4. Recall, however, that the objective in the Monte Carlo
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implementation here is not to find the minimum of the energy, but rather to sample from

the corresponding canonical distribution.
To sample from this canonical distribution using the hybrid Monte Carlo method,

we introduce transformed momentum variables, p, =p;/\/m;, in one-to-one

correspondence with the position variables, g;.. With each momentum variable, a positive

“mass”, m; is associated. We work with these transformed variables p;, which define the
kinetic energy, K(p), associated with the momentum, with the result that the canonical
distributions for the p,’s are Gaussian random variables with means of zero and variances

equal to one and are independent and identically distributed. As described in Section 4.2, a
single hybrid Monte Carlo update starts by generating new values for all the momentum
variables from their canonical distribution. A candidate state is then found by following a
trajectory computed using the leapfrog discretization of Hamiltonian dynamics, applied for
L iterations, using some stepsize, €. When using the variant of Horowitz, the momentum
variables are given by Eq. 4.13 and L=1 is used in the leapfrog discretizations of
Hamiltonian dynamics. Finally this candidate is accepted or rejected based on the change
in total energy, H(m,p) = E(m) + K(p). Calculation of the derivatives or gradient of E
with respect to the g; is required in order to perform the leapfrog iterations; these

derivatives are given by

V.E(m)=G"Cy ' (g(m)~d,,) +Cy(m—my). (4. 39)

In Appendix B, we show that it is possible to reparameterize our model in terms of
the spectral decomposition (eigenvalue/eigenvector) of the a posteriori covariance matrix

(Cwp) evaluated at the maximum a posteriori estimate obtained by the Gauss-Newton
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method. i.e.,Cy;p = UAUT, where A is the diagonal matrix with the eigenvalues from the

spectral decomposition of Cyp and U is an orthonormal matrix with columns that contain
the eigenvectors obtained from the spectral decomposition of Cyp. In this case, our

reparameterized model can be expressed by

m,=U"me m=Um,, (4. 40)
m,.=Um, o m, =Un,,. (4.41)

As shown in Appendix B, we can write the gradient of the potential energy and the

resulting expression in terms of the reparameterized model, m,, , as follows:

Vo, ECmy) = Alm, -m,.)

+UTGICy'e(m)
+UTIG™ - GI1Ch (gtm) - d,,,) ., (4. 42)
where
e(m) = gm)" —g(m. )" —(m~m_) GL, (4.43)

and m.. is the maximum a posteriori estimate obtained with the Gauss-Newton method and
A and U are matrices resulting from the spectral decomposition procedure.

This approach provides the basis for determining the stepsize €; to be applied
during the dynamical transitions of the hybrid Monte Carlo method implemented in this
work. This was accomplished by assuming that, as an approximation, our goal was to

sample a linear problem described by the probability distribution
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(m) = fzexp[—%(m -m ) Cyp(m=m_)). (4. 44)

In terms of the reparameterized model, the gradient of the potential energy term

associated with Eq. 4.44 is given by
— A-l
Vm,, E(m,,) =A (m,-m,_). (4. 45)

This means that for this linear case, the spectral (or eigenvalue-eigenvector)
decomposition of Cup will translate and rotate the coordinate system removing the
interactions between the components. It is straightforward to see, through an analogy

with our previous multivariate Gaussian example, that, in this case, the optimum stepsize

for each component will be g; =nJX_i (the A;’s are the eigenvalues resulting from the

spectral decomposition of the a posteriori matrix) where for stability we require N < 2.

Figure 4.6 shows the error in energy for trajectories computed with different

stepsizes, € which were defined as €; = n\/-l_.,-_ . Each point plotted in the figure shows the

change in total energy (H) for a trajectory of one hundred leapfrog iterations for an
example with 225 variables in which the stepsizes were adjusted by the factor 1. Changes
in the total energy greater than ten were plotted at ten. As we can observe, when n=1 we
have some inaccuracy exhibited, but only for 1 = 2, does the leapfrog discretization
become unstable. Instability will result in an acceptance rate close to zero. The optimal
strategy is usually to selectan = 1.

However, when considering our non-linear problem, reparameterization will not be
able to remove all the interaction between the differents components, so in this

implementation, a heuristic approach was used in which the stepsizes are set as follows:
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g =myA; (4. 46)

where 1 is left as a tunable parameter chosen experimentally in order to obtain a good
acceptance rate. In this approach, a spectral decomposition of the a posteriori matrix,
obtained by a Gauss-Newton method, must first be obtained and the stepsize adjustment
factor, 11 is then estimated.

The computation of the gradient at each leapfrog step requires a high percentage of
the total time of the run when sampling with a hybrid Monte Carlo algorithm due to the
fact that it requires the computation of pressure and the sensitivity coefficients from a flow
simulator.

When improving the method efficiency, one important aspect to be considered is
the decrease in the computational time spent when estimating the gradient. As described in
Refs. 7, 38 and 39, the Hamiltonian used in the Metropolis step and the one used in the
leapfrog equations can be different. This suggests, that at each leapfrog step we use an
“approximate” Hamiltonian which considers only the first term of the Eq. 4.42 for the
gradient. This interpretation is convenient because the first term of the expression listed in
Eq. 4.42 requires almost no computational effort when compared with the second and
third terms. This is so because at each leapfrog step the calculation of the second term on
the right side of Eq. 4.42 requires using the simulator to compute the wellbore pressure
(g(m)) for each model m and the evaluation of the third term requires the calculation of

sensitivity coefficients as well as the wellbore pressure.
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In Appendix C we show that when using the approximate Hamiltonian, the

Hamiltonian equations can be solved analytically and the general solutions for the variables

p and my,, after a trajectory of AT=1T- Tp are

P = by COS[ (TJ%°)]+ Jlx (m,.. - mp.o)sin[%@], (4. 47)
and
- (T —1p) Jobesi (T—7Tp)
m, =(m,qo—m,)cos T +~/Apysin T +m, . (4. 48)

The value used for AT may be chosen at random from some fixed distribution. This may be
useful when the best values are not known, or vary from place to place. Some random
variation may also be needed to avoid periodicities that could interfere with ergodicity*’.

As usual, sampling from a distribution using a Markov chain Monte Carlo method
is a two-phase process. As mentioned before, in the initial or transient phase, we start
from some initial state, and simulate a Markov chain for as long as is needed for it to reach
a rough approximation to the desired distribution. In the sampling phase, we continue
from the state reached at the end of the initial phase, proceeding for a certain fixed
number of iterations. If we start from an initial state that is an approximation of a sample
of the probability distribution, we expect to reduce the length of the transient phase,
improving the efficiency of the method.

It is important to notice that in this implementation, the log-permeability field used
as a starting point was obtained from an unconditional simulation that used the maximum
a posteriori estimate (m..) and the posteriori matrix (Cyp) obtained from a Gauss-Newton

procedure through the expression
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r<initial *

m (4.49)

initial =
where Ziiia is a vector of uniform random deviates and L, results from the Cholesky
decomposition of the a posteriori covariance matrix, i.e. Cyp = L.L,. As demonstrated
with the procedure given in Chapter II, initiating the chain using Eq. 4.49 considerably
reduces the length of the transient period since the distribution of states from Eq. 4.49
constitute a reasonable approximation for the probability distribution for the log-

permeability fields.

4.6 Computational Examples

4.6.1 A Demonstration Using the Standard Hybrid Monte Carlo Method

To illustrate the use of the implementation based on hybrid Monte Carlo, and
provide an idea of its performance, we show here how it can be applied to sample a
probability distribution for our problem. To do this, we use the examples in which all data
and information are the same as for Example 1 (variance = 0.25) and Example 2 (variance
= 1) given in Chapter II.

In this implementation, the reparameterized model is used solely to estimate the
stepsizes €;, by means of Eq. 4.46 and the eigenvalues calculated from the spectral
decomposition of the a posteriori covariance matrix Cyp. The dynamical steps are
performed using the gradient expression given by Eq. 4.38 and the Metropolis criteria
applied at the end of a dynamical transition is calculated using the Hamiltonian function,

which is expressed as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

oL
'



134

H(m.p)= %((m - mO)TC;,'(m —my)+(g(m)— d,,,,x)TC,;l(g(m) - d,,bs))-t-zl—;'-—. (4. 50)
i=l =

The gradient calculation uses sensitivity coefficients given by a flow simulator.

4.6.1.1 Example 1a - Variance = 0.25

Here, we use an example in which all data and information are the same as for
Example 1 listed in Chapter II. The first step of the implementation consists in finding
good values for the stepsize adjustment factor, 1, and the trajectory length, L, for use in
the sampling phase.

Fig. 4.7 shows data on how the error in total energy varies with 1. Trajectories of
length L = 10 were used. As can be seen, for 1| greater than about 2x107, the leapfrog
method becomes unstable, and very large errors result, which would lead to a very high
rejection rate if such a value of | were used. Thus, the value for i = 2x10” was used for
the sampling phase. This result was the same for several trajectory lengths tested. In fact,
the stability criterion seemed to be insensitive to the parameter L. If we compare this value
with the magnitude of the permissible 1} values for the multivariate case discussed in
previous sections, we can see that the value of 1} determined here is much smaller. This is
a result of the linear approximation used to estimate the mass term in terms of the
eigenvalues of Cyp; see Eq. 4.46. We estimate the values of the stepsizes, €;‘s, based on
the linear case and apply the result to our problem.

