
T H E  U N I V E R S I T Y  O F  T U L S A

THE GRADUATE SCHOOL

C O M P A R I S O N  O F  S A M P L I N G  M E T H O D S  F O R

U N C E R T A I N T Y  E V A L U A T I O N  I N  R E S E R V O I R  F L O W

P R E D I C T I O N S

by

Soraya Sofia Betancourt Pocaterra

A thesis submitted in partial fulfillment of

the requirements for the degree of Master of Science

in the Discipline of Petroleum Engineering

The Graduate School

The University of Tulsa

2000



ii

T H E  U N I V E R S I T Y  O F  T U L S A

THE GRADUATE SCHOOL

C O M P A R I S O N  O F  S A M P L I N G  M E T H O D S  F O R
U N C E R T A I N T Y  E V A L U A T I O N  I N  R E S E R V O I R  F L O W

P R E D I C T I O N S
by

Soraya Sofia Betancourt Pocaterra

A Thesis Approved for the Discipline of Petroleum Engineering

By Thesis Committee

_________________________, Chairperson
Dr. Dean S. Oliver

_________________________
Dr. Albert C. Reynolds

_________________________
Dr. William A. Coberly



iii

A B S T R A C T

Betancourt Pocaterra, Soraya Sofia  (Master of Science in Petroleum Engineering)

Comparison of Sampling Methods for Uncertainty Evaluation in Reservoir Flow

Predictions (104 pp.- Chapter V)

Directed by Dr. Dean S. Oliver

(143 words)

A variety of methods for generating realizations conditional to production data for the

reservoir characterization problem is available, and several studies have attempted to

determine the most suitable technique.  This study focuses on the application of five

sampling algorithms to a synthetic, one-dimensional, single-phase flow problem, in order

to establish the best algorithm under controlled conditions.  A small test problem was

chosen for this study in order to ensure that a large enough number of realizations could

be generated from each method for statistical validity.  Several thousand realizations

from each sampling algorithm were generated to attempt the characterization of the

probability density function.  The methods considered were Linearization about the MAP

(LMAP), Randomized Maximum Likelihood (RML), Pilot Point (PP), Markov Chain

Monte Carlo (MCMC) and Rejection Algorithm (REJ).  The distributions of the

realizations were compared to evaluate the validity and usefulness of the methods.
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C H A P T E R  I

I N T R O D U C T I O N

The economic viability of an oilfield development project is greatly influenced by the

reservoir production performance under the current and future operating conditions.  In

order to analyze the reservoir performance and estimate reserves, engineers make use of

numerical flow simulators that require a parameterization of the reservoir properties, i.e.,

a reservoir model, as input. The accuracy of the results obtained is determined by the

quality of the reservoir model used to make the reservoir performance analysis.

The hydrocarbon reservoir is a physical system from which there is only available a

limited amount of direct information. The main source of information from the system

may come in the form of production data, such as production rates and pressure behavior,

all of them indirect measurements of the physical parameters that describe the fluid flow

through the reservoir.  The goal is to obtain a map of the reservoir parameters to be used

as an input in the flow simulator in order to describe satisfactorily the production

performance.

A viable approach for the characterization of the physical parameters of a reservoir is

through the use of inverse theory.  In inverse problems, indirect measurements from a

physical system are used to make inferences of that system.  Since all measurements are
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subject to error and the number of reservoir parameters is usually larger than the available

data, the solution is non-unique and the inverse problem is ill posed.  The non-uniqueness

of the solution implies that there are an infinite number of reservoir models that honor the

production history and the prior knowledge of the reservoir. This means that rather than

generating a single model, it is more meaningful to generate a set of plausible realizations

in order to evaluate the uncertainty in the reservoir performance.

There are several methods to sample ; the a posteriori probability density function (pdf) of

the reservoir model.  The purpose of this study is to evaluate five of these methods on a

fair basis.  The same preliminary assumptions, such as discretization of the problem and

geostatistical considerations, were used for all methods in this study in order to focus the

analysis on the performance of the sampling algorithms.  The objective is to investigate

the reliability of the different methods to assess uncertainty in flow predictions.

The approximate sampling methods evaluated here belong to two types (Oliver et. al.,

1996): those that add roughness to a smooth estimate and those that add a smooth

correction to variable fields of properties.  In the first category, the Linearization about

the MAP (LMAP) method will be considered.  Randomized Maximum Likelihood

(RML), and the Pilot Point Method (PP) make a correction to an unconditional

realization.  Markov Chain Monte Carlo (MCMC) and Rejection (REJ) methods sample

from the correct distribution, but may be too slow in practice.  All these methods were
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used to generate a large number of realizations from a single-phase, one-dimensional

synthetic problem, where the observed data were in the form of dynamic pressure.
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C H A P T E R  I I

L I T E R A T U R E  R E V I E W

In reservoir characterization using inverse techniques, the objective is to create a

mathematical model for the reservoir incorporating all possible information, and treating

the uncertainty in reservoir properties as if the properties were random variables. The

mathematical model should be based on clearly formulated assumptions, such as that it is

possible to parameterize the reservoir by dividing it into segments, layers or facies.  For

the case of facies, the geometry could be parameterized as objects.  We often assume that

the porosity is represented by a Normal distribution within a single facies, and that the

permeability is log-Normal. The mathematical model is chosen based on the

understanding of the reservoir and the available data.

Reservoir models are required to satisfy both our previous knowledge of the system, as

well as honoring the indirect and direct measurements from it.  This is done using

Bayesian techniques in the conditioning. The prior model is formulated using geological

and geophysical information and a likelihood for the data. In our case, typical data could

be well observations, seismic and production data.  It is important to include the

uncertainty of the most relevant parameters in the evaluation.
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Since different reservoir models could reproduce the same observed data, we approach

the problem in a probabilistic frame.  Given the importance of the decisions based on

reservoir studies, multiple realizations of the reservoir must be analyzed in order to assess

the uncertainty in reservoir performance.  The realizations from the model are generated

by simulation algorithms. Typical simulation algorithms are MCMC methods, simulated

annealing, sequential methods and FFT methods.

To the best of our knowledge, only three studies have addressed the validity of various

sampling algorithms to generate realizations of the reservoir model conditional to flow

data.  Two of these studies were performed on synthetic cases based on real reservoirs

and involved the participation of several research groups and different approaches for the

analysis of the same problem.

The first study represents the first major attempt to compare inverse approaches and was

performed in the area of groundwater hydrology (Zimmerman et. al. 1998).  This study

compared seven different stochastic inverse techniques for identifying aquifer

transmissivity.  The objective was to determine which of those techniques was the most

appropriate for predicting the outcome of a solute transport problem in an aquifer on a

probabilistic frame.  The aforementioned aquifer was expected to safely contain a

radioactive waste for a long period of time.  The main challenge was the lack of
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knowledge about the geology of the aquifer, which was suspected to be highly

heterogeneous.

The seven inverse methods were compared on four synthetic data sets.  The comparison

criteria were the predicted travel times and the travel paths followed by conservative

tracers over a distance of 5 km.  The methods considered were as follows.

1. Fast Fourier Transform (FF). (Gutjahr and Wilson, 1989; Robin et. al., 1993;

Gutjahr et. al., 1994).  This method uses the Fast Fourier Transform Technique

for the generation of parameter fields.  Time dependent data were not considered.

For the conditioning of the generated models to observed transmissivities and

head measurements, an iterative co-kriging procedure was implemented. The FFT

is very computationally efficient for generating unconditional realizations on a

large grid.

2. Linearized Semi-Analytical Method (LS). (Dagan, 1985; Rubin and Dagan, 1987;

Dagan and Rubin, 1988; Rubin 1991 a,b;  Rubin and Dagan, 1992).  This

technique involved two stages: the solution of the inverse problem and secondly

the solution of the transport problem using particle tracking.  A maximum

likelihood procedure with cokriging is used to generate head and transmissivity

fields that are conditioned to observed data. This method does not require the

numerical solution of flow equations, and therefore discretization errors are
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avoided.  The main limitation is the assumption that head measurements are

linearly related to transmissivity.

