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ABSTRACT

Zhuoxin, Bi (Doctor of Philosophy in Petroleum Engineering)
Conditioning 3D Stochastic Channels to
Well-Test Pressure Data (150 pp. - Chapter VI)
Co-Directed by Dr. Albert C. Reynolds, Jr. and Dr. Dean S. Oliver
(327 words)

This dissertation addresses the problem of smulating stochastic 3-D channels that are
conditional to well-test pressure data. The channels are characterized by four random
variables that define the principal direction line (PDL), and by four one-dimensiona
random fields that define the deviation of the channel center from the PDL in the
horizontal and vertical directions, and the channel width and aspect ratio (width divided by
thickness). In most cases, the permeability and porosity inside and outside the channel are
unknown variables to be determined simultaneoudly with the channel geometry. For the
largest models treated in this report, there are 248 random variables to be conditioned to
pressure data. Because there is insufficient information in the pressure data to uniquely
congtrain al of the channel variables, we use a Bayesan/Monte Carlo approach which
combines prior geologic knowledge of plausible channel shapes with the observed data to
generate plausible redizations of channels.

A Levenberg-Marquardt method is used in the conditioning procedure. Efficient



evaluation of the sensitivity of pressure data to channel variablesis a critical aspect of our
method. We first compute sensitivities of pressure to gridblock permeability and porosity
using a variationa method, then apply the chain rule to compute sensitivities to channel
variables. The method is efficient, typicaly requiring only 4 to 6 iterations to generate a
realization.

Based on the results of synthetic case studies, we found that good estimates of
reservoir properties, such as the kh product of the reservoir around the well, the total
channel volume or total pore volume, and the flow cross-sectiona area of the reservoir
around the well could be obtained using pressure data from a single well, provided
pressure data during appropriate flow periods are available. For example, the total pore
volume of the reservoir could be well resolved if pseudo-steady state pressure data are
available. Moreover, conditioning to pressure data, the observed channel thickness and top

depth does reduce the uncertainty in the geometric parameters near the well location.
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CHAPTER|

INTRODUCTION

This study focuses on generating a stochastic three-dimensional (3D) channel
conditioned to well-test pressure data. To do so, we first formulate a ssmple stochastic
model for generating a single channel within a background facies. The background facies
originally occupies a three-dimensional rectangular parallel-piped region (a “box”) and a
realization of a channel is embedded within this box. For reservoir simulation purposes, a
three-dimensional rectangular grid is defined on this box. To smulate a channel, we first
generate a principal direction line (PDL). The principal direction line is described by four
random variables. The PDL starts at (0, Yo, ), where yp and z, are modeled as Gaussian
random variables. To complete the model of the PDL, we also specify the sope of the
projection of the PDL on the x-y plane and the slope of its projection onto the x-z plane.
These dopes are also modeled as Gaussian random variables. We assume that the x
coordinate of the PDL issuch that O £ x £ L. Having specified a principal direction line,
the channel is parameterized by four correlated Gaussian random fields: the sinuosity in
the x-y plane, the sinuosity in the x-z plane, the width and aspect ratio. A simulation of
each of these Gaussian random fields is generated to obtain values at discrete x's (x-
coordinate of gridblock centers). If (x;, y, 2) denotes the point on the PDL at x = x;, then
the center of the channel at x = X is obtained by using the two associated sinuosity values

to perturb y and z The thickness H(x) at each X is obtained from the values of the width



W(x) and aspect ratio AR(X). Thus, a each x;, the cross-section is rectangular and a
“panel” of the channel is represented by a box having dimensions H(x), W(x;) and Dx.. By
putting these panels together, we obtain the complete channel. This simple stochastic
channel model is based on the work of Georgsen et al. [9, 10].

As we will see, this model offers two main advantages; (i) it is easy to embed the
channel within the simulation grid; (ii) it is easy to generate the sensitivity of well-test
pressure data to channel model parameters. These sensitivity coefficients are needed in
the procedure we use to condition a channel to pressure data.

In conditioning the channel to pressure data, we wish to generate simultaneously
realizations of the channel (geometric parameters) and the permeability and porosity
fields. The permeability inside the channel is represented by single Gaussian random
variable with prescribed mean and variance. Channel porosity and the permeability and
porosity in the background facies are modeled in asimilar way.

From this point on, model parameters refer to the collection of all stochastic
parameters, the four random variables describing the principal direction line, the four
Gaussian random fields describing the channel and the four stochastic variables
describing the rock property fields. As values of the random fields describing channel
geometry are generated only at x, 1£ i £ Ny, the number of model parametersis finite and
can be described by a vector which is referred to as the vector of model parameters or
simply as the model. This stochastic model is referred to as the prior model. From our
specification of model parameters, the probability density function (pdf) for the prior
model iswell defined. The a posteriori pdf for the model conditioned to pressure data can

be obtained from Bayes' theorem.



In order to characterize the uncertainty in model parameters (or in performance
predictions), we wish to generate multiple realizations of the model by sampling the a
posteriori pdf. Relevant discussions can be found in Tarantola [24], Oliver [18] and
Reynolds et al. [23]. In this work, we sample the a posteriori pdf by a method which was
briefly mentioned by Kitanidis [15], but was developed within the context of Markov
chain Monte Carlo ssmulation by Oliver et al. [18]; see Reynolds et a. [23] for additional
theoretical discussion. Here, we refer to the procedure as the randomized maximum
likelihood procedure.

Our emphasis is on generating realizations, not on simply generating the maximum
likelihood estimate, i.e., we are more interested in stochastic smulation than estimation.
However, it is important to note that others have considered the problem of conditioning
a channel to pressure data. In particular, Landa and Horne [17] and Landa [16]
considered the problem of conditioning a channel to pressure data. They considered only
a simple two-dimensional (x-y) problem in which the channel boundaries are described
by trigonometric functions and are parallel; i.e., the channel width is constant. Since the
Landa-Horne model has only a few parameters, the sensitivity coefficients needed to
condition a channel to pressure data can be generated by the direct method (gradient
simulator), see Anterion et a. [1] and Yeh [27], without too high computational cost. Wu
et a. [26] and Wu [25] compared in general terms the computational efficiency of the
gradient simulation method and the adjoint method, see Chen et a. [6] and Chavent [5],
for generating sensitivity coefficients. For single-phase flow problems, the adjoint
method is equivalent to a method proposed by Carter et a. [2, 3]; see Carter et a.’s

discussion. In our procedure for generating the sensitivity of pressure data to model



parameters, we use He et a.’s method [12] to compute the sensitivity of pressure data to
gridblock permeabilities and porosities. Sensitivity of pressure to model parameters can
be computed from these sensitivity values by using the chain rule. As mentioned earlier, a
realization of the model is generated by the randomized maximum likelihood method.
This requires the minimization of an appropriate objective function. This minimization is
accomplished by a Levenberg-Marquardt type agorithm. Typicaly, the agorithm
requires on the order of 10 iterations or less for convergence.

Rahon et al. [22] developed a general procedure for conditioning a geological object
to pressure data. They developed an adjoint method to calculate the sensitivity of pressure
data to an object shape or boundaries. Their formulation is based on the continuous
model, i.e., uses the single-phase flow partial difference equation. When the object is
inserted into a smulation grid, the boundary is modeled using a triangulation of the
boundary surface. The vertices of these triangles are the parameters modified by
conditioning to pressure data. Rahon et a. do not use an a prior probability model to
regularize the procedure and thus uses a non-conventional optimization procedure to
minimize the objective function. They did not attempt to evaluate the uncertainty in the
estimate of model parameters.

The remainder of this dissertation is divided into chapters. Chapter |1 describes the
stochastic model for the channel. Chapter |11 discusses the prior and a posterior pdf for
model parameters, the randomized maximum likelihood procedure and the Levenberg-
Marquardt method used to generate realizations. Chapter 1V discusses in detail the
procedure developed for generating sensitivity coefficients and provides examples.

Chapter V presents some synthetic examples where the conditioning data include the



well-test pressure data as well as the channel thickness and top depth observed at the well

location. Chapter VI presents the conclusions of this study.



CHAPTERII

GENERATION OF A 3D SINGLE CHANNEL

The model for a single 3D channel follows the basic idea of Georgsen et d. [9, 10].
In this model, the channel is characterized by a parameter set which consists of the
principal direction line, horizontal and vertical sinuosity of the centerline of the channel
relative to the principal direction line, and the width and aspect ratio (width/thickness) of
the channel.

We divide the reservoir under study into gridblocks for flow simulation. We will use
the reservoir simulation grid in a(x, y, 2) coordinate system throughout the entire process,
i.e, the scale for the reservoir properties is the same in channel modeling and flow
simulation. We assume that there are Ny, Ny and N, gridblocks in the x, y and z directions
respectively, so that the dimension of the grid is No=Ny" Ny" N, We will use i as the
index of the gridblocks in the x-direction, and j and k, respectively, as the gridblock
indices in the y and z directions unless stated explicitly otherwise. We assume that there
are two homogeneous facies in the reservoir, floodplain facies (outside the channel) and

channel fill facies (channel interior).

2.1 Principal Direction Line

The principal direction line is a spatial straight line. It controls the average

alignment or main tendency of the channel. We denote the principa direction line of the

channel as Uy, which is described by



Co ={(Xp¥p:2p) = (X0, Y0, 20) +1(L Sy, S} (2.1)
where
Xo IS the x-coordinate of the starting point of [, and will be set equal to zero,
Yo and 7, are the y and z coordinates of the starting point, i.e., they and z
coordinates at the point where the line intersects the x = X plane,
t isthe argument along U, which will be set equal to x.
Sy and s, represent the slopes of [, projected onto the x-y plane and x-z plane
respectively.
Note this is nothing but a parametric representation of a line containing (Xo, Yo, Zo) and
having direction numbers (1, Sy, S). Note also that yo, 2, Sy and s are single random
variables. We assume that Yo, zo, Sy and s, are independent normal random variables and

that estimates of the means and variances of these variables are available from geological

data or interpretation. Let ¥, Z, S, S,and s 30 7 ,S¢ S 2 denote the means and

variances of the corresponding normal variables, so that the following probability

distribution functions (pdf’ s) apply:

1 (v, - yo) fl
f = i 2.2.
(yO) \/ES yo eXp 25 yo Iy) ( 1)
1 b o(z- 2)? P
f = i , 222
(ZO) \/ES . exp; 25 2 b ( )
1 ] (Sxy - §xy)21'I
f = j- ———————v, 223
(Sy) = s exp+ o siy )[; (2.2.3)



1 I (se- 50)%H
f(s,) = expi - e’ Sa) b 224

As the random variables are Gaussian, the variables can be sampled very easily.
Figs. 2.1 (a) and (b) illustrate the projections of the principal direction line in the x-y

and x-z plane, respectively. A realization of the principal direction line in 3D space for

Yo =30,2 =60, 5, =02,5,=00,sy =1s; =1s: =0.0001 and s 2 =0001

Swy

isshowninredin Fig. 2.2.

y V4
A A
Yo+ X Sy Zp+ XSy
2
Yo
> X >X
(a) Projection in x-y plane. (b) Projection in x-z plane.

Fig. 2.1 — Projections of the principal direction line.

2.2 Center of the Channe€l

The center [I; of the channel is defined by two one-dimensional Gaussian random
fields called the horizontal sinuosity and vertical sinuosity, denoted by S, and S
respectively. Horizontal sinuosity here is defined as the deviation of the center from the
principal direction line in the y-direction and similarly the vertical sinuosity is the
deviation of the channel center from the principa direction line in the z-direction. These
definitions are dightly different from the definition of sinuosity in geology. These two

fields vary with the x-coordinate, i.e., § = Si(X) and S, = S/(X). Each of these Gaussian



random fields, S, or S, has zero mean and a covariance function that describes the
correlation length and variability. Gaussian covariance functions will be used for both of
these fields because they generate smooth channel paths. One might choose other
covariance functions, such as spherical and exponential or some combination of these

functions [19].

Fig. 2.2 — Principa direction line (red) and center-line (blue) of the channel.

We simulate these fields by the moving average method or filter method [13,14,19].
Assuming a Gaussian covariance function, the horizontal sinuosity S, and vertical

sinuosity S, are defined as follows.

Sh(X) : E{Sh (X} =0.0,

CoS, (0.8, (x9} =5 2 expi - g‘a 4 =
§ S 8 h
S, (%) : E{S, (X} = 0.0,
d b gy b 2.4
u Cov{S, (), S, (x9} =s év exp: g(a Xq% ﬁ/ 24)
§ S o h



where E and Cov represent expectation and covariance operators, respectively, and
s & ands$ , respectively, are the variances of S, and S,. The parameters ag and ag ,
respectively, are related to the correlation lengths of the two fields (the ranges of the
covariance functions), which are about \/5 ag, and \/éaSV , respectively.

Since §(X) and S/(X) are defined relative to the principal line, we can calculate the

coordinates of the channel center . based on both the coordinates of [, and the
definition of §, and S,.
Co={(Xp: Yp + Su(%p) 25 + S, (X))} (25)
Note that S, and S, are both functions of the x-coordinate, i.e., $=S,(X) and S= S/(x),
because we have specified the x-direction as the alignment direction of the channel.
Therefore, the dimensions of §,(x) and S(x) on the simulation grid are actually the
number of gridblocks in the x-direction.
An example of the centerline of a channel is shown in Fig. 2.2 as the blue line on a

uniform grid with the gridblock size in all directions equal to 10 ft. The corresponding

parametersare s 2 =900.0ft>,s 2 =4.0ft? a; =as =46.2ft.

2.3 Width W(x) and Aspect Ratio AR(x) of the Chann€l

Other properties of the channel include the width W and aspect ratio AR. The aspect
ratio, by definition, isthe ratio of the width to the thickness of the channel. Since we have

chosen the x direction to represent the main direction of the channel, we will assume W

and AR are functions of x only. We let x;.,,,and X;,;,,denote the boundaries of all

gridblocks centered at (x;, ¥, z) for al j and k such that 1£ j £ Ny, 1£ K£ N,. For X;_,,,£

10



XE X172, we set W(X)=W(x;) and AR(X)=AR(x;). The width does not vary in the vertical

direction and the thickness does not vary in the y-direction. Therefore, for any value of X,
the cross-section of the channel in the y-z plane is rectangular and symmetric to the
centerline of the channel. The width and aspect ratio are also modeled as 1D correlated
Gaussian random fields with specified expected values and covariance functions. Instead
of using the aspect ratio to define model parameters, Georgsen et a. [9,10] used channel
thickness directly. Replacing the aspect ratio by thickness would make some calculations
more straightforward in our case. Geologically, however, using the aspect ratio appears
more appropriate because channel width and thickness for meandering channels on broad
floodplains are stable and quantitatively related. In this study, width, W(x), and aspect

ratio, AR(x), are multivariate Gaussian random vectors with

Ewx)}=m,, (2.6.1)
_.2 | XX - qu'.jztj.
CovW(x), W(x9} =s 2 expi - g Iy (2.6.2)
f Ay g b
E{AR(X)} = My, (2.7.1)
a2 | X - quzfj
Cov{AR(X), AR(x9} =s 2_expj - g D (2.7.2)
T AR @ b

where my and mhg, respectively, are the expected values of W(x) and AR(X), x and x¢are
two points along the channel center in the x direction, s 5 and s 4z, respectively, denote

the variances of W(x) and AR(x), and ayw and aar, respectively, are related to the ranges of
the covariance functions for W(x) and AR(X). Fig. 2.3 gives a schematic cross-section of

the gridded reservoir for a fixed x coordinate as well as the relationships of the channel

11



parameters described above. Notice that the boundaries of the channel do not necessarily
coincide with gridblock boundaries, since al channel parameters will be determined by
the real coordinates rather than the grid indices. We will refer to the gridblocks
intersected by the channel boundaries as boundary gridblocks. As will be seen in later
chapters, the permeability and porosity for such gridblocks will be defined by a

volumetric average.

Sh(¥)

y4 SA(X)

M ' W(X)/AR(X)

y
Fig. 2.3 — A y-z cross-section of the gridded reservoir at any x that shows

the relationship between the model parameters of a single channel.
( @ istheintersection of the principal direction line and x plane;
@ represents the intersection of the centerline and x plane)

2.4 Moving Average M ethod for Smulating 1D Gaussian Random Fields

As discussed above, $i(X), Si(X), W(X) and AR(X) are assumed to be 1D Gaussian
random fields with known covariance functions. To generate unconditiona realizations
of the 3D channel on the simulation grid, we must simulate these four random fields. To
do so, the moving average method is applied since it is easy to implement and

computationally inexpensive.



The idea of this method isthat if the imposed covariance function of a second order
stationary random field can be written as a convolution product of a function f and its

transposef ', i.e.,
C()=f*fT =Q+j F(u) f (x+u)du, 2.8)

where the transpose of f is defined by f "(u) = f(-u), then a correlated random field Y(x)
with covariance function C(x) and zero expectation can be generated by the convolution
of the known function f with a one-dimensional stationary random field Z(x) with a Dirac

covariance measure, i.e.,
+¥
Y(x)=0¥ f(x- u)Z(u)du. (2.9

Notice that the convolution in Eq. 2.8 looks different from the general expression for
the convolution of two functions. For example, the convolution for two functions, f and g,

isnormally written as
¥ ¥
(f *9)(x) = of (u)g(x- u)du=og(u) f(x- uydu=(g* f)(x). (2.10)
-¥ -¥
Setting g = f T and applying f '(u) = f(-u), we have,
¥ ¥
C(x)=f*f" = af(u)f"(x- uydu= of (U)f(u- x)du. (2.11)
-¥ -¥
Making the change of variable v = u-x in Eq. 2.11gives
¥ ¥
C(X)=f*f" = af (v+x)f(v)dv= of (u)f(u+x)du, (2.12)
-¥ -¥

which isthe form used in Eq. 2.8.

13



Next, we show that Y(X) given by Eq. 2.9 has the same expectation and variance as
the field we wish to simulate. Then, we derive the discrete approximation of Eq. 2.9 that
we will use for simulation.

Suppose that we wish to simulate a stationary random field Y(x) with zero mean and
covariance function C(x) given by Eq. 2.8. Note that if E[Y(X)] = m® O, one can simply
define a stationary function U = Y-mand simulate U. To get arealization of Y, one ssimply
needs to add mto the realization of U.

Taking the expectation of Eq. 2.9 gives
¥
E[Y(X)] = of (x- u)E[Z(u)du] =0. (2.13)
-¥

The covariance of Y(X) is given by

C(h) =C[Y(x),Y(x+h)] =E[Y(X)Y(x+ h)]
= Eéf‘)f (x- u)Z(u)du f‘)f (x+h- v)Z(v)dvg (2.19)
¥ -¥ u
= & o (x- U)f (x+h- V)E[Z(W)Z(v)dudv].
-¥ -y

Assume that Z(u)du is a Dirac covariance measure with E[Z(u)du] = 0 and such that
E[Z(u)du Z(uDd u] equas s du if ud= u and equals zero if ud * u. Using these

relations and assuming that Z(u)du is chosen so that s 2 =1, Eq. 2.14 can be written as
¥
C(h)=C[Y(x),Y(x+h)]= of (x- u)f(x+h- u)du. (2.15)
-¥
Making the change of variable v = x-u, Eq. 2.15 becomes

C(h) = CIY (XY (x+ )] =- of W) F(v+h)dv= of W f(v+h)dv,  (2.16)
¥ -¥

14



which is identical to Eg. 2.8. Thus, we have shown that the random field Y(x) has zero
expectation and its covariance is given by Eq. 2.8.

We would like to construct realizations of Y(x) at an array of discrete points, x;, i =
1, 2,..., Nx. Moreover, we want to approximate the integral of Eqg. 2.9 by a discrete sum.