In order to minimize the extent to which the Markov chain undertakes a random

walk, L should be chosen so that components of the state at the end-point of a trajectory
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are uncorrelated with the corresponding values at the starting point. But since most of the

computation time required in this implementation is expended in performing the leapfrog
iterations, and since to evaluate the derivatives of E needed in each such iteration, one
must use the flow simulator, it is desirable to have L as small as possible. Based on
univariate Gaussian examples, we could conclude that a good estimate for a minimum L
will be to choose a value such that nL = 1. In our example, since 1 = 2x10” which
suggests we use L equal to 500 as a minimum value.

Fig. 4.8 presents a plot of the value of “objective function” of accepted states
versus the perturbation number. A corresponding plot of the pressure misfit is shown in
Fig. 4.9. Again, the perturbation number in Figs. 4.8 and 4.9 refers to the number of
transitions proposed, but only the values of accepted transitions are plotted. The state
remains unchanged between accepted transitions, but those have not been plotted. The
results of Figs. 4.8 and 4.9 allow us to determine if the transient period of the Markov
chain has ended. When this occurs, the values of the objective function at states will
appear to oscillate around a constant value so the overall plot will appear relatively
constant, whereas, during the transient period, the plot of the objective function, though
oscillatory, will show a decreasing trend. In the pressure misfit plot, when the transient
period has ended, we should be able to obtain states which give pressure misfits less than
the standard deviation of the pressure measurement errors, i.e., pressure misfits less than
0.15 psi. From Figs. 4.8 and 4.9 and the previous criteria, we can see that the transient
period for the hybrid Monte Carlo method, is fairly short.

Figs. 4.10a and 4.10b describe the variation in the log of permeability in four

gridblock locations (see gridblock locations circled in Fig. 2.4.6) versus iteration number.
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The a posteriori variance for In(k) in gridblocks (4,4), (8,8), (9,10) and (2,14), respectively

were 0.17,6x10°, 0.07 and 0.24. The maximum a posteriori estimates of log-permeability
for the same gridblocks were 3.68, 2.87, 2.54 and 3.43, respectively.

Considering the behavior of the sampling of log-permeability at each block, we can
see the dominant influence that the a posteriori variances, through the stepsize calculation,
have in the realizations generated during the hybrid Monte Carlo procedure. The sampled
value for the producing well gridblock location stays almost constant and equal to the
maximum a posteriori estimate for that gridblock through the whole simulation. This
reflects the fact that at the producing well location the uncertainty is considerably reduced
with incorporated pressure data together with the prior model information. This can be
seen by the very low value encountered for the a posteriori variance.

At gridblock (9,10) between the producing and a interference well, the pressure is
resolved quite well as indicated by the low value (0.07) of the a posteriori variance. Since
the variance of 0.07 corresponds to a standard deviation of 0.26, a larger variation in the
log-permeability values for this gridblock occurs during the sampling procedure as
compared to that obtained for the producing well gridblock. This can be observed in Figs.
4.10a and 4.10b.

At the observation well gridblock, (4,4) the pressure data are not sufficient to
reduce the uncertainty in the permeability estimate (a posteriori variance of 0.17) we can
see that a large variation in the log-permeability occurs during the sampling process. This
is also the case for gridblock (2,14) which is located close to the corner of the reservoir.

In relation to the number of images accepted, a total number of 50 different

realizations were generated in 50 perturbations resulting in an acceptance rate of 100%.
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Regarding computational time, this method required approximately 37 hours to attempt 50

perturbations.

4.6.1.2 Example 1b - Variance = 1

As described before, the first step of the implementation consists in finding good
values for the stepsize adjustment factor, 1, and the trajectory length, L, for use in the
sampling phase. Fig. 4.11 shows data on how the error in total energy varies with 1.
These data were obtained by continuing the simulation from the initial state, using various
values of 1. Trajectories of length L = 10 and L = 100 were used. As can be seen, for N
greater than about 1x107, the leapfrog method becomes unstable, and very large errors
result, which would lead to a very high rejection rate if such a value of i} were used. This
result was the same for both values of L tested and although not shown, similar results
were obtained for values of L > 1000, i.e. the optimum time step adjustment factor was
insensitive to the parameter L. Thus, the value of i = 1x10° was used for the sampling
phase.

Figs. 4.12 presents a plot of the value of “objective function” of accepted states
versus the perturbation number. A corresponding plot of the pressure misfit is shown in
Fig. 4.13. The perturbation number in Figs. 4.12 and 4.13 refers to the number of
transitions proposed, but only the values of accepted transitions are plotted. When
sampling with the hybrid Monte Carlo method the rejected transitions result in acceptable
images, i.e., if a proposed state is rejected the new state is identical to the old state, but

those states have not been displayed in Figs. 4.12 and 4.13.
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The transient period is short, as expected due to our procedure of generating the

initial log of permeability field from the decomposition of the a posteriori matrix obtained
from a gradient method. The behavior of the Hamiltonian function is described in Fig.
4.14. The Hamiltonian function behaves similarly to the objective function and when the
stationary distribution is reached, the values oscillate around some level. Note that, this
level has to be higher than the one where the objective function oscillates. This is due to
the fact that the Hamiltonian function reflects the value of the objective function
(“potential” energy) plus a positive quantity which is a function of the momentum
variables (“kinetic” energy).

Figs. 4.15a and 4.15b describe the variation in the log of permeability in four
gridblock locations (see gridblock locations circled in Fig. 2.4.6) versus iteration number.
The a posteriori variance for In(k) in gridblocks (4,4), (8,8), (9,10) and (2,14), respectively
were 0.59, 2.4x10°®, 0.24 and 0.93, respectively. The maximum a posteriori estimates of
log-permeability for the same gridblocks were 3.69, 2.48, 2.00 and 3.51, respectively.

In this implementation, the a posteriori matrix was used to give and initial starting
point for the log-permeability field and also to give an estimate for the stepsize of each
component. Considering the behavior of the sampling of permeability at each block, we
can see the dominant influence that the a posteriori variances through the stepsize
calculation have in the realizations generated during the hybrid Monte Carlo procedure.
The sampled value for the producing well gridblock location stays almost constant and
equal to the maximum a posteriori estimate for that gridblock through the Qhole
simulation. This reflects the fact that at the producing well location the uncertainty is

considerably reduced when incorporating pressure data together with the prior model
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information. This can be seen by the very low value encountered for the a posteriori
variance.

At the gridblock between the producing and interference well the pressure resolves
quite well the uncertainty. However, a larger variation in the log-permeability values for
this gridblock occurs during the sampling procedure since the corresponding standard
deviation is 0.49 as compared to the standard deviation of 1.55x107 associated with log-
permeability at producing well gridblock. This can be observed in Figs. 4.15a and 4.15b.

On the other hand, at the observation well gridblock (4,4), since the pressure data
are not sufficient to significantly reduce the uncertainty in the permeability estimate, we
can see that a large variation in the log-permeability values occurs during the sampling
process. This is also the case for the gridblock located close to the corner of the reservoir,
where the value of the a posteriori variance is 0.93.

In relation to the number of images accepted, a total number of 47 distinct
realizations were generated in 50 perturbations resulting in an acceptance rate of 94%. As
mentioned before, using this perturbation approach, we expected to increase the number
of states accepted without increasing the correlation between accepted distinct states, or
realizations. To check this hypothesis, we calculated the objective function experimental
variogram. Fig. 4.16 shows the experimental variogram obtained. As we can conclude
from Fig. 4.16, the realizations generated are not correlated. Regarding computational

time, this method required approximately 75 hours to attempt 50 perturbations.
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4.6.2 A Demonstration Using the Horowitz Variant

Here, our goal is to decrease the computational time spent when estimating the
gradient by using an “approximate” Hamiltonian during the dynamical transitions. In this
case, we consider only the first term of the right hand side of Eq. 4.42 for the gradient. As
described in a previous section, a numerical method to solve the Hamiltonian equations is
not necessary and an analytical solution is used given the values of variables m, and p for a
given total “time” (see Eq. 4.47 and 4.48). However, to maintain the validity of the
algorithm, the Metropolis criterion applied at the end of a dynamical transition has to be
calculated using the correct Hamiltonian expressed by Eq. 4.50. The correct Hamiltonian
is a function of the model m while the leapfrog iterations during the dynamical steps are
performed using the analytical solution expressed by Egs. 4.47 and 4.48 which is a
function of the reparameterized model m,. Thus, it is necessary to convert between the
model m and the reparameterized model m, after each dynamical step in order to apply the

Metropolis criteria. This is done by means of the following equations

mp=UTm®m=Ump, 4. 51)

m,, = Um,om, = Um, .., (4.52)

where U is the matrix containing the eigenvectors obtained from the spectral
decomposition of the a posteriori covariance matrix Cpp.
When using this approach, a limitation for the total time of each trajectory, due to

the fact the a “wrong” Hamiltonian was considered, was encountered. To be able to
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explore the potential of the method of avoiding random walks, i.e. be able of increase the
trajectory length without increasing the rejection rate, we combined the use of an
“approximate” Hamiltonian with the variant suggested by Horowitz. This idea is illustrated
here by an example in which all data and information are the same as for the example listed
in the previous subsection.

The first step of the implementation consists in finding a good estimate for the size

of the trajectory, i.e. for the total “time” AT; = Ln,ﬁ; to be used in the analytical

solution. Note that here, L is fixed and equal to one. The values of A; are obtained from
the spectral decomposition of the a posteriori covariance matrix Cyp. Fig. 4.17 helps to
obtain this estimate. It shows data on how the error in total energy varies with 1. These
data were obtained by performing a simulation in which only the first term of the right
hand side of Eq. 4.42 is considered during the dynamical transitions, but the criterion to
accept or reject is based on the Hamiltonian described in Eq. 4.50, using various values of
7. Trajectories of length L = | were used. As can be seen, for n| greater than about 3x107,
the leapfrog method becomes unstable, and very large errors resuit, which would lead to a
very high rejection rate if such a value of 1 were used. The value of n = 2x107 was used

for the sampling phase and the total “time”, AT; , needed in the analytical solution is
calculated by At; =n JK—, .