3. Linearized Cokriging Method (LC). (Kitanidis and Vomvoris, 1983; Hoeksema

and Kitanidis, 1984; Kitanidis and Lane, 1985).  This technique uses maximum

likelihood for the estimation of the structural parameters associated with the log-

transmissivity covariance based on the two types of observed data (transmissivity

and head). The method requires the direct inversion of a matrix equal to the

number of gridblocks used in the flow simulator (the code used for this study,

GEOINVS, was limited to 1600 gridblocks).

4. Fractal Simulation (FS). (Grindrod and Impey, 1991).  The fractal parameters, a

(amplitude) and p (phase), are fitted using maximum likelihood estimation and

realizations (fractal fields) are generated using the Fast Fourier Transform

method.  A linear superposition of the unconditioned fields is used to condition

them to the observed data, minimizing the difference between the variance of the

final field and the data.

5. Pilot Point Method (PP). (Rama Rao et. al., 1995; La Venue et. al., 1995).  After

modeling the data variograms, unconditional realizations of transmissivity fields

are generated using the turning bands method.  The measured transmissivities are

honored by adding a simulated kriging error based on the observed data.  The

calibration of the computed pressure to the observed pressures is done

automatically through the minimization of an objective function.
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6. Maximum Likelihood Method (ML). (Carrera and Neuman, 1986 a,b).  This is a

very general non-linear technique that estimates aquifer parameters

(transmissivity, recharge, storage, leakage coefficients, heads or flow rates) using

prior estimates of their values along with transient or steady-state head

measurements. The non-linear flow equation was solved using a fully implicit

finite-element flow simulator.  The optimization part was performed by

minimizing an objective function consisting of a likelihood term for the head data,

and a prior estimate term with a weighting parameter for the other hydrologic

parameters.   Several minimizations were done for different weighting parameters.

7. Sequential Self Calibration (SS). (Gomez-Hernandez et. al., 1997). The

transmissivity data are kriged and the kriging standard deviation is computed at

each gridblock location. A grid, located in the mean flow direction, is constructed

and a seed transmissivity field is generated according to the random function

model chosen (multi-Gaussian or not) and conditional to observed data.  A seed

field that reproduces the data is determined by optimization and realizations are

generated by perturbation of this seed field.  The perturbation field is

parameterized by a few values at selected master locations.  Perturbation of the

remaining cells is obtained by kriging interpolation of the master location values.

The information given to the participants consisted of steady-state hydraulic head data

and transmissivity values at a few locations, and transient information in the form of
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three independent aquifer tests. To evaluate the performance of the methods, the

cumulative distribution functions (cdf) were compared with the “true” cdf of the field for

ten quantitative evaluation measures.  These measures included particle travel time from

distinct locations, a measure of the reproduction of the real transmissivity field, a

comparison of the transmissivity variograms and a measure of the reproduction of the

real head field.

The best approaches for this study were selected among those techniques that showed a

reduction in the uncertainty compared to unconditional realizations.  Four algorithms

satisfied this criterion for the problem analyzed: Linearized Semianalytical, Maximum

Likelihood, Pilot Point, and Sequential Self Calibration.  The main conclusion achieved

on this study was the importance of the appropriate selection of the variogram and the

time and experience devoted by the user of the method in analyzing and modeling the

observed data.  The construction of cross-variograms was found to be very useful.

Another interesting conclusion from this study is the importance of the identification of

the appropriate structure of the transmissivity field, i.e. the spatial covariance for this

parameter field.  This was found to be more relevant than the estimation of the parameter

values, since completely unrealistic models can reproduce the data satisfactorily.  The

participants of this study did not reach any final conclusion regarding the effects of the

discretization of the problem (the SS method used a coarse grid and performed
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satisfactorily).  The choice of the grid is closely related to the scaling of parameters and

domain of the measurements.

The authors of this groundwater study recommended the creation of a separate

comparison committee, distinct from the participants, for future similar studies, to apply

several tests to the algorithms without knowing the output of the preceding test, and to

diversify the synthetic cases in order to reproduce more realistic situations.  They also

suggest a careful design of the comparison criteria prior the application of the algorithms

to ensure that all the tests are suitable for all the methods.

The second study had as objective to evaluate several uncertainty quantification methods

for production forecast in a hydrocarbon reservoir (Floris et. al. 1999). The synthetic

reservoir model was based on a real field example.  Similarly to the previous study, the

participants received reservoir parameters (porosities and permeabilities) at well locations

and ‘historic’ production data −all of them with noise. A general geologic description of

the reservoir was also available.  The production data were supplied for the first 8 years

of field activity and participants were asked to extend their forecasts to 16.5 years (the

objective was to compare the forecasts with the real performance over this period of

time).  Nine different techniques were evaluated having as a requirement the conditioning

of the reservoir models to the production data, and results (production forecast for a

certain period) were requested in the form of a cumulative distribution function (cdf).
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Besides evaluating different methodologies for uncertainty quantification, distinct

parameterization approaches and optimization procedures were applied by the

participants. Parameterization deals with the spatial distribution of the reservoir

properties (to be input in the flow simulator).  The approaches used were grid block

discretization, regional parameterization (geological layers, genetic units or draining

areas) and pilot points. Optimization procedures included Gradient Optimization and

Genetic Algorithms.  The uncertainty quantification methods evaluated in this study were

as follows.

1) Local Characterization of the objective function around the Maximum A Posteriori

(MAP) solution. After minimizing an objective function with a likelihood term (data

honoring) and a prior term, realizations are generated using the covariance matrix of

the a posteriori distribution function.  It is expected that the pdf will be characterized

only around the MAP solution.

2) Local Characterization of the objective function around a Maximum Likelihood

Solution.  This method is similar to the above, with the difference that the objective

function only contains the likelihood term.

3) Local Characterization of the objective function around several Maximum A

Posteriori solutions (if the objective function is multimodal).

4) Local Characterization of the objective function around several Maximum Likelihood

solutions (if the objective function is multimodal).
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5) Randomized Maximum Likelihood.  Unconditional realizations of the prior model are

generated.  This is followed by the minimization of an objective function containing

the unconditional prior term and a likelihood term.  In a variation of this method,

Oliver et al. (1996) suggest the generation of unconditional realizations of the data to

be used in the likelihood term, i.e. data sampling.

6) Markov chain Monte Carlo with local perturbation of the models.

The authors of the second study identified the variation in the parameterization of the

problem as the main discriminating factor.  The differences in the quality of the history

matching and the production forecast caused by the distinct approaches to the problem,

lead to major differences in the resulting cumulative distribution functions. Other aspects

investigated were the use of prior sampling from the reservoir model, production

sampling as introduced by Oliver et al. (1996), and the use of the quantification of

extremes as proposed by the Scenario Test Method.

Approaches that used zonation to represent the parameter fields had large uncertainty

ranges.  These methods also had poor history matches and therefore, the production

forecasts were biased.  The comparison of the predictions and the true case showed that

for five of the methods the real reservoir performance was not included in the cdf of the

forecasts.  This confirmed the hypothesis that uncertainties are often underestimated, and
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reinforced the importance of the history matching process and the adequate modeling of

the reservoir heterogeneities.

The sampling of the prior geological reservoir model was found to affect the extent of the

uncertainty range.  For the problem being analyzed, the data sampling (the likelihood

term) was observed to have little contribution to the uncertainty range, and the

quantification of extreme forecasts showed a wider range of uncertainty compared to

other heterogeneous curves.

The third study focused on the comparison of a Markov Chain Monte Carlo algorithm

with two approximate sampling methods (Omre et. al. 2000).  The approximate methods

considered were the Kitanidis-Oliver algorithm (Randomized Maximum Likelihood

Method), and a reduced version of the Kitanidis-Oliver algorithm, (Pilot Point Method).

The MCMC method was considered the benchmark for comparison purposes, since it can

be shown to generate samples from the correct posterior pdf.

