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ABSTRACT

Banerjee, Rajarshi. (Master of Science in Petroleum Engineering)

Injection/Falloff Testing in Radially Heterogeneous Reservoirs (132 pp. - Chapter IV)

Directed by Dr. Leslie G. Thompson and Dr. Albert C. Reynolds.

(150 words)

 This work presents procedures for analyzing water injection and falloff welltest

data for radially heterogeneous reservoirs. The work is based on multiphase flow welltest

theory.

We present a new method for obtaining radial permeability distribution from

injection tests. It is shown that the pressure derivative response from such a test reflects

permeability of the reservoir at the flood front  as well as that of the uninvaded zone. We

also present a new method for calculation of mechanical skin for injection tests.

We show that for water falloff tests, unlike injection tests, single-phase analysis

techniques may be applied successfully. Specifically, we demonstrate that the Inverse
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Solution Algorithm12 can be applied to obtain permeability-mobility profile. Furthermore,

we present a new method for calculation of mechanical skin.  We also show that mutirate

injection tests can be analyzed in a manner similar to falloff tests.

Throughout the work we support our derivations by analyzing a number of

synthetic data sets.
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CHAPTER I

INTRODUCTION

Classical well test analysis procedures are based on the assumption of flow of a

slightly compressible, constant viscosity fluid in a homogeneous reservoir. In practice,

most reservoirs flow multiple phases and all reservoirs are heterogeneous. Therefore,

there is reason for concern about the applicability of classical well test analysis

procedures to commonly encountered multiphase flow field data. In this work, we focus

on injection/falloff  testing and provide a simple theory that explains the pressure

transient behavior of these tests. Based on our theory, we suggest possible methods of

data analysis which are applicable to radially heterogeneous reservoirs.

Injection testing is pressure transient testing during injection of a fluid into a well.

It is analogous to drawdown testing for both constant and variable rates. Shutting in an

injection well results in a pressure falloff which is similar to pressure buildup in a

production well. However, the distinction between injection/falloff and conventional

drawdown/buildup testing is that the flow characteristics of the injected fluid are

different from those of the original reservoir fluid.

Analysis of pressure falloff tests with multiphase flow effects was first presented

by Hazebroek, Rainbow and Matthew 1.  The authors assumed a single-layer, three-zone

model consisting of a water bank, an oil bank and an unflooded region. They explained
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that when water is injected into the reservoir through a well at a constant rate, an oil bank

is built up and gas is expelled from the space as shown in Fig. 1.1. They considered that

the saturation in each zone changes abruptly at  the boundaries of the zone and that the

diffusivity equation is valid for each zone. Their model did not consider the effect of an

oil/water transition region or heterogeneity.

The problems of interpreting falloff tests were discussed by Kazemi, Merrill and

Jargon2. These authors formulated a numerical simulation model for a pressure fall-off

test. Their model was similar to the model use by Hazebroek, et al1. A series of falloff

tests were simulated assuming a constant pressure at the outer radius of the oil bank.

They concluded that the first straight line of a falloff curve gives the true mobility of the

invaded zone for negligible afterflow effects. Further, they deduced that the second

straight line approximates the true mobility of the oil bank only if  the  storage capacity

(φct) of  the two zones are equal  and the radius of the oil bank is greater than 10 times the

radius of the invaded zone. They also remarked that a falloff test cannot be interpreted if

the wellbore storage constant, as calculated from field data, exceeds the physical value

for the system.

The work of Ref. 2 was further extended by Merrill, Kazemi and Gogarty3 .

Assuming different specific storage capacity ratios, they presented a procedure for

estimating mobilities and saturation on both sides of the front, and distance to the front.

Weinstein4 examined pressure falloff data using a numerical model which

included relative permeability and viscosity as a function of temperature. Since all his

cases had favorable mobility ratios, they represented piston-like displacement. Therefore,

the effect of a transition zone was not apparent.
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While the above mentioned studies assumed constant saturations in each zone and

abrupt changes in saturation at the boundaries, Sosa, Raghavan and Limon5 avoided such

assumptions. They used a reservoir simulator to study liquid-liquid displacement

considering different relative permeability curves. They concluded that the distance to the

flood front cannot be determined from a falloff test; the best approximation is given by

Buckley-Leverett theory. They found that while the slope of the first straight line on a

Horner plot is proportional to the transmissibility of the water zone, interpretation of the

second or the third straight lines, if any, depends on the mobility ratio and the shut in

time. However, their study did not provide any analysis procedure for the interpretation

of injection/falloff data.

In 1989 Abbaszadeh and Kamal6  presented a method to interpret injectivity and

falloff tests in a single-layer reservoir under waterflooding. First they considered  a

reservoir consisting of two zones having different fluid properties. Then they expanded

their solution to a multizone system in which the saturation in each zone is constant but

different from that of the neighboring zones. Thus in their model, they argued, the

transition zone could be approximated by several zones of constant but different

saturation.

They presented analytical solutions for pressure and saturation distribution in

Laplace space. While they did suggest a numerical solution for the moving interface

problem, their analytical solution assumed a static interface between the zones. Using this

solution and relative permeability curves, they generated customized type curves for

falloff tests. Matching the appropriate type curve yields total fluid mobilities in the water
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and oil banks, the saturation or mobility distribution in the transition bank, the flood front

location, average reservoir pressure and the formation skin factor.

Yeh and Agarwal7   took a different approach to analysis of injection/falloff tests.

While the researchers discussed earlier relied on analytical or numerical solutions to the

problem, Yeh and Agarwal developed a methodology based on simulation of a large

number of injection and falloff tests.

In order to facilitate discussion of the results of Ref. 7, we introduce the following

definitions:

• injection pressure change, ∆pwf = pwf - pi ;

• injection pressure change derivative, ( )
( )

∆
∆

p t
d p t

d twf

wf
'

ln
= , where t is the injection

time;

• falloff pressure change, ∆
∆

p p pws wf t ws= −
=0

;

• and falloff pressure drop derivative, ∆ ∆
∆

p
d p

d tws
ws

e

'
ln

= , where ∆te denotes the Agarwal

equivalent time7 (∆
∆
∆

t
t t

t te =
×
+

 )  where  ∆t represents the shut-in time and t is the

total time of injection.

For injection testing, Yeh and Agarwal showed that, except at early times, the

pressure derivative is constant and the associated semi-log straight line reflects the

mobility in the flooded zone. For one example, they showed that the skin factor computed

based on this semi-log straight line overestimates the true skin factor. Later in this work,

we derive a method for generating an accurate estimate of the true mechanical skin factor

using pressure data obtained during water injection.
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For falloff pressure data, Yeh and Agarwal presented a procedure to estimate the

mobility profile in the reservoir. They recognized that in general, the mobility calculated

from

λt

inj w

wf

q B

h p
=

70 6.

'∆
, (1.1)

reflects an average value in some region of the reservoir.  Their interpretation of λt in

Eq. 1.1 was

( )

λ λ

λ

t t

V

w

t
r

r

V
dV

r r
rdr

w

=

=
−

∫

∫

1

2
2 2

.

(1.2)

Differentiating Eq. 1.2 and rearranging we get

λ
λ

λt
w t

t

r r

r

d

dr
=

−
+

2 2

2
. (1.3)

 They assumed that the total mobility , λt, is related to the radius of investigation

by the following formula

r
t

c
t e

t

=








0 024

0 5

.

.λ
φ
∆

. (1.3b)
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In their calculations, they neglected rw
2 term in Eq. 1.3 and were able to generate

good approximations to the true mobility profile at the instant of shut-in. They also

presented a procedure for approximating the pressure profile at the instant of shut-in.

The method suggested by Yeh and Agarwal does not require prior knowledge of

relative permeability curves and their study provided valuable insight into the mechanics

of injection well testing. However, their interpretation method was presented only for

homogeneous reservoirs.

Ramakrishna and Kuchuk8  presented analytical solutions for the pressure

response under various assumptions for injection and falloff tests. For a constant down

hole injection rate, they obtained exact solutions for an infinite reservoir during both the

injection and the falloff periods. However, due to the inherent nonlinearity of the problem

they employed an approximate method for varying flow rate problems. Their technique

can be used with an altered form of convolution and permits calculation of the pressure

response for arbitrary rate data. In a later work9 they presented a perturbation theory for

mutiphase testing involving slightly compressible fluids and examined variable rate test

procedures in the light of the theory.

Oliver10 investigated the averaging process in permeability estimation for single

phase flow and presented an approximate perturbation solution for the pressure response

in radially heterogeneous reservoirs where permeability varies slightly about some

average value. He found that permeability estimates obtained from semi-log analysis

represent a weighted average of  the permeabilities within an annular region whose
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position and areal extent varies with time; he found that the annular region within which

permeability was averaged extended from r tD D= 012.  to r tD D= 2 34. .

