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ABSTRACT

Bailian Chen (Doctor of Philosophy in Petroleum Engineering)

A Stochastic Simplex Approximate Gradient for Production Optimization of WAG and Con-

tinuous Water Flooding

Directed by Albert C. Reynolds

166 pp., Chapter 7: Conclusions

(531 words)

The objective of this research is to develop and implement an ensemble-based opti-

mization technique named stochastic simplex approximate gradient (StoSAG) for both the

water-alternating-gas (WAG) flooding and the continuous water flooding problem.

Poorly designed WAG parameters can result in sub-optimal WAG performance. In

this work, we apply the StoSAG algorithm to estimate the optimal well controls which max-

imize life-cycle net-present-value (NPV) for the WAG flooding. The optimization method-

ology is applied to a synthetic, channelized-reservoir. The performances of optimized WAG

flooding, optimized water flooding and optimized continuous CO2 flooding are compared.

Due to the similarity between WAG and surfactant-alternating-gas (SAG foam), we also

optimize the SAG process and provide a more computationally efficient way to optimize

the SAG process. The effect of gas and water injection time periods on the optimization of

WAG is also investigated, and the conditions under which optimizing the injection time inter-

vals of WAG significantly enhances the NPV of production and the conditions under which

optimization of each injection period has a very small effect on the NPV are established.

Recently, intelligent or smart completions, such as Inflow Control Valves (ICVs), have

been used to optimize well performance. When ICVs are installed in wells, it allows us to

optimize the production/injection well controls of perforated segments along the wellbore to
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maximize NPV or sweep efficiency and delay water and/or gas breakthrough. In this work,

we consider smart completions for both injection and production wells. We optimize the

well controls (rates or pressures) and ICV settings simultaneously and compare the NPV

obtained by this process with the NPV obtained by optimizing only well controls and with

the NPV generated by optimizing only ICV settings.

To account for reservoir geological uncertainty, robust optimization based on an en-

semble of reservoir models is performed. When well controls and/or ICV settings are the

optimization variables, EnOpt is the most popular ensemble-based algorithm for robust life-

cycle production optimization. Recently, however, a superior algorithm, referred to here as

StoSAG, was proposed. In this study, we provide a refined theoretical discussion on why

EnOpt is generally inferior to StoSAG and provide two reasonable examples where StoSAG

generates estimates of optimal well controls that give a life-cycle NPV from 15% to 60%

higher than the NPV obtained from EnOpt. When there is a large variation in the ensemble

of reservoir models used for robust life-cycle production optimization, the theory indicates

StoSAG can be expected to radically outperform EnOpt.

We develop a framework based on the lexicographic method and the StoSAG algo-

rithm to maximize the expected NPV and minimize the associated risk or uncertainty in

robust life-cycle production optimization. With the lexicographic method, we first maximize

the expectation of the life-cycle NPV value, then we minimize the risk using the resulting

optimal value of expected NPV as a constraint. This constrained optimization problem is

solved with the augmented Lagrangian method. The measures of risk considered include

the standard deviation, the worst-case scenario (minimum NPV over the set of realiza-

tions) and conditional-value-at-risk (CVaR). Results obtained with different risk measures

are benchmarked using two reservoir examples, namely, a channelized reservoir model and

the well-known Brugge reservoir model in order to determine the effect of the choice of the

risk measure.
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CHAPTER 1

INTRODUCTION

1.1 Background

Closed-loop reservoir management [49, 50] is a general framework that combines

the process of model-based production optimization and data assimilation (assisted his-

tory matching). All the tasks involved in this loop are performed sequentially during the

expected life of a reservoir with the aim of maximizing the reservoir performance, in terms

of recovery or net-present-value (NPV). Fig. 1.1 presents the framework of the closed-loop

reservoir management. “Reservoir Model(s)” which represent the current information about

the reservoir is(are) first built through the geo-modeling process. Then, a set of optimal

control settings (e.g., well flow rates, bottom hole pressure (BHP) and settings of inflow

control valves (ICVs)) will be determined by a process called “Production Optimization”.

The optimized well control settings will then be applied to the real field. At the next stage,

production data (e.g., well production rates and BHP) will be measured and the choice of yet-

to-be-measured data is generally determined by a process called “Surveillance Optimization”

[57, 56, 43, 44]. After the application of optimized surveillance strategies, new measurements

are obtained from the reservoir. The collected data (measurements) are then incorporated

into the reservoir model(s) by “Data Assimilation” [32, 33, 95, 31], whereby the uncertain

model parameters are calibrated so that the reservoir simulation matches the observed data.

The new model(s) is applied to predict the future performance of the reservoir and the loop

as shown in Fig. 1.1 repeats. The focus of this study is only on the production optimization

stage in the close-loop reservoir management.

Previous studies on production optimization mainly focus on optimizing reservoir

performance under water flooding [10, 80, 4, 54, 47, 92, 21, 22, 70]; there are few studies on
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Figure 1.1: Schematic representation of closed-loop reservoir management.

optimization of enhanced oil recovery (EOR) processes, such as water-alternating-gas (WAG)

and surfactant-alternating-gas (SAG) injection processes. The first focus of this study is to

explore an efficient optimization algorithm which does not require a simulator’s source code

for the optimization of WAG injection process. The effect of gas and water injection intervals

on the optimization of WAG flooding will also be investigated in this study.

When reservoir layers have significantly different petro-physical properties, WAG

injection can result in early breakthrough of the injected water and/or injected gas in

layers with unfavorable physical characteristics. Recently, intelligent or smart comple-

tions, such as Inflow Control Valves (ICVs), have been used to optimize well performance

[67, 30, 5, 1, 2, 17]. When ICVs are installed in wells, they allow the optimization of the

production/injection well controls of perforated segments along the wellbore to maximize

NPV or sweep efficiency and water and/or gas breakthrough. In this study, we will consider

smart completions for both injection and production wells and demonstrate the benefits of
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simultaneous optimization of well controls (rates or pressures) and ICV settings.

In the reservoir production optimization community, geological uncertainties, such

as uncertainty in permeability field, normally have significant impact on reservoir perfor-

mance. Consequently, the optimal solution obtained based on a single reservoir model may

deviate significantly from the actual optimum. To account for geological uncertainty, robust

optimization is performed where the purpose is to mitigate the effect of uncertainties in

the reservoir model [89, 24, 14, 16, 18, 35, 37]. Ensemble-based Optimization (EnOpt) is

one of the most popular optimization algorithms for performing robust optimization [25].

Fonseca et al. [35] observed that original form of EnOpt, proposed by Chen et al. [25], does

not always yield satisfactory results, and they formulated a modified ensemble-based ro-

bust optimization algorithm (motivated by a modified version of EnOpt developed by Do

and Reynolds [29]). The new robust ensemble-based optimization algorithm was dubbed

as StoSAG (stochastic simplex approximate gradient) by Fonseca et al. [37] and this ter-

minology is used throughout this dissertation. Fonseca et al. [35, 37] showed that StoSAG

generally yields a significantly higher value of the life-cyle NPV for the robust optimization

problem than is obtained with the standard EnOpt algorithm. In this study, a theoretical

understanding of why StoSAG outperforms EnOpt will be presented.

In robust life-cycle optimization, one typically maximizes the expectation of the NPV

of production (or cumulative oil production) over a set of plausible reservoir realizations,

where the expectation of the NPV (or cumulative oil production) is approximated by the

average NPV (or cumulative oil production). However, if only the expectation is maximized,

one may obtain a large variance in the set of plausible NPV values, and if the true reservoir

description is close to the reservoir description that generates the worst NPV, then further

exploitation of the reservoir may not be commercially feasible [64]. Therefore, it is important

to consider also the minimization of risk or uncertainty, in the aforementioned life-cycle

robust optimization. The last objective of this study is to investigate the possibility of using

the newly developed StoSAG algorithm for the case where the two objectives are to maximize

the life-cycle NPV of production under geological uncertainty and to minimize the risk.
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1.2 Literature Review

1.2.1 Optimization of WAG Injection Process

WAG flooding is an enhanced oil recovery (EOR) method designed to improve sweep

efficiency during gas injection by using the injected water to control the mobility of gas and

to stabilize the gas front [26]. WAG injection is a cyclic method of injecting alternating

cycles of gas (e.g., CO2) followed by water and then repeating this process over a number

of cycles. CO2-WAG flooding is one of the successful EOR methods for a low permeability

reservoir or a reservoir with fractures [61] because WAG results in better mobility control

and higher microscopic miscible displacement efficiency compared to injecting water or CO2

individually.

Poor recovery from the WAG technique can be caused by inappropriately-designed

WAG parameters: e.g., the WAG ratio, the length and the number of WAG cycles, and the

gas or water injection rate. Thus, the optimization of WAG injection is widely recognized

as a viable technique for controlling mobility of gas and the miscible process in order to

achieve a better recovery [23, 7]. The existing studies on WAG optimization are based in

most cases on an experimental approach [6, 86, 82] or trial-and-error reservoir simulation

work [52, 66, 99, 41, 9]. However, the well control parameters determined by an experimental

approach or reservoir simulation experiments may not be close to an optimal solution. Thus,

it is important to adaptively estimate the optimal WAG ratio, half-cycle length, well injection

rates and optimal well controls for producers in an automatic way in order to achieve a better

recovery or NPV.

Chen et al. [23] presented a hybrid technique that integrates the orthogonal array

and Tabu techniques into a genetic algorithm a computationally expensive procedure to

determine the optimum WAG production-injection parameters. However, the possible values

of the control variables are preselected and discrete, and the authors did not provide any

further information about how they chose those control variable values for each injector and

producer and the WAG ratio. It is difficult to know whether the WAG production-injection
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parameters obtained by using their hybrid technique are optimal.

Bahagio [7] used EnOpt method to optimize the injection process of CO2-WAG where

the length of each injection cycle is fixed to one year, i.e., each gas injection period lasts six

months and each water injection period lasts six months. The author did not study the effect

of the length of each injection cycle on the performance of CO2-WAG EOR. Moreover, the

WAG ratio for the case the author studied was fixed to a constant value which is not feasible

in practice due to the reservoir heterogeneity, miscibility conditions, injection conditions

and well operational parameters. In addition, the author did not estimate the optimal well

controls for production wells, only for injection wells. Although the NPV obtained by the

optimized strategy was higher than the one obtained by the base case strategy in the study

of Bahagio, better results should be achievable if more control variables (e.g., well controls

for production wells) are taken into consideration.

Hewson and Leeuwenburgh [45] applied an ensemble-based optimization algorithm to

estimate optimal CO2-WAG cycle lengths and well operating conditions (rates for injectors

and BHP for producers) for a full-field model called “Chigwell Viking ‘I’ Pool”. A single

reservoir model was first used to demonstrate the benefits of simultaneous optimization of

injection cycle lengths and well operating conditions over optimization of only well operating

conditions with fixed injection cycle lengths. Then, the simultaneous optimization strategy

was applied to an ensemble of model realizations for robust optimization. However, it is

unclear whether the simultaneous optimization strategy still outperforms the strategy of

only optimizing well operating conditions in the robust optimization scenario. In addition,

a similar approach to the work of Fonseca et al. [35] for optimization of on/off inflow-control

devices (ICDs) was applied to optimize the length and the number of WAG cycles. One of

the drawbacks for this approach is the choice of “chopping”; that is, the total injection time

intervals (Tinj) for any injection well will be chopped to reservoir lifetime if Tinj is larger than

reservoir lifetime. This can cause some of the tailend WAG cycles to be removed from the

injection process due to the stochastic properties of ensemble-based method, which could

result in suboptimal solutions. In this study, we will develop a new algorithm to optimize
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the WAG cycle lengths.

1.2.2 Optimization of Inflow-Control-Valves

Smart well completions, such as ICVs or ICDs, are designed to monitor downhole

conditions, such as flow rate, pressure and temperature, and to control the inflow and outflow

from multiple segments along the wellbore [3]. ICVs are widely used in the oilfield in order

to maximize oil production and the recovery factor [67, 30, 5, 1, 2, 17]. ICVs can have

settings which vary continuously between 0 and 1 (where zero indicates the valve is closed

and one indicates the valve is fully open) or can be restricted to settings of either 0 or

1, i.e., either fully open or fully closed [68, 73, 35, 36], or can impose a small number of

discrete settings. Many authors have used ICV settings to optimize the well performance

on the basis of downhole-flow conditions or updated production data [60]; using either a

true gradient or a stochastic gradient as the search direction in a steepest ascent algorithm

[11, 68, 90, 3, 35, 36].

Brouwer and Jansen [11] developed a systematic dynamic optimization approach

based on optimal control theory and investigated the scope for optimization under pressure-

and rate-constrained operating conditions. They used “ICV settings” as the control variables

in the pressure-constrained scenario where the flowing wellbore pressures were preselected,

i.e., the flowing wellbore pressures were fixed throughout the optimization process. In the

rate-constrained scenario, the authors chose water injection and liquid production rates in

each well segment as control variables where the total field injection and production rates

remained constant over time. Thus, the optimization problem simplified to a redistribution

of flow rates over the well segments for the rate-constrained scenario.

Naus et al. [68] proposed an operational strategy for commingled production with

ICVs using sequential linear programming (SLP), which is based on the simplex algorithm,

where ICV settings were modeled as a multiplication factor of the productivity index (PI)

with values between 0 and 1. van Essen et al. [90] implemented a gradient-based optimization

technique to optimize the ICV settings of a field-scale reservoir. They proposed a dynamic
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grouping approach based on the optimal ICV settings which were obtained at the first stage

of their workflow. However, as observed by Fonseca et al. [35], having fewer ICVs results in a

loss of controllability and, thus, an optimized strategy with a lower NPV. Alhuthal et al. [3]

proposed an approach that relies on finite-difference or streamline-based models to estimate

the production/injection rates of designated ICVs which maximize the waterflood sweep

efficiency, where the optimization was performed under operational and facility constraints

using a sequential quadratic programming approach. Li and Zhu [60] proposed a procedure

which utilizes temperature-distribution data as feedback guidance to operate ICVs in order

to achieve an approximately uniform flow distribution and to increase oil-flow rate and delay

early water breakthrough.

Fonseca et al. [36] considered a waterflooding optimization problem where ICV set-

tings of injection and production wells which maximize the NPV over the reservoir life are

estimated. The well PI multipliers were used to model the ICV settings in the simulator with

the values varying between 1 × 10−4 and 1. Recently, they proposed a new approach that

changes a discrete control problem to a continuous control problem to estimate the on-off

ICVs which maximize the NPV [35]. However, in both of these works, the authors only opti-

mize the ICV settings with fixed well controls (rate or bottom-hole-pressure). On the other

hand, if only well controls are optimized, we will generally obtain early water and/or gas

breakthrough in high permeability layers. In this study, we will investigate the possibility of

simultaneous optimization of ICV settings together with well controls and demonstrate the

benefits by applying this methodology.

1.2.3 Optimization Under Geological Uncertainty

In the reservoir optimization community, geological uncertainties, such as uncertainty

in the permeability field, normally have a significant impact on reservoir performance. Con-

sequently, the optimal solution obtained based on a single reservoir model may deviate signif-

icantly from the actual optimum for the true reservoir. To incorporate geological uncertainty

into the optimization framework, robust optimization has been performed where the purpose
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is to mitigate the effect of uncertainties in the reservoir model [89, 24, 14, 16, 18, 35, 37].

van Essen et al. [89] performed robust optimization to optimize the expectation of

net present value over an ensemble of reservoir realizations using steepest ascent with the

gradient computed with the adjoint method. They compared the results obtained from the

robust optimization procedure to those obtained from two alternative strategies (a nominal

optimization and a reactive control strategy). The results showed that the robust optimiza-

tion strategy yielded a much smaller variance than the alternatives. Moreover, the robust

optimization strategy significantly improved the expected NPV compared to the alterna-

tives. Capolei et al. [14] proposed a modified robust optimization strategy that inherits the

features of both the reactive control and the robust optimization strategy which uses the

adjoint method to generate the gradient. The results indicated that modified robust opti-

mization strategy performed significantly better than the open-loop certainty strategy and

the reactive control strategy. As can be observed, the adjoint-based method used in their

work is a computationally efficient approach for the reservoir optimization problem, because

it requires only one single forward simulation run and one adjoint simulation to generate a

gradient of the objective function with respect to the control vector [59, 81, 51, 20, 38].

Unfortunately, implementing the adjoint method requires access to a reservoir simula-

tor’s source code which is not available for a commercial reservoir simulator. This limitation

leads to the popularity of the stochastic gradient for optimization [91, 29, 19, 34, 35]. One

of the these stochastic gradients, ensemble-based optimization (EnOpt), inspired by the En-

semble Kalman Filter (EnKF) method, was first introduced by Lorentzen et al. [65] and

Nwaozo [69]. The standard formulation of the EnOpt algorithm for robust optimization was

generated by Chen et al. [25]. It has been suggested that a one-to-one pairing of random

control vectors and random geological reservoir models is capable of generating sufficiently

accurate approximate gradients. However, other studies suggest that a straightforward one-

to-one combination of control vectors and geological models is not always the best choice to

be applied to robust optimization. Raniolo et al. [77] observed that standard EnOpt did not

generate a good search direction for a polymer injection optimization problem. In order to
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enhance the performance of standard EnOpt and avoid unacceptable computational costs,

the authors selected 5 representative geological realizations from 100 geological models and

coupled each geological realization with 20 perturbed controls. One imperfection of their

work is that they did not benchmark their results to those obtained with standard EnOpt.

Fonseca et al. [34] investigated the effect of different ratios of control perturbations to ge-

ological models by the use of hypothesis testing. They concluded that using higher ratios

generate better quality gradient estimates. In one of their other studies [35], they observed

that original form of EnOpt, proposed by Chen et al. [25], does not always yield satisfac-

tory results, and they formulated a modified ensemble-based robust optimization algorithm

(inspired by the modified version of EnOpt developed by Do and Reynolds [29]). The ro-

bust optimization procedure of Fonseca et al. [35, 37] is referred to throughout as stochastic

simplex approximate gradient (StoSAG). Fonseca et al. [35, 37] showed that StoSAG gen-

erally yields a significantly higher value of the life-cyle NPV for the robust optimization

problem than is obtained with the standard EnOpt algorithm. In this study, we will provide

a theoretical understanding of why StoSAG algorithm is superior to EnOpt.

1.2.4 Risk Minimization in Robust Optimization

Much of the published work on life-cycle production optimization considers only a

single reservoir model when maximizing the life-cycle NPV [12, 80, 55, 21, 13, 70, 97, 98].

However, the true description of a reservoir is never known, and thus, it is now common

to consider multiple geological realizations to account for the geological uncertainty in the

reservoir model [50, 25, 22, 83, 37, 42]. To account for the geological uncertainty, robust

life-cycle production optimization is performed [89]. In robust life-cycle optimization, one

typically maximizes the expectation of the NPV of production (or cumulative oil produc-

tion) over a set of plausible reservoir realizations, where the expectation of the NPV (or

cumulative oil production) is approximated by the average NPV (or cumulative oil produc-

tion). However, if only the expectation is maximized, one may obtain a large variance in

the set of plausible NPV values, and if the true reservoir description is close to the reservoir
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description that generates the worst NPV, then further exploitation of the reservoir may not

be commercially feasible [64]. Therefore, it is important to consider also the minimization

of risk, or, uncertainty, in the aforementioned life-cycle robust optimization. In the oil and

gas optimization community, the possibility of incorporating risk minimization in robust

optimization has been investigated by several researchers. Some of the most relevant work

is discussed below in order to put the methodology presented in this manuscript in proper

context.

Bailey et al. [8] proposed an optimization framework based on a “downhill simplex”

(also called amoeba or polytope) optimizer to maximize the expectation of the NPV over an

ensemble of geological realizations and minimize its variance. The objective function that

is maximized in their work is defined by Fλ = µ − λσ where µ and σ denote, respectively,

the mean and the standard deviation of the plausible NPV values, and λ is referred to as

the risk aversion factor depending on the user’s own risk preference. The efficient frontier

(plot of the mean of the NPV values versus its standard deviation) was generated for risk

and decision analysis. In fact, the efficient frontier defined by Bailey et al. is the Pareto

front for the scenario where the two objectives are to maximize the expectation of NPV and

minimize its variance, even though Bailey et al. did not use Pareto front or multiobjective

optimization terminology.

Isebor and Durlofsky [46] applied a hybrid algorithm that combines the local con-

vergence properties of Mesh Adaptive Direct Search (MADS) with the conceptually global

search nature of Particle Swarm Optimization (PSO) method to simultaneously maximize

the expectation and reduce the risk associated with the worst-case scenario. A general field-

development optimization problem was considered in their work in which the number, type,

locations and controls for a maximum of six wells were the optimization variables (36 opti-

mization variables in total). A Pareto front was generated to depict the tradeoff between the

expected NPV and the worst-case NPV. Optimization for a synthetic problem required a to-

tal of 795,340 simulation runs. With extensive parallelization, the equivalent computational

cost was still over 24,000 simulation runs.
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Liu and Reynolds [62] developed and implemented the weighted sum and normal

boundary intersection (NBI) methods to solve biobjective optimization problem where the

two objectives are to maximize the expected value of the life-cycle NPV and minimize the

standard deviation of the NPV over the ensemble of geological realizations. They observed

that the use of standard deviation as the risk measure is not wise because the reduction

in risk/uncertainty is mainly achieved by reducing the largest possible NPV. Thus, Liu

and Reynolds [63] applied the constrained weighted sum and constrained NBI methods to

maximize the expected value of NPV and reduce the risk by maximizing the worst NPV;

in this work, they also considered the presence of nonlinear field constraints. In the work

of Liu and Reynolds [64], the lexicographic method also was used to maximize expectation

and maximize the NPV of the worst-case scenario (or minimize the standard deviation).

For the methods utilized in these papers of Liu and Reynolds, a gradient-based algorithm

with the gradients computed by the adjoint method is used for the optimization. While

gradient-based methods significantly enhance computational efficiency, adjoint solutions are

not generally available in commercial simulators.

Capolei et al. [16] introduced a mean-variance approach to mitigate the risk in produc-

tion optimization of oil reservoirs. The idea in their mean-variance approach is to compute

the optimal solution for different values of the “return-risk trade-off parameter”, λ ∈ [0, 1],

and select the parameter λ to obtain the best trade-off between return and risk. One way

they suggested to choose a solution among the efficient pairs of risk-return pairs is to select

the solution that maximizes the Sharpe ratio (the ratio of the mean to the standard devi-

ation of the NPV over the ensemble of geological realizations). However, as pointed out in

another paper [15], the mean-variance approach is more suitable to reduce the uncertainty

(or standard deviation) of plausible NPV values than to reduce the risk of loss. This result

is consistent with the result of Liu and Reynolds [62] who showed that minimization of the

standard deviation of the NPV of production may lead to a non-negligible decrease in risk.

The gradient used in the optimization process of Capolei et al. [16, 15] was computed by

the adjoint method. The pros and cons of several different risk measures, e.g., worst-case
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scenario, standard deviation, safety margin, mean-variance and conditional value at risk

(CVaR), were discussed in the work of Capolei et al. [15] and the authors proposed the

worst-case scenario and the CVaR as appropriate risk measures for risk minimization, which

is consistent with the results of Liu and Reynolds [62, 64].

Siraj et al. [84] studied the mean-variance risk measure and an asymmetric mean-

CVaR risk measure and considered economic uncertainty by varying oil price scenarios. The

formula for the mean-CVaR approach is given by JMCVaR = JM − ωJCVaR, where JMCVaR

is the objective of mean-CVaR approach; JM represents the mean value of all plausible

NPV; ω is the weighting parameter; JCVaR denotes the CVaR objective. Note that CVaR is

conceptually identical to the approach used by Bailey et al. [8]. Siraj et al. [84] found that

the mean-CVaR approach performs better than the mean-variance approach. Siraj et al.

[85] applied the asymmetric mean-CVaR approach to minimize the risk involved in reservoir

geology. They observed that the mean-CVaR approach improves the worst case(s) without

highly compromising the best cases. As there are no well-defined rules on how to choose the

weighting factor ω, different values should be investigated and thereby the computational

cost is very expensive. The semi-variance risk measure was also investigated in the work of

Siraj et al. [85], however, it does not provide an attractive solution as it reduces the risk of

worst case(s).

As we can see, many of the previous approaches for reducing the risk in production

optimization are either extremely computationally expensive or require the availability of a

simulator that incorporates the adjoint method [8, 46, 62, 63, 64, 16, 15, 84, 85]. One of

the main objectives in this study is to develop a framework that can be used to minimize

the risk in robust life-cycle optimization without access to a simulator with adjoint solution

capability and with acceptable computational cost.
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1.3 Research Objectives and Dissertation Outline

1.3.1 Research Objectives

The objectives of this research are as follows:

1. Explore the applicability of EnOpt algorithm to adaptively determine the optimal well

controls (for both injectors and producers) for each WAG cycle.

2. Incorporate the smart completion technique into the WAG injection optimization; pro-

pose a new approach which optimizes the well operating conditions (rates or pressures)

and ICV settings simultaneously to maximize the life-cycle NPV.

3. Provide a theoretical understanding of why StoSAG algorithm outperforms EnOpt for

robust optimization and demonstrate it with reasonable examples.

4. Apply the lexicographic method to investigate its applicability in combination with

the StoSAG algorithm to maximize the expected value of NPV and reduce the risk in

the robust life-cycle production optimization.

5. Develop a new optimization technique to estimate the length of WAG cycles and the

optimal well controls for each cycle which maximize life-cycle NPV.

1.3.2 Dissertation Outline

This dissertation contains seven chapters that proceed as follows:

In Chapter 2, we first present the WAG optimization problem, which is followed by

the description of the optimization methodology. Then, we present the results of CO2-WAG

optimization on a synthetic channelized reservoir example and make a comparison between

WAG, continuous CO2 and waterflooding techniques. Thereafter, we provide a more efficient

method to optimize the Surfactant-Alternating-Gas (SAG foam) process.

In Chapter 3, we present the methodology of simultaneous optimization of well op-

erating conditions and ICV settings. Then, we demonstrate the superiority of simultaneous
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optimization over individual optimization (well controls or ICV settings only) for two syn-

thetic reservoir examples.

In Chapter 4, we first describe the robust optimization problem followed by presen-

tation which provides a new theoretical understanding of standard EnOpt and StoSAG.

Thereafter, we show the superior performance of StoSAG compared to standard EnOpt with

two reservoir models.

In Chapter 5, we first discuss a variety of risk measures, introduce the lexicographic

method, and end with algorithms for the reduction of risk when the primary objective is to

maximize the expectation of NPV under geological uncertainty. Then, we apply the proposed

methodology to two reservoir examples.

In Chapter 6, we further explore the possibility of optimizing the lengths of WAG

cycles together with the well controls. We adopt the augmented Lagrangian method which

can handle both equality and inequality constraints to optimize the injection time intervals

with and without well controls. The benefits of including WAG cycle lengths as optimization

variables are demonstrated for both the deterministic and robust scenarios.

We summarize the main conclusions of this study in Chapter 7.
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CHAPTER 2

ENSEMBLE-BASED PRODUCTION OPTIMIZATION OF THE WAG

INJECTION PROCESS

In this Chapter, we apply an ensemble-based optimization (EnOpt) technique, which

has been previously used in waterflooding optimization [65, 25, 87, 34, 36], to adaptively

determine the optimal well controls (for both injectors and producers) for each WAG cy-

cle during the presumed reservoir lifetime, without preselecting any control variables. In

this Chapter, optimization is based on a single reservoir model but robust optimization is

considered later in this work. By considering a single reservoir model, we can establish the

applicability of our basic optimization algorithm as well as compare optimum WAG results

with optimum results obtained by injecting only water or only gas. The EnOpt formula

applied is the one suggested by Do and Reynolds [29] which invokes fewer assumptions in

the underlying mathematical development than does the standard Chen et al. [25] formu-

lation, but the difference between the performance of the two methods is negligible when

optimization is based on a single reservoir model. Due to the similarity between WAG and

surfactant-alternating-gas (SAG foam), we also can apply this optimization technique to

the SAG process. However, the computational time required to estimate the optimal well

controls for SAG injection is computationally expensive if we start the optimization directly

from an initial guess that is far from optimal. The computational time required to run a

SAG simulation is much longer than the time required to run a WAG simulation. The longer

computational time is due to the incorporation of the chemical reactions necessary to model

the generation of foam as well as foam collapse. In this Chapter, we illustrate that it is pos-

sible to radically reduce the computational costs of SAG optimization by setting the initial

guess for the optimal well controls for SAG equal to the optimal well controls generated for
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the WAG process.