In order to obtain realizations of porosity, log-permeability and saturation, the algorithms

were applied to a synthetic two-dimensional, two-phase problem.  The porosity was

considered constant throughout the reservoir.
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For each algorithm nine independent samples were generated, and for comparison

purposes histograms were constructed to show the distribution of the reservoir properties

for each realization.  The reduced algorithm was applied using three different spatial

patterns of pilot points (18%, 6% and 2% of the gridblocks).  The results showed that the

RML method reproduces the average value of the reservoir properties, but the exact pdf

was not obtained for the particular case considered.  The results from PPM and RML

were found to be similar, especially for a large number of pilot points (18%).  For the

second pattern (6%), results were also comparable but more heterogeneous.  For the third

pattern (2%), the effect of the pilot points in the properties map was noticeable.  Even

though the optimization procedure ensured the consistency of the models with the

observed data, the realizations from the approximate methods were more heterogeneous

and showed little resemblance to the real reservoir.

A second case was evaluated with an increase in the variance of the errors in the observed

data.  It was observed that the sampled models and the true models were more much alike

in this case.  The explanation for this was attributed to the weaker constraints in the

likelihood term.

The authors recognized the MCMC method to be very resource demanding and

recommend a careful analysis of the problem, especially for highly non-linear problems,

before considering the use of the approximation algorithms.
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C H A P T E R  I I I

I N V E R S E  P R O B L E M  T H E O R Y  F O R  U N C E R T A I N
D A T A

Probability Theory

Probability is fundamentally about measuring sets.  The sets can be finite as in the

possible outcomes of a roulette or infinite as the possible distributions of porosity and

permeability in a reservoir.  The set of all possible outcomes of an experiment is known

as the sample space.  If A is an event or outcome of an experiment having a sample space

S, then P(A) represents the probability of the event A.  Probabilities are always positive

and between 0 and 1 (the probability is zero for impossible events), and P(S) is equal to

one (the probability of the sum of all the possible events in the sample space is equal to

one).  Probabilities also satisfy the additive property on mutually independent events.

Random Variables

Random variables are used to denote the possible outcomes of random trials.  A given

outcome of a random trial is called a realization.  For example, a set of reservoir

parameters (porosity, permeability, and/or saturation) that meets a certain requirement is

called a realization.

“A random phenomenon is an empirical phenomenon characterized by the property that

its observation under a given set of circumstances does not always lead to the same

observed outcomes (so that there is no statistic regularity) but rather to different
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outcomes in such a way that there is statistical regularity.  By this is meant that a number

exists between 0 and 1 that represents the relative frequency with which the different

possible outcomes may be observed in a series of observations of independent

occurrences of the phenomenon. … A random event is one whose relative frequency of

occurrence, in a very long sequence of observations of randomly selected situations in

which the event may occur, approaches a stable limit value as the number of observations

is increased to infinity; the limit value of the relative frequency is called the probability

of the random event”1.

Bayes Theorem

The conditional probability P(B|A) (read probability that the event B will occur given that

the event A has occurred), is the ratio of the probability of the intersection of these events

with respect to probability of event A.

)(
)(

)|(
AP

BAP
ABP

I
=

Since the intersection of the event A and B is the same as the intersection of the events B

and A, then:

P(A∪B) = P(B|A) P(A) = P(BA) = P(A|B) P(B) .

Bayes Theorem is widely used in stochastic inverse theory, where the objective is to

generate plausible realizations of a physical system conditioned to indirect measurements

                                                
1 Parzen, E., Modern probability theory and its applications, Wiley 1960.
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 or to a prior knowledge of what the system might look like.

Probability Functions And Densities

For discrete random variables, the probability that the variable X will take the value of x,

is the probability mass function p(x):

p(x) = P{X = x} .

It was stated before that the summation of the probabilities of all the possible outcomes

of a discrete random process is equal to one.  For random variables that can take values

within an interval, i.e., continuous random variables, there is a nonnegative function

called the probability density function f(x) such that the probability that the random

variable X is contained within the interval C can be written as:

∫=∈
C

dxxfCXP )(}{ .

Expectation of a Function With a Probability Law

When dealing with sets of reservoir parameters, each parameter is considered a variable,

and therefore we must consider multi- variate probabilities. Fortunately, any one

dimensional distribution function defined on the R1 space can be generalized to two (R2)

or more dimensions (RN).  If the outcomes of the random phenomena are real numbers,

the probability law that defines them could be described as the distribution of a unit mass

along the real line for R1 spaces.  This definition can be extended to vector fields and
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functions.  For the random phenomena P, having a probability density p(x) associated,

the expectation of a function f(x) with respect to P is

[ ] ∫
∞

∞−

= dxxpxfxfE )()()( .

The mean of the probability P is the expectation of x is

[ ] ∫
∞

∞−

=≡ dxxpxXEx )( .

The variance of the probability P is defined as:

[ ] [ ]22 )())(()( xXEXEXEXV −=−=  .

Central Limit Theorem

The sum of a large number of independent, identically distributed random variables, all

with finite means and variances, is approximately normally distributed.  This theorem is

important for the following developments because the types of errors considered in

stochastic inverse theory, errors of measurement and observation, are often adequately

represented by a Normal distribution.

Variograms

To describe the spatial correlation between physical parameters in the reservoir we use

variograms.  The variogram is a measure of the similarity between properties (the co-

variance between two values) that are located a distance h apart.  The estimate of

variance is repeated for many values of h to represent the spatial correlation of the
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property being analyzed. This similarity measure is called γ (h), and it is plotted on an x-y

plot with the x- axis being the distance h, and γ (h) on the y- axis.

If the variogram rises, and then levels off or stabilizes around some value, it is said to

have reached a sill.  This is theoretically the variance of the sample. The distance at

which the rising variogram reaches the sill is called the range, and is symbolized by a.

The range is the distance at which the covariance becomes zero, so it marks the limit of

the zone of influence of a single sample. Beyond the range, samples are no longer

correlated and are independent.

There are several types of variograms.  For this study, the variogram used was the

exponential model.  The exponential model is a model that stabilizes around a sill and has

a finite variance and covariance.   This variogram is linear at the origin, but reaches the

sill asymptotically, well beyond the value of the true range, i.e. it approaches the sill

gradually without ever reaching it. The equation is:

γ (h) = C [ 1 - exp(-h/a)] + Co .

As it is characterized by a gradual approach to the sill, then the true range a is one third

of the value of the practical range a'. The practical range is the distance at which γ (h)

approximates the sill. Then 3a = a'. The true range may also be obtained by the

intersection of the tangent at the origin with the sill.
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Inverse Problem Theory

The characterization of a hydrocarbon reservoir can be approached as an inverse

problem.  “Inverse theory is concerned with the issue of making inferences about

physical systems from data (usually remotely sensed).  Since nearly all data are subject to

some uncertainty, these inferences are usually statistical.  Further, since one can only

record finitely many (noisy) data and since physical systems are usually modeled by

continuum equations, if there is a single model that fits the data there must be an infinity

of them.  A model is a parameterization of the system, usually a function.”2

In reservoir characterization inverse theory, the data measured from the physical system

(the reservoir and its fluids) will be production data (in our case, pressure data measured

at the well locations at different times since the beginning of the production).  The

reservoir simulator provides the relation between the data (pressure data) and the model

parameters (porosity and permeability).  These relations are not linear and cannot be

inverted directly.

We have mentioned that the solution of an inverse problem is not unique if the number of

parameters to estimate is larger than the number of observed data, hence we may have to

approach the solution of the problem by defining the a posteriori probability density

                                                
2 Scales, J.A. and Smith M.L., Introductory Geophysical Inverse Theory, Samizdat Press, 1993.
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function for the model parameters.  In petroleum reservoir characterization, however, the

complete description of the pdf is impractical given the large dimensions of the usual

reservoir models (reservoir grids could contain millions of blocks). One way of

approximately characterizing the pdf will be to construct a set of realizations of the model

such that this set correctly reflects the uncertainty in these fields.  This set of realizations

that honor the observed data is considered a solution of the inverse problem.

Flow simulation

A petroleum reservoir simulation model is an algorithm that mathematically simulates the

fluid flow in a porous media of a petroleum reservoir, using numerical techniques such as

finite differences or finite volumes. The reservoir model is based on a specific

mathematical model, which is intended to represent the expected reservoir behavior for a

given period of time as determined by the reservoir engineer. A traditional reservoir study

is divided into two parts.