Applying the trapezoida rulein Eq. 2.9 with X = x; gives

Y(X)= of(x - uW)Z(u)du = a of(x - u)Z(u)du
(=-¥ u,
-4 éf(x - u)Z(u,)+ f(x - UM)Z(UM)E(
(= ¥8 2

(2.17)

ﬁ+l ﬁ

Since the same values of f Z appear in two consecutive terms in the infinite sum, letting

Z,=Z(u,) and Du = u,4+1- u, for al ¢, we can rewrite Eq. 2.17 as
s
Y(X)= a f(x - u,)Z,Du. (2.18)
Making the change k = 7 - i in theindex of summation of EqQ. 2.18 gives
¥
Y(%)= & f(X - Ugi)Zysi Du. (2.19)
k=-¥
Now assuming X; = iDx, u;= jDu and Dx=Du for all integersi and j, Eq. 2.19 becomes

Y(x)= & f(iDx- (k+i)DX)Zy DX
k=-¥

y (2.20)
= & f(- kDX)Z,,Dx
k=-¥
If we make the change of variable k = 7 + i in Eq. 2.18, we can show that
¥
Y(x)= a f(kDx)Z;_,Dx. (2.21)

Note that Eq. 2.9 implies Y(X) =f *Z, i.e., y; is the convolution of function f and the

random field Z. In fact, we can also prove that Y(x) = f ' *Z = 7*f T is a Gaussian random

15



field with mean 0 and covariance equal to f ' * f. The discrete approximation for Y(x) in

this case could be obtained by the same procedure and given by

Y(x)= & f(KDX)Z ., Dx. (2.22)
=¥

Therefore, we can use any one of the preceding three equations to generate the discrete
random field, Y(x). However, Eq. 2.22 will be used for the results presented in this work.

Now we choose Z, i=12,..., to be independent identically distributed random
variables with zero mean and variance s éx. Clearly, the expectation of Y(X) is zero. The

covariance of the random field Y; = Y(x) given by Eq. 2.22 is
C(i) =E[Y(x)Y (X))
é 3 g u
=Ez & f(kDX)Z;, Dx & f(IDX)Z;, . Dx; (2.23)
@(:-¥ |=-¥ H
¥
& £ (kDX) T (IDX)E(Z; 14 Zi 1 )(DX) .
I=-¥%

I Qow

k=-¥

Making the change of summation index n = |+j gives

C(j) =EY (%)Y ()]

v ¥ _ , (2.24)
= & & f[kDx]f[(n- J)DX]E(Z;,Zi+n)(DX)".
k=-¥ n=-¥
Since E[Zi+kZi+n] =0, if Nt kand E[Z+kZi+n] =S 3, if n =k, Eq. 2.24 reduces to
C(J) = E[Y (%)Y (%)
(2.25)

¥
= & fIkDXF[(k- j)DX]s & (Dx)*.
k=-¥
The variance denoted by Var[Y;i] is obtained by setting j=0 and is given by

Var[Y.]=C(0) = & f (kD) f (kDx)s 2 (Dx)>. (2.26)
k=-¥
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As Dx will be determined by the grid discretization, it seems clear that we should choose
s 2. so that the variance given by Eq. 2.26 represents the discrete approximation of the

variance of the continuous random field Y(X).

Denote the variance of Y(x) by Var[Y(X)], from Eqg. 2.8, we have,
¥
Var[Y(x)] =C(0) = of (u) f(u)du. (2.27)
-¥

Using the trapezoidal rule approximation as in Eqg. 2.17 to approximate Eq. 2.27 and

setting Du = Dx give

Var[Y(x )] = & f(u,)f(u)Du= & f(kDu)f (kDu)Du
=¥ k=¥ (2.28)

f (KDx) f (KDX)Dx.
¥

=~

o

k

Comparing Egs. 2.28 and 2.26, we see that
Var[Y;]=(s pDx)Var[Y (%)], (2.29)
where s 3, is the variance of all the Z; variables. Thus, we should choose the variance of

the Z, as equal to 1/Dx, i.e., s 3. = 1/Dx in order to ensure that Var[y(x)]=Var[yi].

From this point on, we assume that the discrete random field Z is a vector of
independent realizations of a normal random variable with mean 0 and variance 1/Dx. We
denote these discrete values of Z(x) as z. The values of a random field Y(x) of interest,
e.g., S(X), S(x), W(X) or AR(X), can be calculated by a discrete form of Eqg. 2.9, i.e., EQ.

2.22, which is repeated here as

+¥
y. = &z, f (KDX)Dx, (2.30)
k=-¥

17



where Dx is the grid block size in the x-direction. The value of z corresponding to k=0, is
assigned to the same point as the value y;. This method is useful only when the weights,
f(kDx), (also known as filter coefficients since the summation in Eq. 2.30 can be
considered as a numerical filter), reduce rapidly to zero as |k| increases so that the sum
can be taken over aredatively small interval, say k~[-20,20]. For a Gaussian covariance
function in one dimension,

C(r)=s expi %Z (2.31)

Q

wherer = [x-x[[Irepresents the distance between xand x[] f (r) iscalculated as

0.25 2
£(r) = sg 49 ot 2—2
a’p o

&

For the problem considered here, s is the standard deviation of the correlated random

O
T, (2.32)
%]

variables of interest; Y(x), r represents the distance between two points of the simulation
grid in the x-direction and a is proportional to the correlation length of the random field,
i.e., represents the a terms in Eqs. 2.3 and 2.4. In order to gain some knowledge about
how many terms must be summed in Eq. 2.30 to approximate Yy, accurately, the

exponential part of Eq. 2.32 is plotted in Fig. 2.4 for different values of Dx/a. In Fig. 2.4,

we have plotted expl— 2(kDx/ a) 2] versus k. Note that we may approximate Eq. 2.30 by

y,= a z,. f(kDx)Dx, (2.33)
k=-k

where Kma=1.5(a/Dx).
Fig. 2.5 presents arealization of the discrete random field AR(i) generated by using

Eq. 2.33 and the corresponding normal field Z for i=1,2,...,40.
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k

Fig. 2.4 — Exponentia functions for different Dx/a values.
In Fig. 2.5, Dx =10 ft was used. Therefore, E(Z) = 0.0, and Var[Z] = 1/Dx = 0.1.
The expectation and variance of the AR are 1.5 and 0.025. The sample mean and variance
of they; generated from Eq. 2.33 are 1.456 and 0.0241, respectively, which are very close

to the true values.

2.0 1.0

TR . A
SRR I i
AT

1.2 g -0.6

Z

1.0 . . . . . . . 1.0

Fig. 2.5 — A redization of AR(X) (triangles) and Z(x) (diamonds).



The values of the function f(kDx) that correspond to Fig. 2.5 are shown in Fig. 2.6
for k = -20~20. As we can see, f(kDx ) decays rapidly as |k| increases. When |k|>9, f(kDx)
is essentially zero. Note aso that the function f(kDx) is symmetric in this case.

For other commonly used covariance functions, e.g., spherical and exponential

functions, the expressions for f(r)'s are given in Refs. [13], [14] and [19].

0.030
0.025 1
0.020 1
f(kDX ) o.015 |
0.010 1

0.005 ~

0.000
-20 -15 -10 -5 0 5 10 15 20

k
Fig. 2.6 — The function f(kDx ) corresponding to Fig. 2.5.

Fig. 2.7 shows a redization of a 3D single channel on a simulation grid. The
dimension of the grid is 40" 25" 10 and each gridblock is 10ft © 10ft ~ 10ft. In generating
this realization, the following values of the model parameters were used.

Principal direction line: 'y, =100.0ft, Z, = 50.0ft, S,, = 0.05, §,, = 0.00,
Sy =10, =10,s 7 =0.00Ls g, =0.001.

Horizontal and vertical sinuosity of the centerline: s § =676.0, s 5 = 9.0,
ag =ag, =80.0ft.

Width: m, =80.0ft, s 2 =9.0, a, =80.0ft,

Aspect ratio: mys =2.0, s 55 =0.025, a,, =80.0ft.

20



In Fig. 2.7, the boundaries of the channel are displayed with different colors. As

discussed later, the colors are associated with the values of gridblock permeabilities.

Fig. 2.7 — A redlization of asingle 3D channel on the simulation grid 40" 25" 10.
Only six vertical gridblocks (z= 0-5) are shown. The scales on the
axes are gridblock numbers starting from O.
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CHAPTER 111
SIMULATION BY RANDOMIZED MAXIMUM

LIKELIHOOD METHOD

In the previous chapter, we discussed the four random variables which define the
principa direction line, and the four one-dimensiona correlated Gaussian random fields
that define the geometric parameters for a channel. In this chapter, we first define the
prior probability density function (pdf) for the channel model. Secondly, we consider the
case where the set of model parameters includes the permeability and porosity inside and
outside the channel. Thirdly, we apply Bayes theorem to obtain the a posteriori pdf
conditioned to data. The data can include both pressure data and the channel thickness
and top depth observed at the location of awell. Finally, we discuss the sampling of the a
posteriori pdf using the randomized maximum likelihood method. Each realization
generated by this procedure requires the minimization of an objective function. For the
application presented here, a modified Levenberg-Marquardt algorithm was used to

perform the minimization.

3.1 ThePrior pdf

For the stochastic channel model introduced in the first chapter, the vector of model

parametersis m = mg where

Mg =[Y0:1Z0:Syy 1SS Singr S Sung s Whoeeo Wy 0 ARV, ARNX]T , (31
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where we have used the subscript G to denote geometric parameters and Ny is the number
of simulation gridblocks in the x-direction. Recall the first four entries in mg represent the
four random variables which describe the principal direction line, whereas, S,, S,, W and
AR are modeled as one-dimensional stationary, correlated random fields which represent,
respectively, horizontal sinuosity, vertical sinuosity, width and aspect ratio. Note that mg
is a4Nx + 4 dimensional column vector. The expectations (means) and covariances of
these random variables and fields were specified in the preceding chapter. We let mg prior

denote the vector of prior means.

We define the 4° 4 diagonal matrix C, by

A 2
Yo

(3.2)

SZ

Sxz

e
1
CWD>CD>CD>CD>CD>@
(72}
o
(72}
O N
[SoRp eny anl en any and

i.e., C, isthe covariance matrix for the principal direction line.

Let Cg , Cg,, Cwand Car, respectively, define the Ni” Ny covariance matrix for S,

S, Wand AR. Then, the prior covariance matrix for the geometric parameters is a block

diagonal matrix given by

~

O
v

(3.3)

@)
o
cooooco

$

Ve

@D D> D D> D> D> (?3

CAR

(e

In general, we will let Cy denote the overall prior covariance matrix for the model
parameters. If the only model parameters are the ones describing the channel geometry,

then Cy = Cg, M= Mg, Myrior = Mg prior @Nd the prior pdf is
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1 _ .
fM (m) = cexpi- _(m' mprior)T CMl(m' mprior)LJ
I 2 %
- ) (3.4
= CeXp%l' E(mG - mG,prior)T C(-Bl(mG - mG,prior)gi
where c is the normalizing constant.

However, we may also wish to consider the rock properties interior and exterior to a
channel as random variables. In this case, we add four random variables, k. (channel
permeability, i.e., the permeability in the channel interior), k.. (permeability of non-
channel facies, or simply permeability outside the channel), j - (channel porosity) and j
(porosity of non-channel facies).

Letting
ml’ :[kC’ knc’j C’j nc]T’ (35)
our vector of model parametersis
3T U
m=g °4 (3.6)
em

In this work, we model each of the four variables in m as Gaussian with prescribed
means and variances. For simplicity, we assume these variables are uncorrelated, so the

associated covariance matrix, Cg, is diagond, i.e.,

~N

o

2

jFIC

S

@)
Py
1
™ D D D D R
7
:z—

u
u
) - (3.7)
u
¢}

Let m prior denote the vector of prior means for these four variables. Our combined

vector of the prior mean is
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ang yrior U
mprior = em IOI'. > l;} (38)
e''r,prior 4
and the prior covariance matrix is
€ Ou
Cu =é5 o (3.9)
e rRU
where throughout submatrices denoted by O denote null matrices.
The prior probability density function still has the form
£ (m) = cexpl - =(m- m.. )T CAm- m,, )Y (3.10)
M = p% 2 prior M prior % :

where c is the normalizing constant.

3.2 A Posteriori Probability Density Function

Here, dops, denotes the vector of observed data that will be used as conditioning data.
This includes pressure data, plus the observed channel thickness and depth of the top of
channel at the well, assuming the channel is penetrated by the well. In all cases

considered in this work, we assume that the channel is penetrated by a single well. We let
dj.denote the vector of observed pressure data that will be used to condition an
unconditional realization of a channel and dP = gp(m) denote the relation between
predicted data and model parameters. Here d P denotes predicted data corresponding to
dhe; i.e, if misthe true model and measurementsin df; . are exact, then d” =d}.

The diagonal matrix Cp, , denotes the pressure data covariance matrix. We assume

that pressure measurement errors can be modeled as independent, identically distributed

Gaussian random variables with mean zero and variance s § .
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We let Hqps denote the observed thickness of the channel at the well location and
Zonst represent the observed value of z at the top of the channel at a well location. We can
of course have several wells in the system in which case Hqps represents a vector of
observed channel thicknesses and zZyns; represents a vector of observed depths of channel
tops.

We assume the measurement errors associated with the vector Hqps are independent,
identically distributed Gaussian random variables with mean zero and variance s jt . We
let Cp denote the associated diagonal covariance matrix with all diagonal entries equal to
S jt . The measurement errors of zps; are modeled in a similar way with Cp ; representing

the diagona data covariance matrix. The overall data covariance matrix is then the

diagonal matrix
Cpp, 0 O
Cob=g 0 Cp, O g. (3.11)
§0 0 Cp,H

The vector dops represents the vector which contains all observed data. In the most

genera case,

AP
gdobslil

e u
dobs = éH obs(* (3.12)
gzobs,t H

We let d be the corresponding vector of predicted data and let d = g(m) represent the

relation between the model m and predicted data, i.e.,

&dP U
H

d= (3.13)

z

CDg> CIES_CD
oo o
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If the observed data at a single channel are channel thickness Hops and top depth zps; Of

the channel, the following relations apply:

W(Xw)

H _ -
d —gH(m)—AR(XW),

(3.14)

2 _ _ W(xy)
d“=g,(m) =z, +x,S,, + 2AR(x,) (3.15)

where x,, represents the x coordinate of the well. In the multiple well case, d ™ and d *
represent the vector corresponding to Hops and Zopst, respectively.

From Bayes theorem, the a posteriori pdf (conditional to observed data), is given by

— 1_ E _ ) Tr~-1 _ ) _ 1 _ Tr~-1 _ U
p (m) - cexp% 2 (m mprlor) CM (m mprlor) 2 (d dobs) CD (d dobs)% (316)
= cexp{- O(m)},

where
1 . 1 _
O(m) = E(m' mprior)T CMl(m' mprior) +§(d - dobs)T CDl(d - dobs) : (3-17)

The model my which minimizes O(m), is the maximum a posteriori estimate. However,
as in previous work done at the University of Tulsa [8], [21] and [23], we wish to
generate a suite of redlizations of the model by sampling CO(m). We use a method
discussed in Kitanidis [15], Oliver et a. [18] and Reynolds et a. [21]. We refer to this
procedure as the randomized maximum likelihood method. In this procedure, an
individual redlization is obtained as follows: first, sample the prior pdf for m to calculate
an unconditional realization my; second, generate an unconditional realization dy of the

data; then minimize

O(m) = %(m' muc)T CMl(m' muc) +%(d - duc)T CI-Dl(d - duc) ’ (318)
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to obtain the conditional realization m.
The procedure is repeated to generate the specified number of conditional
realizations. Unless d is linearly related to the model, this generates only an approximate

sampling of the a posteriori pdf.

3.3 Gauss-Newton Algorithm

The objective function, Eq. 3.17, can be minimized by the Gauss-Newton a gorithm.

The gradient of the objective function O(m) in Eq. 3.17 is given by

RO(M) = Cy (M- Myyior) +{Ndgps - 9T JCo s - G(M],  (3.19)

o, (M) To,(m) oy, (M)d

G .

¢ Tm fimy im, =+

. . ¢g,(m) g, (m) .
where Nidgs, - g(m)]" =-Ng(m)]" =-& qm,  qm, L G

(M) Top(m)  To, (M)

EMm, Tmy  Tmy 5

where g; isthe i component of the Ng-dimensional vector-valued function g(m). Here, Ny
is the total number of conditioning data.

If we define the matrix in Eq. 3.20 as G', then we have,

N[dgps - g(M)]" =-GT, (3.21)
efg(m  fom  fg,(m) o
¢ Tm, m, imy, =
¢ 19,(m) 9, (m) . =
and G:g Tm im, : (3.22)
Moy (M) Tong (M) gy, (M)
g m, A



The matrix G is referred to as the sengitivity matrix. The efficient computation of this

matrix is crucial. We can rewrite Eg. 3.19 intermsof G as
NO(m) = Cy' (M- Mg ) + G Cp [g(M) - dos] (3.23)
The Hessian matrix of O(m) is given by
H(m) = |(Ro(m)T|= it +GTcplG + (NGT )it (o(m) - dyg) - (3:24)
However, in the Gauss-Newton algorithm, this matrix is approximated by
H(m) @, +G'C.'G. (3.25)
Since Cy and Cp are positive definite, this approximate Hessian matrix is also positive

definite.

The Gauss-Newton algorithm solves

H (m*)dmX = - NO(m"), (3.26)

for dm and sets
m<*t = m* + madm®, (3.27)
where k stands for the iteration index and ny is the step size that is determined by aline
search or restricted-step algorithm. In our work, we actually use a modified Levenberg-
Marquardt algorithm to minimize the objective function. This eliminates the necessity to
perform a line search. This algorithm has proved to be a very effective way to solve

nonlinear problems. Another advantage of the agorithm is that it often enhances the

stability of the approximated Hessian matrix.

3.4 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm can be thought of as a modification of the

Gauss-Newton algorithm. Assume that in the Gauss-Newton agorithm, we use Myior 8s
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an initial guess of the model parameters which gives a large pressure data mismatch. In
this case, we often obtain a rough model m' at the first iteration. Once a model “estimate”
becomes too rough, it is difficult to correct it at later iterations. Moreover, in such
situations, the Gauss-Newton method often converges to alocal minimum which gives an
unacceptable match of the data. We wish to avoid this problem. Borrowing the idea of the
Levenberg-Marquardt algorithm, we can either “increase” the data variances so as to
reduce the effect of huge data mismatch or modify the Gauss-Newton procedure. We use
amodified Levenberg-Marquardt algorithm which is written as

{a+a)c;t +aTeyielm t =- citmk - mye)

o (3.28)
-G CD (g(m)' dobs)’

where a is a positive number. Note by making a sufficient large, we can make |[dm 2|

small and thus control the change in model parameters over an iteration. This procedure
tends to result in smoother change in model parameters and appears to reduce the chance
of becoming trapped in alocal minimum which gives a unacceptable data mismatch.