2.1 WAG Injection Optimization Problem

The optimization problem we consider is how to estimate the well controls which

maximize the NPV in a WAG EOR process. NPV is defined by

J (u) =
Nt∑
n=1

{
∆tn

(1 + b)
tn
365

[
NP∑
j=1

(
ro · qno,j − cw · qnw,j

)
−

NI∑
k=1

(
cwi · qnwi,k + cgi · qngi,k

)]}
, (2.1)

where u is a Nu-dimensional column vector which contains all the well controls at all wells

over the production lifetime; n denotes the nth time step of the reservoir simulator; Nt is

the total number of time steps; the time at the end of the nth time step is denoted by tn;

∆tn is the nth time step size; b is the annual discount rate; NP and NI denote the number

of producers and injectors, respectively; ro is the oil revenue, in $/STB; cw, cwi and cgi,

respectively, denote the disposal cost of produced water, the cost of water injection and the

cost of gas injection, in units of $/STB; qno,j and qnw,j, respectively, denote the average oil

production rate and the average water production rate at the jth producer for the nth time

step, in units of STB/day; qnwi,k and qngi,k, respectively, denote the average water injection

rate and the average gas injection rate at the kth injector for the nth time step, in units of

STB/day. For the examples considered in this work, we neglect the revenue from hydrocarbon

gas production and the disposal cost of injected gas (CO2) that is produced.

We consider only bound constraints and let ulowi and uupi denote the lower bound

and upper bound for the ith control variable, respectively. Then, the problem of WAG

optimization can be expressed as


maximize
u∈RNu

J (u) ,

s.t. ulowi 6 u 6 uupi , i = 1, 2, 3, ..., Nu.

(2.2)

We apply a logarithm transformation [40] to each element of the control vector. The
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ith component of the transformed control vector is given by

xi = ln

(
ui − ulowi
uupi − ui

)
, (2.3)

where ui denotes the ith component of u. Note that xi varies from −∞ to +∞, and thus,

after applying log-transformation to the control variables, the original constrained optimiza-

tion problem is transformed to an unconstrained problem. Even though the log-transform

converts the probem to an unconstrained problem, following Oliveira and Reynolds [70], in

the log-domain, the variables are still truncated to the interval [-7, 7] in the optimization

process. Then, the optimization is performed in terms of the transformed vector x, i.e., the

optimization problem becomes maximize
x

J (x). After the optimal x is obtained, we apply

the inverse log-transformation in order to transform x back to u in the original space, i.e.,

ui =
exp (xi) · uupi + ulowi

1 + exp (xi)
=
uupi + exp (−xi) · ulowi

1 + exp (−xi)
. (2.4)

2.2 Optimization Methods Considered

In this chapter, we apply a slight modification on the standard ensemble-based op-

timization (EnOpt) method [65, 25] to optimize the CO2-WAG process. Note that this

modified EnOpt is similar to foundational StoSAG for robust optimization which will be in-

troduced in Chapter 4. In this section, we discuss the standard EnOpt method, the modified

EnOpt method, and the hierarchical multiscale optimization (Hi-MO) method [70] which

will be used to optimize the continuous CO2 injection and continuous water flooding pro-

cesses for the purpose of comparing the optimal NPVs obtained for these processes with the

optimal NPV for CO2-WAG injection.

2.2.1 EnOpt Algorithm

Assume that J(x) is the NPV function we wish to maximize, where x is the vector

related to the control vector u by Eqs. 2.3 and 2.4. Here, J(x) is maximized using the

17



steepest descent form of the optimization algorithm given by

xk+1 = xk + αk

[
dk
‖dk‖∞

]
, (2.5)

for k = 0, 1, . . . until convergence, where x0 is the initial guess and xk is the estimate of the

optimal control vector at the kth iteration; αk is the step size. The search direction vector

dk can be expressed as

dk =
[
(d1k)

T , (d2k)
T , . . . , (dmk )T , . . . , (dnwell

k )T
]T
, (2.6)

where nwell is the total number of wells. The vector dmk represents “the search direction

for well m,” i.e., dmk is the subvector of dk that produces changes in the components of

xk that correspond to the controls of well m when Eq. 2.5 is applied. All vectors and

subvectors without a transpose sign refer to column vectors. To enumerate the components

of a subvector dmk , we use the notation

dmk = [(dmk )1, (d
m
k )2, . . . , (d

m
k )nc ]

T , (2.7)

for m = 1, 2, · · · , nwell, where nc is the number of control steps for each well. Here, each well

has the same number of controls, i.e., nc is the same for all the wells. To obtain the search

direction dk at iteration k + 1, we first generate Ne samples of the Gaussian random vector

X, where X ∼ N(xk, CX), i.e., the mean of X is equal to xk and its covariance matrix is

CX . These samples can be generated from

xjk = xk + LZj, j = 1, 2, . . . , Ne, (2.8)

where L is the lower triangular matrix in the Cholesky decomposition of CX and the com-

ponent of Zj are independent, standard, random-normal deviates, i.e., Zj ∼ N(0, INx). LZj

is a Nx-dimensional Gaussian random vector with mean equal to the Nx-dimensional zero
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vector and covariance matrix, CX , i.e., LZj ∼ N(0, CX). As discussed later, CX is chosen

to control the temporal smoothness of the controls at each well.

The search direction used in this work is the one considered in Do and Reynolds [29]

which at iteration k+1 is given by

dk =
1

Ne

Ne∑
j=1

(xjk − xk)
(
J(xjk)− J(xk)

)
. (2.9)

Do and Reynolds [29] show that

dk ≈ CXOxJ(xk). (2.10)

This search direction differs slightly from the one proposed by Chen et al. [25]. Chen et al.

use the the mean of the samples in place of xk and J = (
∑Ne

j=1 J(xjk))/Ne in place of J(xk).

When optimization is based on a single fixed reservoir model, Do and Reynolds [29] show that

the difference between results generated from the two basic EnOpt algorithms is negligible

even though the Do-Reynolds EnOpt formulation of Eq. 2.9 involves fewer approximations

than does the Chen et al. formula. Thus, here when optimization is based on a single

reservoir model, we will still simply refer to the modified EnOpt of Do and Reynolds as

EnOpt. It is important to note that the Chen et al. algorithm was developed for robust

optimization where one wishes to maximize the expected value of the NPV of life-cycle

productions over an ensemble of reservoir models. Recently, Fonseca et al. [35] generalized

Eq. 2.9 to the robust optimization case and found that with this generalization, one can

obtain a significantly higher value of life-cycle NPV than is obtained with the Chen et al.

version of EnOpt in the robust optimization case. More discussions on the comparison of the

Fonseca et al. [35, 37] modification of EnOpt (referred to as “StoSAG”) to standard EnOpt

for robust optimization will be provided in Chapter 4. In this Chapter, we only focus on

deterministic optimization which is based on single reservoir model.

In EnOpt [25], additional smoothing is typically performed by multiplying by CX ,
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and if we do the same, the final EnOpt search direction, denoted by gk, is given by

gk = CXdk. (2.11)

When using steepest ascent with the true gradient replaced by a stochastic gradient,

the stochastic gradient may be quite rough. For the optimal well control problem, this rough

gradient often results in controls at an individual well that vary rapidly in time and thus are

not palatable in practice. Equally importantly, using a rough gradient at each iteration can

result in very suboptimal estimates of the maximum achievable NPV. One way to control this

is to smooth the stochastic gradient by multiplying the stochastic gradient by a covariance

matrix which provides smoothing, and here EnOpt refers to the case where dk is replaced by

gk in Eq. 2.5. See Do and Reynolds [29], Yan and Reynolds [93], Fonseca et al. [35] as well

as the original work of Chen et al. [25].

When dk of Eq. 2.9 is multiplied by CX , the resulting algorithm is referred to here as

EnOpt. If Eq. 2.5 gives a xk+1 such that J(xk+1) > J(xk), the xk+1 is accepted as the new

approximation to a x that maximizes NPV. If not, then the step size αk is repeatedly reduced

by a factor of 2 and xk+1 is recomputed with the reduced step size until Eq. 2.5 produces a

xk+1 such that J(xk+1) > J(xk) or the maximum number of step-size cuts has been reached.

If with the maximum number of step-size cuts, we cannot find a xk+1 that increases the NPV,

then we generate a new set of perturbed controls to try to find an uphill search direction

and, if necessary, repeat the step-size cuts. If after NRes consecutive resamplings of the

perturbations to obtain a search direction, we still cannot find a xk+1 that increases J(x)

after the maximum number of allowable step-size cuts, then the algorithm is terminated.

Also, if both of the following two equations hold:

J(xk+1)− J(xk)

max[J(xk), 1.0]
6 εJ , (2.12)
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and

xk+1 − xk
max[‖xk‖2, 1.0]

6 εx, (2.13)

the algorithm is terminated. Following the discussion of subsection 8.5.1 of Oliver et al.

[72], we use εJ = 10−4 and εx = 10−3. In total number of allowable simulation runs, NR,

is exceeded, we terminate the algorithm. Typically, we choose NR between 1,000 and 5,000

depending on the computational resources available.

2.2.2 Adaptation of Modified EnOpt to WAG

To simulate WAG with a standard reservoir simulator, we represent each actual in-

jection well by two injection wells, a gas injection well and a water injection well at the same

location. The use of two wells is necessary because CMG’s GEM [27], the simulator used to

model WAG, does not allow us to switch a well back and forth from a water injector to a CO2

injector. Each WAG injection cycle contains two half-cycles, a first half-cycle and a second

half-cycle. Specifically, gas is injected during the first half-cycle, and water is injected dur-

ing the second half-cycle. However, the water injection well is turned off (rate fixed at zero)

during the first half-cycle of each cycle, and the gas injection well is turned off during the

second half-cycle of each cycle. When an injection rate is fixed at zero during a half-cycle, we

do not want to include the rate during this period as an optimization variable; thus, we fix

both the associated rate and the corresponding search direction equal to zero. As discussed

below, the use of two injection wells at the same location where each well alternates from

open to closed at the end of each half-cycle requires only minor complications in our inhouse

optimization code.

Here, nwell represents the number of wells where each physical injection well is modeled

as two wells in the reservoir simulator, a water injection well and a gas injection well. Each

of these two wells is represented by its own subvector in the form of Eq. 2.7, which also can

be expressed in terms of the number of WAG cycles as

dmk =
[
(dmk )T1,a, (d

m
k )T1,b, (d

m
k )T2,a, (d

m
k )T2,b, . . . , (d

m
k )Tncycle,a

, (dmk )Tncycle,b

]T
. (2.14)
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where ncycle denotes the total number of WAG cycles; a and b represent the first half-cycle

and the second half-cycle of each injection cycle, respectively. Note that each half-cycle

may contain more than one control step. Here, for simplicity, we assume all the half-cycles

contain the same number of control steps, ncs, which means each entry of dmk given in the

form of Eq. 2.14, has ncs subentries, e.g., (dmk )1,a can be expressed as

dmk =
[
(dmk )11,a, (d

m
k )21,a, . . . , (d

m
k )ncs

1,a

]T
. (2.15)

We see that nc, the total number of control steps for each well, is equal to 2ncsncycle.

To account for the fact that for all the first half-cycles, the water injection rates and their

corresponding search directions are zero and for all the second half-cycles, the gas injection

rates and their corresponding search directions are zero, we make the modifications discussed

in steps 1, 2 and 3 below.

Step 1. For gas injectors, we set the even entries of dmk , i.e., (dmk )1,b, (dmk )2,b,. . .,

(dmk )ncycle,b
in Eq. 2.14, equal to zero in order to eliminate the entries that do not correspond

to the design (optimization) variables. Similarly, for water injectors, we have to set the odd

entries of dmk given in the form of Eq. 2.14 equal to zero,i.e., (dmk )1,a = (dmk )2,a = . . . =

(dmk )ncycle,a
= 0.

Step 2. Because we smooth the dk of Eq. 2.9 by the covariance matrix CX which

is a block diagonal matrix to obtain the search direction, the search direction we use in our

algorithm is first computed as

gk = CXdk =



C1
X 0 . . . 0

0 C2
X . . . 0

...
...

. . .
...

0 0 . . . Cnwell
X





d1k

d2k
...

dmk
...

dnwell
k


=



C1
Xd

1
k

C2
Xd

2
k

...

Cm
X d

m
k

...

Cnwell
X dnwell

k


, (2.16)
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where Cm
X , m = 1, 2, . . . , nwell is the covariance matrix used to force temporal smoothness

on the well controls for well m. In this work, we use a spherical covariance function; i.e.,

denoting the (i, j) entry of Cm
X by Cm

i,j, we have

Cm
i,j = σ2

m

(
1− 3

2
( |i−j|
Nm

s
) + 1

2
( |i−j|
Nm

s
)3
)
, (2.17)

if |i − j| ≤ Nm
s , and Cm

i,j = 0 if |i − j| > Nm
s . Here, i and j denote the control step i and

j, respectively; σm refers to the standard deviation; Nm
s is the number of control steps over

which we wish the control at well m to be correlated. As discussed later, the choice of Nm
s at

each refinement level of the Hi-MO algorithm [70] controls the degree of smoothing imposed

on the well controls. Also see Wang et al. [91] and Yan and Reynolds [93] for the effect that

the choice of Nm
s has on the temporal smoothness of the estimated optimal controls. Then

the mth component of gk, i.e., gmk = Cm
X d

m
k , can be expressed as

gmk = Cm
X d

m
k =



C11 C12 . . . C1nc

C21 C22 . . . C2nc

...
...

. . .
...

Cnc1 Cnc2 . . . Cncnc





(dmk )1

(dmk )2
...

(dmk )nc



=



C11(d
m
k )1 + C12(d

m
k )2 + . . .+ C1nc(d

m
k )nc

C21(d
m
k )1 + C22(d

m
k )2 + . . .+ C2nc(d

m
k )nc

...

Cnc1(d
m
k )1 + Cnc2(d

m
k )2 + . . .+ Cncnc(d

m
k )nc


=

(
(gmk )1, (g

m
k )1, . . . , (g

m
k )nc

)
.

(2.18)

But gmk also can be expressed in terms of the number of WAG cycles as

gmk =
[
(gmk )T1,a, (g

m
k )T1,b, (g

m
k )T2,a, (g

m
k )T2,b, . . . , (g

m
k )Tncycle,a

, (gmk )Tncycle,b

]T
. (2.19)

Note that dmk and gmk in Eq. 2.18 are expressed in the form of Eq. 2.7 not in the form of
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Eq. 2.14 in order to show the matrix multiplication by Cm
X more clearly.

Step 3. From Eqs. 2.16, 2.18 and 2.19, we see that a zero entry of dmk in the form

of Eq. 2.14 does not imply that the corresponding entry of gmk in the form of Eq. 2.19 is

zero. Thus, for gas injectors, we again set the even entries of the subvector gmk in the form

of Eq. 2.19 equal to zero; for water injectors, we set the odd entries of gmk in the form of

Eq. 2.19 equal to zero. This gives the final gmk , and hence the gk which we use as the EnOpt

search direction.

After the above modifications, the ensemble-based optimization techniques that have

been developed for life-cycle waterflooding optimization can be adapted to optimize the

design variables for the WAG injection process.

2.2.3 Hi-MO Method

In this Chapter, the performances of continuous CO2 flooding and waterflooding are

studied for the purpose of comparing their performance with that of CO2-WAG technique.

The algorithm applied to optimize the process of continuous CO2 flooding and waterflooding

is the adaptive hierarchical multiscale optimization (Hi-MO) algorithm [70], which can yield a

higher NPV than is obtained by applying the standard procedure of EnOpt. The objectives

of the Hi-MO algorithm are to reduce the number of control variables used in order to

generate a set of less ill-conditioned optimization problems, and improve computational

efficiency without compromising the optimal value of the life-cycle NPV obtained. The Hi-

MO method can be applied with any optimization algorithm, but here, we only consider its

application with the EnOpt method.

In the multiscale approach, we start with a small number of control steps and find

the optimal controls by maximizing J(x); then, we select the new set of control steps for the

next level of parametrization based on two main procedures: merging and splitting. The

control steps are selected to be merged if the following control variation criterion holds:

|uwi − uwi,ref|
uup,wi − ulow,wi

< ε∗u, (2.20)
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where ε∗u is the control variation tolerance for merging well controls; uwi is the ith control

at well w, and uwi,ref is a reference value corresponding to the average of all the consecutive

controls at well w previous to the ith control which were merged; uup,wi and ulow,wi denote

the upper bound and lower bound of ith control at well w, respectively. Although the log-

transform is used to handle the bound constraints, the control variation criterion is checked

in the original control space instead of the log-transformed control space.

All control steps that are not selected to be merged are split into nsplit (2 or 4) new

control steps of uniform length. Here, h denotes the parametrization level; hmax represents

the number of refinement levels; xh is related to uh which is the optimal control vector at

parameterization level h by Eqs. 2.3 and 2.4. The basic Hi-MO iteration loop is shown below:

For parametrization level h = 0, 1, 2, · · · , hmax.

Step 1. Solve the optimization problem (EnOpt method).

Use xh as the initial guess, εhJ and εhx as the convergence tolerances in Eqs. 2.12

and 2.13, and nmax,h
s as the maximum number of allowable simulation runs at step 1 of level

h, obtain

xh = argmax
x

J(x). (2.21)

Step 2. Check convergence.

If both of the following equations hold:

J(xh)− J(xh−1)

max{J(xh−1), 1.0}
≤ ε∗J , (2.22)

and

‖xh − xh−1‖2
max{‖xh−1‖2, 1.0}

≤ ε∗x (2.23)

then set xopt = xh and terminate the algorithm. If the total allowable simulation runs, nmax
s ,

are reached, i.e., ns > nmax
s then set xopt = xh and terminate the optimization algorithm.

Here ε∗J and ε∗x are the final convergence tolerance for the change of objective function and

control variables, respectively; ns is the counter for the number of reservoir simulation runs.
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Step 3. Reparameterization: redefine the control steps for each well, w = 1, 2, · · · , nwell.

Perform the splitting and merging procedure: for each control step i = 1, 2, 3, · · · , nwc

of each well, determine whether the ith control should be either merged or split using Eq. 2.20,

where nwc denotes the number of control steps for well w.

Step 4. Updating the covariance matrix.

Decrease the temporal correlation length used to define CX between the control vari-

ables for the optimization step for the next level by multiplying the current correlation

length, T h , by a decreasing factor β, where 0 < β < 1, i.e.,

T h+1 = max{βT h, Tmin}, (2.24)

where Tmin is the minimum correlation length which may be zero. Then generate the covari-

ance matrix, Ch+1
X , for the next level.

Step 5. Updating convergence tolerances.

Tighten the tolerance for the optimization step for the next level by applying the

following equations:

εh+1
J = max{γεhJ , ε∗J}, (2.25)

εh+1
x = max{γεhx, ε∗x}, (2.26)

where γ is the tolerance-tightening factor. More total simulation runs for the next refinement

level can be allowed by multiplying the total nmax,h
s by a user chosen factor greater than one.

Then, set h = h+ 1 and go to step 1.

End (For)

We wish to start with a very few controls and long control steps because there exist

cases where one can obtain an optimal solution with a small number of control steps, e.g.,

case where bang-bang controls are optimal [96]. Thus, we choose two initial control steps

of equal length. We assume nsplit=2 is based on the computational experiments of Oliveira

[71], but choosing nsplit=4 is not expected to yield radically different results. Once nsplit is
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chosen, hmax is chosen so that

∆tmin =
T

nhmax
split

, (2.27)

where T is the total production lifetime and ∆tmin is the minimum allowable length of a

control step. For example, if T=2,048 days and ∆tmin=32 days, then Eq. 2.27 yields hmax=6.

It is of course possible for the algorithm to terminate prior to reaching the sixth refinement.

2.3 Computational Results

The reservoir model studied in this work is a three-layer synthetic reservoir with a

25 × 25 × 3 grid with the grid block dimensions given by ∆x = ∆y = 100 ft and ∆z = 20

ft. It contains 4 injectors and 9 producers. The horizontal log-permeability distribution of

the first layer is shown in Fig. 2.1. Note the reservoir has three high permeability channels.

The other two layers have the same horizontal permeability distribution as the first layer.

The porosity is homogeneous with φ = 0.2. The rock and water compressibility are equal

to 6.103×10−5 and 3.3×10−6 psi−1, respectively. The initial reservoir pressure is 4,300 psi,

and the minimum miscibility pressure is equal to 4,150 psi. The reservoir lifetime is set

equal to 2,048 days. A compositional reservoir simulator, GEM (Version 2009.10) [27] from

Computer Modeling Group Ltd., is used in reservoir simulation for WAG injection. There

are 7 pesudo components used to describe the oil and gas: CO2, N2, C1, C2-C4, C5-C6,

C7-C18 and C19-C43.

The control variables at each gas injector are the injection rates with an upper bound

of 20 MM scf/D and a lower bound of 0 MM scf/D; the control variables at each water

injector are the injection rates with an upper bound of 4,000 STB/D and a lower bound of

0 STB/D; each producer operates under BHP control with an upper bound of 4,500 psi and

a lower bound of 1,500 psi. The initial guess for rate controls of each water injector is set

equal to 2,000 STB/D; the initial guess for rate controls of each gas injector is equal to 10

MM scf/D and the initial guess for BHP controls for each producer is equal to 3,500 psi.

To optimize the NPV, the oil price is set equal to $80.0/STB ; the water injection

cost is $5.0/STB; the gas injection cost is $1.5/Mscf; the cost of disposing produced water is
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Figure 2.1: Log-permeability distribution of the first layer, three channel case.

$5.0/STB; the annual discount rate is 0.1. Here, we neglect the revenue of hydrocarbon gas

production and the cost of disposing of breakthrough injection gas. For the optimization of

the SAG process, the cost of injecting water containing dissolved surfactant is set equal to

$8.0/STB.

We apply the log-transformation to handle the bound constraints for all the optimiza-

tion methods considered in this paper. For the EnOpt method, we set the number of samples

for gradient averaging to Ne = 10; the maximum number of step-size cuts is set equal to 5

and the maximum number of resamples is specified as Nres = 5; the initial step size is 1.0;

the time correlation length is 512 days; the perturbation size is equal to 1.0; the maximum

number of allowable simulation runs is 1,000. When the Hi-MO method used to optimize the

processes of continuous CO2 flooding and waterflooding, we specify the maximum number

of refinement levels as h = 6; the minimum control step length is 32 days; we use 2 initial

control steps and the number of splits is given by nsplit = 2; the control tolerance for lumping

steps is 0.01; the initial control correlation length is T 1 = 2, 048 with a decreasing factor of 2

for each optimization level; the tolerance tightening factor is set equal to 0.5; the maximum

number of allowable simulation runs of level 1 is set equal to nmax,1
s = 100 and this number

increases by a factor of 2 at each level; the total maximum allowable simulation runs is 1,000.
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2.3.1 Comparison among Different WAG Cycles

In order to compare the performance of WAG with different number of cycles, we set

up four cases with 4 cycles, 8 cycles, 16 cycles and 32 cycles. The number of control steps

for each well, nc, is set equal to 64 regardless of the number of cycles, and the length of each

control step is 32 days. When the total number of WAG cycles is equal to 4, we set the

length of each of the eight half-cycles equal to 256 days and each of the half-cycle contains 8

control steps. For 8 cycles, the length of each half-cycle is equal to 128 days and each of the

half-cycle contains 4 control steps, and so on. Table 1 presents the summary of the initial

NPV, final NPV (estimate of optimal NPV) and cumulative oil production for the different

cases. From the results in Table 2.1, the final NPV in all of the cases is increased compared

to the initial NPV. We see that the initial NPV, the estimated optimal (final) NPV and

cumulative oil production increase as the number of cycles increases (cycle time decreases),

but they are fairly close for the 16 cycle and 32 cycle cases.

Table 2.1: Summary, comparison among different WAG cycles.

Number of Cycles Initial NPV Final NPV Cumulative Oil
×108$ ×108$ ×106 bbl

4 cycles 3.073 4.480 7.606
8 cycles 3.300 4.692 7.953
16 cycles 3.410 4.756 8.009
32 cycles 3.436 4.793 8.066

Fig. 2.2 shows the remaining oil saturation as a function of the number of cycles

(or cycle time). The color scale corresponds to the oil saturation with the darkest blue

representing the lowest oil saturation and the darkest red color representing the highest oil

saturation. For the same layer (layer 1 or layer 3 in Figure 2), as the number of cycles

increases, the remaining oil saturation decreases. Note that regardless of the number of

cycles, the upper layer has less remaining oil than the bottom layer because the gravity

segregation of injected water and gas causes CO2 , which has a higher displacement efficiency,

to move to the upper layer while water, which has a lower displacement efficiency, moves to

the bottom layer.
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(a) 4 cycles, layer 1 (b) 8 cycles, layer 1 (c) 16 cycles, layer 1 (d) 32 cycles, layer 1

(e) 4 cycles, layer 3 (f) 8 cycles, layer 3 (g) 16 cycles, layer 3 (h) 32 cycles, layer 3

Figure 2.2: Remaining oil saturation distribution of different cycle cases.

The estimated optimal controls for all the production wells and injection wells can be

obtained by applying the EnOpt algorithm. Fig. 2.3 presents the well controls of producers

for the case with 32 WAG cycles. As can be seen in Fig. 2.1, producer Pro1 is separated

from injectors by one of the three high-permeability channels, which we refer to here as

channel 1. When the injected water or gas reaches channel 1, most of the injected fluid will

move towards Pro2 through this channel. Thus, it is reasonable to expect Pro1 to operate

at close to minimum allowable BHP (1,500 psi) throughout the production lifetime, but

Pro2 can operate at close to minimum allowable BHP only at the early times when it is

still economic but is shut in from 500 to 1,700 days, as shown in Fig. 2.3(a). Pro3, Pro4,

Pro5 and Pro6 are located either in a channel or close to a channel, all of which operate at

close to minimum allowable BHP at the early times and thereafter they are almost shut in,

as shown in Fig. 2.3(b) and (c). Pro7 is shut in at the early times and thereafter operates

at close to minimum allowable BHP. Pro8 is located close to the high-permeability channel

so that the estimated control for this producer is close to the minimum allowable BHP at

the early control steps, but after injected gas and water breakthrough at this producer, its

pressure increases (rate decreases), which occurs at about 1,000 days. Pro9 is located far
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from the channel and the injectors and is separated from Inj4 by a low permeability region,

so it operates at close to minimum allowable BHP during the whole production lifetime, as

shown in Fig. 2.3(d). The estimated optimal well controls for injection wells for the case

with 32 WAG cycles are shown in Fig. 2.4. Note that the rates plotted correspond to the

half cycle rates for the different cycles. Various factors affect the gas and water injection

rates, including the miscibility between CO2 and oil, the channeling of injected fluid and

the shut-in of some production wells during the production lifetime, all of which lead to the

optimal well injection rates shown in Fig. 2.4.

(a) Pro1 and Pro2 (b) Pro3 and Pro4

(c) Pro5 and Pro6 (d) Pro 7, Pro8 and Pro9

Figure 2.3: Estimated optimal well controls for production wells, 32 WAG cycles.