Feitosa, Chu, Thompson and Reynolds11 modified Oliver’s solution and applied it

successfully to multicomposite  reservoirs with a large variation in permeability. Their

equation for the pressure derivative in terms of  an analytical weighting function is

( ) ( )
d p t

d t

q

C r
K r k t

k r
dr

wf sf

w
orw

∆ ( )

ln
' , �,

'
'=

∞

∫
µ

1

1
. (1.4)

In Eq. 1.4, qsf is the constant sandface production rate, Ko is an analytical kernel

function and �k  is the instantaneous value of permeability computed from pressure

derivative at time t. Based on Eq. 1.4 the authors presented a means by which an inverse

solution algorithm12 could be applied to pressure buildup data to obtain the permeability

distribution in a radially heterogeneous reservoir. 

 A novel insight into the mechanics of multiphase flow pressure transient testing

was presented by Thompson and Reynolds13,14. They presented a theory that describes the

averaging process that occurs during multiphase flow drawdown and buildup tests. Their

theory explained pressure transient behavior of both single and multiphase flow in

radially heterogeneous reservoirs. Although the focus was on gas condensate reservoirs,

their studies included a variety of systems including black oil reservoirs, retrograde gas

condensate reservoirs and injection/falloff testing. In summary,  the theory stated that

well test mobilities reflect weighted average mobilities in those regions of the reservoir

where rate is changing with time  and where mobility is changing with time.
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They concluded that for drawdown in gas condensate reservoirs, changing

mobility is the dominant phenomenon, so the pressure derivative  in this case reflects

mobility in the reservoir region where mobility changes most rapidly; i.e., the region

neighboring the radius to the critical oil saturation. They added that  in the case of

buildup the effect of rapidly changing mobility in the region close to the wellbore is

nullified by a propagating zero flow rate zone so, the behavior is similar to single-phase

buildup and could be successfully analyzed using single-phase analysis techniques.

They extended the argument to pressure transient data observed during

injection/falloff  tests, and argued that if changing mobility were the dominant factor

occurring during the injection phase, the theory could explain the common belief that it is

impossible to see beyond the  “flood front” during injection. However, they presented a

set of water injection data from a heterogeneous reservoir that seemed to indicate that the

pressure derivative was being influenced by heterogeneities beyond the position of the

saturation flood front. They offered no explanation as to the cause of this apparent

anomaly.

In this work, we investigate this apparently anomalous behavior carefully, and

show that pressure transient data from injection tests are indeed influenced by

heterogeneties beyond the flooded zone. Even though the observation made by

Thompson and Reynolds that drawdown gas condensate pressure derivative data reflect

properties close to the critical oil saturation front is perfectly valid for condensate

systems, in general, the multiphase flow pressure derivative data contains information

both about the moving flood front and the unflooded zone ahead of the front.
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CHAPTER II

INJECTION TESTING IN HETEROGENEOUS RESERVOIRS

We begin  this chapter by briefly  summarizing the general multiphase flow well

test theory of Thompson and Reynolds, which serves as a basis for our understanding,

and analyzing pressure transient data from injection and falloff tests. We then proceed to

derive an approximate analytical solution for water injection in radially heterogeneous

reservoirs. We also investigate the relationship between the apparent skin factor obtained

by classical analysis of injection test pressure data from a homogeneous reservoir with

skin damage and the true mechanical skin factor. Finally, we validate our theory by

analyzing synthetic well test data generated using a two-phase simulator.

2.1 General Theory of Multiphase Flow Well Testing.

 Isothermal multiphase flow in radially heterogeneous reservoirs is described by a

system of partial differential equations that satisfies conservation of  oil, gas and water

components in black oil systems and conservation of individual chemical components in

compositional systems. More specifically, the flow equations are derived from the

continuity equation (conservation of mass) and Darcy’s law. In particular, for a black oil
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 system at any radial location, the total reservoir flow rate is the sum of the rates of each

individual phase, i.e.,
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In writing Eq. 2.1.1, capillary pressure effects and gravity effects have been neglected. If

we consider phase rates in RB/day, the constant C1 in Eq. 2.1.1 is given by

( )C h1
32 1127 10= × −π .   . (2.1.3)

It should be noted that Eq. 2.1.1 applies to both bounded or infinite acting

reservoirs. In the case of an infinite acting reservoir we can separate the variables in Eq.

2.1.1  and integrate over radius to obtain
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' , (2.1.4)

with the boundary condition
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lim ( , )
r

p r t pi→∞ =  . (2.1.5)

Integrating Eq. 2.1.4, we obtain an expression for the pressure drop at the

wellbore under multiphase flow as:
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The corresponding pressure derivative observed at the wellbore can be obtained

by  differentiating Eq.  2.1.6 with respect to the natural log of time. Performing the

indicated differentiation,  we have
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Eq. 2.1.7 applies to any radial flow system producing at an arbitrary constant or

variable rate;  it indicates that the pressure derivative observed at the wellbore reflects a

weighted harmonic average permeability. The maximum weights in the averaging

process are given to those regions where rate and mobility are changing most rapidly with

time. The kernel that is applied to the reciprocal of permeability in the averaging process

is given by
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Similarly, the kernel that is applied to the reciprocal of the permeability-mobility

product in the averaging process is given by
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Eq. 2.1.9 has two components, a rate kernel, KR defined as
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which incorporates the contribution of those reservoir regions where rate is changing

rapidly to the well test mobility, and a mobility kernel defined by
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which provides weighting for those reservoir regions where saturation (or mobility) is

changing.

For single-phase, slightly-compressible, liquid systems where viscosity is

constant, λt does not vary with time, and the mobility kernel, Kλ, vanishes. Thus, Eq.

2.1.7 can be simplified to yield
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Eq. 2.1.12 suggests that the pressure derivative observed at the wellbore for single

phase liquid flow in a heterogeneous reservoir is a weighted harmonic average of the

absolute permeability in that region of the reservoir where rate is changing as a function

of time. For production at a constant rate, Ref 11 showed that the rate changes in an

annular reservoir region (concentric with the wellbore) that expands in area and moves

away from the wellbore with time. This behavior is qualitatively similar to the averaging

theory presented by Oliver10 for radially heterogeneous reservoirs.

For multiphase flow in radially heterogeneous reservoirs, Eq. 2.1.7 cannot be

simplified. The pressure derivative observed at the wellbore is influenced  by mobility

both  in regions where rate is changing as a function of time and where mobility is

changing as a function of time. Further, for multiphase flow it is not necessary that

regions where rate is changing most rapidly are coincident with regions where mobility is

changing most rapidly.

In the case of production from  retrograde gas condensate reservoirs where the

wellbore pressure is below the dewpoint,  there exists an  annular region around  the

wellbore where we have two phase flow. During production, as liquid drops out of the

gas phase and exceeds critical oil saturation,  the mobility of each phase, hence the total

mobility, changes rapidly in this region, resulting in large value of Kλ. On the other hand,

the total rate changes most rapidly far away from the wellbore resulting in a high value of

KR in the single phase region. Thompson and Reynolds have shown that  in the case of

gas condensate drawdown testing, Kλ is many orders larger than KR. Therefore, the
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drawdown pressure derivative data reflect near wellbore properties, or more specifically,

properties in the region where the total mobility is changing most rapidly, i.e., the region

near where the critical oil saturation is located. However, in the case of  buildup, Kλ tends

to zero as rate tends to zero (see Eq. 2.1.11), therefore, buildup data are most influenced

by the rate kernel and behave in a manner similar to single phase buildup. Buildup data

can be analyzed using single phase techniques.

In the case of water injection testing, Kλ  is a maximum at the flood front where

mobility is changing most rapidly. In this work, we establish that, unlike the gas

condensate drawdown case, the rate kernel, KR always plays an important part in the

mobility averaging process, and cannot be ignored. As a result injection pressure

derivative data reflect properties both at the flood front and in the unflooded region.

Therefore, for a radially heterogeneous reservoir it is possible to detect the permeability

changes ahead of the flood front. In the following section we present an analytical model

to analyze injection pressure transient data from a multicomposite reservoir.

As in the retrograde condensate gas reservoir case, the falloff derivative is not

affected by Kλ, since the near-wellbore rate rapidly approaches zero. Thus  falloff  tests

conform well with single phase theory and can be analyzed using conventional

techniques. This point is illustrated in the next chapter.

2.2 Approximate Analytical Solution for Injection in a Multicomposite reservoir

In this section, we derive an approximate analytical solution for water injection in

a radially heterogeneous reservoir.
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We assume an infinite cylindrical reservoir with a fully penetrating injection well

of radius rw at the center of the reservoir. Wellbore storage effects are neglected. Water is

injected into the reservoir at a constant rate, qw RB/d. Except for connate water, the

reservoir is initially assumed to be filled with oil of a small and constant compressibility.

The reservoir is made up of N+1 concentric cylinders having radii of r1, r2, …rN, ∞ with

corresponding permeability values of  k1, k2,…kN, kN+1 respectively. The initial reservoir

pressure (pi) and the  initial connate water saturation (Swi) are assumed to be constant

everywhere. The reservoir consists of a single layer, and  gravitational effects have been

neglected.

Figure 2.2.1 illustrates schematically a cross-section of the reservoir after

constant-rate injection has been in progress for some time. As in Ref. 13, there is an

annular region extending out from the wellbore where the total reservoir rate is

essentially constant and equal to the injection rate.  Within the constant-total-rate region,

a water-flooded annular region also extends out from the wellbore. Both the constant-

total-rate region and the water-flooded regions increase in areal extent during the

injection process; however, the rate of increase of the constant-total-rate zone is much

more rapid than that of the flooded zone. As a function of radial distance from the well,

the water saturation changes from 1-Sor in the water zone to Swi just ahead of the front.