To obtain an expression for dm***, we divide Eq. 3.28 by (1+a) which gives

11, 1 avma-l0 1 1k
Cy+——G CyGydm™ =——1 -Cy,y(m" -m_. ) -
% M 1ta D %d 1+a{ m ( prlor) (3.29)
GTCoH(g(M) - doe) }
Letting Cpm = (1+a )Cp, it follows that
-1 1 -1
Com =722 Co'- (3.30)
Substituting Eg. 3.30 into Eq. 3.29, we have,
-1 TH~-1 k+1 _ 1 -1k
(it +aTcal o = - —{ il - myig)+ -

GTCbkA (1+a)(g(m) - dobs) }
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From a matrix inverse lemma [24]
[cit+6cik, 6] =cy - CuGT [Cow +GCuGT| 'GCy, (3.32)
so that

- - -1
i +GTCaky G Tt M - M)
-1
:{CM - Cy GT[CDM +GCMGT] GC,, }qﬂl(mk - Myior) (3.33)
-1
:(mk - mprior)' CMGT [CDM +GCM GT] G(mk - mprior)-

From basic matrix algebra, the following matrix identity can be established,

-1

[ch +GTC‘D16]'lGTC‘Dl =C,G' [CD +GC,, GT] (3.34)

Therefore,

) 4 1 )
o3t +aTCal 6] 6TCa () (@ - d) (33

=(1+a)Cy G [Con +GC,GT [ (a(m) - d).
Substituting Eqg. 3.33 and 3.35into 3.31 gives

k
k+l _ _ m- - mprior +

(1+a) (3.36)

1 -1
Tea O G'|c,y +GCy, GT] {G(mk - My ) - (1+a)(g(m) - dobs)}-

dm

Replacing Cpm by (1+a)Cp, it follows,

k
k+l _ _ m- - mprior +

(1+a)

dm

N K (3.37)
Cy, G’ (1+a)C, +GC G’ 1 (m” -
M D M % 1

prior) (9(m) - dObS)%

The detailed Levenberg-Marquardt algorithm for channel inversion is given below.
1. k= 0: set ap to be a big number, say 10000; form myio, NP, and the covariance

matrices, Cp and Cy. In al the case studies of this work, we wish to generate
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1)

realizations from the a posteriori pdf by the randomized maximum likelihood method.
Therefore, we replace myior and dops in EQ. 3.37 by an unconditional realization of
them, respectively, i.e., My, dyc.
k = k+1: calculate pressure response gp(mk) by using a reservoir simulator; evauate
objective function O, = O(m¥) according to Eq. 3.17 and calculate sensitivity matrix
Gk
Evaluate dm“* from Eq. 3.37. Then propose the modd by m** = m +dm“* and
calculate Oy, = O(mY).
Check to see if O(MY) < O(m). If so, accept m*?, and decrease a, by a factor of 10,
i.e., ax+1 = aw/10, then check the convergence criteria. If one of them is satisfied, then
stop iterating; otherwise, go to step 2 for another iteration.
If it is not satisfied, increase ay by afactor of 10, i.e., ax=ax 10, then go to step 3.

A few remarks regarding this algorithm follow.
We use three convergence criteria to stop the iteration. The first one is the data error

variance. If the estimated pressure data error variance is less than the specified data

variance s § ;. i.e, if

1 N
N—a”[gp(mk)- do 12 £s2 ), (3.38)

_ obs,i
pl =1

then we assume that the algorithm has converged. Another convergence criterion is

that if the change in the objective function over an iteration is negligible, i.e.,

|Ok+1 - C)k|

<e, 3.39
o, +10" (3:39)

where eisavery small number, say 10°.
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2)

3)

If the number of iterations exceeds the specified maximum number of iterations
without satisfying either convergence criteria, the algorithm is also forced to stop
even though it has not converged. Typically, we specify the maximum number of
iterations allowed as 10.

The calculated pressure response gp(mf) is obtained by a 3D single-phase flow
simulator which is discussed in He [11]. The porosity and permeability fields for flow
simulation are provided by the stochastic channel generator based on the model
parameters. We use a volume average to calculate the porosity and permeability of a
gridblock intersected by one or more channel boundaries.

Modification of the a value is done within each iteration (if necessary) and the
updated value will be used for the next iteration. Most of the researchers have
recommended using a smaller starting value of a, say 0.001. We use alarger starting
value of a such that the model change is smoother from the beginning of the

algorithm.
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CHAPTER IV

COMPUTATION OF SENSITIVITY COEFFICIENTS

As described in the last two chapters, we wish to generate realizations of the channel
model parameters, which honor the well test pressure data, channel thickness and top
depth observed at well locations. We do this by minimizing an appropriate objective
function by a modified Levenberg-Marquardt algorithm, which essentially interpolates
between the steepest descent and Gauss-Newton algorithms, based on some practical
considerations. The implementation of this algorithm requires only computation of the
objective function O(m) and its gradient and Hessian, for both of which the sensitivity
matrix G is required. As the sengitivity of hard data to model parameters can be easily
calculated directly, we consider the case where d = g(m) represented only pressure data.

Physically speaking, each entry of G, i.e., (T1gi(m)/m), measures the change of pressure

pi = gi(m) due to a small perturbation of model parameter my. For example, TPs.

m,
represents how the calculated pressure corresponding to the 3 measured pressure Popss
changes with the 2™ model parameter m,. Recall that m, represents the z coordinate of the
starting point of the principal direction line, i.e., z,, according to the ordering of model
parameters. Efficient calculation of the G matrix is the key element of the entire inversion

process.



It is well known that the pressure response of a reservoir is a function of reservoir
properties, fluid properties and production time. The mathematical model for this process
isgoverned by a set of differential equations and usually solved by numerical simulation.

The most important reservoir properties are the porosity and permeability fields.
Since we use a numerical reservoir ssimulator for flow simulation, we need the porosity
and permeability values in each gridblock of the reservoir grid. Much relevant work [11],
[12], [18] and [21], has focused on how to find the maximum a posteriori estimate or
redlizations of the porosity and permeability distribution. In the channel inversion
problem however, the model parameters aso include the random variables that describe
the geometry of the 3D channel. The porosity and permeability fields are intermediate
variables that convey the information in channel model parameters to the pressure
response. It is natural to apply the chain rule to compute derivatives of pressure with
respect to channel parameters. In this chapter, we discuss how to calculate porosity and
permeability distributions based on a set of channel parameters and present the procedure

for calculating sensitivity coefficients.

4.1 Computation of Porosity and Permeability Fields

As described in Chapter I, a 3D channel is modeled by four normal random
variables and four Gaussian random fields. For convenience, we have taken the x-
direction as the main direction of the channel. Therefore, the four Gaussian random fields
are all random functions of the x-coordinate. The cross-section of the channel at any
value of X, is rectangular. But cross-sectional area may vary with x. Fig. 4.1 shows an y-z
cross-section of the channel on a reservoir grid at a fixed value of x. It should be noted

that the boundaries of the channel do not necessarily coincide with the grid lines of the
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reservoir grid. If the boundaries are between the grid lines, part of the corresponding
gridblocks are within the channel and part of them are outside the channel. We need a
way to handle these gridblocks in order to distribute porosity and permeability fields on
the entire grid. To simplify notation, let us denote the boundaries of the channel by Ti(X)

(top boundary), Bm(X) (bottom boundary), Ln(x) (left boundary) and Rn(x) (right

boundary) as shown in Fig. 4.1.

N
<

Tm(®) Pt.(x)
~ v_
TR P B B e
O I 5 55 s o s LYY
*
Bm(x) Pb(X)

Fig. 4.1 — A cross-section of agridded reservoir shows a cross-section
of the channel and its boundaries.

These boundaries can be expressed as functions of the model parameters as follows.

T.(X) =2z, + x5, +S,(x) +(0.5V(x)/ AR(X)), (4.1)
B, (X) =2, +x5s,, +S,(x) - (0.5V(x)/ AR(x)), (4.2)
L (X) = Yo + X S + S, (X) - 0.5W(X), (4.3)
Rn(X) = Yo + XS + S (X) + 0.5W(x). (4.4)

Along each boundary and for a given x, the proportions of the gridblocks inside the
channel are similar and can be determined very easily given the values of the boundary

variables and the size of the grid blocks in each direction. Denote Py(x) and Py(X) as the
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length of the channel interior in the top and bottom boundary gridblocks, respectively.
Similarly denote Pi(x) and P,(x) as the length of the channel interior within the left and
right boundary gridblocks, asillustrated in Fig. 4.1.
Pi(X), Po(X), Pi(X) and P,(X) are very easy to compute. For example, P(x) can be
calculated by
P (x)=T,(x)/Dz- int[T,,(x)/ D], (4.5)
where int represents the operation of taking the integer part.

Assume that we can use the volume-weighted average to calculate the porosity and
permeability for all the gridblocks of the channel boundaries. For example, if the total
volume of a boundary gridblock isV and the volumes of the parts of the gridblock inside
and outside the channel are V; and V,, respectively, then the porosity j and permeability k

of this gridblock are calculated by,

V.V
J :VJ c +VOJ nc? (46)
=1k +\\//—°km, (4.7)

wherej ¢, Ke, J nc @and ke are the porosity and permeability inside and outside the channel,

respectively. Determination of V; and V, for a boundary gridblock is straightforward if

Pi(X), Po(X), Pi(X) and P;(X) are known. Fig. 4.2 shows a 3D gridblock on the bottom

boundary of the channel. If this block is not on the corners, V; and V, for this block can be
calculated as follows:

V, =Dx" Dy” Ry(x), (4.8)

Vo =Dx" Dy (Dz- Ry(%). (49)

For the gridblock on the lower left corner, we will have,
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V, =Dx" R(x)" R, (), (4.10)
V, =Dx" [DyDz- B (x)P,(X)] - (4.11)

We can calculate V; and V, for al the boundary gridblocks in the same way as above.

A 1 Po(X)

v /Dx

Dy

Fig. 4.2 — A 3D gridblock on the bottom boundary of the channel, Dx, Dy and Dz
are the gridblock size for this particular block in the x, y and z directions.

Dz

A
\ 4

For the porosity and permeability inside and out of the channel, we either use specified
constant values or specify prior Gaussian distributions for porosity and permeability.

Although thisis an ad hoc treatment, it turns out that it is very effective. One might
guestion the validity of this treatment, especially for permeability, which does not exhibit
any volume additive property in nature. One could, of course, use another procedure such
as geometric average to compute permeability for boundary gridblocks. Sinceit is not the
major purpose of this study, we will assume that the volume-weighted average is
appropriate.

In Fig. 2.7 of Chapter II, we note that the channel boundaries appear as different
colors, which actually reflects the permeability values determined by the above volume-

weighted averages along the boundaries. In that case, we used a constant value of 100md
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for channel permeability and a constant permeability value of 1md for the facies out of

the channdl.

4.2 Computation of Sensitivities

For channel inversion, the main sensitivity coefficients of interest are the derivatives

of the well-test pressure data with respect to the channel parameters, i.e,

fp T fp T 190 T o TP ;_15 N Yad the derivative with
o T2 Tsy T 198, 1S, W AR b

respect to the rock properties. If we aso condition the observed channel thickness and top
depth at well locations, then sensitivities include the derivative of the predicted channel
thickness and top depth at wells with respect to other model parameters (width and aspect
ratio, etc.). Since we have no way to establish a direct relationship between pressure
response obtained in well testing and the channel parameters, we have to take advantage
of the porosity field F(m) and the permeability field K(m) induced from the channel
parameters as a two-stage bridge. On the first stage, we will connect our “input” model
parameters to the “output” pressure response, i.e., p(m) = p[K(m), F (m)] where mis the
model parameter vector. In the second stage, we use the chain rule to construct the
desired sengitivities.

Here, we assume that the data consist of only pressure data. If p; is the i" observed
pressure data and m, is the j"™" model parameter, then the entry in the i row and j™ column

of the sensitivity matrix G is given by

_ b :gbqpi Tk, + o i b9

= 7 (4.12)
im;  b=gfk, Tmy 9§, My

]
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where Ny is the number of ssimulation gridblocks, and k, and j p, respectively, denote the
permeability and porosity in the b™ gridblock.
Letting K denote the vector of gridblock permeabilities, K=K(m), and F the vector

of gridblock porosities, F =F (m), then Eq. 4.12 can be written as

~ K ~ F
G :[NKpi]T1T_+[NF pi]Tﬂ_- (4.13)

m; ‘ﬂmj

We let Tp/TK denote the N,” Ny matrix with i*" row given by [N pl’, Tp/MF denote
the N,” Np, matrix with i" row given by [Nr p]". Let TK/Tm denote the Ny” M matrix with
j™ column given by TK/fm; and let qF /fim denote the Np," M matrix with j™ column given
by fIF /9im, then with this notation, it follows from Eq. 4.13 that the sensitivity coefficient
matrix associated with pressure datais given by

g=Tp _Tp 1K  Tp IF (4.14)

fm IK Im  qF Im’

It seems that these matrices may require a large amount of computer memory if the
number of simulation gridblocks is large. For example, if we use a 40" 25" 10 grid,
Nb=10000, and M=4N,+4=164, so (TK/m) and (fF/fm) are both 10000" 164 matrices.
We will see in the next section, however, most of the entries of these matrices are zero so

that we do not need to store them.

4.2.1 Computation of Sensitivities of Pressure to Porosity and Permeability

In this study, the sensitivities of observed pressure with respect to porosity and
permeability, i.e., p/TK and Yp/F, are calculated with the three-dimensional extension
of the Carter et a. method described by He [11]. Since the procedure utilizes a unit

source pressure response as well as its spatial and time derivatives, careful selection of
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the time step for simulation and sensitivity calculation is needed to avoid negative
sensitivity values induced by numerical truncation error. This may occur because the unit
source pressure drop might be too small to make meaningful calculations of the spatial
and time derivatives. Detailed description about this method and its numerical

implementation are given in [11].

4.2.2 General Formula for {K/{m and F /m

The matrices, K/ fm and fF /fim, by definition, contain the sensitivities of gridblock
permeability and porosity to the model parametersin m. The definition of the prior model
for channel geometry provides us an explicit relationship between K(m), F (m) and the
model parameter vector m, through the definitions of the boundaries. An interesting
phenomenon is that if my is one of the parameters describing the channel, then Tky/imy = 0
unless the gridblock associated with ky contains a channel boundary. This observation
provides a straightforward way to calculate the desired sensitivities. In fact, if we define
the channel boundaries Tr(X), Bn(X), Lm(X) and Ry(X) in terms of the model parameters,
which was done in the last chapter, then we need only to know how the porosity and
permeability near the channel boundaries change as these boundaries vary in space, i.e.,
TKMTm, TKABm, TK/MLm, KRy, F/MTm, TF/Bm, TF/Ln and §F /YR, because
analytical evauation of the derivatives of Ti(X), Bm(X), Lm(X) and Ry(X) with respect to
model parametersis straightforward. Here, T, Br, Lm and Ry, respectively, represent the
vectors of top, bottom, left and right boundary of the channel with the dimension equal to
the number of gridblocks in the x-direction, e.g., Tm={Tm, 1I=1,2,..., Ny}.

In order to keep the equations neat, we will still use matrix notation. Further

application of the chain rule gives,
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TK _ K 1T, , TK 1B, | K TL, , 1K IR,
m 97, Im I8, Im 9L, Im IR, Im’

(4.15)

IF _IF T, TF 1B, , TF L, IF TR,

and = .
fm 91, Im 9B, fm 9L, Im IR, Im

(4.16)

Substituting Egs. 4.15 and 4.16 into 4.14 will finally give the sensitivity matrix G that is
required for channel inversion.
Asasummary, Tables4.1 and 4.2 list the dimensions of al the vectors and matrices

defined so far.

4.2.3 Calculation of Boundary Sensitivities to Model Parameters

Since we have aready defined the relationships between the boundaries of the
channdl, i.e., Tm(X), Bm(X), Lm(X) and Ry(X), and the model parametersin Egs. 4.1 through
44, it is very smple to calculate the derivatives of Ty(X), Bm(X), Lm(X) and Ry(x) with
respect to the model parameters.

Let us record again the expressions for T(X), Bm(X), Lm(X) and Ryn(X) given by Eqgs

4.1 through 4.4.
T.(X) =2z, + x5, +S,(x) +(0.5W(x)/ AR(X)), (4.17)
B (X) =25+ xS, +S,(X) - (0.5V(x)/ AR(x)), (4.18)
Ln(X) = Yo + X Sy + S, (X) - 0.5W(x), (4.19)
Rn(X) = Yo + XS + S (X) + 0.5W(x). (4.20)

Recdll that T represents the top boundary of the channel at gridblock i in the x-
direction and W is the channel width of the gridblock j in the x-direction. x is the value
of the x-coordinate of gridblock i in the x-direction.

The derivatives of these boundaries can be readily obtained as follows:

42



Table 4.1 Dimensions of the vectors

Vector Dimension
Model parameters, mand Myior M, M
Observed Pressure, p=pobs Np
Observed Thickness, Hops Nr
Centerline Sinuosities, S, and S, Ny, Ny
Channel Width, W Nx
Channel Aspect ratio, AR Ny
Channel Boundaries, T, Bm Ny, Nx
Channel Boundaries, Lm, Ry Ny, Ny
Porosity field, F Np
Permeability field, K Np

Table 4.2 Dimensions of the Matrices

Matrix Dimension
Data Covariance Matrix, Cp Ng Ng
Model Covariance Matrix, Cu M M
Sengitivity Matrix, G Ng M
/K, Tp/F Na™ No
TK/qIm, §IF /fIm Ny M
KT, TIKABm, TK/AILm, K/ R, Nb~ Nx
TF T, IF /9B, TF /9ILm,TF /R Nb~ Nx
T/ I, 1B/ Tm, 1L o/ M, TR/ Tm N M




1-I—I—mi - O,

I,

ooy Wi _ o Mo _ 0 fori=12,.

o

Fori, j=1,2, ..., Ny

wherei and | are both indi

T2 Tsy, TS

1]Tmi

—M =0:

1S

ﬂTmi _11 if J:|

1S, 10 othervise’

T, _105/AR if j=i

w, % 0 otherwise

M. _1- 05N /AR? if j=i.
AR, {0 otherwise ’

ces of the gridblocks in the x-direction.

Similarly, we have, for the derivatives of By,

M5 =0, T =1, B =0, T =x fori=12
o Tz, fIs,y fIs,,
Fori, j=1,2, ..., Ny

ﬂBmi -
1S,
1B, _11 if j=i
1S, 10 otherwise’
1B, i-O05/AR  if j=i
w, 1 0 otherwise ’
1B,, _1 0.5V /AR? if j=i
AR 10 otherwise.

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)



Also for Ly and Ry, i1=1, 2, ..., Ny,

ﬂl—mi :l. ﬂl—mi - O, ﬂl—mi — Xia ﬂl—mi
o 1z, TIs,y TIs,,
Fori,j=1,2, ..., Ny
I, _11 if j=i
1S,y %O otherwise
ﬂLmi :O,
TS
Ly _1-05 if j=i
w, % 0 otherwise
ﬂl—mi
AR,

TR 9, R — g, IR :xi,.”ani =0 fori=212..,N,;

X1

o

Fori, j=1,2, ..., Ny

fIs,y fIsy.
Ry 11 if j=i
1S, 10 otherwise’
&:O
TSy
Ry _105  if j=i
w, “1 0 othervise
Rn _

=0

fori=12,...,

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)
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4.2.4 Derivatives of Permeability and Porosity with Respect to Channel Boundaries

These derivatives can be evaluated by a very ssmple procedure. In order to illustrate
this, we consider the calculation of K/{T,, only. IK/Bm, IK/Ln and K/ R, can be
obtained by a similar procedure to the one shown below. Fig 4.3 shows a cross-section of
achannel at thei™ gridblock in the x-direction. The top and bottom boundaries for “cross-
section i” are Ty and By which are located in the k™ and k;"™ gridblocks in the z
direction, respectively, as shown in Fig. 4.3. Assume that the boundaries L, and Ry are
located in j;™ and j,™ gridblocks in the y-direction and that there is an infinitesimal change

in Tmi, Say DT>0, as shown in in Fig. 4.3.

k J

Tmil Ptll

ksl | e

Pi e e Py

RITIRITR LUIRITIRN R SRt

D S = s s 5
Bri Phi

J'lT izT

Fig. 4.3 —lllustration of areservoir cross-section for K/ T, evaluation.