• Analysis of past performance: in this part, the model uses the geological data,

production data and petrophysical data to simulate the past performance. The

obtained results are compared with real values of production history and manual

adjustments of the model parameters are made by an application expert. This

process is repeated until good agreement is obtained, when the second phase

(forecast of future behavior) can start.
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• Forecast of future behavior: in the second phase, the aim is for the reservoir

engineer to study future possibilities and select those that maximize the profit.

Reservoir Engineering has as its goal the understanding of the subsurface movement and

distribution of fluids, and the prediction of the performance of the reservoir. As with

everything related to the subsurface, the reservoir is a black box that is never really

known but is only understood by its response to inputs. With reservoir engineering that

primary response is from production of the hydrocarbons.

Reservoir model

In order to be represented in the mathematical model, the petroleum reservoir is divided

into cells that make up a simulation grid. A meticulously defined grid with an adequate

degree of refinement will give greater precision to the simulation. On the other hand, the

computation effort and precision requirements increase with the number of cells used.

Petroleum reservoir models are very important tools in the petroleum industry because

reservoir engineers employ these models in order to estimate the amount of oil available

from a specific reservoir and thus maximize the oil recovery. The accuracy of the result is

dictated by the quality of the reservoir model used as input to make the performance

analysis.
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Traditionally, reservoir models were constructed by reservoir engineers with the input of

geologists and geophysicists.  The reservoir engineer was responsible for entering the

data into the reservoir simulator and for obtaining a match of the production history.

Most of the time, this match was achieved by modifying the rock properties in some

regions of the reservoir.  The parameters that were more likely to be modified were the

rock properties, specifically, porosity and permeability.  Porosity measures the capacity

of the rock to store fluids, whereas permeability measures the capacity of the rock to

allow the movement of fluids within it.

Recent trends in reservoir characterization aim to the automatic generation of models that

honor the production history and satisfy our prior knowledge of the reservoir, without the

subjective intervention of the user to achieve the match.

For the purpose of this study, a reservoir model is a map of porosity and permeability

averaged over a previously defined geometry.  In this case, the geometry of the reservoir

is described by a 20 x 1 grid.  Therefore, when we generate a model of the reservoir we

are describing the average porosity and permeability in each one of the 20 gridblocks.

Prior model

Any previous knowledge that we have about the physical system is used to condition the

realizations within logical boundaries.  We want all the generated models to resemble
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what we consider the reservoir to look like.  Normally, geologists have a general idea of

the characteristics of different types of reservoirs from examination of other reservoirs or

from outcrops.  We assume that the porosity in each gridblock is normally distributed

while the permeability is lognormal.  The mean value of the distributions is known as

well as the standard deviation.  We also know the correlation coefficient between

porosity and permeability.

According to the assumption of multinormal distribution of the reservoir parameters, the

prior probability density function is proportional to:







 −−−∝ − )()(

2
1

exp)( 1
priorM

T
prior mmCmmmp ,

Equation 1

where mprior is a vector that contains the estimates of the prior means of the reservoir

parameters, and CM is the prior covariance matrix obtained form the variogram model,

i.e.:
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where Cφ is the covariance for the porosity in each gridblock, Cκ is the covariance of

permeability and Cφκ is the cross-covariance between porosity and permeability.

The basic assumption is that the prior distribution is multinormal with covariance CM.
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Inverse solution

New trends in reservoir characterization propose the treatment of the problem as an

inverse problem.  In an inverse problem, we try to make inferences of a physical system

(the reservoir) through indirect data from it (the production history).  Since these data

have measurement errors associated, and the number of reservoir parameters that we

want to estimate is larger that the observed data, the solution is non-unique. Our objective

is to generate a set of realizations or models of the reservoir that automatically honor the

production history and satisfy our previous knowledge of the reservoir.

Bayes estimation

The relationship between the model parameters and the observed data could be expressed

as:

dobs = g(m) + ε

where dobs is a vector containing a N number of observed data; m is a vector containing a

M number of model parameters; g represents the relation between d and m, and ε stands

for the measurement errors.

For the flow through porous media, this relationship is non linear, and g(m) represents the

flow equations used in the reservoir simulator.

For a given set of observed data, the likelihood function for the model is given by:

L(m|dobs) ∝ exp [− ½ (g(m)-dobs)T CD
−1 (g(m)-dobs) ] .

Equation 2
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Applying Bayes Theorem, the posteriori probability function of the model parameters

conditioned to our prior knowledge and to the likelihood between the observed data and

the output of the reservoir simulator is:

f (m|dobs) ∝ L(m|dobs) p(m) .

Equation 3

Substituting equations 1 and 2 in equation 3, the expression for the posteriori distribution

function is obtained:

f(m | dobs) ∝ exp[− ½ (dobs  –  g(m))T CD
–1 (dobs – g(m)) − ½ (m  –  mpr)T CM

–1 (m  –  mpr)] .

Equation 4

The most probable model is the model that maximizes the function f(m | dobs).  This is

known as the maximum a posteriori solution (MAP).

Gauss-Newton method

To maximize the function f(m | dobs) is the same as minimizing the following function:

S(m) =  ½ [(dobs  –  g(m))T CD
–1 (dobs – g(m)) + (m  –  mpr)T CM

–1 (m  –  mpr)] .

Equation 5

For the minimization of equation 5 we used the Gauss-Newton algorithm with

Levenberg-Marquardt step controller. This method requires the computation of the

gradient and the approximate Hessian of S(m).

The sensitivity coefficients represent the derivatives of the data (wellbore pressure) with

respect to model parameters, i.e.,
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for 1 ≤ i ≤ N and 1 ≤ j ≤ M.  G is the sensitivity coefficient matrix and is N x M.  N is the

number of data and M is the number of model parameters. A sensitivity coefficient gives

a measure of how strongly the data, di = gi(m) are affected by a change in model

parameter mj.

A one-dimensional, single-phase flow simulator was used, and given the small size of the

problem the sensitivity coefficients were computed using the direct method.
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Equation 7

where, i = 1, … , M, and n = 1, … , N.

The gradient and the approximate Hessian are:

∇mS(ml) = CM
–1 (ml – mpr ) + Gl

T  CD
–1 (g(ml) – dobs)

Equation 8

Hl = CM
–1 + Gl

T  CD
–1 Gl .

Equation 9

The Gauss Newton method is an iterative procedure defined by:

ml+1 = ml – Hl
–1 ∇Sl ,

Equation 10
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where l represents the iteration index, ml is the estimate of the minimum of S(m) at the lth

iteration, Gl is the corresponding matrix of sensitivity coefficients, Hl is the Hessian at the

previous iteration, and ∇Sl is the gradient of S(m).

In order to avoid the inversion of H(m) in equation 10, we rewrite this equation

introducing the vector δm, δm= ml+1 – ml, which contains information about the search

direction.  We define the size of the step in that direction using a step controller factor µ:

Hl δm l+1 = – ∇Sl .

Then equation 10 becomes:

ml+1 = ml + µl Hl
–1 ∇Sl = ml + µl δm l+1 .

Using matrix inversion lemmas, this expression could be simplified in order to invert a

matrix that is only N × N.

ml+1 = µl mprior + (1– µl )ml – µl [CM  Gl
T  (CD +Gl CM  Gl

T  )–1

× (g(ml) – dobs – Gl
T  (ml – mpr ))] .

Equation 11

Posteriori covariance

Under the assumption that the relation between the observed data an the model

parameters can be linearized around the maximum a posteriori solution, mMAP, then we

could express g(m) as:

g(m) = g (mMAP) + GMAP (m – mMAP) + ε (m) ,
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Equation 12

where ε (m) represents the error introduced by the linearization and GMAP is the

sensitivity matrix computed at the MAP solution.