Thus, it is clear that the constant total reservoir rate zone consists of only flowing water

in the flushed zone,
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flowing oil and water in the transition zone and only flowing oil in the oil bank ahead of

the flood front.

Assume that the constant total reservoir rate zone extends up to radius rN at a

particular instant of time. Consider flow across the surface of a cylinder centered at the

well, and with radius ro, such that ro = rN and ro is beyond the water-invaded zone.  Since

ro is within the constant-total-rate zone, the volumetric oil rate at ro must be the same as

the water injection rate at rw, i.e.,

q qw rw o ro
= . (2.2.1)

That is, for reservoir regions at r > ro, the flow behavior is the same as if the reservoir

region for r ≤ ro  were replaced by well of radius ro at which oil is injected at a constant

rate of  qo RB/D. If we were to observe pressure and pressure derivative data at ro,  the

pressure po and its derivative would show typical single phase pressure transient behavior.

In other words, at long times, the pressure derivative at ro would be given by
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Now let us consider the system within the region r < r o = rN. Considering ro to be

the outer radius  of  this  “inner reservoir”  we can rewrite  Eq. 2.1.4 as
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Integrating the left hand side of Eq. 2.2.3 we have
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Let us assume that the flood front is at a position  rl < r f < r l+1. Since the rate

everywhere in the region rw < r ≤ rN is constant and equal to qinjBw RB/day  we can

rewrite Eq. 2.2.4  as
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If we denote the average mobility in each flooded region to be λtj, the average

mobility in the region rl < r < rl+1 (behind the flood front) by λ f
− , the average mobility

ahead of the front (in the same region) as λ f
+  and the mobility in the unflooded oil zone

as λo  we can evaluate Eq. 2.2.5 as
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Taking the derivative of Eq. 2.2.6 with respect to natural logarithm of time we

have
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If the flood front is entirely contained in the region rl < r < rl+1, and saturation in

the surrounding regions is changing only very slowly, we can approximate Eq. 2.2.7 as
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Finally, as the flood front moves through the region rl < r < rl+1, we expect that

the average mobilities behind (λ f
− ) and beyond (λ f

+ ) the flood front will approach

mobilities λf,  (close to λw) and  λo respectively. In this case Eq. 2.2.8 becomes
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Performing the differentiation in the right hand side of Eq. 2.2.9, we have
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We now turn our attention to the movement of  the flood front in the reservoir.

From material balance, we can write an equation for water injected into the reservoir as

( ) ( )[ ]5615 2. ,
( )

q B t h r S r t S rdrinj w w wir

r t

w

f= −∫π φ  . (2.2.11)

If we consider the average saturation in each region as Swj for j = 1 to l  and the

average saturation behind the flood front in the region rl < r < rf  as Swf we can evaluate

Eq. 2.2.11 as
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Solving for rf(t) we have
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As oil is flushed from the flooded zone, Swj will approach a value  close to 1-Sor.

Also, after the flood front has resided in the block rl < r < rl+1 for some time, the average

water saturation in the block behind the front Swf, will also approach 1-Sor.  Under these

conditions  Eq. 2.2.13 becomes
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where Sw = 1 − Sor .

For a system with constant porosity, the second term in the right hand side of Eq.

2.2.14 clearly disappears if we neglect the wellbore radius and we have
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or

r t tf ( ) = α , (2.2.16a)

where α is a constant given by
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In order to explore the effect of change in porosity, let us consider a reservoir

whose porosity changes from φ1 to φ2, with the zone interface being at radius r1. In this

case, neglecting the wellbore radius, Eq. 2.2.14 becomes

( ) ( )r t
q B t

h S S
rf

inj w

w wi

2

2

1 2

2
1
2

5615
=

−
−

−







.

π φ
φ φ

φ
 . (2.2.17)

If we inject for long enough time and/or the porosity contrast is low so that

( )r t rf
2 1 2

2
1
2>>

−φ φ
φ

,  Eq. 2.2.17  degenerates to Eq. 2.2.16. In other words Eq. 2.2.16

will not be valid immediately when the flood front crosses a porosity change interface.

We would instead have an equation of the form
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( )r t tf = +α γ , (2.2.18)

where α  is given by Eq. 2.2.16b, and γ is a  constant given by

γ
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r
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The above observation has been also validated through two-phase numerical

simulation of slightly compressible oil water system. Figure 2.2.2 shows a plot of the

radial distance to the flood front (defined as the maximum radius at which Sw = 1-Sor
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versus square root of injection time generated by simulating water injection into a

heterogeneous reservoir (k = 50 md for rw ≤ r ≤ 500 ft ; k = 20 md for r > 500 ft and

porosity constant at 0.10 thorough out the reservoir.). It is obvious from the plot that a

constant slope is maintained. That is the flood front position is directly proportional to the

square root of time. Note that the step structure of the plot is due to the block sizes in the

finite difference simulator. On the other hand, if the heterogeneity is in terms of changing

porosity as well as permeability (φ = 0.1 for rw ≤ r ≤ 500 ft ; φ = 0.2 for r > 500 ft ), we

have a plot of  radial distance to the flood front versus square root of injection time

showing different slopes for the different zones (see Fig. 2.2.3). However, given a

particular zone of constant porosity the slope is practically constant.

Returning to our system, if we assume the position of the flood front as given by

Eq. 2.2.16a to be valid we have, after replacing the value of  C1 and performing the

differentiation in the right hand side of Eq. 2.2.10

d p

d t

d p

d t

q B

k
wf o inj w

l f o

∆ ∆
ln ln

.
− =







−
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


+

70 6 1 1

1 λ λ
 . (2.2.19)

However, when the flood front crosses a porosity interface we would have to use

Eq. 2.2.18 in Eq. 2.2.10. This would result in

d p

d t

d p

d t

q B

k

t

t
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∆ ∆
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.
− =
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
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−



 ++

70 6 1 1

1 λ λ γ
 . (2.2.20)



39

0.00 2.00 4.00 6.0
Square root of time (days)

0.00

40.00

80.00
di

st
an

ce
 to

 fl
oo

d 
fro

nt
 (f

t)

Figure 2.2.3 : Radial distance to flood front versus square root of time
(V i bl P it )



40

For φ2 > φ1, γ, (Eq. 2.2.18a) is positive and evaluating Eq. 2.2.20 we would obtain

a value less than that obtained from evaluating Eq. 2.2.19. On the other hand, for φ2 < φ1,

γ  is  negative Eq. 2.2.20 would yield a value higher than Eq. 2.2.19.

Note that if the large diameter well pressure derivative reflects mobility in the

unflooded zone with absolute permeability kN+1, we can replace Eq. 2.2.2 directly into

Eq. 2.2.19 to obtain

d p

d t

q B

h k k k
wf inj w

l f o l N

∆
ln
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= − −
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
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
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70 6 1 1 1 1

1 1 1λ λ
 . (2.2.21)

 For a homogeneous reservoir with permeability k  Eq. 2.2.21 reduces to

d p

d t

q B

k h
wf inj w

f

∆
ln

.
=

70 6

λ
. (2.2.22)

This is the well established result for injection tests in homogeneous reservoirs

which gave rise to the belief that it is impossible to see beyond the flood front in an

injection test. If the reservoir were a two zone system as shown in Fig. 2.2.4 and the

pressure derivative at the large diameter well were constant with the value reflecting

permeability of the first zone, k1, Eq. 2.2.22 would still be valid. However, if the pressure
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derivative at the large diameter well were constant with slope reflecting permeability of

the outer zone, k2, Eq. 2.2.21 becomes

d p

d t

q B

h k k k
wf inj w

f o

∆
ln

.
= − −




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



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

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70 6 1 1 1 1

1 1 2λ λ
 . (2.2.23)

Equation 2.2.23 suggests that if end-point mobilities are known and distinct sets

of semilog data are available at the injection well, it would be possible to compute

permeabilities corresponding to the various semilog straight lines.

Let us consider what happens when the flood front moves to the second zone as

illustrated in Fig. 2.2.5. Putting kl+1 = kN+1 = k2 we have

d p

d t

q B

k h
wf inj w

f

∆
ln

.
=

70 6

2 λ
 .  (2.2.24)

Equation 2.2.24 suggests that if the flood front is in the second zone, the

corresponding straight line obtained from the semilog plot gives us the mobility-

permeability product of the second zone. However, note that the derivative will deviate

from the value evaluated using Eq. 2.2.24 at the time when the flood front just crosses

over the heterogeneity interface. We have already explained that Eq. 2.2.19 would not be

strictly valid at the instant when the flood front crosses over a heterogeneity interface,

hence, Eq. 2.2.24, which is derived from Eq. 2.2.19, would also deviate at that situation.
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The equations developed above are consistent with the theory of multiphase

pressure transient analysis discussed in Section 2.1. We had obtained Eq. 2.1.7 which is

repeated here as

d p t

d t C k r r r t

q r t

t

q r t

r t
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For the imaginary observation well of radius ro, Eq.  2.1.12 which describes the

single-phase pressure derivative would be valid. Therefore, rewriting Eq. 2.1.12 in

general form we have
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Using Eq. 2.2.26 and 2.2.25 we have
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Since we have “steady state” flow in the region rw < r < ro , 
∂

∂
q r t

t

( ' , )

ln
= 0 and Eq.