For smplicity, we assume the permeability inside the channel is k. (constant) and
the permeability out of the channel is also a constant and equal to k... Throughout, we
use the following convention of the gridblock ordering. Let i, j, and k denote the indices
for the x, y and z directions, respectively. We start with the first gridblock in the z

direction, i.e., k = 1(bottom layer). Then the y-direction index, j, increases from 1 to Ny.
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For each index |, the x-direction index increases from 1 to Nx. The same ordering is
repeated for k = 2,3,...,N,. Therefore, the single index b of any gridblock (i, j, K) in the
simulation grid can be computed as b = (k-1)NxNy+(j-1)Ny+i.

As shown in Table 4.2, K/ Ty is a Ny,” Nx matrix. Denote any entry of K/ T, by
Tko/NTric for b=1, 2,..., Np and i¢=1,2,...,Ny. Clearly, {ky/{Tni¢c iSzero unlessi =i¢and b
= (k- )NGNy+(j-1)NyHi. For b =(ka-L)N«Ny+(j-1)Nx+i, i¢=i and j1£ £ j,, we have three
different cases as explained below.

Case 1: if j is greater than j; and less than j,, the permeability change DK of the
gridblocks due to the change of top boundary T, denoted by DT, can be calculated

based on the volume-weighted average as described before, i.e.,

i DxDy(P; +DT) DxDy(Dz- P; - DT), U
DK = [ kC + knc
i DxDyDz DxDyDz g
- :rDXDyPti Kk, + DxDy(Dz - Pti)kncl;l (4.41)
i DxDyDz DxDyDz
_ (ke - ky)DT
0y
Therefore, the derivative Tky/{ Tric¢, by definition, is given by
Ko Jim ZK O EKe = Kae)DTO_ (Ke = Knc) (4.42)
Mic¢ oreceDT g prece DzDT g Dz
Case2:] =1,
DK :1 DxP; (P; +DT) DxP; (R; +DT)u, U

k +§ -
i DyDz © & " Doypz U =
i P. A P.C u
- :,DXP“ Pi kc+gl' DxB;i B Eknc, (4.43)
iDxDyDz ° & DxDyDzl{ "
— I:)Ii (kc - knc)DT.
DyDz
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ﬂkb - “mé@ 0 H 3EP|.(k nc)DT0
Myc brecdDT g DT® og DyDzDT B
:PIi (kc' nc).
DyDz

Case 3: | =], replacing Py with Py in EqQ. 4.44 gives,

ﬂkb — I:)ri (kc B knc)
Mic DyDz
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(4.44)

(4.45)

Evauation of K/{Bn can be done following the same procedure except that the

DB<0.0 is used because we have taken the positive z-direction from bottom to the top of

the reservoir grid, as shown in Fig. 4.4. Consequently, all the expressions of ky/ B¢ for

the same three cases as above should have opposite signs compared to Egs. 4.42, 4.44

and 4.45. We omit those derivations. Instead, we write the expressions for fky/Bnic by

substituting (kne-ke) for (Ke-knc) in the above equations.

k
T IDtil
ey | e v _
S ISP St oo
Pi ey e P
kl T

Fig. 4.4 - lllustration of areservoir cross-section for K/Bn, evaluation.
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For b= (ki-L)NyNy+(-1)Ny+i and i¢=1,

ks,
ﬂBmi ¢

N
p—s
A

Similarly, if bt (k1NN + (-L)Ny + i or i¢2 i, then Tko/TRuic= 0, Tky/TLmic = O;

0.0 if j<j,orj>j,;
(knc - kc)
Dz
A (Ko - ke)
DyDz
Bilkne - k)

DyDz

I J<J<lz

if j=1],.

otherwise, if b = (k-1)N«Ny +(j1-1)Nx+i and i¢= i, then,

i

i

!
Tk _1
ﬂl-mi ¢ :
:

|

)

00 if k<k, or k>k,;

Also, if b= (k-1)NNy +(j2-1)Ny +i and i¢= i, then,

i

i

!
fky
ﬂRmi ¢ T
i

|

T

(e = Ke) i 1 <<k,

P (Kne - Ke) if K=k (4.47)
DyDz N

Rulk ko) iy oy,
DyDz ’
0.0 if k<k,ork>ky;

(Ke - Kpe) if k; <k<ky;

Ri(ke - Kne) o) (4.48)
DyDz v

Rilker k) iy oy,
DyDz 2

A few remarks on the above formula are given below.

1) Thegridblock size in each direction, i.e., Dx, Dy and Dz, are considered to be uniform

in the above derivations. If non-uniform gridblock sizes for each direction are used,

then Dy and Dz should be based on gridblock b in the above formula
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2)

3)

4)

Rather than use constant permeability both inside and out of the channel, we could
specify some permeability distribution such as normal permeability distribution. In
this case, the formulas for Tky/fTmis Tke/NBris TKe/TRmic and YKy/Lmic are still similar.
But the permeabilities ke and kn in all the above equations should be the
permeabilities for the gridblocks that correspond to the indicesb and i¢

Since we apply the volume-weighted average for both permeability and porosity
calculations for the boundary gridblocks, the expressions for the derivatives of
porosity with respect to the boundaries, i.e., F/Tm, F/Bm, F/fLnand TF /L,
can be obtained following exactly the same procedure and are identical to the
expressions for K/ Tm, TK/Bm, TK/Lyn and TK/Ly, with permeability replaced by
porosity. Specifically, we can just replace K, k; and k,c with F, j c and j ¢ in Egs.
4.42, 4.44 and 4.45 through 4.48 for the computation of F /Ty, YF /1Bm, YF /Lnmand
IF /qILm, where j ¢ and j . are the porosity values inside and outside the channel.
Again, we could specify some probability distribution for porosity.

If permeability and porosity both inside and outside of the channel are taken as model
parameters (unknowns), the sensitivity of gridblock permeability and porosity to
model parameters is also required. This will be discussed in Chapter V where an

exampleis given.

4.2.5 Derivatives of Channel Thickness with Respect to Model Parameters

Generally, the channel thickness and the top depth of the channel are also available

from core data or well logs. In addition to conditioning to the well-test pressure data, we

would condition the model to these observations. An effective way to condition to the

observed thickness at the well and to the top boundary of the channel is to include these
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observations with the pressures and incorporate them into the objective function as shown
below.

( obs © gH(m)) ( obs ~ gH (m))

(4.49)
+(Zobs,t - Zt(m)) ( obst Zt(m))

where Hops and Zopst represent the observed thickness and top depth of the channel. g.(m)

and z(m) are the calculated channel thickness and top and Cp, andCp ,are the

corresponding data covariances. It is necessary to calculate the sensitivity of g.(m), i.e,
the calculated channel thickness, to the model parameters. Instead of specifying channel
thickness as model parameters directly, we have specified aspect ratio AR(x), which is the

ratio of channa width to channd thickness. If we assume that the well is vertical, then

gx(m) can be calculated by
_ W(x)
9., (m) = e (4.50)
where, AR(X)=0 is prohibited. Calculation of §g.(m)/fmis as follows:
94 (M) _ Tgn (M) _ 0, (4.51)
my o
T9n (M) _ gy (m) _ 0, (4.52)
im, Yz,
94 (M) _ Tgn (M) _ 0, (4.53)
fim, TS,y
T9u (M) _ 79, (M) _ (4.54)
m, S
and for i=1,2,...,Ny,
T9n (M) _ 990 (M) _ 4 (4.55)

im, S¥
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T9u (M) _ figw (M) _ (4.56)
ﬂrni+4+NX ﬂSVI | |

19, (M) _ Mo, (M) _1—2 if i =iwel
gH - gH ::rm - (457)
M aion, W f 0 otherwise.

W e
T, (M) _ 10 (m) _1- 207 iF1 =il (4.58)
ﬂmi+4+3NX AR 1 0 otherwise

where iwell is the x-coordinate of the well.

When we evaluate these derivatives, we need to know whether the well penetrates
the channel or not, especialy if we have multiple wells, because the above computation
only makes sense when the channel is fully penetrated by the well.

The derivatives of z(m) with respect to the model parameters have been obtained in
the last section (since z(m)=Ty(x)). Certainly, we need only to evaluate z(m)/fm at the
well locations for this purpose.

Some examples of the sensitivity coefficients will be given in the next section. It
should be mentioned that although the evaluation of these sensitivities is extremely
simple and effective, intuitively, the dimensions of the matrices are very large if there are
a larger number of gridblocks. However, it is not necessary to store al components,
because most of the components are zero. For example, assume a 40" 25" 10 grid, then
K/ Tm and TF /9Ty, are Np” N = 10,000" 40 matrices. However, if the average width of
the channel is 15 gridblocks, we have only about 40" 15 nonzero values in K/T,, and

IF T We need only store these nonzero values and keep track of their locations.
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4.3 Examples of Sensitivity Coefficients

In this section, we present examples for all the sengitivities or derivatives developed
in last section. All the examples are based on a 40" 25" 10 grid. The channel parameters
used are those discussed previously. For the computation of sensitivities of pressure to
permeability and porosity fields using the method presented by He et al. [12], we need to
simulate the pressure responses for both the actual flowrate and unit flowrate cases.
Therefore, the fluid properties and production parameters are also required. A finite
difference numerical ssimulator for single-phase flow simulation [11] is used in this study.
Constant flowrate production in one well is considered, and the skin factor is zero. Table
4.3 lists the data used for the cases considered here. In all examples, we first generate a
true channel from our stochastic model. For cases where we use pressure data to
condition the model, we use synthetic pressure data obtained from our reservoir
simulator.

Table 4.3 — Parameters for flow simulation and computation of p/YK and p/TF

Fluid viscosity 3.0cp
Total compressibility 10* 1/psi
Initial pressure of the reservoir 3230.0 psi
Initial time step size 0.01 day
Maximum allowable time step 0.30 day
Production rate 500.0 bbl/day
Production duration 3.0 days
Well radius 0.3 feet
Well location iwell=20, jwell=6
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Fig. 4.5 shows the permeability distribution of the 5" layer cut from the true
reservoir. The black pixel indicates the well location (20,6) in this layer. In this case, we
assume that the well fully penetrates all the reservoir gridblocks in the vertical direction
and k. =100md and kn. =1md are used. We can see very clearly the shape of the channel.

Note in Fig. 4.5 that the width of the channel varies with the x-coordinate. Notice
also that the permeability values along the channel boundaries are changing (appear as
different colors) because we use volume-weighted averages between k. and kn;, which
depend on the proportion of the channel within the corresponding gridblocks as discussed

previoudly.

Fig. 4.5 — Permeability distribution of the 5" layer cut from the reservoir grid.
Based on the channel parameters and the calculated permeability and porosity fields,
the pressure response for constant production (500 bbl/day) and unit production are
simulated. The well is assumed to fully penetrate the reservoir blocks in the vertical
direction (layers 1 to 10). The discrete times, t = 0.0, 0.01, 0.03, 0.07, 0.15, 0.31, 0.61,
0.91,1.21,1.51, 1.81, 2.11, 2.41, 3.0 (in days), are automatically determined by the initial
time step length, the maximum allowable step length and a time step multiplier [11]. Fig.

4.6 shows the simulated pressure field at t=0.91 days.



4.3.1 Example of p/TK and p/TF

The sengitivities of pressure at t; = 0.91days with respect to permeability and

porosity fields, i.e., p7/Tky and p/vj b, b=1,2,...... , Np, are shown in Figs. 4.7 and 4.8.

2625 2792 2958 3125

Fig. 4.6 — Pressure distribution at t=0.91 days.

X 39

I T I ‘

005 011 017 024 030

Fig. 4.7 — Sensitivity of pressure to permeability at t=0.91days.

55



56
At t; = 0.91days, the pressure drop has propagated throughout the entire channel

with the biggest pressure drop at the well being about 669psi. We can see from Fig. 4.6
that the pressure within the channel is smaller than that out of the channel due to the

higher permeability within the channel.

025 0.67 108 150

Fig. 4.8 — Sengitivity of pressure to porosity at t=0.91days

Note that Figs. 4.7 and 4.8 illustrate only the sensitivities from layer O to layer 4
with the resolution (gridblock dimension) in the vertical direction two times bigger than
in other two directions. This is to show clearly the sensitivity changes. We can see from
these two figures that the sensitivity values of pressure to porosity are greater (from 0.02
to 1.51) than the sensitivities of pressure to permeability (from 0.0 to 0.51). However, the
channel boundaries are much more clearly seen in the sensitivity of pressure to
permeability, i.e., in Fig. 4.7. Instead, the channel boundaries are very obscure in the plot
of the sensitivity of pressure to the porosity field. We think this may be because the
difference in permeability inside and out of the channel (99md) is much bigger than the
difference in porosity (0.2). We can also notice that the sensitivity values from x=0 to

about x=15 gridblocks within the channel are smaller than those in other portions of the



channel. Thisis because the well is located such that it takes more time for the flow from
left part of the channel (x=0~15) to the well due to the bigger curvature of the channel in
the corresponding region. This is also verified by the pressure distribution in Fig. 4.6,
which demonstrates higher pressures in the corresponding part of the channel.

Fig. 4.9 shows pressure sensitivity to permeability in layer 5 at three different times,
eg. t3=0.07, t7=0.91 and t;;=2.11days, respectively. Apparently, the sensitivity of
pressure increases with the production time during this period. For example, at the
gridblock indexed (16,6) of this layer, the sensitivity values a the three times are
0.09022, 0.21412 and 0.22983 respectively. This is an indication of transient pressure
response. After the pressure response has reached pseudo-steady state, the sensitivity
coefficient will become constant.

The sengitivity of pressure with respect to porosity, as shown in Fig. 4.10, changes
with time too, but the behavior is somewhat different. At very early times, e.g., t3=0.07
day, the pressure is sensitive only to the porosities in a small area around the well, as seen
in Fig. 4.10 (a). As time increases, the pressure is sensitive to the porosities in a bigger
area. At some locations close to the well, e.g., the gridblock (19,7) of layer 5, the
sensitivities at t3=0.07, t;=0.91 and t;;=2.11days are, respectively, 1.565, 1.239 and 1.289
which show a decrease and then a increase in sensitivity values. At locations far from the
well, the sengitivity increases monotonically from zero. For example, at gridblock (23,6)
of layer 5, the sensitivity coefficients at the three times above are 1.047, 1.127 and 1.223,
respectively, as shown in Fig. 4.10 (a) through (c).

By comparison, the pressure is more sensitive to the porosity inside the channdl, i.e.,

the bigger porosity value.
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o 17 249 32 40

x
E o ——
0.05 0.11 0.17 0.24 0.30
(a) ts= 0.07 day.

0.05 0.11 0.17 0.24 0.30

(c) t1a= 2.11days.

Fig. 4.9 — Sensitivity of pressure to permeability at different times,
(a) t=0.07 days; (b) t;=0.91days; (c) t11 = 2.11days.
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(a) tz = 0.07days.
>.
i o 17 24 32 40
X
B W .
0.05 0.41 0.78 1.14 1.50
(b) t7 = 0.91days
>.

| S
0.78

0.05 0.41 1.14 1.50
(c) 1= 2.11days.

Fig. 4.10 — Senditivity of pressure to porosity at different times,
(a) t=0.07days; (b) t7= 0.91days; (c) t11 = 2.11days.



4.3.2 IKN T, IK/1Bm, IK/Lm and TK/Rn

K/ Tm, TK/Bm, TK/Ly and JK/Ry, are al Ny” Ny matrices. They represent the
change in permeability due to a small perturbation in the channel boundaries, Tn(X),
Bm(X), Lm(X) and Ryn(X). For example, Tkp/T Ty for b=1,2,...,N, and i=1,2,...,Ny, represents
the change of permeability at gridblock b due to the change of the top boundary at x;,
where b = (k-1)NxNy + (j-1)Nx + i according to the ordering of the gridblock system and
(i, J, k) are the indices of a block in the x, y and z directions. Recall that we assume a
constant permeability inside the channel and another constant permeability outside the
channel. Thus, if the gridblock does not contain the top boundary at any particular i, then
Tko/NTmi is zero. For a particular i, the gridblocks intersected by the top boundary,
correspond to those with a z-direction index given by k = int(T /Dz)+1, and a y-direction
index j from j=int(Ly /Dy)+1 to j=int(Ry /Dy)+1. These are the only blocks where
IK/Ty is non-zero. Fig. 4.11 shows ku/MTm, i.e, the derivative of gridblock
permeability to the channel width at the first gridblock in the x-direction, where
b = (k-1)NNy + (j-1)Nx + 1, int(Tma/Dz)+1= 8, int(Lm/Dy)+1= 8 and int(Rw /Dy)+1 = 15,
i.e., the top boundary of the channel intersects the 8" gridblock in the z-direction and the
left and right boundaries of the channel are between 8" and 15™ gridblocks in the y-
direction, respectively. For any other values of b, fky/ T IS zero.

Since KB, TK/Lm and JK/TR, have the same characteristics as 1K/{T, they
will not be discussed here. Moreover, fF /N Ty, has the same zero, non-zero structure as

K/ Tr; TF /B, TF/ILm and TF /Ry, respectively, have the same structure as TK/{Bp,

TK/ILm and TK/Rm.
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0.00 2.47 4.95 7.42 9.90

Fig. 4.11 — An example of ks /T for i=1 and b = (k-1)NxNy+(j-1)Ny+1,
where j=1~N, and k=1~N,.

4.3.3 Examples of IK/Im, IF/m

These derivatives are measures of how the permeability and porosity fields change
with the model parameters. As noted previously, we have atotal of M=4N,+8 parameters
where the last four parameters represent channel and non-channel permeabilities and
porosities. The matrices K/ fm and §F /fim are both N," M matrices. They are obtained by
using the chain rule, i.e. Egs. 4.15 and 4.16, where {T/Im, 1B./m, YL/fm and R./m
are evaluated from Egs. 4.21 through 4.40. According to the ordering of parameters in
Vector m, My = Yo, Mp = 2o, Mg = Sy, My = S, Mis = Shiy Mienxea = Sy Mionera = Wi, and
M4 = AR for i=1,2,...,Ny. If the rock properties are also taken as unknowns, then
Manrs = Ko, Manxs6 = Kne, Manxe7 = ] ¢, Manxes = J ne. Therefore, TK/AImy = TK/Myo and
TF/imy = TF/Mlyo represent the derivatives of permeability and porosity in all the
gridblocks with respect to the first model parameter, i.e., the y-coordinate of the starting
point of the principa direction line. Similarly, TK/IMy+onxe4 = TK/TWL and IF /imus onxe 4

= [F /Wi are the derivatives of permeability and porosity fields with respect to the first
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channel width in the x-direction. Fig. 4.12 demonstrates layer 5 cut from fky/fmy =
Tko/Tlyo (b=1,2,...,Np). It shows that TK/qlyo is zero except at the gridblocks intersected by
the left and right channel boundaries, Lm(X) and Ryn(X). This makes sense because a small
change in yp can only cause permeability changes in Ln(X) and Rn(X). Notice that K/{lyo
>0 on Ry(X) (top boundary in Fig. 4.12) and TK/flyo <0 on Ly(X) (bottom boundary).

25

19

~

X

-9.9 -5.9 -2.0 20 59 9.9

Fig. 4.12 — A layer cut from K/flmy shows nonzero values of TK/fimy
only in gridblocks intersected by Lm(X) and Ry(X) at thislayer.

Similar examples for K/Mz, TK/Sy, TK/Mse KNS, TKAS. KAWL and
TK/MAR; are shown in Figs 4.13 through 4.19. All these plots illustrate results for one

layer or cross-section cut from the entire matrix.

-9.9 -59 -20 20 5.9 9.9

Fig. 4.13 — A x-z cross-section (13) cut from K/{z, the nonzero values arein
the gridblocks intersected by Ti(X) and Bm(X). At some X's, Ti(X) and Bm(X)
do not intersect this cross-section.
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25

19

X

|
-3960 -1980 0 1980 3960

Fig. 4.14 — A layer (5) cut from K/{s,, the nonzero values appear in the gridblocks
intersected by Lin(X) and Rn(X), the values of K/ are very large asiit
isrelated to the x-coordinate of Lm(X) and Ry(X).