As suggested by Mackenzie*’, some random variation was considered for the value
used for At. This was performed by randomly generating values for 1| from an interval of

arbitrarily chosen values around 1} = 2x102, i.e., it could vary uniformly from 1.0x10” to
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3.0x10". This may be useful since the analytical solution is expressed in sines and cosines
terms which can result in some periodicities that could interfere with ergodicity.

In this implementation, another tunable parameter is the value of the parameter o
that is involved in the updates of the momentum variables. Again, based on the
information in Fig. 4.17 and on our previous suggested criteria that Ln = 1, we assumed
an hypothetical value for L equal to 1000. A value for L = 1000 suggests, based on
criterion previously described in section 4.4, that we use o = 0.99. With this value for a
we expect to change our momentum variables vector after an average of 1000 hybrid
Monte Carlo updates.

Figs. 4.18 presents a plot of the value of “objective function” of accepted states
versus the perturbation number. A corresponding plot of the pressure misfit is shown in
Fig. 4.19. Figs. 4.18 and 4.19 allow us to identify the end of the transient period. In this
example, after approximately 2000 perturbations, the value of the objective function
oscillates around a constant value while in the pressure misfit plot, we see samples that
give pressure misfit lower than 0.15 psi (standard deviation for the pressure measurement
errors.) As described previously these facts suggest that the transient period has ended and
the stationary distribution is being sampled.

Fig. 4.20 describes the variation in the log of permeability in three gridblock
locations (see gridblock locations (4,4), (8,8) and (2,14) circled in Fig. 2.4.6) versus
iteration number. The a posteriori variance for the (4,4), (8,8) and (2,14) gridblocks were
0.59, 2.4x10® and 0.93, respectively. The maximum a posteriori estimates of log-

permeability for the same gridblocks were 3.69, 2.48 and 3.51, respectively.
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Considering the behavior of the sampling of permeability at each block, we can see

the dominant influence that the a posteriori variances, through the stepsize calculation,
have in the realizations generated during the hybrid Monte Carlo procedure. The sampled
value for the producing well gridblock location stays almost constant and equal to the
value encountered for the maximum a posteriori estimate for that gridblock through the
whole simulation. This reflects the fact that at the producing well location the uncertainty
is considerably reduced when incorporating pressure data together with the prior model
information. This can be seen by the very low value encountered for the a posteriori
variance.

At the observation well gridblock analyzed, since the pressure data are not
sufficient to reduce the uncertainty in the permeability estimate as well as in the producing
well gridblock, we can see that a large variation in the log-permeability estimates occurs
during the sampling process. This is also the case for the gridblock located close to the
corner of the reservoir.

In relation to the number of images accepted, a total number of 49000 distinct
realizations in a total of 50000 perturbations resulting in an acceptance rate of 98%. To
check the correlation between the realizations, we calculated the objective function
experimental variogram. Fig. 4.21 shows the experimental variogram obtained. As we can
conclude from Fig. 4.21, the realizations generated are slightly correlated to lags of
approximately 3000. If, we retain only every 3000th realization we would be left with only
16 independent realizations. The correlation between samples are directly related to the
fact that the Horowitz method uses L = 1. The use of only one leapfrog step is not

sufficient to produce an uncorrelated position variable at the end of the dynamical
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transition. To perform 50000 perturbations, this method required 14 hours of
computational time.

In the Horowitz variant, since we were able to obtain an immense reduction in time
spent per leapfrog iteration, the resuiting ratios of total computational time spent per
number of independent images were lower for this application when compared with the
standard hybrid Monte Carlo method. However, if we wish to obtain a set of uncorrelated

realizations, we must thin the total set of states obtained with the Horowitz method.
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CHAPTER V

COMPARISON OF METHODS FOR SAMPLING THE A POSTERIORI
PROBABILITY DISTRIBUTION

Here, we summarize and compare the performance of the previously described
methods for sampling the a posteriori probability distribution function. This will be done
by analyzing the behavior of each method when applied to the two synthetic examples
considered previously in Chapter II and to one simpler example for a univariate probability

density function.

5.1 Example 1 - Prior Mean, Covariance and Pressure Data Case

The first examples on which we base our comparison use the same data and
information as for Examples 1 (prior variance = 0.25) and 2 (prior variance = 1.0) listed in
Chapter II. The results obtained by applying the conventional Markov chain methods to
these examples are given in detail in Chapter II. In Chapter III, we described the
performance when simulated annealing was used to initialize the Markov chain Monte
Carlo method. The results obtained by applying the hybrid Monte Carlo method to these

examples are given in detail in Chapter IV.

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



213

Table 5.1 summarizes the results obtained when applying conventional Markov
chain methods, simulated annealing to initialize the Markov chain Monte Carlo method
and the hybrid Monte Carlo method to Examples 1 (prior variance = 0.25) and 2 (prior
variance = 1.0) listed in Chapter II. The acceptance ratio refers to the number of
transitions accepted divided by the total number of proposed transitions.

In Chapter II we outlined several different perturbation methods for use in Markov
chain Monte Carlo simulations and gave corresponding acceptance criteria that will result
in a correct sampling of the a posteriori probability distribution for the log-permeability
field, given a prior mean and variogram model and pressure data. By carefully choosing
the shape and amplitude of the proposed perturbations, very high acceptance ratios can be
obtained when sampling with the Markov chain Monte Carlo method. We showed that by
incorporating the sensitivity information from a flow simulator into the sampling
distribution for proposed transitions, the probability of acceptance of the transitions can be
increased significantly compared to methods that do not use this information.

In the examples analyzed here, comparing the Markov chain Monte Carlo (McMC)
methods developed in Chapter II we found that, for the moderately nonlinear example,
local perturbations based on the a posteriori covariance matrix presented the highest
acceptance ratio when compared with global perturbations. However, images “close
together” in the Markov chain are highly correlated; the fourth column of Table 5.1. For
50000 iterations, after thinning the images, the method based on local perturbations
generated 31 independent images versus 200 for the global method. On the other hand,
when the problem was more nonlinear, the local method produced about 14 independent

realizations while the method based on global method produced about 8. Since each of the
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methods took approximately the same amount of time to try 50000 transitions, it appears

that global perturbations are more efficient for linear and slightly nonlinear problems,
while local perturbations are more efficient for the highly nonlinear problems. However, if
we wish to obtain a set of uncorrelated realizations, we must thin the total set of states
obtained with the local method.

In Chapter III, we used simulated annealing to initialize the Markov chain Monte
Carlo method. As summarized in Table 5.1 the statistics obtained from the runs performed
with this approach resemble the ones with McMC with local perturbations. The main
difference to be considered is the resulting overhead in computational time for the
calculation of the starting point of the Markov chain by simulated annealing. This is
reflected by a decrease in the value of the acceptance ratio. In the procedures described in
Chapter II, this starting point is considered to be previously known and is chosen to be the
maximum a posteriori estimate obtained from a gradient method.

Although a high acceptance ratio is desirable, it is generally more important for the
perturbations schemes to be efficient in producing independent realizations from a Markov
chain Monte Carlo procedure for a given available computational time. For the Markov
chain procedures developed in Chapter II this is accomplished when using global
perturbations. However, as shown in Table 5.1, when the problem becomes highly
nonlinear, the performance of the global method is degraded (note the decrease in the
acceptance ratio and consequent increase in the computational time needed to generate
one independent image.) This fact provided the main motivation to investigate the hybrid
Monte Carlo method. For problems considered in Ref. 12, this method was found to

perform better than conventional Markov chain Monte Carlo methods. We show later in
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this chapter an example where the hybrid Monte Carlo method improve the sampling
process.

As described in Chapter IV and in Table 5.1, by applying the conventional hybrid
Monte Carlo method to sample the a posteriori distribution for our problem we were able
to keep a high acceptance ratio without increasing the correlation between the images. As
described in Table 5.1, for the moderately nonlinear case the time spent to generate an
independent image for the conventional hybrid Monte Carlo is larger than with the McMC
procedure with global perturbations based on sensitivity coefficients. However, for the
strongly nonlinear problem, this behavior changes and the time spent per independent
image needed by the conventional hybrid Monte Carlo method is less than that needed by
the McMC with global perturbations method.

One other aspect that should be also taken into account when comparing these two
methods is the behavior during the sampling process. For the strongly nonlinear case,
when sampling with McMC with global perturbations, we found that with this type of
perturbation, we sometimes reached a state m' in the Markov chain such that a high
number of perturbations proposed from m' are rejected, before we can generate a distinct
image beyond m'. For the examples performed in this work, the conventional hybrid
Monte Carlo procedure didn’t exhibit this behavior. Our explanation is that the McMC
algorithm can get “trapped” for a long time in a local minimum with a very low probability
of escaping from the minimum at any particular transition. We can envision a combination
of two factors that can cause this low probability of escape. One factor occurs if m' is such

that the denominator 7; on the acceptance criteria, o.; = T;q;; / T;q; , is extremely large so

that the probability of accepting almost any new state generated by a global perturbation is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



217
extremely small. The other factor, is that g; in the numerator may be very small if the

global perturbations are based on the a posteriori covariance matrix and the covariance
provides a poor representation of the probability density.