2.2.27 reduces to
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Note that mobility changes rapidly at the flood front where the  total reservoir rate

is constant. We can rewrite Eq. 2.2.28 as
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Eq. 2.2.29 indicates that the well test pressure derivative data are highly

influenced by the mobility at the flood front, since it is at this radius that mobility is

changing most rapidly. Eqs. 2.2.19 and  2.2.29 present alternative expressions for

pressure derivative data in identical systems. This suggests that the function

( )
( )1

λ
∂λ

∂t

t

r t

r t

t' ,

' ,

ln
 must resemble the function depicted in Fig. 2.2.6; i.e., it must display

the following properties:
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2.      ( )
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In subsequent sections, we show that the numerical mobility kernels computed

from our simulation runs qualitatively support this conclusion.

2.3 Calculation of skin

 Wellbore damage or improvement is the steady-state pressure drop at the wellface

in excess of the “normal” pressure drop in the undamaged reservoir. The additional

pressure drop is called the “skin effect” because it occurs in a thin “skin” zone around the

wellbore. The degree of damage or improvement is expressed in terms of a dimensionless

“skin factor”, s, which is positive for damage and negative for improvement. It can vary

from  about -5 for a hydraulically fractured well to typically 10-20 or even more for a

badly damaged well. In this section, we present a methodology for calculation of skin

factor for the special case of water injection in a homogeneous reservoir. In the

heterogeneous case, if the radius of the zone nearest the well were large enough, we

would see a distinct semilog straight line reflecting the zone properties, and the analytical

solution we developed in the previous section would be valid. In this section, we focus on

thin skin zones - i.e., such that no distinct semilog straight line is available for the zone.

For this case, we develop a relationship between the true mechanical skin factor,  s, and

apparent skin factor, sapp, obtained from conventional semilog analysis. Note sapp

incorporates the effect of the moving water flood front.

Pressure drop due to skin is given by the following equation:
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∆p
qB

kh
ss =

1412.
 . (2.3.1)

If skin is viewed as a zone of radius rs with permeability ks then skin factor can be

expressed as15

s
k

k

r

rs

s

w

= −














1 ln  . (2.3.2)

For the purpose of calculation of skin let us consider a homogeneous reservoir of

permeability k and a damaged zone of permeability ks extending from the wellbore to a

radius rs.  Let us assume that water is injected into the reservoir through an injection well

of radius rw at a rate of qinj STB/D.  Figure 2.3.1 illustrates schematically  a cross-section

of the reservoir after injection has been in progress for some time. As already explained

in Section 2.2, we have a zone of a constant reservoir rate propagating into the reservoir.

Behind this we have the flood front propagating at a much slower rate. Let the flood front

be at a radial distance rf from the wellbore at some time t. Physically, three distinct

reservoir regions will exist after a short injection time: a near-wellbore flooded region

where only water is mobile, a transition region where both oil and water are flowing, and

an unflooded region where only oil is mobile. For the purpose of model development, we
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assume that after a short period, the transition region will be small when compared to the

other regions. Since the flooded region is in the “steady-state” zone we can write

p p
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where pf  is the pressure at the flood front.

 Combining  Eqs. 2.3.3 and Eq. 2.3.2 and eliminating the damaged zone

permeability  ks , we have
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Simplifying Eq. 2.3.4 further we have
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Let us now consider the region to the right of the front, r ≥ rf . Here rf  not only

denotes a fixed radial location but also denotes the radius of the front at a specific time t

= tf. Since the constant zone rate propagates further than the front, q r t qt f w( , ) =  for all t

≥ t1 where t1 is the earliest time at which  q r t qt f w( , ) =  and t1 < tf. For t < t1,

q r t qt f w( , ) < .  If we consider an imaginary well with wellbore radius rf, then in essence
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the time period t < t1 corresponds to a wellbore storage period. However, similar to the

wellbore storage solution, once t is sufficiently greater than t1, the pressure response at rf

will be given by the equation

( )( )p p
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inj w
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where

t
k t

c rD
o

to f

=
0 0002637

2

. λ
φ

. (2.3.7)

In Eq. 2.3.7 time, t, is in hours and cto is the total compressibility in the oil zone

(cf + co(1-Swi) + cwSwi).

Eq. 2.3.6 can also be derived by assuming that the pressure response at rf is only

influenced by the total flow rate profile that occurs in the reservoir. As this profile does

not appear to be influenced by multiphase flow effects, we expect that
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where tD is given by Eq. 2.3.7. Thus, for tD > 50, Eq. 2.3.8 can also be approximated by

the semi-log equation given by Eq. 2.3.6.

Adding Eqs. 2.3.5 and 2.3.6 we have
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The radial distance to the flood front, rf , can be determined from Eq 2.2.16, viz.,

r tf = α , (2.3.10)

where α is the Boltzman’s constant which can be determined by

α
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Using Eq. 2.3.10 into Eq. 2.3.9  and simplifying we have
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At time t = 1 hour  Eq. 2.3.12 becomes
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Subtracting Eq. 2.3.13  from Eq. 2.3.12 we have
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The semi-log slope can then be represented as

m
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Writing Eq. 2.3.13 in terms of m and rearranging the terms we obtain
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Eq. 2.3.16 gives the mechanical skin due to near wellbore damage or

improvement. The apparent skin, sapp,  due to near wellbore effects as well as mobility

changes at the flood front is given by the conventional formula, i.e.,
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In order to get a relationship between s and sapp we subtract Eqs. 2.3.17 from

2.3.16 which gives us
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2.4 Model Validation

The objective of this work was to determine whether pressure transient data

obtained from an injection test could be affected by heterogeneity beyond the flood front.

In Section 2.2 we had argued that it is indeed possible to “see” beyond the flood front in

an injection test. Furthermore, we presented an analytical model which can be used to

determine the absolute permeability ahead of the flooded zone. Also in Section 2.3, we

had presented a formula for calculation of skin.  In this section, we present results

obtained from analysis of synthetic well test data generated using a two-phase radial flow

simulator. Details of the simulator are provided in Appendix 1.

• Case I:

We simulated water injection at 250 STB/day into a multi-composite oil reservoir

containing two zones: k = 50 md for 0.25 < r ≤ 500 ft and k=20 md for  500 < r ≤ 5000 ft.
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The relative permeability curves are depicted in Fig. 2.4.1, and other pertinent reservoir

and fluid data are presented in Table 2.4.1.  When water is injected into a reservoir at

constant rate, a zone of constant total injection rate, qt (i.e., qoBo+qwBw RB/D) propagates

out from the wellbore, in addition to the propagation of a zone from which oil has been

flushed. Figs. 2.4.2 - 2.4.5 show rate and saturation profiles as functions of radius  at

various times during the injection process.  If we consider the zone in which the total rate

is constant as  a  “steady state”  zone, we see that the flooded zone is always within the

steady state zone.   We calculated the distance to the flood front using Eq. 2.2.15 for 10

days of injection. We obtained a value of 44.62 ft compared to 50 ft  obtained by

simulation (Fig. 2.4.4).

Figures 2.4.6 - 2.4.9 show  plots of rate and mobility kernels (see Eqs. 2.1.10 and

2.1.11)  corresponding to Figs. 2.4.2 - 2.4.5.  A plot of total mobility-permeability

product at the end of the injection test and absolute permeability is presented in Figs.

2.4.10 - 2.4.13. Considering  Figs. 2.4.6 - 2.4.9, as we proceed out from the wellbore, the

mobility kernel becomes slightly negative, then in the immediate neighborhood of the

flood front, it increases rapidly to a large value and thereafter declines rapidly to zero.

