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ABSTRACT

Azad Almasov (Doctor of Philosophy in Petroleum Engineering)

Novel Applications of Least-Squares Support-Vector And Gaussian Process Regression Prox-
ies to Life-Cycle Production Optimization Problems; CO2 Huff-and-Puff, Water Alternating
Gas, and Well Shutoff

Directed by Mustafa Onur

257 pp., Chapter 8: Conclusions

(642 words)

In this work, we investigate the applications of least-squares support-vector regres-

sion (LS-SVR)- and Gaussian process regression (GPR)-based iterative-sampling-refinement

optimization methods on the optimization of different life-cycle production problems, where

the objective function to be maximized is the net present value (NPV). The life-cycle pro-

duction optimization problems considered here are the CO2 Huff-and-Puff (HnP) problem

in unconventional reservoirs, the CO2 water alternating gas injection (WAG) problem, and

the well shutoff problem. For the HnP problem, a multi-staged fractured single-horizontal

well is considered in unconventional oil reservoirs. It accounts for the natural fracture and

geomechanical effects. Both the deterministic and robust production optimization strategies

are considered. The injection rate of CO2, production bottom-hole pressure (BHP), duration

of injection and production periods in each cycle of the HnP process, and cycle lengths for

a predetermined life-cycle time are included in the set of design variables. For the WAG

problem, we consider a channelized reservoir with three layers, where we have 9 production

wells and 4 injectors. Design variables are: gas injection and water injection rates for each

injection well at each WAG cycle, production BHP for each production well at each WAG

half-cycle, and inflow control valve (ICV) for each well at each WAG half-cycle and at each

valve. We consider a rectangular tight oil reservoir with 2 water injectors and 4 producers
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for the well shutoff problem. The total duration of life-cycle production of injection wells is

divided into uniform injection control-time steps. However, the total duration of life-cycle

production of production wells is divided into what we call production cycles where, in each

cycle, we have a production period and a shutoff period for each production well. Thus,

the design variables considered for the well shutoff problem are water injection rate for each

injection well at each injection control time step; production BHP for each production well

at each production cycle; production cycle lengths of each production wells; and production

time fraction for each production well at each production cycle. For the well shutoff prob-

lem, we slightly modify the NPV formulation to include operational expenditures (OPEX)

of each well, where shutting off the production wells that will have high expenditure costs

becomes crucial. For each of the production optimization problems considered in this study,

we consider different scenarios where we fix some of the design variables and try to optimize

NPV using other design variables to check the importance of design variables for different

production optimization problems.

During optimization, the NPV is calculated by a machine learning (ML) proxy model

trained to accurately approximate the NPV that would be calculated from a reservoir sim-

ulator run. Given a set of forward simulation runs with a commercial simulator, a proxy is

built based on the ML method chosen. Having the proxy model, we use it in an iterative-

sampling-refinement optimization algorithm directly to optimize the design variables. As

an optimization tool, the sequential quadratic programming (SQP) method is used inside

this iterative-sampling-refinement optimization algorithm. The computational efficiencies of

these two ML proxy-based optimization methods are compared with that of the conventional

stochastic simplex approximate gradient (StoSAG)-based methods.

Results, in general, show that the LS-SVR and GPR models can be efficiently used for

the production optimization problems involving the HnP, WAG, and well shutoff with small

training data generated from a high fidelity numerical simulator. Higher computational

efficiency was achieved using the LS-SVR- and GPR-based iterative-sampling-refinement

optimization methods over the finite-difference, simplex, and StoSAG-based optimization
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methods using a high-fidelity numerical simulator. It was found that the LS-SVR was com-

putationally more efficient (about 1.5 times) than the GPR for the large-scale optimization

problems considered in this study. For the problems where the number of design vari-

ables is small, these two ML-based iterative optimization methods are at least 3 to 6 times

computationally more efficient, depending on the cases considered, than the gradient-based

optimization methods using a numerical simulator.

–Epictetus
“If you want to improve, be content to be thought foolish and stupid.”
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CHAPTER 1

INTRODUCTION

1.1 Background

Closed-loop reservoir management consists of two main sections: model-based opti-

mization and computer-assisted history matching. Fig. 1.1 illustrates a schematic diagram of

the closed-loop reservoir management. As can be seen from the diagram, closed-loop reser-

voir management (also known as “closed-loop optimization”) is a sequential process. The

“System” section of Fig. 1.1 is the physics of the system, which is a reservoir with wells and

facilities. We can use multiple reservoir models which are represented by the system models

section in the center of the diagram. Different kinds of reservoir models come from geology,

seismic, well logs, well tests, etc., which creates the prior model of the reservoir. This prior

model is a statistical model that we use to quantify the uncertainty of our knowledge about

the subsurface. We use this prior model to build a reservoir model by using a numerical

simulator which is used in the section of optimization algorithms. The “Sensor” section of

the diagram can be thought of as real sensors measuring flow rate, bottom hole pressure

(BHP), etc. The blue colored section on the left is for production optimization where by

using the uncertain reservoir model in the system (which reservoir simulator), production

optimization is performed to find optimal well controls as well as other design variables by

maximizing an objective function such as recovery factor or net present value (NPV). In Fig.

1.1, we see optimum design variables represented as controllable inputs. Then using this

input in the system (field) we obtain the output. Input can contain noise due to uncertainty

of system boundaries and initial conditions, etc. The output can be interpreted as noise due

to the noise in the sensors. The output contains information regarding uncertain reservoir

model parameters. Therefore, using the section of data assimilation algorithms, the uncer-

tainty of the reservoir parameters decreases as the output from the field is used with the
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Figure 1.1: Schematic diagram of closed-loop reservoir management (Jansen et al., 2009).

prior distribution on reservoir parameters to obtain a posterior distribution. This can be

thought of as calibration (or also referred to as the computer-assisted history matching) of

the reservoir model parameters in the reservoir simulator, which is a predictive model, based

on the comparison of the predicted output and measured output (Jansen et al., 2009).

In this research, however, we mainly focus on the production optimization section of

the closed-loop reservoir management diagram where we also consider the uncertainty in the

reservoir model as well. This is also known as life-cycle production optimization. When we

consider only a single realization of the reservoir model, it is referred to as the deterministic

life-cycle production optimization, while considering multiple realizations of the reservoir

model during optimization is called robust life-cycle optimization. The system here corre-

sponds to one of three production problems we would like to optimize. We consider three

different improved-oil-recovery (IOR) processes. The objective function to be optimized is

the NPV for each of these processes, but the formulation of NPV for each of the processes

may differ due to different economical considerations and parameters. Most optimization

techniques used for the life-cycle production optimization are gradient-based approaches, in
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which derivative information of the objective function is required at every iteration. Some of

the optimization techniques for life-cycle production optimization use gradient-free optimiza-

tion methods such as Genetic Algorithm (GA), Branch and Bound (B&B), Mesh Adaptive

Direct Search (MADS), Particle Swarm Optimization (PSO) (Isebor et al., 2014; Lu and

Reynolds, 2020; Tavakkolian et al., 2004; Tabatabaei Nejad et al., 2007). In this work, we

consider gradient-based optimization. In the past, many researchers mainly focused on opti-

mization of the reservoir performance using conventional high-fidelity reservoir model-based

optimization where they use a stochastic approximation of the gradient to be used in the

gradient-based optimizations which usually require thousand or more of simulation runs such

as StoSAG and EnOpt (ensemble optimization) (Do and Reynolds, 2013; Chen et al., 2015;

Chen and Reynolds, 2017; Chen et al., 2017; Chen and Reynolds, 2018; Hewson et al., 2017;

Bahagio, 2013; Fonseca et al., 2015c,d, 2017; Chen et al., 2009; Lu et al., 2017; Feng et al.,

2017). Very few of them modified the source code of the reservoir simulator to use adjoint

gradient in the gradient-based optimization, which is computationally more efficient than

using the stochastic gradient approximation, but it requires significant time and effort to

modify the source code (Kraaijevanger et al., 2007; Forouzanfar et al., 2010). In addition,

adjoint gradient needs to be coded for different production problems separately. Therefore,

the main objective of this study is to explore the use of efficient optimization methods which

do not require modifying the source code, can be used for any optimization problem indepen-

dently, and are also efficient than using high fidelity reservoir model-based optimization. Liu

and Reynolds (2020) also states that using the full-physical reservoir simulation in produc-

tion optimization is a computationally expensive process. They also mention that significant

computational time can be saved if the appropriate proxy models are selected to replace

the reservoir simulation during the production process. Using learning-based data-driven

models is one of the most popular low-fidelity models (proxy models). In their study, they

used gradient-enhanced support-vector regression (GE-SVR) for robust life-cycle produc-

tion optimization. However, to use GE-SVR, they needed to compute the gradient for each

training point using the adjoint gradient, which requires modifying source code to compute
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the adjoint gradient. Their computational results show that with GE-SVR-based iterative

optimization method requires on the order of five times fewer reservoir simulation runs than

required for the simulator-based optimization with the adjoint solution.

In this study, an iterative-sampling-refinement optimization method, which is based

on the proxy models constructed by two different ML methods; least-squares support-vector

regression (LS-SVR) and Gaussian process regression (GPR), is applied to three different

production optimization problems which their optimization by these two proxies have not

been considered previously in the literature. These three production optimization problems

are CO2 Huff-and-Puff (HnP) in unconventional oil reservoirs, CO2 water-alternating-gas

(WAG) in conventional reservoirs and production optimization including well shutoff option

to investigate applicability and efficiency of this method over conventional gradient-based

optimization methods such as EnOPT and StoSAG. As mentioned previously, the use of two

different ML-based iterative-optimization methods such as LS-SVR- and GPR-based proxy

models in the iterative-sampling-refinement optimization to life-cycle production optimiza-

tion problems are investigated, and their differences are compared and documented. With

the use of the iterative-sampling-refinement optimization method, our aim is to achieve more

computational efficiency over the use of the StoSAG optimization method. The efficiency

to be gained can change depending on the production optimization problem, we are con-

sidering because different production problems have different numbers and types of design

variables as well as different physical processes. For instance, HnP and WAG processes are

usually modeled using a compositional reservoir simulator which uses different PVT models

and physics in the treatment of fluid flow in porous media than those of a black oil reservoir

model. Also, considering the HnP problem is in an unconventional reservoir, we considered

geomechanical effects. We also include molecular diffusion. For the well shutoff production

optimization problem, we consider the waterflooding process in conventional reservoirs where

we use a black oil simulator. Here the physics of the production problem is different from

both the HnP problem in unconventional reservoirs and the WAG problem in conventional

reservoirs. The NPV formulation as well as the design variables considered for each pro-
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duction optimization problem are different as well. Therefore, the production optimization

problems considered in this research have significant differences. For each production op-

timization problem, we also consider different cases at which a number of design variables

change even though the physics of the problem is the same. The reason for considering a

variety of production optimization problems is to be able to generalize the application of the

iterative-sampling-refinement optimization problem so that we can make solid and general

conclusions on its efficiency over StoSAG optimization. For the production optimization

of the HnP, we also consider the geological uncertainty of the reservoir to perform robust

optimization, where the objective function is the expectation of NPV over the uncertain

reservoir model parameters.

For the HnP problem, we also investigate the effects of the miscibility and molec-

ular diffusion and discuss the physics of the mass transport mechanism in unconventional

reservoirs since it is our first production optimization problem we consider. We perform

sensitivity analysis on HnP process to investigate the physics of the problem and to check

the effect of each design variable on production optimization so that we can relate our pro-

duction optimization results to whether they are consistent with our sensitivity analysis or

not. We also mention the problems we face during using a commercial compositional reser-

voir simulator (GEM, 2020) and gave guidelines for the readers on how to properly choose

numerical variables of the solver so that they do not face convergence issues when they use

this commercial compositional simulator. However, for other production optimization prob-

lems, we do not conduct sensitivity analysis, and we mainly focus on the application of the

iterative-sampling-refinement optimization problem.

1.2 Literature Review

1.2.1 Life-cycle Production Optimization of Huff-and-Puff Process

Production of oil from unconventional shale-oil/tight-liquid sources is of big interest

to industry and governments across the globe due to the increasing scarcity of conventional
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oil reserves. A good review and description of such resources can be found in Bohacs et al.

(2013). One of the disadvantages of producing oil from these reservoirs is that the oil pro-

duction rate declines sharply due to low permeability of the matrix system after a few years

of primary production. The primary oil recovery factor (RF) of shale-oil formations is less

than 10% (Clark, 2009), even though long horizontal wells are drilled and fractured (Chris-

tensen et al., 1998). Therefore, IOR/EOR methods are usually applied to improve RF after

primary production. This has motivated us to investigate the challenging problem of life-

cycle production optimization for efficient production oil from such reservoirs by considering

cyclic miscible gas such as CO2 injection.

In this study, we consider unconventional shale-oil/tight-liquids systems. In this kind

of reservoir, permeability ranges from 50 to 106 nD. The Bakken formation is considered

to be an important source of light shale oil in North America (Jin and Sonnenberg, 2014).

Therefore, we considered the formation and composition of the Bakken reservoir in our

research.

The oil production rate declines sharply due to the low permeability of the matrix

system after a few years of primary production. The primary oil recovery factor (RF) of shale-

oil formations is usually less than 10% (Clark, 2009), despite the fact that long horizontal

wells are drilled and fractured (Christensen et al., 1998). Therefore, IOR/EOR methods are

usually applied to improve RF after primary production.

Cyclic CO2 injection, also known as the CO2 huff-and-puff (HnP) process, appears

to be an attractive EOR/IOR method that could be applied to provide additional recovery

from unconventional oil reservoirs. HnP is a single-well process in that both injection and

production are performed in the same well, unlike waterflooding or gas flooding processes

where more than one well is involved. However, in a field, individual HnP processes can be

conducted at multiple wells. Although hydrocarbon gases could also be used in an injection

period of an HnP process, the CO2 can be preferred as an injection fluid. The reasons

for the CO2 to be used as injection gas are: at high pressures, higher than 1160 psi, its

density is high enough to avoid significant gravity segregation; its viscosity is low enough so
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that it is highly mobile, but not so low that it causes fingering issue (Jarrell et al., 2002).

Performing experimental studies on tight core samples by considering four different recovery

schemes; namely, waterflooding, immiscible CO2 HnP, near-miscible CO2 HnP, and miscible

CO2 HnP processes, Song et al. (2013) found that waterflooding showed better performance

than immiscible CO2 injection, but miscible CO2 injection performed the best. However,

to achieve miscibility for CO2, we have to maintain reservoir pressure above the minimum

miscibility pressure (MMP) (Yu et al., 2014). Each cycle of the CO2 HnP process consists

of three periods: injection, soaking where we shut in the well for some time, and production.

Many cycles may be used during a reservoir’s life. HnP starts after reservoir pressure has

been depleted to some level. A compositional model should be used to handle mass transport

rigorously in a miscible process including molecular diffusion. We use the CMG-GEM (2016)

compositional simulator to simulate a single-well CO2 HnP process (GEM, 2016).

Song et al. (2013); Gamadi et al. (2014); Yu et al. (2016); Alharthy et al. (2018);

Alfarge et al. (2017); Tovar et al. (2018a,b) conducted experimental studies and Artun et al.

(2011); Yu et al. (2014); Sun et al. (2016); Yu et al. (2019); Joslin et al. (2018); Fragoso et al.

(2018); Gala et al. (2018); Pankaj et al. (2018); Wang et al. (2019); Ganjdanesh et al. (2019)

performed numerical simulation studies for investigation of HnP process. Field case-based

simulation studies can be found in Todd et al. (2016); Hoffman et al. (2018); Wang et al.

(2018); Orozco et al. (2019). All these cited works present sensitivity studies investigating

the effect of different design variables; e.g., the injection time, injection rate, soaking time,

production time, and production well bottomhole pressure (BHP), as well as the effect of the

different reservoir and fracture flow parameters such as fracture network and conductivity,

matrix permeability, etc., on RF during CO2 HnP process, which is a forward problem.

However, some of these studies (Todd et al., 2016; Yu et al., 2014; Wang et al., 2018; Orozco

et al., 2019) consider history matching of oil production rate and cumulative oil production,

which is an inverse problem. To the best of our knowledge, Artun et al. (2011) were the first

to develop an artificial neural network (ANN)-based proxy models for predicting cumulative

oil production and oil production rate screening and optimization. However, they did not
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use an iterative-sampling-refinement optimization framework to perform the optimization. In

this work, we prefer to consider kernel-based machine learning methods such as least-squares

support-vectors and Gaussian regression processes as they are computationally less expensive

than an ANN-based machine learning method which requires more training data to construct

an appropriate proxy model. Besides, Artun et al. (2011) used a genetic algorithm (GA)

coupled with ANN-based proxy models to maximize the discounted oil volume produced

per injected volume for a specified period of operation. In this study, we prefer to use a

kernel-based proxy coupled with a gradient-based optimization method (namely sequential

quadratic programming - SQP) method due to its significant efficiency over a gradient-

free GA method for optimization problems based on continuous design (or optimization)

variables. To optimize the HnP control variables by maximizing the lower confidence interval

(µ− σ) of cumulative oil production Hamdi et al. (2019) used Gaussian Processes.

In this study, the objective function considered is NPV, and the design variables are

used are different from what was used in the literature. New design variables for the HnP

process are defined as the length of each cycle, and injection and production time fractions

of each cycle besides well-controls. Thus, the formulation NPV objective function is also

different from what was used in the literature. Linear equality constraints on cycle lengths

are handled using the gradient projection method.

1.2.2 Life-cycle Production Optimization of Water-Alternating-Gas Injection Process

WAG is a cyclic process as well. However, in this process, unlike the HnP process,

there is no soaking period, and water is injected after the gas injection alternately. So,

each injection cycle of a given injection well has two injection half-cycles; gas injection half-

cycle and water injection half-cycle. Furthermore, it is not a single-well process because it

requires injection wells and production wells separately. There can be multiple injection and

production wells. WAG is a well-known EOR method applies in the oil industry to improve

recovery factor. WAG process is mainly used for conventional reservoirs.

Most literature on CO2 WAG optimization is based on reservoir simulation experi-

8



ments, that is sensitivity analysis (Bender et al., 2014; Zhou et al., 2012; Ghaderi et al., 2012;

Johns et al., 2003). However, with an experimental approach, the well-operating conditions

may not be close to the optimal solution. Therefore, it is important to have an automatic

algorithm to find the optimal solution using the information of the NPV such as the gradient

information, Hessian information, etc. Most of the researchers performed linear program-

ming which requires only gradient information for the optimization problem (Bahagio, 2013;

Chen and Reynolds, 2018; Hewson et al., 2017). Bahagio (2013) used the EnOPT algorithm

for the CO2 WAG injection process. However, he did not investigate the effect of the dura-

tion of each injection half-cycle for each injection wells on production optimization. Hewson

et al. (2017) performed the ensemble-based optimization of robust life-cycle production op-

timization of CO2 WAG including cycle lengths for each injection wells as design variable

as well as well controls for a full-field model. The drawback of their methodology is that

they used a chopping strategy to handle the linear equality constraints which can lead to

the suboptimal solution. Later, Chen and Reynolds (2018) also included the duration of

each injection half-cycle as design variables besides the well control variables using StoSAG

optimization with equality constraints. However, they handled these constraints using the

augmented Lagrangian method instead of using the chopping strategy.

By controlling design variables of the WAG process such as water injection rate, gas

injection rate, and production BHP, one can achieve a higher NPV. However, inflow-control-

valves (ICVs) (also known as inflow-control-devices (ICDs)) have shown to be important

as their use improves oil production and recovery factor when petro-physical properties of

the reservoir layers are crucially different such as the significant difference of permeability

field between layers (Naroso et al., 2010; Alsyed and Yateem, 2013; Al-Muailu et al., 2013).

Dossary et al. (2012); Al-Khalifa et al. (2013); Chan et al. (2014), in their research widely

discuss how using smart completion, such as ICVs help to achieve higher recovery factor.

Some of the researchers considered ICV as a continuous variable varying between 0 and 1

(Naus et al., 2004), some of them used ICV as an on/off option taking value only 1 and

0 only (Pari and Kabir, 2009; Fonseca et al., 2015a). Naus et al. (2004) modeled ICV as
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a multiplication factor of the productivity index (PI) in the production optimization using

sequential linear programming (SLP). Chen and Reynolds (2017) showed the importance of

including ICVs as design variables besides the well controls such as gas injection rate water

injection rate and production BHPs by introducing the smart completion strategy They

performed gradient ascent optimization method with StoSAG to perform robust life-cycle

production optimization of WAG process including ICVs to maximize NPV. Later, they also

included the duration of the WAG injections (e.g., half-cycle length) for each injector as

design variables besides well-controls and ICVs to maximize NPV as mentioned above (Chen

and Reynolds, 2018). They observed that including the length of each half-cycle as a design

variable improves NPV only when optimal well controls are close to their bounds. However,

when optimal well controls are far from their bounds, this improvement of NPV is negligible.

In this research, we also include the ICV as a design variable and show its importance

to maximize NPV. Different optimization problems are considered under the production op-

timization of the WAG process such as including ICVs as design variables and not including.

As mentioned in Section 1.1, as part of the main focus of this research, LS-SVR- and GPR-

based iterative-sampling-training optimization method are applied to different production

optimization cases of the WAG process to investigate the applicability of this optimiza-

tion method to the WAG process under consideration of a different combination of design

variables. As the second focus of this research, the computational efficiency of iterative-

sampling-refinement optimization is compared with the StoSAG method, where we use a

high-fidelity reservoir model. It should be noted that a different formulation of the NPV ob-

jective function from the NPV formulation used in the literature is proposed which is named

as the general NPV formulation for the production optimization of the WAG process. Similar

to the formulation used for the HnP process in this research, the design variables considered

are the duration of each injection cycle, gas injection time fraction at each cycle beside the

design variables such as ICVs and well controls. The gradient projection method is used to

handle linear equality constraints on the cycle lengths.
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1.2.3 Life-cycle Production Optimization Including Well Shutoff

The well shutoff optimization problem refers to optimizing the time at which a partic-

ular well is either open or closed for maximizing the net present value. It is the focus of most

of the operating companies as the companies desire the shutoff to be part of the optimiza-

tion procedure since the NPV formulation they use also includes the operation expenditures

(OPEX) for each well. Once OPEX of each well is included in the NPV formulation, to shut

off production wells that do not produce to cover OPEX of that production well should be-

come part of the life-cycle production optimization. There are different approaches to include

the well shutoff option for the life-cycle production optimization. One of them is to define

a binary design variable to shut well on/off, which constitutes a discrete optimization prob-

lem. However, it is not efficient to handle this optimization problem by using gradient-free

methods such as a genetic algorithm or particle swarm, etc, especially well shutoff optimized

along with the other well controls such as injection rate and production bottomhole pressures

(BHP) at each well. To be able to apply a gradient-based optimization, we need to have a

continuous optimization problem, i.e., we need all design variables to be continuous. One

approach is using production BHPs or production flow rates at each control time step of

each production well. When the BHP increases to a value higher than that of the well-block

pressure, the well automatically shutoffs due to a small pressure difference. However, this

leads to a discontinuous NPV with respect to BHP at the points close to the well-block

pressure. This is because once we shut off the well, the NPV jumps due to zero OPEX.

Similarly, when we use production rate as a design variable at each control time step of each

production well, at zero rates at given control time step of given production well, OPEX of

that production well will be zero and there will be a jump in the NPV value. To be able

to understand the reason for this discontinuity with respect to BHP, we suggest the reader

check Section 2.3. In that section, the formulation of the NPV including OPEX is formu-

lated, and the discontinuity is visualized using the example of waterflooding case. Another

approach to this is to define switching-times for the well shutoff as design variables which is

going to be continuous. (Sudaryanto and Yortsos, 2000) looked at the optimization of fluid
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front dynamics in porous media using rate control. They observe that the rate was better to

be controlled either fully open or closed, not continuously. To do so, they defined switching-

time as the change of the rate from off to on, and on to off. They did not use this option to

deal with discontinuity, but to improve their objective function by replacing continuous rate

control with on/off. Even though they do not have NPV as an objective function, and they

considered a totally different optimization problem from the one considered in this study,

this method can be applied to any optimization problem that requires an on/off option.

For example, Fonseca et al. (2015a) used switching-time-interval parameterization to shut-

off the inflow-control devices (ICDs) modeled after the switching-time-optimization method

provided by Sudaryanto and Yortsos (2000). However, in this approach, the last switching-

time-interval needs to be truncated so that summation of all switching-time-intervals must

be equal to the life of the production. The objective of this research is to handle disconti-

nuity in the NPV objective function so that gradient-based optimization can be applied. In

this research, therefore, a similar method to that of Fonseca et al. (2015a) is used, but the

difference is in different approach for the parameterization of the switching-time-intervals,

and constraints on design variables as well as the optimization problem. For this purpose, we

use a similar parameterization to the HnP problem (Almasov et al., 2020b), that is we define

a fixed number of cycles, length of each cycle, and production time fraction. The remaining

fraction of each cycle is the shutoff time fraction. We use linear equality constraints so that

summation of the length of each cycle is equal to the life of the production, and thus, we

do not need to truncate the length of the last cycle. Linear equality constraints are handled

using the gradient projection method. Both the stochastic simplex gradient optimization

and the machine learning-based iterative-sampling-refinement optimization methods such as

LS-SVR and GPR for the life-cycle optimization of well shutoff problems are considered, and

the computational efficiencies of the methods are compared.

1.2.4 Iterative-Sampling-Refinement Optimization

To the best of our knowledge, the use of an LS-SVR machine learning method for
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the life-cycle optimization problem is first considered by Guo and Reynolds (2018) who pre-

sented a new and general workflow for efficient estimation of the optimal well controls for the

robust production-optimization problem using support-vector regression (SVR), where the

objective function is the net present value (NPV). They used the so-called iterative-sampling-

refinement optimization algorithm. All the examples presented by Guo and Reynolds (2018)

consider production under waterflooding in conventional oil reservoirs which are simulated

by a using black oil commercial simulator. However, Nwachukwu et al. (2018) performed

machine learning (ML)-based optimization of well locations and WAG parameters. They

used the Extreme Gradient Boosting method (XGBoost) as the ML method to build a proxy

for making predictions given a set of observations. Then they introduce hyperdimensional,

simultaneous optimization of well location and well controls of WAG using a new optimiza-

tion scheme which is similar to Mesh Adaptive Direct Search (MADS). With this algorithm,

they achieved more efficiency than using high-fidelity reservoir model-based optimization.

In their applications, the proxy-based optimization required 880 simulation runs, 500 simu-

lation runs being required for constructing the proxy model. They achieved 11 times more

computational efficiency over joint optimization with a reservoir simulator. However, the

optimization problem they looked at was a discrete optimization problem. In our research,

we look at continuous optimization, where all our variables are continuous. The XGBoost

method requires a lot of training data to have an accurate enough model (500 training data in

their application) to perform optimization and prediction. Since discrete optimization using

a high-fidelity reservoir model requires much higher reservoir simulation runs (ten thousand)

than continuous optimization, using this framework achieves higher computational efficiency.

However, continuous optimization using a high-fidelity reservoir model requires thousands

of simulation runs (most of the time up to 2000 simulation runs). So, the WAG production

optimization problems we consider are different from their problem. Kernel-based ML meth-

ods require less training data even for very high dimensional problems, such as the number

of design variables being more than 200. Therefore, we used kernel-based proxies under

the iterative-sampling-refinement optimization framework to achieve higher computational
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efficiency in gradient-based production optimization problems we considered.

As the kernel-based ML methods, we consider the use of the Gaussian regression

process (GPR) in addition to the LS-SVR on different life-cycle production optimization

problems. There are several books and papers published in the machine learning literature;

for example see Williams (1998); Seeger (2004); Williams and Rasmussen (2006); Liu et al.

(2020); Gramacy (2020), advocating the use of the GPR methods to solve hard machine

learning problems. Based on the ML literature, it seems that the GPR-based methods

are attractive because of their flexible nonparametric nature and more importantly, treated

within a Bayesian framework, they offer valid estimates of uncertainties in our predictions

and generic model selection procedures cast as nonlinear optimization problems. Hence, in

this work, we investigate the use of two different ML-based methods; the GPR- and LS-

SVR-bases proxy models, for the production optimization problem of a miscible CO2 HnP

problem in unconventional oil reservoirs, WAG injection problem, and well shutoff problem.

In the well shutoff problem, we consider the waterflooding problem. However, the NPV

formulation used is different from the NPV formulation used for HnP and WAG problems

considering OPEX for each well. Thus, the NPV objective function, as well as the design

variables defined for each production optimization problem, are all different from what were

defined in the literature.

1.2.5 Robust Optimization

As mentioned in Section 1.1, reservoir parameters are uncertain. The uncertainty of

the reservoir parameters at the initial stage of the reservoir is quantified by the geological,

geophysical, well-log data, well test, etc., as shown in Fig. 1.1, which creates the prior prob-

ability distribution function (PDF) over the uncertain reservoir parameters. The variance of

this uncertainty narrows down at the later stages of the reservoir when we start producing

and getting the data from sensors. However, there will always be uncertainty in the reser-

voir models. NPV is sensitive to the reservoir model parameters, especially the permeability

field. Therefore, chosen reservoir model affects the optimization results, optimum design
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variables significantly. Since we never know the true reservoir model, it is important to in-

clude the reservoir uncertainty in the life-cycle production optimization. When production

optimization incorporates geological uncertainty into the life-cycle production optimization,

it is called robust optimization. Many researchers showed the importance of considering the

uncertainty of the geological model on the production optimization results (Capolei et al.,

2015; Chang et al., 2015; Chen and Oliver, 2010; van Essen et al., 2009).

The commonly used objective function to be optimized in robust optimization is the

expectation of the NPV over the uncertain reservoir parameters. Most of the researchers

performed gradient-based robust optimization, using the steepest ascent algorithm. To cal-

culate the gradient, very few of them used gradients computed with the adjoint method

(van Essen et al., 2009; Capolei et al., 2015; Chen, 2011; Forouzanfar et al., 2013; Jansen,

2011; Sarma et al., 2006). However, as mentioned in Section 1.1, implementation of the

adjoint gradient is difficult since it requires modifying the source code of the simulator.

Therefore, using an approximate gradient (numerical gradient) caught the attention of most

researchers. The finite-difference (FD) method is one of the numerical approximation meth-

ods for gradients. However, when the number of design variables is more than ten, it is

not efficient to use the FD method. Therefore, in the literature, the stochastic gradient

method is frequently used. This method is inspired by the Ensemble Kalman Filter (EnKF)

method (Lorentzen et al., 2006; Nwaozo, 2006). For robust optimization, Chen and Oliver

(2010) formulated EnOpt method first time. They suggested that for robust optimization

one-to-one pairing of each perturbation of design variable with each of the realization of

the uncertain reservoir model parameters should be enough for gradient approximation for

the expectation of the NPV, which is the objective function of the robust production op-

timization problem. However, Fonseca et al. (2017) mathematically showed that standard

formulation of the EnOpt for robust optimization, where one-to-one correspondence is used,

gives poor gradient approximation. However, increasing the number of perturbations corre-

sponding with each realization of the reservoir model can yield a better result. However, this

increases the computational costs (Fonseca et al., 2015b). Therefore, later Do and Reynolds
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(2013) modified EnOpt and formulated modified-EnOpt. Fonseca et al. (2017) modified the

EnOpt to a more accurate and efficient formulation for robust production optimization and

referred to it as a stochastic simplex approximate gradient (StoSAG). In their research, they

also discussed singly- and doubly-smoothed StoSAG and gave the theoretical explanation

for each formulation as well as the relation between formulations. In this study, we will use

the StoSAG method for robust optimization cases. For the deterministic optimization cases,

where the single realization of the reservoir model is used, we used the simplex method to

approximate gradient for production optimization problems of HnP and well shutoff, but for

the WAG problem, we used the singly-smoothed cross-covariance StoSAG (ss-cc-StoSAG)

with the single realization of the reservoir model. The reason for using ss-cc-StoSAG for the

optimization of the WAG problem is because we want to consider the correlation between

well controls for each production and for each injection well. This reason will be explained

more in Section 3.2.

However, in this study, the ML-based iterative-sampling-refinement optimization

method is utilized to perform robust optimization, where the objective function is the ex-

pectation of the NPV over the uncertain reservoir model parameters. The computational

efficiency of this optimization method is compared with that of StoSAG method. As ML

model, the GPR and LS-SVR are used and their computational efficiencies, as well as the

accuracy, are compared over each other.

1.3 Research Objectives and Dissertation Outline

1.3.1 Research Objectives

We can briefly summarize the objectives of this research as follows:

1. Give theoretical background on physics of the HnP process in unconventional reservoirs

with natural fractures and including geomechanical effects.

2. Perform sensitivity analysis for HnP process.

3. Investigate convergence issues in GEM (2016) and discuss how to solve them.

16



4. Formulate NPV for optimization problem of:

(a) HnP problem;

(b) WAG problem;

(c) Well shutoff problem.

5. Give theoretical background on:

(a) stochastic gradient-based optimization methods;

(b) LS-SVR;

(c) GPR;

(d) iterative-sampling-refinement optimization method.

6. Perform iterative-sampling-refinement optimization on life-cycle production optimiza-

tion problems of different production processes to check the applicability of this method

and compare the efficiency of the iterative-sampling-refinement optimization method

with stochastic gradient-based optimization methods. For the HnP, perform robust

optimization as well as deterministic optimization.

7. Compare the performance of LS-SVR-based iterative-sampling-refinement optimization

with GPR-based iterative-sampling-refinement optimization.

8. Provide useful guidelines for constructing ML-based proxies that can be used to perform

efficient deterministic and robust life-cycle optimization.

9. Provide different formulations to handle discontinuity to perform gradient-based life-

cycle production optimization including well shutoff option.

1.3.2 Dissertation Outline

The thesis is organized with eight chapters as follows:

In Chapter 2, we present the formulations of the NPV objective function for pro-

duction optimization problems of HnP, WAG, and well shutoff. In that chapter, we define
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the design variables as well as the constraints on those design variables for each production

optimization problem.

In Chapter 3, we introduce the theory of stochastic gradient-based optimization meth-

ods, where we discuss: gradient approximation methods, such as simplex, StoSAG in general

(including singly-smoothed cross-covariance StoSAG (ss-cc-StoSAG) and double-smoothed

cross-covariance StoSAG (ds-cc-StoSAG)); constraint handling methods, such as truncation

and gradient projection methods; gradient ascent algorithm and convergence criteria.

In Chapter 4, we focus on the ML-based iterative-sampling-refinement optimization

method. First, we give a theoretical background of two different kernel-based machine learn-

ing methods; LS-SVR and GPR. Then, we introduce the iterative-sampling-refinement op-

timization algorithm.

In Chapter 5, we apply stochastic gradient-based optimization and iterative-sampling-

refinement optimization methods on the HnP process for both deterministic cases and for

robust cases, and compare the computational efficiency of these two optimization methods.

Before doing that, we discuss the physical process of the miscible CO2 injection process

in unconventional reservoirs. We also perform sensitivity analysis of the HnP process with

respect to design variables as well as reservoir parameters. The reason we investigate the

HnP process deeper than other production optimization problems considered here is that it

is our first optimization problem considered here and therefore we want to investigate the

physical reason for the optimization results.

In Chapter 6, we perform stochastic gradient-based optimization and iterative-sampl-

ing-refinement optimization methods on the WAG process, and we compare the computa-

tional efficiency of two optimization methods. First, we investigate the effect of choice of

the upper and lower bounds of the BHP of each production well on the training data and

the accuracy of the initial proxy model as well as the optimization results of the iterative-

sampling-refinement optimization method. Then we develop the strategy of choosing bounds

of BHP based on these results. Later we consider three main sub-cases such as considering

water and gas injection rates at each control time step of each injection wells as only design
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variables; then we include BHP as design variable; at the last, we also include the ICVs as

design variables besides well controls. We compare different sub-cases to see the importance

of including BHP and ICV as a design variable and their effect on the optimization results

as well as the accuracy of the proxy models such as LS-SVR and GPR.