As mentioned before, the need to run a flow simulation at each leapfrog step in the
conventional hybrid Monte Carlo method makes the procedure very computationally
intensive. This was the main motivation to investigate the use of an approximate
Hamiltonian for the dynamical steps coupled with the Horowitz hybrid Monte Carlo
procedure. This procedure greatly reduced the computational time spent during the
dynamical transitions. The resulting samples however, were highly correlated and the
images were thinned based on the experimental variogram of the objective function values.
As depicted in Table 5.1, since the time per leapfrog step was considerably reduced, the
amount of time to generate an independent image was smaller than those obtained with the
conventional hybrid Monte Carlo. However, if we wish to obtain a set of uncorrelated
samples, we must thin the total set of states obtained with the Horowitz method.

When considering the behavior of permeability samples at each block, we notice
that similar features are present for all the methods of sampling. Figures 5.1a and 5.1b
show log-permeability values at four gridblock positions (see locations depicted in Fig.
2.4.6) versus the perturbation number. These figures, repeated here, were obtained when
using the Markov chain Monte Carlo method that used global perturbations based on the a
posteriori covariance matrix for the case with variance of 0.25, but the following
conclusions apply to all the methods. As before, the perturbation number in these figures
refers to the number of transitions proposed, but only the values of accepted transitions

are plotted. Regarding the areal location of the log-permeability gridblocks, we have a first
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location at one of the observation well gridblocks (X1), a second at the producing well
gridblock (X2), a third location between the producing well gridblock and one observation
well (X3) and a fourth almost at the reservoir boundary (X4). The sampled permeability
value for the producing well gridblock location stays almost constant and equal to the
value encountered for the maximum a posteriori estimate for that gridblock through the
whole simulation. This reflects the fact that at the producing well location the uncertainty
is considerably reduced when incorporating pressure data together with the prior model
information.

On the other hand, at the observation well gridblock (X1), since the pressure data
are not sufficient to reduce the uncertainty in the permeability estimate as well as in the
producing well gridblock, we can see that a large variation in the log-permeability
estimates during the sampling process occurs. This is also the case for the gridblock

located close to the corner of the reservoir.

5.2 Example 2 - Synthetic Univariate Example

For this example, we assume that our goal is to sample the a posteriori probability

density function given by

m—my)? _ (cos(3m)-d)2:| 5.1

2

n(m):aexp[ ( o o2
m d

where, we assume that mg = 1.9, d = 0.8, 6.2 = 0.1, 6 = 0.01, m is constrained to the
interval [0,3] and a = 4.394 in order that the probability density integrate to one. For

consistency with our previous discussions, we identify the Gaussian part of the probability,
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p(m) = bexp[—w] (5.2)
20

m

with a prior probability.

A plot of this function is shown in Fig. 5.2. The “a posteriori” probability density function
given by Eq. 5.1 is shown in Fig. 5.3. Important piece of information about this probability
function which will be used later is related to the value of probability associated with each
of the two peaks. Integrating Eq. 5.1 in the interval associated with the primary peak, i.e.
m = [1.70,2.05], gives a probability of 67% while integrating over the interval,
(2.05,2.40], associated with the secondary peak, gives a probability of 33%.

This synthetic example can be viewed as an analog of our real problem of sampling
the a posteriori probability distribution for permeability fields constrained to variogram
and well-test data. The first term is a Gaussian distribution (with mean my and variance
G.) which represents the prior information, while the second term represents the pressure
contribution to the probability density function. The consideration of the first term only is
not troublesome since the resulting problem is linear. It is the second term that makes the
problem non-linear and increases the difficulty of sampling in the model space.

For this problem, the objective function we want to minimize is

S(m) = (m- r;zo)z N (cos(3m) - d)* .

5.3)
202 262

Fig. 5.4 shows the plot of the objective function. With an initial guess of m = 2.0,
application of Newton’s method to the objective function of Eq. 5.3 converges to the
minimum at m.. = 1.88. The value of m for which Eq. 5.3 is minimized is the maximum a

posteriori model.
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Fig 5.2 - Prior Probability Density Function (Example 2).
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It is possible to calculate a posteriori variance, in a direct analogy with the a

posteriori covariance matrix. This can be done by using the following expression
68, =(G.0)) G +(@1) ) (5. 4)

dcos(3m)
dm

where G.. is

. In this example, G..= 1.79 and o¢, , = 3.0x10".

Moo

Based on this a posteriori variance, we can write a linearized approximation to the

probability density of Eq. 5.1:
iy 1 T -2
T (m)—cexp[—i(m—m“) GCMP(m_m“’)]' (5.95

Figure 5.5 compares the probability density function of Eq. 5.5 with the true a posteriori
probability density function, Eq. 5.1.

Since one of the methods of interest is the hybrid Monte Carlo method,
understanding the behavior of the Hamiltonian function is important. The Hamiltonian
function for our problem can be expressed by the following equation

2

H(m, p) = E(m) + %. (5. 6)
Since
E(m) =[ (mz—ar?"o)2 _ (cos(32r;x%— dy* ] (5.7
the Hamiltonian function becomes
H(m, p) = [_ (m;crgo)2 _ (cos(32rg)§— dy* } + _1323_ . (5. 8)
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Later, we show how the behavior of the Hamiltonian influences the performance of the

hybrid Monte Carlo method.

5.2.1 Perturbations Based on the Maximum a Posteriori Estimate

Here, we apply the method described in Chapter II, where perturbations are based
on the maximum a posteriori estimate (MAP) and a posteriori covariance matrix obtained
from a gradient method. As noted previously, the maximum a posteriori estimate and a
posteriori variance, respectively, are given by m..= 1.88 and 67 cup = 3.0x10™.

In this method a transition from state i to state j in the Markov chain Monte Carlo

method is proposed by generating a random normal deviate Z and setting
m =m, +0'CMPZj . (5.9)

The proposed transitions from the current state (m’) to another state (7’) denoted g;; were

based only on the probability of state j and can be expressed by
_ 1 . I -2 .
g; = cexp(—;(m’ —my) 6, (m’ - m,,)) , (5. 10)
Similarly, a transition from state j to state i, g;; can be expressed by
_ 1 T -2 '
q;i -cexp(—a(m‘ —m,) O ¢,p(m' —-m,,)). (5. 11)

Hastings’ acceptance criterion is now determined by

nq;

, (5. 12)
n.q;
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where T; and &; are calculated using Eq. 5.1 applied to states i and j.

Fig. 5.6 shows the resulting sampled values for the model variable m when using
this method to sample the probability distribution described by Eq. 5.1. Note that the
range of values is controlled by the probability distribution described by Eq. 5.5 and all
samples are clustered about the primary peak at m.. 1.88. As shown in Fig. 5.6, no
evidence of the secondary peak associated with the a posteriori probability distribution is
seen during the sampling process.

This result can be easily understood when we consider the probability of proposing
a transition to the second peak (m = 2.3) from the region of the maximum a posteriori

estimate. Using Eq. 5.10 with m = 2.3 we have that

3-m_)*

q(m =23)=cexp| — 5
Scup

and
q(m=23)=1.2x10™"%

Clearly, it will be highly unlikely that states around m = 2.3 will be proposed in a
chain of reasonable length. This occurs because the distribution used to propose states is
much narrower than the true distribution (see Fig. 5.5). Moreover, although there is a very
low probability for proposing a transition to the region of the secondary maximum, once
it is proposed it will be accepted and the chain remains at this same state for a very large
number of perturbations. In this case, although many transitions to states in the region of
the maximum a posteriori estimate will be proposed, the acceptance criterion gives a very

low probability of accepting those transitions. For this example, the Markov chain Monte

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



229

‘(2 a|dwex3)
WYIoB|y OB SJUO UleYyD AOMIB [BUOIIUSAUOD Yum Buljdwes - 9'G ‘Bi4

JaquinN uoneqinuad
000S 000V 000€ 000¢ 0001 0

Q
ai

I
0
o

o€

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



230
Carlo method is not able to “see” the secondary peak even though if we correctly sample

the a posteriori probability density function about 33% of the samples should be in the
interval (2.05,2.40] about the second peak. Thus, even though the behavior of the
realizations shown in Fig. 5.6 suggests we have reached the stationary distribution of the

Markov chain, we have not and have not obtained a correct sample.

5.2.2 The Hybrid Monte Carlo Implementation

We claimed earlier that the hybrid Monte Carlo method is superior to simple forms
of the Markov chain Monte Carlo algorithm, because the hybrid method avoids random
walk behavior. In this subsection, we will substantiate this claim with regard to the
synthetic example previously described.

The heuristic procedure for determining stepsizes is based in the one described in

Chapter IV. The stepsize was calculated by the following expression
€E=MO0cyp- (5.13)

As described in Chapter 1V, it is necessary to find a good value for the stepsize
adjustment factor, 1, for use in the sampling phase. Fig. 5.7 shows data on how the error
in total energy varies with 1. These data were obtained by continuing the simulation from
the initial state, using various values of M. Trajectories of length L = 10 were used here,
but the results are similar for all longer trajectories. As can be seen, for 1 greater thar;

about 1.0, the leapfrog method becomes unstable, and very large errors result, which

-
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would lead to a very high rejection rate if such a value of 1} were used. The value of | =

1.0 was used for the sampling phase.

Fig. 5.8a shows the values for the model variable m obtained during the sampling
procedure with the hybrid Monte Carlo method. Note that the two corresponding peaks of
the a posteriori distribution (see Fig. 5.3) are sampled. By analysis of the samples, we
found that 67% of the samples were in the interval [1.70,2.05] and 33% where in the
interval (2.05,2.40]. This result corresponds exactly to the probability of a realization
being in each of the respective interval. Recall these probability values were computed
earlier by integrating the a posteriori probability density function over each interval. This
fact can also be seen by examining the results of Fig. 5.8b where the values of the model
variable m (position variable in the hybrid Monte Carlo method) sampled are plotted
against the momentum variables p sampled.