Note that the mobility kernel is larger in magnitude than the rate kernel and is also nearer

to the wellbore than the rate kernel. Recall that pressure derivative reflects a weighted

harmonic average of permeability. The weighting function is the total kernel K(r,t),

which depends upon the magnitude of the rate and mobility kernels (KR , Kλ). Therefore,

at a first glance, it seems that pressure derivative data must be influenced primarily by

mobility kernel. In other words, pressure derivative data should only reflect average

permeability/mobility behind the flood front. However, a closer look at Figs. 2.4.6 - 2.4.9
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Reservoir/Fluid  Data
Wellbore Radius 0.25 ft
Reservoir Radius 5000.00 ft
Oil Viscosity 0.64 cp
Water Viscosity 1.0 cp
Oil Compressibility 10.0 E-06 psi-1

Water Compressibility 3.0 E-06 psi-1

Porosity 10.0 %
Connate Water Saturation 16.0 %
Irreducible Oil Saturation  20.0 %
Initial Pressure  2000.0 psia
Injection Rate  250.0 barrels/day

Table 2.4.1:   Reservoir and Fluid Data
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Figure 2.4.11 : Absolute Permeability and Permeability Mobility Product at 0.15 days
(Case I)

0.00

40.00

80.00

perm
eability x m

obility (m
d/cp)

permeability-mobility



68

0.10 1.00 10.00 100.00 1000.00 10000.00
Distance, feet

0.00

20.00

40.00

60.00
Pe

rm
ea

bi
lit

y 
(m

d)

Permeability

Figure 2.4.12 : Absolute Permeability and Permeability Mobility Product at 10.0 days
(Case I)

0.00

40.00

80.00

perm
eability x m

obility (m
d/cp)

permeability-mobility



69

0.10 1.00 10.00 100.00 1000.00 10000.00
Distance, feet

0.00

20.00

40.00

60.00
Pe

rm
ea

bi
lit

y 
(m

d)

Permeability

Figure 2.4.13 : Absolute Permeability and Permeability Mobility Product at 30.0 days
(Case I)

0.00

40.00

80.00

perm
eability x m

obility (m
d/cp)

permeability-mobility



70

indicates that the mobility kernel, Kλ, is valid over a very small reservoir area whereas the

rate kernel, KR, is valid over a large area ( note that radius is in logarithmic scale). Thus,

the relative influence of each of these kernels in the weighting process may be

comparable.

Figure 2.4.14 shows log-log plots of pressure and pressure derivative at the

injection well and at a point (henceforth referred to as the imaginary well) located 125 ft

away. The imaginary well pressure derivative data are clearly influenced by both

permeability zones and although the effect is somewhat damped in the injection well

pressure derivative, it also appears to show some influence of the permeability

heterogeneity, even though the flood front never extends beyond the first permeability

zone.  Based on the injection well pressure derivative data in Fig. 2.4.14, we picked

horizontal straight lines for 7×10-3< t < 0.2 days and 7< t < 21 days. We obtained values

of the derivatives as 25.36 and 35.38. Recall from Eq. 2.2.22 we have

d p

d t

q B

k h
wf inj w

f

∆
ln

.
=

70 6

1λ
. (2.4.1)

Approximating λf to be the water mobility at water saturation 1-Sor and using the

first value of the horizontal straight line, we obtained the first zone permeability, k1 =

49.58 md compared to the input value of 50 md.  We had derived Eq. 2.2.23 as
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71

1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 1E+2
Time,days

1E+0

1E+1

1E+2

1E+3

P
re

ss
ur

e 
or

 P
re

ss
ur

e 
D

er
iv

at
iv

e,
ps

i

F ig u re  2 .4 .1 4 :  P re s s u r e /P re s s u r e  D e r i v a t i v e  R e s p o n s e  a t  I n je c t io n  &  O b s e rv a t io n  W e l ls
C I

Injection Well : Pressure

                          Derivative

Imaginary Well:  Pressure

                           Derivativ



72

Assuming λo  as the oil mobility  at connate water saturation, Swi, and using the

value of the second horizontal straight line and the calculated first zone permeability we

obtained the second zone permeability, k2 = 20.76 md which matches well with the input

value of 20 md.

Figure 2.4.15 shows a log-log plot of the difference in pressure derivative data at

the injection  and observation wells obtained from simulation, as well as the result of

calculating the right hand side of Eq. 2.2.19, repeated here as

d p

d t

d p

d t

q B

k h
wf o inj w

f o

∆ ∆
ln ln

.
− = −













70 6 1 1

1 λ λ
. (2.4.3)

 Clearly the curves agree after the time at which the rate between the injection and

observation wells  attains a constant value (t ≈ 0.1 days, see Fig. 2.4.3). Note also that the

difference in pressure derivative, does not show any influence of the reservoir

heterogeneity, and that it attains an approximately constant value after a short time (t ≈

0.1 day). Thus, there is excellent agreement between the theory and the computed result.

• Case II:

In this example, the same data were used as in Case I. However, the zone

interface was considered at 5.0 ft, viz., k = 50 md for 0.25 < r ≤ 5 ft and k = 20 md for 5 <

r ≤ 5000 ft. This was to assure that the flood front would have advanced well into the

second zone by the end of the test.



73

1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 1E+2
Time, days

1E+0

1E+1

1E+2
pr

es
su

re
 o

r p
re

ss
ur

e 
de

riv
at

iv
e

F igu re 2 .4 .15: C om parison o f D ifference in P ressure D erivatives and Pressure D erivative
bt i d f E ti 2 4 3

Diff in D erivative 

Derivative (Eq . 2 .4.3



74

Figures 2.4.16 - 2.4.18 show rate and saturation profiles as functions of radius  at

various times during the injection process.  Here too, we see that the flooded zone is

always within the “steady state” zone. Figures 2.4.19 - 2.4.21 show  plots of rate and

mobility kernels ( see Eqs. 2.1.10 and 2.1.11 )  corresponding to Figs. 2.4.16 - 2.4.18.

Figure 2.4.22 gives a log-log plot of pressure / pressure derivative versus time.

The small hump in the pressure derivative data at 0.15 days characterizes the time at

which the flood front crosses the zone interface. This can be qualitatively deduced by

observing Figs. 2.4.17 and 2.4.20. While deriving our general equation for injection test

we had seen that (see Eq. 2.2.8) when the flood front crosses over a zone interface, the

change in mobility with time cannot be assumed to be negligible. Therefore, the pressure

derivative deviates from the constant value predicated by Eq. 2.2.19 and we see a hump.

From the pressure derivative plot in Fig 2.4.22 we obtained two horizontal

straight lines for 3×10-3 < t < 3×10-2  and 1 < t < 20 days. The value of the derivatives

corresponding to these lines were 63.06 and 36.13 respectively. We used the latter value

of the derivative to calculate the second zone permeability from Eq. 2.2.24 repeated here

as

d p

d t

q B

k h
wf inj w

f

∆
ln

.
=

70 6

2 λ
. (2.4.4)

We obtained a value of 19.95 md which compares well with the input value of 20 md.
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F ig. 2.4.18:  Rate and Saturation Profiles as a function of Radius
at 10 0 da s (Case II)
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Further, from the first horizontal straight line in the pressure derivative log-log

plot (Fig. 2.4.22) we calculated the permeability of the first zone using Eq. 2.4.2. Here,

too, the calculated value, 49.45 md compared well with the input value of 50.0 md.

In this case, the pressure derivative data did not reflect a horizontal line

corresponding to the first horizontal straight line obtained in Fig. 2.4.14 of Case I. This is

due to the fact that the rate  kernel did not reside in the first zone long enough for the

effect to be seen in the derivative plot.

A study of the rate and mobility kernels, e.g., Figs. 2.4.6 - 2.4.9 and Figs. 2.4.19 -

2.4.21 shows that derivative plot remains horizontal when both rate and mobility kernels

are within the same zone or each completely within different zones. This is in agreement

with our generalized equation (see Eq. 2.2.21). Rewriting this equation we have

d p
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h k k k
wf inj w

f o

∆
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70 6 1 1 1 1

λ λ
, (2.4.5)

where k is the permeability of that zone where mobility kernel resides and k′ is the

permeability of that zone where the rate kernel resides.

Obviously, when both the kernels are in the same zone

d p

d t

q B

kh
wf inj w

f

∆
ln

.
=

70 6

λ
, (2.4.6)

where k represents permeability of that zone where both the kernels are present.



83

• Case III:

To illustrate the concept explained in the previous paragraphs, we considered a

three zone system with k = 50 md for 0.25 < r ≤ 5.0 ; k = 100 md for 5.0 < r ≤ 500.0 ft

and k = 20 md for 500.0 < r  ≤ 5000.0 ft.

Plots of rate and mobility kernel at different times are presented in Figs. 2.4.23 -

2.4.25. These times correspond to the points of interest in the log-log plot of pressure /

pressure derivative given in Fig. 2.4.26. It is clear from Fig. 2.4.23 that the first

horizontal line in the pressure derivative ( for 4×10-3 < t < 4×10-2 ) corresponds to the

situation when the mobility kernel is in the first zone and the rate kernel is in the second

zone. Indeed,  putting k = 50 md and k′ = 100 md in Eq. 2.4.5, we obtained

d p

d t
wf∆

ln
.= 2157   which closely matches the value 21.63 obtained from Fig. 2.4.26.

We considered the value of pressure derivative at the trough at t ≈ 0.15 days (see

Figs 2.3.24 and 2.4.26). No clear semilog data are available, because both the kernels do

not stay in the second zone long enough. Putting k =  k′ = 100 md in Eq. 2.4.6 we

obtained 
d p

d t
wf∆

ln
.= 12 57   which closely matches the value 12.61 at the minimum of the

trough in  Fig. 2.4.26. Note that the typical hump in the derivative plot  caused  by the

flood front crossing over to the second zone is not visible as the rate kernel moves over

the second zone very quickly.
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Similarly,  we see that the apparent horizontal straight line for 10 < t < 20 days

represents the case where the mobility kernel is in the second zone and the rate kernel is

in the third zone ( see Fig. 2.4.25 ). Putting k = 100 md and k′ = 20 md in Eq. 2.4.5 we

obtained 
d p

d t
wf∆

ln
.= 2688. From  the pressure derivative plot we obtained 26.42.