In Chapter 7, first, we introduce the novel methodology to solve production optimiza-

tion problems including well shutoff by defining new design variables such as production cycle

and production time fraction with the same analogy used in the optimization problem of the

HnP. Then we perform both stochastic gradient-based optimization and iterative-sampling-

refinement optimization methods to find optimum design variables to maximize NPV, and

we compare optimization results of these two methods as well as their computational ef-

ficiencies. We have to mention for the NPV of well shutoff optimization we also consider

operational expenditures (OPEX) of each well.

In Chapter 8, we summarize the conclusions and give useful discussion based on the

results of this research.
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CHAPTER 2

NET PRESENT VALUE (NPV) FORMULATIONS AND DESIGN

VARIABLES

Life-cycle production optimization of an oil field is one of the main objectives of

petroleum companies. The objective of life-cycle production optimization is an estimation

of the optimal design variables that maximize the net present value (NPV) relevantly formu-

lated as an objective (cost) function to obtain the maximum economic benefit. To find the

maximum is an optimization problem given the relevant formulation of the objective function

(NPV). The size and the types of design variables, as well as formulation of the objective

function, can change depending on the production problem. Examples of design variables

are production BHPs, injection rates, injection times, well locations, type of well (injector

or producer), and shutoff option of the wells. Recently, oil and gas companies are interested

in optimizing the time to shut off a well to eliminate its operating cost in the overall NPV

of the life-cycle production operation. In the following sections, for each production opti-

mization problem, first, we define the design variables relevant to that optimization problem,

then formulated NPV. We also define constraints on the design variables for each production

optimization problem. Finally, the normalization of the design variables for each problem is

given for each production optimization problem.

2.1 NPV Formulation for the CO2 HnP Problem

To formulate the NPV objective function for the single-well HnP process, the following

definitions and assumptions are used:

• Nc, the total number of cycles, is fixed during the optimization process.

• ∆tn is the duration of the nth cycle, where n = 1, 2, ..., Nc.
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• The total duration of the HnP process, ttotal =
∑Nc

n=1 ∆tn, is known and fixed during

the optimization process.

• ∆̂t
n

i , ∆̂t
n

soak, and ∆̂t
n

p represent time fractions of injection, soaking, and production pe-

riods, respectively, for the nth cycle. They can be treated as unknowns in optimization,

and defined by

∆̂t
n

p =
∆tnp
∆tn

, ∆̂t
n

i =
∆tni
∆tn

, and ∆̂t
n

soak = 1− ∆̂t
n

p − ∆̂t
n

i , (2.1)

where ∆tnp and ∆tni (days) are the duration of production period and injection pe-

riod in the nth cycle, respectively. Note that specifying the duration of injection and

production periods determines the duration of the soaking period.

• δ∆tni,j (days), for j = 1,2,. . . ,Nn
i , is the length of the jth control-time step for the

injection period in the nth cycle, and δ∆tnp,j (days), for j = 1,2,. . . ,Nn
p , is the length of

the jth control-time step for the production period in the nth cycle. Nn
i and Nn

p denote

the numbers of injection and production control-time steps, respectively, and they are

known in optimization. In the case we use uniform control-time steps for injection and

production periods, then δ∆tni,j = δ∆tni , for j = 1,2,. . . ,Nn
i and δ∆tnp,j = δ∆tnp , for j =

1,2,. . . ,Nn
p

Nn
p =

∆tnp
δ∆tnp

and Nn
i =

∆tni
δ∆tni

. (2.2)

In all our applications to be given in this dissertation, for simplicity, we consider

uniform lengths of control-time steps for injection and production periods.

• We define tni,j to denote the total time, relative to t0, marking the end of the jth

injection control-time step in the nth cycle, and tnp,j to denote the total time, relative

to t0, marking the end of the jth production control-time step in the nth cycle, and,

respectively, as

tni,j = t0 +
n−1∑
l=1

∆tl +

j∑
k=1

δ∆tni,k, for j = 1,2,...,Nn
i , (2.3)
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and

tnp,j = t0 +
n−1∑
l=1

∆tl + ∆tn(1− ∆̂t
n

p ) +

j∑
k=1

δ∆tnp,k, for j = 1,2,...,Nn
p . (2.4)

To create a schedule to be used in the simulator (CMG-GEM (GEM, 2016) in this research),

we need to order the control times in such a way that they follow each other in time order.

It means that, first, we create time schedule set tsc = {tni,j, tnp,j} for all i, j and n indices,

and then we order the set in ascending order. In that way, the well controls are ordered

corresponding to their control times.

A schematic illustration of the definitions for the CO2 HnP process is shown in Fig.

2.1.

injec�on soaking produc�on

1st cycle 2nd cycle 3rd cycle

cumula�ve �me at the end 

of the 2nd control-�me step 

of the produc�on period of 

the 2nd cycle

cumula�ve �me at the end of 

the 3rd control-�me step of 

the injec�on period of the 3rd

cycle

dura�on of the

produc�on period

in the 2nd cycle

dura�on of the

injec�on period 

in the 1st cycle

the 2nd injec�on control-�me

step in the 3rd cycle

total �me 

deno�ng the 

beginning of the 

HnP process

Figure 2.1: A schematic illustration for a 3-cycle HnP process.

Using the above notation and Fig. 2.1, we define the objective function for the NPV

of the HnP process in an unconventional oil formation as

J(m,u) =
Nc∑
n=1

 Nn
p∑

j=1

δ∆tnp,j

(1 + b)
tn
p,j
365

(roq̄
n
o,j − cCO2,pq̄

n
CO2,p,j

)−
Nn

i∑
j=1

δ∆tni,j

(1 + b)
tn
i,j
365

(cCO2,iq̄
n
CO2,i,j

)

 ,
(2.5)

where b is the annual discount rate; ro ($/STB) is the oil revenue; cCO2,p ($/MSCF) is the dis-
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posal cost of CO2; cCO2,i ($/MSCF) is the cost of injection of CO2; q̄no,j (STB/Day) is the aver-

age produced oil rate at the jth control-time step of the nth cycle; q̄nCO2,p,j
(MSCF/Day) is the

average produced CO2 rate at the jth control-time step of the nth cycle; q̄nCO2,i,j
(MSCF/Day)

is the average injected CO2 rate at the jth control-time step of the nth cycle.

In Eq. 2.5, the time steps are general and do not have to be uniform. If we give the

time steps with the following equations:

δ∆tni,j =
∆tn∆̂t

n

i

Nn
i

(2.6)

and

δ∆tnp,j =
∆tn∆̂t

n

p

Nn
p

, (2.7)

then they are uniform. For instance, let us take our injection period of the first cycle as 183

days, and Ni is 19. If we want to have uniform time steps, we will use Eq. 2.6, and δ∆t1p,j

will be 9.63 days for j = 1, ..., 19. If you want you can choose each of the time step values

as you want. For example, δ∆t1p,j = 10 for j = 1, ..., 18, and ∆δt1p,19 = 3, in which again

we have 19 time steps and the summation of these time steps of injection period of the first

cycle is equal to the duration of the injection period of the first cycle.

Once we control design variables in these time steps, we call them control time steps.

Even if we do not control any design variable during the production period or injection

period, we might as well have small time steps so that we can accurately compute the NPV

since we have inflation multipliers of 1/(1 + b)
tni,j
365 and 1/(1 + b)

tnp,j
365 . But, this makes the

difference in the NPV values small enough that it can be neglected. However, to be more

accurate, we can divide the injection and production period of each cycle into smaller time

steps.

In Eq. 2.5, m is an Nm-dimensional vector of reservoir-model parameters that repre-

sents one realization of the uncertain reservoir models, where Nm denotes the total number

of uncertain reservoir model parameters, and u represents the Nu-dimensional vector of the

design variables, where Nu denotes the total number of design variables. The design variable
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vector includes CO2 injection rate (qnCO2,i,j
) at each injection control-time step (δ∆tni ), pro-

duction BHP (pnbh,j) at each production control-time step (δ∆tnp ), the fraction of injection

(∆̂t
n

i ) and production (∆̂t
n

p ) periods at each of the Nc cycles, and the length of each cycle

(∆tn’s). The order of design variables in the design vector is

u = [(uIC)T , (uPC)T , (uPT)T , (uIT)T , (uC)T ]T , (2.8)

where uIC contains the injection controls (gas injection rates) at all control steps; uPC con-

tains the production controls (production BHPs) at all control steps; uPT and uIT contains

production time fractions and injection time fractions at all cycles, respectively; uC contains

the cycle length of all cycles. Thus, the dimension of the design variable vector,

Nu =
Nc∑
n=1

(
Nn
p +Nn

i

)
+ 3Nc. (2.9)

The NPV function can also be defined in terms of simulation time steps where pro-

duction and injection time steps are given in that function, implicitly

J(m,u) =
Ns∑
k=1

∆tk

(1 + b)
tk

365

(roq̄
k
o − cCO2,pq̄

k
CO2,p

− cCO2,iq̄
k
CO2,i

), (2.10)

where Ns is number of simulation time steps; b is the annual discount rate; ∆tk is time

difference between each simulation time steps (Days); tk is simulation time at the kth sim-

ulation time step (Days). Then, the time difference between each simulation time step can

be calculated as follows:

∆tk = tk − tk−1. (2.11)

To make sure that both NPV equations (Eqs. 2.5 and 2.10) yield the same result, a compu-

tational example is given in Appendix A.

Though the NPV formulation given by Eq. 2.5 is more general, here, we focus on

the specific subproblem of it, where we fix the number of cycles, Nc, equal to 5, and the
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injection and production periods are not divided into control-time steps, i.e., Nn
p = Nn

i = 1

for each cycle. Furthermore, we fix the total duration of the HnP process to 3000 days, i.e.,∑5
n=1 ∆tn=3000 days, though the duration of each cycle, ∆tn could be treated as a design

variable. Thus, the maximum number of design variables at each cycle is five; namely, qnCO2,i
,

pnbh, ∆̂t
n

i , ∆̂t
n

p , and ∆tn, n = 1, 2, ..., 5. It is worth noting that the number of cycles (Nc)

may be treated as unknown in optimization, but we have not done it, and it is a subject

of future study because treating Nc as a design variable poses a more difficult optimization

problem in the sense that it requires one to work with the vectors of design variables that

change sizes in each iteration.

2.1.1 Constraints on Design Variables

We have bound constraints, linear inequality, and linear equality constraints. In the

following equation, we give the bound constraints for production BHPs and injection rates

as

plowbh ≤ pnbh ≤ pupbh for n = 1 : Nc (2.12)

and

qlowCO2,i
≤ qnCO2,i

≤ qupCO2,i
for n = 1 : Nc. (2.13)

In our applications for the CO2 HnP process, we use plowbh = 1500 psi, pupbh = 2400 psi,

qlowCO2,i
= 40 MSCF/D, and qupCO2,i

= 250 MSCF/D unless otherwise stated.

The time fraction of the production period is constrained by the following bound

constraint:

∆̂t
low

p ≤ ∆̂t
n

p ≤ ∆̂t
up

p for n = 1 : Nc. (2.14)

We set ∆̂t
up

p = 1, which means we can produce for the entire life of the cycle n, and

for ∆̂t
low

p = 0.3 in Eq. 2.14. The reason for choosing a lower bound different from zero for

∆̂t
low

p is based on our engineering judgment that a lower bound of 0 is unreasonably low.

Based on our sensitivity analysis (Section 5.2) and applications, this lower bound seems to be

reasonable for the production time fraction. However, one could set a lower limit for ∆̂t
n

p as
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low as zero, but in this case, the sample space will increase to construct a proxy model. Also,

having a constraint such that ∆̂t
low

p = 0 means no production. Our results with ∆̂t
low

p = 0

show that optimization using a proxy built with ∆̂t
low

p = 0 takes more computational time

to get the same optimum that would be obtained with a proxy built with ∆̂t
low

p = 0.3

(see Subsection 5.3.8). So, the logical and experience-based choice of bounds saves a lot of

computational time, and hence, it is fair to choose the bounds based on engineering common

sense.

We use the following linear inequality constraint for the duration of the injection

period for a given cycle:

∆tn −∆tnp
2

≤ ∆tni ≤ ∆tn −∆tnp for n = 1 : Nc. (2.15)

It is worth noting that we derived the above linear inequality constraint for the injection

time based on two requirements:

1. The sum of production and injection periods must be less than or equal to the length

of cycle, i.e.,

∆tni + ∆tnp ≤ ∆tn for n = 1 : Nc (2.16)

and

2. the minimum length of the injection period must be equal to the half-length of the re-

maining portion of the cycle after extracting the production period so that the duration

of the soaking period is no more than that of the injection period, i.e.,

∆tni ≥
∆tn −∆tnp

2
for n = 1 : Nc. (2.17)

Here, one may ask the question of why we require the injection time fraction to be

higher than the soaking time fraction. Our examples showed that the duration of the

injection period is always bigger than that of the soaking period to achieve a higher

recovery factor (RF). Our sensitivity analysis conducted in Section 5.2 also justifies
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our use of linear inequality constraint given by Eq. 2.17.

We can express the linear inequality constraint given by Eq. 2.15 as two linear

inequality constraints in terms of injection and production time fractions as

∆̂t
n

i + ∆̂t
n

p ≤ 1 for n = 1 : Nc (2.18)

and

−∆̂t
n

i − 0.5∆̂t
n

p ≤ −0.5 for n = 1 : Nc. (2.19)

Since we include each cycle length as a design variable, we constraint it as

∆tlow ≤ ∆tn ≤ ∆tup for n = 1 : Nc, (2.20)

for n = 1, 2, ..., 5, and
Nc∑
n=1

∆tn = ttotal, (2.21)

where ttotal is the total lifetime of the HnP process, and as mentioned previously, for our

applications given here, we set ttotal = 3000 days and Nc = 5.

We can write each of the bound constraints (Eqs. 2.12, 2.13, 2.14 and 2.20) as two

linear inequality constraints. For example, Eq 2.12 can be written as two linear inequality

constraints: pnbh ≤ pupbh and −pnbh ≤ −plowbh for n = 1 : Nc.

2.1.2 Normalization of Design Variables, NPV, and Constraints

The magnitude of each design variable affects the performance of optimization meth-

ods and the training process of an ML algorithm (Crone et al., 2006). Therefore, we normal-

ize the features (features are the design variables in our problem) before training (Suykens

et al., 2002). This normalization is important in the gradient-based optimization process it-

self (actually a training process is, eventually, an optimization process). Normalizing design

variables makes the step-size selection process stable in a line-search method (Wright and

Nocedal, 1999). There are different normalization techniques in the literature. In this study,

27



design variables are normalized using their lower and upper bounds so that they are scaled

between zero and one as

ūk = (uk − ulowk )/(uupk − u
low
k ), for k = 1 : Nu. (2.22)

The NPV can also be normalized using min-max normalization given as

J̄ = (J − Jmin)/(Jmax − Jmin), (2.23)

where Jmin and Jmax represent minimum and maximum values of the NPV, respectively.

They are obtained from the training set. As the training set changes during the iterative-

sampling-refinement optimization process, Jmin and Jmax may change from iteration to it-

eration. In this work, we do not normalize NPVs for the conventional optimization methods

(simplex, StoSAG), but normalize for the ML-based optimization methods. We normalize

the design variables for both conventional and ML-based optimization methods since it is

important for better performance of a gradient-based optimization method. After normal-

ization, all bound constraints become between zero and one:

0 ≤ ūk ≤ 1 (2.24)

Similarly, we write our constraints given by Eqs. 2.18, 2.19, and 2.21 in terms of the nor-

malized variables, respectively, as

∆̂t
n

i (∆̂t
up

i − ∆̂t
low

i ) + ∆̂t
n

p (∆̂t
up

p − ∆̂t
low

p ) ≤ −∆̂t
low

i − ∆̂t
low

p + 1 for n = 1 : Nc, (2.25)

−∆̂t
n

i (∆̂t
up

i −∆̂t
low

i )−0.5∆̂t
n

p (∆̂t
up

p −∆̂t
low

p ) ≤ ∆̂t
low

i +0.5∆̂t
low

p −0.5 for n = 1 : Nc, (2.26)
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and
Nc∑
n=1

∆t
n
(∆tup −∆tlow) = ttotal −Nc∆t

low. (2.27)

We can write all normalized linear inequality constraints (Eqs. 2.25 and 2.26) in a

matrix-vector multiplication form

Aū ≤ b, (2.28)

where A contains coefficients of all the linear inequality constraints and is anM×Nu matrix,

b is anM -dimensional column vector, whereM is the number of linear inequality constraints.

To better understand we also visualized the Eq. 2.28 as

A =



a11 a12 . . . a1Nu

a21 a22 . . . a2Nu

...
... . . . ...

aM1 aM2 . . . aMNu





ū1

ū2

...

ūNu


≤



b1

b2

...

bM


(2.29)

where each normalized linear inequality equation can be written with those coefficients as

follows:

ai1ū1 + ai2ū2 + · · ·+ aiNuūNu ≤ bi for i = 1, . . . ,M. (2.30)

The matrix-vector multiplication formula for the normalized linear equality constraint

given by Eq. 2.27 must be written separately as

Âū = b̂, (2.31)

where Â is a Mle × Nu matrix containing the coefficients of the normalized linear equality

constraints, and b̂ is the Mle-dimensional vector containing the values of the normalized

linear equality constraints. One can intuitively visualize Eq. 2.31 similarly to the Eq. 2.29.

For our applications here, since we have single well HnP process, we have only one linear

equality constraint (Eq. 2.21) and hence Mle = 1 and b̂1 is equal to ttotal. More precisely,

we create two separate functions for constraints: one for normalized equality and one for
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normalized inequality constraints. When we create a sample set for training as well as a

perturbation for Simplex and StoSAG, we truncate our design variables for each sample to

satisfy all these constraints. We deal with constraints via the gradient projection method

where we project our gradient on the hyperplane of the intersection of active constraints.

The gradient projection method will be briefly discussed in Section 3.3.

2.2 NPV Formulation for the CO2 WAG Problem

To formulate a general NPV objective function for the WAG process, the following

definitions and assumptions are used:

• Nic, the total number of cycles for each injection well, is the same for each injection well

and fixed during the optimization process. It corresponds to the number of injection

control time steps. Remember that at each cycle we control gas injection and water

injection. Therefore, we call each injection time period a half-cycle of the injection

well. At the gas injection half-cycle, we control gas injection rate, and at the water

injection half-cycle we control water injection rate. Thus, we will have Nic number of

gas injection time steps and Nic number of water injection time steps.

• Nc, the total number of cycles for each production well, is the same for each produc-

tion well and fixed during the optimization process. It corresponds to the number of

production control time steps.

• ∆tn,m is the duration of the nth cycle of mth injection well for n = 1, 2, ..., Nic and

m = 1, 2, ..., NI , where NI is the number of the injection wells.

• ∆tn,k is the duration of the nth cycle of kth production well for n = 1, 2, ..., Nc and

k = 1, 2, ..., NP , where NP is the number of the production wells.

• The total duration of the WAG process (ttotal =
∑Nic

n=1 ∆tn,m =
∑Nc

n=1 ∆tn,k for each

injection well m and production well k) is known and fixed during the optimization

process.
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• ∆̂t
n,m

g and ∆̂t
n,m

w represent time fractions of gas injection and water injection periods,

respectively, for the nth cycle of mth injection well. They can be treated as unknowns

in optimization and defined by

∆̂t
n,m

g =
∆tn,mg
∆tn,m

, ∆̂t
n,m

w =
∆tn,mw
∆tn,m

= 1− ∆̂t
n,m

g , (2.32)

where ∆tn,mg and ∆tn,mw (days) are the duration of gas injection period and water

injection period at the nth cycle ofmth injection well, respectively. Note that specifying

the duration of the gas injection period determines the duration of the water injection

period.

• tn,m (days) is the cumulative time at the end of the nth cycle of the injection well m,

and tn,k (days) is the cumulative time at the end of the nth cycle of the production well

k:

– For gas injection time period of cycle n of injection well m,

tn,m =
n∑
l=1

(∆tl−1,m) + ∆tn,m · (1− ∆̂t
l,m

g ), (2.33)

– for water injection time period of cycle n of injection well m,

tn,m =
n∑
l=1

∆tl,m, (2.34)

– for production time of cycle n of production well k,

tn,k =
n∑
l=1

∆tl,k. (2.35)

A schematic illustration of the definitions for the CO2 WAG process is shown in Fig.

2.2.

Using the above notation and Fig. 2.2, we define the objective function for the general

NPV of the WAG process in the Eq. 2.36. In Eq. 2.36, we ignored gas production revenue
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Figure 2.2: A schematic illustration for a 3-cycle WAG process.

and gas disposal cost, since they both almost compensate each other, and therefore their

difference is negligible (is almost zero).

J(m,u) =
Nc∑
n=1

NP∑
k=1

∆tn,k

(1 + b)
tn,k

365

(roq̄
n,k
o − cwpq̄n,kwp )−

Nic∑
n=1

NI∑
m=1

(
∆tn,m∆̂t

n,m

g

(1 + b)
tn,m

365

(cgiq̄
n,m
gi ) +

∆tn,m∆̂t
n,m

w

(1 + b)
tn,m

365

(cwiq̄
n,m
wi )

)
,

(2.36)

where cgi ($/MSCF) is the gas injection cost; cwi ($/STB) is the water injection cost; q̄n,ko

(STB/Day) is the average produced oil rate at the nth cycle of the production well k; q̄n,mgi

(MSCF/Day) is the average gas injection rate at the nth cycle of the injection well m; q̄n,mwi

(STB/Day) is the average water injection rate at the nth cycle of the injection well m.

In Eq. 2.36, in contrast to the Eq. 2.5, we do not further divide each cycle into

control time step, we assume each half-cycle is control-time step. In Eq. 2.36, m is an

Nm-dimensional vector of reservoir-model parameters that represents one realization of the

32



uncertain reservoir models, where Nm denotes the total number of uncertain reservoir model

parameters, and u represents the Nu-dimensional vector of the design variables, where Nu

denotes the total number of design variables.

We have to mention that for production optimization of the WAG problem, we also

considered an optimization case where we use production oil rate (STB/D) at each cycle

of each production well (qn,ko ) as design variable instead of production BHPs. The WAG

problem is the only problem that we considered the optimization case where production oil

rate is in the set of design variables, and the reason will be explained in Section 6.

In Eq. 2.5, for the case where we do not optimize inflow control valves (ICVs) the

design variable vector, u includes gas injection rate at each cycle of each injection well

(qn,mgi ), water injection rate at each cycle of each injection well (qn,mwi ), production BHP (or

production oil rate, qn,ko ) at each cycle of each production well (pn,kbh ), the fraction of gas

injection period at each cycle of each injection well (∆̂t
n,m

g ), the length of each cycle of each

injection well (∆tn,m), and the length of each cycle of each production well (∆tn,k). The

dimension of the design variable vector, Nu,

Nu = 4 ·Nic ·NI + 2 ·Nc ·NP . (2.37)

However, as mentioned in Section 1.2.2, ICVs are important design variables, espe-

cially when petro-physical properties of reservoir change significantly. At every perforation,

meaning that at each layer we will have ICV. There are vm valves for injection well m,

and vk for production well k. For injection wells we call them injection ICVs (IICVs),

and for production wells it is production ICVs (PICVs). At each cycle of production and

injection wells and at each valve ICV becomes design variable. Thus the design vector of

uICV = [((uIICV)m)T , ((uPICV)k)T ]T form = 1 : NI and k = 1 : NP , where (uIICV)m = [IICVl
n]

for n = 1 : Nic, l = 1 : vm, and (uPICV)k = [PICVl
n], for n = 1 : Nc, l = 1 : vk. This is the

most general case where all possible design variables are considered. The design variables
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are ordered in the design vector as follows:

u = [((uGIC)1)T , . . . , ((uGIC)m)T , . . . , ((uGIC)NI )T , ((uWIC)1)T , . . . , ((uWIC)m)T ,

. . . , ((uWIC)NI )T , ((uPC)1)T , . . . , ((uPC)k)T , . . . , ((uPC)NP )T , ((uGIT)1)T ,

. . . , ((uGIT)m)T , . . . , ((uGIT)NI )T , ((uCI)1)T , . . . , ((uCI)m)T , . . . , ((uCI)NI )T ,

((uCP)1)T , . . . , ((uCP)k)T , . . . , ((uCP)NP )T , ((uIICV)1)T , . . . , ((uIICV)m)T ,

. . . , ((uIICV)NI )T , ((uPICV)1)T , . . . , ((uPICV)k)T , . . . , ((uPICV)NP )T ],

(2.38)

where (uGIC)m is the vector containing the gas injection controls (rates) for injection well m

at all cycles; (uWIC)m is the vector containing the water injection controls (rates) for injection

wellm at all cycles; (uPC)k is the vector containing the production controls (production BHPs

or production oil rates) for production well k at all cycles; (uGIT)m is the vector containing

gas injection time fractions of injection well m at all cycles; (uCI)m is the vector containing

cycle lengths of the injection well m; (uIICV)m is the vector containing IICVs of the injection

well m at all cycles; (uPICV)k is the vector containing PICVs of the production well k at all

cycles. The elements of (uIICV)m and (uPICV)k are

(uIICV)m = [IICV1
1, IICV1

2, . . . , IICV1
Nic
, . . . IICVl

n, . . . , IICVvm

Nic
] (2.39)

and

(uPICV)k = [PICV1
1,PICV1

2, . . . ,PICV1
Nc
, . . .PICVl

n, . . .PICVvk

Nc
], (2.40)

where IICVl
n is IICV at the valve l of the injection well m at the cycle n, where l = 1 : vm;

and PICVl
n is PICV at the valve l of the production well k at the cycle n, where l = 1 : vk.

Thus, the total number of design variables is

Nu = 4 ·Nic ·NI + 2 ·Nc ·NP +

NI∑
m=1

2 ·Nic · vm +

NP∑
k=1

Nc · vk. (2.41)

The NPV function defined with simulation time steps, where all the design variables
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are given inside the NPV implicitly, is the same as the Eq. 2.10.

For the case where cycle lengths and gas injection time fractions are no longer in

the set of design variables, we divide the total life-time of the WAG process into Nc cycles,

uniformly for each injection well. We assume that gas injection and water injection half-

cycles at each cycle of each injection well are also uniform; that is ∆̂t
n,m

g = 0.5 for all n

and m. Thus, we define total number of half-cycle, Nt = 2 · Nic. We also make another

assumption that Nc = Nt. So, the control time step is the same at each half-cycle of each

injection well and production well and equal to

∆t =
ttotal
Nt

. (2.42)

Using these assumptions, we can formulate a simpler version of NPV, which is mostly used

in the literature:

J(u) =
Nt∑
n=1

{
∆t

(1 + b)
tn

365

[
NP∑
k=1

(roq̄
n,k
o − cwpq̄n,kwp )−

NI∑
m=1

(cgiq̄
n,m
gi + cwiq̄

n,m
wi )

]}
, (2.43)

where tn is the cumulative time at nth half-cycle and is the same for all wells:

tn = n ·∆t. (2.44)

We call this formulation of NPV a simple NPV. For the simple NPV, the number of design

variables, considering Nt = 2 ·Nic = Nc in Eq. 2.37 for the case without ICVs is

Nu = Nt ·NI +Nt ·NP = Nt · (NI +NP ), (2.45)

and in Eq. 2.41 for the case with ICVs it is:

Nu = Nt · (NI +NP ) +

NI∑
m=1

Nt · vm +

NP∑
k=1

Nt · vk = Nt · (NI +NP +

NI∑
m=1

vm +

NP∑
k=1

vk). (2.46)
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In all production optimization cases of the WAG problem considered in this study, we con-

sider only vertical wells, all of which are perforated at each layer. Therefore, the number

of valves are the same for each well, both injection and production wells, and equal to the

number of layers; that is, vm = vk = Nz for m = 1 : NI and k = 1 : NP , where Nz is the

number of layers of the reservoir. However, since we formulated a general NPV objective

function, in the following section we discuss constraints for all of the design variables of the

most general case, where the well controls, time fractions, cycle lengths, and ICVs are in the

set of the design variables.

2.2.1 Constraints on Design Variables

For all design variables we have bound constraints as follows:

qlowgi ≤ qn,mgi ≤ qupgi for n = 1 : Nic and m = 1 : NI ,

qlowwi ≤ qn,mwi ≤ qupwi for n = 1 : Nic and m = 1 : NI ,

plowbh ≤ pn,kbh ≤ pupbh for n = 1 : Nc and k = 1 : NP ,

∆̂t
low

g ≤ ∆̂t
n,m

g ≤ ∆̂t
up

g for n = 1 : Nic and m = 1 : NI ,

∆tlow ≤ ∆tn,m ≤ ∆tup for n = 1 : Nic and m = 1 : NI ,

∆tlow ≤ ∆tn,k ≤ ∆tup for n = 1 : Nc and k = 1 : NP ,

IICVlow ≤ IICVl,m
n ≤ IICVup for n = 1 : Nic, m = 1 : NI and l = 1 : vm,

PICVlow ≤ PICVl,k
n ≤ PICVup for n = 1 : Nc, k = 1 : NP and l = 1 : vk,

(2.47)

and for the case where the production oil rate is a design variable instead of the production

BHP at each cycle of each production well we have

qlowo ≤ qn,ko ≤ qupo for n = 1 : Nc and k = 1 : NP . (2.48)

In our all production optimization cases of the WAG problem, ∆̂t
low

g = 0.2, ∆̂t
up

g = 1,

∆tlow = ttotal/(5Nc), ∆tup = ttotal/(0.5Nc), IICVlow = PICVlow = 0, IICVup = PICVup = 1,
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qlowgi = 0 (SCF/D), qupgi = 2× 107(SCF/D), qlowwi = 0 (STB/D), qupwi = 4000 (STB/D). Bound

constraints of all other design variables change depending on the production optimization

cases. The reason for choosing these upper and lower bound values for injection well controls

is the capacity of the reservoir we are using for our all production optimization cases as well

as the fluid properties since we also want to achieve multi-contact miscibility of injected gas,

which is CO2 in our case, and reservoir fluid. For the cycle lengths of both injection wells

and production wells, we choose lower bound and upper bound heuristically. We do not want

the lower bound to be zero since, in that case, well controls at that cycle as well as the gas

injection time fraction in the case of injection wells will vanish and will no longer be important

whatever value they choose. However, the upper bound for the cycle lengths can be chosen

larger than this value. When we discuss the training procedure of the machine learning

models (GPR and LS-SVR, in our case, but that discussion is general), we will see that to

sample design variables from the smaller region, where we believe that NPV is going to be

higher than other regions, helps us to get accurate model around optimum with less amount

of data. Furthermore, in the optimization procedure, if we narrow our area to perform

optimization; that is, choosing reasonable bounds, instead of performing optimization on all

regions of the NPV surface, helps us to converge to the higher local optimum. However, as

mentioned, these constraints should be chosen based on knowledge of the process knowing

the physics of the process either through sensitivity analysis or through lab experiments. In

our cases, the bounds for cycle lengths are chosen based on the optimization we performed

with and without those bounds to see the importance of choosing bounds for cycle lengths.

Since we include each cycle length as a design variable, we have to consider linear

equality constraints so that the summation of the cycle lengths of each production and

injection wells is equal to the total life of the WAG process:

• for injection wells
Nic∑
n=1

∆tn,m = ttotal for m = 1 : NI , (2.49)
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• for production wells
Nc∑
n=1

∆tn,k = ttotal for k = 1 : NP , (2.50)

where ttotal is the total lifetime of the WAG process, and for our applications given here, we

set ttotal = 2880 days, Nic = 8 and Nc = 16.

As we did in the HnP problem, we can write each of the bound constraints (Eq. 2.47)

as two linear inequality constraints.

2.2.2 Normalization of Design Variables, NPV, and Constraints

The importance of normalization in the gradient-based optimization and in the train-

ing process of the ML model is discussed in Section 2.1.2 as well as the formulation of the

min-max normalization of design variables and NPV (Eqs. 2.22 and 2.23). As the linear

inequality constraints, we have only linear bound constraints. The normalized version of

bound constraints is given in Eq. 2.24.

Like Eq. 2.27, the normalized linear equality constraints become as follows:

• for injection wells

Nic∑
n=1

∆t
n,m

(∆tup −∆tlow) = ttotal −Nic∆t
low for m = 1 : NI , (2.51)

• for production wells

Nc∑
n=1

∆t
n,k

(∆tup −∆tlow) = ttotal −Nc∆t
low for k = 1 : NP . (2.52)

All normalized linear inequality and equality constraints can be formulated as the

matrix-vector products as given in Eq. 2.28 and Eq. 2.31, respectively. We have to mention

that, unlike in the HnP problem, in the WAG problem, we have more than one linear equality

constraint, since it is a multi-well problem. Therefore, in Eq. 2.31, the number of rows of

the matrix Â is a Mle = NI + NP . When we create a sample set for training as well as a

perturbation for Simplex and StoSAG, we truncate our design variables for each sample to
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satisfy all these constraints. We deal with constraints via the gradient projection method

where we project our gradient on the hyperplane of the intersection of active constraints.

However, for the production optimization cases where the simple NPV is considered which

means cycle lengths are no longer design variables (see Eq. 2.43), we deal with the constraints

with truncation only since we will have only bound constraints. The truncation method will

also be discussed in Section 3.3.

2.3 NPV Formulation for the Well Shutoff Problem

As discussed in Section 1.2.3, different methods can be considered for treating the

shutoff option as an optimization variable in life-cycle optimization. The methodology here is

very similar to how we treated soaking time in the HnP problem (see Section 2.1); that is, we

use cycle lengths and time fraction design variables to define switching time for production

wells to shut off. Also as noted in Section 1.2.3, we include OPEX for each production well.

Therefore, in our production optimization problems including well shutoff, we only shut off

production wells.

Well shutoff is an option that can be used for any production optimization prob-

lem. In our application, we consider production optimization of the waterflooding process.

For waterflooding process including the well shutoff option, we define the following design

variables and assumptions:

• Nc, the total number of cycles of production wells, is fixed for each production well

during the optimization process.

• Nic, the total number of cycles of injection wells, is fixed for each injection well during

the optimization process and can be different from Nc.

• ∆tn,k is the duration of the nth cycle of production well k, for n = 1, 2, ..., Nc and

k = 1, 2, ..., NP .

• ∆tn,m is the duration of the nth cycle of injection well m, for n = 1, 2, ..., Nc and

m = 1, 2, ..., NI .
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• The total duration of the waterflooding process (ttotal =
∑Nic

n=1 ∆tn,m =
∑Nc

n=1 ∆tn,k for

each injection wellm and production well k) is known and fixed during the optimization

process.

• ∆̂t
n,k

p and ∆̂t
n,k

s represent time fractions of production and shutoff periods, respec-

tively, for the nth cycle of kth production well. They can be treated as unknowns in

optimization, and defined by

∆̂t
n,k

p =
∆tn,kp
∆tn,k

, ∆̂t
n,k

s =
∆tn,ks
∆tn,k

= 1− ∆̂t
n,k

g , (2.53)

where ∆tn,mp and ∆tn,ms (days) are the duration of production period and shutoff period

at the nth cycle of kth production well, respectively. Note that specifying the duration

of the production period determines the duration of the shutoff period.