The good performance of the hybrid Monte Carlo method is this example can be
understood by analyzing the curves along which the Hamiltonian function is constant. In
Fig. 5.9 each curve plotted describes the values of the momentum variable, p and of the
position variable m along trajectories of 1000 leapfrog steps. Note it is possible to identify.
continuous paths from one region of probability to another. For example, if we have a
sample (m;,p;) near (m,p) = (m..,0) = (1.88,0), then if we do a stochastic step (resample the
probability function for p) and obtain say p = 2.0, then (m;,p) may be a curve of constant
H, (H = c) which encompasses both peaks form. Since each time step of the dynamical
step, generate a (m,p) value on this H = ¢ curve, at the completion of the dynamical step

we may propose a new state (m;,p) where m; is near the second peak. Since generate a p =

-
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2.0 is not highly unlikely, it is clear that the hybrid method allows us to generate samples

near both peaks.

When comparing both methods we see that, for this example, the conventional
hybrid Monte Carlo method performed better than the Markov chain Monte Carlo
procedure with perturbations based on the a posteriori variance. In this case, the
assumption that the linear approximation based on the sensitivity at the MAP estimate is a
good approximation for the a posteriori probability distribution fails resulting in a poor
sampling of the a posteriori probability density function. However, as shown below, it is
possible to modify the example slightly so that is difficult to sample the a posteriori

probability density function with either method.

5.3 Example 3 - Synthetic Univariate Example

Similarly to Example 2, we assume that our goal is to sample the “a posteriori”

probability density function given by

N2 N2
n(m):aexp[ (mzo’;’o) _(cos(i;:)z d) ], (5. 14)
m ~Jd

where we assume that mg = 1.9, d = 0.3, 6, = 0.1, 6, = 0.01 and m is constrained to the
interval [0,3]. Again, we identify the Gaussian part of the probability,

2
p(m) = bexp[-i'%';"’—)] (5. 15)

m

with a prior probability.
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Figure 5.10 shows the prior probability distribution of Eq. 5.15 and the a posteriori
probability density function of Eq. 5.14. An important information about this probability
function which will be used later is related to the value of probability associated with each
of the two peaks. Integrating Eq. 5.14 in the interval associated with the primary peak, i.e.
m = [1.50,1.80], gives a probability of 83% while integrating over the interval,
[2.40,2.60], associated with the secondary peak, gives a probability of 17%.

For this probiem, the objective function we want to minimize is

(m—mgy)* . (cos(3m) — d)? .

2 2
20, 20,

S(m) = (5. 16)

With an initial guess of m = 1.5, application of Newton’s method converges to the
minimum at m.. = 1.67. The value of m for which Eq. 5.16 is minimized is the maximum a
posteriori model.

It is possible to calculate a posteriori variance, in direct analogy with the a

posteriori covariance matrix. This can be done by using the following expression

6¢,p = (G (6 'G. +(62)™), (5. 17)

where G.is 2°%G™) 11 s example, G.=2.87 and 6%, = 1.2x10™.
dm |, mP

Based on this a posteriori variance, we can write a linearized approximation to the

probability density of Eq. 5.14:

T'(m) = cexp[—%(m—m,,)TO'Ei” (m—m“)] . (5.18)
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Figure 5.11 compares the probability density function of Eq. 5.18 with the true a

posteriori probability density function, Eq. 5.14.
Since one of the methods of interest is the hybrid Monte Carlo method,
understanding the behavior of the Hamiltonian function is important. The Hamiltonian

function for our problem can be expressed by the following equation

2 2 2
H(m,p):[—(m mg) _(cos(3m) d) J_{_p_. (5. 19)

262, 203

Later, we show how the behavior of the Hamiltonian influences the performance of the

hybrid Monte Carlo method.

5.3.1 Perturbations Based on the Maximum a Posteriori Estimate

Here, we apply the method described in Chapter II, where perturbations are based
on the maximum a posteriori estimate (MAP) and a posteriori covariance matrix obtained
from a gradient method. As noted previously, the maximum a posteriori estimate and a
posteriori variance, respectively, are given by m..= 1.67 and oo = 1.2x107,

In this method a transition from state i to state j in the Markov chain Monte Carlo

method is proposed by generating a random normal deviate Z and setting
m =m,+oc,,Z. (5.20)

The proposed transitions from the current state (m') to another state (7”) denoted g; were

based only on the probability of state j and can be expressed by
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q; = cexp(—%(mj —mw)TGEim(mj - mm)). (5.21)
Similarly, a transition from state j to state i, g;; can be expressed by
P - i
q; = cexp(—--Z—(m -m, )chzMP (m' - m,,)). (5. 22)

Hastings’ acceptance criterion is now determined by

T4

. (5.23)
;q;

where 1t; and T; are calculated using Eq. 5.14 applied to states i and j.

Fig. 5.12 shows the resulting sampled values for the model variable m when using
this method to sample the probability distribution described by Eq. 5.14. Note that the
range of values is controlled by the probability distribution described by Eq. 5.18 and all
samples are clustered about the primary peak at m. = 1.67. As shown in Fig. 5.12, no
evidence of the secondary peak associated with the a posteriori probability distribution is
seen during the sampling process.

Similarly to Example 2 we can calculate the probability of proposing a transition to
the second peak (m = 2.5) from the region of the maximum a posteriori estimate. Using

Eq. 5.21 with m = 2.5 we have that

gim=25)= cexp(—(ii;—mJ}=3,22x10-l24.

Cmp

Clearly, states around m = 2.5 will almost never be proposed with this perturbation

mechanism. This occurs because the distribution used to propose states is much narrower
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than the true distribution (see Fig. 5.11). For this example, the Markov chain Monte Carlo
method is not able to “see” the secondary peak, even though if we correctly sample the a
posteriori probability density function, about 17% of the samples should be in the interval

[2.40,2.60] about the second peak.

5.3.2 The Hybrid Monte Carlo Implementation

Here, we apply the hybrid Monte Carlo method described in Chapter IV. The
heuristic procedure for determining stepsizes is based in the one described in Chapter IV.

The stepsize was calculated by the following expression
€=MNCc,p- (5.24)

Following the procedure described in Chapter IV a value of 1 equal to 1.0 showed to be
optimum. For values higher than that, the leapfrog method becomes unstable, and very
large errors result, which would lead to a very high rejection rate if such a value of n were
used. The value of n = 1.0 was used for the sampling phase.

Fig. 5.13a shows the values for the model variable m obtained during the sampling
procedure with the hybrid Monte Carlo method. Note that no evidence of the secondary
peak associated with the a posteriori probability distribution is seen during the sampling
process. Fig. 5.13b shows the values of the model variable m obtained as samples plotted
against the associated values of momentum variables p.

In this example, the performance of the hybrid Monte Carlo method is degraded

and can be understood by analyzing the curves along which the Hamiltonian function is
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constant. In Fig. 5.14 each curve plotted describes the values of the momentum variable. p

and of the position variable m along trajectories of 1000 leapfrog steps. Note that,
similarly to Example 2, it is possible to identify continuous paths from one region of
probability to another. For example, if we have a sample (m;,p;) near (m,p) = (mn.,0) =
(1.50,0), then if we do a stochastic step (resample the probability function for p) and
obtain say p = 5.0, then (m;,p) may be on a curve of constant H, (H = c¢) which
encompasses both peaks. Since at each time step of the dynamical step, we generate a
(m,p) value on this H = ¢ curve, at the completion of the dynamical step we may propose a
new state (mj;,p) where m; is near the second peak. Recall that variables p are sampled
from a normal distribution with mean zero and standard deviation one. Thus, generating a
p = 5.0 is highly unlikely and it will be difficult for the hybrid Monte Carlo to generate a
sample around the secondary peak.

When comparing both methods, we see that, for this example both the conventional
hybrid Monte Carlo method and the Markov chain Monte Carlo procedure (with
perturbations based on the a posteriori variance) failed to yield a correct sampling. Thus,
even though the behavior of the realizations shown in Fig. 5.12 and Fig. 5.13a suggests we
have reached the stationary distribution of the Markov chain, we have not and
consequently have not obtained a correct sample. However, we can also see that it is more
likely that the hybrid method will obtain samples from the relevant peaks. As suggested by
Fig. 5.14, to hope to sample from the second peak we need to propose a realization of p
that is about five standard deviations away from its mean of zero. On the other hand, to

propose a state new m = 2.5 using the standard Markov chain Monte Carlo
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method (based on the a posteriori variance) requires that we propose a state 24 standard

deviations away from its mean (m. = 1.67).
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CHAPTER VI

CONCLUSIONS

This chapter summarizes the work we have presented in the previous chapters, and
enumerates the contributions and conclusions of this study.

The objective of this work has been to study methods to sample the a posteriori
probability density function for permeability fields conditioned to a prior mean, the
variogram and well-test pressure data.

In Chapter II, we have presented Markov chain Monte Carlo methods that can be
used to generate realizations of the log-permeability field, which are conditioned to the
prior mean, prior covariance (variogram) and multiwell pressure data. These realizations
appear to represent samples from the correct a posteriori probability distribution.
However, based on the simple example presented, we can not be certain that we have not
simply generated samples around a peak in the probability density function close to m... It
is possible that there is another peak in the probability density function that we have not
sampled thoroughly. In the event that the Markov chain Monte Carlo is actually failing to
sample high probability regions far from the peak around m., then correction of the
method can only come from proposing new states from some distribution other than the

one associated with Cyp' and centered at m... It is possible this could be done by using

249
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transition probabilities which are a sum or product of base transitions (see Neal'’) where
the base transitions could for example include states proposed from the prior covariance
matrix and/or constitute a multiple of Cur'. The problem is that we want to choose
overall transition probabilities which give high rates of acceptance and at the same time
generate samples from all regions of significant probability and it is not clear how to do
this. The most efficient Markov chain Monte Carlo methods use either local or global
perturbations generated from the a posteriori covariance matrix obtained from a gradient
method. We have also presented a procedure where simulated annealing is used to
generate the initial state in the Markov Chain and thereafter perturbations are generated
from a covariance matrix associated with the sensitivity coefficients.