• Case IV:

In this case, we demonstrate the effect of changing porosity between zones. We

considered a reservoir with porosity = 0.2 and k = 50 md for 0.25 < r < 500.0 ft; and

porosity = 0.1 and k = 20 md for 500.0< r < 5000.0 ft. The other properties were same as

that of Case I. As has been predicted in Section 2.2, different porosity values in the two

regions had no effect in the horizontal straight lines (Fig. 2.4.27) which showed the same

trend as the lines in Fig. 2.4.14 of Case I. We were able to apply the same formulae and

obtained the same values of permeability as in the earlier case. Note that in this case the

flood front was always in the first zone. However, if the flood front had crossed over to

the second zone, we would have obtained a hump (as seen in Case II), the shape of which

would depend on both permeability and porosity difference in the two zones.

• Case V:

We have explained in Section 2.2 that Eq. 2.2.10 and, therefore, Eq. 2.2.21 would

be invalid for a period of time when the flood front crosses a permeability and/or

porosity change interface and we would observe a hump corresponding to that period.
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We have also explained that the direction of the deviation in case of porosity interface

would depend upon the direction of porosity change. In this case, we studied the effect of

changing porosity on the size of the hump observed when the mobility kernel crosses a

permeability discontinuity. Here we demonstrate an  instance when the hump completely

disappears. As seen in Fig. 2.4.28, the hump completely disappears when the

permeability-porosity product  remains constant at the zone interface. Recall that the sign

of the porosity difference affects the direction of deviation from our water flood equation

(Eq. 2.2.20).

This hump should not be confused with the characteristic hump seen in single

phase composite reservoir model with very high diffusivity coefficient contrast between

zones. In the multiphase flow case, we may expect to see a hump when the rate kernel

crosses a zone interface; however, we do not. The reason for this is that the mobility

kernel completely masks minor changes in pressure derivative caused by the rate kernel

crossing a permeability-porosity boundary.

• Case VI

Finally we show the effect of changing the mobility ratio. If we approximate the

water saturation behind the flood front to be 1-Sor  we can define mobility ratio as,

M

k

k

w

w S

o

o S

or

wi

=













−
µ

µ

1
(2.4.7)
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In  all the cases considered previously, we used a favorable mobility ratio, viz.,

0.28. In this case we change the mobility ratio to a value greater than unity in order to

test the validity of our model  for unfavorable mobility ratio. We assumed oil  viscosity

of 3.0 cp and water viscosity of 1.0 cp, i.e., M = 1.33,  while keeping the other

parameters the same as in Case I. Fig 2.4.29 gives log-log plot of pressure derivative

versus time. If we consider the first and the second straight lines as the ranges 0.1 < t <

0.6 and  15 < t < 30 days respectively, we have, by applying Eqs. 2.4.1 and 2.4.2 , the

first and second zone permeability values as  49.32 md and 21.33 md respectively. Thus

we see that we get excellent results irrespective of the value of mobility ratio.

• Case VII

In order to test the validity of our equation for skin (Eq. 2.3.16),  we simulated

water injection at 250 STB/day into a homogeneous reservoir having a permeability of 30

md. We used the same relative permeability curves (Fig. 2.4.1) and the other reservoir

and fluid properties (Table 2.4.1) discussed previously. In this case, however, we

assumed a skin of 10. In order to incorporate this skin in our simulator we, assumed a

damaged zone radius of  0.51 ft and arrived at a damaged zone permeability of 2.0 md

using Eq. 2.3.2. Thus, effectively we had a composite system with k = 2 md for 0.25 < r

≤ 0.51 ft and k = 30 md for 0.51 < r ≤ 5000 ft. Figure 2.4.30 presents a semi-log plot of

pressure versus injection time. We calculated skin factor using  Eq. 2.3.16 and obtained a

value of 10.32 compared to the input value of 10.0. Using the conventional equation, viz.,

Eq.2.3.17, we arrived at a value of  8.02.



93

1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 1E+2
Time,days

1E+0

1E+1

1E+2

1E+3

P
re

ss
ur

e 
or

 P
re

ss
ur

e 
D

er
iv

at
iv

e,
ps

i

F ig u re  2 .4 .2 9 : P re ss u re /P re s su re  D e r iv a t iv e  R e sp o n s e  a t  I n je c tio n  W e ll
C V I

Injection Well:  Pressure

                       Derivativ



94

1.0E-5 1.0E-4 1.0E-3 1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2 1.0E+
time, hrs

2000.00

3000.00

4000.00

pr
es

su
re

, p
si

a

Fi 2 4 30 S i l l t f P I j ti T i (Ski 10)



95

We repeated the run for negative skin with s = -2. In order to incorporate

this skin in our simulator we assumed a modified zone radius of  5.75 ft and arrived at a

modified zone permeability of 82.76 md using Eq. 2.3.2. Figure 2.4.31 presents a semi-

log plot of pressure versus injection time. We calculated skin factor using  Eq. 2.3.16 and

obtained a value of -2.9 compared to the input value of -2.0. The value of apparent skin

factor obtained using  Eq. 2.3.17 was -4.415.
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CHAPTER III

PRESSURE FALLOFF AND MULTI-RATE TESTING IN HETEROGENEOUS

RESERVOIRS

Petroleum engineering literature is replete with references on falloff testing (see

Chapter I)  and the analysis techniques are well founded. In this chapter we discuss falloff

tests in light of the multiphase flow theory  of Ref. 13 (see also Section 2.1). We also

present an equation for calculation of mechanical skin factor. We investigate the nature of

multirate tests. Finally, we analyze synthetic data to demonstrate our results.

3.1 Pressure Falloff Testing

A pressure falloff test involves shutting off water injection into a well and

observing the change in pressure with shut-in time. In Ref. 13, it was shown that during

pressure falloff the pressure derivative reflects permeability of that region where rate

changes rapidly and that single phase techniques may be used  to analyze these tests.

Indeed, falloff tests are amenable to classical analysis methods applied to a composite

reservoir model. More specifically, the Inverse Solution Algorithm (ISA)12 may be used

to obtain permeability-mobility profile of a radially heterogeneous reservoir. While an
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excellent discourse on ISA is given in Ref. 12 we discuss here the salient features of its

application to injection falloff testing.

  We define the  instantaneous well-test permeability-mobility product, (kλ)in, as

the apparent instantaneous permeability-mobility product reflected by well test pressure

derivative data; i.e., for a falloff test we can write

( )
( )

d p t

d t

q B

k h
ws inj w

in

∆ ∆
∆ln

.
=

70 6

λ
, (3.1.1)

where

( )∆ ∆
∆

p p p tws wf t ws= −
=0

. (3.1.2)

Note that  (kλ)in  represents the weighted harmonic average of the permeability-

mobility product in an annular region of the reservoir that moves away from the wellbore

with shut-in time. The weight function that is applied to the permeability-mobility

product in the averaging process closely resembles our rate kernel (see Eq.2.1.12 ) and is

a function of radial distance and time. We can write

( ) ( ) ( )
1 1

1
1

k
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k r
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D D
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∞
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where
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φ

, (3.1.4)

and ∆t is in hours.

Thus,  theoretically, the reservoir permeability-mobility profile can be obtained

from pressure derivative data if we have an analytical expression for the rate kernel. The

ISA algorithm uses a modification of Oliver’s analytical expression for the kernel to

obtain the radial permeability-mobility distribution. Note that in Eq. 3.1.4 ct refers to the

total compressibility of the system.  Our investigations show that having a small variation

in porosity and compressibility has only a small effect on the accuracy of  our estimates.

Therefore, we have considered the flooded zone compressibility as the total system

compressibility in our calculations. Furthermore, we have used ISA in the drawdown

mode, i.e., we consider the falloff data as equivalent drawdown data.

In a heterogeneous reservoir, if the kernel function is fully within a zone having

constant mobility and permeability the instantaneous permeability actually represents the

true permeability of the zone. In the derivative plot this would show as a horizontal

straight line represented by the equation

d p

d t

q B

k h
ws inj w

t

∆
ln

.
=

70 6

λ
(3.1.5)
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Constant mobility is obtained in the regions where we have single phase flow, i.e.,

flow of either only oil or only water. We suggest a simple method for determination of

permeability in a heterogeneous reservoir.

• Obtain the mobility-permeability profile using ISA and note the radii where

the permeability-mobility product experiences sharp changes.

• Determine the radial distance of the flood front using the piston displacement

approximation given in Eq. 2.2.15,viz.,

 

 ( ) ( )r t
q B

h S S
tf

inj w

w w

=
−

5615.

π φ
. (3.1.6)

 

• Determine the point in the ISA plot approximately matching the flood front

radius obtained from Eq. 3.1.6.

• Obviously each straight line in the derivative plot corresponds to a zone of

constant permeability-mobility value in the ISA plot.  For straight lines in the

derivative plot corresponding to constant mobility-permeability values in the

ISA plot behind the flood front use end-point water mobility to determine

permeability using Eq. 3.1.5. Similarly for straight lines corresponding to

values beyond the flood front use the end-point oil mobility.