Fig. 2.5 shows the estimated optimal WAG ratio (volume of water injected divided

by the volume of gas injected) for each cycle for the case with 32 cycles. The WAG ratio

is affected by reservoir heterogeneity, miscibility conditions, injection conditions and well
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(a) Inj1 (b) Inj2

(c) Inj3 (d) Inj4

Figure 2.4: Estimated optimal well controls for injection wells, 32 WAG cycles; the rates
plotted correspond to the half cycle rates for the different cycles.
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operational parameters, so it is hard to explain why the estimated WAG ratio changes

with the WAG cycle as shown in Fig. 2.5. However, there are some general ideas that

can be obtained from the results of this figure. First of all, the WAG ratio starts with a

relatively high value at the early injection times for the purpose of injecting more water into

the reservoir to block the high-permeability zone and increase gas miscibility by increasing

pressure. Thereafter, the WAG ratio decreases to a lower value in order to have more gas

injected to obtain a better microscopic displacement of oil. Finally, the WAG ratio increases

at the end of the reservoir life. From above analysis, we can see that it is inappropriate to

fix the WAG ratio for WAG injection process in practice although for most cycles, the WAG

ratio is less than 0.2. Note that we implicitly optimize the WAG ratio for different cycles by

optimizing the well controls.

Figure 2.5: Estimated optimal WAG ratio of each cycle, 32 WAG cycles.

2.3.2 Comparison of WAG, Continuous CO2 Injection, and Continuous Waterflooding

In order to compare the efficiency of CO2-WAG, continuous CO2 and continuous

water flooding, we consider the following three subcases, all of which pertain to the three-

layer reservoir.

(1) WAG with 32 cycles using modified EnOpt for optimization;

(2) Continuous CO2 using Hi-MO (2 initial control steps; nsplit=2) for optimization;

(3) Water flooding using Hi-MO (2 initial control steps; nsplit=2) for optimization.
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For continuous CO2 and water flooding, we apply the Hi-MO algorithm [70] with 2

initial control steps and 2 splits to optimize the processes and obtain the final NPV and

cumulative oil produced. Because Hi-MO adaptively selects the duration and length of the

time steps and is designed to mitigate the effects of ill conditioning, Hi-MO is generally able

to provide a higher NPV than is obtained by fixing the number and length of the control

steps a priori. We have not developed a version of the Hi-MO algorithm applicable for the

WAG process, but it is likely that such an algorithm would yield higher optimized values of

NPV than the ones given in this paper for the WAG process.

Table. 2.2 presents the summary of the initial NPV, final NPV and cumulative oil

produced for the three techniques. From the results in Table. 2.2, all the final NPVs are

improved compared to the initial NPVs. Most importantly, the optimized WAG process

yields significantly more oil production and a higher NPV than those obtained by optimizing

continuous CO2 or water flooding.

Table 2.2: Summary, comparison among three techniques.

Techniques Initial NPV Final NPV Cumulative Oil
×108$ ×108$ ×106 bbl

32 WAG cycles 3.436 4.793 8.066
Continuous CO2 2.335 3.907 6.510
Water flooding 1.667 3.121 5.026

Figs. 2.6 and 2.7 display the CO2 concentration in the bottom layer (layer 3) and the

pressure distribution for the middle layer (layer 2), respectively. These two figures compare

results from WAG flooding with those from continuous CO2 flooding after 1,440 days of

production and 2,048 days of production. In Fig. 2.6, the color scale corresponds to CO2

concentration with the darkest red color representing the highest CO2 concentration (1.00)

and the darkest blue representing the lowest concentration (0.00). In Fig. 2.7, the color scale

corresponds to pressure with the darkest red color representing the highest pressure (5,500

psi) and the darkest blue representing the lowest pressure (1,500 psi); the upper two figures

show the pressure distribution for layer 2 for WAG flooding at 1,440 days and 2,048 days and

the bottom two figures show the pressure distribution for layer 2 of continuous CO2 flooding
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at 1,440 days and 2,048 days.

(a) 1,440 days (WAG) (b) 2,048 days (WAG)

(c) 1,440 days (CO2) (d) 2,048 days (CO2)

Figure 2.6: CO2 concentration in layer 3 from WAG flooding and continuous CO2 flooding.

From Fig. 2.6, we see that WAG flooding yields a higher CO2 concentration distribu-

tion in the bottom layer than does continuous CO2 flooding, i.e., more oil is displaced from

layer 3 using WAG than is displaced using only CO2 flooding. This is because the water in-

jected in the WAG process can control the mobility of CO2 by blocking the high-permeability

channel or zones and reducing the effects of gravity segregation which keeps more injected

CO2 in the bottom layer, which in turn improves the sweep efficiency and results in higher

oil production. Fig. 2.7 shows that WAG flooding yields a higher pressure distribution than

continuous CO2 flooding; this is because the water injected in the WAG process helps to

maintain a higher reservoir pressure because water is immiscible and has a relatively low

compressibility. The higher pressure also enhances the miscibility of CO2 and oil and hence

improves the microscopic displacement efficiency.

Fig. 2.8 shows the layer 1 and layer 3 oil saturation distribution at 2,048 days obtained
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(a) 1,440 days (WAG) (b) 2,048 days (WAG)

(c) 1,440 days (CO2) (d) 2,048 days (CO2)

Figure 2.7: Pressure distribution for layer 2 of WAG flooding and continuous CO2 flooding.

for the three processes. The color scale corresponds to oil saturation. From Fig. 2.8, we

can conclude that compared to the other two techniques, WAG flooding yields the lowest

remaining oil saturation both in the upper layer and the bottom layer. This statement also

holds for the second layer although the results are not shown. For continuous CO2 flooding,

more oil is produced from the upper layer (layer 1) because of the segregation of CO2 to the

upper layer; however, for water flooding, the bottom layer achieves a lower oil saturation

because of water segregation to the bottom layer. Comparing the remaining oil saturation

distribution for layer 1 and layer 3 of the WAG case, we also can conclude that CO2 does

have better microscopic displacement efficiency than water.

2.3.3 Optimization of SAG Injection Process

The surfactant-alternating-gas (SAG foam) injection process is very similar to WAG.

Thus, the modified ensemble-based algorithm still can be applied to optimize the SAG injec-

tion process. Generally, the SAG model is simulated using the STARS simulator [79] which
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(a) WAG, layer 1 (b) Continuous CO2, layer 1 (c) Water flooding, layer 1

(d) WAG, layer 3 (e) Continuous CO2, layer 3 (f) Water flooding, layer 3

Figure 2.8: Remaining oil saturation distribution for three different techniques.

is also from Computer Modeling Group Ltd. STARS is CMGs advanced reservoir simulator

which includes options to simulate processes which GEM does not consider. These processes

include foam injection and chemical flooding. In this part of the Chapter, we first compare

the performance of the two simulators (GEM and STARS) and thereafter move forward to

the optimization of the SAG injection process using as initial guesses the optimized well

controls obtained by the optimization of WAG injection.

Fig. 2.9 presents plots of NPV values versus the number of simulation runs of SAG

and WAG injection for the cases with 16 cycles and 32 cycles. Both Figs. 2.9(a) and 2.9(b)

show that WAG injection implemented by GEM yields a much higher final NPV than SAG

injection implemented by STARS. However, the cases are such that we believe that SAG

should achieve a better NPV or oil recovery factor than WAG because of additional EOR

mechanisms generated by surfactant and foam. In order to understand this discrepancy, we

perform optimization of the WAG process with STARS as well as GEM, where the initial
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guess for the vector of well controls is the same for both simulators. For the case with

16 cycles, the final NPV obtained by optimizing WAG with GEM is 18.28% higher than

the NPV obtained by optimizing WAG with STARS; for the 32 cycles WAG case, the final

NPV obtained by optimizing WAG with GEM is 18.58% greater than the NPV obtained by

optimizing WAG with STARS. Our explanation is that this is because STARS uses k-values

to model compositional effects whereas GEM uses an equation of state (EOS) based phase

equilibrium package for multiphase PVT calculations. However, it is well known that the

liquid-gas phase envelope can change dramatically as the CO2 concentration increases. Thus,

it is unfair to compare the performance of the WAG injection implemented by GEM with

the performance of the SAG injection implemented by STARS. We have to choose the same

simulator in order to compare the performances of the SAG and WAG for the same reservoir

case. As seen in Fig. 2.9, SAG injection yields a higher final NPV than WAG injection when

both WAG and SAG cases are optimized using STARS as the forward model. As we have

mentioned above, GEM cannot model the process of SAG injection, so we cannot compare

the performance of WAG and SAG using GEM.

(a) 16 cycles (b) 32 cycles

Figure 2.9: NPV values versus the number of simulation runs for SAG and WAG injection.

Table 2.3 lists the computational time required for the optimization of SAG and

WAG processes with different simulators for the two different cases. Note that for the same

reservoir case, the computational time for the WAG optimization using GEM is less than

that of WAG simulation using STARS and SAG simulation using STARS. For the case with
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32 cycles, SAG optimization implemented by STARS utilizes the most computational time

(241 hrs). WAG optimization with GEM requires the least computational time (80 hrs),

less than one third the computational time of SAG optimization with STARS. Thus, if we

optimize the SAG process by directly starting with the original initial guess of the vector of

optimal well controls (initial guess for rate controls of each water injector is 2,000 STB/D,

initial guess for rate controls of each gas injector is 10 MM scf/D and initial guess for BHP

controls for each producer is 3,500 psi), even though we can finally obtain optimal controls

and NPV by directly optimizing the SAG process, the optimization could be prohibitively

computationally expensive, especially for a real field case. One possible way to reduce the

computational time for the SAG optimization would be to optimize the reservoir for WAG

and then use the WAG optimal controls as the initial guess for optimization of the SAG

process. Hopefully, by generating a better initial guess by doing the WAG optimization first,

we can reduce the overall computational time required for the SAG optimization. In a sense,

this means that the WAG process can serve as a proxy for optimization of SAG.

Table 2.3: Summary, computational time for SAG and WAG for control optimization with
different simulators.

Case Injection Type Simulator Computational Time
(hrs)

16 cycles SAG STARS 232
16 cycles WAG STARS 101
16 cycles WAG GEM 75
32 cycles SAG STARS 241
32 cycles WAG STARS 117
32 cycles WAG GEM 80

Fig. 2.10 shows the performance of SAG optimization with three different initial

guesses for the case with 16 cycles. The first initial guess is the original initial guess that was

used in previous cases; the second initial guess is the WAG optimal control vector obtained

using GEM; the third initial guess is the WAG optimal control vector obtained with STARS.

Table 2.4 presents the initial NPV, final NPV, simulation runs and the computational time

for SAG optimization with the three different initial guesses. From Fig. 2.10 and Table 2.4, we
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Figure 2.10: Performance of SAG optimization with different initial guesses, 16 WAG cycles.

see that much faster convergence is obtained when the initial guess for the SAG optimization

corresponds to the WAG optimal well controls.

The total computational times in Table 2.4 are calculated as follows: for the original

initial guess case, we run 1,000 simulations with SAG and the total computational time is 232

hrs. For the second initial guess case, we first run 1,000 simulations with GEM to obtain the

optimal WAG controls as the initial guess for SAG; the computational time required is 75 hrs.

Thereafter, we run 411 simulations for SAG optimization requiring a computational time of

80 hrs, so the total computational time is 155 hrs. For the third initial guess case, we first

run 1,000 simulations with STARS to obtain the optimal WAG controls (this optimization

requires 101 hrs) and thereafter run 299 SAG simulations which require a computational

time of 48 hrs, so the total computational time is 149 hrs.

Table 2.4: SAG optimization with different initial guess, 16 WAG cycles.

Initial Guess Initial Final NPV Simulation Total Computational
NPV ×108$ Runs Time (hrs)

Original 3.491 4.296 1,000 232
WAG controls-GEM 4.230 4.316 411 155

WAG controls-STARS 4.221 4.307 299 149

From the above analysis, we can see that optimizing the WAG process to obtain
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initial guesses for the optimization of the SAG process improves computational efficiency.

2.3.4 Effect of Random Seed and Ensemble Size

Due to the stochastic nature of the gradient estimate, it is important to consider

the effect of the random seed and the ensemble size (the number of perturbations used

to compute the stochastic gradient) on the optimization results. For all the cases studied

above, we ran a few random seeds and choose the result which achieves the highest final

NPV. Table 2.5 lists the final NPV calculated from five different random seeds for the 16

and 32 cycle WAG cases. Note that both the mean NPV and highest NPV achieved from

the 32 cycle case are higher than those obtained from 16 cycle case.

Table 2.5: Final NPV’s calculated from different random seeds, cases with 16 cycles and 32
cycles.

Case
Final NPV (×108 $)

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Mean Highest
16 cycles case 4.756 4.685 4.671 4.619 4.722 4.691 4.756
32 cycles case 4.793 4.688 4.728 4.620 4.750 4.716 4.793

In order to quantify the impact of ensemble size on the optimization results, we

compare the final NPVs achieved from an ensemble size equal to 30 with an ensemble size

equal to 10. For both ensemble sizes, we ran with 5 different seeds. For the ensemble

size equal to 30, the maximum allowable simulation runs is set equal to 1,500, while for

the ensemble size equal to 10, the maximum allowable simulation runs is equal to 1,000 as

before. Table 2.6 presents the final NPV’s achieved from the 32 cycle case with two different

ensemble sizes (10 and 30). As we can see from Table 2.6, the mean value of NPV achieved

from the ensemble size equal to 30 is not significantly higher than the NPV achieved with

an ensemble size equal to 10, and the highest value obtained from the ensemble size equal to

30 is even lower than that obtained with the ensemble size equal to 10 even though we allow

50% more simulation runs when the ensemble size is 30. As demonstrated by Fonseca et al.

[34], the quality of gradient can be improved with a relatively large ensemble size. However,
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for the compositional simulation, it is computational expensive to use a large ensemble size

with more allowable maximum simulation runs. As can be seen in Table 2.6, at least for this

problem, an ensemble size equal to 10 is sufficient to obtain a good gradient and to achieve

a reasonable final NPV.

Table 2.6: Final NPV’s calculated from 32 WAG cycle case with ensemble size equal to 10
and 30.

Ensemble Size
Final NPV (×108 $)

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Mean Highest
10 4.793 4.688 4.728 4.620 4.750 4.716 4.793
30 4.760 4.713 4.749 4.759 4.732 4.743 4.760
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CHAPTER 3

OPTIMAL CONTROL OF ICV’S AND WELL OPERATING CONDITIONS

FOR WAG

Inflow-control valves (ICVs) are widely used to control the inflow and outflow from

multiple segments along the wellbore. As introduced in Chapter 1, the existing studies on

the optimization of ICV settings are done with fixed well controls (rates or BHPs). On the

other hand, if only well controls are optimized, we will generally obtain early water and/or

gas breakthrough in high permeability layers. In this Chapter, instead of optimizing well

controls only or optimizing ICV settings only, we propose an approach in which well controls

and ICV settings are simultaneously optimized in order to maximize the NPV of production

from a WAG injection project.

3.1 Methodology

In this section, we first briefly discuss the underlying mathematical formulation be-

hind the proposed approach. The well model correlates the reservoir flow rate of phase j

(j = g or j = w for an injector and j = o, g or w for a producer) to the bottom-hole pressure

and the pressure at gridblocks intersected by the well via the following relationship:

qnj =
∑
l

PInl λ
n
j,l(p

n
o − pnwf,l), (3.1)

where

PIl = 2παlklhl
wfracl

ln(re/rw) + s
. (3.2)

Here, qj is the flow rate of phase j; n denotes the nth time step of the reservoir simulator;

PIl is the well productivity index at layer l; λj,l is the total mobility of phase j in the well
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gridblock at layer l; po is the oil pressure at the grid block; pnwf,l is the bottom-hole pressure

at the perforation of layer l at time tn and is related pnwf , the bottom hole pressure at datum

at time tn by the specific weight of the wellbore fluid which accounts for gravity effects; αl

is the fraction of the well that is completed in gridblock l and is more generally representing

the PI multiplier for perforation l; wfrac is the well fraction which is governed by areal

geometry; k is the effective permeability in the plane perpendicular to the well direction;

h is the gridblock thickness in the well direction; rw and re, respectively, denote wellbore

radius and effective radius, and s is the skin factor.

Regardless of whether the control for a well is a rate or a pressure, we can optimize the

well control together with the PI multipliers of each segment of this well, to adjust injection

and production in each layer in order to avoid early breakthrough. This means that ICV

settings are effectively modeled by PI multipliers. Thus, for each well at each control step,

we can use both PI multipliers and total rate or a phase rate as optimization variables.

Instead of flow rate, we can also use the flowing bottom-hole pressure (BHP) of the wells

as optimization variables. However, as pointed out by Leeuwenburgh [58] if all controls are

BHP’s, and there are lower and upper bounds on each BHP control, then intuitively one

should be able to obtain the identical optimal NPV that can be found by optimizing both

BHP’s and ICV settings by simply optimizing only ICV settings with all producer BHP’s

fixed at their lower bounds and all injector BHP’s fixed at their upper bounds. Whether

the same optimal NPV can be obtained by the two methods, however, may depend on other

factors such as the surface of the objective functions for the two problems.

Here, for simplicity, we assume that an ICV is assigned to each perforated geological

layer, and equate the adjustment of the PI multiplier of the layer to the adjustment of

the ICV. Then, PI multipliers are used to simulate the use of ICVs where a value of zero

corresponds to a fully closed valve; a value of one corresponds to a fully open valve and a

value between zero and one corresponds to a partially open valve. It is important to note

however that the active relationship between ICV settings and PI multipliers is unknown.

In this work, we consider optimizing the well controls and ICV settings simultane-
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ously so that the control vector contains both well controls and ICV settings. The question

we wish to address is whether significant gains can be obtained by optimizing both the well

ICV settings (PI multipliers) and the well controls (BHPs or rates) as opposed to, for ex-

ample, simply setting well controls to a bound and using only ICV settings to maximize the

life-cycle NPV value of production. In order to investigate the relative performance of simul-

taneous optimization of well controls and ICV settings, we set up two reference approaches

for comparison. Reference approach #1: Optimize well controls only with all ICV settings

set equal to 1, i.e., PI multipliers are equal to 1. Reference approach #2: Optimize ICV

settings only with fixed well controls. For reference approach #2, we consider two subsets,

namely: (a) set each well control equal to the average of its upper and lower bounds and (b)

set well controls at injectors equal to their upper bounds and BHP well controls at producers

equal to their lower bounds.

The EnOpt algorithm (modified by Do and Reynolds [29] and referred to as founda-

tional StoSAG in robust optimization) used in the Chapter 2 is applied to optimize WAG

injection process using smart well completions. We consider the same optimization problem

of Eq. 2.2 as in the Chapter 2.

Assume that J(u) is the NPV function we wish to maximize, where u is the control

vector (e.g., BHP, well rates, and/or ICV settings over time). The ith component of control

vector u, ui, is transformed to xi in log-domain by Eq. 2.3. Then, the optimization is

performed in terms of the transformed vector x. At kth iteration of optimization, the control

vector, xk, can be expressed as

xk =
[
(x1k)

T , (x2k)
T , . . . , (xmk )T , . . . , (xnwell

k )T
]T
, (3.3)

where nwell is the total number of wells. The vector xmk represents “the controls of well m

at iteration k.” All vectors and subvectors without a transpose sign refer to column vectors.
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To enumerate the components of a subvector xmk , m = 1, 2, . . . , nwell, we use the notation

xmk =
[(

(xmk )WC
)T
,
(
(xmk )ICV1

)T
, . . . ,

(
(xmk )ICVj

)T
. . . ,

(
(xmk )ICVnm

)T]T
, (3.4)

where (xmk )WC contains the well controls for well m at all control steps; nm is the number

of control valves at well m; (xmk )ICVj , j = 1, 2, . . . , nm, contains the ICV settings of the jth

control valve for well m at all control steps. If we assume that each component of xmk has

the same number of controls, then (xmk )ICVj can be expressed as

(xmk )ICVj =
[
(xmk )

ICVj

1 , (xmk )
ICVj

2 , . . . , (xmk )ICVj
nc

]T
, (3.5)

where nc is the number of control steps for each component of xmk in Eq. 3.4.

If we optimize only well controls, then xmk is equal to (xmk )WC. If we optimize only

ICV settings, (xmk )WC is deleted from the set of optimization variables in Eq. 3.4. Note the

partitioning (ordering) of dk must be identical to that of xk given in Eqs. 3.3, 3.4 and 3.5.

The algorithm implementation procedure is the same as introduced in Chapter 2.

3.2 Example 1: Channelized Reservoir

3.2.1 Problem Description

We first consider a three-channel synthetic reservoir simulation model with a 25×25×3

grid with the grid block dimensions given by ∆x = ∆y = 100 ft and ∆z = 30 ft. The reservoir

contains 4 injectors and 9 producers. The horizontal log-permeability distribution for the

first layer is shown in Fig. 3.1. Note there are three layers of this channelized reservoir.

The second and third layers have the same heterogeneity features as the first layer, but the

permeability field of layer 2 is equal to the permeability field of layer 1 multiplied by 0.6, and

the permeability field of layer 3 is equal to the permeability field of layer 1 multiplied by 0.3.

The vertical permeability is equal to one tenth of the horizontal permeability. The porosity is

homogeneous with φ = 0.2. The initial reservoir pressure is 4,500 psi. The reservoir lifetime
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is equal to 2,880 days. A compositional reservoir simulator, GEM (Version 2009.10) from

Computer Modeling Group Ltd. [27], is used for all reservoir simulation runs in both this

and the second example.

Figure 3.1: Log-permeability distribution, three-channel reservoir case.

The control variables at injectors during gas injection are the injection rates with an

upper bound of 20 MM scf/D and a lower bound of 0 MM scf/D; the control variables at

injectors during each water injection half-cycle are the water injection rates with an upper

bound of 4,000 STB/D and a lower bound of 0 STB/D; each producing well operates under

BHP control with an upper bound of 4,500 psi and a lower bound of 2,500 psi; each ICV

setting for both producers and injectors has an upper bound of 1 and a lower bound of 0. In

simultaneous optimization of operating well controls and ICV settings, the initial guess for

the rate controls of each water injection rate is set equal to 2,000 STB/D; the initial guess

for rate controls of each gas injection rate is equal to 10 MM scf/D; the initial guess for BHP

controls for each producer is equal to 3,500 psi, and the initial guess for each ICV setting (PI

multiplier) is equal to 0.5. It is important to note, however, that the ICV settings are set

equal to 1 when we do well control optimization only, while when we optimize only the ICV

settings, each well control is set equal to either its averages, i.e., the average value of the

lower and upper bounds or equal to the “bound”, where herein “bound” means the upper
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bounds for injectors and the lower bounds for producers. Also note the ICV setting j is for

layer j, where layer 1 is the top layer which has the highest permeability.

To optimize the NPV, the oil price is set equal to $80.0/STB; the water injection

cost is $5.0/STB; the gas injection cost is $1.5/Mscf; the cost of disposal of produced water

is $5.0/STB; the annual discount rate is 0.1. Here, we neglect the revenue due to the sale

of produced hydrocarbon gas and the disposal cost of injected gas that is produced, i.e.,

the NPV function is again the one given by Eq. 2.1. In the implementation of EnOpt, the

number of perturbations used to estimate the EnOpt search direction is 10; the perturbation

size, σ, is set equal to 0.1 and the time correlation length is set equal to 720 days, both of

which are used for computing the covariance matrix, CX ; see Chapter 2 for the calculation

formula of CX . The total number of WAG cycles for this case is set equal to 8 and the time

length of each half-cycle is equal to 180 days. Thus, each well contains 16 control steps, with

the length of each control step equal to 180 days. The total number of allowable simulation

runs for the optimization process is set equal to 2,000.

3.2.2 Computational Results

Table 3.1 shows the initial NPV, the final (estimated optimal) NPV, the cumulative oil

produced, the cumulative water injected/produced and the cumulative gas injected based on

using different optimization approaches (optimize well controls only, optimize ICV settings

only, and optimize both simultaneously) for WAG flooding. Note that all the values in

Table 3.1 are averages of the values obtained from the optimization processes with three

different starting random seeds. From Table 3.1, we can see that the final NPVs that

we obtain using the different optimization approaches are significantly greater than the

initial NPVs. The simultaneous optimization approach achieves the highest final NPV, while

optimizing ICV settings only with fixed “average” well controls yields the lowest final NPV.

The final NPV and cumulative oil achieved by using the simultaneous optimization approach

are, respectively, 9.36% and 6.00% higher than the ones obtained by using our previous

approach which optimizes well controls only. Meanwhile, the cumulative water and gas

48



injected, as well as the cumulative water produced, using simultaneous optimization are lower

than those obtained by using well control optimization only. The approach which optimizes

ICV settings only with well controls fixed at one of their bounds yields a higher cumulative

oil production than the simultaneous optimization approach, but with much larger amounts

of gas injected, water injected and water produced, which results in a significantly lower final

NPV than is obtained via simultaneous optimization. Thus, we see that the gain in NPV

obtained with the simultaneous approach is due to a combination of more oil produced and

smaller injection and disposal costs.

Table 3.1: Comparison among different approaches of WAG flooding, Example 1.

Terms Opt. well Opt. ICV Opt. ICV Opt.
controls (averages) (bounds) simultaneous

Initial NPV(×106$) 363.4 364.5 339.6 364.5
Final NPV(×106$) 550.4 499.1 522.5 601.9

Cum. oil prod.(×106stb) 9.65 9.22 10.49 10.23
Cum. water inj.(×106stb) 5.44 11.40 19.96 4.97

Cum. water prod.(×106stb) 1.72 5.72 13.17 1.36
Cum. gas inj.(×109scf) 66.56 54.51 86.86 61.67

Fig. 3.2 shows the NPV versus the number of reservoir simulation runs for different

optimization approaches with three different initial starting random seeds. From Fig. 3.2, it

is clear that the approach using simultaneous optimization achieves the highest average final

NPV while the approach using optimization of only ICV settings yields the lowest NPV. For

each optimization approach, different initial seeds result in different values of NPV, but the

differences are not highly significant for the optimizing well controls only approach and the

simultaneous approach.

Next, we choose the cases that generate the highest final NPV and show the corre-

sponding estimated optimal well controls and/or ICV settings and the remaining oil satu-

ration distribution. Fig. 3.3 shows the estimated well controls obtained by optimizing well

controls only compared to those generated with the simultaneous optimization approach.

Figs. 4.15 and 4.16, respectively, show the estimated ICV settings for producers and injec-
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Figure 3.2: NPV versus simulation runs for different optimization approaches with three dif-
ferent starting random seeds; blue curves: optimization of only well controls;
green curves: optimization of only ICV settings with fixed “average” well con-
trols; black curves: optimization of only ICV settings with fixed “bound” well
controls; red curves: simultaneous optimization, Example 1.

tors calculated with the simultaneous optimization approach. Note that the reservoir model

is a three-layer case, so each well contains three ICVs, i.e., each well has three PI multipliers

to estimate via the optimization process. For the axis titles in Fig. 3.3 and similar figures,

“Control steps” is the control step indicator (16 control steps) where the control step indi-

cator is ordered in terms of time; the “WAG cycle index” represents different WAG cycles

(8 cycles); the “Producer index” represents the index of production wells, i.e., Pro1 through

Pro9; and “Injector index” denotes different injection wells, namely, Inj1, Inj2, Inj3 and Inj4.