If we use equation 12 in equation 5 we obtain:

S(m) = ½ [(m  –  mpr)T CM
–1 (m  –  mpr) + (GMAP m – dMAP) T CD

–1 (GMAP m – dMAP) ] +

(GMAP m – dMAP) T CD
–1 ε (m) + ½ ε (m) T CD

–1 ε (m),

Equation 13

or:

S(m) = S (m) + (GMAP m – dMAP) T CD
–1 ε (m) + ½ ε (m) T CD

–1 ε (m)

Equation 14

with

S (m) = ½ [(m  –  mpr)T CM
–1 (m  –  mpr) + (GMAP m – dMAP) T CD

–1 (GMAP m – dMAP) ] .

Equation 15

Equation 15 is quadratic and if expanded in a second order Taylor series about mMAP, the

result will be exact:

S (m) = S (mMAP) + (∇S (mMAP) )T (m  –  mMAP) +

 ½ (m  –  mMAP)T ∇ (∇S (mMAP) )T
 (m  –  mMAP)

       = S (mMAP) + (∇S (mMAP) )T (m  –  mMAP) +

½ (m  –  mMAP)T  [CM
–1 + GMAP T CD

–1 GMAP] (m  –  mMAP)
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Equation 16

∇ S (mMAP) = CM
–1 (mMAP  –  mpr) + GMAP T CD

–1 (GMAP  mMAP – dMAP) ]

  = CM
–1 (mMAP  –  mpr) + GMAP T CD

–1 (g( mMAP) – dobs) ] .

Equation 17

Equation 17 is equivalent to equation 8 evaluated at mMAP.  Since the MAP solution is a

minimum of equation 5, then equation 8 evaluated at mMAP is equal to zero.  Then,

equation 15 becomes:

S(m) = S (mMAP) + ½ (m  –  mMAP)T  [CM
–1 + GMAP T CD

–1 GMAP] (m  –  mMAP) .

Equation 18

The a posteriori covariance matrix is defined by:

C’M  = [CM
–1 + GMAP T CD

–1 GMAP] –-1 .

Equation 19

Equation 18 is used in equation 14 to obtain an expression for S(m).  The a posteriori pdf

is then:

f ’(m | dobs) ∝ exp[− ½ S(m)].

If the error introduced by the linearization, ε (m), is negligible, then

f ’(m | dobs) ∝  exp[− ½ (m  –  mMAP)T C’M’
–1 (m  –  mMAP) ].

Equation 20

The algorithms used to draw samples from the prior and posterior pdf of the reservoir

models conditioned to observed data will be described in the next chapter.
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C H A P T E R  I V

S A M P L I N G  A L G O R I T H M S

Linearization about the MAP

Once the most probable model is computed, the a posteriori covariance matrix C’M of the

model can be calculated as:

CM’ = (G∞
T CD

—1 G∞ + CM
—1)—1,

Equation 19

where G∞ is the sensitivity coefficient matrix corresponding to the MAP solution, m∞.

When the relationship between the data and model parameters is linear, it is possible to

generate models that honor the production data as

mi = m∞ + L zi ,

Equation 21

where zi is a vector of independent normal random deviates N [0,1] and L is the square

root of C’M obtained with the Cholesky method.  This algorithm requires little computer

resources once L and m∞ are computed.

It is important to understand that the Linearization about the MAP method relies on the

assumption that the probability density function of the model parameters approximates

the normal distribution.  This is true for linear models and normal prior probabilities, but
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for the case of flow through porous media, the relation between model parameters and the

reservoir response is not linear.    It is possible that the probability distribution function

for the model may be multimodal (multiple maximums) and because of the linear

approximation, samples may be drawn from the vicinity of only one of the peaks.

Examples of the application of the LMAP method can be found in Oliver (1994) and He

(1997).

Randomized Maximum Likelihood

Oliver (1996) demonstrated that conditional realizations from a Gaussian random field

could be generated by finding the solution to a particular minimization problem.  If the

covariance of the model parameters and the variance of the observed data are known,

samples can be drawn in the following way.

1. Generate an unconditional realization of the model parameters, muc, N(mpr, CM).

2. Generate an unconditional realization of the data, duc, N(dobs, CD).

3. Minimize the function:

S(m) = (m − muc)T CM
−1 (m − muc) + (g(m) − duc)T CD

−1 (g(m) − duc)

Equation 22

The model that minimizes the function in Equation 22 is a realization drawn from a pdf

that is an approximation to the posterior pdf for m conditioned to dobs.
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This step is similar to the minimization in the LMAP algorithm, with the difference that

the regularization is with respect to an unconditional realization of the model and the

simulated data instead of the prior model and the observed data.  The computational cost

of the RML method is higher than LMAP since it requires a minimization process for

every new model proposed.

This method is an approximation to the MCMC algorithm in which the acceptance test is

ignored.  It can be demonstrated that when the relationship between the model parameters

and the data is linear, the algorithm generates models from the a posteriori distribution

function.  This method has a high acceptance ratio, which makes it an efficient sampling

algorithm.

Details of the RML method and the relationship to MCMC can be found in Oliver (1996).

Examples of the application of the method are available in He (2000) and Reynolds et al.

(1999).

Pilot Point Method

This method is a reduced version of the RML method, for the perturbation of the model

parameters is done only on select locations called pilot points.  The next step is to

interpolate the model corrections between the pilot point locations using kriging

techniques.  The size of the system of equations that must be solved is Np × Np, where
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Np is the number of pilot points.  This system of equations is smaller than for the RML

method.

The algorithm is as follows.

1. Generate an unconditional realization of the model parameters, muc, N(mpr, CM).

2. Generate an unconditional realization of the data, duc, N(dobs, CD).  (This step is

neglected in many implementations).

3. Minimize the data misfit function:

J(mp) = (d − g(mp))T C−1
D (d − g(mp)) ,

Equation 23

where:

mp = muc + δm,

δm = CM E α  .

The columns of the matrix E (M × Np) are vectors with all entries equal to zero, except at

the location of the gridblocks where pilot points are placed, where the entry is 1. α is the

vector of coefficients of pilot points.

For this study, the PP algorithm was evaluated with six and nine pilot points (30% and

45% of the model parameters) distributed uniformly over the study region.

Various methods have been proposed to choose the locations of the pilot points.  La

Venue et al. (1995) used a coupled adjoint sensitivity analysis and kriging.  In most cases,

however, the pilot points are located uniformly throughout the reservoir (Xue and Datta-
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Gupta, 1997).  Examples of the application of this method can be found in De Marsily et

al. (1984), Gomez-Hernandez et al. (1987), La Venue et al. (1995), RamaRao et al.

(1995), Wen et al. (1996), and Xue and Datta-Gupta (1997).

Markov Chain Monte Carlo

In reservoir characterization, a set of realizations of reservoir properties could be

considered a Markov Chain if the probability of generating a particular model depends

only on the preceding model in the sequence. MCMC relies on relative probabilities; this

is an advantage when the pdf cannot be characterized easily and consequently it is

difficult to sample directly from it.

We will denote a particular stochastic realization of reservoir properties as mi, where the

superscript i refers to the ith possible realization (not the ith element in the Markov chain).

Each of these realizations has a probability π i associated with it. π i is the probability that

the realization mi is the “correct map of reservoir properties”, Oliver et al., (1997).  The

transition probability, pij, is the probability of transition to state j from state i.

In order to obtain a stationary and ergodic Markov chain (independent of the initial state),

two conditions must be met.  The transition from any state to another must be possible in

a finite number of steps, and the sum of probabilities of being in state mi, times the

probability of transition from state mi to mj, must be equal to the probability of state mj.
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Equation 24

In the Metropolis-Hastings algorithm, the transition matrix is split into two components:

pij = αij qij

Equation 25

qij is the probability of proposing a transition from state mi to state mj and αij is the

probability of accepting the proposed transition.  Finally, the acceptance probability is:
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Equation 26

See Chib and Greenberg (1995) and Brooks (1998) for a detailed explanation of the

Markov chain Monte Carlo method and the Metropolis-Hastings algorithm.

The efficiency of the MCMC algorithm depends heavily on qij.  If qij is a good

approximation of π j, the acceptance rate will be very high as can be seen from equation

26.  In this study, qij will be based on the a posteriori covariance matrix,

C’M = GT
r
 C−1

D Gr + C−1
M .