3.2 Calculation of Skin

In this section we provide a relation between mechanical skin factor, s, and

apparent skin factor, sapp. Since single phase analysis techniques can be applied to falloff
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tests, semilog analysis using the first constant slope line, viz., the line representing

permeability-mobility product of the flooded zone, will yield the actual mechanical skin

factor7.  The formula for skin factor is repeated here for convenience

s
p p
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c r
hr i w
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−

−
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
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 +
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
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1151 322751
2. log .

λ
φ

. (3.2.1)

 Note that this early time constant slope line may be obscured by wellbore storage

effects during actual field tests. Therefore, we endeavor to find a method to determine

mechanical skin factor using the second constant slope line, viz., the line representing

constant mobility-permeability value beyond the flood front. The proposed equation is

analogous to an equation derived for pressure buildup analysis of gas-condensate data. In

a recent work by Thompson and Reynolds18, the authors derived such a relationship for

buildup, viz.,

s
s
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� �

ln
1

1
λ

. (3.2.2)

where �krg  denotes near-wellbore gas relative permeability, λ is a constant relating the

position of the critical oil saturation front to producing time and the other terms have

their usual significance.

Based on Eq. 3.2.1, we can write the equation for determination of skin factor in a

falloff test as
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where s is the actual mechanical skin factor, tin is the injection time, and sapp the apparent

skin factor determined using the second constant slope line and Eq. 3.2.1.

Equation 3.2.3 can be derived by assuming steady-state pressure drop. If we

consider the apparent skin as the sum of the actual skin and the skin due to difference in

mobilities of oil and water we can write

∆ ∆ ∆ ∆p p p psapp skin flood water flood oil= + −, , . (3.2.4)

Applying the formulae for skin and steady-state pressure drop in Eq. 3.2.4 we

have
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Simplifying Eq. 3.2.5 we obtain

1 1 1 1
λ λ λ λo
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
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Clearly, rearranging Eq. 3.2.6 and replacing the value of rf we obtain Eq. 3.2.3.
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In the presence of heterogeneity, our results are still valid. If the permeability

change interface is far enough so that flood front is in the first zone and we are able to get

the first or, at least, the second constant slope line, we can apply our methodology. If the

zone interface is very near the wellbore, we can view the first zone as a part of the

damaged zone and use the constant slope lines corresponding to the second zone

permeability  for our calculations. However, given the condition that the first zone is

large, but the flood front is in the second zone and the constant slope line corresponding

to the first zone permeability is obscured by wellbore storage effects,  our method will

fail. Clearly the likelihood of this condition is extremely remote.

3.3 Multirate Tests

A multi-rate test of an injection well involves changing the injection rate and

observing the change in pressure response with time. This type of test is  uncommon in

oilfield practice, but we review them here in the interest of completeness and in order to

determine whether they offer any advantages in terms of quality of information available

from the test.

We postulate that when the injection rate is changed, another rate kernel

propagates into the reservoir in addition to the existing rate and mobility kernels. Since

this second kernel is nearer to the wellbore, its effect is more pronounced than the kernels

further away. However, since the rate kernel propagates into the reservoir at a faster rate

than the mobility kernel, the new rate kernel will cross the original mobility kernel after

some period of time. Thus, while the rate kernel is dominant in the permeability-mobility

averaging procedure, we could apply single phase techniques. While we observed that the
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mobility kernel becomes dominant only after the second rate kernel overtakes it we could

not determine exactly how long after the crossover this phenomena occurs. Our

observations in Section 3.1 pertaining to falloff testing would be valid subject to the

above mentioned restriction. Note that in using ISA we would have to use the difference

in rate  in place of the actual injection rate. In Cases X and XI we demonstrate our theory

on multirate testing using synthetic well test data.

3.4 Analysis of  Falloff and Multirate Data.

• Case VIII

We considered the same model as in Case 1, viz., k=50 md for 0.25 < r ≤ 500 ft

and k=20 md for 500 < r ≤ 5000 ft and simulated a falloff test of 10 days after an

injection period of  30 days. Figures 3.4.1-3.4.4 gives plots of the mobility and rate

kernels as functions of the radial distance from the wellbore. Note that the characteristic

sharply peaked shape of the mobility kernel observed during injection tests (see Figs.

2.4.6 - 2.4.9 ) is absent in the falloff test. This is to be expected since the flood front is

stagnant during the test.  However, it should be noted that the rate kernel behaves as it

does in single phase systems.

Figure 3.4.5 presents a log-log plot of pressure change / pressure change

derivative versus shut-in time.

We ran ISA (Inverse Solution Algorithm, see Ref. 12)  with the pressure and

pressure derivative data of Fig. 3.4.5. A comparison of the mobility-permeability product

obtained from ISA is plotted against that obtained from the simulation results at the end
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of the injection period in Fig. 3.4.6. Clearly the ISA result shows the same trend as latter.

We used Eq. 3.1.6 to calculate the position of the flood front at the end of the injection

period at 30 days. We obtained a value of 77 ft which roughly corresponds with the first

slope change in the ISA plot. Thus the mobility-permeability change is due to change in

relative permeability and fluid viscosity at the flood front. Obviously, the second change

in slope is due to change in permeability. Reconsidering Fig. 3.4.5, we selected the first

straight line as the derivative data for t < 10-3 days. We calculated the permeability using

Eq. 3.1.5 and assuming mobility of the flooded zone as the water mobility. We obtained a

value of  49.70 which compares very well with the input value of 50 md. Next, we

assumed a second straight line region for 0.07 < t < .15 day and the fluid mobility and

viscosity to be that of oil. We obtained the permeability to be 45.86 md as compared to

the input value of 50 md. The reason for this small discrepancy is easy to see from Fig.

3.4.2. At 0.1 day the rate kernel is non zero beyond 500 ft. Thus the effect of the low

permeability zone  beyond 500 ft influences the pressure derivative data.  Finally, we

considered a third straight line at the range  2 < t < 5 days. Assuming the fluid mobility

and viscosity to be that of oil we calculated a permeability of 26.50 md. This differs

slightly from the input value of 20 md because, in this case too, the rate kernel spans a

little of the first zone.

Also as seen in Fig. 3.4.5 there is a fall in pressure derivative beyond 5 days

which results in high calculated mobility towards the end of the reservoir (Fig. 3.4.6).

This is attributed to the rate kernel has reaching the outer boundary of the reservoir (Figs.

3.4.3 - 3.4.4).
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• CASE IX

In order to test the validity of our theory on determination of  skin in a falloff test,

we used the same model except that in this case we considered a falloff of 3 days for a

homogeneous reservoir having a permeability of 30 md. We used the same relative

permeability curves (Fig. 2.4.1) and other reservoir and fluid properties (Table 2.4.1) of

the cases discussed in the previously. In this case, however, we assumed a skin of 10. In

order to incorporate this skin in our simulator we assumed a damaged zone radius of

0.51 ft and arrived at a damaged zone permeability of 2.0 md using Eq. 2.3.2. Thus,

effectively we had a composite system with k = 2 md for 0.25 < r  ≤ 0.51 ft and k = 30

md for 0.51 < r ≤ 5000 ft. Figure 3.4.7 presents a semi-log plot of pressure versus

injection time. We calculated skin factor using the conventional equation, viz.,  Eq. 3.2.1

and the first constant slope line and obtained a value of 10.15 compared to the input value

of 10.0. Using the second constant slope line and Eq. 3.2.1 we obtained a value of 57.93

which we denoted as sapp. This value in Eq. 3.2.3 yielded the value of  skin as 12.38

which again is close to the input value.

We repeated the run for negative skin with s = -2. In order to incorporate this skin

in our simulator, we assumed a modified zone radius of  5.75 ft and arrived at a modified

zone permeability of 82.76 md using Eq. 2.3.2. Figure 3.4.8 presents a semi-log plot of

pressure versus injection time. We calculated skin factor using Eq. 3.2.1 and the first

constant slope line and obtained a value of -1.8 compared to the input value of -2. Using

the second constant slope line and Eq. 3.2.1 we obtained a value of 9.37. Considering this
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value as sapp in Eq. 3.2.3 yielded the value of  skin as -1.44 which again is close to the

input value.

• CASE  X

In this exercise, we investigated the effect of lowering the injection rate instead of

completely shutting off the injection. At the end of 30 days of injection at 250

barrels/day, we lowered the injection rate to 150 barrels/day and observed the simulated

pressure response for 10 days. Figure 3.4.9 - 3.4.12 gives the rate and mobility kernel

plots. Observing Figs. 3.4.9 - 3.4.10 it appears that the mobility kernel is not present at

early times. However, if we zoom into these figures we see the presence of the mobility

and the first rate kernel caused due to the first injection period (see Figs. 3.4.13 - 3.4.14).

Clearly, the rate kernel initiated by the rate change has masked the earlier kernels. While

we think that there could be numerical errors in calculating the size of the mobility kernel

as it involves working with  slowing changing mobility at small time intervals, the fact

remains that we have a large rate kernel attenuated by small radial distance.  Therefore, at

early times, the pressure derivative is primarily affected by this second rate kernel.