In Chapter III, we focused on examining the analogy between simulated annealing
and Markov chain Monte Carlo methods. We have shown that a proper application of
simulated annealing can be used to obtain a sample of the log-permeability field from the
set of all most probable models. This method again is based on perturbations using a
covariance matrix that incorporates sensitivity coefficients. The realization is one which
approximately gives the global minimum of the correct objective function. This realization
is in good agreement with the maximum a posteriori estimate obtained from the gradient
method. We have also presented a much slower procedure for approximating a global
minimum of the correct objective function by starting with a uncorrelated log-permeability
field defined on the gridblocks and performing two point swaps. This method is
considerably less efficient and does not yield a log-permeability field which represents a
sample from the set of most probable models. The standard procedure which combines a

heuristic weighting of the variogram and the pressure mismatch into one objective function
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requires an excessively large amount of computer time and yields unreliable results. Our

results and theoretical arguments indicate that the variogram should not be included as
part of the simulated annealing objective function.

In Chapter IV, we investigated the use of the hybrid Monte Carlo method for
sampling. For the problems considered, we showed that the hybrid Monte Carlo approach
improves the sampling process for the highly nonlinear problems; i.e., a higher number of
transitions is accepted without increasing the correlation between samples and the
computer time required per independent image is less than in the standard Markov chain
Monte Carlo method.

Although the hybrid Monte Carlo implementation we have described in this work
enhances the sampling of the a posteriori probability distribution for permeability fields,
there is no reason to think it is optimal. The time required for the sampling in Chapter IV
shows that improvement in this respect is quite important. Many implementation schemes
differing in detail could be investigated. For example, the leapfrog stepsizes could be
chosen differently, a different parametrization for the model variables could be used, and
the heuristic criteria used to choose a good trajectory length could be improved. One
variant of the basic hybrid Monte Carlo method, the variant described by Horowitz, was
investigated, but we found that although less computational time was required to
perform the leapfrog iterations, the samples obtained were strongly correlated. Other
variants remain to be tried, including those based on discretization of the dynamics
accurate to higher order than the leapfrog method.

It is important to notice that the computational effort required by the hybrid Monte

Carlo method is strongly related to the choice of stepsize (or mass term). If the values
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calculated are optimum for each component direction, a high stepsize adjustment factor is
permitted and consequently not a high number of leapfrog steps are necessary to sample
each component. Since the major computational effort is expended in the computation of
the gradient in the leapfrog steps, the computational time is reduced.

In this work, we estimate the stepsize values based on an analogy with a linear
problem. The values are calculated at the beginning of the sampling phase and then kept
constant. Keeping these values as constants through the whole sampling phase may not
yield optimal performance since for the nonlinear case, the optimum values can change at
each iteration. The fact that we required a stepsize adjustment factor of 1 = 10” is a direct
indication that we have not arrived at an optimal choice of the mass terms. Development
of a criterion that considers this fact and is not computationally intensive is not an easy
task and was not pursued here.

Another factor that impacts the computational time is the accuracy of the
sensitivities calculated as a by-product of the flow simulation. These sensitivity coefficients
are used to obtain the derivative of the energy with respect to the position variables during
the leapfrog iterations. Incorrect sensitivities will cause an accumulation of errors in the
calculation of the trajectories, and consequently a high rejection rate for a given value of L
and 1.

In Chapter V, we compared the performance of the methods for sampling described
in this work. By means of a simple example which was chosen to have some features that
are similar to the problem of sampling a posteriori probability distribution for a Gaussian
random field conditioned to pressure data, we showed that it is possible to anticipate the

behavior of problems in which the hybrid Monte Carlo can perform better than our
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procedures based on Markov chain Monte Carlo methods. Although conventional Markov
chain Monte Carlo methods are adequate for many problems, we believe that hybrid
Monte Carlo can solve many problems faster than the methods presently used, and will
permit the use of complex models for which the computations have until now been
infeasible, for example, problems where we try to incorporate saturation or water cut data.

The time required for the sampling (see Chapters IV and V) shows that
improvement in this area is quite important. In this respect, we identified three problems
that prevents the hybrid Monte Carlo from being practical. Ultimately, it seems that the
use of the hybrid Monte Carlo method to sample the a posteriori probability distribution
for our problem depends strongly in three factors: (1) an efficient procedure to estimate
the stepsize (or mass term) for each component to be sampled; (2) a higher order scheme
than the leapfrog method to be applied to the dynamical transitions; (3) an efficient and
more accurate procedure to estimate sensitivity coefficients from a flow simulation. We
believe that improvements in these factors will certainly reflect in a overall increase in the

method’s efficiency .
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NOMENCLATURE

constants.

constants.

total system compressibility, psi.

covariance matrix for pressure measurement errors.

prior covariance matrix.

a posteriori covariance matrix after incorporating all data.
reference covariance matrix.

vector of pressures calculated from simulator, psi.

vector of measured wellbore pressure data, psi.

reference data vector, psi.

potential energy function.

a posteriori probability density function when considering the variogram in the
simulated annealing objective function.

nonlinear transformation.

linear operator.

sensitivity coefficient matrix at the reference model, m,.

formation thickness, ft; or variogram lag.
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sc

£ X

n;

Ny

255
variogram lag.

Hamiltonian function.

permeability, md; or constant.

kinetic energy function.

likelihood function; or lower matrix resulting from the Cholesky decomposition
of a covariance matrix; or number of leapfrog steps; or local domain length.
lower matrix resulting from the Cholesky decomposition of the reference
covariance matrix.

model variables; or mass term.

reparameterized model variables.

reparameterized maximum a posteriori estimate.

reference model.

maximum a posteriori estimate after conditioning to all data.

prior mean.

set of most probable model.

number of simulator gridblocks.

model space.

number of samples; or trial number; or sample from a standard Gaussian
distribution.

number of iags.

number of.conditioning pressure data.

number of pairs in a lag.
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0, 0;

3

n

P

Wi, W2

objective function.

objective function components.

momentum variables.

transformed momentum variable.

initial reservoir pressure, psi.

transition probability from state i to state j at trial n.

canonical distribution for the momentum variables; or canonical distribution for
the momentum and position variables.

probability of proposing a transition from state i to state j.
variogram lag in which correlation between variables is negligible.
wellbore radius, ft.

probability of accepting a proposed change from state i to j.

ratio between variogram range and length of local domain.
‘variogram lag.

symmetric matrix used in Hastings’ criteria.

misfit (objective) function.

time, days.

temperature parameter.

matrix containing eigenvectors of the spectral decomposition of the a posteriori
matrix, Cpup.

random variable.

objective function components weights.
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we,Wy,Wg  constants.

VA

vector of standard normal deviates.

Greek Symbols

VaE

Oy

Ad

AO

AT

Ymodel
Vs

Yo

gradient of the energy function to respect to model parameters.
random uniform number from [0,1]; or tunable parameter for stochastic
transitions in Horowitz method.

probability of accepting state j when the previous state is i.
random uniform number from [0,1].

difference between calculated and observed pressure.

energy change.

objective function change.

time interval.

stepsize; or error in a Taylor series expansion.

porosity, fraction.

variogram.

model variogram.

calculated variogram.

local variogram.

stepsize adjustment factor.

eigenvalues from the spectral decomposition of Cyp.
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&

Subscripts

i,Jj

sa

viscosity, cp.

reference mean.

a posteriori probability distribution function.

a posteriori probability distribution function based on Cyp.
approximate a posteriori probability distribution function.
variance.

a posteriori variance.

variance at pressure measurement errors; or variance from observed data.
prior variance.

probability distribution function.

prior probability distribution function.

probability distribution function; or fictitious time variable.

ith component to be sampled.

states in a Markov chain.

kth component of a vector of standard normal deviates.

Ith component of a vector of standard normal deviates; or /th temperature level.
index of an accepted realization.

simulated annealing.
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Superscripts

i,j states in a Markov chain.

T transpose of a matrix.
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APPENDIX A

SIMULATED ANNEALING PROCEDURE

During the simulation algorithm two loops have to be considered. An external loop
decreases the value of the control parameter (temperature) from an initial value. The
second loop controls the maximum number of iterations (proposed perturbations) allowed
at the step corresponding to a particular value of temperature. The algorithm terminates
when either the objective function change is less then a specified tolerance or the
acceptance ratio (number of accepted perturbations for the kth step (kth temperature level)
divided by the total number of proposed perturbations for the kth step) is less than a

specified tolerance.