In order to condition the realizations to a variogram, a mean (prior) value, and

approximately condition to the data, we generate samples from:

mi = mMAP + L Zi ,

Equation 27
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where
C’M = L LT

and

Zi = (Z1, Z2, Z3, . . . , ZM)T  .

The correct probability density functions for mi and mj are:

π j ∝ exp[−½ (mj − mpr)T C’ M
 −1 (mj − mpr) − ½ (g(mj) − dobs)T CD

−1 (g(mj) − dobs)]

π i ∝ exp[− ½ (mi − mpr)T C’M
 −1 (mi − mpr) − ½ (g(mi) − dobs)T CD

−1 (g(mi) − dobs)].

Equation 28

And the proposing probabilities are:

qij = (2π)−M/2  exp[−½ (Zj · Zj)]

qji = (2π)−M/2  exp[−½ (Zi · Zi)].

Equation 29

In this study, local perturbations in the model parameter vector were used to propose

states for the MCMC method.  A local perturbation consists in the random selection and

modification of one or a few elements of the parameter vector, as opposed to a global

perturbation, where all M elements of the vector are modified.  If the original vector is Zi

= (Z1, Z2, …., Zk, …, ZM)T , and the kth element was modified, the new proposed model is

Zj = (Z1, Z2, …., Zk’, …, ZM)T .

In order to obtain a more diversified set of samples, several short chains were used as

suggested by Gelman and Rubin (1992), instead of a large chain.  This is done to avoid
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the risk of being trapped in a repetition.  Other authors suggest the use of very long

chains in order to obtain a good sampling.

For examples of the application of the MCMC method in petroleum engineering see

Hegstad et al.(1994), and Oliver et al. (1997).

Rejection Algorithm

The principle of the rejection algorithm is to propose samples from some relatively

simple distribution and then apply a test to decide whether or not to accept them.

Basically the method is as follows.

If it is desired to sample from a distribution fX(x) which is difficult to sample from, it is

possible to choose a function h(x) (0< h(x) ≤ 1) and a pdf g(x) that satisfy:

fX(x) =  C g(x) h(x) ,

Equation 30

where C is a constant ≥ 1 and g(x) is a pdf that is easier to sample from.

Samples are generated according to this algorithm.

1. Generate Y from pdf g(x)

2. Generate U from U[0,1]

3. If U ≤ h(y) return X = Y, otherwise return to 1.

In this case the pdf that we wish to sample is the a posteriori distribution function:



40

f(m) = A exp[− ½ (m − mpr)T CM
-1 (m − mpr) − ½ (g(m) − dobs)T CD

-1 (g(m) − dobs)].

Equation 31

The pdf from which samples will be drawn instead will be the linearized approximation

of the a posteriori distribution

g(m) = B exp[− ½ (m − mMAP)T C’M -1 (m − mMAP)].

Equation 32

Therefore,

)(
)(

)(
mgC

mf
mh = .

Equation 33

If we define the following functions:

Sm1(m) = (m − mpr)T CM
−1 (m − mpr)

Equation 34

Sm2(m) = (m − mMAP)T C’M −1 (m − mMAP)

Equation 35

Sd1(m) = (g(m) − dobs)T CD
−1 (g(m) − dobs).

Equation 36

Then equation 33 can be written as:

h(m) = A’ exp [– Sm1 – Sd1 + Sm2 ]
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Equation 37

where:

BC
A

A =' .

Equation 37 is equivalent to:

h(m) =  exp [– Sm1 – Sd1 + Sm2 + Const].

The constant inside the exponential function must be chosen to ensure that h(m) ≤ 1, or

equivalently, that:

– Sm1 – Sd1 + Sm2 + Const ≤ 0.

Equation 38

It is desired that the constant Const be as large as possible subject to the inequality 38.

For this study, Const was computed evaluating Sm1, Sd1, and Sm2 at the MAP solution.

The selection of the constant is a critical issue in the application of this algorithm.  By

evaluating equation 38 at the MAP, it is assumed that the linearized approximation to the

posteriori distribution is above the true distribution everywhere.  Since the actual shape of

the posteriori distribution is not known, there is a risk that the assumption is incorrect.  If

a low value of Const is chosen, the acceptance rate will be high but there is a high risk

that the algorithm will not be sampling from the correct pdf.  On the other hand, if as a

safety factor Const is chosen too large, the acceptance rate will be significantly reduced.

Under this situation, the application of the algorithm may not be feasible.  This is the

reason why, in practice, this algorithm is not used in reservoir characterization.
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C H A P T E R  V

M E T H O D O L O G Y

Description of the Synthetic Cases

CASE 1.

The “one-dimensional” synthetic reservoir with a length of 1000 ft has been discretized

into 20 uniform gridblocks of length ∆x = 50 ft.  The cross-sectional area is 1000 ft2.

Porosity, φ, and log permeability, ln(k), are considered stationary random functions of

second order, with the following mean and variances:

µφ = 0.25, σ2
φ = 0.0025

µ ln(k) = 4.5, σ2
ln(k) = 1.0 .

The prior model is multivariate Gaussian.  For both porosity and permeability an

exponential covariance is assumed.  The range of the covariance is 175 ft,

C(h) ∝ exp ( −3 h /175) .

The correlation coefficient between porosity and log-permeability is 0.5.

Wells are located at gridblocks 7, 13 and 18.  Pressure data are recorded at each well

location.  The well at gridblock 13 is an active well with a constant production rate of 100

b/d, and the other two wells are observation wells.  Pressure data are provided with

measurement errors identically distributed independent Gaussian random variables with

mean zero and variance 25.0.
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The flow is single phase with an oil viscosity of 2 cp and a total compressibility of 4×10−6

psi−1.  The initial reservoir pressure is 3500 psi.

The distribution of the “real” parameters can be observed in figure 1 for porosity and

figure 2 for permeability. Figure 3 shows a plot of ∆P versus time for the true case.

CASE 2.

Case 2 is similar to case 1 with the difference that the variance of the pressure data was

changed to 0.25.  This decrease in the variance of the errors in the observed data was

intended to make the problem more nonlinear.

The observed data for cases 1 and 2, and the real pressure data are presented in Table 1.

Comparison Criteria

To evaluate the ability of the approximate methods to sample correctly, five functionals

were computed for each realization.  These functionals were chosen to be representative

of important reservoir characteristics:

1. A measure of the steady-state productivity

1

11
11

)(
−







= ∑N

KN
mf  .
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2. A measure of the pore volume and oil in place

∑=
N

N
mf

12
1

)( φ  .

3. A measure of the breakthrough time in a waterflood

∑=
N

KN
mf

13
1

)(
φ

 .

4. Maximum value of permeability

{ }Kmaxmf N,14 )( =  .

5. Minimum value of permeability

{ }Kminmf N,15 )( =  .

For the case # 1, 5000 realizations were generated for LMAP, RML, PP6, and PP9.  For

MCMC method 37380 realizations were generated, and for Rejection Method 1589

realizations were obtained.

Similarly, for case # 2, 5000 realizations were generated for LMAP, RML, PP6, and PP9

and 685611 for MCMC.  The Rejection method was not evaluated for case 2.
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In addition to these five functionals, the mismatch of the models with respect to the prior

model and the MAP estimate were computed. Also, the mismatch of the computed

pressure with the observed data was calculated.

Sm1(m) = (m − mpr)T CM
−1 (m − mpr)

Sm2(m) = (m − mMAP)T C’M −1 (m − mMAP)

Sd1(m) = (g(m) − dobs)T CD
−1 (g(m) − dobs)

Description of the Program

The program used to solve this problem is in Fortran.  The program contains a single-

phase simulator, the subroutines to compute the sensitivity coefficients with the direct

method, a matrix solver subroutine, and the sampling algorithms.

This study evaluates the application of the Linearization about the MAP algorithm, the

Randomized Maximum Likelihood method, two versions of the Pilot Point method, the

Markov Chain Monte Carlo method and the Rejection algorithm.  The two versions of the

Pilot Point method are defined by varying the control variable (number of pilot points).