• tn,k (days) is the cumulative time at the end of the nth cycle of the production well k,

and tn,m (days) is the cumulative time at the end of the nth cycle of the injection well

m:

– for the production time period of cycle n of production well k:

tn,k =
n∑
l=1

(∆tl−1,k) + ∆tn,k · (1− ∆̂t
l,k

p ), (2.54)

– for the shutoff time period of cycle n of production well k:

tn,k =
n∑
l=1

∆tl,k, (2.55)

– for the cumulative time of cycle n of injection well k:

tn,m =
n∑
l=1

∆tl,m. (2.56)

In our optimization problems, we do not consider the cycle length of injection wells
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(∆tn,m) as a design variable. The total life of each injection wells is divided into cycles,

uniformly: ∆tn,m = ttotal/Nic. A schematic illustration of the definitions for the waterflooding

production optimization including well shutoff is shown in Fig. 2.3 where only one of the

production well and 3 cycles are considered.

shut-o�produc�on

1st cycle 2nd cycle 3rd cycle

dura�on of the

shut-o� period

in the 2nd cycle

dura�on of the

produc�on period 

in the 1st cycle

Figure 2.3: A schematic illustration for a 3-cycle well shutoff problem.

Using the above notation and Fig. 2.3, we define the objective function for the NPV

of the waterflooding process including well shutoff as

J(m,u) =
Nc∑
n=1

NP∑
k=1

∆tn,k∆̂t
n,k

p

(1 + b)
tn,k

365

(roq̄
n,k
o − cwpq̄n,kwp − cpj · l(q̄n,ko ))

− ∆tn,m

(1 + b)
tn,m

365

Nic∑
n=1

NI∑
k=1

(cwi · q̄n,mwi ),

(2.57)

where cwi ($/STB) is the water injection cost; q̄n,ko (STB/Day) is the average produced oil

rate at the nth cycle of the production well k; q̄n,mwi (STB/Day) is the average water injection

rate at the nth cycle of the injection well m. In Eq. 2.57, in contrast to the Eq. 2.5, we do

not further divide each cycle into control time step, we assume each half-cycle is control-time

step. Note that each cycle of production well becomes a control time step for that production

well. Similarly, each cycle of injection well becomes the control time step for that injection

well.

In Eq. 2.57 the function l(x) is the Heaviside function taking the value 1 if a particular
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production well is open, meaning it is producing and it is 0 when they are shut off

l(x) =


1 if x > 0

0 if x ≤ 0
, (2.58)

where x is oil production rate of a given well at a given time step.

If we check the objective function with respect to the BHP of a particular well for a

given control time step, it can be seen that Eq. 2.57 is discontinuous at the point where the

BHP is very close to the well-block pressure of that particular well. The reason for this is

because at that pressure, the well will stop producing and the term l(q̄n,k0 ) will disappear from

the Eq. 2.57 (since its value is going to be zero); and thus, Eq. 2.57 will change with the BHP

before well-block pressure and after well-block pressure, differently. As the BHP approaches

the well-block pressure, NPV decreases, and when the BHP becomes equal to the well-block

pressure, NPV suddenly jumps because the production well cost term disappears for that

particular control time step of a particular production well since we stop producing. For the

values of the BHP more than well-block pressure, NPV remains constant since the further

increase of the BHP will not make any difference to NPV. We illustrated this discontinuity

in Fig. 2.4, where the total life of waterflooding is 7000 days and we have 4 production wells

and 2 water injection wells. To plot Fig. 2.4, we considered 10 cycles (control time steps) for

production wells and 20 cycles (control time steps) for injection wells, and fixed all design

variables except BHP of production well PW4 at 5th control step. We see discontinuity at

the point where BHP is equal to 1800 psi. Discontinuity of NPV with respect to BHP at a

given cycle for a given well is induced by the Heaviside function in NPV, l(q̄n,ko ). Since the

function l(x) is not a continuous function of BHPs, Eq. 2.57 is not continuous function of the

BHPs. Therefore, working with BHP to shut off the well induces discontinuity. As we know,

the derivative at the point where the function is discontinuous is undefined. Even though

the calculation of the numerical gradient will give some value at that point, this value will

be highly inaccurate for the gradient direction. For the case of having multiple production

wells and more than one control time step, we will have a discontinuity at more than one
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point; that is, those points will create a hyperplane. Therefore, we used the approach of

using production and shutoff time fractions with cycle lengths to mitigate the discontinuity

of NPV with respect to any design variable so that we can apply gradient-based optimization.
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Figure 2.4: NPV vs BHP of production well PW4 at 5th control step; total life of production is 7000
days; we have 4 production and 2 water injection wells. Figure shows the discontinuity of NPV with
respect to BHP.

In Eq. 2.57, m is an Nm-dimensional vector of reservoir-model parameters, which

represents one realization of the uncertain reservoir models, where Nm denotes the total

number of uncertain reservoir model parameters, and u represents the Nu-dimensional vector

of the design variables, where Nu denotes the total number of design variables. The design

variable vector, u, includes water injection rate at each cycle of each injection well (qn,mwi ),

production BHP at each cycle of each production well (pn,kbh ), the fraction of production

period at each cycle of each production well (∆̂t
n,k

p ), and the length of each cycle of each

production well (∆tn,k). The dimension of the design variable vector, Nu,

Nu = NINi,c + 3NPNc, (2.59)
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And the design variables are ordered in the design vector as follows:

u = [((uIC)1)T , . . . , ((uIC)m)T , . . . , ((uIC)NI )T , ((uPC)1)T , . . . ,

((uPC)k)T , . . . , ((uPC)NP )T , ((uCPT)1)T , . . . , ((uCPT)k)T , . . . ,

((uCPT)NP )T , ((uCP)1)T , . . . , ((uCP)k)T , . . . , ((uCP)NP )T ],

(2.60)

where (uIC)m contains the injection controls (rates) for injection well m at all cycles; (uPC)k

contains the production controls (production BHPs or production oil rates) for production

well k at all cycles; (uCPT)m is production time fractions of production well m at all cycles;

and (uCP)m is the cycle lengths of the production well k.

The NPV function defined with simulation time steps where all the design variables

are given inside the NPV, implicitly, is the same as Eq. 2.10. In this production optimization

problem, we have the production optimization case where we fix the BHP of the production

wells at each cycle. We also have the production optimization case where we fix production

time fractions to 1 at each cycle of each production well, which means that none of the

production wells shut off. The reasons for considering these cases will be clear when we see

the applications of the production optimization of waterflooding with well shutoff (Section

7). For the case, where BHPs are no longer in the set of design variables, the number of

design variables is

Nu = NINi,c + 2NPNc, (2.61)

and for the case, where the production time fractions are no longer design variables in

addition to BHPs, the number of design variables is

Nu = NINi,c +NPNc. (2.62)

We also consider a case where we have only a single cycle of the production wells.

As one can guess, in the case of just one cycle, we do not need to consider cycle lengths

as part of the design variable since they are fixed and equal to the life of the waterflooding
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process, ∆tn,m = ttotal. Considering well controls of production and injection wells as well

as production time fractions of each production wells for those single cycles of production

wells, since cycle lengths will no longer be in the set of design variables, the number of design

variables will be calculated from Eq. 2.61.

2.3.1 Constraints on Design Variables

For the well shutoff optimization problem, have bound constraints for all design vari-

ables

qlowwi ≤ qn,mwi ≤ qupwi for n = 1 : Nic and m = 1 : NI ,

plowbh ≤ pn,kbh ≤ pupbh for n = 1 : Nc and k = 1 : NP ,

∆̂t
low

p ≤ ∆̂t
n,k

p ≤ ∆̂t
up

p for n = 1 : Nc and m = 1 : NP ,

∆tlow ≤ ∆tn,k ≤ ∆tup for n = 1 : Nc and k = 1 : NP .

(2.63)

We must note that even though for the well shutoff option we use cycle lengths and

production time fractions at each cycle length of each production well to be able to perform

gradient-based optimization, BHPs at each production period of each production well are

still design variables. It means that even at the production period of each production well a

higher value of BHP can shut off the production well. Therefore, we have chosen the upper

bound for BHPs as low as possible to avoid this kind of situation since our ultimate goal here

is to eliminate a discontinuity of the NPV with respect to any design variable. Considering

the reservoir and fluid properties of the production optimization case, we choose plowbh = 750

(psi), pupbh = 2500, qlowwi = 0 (STB/D), qupwi = 10 (STB/D), ∆̂t
low

p = 0, ∆̂t
up

p = 1, ∆tlow = 30

(Days) and ∆tup = 1000 (Days). At higher water injection rates, for a given reservoir,

we observe that the average reservoir pressure often maintains a high enough level so that

any of the production wells do not shut off to achieve higher maximum NPV as a result of

optimization. Therefore, we choose a low value for qupwi to be able to observe well shutoff;

that is, to create a situation for at least one of the production well so shut off to increase the

maximum NPV during the optimization. However, choosing a lower bound and an upper
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bound for cycle lengths for production wells is a heuristic as explained in Section 2.2.1, and

the reason for choosing narrow bounds is also discussed in Section 2.2.1 since the WAG

problem is also similar to the well shutoff production optimization problem.

Since we include each cycle length as a design variable, we must consider linear

equality constraints so that the summation of the cycle lengths of each production wells is

equal to the total life of the waterflooding process:

Nc∑
n=1

∆tn,k = ttotal for k = 1 : NP , (2.64)

where ttotal = 2880 days, and Nc = 10.

As we did in the HnP problem, we can write each of the bound constraints (Eq. 2.63)

as two linear inequality constraints.

2.3.2 Normalization of Design Variables, NPV, and Constraints

As linear inequality constraints, we have only the linear bound constraints. The

normalized version of bound constraints is given by Eq. 2.24.

Like Eq. 2.27, the normalized linear equality constraints become as follows:

Nc∑
n=1

∆t
n,k

(∆tup −∆tlow) = ttotal −Nc∆t
low for k = 1 : NP . (2.65)

We note that for the case where only a single cycle is considered (since cycle length at each

production well is fixed and equal to the life of the waterflooding problem), we will have

only bound constraints.

All normalized linear inequality and equality constraints can be formulated as the

matrix-vector products as given by Eq. 2.28 and Eq. 2.31, respectively. Like the WAG

problem, we also have more than one linear equality constraint, since it is a multi-well

problem, we have more than one production well. Therefore, in Eq. 2.31, the number of

rows of the matrix Â is a Mle = NP . When we create a sample set for training as well as

a perturbation for Simplex and StoSAG, we truncate our design variables for each sample
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to satisfy all these constraints. We deal with constraints via the gradient projection method

where we project our gradient on the hyperplane of the intersection of active constraints.

However, for the production optimization cases, where a single cycle is considered for each

production well, which means cycle lengths are no longer design variables, we deal with the

constraints with truncation only since we will have only bound constraints. The truncation

method will also be discussed in Section 3.3.
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CHAPTER 3

STOCHASTIC GRADIENT-BASED OPTIMIZATION METHODS

There are various gradient approximation methods. They are also referred to as per-

turbation methods (Glasserman and Ho, 1991). In most of the early works of the researchers,

we can see the use of a finite-difference method (FD) as a gradient approximation method.

For the small-sized problems where the number of design variables is small, this method

is computationally not expensive. However, when the size of the problem becomes larger,

the FD method is not efficient even though it is the most accurate gradient approximation

method. It is because, in the FD method, we have to perturb each design variable at least

once (once in the forward and backward difference method, and twice in the central difference

method), which means that the number of perturbations is at least equal to the number of

design variables. As mentioned before, for the large-sized problems, the adjoint method (for

example see, Jansen (2011) and Forouzanfar et al. (2013)) provides the most accurate gradi-

ent and is computationally the most efficient method when the cost function is a differential

function of the optimization variables. As the adjoint gradient is not generally available in

most commercial simulators, some researchers use the stochastic gradient to approximate the

true gradient and thus calculate a search direction. Calculating stochastic gradients does

not require the objective function to be differentiable. Therefore, new perturbation methods

which do not perturb each design variable individually but perturb the design vector, which

is referred to as stochastic gradient estimation, are suggested. This decreases the number of

perturbations required for gradient approximation. In this section, as the stochastic gradient

estimation methods, we discuss simplex, EnOpt, and StoSAG methods.

We provide a review of the optimization methods used in this study to maximize

the NPV function of each production optimization problems, such as HnP (Eq. 2.5), WAG

(Eq. 2.36 and 2.43), and well shutoff (Eq. 2.57). As mentioned earlier, in this study, both
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deterministic optimization based on a single reservoir model and robust optimization based

on an ensemble of reservoir models will be performed. For the deterministic production

optimization case, where we use only one realization of the reservoir model, we use the

simplex method for production optimization cases of HnP and well shutoff. However, for

the WAG problem, we also use the StoSAG method with one realization of the reservoir

models using the correlation between the well-controls of each well. For the robust case,

we use the StoSAG method. When we used the StoSAG method for optimization, we

use singly-smoothed cross-covariance StoSAG (ss-cc-StoSAG), which is the first formulation

suggested by Fonseca et al. (2015a) as a modified EnOpt. Later in the work of (Fonseca et al.,

2017), they referred to it as StoSAG, where they also give the derivation of StoSAG and

its modifications as well as the theoretical relationship with simplex approximate gradient

and EnOpt. Therefore, first, we review the simplex gradient and then we discuss the EnOpt

method. Later, we give the derivation of StoSAG. We have to mention that all these methods

directly use the high-fidelity numerical simulator to perform the maximization of a given

NPV function. We also discuss the gradient ascent optimization algorithm as well as the

constraint handling methods such as gradient projection and truncation.

3.1 Simplex Gradient Approximation Method

The simplex gradient is one of the gradient approximation methods, and its derivation

is mentioned by various researchers (Bortz and Kelley, 1998; Conn et al., 2009; Custódio

and Vicente, 2007; Kelley, 1999). To derive the simplex gradient formulation, one performs

perturbation of the design variables. It is worth noting that we perform optimization in terms

of the normalized design variables. However, when we calculate NPV with the simulator, we

directly use the unnormalized design variables. We define u and ū as the vectors of design

and normalized design variables, respectively, and ũ and ˜̄u are the vectors of perturbed

design variables and the normalized perturbed design variables, respectively. Let l denote

the iteration index.

For the deterministic optimization case, the gradient at the iteration level l (denoted
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by gl) in the simplex method is calculated from

gl =
(

∆Ũl(∆Ũl)
T
)+

∆Ũl(∆jl) ≈ ∇uJ(ul), (3.1)

where the superscript “+” indicates the generalized (or the Moore-Penrose pseudo) inverse

which can be obtained by singular value decomposition (Golub et al., 1989), and ∆Ũl is the

matrix of the differences between normalized design variables at the lth iteration and their

perturbed values, given by

∆Ũl =
[
˜̄ul,1 − ūl, ˜̄ul,2 − ūl, · · · , ˜̄ul,Np − ūl

]
. (3.2)

Here, ˜̄ul,1, · · · , ˜̄ul,Np are the vectors of normalized perturbed design variables. We have Np

perturbations at each iteration l. ∆jl in Eq. 3.1 is the vector of difference of the NPV at

iteration l and given as follows:

∆jl =
[
J(ũl,1)− J(ul), J(ũl,2)− J(ul), · · · , J(ũl,Np)− J(ul

)
]T . (3.3)

The perturbation does not have to be stochastic. In the normal simplex gradient,

one might deterministically choose perturbations of design variables. However, when Do

and Reynolds (2013) obtain the simplex gradient from the fundamental equation of G-SPSA

gradient, they end up with the simplex gradient where perturbation of design variables come

from the normal distribution. They start their derivation assuming ˜̄ul,j ∼ N(ūl,CU), where

CU is the covariance matrix of the design variable vector. Usually, a correlation between well

controls of each well is assumed since changing the well controls abruptly is not manageable

and not preferred. However, mathematically speaking, we do not have to assume a correlation

between the design variables when we perturb them from a normal distribution; that is, one

can use diagonal covariance, CU = σ2I, where σ is the standard deviation, also known as

perturbation size for gradient approximation.

For the production optimization of HnP, we use only diagonal covariance matrix,
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CU = σ2I, where σ = 0.03. The reason for neglecting the correlation between design

variables is because, for the HnP problem, we do not divide production and injection periods

into control time steps, and therefore, there is no need to assume a correlation. We choose the

standard deviation (σ) to be equal to 0.03 for the HnP problem. For the well shutoff problem,

we also do not assume a correlation between BHPs at each cycle of each production well since

at each cycle after every production period there is a shutoff period, which means BHPs are

not correlated. However, for the WAG problem, since every half-cycle becomes our control

time step, we assume correlations between well controls, BHPs for each production well,

and water and gas injection rates for each injection well. Note that there is no correlation

between the two control time steps of different wells since different wells can easily be assigned

different schedules of production or injection. However, there is a correlation between well

controls for each individual wells. We model correlation by using a covariance matrix which

is a block diagonal matrix in which block matrix represents the covariance matrix of each

well:

CU =



CU
1 0 . . . 0

0 CU
2 . . . 0

...
... . . . ...

0 0 . . . CU
Nw


, (3.4)

where Nw is the total number of wells, Nw = NP +NI . For the calculation of this correlation

in this work, we used spherical covariance formulation. Denoting the (i,j) entry of CU
n by

Cn
i,j, for n = 1 : Nw, spherical covariance is calculated as follows:

Cn
i,j = σ2

n

(
1− 3

2

(
|i− j|
Nn
t

)
+

1

2

(
|i− j|
Nn
t

)3
)
, (3.5)

if |i − j| ≤ Nn
t , and Cn

i,j = 0 if |i − j| > Nn
t , where Nn

t is the number of control step of

the well n, i and j are the ith and jth control steps of the given well n, respectively. Note

that, in the WAG problem, the standard deviation is the same for all wells,σ2
n = σ2 for

n = 1 : Nw. Recall that for other design variables, in the WAG production optimization
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problem, we do not assume correlation for some of the design variables such as ICVs, gas

injection time fractions, and cycle lengths. There is no practical need and advantage of

assuming correlation for such design variables. Also for the production optimization case of

the WAG problem, where we include gas injection time fractions and cycle lengths into the

set of design variables, we do not consider correlation for any of the design variables, even

for well controls. It is because we do not know the control time steps beforehand since they

are also part of the optimization being an implicit function of gas injection time fractions

and cycle lengths.

We used the simplex gradient for the deterministic production optimization problems.

Note that when we perturb the design variables, all samples need to be inside the bound

constraints as well as the design variables linear inequality and equality constraints. To do

so, we truncate the samples so that they do not violate any of the constraints.

3.2 EnOpt and StoSAG Gradient Approximation Methods

The concept of gradient approximation using an ensemble of control vectors for a

single reservoir model is first mentioned in the work done by Lorentzen et al. (2006). However,

the name of ensemble optimization (EnOpt) was thought up by Chen et al. (2009) (also Chen

and Oliver (2010)). Therefore, when we refer to EnOpt, we refer to the implementation of

Chen et al. (2009), where it refers to robust optimization (ensemble optimization). For robust

optimization, we maximize the expectation of NPV over the uncertain reservoir parameters

given by

JE(ul) =
1

Ne

Ne∑
k=1

J(mk,ul), (3.6)

where Ne is the number of realizations of reservoir parameters (geological models), known as

ensemble size; mk is the kth realization of the reservoir parameter vector. J(mk,ul) is calcu-

lated for each production optimization problem considered here, using their corresponding

NPV formulations (Eqs. 2.5, 2.36, 2.43 and 2.57). To approximate the gradient of Eq. 3.6,

the naive approach would be choosing an ensemble of control vectors for each member of the

ensemble of geological models. This means a single approximation of this gradient would re-
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quire the number of simulations equal to the multiplication of ensemble size and the number

of perturbations of the design variable vector. Since this approach is computationally very

expensive, Chen et al. (2009) suggest one to one correspondence of random design variable

and realization of geological model:

gl =
1

Np − 1

Np∑
j=1

(˜̄ul,j − ˜̄ul)(J(mj, ˜̄ul,j)− J(m, ūl)), (3.7)

where ˜̄ul is the sample mean of the perturbations of design variable given as

˜̄ul =
1

Np

Np∑
j=1

˜̄ul,j, (3.8)

and J(m, ūl) defined as

J(m, ūl) =
1

Np

Np∑
j=1

J(mj, ˜̄ul,j). (3.9)

With that suggestion of Chen et al. (2009), the number of simulations required for the

gradient approximation counts down to the ensemble size of the geological model. However,

the method suggested by Chen et al. (2009) did not provide a gradient accurate enough to

find the optimum of the production optimization problem according to Raniolo et al. (2013).

They observed that a better gradient approximation can be achieved if five perturbations of

the design variable were paired with each geological model (5 to 1 correspondence). Fonseca

et al. (2017) theoretically investigated the formulation of EnOpt. They observed that the

standard EnOpt formulation (Eq. 3.7) requires two assumptions. The first one assumes that

mean of the perturbed design vector at iteration l is a good approximation of the design

variable at that iteration, which was used as mean to generate perturbations:

˜̄ul =
1

Np

Np∑
j=1

˜̄ul,j ≈ ūl. (3.10)

However, in production optimization problems, we always have constraints. Therefore, we
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need to truncate some of our perturbed design variables. Considering this modification to the

perturbed design variables and that the Np is not always sufficiently large, this assumption

does not hold anymore.

Another assumption of Chen et al. (2009) according to Fonseca et al. (2017) is that

for any reservoir model parameter m, we have

J(m1, ūl) ≈ J(m2, ūl) ≈ · · · J(mNe , ūl). (3.11)

This assumption is invalid because there is variance in the prior model of the reservoir model

parameter.

Instead of using these assumptions which can potentially lead inaccurate gradient

approximation, Fonseca et al. (2017) defined the singly-smoothed cross-covariance StoSAG

(ss-cc-StoSAG) formulation following the works by Fonseca et al. (2015a,b)

gl =
1

Ne

Ne∑
k=1

(
1

Np

Np∑
j=1

(˜̄ul,j,k − ūl)(J(mk, ũl,j,k)− J(mk,ul))

)
. (3.12)

The reason Eqs. 3.7 to be called singly-smoothed cross-covariance is because Do and

Reynolds (2013) showed that

gl ≈ CU∇uJ(ūl), (3.13)

where gl is given by Eq. 3.7, which means that gradient is further multiplied by the covariance

matrix (therefore, it is called singly-smoothed). Similarly, the reason for Eq. 3.12 to be

called singly-smoothed is because Fonseca et al. (2017) showed that it is approximately

equal to multiplication of the simplex gradient of the expectation of NPV over reservoir

model parameters with the covariance matrix:

gl ≈ CU

(
Ne∑
k=1

∇uJ(mk, ūl

)
= CU∇JE(ūl). (3.14)

To derive doubly-smoothed cross-covariance StoSAG (ds-cc-StoSAG), we can multiply Eq.
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3.12 with CU.

For the robust optimization cases, we use ss-cc-StoSAG. For the deterministic case of

the WAG problem, we use ss-cc-StoSAG, just assuming one realization (Ne = 1) in Eq. 3.12

to compare its performance over using a simplex gradient, which is not smoothed gradient,

as well as the ds-cc-StoSAG gradient.

3.3 Handling of Constraints

We consider a constrained optimization problem with linear inequality and equality

constraints. For some of the cases of the production optimization problems considered in

this study, we only have bound constraints. In that case, we just use the truncation method.

However, when the linear equality and inequality constraints are included, to handle con-

straints, we use the gradient projection method (Luenberger et al., 1984; Forouzanfar et al.,

2010).

3.3.1 Truncation

When we have bound constraints, we can truncate the design variables at a new

iteration (at iteration l + 1) within their upper and lower bounds. Since we work with the

min-max normalized design variables, we truncate the normalized design variables between

zero and one, i.e.,

ūk =


1 if ūk > 1

0 if ūk < 0
. (3.15)

This makes the gradient to be inside the feasible region, but it affects the gradient direction.

3.3.2 Gradient Projection

Gradient projection is the method to change the direction of the gradient to stay in the

feasible region by projecting the gradient onto the hyperplane of the active constraints. With

the estimated gradient if we are on any of the linear constraints, we project the gradient onto

the hyperplane of the active constraints. In the case of linear inequality constraints, when the

updated design variable ū is on the one or more constraint hyperplanes, it means that those

55



constraints are active. In the case of linear equality constraint, our design variable during

the optimization must be on this hyperplane as well so that the linear equality constraint is

always an active constraint during the optimization procedure. In the gradient projection

algorithm, we project the gradient on the hyperplanes of active constraints only. Therefore,

for gradient projection, we use the matrix B and the vector c to consider only the coefficients

of active constraints (Bū = c). Let us denote the number of active constraints with Ma,

then the dimensions of B and c are Ma × Nu and Ma, respectively. Denoting the gradient

calculated at iteration l by gl, we can write the equation for the projected gradient as

dl =
(
I−BT (BBT )−1B

)
gl, (3.16)

where gl is approximate gradient calculated either simplex gradient method (Eq. 3.1) or the

ss-cc-StoSAG method (Eq. 3.12). Then we use this modified gradient inside the optimiza-

tion algorithm. As an optimization algorithm, we use a gradient ascent algorithm. In the

next section, we describe the gradient ascent algorithm, in which we construct the gradient

projection algorithm.

3.4 Gradient Ascent Algorithm

Derivation of the gradient ascent comes from the first order Taylor expansion of the

objective function (in this study, NPV) at each iteration, at each point ūl. Below a gradient

ascent algorithm is provided, in which the gradient is approximated with the either simplex

gradient method or ss-cc-StoSAG method, linear constraints are handled with the gradient

projection method, bound constraints are handled with truncation, and the step size β is

chosen by a backtracking algorithm to compute ¯ul+1 from

ūl+1 = ūl + β
dl
||dl||∞

. (3.17)

1. Set iteration index l to zero, l = 0. Choose an initial guess for the vector of normalized

design variables, ū0.
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2. Calculate J(ul) using the simulator.

3. Using the simplex method (Eq. 3.1) or ss-cc-StoSAG method (Eq. 3.12) calculate the

gradient (gl) at a given iteration, l.

4. Start with the highest step size (initial backtracking step size), β = β0 = 1, and apply

the gradient projection algorithm described at step 5 to find ūl+1 and J(ul+1) for the

chosen step size β:

5. Gradient projection algorithm: To better understand the gradient projection algo-

rithm, we illustrated this procedure for a 2D design variable case in Fig. 3.1.

(a) Check if at the point of given design vector ūl plus the small step (γ) of the

gradient we activate any of the constraints (we take this small arbitrary step as

γ = 0.001). This means we find B and c which satisfies the following equation:

B(ūl + γgl) ≥ c. (3.18)

If we activate any constraint (means that with this gradient we would violate at

least one of the constraints (then those constraints become active constraints),

use Eq. 3.16 to calculate the projected gradient dl (in Fig. 3.1, constraint c1

is activated, and therefore, gradient gl is projected on constraint plane c1 to

get direction dl). Note that with assuming γ different from zero (arbitrarily small

number) we take not only the constraints, which ūl is on, but also the constraints,

which ūl is very close to, as active constraints. Note that if ūl is not on any of the

constraints, B = 0, where 0 is a null matrix, in Eq. 3.16, meaning that dl = gl.

Now dl is our search direction.

(b) Starting from ūl and dl, find whether we activate any constraints with the step

size β. To do so, solve the gradient ascent equation (Eq. 3.17) for step size which

will activate any linear constraints. Denote ith row of matrix A with aTi , which

contains coefficients of design variables for the ith constraint equation. Then,
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calculate the step size αi, which activates ith constraint by

αi =
bi − ai

T ūl
ai
Tdl

||dl||∞

, (3.19)

which is derived from:

ai
T

(
ūl + αi

dl
||dl||∞

)
= bi. (3.20)

Then, choose the minimum of these steps, αmin = min
i

(αi) and compare it with the

step size from backtracking, β to check to see any of the constraints are activated

with step β (in Fig. 3.1, constraint c2 is activated). Note that when we find the

minimum of α, ignore any negative values of αi since a negative αi indicates a

descent direction, and we are not interested in that direction. Ignore αis equal

to zero and infinite values as well because this indicates that we are on one of

the constraint hyperplanes already. The latter case means that we have already

projected gradient on that hyperplane and with any step size we will not violate

that constraint, so we do not need to care about that constraint anymore. We

just search for the step size on that hyperplane that will violate one or more of

the other constraints.

(c) If β ≤ αmin, it means that we are in a feasible region with given step size β. Thus

accept the given step size β, and calculate the next update of u with the gradient

ascent equation given by Eq. 3.17. Go to step 6.

(d) If β > αmin, it means that with given step size β we violate at least one of the

constraints. In this case, we continue to the following step:

(e) Using αmin and direction dl calculate the next point ūl,1, which is called the middle

point (in Fig. 3.1, this point is on the intersection of the constraint planes c1 and

c2), using ūl in the gradient ascent equation (Eq. 3.17). This middle point should

not be confused with ūl+1. Since we are on constraints with this point, we need
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to project the direction. It is worth noting that when we project the direction,

project the gradient direction (gl) to get the direction at this middle point dl,1.

After having the middle point (ūl,1) and the direction (dl,1), we repeat step b to

calculate αmin,1. Then, using this step size and direction, we calculate a second

middle point, ūl,2 (in Fig. 3.1, this point is in the intersection of the constraint

planes (c2 and c3). Then we test step size β with the following condition:

(f) If ||ūl,2 − ūl||∞ ≤ β stop here and choose second middle point as update for the

next iteration of the optimization process, i.e., set ūl+1 = ūl,2.

(g) If ||ūl,2 − ūl||∞ > β, it means calculated ūl+1 will be between points ūl,1 and

ūl,2 which satisfies ||ūl+1 − ūl||∞ = β. We replace ūl+1 using the last updated

direction dl and the first middle point ūl,1 in the gradient ascent equation (Eq.

3.17) to obtain ∣∣∣∣∣∣∣∣(α dl
||dl||∞

+ ūl,1

)
− ūl

∣∣∣∣∣∣∣∣
∞

= β. (3.21)

So, we want to solve this equation for α. However, since it is very difficult to

solve it for an infinity norm, we can replace the infinity norm with a two norm

(Eq. 3.22). In this case, however, ||ūl+1− ūl||∞ will be less or equal to β because

the infinity norm provides a value which is always less than or equal to a value

computed from a two norm. This update is satisfactory though

∣∣∣∣∣∣∣∣(α dl
||dl||∞

+ ūl,1

)
− ūl

∣∣∣∣∣∣∣∣
2

= β. (3.22)

(h) Using α computed from Eq. 3.22 and the first middle point ūl,1 in the gradient

ascent equation (Eq. 3.17), obtain design vector for the next iteration ūl+1.

The motivation of applying this gradient projection algorithm twice is to have as big

update of ū as possible. As can be seen from Fig. 3.1, we try to get a big update of the

design variable as backtracking step size β. If we go with the smaller steps of update,

we will need more iterations to find the optimum. This means more simulation runs.
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Therefore, we apply the gradient projection algorithm twice.

c
2

Figure 3.1: Illustration of the gradient projection procedure for a 2D design variable case. αmin, αmin,1,
β are step sizes; gl is the gradient direction at the point ūl; dl and dl,1 are the projected directions of
gradient gl at points ūl and ūl,1 on constraint planes c1 and c2 respectively; c1, c2, and c3 are constraint
planes.

6. Check if J(ul+1) ≥ J(ul). If it is satisfied, accept ul+1 and go to the next step.

7. Check convergence by using the following convergence criteria:

|J(ūl+1)− J(ūl)|
max[|J(ūl)|, 1]

≤ εJ , (3.23)

and
||ūl+1 − ūl||2
max[||ūl||2, 1]

≤ εu, (3.24)

where || · ||2 is the l2 norm of a vector. In our research, we used εJ = 0.0001 and

εu = 0.001. If converged, ūl+1 is our optimum design vector, and optimization process

ends. If not converged, set l := l + 1, ūl := ūl+1 and check whether we exceed the

maximum allowed simulation runs, Nmax
sim , otherwise go to step 2. Calculation of the

number of the simulation runs is given end of this section

8. If J(ul+1) < J(ul), update the step size, β := β/2.
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9. Using this updated step size in the gradient projection algorithm (step 5) find ūl+1

again. Then, check the condition at step 6. We repeat step cutting until either satisfy

the condition at step 6 or we reach the maximum allowed number of step cuttings

Nmax
cut , which is Nmax

cut = 5 in our backtracking algorithm.

10. If backtracking cannot find a design vector that increases the value of J within the

maximum allowable number of backtracking iterations (number of step cuttings), this

means our stochastic gradient can be in the wrong direction. In this case, we follow

one of the following approaches which are named as Backtracking Approach 1 and

Backtracking Approach 2:

• Backtracking Approach 1: We simply accept the new design variable which gives

the highest J , set l = l + 1 and go to step 7 (Chen and Reynolds, 2017).

• Backtracking Approach 2: Reject the gradient of this iteration (gl), and generate

a new set of perturbed design vectors and compute the gradient gl either from

Eq. 3.1 for simplex gradient or 3.12 for ss-cc-StoSAG. Repeat steps 4 to 10 with

this new gradient until we reach the maximum allowable number of gradient re-

estimations, (denoted by Nmax
grad), which can be taken as five. If the maximum

allowable number of gradient estimation is reached, this may indicate that ūl is

very close to the local optimum (because with the stochastic gradient approxima-

tion method it is hard to estimate gradient around local optimum). Therefore, we

accept ūl as our optimum design vector and end optimization (Do and Reynolds,

2013).

In this work, for the production optimization problem of HnP, we mainly use Back-

tracking Approach 2 for the termination of the gradient ascent algorithm. However, for

some of the cases of the HnP problem we also use Backtracking Approach 2 for comparison

purposes. We found that the former approach usually takes more iterations but terminates

with a higher NPV value than does the latter approach for those cases. For production

optimization of the WAG and well shutoff problems, we use only Backtracking Approach 1.
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In all production optimization problems, Nmax
sim = 2000, Nmax

cut = 5, β0 = 1 unless

otherwise stated. Other parameters change depending the production optimization problem.

For the HnP problem:

• Standard deviation (or perturbation size) is σ = 0.03.

• The number of perturbations, Np, ranges from 10 to 20 depending on the production

optimization case.

• Nmax
grad = 5. Note that only for this production optimization problem, we use Back-

tracking Approach 2.

For the WAG problem:

• σ ranges from 0.03 to 0.1, depending on the production optimization case.

• Np ranges from 10 to 20, depending on the production optimization case.

For the well shutoff problem:

• σ = 0.1.

• Np = 10.

We should note that Fonseca et al. (2015b) show that the number of perturbations

and the size of the perturbations affects the quality of the stochastic gradient (its direction

compared to the direction of the true gradient). Unfortunately, we do not know a way to

determine a priori the best choice for either the number of perturbations or the perturbations.

Hence, we have chosen the above values, heuristically, based on the suggestions given by Chen

and Reynolds (2017).

It is worth noting that depending on which gradient approximation method is used,

we call the optimization method either the simplex optimization method or the StoSAG

optimization method to distinguish them in the Results section given later.

For some of the production optimization cases, where the number of design variables

is not big, we also use the FD method to compare the results with simplex optimization
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and StoSAG optimization. We choose the FD method for computational efficiency. The

perturbation size used for the FD method changes depending on the production optimization

case.