A.1 Value of the Initial Control Parameter

The effect of the control parameter is evident from the Metropolis condition: if the
value of the control parameter is high, then more of the perturbations proposed will be
accepted. The initial control parameter or temperature is denoted by To and is determined
for the first step, numerically in the initial phase of the algorithm, the “warm up” phase"'.
An appropriate value for T, was derived by Aarts and Korst'’. To determine To, we

generate an initial distribution of the log-permeability field, m® and evaluate the objective
265
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function to obtain 0°=0(m"). Then we propose K=M;N; perturbations where N is the

number of permeability values to be estimated. Here, we used M;=0.25. For each proposed
pertu*rbation, we have a proposed log-permeability field m’ with resulting change in the
objective function given by AO'=0-0°. We let m, denote the number of proposed
perturbations that give a positive change in the objective function, i.e., increase the
objective function, and let AO%, for k=1,2,..m, denote the values of these positive
changes. We let m; denote the number of perturbations that give a decrease in the
objective function and let X, denote the desired number of accepted perturbations at the
initial temperature level. We let AO... denote the average positive change in the

objective function, i.e.,

1 &
AO, 4. =— D00, , (A. 1)
my =

As suggested by Aarts and Korst', the initial value of the control parameter is then given

by

A0,
m, ’
In —=—-m(1-X
(’7’2 X 1 o))

0

]6:

(A.2)

In this initial stage, we do not update the permeability field.
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A.2 Annealing Schedule

The reduction in the temperature value is typically done by the following rule
(A.3)

where o is the so-called convergence factor and must satisfy O<o<1. In this work, we use

a=0.5.

A.3 Maximum Number of Iterations per Step

The method used to calculate the maximum number of total iterations allowed per
step, i.e., the maximum number of proposed perturbations allowed at each temperature
level was developed by Perez*?. The method calculates the maximum number of iterations
per step by estimating the acceptance ratio for the subsequent step. The maximum number

of iterations allowed at the step corresponding to T, is given by

M’r+l =M

el (A 4)

where M, is the maximum number of iterations allowed at the initial temperature level. X,
and X..,, respectively, represent the acceptance ratios obtained at temperature levels 7, and

T,.,. In this work, we used M,=5N,.
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A.4 Simulation Process

1. Generate the initial permeability distribution. In this work, we normally used an initial
log-permeability field generated from an unconditional simulation based on the Cholesky
decomposition of the prior covariance matrix. However, as discussed in the text, in some
cases, we also initialized the log-permeability distribution on the gridblocks by sampling

from the cumulative distribution for permeability.

2. Calculate the pressure response for the initial permeability distribution;

3. Calculate the value of the initial control parameter, To;

4. For the first step, set the maximum number of iterations per step equal to M,, i.e.,

5. Propose a perturbation to a new log-permeability field;

6. Calculate the value of objective function at the proposed log-permeability field;

7. Apply the Metropolis condition to determine whether to accept the proposed log-

permeability field;
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8. If the perturbation is not accepted return to step 5;

9. If the perturbation is accepted, then update the log-permeability field to the values

determined by the perturbation;

10. Check for convergence; if the tolerance condition of the objective function is satisfied

the simulation ends; otherwise go to step 11;

11. Update the objective function for the next iteration;

12. Compare the number of perturbations proposed (k) at the current temperature to the

maximum number allowed; if k> M; then go to step 5; otherwise go to step 13;

13. Check the acceptance ratio tolerance for the current step. The acceptance ratio, X; is
the fraction of the total iterations (attempted perturbations) in a step which have been
accepted by the Metropolis condition; if X,<0.1, the simulation is terminated; otherwise go
to step 14. If the simulation terminates because the acceptance ratio becomes too low, it
does not mean we have converged to a global minimum of the objective function. It simply
means, we are having difficuity finding improved estimates of the permeability field. The

acceptance ratio tolerance of 0.1 is a heuristic choice.
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14. Calculate the control parameter for the next step from Eq. A.3;

15. Calculate the maximum number of iterations for the next step from Eq. A.4 and go to

step 5.
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APPENDIX B

DECOMPOSITION OF POTENTIAL ENERGY INTO LINEAR AND NONLINEAR
COMPONENTS AND REPARAMETERIZATION IN TERMS OF EIGENVECTORS

OF THE A POSTERIORI COVARIANCE MATRIX

The Hamiltonian function associated with our problem is expressed by the sum of

two energy terms,
H(m) = E(m) + K(p) (B.1)

where
E(m) = S(m) = %[(m ~my)Cyf (m—mg) +(8(m) = d,y, ) Cp' (8(m) = d,p,)]  (B.2)
is the energy related to model mismatch (“potential” energy), and
K(p)%ip? /iy =%p’1\71 ~'p (B.3)
i=1

is a fictitious “kinetic” energy.

M= (B.4)
1/ 1y

271

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is the matrix of “masses”.

In this appendix first we decompose the potential energy function expressed by Eq.
B.2 into linear and nonlinear components. Second, we rewrite the potential energy
function in terms of a reparameterized model m, obtained from our model m and the
eigenvectors that results from the spectral decomposition of the a posteriori covariance
matrix Cypr. As shown later this potential energy and consequently Hamiltonian re-
expression is particularly useful to analyze the computational effort involved when

performing the dynamical steps during the hybrid Monte Carlo update.

Define the following gradient operators

Vm= -aTn; . (B.Sa)

Vo =| om,, | (B.5b)

om

L~ PN

Suppose m = m(m,) and f(m) is a scalar function.

We can write
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_ai_
oam,
¥

V. fm(m,) =V, f(m)=| om,
Ea

| omy,

Note that

_ —a_ -
am,

me: = 5 [mpl mpg
e

N of ampj"
;amm. om,
i of Imy
= j=,8m,3j om, |~
i of ' amm‘
1 |j=iom,; omy |
[om,; om, ' omy T of ]
om, dm, om, | om,
om, dm, om,y | of
om, am, om, om,,
omy, m,  omy | O
| Omy  dmy dmy || 9mpw
[dm,,  dm,, om,,
om, Jmy om,
om, omy, om,y
: mpN]= om, dm, om,
om, om,, om,y
| dmy,  omy dmy,

Using Eq. B.7, it follows that Eq. B.6 can be written as

V,of (m) =V . f (m(m,)) = (V,;m; )V, f (mim,))

Similarly

Vpof (1) =V, f (m(m)) = (V,,,, "V, f ()
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Eqs. B.8 and B.9 are simply chain rules.

Choose m, = m.. so G,= G.. where m.. refers to the maximum a posteriori estimate

obtained by the Gauss-Newton method. Thus, our expansions are

g(m) = g(m.,) + G,(m—m_)+€e(m) (B.10)
or
e(m) = g(m)-g(m.)+G.(m-m.). (B.11)
Define
d,=d, —gm,)+G.m,. (B.12)

Eq. B.10 represents nothing more than a Taylor series expansion, i.e., the jth component

of g(m) is given by

N Jg.
gJ(me)_'-Z g](meo)
=1

(ml - m”'[) +€J(m) » lstNd
my

where N, is the number of data and N is the number of model parameters. So Eq. B.10 is

| dg 98 s 98 ]
g(m), om, dm, omy m —me
: =] : : =G (m-m_)+e(m) (B.13)
gmyy, | | 8Ma . 0B | | my—my
L aml amN e
where
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o8 .. 98
am, omy
G.=| : =V,
On, . 98wy
| om, omy |

is the NxN sensitivity coefficient matrix.

Note
(9] I
om, om, omy
VmE(m)T= E [€| o GNd]= S
o O %,
_amN i | omy, omy |
is an NxN; matrix.

With m,= m.., Egs. 2.36. and 2.37 from Chapter II are

w=p, =my+CyGl(G.C\GL +Cpl'd,. — G.my]

=my+ CyyGI[G.CyGI + Cp "' [d,, — 8(m.) + G om,, — G.imy)

Ci = G136 + G

275

(B.14)

(B.15)

(B.16)

(B.17)

For the form of the Gauss-Newton method we use (see Tarantola, pg. 244 with i,=1)
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M, = my— CMG,,T[G,,CM G,,T + CD]"[g(m,,)- d,.—G,m, +G,nmyl.

As n—e0, My, =M., My—>M-. s0 Eq. (B.18) becomes
m_ =my— CyG[Cp+G..C,GI T (g(m,) - d s — G, + Gy ]
Comparing Egs. B.16 and B.19 we see that m,= m.. implies that

W, =m, = my+CyGl[G.CyGL +Cp1'd., - G..mp]

Using Eqs. B.10 and B.12 in Eq. B.2, the potential energy can be written as

E(m) = S(m) = %(m —m)T G (m —mg)

+-;-[g(m,,)+c,,(m—m,,)+e(m)—d,,,,,]fc;,' (g(m.)+G. (m—m.)+e(m)—~d

=%<m—mo)’cz,‘(m—mo)

+%[G,,m ~d, +em C;'[G.m—d_ +e(m)]

1
=5(m—m0)’6;,'(m-mo)

+%[G,,m -d 1" C;'IG.m—d_ +e(m)]
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+%8(m)Tc,;‘[Gwm —d_ +€(m))]

=—;—(m—mo)TC;,'(m—mo) +—;—(G,,m—d°,)TC,;'(Gmm-—dw)
+%(G,,,m ~-d ) Cple(m) +-;—e(m)TCB' (G.m—-d_)

+%e(m)TC5'8(m)
or

E(m) = S(m) =%(m—mo)TC;,'<m—mo)+
+%(G,,m—d,,)7 G (G.m-d.)