A single-phase, one-dimensional problem was chosen, because it allows the generation of

a large number of realizations.  It is expected that this will facilitate the construction of

the pdf of the reservoir models, and therefore quantify better the uncertainty in reservoir
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parameters.  Larger problems require more computer resources and hence limit the

number of realizations that can be sampled.

MAP Linearization Algorithm (LMAP)

The MAP linearization algorithm is used to sample from the approximation to the

posterior pdf ƒ (m, d | mpr, dobs). The MAP estimate is obtained through an optimization

procedure (Gauss-Newton with Levenberg-Marquardt step controller) and the posterior

covariance matrix is computed.  After this, the computer resources required to sample

from the approximated pdf are lower than for any other method tested.  The number of

realizations generated with this algorithm was 5198 for the first case and 5000 for the

second case.

Randomized Maximum Likelihood (RML)

It is expected that this algorithm will sample from the a posteriori pdf ƒ (m, d | mpr, dobs),

or a close approximation.  The two steps of this algorithm consist in the generation of

unconditional realizations of the model and the data, and second the optimization

procedure to condition the realizations to prior knowledge and observed data.   A total of

5000 realizations were sampled.
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Pilot Point Method (PP)

The pilot point method is used to try to sample from the posterior pdf ƒ (m, d | mpr, dobs).

This algorithm is a reduced version of the RML method, since the optimization step is

done only on a subspace of the previous.  The algorithm was run with two different

patterns for the location of the pilot points.  First, 33% of the gridblocks were used as

pilot points (6 gridblocks), and then 45% of the gridblocks (9 pilot points).  For both

patterns, the blocks containing the observation and production wells were included as

pilot points.  Also, pilot points were within the range of the variogram, but not adjacent.

5000 independent realizations were generated for each variation of the PP method.

Markov Chain Monte Carlo Method (MCMC)

The MCMC algorithm is used to sample from the posterior pdf.  It can be shown that

after convergence this algorithm samples from the correct pdf. The number of

realizations generated with this method was 37380 for the first case and 685611 (these

figures include the repeated elements in the chain).  Realizations were produced with

local perturbations choosing one element of Zi at a time.

For the first case, the starting elements of the chains were conditional realizations from

the MAP (m0 = mMAP + L Zi), where LT  L = CM'.  In order to improve the mixing of the
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samples, 21 chains of 1000 distinct elements were created; each chain had a different

initial element.  Elements with high data mismatch occurred at the beginning of the chain

(about 3 percent of the chain elements), but this mismatch was consistently reduced as

new elements entered the chain.  Realizations with high data mismatch (Sd1 > 40.0) were

eliminated.  The value of 40.0 was chosen after observing the trend of Sd1 for the

elements of a chain.  It was noted that Sd1 started with high values in the first elements

and stabilized around 40.

Local perturbations were chosen instead of global perturbations due to the high

acceptance ratio.  An average of 0.78 elements was rejected in order to accept a new

realization. For this case, the requirements in computer resources with this method were

higher than LMAP but lower than the other three algorithms.

For the second case, where the variance of the errors in the observed data was decreased

in order to make the problem more non-linear, the initial elements for the Markov chains

were samples accepted from the RML method.   The totals of 60 samples from RML

were used in order to generate 60 chains.  After an elimination process to discard

elements with a high data mismatch term (SD1 > 40.0), usually the first elements in the

chain, a total of 685611 samples were left.  The rejection rate increase for this case from

an average of 0.78 to 11.7 proposed realizations in order to accept a model.
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Rejection Algorithm (REJ)

This algorithm samples from the posterior pdf ƒ (m, d | mpr, dobs), by sampling from a pdf

easier to sample and then testing the proposed realization before acceptance.  As

described on page 39, realizations were generated from the approximation to the

posteriori pdf (conditional realizations from the MAP).  The acceptance test requires the

evaluation of data and model mismatches.

The efficiency of this algorithm is very low.  For the base case, the number of rejected

models with this method was very high, with an average of 740 rejections in order to

accept a realization.  This efficiency issue makes this model the most demanding in

computer resources, and limited the number of realizations produced to 1589.  It was not

feasible to use this method for the more non-linear case 2.
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C H A P T E R  V I

R E S U L T S

Figures 5 to 21 show the results for the two study cases in the form of histograms.

Histograms of all the methods are presented for the five functionals and the mismatch

functions: SM1, SM2 and SD1.  At the top of the figures is a table containing a summary of

the statistical parameters for the data sets.  For the first five figures (corresponding to the

five functionals), the “real” value of the functional (evaluated with the “real case”) is also

shown in the upper part of the summary table.

In order to compare the methods, features such as the shape and the span of the

distribution, as well as the inclusion of the “real” value, were considered.  It was

observed that for the first case, a problem that is close to linear, the MCMC method and

the Rejection algorithm performed similarly, and therefore confidence was given to the

fact that these methods were sampling from the real pdf.  For the first case, MCMC and

Rejection were used as a benchmark to evaluate the performance of the other algorithms.

Figure 4 shows the data mismatch term for 59 Markov Chains for case number 2.  It can

be observed in this figure that elements of the same chain have a high correlation.  It was

not possible to obtain a well mixed sample set with the MCMC method for this second

case, and therefore it was not possible to use the histograms of this method as a

benchmark.
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Functional No. 1

CASE 1

This is measure of the steady state productivity.  It can be observed in Figure 5 that for

this functional the distribution curves for all methods seem Gaussian.  The less symmetric

envelopes are those corresponding to the pilot point method.  The average for all the

methods is higher than the real value, which means that the production forecast will be

higher with all methods.

CASE 2

For the second case (Figure 6), histograms for LMAP, RML, MCMC, and PP9 are

skewed to the right.  For MCMC the true value for this functional is not even included in

the histogram, while for the other four methods the true value is in the lower quartile.

The histogram for PP6 is the most spread and shows no resemblance to the other

histograms.

Functional No. 2

CASE 1

This functional is a measure of the pore volume and oil in place.  Again the histograms in

Figure 7 show symmetry for all the methods, and all of them are close to the real value.

The two versions of the pilot point method have means that are farther for the real value

(3% difference), besides being the most spread and asymmetric curves.
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It is interesting to observe how for all methods the mean approximated the real value of

this functional, taking in consideration that the a priori value given (0.25) had a

difference with the true value of 7%.

CASE 2

For the second case, the means of the histograms are closest to the priori value, and the

true value is in the lower quartile for all the distributions (figure 8).  Histograms show

some symmetry, and the most spread distribution corresponds to PP9.

Functional No. 3

CASE 1

This functional is a measure of the breakthrough time in a waterflood.  All methods have

average values of this functional close to each other, and all of them are lower than the

real value.  This implies that all methods will –on average– predict a shorter

breakthrough time than the truth case.  Figure 9 shows that all curves are skewed to the

left, the curve with the least spread corresponding to PP9.

CASE 2

For the second case (figure 10) all the histograms are skewed to the left.  For MCMC the

true value for this functional is not even included in the histogram, while for the other

four methods the true value is in the upper quartile.  The histogram for PP6 has the most

spread.
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Functional No. 4

CASE 1

This functional is an indicator of the maximum value of permeability in each realization.

It can be observed in Figure 11 that in average, all the methods overestimate the

maximum permeability, in particular the pilot point methods.  This algorithm is affected

by the presence of extreme values that affect the mean, however the median for all

methods is still higher than the true value.  The methods that are closest to the real value

are the Rejection algorithm and MCMC, and the difference was still 51%.

CASE 2

For the second case (figure 12) all the histograms are skewed to the left in what is

suspected to be a log-normal distribution.  For the MCMC and PP6 methods the true

value for this functional is not even included in the histograms, while for the other four

methods the true value is in the lower quartile.  The histogram for PP6 is the largest

spread and indicates that the method did not perform well in discriminating models with

unrealistically high values of permeability.  The difference with the real value is much

more higher than for the first case for all the methods.

Functional No. 5

CASE 1

This functional is an indicator of the minimum value of permeability in each realization.

For all methods, the histograms in figure 13 show curves with some symmetry, but again
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all of them overestimate —in average— the real value, which is in the lower quartile for

all the distributions.