3.5 Number of Simulations

For the deterministic optimization based on Backtracking Approach 2, the number of

simulations required by the simplex method at “convergence” can be calculated from

Nsim,d = 1 +

Niter∑
l=1

[(Nmax
cut + 1)× (N l

grad − 1) +N l
cut + 1 +N l

grad ×N l
p], (3.25)

where Nsim,d is the number of simulation runs, Niter is the total number of iterations until

“convergence”, N l
grad is the number of gradient estimation required to find the ascent direction

at the lth iteration, N l
cut is the number of step-size cuts took to find J(ūl+1) > J(ūl), and

N l
p is the number of perturbations to estimate the gradient at the lth iteration. This formula

is based on the following computations:

1. We need 1 simulation run for our initial guess

2. At each iteration l, we perform the following simulation runs:

(a) Gradient estimation. Each gradient estimation takes N l
p simulation runs, i.e., we

need N l
grad ×N l

p simulation runs.

(b) For each of the failing gradient estimation cases (out of N l
grad, (N l

grad−1) gradient

estimation failed, only the last one succeeded), we need to run (Nmax
cut + 1) simu-

lation runs in the backtracking algorithm, where we cut our initial step-size with

the maximum number of times Nmax
cut . Here, we add 1 for the case where we did

not cut the step-size yet and then we add Nmax
cut , since we performed Nmax

cut cuts

for the previous failed gradient. Thus, we run (Nmax
cut +1)×(N l

grad−1) simulations

in the case of failing gradient estimation.
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(c) For the case of the successful gradient estimation, using that gradient in the

backtracking algorithm, we run N l
cut + 1 simulation runs inside the backtracking

algorithm.

For the deterministic optimization based on Backtracking Approach 1, we set N l
grad = 1 for

l = 1 : Niter in Eq. 3.25.

For robust optimization, we multiply Nsim,d computed by Eq. 3.25 by Ne, the number

of ensembles of reservoir models, i.e., Nsim,e = Ne ×Nsim,d.
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CHAPTER 4

MACHINE LEARNING-BASED ITERATIVE-SAMPLING-REFINEMENT

OPTIMIZATION METHODS

As stated before, both simplex and StoSAG optimization methods use directly the

simulator and approximate the gradient numerically by perturbation and consequently often

require a large (on the order of hundreds or thousands of depending on the scale of the

problem) number of reservoir simulation runs. Hence, there is a need for efficient optimization

methods for the life-cycle production optimization problems. This is the main objective of

our research.

We apply the machine learning (ML)-based iterative-sampling-refinement optimiza-

tion method to solve the production optimization problems we considered. We use two

different kernel-based ML methods; LS-SVR and GPR. The reason to use a kernel-based

method is that it can approximate an objective function with a high dimension of design

variables with a small training data set so that higher computational efficiency is achieved.

Another point that is worth mentioning is that there are parametric and nonparamet-

ric proxy models. The parametric ones assume a functional form, or shape of the function to

be predicted, such as proxy models based on linear, polynomial functions of inputs. On the

other hand, nonparametric (e.g., GPR) or semiparametric (e.g., LS-SVR) proxy models do

not make explicit assumptions about the functional form of the model. A parametric model

has the disadvantage that the functional form used to estimate the function is usually very

different from the true function, in which case the resulting model will not fit the data well.

In contrast, nonparametric and semiparametric proxies avoid this danger since essentially no

assumption about the form of the function is made. Here, we refer the readers to Chapter

2 of the book by James et al. (2013) who provide a comprehensive discussion on the advan-

tages of the parametric versus nonparametric proxy models, and Guo and Reynolds (2018)
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who provide a comprehensive review and discussion on the advantages of LS-SVR over the

response surface models (see Introduction section of Guo and Reynolds 2018). For example,

Guo and Reynolds presented a comparison of a linear response-surface-based proxy with an

LS-SVR-based proxy for a robust waterflooding production optimization problem (Example

2 of Guo and Reynolds 2018). It is shown that the linear response-surface proxy does not

provide an accurate proxy that can yield a higher NPV than the LS-SVR proxy.

In the following two sections, we discuss the theoretical backgrounds of GPR and

LS-SVR and show mathematical derivations of the training procedure of LS-SVR and GPR.

We try to be brief in theory and derivations leaving the reader with useful references for

reading and investigation more since the theory for each of these ML methods is quite

comprehensive. Then, we provide a review of the theory on the LS-SVR-based and GPR-

based proxy models that are used in the iterative proxy-based-optimization method (referred

to here as the iterative-sampling-refinement optimization) presented by Guo and Reynolds

(2018) who use the ideas given in Queipo et al. (2005) and Forrester and Keane (2009) for

solving production optimization problems. Note that Guo and Reynolds (2018) used this

optimization method only with the LS-SVR method.

4.1 LS-SVR Proxy Model

Support-vector machines (SVMs) for classification and nonlinear function estimation

were introduced by Vapnik et al. (1995) and Vapnik (1998). Least-squares (LS) versions

of SVM’s have been used for classification (Suykens and Vandewalle, 1999) and function

estimation (Drucker et al., 1997; Saunders et al., 1998; Suykens et al., 2002). LS-SVR is

a kernel-based method and is widely used for solving nonlinear regression problems. Here,

we provide the theory and derivation of LS-SVR that can also be found in Saunders et al.

(1998), Suykens et al. (2002), and Guo and Reynolds (2018).

4.1.1 Review of Basic Theory

Given a number of training input and output data where the output data are gen-
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erated from the “true” model, LS-SVR “learns” how to map the input data to the output

response and generates a function to predict the output response of the true model for any

given input data. In our applications, the “true” model corresponds to the NPV (denoted

by J here) defined by Eq. 2.5, and the training output (denoted by Jo) corresponds to the

NPV generated from a numerical simulator. As the training NPV data are generated from a

numerical reservoir simulator, they contain numerical noise resulting from inexact solutions

of both linear and nonlinear solvers used in the simulator (Guo and Reynolds, 2018). So,

the output response is related to the true model as a function of the vector of input data

(denoted by the Nu-dimensional vector u) by

Jo = J(u) + ε, (4.1)

where ε denotes the error.

Let Ntr be the number of training data, uk, k = 1, 2, ...,Ntr, be the Nu-dimensional

kth training input vector, and let Jo,k be a scalar output response corresponding to uk. The

pair (uk, Jo,k) is referred to as the training sample, and the set S is called a training set of

Ntr outputs (also referred to as observations); that is, S = {(uk, Jo,k), k = 1, 2, ...,Ntr}. For

applications with the ML-based methods, the training set is normalized to treat all the input

and output variables equally for training an ML-based proxy (e.g., see Crone et al. 2006;

Guo and Reynolds 2018). Hence, we define ū to be the Nu-dimensional normalized vector

of design variables (see Eq. 2.22) and J̄ as the normalized scalar output (see Eq. 2.23). The

training set S is then converted to a normalized training set S̄ = {(ūk, J̄o,k), k = 1, 2, ...,Ntr}.

In the LS-SVR method, function estimation on a given vector of normalized input

data ū is performed as follows (Suykens et al., 2002):

ˆ̄J(ū) = wTφ(ū) + b, (4.2)

where ˆ̄J is called the predictive function, φ(ū) is a mapping function (a vector function)

that maps the input data into a higher dimensional feature space, w is a vector of regression
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coefficients (or also referred to as weights) in the nonlinear feature space and can be infinite-

dimensional, and b is a scalar constant (also referred to as the bias term).

4.1.2 Training Procedure of LS-SVR

The last two parameters in Eq. 4.2 (w and b) are obtained over the training set

S = {(ūk, J̄o,k), k = 1, 2, ...,Ntr} by minimizing the following objective or objective function:

O(w, b) =
1

2
wTw +

1

2
γ

Ntr∑
k=1

[wTφ(ūk) + b− J̄o,k]2, (4.3)

where γ is the regularization term (also referred to as a hyperparameter) that controls the

regularization procedure and is related to the signal-to-noise ratio in the measurements. The

bigger the value of γ, the higher the signal-to-noise ratio, and the less the necessary reduction

in the coefficients. We choose γ using hyperparameter optimization method to be discussed

in Section 4.1.3. In the case of noisy data, one avoids overfitting by taking a smaller value.

Note that this minimization process is the training process of LS-SVR. The minimization

problem given by Eq. 4.3 is equivalent to (see Suykens et al. (2002); Guo and Reynolds

(2018) and Cawley and Talbot (2007)):

min
w,b,e

O(w, e) =
1

2
wTw +

1

2
γ
Ntr∑
k=1

e2
k, (4.4)

subject to

ek = Jo,k −wTφ(ūk)− b. (4.5)

where e is the Ntr-dimensional vector of residuals with components ek; k = 1, 2, ...,Ntr,

between the predicted function and the observation. The problem defined by Eq. 4.4 is not

solvable for w due to the potential infinite-dimensionality of the weight vector w. Instead,

one constructs the Lagrange dual function (see Suykens et al. 2002) with the Lagrange

multipliers αk; k = 1, 2, ...,Ntr as

68



L(w, b, e;α) = O(w, e)−
Ntr∑
k=1

αk[w
Tφ(ūk) + b+ ek − J̄o,k]. (4.6)

The optimal solution of Eqs. 4.4 and 4.6 is the training procedure of the LS-SVR. This

procedure is shown in Appendix B. As a result of this training procedure, we find α and b.

Therefore, basically, finding α and b is called the training process. After having found them,

we just substitute Eq. B.2a into Eq. 4.2 to obtain

ˆ̄J(ū) =
Ntr∑
k=1

αkφ(ūk)
Tφ(ū) + b, (4.7)

where φ(ūk)
Tφ(ū) is the dot product of mapping functions φ(ūk) and φ(ū). From Eqs. B.6

and B.7, we can see that computational complexity of training procedure has relationship

with the size of the training data as O(N3
tr) for the Cholesky decomposition. However, some

researchers attempted to reduce the computational complexity, such as Gordan et al. (2006).

They achieved 30% reduction in the number of elementary operations per classification in

SVM in the face classification problem.

Using Mercer’s condition (the details are skipped here; see Suykens et al. 2002), the

LS-SVR proxy model given by Eq. 4.7 for function estimation can be expressed in terms of

a scalar kernel function, K(ūk, ū) = φ(ūk)
Tφ(ū), as

ˆ̄J(ū) =
Ntr∑
k=1

αkK(ūk, ū) + b. (4.8)

As can be seen, we need to know the kernel function to be used in Eq. 4.8, as well as to

be able to find α with Eq. B.7, and to find b from Eq. B.6, in advance. In the following

subsection, we briefly discuss the kernel model selection and its hyperparameters.

4.1.3 Kernel Model Selection And Hyperparameter Optimization

Selection of the kernel model and its hyperparameters is also part of the training

procedure. Therefore, this selection process is also called training of the LS-SVR. There are
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various types of kernel functions to use for K in Eq. 4.8. Selection of the kernel function

is not part of our training procedure, and we choose kernel function manually. For our

applications, a radial-basis-function (RBF) kernel is used

K(ūk, ū) = exp

(
−||ūk − ū||22

2σ2
bw

)
, (4.9)

where σbw is the bandwidth (or also referred to as the characteristic length-scale). The reason

we use RBF is that it is preferred for the cases where we do not know the structure of the

response surface to different design variables, as in the case of the NPV for the production-

optimization problem considered here, and we want to have a smooth surface to avoid being

trapped in small local maxima and overfitting if the training data are noisy (Drucker et al.

1997, Guo and Reynolds 2018). As to the role of the characteristic length-scale in Eq.

4.9, when the length-scale is small, the function is very sensitive to variances in the input

variables and thus can potentially produce precise predictions, but with a risk of overfitting.

When the characteristic length is large, the function changes slowly, so predictions become

less precise but more robust.

Those hyperparameters (γ and σ2
bw) can be assumed as we do for the kernel function.

However, it is better for those hyperparameters to be estimated. So, the question is how

to estimate them. Obviously, it is an optimization process, and therefore, we need a score

function (it is an objective function to be optimized in the hyperparameter optimization

procedure). k-fold Cross-validation is used for evaluating many ML methods such as a

decision-tree and XGBoost. It is also used for evaluating the LS-SVR model. The cross-

validation iterates through the folds, and at every iteration, with one of the folds, it validated

the model that trained with the rest of the folds. We repeat this process until all folds are

used as validation. Using an accuracy measure, we score each model and compute the

average of all scores. Using this score, we can tune hyperparameters. One way of doing it is

to manually change hyperparameters to achieve a higher score (accuracy). However, this is

time-consuming, and we do not want the process to be manual since we will use an iterative-
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sampling-refinement optimization algorithm which is an automatic process. Randomized grid

search cross-validation is one of the most popular approaches. In this approach, we start by

creating a grid of hyperparameters we want to optimize with values that we want to try for

those hyperparameters. Instead of trying all possible combinations of hyperparameters the

algorithm randomly chooses a value for each hyperparameter from the grid and evaluates

the model for those random hyperparameters. The randomized grid search method is one

of the optimization methods used. However, one can also use the simplex optimization

method instead of the randomized grid search method on the score generated using k-fold

cross-validation. Note that in this research, the simplex gradient is different from the simplex

optimization method. Also known as Dantzig’s simplex algorithm is an optimization method

used for linear programming. For details of this optimization method one can check the books

Dongarra and Sullivan (2000) and Stone and Tovey (1991).

We use the LS-SVMLab v1.7 toolbox in Matlab which considers k-fold cross-validation

to estimate these parameters. As an optimization algorithm, it uses simplex and grid-search.

We use grid-search, and 10-fold cross-validation (De Brabanter et al., 2010).

The construction of the initial LS-SVR-based proxy model to be used in the iterative-

sampling-refinement method is shown in Fig. 4.1. Once constructed, the initial proxy is

used in the iterative-sampling-refinement algorithm to perform production optimization. As

the LS-SVR proxy given by Eq. 4.8 is analytic to the design variables, we make accurate

and efficient use of the sequential quadratic programming (SQP) method to maximize NPV

using the gradient of the LS-SVR proxy model, given by

∇ ˆ̄J(ū) =
Ntr∑
k=1

[
αk
σ2
bw

K(ūk, ū) · (ūk − ū)

]
, (4.10)

which follows by using Eq. 4.9 in Eq. 4.8 and then taking the gradient of the resulting

equation.
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4.2 GPR Proxy Model

Unlike the LS-SVR and other supervised ML algorithms that learn exact values

(therefore, they are deterministic) for every parameter in a function, GPR uses a fully

Bayesian approach, which infers a probability distribution over all possible values of the

parameters of the function. The uncertainty over the parameters induces uncertainty in the

predictive function itself. Thus, it becomes a stochastic process where every finite collection

of output functions are distributed by multivariate Gaussian distribution. So rather than

calculating the probability distribution of parameters of a specific function, we calculate the

probability distribution over all functions that fit the data (Williams and Rasmussen, 2006).

Note that the GPR proxy is a nonparametric model.

4.2.1 Review of Basic Theory

First, we define a prior Gaussian distribution over output latent functions of NPV for

constructing a GPR based proxy model as follows:

p(j|U) ∼ N(µ,K), (4.11)

where p(j|U) represents the probability density function for the latent function j given the

Nu ×Ntr design matrix U aggregating the Nu-dimensional column vector inputs for all Ntr

training cases, that is U = [u1,u2, ...,uNtr ]. Here and throughout, we use the notation

N(a,Σ) for the Gaussian distribution with mean a and covariance matrix Σ.

In Eq. 4.11, j should not be confused with a vector-valued function. Rather, it is a

vector containing entries of a scalar random function evaluated at different values of the input

vector uk, k = 1, 2, ...,Ntr. For our problem, the NPV is treated as a random function (de-

noted by J). Therefore, j is an Ntr-dimensional vector of latent scalar functions of NPV com-

puted at each input vector uk of the design variables; that is, j = [J(u1), J(u1), ..., J(uNtr)]
T .

In Eq. 4.11, N(µ,K) represents the Gaussian distribution with mean vector µ, an Ntr-

dimensional vector, and covariance matrix K, the Ntr × Ntr (symmetric positive semidef-

inite) matrix. In the equations to be given here, we will consider identical and constant
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mean for the vector j, that is, µ = µ1Ntr , where 1Ntr is the Ntr-dimensional vector hav-

ing all entries equal to unity. Each entry of K is the covariance function specifying the

covariance between pairs of J(ui) and J(uj) for i = 1, 2, ...,Ntr, and j = 1, 2, ...,Ntr. In

GPR, the covariance functions between the pairs are estimated by using a kernel function:

cov[J(ui), J(uj)] = K(ui,uj), where K is the kernel function. Note that j here is a noise-free

random vector of latent functions.

4.2.2 Training Procedure of GPR

As stated by Williams and Rasmussen (2006), we are usually not primarily interested

in drawing random functions from the prior but want to incorporate the knowledge that

the training data provide about the function. As mentioned before, we often have the

noisy versions of the model function as the sample training set; i.e., S = {(uk, Jo,k), k =

1, 2, ...,Ntr}. Assuming additive independent identically distributed Gaussian noise ε with

mean zero and variance σ2
n (in the vectorial notation: ε ∼ N(0, σ2

nI) with zero mean vector

and covariance matrix σ2
nI, where I is the Ntr ×Ntr identity matrix), then the relationship

between the random vector j(u) and the observed noisy (targets) data vector jo is given by

jo = j(u) + ε, (4.12)

and hence, the prior on the noisy observations becomes

p(jo|U) ∼ N(µ1Ntr ,K + σ2
nI). (4.13)

Then, the prior model given by Eq. 4.11 is updated to the posterior distribution by using

the sample training set through Bayes’ theorem as

p(j|jo,U) ∝ p(jo|j,U)p(j|U), (4.14)

and this procedure is training procedure of GPR. Here, the proportionality can be turned into
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an equality by dividing through the marginal distribution by p(jo|U) =
∫
p(jo|j,U)p(j|U)dj.

Eq. 4.14 constitutes the basis of the GPR training procedure to construct a GPR-

based proxy model. The posterior p(j|jo,U) is a Gaussian distribution given by (von Mises,

1964; Williams and Rasmussen, 2006; Quinonero-Candela et al., 2007):

p(j|jo,U) ∼ N(µ1Ntr + K(K + σ2
nI)−1(jo − µ1Ntr),K− (K + σ2

nI)−1K). (4.15)

In GPR, our main objective is to construct a predictive GP-based proxy model, and

hence we can consider just the function values at the points u that concern us, namely

the training points u1,u2, ...,uNtr , and the test points u∗1,u
∗
2, ...,u

∗
Npr

whose j(u∗) value we

wish to predict. Given the prediction points aggregated in the Nu × Npr design matrix

U∗ = [u∗1,u
∗
2, ...,u

∗
Npr

], where Npr is the number of prediction points, we make predictions

of the latent functions at these points: j∗ = [J(u∗1), J(u∗2), ..., J(u∗Npr
)]T , from the predictive

posterior distribution, p(j∗|jo,U,U∗). We follow the book of von Mises (1964) on mathemat-

ical theory probability and statistics to derive the predictive posterior distribution; section

9.3 in his book.

Let us define an Nt-dimensional random vector jΣ aggregating the Npr-dimensional

vector of predictions j∗ and the Ntr-dimensional vector of training points jo; that is

jΣ =

j∗

jo

 . (4.16)

Note that Nt = Npr +Ntr. The joint distribution of jo and j∗ is a Gaussian distribution with

mean vector µ1Nt , where 1Nt is the Nt-dimensional vector, i.e., p(j∗, jo|U∗,U) ∼ N(µΣ,KΣ),

µΣ =

µ1Npr

µ1Ntr

 , (4.17)

and Nt ×Nt symmetric covariance matrix KΣ which can be partitioned as

74



KΣ =

 Kp Kp,o

Ko,p Ko

 , (4.18)

where Kp is the Npr × Npr covariance matrix for the predicted data, Ko the Ntr × Ntr

covariance matrix for noisy training data and is computed from Ko = (K + σ2
nI), and

Ko,p (=KT
p,o) is the Ntr ×Npr cross-covariance matrix describing the covariance between the

training data and predicted data.

Using Eqs. 4.16-4.18 and following books by Muirhead (2009) and Eaton (1983)

on multivariate Gaussian distribution, it can be shown that the conditional distribution

p(j∗|jo,U,U∗) is Gaussian with mean and covariance matrix given, respectively, by

µ∗ = µ1Npr + Kp,oK
−1
o (jo − µ1Ntr), (4.19)

and

K∗ = Kp −Kp,oK
−1
o Ko,p. (4.20)

When we make predictions at prediction point, u∗, using the predictive model which

comes from Gaussian normal distribution with mean given in Eq. 4.19 and covariance given

in Eq. 4.20, we want to make point prediction, we do not want to stochastic prediction; that

is, prediction of a bunch of points coming from predictive distribution. Therefore, we try to

find our point prediction, denoted as Jguess(u∗), that will achieve the smallest loss with true

output, denoted as Jtrue(u∗), but we do not know Jtrue(u
∗). So, we, instead, minimize the

expected loss with respect to the distribution of predictive models defined as follows:

RL(Jguess(u
∗)) =

∫
L(J∗, Jguess(u

∗))p(J∗|jo,u∗)dJ∗, (4.21)

where J∗ = J(u∗) is Gaussian random variable at prediction point u∗; L(J∗, Jguess(u
∗)) is

a loss function. According to Berger (2013), in general the value of Jguess(u∗) when loss

function is absolute loss, |J∗−Jguess(u∗)|, is the median of p(J∗|jo,u∗), while loss function is
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squared loss, (J∗− Jguess(u∗))2, then it is the mean of this distribution. Since our predictive

distribution is Gaussian, the mean and the median is the same. They also state that,

for any symmetric loss function and for any symmetric predictive distribution we always

get Jguess(u∗) as the mean of the predictive distribution. It means that our predictions,

jguess(U
∗) are given by the Eq. 4.19.

If we define j̄∗ = µ∗ − µ1Npr and j̄o = jo − µ1Ntr , then we can express Eq. 4.19 as

j̄∗ = Kp,oK
−1
o j̄o, (4.22)

which shows that that the mean prediction is a linear combination of observations j̄o and this

is sometimes referred to as a linear predictor. Derivations of Eqs. 4.19 and 4.20 are given

in Appendix C.1. Covariance and mean given by Eqs. 4.19 and 4.20, respectively, are the

same as the covariance and mean given in Eq. 4.15 since both of these derivations are based

on the derivation of conditional multivariate Gaussian distribution conditioned to another

random vector. One can get Eq. 4.15, knowing that the marginal distribution of j is given

by the Eq. 4.11, and thus by replacing the term µ1Npr in Eq. 4.19 with µ1Ntr , and replacing

the term Kp in Eq. 4.20 with K.

Eq. 4.22 can also be seen as a linear combination of kernel functions, each one centered

on a training point, by writing (see Williams and Rasmussen 2006)

j̄∗ = Kp,oα, (4.23)

where α is the Ntr-dimensional vector and is calculated from

α = K−1
o j̄o = (K + σ2

nI)−1(jo − µ1Ntr). (4.24)

If we consider a single prediction point u∗j and then, Eq. 4.23 can be written as:

Ĵ(u∗j) =
Ntr∑
i=1

αiK(ui,u
∗
j), for j = 1, 2, ...,Npr. (4.25)
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As in the case of the LS-SVR, if we work with the normalized vectors of design variables and

the prediction model function denoted by ˆ̄J(ū) and express Eq. 4.25 in terms of normalized

variables, then the GPR prediction proxy function is then given by

ˆ̄J(ū∗j) =
Ntr∑
i=1

αiK(ūi, ū
∗
j). (4.26)

Eq. 4.26 is similar to the equation for the LS-SVR prediction (Eq. 4.8), but Eq. 4.26 does

not have a bias term b. So, as we can see from Eqs. 4.8 and 4.26, LS-SVR and GPR have

similar predictive models. However, in LS-SVR, as mentioned in the previous paragraph,

we do not account for the uncertainty in our prediction, whereas the GPR provides fully

probabilistic predictive distributions, including estimates of the uncertainty in the predicted

values of NPV.

4.2.3 Selection of Kernel Function And Hyperparameter Optimization

As can be seen, we need to choose the kernel model and its hyperparameters to be

able to perform predictions. However, it is not easy to specify all aspects of the covariance

function. Therefore, to make GPR a more practical tool, it is essential to find a method that

solves the model selection problem. The model selection problem is interpreted to include a

discrete choice of the form of kernel function and to include finding hyperparameters of the

chosen kernel function.

A general form of a kernel or covariance function that can be used in Eq. 4.26 can

be expressed as

K(ūi, ū
∗
j ,Θ) = C(ūi, ū

∗
j ,θ) + σ2

nδūi,ū∗
j
, (4.27)

where δ is the Kronecker delta, C is the correlation function, σ2
n is noise in data (or also

referred to as nugget), θ is a vector containing the hyperparameters of the correlation func-

tion. Θ = [θ, σ2
n]T is a vector containing all the hyperparameters of the covariance function.

A multitude of possible families of covariance functions exist, including squared exponential,

polynomial, Matérn, neural network, etc., see Table 4.2 of Williams and Rasmussen (2006).
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Each of these covariance functions has a number of free hyperparameters which need to be

determined. For example, the correlation function (C in Eq. 4.27) such as the squared ex-

ponential can be parameterized in terms of hyperparameters as (Williams and Rasmussen,

2006)

C(ūi, ū
∗
j ,θ) = σ2

f exp

[
−1

2
(ūi − ū∗j)

TM(ūi − ū∗j)

]
, (4.28)

where θ = ({M}, σ2
f )
T , σ2

f is the variance of the (noise free) signal, M is the Nu ×Nu sym-

metric distance measure matrix, and {M} denotes the parameters in M. There are various

choices for the matrix M. For example, M = diag(l)−2, where l is the Nu-dimensional vector

with positive elements (hyperparameters) l1, l2, ..., lNu which play the role of characteristic

length-scales; they determine how far you need length-scale to move (along a particular

axis) in input space for the function values to become uncorrelated. Note that, each of these

length-scales can take the same value. So, choosing a covariance function for a particular ap-

plication comprises both setting of hyperparameters within a family and comparing across

different families. Once we want to find hyperparameters as well as the kernel function,

this procedure is also part of the training procedure of GPR. Therefore, the selection of a

covariance function and its parameters is also referred to as training of GPR.

There are various model selection methods. However, the following principles cover

the most:

• given the data compute probability of the model, model selection;

• estimate the generalization error ;

• bound the generalization error.

In Appendix C.2, we discuss the Bayesian view on model selection. It basically computes

the probability of the model given the data, based on the marginal likelihood. As an appli-

cation of Bayesian model selection to GPR, as we see from Appendix C.2, the generalized

maximum likelihood (in the machine learning literature is also called the “evidence frame-

work” approximation) applied to Gaussian Processes allowing to learn the parameters of the
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kernel by maximizing the log marginal likelihood function (Eq. C.36) with respect to the

hyperparameters.

In Section 4.1.3, we discussed the cross-validation, which is the estimation of the

generalization error. Since GPR is a probabilistic model, as a loss function for evaluation of

the predictions, we consider cross-validation using the negative log probability loss

− log p(J∗|jo,u∗) =
1

2
log(2π(σ∗)2) +

(J∗ − µ∗)2

2(σ∗)2
, (4.29)

where µ∗ and (σ∗)2 are predictive mean and predictive variance, respectively, at the prediction

point u∗. One can easily see that µ∗ is just the element of µ∗ given in Eq. 4.19 at the

prediction point; and (σ∗)2 is the diagonal element of K∗ given in Eq. 4.20 at the prediction

point, u∗ plus the variance of noise assumed for predictions, σn. We provide formulations of

them as

µ∗ = µ+ kp,oK
−1
o (jo − µ1Ntr) (4.30)

and

(σ∗)2 = K(u∗,u∗)− kp,oK
−1
o ko,p + σ2

n, (4.31)

where kp,o is 1 × Ntr dimensional matrix showing covariance between prediction point (u∗)

and observation points, and ko,p is Ntr × 1 dimensional matrix and is just transpose of the

matrix kp,o. For further details of using cross-validation as generalization error, see Wahba

(1990). However, for the bound on the generalization error, one can check section 7.4.2 of

the book Williams and Rasmussen (2006).

We use the Matlab toolbox gprMdl to perform GPR computations, model selection,

etc., (The MathWorks, 2020). This package allows us to estimate the mean of the random

latent function, kernel model as well as hyperparameters. It also allows users to use parallel

programming in hyperparameter optimization (Bayesian model selection process) decreasing

the computational time more than 4 times, depending on the number of logical processors.

In our case, we have 12 logical processors, and in this case, the computational time required
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for hyperparameter optimization with a maximum number of evaluations of the objective

function (which is log marginal likelihood function) is set to 50, and with using parallel

programming option was 37 seconds, whereas without using parallel programming it was 150

seconds. The GPR package also gives users freedom of choosing optimizer, stopping criteria

of hyperparameter optimization, a maximum number of objective function evaluations, etc.

In all our cases, we used the quasi-newton method as an optimizer, which is the default

option for this package. For further details of the package, please see the user guide of the

toolbox (The MathWorks, 2020). The construction of the initial GPR proxy model to be

used in the iterative-sampling-refinement optimization method is shown in the flow chart

given in Fig. 4.1.

Since we do not fix our kernel function during iterative-sampling-refinement optimiza-

tion, a numerical gradient of the model is used for the optimization in SQP when we use the

GPR proxy model in our applications. There are plenty of kernel functions that can be used

in GPR, such as matern31, rational quadratic, etc. in gprMdl toolbox in Matlab (Williams

and Rasmussen, 2006).

4.2.4 Uncertainty Assessment of GPR.

As mentioned before, one of the main advantages of the GPR over the LS-SVR method

is to have covariance information. The diagonal elements of this covariance matrix show the

uncertainty bound of the points (observation points and prediction points), and off-diagonal

elements show covariance between those points. Using the diagonal elements of covariance,

the standard deviation and confidence interval of those points can be calculated. So, we

can construct the confidence interval of our NPV predictions. The Matlab GPR package

allows us to get the standard deviation of the GPR prediction model. Putting aside its

computational inefficiency as compared to the LS-SVR, the main advantage of a GPR-based

proxy model over an LS-SVR-based proxy is that it provides fully probabilistic forecast

distributions, including predictions regarding the uncertainty of predictions. In other words,

it is a nonparametric stochastic model providing an estimation of the mean and covariance
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information on the predictive latent function by accounting for noise in the observed and test

data as well as the hyperparameters of the kernel function (see Eqs. 4.19, 4.20 and 4.27).

The diagonal elements of the covariance information given by Eq. 4.20 can be used to assess

the uncertainty on the predicted value of the NPV and the off-diagonal elements to assess

the correlation between the predicted value and the training values. Here, we construct

the approximate 95% confidence interval of the optimum NPV predicted by the GPR-based

iterative optimization method by using the following equation:

Ĵmax − 1.96
√
σ2
Ĵmax
≤ Jtrue ≤ Ĵmax + 1.96

√
σ2
Ĵmax

, (4.32)

where Ĵmax = Ĵ(uopt) is the maximum NPV predicted by the GPR proxy model at the

optimal vector of design variables uopt, Jtrue is the “true”, but the unknown maximum (or

optimum) value of the NPV, and σ2
Ĵmax

is the variance of the predicted NPV at the optimum

point found as a result of GPR-based iterative-sampling-refinement optimization, which can

be obtained from Eq. 4.20 (expressed for a single prediction point; that is the optimum

vector uopt yielded Ĵmax) as

σ2
Ĵmax

= K(ūopt, ūopt)− kTopt,oK
−1
o kopt,o + σ2

n, (4.33)

where

Ko = K(Ū, Ū) + σ2
nI. (4.34)

In Eqs. 4.33 and 4.34, K(ūopt, ūopt) is the signal variance σ2
f and kopt,o denote the Ntr-

dimensional vector of covariances between Ĵopt and the Ntr training points, K(Ū, Ū) is

Ntr×Ntr covariance matrix containing the covariances between pairs of training points. For

the robust case, uopt and U in Eqs. 4.33 and 4.34 contain the model parameter vector m

as well. Hence, the variance given by Eq. 4.33 applies for a single realization of the model

vector m. Since, in the robust case, we look at the mean of these NPV values predicted

considering Nm realizations of the reservoir model, the overall variance of Jmax for this case
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is taken as the mean of the variances of all realizations of the model parameters.

In the GPR model, accuracy and the variance of the model are different things. When

we test our GPR model with the test data, we use the mean of the GPR predictive model.

Hence, when we calculate accuracy measures (R2, MAE, RMSE), we consider the response

of the mean of the GPR predictive model at test points, and we compare it (checking the

data mismatch) with the test data. However, the variance of the GPR model shows the

range of predictive models around the mean of these predictive models. The mean of the

GPR can match the test data, but it may have high variance at those points. The size of

the design variable affects the variance of the GPR model. If one checks any kernel function,

there is a term that shows the norm of the difference of the design variables at two points. If

the size of the design variable is large, the norm between the two points becomes larger. As

the value of the norm becomes larger the covariance between points decreases. If we check

the Eq. 4.33, we will see that the variance, σĴmax
will decrease as the covariance between

ūopt and training data points decreases. Another reason for the high variance of the GPR

model is the low value of “characteristic lengths”, l, and the high value of the variance of

(noise-free) signal, σ2
f since it decreases the covariances between points. In general, as the

covariance between points decreases, the variance of prediction increases.

4.3 Training, Validation and Test of ML Models

Data are sampled using different sampling methods such as random sampling, strat-

ified sampling. We use the Latin Hypercube Sampling (LHS ) method. This method is an

application of the uniform distribution to higher dimensions. The method became famous

due to its generalization ability; that is since we sample all over the response surface, we

will have less chance to have an overfitting problem. Each data point has features (we call

it design variable), U, and its corresponding outputs, jo. In our research since our output is

obtained from the simulator, after having samples of design variables, for each design vari-

able, we run a simulator for each design variable. Using the flow response of simulator, we

calculate NPV using corresponding NPV equation of the production optimization problem
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(Eqs. 2.5, 2.36, 2.43, and 2.57). These NPVs are our outputs (jo) in our data set. Then

we split data into training, validation, and test data sets. The training set is used for the

training procedure; the validation set is used for checking the performance of the model

while training to observe if our model overfits or not. With validation data, we want to have

a generalized model. It can be used either manually modifying hyperparameters or using

hyperparameter optimization on the loss function defined using the loss of each fold. Then

later we check the performance of this generalized model on test data. Usually, training,

validation, and test data are split into 2:1:1 fractions. However, one can choose their own

fraction. For the case where k-fold cross-validation is performed, we just split our data into

training and test set in 2:1 portions. Then training and k-fold cross-validation are performed

on the training data set.

The training procedure of the ML models usually ends up being an optimization

problem. The objective function to be optimized changes depending on the ML method

used. The objective function is called the loss function when it needs to be minimized and

the score function when it needs to be maximized. For most of the ML methods, this objective

function is mean absolute error (MAE ), mean square error (MSE), for especially parametric

models, which is also called data mismatch. In Section 4.1.2, in the training procedure of the

LS-SVR, we performed such kind of optimization problem, where we found the minimum of

the objective function, which was Lagrangian (see Appendix B). Since that objective function

was convex, it did not require iterative optimization. For the hyperparameter optimization

process of LS-SVR, however, we perform an iterative optimization process (see Section 4.1.3)

where we used either simplex or randomized grid search optimization method on the k-fold

cross-validated loss function. However, the objective functions for other ML methods such

as Neural Networks require an iterative optimization process, not only for hyperparameter

optimization but also for the optimization of the model parameters.

In Section 4.2.2, we saw that Bayes process of finding posterior mean and covariance

of predictive distribution is a part of the training process of GPR, which is not an opti-

mization problem yet. However, for the next stage, for hyperparameter optimization, we
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need to perform optimization with respect to hyperparameters, both in using the Bayesian

model selection and cross-validation methods. Note that in hyperparameter optimization

using the Bayesian model selection, our loss function is the negative log marginal likelihood

function (Eq. C.36). For prediction, we also use predictive distribution. However, for eval-

uating predictions of model (validation) using k-fold cross-validation, we use the negative

log probability of prediction (since validation data are used for prediction) (Eq. 4.29). For

point prediction of GPR, we observed that we solve the optimization problem where the loss

function is given by Eq. 4.21.