Not surprisingly, the results of Fig. 3.3 indicate that the estimated well controls

obtained from these two approaches are different for most of the wells. The differences in the

estimated optimal well controls generated with the two approaches are caused by including

ICV in the simultaneous optimization approach. For the well control only optimization

approach (Fig. 3.3(a)), Pro1 and Pro9, which are neither in nor close to the channel, operate

at close to the minimum allowable BHP throughout the production lifetime. Pro2 is in the
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(a) Opt. well control only,
producers (psi)

(b) Opt. well control only, gas
injectors (×107scf/d)

(c) Opt. well control only,
water injectors (stb/d)

(d) Opt. simultaneously,
producers (psi)

(e) Opt. simultaneously, gas
injectors (×107scf/d)

(f) Opt. simultaneously, water
injectors (stb/d)

Figure 3.3: Estimated well controls at different control steps/WAG cycle from two differ-
ent approaches: well control optimization only ((a), (b), (c)) and simultaneous
optimization ((d), (e), (f)), Example 1.

(a) Producers, ICV 1 (b) Producers, ICV 2 (c) Producers, ICV 3

Figure 3.4: Estimated ICV settings of all the production wells at different perforated seg-
ments; simultaneous optimization approach, Example 1.

channel and operates at a relatively low BHP only at the first two control steps; thereafter

it is shut in until it is reopened during the last few control steps at which time Inj1 is closed.

Pro4, Pro6 and Pro8 are in the channel and they operate at close to minimum allowable

BHP at the first few control steps, and then they are shut in when the injected gas and/or

water breaks through; Pro5 is connected to Inj2, Inj3 and Inj4 by high permeability channels,
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(a) Gas injectors, ICV 1 (b) Gas injectors, ICV 2 (c) Gas injectors, ICV 3

(d) Water injectors, ICV 1 (e) Water injectors, ICV 2 (f) Water injectors, ICV 3

Figure 3.5: Estimated ICV settings of all the injection wells at different perforated segments;
simultaneous optimization approach, Example 1.

so Pro5 is shut in or operates at a pressure that results in little production throughout the

reservoir life in order to prevent the production of injected gas and water.

For the simultaneous optimization approach, we need to consider both the estimated

well controls and the ICV settings in order to explain the well performance. If a well is shut

in, we do not need to consider the corresponding ICV settings because when a well is shut in,

the ICV settings have no influence. Thus, we can refine the ICV settings plot by setting the

values of ICVs equal to 0 when the corresponding well is shut in. Figs. 3.6 and 3.7 show the

oil, water and gas production rates of all the producers during the production lifetime, and

these results clearly display the shut-in periods. The cause of the spikes in the production

profiles is due to a dramatic change in operating BHP pressure from one control step to the

next. In practice, the change in operating BHP would not be a discontinuous but would

change gradually from the optimal BHP at one control step to the operating BHP at the

next step.

By setting all ICV settings to zero during a shut-in period, the ICV settings for all

52



(a) Pro1 (b) Pro2

(c) Pro3 (d) Pro4

(e) Pro5

Figure 3.6: Production rates of Pro1 through Pro5 based on optimal controls for the simul-
taneous optimization approach; red curve denotes oil rate, blue curve denotes
water rate and green curve denotes gas rate; Example 1.

producers shown in Fig. 3.4 are modified to obtain Fig. 3.8. In Fig. 3.8, we see that in layer

1, which is controlled by the ICVs of segment 1, far more producer ICV settings are zero

or very close to zero than is the case for segments 2 and 3, respectively. This is due to the

fact that layer 1 is the highest permeability layer. When more ICVs in layer 1 are closed
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(a) Pro6 (b) Pro7

(c) Pro8 (d) Pro9

Figure 3.7: Production rates of Pro6, Pro7, Pro8 and Pro9 based on optimal controls for
the simultaneous optimization approach; red curve denotes oil rate, blue curve
denotes water rate and green curve denotes gas rate; Example 1.

or almost closed during production lifetime, the water and/or gas breaking through from

the high permeability layer is prevented or delayed. As is evident from Fig. 3.6(e), Pro5 is

shut-in for most control steps and consequently most ICV settings for Pro5 are recorded as

zero in Fig. 3.8. This indicates that virtually all of the oil is swept toward the boundary of

the reservoir, and the drilling and completion of Pro5 was a wasted expense.

From a careful examination of the numerical results pertaining to Figs. 3.3(e) and 3.3(f),

we find that no injector is fully shut-in for any control step even though at some control steps,

injection rates may be very low as indicated by a dark blue color in Figs. 3.3(e) and 3.3(f).

For gas injection wells, there are more ICV settings close to 1 (fully open) in the bottom

segment (bottom layer) than in the upper segment (Figs. 4.16(a), 4.16(b) and 4.16(c)), es-

pecially for Inj2 and Inj3, which results in more gas injected into the bottom layer (see
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(a) Producers, ICV 1 (b) Producers, ICV 2 (c) Producers, ICV 3

Figure 3.8: Refinement of estimated ICV settings of all producers at different perforated
segments using a simultaneous optimization approach, Example 1.

(a) Inj1 (b) Inj2

(c) Inj3 (d) Inj4

Figure 3.9: Cumulative gas injection of four injectors into three different layers using simul-
taneous optimization approach; red curve denotes layer 1, blue curve denotes
layer 2 and green curve denotes layer 3, Example 1.

Fig. 3.9). As injected gas has a tendency to rise to the top, injecting more gas in the bottom

layer displaces more oil than would be the case if gas were injected only in the top layer in

which case the gas would displace oil mainly from the top layer.

Fig. 3.10 shows the cumulative gas injected into the three layers for each of the four
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(a) Inj1 (b) Inj2

(c) Inj3 (d) Inj4

Figure 3.10: Cumulative gas injection of four injectors into three different layers using only
well controls optimization approach; red curve denotes layer 1; blue curve de-
notes layer 2 and green curve denotes layer 3, Example 1.

injectors based on the optimal well controls computed using only well control optimization

approach. Compared to the cumulative gas injected into the three layers through the four

injectors with the simultaneous optimization approach (see Fig. 3.9), more gas is injected

into the top layer when optimizing only well controls. Thus more oil is displaced from the

top layer when optimizing well controls; the oil saturation distribution is shown later.

The results of Fig. 3.3(f) obtained from simultaneous optimization indicate that water

injection wells operate at a rate lower than 1,000 stb/day for most of the production lifetime.

Water is injected mainly through Inj2 within the first two WAG cycles and through Inj3

within the first six WAG cycles. Table 3.2 shows the cumulative water injected into the three

different layers for the simultaneous optimization and the well controls only optimization

approaches. It can be seen that more water is injected into the top layer for both of these
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two optimization approaches. Due to the gravity segregation, injected water has a tendency

to move to the bottom; thus, injecting more water in the top layer displaces more oil than

would be the case if water were injected only in the bottom layer.

Table 3.2: Cumulative water injected at the end of the reservoir life (2,880 days) into three
different layers for simultaneous optimization and well controls only optimization
approaches, Example 1.

Terms Layer 1 Layer 2 Layer3
×106stb ×106stb ×106stb

Optimize simultaneously 2.333 1.917 1.204
Optimize well controls only 2.504 1.785 0.650

The results of With the optimized injection/production strategy from simultaneous

optimization of well controls and ICV settings, controlling the ICV settings enables more

displacement of oil from the lower permeability layers (layers 2 and 3) with less gas and/or

water production from the high permeability layer (layer 1) compared to the case where only

well controls are optimized.

Fig. 3.11 shows the remaining oil saturation distribution for the three different opti-

mization approaches. Although the results of Table 3.1 and Fig. 3.11 indicate that the most

oil is produced for the case where we optimize both well controls and ICV settings, the case

where we optimize only well controls is interesting when we compare the remaining distribu-

tion of oil obtained (Figs. 3.11(a), 3.11(b) and 3.11(c)) with that obtained when optimizing

only ICV settings. For the case where we optimize only ICV’s, the remaining oil saturation

map is almost the same in all layers whereas when only well controls are optimized, only

the high permeability layer, layer 1, is well swept by the injected fluid, which is consistent

with the results on the cumulative oil produced from each layer shown in Fig. 3.12. Recall

that the layers all have the same initial pore volume and hence the same number of RB

of oil initially in place. It is interesting to note that for all three optimization approaches,

much of the original oil in the region near Pro1 has not been produced (see Fig. 3.11) even

though Pro1 operates near its minimum allowable BHP during most of the “reservoir life,”

see Figs. 3.3(a) and 3.3(d). The fact that a large amount of oil remains in the vicinity of Pro1
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(a) Well control only, layer 1 (b) Well control only, layer 2 (c) Well control only, layer 3

(d) ICV settings only
(average), layer 1

(e) ICV settings only
(average), layer 2

(f) ICV settings only
(average), layer 3

(g) Simultaneous, layer 1 (h) Simultaneous, layer 2 (i) Simultaneous, layer 3

Figure 3.11: Remaining oil saturation distribution for different approaches, Example 1.

at the end of the “reservoir life” is primarily a consequence of the fact that Pro1 is located

in a very low permeability region, but it is also due partially to the fact that the nearest

injector, Inj1, operates at rates close to zero during most of the last four WAG cycles.

3.2.3 Investigation of Perturbation Size and Initial Guesses

In this subsection, we investigate the effect of the perturbation size and initial guesses

on the EnOpt optimization results. Three different perturbation sizes are considered, namely,

σ=1, 0.1 and 0.01. These three perturbation sizes are considered for the three different
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Figure 3.12: Cumulative oil produced from each layer in millions of STB, Example 1.

optimization approaches. Fig. 3.13 shows the effect of the perturbation size on the NPV. The

cases used to study the effect of perturbation size are run with the same initial seed. From

Fig. 3.13, we can see that σ=0.1 yields the best final NPV, especially for the simultaneous

optimization approach.

Table 3.3 shows the optimization results obtained by simultaneous optimization of

well controls and ICV settings for different initial guesses. Initial guess 1 is the original

initial guess discussed previously, i.e., each well control is set equal to the average of its

upper and lower bounds and all ICV settings are equal to 0.5. With this initial guess, we

apply simultaneous optimization using 2,000 total reservoir simulation runs. Initial guess 2

uses all ICV settings equal to 0.5 but sets the initial well controls equal to those obtained

from the well control optimization only approach after 500 simulation runs. With these initial

guesses, we run another 1,500 simulations using simultaneous optimization. Initial guess 3

starts with each well control equal to the average of its bounds but uses the estimated values

for ICV settings obtained by optimizing the ICV settings using 500 simulation runs, and with

these new initial guesses, we run another 1,500 simulations. Initial guess 4 uses the estimated

values for well controls obtained from the well control optimization only approach after 500

simulation runs and the estimated values for ICV settings obtained from the ICV settings
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(a) Well control optimization only

(b) ICV settings optimization only (c) Simultaneous optimization

Figure 3.13: Effect of perturbation size on optimization results for three optimization ap-
proaches.

optimization only after 500 simulation runs, and with these new initial guesses, we run

another 1,000 simulations. Note that the total simulation runs for all the four optimizations

under different initial guesses are the same, i.e., 2,000 simulation runs. All the cases are run

with three different initial seeds, and the table shows the average of the three runs. From

Table 3.3, we note that the final NPV and cumulative oil produced under different initial

guesses are practically identical but there is some variation in the values of the other outputs.

In terms of NPV and cumulative oil produced, the simultaneous optimization approach is

robust with regard to the initial guess.

60



Table 3.3: Comparison of optimization results with different initial guesses; simultaneous
optimization of well controls and ICV settings.

Terms Initial 1 Initial 2 Initial 3 Initial 4
Final NPV(×106$) 601.9 600.9 604.3 603.3

Cum. oil prod.(×106stb) 10.229 10.285 10.248 10.352
Cum. water inj.(×106stb) 4.968 4.983 5.310 5.305

Cum. water prod.(×106stb) 1.360 1.533 1.531 1.645
Cum. gas inj.(×109scf) 61.67 64.55 59.72 64.78

3.3 Example 2: Anisotropic Reservoir

3.3.1 Problem Description

The second example is based on a reservoir simulation model defined on a 25×25×3

grid with the grid block dimensions given by ∆x = ∆y = 100 ft and ∆z = 30 ft. Fig. 3.14

displays the horizontal log-permeability distribution for the first layer, which is generated

from a spherical anisotropic variogram model with a major correlation length of 1,700 ft

(corresponding to the width of 17 gridblocks) and a minor correlation length of 500 ft (i.e., 5

gridblocks). The direction of maximum continuity is equal to 135 degrees measured from the

positive x-axis. The mean of the log-permeability field is 5.0 and the standard deviation of

log-permeability is set equal to 0.3. The reservoir contains four injectors and five producers

in a nine-spot pattern as shown in Fig. 3.14. Note there are three layers. The second and

third layers have the same heterogeneity features as the first layer, but the permeability field

of layer 2 is equal to the permeability field of layer 1 multiplied by 0.5, and the permeability

field of layer 3 is equal to the permeability field of layer 1 multiplied by 0.3. The vertical

permeability is set equal to one tenth of the horizontal permeability. The reservoir lifetime

is equal to 2,160 days. The total number of WAG cycles for this case is set equal to 6 and

the time length of each half-cycle is equal to 180 days. Thus, each well contains 12 control

steps, with the length of each control step equal to 180 days. The time correlation length is

540 days, which means three consecutive control steps are correlated.

In this example, each producer operates under BHP control with an upper bound of
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Figure 3.14: Log-permeability distribution.

4,500 psi and a lower bound of 1,500 psi. All the other problem specifications, including the

bounds of control variables for injectors and the economic parameters, are the same as those

in Example 1.

Table 3.4: Comparison among different approaches of WAG flooding, Example 2.

Terms Opt. well Opt. ICV Opt. ICV Opt.
controls (average) (bound) simultaneous

Initial NPV(×106$) 497.3 471.0 497.1 471.0
Final NPV(×106$) 614.5 607.7 660.8 687.0

Cum. oil prod.(×106stb) 10.84 10.57 11.67 11.79
Cum. water inj.(×106stb) 4.93 8.24 11.95 5.39

Cum. water prod.(×106stb) 0.94 1.95 5.08 1.39
Cum. gas inj.(×109scf) 79.48 40.98 68.92 70.54

3.3.2 Computational Results

Table 3.4 shows the initial NPV, the final NPV, the cumulative oil produced, the

cumulative water injected/produced and cumulative gas injected based on using different

optimization approaches for WAG flooding. Note that all the values in Table 3.4 are averages

of the values obtained from the optimization processes with three different starting random

seeds. From Table 3.4, we can see that the final values of NPV using the three optimization
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approaches increase significantly compared to the initial values of NPV. As in Example 1,

the simultaneous optimization approach achieves the highest final NPV and cumulative oil

produced, while optimizing ICV settings only with “average” well controls yields the lowest

final NPV and cumulative oil produced. The final NPV and cumulative oil achieved by

using the simultaneous optimization approach are, respectively, 11.80% and 8.77% higher

than the ones obtained by optimizing well controls only. Meanwhile, the cumulative gas

injected using simultaneous optimization is lower than that obtained by optimizing only well

controls. Thus, we see that the significant gain in final NPV obtained with the simultaneous

approach over optimizing only well controls is due to a combination of more oil produced

and less gas injected while the simultaneous optimization value of NPV attained is superior

to the NPV obtained by only optimizing ICV settings with “bound” well controls primarily

because less water is injected and less water is produced when the values of design variables

obtained with simultaneous optimization are applied.

Fig. 6.8 shows the NPV versus the number of reservoir simulation runs for different

optimization approaches with three different initial random seeds for Example 2. From

Fig. 6.8, it is clear that the approach using simultaneous optimization achieves the highest

average final NPV as in Example 1.

Fig. 3.16 displays the estimated well controls and ICV settings of gas injectors at

different WAG cycles from the simultaneous optimization approach. It can be seen from

Fig. 3.16(a) that all the gas injectors operate at close to the maximum injection rate (20

million scf/day) for most of the WAG cycles. For gas injection wells, there are more ICV

settings close to 1 (fully open) in the bottom segment (ICV 3) than in the upper segment

(Figs. 3.16(b), 3.16(c) and 3.16(d)), and thus, more gas is injected into the bottom layer

(see Fig. 3.17). Again, as injected gas has a tendency to rise to the top, injecting more gas

in the bottom layer displaces more oil than would be the case if gas were injected only in the

top layer, in which case the gas would displace oil mainly from the top layer. Fig. 3.18 shows

the cumulative gas injected into each layer from three different optimization approaches.

Compared to the cumulative gas injected into each layer through the four injectors with the
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Figure 3.15: NPV versus simulation runs for different optimization approaches with three
different starting random seeds; blue curves: optimization of only well controls;
green curves: optimization of only ICV settings with fixed “average” well con-
trols; black curves: optimization of only ICV settings with fixed “bound” well
controls; red curves: simultaneous optimization, Example 2.

simultaneous optimization and ICV settings only (with “bound” well controls) optimization

approaches, more gas is injected into the top layer when optimizing only well controls, thus

significant more oil is displaced from the top layer.

Fig. 3.19 shows the estimated well controls and ICV settings of water injectors at

different WAG cycles from the simultaneous optimization approach. We can see from

Fig. 3.19(a) that all four water injection wells operate at a relatively high rate (around

2,000 stb) within the first four WAG cycles while they are almost shut in at the last two

WAG cycles. From Figs. 3.19(b), 3.19(c) and 3.19(d), it can be seen that there are more

ICV settings close to 1 (fully open) in the upper segment (ICV 1) than in the other two

segments, and thus, more water injected into top layer. Due to the gravity segregation, in-

jected water has a tendency to move to the bottom. Thus, injecting more water into the top

layer displaces more oil than would be the case if water were injected only into the bottom

layer. Fig. 3.20 shows the cumulative water injected into each layer from three different
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(a) Well controls (×107scf/d) (b) ICV 1

(c) ICV 2 (d) ICV 3

Figure 3.16: Estimated well controls and ICV settings of gas injectors at different WAG
cycles from simultaneous optimization approach, Example 2.

optimization approaches. Note the plots for “ICV settings only” in this figure pertain to the

approach where we optimize ICV settings only with all well controls fixed to one of their

bounds. The results of Fig. 3.20 indicate that, for all the three optimization approaches,

more water is injected into the top layer than the other two layers. Note that a similar result

was obtained in Example 1.

Fig. 3.21 shows the estimated optimal well controls and ICV settings of produc-

ers obtained at different WAG cycle from the simultaneous optimization approach. From

Fig. 3.21(a), we can see that only Pro1 and Pro3 operate at close to the minimum allowable

BHP throughout the reservoir life.

Fig. 3.22 shows the remaining oil saturation distribution for the three different op-

timization approaches at the end of the assumed reservoir life. Fig. 3.22 indicates that the
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(a) Simultaneously: Inj1 (b) Simultaneously: Inj2

(c) Simultaneously: Inj3 (d) Simultaneously: Inj4

Figure 3.17: Cumulative gas injected into each layer using simultaneous approach; red curve:
layer 1, blue curve: layer 2; green curve: layer 3, Example 2.

Figure 3.18: Cumulative gas injected into each layer (×1010 ft3), Example 2.

least oil remains, or, equivalently, the most oil is produced for the case where we optimize

both well controls and ICV settings while the case where we optimize ICV settings with fixed
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(a) Well controls (stb/d) (b) ICV 1

(c) ICV 2 (d) ICV 3

Figure 3.19: Estimated well controls and ICV settings of water injectors at different WAG
cycles from simultaneous optimization approach, Example 2.

Figure 3.20: Cumulative water injected into each layer in millions of STB, Example 2.
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(a) Well controls (psi) (b) ICV 1

(c) ICV 2 (d) ICV 3

Figure 3.21: Estimated well controls and ICV settings of producers at different control steps
from simultaneous optimization approach, Example 2.

“average” values of the well controls yields the smallest oil production (most oil remaining).

This result is consistent with the results of Table 3.4.

3.4 Comments

We provide a discussion here to address three issues: (a) the perturbation size and

number of perturbations used to calculate the stochastic gradient, (b) whether simultaneous

optimization of well controls and ICV settings yields a higher NPV than is obtained by ICV

settings for the scenario where all well controls are BHP’s and (c) the impact of the reservoir

lifetime on the estimated life-cycle NPV.

3.4.1 Perturbations

The perturbation size affects the accuracy of the search direction as a stochastic
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(a) Well control only,
layer 1

(b) Well control only,
layer 2

(c) Well control only,
layer 3

(d) ICV settings only
(average), layer 1

(e) ICV settings only
(average), layer 2

(f) ICV settings only
(average), layer 3

(g) ICV settings only
(bound), layer 1

(h) ICV settings only
(bound), layer 2

(i) ICV settings only
(bound), layer 3

(j) Simultaneous,
layer 1

(k) Simultaneous,
layer 2

(l) Simultaneous,
layer 3

Figure 3.22: Remaining oil saturation distribution for different optimization approaches at
end of assumed reservoir life, Example 2.

approximation of the true gradient in a similar fashion as the approximation of a partial

derivative by a finite-difference approximation. If the perturbation size is too small, the
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approximation is totally corrupted by round off error, and when the perturbation size is too

large, the approximation is highly inaccurate due to truncation error. Via a large set of com-

putational experiments, [34] show that both the number of perturbations used to compute

the stochastic gradient and the size of the perturbations affect the quality of the stochas-

tic gradient (its direction compared to the direction of the true gradient) and hence affects

the estimate of the optimal values of the design (optimization) variables. Unfortunately,

there exists no known way to determine a priori the best choice for either the number of

perturbations or the perturbation size. However, when we eliminate bound constraints by

a log-transformation of the design variables, results presented here as well as other compu-

tational experiments not shown indicate that a perturbation size of 0.1 generally yields an

optimal NPV of a similar or better quality than NPV values obtained with other perturba-

tions. For the case where optimization is done on a single reservoir model, the stochastic

gradient computed with 10-20 perturbations at each iteration generally give reasonable es-

timates of the optimal NPV although Fonseca et al. [34] have shown that to obtain a good

estimate of the gradient at each iteration of steepest ascent may requires several dozens of

perturbations. For the case of robust optimization where one estimates the expected NPV

over a set of 10-100 reservoir models which represent geological uncertainty, computation of

the stochastic gradient using one perturbation of the vector of optimization variables per

reservoir model to compute a stochastic gradient results for use in steepest ascent, results

in an algorithm which appears to obtain a good approximation of the optimal NPV. This

algorithm, which was first introduced by Fonseca et al. [34] and is now referred to as StoSAG

generally performs better than EnOpt, the first ensemble-based optimization algorithm [25].

Fonseca et al. [37] provide a theoretical explanation of why StoSAG outperforms EnOpt

when the variation in the ensemble of reservoir models is large.

3.4.2 Simultaneous Optimization for BHP Controlled Wells

In cases like those considered here where injection wells are rate-controlled, it is

intuitively clear that the optimization problem where both rates and ICV settings are used
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as optimization variables has a higher optimal life-cycle NPV of production than does the

problem where injection rates are fixed at their upper bounds and only ICVs settings are

used as optimization variables. This is because when the injection rate is fixed, one can

redistribute flow among zones by adjusting ICV settings but one cannot reduce the injection

rate if the amount of fluid injected at the maximum rate leads to a suboptimal NPV. The

same argument applies if flow rates are fixed at their maximum allowable values at producers.

As pointed out by [58], however, the optimization problem where the flowing BHP’s at

producers are fixed equal to their lower bounds, injection pressures are fixed at their upper

bounds, and only ICV settings are used as design variables should have the same value

of optimal life cycle NPV as the problem where we use both BHPs and ICV settings as

optimization variables. The validity of the previous statement seems clear because when

BHPs are fixed at their bounds, the total injection rate at a well or the total production rate

at a well can be reduced by simply lowering the ICV settings (reducing the PI multipliers)

without changing the preset BHP’s. We will illustrate the veracity of Leeuwenburgh’s insight

with the example presented next.

Fig. 3.23 shows the NPV versus simulation runs for the two approaches for the sit-

uation where both injectors and producers are under BHP control and upper and lower

bounds are specified on the BHPs where the bounds, reservoir model and other parameters

are identical to those specified in Example 2. In Fig. 3.23, the results for bound controls

pertain to the case where producer BHPs are fixed at the lower bounds and injector oper-

ating BHPs are fixed at their upper bounds and these results are compared with the case

where both BHP controls and ICV settings are optimized; this latter case is referred to as

“simultaneous optimization.” As we use a stochastic gradient, results for the two sets of

design variables are generated for three different initial random seeds. Note from about 1500

reservoir simulation runs onward, the two sets of results are practically identical. Table 3.5

displays the results from the two optimization problems where all the values in Table 3.5 are

averages of the values obtained from the optimization processes with three different starting

random seeds. Although the estimated optimal BHPs (not shown) from the simultaneous
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optimization approach are different from the BHP “bounds” and the ICV settings from

the two optimization problems are different, the results of Table 3.5 indicate that the total

amount of gas injected, the cumulative water injected, the total amount of produced water

and cumulative oil production obtained from the two sets of results are very close.

Figure 3.23: NPV versus simulation runs for three different starting random seeds; black
curves: optimization of only ICV settings with fixed “bound” well controls; red
curves: simultaneous optimization of both BHP controls and ICV settings.

Table 3.5: Comparison among different approaches with BHP controlled wells.

Terms Opt. ICV only Opt. simultaneous
Initial NPV(×106$) 353.3 324.4
Final NPV(×106$) 481.3 481.7

Cum. oil prod.(×106stb) 7.80 7.83
Cum. water inj.(×106stb) 5.98 5.99

Cum. water prod.(×106stb) 2.04 2.15
Cum. gas inj.(×109scf) 83.04 81.43

Considering the results discussed in the previous paragraph, it is perhaps worthwhile

to note that very recent work of [42] indicates that optimization using rate control is more

robust to uncertainty. The authors also note that in practice, it may be easier to implement
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rate control at injectors where single-phase flow injection rates can be measured reasonably

well. For producers, accurate individual well phase flow rate measurements are not generally

available and in this case it is more practical to implement pressure controls at producing

wells.

3.4.3 Impact of Reservoir Lifetime

To investigate the influence of reservoir lifetime on the estimated optimal life-cycle

NPV, we reconsider Example 2, where we specify a priori two alternate reservoir lifetimes,

namely 1,080 days and 4,320 days. With these lifetimes, we then perform simultaneous

optimization of ICV settings and well controls where the well controls are rates at injectors

and BHPs at producers. The reservoir model and other parameters are the same as those

applied in Example 2. Fig. 3.24 displays the NPV versus simulation runs obtained for three

different reservoir lifetimes. As can be seen, the NPV obtained from the reservoir lifetime

of 1,080 days is much lower than the NPV values obtained from the two longer reservoir

lifetimes but increasing the reservoir lifetime from 2,160 days to 4,320 days did not result

in a significant gain in life-cycle NPV because the increased cost due to more gas and water

injected and more water produced essentially offsets the revenue due to an increase in the

barrels produced oil; see Table 3.6. Fig. 3.25 shows the estimated well controls for producers

and their corresponding oil production rates for the case where the reservoir lifetime is equal

to 4,320 days. As can be observed with the exception of producer “PRO-03,” the other

producers produce at a high pressure (low rate) for most of the time period after 2,160 days

and a careful examination of the simulator run outputs indicates producers “PRO-01” and

“PRO-02” are totally shut-in after about 2,700 days (15 control steps); and that producers

“PRO-04” and “PRO-05” are shut-in during the time period from 2,700 days until 3,960

days. The corresponding NPV after 2,160 days of the optimization results for the case

where the reservoir lifetime is equal to 4,320 days is 682.4 million USD, which indicates that

99% of the estimated NPV is obtained within 2,160 days (half of reservoir lifetime). If the

operating expenses were known and taken into account, it is possible that production from
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the reservoir would not be commercially viable beyond 2,160 days. At least for this example,

the results indicate that it is far better to overestimate the reservoir lifetime when doing

computer-based optimization. One can then recalibrate the reservoir life-time based on the

optimization results.

Figure 3.24: NPV versus simulation runs obtained from different reservoir lifetimes.

Table 3.6: Results obtained from different reservoir lifetimes.