However, after some time when the rate kernel crosses the mobility kernel, the mobility

kernel once again begins to influence the pressure derivative data (see Figs. 3.4.11 -

3.4.12). During the time when the mobility kernel has no influence, classical single phase

analysis can be applied. Thereafter, the derivative departs from single phase behavior.
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Let us  define:

   ∆
∆ ∆

p p pwf t wf t t
= −

= =0 '
. (3.4.1)

As discussed in Sections 3.1 and 3.3, the pressure derivative equation when the

rate kernel is within a zone of constant permeability-mobility product can be written as

d p

d t

q B

k h
inj w

t

∆
∆

∆
ln

.
=

70 6

λ
, (3.4.2)

where ∆qinj represents the change in injection rate, and ∆t is the elapsed time after the rate

change.

Figure 3.4.15 gives a log-log plot of pressure and  pressure derivative versus

elapsed time. It follows the same trend as the falloff data. Figure 3.4.16 gives a

comparative plot of ISA and simulator generated mobility-permeability  product; we see

that similar behavior as the falloff case is observed. Considering the first, second and

third straight lines to be corresponding to  the time ranges t < 10-2 day (first zone before

the flood front), 0.07 < t < .15 day (first zone beyond the flood front) and  2 < t < 5 days

(second zone) respectively we calculated the permeability values to be 50.81, 46.91,

33.35. As before, the two zones had input permeability values of 50 and 20 md. Note that

the deviation in the second zone permeability is more than that of the falloff test case and

cannot be explained solely by presence of a part of the rate kernel in the first zone. From
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Fig. 3.4.11 we see that the mobility kernel becomes significant at the time period

corresponding to the time interval assumed for the  “third straight line”.  Since the flood

front is in the first zone, its effect on the derivative plot becomes apparent.

The sharp drop in the derivative at late time is due to the combine effect of  the

rate kernel the reaching the  boundary and the mobility kernel becoming dominant (see

Fig. 3.4.12)

• Case XI

In another muti-rate test case, the same system as before was considered.

However, in this case we simulated injection at 150 barrels/day for 30 days and the

increased the rate to 250 barrels/day. Plots of rate and mobility kernels at various times

are  given in Figs. 3.4.17 - 3.4.20. As in the previous case the mobility kernel is not

evident at small elapsed times after the rate change; (i.e., the rate kernel to due rate

change masks the other kernels). A log-log plot of pressure change and pressure

derivative is presented in Fig. 3.4.21. Here we define pressure change as

∆
∆ ∆

p p pwf t t wf
t

= −
= =' 0

. (3.4.3)

While the observation regarding multi-rate tests as described in the earlier case is

still valid in general and we did get the first zone permeability from the horizontal

pressure derivative corresponding to both flooded and unflooded regions in the first

permeability zone, the second zone permeability could not be obtained using single phase
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methods as before.  This is because the the mobility kernel started to affect the pressure

derivative data earlier than the preceding case. Furthermore, we could not apply the

multi-phase technique of Chapter II  due to absence to any clear horizontal line towards

the end. Also note that the rate kernel is affected by the boundary towards the end of the

test.

We do not pursue this case further as in practice injection is carried out at the

optimum rate which often coincides with the maximum permissible rate. Thus any

increase in rate could cause operational problems including fracturing the formation.

On the other hand, multi-rate tests done by decreasing the injection rate may

appear practically feasible. We have the possibility of obtaining all the information that

can be obtained from a falloff test without having to shut off injection. However, one

should note that in practice it is difficult to implement constant step production or to

measure variable production accurately.  Another problem in implementing multi-rate

test would be to accurately determine the time periods when the mobility kernel has

significant effect on the pressure derivative. Simulation studies indicate that, at a

minimum, this time depends on injection rates and distance to the flood front.     
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CHAPTER IV

CONCLUSIONS

This chapter summarizes the work we have presented in the previous chapters,

and enumerates the contributions and conclusions of this study.

The objective of this work was to provide a theory to explain the pressure

transient behavior of injection/falloff tests. Based on the theory developed, we suggested

possible methods of data analysis.

In Chapter II, we summarized the general mutiphase flow well test theory of

Thompson and Reynolds which served as a basis for our understanding and analyzing

injection/falloff tests. We then derived an analytical solution for water injection in

radially heterogeneous reservoirs. We also investigated the relationship between the

apparent skin factor obtained by classical analysis of injection test pressure data and the

true mechanical skin factor. Finally, we validated our theory by analyzing synthetic well

test data generated using a two-phase simulator. The conclusions of this part of the work

are as follows:

(i) We found that in an injection test the pressure derivative data reflects

permeability both at the flood front and in the unflooded region. Therefore, for a

heterogeneous system, it is possible to detect permeability changes ahead of the flood

front.
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(ii) We derived a generalized equation as follows,
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which shows that it is possible to compute the permeability at the flood front and the

permeability  in the uninvaded zones.

(iii) We explained why Eq. 4.1 would not be valid when the flood front crossed a zone

interface. In absence of other evidence, this fact could be used to determine the position

of a zone interface.

(iv) We presented an equation for the calculation of mechanical skin factor and

showed that this skin factor is different from the skin factor calculated by conventional

analysis, the difference being  due to the difference in mobilities of oil and water.

(v) In the case studies where we applied our method to analyze synthetic data, we

demonstrated  by plotting mobility and rate kernels that the pressure derivative data

reflect permeability of regions where mobility and in-situ rate changes most rapidly. We

also showed that while rapid mobility changes occur at the flood front, rapid in-situ rate

changes occur ahead in the oil zone.

In Chapter III, we focused on pressure falloff testing. We showed that, since the

flood front remains static in these tests and there is no change in mobility, pressure

derivative reflects permeability of that region where in-situ rate changes rapidly. We also

explained the intricacies involved in calculation of skin. Next we investigated the

behavior of multirate tests. Finally, we validated our findings using synthetic data. The

results presented in this chapter lead to the following conclusions.
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(i) Conventional single phase techniques can be used to analyze falloff tests by

considering permeability-mobility product in place of permeability. More specifically,

the Inverse Solution Algorithm (ISA)  may be used to obtain the permeability-mobility

profile.

(ii) The skin factor obtained by performing  classical analysis considering the

constant slope line corresponding to the flooded zone represents the true mechanical skin

factor. We also presented an equation for calculation of mechanical skin factor using the

constant slope line corresponding to the uninvaded zone.

(iii) We found that in case of a multirate test, when a rate change is made a second rate

kernel propagates into the reservoir which overshadows the first mobility and rate kernel.

Thus, the pressure derivative reflects permeability of only that region where the second

in-situ rate change takes place most rapidly. Thus, single phase techniques may be

applied to analyze data corresponding to times before the mobility kernel again becomes

dominant.
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NOMENCLATURE

Bo Oil formation volume factor, res.bbl/STB.

Bw Water formation volume factor, res.bbl/STB.

C1 constant - see Eq. 2.1.3.

co oil compressibility, psi-1

ct total system compressibility, psi-1 .

cto total system compressibility of  uninvaded zone, psi-1.

cw water compressibility, psi-1

h formation thickness, ft.

k absolute reservoir permeability, md.

kro oil relative permeability.

krw water relative permeability.

p pressure, psia.

pi initial reservoir pressure, psia.

pwf flowing bottom hole pressure, psia.

pws shut-in bottom hole pressure

qt total rate, res.bbl/day.

r radius, ft.

rw wellbore radius, ft.
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So oil saturation.

Sor residual oil saturation.

Sw water saturation.

Swc connate water saturation.

t time, days.

∆t shut-in time, days.

φ porosity, fraction.

λf mobility at flood front.

λo oil mobility.

λt total mobility.

µ viscosity, cp.

µo oil viscosity, cp.

µw water viscosity, cp.

π constant ≈ 3.142
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APPENDIX 1

TWO-PHASE ONE DIMENSIONAL RADIAL RESERVOIR SIMULATOR

In order to generate synthetic data for verification of our water injection and

falloff test theory we developed a two-phase one dimensional radial simulator. An

overview of the simulator is given in this section for reference.

The simulator developed was specifically designed to generate pressure response

for both constant and variable rate water injection in the center of  a single layer

cylindrical reservoir with a closed outer boundary. However, the simulator can be readily

adapted for other uses as well. The model uses a logarithmic gridding system with the

grid size increasing with distance from the wellbore. In order to ensure stability we have

used Letkeman and Riding’s19 method. While we found that our model did not have step-

size limitation for stability, in-situ rate calculation was not very accurate for large

saturation changes in the grid blocks. In particular at the flood front where the saturation

changes most rapidly, the in-situ rate shows an anomaly as presented in Fig A1.1. Figure

A.1.2 shows that the anomaly disappears when we cut down the time step so that the

maximum saturation change is less than  1.0 percent.

For all the examples we considered in our study the outer radius of the reservoir

was considered to be 5000 ft. For accuracy 90 grids blocks were considered sufficient.
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The maximum saturation change in each grid block was restricted to 1.0 percent, i.e.,  if

the saturation in any grid block exceeded 1.0 percent the simulator reduced the time step

size by 50 percent and repeated the calculation for that time step. Note that even though

our model had an outer closed boundary, it was irrelevant as we were only interested in

the behavior of the transient part of the data    