Cross-validation is an important measure to see the trade-off between model fit and

its complexity; that is a trade-off between errors coming from the bias of the model and

from the variance of the model. As mentioned earlier, when k-fold cross-validation is used,

the loss becomes the average of the loss of each fold. And one can plot this average loss

such as MAE and MSE with respect to the complexity of a model to find the optimum

complexity where the average loss is minimum. Note that the complexity of a model is also

hyperparameter. For instance, the type of the kernel model, hyperparameters of the kernel

model affects the complexity of the GPR and LS-SVR models. Therefore, for LS-SVR and

GPR, k-fold cross-validation can be used as hyperparameter optimization. For more detail

about cross-validation as well as statistical analysis methods of models, we refer to the book

James et al. (2013).

As training/test data splitting process from the data obtained using LHS sampling

method, we prefer using what we call as uniform data split instead of random data split

method. In uniform data split, after having sampled all data using LHS sampling, we include

the first two points into the training set and the following one point into the test set, and

repeat the process till all data are split into training and test sets. This data split method is

not random. In Subsection 5.3.7, we show that the accuracy of an ML model is very sensitive

to random data split. As the ML method in that section we used LS-SVR, and our results

are based on the uniform data split.
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4.4 Proxy-Based Iterative Optimization Method

As mentioned before, our objective is to perform accurate and efficient production op-

timization by using an LS-SVR- or GPR-based proxy for production optimization problems.

The basic idea is to build a proxy that acts as a ‘curve fit’ to the available data (NPV as a

function of design variables) so that the results may be predicted without recourse to the use

of the expensive compositional reservoir simulator. Our premise is that once built, the proxy

will be many orders of magnitude faster than the simulator to perform this optimization.

To this end, in this work, we follow the so-called iterative-sampling-refinement optimization

method proposed by Guo and Reynolds (2018). Similar and more advanced proxy-based

iterative optimization procedures have also been used in other engineering applications; for

example, see, Queipo et al. (2005) and Forrester and Keane (2009).

To create a sample set, first, we sample the design variables and then run our simulator

with these design variables to compute NPV. In the end, {Ji,ui}i=1:Ns is our sample set,

where Ns is the number of sample points. As mentioned in previous section we use LHS as

data sampling method (McKay et al., 2000). It is important to provide some details on how

we choose the size of the sample set that is split into training and test sets using uniform data

split, and the initial proxy model to be used in the iterative-sampling-refinement optimization

method (see Fig. 4.2). As mentioned earlier, we need an initial ML-based (either LS-SVR or

GPR in our study) proxy model to be used in the iterative-sampling-refinement optimization

method. Our purpose here is not to generate an initial proxy model that predicts with high

accuracy the value of NPV output from the reservoir simulator for any input vector of design

variables. Instead, we want the prediction by the proxy to be most accurate in the region of

the optimum. The iterative-sampling-refinement method enhances the accuracy of an LS-

SVR or GPR-based proxy, as a predictor of the NPV generated from the reservoir simulator,

in the region of the optimum by repeatedly adding training samples in addition to the initial

samples. Hence, all we need is to construct an initial proxy that has an “appropriate degree

of accuracy” to start the iterative-sampling-refinement method. We usually start with a

sample set consisting of a training set having a size of one or two times the number of design
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variables and a test set having a size approximately equal to half of the size of the training

set. Using the training set, we construct an LS-SVR or GPR proxy (model). After training,

we compute the accuracy of the predictor using the test set. As for accuracy measures, we

consider mean-absolute-error (MAE), root-mean-square-error (RMSE), and the coefficient

of determination (R2). We then choose the proxy which gives anMAE value less than equal

to 0.1 and R2 to be equal or greater than 0.8 as the initial proxy to be used in the iterative-

sampling-refinement optimization method unless otherwise is stated. Since we applied this

optimization method at first to the production optimization problem of HnP, we choose our

accuracy measures tight. However, for the WAG and well shutoff problems, we try looser

accuracy measures than that for the HnP problem. If given training and test sets do not

provide a proxy satisfying these measures, we increase the size of the sample by a factor of

1.5 and continue with training and testing until we obtain a proxy that yields MAE ≤ 0.01

and R2 ≥ 0.8 (for HnP problem only). Although we have used this approach, it is worth

mentioning that there are other approaches to construct a proxy that has an appropriate

degree of accuracy to be used in the iterative-sampling-refinement process (see Forrester

et al. 2008 and James et al. 2013).

In iterative-sampling-refinement optimization, we start with a reasonably accurate,

the initial LS-SVR or GPR-based proxy model constructed by using (training) data generated

from a high-fidelity compositional simulator (CMG-GEM (2016) in our applications) for the

HnP and WAG problems and black-oil simulator (CMG-IMEX (2020) in our applications)

for the well shutoff problem. As we mentioned before, this initial proxy needs not be highly

accurate so that it can be constructed with a reasonably small number of data generated

from the simulator.

The iterative-sampling-refinement optimization method can be summarized as follows

(also see Fig. 4.2 for a flow chart):

1. Construct an initial LS-SVR- or GPR-based proxy model and take l = 0, where l

denotes the iteration index, and choose an initial guess, ūl=0
opt .
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2. Set l = l + 1. Using the proxy model, its analytical gradient, and initial guess for

normalized design variable perform optimization using the SQP algorithm to find the

vector of optimum design variables ūl+1
opt , and the corresponding ˆ̄J(ūl+1

opt ).

3. Unnormalize ūl+1
opt to ul+1

opt and use this unnormalized vector of the optimum design

variable in the simulator and calculate the true normalized NPV from the simulator,

J̄(uopt).

4. Check for convergence criteria, defined on NPV predicted from both the simulator and

the proxy model by, respectively,

|J̄(ul+1
opt )− J̄(ulopt)|

max(J̄(ulopt), 1)
≤ ε1, (4.35)

and
| ˆ̄J(ūl+1

opt )− ˆ̄J(ūlopt)|

max( ˆ̄J(ūlopt), 1)
≤ ε2, (4.36)

where l indicates the iteration number. Unless otherwise stated, we set ε1 = 0.0001

and ε2 = 0.001 in our applications given in this research. If both Eqs. 4.35 and 4.36

are achieved, stop and exit for the optimum design variable and corresponding NPV

from the simulator.

5. If not converged, we add ūl+1
opt and the corresponding NPV from the simulator, J̄(ul+1

opt ),

into our existing training set, and update our proxy model by training it with this new

training set. Using the last optimum design variable as an initial guess for the next

iteration, i.e, ūlopt = ūl+1
opt .

6. Repeat steps 2 to 5 until we achieve convergence.

Before closing this section, it is worth noting that to perform ML-based proxy opti-

mization for the life-cycle production optimization problem, we have developed a code that is

coupled with the commercial simulator (CMG-GEM (2016) and CMG-IMEX (2020)). This

code is used to generate training sets to be used to construct initial LS-SVR and GPR-based
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Figure 4.1: Flow chart for constructing the initial LS-SVR- or GPR-based proxy models to be used in
the iterative-sampling-refinement optimization method.
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Figure 4.2: Flow chart for the iterative-sampling-refinement optimization method.
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proxies and to perform the ML proxy-based iterative-sampling-refinement optimization pro-

cedure starting with these initial ML-based proxies constructed. We have used MATLAB

programming language to write the codes along with some MATLAB tool packs such as

LS-SVMLab v1.7 and gprMdl toolbox and sequential quadratic programming (SQP). As

to coupling the MATLAB codes with the commercial simulator, first using a vector of de-

sign variables, we generate a SCHEDULE.INC file to be included in our DAT file (DAT

file is the file read by the simulator); then we call CMG GEM.exe or IMEX.exe (depending

on production optimization problem) file on that DAT file; finally, after a simulation run

having finished, we extract the production and injection data into TXT files and read them

with MATLAB to calculate our objective function-NPV using the corresponding formulation

depending on the production optimization problem (Eqs. 2.5, 2.36, 2.43, 2.57).
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CHAPTER 5

PRODUCTION OPTIMIZATION OF THE CO2 HNP PROBLEM IN

UNCONVENTIONAL RESERVOIRS

In this Chapter, first, we talk about the physical process of CO2 HnP process in un-

conventional reservoirs. Then we conduct a sensitivity analysis where we check how recovery

factor (RF) behaves with respect to design variables we used for optimization as well as some

of the important reservoir model parameters. Finally, in the last section, we perform both

the approximate gradient and iterative-sampling-refinement optimization methods on differ-

ent production optimization cases of the HnP problem. For the definition and derivation of

the NPV objective function of the HnP problem, see Section 2.1.

5.1 Physics of The HnP Process in Unconventional Reservoirs

As mentioned earlier, our first and the main production optimization problem is the

HnP process. To gain some insights, first, we investigate the physics of the HnP process

in unconventional reservoirs before going to production optimization of it. First, we start

giving the general governing mass transport equation of which is applied for every EOR

process. Then we discuss the governing mass transport equation of HnP in unconventional

reservoirs by constraining the general governing equation by our assumptions.

5.1.1 Mass Transport Mechanism of HnP Process in Unconventional Reservoirs

To be able to write general governing equation we combine compositional balances

and phase conservation equations. Thus, the mass transport in porous media can be written

as follows:

∂Wij

∂t
+∇ ·Nij −Rij − rm,ij for i = 1, ..., NC and j = 1, ..., Np, (5.1)
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where Wij is the mass concentration of component i in phase j per unit bulk volume; ∇Nij

is the rate of transport of component i in phase j per bulk volume; Rij is the rate of mass

generation of i in phase j per bulk volume per unit time due to chemical reactions or physical

sources (wells); rm,ij is the rate of mass transfer (m stands for mass) of component i from or

into phase j due to phase change (vaporization, condensation or sorption). It should be noted

that
∑Np

j=1 rm,ij = 0 because mass cannot accumulate at volumeless phase interphase (Lake

et al., 2014). Inserting the flux (Nij), the accumulation (Wij) and the source terms (Rij and

rminj), summing Eq. 5.1 over all the phases and knowing the fact that
∑Np

j=1 rm,ij = 0, for

isothermal flow, the overall conservation equation is written as:

∂

∂t

{
φ

Np∑
j=1

ρjSjωij + (1− φ)ρsωis

}
+∇ ·

{
Np∑
j=1

(ρjωijuj − φSjKij · ∇(ρjωij))

}

= φ

Np∑
j=1

Sjrij + (1− φ)ris, for i = 1, ..., NC ,

(5.2)

where ωij mass fraction of component i in the phase j; ωij is mass fraction of component

i in the solid phase; u is velocity governing convective flux; rij is the source term for the

component i in phase j; ris is the source term for the component i in the solid phase; and Sj

is the saturation of phase j. The first term on the left-hand side (LHS) of Eq. 5.2 represents

the accumulation term which is the summation of the accumulation of the component i

in all phases and the accumulation of the component i in the solid phase s (rock), which

is the sorption term (considers adsorption-desorption). The third term on the LHS is the

flux term, which is the summation of advection (advective flux, or convective flux) and

dispersion (dispersive flux) terms. Dispersion is described by Fick’s law (Fick, 1855) in Eq.

5.2. The term at the right-hand side is the source term due to either reaction (chemical

or nuclear) or physical source (well), which is the summation of the source of component i

in all phases and solid phase. In Eq. 5.2, Kij is the hydrodynamic dispersion coefficient,

which is a second-order tensor, includes both molecular diffusion and mechanical dispersion.

Mechanical dispersion is a result of velocity gradient (fluctuations of the velocity (uj). For
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an isotropic, homogeneous permeable medium, two components of Kij can be written as

(Kxx)ij =
Dij

τ
+
αlju

2
xj + αtj(u

2
yj + u2

zj)

φSj|uj|
(5.3)

and

(Kxy)ij =
(αlj − αtj)uxjuyj

φSj|uj|
, (5.4)

where l indicates the longitudinal direction to bulk flow, and t is any direction perpendicular

to l. Dij is the effective binary diffusion coefficient of component i in phase j (Bird et al.,

2007), αlj and αtj are longitudinal and transverse dispersivity coefficients, and τ is tortuosity.

The first term in the RHS of Eq. 5.3 represents dispersion due to molecular diffusion, and the

second term in the RHS represents mechanical dispersion which happens due to the velocity

gradient. Off diagonal elements of the dispersion coefficient matrix are only for mechanical

dispersion.

However, in a nanoscale medium, molecular diffusion becomes an important mass

transport mechanism. Many experimental and simulation studies agree upon the impor-

tance of molecular diffusion in HnP process; for instance, see; Alfarge et al. (2017); Yu et al.

(2014); Jia et al. (2017); Kanfar et al. (2017). In the case of ultra-tight shale-oil formations,

the advective term in Eq. 5.2 is not important, and mechanical dispersion also disappears

from Eqs. 5.3 and 5.4, and thus, diffusion becomes the main mass transport mechanism.

Therefore, ignoring convective flux term from, and ignoring source terms as an additional

assumption (since they are negligible in EOR processes we considered in our research; how-

ever, they are important in the EOR processes that require chemical reaction or physical

source such as polymer injection), Eq. 5.2 can be written with flux due to only molecular

diffusion as

∂

∂t

{
φ

Np∑
j=1

ρjSjωij + (1− φ)ρsωis

}
+∇ ·

{
Np∑
j=1

(−φSjKij · ∇(ρjωij)

}
= 0, for i = 1, ..., NC .

(5.5)

For the HnP process, we need to achieve miscibility to achieve a higher RF. First,
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it is important to note that the ability of a solute to be solved inside solvent is called

solubility. However, for a liquid-liquid solution, if they are mixed at all proportions (there is

no saturation level to reach), they are called miscible liquids. Two gases can be miscible as

well. As explained above the interactions of different molecules or ions may be energetically

preferred or not. If the interaction is not favorable, the solution will end at the point called

saturation point.

Since we have only one phase in miscible condition, considering Np = 1 (in our case

it is oil phase) in Eq. 5.5, we write the equation of mass transport for the HnP process in

unconventional reservoirs as

∂(φρωi)

∂t
+
∂

∂t
[(1− φ)ρsωis] +∇ · [−φKi∇(ρωi)] = 0, (5.6)

where the dispersion coefficient tensor Ki consists of only molecular diffusion coefficient

tensor since we ignore velocity terms in Eqs. 5.3 and 5.4 and considering only one phase

(j = 1). Doing so off-diagonal elements of dispersion coefficients become zero, and diagonal

elements are given as follows:

(Kl)i =
(Dl)i
τ

(5.7)

Usually, the diffusion tensor is assumed to be isotropic and diagonal (Di = (Dl)iI, where I

is the identity matrix of appropriate size). GEM (2016) models only isotropic diffusion, but

it can model anisotropic dispersion.

5.1.2 Phase Equilibrium

In Subsection 5.1.1 governing physics (mass transport mechanism) is generally for-

mulated. To be able to formulate ωij values in Eqs. 5.1, 5.2 and 5.5, we need to know

phase behaviour. We compute those values using phase equilibrium. At the molecular level,

we have interaction potential between two molecules besides the thermal movement of each

molecule. The interaction force between molecules can be related to this pair’s potential en-

ergy, and the maximum work that can be done by this work is called free energy or available
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energy. This energy is related to chemical potential, which is related which is later related

with fugacity. For further details regarding intermolecular forces one can check the books

by Israelachvili (2011) and Job and Herrmann (2006)

Through flash calculation, a relation can be found between partial fugacity (which is

the function of fugacity) and state variables, but we need an equation that relates all state

variables, which is the equation of state (EOS). According to Zhu and Reitz (2002), generally

cubic EOS can be written as Eq. 5.8.

P =
RT

V − b
− a

V 2 + qbV + wb2
, (5.8)

where V , P are volume and pressure of the system, respectively, and R is the universal gas

constant, q and w are just constant which depend on the type of EOS used. The most used

and experimentally well-matched model is the Peng-Robinson (PR-EOS) model (Peng and

Robinson, 1976). For that model q = 2, w = −1. In our research, we also use the PR-EOS

model in WINPROP (2004), which is a phase package of CMG, to calculate PVT properties

of reservoir fluid and injected fluid, which is CO2.

To be able to compute concentration values ωij, we need to solve equilibrium, and

this leads us to chemical potential, to fugacity, eventually to EOS. The solution method is

iterative and can be found in many books related to vapor-liquid equilibrium. The solution of

the compositions of phases allows us to establish phase diagrams for a given mixture. For a

three-component system, we use the ternary diagram and for a four-component system ter-

tiary diagram. Actually, when we talk about 2, 3, 4 components they are pseudo-components,

since we cannot visualize more than 4 components. The properties of pseudo components

can be found by experiments. For example, C7+ is a pseudo component.

These diagrams can be used to establish tie-lines, which can be used to find: if given

reservoir fluid and injected fluid achieve miscibility or not; if achieves miscibility what is the

type of miscibility achieved; if it is first-contact miscibility (FCM) or multi-contact miscibility

(MCM), vaporized or condensed miscibility or mixed. These can be found using different
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methods, but the most famous one is the key-tie line method. The method of characteristics

is used in the semi-analytical (key-tie line) method as described by Orr et al. (2007).

In FCM, when injected solvent mixes with all proportions with reservoir fluid, a

single-phase is formed. FCM can be achieved at very high pressure. A ternary diagram

can be used to illustrate FCM (Fig. 5.1). If the line connecting reservoir fluid point and

injected fluid in the ternary diagram does not intersect the two-phase region of the phase

diagram, that means injected fluid and reservoir fluid will make a single phase, and thus

displacement will consist of single-phase that changes in composition from reservoir fluid to

the injected fluid through this line. Fig 5.2 illustrates visually how miscible and immiscible

flooding occurs (Kantzas et al., 2012).

Figure 5.1: First-Contact Miscibility (Kantzas et al., 2012).

However, in MCM, also known as dynamic miscibility, there will be a composition

alteration between phases (phase that contains all proportions of injected fluid with reservoir

fluid, and the phase that is in the other phase than miscible phase). It achieves miscibility

after multiple contacts during which interphase mass transfer of components between reser-

voir fluid and injected fluid will occur. It will result in a mixture that is miscible with either

injected fluid or initial reservoir fluid. Therefore this process is categorized as vaporizing gas

drive, condensing, condensing/vaporizing-gas (enriched gas) and CO2 displacement. To be
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Figure 5.2: Miscible and Immiscible process illustration (Kantzas et al., 2012)

able to understand how MCM works, we can look at only vaporizing gas drive mechanism

(Fig 5.3). At the beginning injected fluid S contacts with reservoir fluid O and creates mix-

Figure 5.3: Vaporizing gas drive mechanism (Kantzas et al., 2012).

ture M1. With the tie line method, we can see that this mixture contains gas V1 and liquid

L1. This vapor is an enriched solvent. Then, this gas phase V1 moves faster than the liquid

phase and contacts with reservoir fluid, and creates a mixture M2 which contains vapor of

enriched solvent (which is enriched more than V1) V2 and liquid phase L2. And this pro-

cess goes on until when this mixture line will not pass through a two-phase envelope. And
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eventually, a continuous transition zone will exist, gas compositions vary from the injected

gas to reaching the critical point composition. So miscibility is achieved at the front of the

injected gas. (Kantzas et al., 2012).

WINPROP (2004) can be used to calculate MMP or MME at a given pressure, tem-

perature, oil composition, primary and makeup gas compositions. A user can choose any

method of the following methods: the cell-to-cell simulation method which uses a gridded

ternary diagram, therefore, it can be used only for vaporizing or condensing drive mecha-

nisms; the tie-line method; or the multiple-cell simulation method. The last two methods can

be used in vaporizing/condensing mechanisms. In our research, we use the tie-line method.

5.2 Sensitivity Study on Design Variables And on Important Reservoir

Parameters

Before presenting results of production optimization, we conduct a sensitivity study

to investigate the effects of various flow and transport mechanisms and well-control param-

eters on a miscible HnP process in a multi-fractured horizontal well in an unconventional

oil system. For this purpose, we use GEM (2016) which is a general-purpose compositional

simulator. It can model many physical phenomena such as geomechanical and Klinken-

berg effects, molecular diffusion, gas phase diffusion between natural fractures and matrix,

adsorption-desorption, dual-permeability, dual-porosity, etc. Using WINPROP (2004), we

model compositional variations, characterize fluid properties, and compute MCMMP and

FCMMP (first contact minimum miscibility pressure). After modeling fluid compositions

and properties, we use this fluid model as input to GEM (2016). A hydraulic fracture can

be modeled by using a local grid refinement. GEM (2016) provides both planar and com-

plex fracture templates, both of which use the LS-LR (logarithmically spaced local grid

refinement) method. Natural fractures with “dual-permeability” and “dual-porosity” options

can be modeled. Dispersion can also be modeled in GEM (2016). Non-Darcy flow can be

modeled for all phases as well.

Another purpose of pursuing this sensitivity study is to be sure how to get stable
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model results in GEM (2016) since compositional models can be unstable, especially dur-

ing the gas injection process due to wild change of pressure, saturation, and concentrations

of components, and, therefore to understand numerical simulation by GEM is very impor-

tant and has to be modified from the default. GEM (2016) is used to build a model, and

to calculate composition properties, flash calculations, MCMMP etc., we used WINPROP

(2004).

For the sensitivity study, we use the basic fluid and reservoir property data from (Yu

et al., 2014). We consider four fracture stages along a horizontal well, where each fracture

stage has only one fracture. Geometry of the well/reservoir system is shown in Fig 5.4.

The oil composition is given Table 5.1. Yu et al. (2014) states that the oil composition is

pertinent to a Bakken shale-oil play.

(a) 3D grid - cross-sectional view (b) 2D grid - areal view

Figure 5.4: Reservoir model and grid system used for sensitivity study.

Table 5.2 shows binary interaction coefficients (BICs) between components of reservoir fluid.

BICs considers non-ideality of mixture.

Synthetic reservoir parameters are given in Table 5.3. Unless otherwise stated, the

reservoir parameters given in Table 5.3 are for our base case. The reservoir is at the depth of

8800 ft. Water-oil contact (WOC) at 8850 ft is specified to initialize the reservoir simulator.

Using parameters of the components in WINPROP (2004), important fluid properties are

calculated as well as MCMMP and FCMMP. Phase envelope is given in Fig 5.5. Liquid-gas

relative permeability curves are given in Fig 5.6. In applications to be given here, hysteresis

effects in relative permeability curves and the effect of capillary pressure are ignored.
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Table 5.1: Properties of pseudo-components of Bakken oil, Yu et al. (2014).

Component Molar
fraction

Critical
pressure
(atm)

Critical
temper-
ature
(K)

Critical
volume
(L/mol)

Molar
weight
(g/gmol)

Acentric
factor

Parachor
coeffi-
cient

CO2 0.0001 72.8 304.2 0.094 44.01 0.225 78
N2 − C1 0.2203 45.24 189.67 0.0989 16.21 0.0084 76.5
C−C4 0.2063 43.49 412.47 0.2039 44.79 0.1481 150.5
C5 − C7 0.1170 37.69 556.92 0.3324 83.46 0.2486 248.5
C8 − C12 0.2815 31.04 667.52 0.4559 120.52 0.3279 344.9
C13 − C19 0.0940 19.29 673.76 0.7649 220.54 0.5672 570.1
C20 − C30 0.0808 15.38 792.4 1.2521 321.52 0.9422 905.7

Table 5.2: Binary interaction parameters for Bakken oil, Yu et al. (2014).

Component CO2 N2 − C1 C1 − C4 C5 − C7 C8 − C12 C13 − C19 C20 − C30

CO2 0 0.1013 0.1317 0.1421 0.1501 0.1502 0.1503
N2 − C1 0.1013 0 0.0130 0.0358 0.0561 0.0976 0.1449
C−C4 0.1317 0.0130 0 0.059 0.0160 0.0424 0.0779
C5 − C7 0.1421 0.0358 0.059 0 0.0025 0.0172 0.0427
C8 − C12 0.1501 0.0561 0.0160 0.0025 0 0.067 0.0251
C13 − C19 0.1502 0.0976 0.0424 0.0172 0.067 0 0.061
C20 − C30 0.1503 0.1449 0.0779 0.0427 0.0251 0.061 0

Sensitivity analysis is done for changing the values of various physical and well-control

parameters (Table 5.4). Unless otherwise stated, all applications considered matrix perme-

abilities of 50, 500, and 5000 nD. All cases repeated with and without molecular diffusion of

CO2 in an oil phase.

Above 88 ◦F and 1070 psi, CO2 is at a supercritical condition. At a supercritical

condition, CO2 acts like a liquid (its density is close to the liquid density), but its viscosity

still is very low like a gas. In our sensitivity analysis, the BHP is not lower than 2000 psi.

Therefore, CO2 is always at a supercritical condition. GEM (2016) considers supercritical

CO2 as a gas. In GEM (2016), we identify a single-phase fluid in each grid as oil or gas using

different methods with keyword PHASEID under the composition section. PHASEID is an

important parameter to be input by a user in GEM (2016) to calculate phase properties at
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Table 5.3: Reservoir parameters for CO2 HnP process.

Parameter Value Unit
The model dimensions 340x1300x40 ft
Initial reservoir pressure 8000 psi
Production time 30 years
Reservoir temperature 240 oF
Initial water saturation 0.25 fraction
Total compressibility 1e-6 1/psi
Matrix permeability 50 nD
Matrix porosity 0.08 fraction
Stage spacing 70 ft
Fracture conductivity 50 mD-ft
Fracture half-length 350 ft
Fracture height 40 ft
FCMMP 10,000 psi
MCMMP 4,875 psi

each gridblock, especially when molecular diffusion is considered. In our model, the critical

temperature mixing rule (TCMIX) is used as the PHASEID method. According to this

mixing rule, if block temperature is greater or equal to the pseudo-critical temperature, the

phase is assumed to be gas, otherwise, it is the liquid phase. Fig. 5.7 a, b, and c show

distribution of viscosity, whereas Fig. 5.7 d, e, and f show the distributions of the gas phase

density during the injection period of the first cycle of the HnP process. The values of

viscosity indicate that under a supercritical state, the viscosity of CO2 would be very close

to a typical gas viscosity. However, the density of CO2 is very close to the density of oil. In

Fig 5.8, the reservoir is half cut from the right side and from the top to be able to see the

properties near the fracture. When you look at the behavior of gas saturation during each

period at one cycle (first cycle here) (Fig 5.8), you can see that in the 6th day of injection

period you have high gas saturation and as we inject at the midtime of injection we have

higher gas saturation, and at the end of the injection, you will see highest gas saturation

in fracture. This may seem unreasonable because, at that pressure, CO2 is not in the gas

phase, but it seems that simulator takes supercritical CO2 as gas. However, in the 2nd month
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Figure 5.5: Phase envelope of reservoir fluid.

Figure 5.6: Liquid-gas relative permeability.

of the soaking period there is almost zero gas saturation.

So, if supercritical CO2 is considered as the gas phase in GEM (2016), why there is

almost zero gas saturation in the fracture in the midtime of the soaking period? This could

be possible if there is negligible CO2 concentration in supercritical CO2 phase, that is, it is

diffused in the oil phase due to molecular diffusion of CO2 in the oil phase. To be sure about

it, the same case was run but ignoring the molecular diffusion of CO2 (Fig. 5.9). In Fig 5.9,

there is always high gas saturation even at the end of the soaking period. It is because of the

same reason again-since we do not have a diffusion process, CO2 components will not diffuse

into the oil phase from its supercritical state. Therefore, its concentration will build up in
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(a) 6th day of injection (b) 94th day of injection

(c) 180th day of injection (d) 6th day of injection

(e) 94th day of injection (f) 180th day of injection

Figure 5.7: Viscosity [(a), (b), (c)] and density [(d), (e), (f)] of gas phase during injection at 500 nD
permeability considering molecular diffusion of CO2 in oil phase. Production BHP=2000 psi, qCO2,i=100
MSCF/D, 6-month injection, 3-month soaking, 6-month production.
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Table 5.4: Cases considered for sensitivity study for HnP process.

Parameters Cases
Injection rate, MSCF/Day 50 100 150
Production BHP, psi 1500 2000 2500
Injection time at each cycle, month 3 6 9
Soaking time at each cycle, month 0 3 6
Production time at each cycle, month 12 12 12
Total production time, month 312 312 312
Molecular diffusion of CO2 in oil phase on/off on/off on/off
Dual-porosity off on/off off
Dual-permeability off on/off off
Klinkenberg effect off on/off off
Total number of cycles 2 2 2

the fracture, and thus, it will give the highest gas saturation at the end of the soaking period.

In both non-diffusion and diffusion cases, the behavior of gas saturation in the production

period is approximately the same. Gas saturation decreases because the oil phase, which is

liquid at that condition, will go to the fracture. At that pressure (pbh = 2000 psi) CO2 will

go back to supercritical CO2 phase.

The important conclusion from the results of gas saturation, investigated above, is

that supercritical CO2 is handled by GEM (2016) as the gas phase though its density is

nearly the same as the oil phase. In GEM (2016), single-phase fluid in each grid as oil or

gases is identified by using different methods with a keyword called PHASEID under the

composition section. In GEM (2016) user’s guide at page 489, it is mentioned that according

to Gosset et al. (1986) phase identities will be determined depending on fluid properties using

the following criteria using CRIT keyword in front of PHASEID keyword under component

section in GEM (2016):

a At supercritical conditions, named gas

b At subcritical conditions, named oil when its molar volume < critical molar volume. To

avoid expensive critical point calculations, the EOS critical properties for the mixture

computed from mixing rules are assumed to be the true critical values.
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(a) 6th day of injection (b) 93rd day of injection

(c) end of injection (d) 53rd day of soaking

(e) 3rd day of production (f) end of production

Figure 5.8: Gas saturation at different times at 500 nD permeability considering molecular diffusion of
CO2 in oil phase.
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(a) 6th day of injection (b) 93rd day of injection

(c) end of injection (d) end of soaking

(e) 3rd day of production (f) end of production

Figure 5.9: Gas saturation at different times at 500 nD permeability not considering molecular diffusion
of CO2 in oil phase.
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PHASEID is an important parameter that must be inputted by the user in GEM

(2016) to be able to calculate phase properties at each gridblock, especially when diffusion

is considered. However, in all cases in this research, TCMIX (critical temperature mixing

rule) is used as the PHASEID method. According to this mixing rule, if block temperature is

greater or equal to the pseudo-critical temperature, the phase is assumed to be gas, otherwise,

it is the oil phase. Fig 5.4 shows that reservoir fluid is always in the liquid state at that

temperature and pressure. For CO2 240 oF is above critical temperature. Therefore, in our

results, we see supercritical CO2 as the gas phase.

Fig 5.10 presents gas mole fraction of CO2 component at different times considering

molecular diffusion. At the end of production, we see that there is more than 50% gas mole

fraction of CO2 even in the matrix. During injection, CO2 builds up in the fracture system

in a supercritical state (very little amount of it diffuses inside the oil phase in the matrix).

In the soaking period, CO2 components start diffusing into the oil phase into the fracture,

therefore, the gas mole fraction of CO2 becomes zero in the middle of the soaking period.

During production, particularly at the end of the production, we see a high gas mole fraction

of CO2 in the matrix because at a lower pressure than MCMMP CO2 will separate from CO2-

oil mixture. Since at that pressure CO2 still is at its supercritical state, the simulator will

see those CO2 components in the gas phase. From Fig. 5.10 it can be observed that CO2 is

not the only component in the gas phase (otherwise gas mole fraction of CO2 would be 1). It

is because at low pressure lighter components of reservoir fluid would be near miscible inside

supercritical CO2, and, thus enrich it. However, if we check the same case not considering

molecular diffusion (Fig 5.11), we do not see that gas mole fraction will go zero in fracture

even at the end of the soaking period, and at the end of the production period of the first

cycle, the gas mole fraction of CO2 will be zero inside the matrix.

To investigate the behavior of oil viscosity, we visualize viscosity at each grid for

a reservoir having a matrix permeability of 500 nD, at different times of cycle considering

molecular diffusion of CO2 in the oil phase (Fig. 5.12). Here, we observe that two parameters

affect the viscosity of the oil phase simultaneously; namely, pressure at each gridblock and
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mixing of CO2 with oil. At the beginning of the injection, miscibility of oil and CO2 inside

the fracture is achieved, therefore, oil phase viscosity is very low inside the fracture zone near

perforation. However, as pressure increases in the gridblocks further from the perforation

points and inside the matrix, the oil phase is compressed, and thus viscosity of oil in those

gridblocks increases. We can see these effects at the end of the injection period as well.

The distribution of viscosity of oil phases depends on the distribution of pressure through

gridblocks and how deep CO2 is diffused inside the oil phase. The further increase of viscosity

in some gridblocks in the middle of the soaking period is due to further increase during

soaking. Actually, the average reservoir pressure for this case shows its maximum during the

soaking period. Fig 5.13 shows how viscosity of reservoir fluid changes with pressure (plot

is obtained using WINPROP (2004)). The effect of molecular diffusion proves its effect on

viscosity at the end of the soaking period, that is, due to molecular diffusion CO2 moves

from a highly concentrated place, which is the fracture, into its low concentration, which is

the oil phase inside the matrix, and therefore, distribution of viscosity around fracture will

be even. And, at the end of the production period of the first cycle due to high pressure

decrease, and movement of oil from the matrix into fracture will result in evenly distributed

low viscosity. If compared, it can be observed that the overall viscosity of the oil phase after

one cycle decreases especially around the fracture zone (compare Figs 5.12a and 5.12f).

5.2.1 Effect of Molecular Diffusion in Unconventional Oil Reservoirs

The results of gas mole fraction and gas saturation discussed previously show how

molecular diffusion increases the influence area of miscibility. Since it is a low permeability

shale oil reservoir, miscibility happens mostly due to molecular diffusion of CO2 components

between supercritical CO2 state and oil phase. This is because advective flow becomes

negligible, and thus mechanical dispersion also becomes negligible. Including molecular

diffusion affects bottomhole pressure (Fig 5.14). Since there will be a movement due to

molecular diffusion the same amount of injected CO2 will result in less pressure increase

than non-molecular diffusion case.
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(a) 6th day of injection (b) 93rd day of injection

(c) end of injection (d) 53rd day of soaking

(e) 3rd day of production (f) end of production

Figure 5.10: Gas mole fraction of CO2 component at different times at 500 nD permeability considering
molecular diffusion of CO2 in oil phase.
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(a) 6th day of injection (b) 93rd day of injection

(c) end of injection (d) end of soaking

(e) 3rd day of production (f) end of production

Figure 5.11: Gas mole fraction of CO2 component at different times at 500 nD permeability not
considering molecular diffusion of CO2 in oil phase.
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(a) 3rd day of injection (b) 93rd day of injection

(c) end of injection (d) 53rd day of soaking

(e) end of soaking (f) end of production

Figure 5.12: Viscosity of oil phase at different times at 500 nD permeability considering molecular
diffusion of CO2 in oil phase.
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Figure 5.13: Viscosity of oil phase at reservoir temperature.

Figure 5.14: Injection BHP in diffusion and non-diffusion case (k=5000 nD; qinj = 100 MSCF/Day;
pbh = 2000 psi.

To show the effect of molecular diffusion, we run the simulator and compare the

global concentration of CO2 (global concentration is the terminology of CMG-GEM) in the

system at different periods of the first cycle. The global concentration is defined as the mole

fraction of a given component in the entire system. Figs. 5.15 a, b, c, and d show the

global concentration during the injection and soaking periods of the first cycle at each grid.

We cut our reservoir geometry in half so that we can see what happens around fractures.