Terms 1,080 days 2,160 days 4,320 days
Initial NPV(×106$) 384.2 471.0 482.9
Final NPV(×106$) 617.0 688.0 689.0

Cum. oil prod.(×106stb) 9.62 11.80 12.12
Cum. water inj.(×106stb) 4.44 5.23 6.26

Cum. water prod.(×106stb) 0.52 1.53 1.63
Cum. gas inj.(×109scf) 34.15 70.27 87.49

Finally, we ran the example with the reservoir lifetime specified as 4,320 days but

production terminated when the field water cut reaches 94.11%, i.e., when the cost of water

disposal becomes equal to the revenue from oil production. Although not shown, the NPV

results obtained by using field water cut as a constraint is almost identical to the one ob-

tained from the scenario where the field water cut is not incorporated as a constraint because
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(a) Estimated BHP for producers (b) Corresponding oil production rate

Figure 3.25: Estimated well controls for producers and their corresponding oil production
rates for the reservoir lifetime equal to 4,320 days.

the water cut of all the producers where we impose the field water cut constraint does not

reach 94.11% until very near the end of the simulation.
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CHAPTER 4

A STOCHASTIC SIMPLEX APPROXIMATE GRADIENT (STOSAG) FOR

ROBUST LIFE-CYCLE PRODUCTION OPTIMIZATION

Due to geological uncertainties, such as uncertainty in the permeability and porosity

field, the optimal solution obtained based on a single reservoir model may deviate signifi-

cantly from the actual optimum. To account for geological uncertainty, robust optimization

is typically performed to mitigate the effect of uncertainties in the reservoir model [89]. As

mentioned in the introduction, EnOpt is one of the most popular optimization algorithms

that can be used to perform robust optimization [25]. However, Fonseca et al. [35] ob-

served that original form of EnOpt, proposed by Chen et al. [25], does not always yield

satisfactory results, and they formulated a modified ensemble-based robust optimization al-

gorithm, referred to here as stochastic simplex approximate gradient (StoSAG) and showed

that StoSAG generally yields a significantly higher value of the life-cycle NPV for the robust

optimization problem than is obtained with the standard EnOpt algorithm. In this Chapter,

we provide a theoretical understanding of why StoSAG is superior to EnOpt in robust op-

timization, provide new insight on different forms of StoSAG algorithms, and demonstrate

the outperformance of StoSAG over EnOpt with two reasonable examples.

4.1 Robust Optimization

In robust optimization, we consider the problem of finding u which maximizes the

expectation over m of a nonlinear functional of the form J = J(m,u, y(m,u)), where m is

a random vector with a known probability density function (pdf), u is a vector of system

inputs (well control variables) and y = y(m,u) is the output vector which is, in turn, a

function of the system response to input vector u for a given model m [48]. Throughout
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we assume that the uncertainty in m can be represented by sampling its pdf to obtain an

ensemble of Ne realizations (i.e. geological models in our setting), mi, i = 1, 2, · · ·Ne and

then we can approximate the expectation of J with respect to m as the mean of the set

{J(mi, u)}Ne
i=1, i.e.,

JE(u) =
1

Ne

Ne∑
i=1

J(mi, u), (4.1)

where JE(u) denotes the approximation of the expectation of life-cycle NPV. The robust

optimization problem is then stated as

max
u

JE(u) = max
u

1
Ne

Ne∑
i=1

J(mi, u),

s.t. ulow ≤ u ≤ uup,

(4.2)

where ulow and uup, respectively, denote the vector of lower bounds and the vector of upper

bounds. Note that only bound constraints are considered in this work.

4.2 Theoretical Understanding on Ensemble Robust Optimization

To solve the robust optimization problem of Eq. 4.2, we use the steepest ascent

algorithm which is given by Eq. 2.5. The gradient-based robust optimization technique where

the gradient is computed by the use of adjoint formulation is the most computationally

efficient method [89, 22], but the implementation of the adjoint method requires access

to the source code of a reservoir simulator which is not publicly available for commercial

reservoir simulators, and therefore various alternative optimization methods are being used.

One of these, a non-code-intrusive approximate gradient method known as Ensemble-based

Optimization (EnOpt), has gained considerable popularity over the past years in the reservoir

optimization community following the pioneering work of Chen et al. [25].

In EnOpt, an ensemble of randomly perturbed control vectors is used to approximate

a gradient of the objective function with respect to the control vector. The standard EnOpt
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search direction is given by

dk,EnOpt =
1

Ne − 1

Ne∑
i=1

(ûk,i − ûk)
(
J(mi, ûk,i)− J(m,uk)

)
, (4.3)

where

ûk =
1

Ne

Ne∑
i=1

ûk,i (4.4)

and

J(m,uk) =
1

Ne

Ne∑
i=1

J(mi, ûk,i). (4.5)

Here, each control perturbation ûk,i, i = 1, 2, · · ·Ne, at iteration k is generated from the

distribution N (uk, CU), where CU is a predefined covariance matirx which is kept constant

throughout the optimization procedure. Note that this standard EnOpt formulation uses a

one-to-one combination of random control perturbations and random geological models, i.e.,

one control perturbation for each geological model. The standard implementation of EnOpt

of Chen et al. [25], which multiplies the search direction in Eq. 4.3 by CU , is

dk,s,EnOpt = CU

(
1

Ne − 1

Ne∑
i=1

(ûk,i − ûk)(J(mi, ûk,i)− J(m,uk))

)
. (4.6)

In order to demonstrate that dk,EnOpt defined in Eq. 4.3 can be approximated by CU

times the true gradient ∇uJE(uk), i.e.,

dk,EnOpt ≈ CU∇uJE(uk), (4.7)

Chen et al. [25] make the following two assumptions:

ûk =
1

Ne

Ne∑
i=1

ûk,i ≈ uk (4.8)

and

J(m,uk) =
1

Ne

Ne∑
i=1

J(mi, ûk,i) ≈ J(m, ûk) ≈ J(m,uk). (4.9)
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Although ûk,i, i = 1, 2, · · · , Ne, are samples generated from N (uk, CU), the approximation in

Eq. 4.8 may be inaccurate for the bound-constrained problem when the lower and/or upper

bounds on u force truncation of the samples. The second assumption suggests that for any

realization mi of m, J(mi, uk) ≈ J(m,uk), which is clearly an invalid approximation unless

the variance in the prior geological models is sufficiently small so that when the control

vector uk is applied to each of these models, the same value of NPV is obtained. Because of

these two questionable assumptions, the quality of search direction obtained from Eq. 4.3,

i.e., the quality of the approximation of Eq. 4.7 may not be good if there is a large variance

in the prior geological models and/or the bound truncation issue arises for a nonneglible

number of perturbations.

The generally invalid assumption that Eq. 4.9 holds implies that

J(m,uk) = J(m,uk), (4.10)

where m is the mean of the mi’s or the mean of the underlying probability density function

(pdf) for m. Using Eq. 4.10 and the assumption that Eq. 4.8 holds in the EnOpt formula of

Eq. 4.3 gives

dk,EnOpt-mod =
1

Ne

Ne∑
i=1

(ûk,i − uk)
(
J(mi, ûk,i)− J(m,uk)

)
, (4.11)

where the additional subscript ‘mod’ indicates ‘modified’. In Eq. 5.10, we have replaced

the factor 1/(Ne − 1) in the original basic EnOpt formation by 1/Ne because we no longer

approximate the mean of the distribution for u.

For simplicity in discussing EnOpt, we assume u and m are one dimensional. Denote

δmj = mj − m, δûk,i = ûk,i − uk. Assume that all derivatives of J are continuous and

bounded, then the Taylor series expansion is

J(mi, ûk,i) =
∞∑
n=0

∞∑
`=0

(δûk,i)
n(δmi)

`∂
n+`J(m,uk)

∂un∂m`
. (4.12)

Expanding the first three terms, i.e., the terms where ‘n = 0, ` = 0’, ‘n = 1, ` = 0’ and
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‘n = 0, ` = 1’, then we can rewrite Eq. 4.12 as

J(mi, ûk,i) =J(m,uk) +
∞∑
n=1

(δûk,i)
n(δmi)

0∂
n+0J(m,uk)

∂un∂m0
+

∞∑
`=1

(δûk,i)
0(δmi)

`∂
0+`J(m,uk)

∂u0∂m`
+
∞∑
n=1

∞∑
`=1

(δûk,i)
n(δmi)

`∂
n+`J(m,uk)

∂un∂m`
. (4.13)

Subtracting J(m,uk) on both sides of Eq. 4.13 and multiplying by δûk,i give

(δûk,i)
(
J(mi, ûk,i)− J(m,uk)

)
=
∞∑
n=1

(δûk,i)
n+1∂

nJ(m,uk)

∂un
+
∞∑
`=1

(δûk,i)
1(δmi)

`∂
`J(m,uk)

∂m`

+
∞∑
n=1

∞∑
`=1

(δûk,i)
n+1(δmi)

`∂
n+`J(m,uk)

∂un∂m`
. (4.14)

Expanding the first term and combining the last two terms on the RHS of Eq. 4.14, we

obtain

(δûk,i)
(
J(mi, ûk,i)− J(m,uk)

)
=(δûk,i)

2∂J(m,uk)

∂u
+
∞∑
n=2

(δûk,i)
n+1∂

nJ(m,uk)

∂un

+
∞∑
n=0

∞∑
`=1

(δûk,i)
n+1(δmi)

`∂
n+`J(m,uk)

∂un∂m`
. (4.15)

Taking the expectation of Eq. 4.15 with respect to u gives

Eu

[
(δûk,i)

(
J(mi, ûk,i)− J(m,uk)

)]
= CU

∂J(m,uk)

∂u
+
∞∑
n=2

Eu

[
(δûk,i)

n+1∂
nJ(m,uk)

∂un

]
+
∞∑
n=0

∞∑
`=1

Eu

[
(δûk,i)

n+1(δmi)
`∂

n+`J(m,uk)

∂un∂m`

]
=CU

∂J(m,uk)

∂u
+O

[
(δûk,i)

3
]

+O
[
(δûk,i)(δmi)

]
, (4.16)

where Eu[·] denotes the expectation with respect to u. Note that we used the fact the

expectation of (δûk,i)
2 is equal to CU . Taking the Taylor expansion of ∂J(mi, uk)/∂u, we get

∂J(mi, uk)

∂u
=
∂J(m,uk)

∂u
+
∞∑
`=2

(δmi)
`∂

`J(m,uk)

∂m`
. (4.17)

80



Rearranging Eq. 4.17 generates

∂J(m,uk)

∂u
=
∂J(mi, uk)

∂u
−
∞∑
`=2

(δmi)
`∂

`J(m,uk)

∂m`
=
∂J(mi, uk)

∂u
+O

[
(δmi)

2
]
. (4.18)

Substituting Eq. 4.18 into Eq. 4.16 gives

Eu

[
(δûk,i)

(
J(mi, ûk,i)− J(m,uk)

)]
= CU

∂J(mi, uk)

∂u
+O

[
(δmi)

2
]

+O
[
(δûk,i)

3
]

+O
[
(δûk,i)(δmi)

]
. (4.19)

Taking the expectation of the modified EnOpt of Eq. 4.11, we obtain

Eu

[
dk,EnOpt-mod] =

1

Np

Np∑
i=1

Eu

[
(ûk,i − uk)

(
J(mi, ûk,i)− J(m,uk)

)]
, (4.20)

Substituting Eq. 4.19 into Eq. 4.20, it follows easily that

Eu

[
dk,EnOpt-mod] = CU

1

Np

Np∑
i=1

∂J(mi, uk)

∂u
+O

[
max
i
{(mi −m)2}

+ max
i
{(ûk,i − uk)3}+ max

i
{(ûk,i − uk)(mi −m)}

]
= CU∇uJE(uk) +O

[
max
i
{(mi −m)2}

+ max
i
{(ûk,i − uk)3}+ max

i
{(ûk,i − uk)(mi −m)}

]
. (4.21)

The error terms O
[
max
i
{(ûk,i − uk)3}

]
and O

[
max
i
{(ûk,i − uk)(mi −m)}

]
go to zero as the

magnitude of the perturbations goes to zero, that is, as ûk,i → uk. On the other hand,

the ensemble of m’s reflect the geological uncertainty and if the uncertainty is large, i.e.,

‖mi −m‖ is large, then the error term O
[
max
i
{(mi−m)2}

]
can be large, and it can be seen

that with the increase in geological uncertainty, the error in this term will be even larger. It

is important to point out that the standard EnOpt in the form of Eq. 4.3 introduces even

more approximations than the modified EnOpt in the form of Eq. 4.11 as it assumes that

the approximations of Eqs. 4.8 and 4.10 are accurate.
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4.3 StoSAG Algorithm for Robust Optimization

As can be seen from above discussion, approximations of Eqs. 4.8 and 4.9 are poten-

tially unreliable under some circumstances, thus it would be better to find a search direction

that does not depend on these assumptions. Do and Reynolds [29] proposed a modified

formulation of EnOpt which requires fewer assumptions to generate a search direction than

the one used in standard EnOpt. They used the current distribution mean, uk, in place of

the mean of the samples, ûk, and J(m,uk) in place of J(m,uk). When production optimiza-

tion is based on a deterministic reservoir model, they show that this modified formulation

generates very similar results with the one proposed by Chen et al. [25]. However, in a ro-

bust optimization scenario where several geological reservoir models are considered, Fonseca

et al. [35] observed that one can obtain a substantially higher value of life-cycle NPV with

a generalization of modified EnOpt formulation than is achieved with the Chen et al. [25]

version of EnOpt. This improved algorithm is referred to as the Stochastic Simplex Approx-

imate Gradient (StoSAG) [37]. Following Fonseca et al. [37], a foundational StoSAG search

direction (referred to as f-StoSAG) is defined by

dk,f,sto =
1

Ne

Ne∑
i=1

( 1

Np

Np∑
j=1

(ûk,j − uk)(J(mi, ûk,j)− J(mi, uk))
)
. (4.22)

As observed by Fonseca et al. [34], using higher ratios of randomly perturbed controls

to each geological realization generates a better quality gradient estimate. However, in this

study, we only select Np = 1, i.e., one perturbed control vector pairing with one geological

realization, to obtain a StoSAG algorithm that requires the same computational effort as

standard EnOpt algorithm to achieve a search direction at each iteration of the steepest

ascent algorithm. The foundational StoSAG search direction with one perturbed control per

geological realization is then given by

dk,f,sto =
1

Ne

Ne∑
i=1

(ûk,i − uk)(J(mi, ûk,i)− J(mi, uk)). (4.23)
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Assume that all second derivatives of J are continuous and bounded, then a first-order Taylor

series approximation of J(mi, ûk,i)− J(mi, uk) gives

J(mi, ûk,i)− J(mi, uk) = (δûk,i)
T∇uJ(mi, uk) +O

(
‖δûk,i‖22

)
, (4.24)

for i = 1, 2, · · ·Ne, where δûk,i = ûk,i − uk. Using the first order Taylor series of Eq. 4.24,

Eq. 4.23 then can be written as

dk,f,sto =
1

Ne

Ne∑
i=1

δûk,i

[
(δûk,i)

T∇uJ(mi, uk) +O
(
‖δûk,i‖22

)]
. (4.25)

Taking expectation of Eq. 4.25 with respect to u gives

Eu[dk,f,sto] =
1

Ne

Ne∑
i=1

Eu

[
δûk,i(δûk,i)

T
]
∇uJ(mi, uk) + e

= CU

( 1

Ne

Ne∑
i=1

∇uJ(mi, uk)
)

+ e = CU∇uJE(uk) +O
(

max
i
{‖δûk,i‖32}

)
. (4.26)

From Eq. 4.26, we can observe that expectation of StoSAG search direction contains only

one error term, i.e., O
(

max
i
{‖δûk,i‖32}

)
, which goes to zero as the perturbation size goes to

zero. Moreover, the uncertainty in the prior model for m has no influence on the quality of

the StoSAG search direction, i.e., on the error term. However, the expectation of the EnOpt

search direction given in Eq. 4.21 has two additional error terms, i.e., O
[
max
i
{(mi −m)2}

]
and O

[
max
i
{(ûk,i − uk)(mi −m)}

]
compared to the StoSAG error term. It is easy to follow

that the larger the geological uncertainty in reservoir model, the better performance of

StoSAG search direction over the EnOpt search direction given in Eq. 4.11.

When the vectors ûk,i used in Eq. 4.23 are forced to be truncated, then

Eu

[
δûk,i(δûk,i)

T
]
6= CU , (4.27)

and Eq. 4.26 is no longer valid. However, one still obtain an approximation of CU∇uJE(uk)
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by first using a simplex gradient [29, 34, 35] to approximate ∇uJE(uk) and multiplying this

simplex gradient by CU . Using the first order Taylor series of Eq. 4.24, we can obtain

δûk,i[J(mi, ûk,i)− J(mi, uk)] ≈ δûk,i(δûk,i)
T∇uJ(mi, uk). (4.28)

From Eq. 4.28, a stochastic simplex approximate gradient, referred to as StoSAG, then is

given by

dk,i = [δûk,i(δûk,i)
T ]+δuk,i[J(mi, ûk,i)− J(mi, uk)] ≈ ∇uJ(mi, uk), (4.29)

where the superscript ‘+’ on a matrix denotes the Moore-Penrose pseudo-inverse [39]. With

the simplex gradient of Eq. 4.29, the search direction for maximizing the expected NPV is

given by

dk,sto =
1

Ne

Ne∑
i=1

dk,i =
1

Ne

Ne∑
i=1

[δûk,i(δûk,i)
T ]+δuk,i[J(mi, ûk,i)− J(mi, uk)]. (4.30)

It follows that

dk,sto ≈
1

Ne

Ne∑
i=1

∇uJ(mi, uk) = ∇uJE(uk). (4.31)

If we perform singular value decomposition on δûk,i and use the first order Taylor series of

Eq. 4.24, Eq. 4.30 can be simplified as

dk,sto =
1

Ne

Ne∑
i=1

δûk,i

‖δûk,i‖22
[J(mi, ûk,i)− J(mi, uk)] ≈

1

Ne

Ne∑
i=1

δûk,i(δûk,i)
T

‖δûk,i‖22
∇uJ(mi, uk). (4.32)

Taking a closer look at the foundational StoSAG search direction dk,f,sto in Eq. 4.25 and the

StoSAG search direction dk,sto in Eq. 4.32, we can see that the difference of these two search

directions is that each component of dk,sto in Eq. 4.32 is normalized by its corresponding

‖δûk,i‖22. It is important to note that δûk,i satisfies the same distribution for i = 1, 2, · · ·Ne;

that is, δûk,i ∼ N (0, CU
1/2Zi), where the components of Zi are independent, standard,

random-normal deviates, i.e., Zi ∼ N (0, INu). When the dimension of δûk,i goes to a suffi-
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ciently large value, the following equation will hold:

‖δûk,1‖22 = ‖δûk,2‖22 = · · · = ‖δûk,i‖22 = · · · = ‖δûk,Ne‖
2
2, (4.33)

which indicates that when applying the StoSAG search direction in Eq. 4.32 to the steepest

ascent algorithm in Eq. 2.5, where the final search direction is normalized by its infinite

norm, one can achieve a similar result to the one obtained with foundational StoSAG. The

results obtained from the provided example also confirms this conjecture; see Fig. 4.12.

When using a stochastic gradient for steepest ascent algorithm, the gradient may be

quite rough and additional smoothing is typically enforced by multiplying the search direction

by Cu [29, 93, 35]. After multiply the foundational StoSAG search direction (Eq. 4.23)

and the StoSAG search direction (Eq. 4.30) by Cu, respectively, the following two search

directions can be obtained:

dk,sf,sto = Cudk,f,sto, (4.34)

and

dk,ss,sto = Cudk,sto, (4.35)

where dk,sf,sto and dk,ss,sto, respectively, denote the smoothed foundational search direction

(referred to as sf-StoSAG) and singly smoothed StoSAG (referred to as ss-StoSAG).

4.4 Numerical Examples

The first example that we consider in this chapter is to estimate simultaneously the

well controls (pressures and/or flow rates) and downhole inflow control valve (ICV) settings in

a three-phase (oil-gas-water) reservoir to maximize the expectation of an economic objective

function in a CO2 WAG EOR process. The objective function for a specific reservoir model,

mi, is defined by

Ji(mi, u) =
Nt∑
n=1

{
∆tn

(1 + b)
tn
365

[
NP∑
j=1

(
ro · qno,j − cw · qnw,j

)
−

NI∑
k=1

(
cwi · qnwi,k + cgi · qngi,k

)]}
,

(4.36)
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for i = 1, 2, · · ·Ne. All the notations in the above equation are the same as in Eq. 2.1.

The second example considered in this Chapter pertains to estimating the well con-

trols and ICV settings in a two-phase (oil-water) reservoir to maximize the expectation of

the NPV in a waterflood production scenario and in this case, the term for gas injection cost

is deleted from the objective function of Eq. 4.36.

In this work, five types of search directions are used to estimate the optimal well

controls and ICV settings which maximize the JE(u). The five types of search directions are:

1. standard implementation of EnOpt, dk,s,EnOpt, defined in Eq. 4.6;

2. the foundational search direction dk,f,sto defined in Eq. 4.23 (referred to as f-StoSAG);

3. the smoothed foundational search direction dk,sf,sto defined in Eq. 4.34 (referred to as

sf-StoSAG);

4. unsmoothed StoSAG, dk,sto, defined in Eq. 4.30 (referred to as StoSAG);

5. singly smoothed StoSAG, dk,ss,sto defined in Eq. 4.35, (also referred to as ss-StoSAG).

4.4.1 Example 1: 3D Fluvial Reservoir

We consider the optimization of WAG flooding for a 3D synthetic reservoir where

the injected gas is carbon dioxide, CO2. The reservoir simulation model is on a 25× 25× 3

grid with grid block dimensions given by ∆x = ∆y = 100 ft and ∆z = 30 ft. For robust

optimization, we generate 15 geological realizations (models) to represent the uncertainty in

the reservoir description. Fig. 4.1 shows six realizations of the log-permeability distribution

for the first layer. The second and third layers have the same heterogeneity features as the

first layer but with the permeability field of layer 2 equal to the permeability field of layer 1

multiplied by 0.6; the permeability field of layer 3 is equal to the permeability field of layer

1 multiplied by 0.3. The reservoir contains 4 injection wells and 9 producers. All wells are

vertical fully penetrating wells (i.e. being open to flow over the entire reservoir height) and

their locations are shown in the realizations of the permeability fields that are displayed in

86



Fig. 4.1. Each of the wells is equipped with an ICV in each of the three layers. The porosity

is homogeneous with φ = 0.2. No capillary pressures are included and the reservoir rock

is assumed to be incompressible. The initial reservoir pressure is 4,500 psi at the top of

the reservoir. The producing reservoir lifetime is set equal to 2,880 days. A compositional

reservoir simulator, GEM (Version 2009.10) [27] is used for reservoir simulation.

(a) Realization 2 (b) Realization 4 (c) Realization 6

(d) Realization 8 (e) Realization 10 (f) Realization 12

Figure 4.1: Log-permeability distribution of six realizations for the first layer.

Because of the density difference between water, oil and CO2, phase segregation will

occur resulting in “over ride” and “under ride” of the injected CO2 and water respectively,

resulting in early “break through” of these undesirable fluids in the production wells. The

ICVs can partly counteract these “gravity segregation” effects, and the physical mechanisms

that drive the optimization are therefore both the heterogeneity in the permeability and

density difference between the reservoir fluids. To optimize JE(u), the oil price is set equal

to $80.0/STB; the water injection cost is $5.0/STB; the gas injection cost is $1.5/Mscf; the

disposal cost of produced water is $5.0/STB; the annual discount rate is 0.1. Here, we neglect

the revenue of hydrocarbon gas production and the cost of disposing of injected CO2 gas that
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is produced. Within the producing lifetime we can change each well control and ICV setting

16 times in control intervals of 2880/16 = 180 days. We let uo denote the n0-dimensional

column vector (no = (9+4)×16 = 208) of all well controls (rates or pressures) and uv denote

the nv-dimensional column vector of ICV settings (nv = (9 + 4)× 3× 16 = 624) so that the

vector of all control settings is

u =

uo
uv

 . (4.37)

In the EnOpt and StoSAG algorithms, we generate perturbations from a covariance matrix.

This covariance matrix is block diagonal and has the form

Cu =

Co
u O

O I

 , (4.38)

where the O’s denote null matrices and I is the nv × nv identity matrix. The matrix Co
u

is a block diagonal matrix where each kth submatrix in the diagonal block is denoted by

Cuok and is associated with the subvector, uok of u0 that contains all the well controls for well

k. Here, to impose some temporal smoothness on the the well controls (rates or pressures)

for well k, Cuok is generated from a spherical covariance function [53] with variance equal to

(0.1)2 and time correlation length equal to 720 days which is equivalent to four control steps.

However, gas injection rates are not correlated with water injection rates and so effectively,

when sampling from N (uk, Cu), only two consecutive water rates are correlated and only

two consecutive gas rates are correlated. The appearance of the identity matrix in Eq. 4.38

indicates that there is no correlation between ICV settings. As discussed in the section 2.1

of Chapter 2, we apply a logarithm transformation [40] to each element of the control vector.

We use a steepest ascent optimization algorithm with a simple backtracking line

search. At iteration k of the steepest ascent, we generate Ne = 15 samples of the Gaussian

random control vector u with each sample corresponding to one geological model, where

ûk,i ∼ N (uk, Cu). In steepest ascent, the initial step size is 1.0, and the maximum number
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of step-size cuts (each with a factor 0.5) is set equal to 5. If five steps sizes do not yield

an increase in JE, we set the new estimate, uk+1 of the optimal u equal to the u that gave

the largest value of JE obtained during the line search. We allow a maximum of 4,000 total

reservoir simulation runs. For this relatively small example, about 3.5 minutes per simulation

run is required so that the entire optimization procedure could be performed sequentially.

For more realistic, large-scale reservoir simulations, which may have run times in the order

of several hours, parallel processing will be a practical necessity. Fortunately the StoSAG

algorithm, just like the EnOpt algorithm, is embarrassingly parallel.

Fig. 4.2 shows the expectation of NPV (Eq. 4.1) versus the number of reservoir

simulation runs using the five different search directions. It is clear that standard EnOpt

generates the lowest expected NPV while the unsmoothed StoSAG search direction proposed

by Fonseca et al. [34, 35] and sf-StoSAG generate the highest average NPV. Note that

although both sf-StoSAG and standard EnOpt impose the same degree of smoothing, sf-

StoSAG results in a much higher NPV than is obtained with standard EnOpt.

Figure 4.2: Expectation of NPV versus number of simulation runs for different search direc-
tion formulations; yellow: standard EnOpt; purple: f-StoSAG; red: sf-StoSAG;
green: StoSAG; dark blue: ss-StoSAG.

It is curious to note that unsmoothed StoSAG which uses a stochastic approximation

to the gradient as the search direction and sf-StoSAG which utilizes an approximation of C2
u
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times the gradient as the search direction yield very similar final values of NPV. However, as

expected the well controls and ICV settings obtained with smoothed foundational StoSAG

are much smoother than those obtained with unsmoothed StoSAG; see Figs. 4.3-4.8. In

these figures, the vertical axes refer to the well number (recall that there are 9 producers

and 4 injectors), while the horizontal axis in Figs. 4.3 and 4.6 refer to the control interval

(16 in total). In Figs. 4.4, 4.5, 4.7 and 4.8 the horizontal axis has a related but slightly

different interpretation: Although there are 16 control intervals, at injection wells the well

controls are gas injection rates at odd numbered control steps and water injection rates at

even numbered time steps, so only 8 control steps (referred to as “WAG cycles”) are shown

in Figs. 4.4, 4.5 and 4.7. The color scale in Fig. 4.3 corresponds to the pressures (at the top

of the reservoir) in the production wells, while the color scales in Fig. 4.4 refer to the gas

rates in the injection wells. In Figs. 4.6, 4.7 and 4.8, ICV j refers to the ICV setting of layer

j which j = 1 is the top layer with the highest permeability distribution; see the discussion

of the permeability fields of Fig. 4.1.