+G.m—-d_) Cple(m) +%e(m)TC5'£(m) (B.21)

Matrix Identity (see Tarantola', 1987, page 158)

Identity 1
[¢G'c;'¢ +¢c;1'c;) =1-¢,,G'[Cy, +GC,GT1'G  (B.22a)

Identity 2
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[c;! +G"Cc;'G1'G" ¢! = ¢,,GTICp + GC\GTT (B.22b)
Using matrix algebra, Eq. B.19 can be written as
m_ = my+ Cy GG .CyGL +CpT'[d., — G..m]
={I - C,,GI[G..C,,GI + CpI' G..Imy

+C,,GI[G..C,,GT +Cp17'd.,

Using Eq. B.22a and then B.22b it follows that

m, =[GIC,'G.. + Ci{ 1 Cyfmy

+CyGI[G.CyGI +Cp1™'d,,

=[GIC,'G. + Cy ™' Cyfmy
+Cy} +GICh'GLI'GICrd, (B.23)

or

m, = (GIC5'G,. + ;)™ (Cyymy + GLCpld..) (B.24)

Note this last form of m.. is equivalent to Eq. 1.89, pg. 69, of Tarantola'.
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Thus, using the Equation solution Eq. 1.90 (pg. 69 of Tarantola) we have

S(m) = -;—(m —mgy)" Cyf (m—my) +%(G,,m ~-d_)Cp(G.m—d.)
= %[(m - m,,)TC;,'P(m -m,)

~mICyim, +dICp\d, +m{Cy'my]. (B.25)

Using Eq. B.25 in Eq. B.21 gives

E(m) = S(m) = %(m—m,.,)’c,:,',xm—m,g

—-;-mIC;}m,,, +-;-d1CB'dw +%"'§C;:'mo

+G.m—d, ) Cple(m)

+-;—s(m)TCB'£(m). (B.26)

We define the constant ¢ by

c= —%m,T,C;,'m,, +%dZC5‘d,, +%m§ Cilm,.

So
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E(m)= %(m— m, )TC;,'P(m— m,)
+HG m—-d_ ) Cple(m)
1 T -l
+Ee(m) Cpe(m)

+c. (B.27)

Now we can reparametrize in terms of eigenvectors from the spectral decomposition of

Cup, i.C.

C,p=UAUT, (B.28)
so, assuming that Cup is positive definite,

Cy» =UN'UT (B.29)

where, U is the matrix of orthonormal eigenvectors so, UU'=U"U=I.

The reparametrized model, m,, is defined by

m, = U'm (B.30a)
which is equivalent to

m=Um, (B.30b)
Thus,

m,.=U Tm, (B.30c)
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or equivalently,

po (B.30d)

where m, .. is the reparameterized maximum a posteriori estimate.

In terms of the reparameterized model, Eq. B.27 becomes

E(m)=E(m,) = %(m,, -m, ) UTWUA'UTU(m,—m, )
+HG..Um, - d.) Cp'e(m)
+—;-e(m)’c,3'e(m)

+C

| ;
= (m, = m, ) A (m, —m, )

+HG..Um, - d.) Cp'e(m) +-12-8(m)TC5'8(m)

+C. (B.31)

In order to apply the Hamiltonian dynamics in terms of m, model, we need to calculate the

gradient of the potential energy with respect to the parameters m,.

YV, E(m,) = N'm,—m,.)
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HV,, [G.Um, = d.. ] )Cp'e(m)
+V,,, UCpe(m) N[G.Um, ~d..]

HV,,, £(m)"1Co e (m)

=A" (m, — mp_,,)
+V,0, [m U GL1Cp'e(m)

HV , £(m) CHHG.Um, = d .+ (Y, E(m)")Cpe(m)

=A"(m,—m,.) +UTGLCp'e(m)

+(V,,,pe(m)Tc,;')[G,,Ump -d ]+ (V,,,pe(m)T)C[,'e(m) . (B.32)
or using the chain rule Eq. B.9 (also see Eq. B.15)

Vo, E(my) = A7 (m, —m, ) +UT GLCp'e(m)

+(Vmpm’)(vme(m)’)c;,' [G.Um,-d.]+ (V,,,pm’)(v,,,e(m)T)c;,'e(m) . (B.33)
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By taking the transpose of Eq. B.30a, and applying the gradient, we obtain

Vmpmr =yT (B.34)

Using Eq. B.34in B.33

Vi, E(m,) = K (m, ~m, ) +U'G.Cp'e(m)

+UT(V,e(m)7)C;' (G.Um, - d..)

+HUT)V (m)")Cpe(m). (B.35)
From Eq. B.11
e(m) = g(m)" - g(m..)" —(m—m_)" GL (B.36)
and
V.em' =V, gm)' -GI=G" -GI. (B.37)

where, G is the sensitivity coefficient matrix evaluated at m.

Using Eq. B.37 in Eq. B.35, it follows that
Vo, E(m,) = A7 (m, = m,, ) + UG Cple(m)
+UT[G" - G11C5 (G..Um, - d..)

+UTI{G" - GL1Cp'e(m)
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=X (m,-m, )+ U GLC,'e(m)

+UT[GT - GL1C; (G.Um, ~ d.. +&(m)).

From Eq. B.30c, B.11 and B.12, we have

G.Um, - d,+e(m)=G.m—-d_ +g(m)—gim,)-G m+G.m,

= G.m—(d,p — g(m.,) +G.m.))

+g(m) - gim,) -G .m+ G, m,

=8 (m) - dobs

Thus Eq. B.38 is
— A=l
Vo, E(m,) = A (m, —m;, )
+UTGIC'e(m)

+UTIG" - GT1C; (g(m) - d )
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which means that, when g(m) is nearly linear, so G' = G'.. and g(m) = 0, the gradient of
the potential energy can be approximated by the product of the inverse of the eigenvalues

of the a posteriori covariance and the parameters themselves.
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APPENDIX C

APPROXIMATE HAMILTONIAN AND ANALYTICAL SOLUTION

As described by Duane et al.” the Hamiltonian used during the dynamical transitions
in a hybrid Monte Carlo update does not need to be the same as the one used in the
Metropolis criterion. The algorithm remains valid provided the decision whether to accept
or reject a transition is based on the true Hamiltonian. Recall that the dynamical transitions
require the majority of computational effort during a hybrid Monte Carlo procedure. The
previous arguments suggest that, during the dynamical transitions, we use an approximate
Hamiltonian that can be computed with far less computational effort than is required to
calculate the true Hamiltonian.

In this appendix, we use the total energy expressed as a function of the
reparameterized model (Eq. B.31) to determine an “approximate” Hamiltonian which
requires much less computational effort to evaluate than does the full Hamiltonian. When
sampling with the hybrid Monte Carlo method, the majority of the total computational
time used is expended in performing the dynamical step, i.e., in solving the dynamical
equations (see Egs. 4.33-4.35). The solution of these equations is computational
expensive because the evaluation of the gradient term in Eqs. 4.33 and 4.35 requires that
we generate sensitivity coefficients at each leapfrog step. Thus, if the Hamiltonian is

replaced by an approximate Hamiltonian and the gradient of the approximate Hamiltonian

286
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can be easily evaluated then we can obtain a significant increase in computational

efficiency.

In Appendix B we showed that the full Hamiltonian for our reparemeterized model

can be written as

1 -
H(m,,p) = "2‘("1,, - m,,‘,,)TA l(mp -m,..)
+HG.Um,-d.)T Cple(m)

+c+%p7p (C.1)

where
c=——1 mICi'm +—-l dlc;\d +—l rcim

Here, we consider an “approximate” Hamiltonian , H which has the form

~ 1 - 1
H= E(mp -m, ) AN (m,—m,..) +5 p'p. (C.2)

The dynamical equations are,

dm, oH
L= — C3
dt  dp; ©3)
dp; oH
ol of RPN (o)
dt om, (€4)
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After rotation with the approximate Hamiltonian, components of the dynamical equations

separate as

—Li=p (C.5)

E‘c— = —rmm +rmf’m.i (C6)

Since components separate, we suppress the subscript i and write the Hamiltonian system

as
dm, €7
a0 ’
and
dp 1

Bl tam,.. (C8)

We wish to move forward in time an amount &t from some time Tp where m(Tto)=mpo

and p(To)=po are known. Although we could write the system of equations given by Eqs.

C.5 and C.6 in matrix form as j—:— = Ax and seek solution of the form X ;= a je"j * where

the u;’s are the eigenvalues of the coefficient matrix, we take a different approach.
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Differentiating C.7 and C.8

d*m dp 1
d’tzp ='d—1-=-—xmp+'xmpw, (C9)
and
d? 1 dm 1
dt{) Y d1:p =R (C.10)
or,
d’m, 1
d'tzp M =3 M (C.11)
and
2
Z_T§+%p=o. (C.12)
The general solutions of C.11 and C.12, respectively, are
m, =acosli(’tj%o)]+bsin[(tj%°):l+m,,,“» (C.13)
and
p= cco{g%o)] +d sin[g—_‘/.—k_w] . (C.14)
We apply initial conditions at T = T, of the form
my,(T,) = m,, (C.15)
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p(To) = Po (C.16)

Applying the initial condition of Eq. C.15 we have

m,(tg)=myg=a+m, ,
SO
a=m ,-m,_. (C.17)

.0 P

Applying the initial condition of Eq. C.16 and noting the relation of Eq. C.7, we have

dm

b
dtp (T)=pE)=po = ﬁcoso =7
Thus,
b=+Ap, (C.18)

From Egs. C.13, C.17 and C.18, it follows that

m, =(m,q - mp,«)cos[(T J%ﬁ] + w/—?:Po sin[(1 J{.O)]+ m,.. (C.19)

From Eq. C.14 and the initial condition of Eq. C.16 we have

c=py = p(Ty) (C.20)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



291
Differentiating Eq. C.14 gives

o sl + . C.21
a0 JX[ Ny ] Nohas ] (2D

Evaluating Eq. C.21 at T = 1o and using Eq. C.8 and initial condition C.15, we see that

dp d
o OO = T TR e Yy e

thus

J'}T, Mo + Tx—mp'w (C.22)
Using Egs. C.20 and C.22 in Eq. C.14 gives

_ (T-7Tp) 1 _ .| (T —T,)
p—pocos[ x ]+ \/I[m"’“ mp‘o]sm[ s ] (C.23)
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