We performed simulation runs both considering (DIFF) and not considering (NODIFF)

molecular diffusion. If we investigate the case considering molecular diffusion, we observe

that global concentration of CO2 near the fracture has increased during the soaking period

(Figs. 5.15 a, and b). However, this does not occur for the cases that do not consider

molecular diffusion (Figs. 5.15 c, and d). The results of Fig. 5.15 show that molecular

diffusion plays a crucial role in the soaking and the injection periods.
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(a) 180th day of injection (DIFF) (b) 90th day of soaking (DIFF)

(c) 180th day of injection (NO-DIFF) (d) 90th day of soaking (NO-DIFF)

Figure 5.15: Global concentration of CO2 at each grid in the entire system at 180th day of injection
with molecular diffusion (a), 90th day of soaking with molecular diffusion (b), 180th day of injection
without molecular diffusion (c), and 90th day of soaking period without molecular diffusion (d).

5.2.2 Sensitivity of BHP on Recovery Factor

Fig. 5.16 shows the behavior of RF at different BHPs. The reservoir permeability is

50 nD, is a single porosity. Flow is multiphase Non-Darcy, injection rate is 100MSCF/Day,

soaking time is 3 months, injection time is 6 months. The Klinkenberg effect is not consid-

ered. In the case where molecular diffusion is ignored, the lowest BHP yielded the maximum

RF. This is reasonable because, at lower BHPs, the pressure difference will be high to pro-

duce more. However, in the diffusion case, different BHPs did not make any recognizable

difference. We can see that we obtain a similar drawdown even before starting the HnP pro-

cess. This is because including molecular diffusion changes the behavior of production rate
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(a) Diffusion (b) Non-diffusion

Figure 5.16: Oil recovery factor (RF) at different BHP.

at different BHPs. Since the reservoir is ultralow permeable, the advective term is negligible

(Eq. 5.6) as compared to molecular diffusion. Therefore, the magnitude of the pressure

difference between BHP and gridblock pressure will not affect mass transport significantly.

5.2.3 Sensitivity of Injection Rate on Recovery Factor

Fig. 5.17 shows the behavior of RF at different injection rates. Reservoir permeability

is 50 nD and the reservoir is single porosity. The flow is multiphase Non-Darcy, injection

time is 6 months, BHP is 2000 psi, and soaking time is 3 months. The Klinkenberg effect is

not considered. As the injection rate increases RF increases, and HnP affects the RF more.

(a) Diffusion (b) Non-diffusion

Figure 5.17: Oil recovery factor (RF) at different injection rate cases.

This difference is more in the diffusion case.
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5.2.4 Sensitivity of Soaking Time on Recovery Factor

Fig. 5.18 shows a plot of oil RF versus time for three different duration of the soaking

period with/without molecular diffusion. Reservoir permeability is 50 nD; production BHP

is 2000 psi; duration of injection and production periods are 6 and 9 months, respectively.

Different soaking times are considered ranging from a 0 soaking to a 6-month soaking period.

To make a fair comparison, the duration of production time after HnP (5 years) was kept

unchanged from case to case. However, the total duration of the life-cycle differs from case

to case, as can be seen from Fig. 5.18. Increasing soaking time seems not to increase the

(a) Diffusion (b) No-Diffusion

Figure 5.18: Oil recovery factor (RF) vs time at three different duration of soaking period with molecular
diffusion (a) and without molecular diffusion (b). Green curve represents no-soaking period; red curve
represents 3-months soaking period; blue curve represents 6-months soaking period. k = 50 nD.

RF in the cases where molecular diffusion of CO2 is not considered. We see from Fig. 5.18b

that in fact increasing soaking time decreases the RF slightly. We believe that this occurs

because increasing the length of soaking time decreases well-block pressure slightly, which

in turn decreases the oil production rate slightly during the production period. However,

when molecular diffusion of CO2 in the oil phase is accounted for in simulation, we observe

that increasing soaking period yields more RF, though the increase in RF from 3-month

to 6-month soaking is not significant. This is because even though we gain the benefit of

molecular diffusion during the soaking period, increasing soaking time results in decreasing

well-block pressure slightly.
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5.2.5 Sensitivity of Injection Time on Recovery Factor

Fig 5.19 shows oil RF versus time for three different durations of injection period

with and without molecular diffusion. Reservoir permeability is 50 nD; the production BHP

is 2000 psi; the duration of soaking and production periods in each cycle are 3 and 9 months,

respectively. We consider three different durations of the injection period; 3, 6, and 9 months.

(a) Diffusion (b) No-Diffusion

Figure 5.19: Oil recovery factor (RF) vs time at three different duration of injection period with
molecular diffusion (a) and without molecular diffusion (b). Green curve represents 3-months injection
period; red curve represents 6-months injection period; blue curve represents 9-months injection period.
k = 50 nD.

For both cases, with/without molecular diffusion, we observe an increase in RF while

the increase is significant in the case of molecular diffusion. This result is expected since

injecting a longer period of CO2 results in a more cumulative volume of gas injected and

hence, CO2 penetrates deeper into the matrix and swells more oil as well as making oil less

viscous. A comparison of the effects of the soaking and injection times on oil RF (see Figs.

5.18 and 5.19) shows that RF is more sensitive to the duration of the injection period than

that of the soaking period.

5.2.6 Sensitivity of Natural Fractures on Recovery Factor

Fig. 5.20 shows the behaviors of the RF and average reservoir pressure for dual-

porosity, dual-permeability, and a homogeneous single-porosity model. The reservoir perme-

ability is 50 nD, BHP is 2000 psi, flow is multiphase Non-Darcy, injection rate is 100MSCF/Day,
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soaking time is 3 months, injection time is 6 months, Klinkenberg effect is not considered

and molecular diffusion of CO2 in the oil phase is considered. Before analyzing the plot, it is

worth mentioning what is dual-porosity and dual-permeability models and their difference.

They both are used to model naturally fractured reservoirs. Fractures are assumed to be

orthogonal in the three directions acts as if they are boundaries to matrix elements. In a

dual-porosity system and permeabilities of the fractures and matrix are assigned separately

(permeability is very high in fractures), but matrix blocks are not connected to each other

except the fractures. However, in a dual-permeability system, matrix blocks are connected

to each other and thus it provides an alternate path for fluid to flow (GEM, 2016). As

(a) Oil recovery factor (b) Average reservoir pressure

Figure 5.20: Effect of including natural fractures on RF (a) and average reservoir pressure (b).

expected in the dual-permeability system, since matrix blocks are also connected (there is

transmiscibility between them as well as between them and their fractures), RF is higher

than the dual-porosity case. There is a big effect of natural fractures on RF. Having a nat-

urally fractured reservoir plays an important role in the HnP process. HnP is much more

effective in naturally fractured reservoirs. Due to ease of flow in natural fracture cases,

pressure increases during injection periods are lower than in normal cases. This should be

considered when we choose injection rate-we have to inject more in natural fracture cases to

achieve high pressure so that we achieve MCM.
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5.2.7 Sensitivity of Matrix Permeability on Recovery Factor

Fig. 5.21 shows the behavior of RFs as a function of the matrix permeability for

both the molecular diffusion and no molecular diffusion cases. The injection rate is 100

MSCF/Day, the reservoir is single porosity, flow is multiphase Non-Darcy, injection time

is 6 months, BHP is 2000 psi, soaking time is 3 months and the Klinkenberg effect is not

considered. As expected increasing reservoir permeability increases RF. The effect of the

(a) Diffusion (b) Non-diffusion

Figure 5.21: Oil recovery factor (RF) as a function of permeability.

matrix permeability is more when we consider molecular diffusion of CO2 into the oil phase.

5.2.8 Sensitivity of Slippage Flow-Klinkenberg Effect on Recovery Factor

Fig. 5.22 shows cumulative oil and cumulative gas productions for the cases where

the Klinkenberg effect is included and not included in the simulation. The reservoir ma-

trix permeability is 5000nD, the reservoir is single porosity, flow is multiphase Non-Darcy,

injection rate is 100MSCF/Day, soaking time is 3 months, injection time is 6 months, and

molecular diffusion of CO2 in the oil phase is considered. It must be mentioned that the

Klinkenberg effect occurs in the gas flow. Since the supercritical CO2 state is assumed to be

a gas phase in GEM (2016), there is meaning to check this effect also. As expected, due to

slippage of gas we get more cumulative gas production and less cumulative oil production.

However, this effect is negligible and can be ignored in the HnP process.
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(a) Cumulative oil production (b) Cumulative gas production

Figure 5.22: Klinkenberg effect on RF.

5.2.9 Selection of Numerical Parameters in GEM.

Here, we report some difficulties that may be encountered when calling the CMG-

GEM (2016) compositional simulator for performing CO2 HnP production optimization and

provide some guidelines to circumvent these difficulties. Compositional simulation models

can be unstable, especially during a gas injection process due to rapid changes in pressure,

saturation, and concentrations of components. Therefore, understanding the compositional

modeling of CMG-GEM (2016) is important. Besides, understanding how the numerical

parameters of the solver in CMG-GEM (2016) must be modified from their given defaults

to achieve convergence is important. We believe that the information we provide here could

be useful to the readers who may be interested in modeling the miscible CO2 HnP process

by CMG-GEM (2016). In the numerical section of CMG-GEM (2016), the default values

of the solver parameters need to be changed to achieve convergence. When permeability is

very low and there is a hydraulic fracture (or local grid refinement), small gridblocks can

cause convergence problems. Specifically, when we inject fluid into a small well-block, where

the perforation exists, variations in pressure, the global mole fraction of components, and

saturation can be very high at a given time step, causing convergence problems. Therefore,

it is recommended to increase the maximum number of time steps (MAXSTEPS), linear

solver iterations (ITERMAX), and linear solver orthogonalization (NORTH). To handle

convergence issues, it is also suggested to decrease the maximum time-step size (DTMAX),
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minimum time-step size (DTMIN), and first time-step size after changing a well (DTWELL).

After having modified those numerical parameters, one may still have convergence issues. In

that case, it is recommended to increase the maximum allowed changes of pressure (PRESS),

saturation (SATUR), and global composition (GMOLAR). One can also increase the number

of maximum Newton iterations (NEWTONCYC) to achieve convergence, but this causes

much more memory use. Another convergence issue which one could face is related to the

vapor-liquid equilibrium (VLE) equation. Since we include molecular diffusion, the solution

method must be changed to a fully implicit method for all grids in the reservoir by setting

an implicit flag to 3. Note that using the fully implicit solution for all grids increases the

computational time.

5.2.10 Conclusions of Sensitivity Analysis

1. The density and viscosity of gas phase as computed from GEM (2016) show consistency

with the typical viscosity and density behavior of supercritical CO2.

2. Supercritical CO2 is handled as the gas phase in GEM (2016).

3. Due to molecular diffusion of CO2 in the oil phase, we see an increase of gas mole

fraction of CO2 inside the matrix.

4. Mass transport of CO2 components in ultralow permeable reservoirs is mainly due to

molecular diffusion of CO2 components in the oil phase in which the bulk velocity is

so small that the advective transport on flow can be neglected.

5. Even though the overall behavior of oil viscosity shows that it decreases during HnP,

it changes differently during each period of the cycle. This is due to the effects of

pressure and molecular diffusion of CO2 in the oil phase on the viscosity of the oil.

6. Increasing the matrix permeability increases RF in the HnP process. And this incre-

ment is high when we consider molecular diffusion of CO2 in the oil phase.
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7. Increasing the injection rate increases RF in the HnP process. Effect of injection rate

becomes more significant when we consider molecular diffusion of CO2 in the oil phase.

8. When the injection time increases, RF increases. Effect of injection time is important

when molecular diffusion of CO2 in the oil phase is considered. However, in NPV

optimization, this is not the conclusion since we need to consider injection cost as well.

9. Increasing soaking time does not seem to increase RF in the cases where molecular

diffusion of CO2 is not considered. In the cases where we considered molecular diffusion

of CO2 in the oil phase, soaking yields more RF.

10. Effect of BHP for the production period is negligible when molecular diffusion of CO2

in the oil phase is considered. However, when it is not considered, the lower the BHP

the higher RF is.

11. RF is doubled when a naturally fractured reservoir is considered.

12. Since the reservoir fluid is in the oil phase most of the time, considering slippage has

no significant effect on RF during the HnP process.

13. Numerical section of GEM (2016) should be modified from its default values to get

convergence when we use miscible CO2 injection, considering hydraulic fracture, and

molecular diffusion. A fully implicit method must be used to be able to simulate the

cases when molecular diffusion is included.

5.3 Results of Production Optimization of the CO2 HnP Process in

Unconventional Reservoirs

In this section, we provide our results obtained by using synthetic examples to demon-

strate the use of GPR- and LS-SVR-based iterative-sampling-refinement optimization meth-

ods in comparison with the conventional numerical gradient ascent optimization method.

We have to mention that for optimization, we consider a more realistic reservoir model than

that considered for the sensitivity analysis presented before, including geomechanical effects,
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natural fracture, and full stage of hydraulic fracture instead of considering only one stage.

As you will see in the following section, to simulate a realistic reservoir model, we also con-

sider a production period before the HnP process is started. The NPV objective function

used is given by Eq. 2.5. The type and number of design variables change depending on the

production optimization case considered.

In the first subsection, we introduce rock and fluid properties of the reservoir model

considered for the production optimization problem of HnP, and probability distributions of

some of the reservoir parameters for the robust optimization. In that subsection, we also in-

troduce the optimization cases. In Subsection 5.3.2 to Subsection 5.3.6, we show the results

of the optimization cases. For each production optimization case, we compare optimiza-

tion methods considered in this research such as GPR-, LS-SVR-based iterative-sampling-

refinement optimization methods, simplex, and finite difference optimization methods. We

also show the accuracy of the initial proxy models of GPR and LS-SVR using test data.

Validation data are split from our training data to be used in the k-fold cross-validation

process for hyperparameter optimization. In Subsection 5.3.7, we also investigate the effect

of random training/test data split on training accuracy of initial proxy models using the

LS-SVR as the initial proxy model. The effect of choice of the lower bound of ∆tnp on the

application and performance of iterative-sampling-refinement optimization method is exam-

ined in Subsection 5.3.8. In Subsection 5.3.9, we quantify the uncertainty of the GPR model

at the optimum design variable result of each production optimization case.

5.3.1 Reservoir Model and Production Optimization Cases

The fluid composition of the reservoir is taken from Nojabaei et al. (2013), which

is Middle Bakken oil. Injected fluid is 100 percent CO2 with molecular diffusion coefficient

0.0008 cm2/sec. Properties and mole fractions of reservoir fluid components are given in

Table 5.5, while Table 5.6 shows binary interaction coefficients between components. We

have used the semi-analytical (key-tie lines) method given in WINPROP (2004) to calculate

MMP of reservoir fluid with CO2. The estimated multi-contact minimum miscibility pres-
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sure (MCMMP) is estimated to be 2500 psi, whereas the first contact minimum miscibility

pressure (FCMMP) is 11,000 psi at reservoir temperature, T = 240 ◦F. MCM mechanism is

vaporizing and condensing combined gas drive. CO2 is at super-critical condition during the

life of the HnP process.

In our applications, the effects of capillary pressure and hysteresis in relative per-

meability curves on phase behavior in small- or nanometer-scale pores are ignored. Recent

studies by Calisgan et al. (2017), Ma and Jamili (2014), Nojabaei et al. (2013), and Firin-

cioglu et al. (2012) have investigated how the capillary pressure affect the phase behavior

as well as the field production profiles (e.g., gas rates, oil rates, and gas-oil ratios, etc.) All

these studies show that when dealing with the multiphase flow in small or nanometer-scale

pores, the capillary pressure can have a large impact on the phase behavior and consequently

the field pressure and production profiles. Particularly, the study by Firincioglu et al. (2012)

and Nojabaei et al. (2013) show that the capillary pressure in small pores results in lowering

bubble point pressure and positively impacts the performance of unconventional liquids-rich

reservoirs. We refer the readers to these studies for details on the effect of capillary pressure

on the production performance of unconventional liquids-rich reservoirs including the effect

of capillary pressure. We should note that none of the studies cited above considered the

hysteresis effects on the capillary pressure and relative permeability effects. Such effects

may also have a large impact on the CO2 HnP processes. We believe that investigation of

the effects of hysteresis on capillary pressure and relative permeability curves on CO2 HnP

processes in unconventional liquids-rich reservoirs is itself an important topic and calls for a

future study.

The reservoir is assumed to be a naturally fractured reservoir with a heterogeneous

matrix and natural fracture permeability field. The spherical covariance model is used to

include the spatial correlation of the permeability field. We also included the effects of

geomechanics using GEM (2016). We have 4 stages each of which has 4 planar hydraulic

fractures. In Fig. 5.23, the permeability field of the matrix zone is illustrated. GEM

(2016) provides both planar and complex fracture templates, both of which use the LS-LR
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Table 5.5: Properties of pseudo-components of Middle Bakken oil, after Nojabaei et al. (2013).

Component Molar frac-
tion

Critical
pressure
(atm)

Critical
tempera-
ture (K)

Critical
volume
(L/mol)

Molar
weight
(g/gmol)

Acentric
factor

Parachor
coefficient

CH4 0.36736 44.57 186.29 0.0989 16.043 0.0102 74.8
C2H6 0.14885 49.13 305.53 0.148 30.07 0.1028 107.7
C3H8 0.09334 41.90 369.98 0.203 44.097 0.152 151.9
NC4 0.05751 37.18 421.78 0.255 58.124 0.1894 189.6
C5-C6 0.06406 31.38 486.37 0.336 78.295 0.2684 250.2
C7-C12 0.15854 24.72 585.14 0.549 120.562 0.4291 350.2
C13-C21 0.0733 16.98 792.4 0.948 220.716 0.7203 590
C22-C80 0.03704 12.93 1024.71 2.247 443.518 1.0159 1216.8

Table 5.6: Binary interaction coefficients (BIC) for components of Middle Bakken oil, after Nojabaei
et al. (2013).

Component CO2 CH4 C2H6 C3H8 NC4 C5-C6 C7-C12 C13-C21 C22-C80
CO2 0 0.105 0.13 0.125 0.115 0 0 0 0
CH4 0.105 0 0.005 0.0035 0.0035 0.0037 0.0033 0.0033 0.0033
C2H6 0.13 0.005 0 0.0031 0.0031 0.0031 0.0026 0.0026 0.0026
C3H8 0.125 0.0035 0.0031 0 0 0 0 0 0
NC4 0.115 0.0035 0.0031 0 0 0 0 0 0
C5-C6 0 0.0037 0.0031 0 0 0 0 0 0
C7-C12 0 0.0033 0.0026 0 0 0 0 0 0
C13-C21 0 0.0033 0.0026 0 0 0 0 0 0
C22-C80 0 0.0033 0.0026 0 0 0 0 0 0

(logarithmically spaced local grid refinement) method. We used the planar fracture template

in GEM (2016) to model hydraulic fractures. The reservoir system is discretized into 29x17x1

(=493) gridblocks. Only the well gridblocks having hydraulic fractures have been perforated.

Although we consider uncertainty in the reservoir model for robust optimization, some

parameters and properties are assumed to be deterministic such as fracture height, fracture

width, and critical and irreducible saturations both in the matrix and natural fracture zones

(Table 5.7). However, we also have uncertain parameters coming from different probabil-

ity distributions such as matrix permeability (kM) and natural fracture permeability (kf ),

hydraulic fracture half-length of each stage (xf ), hydraulic fracture permeability (khf ), and

secondary permeability (kSRV ) at each stage (Table 5.8). We also included relative perme-

ability endpoints kro,end and krg,end and exponents (no, ng) both in natural fracture zone and

123



Figure 5.23: Areal grid system, hydraulic-fracture distribution, and permeability field of the matrix zone
(color bar represents matrix permeability in mD).

matrix zone, as well as geomechanical parameters (E, ν, α) as uncertain parameters.

Initially, we produce the reservoir for 450 days with the producing bottomhole pres-

sure (BHP) schedule shown in Fig. 5.24. At the end of initial production at 450 days, the

recovery factor (RF ) is 4.1%. Then we apply an HnP process consisting of 5 cycles for a

total duration of 3000 days. In this reservoir model case, the pressure distribution of the

reservoir is, no longer, uniform everywhere. Economical values are provided in Table 5.9.

Figure 5.24: Initial production BHP history before HnP process starts.

Unless otherwise stated, our design variables are injection rate, production BHP,

injection time fraction, production time fraction, and length of each cycle. We consider

the five cycles HnP process for most of the optimization cases. However, we also have one

production optimization case where we considered 25 cycles, and cycle lengths are not in
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Table 5.7: Input values of deterministic reservoir parameters used in the synthetic reservoir model.

Parameter Value Unit
Dimension of the model 3,480x1,700x50 ft3

Depth 11,000 ft
Initial reservoir pressure 7,800 psi
Reservoir temperature 240 oF
Shape factor 2 ft2

Sor,m, residual oil saturation, in matrix
zone

0.2 fraction

Sgc,m, critical gas saturation, in matrix
zone

0.05 fraction

Sor,f , residual oil saturation, in natural
fracture zone

0.05 fraction

Sgc,f , critical gas saturation, in natural
fracture zone

0 fraction

Compressibility of matrix zone 1e-6 1/psi
Compressibility of natural fracture
zone

1e-5 1/psi

Matrix porosity 0.04 fraction
Hydraulic fracture porosity 0.4 fraction
σh, minimum horizontal stress 6,500 psi
σH, maximum horizontal stress 7,500 psi
σv, vertical stress 10,500 psi
Fracture spacing 100 ft
Fracture stage spacing 200 ft
Fracture height 50 ft
Fracture width 0.004 ft

the set of design variables, named as full-25 optimization case (Table 5.11). Since the total

life is fixed to 3000 days, for that case each cycle length is fixed and equal to 120 days. In

that specific optimization case, the number of design variables is 100. The values of bound

constraints used for the design variables are given in Table 5.10.

First, we consider the deterministic cases for which a reservoir model is taken ran-

domly as one of the realizations drawn from the stochastic reservoir model where different

model parameters may assume different probability distributions (Table 5.8).

Three different deterministic optimization cases are considered (Table 5.11). Here

our intention is to investigate if including the duration of production and injection periods

in each cycle and cycle length in addition to well control production BHP and injection rate
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Table 5.8: Stochastic (or uncertain) reservoir parameters and their distributional properties.

Parameter Distribution mean (min) variance (max) unit
kM , matrix zone permeability log-normal 5.00E-5 1.00E-10 mD
kf , natural fracture zone perme-
ability

log-normal 1.00E-2 4.00E-6 mD

khf , hydraulic fracture permeabil-
ity (each stage i.i.d)

log-normal 5,000 90,000 mD

kSRV , SRV permeability zone per-
meability (each stage i.i.d)

log-normal 1 4.00E-2 mD

xf , fracture half-length (each
stage i.i.d)

normal 150 400 ft

kro,end and krg,end, end point rela-
tive permeability (in fracture and
matrix zone; i.i.d)

normal 0.5 0.04 fraction

no and ng (in fracture and matrix
zone; i.i.d)

normal 3 1 fraction

E (Young modulus) uniform (3.50E+06) (7.00E+06) psi
ν (Poisson ratio ) uniform (0.25) (0.40) fraction
α (Biots coefficient) uniform (0.5) (0.85) fraction

Table 5.9: Economical constants used for the NPV function (Eq. 2.5).

Constants Value Unit
b 0.1 fraction
ro 63 $/STB
cCO2,p 0.35 $/MSCF
cCO2,i 1.5 $/MSCF

in the design vector increases our maximum NPV. The simple optimization case refers to

the optimization where we fix each cycle length and duration of injection and production

periods in each cycle. The full optimization case refers to the optimization where only each

cycle length is fixed, and the cycle optimization case is the more general case of optimization

including the cycle length as a design variable as well (see Table 5.11). For the robust

optimization, we considered the most general case, which is the cycle optimization case

(Table 5.11).

All optimization cases are compared with the base case for which we do not perform

any optimization. In the base case, we fix our design variables at reasonable values that
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Table 5.10: Bound constraints for the design variables (HnP problem).

Design variables low up unit
pnbh 1500 2400 psi
qnCO2,i

40 250 MSCF/Day
∆̂t

n

p 0.3 1 fraction
∆tn 35 1500 Days

make sense. Injection and production time fractions are fixed at 0.33 and 0.58, respectively,

and are the same as in the simple optimization case. Also, we fixed the injection rate to its

upper bound and production BHP to its lower bound as shown in Table 5.11. The reason

why we consider a base case and compare our maximum NPV results with it is to investigate

if we can achieve a better NPV by performing optimization. The NPV for the base case is

11.40 million USD.

5.3.2 Simple Optimization Case

In this case, we fix injection and production time fractions as 0.33 and 0.58. These

values are chosen arbitrarily. However, a longer production time fraction than an injection

time fraction is usually preferred. We built the initial proxy models with 40 training samples

and tested them with 18 test samples. The initial LS-SVR and GPR models built with these

sizes of training and test sets are accurate enough to start the iterative-sampling-refinement

optimization method because our criteria for selecting an initial proxy, i.e., MAE ≤ 0.1 and

R2 ≥ 0.8, are satisfied (see Fig. 5.25a and 5.25b).

Using the trained LS-SVR and GPR proxy models as initial models in the iterative-

sampling-refinement optimization, we found the optimum design variables and the corre-

sponding maximum NPV. Fig. 5.26 is a comparison of the NPVs computed by the LS-SVR-

and GPR-based iterative-sampling-refinement optimization methods and simplex optimiza-

tion methods as a function of iteration. Iteration number 0 corresponds to the initial guess of

the design variables used, and for consistency, we have used the same initial guess of design

variables for all optimization methods. NPV Simulator in Fig. 5.26 refers to the NPV ob-
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Table 5.11: Cases considered for the optimization applications

Cases Design variables Fixed variables Number of de-
sign variables

Base case ∆tn=600 days;
∆̂t

n

i =0.33; ∆̂t
n

p=0.58;
0

qnCO2,i
=250

MSCF/D;pnbh=1500
psi

Simple optimiza-
tion case

qnCO2,i
; pnbh ∆tn=600 days;

∆̂t
n

i =0.33; ∆̂t
n

p=0.58
10

Full optimization
case

qnCO2,i
; pnbh; ∆̂t

n

i ;
∆̂t

n

p

∆tn=600 days 20

Cycle optimization
case

qnCO2,i
; pnbh; ∆̂t

n

i ;
∆̂t

n

p ; ∆tn
25

Full-25 optimiza-
tion case

qnCO2,i
; pnbh; ∆̂t

n

i ;
∆̂t

n

p

∆tn=120 days 100

Robust optimiza-
tion case

qnCO2,i
; pnbh; ∆̂t

n

i ;
∆̂t

n

p ; ∆tn
25

tained from the simulator at the optimum design variables computed by the SQP algorithm

using the LS-SVR or GPR proxy model. As can be seen, GPR performed better over the

LS-SVR in this case with converging at fewer iterations and finding a slightly higher NPV

than that from LS-SVR. We think this is because GPR has more freedom over the model

selection as explained in the GPR section previously. However, we should note that the

computational time for constructing a GPR-based proxy model is 10 times more than that

for constructing an LS-SVR-based proxy model. The maximum NPV values obtained by

the LS-SVR and GPR optimization methods are 11.45 and 11.46 million USD, respectively.

Note that both these values are higher than that of the base case. It is worth noting from

Fig. 5.26 that the simplex optimization method converged to an optimum value within 17

iterations by satisfying the maximum number of numerical gradient calculations, which was

set to 5 (Backtracking Approach 2). At the 17th iteration, the NPV estimated by the sim-

plex method is 11.44 million USD. Optimum design variables are given in Fig. 5.27. For
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(a) LS-SVR (b) GPR

Figure 5.25: Testing of the LS-SVR (a) and GPR (b) proxy models for the simple optimization case;
40 training and 18 test samples.

the optimum production BHP plots, we put zero value for the injection and soaking periods

(depicted by dark blue color in Fig. 5.27). Optimum production BHPs are the same and at

their lower bound in both LS-SVR and GPR optimization methods. Another point to note

from the results in Fig. 5.26 is that the up and downs observed in the proxy-based NPV

responses. At each iteration of the SQP method, we update our prediction model by adding

a new NPV computed from the simulator corresponding to the design vector determined by

SQP into the existing training set and then training the NPV proxy model with a new set

of training data. Therefore, at each iteration, the NPV proxy model changes its response

surface. Using this new model, the SQP optimization algorithm may drive the NPV proxy

function to a newly updated design vector that may change its location in the input (design)

space abruptly, resulting in the zig-zag shape of NPVs computed by the proxy-based mod-

els. However, from Fig. 5.26, we note that the magnitude of this up and downs in NPV is

not significant if one considers the resolution of the vertical scale in Fig. 5.26 and that the

oscillations damp out as we continuously update the NPV proxy model.

The results of Table 5.12 show that the simplex optimization method requires ap-

proximately six times more reservoir simulation runs than an LS-SVR-based or GPR-based

optimization method does. Running a CMG-GEM simulation model requires about 8 min-
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Figure 5.26: NPV vs. iterations obtained using the LS-SVR, GPR, simplex and finite-difference opti-
mization methods for the simple optimization case compared with base case.

utes while running an LS-SVR-based proxy model or a GPR-based proxy model requires less

than 1 second. The training procedure to build an LS-SVR proxy model for this example is

finished in 1 second, while building a GPR proxy is finished in 10 seconds, which are still far

negligible compared with the computational costs of simulation runs by CMG-GEM. The

computation times in Table 5.12 are for an Intel(R) Xeon(R) CPU E5-1650v2@3.50Hz 3.50

GHz, 12 cores, x64-based processor, where we performed our computations. The times given

in minutes in Table 5.12 represent the total computational time spent for running simula-

tion models and constructing an initial proxy model and updating the proxy models during

each iteration of the iterative-sampling-refinement optimization method. As the time spent

for training an LS-SVR proxy model and running it is less than 1 second, the 592-minute

computational time given in Table 5.12 for LS-SVR is equal to the total computational time

spent for running 74 simulation models by the LS-SVR-based iterative-sampling-refinement

optimization method. We also used a gradient-based method where the gradient of the

NPV is computed by using a forward-finite-difference with respect to design parameters to

maximize NPV. We used a perturbation size of 0.05 when computing the finite-difference

gradient of the NPV with respect to each normalized design variable and an initial step size

of β0 = 1 in the backtracking algorithm. Backtracking Approach 2 was used for convergence

with εJ = 10−4 and εu = 10−3 (see Section 3.4). The finite-difference method required 9
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Figure 5.27: Comparison of optimum design variables (upper figures are production BHPs and lower
figures are for injection rates) for different optimization methods; the simple optimization case.

iterations to converge (Fig. 5.26), which required 115 simulation runs (Table 5.12).

Table 5.12: Reservoir simulation runs and computational times required for different optimization
methods; the simple optimization case.

Optimization
methods

Number of
iterations

Number of
simulations

Computational
time (mins)

Maximum NPV
(million USD)

LS-SVR 16 74 592 11.45
GPR 15 73 587 11.46
Simplex_1 64 897 7,176 11.46
Simplex_2 17 403 3,224 11.44
FD 9 115 920 11.46
Base case - - - 11.40

For this optimization case, we also tried Backtracking Approach 1 for comparison

reason (see Section 3.4). In Fig. 5.28, we showed optimization results of both Backtracking

Approach 1 (labeled as Simplex_1) and Backtracking Approach 2 (labeled as Simplex_2),

and compared them each other as well as with LS-SVR-, GPR-based iterative-sampling-

refinement optimization results. In Backtracking Approach 1, it takes 64 iterations (897

simulation runs) to converge. The reason it took more iterations is that for the iterations

where we have inaccurate gradients, we do not re-estimate the gradient unlike in Backtracking
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Approach 2. This causes the iteration algorithm to go to the point where NPV is lower than

the previous iteration even after performing a maximum number of step-size cuts. The zigzag

shape of the Simplex_1 plot also confirms what we stated in the previous sentence. However

with Backtracking Approach 1 we achieve a higher NPV (11.46 million USD) (Table 5.12).

(a) LS-SVR (b) GPR

Figure 5.28: NPV vs. iterations obtained using the LS-SVR, GPR, simplex, with both Backtracking Ap-
proach 1 and Backtracking Approach 2, optimization methods for the simple optimization case compared
with base case.

The results also indicate that using a gradient-based on finite-difference in the simple

optimization case is more efficient than using the simplex method if the size of the design

(optimization) variables is small as in this case. However, the finite-difference method is

still not as computationally efficient as the LS-SVR- and GPR- based iterative-refinement

optimization methods which are approximately 1.5 times computationally more efficient than

the finite-difference method.

5.3.3 Full Optimization Case

In this case, we consider the duration of the injection and production periods in each

cycle as design variables by fixing cycle length to 600 days so that the design variables are

qni,CO2
, pnbh, ∆tni , ∆tnp for n = 1, ..., Nc = 5. The total number of design variables is 20.

For constructing the initial LS-SVR and GPR proxy models, we used 60 training samples.

Then, these models were tested using 30 samples (Fig. 5.29). The accuracy of both initially

trained models is sufficient to consider them as the initial proxy models to perform the

132



iterative-sampling-refinement optimization procedure based on our initial proxy selection

method discussed previously.

(a) LS-SVR (b) GPR

Figure 5.29: Testing of the LS-SVR (a) and GPR (b) proxy models for the full optimization case; 60
training samples and 30 test samples.

The plots of NPV vs iterations are given for each method in Fig. 5.30. For this case,

unlike the simple optimization case, the GPR converged with more iterations than LS-SVR.

The maximum values of NPV obtained by the LS-SVR and GPR methods are 11.71 million

USD and 11.72 million USD, respectively.
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Figure 5.30: NPV vs. iterations obtained using the LS-SVR, GPR and simplex optimization methods
for the full optimization case compared with base case.

As can be seen from Fig. 5.31, each optimization method gives slightly different

values of the optimal design variables. From the comparison of the maximum NPVs of
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the simple and full optimization cases, we can observe that with including time fractions

of injection and production period we achieve a higher maximum value of NPV, about a

2.3% gain in NPV. The number of iterations required for the convergence has increased as

compared to the simple optimization case. For this case, GPR took 15 iterations, whereas

LS-SVR took 10 iterations. The simplex method took again the largest iteration number to

convergence; 38 iterations by satisfying the convergence criterion of the maximum number of

gradient calculations, resulting in the maximum NPV equal to 11.70 million USD. It is also

interesting to note that for the full optimization case, our results indicate that the duration

of the soaking period disappears in each cycle.

Figure 5.31: Comparison of optimum design variables (upper figures are production BHPs and lower
figures are for injection rates) for different optimization methods; the full optimization case.

Our results given in Table 5.13 show that the proxy-based iterative-sampling-refinement

optimization method is about 8 times more efficient than the conventional simplex optimiza-

tion method. In this full optimization case, the LS-SVR optimization method is also more

efficient than the GPR optimization method. For this case, in which Ntr = 60, the required

computational times for constructing an LS-SVR and GPR proxy were 1.5 seconds and 15

seconds, respectively.
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Table 5.13: Simulation runs and computational times required for different optimization methods; the
full optimization case.