(a) Unsmoothed StoSAG (b) sf-StoSAG

Figure 4.3: Estimated well controls for producers at different control steps calculated from
unsmoothed StoSAG and sf-StoSAG; units are psi.

In order to quantify the smoothness of the controls at an individual well, the total

variation of the function representing well controls is calculated on a well-by-well basis. As

the control function at a well is a piecewise constant function, its total variation is given by

the sum of the absolute values of the differences between two consecutive well controls. The
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(a) Unsmoothed StoSAG (b) sf-StoSAG

Figure 4.4: Estimated well controls for gas injectors at different WAG cycles calculated from
unsmoothed StoSAG and sf-StoSAG; units are ×107 scf/day.

(a) Unsmoothed StoSAG (b) sf-StoSAG

Figure 4.5: Estimated well controls for water injectors at different WAG cycles calculated
from unsmoothed StoSAG and sf-StoSAG; units are STB/day.
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(a) Unsmoothed StoSAG, ICV 1 (b) Unsmoothed StoSAG, ICV 2 (c) Unsmoothed StoSAG, ICV 3

(d) sf-StoSAG, ICV 1 (e) sf-StoSAG, ICV 2 (f) sf-StoSAG, ICV 3

Figure 4.6: Estimated ICV settings for producers at different control steps calculated from
unsmoothed StoSAG and sf-StoSAG on a scale from closed (0) to fully open (1).

(a) Unsmoothed StoSAG, ICV 1 (b) Unsmoothed StoSAG, ICV 2 (c) Unsmoothed StoSAG, ICV 3

(d) sf-StoSAG, ICV 1 (e) sf-StoSAG, ICV 2 (f) sf-StoSAG, ICV 3

Figure 4.7: Estimated ICV settings for gas injectors at different WAG cycles calculated from
unsmoothed StoSAG and sf-StoSAG on a scale from closed (0) to fully open (1).
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(a) Unsmoothed StoSAG, ICV 1 (b) Unsmoothed StoSAG, ICV 2 (c) Unsmoothed StoSAG, ICV 3

(d) sf-StoSAG, ICV 1 (e) sf-StoSAG, ICV 2 (f) sf-StoSAG, ICV 3

Figure 4.8: Estimated ICV settings for water injectors at different WAG cycles calculated
from unsmoothed StoSAG and sf-StoSAG on a scale from closed (0) to fully open
(1).
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total variation of the function representing each well’s ICV settings can be calculated on a

well-by-well basis in a similar manner. As illustrated in Tables 4.1-4.6, the total variations

of a well’s optimized controls and ICV settings are lower when the optimized values are

computed from sf-StoSAG than when the optimized values are estimated from unsmoothed

StoSAG. Note the average total variation is also given in Tables 4.1-4.6. Overall, the average

total variation of each sf-StoSAG result is roughly one-half of the corresponding average total

variation for the unsmoothed StoSAG result. On average, each total variation computed from

EnOpt results that are not shown is within 10% of the corresponding total variation obtained

from sf-StoSAG. Although smoother controls and ICV settings are simpler to implement

operationally, as noted earlier, too much smoothing can lead to suboptimal results.

Table 4.1: Total variation of the estimated well controls for different producers and average
total variation across all the producers; unsmoothed StoSAG and sf-StoSAG.

Prod. index StoSAG sf-StoSAG
(×103 psi) (×103 psi)

1 4.82 3.66
2 5.19 5.35
3 5.46 3.87
4 6.33 3.49
5 4.57 0.78
6 4.31 3.90
7 5.99 2.50
8 4.89 3.62
9 7.27 1.50

Average 5.42 3.19

Table 4.2: Total variation of the estimated well controls for gas injectors and average total
variation across all the gas injectors; unsmoothed StoSAG and sf-StoSAG.

Inj. index StoSAG sf-StoSAG
(×107 scf/day) (×107 scf/day)

1 3.73 1.39
2 3.92 2.30
3 5.64 2.17
4 5.89 1.81

Average 4.79 1.92
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Table 4.3: Total variation of the estimated well controls for water injectors and average total
variation across all the water injectors; unsmoothed StoSAG and sf-StoSAG.

Inj. index StoSAG sf-StoSAG
(×103 stb/day) (×103 stb/day)

1 5.55 3.45
2 5.26 4.61
3 5.86 2.77
4 8.33 2.30

Average 6.25 3.28

Table 4.4: Total variation of the estimated ICV settings for producers; unsmoothed StoSAG
and sf-StoSAG.

Prod. index StoSAG sf-StoSAG StoSAG sf-StoSAG StoSAG sf-StoSAG
ICV 1 ICV 1 ICV 2 ICV 2 ICV 3 ICV 3

1 3.77 1.64 2.86 1.90 3.37 2.11
2 3.43 1.54 3.15 1.62 4.23 1.43
3 2.51 1.78 3.63 1.95 2.24 1.15
4 2.96 1.07 3.10 2.04 2.34 0.46
5 4.03 2.07 3.87 0.50 1.98 1.83
6 3.16 1.40 3.18 2.67 2.57 0.52
7 4.47 1.76 2.79 0.88 2.80 1.22
8 3.83 2.38 4.23 0.89 3.42 1.32
9 2.73 2.23 3.53 1.54 3.15 2.84

Average 3.43 1.76 3.37 1.55 2.90 1.43

Table 4.5: Total variation of the estimated ICV settings for gas injectors; unsmoothed
StoSAG and sf-StoSAG.

Inj. index StoSAG sf-StoSAG StoSAG sf-StoSAG StoSAG sf-StoSAG
ICV 1 ICV 1 ICV 2 ICV 2 ICV 3 ICV 3

1 1.54 1.00 2.34 1.06 2.40 0.79
2 2.84 1.39 2.69 1.67 1.96 1.28
3 2.50 1.18 1.58 0.99 2.40 1.26
4 1.80 0.97 2.30 1.98 0.94 1.60

Average 2.17 1.14 2.23 1.43 1.92 1.23
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Table 4.6: Total variation of the estimated ICV settings for water injectors; unsmoothed
StoSAG and sf-StoSAG.

Inj. index StoSAG sf-StoSAG StoSAG sf-StoSAG StoSAG sf-StoSAG
ICV 1 ICV 1 ICV 2 ICV 2 ICV 3 ICV 3

1 2.32 1.81 2.72 1.32 3.10 0.50
2 1.86 1.14 2.00 0.72 2.50 1.05
3 1.41 0.59 1.87 1.43 2.83 1.12
4 1.81 1.72 3.82 1.95 2.47 1.73

Average 1.85 1.32 2.60 1.36 2.73 1.10

4.4.2 Example 2: Burgge Test Case

Brugge field was developed by TNO as a benchmark case to test different methods for

closed-loop reservoir management. The top structure of the Brugge filed with well locations

is shown in Fig. 4.9. There are 30 vertical wells (20 production wells and 10 injection wells),

and each well is equipped with ICVs to control flow into three different well segments. The

original model of Brugge field consists of 20 million gridblocks and then was upscaled to

a 450,000 gridblock model which was used as true reservoir to provide production data for

history matching. Using the information from well logs and facies maps, 104 geological

realizations were generated by TNO. These realizations upscaled to a 60,000 gridcell model

were created on the same scale as the true reservoir and provided to participants.

Three different type of geostatistical modeling methods were applied to generate the

104 realizations of the property fields (permeability, porosity, net-to-gross and connate water

saturation). The three geostatistical modeling techniques that we used are sequential Gaus-

sian cosimulation, object-based modeling and sequential indicator simulation. Here, seven

different realizations are randomly chosen from each of the three geological modeling meth-

ods to obtain 21 reservoir realizations which we use to characterize the reservoir uncertainty.

Fig. 4.10 shows the log-permeability in the x-direction for all nine layers of three typical

realizations. Realization 1 is generated from sequential Gaussian simulation; Realization 32

is created from channel object-based modeling; Realization 70 is obtained from a sequential

indicator simulation. The Brugge reservoir consists of four geological formations and nine
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Figure 4.9: The top structure of Brugge.

reservoir simulation layers, each with a 139 × 48 grid. As can be seen from Fig. 4.11, the

Schelde formation corresponds to the top two layers; the Maas formation corresponds to the

layers 3, 4 and 5; the Waal formation corresponds to layers 6, 7 and 8; and the Schie forma-

tion corresponds to layer 9. Three inflow control valves are assigned to the first three well

segments of each well (both injection wells and production wells), where one well segment

corresponds to one geological formation (geological layer). A more detailed description of

the Brugge reservoir model can be found in Peters et al. [74].

In previous studies on Brugge field, most of the authors [74, 24, 21] considered a

30 year production lifetime. They assimilated the observed production and interpreted

seismic data during the first 10 years, and then optimized the NPV for years 10-30 by

adjusting the well control variables. In this study, we do not consider the first 10 year data

assimilation process. Instead, we estimate the optimal well controls for the first fifteen years

of the reservoir life using robust optimization. The ICVs are assigned to the corresponding

well segments at the beginning to control the flow in different formations. We equate the

adjustment of the productivity index (PI) multiplier of each segment of a well, to adjust

injection and production in each formation. Note that there is exactly one PI multiplier used

97



L1 L2 L3 L4 L5 L6 L7 L8 L9

Figure 4.10: The log-permeability in the x direction for all nine layers of three typical re-
alizations: R1, sequential Gaussian simulation; R32, channel objects; R70, se-
quential indicator simulation.
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Figure 4.11: Four different formations with its corresponding reservoir simulation model lay-
ers and assigned ICV settings.

for each of the top three geological layers (Fig. 4.11). The optimization problem we consider

in this work is to estimate simultaneously the well controls (injection rates for injectors and

BHP for producers) and downhole ICV settings which maximize the expectation of NPV at

the end of 15 years.

It is important to note that we use only one well control (rate or BHP) and three

ICV settings per well, whereas others [24, 21] replaced each actual well by three wells with

one of these three pseudo wells completed in each of the top three geological layers. By

using three pseudo wells per actual well, they could control the rate at each pseudo well thus

roughly mimicking the effect of ICV settings. This process can yield unreliable results as the

BHP’s as a function of time can vary radically from pseudo well to pseudo well which is not

representative of the behavior of the one actual well. As we use PI multipliers to represent

ICV settings, we have no need to replace one actual well by three pseudo wells. Moreover,

with our approach, we can use BHP control at each well with the ICV setting of each well in

each zone represented by a PI multiplier. In fact, in our example, for each injection well, the

control variables contain injection rate and three ICV settings at each control step; for each

production well, the control variables contain BHP plus three ICV settings at each control

step. As discussed in the section 2.1 of Chapter 2, we apply a logarithm transformation [40]
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to each element of the control vector.

Table 4.7 shows the initial guesses, lower and upper bounds for the three types of

control variables. The well control variables at each injector are the injection rates with

an upper bound of 4,000 STB/D and a lower bound of 0 STB/D; each producer operates

under BHP control with an upper bound of 2,465 psi and a lower bound of 725 psi; each

ICV setting for both producers and injectors has an upper bound of 1 and a lower bound of

0. Taking initial guess 2 as an example, the initial guess for the rate controls of each water

injector is set equal to 3,000 STB/D; the initial guess for BHP controls for each producer

is equal to 1,140 psi and the initial guess for all ICV settings are equal to 0.75. The intial

reservoir pressure is 2,465 psi. Note the ICV setting j is for formation j where formation 1

is the Schelde formation.

Table 4.7: The initial guesses, lower and upper bounds for the three types of design variables.

Terms Units Initial Initial Initial Lower Upper
guess 1 guess 2 guess 3 bound bound

Rate-Inj STB/D 2000 3000 3775 0 4000
Pressure-Prod psi 1595 1140 850 725 2465

ICVs \ 0.5 0.75 0.9 0 1

It is assumed that only oil and water flow in the reservoir throughout the reservoir

production life. To optimize the expectation of NPV, the oil price is set equal to $80.0/STB;

the water injection cost is $5.0/STB; the cost of disposing produced water is $5.0/STB; the

annual discount rate is 10%. For the implementation of standard EnOpt and StoSAG meth-

ods, we use a one-to-one combination of random control perturbations and random geological

models with the size of ensemble equal to 21 as discussed previously. The perturbation size

is set equal to 0.1; the maximum number of step-size cuts is set equal to 5; the initial step

size is 1.0; the time correlation length is 1,825 days which is one third of the reservoir life;

the maximum number of allowable simulation runs is 3,000. Each well contains 30 control

steps, with the length of each control step equal to 182.5 days (half a year). The CMG’s

IMEX [28] is used to perform the reservoir simulation.
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Five types of search directions (e.g., standard EnOpt, f-StoSAG, sf-StoSAG, StoSAG

and ss-StoSAG) for the steepest ascent optimization algorithm are applied to estimate the

optimal well controls and ICV settings which maximize the E[J(m,u)]. Table 4.8 shows the

optimized expectation of NPV obtained by using five different types of search direction in

the steepest ascent algorithm. From Table 4.8, we can see that the optimized average NPVs

generated from each of the five search directions is much higher than the initial average

NPVs, especially for the four StoSAG search directions. The StoSAG algorithm results in

40%-70% higher expected NPV than is obtained with standard EnOpt.

Table 4.8: Optimized expectation of NPV obtained by five different types of search direc-
tions; in units of billion $.

Terms Initial guess 1 Initial guess 2 Initial guess 3
Initial E[J] 3.118 4.262 4.875

Optimized E[J], EnOpt 4.969 5.838 5.771
Optimized E[J], f-StoSAG 8.394 8.393 8.273
Optimized E[J], sf-StoSAG 8.470 8.518 8.309
Optimized E[J], StoSAG 8.430 8.367 8.356

Optimized E[J], ss-StoSAG 8.384 8.523 8.346

Fig. 4.12 shows the expectation of NPV versus the number of reservoir simulation runs

using the five different search directions in the steepest ascent method with three different

initial guesses with the same initial starting random seeds. From Fig. 4.12, it is clear that

standard EnOpt generates the lowest expected NPV while each of the other four StoSAG

search directions generate a much higher average NPV. Taking a closer look at the four

NPV curves calculated from the various StoSAG algorithms in all three figures (Figs. 4.12a,

b and c), we can observe that the red curve almost overlaps with the green curve and the

purple curve nearly overlaps with the yellow curve, which confirms that if we start from a

same initial random seed to generate the same initial ensembles, one can achieve a fairly

close results by using f-StoSAG and StoSAG or using sf-StoSAG and ss-StoSAG; see the

theoretical analysis in the section of ”StoSAG Algorithm for Robust Optimization”.

Figs. 4.13 and 4.14, respectively, show the estimated well controls for production and
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(a) Initial guess 1

(b) Initial guess 2

(c) Initial guess 3

Figure 4.12: Expectation of NPV versus number of simulation runs for different search di-
rection formulations; dark blue: standard EnOpt; yellow: f-StoSAG; red: sf-
StoSAG; purple: StoSAG; green: ss-StoSAG.
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injection wells at different control steps obtained from the different algorithms. In these

figures, the horizontal axes “Control steps” refer to the control interval (30 in total), while

the vertical axes “Producer index” or “Injector index” represent the well number (recall

that there are 20 producers and 10 injectors). The color scales in Fig. 4.13 refers to the

pressures (psi) in the production wells, while the color scales in Fig. 4.14 correspond to the

water injection rate (stb/day). As expected the well controls obtained with the smoothed

standard EnOpt, sf-StoSAG and ss-StoSAG are much smoother than those obtained with

f-StoSAG and StoSAG. It can be seen that the well controls calculated from sf-StoSAG and

ss-StoSAG are very similar; see Figs. 4.13c and 4.13e as well as 4.14c and 4.14e, whereas the

well controls obtained from standard EnOpt are obviously different from those calculated

from sf-StoSAG or ss-StoSAG. For the estimated production-well controls achieved from sf-

StoSAG or ss-StoSAG, it is clear that producers “P1”, “P4”, “P6”, “P7” and “P8” operate

at close to minimum allowable BHP, and this is because these production wells are far from

the injection wells; whereas producers “P12”, “P14”, “P15”, and “P20” are close to the

corresponding water injection wells, so they are shut in during most of the production life;

producers “P9” and“P10” operate at close to maximum allowable BHP at the early times,

and then they switch to a minimum allowable BHP control. For the remaining production

wells, e.g., “P17” and “P18”, they operate at close to minimum allowable BHP at early times,

and then they are either shut in or operate with a very small production rate (high pressure)

after the injected water break through. From the estimated injection-well controls calculated

from sf-StoSAG or ss-StoSAG, it can be seen that the all the injectors operate at close to

maximum allowable injection rate during the reservoir production life except for injectors

“I1”, “I7” and “I10” at last few control steps. However, the well controls calculated from

standard EnOpt search direction formulation are completely different from those obtained

from StoSAG search direction formulations.

Figs. 4.15 and 4.16, respectively, show the estimated ICV settings of all the production

wells and injection wells for the three top geological formation calculated from using the dif-

ferent search direction formulations in the steepest ascent algorithm. In these figures, ICV j
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(a) EnOpt

(b) f-StoSAG (c) sf-StoSAG

(d) StoSAG (e) ss-StoSAG

Figure 4.13: Estimated well controls for producers at different control steps calculated from
different search direction formulations; units are psi; initial guess 2.
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(a) EnOpt

(b) f-StoSAG (c) sf-StoSAG

(d) StoSAG (e) ss-StoSAG

Figure 4.14: Estimated well controls for injectors at different control steps calculated from
different search direction formulations; units are STB/day; initial guess 2.
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corresponds to the ICV setting of formation j where j = 1 is the top formation (i.e., Schelde),

and a color-scale value equal to 1 refers to a fully open ICV and a color-scale value equal

to 0 refers to a closed ICV. As shown in Figs. 4.15 and 4.16, the sf-StoSAG and ss-StoSAG

search direction formulations give very similar estimated ICV settings, which are totally

different from those calculated from the standard EnOpt search direction. The estimated

ICV settings obtained from f-StoSAG and StoSAG are quite rough (unsmooth) compared to

those obtained from the other three types of search directions. From Figs. 4.15(g), 4.15(h)

and 4.15(i), we observe that in formation “Waal” , which is controlled by the ICVs of seg-

ment 3, far more ICV settings are zero or very close to zero than is the case for segments 1

and 2, respectively. This is probably due to the fact that “Waal” is the highest permeability

formation. With more ICV settings close to zero, one can delay water breakthrough from

the highest permeability formation “Waal”.

Fig. 4.17 shows the initial oil saturation distribution, and the remaining oil saturation

distribution of layer 6 at years 7.5 and 15 calculated from standard EnOpt, sf-StoSAG and ss-

StoSAG. It is clear that more oil can be produced from layer 6 by sf-StoSAG and ss-StoSAG

search directions than the one obtained by standard EnOpt. sf-StoSAG and ss-StoSAG

achieve almost the same oil saturation distribution at the end of production life. From

Fig. 4.17(e) or 4.17(g), we can observe that the oil is swept from southwest to northeast.

Moreover, the fact that a large amount of oil remains in the vicinity of producer “P1” at

the end of the production life is primarily a consequence of the fact that the fault blocks the

oil moving from west to east direction, but is also due partially to the fact that there is no

production well located close to the right-end of the fault.
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(a) EnOpt, ICV 1 (b) EnOpt, ICV 2 (c) EnOpt, ICV 3

(d) f-StoSAG, ICV 1 (e) f-StoSAG, ICV 2 (f) f-StoSAG, ICV 3

(g) sf-StoSAG, ICV 1 (h) sf-StoSAG, ICV 2 (i) sf-StoSAG, ICV 3

(j) StoSAG, ICV 1 (k) StoSAG, ICV 2 (l) StoSAG, ICV 3

(m) ss-StoSAG, ICV 1 (n) ss-StoSAG, ICV 2 (o) ss-StoSAG, ICV 3

Figure 4.15: Estimated ICV settings of all the production wells at different perforated seg-
ment calculated from different search direction formulations on a scale from
closed (0) to fully open (1); initial guess 2.
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(a) EnOpt, ICV 1 (b) EnOpt, ICV 2 (c) EnOpt, ICV 3

(d) f-StoSAG, ICV 1 (e) f-StoSAG, ICV 2 (f) f-StoSAG, ICV 3

(g) sf-StoSAG, ICV 1 (h) sf-StoSAG, ICV 2 (i) sf-StoSAG, ICV 3

(j) StoSAG, ICV 1 (k) StoSAG, ICV 2 (l) StoSAG, ICV 3

(m) ss-StoSAG, ICV 1 (n) ss-StoSAG, ICV 2 (o) ss-StoSAG, ICV 3

Figure 4.16: Estimated ICV settings of all the injection wells at different perforated segment
calculated from different search direction formulations on a scale from closed
(0) to fully open (1); initial guess 2.
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(a) Initial

(b) EnOpt, 7.5 years (c) EnOpt, 15 years

(d) sf-StoSAG, 7.5 years (e) sf-StoSAG, 15 years

(f) ss-StoSAG, 7.5 years (g) ss-StoSAG, 15 years

Figure 4.17: Initial oil saturation distribution, and remaining oil saturation distribution at
years 7.5 and 15 calculated from EnOpt, sf-StoSAG and ss-StoSAG; Layer 6;
initial guess 2.
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CHAPTER 5

RISK MINIMIZATION IN ROBUST LIFE-CYCLE PRODUCTION

OPTIMIZATION

In this Chapter, we investigate the possibility of using the newly developed StoSAG

algorithm for the case where the two objectives are to maximize the life-cycle NPV of pro-

duction under geological uncertainty and to minimize the risk. To solve the bi-objective

optimization problem, a workflow based on the lexicographic method is proposed. Then, the

proposed workflow is applied to two reservoir examples: a fluvial reservoir and the Brugge

reservoir model.

5.1 Methodology

5.1.1 Risk Measures

If only robust optimization is performed, i.e., only the average NPV value is maxi-

mized, the variance in the set of NPV values over the set of geological realizations is often

large. As noted in the introduction, if the true reservoir description is close to the reservoir

description that generates the worst NPV, then further exploitation of the reservoir may not

be commercially feasible, i.e., there may be considerable commercial risk in implementing

the estimated optimal well controls in practice. Therefore, it is also important to attempt

to reduce risk and the hope is that risk can be mitigated without a significant decrease in

the expected value of life-cycle NPV. Commonly used risk measures in the oil and gas com-

munity include standard deviation or variance, the worst-case scenario (minimum NPV over

the set of geological models), safety margin, mean-variance, value at risk (VaR) and condi-

tional value at risk (CVaR), which is also known as the expected shortfall. Liu and Reynolds

[62] found that standard deviation is not a good measure for risk minimization. Capolei
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et al. [15] also pointed out that, except for the worst-case scenario and CVaR, most of the

risk measures are not satisfactory. Here, the mathematical formula for the risk measures of

worst-case and CVaR are presented. The formulation for standard deviation is also provided

here and will be benchmarked with the worst-case and CVaR scenarios for the reduction of

risk later.

Worst-Case Scenario. The NPV of worst case, denoted by JW (u), is the minimum (worst)

NPV obtained from all geological realizations; that is

JW (u) = min
i
{J(u,mi)}Ne

i=1 . (5.1)

Conditional Value at Risk (CVaR). The CVaR (also known as the Expected Shortfall,

Tail VaR, or Mean Excess Loss) is one of the most widely used risk measures in financial

risk measurement [78, 76]. It was first introduced to the oil community by Valladao et al.

[88]. The CVaR at q percentile is defined as the average value of the worst q% NPV values.

For an estimated optimal control vector u, we order the set of geological models {mi}Ne
i=1, so

that, J(u,m1) ≤ J(u,m2) ≤ · · · ≤ J(u,mNe). Then, the CVaR, denoted by JC(u), at q% is

approximated by

JC(u) ≈
∑NQ

i=1 J(u,mi)

NQ

, (5.2)

where NQ = Ne × q%. Note that, given Ne, we always choose q to make NQ an integer

or, given q, we choose Ne to make NQ an integer. It is easy to see that the worst NPV

JW defined in Eq. 5.1 corresponds to the CVaR at the specific q which is equal to 100/Ne

percentile. Note this risk measure was also used by Liu and Reynolds [64] where it was

referred to as expected shortfall.
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Standard Deviation. Standard Deviation, denoted by JD(u), is given by

JD(u) =

√∑Ne

i=1 (J(u,mi)− JE(u))2

(Ne − 1)
. (5.3)

In the oil industry, standard deviation has been used previously as a risk/uncertainty measure

by Yeten et al. [94], Bailey et al. [8], Alhuthal et al. [3], Liu and Reynolds [62] and Capolei

et al. [16].

5.1.2 Lexicographic Method

If we wish to both reduce risk and maximize the expected value of the NPV of life-

cycle production, then we encounter a bi-objective optimization problems where the two

objectives, maximize the expectation of the life-cycle NPV of production and minimize the

risk, are generally in conflict. This bi-objective optimization problem is conveniently stated

as

max
u∈RNu

{JE(u), Jx(u)} ,

s.t. ulowi ≤ ui ≤ uupi , i = 1, 2, · · ·Nu,

(5.4)

where Jx(u) can be one of the risk measures of interest, e.g., JW (u), JC(u) or −JD(u). Note

that −JD is used in place of JD as we wish to frame the problem in terms of maximizing

two objective functions and maximizing −JD is equivalent to minimizing JD. As they had a

simple reservoir simulator with adjoint capability, Liu and Reynolds [62, 63, 64] applied the

weighted sum method, the NBI method and the lexicographical method for simultaneously

maximizing the expectation and minimizing the risk using gradient-based optimization, but

due to the limitations of their adjoint framework, they were also able to consider fairly simple

reservoir models. Due to the computational cost of using the weighted sum method and NBI

method to generate the Pareto front when the correct gradient cannot be computed with an

adjoint method, we focus here on the computationally more efficient lexicographical method

to optimize the objectives where we use StoSAG as the optimization algorithm.

The lexicographic method requires the user to order all objective functions by their
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relative importance. The most important objective function will be optimized first. Then,

the first optimized objective will be treated as an additional constraint when optimizing

the second most important objective; this process is repeated until the least important

objective is optimized. In Eq. 5.4, we have two objectives, JE(u) and Jx(u). Here, we

choose to maximize JE(u) first to find the estimate, u∗, of the optimal control vector and the

corresponding value of the objective function, JE(u∗). Then using the optimal value JE(u∗)

as a constraint, we optimize Jx(u) in a second optimization where we solve

max
u∈RNu

Jx(u),

s.t.


JE(u) > γJE(u∗),

ulowi ≤ ui ≤ uupi , i = 1, 2, · · ·Nu.

(5.5)

Note that, in the preceding problem, JE(u) corresponds to the calculated value of the average

NPV obtained based on the value of u obtained during the maximization of Jx(u). In Eq. 5.5,

0 < γ ≤ 1, but typically we wish to choose γ very close to unity. If uopt denotes the vector

of control that represents the solution of Eq. 5.5, then, the choice of γ effectively determines

how close JE(uopt) is to JE(u∗). Even if we choose γ = 1, however, J(uopt) may not satisfy

the constraint of Eq. 5.5 because the optimization problem specified by Eq. 5.5 is solved by

the augmented Lagrangian method which forces the constraint to be satisfied up to 1% at

convergence. Because of this tolerance, in the examples, we use γ = 1 in Eq. 5.5. Note,

however, the problem could be repeated with a sequence of values of γ, e.g., γ = 1, γ = 0.98,

γ = 0.95, γ = 0.9 to obtain alternate trade-off solutions, i.e., to construct a portion of the

Pareto front.