CASE 2

Figure 14 shows that for all methods, except MCMC, the histograms present some

symmetry, but again the real value is in the lower quartile for all the distributions.

Model Mismatch with respect to Prior

CASE 1

Most of the methods show curves with some symmetry, except PP6, which is skewed to

the left (Figure 15).  MCMC and rejection have the smallest values, while PP6 has the

highest mismatch in average and shows a more spread distribution.

CASE 2

All the distributions in Figure 16 are slightly skewed to the left.  MCMC is the least

spread while the two pilot point methods show the highest standard deviations.

Model Mismatch wrt MAP Estimate

CASE 1

For this comparison parameter (Sm2), the histograms of the realizations generated using

methods that involved an optimization process (RML, PP6, and PP9) are much different

from the linearization, rejection, and MCMC methods, all of which seem to generate

symmetric histograms (Figure 17).
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CASE 2

All methods but LMAP show a high spread and very high mismatches with respect to the

MAP estimate (Figure 18).  The MCMC distribution shows a very heterogeneous

histogram.  It is supposed that the heterogeneity in the histogram is showing the effects of

using 20 independent chains.  Diffusion from the starting points does not appear to have

been very efficient.  It was attempted to change the procedure for the perturbations to 3

parameters at a time in order to improve the distribution of the samples, but the results

obtained showed little improvement and the computing time was very high.  Another

possibility was to implement global perturbations, but the low acceptance rate of the

algorithm would not allow generating a large number of independent realizations in a

reasonable time.

Data Mismatch

CASE 1

It can be observed in Figure 19 that all curves are skewed to the left for this comparison

parameter.  MCMC, REJ and RML are the algorithms with the lowest values of data

mismatch.  The method with the highest data mismatch was LMAP.  It was observed that

in the two pilot point methods as well as in RML, the optimization procedure accepts

some models with high values of the data mismatch term.  A simple acceptance criterion

was implemented to eliminate realizations that did not honor the data satisfactorily, and

would otherwise bias the histograms.
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CASE 2

Figure 20 shows that all histograms are skewed to the left.  The realizations from the

LMAP method showed again a poor performance honoring the observed data.  The most

spread distributions correspond to the two pilot point methods.
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C H A P T E R  V I I

C O N C L U S I O N S

Important decisions that will affect the development of an oilfield are the final product of

reservoir characterization studies.  Sampling from the posterior pdf of all plausible

reservoir models in order to estimate uncertainty is the best way to address this problem.

Given the non-linear nature of the relations involved and the fact that the inverse problem

is ill posed, the stochastic algorithms that honor both the production data and the prior

knowledge of the reservoir place a high demand in computer resources.  For this reason,

for practical applications, engineers have to work with only a few realizations if not a

single one.  This study was intended to extensively evaluate five different sampling

algorithms in order to derive some observations that could be useful in the selection of a

sampling method for a real problem.  Indeed, the dimensions and type of problem studied

allowed this extensive sampling.

In the present, the requirement in computer resources is an issue that may dictate the

ultimate selection of a particular method in many cases.  Even though the linearization

about the MAP proved to be a fast sampling method, it is important to highlight that this

algorithm provided poor matches to the observed data for both cases.  As a result, it

would be difficult to place much confidence in realizations obtained with this method in

spite of their lower computing cost.
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For the first case, the Markov chain Monte Carlo and Rejection methods gave satisfactory

and very similar results in estimating uncertainty.  This gave us confidence in

determining that these two methods are sampling from the real pdf.  Unfortunately, the

low efficiency of these methods makes them poor candidates for practical assessment of

uncertainty.

For the second case the variance in the errors in the observed data was decreased.  It was

observed that the true values were farther away from the means for the functionals

evaluated.  This is believed to be due to the stronger constraints in the likelihood term.

The Markov chain Monte Carlo method did not perform satisfactorily in the second case,

where for some instances the real values of the functionals were not even included in the

histograms.  Therefore there is little confidence in the use of this method as a benchmark.

Alternatives as the use of more elements in the perturbation process showed not to be

efficient, and a global perturbation process would have required an unfeasible amount of

time in order to generate a large number of realizations.  It is suggested to evaluate the

use of a hybrid Markov Chain Monte Carlo method (Bonet-Cunha, 1998) for this

problem.
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In an overall evaluation, the reduced version of the RML algorithm, i.e. the Pilot Point

method performed worse than all the other methods.

None of the approximate algorithms had a good performance sampling the extreme

values in the reservoir for both cases.  This requires getting the tails of the distribution

correct. If estimation of extreme values, or estimation of an extreme event is of interest, it

may be necessary to take a different approach.

Models that perform the best honoring production data are the MCMC, Rejection and

RML algorithms for the first case, and MCMC and RML for the second case. Of the

approximate methods, randomized maximum likelihood appears to have the best

performance for sampling. Estimation of the mean and standard deviation is improved if

outliers are rejected.  A simple acceptance criterion based on the magnitude of the data

mismatch term, proved to be effective in this study.  It is recommended to develop a

better acceptance criterion for RML and PP methods.

It is advisable to implement this study in a higher dimensional problem in order to

validate the results obtained.
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NOMENCLATURE

dobs: vector of observed data
duc: unconditional realization of the data
h: lag distance
m: vector of model parameters
mMAP: maximum a posteriori solution
mpr : prior model
muc: unconditional model
q: probability of proposing a transition from one state to another (MCMC)
CM: prior covariance matrix of the model parameters
C’M: a posteriori covariance matrix
CD: covariance matrix of the observed data
G: sensitivity coefficient matrix
Sd1: data mismatch
Sm1: model mismatch with respect to prior model
Sm2: model mismatch with respect to MAP solution
H: Hessian
J: data misfit function (PP)
L: lower diagonal matrix
M: number of model parameters
N: number of observed data
Np: number of pilot points
Z: vector of normal random deviates
∇S: gradient

Greek

α: acceptance probability (MCMC) or vector of pilot points coefficients
µ: mean or step controller factor
π: probability of a state (MCMC)
γ: variogram
φ: porosity
κ: permeability
σ: standard deviation
ε: error term
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 Time
Real

Pressure  

Simulated
Pressure with
variance = 25  

Simulated
Pressure with

variance = 0.25
4.00E-04 3500 3511.66 3500.56
1.20E-03 3500 3493.86 3500.30
2.00E-03 3500 3501.7 3499.76
4.00E-03 3499.999 3491.82 3498.84
8.00E-03 3499.95 3497.62 3498.40
1.20E-02 3499.694 3497.31 3499.15
2.00E-02 3497.652 3497.66 3498.28
3.60E-02 3484.642 3482.42 3485.15
6.00E-02 3445.014 3454.62 3446.70

Well # 7

1.02E-01 3341.721  3335.4  3343.97

4.00E-04 3462.251 3458.63 3462.45
1.20E-03 3404.852 3401.9 3404.55
2.00E-03 3361.074 3356.9 3361.30
4.00E-03 3276.185 3277.45 3275.00
8.00E-03 3142.248 3142.18 3141.84
1.20E-02 3028.475 3024.59 3028.60
2.00E-02 2834.61 2833.29 2835.03
3.60E-02 2516.052 2515.78 2517.02
6.00E-02 2128.254 2136.08 2130.13

Well # 13

1.02E-01 1595.021  1588.98  1598.24

4.00E-04 3500 3505.9 3500.21
1.20E-03 3500 3507.73 3499.95
2.00E-03 3499.998 3495.8 3499.34
4.00E-03 3499.966 3494.36 3498.43
8.00E-03 3499.309 3502 3498.59
1.20E-02 3496.817 3497.7 3497.29
2.00E-02 3482.827 3480 3483.46
3.60E-02 3420.182 3419.5 3420.98
6.00E-02 3273.167 3275.12 3275.01

Well # 18

1.02E-01 2954.232  2952.71  2956.68

Table 1. “True” Pressure Data and “observed” Data for Cases 1 and 2.
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Figure 1.  Porosity distribution for the “true” case.
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Figure 2. Permeability distribution for the “true” case.
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Figure 3. Delta Pressure vs. Time for the “true” case
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