X
S |
3861 -1931 0 1931 3861

Fig. 4.15 — A x-z cross-section cut from YK/f/s.,, the nonzero values are in the
gridblocks intersected by Try(X) and Br(X), but the values of K/q[s
on the top boundary gridblocks are opposite to the values on the
bottom boundary gridblocks.
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-9.9 -4.9 0.0 4.9 9.9

Fig. 4.16 — A y-z cross-section cut from §K/9Sy, the gridblocks intersected
by L1 and Ry have non-zero values of K/S,;.

N
R W o ©

99 -49 00 49 99

Fig. 4.17 — A y-z cross-section cut from K/1S,1, the nonzero values are
in the gridblocks intersected by Ty and B
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1 7 13 19 25
Y
B
0.0 16 33 49

Fig. 4.18 — A y-z cross-section cut from K/Wi, the nonzero values are
in the gridblocks intersected by T, B, Lma @nd Ry, meaning that
changing Wy will change the permeability on all the boundary blocks
since the width and thickness of the channel are related.

1 7 13 19 25
Y
e W
-104 -78 -52 -26 0

Fig. 4.19 — A y-z cross-section cut from {K/JJARy, the nonzero values arein
the gridblocks intersected by T, Bra, meaning that increasing ARy
will decrease the gridblock permeabilities intersected by T, Bma.



The derivatives of porosity with respect to model parameters, i.e. F/Im, are

analogous to TK/fim shown above except the actual values are of course different.

4.3.4 The Sensitivity of Pressure to Model Parameters, p/m

The sengitivity matrix, G = fp/fim, is required for channel inversion. Suppose we
have N, observed pressure data, then fp/fmisaN,” M matrix. In the example considered
below, there are 11 conditioning pressure data and Ny=40. Since K¢, Kne, | c and | nc are
specified constants, so M=4N,+4=164 and the dimension of fp/fmis 11" 164.

Fig. 4.20 shows the sensitivity of pressure to the first two channel parameters, i.e., Yo

and z,. Note that the abscissa of Fig. 4.20 isthe test time't.

! To/z0

0

Ivo Tz
S

2 \\‘\_W&_‘

0.0 0.5 1.0 15 2.0 25

Time (days)
Fig. 4.20 — Senditivity of pressure to yp and 7, at different times.
It is clear in this case that p/yo and fp/fzo are changing with time but fp/yo is dways
negative and p/z, is positive. This means that the pressure decreases as Y, increases but
increases as 7 increases. In order to understand this physicaly, we first consider the

relationship between parameter Yy, and the bottom-hole pressure. We saw in Fig. 4.12 that
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increasing Yo will cause an increase of permeability in gridblocks intersected by L(X) and
a decrease of permeability in the gridblocks intersected by Rn(X). In the current case, the
well is closer to the boundary Rn(X). Hence the reduction of permeability in gridblocks
intersected by Rn(X) will affect the flowing pressure more. Permeability decrease will
lead to a higher pressure drop or lower flowing pressure. So increasing Yo causes lower
flowing pressure eventualy, i.e., fp/fyo<O0. It is possible that fp/flyo could be positive
depending on the relative position of the well in the channel and the test time. Similarly,

/I,y should also be negative in this case as shown in Fig. 4.21.

400
200 - of ™
_ﬂp or E 0
Tsy  TSe \\
-200 \
-400 To/9sw
-600
0.0 05 1.0 15 2.0 25

Time (days)

Fig. 4.21 — Sensitivity of pressureto s, and s, at different times.

As far as p/z is concerned, we see from Fig. 4.13 that K/{z is positive on the
boundary gridblock intersected by T.(x) and negative on the boundary gridblock
intersected by Bm(X). This means that increasing z, will lead to an increase in permeability
for gridblocks intersected by Tn(X) but a reduction of permeability in gridblocks
intersected by Bm(X). Based on Egs. 4.5 through 4.11, the increase in permeability of the

gridblocks intersected by Tm(X) for a uniform grid system will mainly depend on the total
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proportion of the channel within the boundary gridblocks, i.e., the sum of Py(x). Similarly

the reduction of permeability in gridblocks intersected by Bm(X) will mainly depend on

Ny N,y
the sum of Py(X). In the above case, & P; =208.13ft,and & B; =202.55ft. So, increasing
i=1 i=1

Z, would result in a bigger increment of the gridblock permeabilities intersected by Tr(X).
In other words, the overall permeability of the system would increase a little bit, which
means that a lower pressure drop or higher flowing pressure would be required to keep a

constant flow rate. Thus, fp/fz is positive, as shown in Fig. 4.20. By the same reasoning,

we find that we should expect {[p/{s to be positive, as shown in Fig. 4.21.

2.0
15
1.0
0.5 a
fp;
-05 t
M
-10
-15
-20
0 5 10 15 20 25 30 35 40

j
Fig. 4.22 — Sengitivity of pressure to horizontal sinuosity of the channel,
there are 11 curves corresponding to 11 different times, where the
bigger valuesin different curves correspond to later times.
Figs. 4.22 and 4.23, respectively, present plots of fp/1S, and fp/1S,. On each figure,
each curve corresponds to one time value. Note that fp/1S, and Tp/1S, change with time

and with locations. Physically, the results indicate that at a fixed time, the pressure

decreases as S, increases for some i, but increases for other i values. Fig. 4.23 shows



similar results. The physical explanation for this phenomenon is not obvious. Thus, we

consider p/11S, as an example and do a qualitative analysis.
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0.8 ﬁ
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M 0.0 1
1S 2
0.4 v
-0.6
-0.8
-1.0
0 5 10 15 20 25 30 35 40

j
Fig. 4.23- Sensitivity of pressure to vertical sinuosity of the channel.
For simplicity, we will consider the sensitivity of j" observed pressure, i.e., p;, to it

horizontal sinuosity S,. According to Egs. 4.12 through 4.16, we have

'ﬂp, _ Py Sk, TPy %G, 0_aP; 0 P O
1§'ﬂk ﬂsm ﬂ] b ﬂsn| gﬂsnl ﬂsn|

(4.59)

Although the two terms in Eq. 4.59 might be very different in dtitude, they have the

same sign. Therefore, we only consider the first term for simplicity.

00 R Tk 0 (4.60)

615, 5 1K, 1S, 5
Substituting the expression for ku/1S, given by Eqg. 4.15 into Eq. 4.60 gives

ﬂpj T - bﬂpj ﬂk O
€15, 5 btk 1S, 5

_ Py 2 Ty Ty, Tk By, Ko Tl , Ty TRy 00
ST, BTy 15, TBy 15y T 155 TRy 1Sy 55

(4.61)

O‘
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According to Egs. 4.22, 4.27, 4.32 and 4.37,

Mo _ 1B

=0. (4.62)
S TS

S0 Eqg. 4.61 becomes

2P 0 _ WP Tk Ty , Tky TRy O

615, 5 vl 5 1L, 1S, TR, 15, 5
Based on Egs. 4.32 and 4.37, —™ Sn = H]Z”” =0,ifi1/. So Eq. 4.63 can be rewritten as
P » P,
ae‘ﬂ,o:N‘H afk, Tk, o (4.64)

1805 o, 1L, R,
Actually, only a few terms in Eq. 4.64 are nonzero. These terms correspond to b¢= (k-
DNNy+ (ji-DNe+ i and bO = (k-1)NNy + (j-1)Nx + i (see Fig. 4.4 ). Note that b¢and b
here represent, respectively, the gridblocks for k from k; to kx> (i, j1 and j» are fixed).

According to Egs. 4.47 and 4.48, we can write all the possible non-zero terms as follows,

a]pi 0 :gz ﬂpJ nc ~ kc + P (knc - kc)+ P (knc - kc)9
61505k Tkn§ Dy DDy oD G e

o ﬂpJ &(c' knc I:)bi (kc' knc) I:)ti (kc - knc)(..j

+8 + + Z

o Tkn& Dy DDy DDy 5

Rearranging EqQ. 4.67 gives
a]pl s 2 $ﬂpJ _ ﬂpJ e T knc + P (kc' knc)+ R (kc' knc)g (4.68)
01Sy 5 i BTkee TKpoik Dy DDy DDy §

Since ke > Kp, i.€., the permeability inside the channel is greater than that out of the

channel, @9 will be non-negative if —— e, ﬂp‘ for each k, ki £ k £ ko (see Fig. 4.3
i o b TKpe
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or Fig. 4.4), otherwise %8 will be negative. Recall mandm

i B TKpe TKpe

are the sensitivities

of | observed pressure to the permeability in gridblock b¢intersected by boundary Lim(X)
and in gridblock b intersected by boundary Ry(X), respectively. From Fig. 4.7, we saw
that the sengitivity is sometimes greater on the left, and sometimes greater on the right,
hence the variability in signin Fig. 4.22.

Fig. 4.24 illustrates the sensitivity of pressure at different times to the widths of the

channel. It is understandable that o >0 because increasing channel widths will result
j

in increasing channel volume or the overall permeability of the system correspondingly,
which will further lead to lower pressure drop or higher flowing pressure. This indicates
that (fipi /TW)>0. Moreover, at early times, the pressure is only sensitive to channel

widths at x; locations close to the well (at well location, x; =20).

3.0

25

2.0

Fig. 4.24- Sensitivity of pressure to the widths of the channel at different times.
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Fig. 4.25 shows the sensitivity of pressure to the aspect ratio, i.e., % Different

curves correspond to different pressures, i.e., pressures at different times. The results of

Fig. 4.25 demonstrate that % IS negative, and that increasing AR(x) will reduce the

well flowing pressure.
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j
Fig. 4.25 — Senditivity of pressure to aspect ratios of the channel.
To understand this, recall that AR(X) is the ratio of the width to the thickness of the
channdl, i.e., AR(X) = W(X)/H(X), where H(x) denotes the channel thickness. Consider that
the pressure is only a function of W(x) and AR(X), i.e., p = p[W(X),AR(X)]. Since AR is a
function of Wand H, we can further write
p = p[W, AR(W, H)]. (3.69)

Applying chain rule for the derivative of p with respect to channel thickness H, gives

T _ p JAR_é W fp 370)

MH AR IH & H2HIAR

Clearly, b should be negative since Tp >0.
AR H
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CHAPTER YV

SYNTHETIC CASE STUDIES

A few synthetic case studies are given in this chapter. The purpose is to demonstrate
the effectiveness and efficiency of the channel inversion process described in the
previous chapters.

Although real case studies would be done with similar procedures, all the examples
in this chapter are synthetic. In fact, the observed pressure data are generated from a
known “true model” which is a redlization of the prior model. The observed thickness
will be obtained from the well in which the “observed pressure data’ were simulated and
taken as pressure measurements after some random noise was added.

A detailed procedure used for generating pressure “measurements’ for all the cases
considered here is described below.
(1) Datainput

The input data for generating a true channel and pressure response include
specification of the statistical parameters (mean, variance, covariance for the stochastic
model parameters), dimension of the simulation grid and other parameters for flow
simulation such as initia pressure, fluid viscosity, flowrate and duration, well location
and well radius. One also needs to specify the variance for data measurement errors of the

conditioning data.
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(2) Generation of a 3D single channel on the simulation grid

This is done by sampling the Gaussian distributions and Gaussian fields for the
specified model parameters. Univariate Gaussian distributions, (e.g., those for the four
random variables of the principal direction line and for the rock properties if specified as
unknowns) can be sampled using standard pseudo random number generators with the
proper variance. The moving average method is used for sampling the 1D Gaussian
random fields (horizontal and vertical sinuosity, width and aspect ratio) as described in
Chapter 11.

(3) Distribution of permeability and porosity

Two cases will be considered in this study. One uses uniform, fixed permeability
and porosity inside the channel and out of the channel. The other uses uniform but
uncertain porosity and permeability both inside and outside the channel. In both cases,
the volume average method is used for calculating the permeability and porosity of the
boundary gridblocks as discussed before. In the first case, permeability and porosity are
not model parameters, whereas in the second case, channel permeability (kc), non-
channel permeability (knc), channel porosity (j ) and non-channel porosity (j nc) will be
model parameters.

(4) Simulation for pressure response as “ observed pressure data’

This is done by the numerical flow simulator. The time intervals for simulation is
calculated automatically, see [11] for detaills. Random noise based on a specified data
measurement error variance is added to the simulated pressure to obtain the synthetic
data.

(5) Channel thickness and top boundary of the channel at awell location

74



75
This is obtained by the width and aspect ratio at the well locations of the “true

reservoir”. For example, if the well is located at the 20" gridblock in the x-direction and
the well is in the channel and fully penetrates the channel, then the true thickness is
W(20)/AR(20). The top boundary is calculated from Eq. 4.17 at the well location. The

observed data are generated by adding random noise to these data.

5.1 Case 1: Constant Permeability and Porosity | nside and Outside the Channel

The model parameters are listed in Table 5.1a and parameters for flow simulation
arelisted in Table 5.1b.
Table 5.1a — Geometric parameters of the channel model for case 1
Principa direction line: 'y, =100.0ft, z, = 50.0ft, S,, = 0.05, §,, = 0.00,
Sy =10, =10,s 7 =0.00Ls g, =0.001.
Horizontal and vertical sinuosity of the centerline: s § =676.0, s 5 = 9.0,
ag =ag, =80.0ft.

Width and aspect ratio: m,, =80.0ft, s =9.0, a, =80.0ft,

mys =2.0, s 55 =0.025, a,, =80.0ft.

Table5.1b — Parametersfor flow ssmulation

Fluid viscosity 3.0cp
Total compressibility 10° 1/psi
Initial pressure of the reservoir 3230.0 psi
Initial time step size 0.01 day
Maximum allowable time step 0.30 day
Production rate 500.0 bbl/day
Production duration 3.0 days
Well radius 0.3 feet




A seed value of —3244 is used to generate a redlization to use as the “true model”.
The dimension of the simulation grid is 40" 25" 10 and the well is located at (20,11). The
total channel volume from this true model is 1.315" 10° ft* and the channel thickness and
the top depth at the well location are 41.6ft and 72.7ft, respectively. The observed
pressure data are obtained by adding random noise (pressure data error variance is 1) to
the simulated pressure data. Similarly, the observed channel thickness and top depth are
obtained by adding random noise to the corresponding true values. The measurement
error variance specified for channel thickness and top depth is 0.5.

In this case, uniform permeability and porosity both inside and outside the channel
are specified and fixed as ke=100md, k,.=1md, j =0.3 and j =0.1. Therefore, the model
parameter vector contains only geometric parameters that describe the channel.

To obtain aredlization, we apply the randomized maximum likelihood method. This
requires that we generate an unconditional realization of the model from the prior and an
unconditional realization of the data and minimize the objective function given by Eq.
3.17. The unconditional realization of the data is obtained again by adding random noise
to the observed data based on the related variances.

A different seed (-32442) for the random number generator was used for generating
unconditional realizations of the prior and the conditioning data. When minimizing the
objective function by the Levenberg-Marquardt agorithm, we simply take the
unconditional realization of the prior as an initial guess of the model parameter vector.

Table 5.2 presents the pressure data, including the simulated pressure data from the
flow simulator, the observed pressure data (simulated plus random noise) and the

unconditional realization of the pressure data used as d,. (observed plus random noise).
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The observed channel thickness and top depth are obtained in a similar way and are

41.4ft and 72.8ft, respectively. Their unconditional realizations are 41.1ft and 73.2ft,

respectively.
Table5.2 —Pressuredata for case 1
Time (days) Simulated (psi) Observed (psi) Unconditional (psi)
01 2999.46 2999.28 3000.37
03 2948.13 2947.97 2946.83
07 2898.26 2898.18 2898.32
15 2838.34 2837.28 2837.75
31 2760.83 2760.95 2761.17
61 2657.47 2657.90 2658.19
1 2570.51 2571.37 2570.93
1.21 2491.44 2490.77 2489.69
151 2416.75 2418.08 2417.18
1.81 2344.70 2345.04 2344.61
211 2274.33 2274.38 2274.00

Fig. 5.1 shows the objective function versus the number of iterations of the
Levenberg-Marquardt algorithm. As we can see, the objective function decreases rapidly
from a very large value (10360) at the first iteration to the very small value of 9 in 4
iterations. This demonstrates the efficiency of the Levenberg-Marquadt algorithm for this
case.

The pressure data matching as well as the observed thickness and top depth
matching also verify this point. Fig. 5.2 shows the pressure data match, in which the
triangles represent the observed pressure data and the solid line is drawn from the
calculated pressure based on the conditional realization of the channel. The calculated
channel thickness and top depth at the well location are 41.5ft (observed 41.1ft) and

72.8ft (observed 72.8ft), respectively.
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Fig. 5.1 - Objective function O(m) versus iteration.
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Fig. 5.2 — Pressure data matching for case 1.
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Although, the data mismatch is satisfactory, we also need to ensure that the resulting
channel is “plausible’. Fig. 5.3 shows the true channel, the initial guess (unconditional
realization from the prior) and the final result obtained by matching the observed pressure
data and the observed channel thickness and top depth at the well. Only the channel is
shown in each figure since it is easy to visualize. As discussed before, each channel in
Fig. 5.3 is actually represented by the permeability distribution within the channel and on
the channel boundaries. Different colors on the channel boundaries represent different
permeability values calculated by the volumetric average.

That the final channel from inversion in Fig.5.3 (c) is quite different from the true
model in Fig. 5.3 (a) indicates that the well test pressure data are not very sensitive to the
overall shape of the channel, and that the true channel can not be determined uniquely by
the pressure response at a single well. This is more clearly demonstrated by the
conditional realizations of the four Gaussian random fields that control the shape of the
channdl, i.e., the horizontal and vertical sinuosity (S(x), Si(X)), the width of the channel
(W(X)) and the aspect ratio (AR(X)) of the channel, as shown in Figs. 5.4 through 5.7.

In each figure of Figs. 5.4 through 5.7, there are three lines. The ones with triangles
represent the true random fields, the ones with squares are the initial guesses
(unconditional realizations) of the random fields and the lines with diamonds are the
corresponding fields from inversion or conditiona realizations of the Gaussian random
fields. The labels on the x-axis of each figure are x-direction indices and the conditional

realization of each Gaussian random field istitled as fina field.
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(@) True channdl.

(b) Initial guess of the model.

(c) Conditional realization of the channel.

Fig. 5.3 — Comparison of the channel images, (a) true channel image;

(b) initial guess of the channel; (c) conditional realization of the channel.
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Fig. 5.7 — Aspect ratio AR(X) of the channel.
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As we can see, the fina fields from inversion are very different from the true fields
except around the well location (i=20). For example, the true horizontal sinuosity at i=24
IS $(24)=-29.6 ft. The initia guess for this is 24.4 ft and the final inversion vaue is
27.8ft. In the above example, we used a value of 676 as the model variance for S,(x);
hence, the squared mismatch (24.4-27.8)* =11.56 in $,(24) can only contribute 11.56/676
= 0.02 in the objective function, which is a comparatively negligible number. The vertical
sinuosity field exhibits the same phenomena but is better matched around the well
location (i = 20) since it is associated with the top depth of the channel and the top depth
was taken as conditioning data. Comparatively, the width and aspect ratio of the channel
are somewhat “closer” to the true case, especially around the well location. These two
fields control the size or volume of the channel. So this suggests that matching long time
(pseudo-steady state flow) pressure may reduce the uncertainty in channel volume.

The reason that the width and aspect ratio are closer to the true fields around the
well, see Figs. 5.6 and 5.7, is that the observed channel thickness, i.e., the ratio of width
to aspect ratio at the well, was conditioning data. For example, in the conditional
realization, W(20)=81.67ft and AR(20)=1.96, so W(20)/AR(20)=41.5ft which is almost

identical to the observed channel thickness (41.4ft).