To solve the sub-problem shown in Eq. 5.5, the constraint is handled by the augmented

Lagrangian method. Define cE(u) =
(
JE(u)/JE(u∗)

)
− 1.0 so that the constraint of Eq. 5.5

can be rewritten as cE(u) = JE(u)
JE(u∗)

− 1.0 > 0. Then the augmented Lagrangian function can

be written as

L(u, λk, µk) = Jx(u)− ϕ(u, λk, µk), (5.6)
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where

ϕ(u, λk, µk) =


−λkcE(u) +

c2E(u)

2µk
, if cE(u) 6 µkλk,

−µk

2
(λk)2, otherwise,

(5.7)

and λk is the Lagrangian multiplier and µk the penalty parameter at the kth outer loop.

Taking the derivative of Eq. 5.6 with respect to u and evaluating it at u = u` gives

∇uL(u`, λ
k, µk) = ∇uJx(u`)−∇uϕ(u`, λ

k, µk). (5.8)

In this work, the gradients, ∇uJx(u`) and ∇uϕ(u`, λ
k, µk), are replaced by stochastic gra-

dients which are calculated individually. Jx(u) is one of the risk measures of interest, i.e.,

equal to JW (u), JC(u) or JD(u), with gradients at u`, respectively, denoted by ∇uJW (u`),

∇uJC(u`) and ∇uJD(u`). The general formulation for the stochastic gradient, StoSAG, is

given by

d` = ∇uJE(u) =
1

Ne

Ne∑
i=1

∇uJ (u,mi) , (5.9)

where ∇uJ (u,mi) is replaced by the stochastic approximation

∇uJ (u,mi) ≈
1

Np

Np∑
j=1

(
δû`,j(δû`,j)

T
)+
δû`,j

(
J(û`,j,mi)− J(u`,mi)

)
(5.10)

to obtain

∇uJE(u) ≈ 1

Ne

Ne∑
i=1

[ 1

Np

Np∑
j=1

(
δû`,j(δû`,j)

T
)+
δû`,j

(
J(û`,j,mi)− J(u`,mi)

)]
≡ d`, (5.11)

where Np is the number of perturbations of u` used.

In Eqs. 5.10 and 5.11, the superscript “+” on a matrix denotes the Moore-Penrose

pseudo-inverse, δû`,j = û`,j−u`, and Np represents the number of control perturbations. Each

control perturbation û`,j, j = 1, 2, · · ·Np at iteration ` is generated from the distribution

N (u`, CU) and CU is a predefined covariance matrix.

Then, the stochastic gradients of ∇uJW (u`) and ∇uJC(u`), respectively, can be easily
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generated from Eq. 5.10 with J replaced by JW (u`) and JC(u`). Letting mw denote the

realization that gives the lowest NPV where the current estimate of the optimal controls, u`,

are imposed, we then use the stochastic gradient formula of Eq. 5.10 to obtain

∇uJW (u`) ≈
1

Np

Np∑
j=1

(
δû`,j(δû`,j)

T
)+
δû`,j

(
J(û`,j,mw)− J(u`,mw)

)
. (5.12)

Similarly, taking the gradient of Eq. 6.7 and using the stochastic gradient formula of Eq. 5.10

to approximate the term ∇uJ(u`,mi) gives

∇uJC(u`) ≈
1

NQ

NQ∑
i=1

[ 1

Np

Np∑
j=1

(
δû`,j(δû`,j)

T
)+
δû`,j

(
J(û`,j,mi)− J(u`,mi)

)]
, (5.13)

where the NQ models in Eqs. 6.7 and 5.13 correspond to the ones that generate the q%

lowest NPV values at the current iterate u`.

Here, the derivation for the gradient of standard deviation, JD(u) given by Eq. 5.3, is

provided. We first write ∇uJD(u) in terms of an equivalent expression and then differentiate

to obtain

∇uJD(u`) =

(
1

2JD(u)
∇uJ

2
D(u)

)
u=u`

=

(
1

2(Ne − 1)JD(u)
∇u

[
Ne∑
i=1

(J(u,mi)− JE(u))2
])

u=u`

=
1

(Ne − 1)JD(u`)

[
Ne∑
i=1

(J(u`,mi)− JE(u`)) (∇uJ(u`,mi)−∇uJE(u`))

]
. (5.14)

For simplicity, J(u`,mi) is replaced by Ji and JE(u`) is replaced by JE, then Eq. 5.14 can
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be written as

∇uJD(u`) =
1

(Ne − 1)JD(u`)

[
Ne∑
i=1

(Ji − JE) (∇Ji −∇JE)

]

=
1

(Ne − 1)JD(u`)

[
Ne∑
i=1

(Ji∇Ji − Ji∇JE − JE∇Ji + JE∇JE)

]

=
1

(Ne − 1)JD(u`)

[
Ne∑
i=1

Ji∇Ji −
Ne∑
i=1

Ji∇JE −
Ne∑
i=1

JE∇Ji +
Ne∑
i=1

JE∇JE

]

=
1

(Ne − 1)JD(u`)

[
Ne∑
i=1

Ji∇Ji −∇JE
Ne∑
i=1

Ji − JE
Ne∑
i=1

∇Ji +
Ne∑
i=1

JE∇JE

]

=
1

(Ne − 1)JD(u`)

[
Ne∑
i=1

Ji∇Ji −∇JENeJE − JENe∇JE +
Ne∑
i=1

JE∇JE

]

=
1

(Ne − 1)JD(u`)

[
Ne∑
i=1

Ji∇Ji −∇JENeJE −NeJE∇JE +NeJE∇JE

]

=
1

(Ne − 1)JD(u`)

[
Ne∑
i=1

Ji∇Ji −NeJE∇JE

]

=
1

(Ne − 1)JD(u`)

[
Ne∑
i=1

J(u`,mi)∇uJ(u`,mi)−NeJE(u`)∇uJE(u`)

]
, (5.15)

or

∇uJD(u`) =
1

(Ne − 1)JD(u`)

Ne∑
i=1

[J(u`,mi)∇uJ(u`,mi)− JE(u`)∇uJE(u`)] . (5.16)

Taking the derivative of Eq. 5.7 with respect to u and evaluating it at u = u` gives

∇uϕ(u`, λ
k, µk) =


(
− λk + cE(u`)

µk

)
∇ucE(u`), if cE(u`) 6 µkλk;

0, otherwise.

(5.17)

Eq. 5.17 provides the expression used to evaluate the second term on the right-hand-side of

Eq. 5.8. Recall that cE(u) = JE(u)/JE(u∗)− 1.0, so

∇ucE(u) = ∇uJE(u)/JE(u∗). (5.18)
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Substituting the expression for ∇uJE(u) provided by the second equality of Eq. 5.11 into

Eq. 5.18 and evaluating at u = u` yields

∇ucE(u`) =
1

Ne × JE(u∗)

Ne∑
i=1

[ 1

Np

Np∑
j=1

(
δû`,j(δû`,j)

T
)+
δû`,j

(
J(û`,j,mi)− J(u`,mi)

)]
.

(5.19)

Thus, we have developed all equalities needed to compute the stochastic gradient of the

augmented Lagrangian function (Eq. 5.6) at each steepest ascent iteration (Eq. 6.3) in the

inner loop of the augmented Lagrange method.

In all examples, we use a 1:1 ratio of control perturbations to geological realizations,

i.e., Np = 1, to compute the gradient of ∇ucE(u`). However, as JW (u`) involves only one

reservoir model at iteration of the optimization algorithm, using Np = 1 is equivalent to

computing a stochastic gradient with one perturbation which would typically give a very

poor approximation of the true gradient [34]. Thus, we use 15 perturbations of u` (Np = 15)

when computing ∇uJW (u`) with Eq. 5.12. We also use Np = 15 as the base case when

computing ∇uJC(u`) with Eq. 5.13

The lexicographic framework for reducing the risk in the optimization under un-

certainty by solving the constrained problem of Eq. 5.5 by application of the augmented

Lagrange method is summarized below:

1. Primary optimization

First, we maximize JE(u) (Eq. 4.1) to find the estimate of the optimal control vector

u∗ and its corresponding expectation, JE(u∗). In primary optimization, the StoSAG search

direction in Eq. 5.11 is applied, and we use one control perturbation paired with one geo-

logical realization (ratio of 1:1), i.e., Np = 1 in Eq. 5.11, to calculate the StoSAG gradient;

refer to Fonseca et al. [37] for more discussion.
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2. Second-step optimization

2(a) Set the outer loop index k = 0, u0 = u∗, λ0 = 0, µ0 = 1
2×0.1×|Jx(u∗)| , η

0 = 0.1,

ε0u = 0.1, ε0f = 0.1.

2(b) Inner Loop: With k, λk and µk fixed, we solve the subproblem in Eq. 5.6 to

find the solution, uk+1
opt . At the kth outer loop, the convergence criteria for the inner loop are

|L(u`+1)− L(u`)|
max[|L(u`)| , 1.0]

6 εkf , (5.20)

and

‖u`+1 − u`‖2
max[‖u`‖2, 1.0]

6 εku, (5.21)

where ` is the inner loop index. If Eqs. 5.20 and 5.21 hold, set uk+1
opt = u`+1.

2(c) Outer Loop: At the kth outer loop iteration, update λk and µk based on the

constraint violation factor, σcv, which is given by

σcv =
√
{min(0, cE(uk+1

opt ))}2. (5.22)

If σcv < ηk, goto step 2(d), otherwise goto step 2(e). The augmented Lagrangian method

loops through each inner loop and then outer loop until the convergence criteria given below

are reached ∣∣L(uk+1
opt )− L(ukopt)

∣∣
max[

∣∣L(ukopt)
∣∣ , 1.0]

6 ε∗f , (5.23)

‖uk+1
opt − ukopt‖2

max[
∥∥ukopt∥∥2, 1.0]

6 ε∗u, (5.24)

and the constraint-violation factor is acceptable (i.e., σcv ≤ η∗). We terminate the augmented

Lagrangian method if the maximum allowable simulation runs is reached.
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2(d) Update Lagrangian multiplier λk and tighten the convergence criteria.

λk+1 = max{0, λk − cE(uk+1
opt )

µk
},

µk+1 = µk,

ηk+1 = max{ηk ×min(µβ, 0.5), η∗},

εk+1
u = max{εku ×min(µβ, 0.5), ε∗u},

εk+1
f = max{εkf ×min(µβ, 0.5), ε∗f}.

(5.25)

2(e) Update penalty parameter µk and tighten the convergence criteria.

λk+1 = λk,

µk+1 = τ × µk,

ηk+1 = max{ηk ×min(µα, 0.5), η∗},

εk+1
u = max{εku ×min(µα, 0.5), ε∗u},

εk+1
f = max{εkf ×min(µα, 0.5), ε∗f}.

(5.26)

2(f) Set k equal to k = k + 1 and goto step 2(b).

End

In our example applications, the final convergence tolerances for the augmented Lagrangian

method are ε∗u = 10−3 and ε∗f = 10−4; the tolerance for the constraint violation at conver-

gence, η∗, is set equal to 0.01; the rate of decrease for the penalty parameter, τ , is equal to

0.25; β = 0.2 and α = 0.1.

5.2 Numerical Examples

5.2.1 Example 1: 3D Fluvial Reservoir

Problem Description. In the first example, the simulation model is defined on a 25×25×3

grid with the grid block dimensions given by ∆x = ∆y = 100 ft and ∆z = 30 ft. The reservoir
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contains 4 water injectors and 9 producers. Note this example pertains to waterflooding

optimization. Fifteen geological realizations of a Gaussian random field are generated to

represent the uncertainty in the reservoir description. Fig. 5.1 displays six realizations of the

log-permeability distribution for the first layer. The second and third layers have the same

heterogeneity features as the first layer but with the permeabilities field of layer 2 is equal

to the permeability field of layer 1 multiplied by 0.6 and the permeability field of layer 3 is

equal to the permeability field of layer 1 multiplied by 0.3. The porosity is homogeneous

with φ = 0.2. The initial reservoir pressure is 3,800 psi; the reservoir lifetime is 2,880 days.

(a) Realization 3 (b) Realization 5 (c) Realization 7

(d) Realization 9 (e) Realization 11 (f) Realization 13

Figure 5.1: Log-permeability distribution of six realizations for the first layer, channelized
reservoir.

Here, both well controls (rates or pressures on predefined control steps) and settings

of ICVs are considered as the control variables where the two objectives are to maximize the

expected NPV, JE(u), and minimize the risk, Jx(u), where Jx(u) is equal to either JW (u)

or JC(u). The control variables at each water injector are the injection rates with an upper

bound of 4,000 STB/D and a lower bound of 0 STB/D; each producer operates under BHP

control with an upper bound of 3,800 psi and a lower bound of 1,500 psi; each ICV setting
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for both producers and injectors has an upper bound of 1 and a lower bound of 0. The

initial guess for the rate controls of each water injector is set equal to 2,000 STB/D; the

initial guess for BHP controls for each producer is equal to 2,650 psi and the initial guess

for all ICV settings are equal to 0.5. The oil price is set equal to $ 50.0/STB; the water

injection cost is $5.0/STB; the cost of disposing produced water is $5.0/STB; the annual

discount rate is 0.1.

For the implementation of the StoSAG algorithm in the primary optimization (i.e.,

maximization of only expectation), we use a one-to-one combination of random control per-

turbations and random geological models (ratio of 1:1) with the size of the ensemble of

reservoir models (log-permeability fields) equal to 15. The total number of controls steps

is 16, with the length of each control step equal to 180 days. The perturbation size σw in

Eq. 4.13 is set equal to 0.1; Nw
s is equal to 4, i.e., the controls at each well at 4 consec-

utive control steps (720 days) are correlated. In the second-step optimization, where the

worst NPV (JW ) or the CVaR (JC) is considered as risk measure, a 15:1 ratio of control

perturbations to geological realization(s) is used to compute ∇uJW and ∇uJC , and a 1:1

ratio is used to calculate ∇ucE in Eq. 5.19 for finding ∇uϕ, in Eq. 5.8. However, a 1:1 ratio

is used to compute the gradient when the standard deviation JD is considered as the risk

measure. The maximum number of allowable simulation runs for both primary optimization

and the second-step optimization, is set equal to 3,000, i.e., a total of 6,000 simulation runs

is required. A black-oil reservoir simulator, IMEX (Version 2009.10) [28] from Computer

Modeling Group Ltd., is used for reservoir simulation.

Results. Fig. 5.2 shows the plot of the expected NPV (JE) obtained during the primary

optimization. Fig. 5.3 shows the values of the “second” objective function for each of the

three risk measures (JD, JW , JC) plotted versus the number of reservoir simulation runs

when the second objective function is minimized using the lexicographic method. Note

that JC (i.e., CVaR) considered here is the average value of the 20% lowest NPV values.

Fifteen realizations are used to represent the geological uncertainty, thus, JC at 20% is the
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expectation of the worst 3 NPV values. The results of Fig. 5.3 indicate that the standard

deviation (JD) is greatly decreased and both JW and JC are significantly improved, while

the changes in the value of JE is quite small during the secondary optimization because the

optimal value of JE is imposed as a constraint when each risk measure is optimized.

Figure 5.2: Primary objective (JE) versus number of simulation runs, channelized reservoir.

Table 5.1 records the average NPV (JE), the standard deviation (JD), the values of

the minimum (worst) NPV, the maximum NPV and the average value of 20% lowest NPV

values (CVaR at 20%) obtained at the end of the secondary optimization with different risk

measures, as well as those values obtained from the primary optimization (i.e., maximization

of only expectation). It can be observed from Table 5.1 that the decrease of the corresponding

expectation, JE, obtained with the risk measure JD in the secondary optimization is within

1% of the optimal value of JE computed from the primary optimization. The corresponding

expectations obtained when using the risk measures JW and JC are both slightly higher

(within 0.5%) than the JE value (377.8 million USD) obtained during primary optimiza-

tion, which indicates that when we optimize the second objective function, the inequality

constraint in the problem of Eq. 5.5 was strictly satisfied,. i.e., we found a strictly feasible

solution. When using JD (the standard deviation) as the risk measure in the lexicographic

procedure, we obtained a value of JD that is 30.77% lower than the value obtained when

optimizing only the expected NPV. However, as shown in Table 5.1, after minimizing JD,

the worst (minimum) NPV is only increased 4.3 million USD above the value obtained from

primary optimization, but the highest NPV is decreased 8.9 million USD below the highest
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(a) Second objective, JD (b) JE in minimization of JD

(c) Second objective, JW (d) JE in maximization of JW

(e) Second objective, JC(20%) (f) JE in maximization of JC(20%)

Figure 5.3: Second objectives (JD, JW and JC at 20%) with their corresponding average
NPVs (JE) versus number of simulation runs, channelized reservoir.

NPV obtained during primary optimization. This indicates that the reduction in standard

deviation is mainly achieved by markedly reducing the highest plausible NPV, a behavior

that was first observed by Liu and Reynolds [64] when using an adjoint gradient-based opti-

mization algorithm. On the other hand, as shown in Table 5.1, the minimum (worst) NPV
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and CVaR at 20% obtained after maximizing either JW or JC is significantly higher than

the value obtained by primary optimization. Moreover, the results of Table 5.1 indicate

that when either JW or JC is used as the second objective in the lexicographic method, the

final value of JD is only slightly higher (17.3×106 USD or 17.0×106 USD) than the value

(14.4×106 USD) obtained by minimizing the standard deviation objective (JD) during the

secondary optimization.

Table 5.1: Comparison of different risk measures, channelized reservoir.

Terms JE JD Min. NPV Max. NPV CVaR (20%)
×106 USD ×106 USD ×106 USD ×106 USD ×106 USD

Primary : JE 377.8 20.8 345.3 408.6 347.3
Secondary : JD 377.1 14.4 349.6 399.7 351.8
Secondary : JW 378.6 17.3 358.7 404.2 358.9

Secondary : JC(20%) 379.5 17.0 360.3 406.9 360.6

The cumulative distribution functions (CDFs) of the NPV values obtained by the lex-

icographic method with different risk measures, as well as the CDF obtained by maximizing

the expectation only are displayed in Fig. 5.4. In this figure, the risk measure Jq represents

the case where we wish to maximize the third lowest NPV. From the CDFs shown in Fig. 5.4,

we can observe that the risk measure of JC at 20% finds the solutions which increase the

average value of the lowest 3 NPVs the most, while the risk measure of standard deviation

finds the solutions which generate the lowest average value of the lowest 3 NPVs. It is inter-

esting to note that when the NPV value at 20% (i.e., 3rd worst NPV) is considered as the

objective of the second-step optimization, the 3rd lowest NPV can be greatly improved, but

the two lowest NPV values cannot.

From above analysis, we can see that the CVaR (JC) seems to be the best risk measure

for use in the lexicographic method for this example in the sense that the estimated average

value of the 3 lowest (20% lowest) NPV values is higher than the corresponding average

value obtained with using other risk measures and is much higher than the corresponding

value obtained by performing only robust optimization. However, the effect of the ratio of

random perturbed controls to the number of geological models used to represent uncertainty
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Figure 5.4: CDFs obtained by the lexicographic method with different risk measures; black:
CDF obtained from primary optimization; green: CDF obtained using risk mea-
sure JD; blue: CDF obtained using risk measure JW ; red: CDF obtained using
risk measure JC at 20%; cyan: CDF obtained using risk measure Jq at 20%;
channelized reservoir.

is still unclear, so an additional investigation of CVaR is provided.

Fonseca et al. [37] show that one control perturbation paired with one geological model

can generate a sufficiently good estimate of the gradient of the average value of NPV so that

using this stochastic gradient in steepest ascent performs well, but we do not expect that

will be the case if the number of reservoir models used to represent geological uncertainty

is small. To investigate the effect of the number of perturbations used to compute the

stochastic gradient of CVaR at 20%, we redo the example but now use different ratios of the

number of perturbed controls to the the number of model realizations to compute ∇uJC(u).

However, we continue to use one control perturbation for each of the fifteen ensemble models

when compute ∇uϕ in Eq. 5.8. Fig. 5.5 shows results of CVaR obtained by using different

ratios and the corresponding JE values obtained when minimizing JC(u) in the second step

of the lexicographic method. In Fig. 5.5, both JC and JE are plotted versus the number of

reservoir simulation runs. It can be seen that, when computing∇uJC , a ratio of 15:1 achieves

the highest CVaR while a ratio of 1:1 generates the lowest CVaR, but the corresponding JE
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values do not change significantly. Fig. 5.6 shows the CDF functions obtained from using

different ratios when maximizing JC . We can observe that, for all ratios, the average of the 3

lowest NPV values (20% worst NPVs) are improved above the corresponding average value

obtained from the maximization of only expectation, and that the ratio of 15:1 performs the

best.

(a) JC at 20% (b) Corresponding JE

Figure 5.5: Obtained JC at 20% from different ratios and their corresponding JE; red: ratio
of 15:1; blue: ratio of 10:1; yellow: ratio of 5:1; green: ratio of 1:1; channelized
reservoir.

Figure 5.6: CDF functions obtained from different ratios for the optimization of JC at 20%;
red: ratio of 15:1; blue: ratio of 10:1; yellow: ratio of 5:1; green: ratio of 1:1;
channelized reservoir.
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CVaR at different percentiles represents different risk aversion levels. Fig. 5.7 shows

CDF functions obtained from the risk measure of CVaR at different percentiles. For the

channelized reservoir we use 15 reservoir models to represent the geological uncertainty, so

the CVaR at 20%, 40%, 60%, 80% is equivalent to the average value of the lowest 3, 6, 9 and

12 plausible NPV values, respectively; 15 control perturbations for each geological realization

(a ratio of 15:1) is used to estimate ∇uJC . As expected, the results of Fig. 5.7 indicate that

CVaR at 20% improves the average value of the 3 lowest NPVs the most. Table 5.2 displays

the corresponding JE, minimum NPV and maximum NPV obtained by using CVaR with

different percentiles as the risk measure. Interestingly, Table 5.2 shows that the average

NPV over all realizations, JE, obtained from CVaR at 80% is 4.5 million USD higher than

is obtained from CVaR at 20%, but the minimum NPV achieved from CVaR at 80% is 11.1

million USD lower than that computed from CVaR at 20%. From the view of reducing the

risk, the CVaR at 20% is recommended as an optimal choice of risk measure.

Figure 5.7: CDF functions obtained from different percentiles of worst cases for JC optimiza-
tion; black: CDF obtained from primary optimization; red: CDF obtained from
JC at 20%; cyan: CDF obtained from JC at 40%; green: CDF obtained from JC
at 60%; blue: CDF obtained from JC at 80%; channelized reservoir.

Fig. 5.8 shows the CDF functions obtained from the unconstrained (or one-step)

CVaR optimization only and the two-step CVaR at 20% (i.e., lexicographic-based CVaR)
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Table 5.2: Comparison of CVaR at different percentile, channelized reservoir.

Terms JE Minimum NPV Maximum NPV
×106 USD ×106 USD ×106 USD

Primary opt. : JE 377.8 345.3 408.6
Second opt. : JC(20%) 379.5 360.3 406.9
Second opt. : JC(40%) 380.7 355.1 404.6
Second opt. : JC(60%) 383.3 352.8 407.3
Second opt. : JC(80%) 384.0 349.2 408.1

approaches. Fig. 5.8 also includes the CDF function obtained by only performing robust

optimization. Unconstrained CVaR is the approach where we only perform the CVaR opti-

mization from the initial guess, i.e., maximize the worst case(s) at a certain percentile (20%

in this example) without conducting the primary optimization. Note that for both CVaR

at 20% approaches, we use a ratio of 15:1, i.e., 15 control perturbations for each geological

realization, to compute the search direction ∇uJC(u`) in Eq. 5.13. In the primary optimiza-

tion of the two-step approach, we still use a 1:1 ratio to calculate the search direction. From

Fig. 5.8, it can be observed that both the unconstrained and the two-step approaches can

significantly improve the average of the three lowest NPV values compared to the scenario

where we only perform robust optimization, i.e,. maximize JE. However, the nine highest

NPV values obtained from the unconstrained CVaR are much lower than can be obtained

from the two-step CVaR, which results in the corresponding expectation of NPV value ob-

tained from unconstrained CVaR is 6.6 million USD less than the expected NPV computed

from two-step CVaR; see Table 5.3. We can see that the two-step or the lexicographic-based

CVaR is better than the one-step or the unconstrained CVaR when reducing the risk is

considered in the robust optimization.

5.2.2 Example 2: Brugge Test Case

Problem Description. The Brugge field was developed by TNO as a benchmark

case to test different methods for closed-loop reservoir management [75]. The initial ensemble

of reservoir models consists of 104 realizations of reservoir properties (permeability, porosity,
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Figure 5.8: CDF functions obtained from unconstrained CVaR and two-step CVaR ap-
proaches; black: CDF obtained from primary optimization; blue: CDF ob-
tained from unconstrained (one-step) CVaR; red: CDF obtained from two-step
(lexicographic-based) CVaR; channelized reservoir.

Table 5.3: Comparison of the unconstrained CVaR and the two-step CVaR approaches, chan-
nelized reservoir.

Terms JE Minimum NPV Maximum NPV
×106 USD ×106 USD ×106 USD

Primary opt. : JE 377.8 345.3 408.6
Unconstrained CVaR 372.9 354.9 399.1

Two-step CVaR 379.5 360.3 406.9

net-to-gross and connate water saturation) upscaled to a 60,000 gridcell model; see Peters

et al. [75]. Here, 15 reservoir realizations are randomly chosen to characterize the reservoir

uncertainty. A more detailed description of the Brugge reservoir model can be found in

Chapter 4 and in Peters et al. [75]. Note this is a two-phase flow (oil-water) waterflooding

optimization example.

In their studies on Brugge field, Peters et al. [75], Chen and Oliver [24] and Chen et al.

[21] considered a 30 year production lifetime. They assimilated the observed production and

interpreted seismic data during the first 10 years, and then optimized the NPV for years

10-30 by adjusting the well control variables. In this study, we do not assimilate any data.
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Instead, we estimate the optimal well controls for the first fifteen years of the reservoir life

using robust optimization based on the fifteen selected models from the initial ensemble.

The optimization problem is to estimate simultaneously the well controls (injection rates for

injectors and BHP for producers) and downhole ICV settings which maximize the average

NPV and minimize the risk over 15 years of production.

The well control variables at each injector are the injection rates with an upper bound

of 5,000 STB/D and a lower bound of 0 STB/D; each producer operates under BHP control

with an upper bound of 2,465 psi and a lower bound of 725 psi; each ICV setting for both

producers and injectors has an upper bound of 1 and a lower bound of 0. The initial guess

for the rate controls of each water injector is set equal to 2,500 STB/D; the initial guess for

BHP controls for each producer is equal to 1,595 psi and the initial guess for all ICV settings

are equal to 0.5. For each injection well, the control variables contain the injection rate at

the well and three ICV settings at each control step; for each production well, the control

variables contain BHP plus three ICV settings at each control step. The intial reservoir

pressure is 2,465 psi.

Only oil and water flow in the reservoir throughout the reservoir production life.

To maximize the expectation of NPV and minimize the risk, the oil price is set equal to

$60.0/STB. Each well contains 30 control steps, with the length of each control step equal to

182.5 days (half a year). The controls at each well are correlated over every 10 consecutive

control steps (1,825 days); the maximum number of allowable simulation runs in the primary

optimization and the second optimization are 6,000 and 3,000, respectively. All the other

problem specifications are the same as those in Example 1.