Optimization
methods

Number of
iterations

Number of
simulations

Computational
time (mins)

Maximum NPV
(million USD)

LS-SVR 10 100 800 11.71
GPR 15 105 844 11.72
Simplex 38 873 6,984 11.70
Base case - - - 11.40

5.3.4 Cycle Optimization Case

Now, we add the cycle length as a design variable into a set of our design variables

for optimization. The total number of design variables for this case is 25. Here, we also

demonstrate the impact of the size of training samples on the accuracy of the proxy mod-

els and iterative-sampling-refinement optimization methods. The models trained with 60

training samples were tested with 30 samples, and the models trained with 90 training sam-

ples were tested with 40 samples. The results shown in Fig. 5.32 indicate that 90 training

samples are sufficient to obtain an accurate proxy model for both LS-SVR and GPR for

the cycle optimization case. As expected, training accuracy in return affects optimization

results of NPV (Fig. 5.33), and including cycle length as a design variable in addition to

other design variables makes the response surface of the NPV function rougher (or more

non-linear). Therefore, required training data for achieving a reasonable accuracy increases

more as compared to the other deterministic optimization cases. As can be seen from

Figs. 5.33a and 5.33b, for the case of LS-SVR, large spikes occur between NPV predicted by

the simulator and the LS-SVR proxy at some iteration points, and it takes more iterations

as the training size increased from 60 to 90. We believe this is related to the discrepancy

between the response surfaces of the “true” NPV function (computed by the simulator) and

of the LS-SVR proxy. During iterative-sampling-refinement optimization, we always add

new training points into our original training set at each iteration. By adding more training

data points, we try to match the true response surface better. When we iteratively train our

model with different sets of training data points, the response surface of the predicted model
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(a) (b)

(c) (d)

Figure 5.32: Testing of trained models; (a) LS-SVR model trained with 60 samples and tested with 30
samples (b) GPR model trained with 60 samples and tested with 30 samples (c) LS-SVR model trained
with 90 samples and tested with 40 samples (d) GPR model trained with 90 samples and tested with 40
samples; the cycle optimization case.

changes its shape. This may be causing the optimum point to be found by the predictive

model to change its location in feature (or design) space abruptly, particularly at the earlier

iterations. This in turn results in the LS-SVR proxy converging to the optimal point with

more iterations. The maximum NPV obtained by the simplex optimization method shows a

slightly smaller value than both of the iterative-sampling-refinement optimization methods

for the LS-SVR and GPR proxy models constructed with 90 training samples, as shown in

Figs. 5.33a and 5.33c. The reason for that is because at the points close to optimum the
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Figure 5.33: NPV vs. iterations obtained using the LS-SVR, GPR, simplex and finite-difference opti-
mization methods; (a) LS-SVR with 90 training samples (b), LS-SVR with 60 training samples (c) GPR
with 90 training samples, (d) GPR with 60 training samples; the cycle optimization case compared with
the base case.

simplex method may fail to estimate plausible numerical gradient direction (it can estimate

descend direction instead of ascent direction), which results in failing to obtain higher NPV

for the next iteration of the optimization process. In this case, we re-estimate the numerical

gradient again, and it costs simulation runs. To avoid being stuck at re-estimation of the

gradient too many times, we put a threshold that if we are required to re-estimate numer-

ical gradient more than 5 times (see Backtracking Approach 2), it means we are very close

to optimum, and we stop our optimization process at that iteration and accept optimum

values. In such situations, we may obtain slightly a lower value of maximum NPV than

the iterative-sampling-refinement optimization method. This result also shows the benefit of

using the iterative-sampling-refinement optimization method over the conventional simplex
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optimization method. Clearly, the initial models trained with 90 training samples achieve

higher values of maximum NPV. The results shown in Fig. 5.33 and Fig. 5.34 show that the

LS-SVR, GPR, and simplex methods give different optimum design variables even though

each method yields essentially the same value of the maximum NPV. This is possible because

the response surface of NPV is multi-modal, and we can have local maxima of NPV close to

each other with different sets of optimum design variables. The number of simulation runs

(and computational times) is compared in Table 5.14. When we used 90 samples for training,

the computational times required to construct an LS-SVR and a GPR model were 2 seconds

and 20 seconds, respectively. Clearly, the results of Table 5.14 show that the LS-SVR

Figure 5.34: Comparison of optimum design variables (upper figures are production BHPs and lower
figures are for injection rates) for different optimization methods; the cycle optimization case (where we
used a proxy model trained with 90 training samples).

and GPR methods are 6 times more computationally efficient in performing the production

optimization for the cycle optimization case. Here, we also used a gradient-based forward-

finite-difference method to maximize NPV. For this purpose, we used the forward difference

to calculate the numerical gradient with the perturbation size of 0.05 of each normalized

design variable and the initial step size of β0 = 1 in the backtracking algorithm. We used

Backtracking Approach 2 for convergence with εJ = 10−4 and εu = 10−3. Fig. 5.33 shows

that the finite-difference-gradient method required 13 iterations to converge. The number of

138



Table 5.14: Simulation runs and computational times required for different optimization methods; the
cycle optimization case (where we used a proxy model trained with 90 training samples).

Optimization
methods

Number of
iterations

Number of
simulations

Computational
time (mins)

Maximum NPV
(million USD)

LS-SVR 44 174 1,393 11.73
GPR 28 158 1,273 11.73
Simplex 52 975 7,800 11.70
FD 13 384 3,072 11.73
Base case - - - 11.40

simulation runs required and maximum NPV found in the finite-difference-gradient method

are given in Table 5.14. The results indicate that using the finite-difference-based gradient

method for maximizing the NPV for the cycle optimization case considered here is more effi-

cient than using the simplex-based gradient method. However, the LS-SVR- and GPR-based

iterative-refinement optimization methods are more than 2 times computationally more ef-

ficient than the finite-difference-gradient method. The results given in Fig. 5.34 and Table

5.15 show that the duration of the optimum soaking period is almost negligible as compared

to the duration of optimum injection and production periods.

Table 5.15: Fraction of the optimum soaking [duration of the soaking period / cycle length] for each
cycle for three different optimization methods; the cycle optimization case (where we used a proxy model
trained with 90 training samples).

Duration of soaking period (days)/Cycle length (days)
Cycle LS-SVR GPR Simplex Finite-difference
1 0/892 0/928 0/1,218 0/1500
2 0/64 17/282 0/534 0/676
3 0/681 38/541 0/181 0/35
4 0/35 0/35 4/35 0/35
5 0/1,330 0/1,214 0/1,032 0/754

The maximum values of NPV achieved in this optimization case for both LS-SVR

and GPR is 11.73 million USD, whereas for simplex and finite-difference methods they are

11.70 and 11.73 million USD, respectively. In this complex reservoir model, including cycle

length did not improve maximum NPV over the full optimization case. There is just a slight
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increase from 11.71 million USD to 11.73 million USD, 0.2% gain in NPV. We believe that

it is not correct to deduce a general conclusion such that treating cycle length as a design

variable will provide no significant increase in NPV over the full optimization strategy where

the cycle length is fixed and that it is a reservoir model specific. An application of the cycle

optimization case for a different reservoir model (the reservoir model considered in Almasov

et al. 2020a) not shown here provided an 8% gain in NPV over the full optimization case.

5.3.5 Full-25 Optimization Case

In this case, we want to investigate two things: how the iterative-sampling-refinement

optimization algorithm works when we increase the number of design variables to 100; how

increasing the number of cycles affects maximum NPV results. For this purpose we consider

an optimization case where we have 25 cycles, length of each is fixed to 120 days, thus the

total life is 25×120 Days=3000 Days. Both LS-SVR and GPR are trained with 100 training

samples and tested with 50 test samples. Fig. 5.35 shows that both of the models are accurate

enough to perform iterative-sampling-refinement optimization. For simplex optimization,
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Figure 5.35: Testing of the LS-SVR (a) and GPR (b) proxy models for the full-25 optimization case;
100 training samples and 50 test samples.

we again use Backtracking Approach 2 with Np = 20. As you can see from Fig. 5.36,

simplex optimization converged in 24 iterations reaching the maximum number of gradient
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estimations. Therefore, the maximum NPV obtained from the simplex method is lower than

both LS-SVR- and GPR-based iterative-sampling-refinement optimization methods.
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Figure 5.36: NPV vs. iterations obtained using the LS-SVR, GPR and simplex optimization methods
for the full-25 optimization case.

Our results given in Table 5.16 show that the proxy-based iterative-sampling-refinement

optimization method is about 4 times more efficient than the conventional simplex optimiza-

tion method. In this full-25 optimization case, the LS-SVR optimization method is also

more efficient than the GPR optimization method, but GPR finds higher maximum NPV

than LS-SVR does. For this case, in which Ntr = 100, the required computational times for

constructing an LS-SVR and GPR proxy were 4 seconds and 25 seconds, respectively. When

Table 5.16: Simulation runs and computational times required for different optimization methods; the
full-25 optimization case.

Optimization
methods

Number of
iterations

Number of
simulations

Computational
time (mins)

Maximum NPV
(million USD)

LS-SVR 34 184 1,474 11.72
GPR 39 189 1,528 11.75
Simplex 24 706 5,648 11.70
Base case - - - 11.40

we compare maximum NPV results of full optimization case, where we have 5 cycles, with

those of full-25 optimization case, where we have 25 cycles (Tables 5.13 and 5.16), we do

not see a significant difference. This sensitivity study of NPV to the number of cycles shows

that increasing number of cycle from 5 to 25 did not affect our optimization results.
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5.3.6 Robust Optimization Case

As a final optimization, we consider a robust optimization where we maximize the

expectation of NPV over the given realizations of plausible reservoir-simulation models to

represent the geological uncertainty (see Eq. 3.6). In our specific example here, the ensemble

size is Ne = 20. In other words, 20 plausible reservoir-simulation models represent the

geological uncertainty. In robust production optimization, we include the vector of uncertain

model parameters into our input vector (or feature space) in addition to the vector of design

variables. So, the feature space for robust production optimization is then [uT ,mT ]T . If

the number of uncertain model parameters in the vector m is quite large, the size of the

feature space will increase significantly. For example, for our specific reservoir model, we

have a total of 2205 gridblocks. If we include all matrix and fracture permeabilities in each

gridblock into our feature space, we will additional 4410 (= 2× 2205) input data. Including

the model parameters that have not significant effect on the output (NPV in our case) can

lead to an overfitted proxy model being constructed. Hence, reducing the feature space

by identifying and then eliminating the model parameters that have not significant effect

on the output response is important in machine learning and robust optimization. For this

purpose, one can perform a sensitivity analysis. There are various tools to perform sensitivity

analysis, such as the principal component analysis (PCA), tornado chart, etc. Here, we have

preferred to use a tornado chart for its simplicity in an attempt to identify which of the

model parameters for our specific reservoir model may have a significant effect on the NPV.

We constructed a tornado chart of NPV with respect to the model parameters (treating

them as uniform over all the gridblocks in the simulation model). Here, we used the optimal

values of the well controls (injection rate of CO2 and production BHPs), the duration of

injection and production periods, and the length of each cycle estimated from the robust

optimization case to be presented later. The mean, low, and high values of each reservoir

parameter used to construct the tornado chart shown in Fig. 5.37 are given in Table 5.17.

The coding used for fracture stages in Table 5.17 and Fig. 5.37 is as follows: stage 1 refers to

the left-most fracture stage shown in Fig. 5.23, while stage 4 refers to the right-most fracture
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stage shown in Fig. 5.23. As can be seen from Fig. 5.37, the matrix permeability and SRV

region permeabilities, as well as geomechanical properties, do not have a large impact on

NPV.

Table 5.17: Reference, low, and high values of the uncertain reservoir parameters.

Parameter Reference value low value high value unit
kM (matrix permeability) 4.62E-05 2.31 E-05 6.93E-05 mD
kf (natural fracture permeability) 8.34E-03 4.17E-03 12.51E-03 mD
khf,1 (hf permeability of hf stage 1) 5,806 2,903 8,709 mD
khf,2 (hf permeability of hf stage 2) 4,628 2,314 6,942 mD
khf,3 (hf permeability of hf stage 3) 5,233 2,616 7850 mD
khf,4 (hf permeability of hf stage 4) 4,575 2,288 6,864 mD
kSRV,1 (secondary permeability of hf stage 1) 1.361 0.681 2.043 mD
kSRV,2 (secondary permeability of hf stage 2) 0.825 0.413 1.238 mD
kSRV,3 (secondary permeability of hf stage 3) 0.752 0.376 1.129 mD
kSRV,4 (secondary permeability of hf stage 4) 1.047 0.523 1.570 mD
xf,1 (fracture half length of hf stage 1) 200 100 300 ft
xf,2 (fracture half length of hf stage 2) 200 100 300 ft
xf,3 (fracture half length of hf stage 3) 200 100 300 ft
xf,4 (fracture half length of hf stage 4) 200 100 300 ft
kro,end,m (relative oil permeability end point
in matrix zone)

0.433 0.216 0.649 fraction

kro,end,f (relative oil permeability end point
in fracture zone)

0.276 0.138 0.414 fraction

krg,end,m (relative gas permeability end point
in matrix zone)

0.6 0.3 0.9 fraction

krg,end,f (relative gas permeability end point
in fracture zone)

0.632 0.316 0.948 fraction

no,m (saturation exponent of oil in fracture
zone)

3.183 1.592 4.775 fraction

no, f (saturation exponent of oil in matrix
zone)

3.455 1.727 5.182 fraction

ng,m (saturation exponent of gas in matrix
zone)

2.523 1.262 3.785 fraction

ng, f (saturation exponent of gas in fracture
zone)

2.151 1.075 3.227 fraction

E (Young modulus) 7E+06 3.50E+06 10.5E+06 psi
ν (Poisson ratio ) 0.4 0.2 0.6 fraction
α (Biot’s coefficient) 0.650 0.325 0.975 fraction

In the robust optimization case, for dimensionality reduction to avoid overfitting, we

assumed the reservoir permeability (matrix and fracture) field to be homogeneous because

in unconventional reservoirs the effect of permeability of each grid individually is not as

important as the overall effect of the permeability change of the reservoir. In other words,
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Figure 5.37: Tornado chart for NPV with respect to reservoir model parameters.

we use a homogeneous matrix and natural fracture permeability field by ignoring the spatial

correlation and generate matrix and fracture permeabilities from their uncorrelated log-

normal distributions with specified mean and variance given in Table 5.8. Then, we assign

the same permeability withdrawn from the distribution to each gridblock in the simulation

model. So, for our case here, with this dimensionality reduction, we consider a vector of

uncertain model parameters including single matrix and fracture permeability of the SRV

region at each stage, fracture half-length at each stage, oil relative permeability at both

matrix and natural fracture region, etc. Thus, the size of the vectorm is 25: m = [kM , kf , 4×

khf , 4× kSRV , 4× xf , 2× kro,end, 2× krg,end, 2× no, 2× ng, E, ν, α]T and the size of the design

vector u is 25. So, the total size of the feature space is 50. Since the size of our feature

space after this dimensionality reduction becomes 50, we did not further reduce the size of

the feature space, though the tornado chart of the NPV (Fig. 5.37) suggests that we could

do a further reduction in our future space since NPV is not much sensitive to some other
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reservoir parameters such as matrix permeability (kM) and secondary permeability (kSRV ) of

the hydraulic fractures of each stage. Nevertheless, we construct a proxy model for a future

space size of 50 for NPV based on LS-SVR or GPR using training data, {[uTk ,mT
i ], J(uk,mi)}

for k = 1, 2, ...,Ntr and i = 1, 2, ...,Ne.

Ns = 200 samples of design parameters generated for Ne = 20 reservoir models

(i.e., ten samples of design variables are paired with each reservoir model). It provided

a sufficiently accurate initial proxy model. So, the input set consists of the 200 suites of

paired reservoir models and design variables, whereas the output set is composed of the

NPVs predicted by running the reservoir simulator with the 200 suites of paired reservoir

models and design variables. 140 samples of this set are used for training, and 60 samples

for the test (see Fig. 5.38). Then using the trained LS-SVR or GPR proxy model, we

(a) (b)

Figure 5.38: Testing of the LS-SVR (a) and GPR (b) models; 140 training samples and 60 test samples.

performed robust optimization based on Eq. 3.6 to maximize the maximum expectation of

the NPV over 20 plausible reservoir models. Fig. 5.39 shows that we achieved the maximum

NPVs in convergence after 10 iterations for the LS-SVR model and 13 iterations for the

GPR model. As the numerical optimization method, as mentioned earlier, we use the ss-

cc-StoSAG optimization method, simply called StoSAG here. The number of perturbations

(Np) was chosen to be equal to 2.
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Figure 5.39: Maximum NPV results for LS-SVR (a) and GPR (b) for the robust optimization case
compared with StoSAG.

As it was in the cycle optimization case, we obtain a slightly lower maximum value of

NPV by the StoSAG optimization method than those by the iterative-sampling-refinement

optimization methods. As expected, the optimum design variables are different for different

optimization methods. It means each method finds a different optimal solution (Fig. 5.40).

Figure 5.40: Comparison of optimum design variables for different optimization methods; the robust
optimization case.

Table 5.18 shows that the optimum soaking fraction (duration of the soaking pe-

riod/cycle length) is almost zero at each cycle for both models. When we used 140 samples

for training, the computational times required to train LS-SVR and GPR models were 4
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seconds and 50 seconds, respectively. The number of simulation runs required for LS-SVR is

Table 5.18: Fraction of the optimum soaking [duration of the soaking period / cycle length] for each
cycle for different optimization methods; the robust optimization case.

Duration of soaking period (days)/Cycle length (days)
Cycle LS-SVR GPR StoSAG
1 0/714 0/35 0/1,018
2 0/35 0/374 0/35
3 0/1,500 0/35 0/412
4 0/716 0/1,058 0/1,500
5 1/35 0/1,497 3/35

higher than GPR for this case, but as expected the StoSAG method requires 6 times more

simulation runs (Table 5.19).

Table 5.19: Simulation runs and computational times required for different optimization methods; the
robust optimization case.

Optimization
methods

Number of
iterations

Number of
simulations

Computational
time (mins)

Maximum NPV
(million USD)

LS-SVR 10 400 3,201 11.96
GPR 13 460 3,691 11.98
StoSAG 25 2,160 17,280 11.95

The pressure fields for one of the model realizations at the end of HnP by applying

the optimal design (optimization) variables generated with LS-SVR, GPR, and StoSAG are

shown in Fig. 5.41. The pressure distributions are quite similar for the three methods.

5.3.7 Effect of Random Training/Test Data Split on the Accuracy of Proxy Model

In this section, considering a simple optimization case, we try different randomly split

training and test data in the LS-SVR model, and check the model accuracy with R2, MAE,

and MAE accuracy measures. We split data, which are sampled using the LHS, with a

ratio of 36/18 training/test split randomly. We have to mention that for the LS-SVR proxy

model, 10-fold cross-validation is used for hyperparameter tuning. We create 3 pairs of this

kind of randomly split sets. The results of test accuracy are shown in Fig. 5.42. As you
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(b) LS-SVR(a) GPR

(c) StoSAG

Figure 5.41: Pressure fields for the 1st realization at the end of production life by applying the optimal
well controls from L-SVR (a), GPR (b), and StoSAG (c); the robust optimization case. The color bar
represents the pressure values.

can see, the accuracy of the LS-SVR proxy model varies depending on which data we choose

for training and testing. Therefore, we use a uniform-data-split strategy, as mentioned in

Section 4.3 for training our models, both LS-SVR and GPR.

5.3.8 Investigation of Choice of Lower Bound of Production Time Fraction

A strategy to sample around the optimum is one of our objectives. One way to

achieve this objective is to develop a strategy for the constraints so that we can decrease the

computational time. Since our main objective is to decrease the computational time of the

optimization process of HnP, choosing this kind of constraint is also one of our main goals

in optimization. Therefore, choosing ∆tlowp different from zero as a constraint can be applied

when we have either a physical or practical reason. Having said that, however, one could

set a lower limit for ∆tlowp as low as zero, but in this case, the sample space will increase to

construct a proxy model. As we show with the specific results below (Fig. 5.43), choosing

∆tlowp =0 would not affect the applicability of our optimization methodology. Also, note
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Figure 5.42: Effect of random split on training accuracy. Training/test is 36/18. Simple optimization
case.

that having the option ∆tlowp =0 means no production period. The models trained with 120

training samples and validated with 48 samples are accurate enough (satisfies our accuracy

criteria) as the initial models to be used in the iterative-sampling-refinement method. Our
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Figure 5.43: Testing of trained models; (a) LS-SVR model trained with 120 samples and tested with
48 samples (b) GPR model trained with 120 samples and tested with 48 samples; the cycle optimization
case with ∆tlowp =0.

results with ∆tlowp =0 show that it takes more computational time and iterations to obtain the

optimum with a proxy built with ∆tlowp =0 (Fig. 5.44). As shown in Fig. 5.44, the maximum

NPVs obtained for LS-SVR and GPR with the iterative-sampling-refinement method are

11.68 million USD and 11.72 million USD, respectively. As can be seen, the LS-SVR yielded
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slightly less NPV value compared to the other optimization methods. The LS-SVR required

111 iterations, 279 simulation runs, and 2236 minutes of computational time, while the GPR

required 70 iterations, 238 simulation runs, and 1927 minutes of computation time. The

maximum NPV values for the LS-SVR and GPR with ∆tlowp =0.3 are 11.73 million USD.

This NPV value is very similar to those NPV values obtained with ∆tlowp =0. However,

the number of simulation runs for the LS-SVR and GPR with ∆tlowp =0 are 174 and 158,

respectively (see Table 5.14), which are much less than those obtained with ∆tlowp =0. In
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Figure 5.44: NPV vs. iterations obtained using the LS-SVR- and GPR-based iterative-sampling-
refinement optimization methods; (a) LS-SVR with 120 training samples, GPR with 120 training samples;
the cycle optimization case with ∆tlowp =0 compared with the base case.

summary, as can be seen from the results above, we can change the lower bound of the

production time fraction and still can apply the iterative-sampling-refinement optimization

method to find the optimum.

5.3.9 Uncertainty Assessment of GPR.

In Table 5.20, we present 95% confidence intervals of the maximum NPVs predicted

by the GPR for each of the four optimization cases. The results show that as our model

(NPVs calculated using a reservoir simulator) becomes more complex by adding more design

variables and hence, increasing the size of feature space, the confidence interval of NPV

widens. This means that the uncertainty in the maximum NPV predicted increases as

we include uncertainty in the geological model as well as increasing the number of design
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parameters (increasing the size of feature space). It is worth noting that we determine

Table 5.20: Statistics based on 95% confidence intervals of GPR predictions of maximum NPV for
different optimization cases.

Optimization mean std lower conf. upper conf. relative conf.
cases (M USD) (K USD) (M USD) (M USD) interval (%)
simple case 11.462 2.880 11.456 11.467 0.050
full case 11.718 4.514 11.709 11.727 0.077
cycle case
(trained with
90 data)

11.712 7.892 11.696 11.727 0.134

full-25 case 11.75 34.967 11.686 11.823 0.59
robust 11.972 21.186 11.951 11.993 0.354

the accuracy of an initial GPR proxy model (or any proxy model) on a test (unseen) data

set. Its accuracy is quantified by statistical measures such as R2, MAE, and RMSE, for

example as illustrated in Fig. 5.38 for the robust optimization case. The accuracy here

should not be confused with the predictive variance of the proxy model, which is given by

Eq. 4.33, or the variance of the signal (noise-free latent GPR function) given by the first

term in the right-hand side of Eq. 4.33. The predictive variance determines the uncertainty

(or the confidence interval) in the predicted value of the maximum NPV. It has a complex

relationship with the signal variance, the correlation between the pairs of the optimum

vector of the design parameters and the training vectors of the design parameters, and noise

in observed (simulator) NPV. Our computations show that the variance of the signal, σ2
f ,

increases as the size of the design variables (or feature space in general) increases. Although

we cannot provide an explicit equation that shows the relationship between the accuracy of

the tested proxy model and the predictive variance of the proxy model, they are related to

each other by the implicit relationship given by Eq. 4.33. Our results in Table 5.20 show

that the variance of the noise-free GPR function is more influential on the predictive variance

or equivalently on confidence intervals as the confidence interval widens as the number of

design variables (or feature space) increases from the simple optimization case to the robust

optimization case. In the 3rd column of the Table 5.20, std represents the standard deviation
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of Jmax; that is the square root of the variance given by Eq. 4.33. Nevertheless, for all

optimization cases, the relative percentage confidence interval is less than 0.75%, which

indicates an acceptable estimation for NPVs.
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CHAPTER 6

PRODUCTION OPTIMIZATION OF THE CO2 WAG PROBLEM

In this chapter, we perform both approximate gradient optimization and iterative-

sampling-refinement optimization on different production optimization cases of the CO2

water alternating gas injection (WAG) problem. The definition of design variables and

derivation of NPV for the WAG problem are given in Section 2.2. Note that the WAG

problem, among other optimization problems we consider such as well shutoff and HnP, has

the largest number of design variables. The number of design variables changes depending on

the optimization strategies considered for the WAG problem. Thus, in this chapter, we also

investigate the effect of the number of and the type of the design variables on the production

optimization results of the WAG problem. In Section 6.1, first, we discuss the physics of the

WAG process in conventional reservoirs, then we explain how the setting of inflow control

valves (ICVs) is included mathematically into the simulator (CMG-GEM (2020)). Later, in

Section 6.2, we present the optimization results of different optimization cases considered for

the WAG problem.

6.1 Physics of WAG Process in Conventional Reservoirs

In Subsection 6.1.1, we briefly discuss mass transport for the WAG process in conven-

tional reservoirs without going into details of derivations since we already showed derivations

of general mass transport in Subsection 5.1.1. In Subsection 6.1.2, we show how simulator

(we use CMG-GEM (2020)) mathematically handles ICVs.

6.1.1 Mass Transport Mechanism of WAG Process in Conventional Reservoirs

In Subsection 5.1.1, we provided a general formulation of the mass transport (Eq.

5.2). Later, in that subsection, we formulated the mass transport for the miscible CO2 HnP

process in unconventional reservoirs (Eq. 5.6) from the general mass transport equation (Eq.
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5.2), considering miscibility and negligible advective term since the reservoir considered for

the HnP problem was an ultralow permeable reservoir. However, for the WAG problem, we

consider a conventional reservoir. Therefore, for the WAG problem, the advective term in

Eq. 5.2 is no longer be negligible. Indeed, in conventional reservoirs, the main mass transport

mechanisms are advection and mechanical dispersion terms. The molecular diffusion term

can be neglected. Therefore, miscibility for the WAG in conventional reservoirs is achieved

by mixing two components in the same phase by mechanical dispersion only since molecular

diffusion is negligible. Note that, in the WAG process considered in this study, we alternately

inject CO2 and water. In front, where the injected gas (CO2) contacts with the reservoir

fluid, we achieve miscibility at MMP. However, we cannot achieve miscibility between water

and oil.

6.1.2 Mathematical Formulation To Include Inflow Control Valves

In Section 2.2, we defined the design variables, formulated NPV for the general (Eq.

2.36), and simple (Eq. 2.43) cases. In that section, we also discussed how NPV is an implicit

function of design variables such as gas injection time fraction, cycle lengths of each well,

gas injection rate, water injection rate, and production BHP. However, we did not mention

how ICVs are included in the NPV formulation. As we know, in the NPV formulation, we

have production flow rate and injection rate terms (see Eqs. 2.36 and 2.43). Those terms are

correlated with BHP and pressure at gridblocks intersected by the well. For phase j (phase

is gas or water for injectors, and phase is oil, water, or gas for producers), and for the time

step n of well k, this correlation is given as follows:

qn,kj =
∑
l=1

PInl λ
n
j,l(p

n
o − pnwf,l), (6.1)

where qn,kj denotes the flow rate of phase j at the time step n of well k; l denotes the layer l;

PInl is the productivity index of the well k at time tn, at layer l; λnj,l is the total mobility of

phase j in the gridblock of well k at layer l at time tn; po is the oil pressure at that gridblock;
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pnwf,l is the bottom-hole pressure at the perforation of layer l at time tn and it is function of

pwf (BHP), bottom-hole pressure at datum, and specific weight of the wellbore fluid due to

gravity. The formulation of productivity index is given as follows:

PIl = 2παlklhl
wfracl

ln(re/rw) + sl
, (6.2)

where αl is the completion fraction of the well at gridblock l, and it represents PI multiplier

for perforation l; wfracl is the fraction of well that is governed by areal geometry at layer

l; kl is the effective permeability in the plane perpendicular to the well direction at layer

l; hl is the thickness of layer l in the well direction; re and rw denote effective radius and

wellbore radius, respectively; and sl is the skin factor of layer l. ICVs are modeled by the

PI multipliers, and thus the NPV formulation becomes an implicit function of ICVs (Chen

and Reynolds, 2017). Therefore, at each control step of each well and at each layer we have

ICV as a design variable.

6.2 Results of Production Optimization of Water Alternating Gas Injection

Problem

In this section, we provide our results of GPR- and the LS-SVR-based iterative-

sampling-refinement optimization methods on production optimization of the WAG process

in comparison with the conventional numerical gradient ascent optimization method. The

objective functions for the NPV for the general WAG problem, where gas injection time

fractions of injection wells and cycle lengths of production and injection wells are in the set

of design variables, and the simple WAG problem, where gas injection time fractions and

cycle lengths are no longer design variables, were, previously, given by Eqs. 2.36 and 2.43,

respectively.

In the first subsection, first, we introduce reservoir model parameters, and the com-

position of reservoir fluid considered for the WAG problem. In that subsection, we also

introduce the production optimization cases considered for the life-cycle production opti-
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mization problem of the WAG process. From Subsections 6.2.2 to 6.2.9, we show the results

of the production optimization cases. For each production optimization case, we compare

the GPR-, the LS-SVR-based iterative-sampling-refinement optimization methods with the

gradient ascent optimization method. We also show the accuracy of the initial proxy models

of GPR and the LS-SVR using test data. Besides this comparison, we also compare different

optimization cases to investigate the effect of the number and the type of design variables

on the production optimization results.

For deterministic optimization cases, the maximum number of simulation runs in

StoSAG optimization method is Nmax
sim = 2000. However, since for the robust case, StoSAG

requires a higher number of simulation runs at each iteration, we choose Nmax
sim = 6000 for

the robust optimization case; and robust optimization case stop due to a maximum number

of simulation runs. Each simulation run requires 1-minute of computational time. Also, we

have to note that for the Bayesian model selection process of the training of GPR process,

we choose the maximum number of objective function evaluations to be equal to 10. Setting

it to a higher number costs a higher computational time. We have tried a different number

of objective function evaluations and setting it to a number less than 10 results in the proxy

models with poor accuracy. Therefore, based on our observations, 10 seems to be the best

number for the maximum number of objective function evaluations. Note that in the GPR

process, the objective function that is used in Bayesian model selection to be optimized is

the log marginal likelihood function (Eq. C.36).

6.2.1 Reservoir Model and Production Optimization Cases

The fluid composition and the reservoir model are taken from Chen and Reynolds

(2017). The injected fluid is 100 percent CO2. We use the CMG-GEM (2020), a black oil

simulator, to simulate the WAG process. There are 7 pseudo components used to describe

reservoir fluid. Properties and mole fractions of these components are given in Table 6.1,

and BICs of the components are given in Table 6.2. We use the semi-analytical (key-tie

lines) method given in WINPROP (2004) to calculate MMP of reservoir fluid with CO2.
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The estimated minimum miscibility pressure (MMP) is 4,150 psi at reservoir temperature,

T = 192.2 ◦F.

Table 6.1: Properties of pseudo-components taken after Chen and Reynolds (2017).

Component Molar frac-
tion

Critical
pressure
(atm)

Critical
tempera-
ture (K)

Acentric
factor

Molar
weight
(g/gmol)

Critical
volume
(L/mol)

Parachor
coefficient

CO2 0 72.8 304 0.225 44 0.094 78
N2 0.00007 33.5 126 0.04 28 0.0895 41
CH4 0.0787792 45.4 191 0.008 16 0.099 77
C2 to iC4 0.0246498 41.2 370 0.147 45.3 0.208 150
iC5 to C6 0.199058 33.2 474 0.241 76.1 0.317 232
C7 to C18 0.487665 23.5 643 0.476 149 0.566 416
C19 to C43 0.209778 12.7 779 1.04 378 1.35 884

Table 6.2: Binary interaction coefficients (BIC) pseudo-components taken after Chen and Reynolds
(2017).

Component CO2 N2 CH4 C2 to iC4 iC5 to C6 C7 to C18 C19 to C43
CO2 0 -0.020 0.103 0.132 0.132 0.150 0.150
N2 -0.020 0 0.031 0.080 0.102 0.120 0.120
CH4 0.103 0.031 0 0.009 0.022 0.048 0.104
C2 to iC4 0.132 0.080 0.009 0 0.003 0.016 0.056
iC5 to C6 0.132 0.102 0.022 0.003 0 0.005 0.034
C7 to C18 0.150 0.120 0.048 0.016 0.005 0 0.012
C19 to C43 0.150 0.120 0.104 0.056 0.034 0.012 0

The reservoir model studied in this research is a three-layer, square-shaped, channel-

ized reservoir. We have 4 injectors and 9 producers. All layers have a heterogeneous perme-

ability distribution. They all have the same heterogeneous distribution, but the permeability

field of layer 2 is equal to 0.6 times of permeability field of layer 1, and the permeability field

of layer 3 is equal to 0.3 times of permeability field of layer 1. For all layers, the vertical per-

meability field is 0.1 times the horizontal permeability field. The porosity field of all layers is

homogeneous and equal to 0.2. The initial reservoir pressure is 4,500 psi. All other reservoir

parameters, as well as rock and fluid properties, are provided in Table 6.3. The reservoir is

modeled using 25× 25× 3 grids in CMG-GEM (2020). The horizontal permeability field of

the first layer is shown in Fig. 6.1, as well as the areal gridding. The economical values are
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Table 6.3: Input values of deterministic reservoir parameters used in the synthetic reservoir model.

Parameter Value Unit
Dimension of the model 2,500x2,500x90 ft3

Depth 9,800 ft
Initial reservoir pressure 4,500 psi
Reservoir temperature 192.2 oF
Sor, residual oil saturation 0.3 fraction
Sgc, critical gas saturation 0.05 fraction
Swir, irreducible water saturation 0.2 fraction
Rock compressibility at 3,300 psi 6.1e-5 1/psi
Water compressibility at 14.7 psi 3.3e-6 1/psi
Water viscosity at 14.7 psi 0.7 cP
Porosity 0.2 fraction

Figure 6.1: Areal grid system and horizontal permeability field of first layer (color bar represents per-
meability in mD).

provided in Table 6.4.

Depending on the number of injection cycles considered, we treat BHPs as design

variables or fixed, ICVs as design variables or fixed, cycle lengths of injection and production

wells as design variables or fixed, and/or gas injection time fractions as design variables or

fixed. Table 6.5 shows the cases considered. For the cases where we fix BHPs, we fix their

values to 1000 psi. We fix ICVs to their upper 1 for the cases in which ICVs are no longer

design variables. For the cases where cycle lengths and gas injection time fractions are fixed,
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Table 6.4: Economical constants used for the NPV function (Eqs. 2.36 and 2.43).

Constants Value Unit
b 0.1 fraction
ro 60 $/STB
cwp 5 $/STB
cwi 5 $/STB
cgi 1.5 $/MSCF

we divide cycle lengths uniformly and we fix gas injection time fraction to 0.5. Therefore,

we use Eq. 2.43 as an objective function for the production optimization. Note that for

all production optimization cases of the WAG problem considered in this work, Nc = 2Nic.

Thus, in Table 6.5, we only give the number of injection cycles, Nic, and also only injection

cycle length, ∆tn.

Table 6.5: Cases considered for the optimization applications of the WAG problem.