5.2 Case 2: Well Out Of the Channel in the Initial Guess

In this case, we consider the case where the unconditional realization of the channel
from the prior is such that the well is out of the channel. Recall that this unconditional
realization is used as an initial guess in the Levenberg-Marquardt algorithm.

As in Case 1, an unconditional realization represents the true case and the well at

which we obtain synthetic pressure data is located within the channel and the well is fully
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penetrating the channel in the vertical direction. Based on this true model and the single-
phase flow simulator, we simulate the pressure response at the well location to obtain
well test pressure data. Then, we add noise to get our synthetic pressure data. We still
assume constant porosity and permeability inside and outside the channel. The dimension
of thegrid is40” 25" 10.

Table 5.3 lists al the parameters used for this case. For this example, pressure data
during pseudo-steady state flow are available. Theoretically, the most important reservoir
property that can be estimated from single-phase pseudo steady-state flow datais the total
pore volume of the reservoir, which for our example, would be controlled by the total
channel volume since channel and non-channel porosities are fixed. Therefore, if we use
pseudo-steady state pressure data as conditioning data, then we should be able to estimate
the total channel volume or pore volume of the channel.

Fig. 5.8 shows the ssmulated pressure, pressure drop as well as the derivative of the
pressure up to 8 days, based on the true model. We can see from this figure, the pressure
derivative approaches a constant (418.303 psi/day) for t>1.0 days, which indicates pseudo
steady-state flow. The total pore volume in the true model is 13.43" 10° ft%; therefore the

theoretical value of pressure derivative for the system is

Dp _ 5.615q _ .
—— =———=418.268(ps/day), 5.0
it cPV (psi/day) (5.0)
which is essentially the same as the pressure derivative obtained from the simulated
pressure data, see Fig. 5.8. The first eleven pressure data points will be used for

matching; the last five of these correspond to pseudo steady-state flow.



Table 5.3 - Parametersfor case 2

Principal direction line: Y, =100.0ft, Z, =50.0ft, §,, =0.05, §,, =0.0,

XZ

2 _ 2 _ 2 _ 2 _
Sy =10,s, =10 Sy =0.001 s ¢, =0.001.

Sinuosity of the center line: s 3 =900.0,s 3 =40, a5 =ag =80ft.
Width and aspect ratio: ~ my=80.0ft, s 2, = 4.0, aw=80ft.

Mmr=1.5, s 4z =0.0250, axz=80ft.

Gridblock Size: Dx=Dy=Dz=10ft.
Porosity inside and outside of the channel: 0.3, 0.1
Permeability inside and outside of the channel: 100md, 5md

Parameters for flow simulation or drawdown test

Fluid viscosity: 0.5¢cp
Total compressibility: 10° 1/psi
Initial reservoir pressure: 3500 psi
Production rate: 1000 rb/d
Testing period: 3 days
Well radius: 0.3ft

Well location: iwell=24, jwell=13
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Fig. 5.8 — Pressure response and pressure derivative for case 2.

Fig. 5.9 shows layer 5 cut from the true model, the unconditional realization and the
initial guess respectively, intended to have a clear view of the well location. Figs. 5.9(b)
and (c) are identical because we use the unconditional redlization as the initial guess in
the Levenberg-Marquardt algorithm. Notice that the well gridblock colored black is out

of the channel in the unconditional realization and the initial guess.

(@) from true model. (b) from the unconditional realization



(c) from initial guess. (d) from the 1% iteration.

Fig. 5.9 — Layer 5 cut from the models, the black cells show the well location in each

case, (@) from the true model, (b) from the unconditional realization, (c) from

theinitial guess (identical to (b) since the unconditional realization is taken as

initial guess), (d) from the 1% iteration of the Levenberg-Marquardt algorithm.
Since the well is outside the channel, the permeability and porosity around the well
are much lower than in the true case. Pressure mismatch is large at the first iteration step
and dominates the gradient of the objective function. Therefore, if we used a Gauss-
Newton procedure without a severe restriction on step size, we would take a large step.
When this happens, the Gauss-Newton procedure often converges to a local minimum
which gives an unreasonably high pressure mismatch. The damping factor a in the
Levenberg-Marquardt algorithm usually eliminates this problem if the value of a is large
enough. In our results, we used a=1000 in the first iteration of Levenberg-Marquardt
agorithm. The objective function evaluated at the initial guess is 1.76” 10°, which is
virtually all due to the pressure mismatch. At the first proposed update of the model, the
objective function is larger than at the initial guess. According to Levenberg-Marquardt

algorithm, we increase a by 10, then recompute a new proposed update and recalculate

the objective function. Fig. 5.10 shows the change of the objective function as the value
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of a increases from 1000. Note a must be increased to 10° before we update a model
which reduces the objective function below its value at the initial guess. This corresponds
to a relocation of the channel by the Levenberg-Marquardt algorithm so that the well is
within the channel (see Fig. 5.9 (d)). This example illustrates the effectiveness of the
Levenberg-Marquardt algorithm. As seen later, however, it is more effective to do a
simple step which automatically moves the channel so that the well is located properly
according to whether the channel is observed at the well.

Fig. 5.11 shows the change in the objective function and channel volume as the
iteration of the Levenberg-Marquardt algorithm proceeds. The true channel volume is
1.712" 10°%t°. At convergence, the channel volume of the realization is 1.711" 10°%t® as

shown in the figure, which is very close to the true channel volume.
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Fig. 5.10 — Objective function O(m) versus damping factor a in the 1% iteration.
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Fig. 5.11 — Objective function and channel volume change for case 2.

Although not shown, the observed channel thickness and top depth are aso well
matched in this case since they are observed data. The observed channel thickness and
top depth at the well location are 53.6ft and 86.3ft and the calculated values at the well
location of the realization are 53.4ft and 86.2ft, respectively. The pressure match is
shown in Fig. 5.12. The average sum of squared pressure mismatch is 0.62 in this case,
which represents an acceptable match of pressure data.

Figs. 5.13 through 5.18 compare the model parameters which include the four
random variables for the principal direction line, the four random fields and channel
thickness field. There are three curves in each figure. They represent the true random
field, an unconditional realization from the prior, and the final field obtained from the
inversion process. Pressure data are of course not adequate to resolve these parameters.
We can see this clearly from the results in these figures. For example, the true value for

$(23) is12.6 (see Fig. 5. 13), from the unconditional realization of the prior §,(23)=79.9,
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and from the inversion result §,(23)=44.4, which is much closer to the true value than the
unconditional realization because the location is just next to the well location in the x-

direction and S,(x) is related to the well location in the channel and in the y-direction.
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> 2500
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Time (days)

Fig. 5.12 — Pressure match for Case 2, the gray line represents the pressure response
calculated from the initial guess, triangles are the observed pressure
and the black line represents the calculated pressure at initial guess.
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Fig. 5.13 — Horizontal sinuosity fields from the true, the unconditional realization
of the prior and from the inversion result. The well is at i=24. The x-
coordinate is actually the gridblock number in the x-direction.
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Fig. 5.14 — Vertical sinuosity of the channel from the true model,

the unconditional realization and from the inversion result.
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Fig. 5.15 — Channel widths from the true model, the unconditional
realization of the prior and from inversion result.
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Fig. 5.16 — Aspect ratio of the channel from the true model, the
unconditional realization and from the inversion result.
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Fig. 5.17 - Channel thickness from the unconditional realization,
inversion result and from the true model.
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Fig. 5.18- Parameters for principal direction line, %’ s represent y,, €’s stand for
2, A’sare sy and Il s are s,. Symbols on the |eft represent the unconditional
values, middle ones are true values and ones on the right are the inversion results.
Inversion results are much closer to the true values after conditioning to the data.
Although the Levenberg-Marquardt algorithm may still converge for many initial
guesses where the well is located out of the channel, in some cases, we found that the
algorithm took a large number of iterations to converge or converged to models which
gave a unreasonably large pressure mismatch. For example, for the above case, we started
with a different unconditional realization of model parameters, and obtained the results
shown in Fig. 5.19. In this case, the Levenberg-Marquardt algorithm did not converge
within 11 iterations, meaning that the criteria on pressure mismatch and objective
function were not satisfied. Fig. 5.19 shows the variation of objective function O(m) with

the number of iterations. The value of the objective function at the tenth iteration was 26

and the value at the eleventh iteration was 23.
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Fig. 5.19 - Change of objective function O(m) with the number of iterations.

Obvioudly, the objective function evaluated at the initial guess is extremely large
because the well is out of the channel represented by the initial guess. As described
before, the pressure mismatch at the first iteration dominates the gradient of the objective
function as well as the modification of the initial guess, i.e., dm'. Therefore, we need to
make a “smoother” change in the model parameters by using a large value of the
damping factor a (initialy a=1000) in the Levenberg-Marquardt agorithm. By
examining the objective function based on the updated model parameters, it was found
that there is a reduction in the objective function by using the initial value of a even
though it is small. So the Levenberg-Marquardt algorithm goes on for another iteration.
In fact, dm' is actually quite large and the channel obtained at the first iteration is quite
strange; i.e., the model is quite rough in that channel parameters vary widely over a

“small” distance, see Fig. 5.20b. Specifically, a=1000 is not large enough to control this
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roughness. However, the objective function did decrease. There is no way to correct this
rough change unless an appropriate value of a isknown apriori.

We can explore this phenomenon more clearly in the change of the channel from
iteration to iteration. Here we still use a layer cut from the reservoir because it is easy to
anayze. Fig. 5.20 presents the 5 layer of the reservoir at different iterations, which
shows the shape and position of the channel as well as the well location (black) in the x-y
plane.

In the initial guess, Fig. 5.20a, the well is out of the channel. Hence, the pressure
response must be very different from the true pressure data mainly because the porosity
(0.1) and permeability (5 md) outside of the channel are much lower than those within the
channel (0.3 and 100 md respectively). This large difference will lead to a very high
objective function (see the first point in Fig. 5.19). By using the Levenberg-Marquardt
formula, i.e, Eg. 3.36 and setting the damping factor a=1000, we updated the initia
guess as in Fig. 5.20 (b) and checked the objective function. In Fig. 5.20(b), we see that
some of the model parameters around the well such as the horizontal sinuosity values, are
over-modified. But the objective function is decreasing from the previous one even
though the absolute value is still too high (see the second point in Fig. 5.19) and the well

is not located to the inside of the channdl.

(@) Initial guess. (b) 1% iteration. (c) 2" jteration.
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(f) 6™ iteration. (g) 7" iteration. (h) 8" iteration.

Fig. 5.20 — Change of the channel with iterations

There is an abrupt reduction in the objective function from iteration 1 to iteration 2
since the updated channel is moved such that the well is within the channel and the
observed pressure response is better matched. But this did not lead to rapid convergence
because the channel boundaries are very rough. From Figs. 5.20 (d) through (h), the
objective function was decreasing very slowly around a local minimum but did not
actually converge after 11 iterations. Part of the reason is that a boundary effect appears
in this case since we simply constrain our channel within the simulation grid. For
example, if the index of the top boundary of the channel, T(X), exceeds the maximum
gridblock number (N,), we ssimply set T(X)/Dz=N,. A similar procedure is applied at
other boundaries. This treatment induces some computational error in TK/ffm. As we can

see from Fig. 5.20 (b), the widths of the channel, e.g., W(22) and W(23), are much
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smaller than the width at other locations since these two values are truncated in order to
keep the channel within the grid. It may be possible for the algorithm to converge if more
iterations are allowed. But this is too expensive. For example, it took 23.4 minutes of
CPU timeto do the 11 Levenberg-Marquardt iterations on a Pentium 400.

We found that it is better to position the well within the channel at the first iteration
if the channel is observed in the well. This method saves computational time, and also
tends to ensure that the modification to the model parameters in the Levenberg-
Marquardt iterations is reasonably smooth.

Here, we propose to condition the prior channel model to the well locations directly,
which is similar to performing kriging to honor the hard data for reservoir properties. In
other words, we take the well location information as “hard data’ when we generate
realizations from the prior channel model. This procedure is discussed below in more
detail.

Suppose there are Ny, wells in the reservoir in which we have observed the channel.
Denote the x and y coordinates of the center-line of the channel as x. and y; and the
corresponding gridblock indices as ic and jc respectively. Here, x. Y. ic and jc are al
vectors with N,, elements. We wish to position the wells in the channel with some
uncertainty in location when we generate realizations of the channel from the prior
model. We consider only the model parameter vector mg for channel geometry in m since
the rock properties in m: have nothing to do with the well locations. As before, we order

the parametersin mg asin Eq. 3.1

M =[ Yo, 20, Sy S { Shiy 1 =1,2,...,NW}, { S, 1 =1,2,..., Ny},
{W,i=12...N},{AR,i =1,2,....N,} " (5.1)
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Then the expression for each element of y;, say Y(Ms), in terms of the model parameters

defined earlier is

Yo (Mg ) = Yo + XSy + Sylic(K)]
=Mg 1 + XgMg 3+ Mg 44ic(k) »

(5.2)

for k=1,2,...,Ny. This is a linear function of model parameters. So we can rewrite the
general expression of y; as
Ye(Me)=Amg, (5.3
where AisaN,” M (M=4N,+4 is the number of parametersin mg) coefficient matrix with
each row having a structure like
[1,0, X« O, &, {0,...... 0}, {0,...... 0}, {0,...... 0}, (5.4)
for k=1,2,...,N,, Where e is aunit vector with the ic(k)" element equal to 1 and all other

elements equal to zero. We can see that the matrix A is actualy the gradient of y.(mg)
with respect to mg or the “sengitivity” of the calculated well locations to the model
parameters. To condition mgc, a unconditional realization, to y.(mg), we minimize the

objective function

F(mG):%(mG - mG,uc)TC(-Bl(mG - mG,uc)+
(5.5)

1 ;
+§(AmG - ycobs)T Cwl(AmG - ycobs)1
where Yeons represents the y-coordinates of the observed center—line at the wellsand Cy, is
a diagonal covariance matrix that measures the uncertainty of Yeops. This ensures that the
starting values for the channel geometry variables can be made to contain the wells. The
minimum of the objective function, F(mg), gives a conditional realization of mg

conditioned to “hard data’, i.e.,, the channel center-line, and the prior information
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contained in Mg prior. The minimum of F(mg) can be obtained analyticaly. In fact, the
gradient of F(mg) is
NF(mG) = Cél(mG - mG,uc) + ATC\;vl(AmG - ycobs) : (56)

Setting NF(mg) to be equal to zero, we have,

C(-Bl(mG - mG,uc) =- ATC\;vl(AmG - ycobs)
=- (AT C\;le)mG + AT C\;vlycobS'

(5.7)
In order to solve for mg, we simply add (A"C,'A)(mg - Mg,.) to both sides of the
above equation to obtain
(Co' + ATCL A)(MG - Mg e) =~ ATCL (AMG e = Yeons)- (5.8)
Therefore, the conditional realization of mg, denoted by nP, (we use this notation to
indicate that m® will be used as an initial guess of mg for the Levenberg-Marquardt
algorithm) will be
M = mg . - [Cat + ATCLH Al ATCLH (A e~ Yeows). (59)
or
M =M, - CoAT[C, + ACGAT| (A e - Yoass). (510
where the last result was obtained from the following matrix inverse lemma (see [24]),
Cit+ ATC A " ATC  =Co AT [, + ACAT] (5.11)

2

;. and ACZTATisjust anumber, so it istrivial to

If we have only one well, then, C,, =s

calculate n?.
Based on this scheme, we repeated the last example. Instead of using an

unconditional readlization of the prior as an initial guess of the model parameters, we use
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n? from Eq. 5.10 as the initial guess of the Levenberg-Marquardt algorithm. We have just

one well in the reservoir and we know that Xeons=240ft, Yeons=130ft, ic(1)=24 and

jc(1)=13. Assume C,, =s ; =10, then it is easy to calculate nf from Eg. 5.10. Fig. 5.21

shows layer 5 cut from the reservoirs based on mg,c and m’, respectively. The well is
amost positioned in the middle of the channel in the y-direction (actually, next to the

center block).

Fig. 5.21 — A layer cut from the unconditional realization of the prior
and theinitial guess after conditioning to the channel centerline
observed at the well, the well location is marked black.

Starting with this initial guess, the Levenberg-Marquardt algorithm converged in 3
iterations and took only 4.8 minutes of CPU time. The objective function goes initially
from 1014.4 to 5.5 at iteration 3 and the average of the squared pressure mismatch is only
about 0.06, which means a very good pressure match. The channel volume from the
initial guess is 1.68" 10° ft> and the channel volume after convergence is 1.72 ~ 10° ft°,
which is much closer to the true channel volume 1.71° 10° ft*. The observed channel
thickness and top depth are also approximately honored. The calculated values are 53.4 ft

and 87.1ft and the unconditional values are 54.9 ft and 86.6ft, respectively. Fig. 5.22

shows layers 1 to 7 cut from the 3D images of the reservoir based on a unconditional
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realization of the prior, the initial guess m’, the conditional realization from the inversion

process and the true model, respectively.

(c) Inversion result. (d) True Model.

Fig. 5.22 — Layer 1-7 cut from the entire reservoir, (a) arealization from the prior model;
(b) aninitial guess based on an unconditional realization conditioned to the
observed center-line at the well; (c) final channel conditioned to pressure
and observed thickness and top depth; (d) the true channel.

5.3 Case 3: Unknown Porosity and Per meability

In the last two cases, the porosity and permeability both inside and outside the
channel were assumed to be known and the inverse process was applied only to generate

realizations of the geometric parameters for the channel. As we can see from the results,
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the inversion process is very successful. Here, we consider an example where we also
wish to generate realizations of channel permeability and porosity and the permeability
and porosity of the non-channel facies.

Channel permeability and porosity, respectively, are denoted by k. and j ., whereas
the permeability and porosity out of the channel are denoted by k.. and j .. Assume that
Ke J o Knc @d | ¢ are independent Gaussian random variables with means and variances
that represent our uncertainty in the values estimated from other sources of information,
i€, ¢ NG eSP) ) e ~NGerSP) ke ~N(Ke,sZ) and ke ~N(K.,s ¢ ). By
sampling these variables, we can generate realizations, but we wish to condition
realizations to well-test pressure data. Thus, K¢, j ¢, ke and j o are considered as
additional model parameters. In this case, the vector of model parametersis given by

m=[ Yo, 20, Sy» S { Shir 1 =1,2,...,Ni}, {Si, 1 =1,2,...,Ny},

{W,i=12,....N3, {AR, i =1,2,....Nx}, Kes Knes J o ] ndl ™ (5.12)

2

C

We need to incorporate s ¢ ,s ¢ _,s ;> ands_in the Cy matrix as four diagonal entries.

We can simply apply the chain rule to calculate the sensitivities of pressure to Ke, j ¢, Kne

andj n i.e, forj=12,...... , Np,
fIp; _ No 1P; Tk, (5.13)
k. baafk, Tk,
. N .
o _ % Tp; Thy (5.14)
ﬂknc bzlﬂkb ﬂknc
. N . i
LTI BT (5.15)

T“ c b:lﬂj b ﬂj c ,
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ﬂpj - ’\élb ﬂpj U
1 nc b=11]j b 1 nc ,

(5.16)

where p; /fk,and 1p; /9j , are sensitivities of j™ observed pressure to gridblock

permeability ky and porosity | , and have been obtained previously. Here, we only need to
caculate Tk, /Mk., Tkp/TKne, T /M o and 9 o /T o, i-€, the derivative of
gridblock permeability and porosity with respect to ke, Kne, ] c and j .