Results. Fig. 5.9 shows the behavior of the average NPV (JE) during the primary opti-

mization procedure where the optimization was continued until approximately 6,000 reservoir

simulation runs were done. The left column of plots in Fig. 5.10 corresponds to the secondary

optimization in the lexicographic method, with each plot corresponding to one of the three

risk measures, JD (standard deviation), JW (minimum or worst NPV) and JC which here
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is the conditional value at 20%. Each figure in the right column of plots in Fig. 5.10 corre-

sponds to behavior of JE during the optimization process shown in the plot to its left. Some

related optimization results are shown in Table 5.4. These results are qualitatively similar to

those of the first example. Note that during the constrained minimization of JD, the value of

JE is decreased 5.88% from the value obtained from primary optimization (6.80×109 USD),

i.e., decreases to 6.40×109 USD; see Table 5.4. This is due to the fact that, within the given

3,000 maximum allowable simulation runs in the secondary optimization, both the conver-

gence criteria in Eqs. 5.23 and 5.24 and the acceptable constraint-violation factor (η∗ = 1%)

in the outer loop of augmented Lagrangian method are not reached. The CDFs shown in

Fig. 5.11 amplify the last result. In Fig. 5.11, we see that using JD as the second objective

barely increases this minimum value of NPV above the value obtained by optimizing only

the expectation JE but results in a decrease in the values of the highest NPV’s below their

values obtained by the primary optimization; this behavior is highly undesirable. The other

two risk measures, JW and JC , as the second objectives gives results that conform to ex-

pected performance but also clearly indicate that CVaR at 20% (JC) gives a more desirable

posterior CDF than does JW .

Figure 5.9: Primary objective (JE) versus number of simulation runs, Brugge case.

The optimal well controls obtained by the primary optimization and secondary opti-

mization are shown in Fig. 5.12. In these figures, the vertical axes refer to the well number

(recall that there are 10 injectors and 20 producers), while the horizontal axes refer to the

control interval (30 in total). It can be observed that several well controls for injector 5 in
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(a) Second objective, JD (b) JE in optimization of JD

(c) Second objective, JW (d) JE in optimization of JW

(e) Second objective, JC (f) JE in optimization of JC

Figure 5.10: Primary objective (JE) and different second objectives (JD, JW , JC) with their
corresponding average NPV’s (JE) versus number of simulation runs, Brugge
case.

Fig. 5.12(c) and producers 1, 2, 5 in Fig. 5.12(d) obtained by including the CVaR (JC) at 20%

as the second objective are quite different than the corresponding controls (Figures 5.12(a)

and 5.12 (b)) obtained by simply maximizing the expected NPV (primary optimization).
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Table 5.4: Comparison of different risk measures, Brugge case.

Terms JE JD Min. NPV Max. NPV CVaR (20%)
×109 USD ×106 USD ×109 USD ×109 USD ×109 USD

Primary : JE 6.80 854.16 5.53 7.97 5.69
Secondary : JD 6.40 575.72 5.59 7.29 5.65
Secondary : JW 6.74 642.23 5.84 7.71 5.88

Secondary : JC(20%) 6.91 688.28 5.82 7.91 6.02

Figure 5.11: CDF functions obtained by the Lexicographic method with different risk mea-
sures; black: CDF obtained from primary optimization; green: CDF obtained
using risk measure JD; blue: CDF obtained using risk measure JW ; red: CDF
obtained using risk measure JC at 20%; Brugge case.
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(a) Optimal injection rate, primary
optimization

(b) Optimal production BHP, primary
optimization

(c) Optimal injection rate, second
optimization

(d) Optimal production BHP, second
optimization

Figure 5.12: Optimal well controls obtained by the primary optimization and the secondary
optimization using JC at 20% as the risk measure, Brugge case.
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CHAPTER 6

ESTIMATION OF THE OPTIMAL LENGTH OF WAG CYCLES AND

OPTIMAL WELL CONTROLS

In this Chapter, the length of the effect of gas and water injection time periods on

the optimization of WAG is investigated. We set the sum of the gas and water injection time

periods for each injector equal to reservoir lifetime and treat them as equality constraints.

Then, the augmented Lagrangian method which can handle equality constraints is adopted to

optimize the injection time periods. We provide examples to delineate the conditions under

which optimizing the duration of each water injection period and each CO2 injection period

significantly enhances the NPV of production and the conditions under which optimization

of each injection periods has a very small effect on the NPV.

6.1 Optimization Problem

The optimization problem we consider in this Chapter is how to estimate the injection

time intervals of each WAG half-cycle with/without the well controls which maximize the

NPV in a CO2-WAG EOR process. Let Ncycle denote the total number of WAG cycles, and

assume that the total gas/water injection time for each injector is equal to the reservoir

production lifetime, Tlife; that is

δtj1 + δtj2 + · · ·+ δtj2Ncycle
= Tlife, j = 1, 2, ..., ninj, (6.1)

where δtjk, k = 1, 2, ..., 2Ncycle, denotes the kth injection duration for jth injection well; ninj

represents the total number of injection wells. The time equality constraints of Eq. 6.1 can

also be written as
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ej(u) = δtj1 + δtj2 + · · ·+ δtj2Ncycle
− Tlife = 0, j = 1, 2, ..., ninj. (6.2)

Here, ej(u) represents the jth time equality constraint which corresponds to the jth injection

well. Let ulowi and uupi , respectively, denote the lower bound and the upper bound for the

ith control variable, the optimization problem then can be expressed as

max
u

JE(u)

s.t. ulowi ≤ ui ≤ uupi , i = 1, 2, · · ·Nu,

ej(u) = 0, j = 1, 2, ..., ninj,

(6.3)

where JE(u), defined in Eq. 4.1, denotes the approximation of the expectation of life-cycle

NPV. Note that the control vector u contains injection time intervals for each injector and/or

well controls for all the injection and production wells.

6.2 Handling Time Equality Constraint

To handle the equality constraints of injection time intervals in Eq. 6.3, the augmented

Lagrangian method is applied. The augmented Lagrangian function can be written as

L(u, λ, µ) = JE(u)−
ninj∑
j=1

λj
ej(u)

sj
− 1

2µ

ninj∑
j=1

(ej(u)

sj

)2
, (6.4)

where λ and µ, respectively, denote the Lagrangian multiplier and the penalty parameter;

sj denotes the scaling factor which is set equal to Tlife. The two loops are involved in the

augmented Lagrangian method are the same as discussed in Chapter 5 with the change

discussed below:

Inner Loop: With k, λk and µk fixed, we solve the subproblem

max
u
L(u) = max

u
{L(u, λk, µk)} (6.5)

to find the solution, uk+1
opt , where k is the outer loop index.
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Outer Loop: At the kth outer loop iteration, update λk and µk based on the con-

straint violation factor, σcv, which is given by

σcv =

√√√√ 1

ninj

ninj∑
j=1

(
ej(u`)

sj
)2. (6.6)

If σcv < ηk, update Lagrangian multiplier λk and tighten the convergence criteria based

on Eq. 5.25, otherwise update penalty parameter µk and tighten the convergence criteria

based on Eq. 5.26. The augmented Lagrangian method loops through each inner loop and

then outer loop until the convergence criteria given by Eqs. 5.23 and 5.24 are reached and

the constraint-violation factor is acceptable (i.e., σcv ≤ η∗). We terminate the augmented

Lagrangian method if the maximum allowable simulation runs is reached. The settings, e.g.,

η∗, for the implementation of augmented Lagrangian method are the same as be used in

subsection 5.1.2. To maximize the augmented Lagrangian function in Eq. 6.5 , we use the

steepest ascent algorithm which is given by:

u`+1 = u` + α`

[
d`
‖d`‖∞

]
, (6.7)

for ` = 0, 1, 2, ... until convergence, where u0 is the initial guess and u` is the estimate of

the optimal control vector at the `th iteration. As always, α` is the step size; d` denotes the

search direction vector which in our work is a stochastic search direction. Here, foundational

StoSAG algorithm with the search direction given by Eq. 6.8 below is applied to maximize

the objective function in the form L(u, λk, µk):

d` =
1

Ne

Ne∑
i=1

(u`,i − u`)
(
L(u`,i)− L(u`)

)
. (6.8)

Here, each control perturbation u`,i, i = 1, 2, · · ·Ne, at iteration ` is generated from the

distribution N (u`, Cu), where Cu is a predefined covariance matrix which is kept constant

throughout the optimization procedure. Note that the control vector u is transformed into
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log-domain; see Chapter 2 for more details on log-transformation. Although the optimization

is performed in the transformed log-domain, we still use u to represent the optimization

control vector for simplicity. The control vector u contains injection time intervals and/or

well controls (rates for injectors and BHP for producers) at each control step.

In the following two sections, we first apply the proposed methodology to optimize the

injection time intervals for two deterministic examples, and then we apply the methodology

to robust optimization.

6.3 Deterministic Optimization

6.3.1 Example 1: 3D Heterogeneous Reservoir

Problem Description. In the first example, the simulation model is defined on a 11×11×3

grid with the grid block dimensions given by ∆x = ∆y = 100 ft and ∆z = 30 ft. It contains

1 injector and 4 producers. Permeability distributions for three different layers, respectively,

follow ln k1 ∼ N (5.5, 0.3), ln k2 ∼ N (4.5, 0.2) and ln k3 ∼ N (5, 0.25). Figure 6.1 displays

permeability distributions for three layers and well locations. The porosity is homogeneous;

porosities for three layers, respectively, are φ1 = 0.3, φ2 = 0.2 and φ3 = 0.25. The initial

reservoir pressure is 4,300 psi. Production lifetime is set equal to 4,320 days. We apply rate

controls for injector and pressure controls for producers; the initial guess, lower bounds and

upper bounds for different control variables are shown in Table 6.1.

For the StoSAG method, we set the number of samples for gradient averaging to

10; the maximum number of stepsize cuts is set equal to 5; the initial step size is 1.0;

the perturbation size is equal to 0.05; the maximum number of simulation runs is 1,500.

Violation tolerance for the total injection time at convergence is 10 days; 12 WAG cycles

are specified, where each WAG cycle has two control steps (one for gas injection and one

for water injection), but the length of the two control steps for each particular cycle may be

different for each well. Thus, each injector contains 24 control steps with the time length for

each control step equal to 180 days in the initial guess. The time length of each control step
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for producers is fixed equal to 180 days.

(a) Layer 1 (b) Layer 2 (c) Layer 3

Figure 6.1: Permeability distributions for three different layers and well locations.

Table 6.1: Initial guesses, lower bounds and upper bounds for different type of control vari-
ables, example 1.

Design variables Units Initial Guess Lower Bound Upper Bound
Pressure-Producer psi 2,900 1,500 4,300
Rate-Gas Injector MM scf/D 10 0 20

Rate-Water Injector stb/D 2,000 0 4,000
Half-cycle length day 180 1 360

Here, we consider four optimization strategies: (1) optimize the injection time inter-

vals and well controls simultaneously; (2) optimize the well controls only with fixed injection

time intervals (180 days); (3) optimize the injection time intervals only with well controls

fixed at “bounds”; (4) optimize the injection time intervals only with well controls fixed at

“averages”. Note that “bounds” means injector operates at its maximum allowable rates

(upper bounds) and producers operate at its minimum allowable BHP (lower bound); “av-

erages” means both injector and producers operate at the mean value of upper and lower

bounds.

Results. Figure 6.2 displays the NPV versus the number of simulation runs for different op-

timization strategies. The initial NPVs and final NPVs for different optimization strategies

are shown in Table 6.2. It can be seen that the simultaneous optimization strategy generates

the highest final NPV (923.2 million USD) which is 47 million dollars higher than the one
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obtained from the strategy where we only optimize the well controls with fixed injection time

intervals. The strategy where we optimize only injection time intervals with well controls

fixed at “averages” generates the lowest NPV. The estimated NPV obtained from optimiza-

tion of only injection time intervals with well controls fixed at “bounds” is almost the same

as the one obtained from simultaneous optimization strategy.

Figure 6.2: NPV versus number of simulation runs; dash blue: time only (averages); blue:
time only (bounds); black: well control only; red: simultaneous, example 1.

Table 6.2: Initial NPVs and final NPVs for different optimization strategies, example 1.

Terms Initial NPV, million $ Final NPV, million $
Time only (averages) 602.2 630.8
Time only (bounds) 875.1 920.2

Well control only 602.2 876.2
Simultaneous 602.2 923.2

Figure 6.3 shows the estimated well controls for producers obtained from well control

only optimization and simultaneous optimization strategies. It can be seen that for both of

the two optimization strategies, all the producers operate at close to the minimum allowable

BHP throughout the reservoir lifetime expect for producers 3 and 4 operating at a high BHP

for a few control steps due to the fact that these two producers are located in a relatively

high permeability region.
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(a) Well control only (b) Simultaneous

Figure 6.3: Estimated well controls for producers obtained from well control only optimiza-
tion and simultaneous optimization, example 1.

Figures 6.4 displays the estimated well controls for injector obtained from well control

only optimization. Note that gas is injected at the “odd” numbered control steps and water

is injected at the “even” numbered control steps. We can see that the injector operates at

the maximum allowable gas injection rates for all the “odd” controls steps and operates at

close to the maximum allowable water injection rates for the first several “even” numbered

control steps but not for the last three “even” numbered control steps. This suggests that

we can increase the NPV of life-cycle the reservoir production by injecting more gas. How-

ever, with the restrictions of fixed injection time intervals and upper bounds on rates, it is

impossible to have significantly more gas injected. When adding the injection time intervals

as optimization variables, it has more flexibility to control and adjust the total volume of

gas and the total volume of water injected.

The estimated half-cycle lengths (injection time intervals) for simultaneous optimiza-

tion strategy are shown in Figure 6.5. After adding the injection time intervals into control

variables for simultaneous optimization, the results show that the total gas injection duration

is 55.7% of the total injection time while the total water injection duration is only 44.3%.

With the longer gas injection periods, the optimal gas injection rates is still fairly close to the

upper bounds (see Figure 6.6(a)), but there has 1.73 billion more gas been injected into the

reservoir for the simultaneous optimization strategy than for well control only optimization,
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which results in a higher NPV obtained from simultaneous optimization strategy than can

be obtained from well control only optimization strategy.

Figure 6.4: Estimated well controls for gas and water injection obtained from well control
only optimization strategy, example 1.

Figure 6.5: Estimated half-cycle lengths obtained from simultaneous optimization; 55.7%
gas injection period; example 1.

Figure 6.6: Estimated well controls for gas and water injection obtained from simultaneous
optimization strategy, example 1.
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Comments on Example 1. The results suggest that when the optimal well controls for

injectors are close to the bounds (both upper bounds and lower bounds), optimizing the

duration of each half cycle can significantly enhance the NPV of production.

6.3.2 Example 2: Channelized Reservoir

Problem Description. In the second example, the simulation model is defined on a 50×

50 × 2 grid with the grid block dimensions given by ∆x = ∆y = 100 ft and ∆z = 30 ft.

Figure 6.7 displays permeability distribution for the two layers and well locations. The initial

reservoir pressure is 4,300 psi; reservoir lifetime is set equal to 3,600 days. We apply rate

controls for injectors and pressure controls for producers; the initial guess, lower bounds and

upper bounds for different control variables are shown in Table 6.3.

(a) Layer 1 (b) Layer 2

Figure 6.7: Log-permeability distributions for two different layers, example 2.

Table 6.3: Initial guesses, lower bounds and upper bounds for different type of control vari-
ables, example 2.

Design variables Units Initial Guess Lower Bound Upper Bound
Press-Prod psi 3,500 2,500 4,500

Rate-Gas Inj MM scf/D 10 0 20
Rate-Water Inj STB/D 2,000 0 4,000

Half-cycle length day 180 1 360
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The violation tolerance for total injection time at convergence is 10 days. Ten WAG

cycles are used. Each injector contains 20 control steps with the initial time length for each

control step equal to 180 days. Time length of each control step for producers is equal to

180 days and fixed throughout the optimization process. All the other variables that are not

mentioned here are the same as in Example 1.

Results. Figure 6.8 displays the NPV versus the number of simulation runs for different

optimization strategies. The initial NPVs and final NPVs for different optimization strategies

are shown in Table 6.4. It can be seen that the simultaneous optimization strategy and

well control only optimization strategies generate the two highest final NPVs. The NPV is

significantly improved by applying time only optimization strategy with well controls fixed at

“averages” or fixed at “bounds”, but it is not as high as the NPV obtained from simultaneous

optimization or well control only optimization.

Figure 6.8: NPV versus the number of simulations; blue: time only (bounds); dash blue:
time only (averages); red: well control only; black: simultaneous, example 2.

Figure 6.9 shows the estimated well controls for producers obtained from well control

only optimization and simultaneous optimization strategies. Since producers 1 and 3 are not

located at the high permeability channels, so they are operated at close to minimum BHP

for most of the reservoir lifetime, while all the other producers operate at a relatively higher
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Table 6.4: Comparison of different optimization strategies, example 2.

Terms Initial NPV, million $ Final NPV, million $
Time only (averages) 932 966
Time only (bounds) 1,036 1,088

Well control only 932 1,136
Simultaneous 932 1,135

BHP for most of the control steps due to the fact that these producers are located at the

channels.

(a) Well control only (b) Simultaneous

Figure 6.9: Estimated well controls for producers obtained from well control optimization
only and simultaneous optimization.

Figures 6.10 and 6.11, respectively, display the estimated gas and water injection

rates obtained from well control only optimization and simultaneous optimization strategies.

We can see that the injectors 1 and 3 operate at the injection rates that are far from the

bounds for both well control only and simultaneous optimization strategies; similar trends

also can be observed from injectors 2 and 4 which are not shown here.

The estimated half-cycle lengths (injection time intervals) for simultaneous optimiza-

tion strategy are shown in Figure 6.12. After adding the injection time intervals into control

variables for simultaneous optimization, the results show that the total gas injection dura-

tion and the total water injection duration for injectors 1 and 3 are still very close; similar
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(a) Well control only; Inj1 (b) Well control only; Inj3

(c) Simultaneous; Inj1 (d) Simultaneous; Inj3

Figure 6.10: Estimated gas injection rates obtained from well control optimization only and
simultaneous optimization, example 2.

trends can be observed from injectors 2 and 4 which are not shown here.

Comments on Example 2. When the optimal well controls for injectors is far from the

bounds, optimizing the duration of each water injection period and each gas injection period

has a very small effect on the NPV of production. Instead of optimizing the injection intervals

together with well controls, one still can achieve a very comparable NPV to the one obtained

from optimization of well controls and injection durations by optimizing only well controls.

6.4 Robust Optimization

6.4.1 Heterogeneous Reservoir

Problem Description. In the robust case, we consider reservoir model defined on a 25×

25 × 3 grid with the grid block dimensions given by ∆x = ∆y = 100 ft and ∆z = 30
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(a) Well control only; Inj1 (b) Well control only; Inj3

(c) Simultaneous; Inj1 (d) Simultaneous; Inj3

Figure 6.11: Estimated water injection rates obtained from well control optimization only
and simultaneous optimization, example 2.

(a) Simul.; Inj 1; 52.9% gas injection period (b) Simul.; Inj 3; 51.8% gas injection period

Figure 6.12: Estimated WAG cycle lengths obtained from simultaneous optimization, exam-
ple 2.

ft. Ten geological realizations of a Gaussian random field are generated to represent the

uncertainty in the reservoir description. The reservoir contains 4 injectors and 9 producers.

Fig. 5.1 displays three realizations of the log-horizontal permeability distribution for the
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first layer. The second and third layers have the same permeability distribution as the first

layer. The porosity is homogeneous with φ = 0.2. The initial reservoir pressure is 4,300

psi. The production lifetime is set equal to 2,160 days. We apply rate controls for injectors

and pressure controls for producers; the initial guess, lower bounds and upper bounds for

different control variables are shown in Table 6.3.

(a) Realization 1 (b) Realization 4 (c) Realization 7

Figure 6.13: Three realizations of log-horizontal permeability distribution for the first layer.

Table 6.5: Initial guesses, lower bounds and upper bounds for different type of control vari-
ables.

Design variables Units Initial Guess Lower Bound Upper Bound
Pressure-Producer psi 2,000 1,500 4,500
Rate-Gas Injector MM scf/D 4 0 5

Rate-Water Injector STB/D 2,500 0 3,000
Half-cycle length day 180 1 360

Results. In the robust optimization, we only consider the simultaneous optimization and

well control only optimization strategies. Figure 6.14 displays the expected NPV versus

the number of simulation runs for the two optimization strategies. It can be seen that the

simultaneous optimization strategy generates 17 million dollars higher NPV than the one

obtained from the strategy where we only optimize the well controls with fixed injection time

intervals.

Figures 6.15 displays the estimated well controls for injectors obtained from well

control only optimization strategy. We can see that all the injectors operate at close to the
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Figure 6.14: Expected NPV versus number of simulation runs; black: well control only; red:
simultaneous.

maximum allowable gas injection rates expect for the injector 2 at last WAG cycle. Injectors

1 and 4 operate at close to the maximum allowable water injection rates for all the WAG

cycles; injectors 2 and 3 operate at close to the maximum allowable water injection rates

only at the first few cycles.

(a) Gas injection rates (b) Water injection rates

Figure 6.15: Estimated well controls for gas and water injection obtained from well control
only optimization strategy.

The estimated half-cycle lengths for the simultaneous optimization strategy are shown

in Figure 6.16. After adding the injection time intervals into control variables for simultane-

ous optimization, the results show that the total gas injection durations for the four injectors
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are over 58% of the total injection time while the total water injection durations for all the

injectors are less than 42%. With much longer gas injection period and optimal gas injection

rates close to the upper bounds for most of the WAG cycles (see Figure 6.17(a)), there is

larger total amount of gas (more than 3.53×109 scf) injected into the reservoir for the si-

multaneous optimization than for the well control only optimization, which results in higher

NPV obtained from the simultaneous optimization strategy.

(a) Simul.; Inj 1; 58.74% gas injection period (b) Simul.; Inj 2; 64.84% gas injection period

(c) Simul.; Inj 3; 64.39% gas injection period (d) Simul.; Inj 4; 64.18% gas injection period

Figure 6.16: Estimated WAG cycle lengths obtained from simultaneous optimization

Next, we increase the upper bounds for the gas and water injection rates, i.e., increase

the maximum allowable gas and water injection rates. Specifically, we increase the upper

bounds from 5 MM scf/day to 10 MM scf/day for gas injection and increase the upper

bounds from 3,000 stb/day to 4,000 stb/day. All the other settings are kept the same as

previous case. Figure 6.18 displays the expected NPV versus the number of simulation runs

for different optimization strategies. It can be seen that with a higher upper bounds for gas

and water injection rates, the simultaneous optimization strategy generates a comparable

NPV to the one obtained from the strategy where we only optimize the well controls with

fixed injection time intervals.
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(a) Gas injection rates (b) Water injection rates

Figure 6.17: Estimated well controls for gas and water injection obtained from simultaneous
optimization strategy.

Figure 6.18: Expected NPV versus the number of simulation runs obtained from a larger
upper bounds for gas and water injection; black: well control only; red: simul-
taneous.
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CHAPTER 7

DISCUSSION AND CONCLUSIONS

In this work, we develop and apply a stochastic simplex approximate gradient (StoSAG)

for ensemble-based optimization in order to address several problems of interest in life-cycle

production optimization: the optimization of the WAG injection process, the optimization

of inflow-control-valves (ICVs), the optimization under geological uncertainty (i.e., robust

optimization) and risk minimization in the robust optimization.

For the optimization of the WAG injection process, this study suggests that the

variety of ensemble-based optimization techniques that have been developed for life-cycle

waterflooding optimization can be adapted to optimize the design variables for the WAG

and SAG injection processes. An ensemble-based optimization algorithm can easily be cou-

pled with any reservoir simulator. Thus, the ideas presented should lead to practical tools

that allow a field engineer to decide whether waterflooding, continuous gas injection, WAG

or SAG will lead to the highest NPV (or the highest oil recovery) and, at the same time,

optimize the recovery process chosen. Several conclusions can be drawn based on the com-

putational results. (i) The estimated optimal NPV of CO2-WAG is improved significantly by

applying production optimization. The initial NPV, final (estimated) NPV and cumulative

oil production tend to increase with decreasing cycle time (increasing the number of cycles).

(ii) For the channelized reservoir example considered, the optimized WAG flood results in

significantly higher values of NPV and oil production than the values obtained with the well

controls obtained by optimizing waterflooding or continuous CO2 injection. (iii) If we wish

to optimize the SAG injection process, we can first optimize the reservoir for WAG injection

to obtain the optimal controls for WAG, and then treat the optimal controls for WAG as the

initial guesses of the optimal well controls for the SAG process. This initialization procedure
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can yield significant reduction in computational cost. (iv) Adding the lengths of each WAG

half cycle to the set of optimization variables results in a significant improvement in NPV

only when optimal well controls are very near their bounds. We established the conditions

under which optimizing the injection time intervals of WAG significantly enhances the NPV

of production and the conditions under which optimization of each injection periods has a

very small effect on the NPV.

We implemented a procedure to optimize the well controls and ICV settings simulta-

neously in order to maximize the life-cycle NPV of production with a WAG injection process.

The performance of the approach is compared with those where only well controls or only

ICV settings are optimized. To assess the effectiveness of the proposed method, numerical

results are presented for two examples where lower and upper bounds exist on the well con-

trols. We consider two scenarios for well controls, one where the water and gas injection

rates are used as controls at injection wells and BHPs are used as controls at producing wells

and a second scenario where all wells, both injectors and producers, operate under BHP

control. The following conclusions can be drawn. (i) For the case where injectors are rate

controlled and producers operate under BHP control, the optimal NPV for the optimization

problem where well controls and ICV settings are optimization variables is generally signif-

icantly greater than the optimal NPV for the problem where the well controls are the only

optimization variables. (ii) For the case where injectors are rate controlled and producers

operate under BHP control, the optimal NPV for the optimization problem where well con-

trols and ICV settings are both included as optimization variables is generally significantly

greater than the optimal NPV for the problem where the only optimization variables are the

ICV settings and the injection rates are fixed equal to their upper bounds and the BHPs of

producers are fixed equal to their lower bounds. (iii) For the case where both injectors and

producers operate under BHP control, the optimal NPV for the optimization problem where

the flowing BHPs at producers are fixed at their lower bounds and injection pressures are

fixed equal to their upper bounds, and only ICV settings are used as design variables should

be equal to the optimal life-cycle NPV for the problem where we use both BHPs and ICV
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settings as optimization variables. (iv) The reservoir lifetime specified when doing optimiza-

tion for any secondary or tertiary recovery project influences the optimal life-cycle NPV of

production. The preliminary results presented here suggest that it is better to overestimate

the reservoir lifetime when doing computer-based optimization.

For the robust optimization, we have provided a theoretical explanation and under-

standing as to the superior performance of StoSAG compared to standard EnOpt. When

there is a large variation in the ensemble of reservoir models used for robust optimization, the

theory indicates StoSAG can be expected to radically outperform EnOpt, and the Brugge

case and the 3D fluvial case that we present confirm that.

For the risk minimization in robust optimization, a framework based on the lexico-

graphic method and the StoSAG algorithm is proposed to maximize the expected NPV and

minimize the associated risk in the life-cycle production optimization. Two reservoir exam-

ples are provided to demonstrate the robustness of the proposed framework. Through the

numerical experiments, we observe that the proposed framework can be effectively used to

minimize the risk in the robust optimization. The effect of the choice of different measure

for the minimization of risk is investigated, and the results show that the conditional-value-

at-risk (CVaR) (also called expected shortfall) is a better choice than the other two risk

measures, i.e., the standard deviation and worst-case scenario. For the risk measure CVaR

at 20%, a higher ratio of well control perturbations to geological realizations for the compu-

tation of ∇uJC(u) defined by Eq. 5.13 in the secondary optimization can achieve a relatively

higher CVaR at 20% (average value of the 20% lowest plausible NPV values) with the same

computational cost. The performance of the one-step (unconstrained) CVaR was compared

with that of the two-step CVaR (i.e., lexicographic-based CVaR), and it was observed that

the lexicographic-based CVaR performs much better than the unconstrained CVaR.
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