The gridblock permeability k;, is determined as follows,

i K if gridblock bisinside thechannel
kp = : Kne if gridblock bisoutsidethechannel (5.17)
trok. +(1-r,)k, if gridblock bisintersected by achannel boundary

where ry is the fraction of the channel volume in boundary block b. Its value depends on
which boundary gridblock b is considered. For example, if b is on the top boundary with
indices (i, jb, ko), 1.€., b = (Ko-L)NuNy + (Jo-1)Nx + ip, then rp, = Py(in)/Dz if uniform grid is
assumed (see Fig. 4.1). Similarly,

i J ¢ if gridblock bisinside thechannel
I b =:' J e if gridblock bisoutsidethechannel (5.18)
irg « +(1-rp)j  if gridolock bisintersected by achannel boundary
It is straightforward to get Yk, /Tk., MKy /TKe, T /T . and j /9 .. from
Egs. 5.17 and 5.18.

" il if gridblock biswithin the channel
™o 1o if gridblock bisoutof thechannd (5.19)

k. .

ke i, if gridblock bisintersected by achannel boundary

K i0 if gridblock biswithin the channel
Tk =: 1 if gridblock bisoutof the channel (5.20)
ﬂk nc %

I1- r, if gridblock bisintersected by achannel boundary
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) il if gridblock biswithin the channel
Vv — 1o if gridblock bisoutof the channel (5.21)

We ¥rb if gridblock bisintersected by achannel boundary.

_ i 0 if gridblock biswithin the channel
1?_1 b ::' 1 if gridblock bisoutof the channel (5.22)
| 1

t1- r, if gridblock bisintersected by a channel boundary

Next, we consider an example. All the channel parameters and fluid properties are
exactly the same as in Case 2, see Table 5.3. But the well is located at (20,13) and the
following statistical parametersfor K, Kne, | c andj nc are specified:

k. =100md, k. =5md, . =0.3,j . =0.1;

s¢ =255 =00025s/ =00025s? =0.0001.

Tables 5.4 and 5.5 list al the parameter values sampled from the corresponding
Gaussian variables and fields for the model parameters in order to obtain the “true”
reservoir. The true channel volume is 1.78" 10° ft* and the channel thickness and top

depth at the well are 56.93 ft and 80.1 ft, respectively.

Table5.4 - True model parametersfor case 3

True Model parameters

Yo 99.02 ft ke 96.02 md
2 50.19 ft Knc 5.00 md
Sy 0.07 e 0.24
Sxz 0.01 J nc 0.09
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Table 5.5 - True model parametersfor case 3 (continued)

OCO~NOOUITPA,WNE —

(%)
-32.94
-38.25
-35.53
-24.21

-7.85

7.97

19.11
24.84
27.32
29.56
33.42
38.72
43.77
46.97
4757
45.28
39.88
31.81
22.80
14.70

7.83

0.67

-8.18
-17.83
-25.05
-26.43
-21.48
-13.61

-8.04

-8.47
-14.39
-21.48
-24.43
-20.71
-12.01

-2.93

2.25

2.12

-1.52

-5.36

S/(x)
-0.87
-0.89
-0.87
-0.86
-0.80
-0.58
-0.15
0.37
0.77
0.92
0.94
1.01
1.21
1.43
1.52
1.36
0.98
0.46
-0.03
-0.39
-0.68
-1.12
-1.90
-2.95
-3.95
-4.53
-4.57
-4.22
-3.71
-3.14
-2.49
-1.78
-1.11
-0.61
-0.26
0.13
0.73
1.52
2.24
2.58

W(x)
83.11
83.93
84.35
84.23
83.63
82.74
81.85
81.20
81.00
81.38
82.28
83.45
84.42
84.79
84.35
83.25
81.99
81.19
81.32
82.40
83.95
85.21
85.50
84.57
82.68
80.35
78.08
76.29
75.27
75.19
75.92
76.98
77.72
77.69
76.85
75.58
74.44
73.90
74.16
75.13

AR(X)
1.49
1.46
1.39
1.31
1.24
1.21
1.22
1.26
1.31
1.35
1.39
1.45
1.54
1.64
1.73
1.76
1.73
1.64
1.53
1.45
1.41
1.43
1.48
1.54
1.60
1.62
1.59
1.53
1.46
1.42
1.41
1.44
1.49
1.54
1.57
1.56
1.53
1.48
1.44
1.43
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By producing the well at 1000 rb/d, we get the pressure response for a 3-day test. By
adding noise to the ssimulated pressure data, we obtain the observed pressure data as

shown in Fig. 5.23 (triangles).

3500
4

3000 A

Observed .., A
pressure

(psi)

»

2000

1500
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5

Time (days)
Fig. 5.23 — Observed pressure data for case 3.

Figs. 5.24(a) through 5.24(d) illustrate the sensitivities of gridblock permeability and

T T Wo 49 W Aswe can see,

ke Tkpe T e T e

porosity to K¢, Kne, j ¢ @d j e, 1.€,

Tk, / Tk, issimilarto ¥j ,/9j . and Tk, /YK, isidentica to ¥j ,/9j .. according to
Egs. 5.19 through 5.22. In Fig. 5.24 (b), Tks/fknc = 1 out of the channel and O inside the
channel. On the channel boundaries, fky/Tknc has different values.

ip; TPy by
ﬂkc , ﬂknc , T“ C

The sensitivities of pressure with respect to K¢, Kne, j cand j ne, i.€.,

and e, for j=1,2,...,N,, are calculated from Egs. 5.13 through 5.16 and are shown in

J nc
Fig. 5.25 where the horizontal coordinate j is equivalent to time and relative sensitivity to

permeability k. and k. is plotted.
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@ Tk, /Tk,. (b) Tk, /9K -

© /7. @) Mo/ ne-
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0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5.24 — Senditivities of gridblock permeability and porosity to ke, Kne, ] cand | ne
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Fig. 5.25 — Sengitivities of pressure with respect to ke, Kne, ] cand j ne.
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fIp;

Note that for j > 6, T,
Tk

and are constant, ﬂ_pj and ﬂp"

Cc nc JC Jnc

are straight lines.

This occurs because the fluid flow is in pseudo-steady state (pss) where the derivative of
pressure with respect to time is inversely proportional to the average porosity of the
system. In order to check this, we did a 5-day test. Fig. 5.26 shows the test pressure,
pressure drop and the calculated pressure drop derivative. As we can see, after about t >
0.91 days, the pressure drop derivative becomes constant (467.03 psi/day). Since the total
pore volume of the reservoir is 12.025" 10° ft*, the theoretical value of the pressure drop

5.615q _5.615" 1000
c. PV 12.025

derivative is =466.94 (psi/day), which is basicaly equa to the

constant value shown in Fig. 5.26 and verifies pseudo-steady state flow.

1.0E+04

T e

HOEO? = ﬁ

T

B

1.0E+02 il
—*~ Pressure
~® Pressure drop
—*~ Pressure drop derivative
1.0E+01
0.01 0.1 1 10

Time (days)

Fig. 5.26 — Pressure, pressure drop and its derivative for case 3.



As before, we generate realizations by randomized maximum likelihood method.
After generating an unconditional realization mg Of the geometric parameters from the
prior, we first condition to the channel centerline observed at the well location, see Eq.
5.10. The initial vaues (unconditional redizations) for ke, Ko, j ¢ and j nc are,
respectively, 101.83 md, 5.08 md, 0.36 and 0.12. After 3 iterations, the Levenberg-
Marquardt algorithm converged in the sense that the average sum of the squared pressure
error (SSE= 0.392) is less than the variance of the pressure data measurement error (1.0
psi®). The value of the objective function decreases from an initial value of 1.1° 10° to a
minimum of 11.2. The total pore volume of the “true” reservoir is 1.202° 10° ft*, and the
total pore volume based on the inversion results is 1.205  10° ft%, which is approximately
equal to the true pore volume. The observed channel thickness and top depth are al'so well
honored in this case. Table 5.6 lists the values of ke, kn, ] c andj nc from the true case, the
unconditional redlization and the final results or conditional realization from the
randomized maximum likelihood method. As we can see, the conditional results are very

closeto the true values.

Table 5.6 - Comparison of the values of ke, Kne, j candj nc

Truevalue | Unconditional Conditiona
Kc 96.02 101.83 97.22
Kne 5.00 5.08 5.08
jec 0.24 0.36 0.23
i ne 0.09 0.12 0.099

In this case, the total pore volume of the reservoir or the average porosity of the system
appears to be well resolved by data. The permeability and porosity both inside and

outside the channel are also well resolved.

109



5.4 Case 4: Multiple Realizations and Uncertainty Evaluation

In this example, we wish to generate multiple realizations of model parameters for
channel geometry and rock property by the randomized maximum likelihood method so
that we can characterize the uncertainty in model parameters. Again, we first generate a
“true” model. Then, we put a synthetic well in the reservoir, which fully penetrates the
reservoir in the vertical direction. Having the true model and the well location, the
synthetic observed pressure data are obtained by running a flow simulator and then
adding random noise to the ssimulated pressure data. For the example considered, we have
both radia flow and linear flow data. The main purpose is to see whether the important
properties, e.g., kh product, flow cross-section area (channel width times thickness),
channel volume, etc., can be resolved.

The initial guess of the geometric model parameter vector for the Levenberg-
Marqguardt algorithm is obtained by conditioning an unconditional realization of the prior
model only to the observed channel center at the well asin case 2 of this chapter.

Table 5.7 lists al the parameters used for this case. The dimension of the simulation
grid is60” 40" 15. So the total number of gridblocks is 36,000.

As noted previously, we obtained a true reservoir model by sampling the prior.
Table 5.8 lists some of the model parameters and the true channel thickness and top depth
at the well obtained from “the true reservoir”. The true channel thickness and cross-
sectional area (product of width and thickness) along the channel are shown in Fig. 5.27.

We will use these two random fields for comparison and uncertainty evaluation.
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Table5.7 - Parametersfor case 4

Principal direction line: 'y, =180.0ft, z, =80.0ft, s,, =0.05, 5,, =0.0,
sy, =10,s; =10,5¢ =0000Ls ¢, =0.0001.
Sinuosity of the center line: s & =900.0,s § =100.0, ag =ag =80ft.
Width and aspect ratio:  mw=160.0ft, s 2, =100.0, aw=80ft.
Mr=2.5, s 4z = 0.0625, axz=80ft.

Gridblock Size: Dx=Dy=Dz=10ft.

Porosity inside and outside the channel: [, =0.3,s > =0.0025
e =01s? =00004
Permeability inside and outside the channel: k, =100md,s ; =625

Ky =0.1md,s ; =0.0025
Parameters for flow simulation or drawdown test

Fluid viscosity: 25¢cp

Total compressibility: 10° 1/psi

Initial reservoir pressure: 3500 psi

Production rate: 1000 rb/d

Testing period: 0.5 days

Initial and maximum time step: ~ 0.0001 day, 0.05 day
Time step multiplier: 1.2

Well radius: 0.3 ft

Weéll location: iwell=37, jwel|=23
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Table5.8 — True model parametersfor case 4

Principal direction line: yo=180.5 ft, 2=81.4 ft, s,,=0.064, s,=0.013
Permeability inside and outside the channel: ke=134.1 md, kn:=0.067 md
Porosity inside and outside the channel: j =0.26, ] ,.=0.10

Channel thickness at the well: 81.6 ft

Top depth of the channel at well: 126.3 ft (from bottom of the reservoir)

1.6E+04

1.4E+04

1.2E+04

1.0E+04

8.0E+03

6.0E+03
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—*— Cross-section area

—*= Channel thickness
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x-direction index i

Fig. 5.27 — Channel thickness and cross-section area based on the true model.



Fig. 5.28 shows the true channel image and one dlice cut from the entire reservoir

which illustrates the well location (black cell) clearly.

(& True channel image. (b) Layer 7 cut from the reservoir.

Fig. 5.28 — True channel image and alayer cut from the reservoir.

Fig. 5.29 shows the simulated pressure drop and its derivative with respect to natural
logarithm of time in alog-log plot for a half-day test. As we can see, from t = 0.001 day
to about t = 0.01 day, the pressure derivatives is approximately constant, which indicates
a radial flow regime. For t > 0.01 day, the pressure derivative exhibits a half slope
straight line indicative of linear flow.

During radial flow in alayered reservoir of thickness h, the derivative of the pressure
drop with respect to the natural logarithm of time is inversely proportional to the average

kh product of the system, i.e., in field units,

TDPw _ 70.6qm
fint kh

(5.23)

where

_ N,
kh=2&k;h, (5.24)
i=1
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where k; and h; represent the permeability and thickness of the gridblock layer i which is
penetrated by the well in vertical direction. For the specific example under consideration,
the well is fully-penetrating. The corresponding permeabilities (in millidarcies) of the
gridblocks penetrated by the well are 0.067, 0.067, 0.067, 71.1, 134.1, 134.1, 134.1,

134.1,134.1, 134.1, 134.1, 84.1, 0.067, 0.067, 0.067 and the gridblock size in the vertical

direction is uniform and equal to 10 ft. therefore, kh»10935 and ‘HDIpr »16.14. If we

neglect the permeability of the non-channel facies (it is very small compared to the

Dp“t” »16.12. But from Fig. 5.29, 0P«

fint

channel permeability), then f »19 based on

the simulated pressure drop. It is unclear whether this difference is related to the use of
the Peaceman’s equation relating gridblock pressure to well-bore pressure or due to the
variation in channel thickness, width and permeability values aong the edges of the

channdl.

1000

T

100
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~  Dpu

11DP ¢
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0.001 0.01 0.1 1

Time (days)

Fig. 5.29 — Simulated pressure drop and its derivative for case 4.
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Table 5.9 lists the simulated pressure data selected from the complete set of pressure
data generated from the ssimulator. The observed pressure data to be used as conditioning
data were obtained by adding random noise assuming that measurement errors can be
represented as independent identically distributed random variable with mean zero and
variance 1 psi®>. Similarly, we add random noise to the true channel thickness and top
depth as our observed data. The data variances used were 0.5 ft2.

Table 5.9 — Conditioning pressure data for case 4

Time (days) Pressure (psi)
0.00099 3374.079
0.00208 3360.021
0.00396 3348.575

0.0072 3337.941
0.01281 3327.266
0.03262 3306.037
0.05674 3288.244
0.09841 3264.197
0.17041 3231.259
0.29483 3184.84
0.44483 3136.148

As before, we generate redlizations from the a posteriori pdf by using the
randomized maximum likelihood method. The realizations generated are conditioned to
the observed pressure data, channel thickness and top depth at the well location. Recall
that in the randomized maximum likelihood method, each redlization is generated by

minimizing an appropriate objective function using the Levenberg-Marquardt agorithm.
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Before we discuss the set of multiple realizations, we present some results from one
realization.

Fig. 5.30 shows a plot of the objective function versus the number of Levenberg-
Marquardt iterations used to generate a realization. In this case, the algorithm converged
in four iterations. The objective function evaluated at the initial guess was greater than
100,000 and was reduced to 10 at the 4™ iteration. The pressure data are very well
matched as shown in Fig. 5.31. The observed channel thickness and top depth (not

shown) were honored.

1.E+06

1.E+05

1.E+04 \
O(m) 1.E+03 \

1.E+02

1.E+01

1.E+00
0 1 2 3 4

Iteration
Fig. 5.30 — Objective function O(m) versus the number of iterations.

Fig. 5.32 shows the channel thickness, i.e.,, W(X)/AR(X), from the true model, the
unconditional realization and from the conditiona realization (inversion result). The x-
axis of Fig. 5.32 is actually the value of the x-direction index. Clearly, the channel
thickness at the well is honored since it is data. Around the well location, the conditional
realization is much closer to the true case and away from the well location, the
conditional realization is almost similar to the unconditional realization, i.e., the

Levenberg-Marquardt optimization process resulted in only small change in the channel
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thickness away from the well. This is simply a reflection of the fact that because of the

short test time, the observed data are essentially insensitive to thickness at large distances

from the well.
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Fig. 5.31 — Pressure data matching.

100

Unconditional —*True —*~ Conditional

90

80

Channel

™ anee = T

AR

N
thicl:ness ik N // // \..\\\
@ | %V

50

40

10

20 30 40 50 60

x-direction index

Fig. 5.32 — Channel thickness from the true model, an unconditional
realization and the inversion results.

In this example, arealization for channel and non-channel permeability and porosity

was also generated. Fig. 5.33 shows the change of k. and knc with the number of
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iterations in the Levenberg-Marquardt algorithm. The straight lines represent the true
values of k. and knc, whereas the curves with diamonds and triangles are the values of k.
(blue) and ki (red) at various iterations. As can be seen from this figure, the channel
permeability k. is very well resolved. The true value of k. is 134.1 md and the value at
convergence is 133.94 md. Since the non-channel facies permeability Knc is very small
and less important compared to k, it is not well recovered. Similar results were obtained

for the porosity of channel and non-channel facies as shown in Fig. 5.34.
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Fig. 5.33 — Channel permeability (kc) and non-channel permeability (knc)
versus the number of iterations.
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Fig. 5.34 — Channel and non-channel porosities versus iteration.

118



119

Following exactly the same procedure as for the redization just discussed, we
generated 49 more redlizations by the Levenberg-Marquardt algorithm for the evaluation
of the uncertainty of all parameters. These results are presented next.

Fig. 5.35 shows 50 unconditional redlizations (black curves) of the channel
thickness, where the thicker curve represents the channel thickness from the true model.
As indicated in this figure, the variation in thickness is the same at all points along the
channel because no conditioning data are used. Recall that channel thickness is the ratio

of width to the aspect ratio which is the explicit parameter.
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Fig. 5.35 — True channel thickness and unconditional realizations from the prior.
As described before, if we generate conditional realizations by conditioning to the
observed radial flow pressure data and the channel thickness at the well, channel
thickness at the well location should be well honored in all the redizations, and the kh

product near the well should also be well resolved since the radial flow pressure response



is mainly controlled by the kh product of the channel. In other words, relatively small
variation in channel thickness around the well is expected in multiple realizations. Fig.
5.36 illustrates this phenomenon. Again, the thicker curve in Fig. 5.36 is the true channel
thickness and all the black curves represent 50 conditional realizations from the inversion
process. As we can see, the variation of the channel thickness around the well (x-direction

index = 37) is much narrower than other locations away from the well.
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Fig. 5.36 — Conditiona realizations of the channel thickness.

If the kh product of the channel iswell resolved, then we expect that linear flow data
should resolve reasonably the product of channel width and thickness. Fig. 5.37 verifies
this conjecture, where 50 unconditional and conditional realizations of the channel cross-
sectional area are shown in Figs. 5.37(a) and 5.37(b), respectively, with each realization
being calculated by the product of the corresponding unconditional and conditional

realizations of channel width and thickness.
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Fig. 5.37 (a) — Unconditional realizations of channel cross-sectional area.
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Fig. 5.37 (b) — Conditional realizations of channel cross-section area.



Another way to evaluate uncertainty is to plot histograms from the realizations of
the parameter. As a check of how well the conditioning data are honored, Fig. 5.38 shows
two histograms of the top depth of the channel at the well location. Fig. 5.38 (a) is based
on 50 unconditional redlizations of the top depth, whereas Fig. 5.38 (b) is based on 50
conditional realizations of the channel top depth. Since channel top depth at the well is
conditioning data, it is honored by all of the conditional realizations. Therefore, the mean
of the conditional samplesis essentialy equal to the observed top depth (126.5 ft) and the
variance is very small (standard deviation is 0.95). However, the sample mean and
variance of the unconditional realizations depend on the means and variances of the
geometric model parameters related to the top depth of the channel, see Eq. 4.17. In
addition to the mean value and standard deviation, other statistical parameters of the
samples, e.g., maximum, minimum, lower and upper quartiles and median are also listed

on the upper-right corner of each histogram.
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Fig. 5.38 — Histograms of channel top depth based on (a) unconditional realizations
and (b) conditional redlizations. The vertical axisisthe relative frequency
of the samples.
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Figs. 5.39 (a) and (b) presents the histograms of channel permeability based on 50
unconditional and conditional realizations, respectively. Since channel thickness at the
well is observed data, and kh @chc is well resolved by radial flow data, we expect that
channel permeability should be well resolved. If so, redizations obtained from the
inversion process should exhibit only a very small variation in channel permeability. As
shown in Fig. 5.39 (b), the mean of the conditional samples is 133.8 md, which is very
close to the true channel permeability (134.1 md), whereas the standard deviation of the
conditional samples is only 2.6. Note that the mean calculated from the set of
unconditional readlizations is 106.5 md, which is bigger than the prior mean of channel
permeability (100 md) and the calculated standard deviation of 24.5 md is dightly
smaller than the prior standard deviation (25 md). This simply reflects that the number of
realizations (50) is not large enough to capture the exact statistical characteristics of the
distribution. Similar results occur in al the histograms generated from the 50

unconditional realizations.
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Fig. 5.39 — Histograms of channel permeability based on (a) unconditional
realizations and (b) conditional realizations.
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The histograms for channel porosity, non-channel permeability and porosity are
shown in Figs. 5.40 through 5.42. Again, there are two histograms in each figure, one is
based on the set of unconditional realizations of the prior model and the other is based on
conditional realizations obtained by the randomized maximum likelihood method. Note
for these parameters, there is not a great difference between the statistics of the
unconditional and conditiona realizations, meaning that there is no significant reduction
in the uncertainty of these parameters obtained by conditioning to the data. For example,
the mean and standard deviation of the non-channel porosity based on unconditional
redizations are 0.094 and 0.0234, the mean and variance of the corresponding
conditional samples are 0.0895 and 0.0218, respectively, as shown in Figs. 5.42(a) and

(b). The true non-channel porosity is0.1.
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Fig. 5.40 — Histograms of non-channel permeability based on (a) unconditional
realizations and (b) conditional realizations.
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Fig. 5.41 — Histograms of channel porosity based on (a) unconditional
realizations and (b) conditional realizations.
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Fig. 5.42 — Histograms of non-channel porosity based on (a) unconditional
realizations and (b) conditional realizations.
For other geometric model parameters such as width of the channdl, it is convenient
to select a particular location for plotting histograms. As a comparison, we chose two

locations; one is the well location and another is away from the well with the x-direction



index equal to 10. We plotted the histograms of channel width at these two locations,
based on 50 unconditional and 50 conditional realizations. As we can see from Figs. 5.43
(@) and (b), the variation of channel width based on the conditiona realizations is only
dightly reduced, which indicates that the channel width at the well location was not very
well resolved (the mean of the conditional samples is 171.2 ft and the true value is 180

ft). Far from the well, the uncertainty in channel width is not reduced (see Figs. 5.44 (a)

and (b)).
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Fig. 5.43 — Histograms of channel width at the well location based on
(a) unconditional realizations and (b) conditional realizations.
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5.5 Case 5: Unknown Channel Thickness

In the proceeding examples, both pressure data and observed channel thickness at
the well were used as conditioning data. In this case, channel thickness was well resolved
by the data. However, we expect that if channel thickness is unknown, radial flow
pressure data will resolve only the kh product. In this example, we wish to see what
reservoir properties can be resolved from only the observed pressure data and top depth
of the channel; i.e., we deal with the cases where the observed channel thickness is not
available. We will divide the observed pressure data into two sets; one contains only
radial flow pressure data and the other contains only linear flow pressure data. We have
already discussed the analytical expression of pressure derivative from radial flow. Here,
we only wish to see what we can resolve from radial flow pressure data. Similarly, we
wish to see what properties can be resolved from only linear flow pressure data
Theoretically, during linear flow in a homogeneous channel with straight boundaries and
uniform width W and thickness H, the derivative of pressure with respect to the natural
logarithm of time is inversely proportional to the product of the cross-sectional area of
the channel (HW) and the square root of channel porosity (j ¢) times channel permeability

(ko), 1.e.,

P Jt
Tint™ HW kg .

(5.25)

Therefore, it is reasonable to expect that linear flow pressure data should well resolve
HW,/k . of the actual channel. However, if data from only a single well are available

and HW varies with positions, then it is clear that a value of channel HW x feet to the
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“right” of the well will have the same effect on pressure data as the same value x feet to

the “left” of the well.

To illustrate these concepts, we consider only two cases. For each we will generate
only one realization by the randomized maximum likelihood method using the
Levenberg-Marquardt algorithm to minimize the appropriate objective function. All

model parameters as well as the true model for these two cases are exactly the same as

those in Case 4, see Tables 5.7 and 5.8 and Fig. 5.28.

Tables 5.10(a) and 5.10(b) list the smulated pressure data from radial flow and
linear flow, respectively. Random noise will be added twice on these data sets, once to

obtain the observed pressure data and a second time to obtain the unconditional

realization of the data. These are dso listed in Tables 5.10 (a) and (b).

Table5.10 (a) — Theradial flow pressure data.

Time | Simulated | Observed |Unconditiona
(days) pressure pressure realization
(psi) (psi) (psi)

0.0001 | 3421.548 | 3421.364 3421.89
0.00022 | 3407.491 3407.327 3408.008
0.00036 | 3396.296 | 3396.216 3396.977
0.00054 | 3387.360 | 3386.296 3387.089
0.00074 | 3380.114 | 3380.225 3380.893
0.00099 | 3374.079 3374.502 3374.240
0.00129 | 3368.884 | 3369.748 3371.098
0.00165 | 3364.259 3363.580 3361.439
0.00208 | 3360.021 3361.346 3360.868
0.00260 | 3356.044 | 3356.388 3356.799
0.00322 | 3352.248 | 3352.295 3351.524
0.00396 | 3348.575 | 3348.960 3347.683
0.00485 | 3344.986 | 3344.693 3343.092
0.00592 | 3341.451 3341.651 3342.590
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Table5.10(b) — Thelinear flow pressure data.

Time Simulated Observed Unconditional
(days) pressure pressure realization

(ps) (psi) (psi)
0.01 3340.859 3340.675 3341.842
0.0220 | 3319.218 3319.054 3318.287
0.0364 | 3304.791 3304.711 3306.287
0.0536 | 3291.655 3290.591 3290.510
0.0744 | 3278.472 3278.583 3278.456
0.0993 | 3264.718 3265.141 3264.172
0.1291 3250.07 3250.934 3251.772
0.1649 | 3234.237 3233.558 3232.049
0.2079 | 3216.902 3218.227 3217.879
0.2579 | 3198.266 3198.61 3198.157
0.3079 | 3180.717 3180.764 3180.378
0.3579 | 3163.982 3164.366 3163.138
0.4079 | 3147.883 3147.59 3148.425
0.4579 | 3132.299 3132.5 3133.205

Fig. 5.45 shows the objective function (the line with diamonds) and the kh product
(with squares) at the well location for 5 iterations of the Levenberg-Marquardt algorithm.
The horizontal line (purple) represents the true kh product at the well location. Aswe can
see, the Levenberg-Marquardt agorithm converged in 5 iterations, with the objective
function decreasing from 105 initially to about 17 at the 5™ iteration. The kh product at
convergence is 10,851 md-ft, which is reasonably close to the true value of 10,936 md-ft.
Based on the unconditional realization of the channel and its permeability, k.= 96.38 md
and the channel thickness at the well is 53.25ft, so the kh product at the well location is
5132 md-t, which is far far away from the true value. Results from the conditional
redization indicate that the channel thickness at the well location and channel

permeability, respectively, are 74 ft and 146.2 md, compared to the true value of 80 ft and
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134 md. This represents the expected results; i.e., radial flow pressure data do not
accurately resolve k and h, individualy. Fig. 5.46 shows the calculated and the observed

pressure data, which are in good agreement where the calculated data were obtained from

the conditional realization.

Fig. 5.45 — The objective function and kh product versus iteration.

— Calculated A Observed

Fig. 5.46 — Theradia flow pressure data matching.
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Recdll that the channel thickness and width vary with x. Figs. 5.47 and 5.48 show
how the channel thickness and the kh product vary along the channel. In Figs. 5.47 and
5.48, the black lines with triangles represent the true fields, whereas the dark gray ones
with diamonds are from the conditiona realizations and the gray ones with squares are
from the unconditional realizations. The well is located at the 37" gridblock in the x-
direction, i.e., X= Xs7. As in the previous examples, the channel thickness from the
conditional realization are much closer to the true values around the well location, but
similar to the values from the unconditiona realization away from the well location.
However, the kh product values around the well location are very well resolved compared
to the channel thickness itself, see Fig. 5.48. Away from the well, there is approximately
a constant difference between the conditional realization and the unconditional

realization, which depends on the corresponding permeability difference.
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Fig. 5.47 — Channel thickness versus x-direction index.
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Fig. 5.48 — The kh product versus x-direction index.

We also generated a conditiona realization of the channel and rock properties by
conditioning only to the linear flow pressure data (Table 5.10(b)) and the observed top
depth of the channel at the well location. In this case, the Levenberg-Marquardt algorithm
also converged in 5 iterations. The objective function at convergence was 23. Fig. 5.49
shows the agreement between observed and calculated pressure data, where the solid line
represents the calculated pressure data at the last iteration of the Levenberg-Marquardt
algorithm and the red triangles are the synthetic observed pressure data. The average sum
of the squared pressure mismatch was 1.6 in this case, see Eq. 3.37. The observed top
depth of the channel was honored. The observed top depth is 127.1 ft and at the last
iteration of the Levenberg-Marquardt algorithm, the calculated top depth at the well

location is 126.1 ft, which is very close to the true value (126.3 ft).
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Fig. 5.49 — Pressure data matching for linear flow.

Physically, linear flow occurs after the radial flow, i.e., after the pressure data has
been influenced by the channel boundaries in the y-direction. In the true model, the well
is located 8 gridblocks away from both boundaries in the y-direction. Therefore, the
region that affects the linear flow pressure data is roughly 8 or 9 gridblocks away from

the well in the x-direction. Figs. 5.50 through 5.53 show the channel width (W),
thickness (H), cross-sectional area (WH) and WH.kj . from the conditional

realization, the unconditional realization and from the true model, respectively. Again the
black lines with triangles represent the true fields, the dark gray ones with diamonds are
based on the conditiona realization from the randomized maximum likelihood method
and the gray ones are based on the unconditional realizations. A common feature in these
figuresis that the above properties based on the conditional realization are closer to those
from the true model in a broader area in the x-direction and none of them was very well

resolved near the well which is located at the 37" gridblock. For example, the channel
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widths at the x-direction index equal to 27 (10 blocks away to the left of the well
location) are 155.7 ft (true), 164.6 ft (conditional) and 169.7 ft (unconditional),
respectively, see Fig. 5.50. The channel cross-sectional areas at the same location in Fig.
5.51 are 8718.2 ft? (true), 12059.5ft* (conditional) and 13751.4 ft* (unconditional), and

the values of the quantity, WH .,/ kj ., are 51572.9 (true), 68281.1 (conditional) and

73231.6 (unconditional), see Fig. 5.52.
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Fig. 5.50 — Channel width versus the x-direction index for linear flow case.
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Fig. 5.53 —The value of WH /kj . versusthe x-direction index.

Since the influence of the WH value at x; has on pressure data depends primarily on

the distance between x and x, (the x-coordinate of the well location), a more
representative quantity for investigating whether WH/k j . is resolved by linear flow

datais
f(d) =%[H(xw +AW(x,, +d)+H(x, - OW(x, - Dk ..  (4.26)

Here x, is the x-coordinate of the well, d = x-x,, represents the distance between x; and
the x-coordinate of the well location, so d=0 represents the well location itself. H(X) is the
channel thickness at x such that x represents the x-coordinate of the gridblock center and
W(X) represents the channel width at x. ke and j . are the channel permeability and

porosity, respectively, and permeability and porosity in the channel are homogeneous.

Note, f(d) represents the average of the quantity WH/kj . at two locations symmetric
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to the well location. If WH \/kj . iswell resolved from linear flow pressure data, then a

plot of f(d) for conditional and unconditional realizations should show that the
conditional realizations are closer to the values of f(d) from the true model. If we
generate multiple unconditional and conditional realizations, then we would expect that
the variation in f(d) based on the conditional realization should be much smaller than the
variation of f(d) based on the unconditiona realizations. Fig. 5.54 and Fig. 5.55 show 10
unconditional and conditional realizations of f(d), respectively. In Figs. 5.54 and 5.55, the
thick line represents the f(d) calculated from the true model and all other curves are
obtained from 10 conditional and unconditional realizations, respectively. As seen from
Fig. 5.55, from the 7" gridblock to 18" gridblock from the well, the values of f(d) are

much closer to the true case and the variation of f(d) is much narrower than that shown in
Fig. 5.54. This supports our conjecture that the average value of WH,/k j . asafunction

of distance from the well iswell resolved from the linear flow pressure data.
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Fig. 5.54 — Function f(d) based on 10 unconditional realizations.
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Fig. 5.55 — Function f(d) based on 10 conditiona realizations.
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CHAPTER VI

CONCLUSIONS

We have implemented the randomized maximum likelihood method to condition a
stochastic model for asingle 3D channel to well test pressure data, channel thickness and
depth of the channel top observed at the well location. The generation of each realization
by this method requires the minimization of an appropriate objective function. We have
implemented a form of the Levenberg-Marquardt algorithm to perform this minimization.
We have shown that the overall methodology relies mainly on the following factors. a
well-defined stochastic model (the prior) of channel geometry; the construction of the a
posteriori probability density function (pdf) and assumed objective function; an accurate
and efficient approach for the computation of sensitivity coefficients of the conditioning
data to the model parameters and finally an efficient way to sample the a posteriori pdf
and generate realizations that honor the data and the prior knowledge. We have seen from
the synthetic case studies that the methodology implemented was successful.

The prior stochastic channel model used was defined with four Gaussian random
variables and four 1D Gaussian random fields for a single channel in three-dimensional
domain. The four random variables define the principal direction line which controls the
orientation or main directiona tendency of the channel body. The horizontal sinuosity
and vertical sinuosity, modeled as 1D Gaussian fields, determine the shape of the

channel, whereas the width and aspect ratio specify the dimensions or sizes of the
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channel in space. This model is flexible and representative of reality. More importantly,
with this prior, it is sSimple to evaluate the sensitivity coefficients of model parameters to
conditioning data provided the entire channel body could be completely contained within
the reservoir grid.

The a posteriori pdf was formulated from the Bayes's theorem. In addition to
multiple Gaussian priors, we assumed that data measurement errors can be modeled as
independently, identically distributed multiple Gaussian with mean zero and known
variances. Conditioning data included well-test pressure data, the observed channel
thickness, and the measured depth of channel top at the well location.

We developed a very efficient analytical method to evaluate the sensitivities of
gridblock permeability and porosity to the geometric model parameters of the channel.
These results are needed to compute the sensitivities of the conditioning pressure data to
the model parameters by an application of the chain rule. These sensitivities are used
when sampling the a posteriori pdf by the randomized maximum likelihood method.
Although uniform grid size, constant permeability and porosity inside and outside the
channel were used in the derivations and illustrations, there appears to be no difficulties
in applying the methodology for a non-uniform grid and completely heterogeneous
permeability and porosity fields. The basic idea should also be extendable to muilti-
channel, multi-well and multiphase flow circumstances, athough this will require
additional theoretical development.

For sampling the a posteriori pdf, we implemented the randomized maximum
likelihood method to generate realizations from the pdf. We know that this sampling

procedure gives correct realizations if the observed data are linearly related to the model.
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However, it represents only an approximate sampling in our case, where the relationship
between the well test pressure data and the channel model parametersis non-linear.

In sampling with the randomized maximum likelihood method, we have applied a
form of the Levenberg-Marquardt algorithm to minimize the objective function. The case
studies presented have verified the effectiveness and efficiency of this algorithm. It only
requires 4 to 6 iterations for convergence in the cases we considered, which takes about
20 to 45 minutes on a Pentium 400 computer. At each iteration, sensitivity coefficients
are computed only once, but an iteration might require several flow simulation runs,
depending on the behavior of the objective function. The algorithm uses a damping factor
to avoid an explicit line search. The difficulty isin selecting a starting value of the factor.
In all the cases of this study, we have used a value of 1000 to initialize the algorithm. We
found that this starting value is appropriate in most cases.

Based on the results of synthetic case studies, we found that good estimates of
reservoir properties, such as the kh product of the reservoir around the well, the total
channel volume or total pore volume, and the flow cross-section area of the reservoir
around the well could be obtained using pressure data from a single well, provided
pressure data during appropriate flow periods are available. For example, the total pore
volume of the reservoir could be well resolved if pseudo-steady state pressure data are
available. Moreover, conditioning to pressure data, the observed channel thickness and

top depth does reduce the uncertainty in the geometric parameters near the well location.
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Symboal

AR

NOMENCLATURE

correlation length of the Gaussian covariance function, ft.
aspect ratio.

gridblock index.

normalizing constant of a probability density function.
total system compressibility, psi™t.

prior covariance matrix for aspect ratio.

data covariance matrix.

pressure data covariance matrix.
data covariance matrix for channel thickness.
covariance matrix for channel top depth.

prior covariance matrix for geometric parameters.
prior covariance matrix for the principal direction line.
prior covariance matrix.

prior covariance matrix for rock properties.

prior covariance matrix for horizontal sinuosity.

prior covariance matrix for vertical sinuosity.
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dobs
dOFl))S
d H
d p

dZ

f(X)
fm(m)

g(m)

H(m)

H ()

obs

Le

prior covariance matrix for channel width.
vector of predicted data.
vector of observed data.

vector of observed pressure data, psi.

vector of predicted channel thickness, ft.

vector of predicted pressure data, ps.

vector of predicted channel top depth, ft.

expectation of arandom variable or random field.
square root of a covariance function.

prior probability density function of the model.
relationship between predicted data and model parameters.
sengitivity coefficient matrix.

distance of agridblock center from the well location, ft.
Hessian matrix.

Channel thickness at x, ft.

observed channel thickness, ft.

permesbility, md.

average permeability, md.

permesability field, md.

principal direction line.

channdl center.
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m

Mg
mG,prior

mpr ior

m

mr,prior

P;
Pu(X)
P()
P(X)

P«(X)

144
vector of model parameters.
vector of channel geometric parameters.

vector of prior means of geometric model parameters.
vector of prior means of model parameters.

vector of rock properties.

vector of prior means of rock properties.

number of ssimulation gridblocks.

number of conditioning data.

number of observed channd thickness.

number of observed pressure data.
number of gridblocksin the x-direction.
number of gridblocksin the y-direction.

number of gridblocksin the z-direction.

number of wells.

objective function.

pressure, psi.

i observed pressure, psi.

proportion of channel interior in a bottom boundary gridblock.
proportion of channel interior in aleft boundary gridblock.
proportion of channel interior in aright boundary gridblock.

proportion of channel interior in atop boundary gridblock.
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flow rate, RB/D.
volume fraction of channel interior in a gridblock, fraction.
wellbore radius, ft.
horizontal sinuosity, ft.
vertical sinuosity, ft

dope of the projection of the principal direction line in the x-y plane.

dope of the projection of the principal direction line in the x-z plane.
time, days.

gridblock volume, ft°.

volume of channel interior in a gridblock, ft°.

volume of non-channel faciesin a gridblock, ft°.

channel width, ft.

y-coordinate of the principal direction line at starting point, ft.
z-coordinate of the principal direction line at starting point, ft.
constant in the Levenberg-Marquardt algorithm.

viscosity, cp.

mean of aspect ratio.

mean of channel thickness, ft.

porosity, fraction.

porosity field.

variance of arandom variable.



Subscripts
b
c
G

nc

Superscripts
T

-1

related to a gridblock.

related to channel facies or channel center.

related to channel geometric parameters.
related to non-channel facies.

related to rock property field.

related to well.

related to channel width.

transpose.

matrix inverse.
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