Cases Nic Fixed
BHP
(psi)

Fixed
ICV

Fixed
∆tn

(Days)

Fixed
∆̂t

n

g

Number
of design
variables

Case-8-highBHP 8 NA 1 360 0.5 208
Case-2-highBHP 2 NA 1 1440 0.5 52
Case-8-constBHP 8 1000 1 360 0.5 64
Case-8-lowBHP 8 NA 1 360 0.5 208
Case-8-rate 8 NA 1 360 0.5 208
Case-8-lowBHP-ICV 8 NA NA 360 0.5 832
Case-8-lowBHP-ICV-
robust

8 NA NA 360 0.5 832

Case-8-lowBHP-cycle 8 NA 1 NA NA 416

The case names are described in Table 6.5 as follows: the first extension after the

Case indicates the number of injection cycles; the second extension gives information whether

bounds of production BHPs are high (2500 to 4500 psi) or low (500 to 1000 psi) or constant

(fixed to 1000 psi); the third extension indicates whether we include ICV as design variable

or not; finally, the last extension implies if optimization case considers cycle lengths and gas

injection time fractions as design variables. For instance, Case-8-lowBHP-cycle implies the
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case where we have 8 injection cycles (which means we have 16 production cycles), bounds

of production BHPs are low (500 to 1000 psi), cycle lengths, as well as gas injection time

fractions, are design variables and ICVs are all fixed to 1. Case-8-rate is the only case where

instead of production BHP we use production flow rate as a design variable. The order of

the design variables inside the design vector is consistent with the ordering given in Eq. 2.38.

The number of design variables for the cases where ICVs, cycle lengths, and gas injection

time fractions are fixed, is given by Eq. 2.45; for the cases where only cycle lengths and

gas injection time fractions are fixed, it is given by Eq. 2.46; for the cases where only ICVs

are fixed, it is given by Eq. 2.37; for the cases where ICVs, cycle lengths, and gas injection

time fractions are all design variables (not fixed), it is given by Eq. 2.41; and finally for

Case-8-constBHP, where production BHPs are fixed as well as ICVs, cycle lengths, and gas

injection time fractions, the number of design variables is calculated as follows:

Nu = Nt ·NI . (6.3)

The bound constraints used for the design variables are given in Table 6.6. Note that

for all cases these bounds are the same. However, lower and upper bounds of production

BHPs can change depending on the case considered as explained in the previous paragraph.

For Case-8-rate, upper and lower bounds for production flow rates are 0 and 1000 STB/D.

Table 6.6: Bound constraints for the design variables for n = 1 : Nc for production wells and n = 1 : Nic

for injection wells, m = 1 : NI and k = 1 : NP (WAG problem).

Design variables lower bound upper bound unit
qn,mg,i 0 20 MMScf/D
qn,mw,i 0 4,000 STB/Day
∆̂t

n,m

g 0 1 fraction
∆tn,m 36 720 Days
∆tn,k 36 720 Days
ICV 0 1 fraction

For the StoSAG optimization of the simple optimization cases of the WAG problem,

160



where cycle lengths and gas injection time fractions are not design variables (see the objective

function defined by Eq. 2.43), the lag distance in time (also known as correlation length) is

720 days for the covariance used in StoSAG gradient approximation calculation. We use a

spherical covariance model (see Eq. 3.5) as mentioned in Section 3.1 and Section 3.2. The

variance is equal to 0.01. For the deterministic optimization cases, Np changes its value

between 10 and 15 depending on the cases while for the robust optimization case it is equal

to 2 (see Eq. 3.12). However, for the cases where the cycle lengths and gas injection time

fractions are also design variables, we simply use a diagonal covariance with variance equal to

0.01 since the control time steps are not known anymore (they are also part of optimization).

In the next subsections, we will see optimization results of different optimization

cases for the WAG problem. The reasons for considering the cases given in Table 6.5 will be

obvious as we examine the results. For all of the production optimization cases, we applied

the iterative-sampling-refinement optimization method as well as the StoSAG optimization

method and compared their results. Also, we investigate the effect of training size on the

optimization results of the iterative-sampling-refinement optimization method for different

optimization cases of the WAG problem. Note that for all the optimization cases (robust

and deterministic optimization cases) considered below, the StoSAG optimization method is

converged because it reached the maximum number of simulation runs. Considering that for

the WAG problem each simulation run takes 1 minute, for deterministic optimization cases,

computational times for StoSAG optimization are 2000 minutes and for robust optimization

case, it takes 6000 minutes.

In Subsection 6.2.9, we also summarize the computational times and maximum NPVs

obtained using LS-SVR- and GPR-based iterative-sampling-refinement optimization meth-

ods as well as StoSAG optimization method for all optimization cases considered for the

WAG problem.

6.2.2 Case-8-highBHP

This case has 208 design variables (Table 6.5). To train the initial LS-SVR and GPR
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proxy models we use 1000 training data points and 500 testing data points. For the LS-SVR

we use 100-fold cross-validation for the hyperparameter optimization process. For the initial

GPR model, the Bayesian model selection determined the rational quadratic kernel function.

The accuracies of the initial proxy models on test data are shown in Fig. 6.2. The results
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Figure 6.2: Test of the LS-SVR and GPR proxy models for Case-8-highBHP.

show that we do not have an accurate GPR and the LS-SVR proxy models even with a

large amount of data. We do not want to choose a data set larger than this since it will not

be efficient, especially when considering that GPR requires a large computational time for

training with a large data set. There should be other reasons for the accuracy to be low. In

the next cases, we investigate this. Even though the accuracy is very low, we would like to see

if the optimization results of the iterative-sampling-refinement optimization method change

significantly with these initial models. The computational times for the training of the LS-

SVR and GPR proxy models for the size of the design variable of 208 and the training size of

1000 are 15 and 920 seconds, respectively. We have to mention that at each iteration of the

iterative-sampling-refinement optimization method, we train the proxy model. Therefore, at

each iteration, we spent computational time for training the proxy model. Actually, at each

iteration, the number of training data is one data more than the size of the training data

at the previous iteration. However, computational time approximately is the same at every
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iteration because additional computational time due to added one new training point (which

is the optimum point from the previous iteration) is negligible. Fig. 6.3 shows optimization

results of Case-8-highBHP for the iterative-sampling-refinement optimization and StoSAG

optimization methods. For StoSAG, the number of perturbations is Np=10. The results
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Figure 6.3: NPV vs. iterations obtained using the LS-SVR and GPR optimization methods for Case-8-
highBHP.

are poor for both the LS-SVR and GPR-based iterative-sampling-refinement optimization

methods. The poor initial models give lower maximum NPVs for the proxy-based models

than that of the StoSAG optimization method. the LS-SVR required 351 iterations, whereas

GPR required 22 iterations to converge.

There could be several reasons for the poor accuracy of the proxy models such as the

small training size, a large number of design variables, and/or poorly selected training data

set. We think that the training size of 1000 is big enough for the model to be accurate.

Therefore, we look at other reasons for this poor accuracy. First, we investigate the effect

of the number of design variables on the accuracy of the LS-SVR and GPR proxy models,

considering Case-2-highBHP, where the number of design variables is 5 times smaller than

that of Case-8-highBHP.

6.2.3 Case-2-highBHP

In this case, we consider 2 injection cycles only so that we have fewer design variables.

This case has 52 design variables (Table 6.5). To train the initial LS-SVR and GPR proxy
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models, we use 600 training data points and 300 testing data points. The accuracies of the

initial proxy models on the test data are given in Fig. 6.4. The results show that even though

150

200

250

300

150 200 250 300

N
P

V
 S

im
u

la
to

r 
(m

il
li

o
n

 U
S

D
)

NPV LSSVR (million USD)

R2 = 0.260

MAE = 0.104

RMSE = 0.126

(a) LS-SVR

150

200

250

300

150 200 250 300

N
P

V
 S

im
u

la
to

r 
(m

il
li

o
n

 U
S

D
)

NPV GPR (million USD)

R2 = 0.270

MAE = 0.103

RMSE = 0.125

(b) GPR

Figure 6.4: Test of the LS-SVR and GPR proxy models for Case-2-highBHP.

the number of design variables is quite small, we still have poor accuracy. For the kernel-

based ML models, a training size of 600 for the problem having 52 design variables is more

than enough. Computational times for the training of the LS-SVR and GPR proxy models

for the size of the design variable of 52, and for the training size of 600 are 6 and 159 seconds,

respectively. Before going to investigate other reasons for the poor accuracy of the model,

namely poor training and validation data, let us look at the optimization results of this case

(Fig. 6.5). For StoSAG, the number of perturbations is Np=10. The LS-SVR required 61

iterations, whereas GPR required 58 iterations for the iterative-sampling-refinement opti-

mization algorithm to converge. From the optimization results, we observe that again the

LS-SVR- and GPR- based iterative-sampling-refinement optimization methods give smaller

maximum NPVs than that of StoSAG optimization methods. However, these optimization

results are closer to the StoSAG results than it was in the previous case. We also observe

that we obtain lower NPV when we consider 2 injection cycles (Fig. 6.5) than that in the

case of 8 injection cycles (Fig. 6.3).

We expected higher accuracies of both the LS-SVR and GPR models and better opti-
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Figure 6.5: NPV vs. iterations obtained using the LS-SVR and GPR optimization methods for Case-2-
highBHP.

mization results since we decreased the number of design variables. Therefore, we investigate

another reason for poor accuracy which is the poor data set. To investigate whether our

data is poor or not, we consider the previous case, Case-8-highBHP and check the pro-

duction BHPs if they really affect the NPV as a design variable or not, that is if they are

important design variables of redundant. To investigate it, we check the difference between

BHPs and well-block pressures. The reason for doing this is because if BHPs are higher than

well-block pressures from the beginning of the control time, their change will not affect NPV

since the flow rate will be zero. When we checked our training data, we observed that at

most of the data points, producing BHPs are redundant design variables due to the reason

mentioned earlier. For the purpose of illustration, in Fig. 6.6, we show producing BHPs

and well-block pressures for production wells “Pro1” and “Pro2” of one of the data points at

Case-8-highBHP. The results show that almost at all control time steps of production wells,

BHP is higher than the well-block pressure, which means we do not have any production.

Therefore, BHPs become redundant features for the proxy models in the sense that their

values do not have an effect on the values of NPV objective function in our data. Note that

this does not mean that NPV does not have sensitivity to BHPs. This basically means that

NPV values of the data we have for training and testing of the proxy models do not show

sensitivity with respect to most of the BHP values in that data. This explains the poor

accuracies of the LS-SVR and GPR-based optimizations for Case-8-highBHP (Fig. 6.2).
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(a) Pro1

(b) Pro2

Figure 6.6: BHPs (red) and well-block pressures (blue) at different control time steps of production
wells “Pro1” and “Pro2” at Case-8-highBHP. This schedule is taken from one of the training data point.
We observed the similar behaviour (schedule) at most of the data points and for almost all production
wells.

We further confirm this when we consider Case-8-constBHP in which BHPs are no longer

design variables and fixed to 1000 psi so that we can have production at almost all well-block

pressure values. Note that well-block pressures are a function of all design variables.

6.2.4 Case-8-constBHP

In this case, we consider 8 injection cycles similar to Case-8-highBHP, but BHP is

constant here. Therefore, the number of design variables for this case is 64 (Table 6.5).

To train the initial LS-SVR and GPR proxy models, we use 100 training and 50 testing

data points. The accuracies of the initial proxy models on test data are shown in Fig.

6.7. The results show that we have accurate models with 100 training data points which

confirms that the poor accuracies in Case-8-highBHP and Case-2-highBHP were due to

poor data resulted from choosing high bounds of BHPs which causes them to be redundant
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Figure 6.7: Test of the LS-SVR and GPR proxy models for Case-8-constBHP.

design variables. The computational times for the training of the LS-SVR and GPR proxy

models for the size of the design variables of 64 and for the training size of 100 are 5

and 45 seconds, respectively. Fig. 6.8 shows optimization results of Case-8-constBHP. For

StoSAG, the number of perturbations is Np=10. The LS-SVR and GPR required 80 and
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Figure 6.8: NPV vs. iterations obtained using the LS-SVR and GPR optimization methods for Case-8-
constBHP.

111 iterations for the iterative-sampling-refinement optimization algorithm to converge. As

expected, the sufficiently accurate initial GPR and LS-SVR proxy models result in good

optimization results (Fig. 6.8). Both the LS-SVR- and GPR- based iterative-sampling-

refinement optimization methods give approximately the same maximum NPV result, 3.88×
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108 USD, and it is very close to the maximum NPV obtained using StoSAG optimization

method, 3.94× 108 USD.

As we investigated in the previous subsection, poor training data resulted from high

bounds of BHPs since BHP at most of the training data points, at almost all of the control

time steps is higher than the well-block pressure. By making the BHP constant in this case,

we confirmed this. However, this needs further confirmation that without eliminating BHP

as a design variable we can still obtain good training data. To do so, we need to consider

lower bounds for BHP. In the following section, we consider Case-8-lowBHP where lower

and higher bounds of BHP are 500 and 1000 psi, respectively.

6.2.5 Case-8-lowBHP

In this case, we consider 8 injection cycles similar to Case-8-highBHP, but lower and

upper bounds of BHP is lower than Case-8-highBHP being 500 and 1000 psi. Therefore,

the number of design variables for this case is 208 (Table 6.5). To train the initial LS-

SVR and GPR proxy models, we try two different training sizes and compare their accuracy

and optimization results: 200 training data, 100 testing data; 320 training data and 160

data. Fig. 6.9 shows the accuracy results of the LS-SVR and GPR models for each training

size. As expected, the accuracy improves when the size of the training data increases. The

computational times for the training of the LS-SVR and GPR for the size of design variable

vector of 208 and for the training size of 200 are 7 and 456 seconds, respectively. However,

for a training size of 320, the computational times for training the LS-SVR and GPR models

are 9 and 680 seconds, respectively. The computational time of GPR for hyperparameter

optimization using the Bayesian model selection depends both on the size of training data

as well as the dimension of the design variable vector. In Section 4.2.2 and Section C.2, we

discussed how training size affects computational efficiency of the training procedure of GPR

and model selection process of GPR. Size of design variable affects computational time as

well in operations of vector multiplications and vector-matrix multiplications in Eq. C.36.

As we explained (see Section 4.4), the iterative-sampling-refinement optimization method
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Figure 6.9: Test of the LS-SVR (plots a-200 training, 100 test and b-320 training, 160 test) and GPR
(plots c-200 training, 100 test and d -320 training, 160 test) proxy models for Case-8-lowBHP.

is an iterative process, and we perform a training procedure at each iteration by adding

a data of NPV computed from the simulator. Therefore, in the case of the GPR used as

a proxy model, with the Bayesian model selection, the kernel function can be different at

each iteration. Our observations showed that, for most of the optimization cases done in

the previous subsections, and at most of the iterations, the kernel model was found to be

rational quadratic kernel. Eq. 6.4 shows the formulation of rational quadratic kernel :

K(ūi, ūj) = σ2

(
1 +
||ūi − ūj||2

2αl2

)−α
, (6.4)
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where σ2 is amplitude, l is the lengthscale, and α is the scale-mixture (α>0). By fixing kernel

function and optimizing only its hyperparameters, we can decrease computational time. In

the previous case (Case-8-constBHP), we did not need it since the training of GPR was

computationally inexpensive. However, for this case, training GPR without fixing kernel

function is very expensive. Therefore, we fix the kernel to the rational quadratic kernel.

By fixing kernel function, the training process of GPR for the case having design variable

with size 208, and training size of 200, takes 26 seconds. However, for the same size of the
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Figure 6.10: NPV vs. iterations obtained using the LS-SVR (plots a-200 training, 100 test and b-320
training, 160 test) and GPR (plots c-200 training, 100 test and d -320 training, 160 test) optimization
methods for Case-8-lowBHP.

design variable and training size of 320, the computational time for training of GPR is 38

seconds. Computational times for training of GPR fixing kernel function in case of both

200 training data and 320 training data are good enough to start our iterative-sampling-

refinement optimization with them. We use these initial models in the iterative-sampling-

refinement optimization method to maximize NPV and compare it with StoSAG (Fig. 6.10).
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For StoSAG, the number of perturbations is Np=10.

The LS-SVR model trained with 200 data points required 63 iterations to converge,

whereas the LS-SVR model trained with 320 training data converged in 44 iterations. Both

the GPR proxy models trained with 200 and 320 training data points required 61 iterations

to converge. Maximum NPV results show that starting with the initial proxy with higher

accuracy gives us a higher maximum NPV result. With StoSAG we obtain maximum NPV

to be equal to 4.55 × 108 USD. The LS-SVR and GPR, trained with 200 data points, as

an initial model in optimization result in a maximum of NPV equal to 4.29× 108 USD and

4.33× 108, respectively, whereas the optimization result of the iterative-sampling-refinement

optimization method with the initial models of both the LS-SVR and GPR trained with 320

training data points is 4.38× 108, which is 3.7% less than optimization result of StoSAG.

As can be seen, the accuracy and optimization results of the LS-SVR- and GPR-based

iterative-sampling-refinement optimization methods, when training data are good, perform

much better. And in our problems, the reason for training data to be poor is due to higher

lower and upper bounds of BHPs. The reason we started with higher bounds of BHP was

due to the fact that we want to achieve miscibility so that we can achieve a higher NPV.

However, the optimization results of StoSAG for Case-8-lowBHP and Case-8-highBHP show

that we achieve a higher NPV when bounds of BHP is between 500 and 1000 psi (Case-8-

lowBHP). Therefore, for the following cases, we set our lower and upper bounds for BHP to

500 and 1000 psi, respectively.

6.2.6 Case-8-rate

Another way to get good training data instead of considering lower bound for BHP,

which can be hard for the facilities in the field, is to use production flow rates instead

of BHPs as design variables. Again, in this case, the number of the design variables is

208. To train the initial LS-SVR and GPR proxy models we use 200 training data points

and test them with 100 testing data points. Fig. 6.11 shows the accuracy results of the

LS-SVR and GPR models. We used the LS-SVR and GPR as the initial proxy model in
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Figure 6.11: Test of the LS-SVR and GPR proxy models for Case-8-rate.

the iterative-sampling-refinement optimization method. With both the LS-SVR- and GPR-

based iterative-sampling-refinement optimization method, we obtain maximum NPV equal

to 4.46 × 108 USD (Fig. 6.12). The LS-SVR requires 73 iterations to converge, whereas

GPR requires 5 iterations. For StoSAG optimization we use Np = 10. StoSAG gives us

a maximum NPV value of 4.47 × 108 USD. The results show that flow rate works better
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Figure 6.12: NPV vs. iterations obtained using the LS-SVR and GPR optimization methods for Case-
8-rate.

as a design variable than using BHP in the case of using the iterative-sampling-refinement

optimization method. We achieve approximately the same NPV with the iterative-sampling-

refinement optimization method as the StoSAG optimization method. However, in Case-8-

lowBHP, where we used BHP as a design variable, we achieved 3.7% less maximum NPV
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value than that in the StoSAG optimization method. Computational times for training of

the LS-SVR and GPR were the same as in Case-8-lowBHP.

6.2.7 Case-8-lowBHP-ICV

So far, we have looked at the optimization cases in which ICVs were not in the

set of design variables. However, ICVs are important design variables, especially when

petrophysical properties vary at the perforation of each well. In our reservoir model, the

only petro-physical property that varies is the permeability field of the layers. Therefore,

in Case-8-lowBHP-ICV, we also included ICVs as design variables in addition to production

BHPs and water and gas injection rates. Considering that we have a total of 13 wells, and

3 layers and 8 injection wells, 16 half-cycles for each injection wells, and 16 cycles for each

production wells, the number of ICVs will be 624. Therefore, the number of design variables

is 832. As mentioned in the previous subsection, the lower and upper bounds of BHPs are

500 and 1000 psi, respectively. Since the number of design variables is large, and NPV is

sensitive to each of these design variables (this means that we cannot use the dimensionality

reduction methods), we need to choose a large training size. Again for this case, we consider

two different training sizes; 600 and 800. Fig. 6.13 shows training results of the initial

LS-SVR and GPR proxy models trained with these two different training sizes.

For training of the GPR model with the data having training sizes of 600 and 800, for

the dimension of the design variable vector of 832, the computational times were 1260 and

2320 seconds, respectively. However, for the LS-SVR, with the data having training sizes

of 600 and 800, computational times are 14 and 16 seconds, respectively. However, with

fixing the kernel function and only optimizing its hyperparameters, the training process of

GPR for the case having a design variable with size 832, and a training size of 600, take 162

seconds. For the same size of the design variable and training size of 800, the computational

time for training of GPR is 229 seconds. Note that the GPR model used as the initial model

is trained by fixing the kernel model to the rational quadratic kernel. Even though we fixed

the kernel for this case, training for the GPR model is quite computationally expensive.
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Figure 6.13: Test of the LS-SVR (plots a-600 training, 300 test and b-800 training, 400 test) and GPR
(plots c-600 training, 300 test and d -800 training, 400 test) proxy models for Case-8-lowBHP-ICV.

Therefore, we show the optimization results when only the LS-SVR trained with 600 and

800 training data points is used as the initial models for the iterative-sampling-refinement

optimization method (Fig. 6.14). The results show that increasing training size, which

means starting the iterative-sampling-refinement optimization method with a model with

sufficient accuracy, yields a higher value of maximum NPV (Fig. 6.14). For StoSAG, the

number of perturbations is Np=15 this time since the number of design variables is higher.

The results show that again, increasing training size for training of the initial proxy model

(the LS-SVR here) improves the results of optimization. For the case of using the LS-SVR
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Figure 6.14: NPV vs. iterations obtained using the LS-SVR trained with 600 training data, and tested
with 300 test data (a) and the LS-SVR trained with 800 training data, and tested with 400 test data
(b) for Case-8-lowBHP-ICV.

trained with 600 training data points as the initial model for the optimization, we obtain

4.29× 108 USD converging after 100 iterations, whereas for the case of the LS-SVR trained

with 800 training data points, the maximum NPV is 4.44 × 108 USD converging after 53

iterations. However, the StoSAG for this case yields 4.61 × 108 USD which is 3.6% higher

than the optimization result of the iterative-sampling-refinement optimization method with

the LS-SVR trained with 800 training data points. Comparing Fig. 6.10 and Fig. 6.14,

we observe that including ICVs as the design variable increases the value of maximum NPV

from 4.55× 108 USD to 4.61× 108 USD.

6.2.8 Case-8-lowBHP-ICV-robust

So far, we have considered the deterministic optimization cases where we perform

optimization for a single realization of the reservoir model. In this case, we consider 15

plausible realizations of the uncertain reservoir model parameters. In our case, our uncer-

tain reservoir parameters are the permeability of each grid. Our objective function is the

expectation of the NPV over reservoir model parameters, where NPV is calculated using Eq.

2.43. The dimension of the feature space is equal to the summation of the dimension of the

design variable and the number of reservoir parameters; 832 + 25× 25× 3 = 2707. However,

considering the fact that in our reservoir model, the permeability field of the second and

the third layers is 0.6 and 0.3 times the permeability field of the first layer, respectively,
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including the permeability field of only the first layer into the feature space to train the

LS-SVR and GPR is enough. Then, the dimension of the feature space is 1457. We use

800 training data points and 400 test data points. The accuracies of both the LS-SVR and
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Figure 6.15: Test of the LS-SVR and GPR proxy models for Case-8-lowBHP-ICV-robust.

GPR are good as can be seen from Fig. 6.15. Since GPR for this high dimensional problem

requires very high computational time for the Bayesian model selection even when we fix the

kernel model (296 seconds), we show the optimization results when only the LS-SVR model

is used for iterative-sampling-refinement optimization (Fig. 6.16). The LS-SVR required 20

seconds for the training process. For StoSAG, in robust optimization case, we choose Np = 2,

and Nmax
sim = 6000, as mentioned earlier. The LS-SVR-based iterative-sampling-refinement
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Figure 6.16: NPV vs. iterations obtained using the LS-SVR trained with 800 training data, and tested
with 400 test data for Case-8-lowBHP-ICV-robust.

176



optimization method converged in 4 iterations to a maximum NPV value of 4.20× 108 USD.

However, the maximum value of NPV obtained from the StoSAG optimization method is

4.39× 108 USD, which is 4.3% higher.

In all of the optimization cases conducted so far, we fixed the cycle lengths as well

as gas injection time fractions. However, in the following case, we consider the determin-

istic optimization problem where we also optimize the cycle lengths and gas injection time

fractions.

6.2.9 Case-8-lowBHP-cycle

In this deterministic case, we include cycle lengths of injection and production wells

and gas injection time fractions into the set of design variables in addition to gas injection

rate, water injection rate, and production BHP. Therefore, the number of design variables is

416. Note that the lower and upper bounds of BHPs of this case are 500 and 1000 psi, respec-

tively. Also, note that the objective function for the previous cases was Eq. 2.43. However,

for this case, we use Eq. 2.36 as the objective function. We use a training size of 1000 for the

training of the LS-SVR and GPR and test them using 500 data points. Note that for training

the GPR model, we again use hyperparameter optimization by fixing the kernel to the ratio-

nal quadratic kernel. The accuracies of the LS-SVR and GPR are shown in Fig. 6.17. The
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Figure 6.17: Test of the LS-SVR and GPR proxy models for Case-8-lowBHP-cycle.

177



computational time required for training the LS-SVR model is 10 seconds. However, training

the GPR model by fixing kernel function to the rational quadratic kernel takes 216 seconds,

which is computationally very expensive. Therefore, we show the optimization results when

only the LS-SVR is used as the initial proxy model to perform iterative-sampling-refinement

optimization (Fig. 6.18). For the StoSAG optimization method, we use Np = 15 for this

deterministic optimization case. The maximum NPV obtained by the iterative-sampling-
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Figure 6.18: NPV vs. iterations obtained using the LS-SVR trained with 800 training data, and tested
with 400 test data for Case-8-lowBHP-cycle.

refinement optimization method is 4.24 × 108 USD converging after 25 iterations, whereas

the StoSAG method yields a maximum NPV value of 4.55× 108 USD, which is 6.8% higher.

The reason for the low accuracy of the LS-SVR model with the large training size can be

because of poor training data as it was in Case-8-highBHP. We believe, for this case, poor

training data is caused by the production cycles because NPV does not increase for some of

the values of production cycle lengths. For instance, if, for a given production well, after 60

days, the well-block pressure gets lower than BHP, NPV will get the same value for cycle

length values more than 60 since we will not produce. This results in poor training data,

similar to the problem when we had high bounds for BHP. Our suggestion to prevent this

problem is to use fixed cycle lengths for production wells and only include cycle lengths of

injection wells and gas injection time fractions besides other design variables, such as gas

and water injection rates, and production BHPs.

This case also shows us that including cycle lengths did not improve NPV for this

reservoir model and well configuration.
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Table 6.7 shows the summary of the computational efficiency of optimization cases

considered for the WAG problem for iterative-sampling-refinement optimization and StoSAG

optimization methods. In the column “Optimization method” the number in the parenthesis

Table 6.7: Number of simulations required for optimization in the WAG problem.

Cases Optimization
method

Number of
iterations

Computational
time (mins)

NPV, mil-
lion $

Case-8-constBHP StoSAG 136 2000 394
Case-8-constBHP LS-SVR (100) 80 237 386
Case-8-constBHP GPR (100) 111 344 388

Case-8-lowBHP StoSAG 137 2000 455
Case-8-lowBHP LS-SVR (320) 44 530 438
Case-8-lowBHP GPR-fix (320) 61 579 438

Case-8-rate StoSAG 138 2000 447
Case-8-rate LS-SVR (200) 73 381 447
Case-8-rate GPR-fix (200) 5 307 447

Case-8-lowBHP-ICV StoSAG 105 2000 461
Case-8-lowBHP-ICV LS-SVR (800) 53 1267 444
Case-8-lowBHP-ICV GPR-fix (800) 109 1725 410

Case-8-lowBHP-ICV-Robust StoSAG 66 6000 439
Case-8-lowBHP-ICV-Robust LS-SVR (800) 4 1261 420
Case-8-lowBHP-ICV-Robust GPR-fix (800) 28 1758 408

Case-8-lowBHP-cycle StoSAG 126 2000 455
Case-8-lowBHP-cycle LS-SVR (1000) 25 1529 423
Case-8-lowBHP-cycle GPR-fix (1000) 80 1868 432

shows the size of training data used to train the initial LS-SVR and GPR proxy models.

GPR-fix indicates a GPR model trained with kernel function fixed. However, we did not

put the computational efficiency results for the cases Case-8-highBHP and Case-2-highBHP

because for those cases we could not have good training data to be able to build accurate

enough initial LS-SVR and GPR proxy models. Therefore, it is not fair to compare the

computational efficiency of the LS-SVR- and GPR-based iterative-sampling-refinement op-

timization methods with the StoSAG optimization method for these two optimization cases.

We should note that Table 6.7 also shows the computational results of GPR-based iterative-
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sampling-refinement optimization of cases Case-8-lowBHP-ICV, Case-8-lowBHP-cycle, and

Case-8-lowBHP-ICV-Robust for which we stated in the previous sections that training of

GPR was computationally very expensive and we did not show the optimization results of

them. However, in Table 6.7 we see maximum NPV results as well as computational times

of those cases for the GPR-based iterative-sampling-refinement optimization method.
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CHAPTER 7

PRODUCTION OPTIMIZATION OF THE WELL SHUTOFF PROBLEM

In this Chapter, we perform both approximate gradient optimization and iterative-

sampling-refinement optimization on different production optimization cases of the water-

flooding process including well shutoff option in a conventional oil reservoir. A definition of

design variables and derivation of NPV to include the well shutoff option keeping NPV con-

tinuous with respect to these design variables are given in Section 2.3. We also investigate the

importance of the well shutoff option for the realistic production optimization problems that

the companies may consider. Therefore, in addition to the production optimization cases for

the application of iterative-sampling-refinement optimization, we also consider optimization

cases to see the importance of shutoff time as well as the sensitivity of the optimization

process to the number of cycles of production wells.

7.1 Results of Production Optimization of Well Shutoff Problem in

Conventional Oil Reservoir

In this section, we provide our results obtained by using synthetic examples to demon-

strate the use of GPR- and LS-SVR-based iterative-sampling-refinement optimization meth-

ods on production optimization including well shutoff in comparison with the conventional

numerical gradient ascent optimization method. For the application of the well shutoff op-

tion, as mentioned previously, we consider the waterflooding process in a conventional oil

reservoir. Our objective function for this problem was, previously, given by Eq. 2.57.

In the following subsection, we introduce rock and fluid properties of the reservoir

model considered for the production optimization problem of well shutoff problem as well

as the optimization cases considered for the well shutoff problem. In Subsections 7.1.2 to

7.1.11, we show the results of the production optimization cases. For each of the produc-

tion optimization cases, we compare optimization methods considered in this research such
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as GPR-, LS-SVR-based iterative-sampling-refinement optimization methods, simplex, and

finite difference optimization methods. We also show the accuracy of initial proxy models of

GPR and LS-SVR using test data.

7.1.1 Reservoir Model and Production Optimization Cases

The fluid composition of the reservoir, as in the HnP problem, is taken from Nojabaei

et al. (2013), which is Middle Bakken oil. The injected fluid is water. Properties and mole

fractions of the reservoir fluid components are given in Table 7.1. It should be noted that

we use the CMG-IMEX (2020), a black oil simulator, to simulate the waterflooding for the

optimization problem considered here. The composition of oil given in Table 7.1 is used

to generate black oil properties via CMG-WINPROP (2004). The PVT properties of the

injected fluid (water) and reservoir fluid (oil and gas) are provided in Table 7.2. Fig. 7.1

shows the relative permeability curves of oil, water, and gas.

Table 7.1: Properties of pseudo-components of Middle Bakken oil, after Nojabaei et al. (2013).

Component Molar frac-
tion

Critical
pressure
(atm)

Critical
tempera-
ture (K)

Critical
volume
(L/mol)

Molar
weight
(g/gmol)

Acentric
factor

Parachor
coefficient

CH4 0.36736 44.57 186.29 0.0989 16.043 0.0102 74.8
C2H6 0.14885 49.13 305.53 0.148 30.07 0.1028 107.7
C3H8 0.09334 41.90 369.98 0.203 44.097 0.152 151.9
NC4 0.05751 37.18 421.78 0.255 58.124 0.1894 189.6
C5-C6 0.06406 31.38 486.37 0.336 78.295 0.2684 250.2
C7-C12 0.15854 24.72 585.14 0.549 120.562 0.4291 350.2
C13-C21 0.0733 16.98 792.4 0.948 220.716 0.7203 590
C22-C80 0.03704 12.93 1024.71 2.247 443.518 1.0159 1216.8

In the optimization cases considered here, we used waterflooding with 2 injectors

and 4 producers in a conventional oil reservoir with the heterogeneous vertically-anisotropic

permeability field. All wells are vertical. The reservoir parameters and the dimension of

the reservoir are given in Table 7.3. The reservoir system is discretized into 29x17x1 (=493)

gridblocks.

The reservoir permeability field comes from a log-normal distribution with a spher-

ical covariance. The long and short distances of the ellipsoid of spherical covariance are

182



Table 7.2: PVT table of water and reservoir fluid.

Description Value Unit
Water density 62.3 lb/ft3

Oil density 49.1 lb/ft3

Gas density 0.06 lb/ft3

Water Formation volume factor (WFVF) 1 fraction
Water compressibility 1e-6 1/psi
Reference pressure for WFVF 2000 psi
Water viscosity 1 cP
Solution gas oil ratio at initial reservoir
pressure

1985 ft3/bbl

Oil FVF at initial reservoir pressure 2.15 fraction
Gas FVF at initial reservoir pressure 0.00073 bbl/ft3

Oil viscosity at initial reservoir pressure 0.17 cp
Gas viscosity at initial reservoir pressure 0.05 cp

Table 7.3: Input values of reservoir parameters used in the synthetic reservoir model.

Parameter Value Unit
Dimension of the model 3,480x1,700x50 ft3

Depth 9,000 ft

Initial reservoir pressure 4,200 psi
Reservoir temperature 240 oF

Swir, irreducible water saturation 0.3 fraction
Sor, residual oil saturation 0.2 fraction
Sgc, critical gas saturation 0.05 fraction
Rock compressibility 1e-6 1/psi
Porosity 0.2 fraction

Lmax=1200 ft and Lmin=1000 ft, respectively. The variance and the mean of this log-normal

distribution are 0.2 and 0.01, respectively. In Fig. 7.2, we see the permeability field as well

as the areal gridding used in CMG-IMEX (2020). The economical values are provided in

Table 7.4. The daily cost of production wells is the same for all wells and is equal to 230

$/D. The values of bound constraints used for the design variables are given in Table 7.5.

The number of control time steps used for the injection wells (Ni,c) is 20 for all

the optimization cases. Table 7.6 shows the optimization cases considered. Note that we

also consider optimization cases where we fix BHPs at all production wells at their lower

bounds. The case names are described in Table 7.6 in such a way that one can easily have
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(a)

(b)

Figure 7.1: Relative permeability curves of oil and water (a), and gas and liquid (b). Here krw, krow
are water and oil relative permeability respectively; krg, krog are gas and liquid relative permeability; Sw,
Sl are water and liquid saturation, respectively

Figure 7.2: Areal grid system and permeability field (color bar represents permeability in mD).

the information about cases from their names without needing to visit Table 7.6: Case-1

indicates 10 cycle cases, Case-2 shows 1 cycle cases, whereas Case-3 indicates 5 cycle case;
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Table 7.4: Economical constants used for the NPV function (Eq. 2.57).

Constants Value Unit
b 0.1 fraction
ro 45 $/STB
cwp 5 $/STB
cwi 5 $/STB
cpj 230 $/D

Table 7.5: Bound constraints for the design variables (well shutoff problem).

Design variables lower bound upper bound unit
pnbh 750 2500 psi
qnw,i 1 10 STB/Day
∆̂t

n

p 0 1 fraction
∆tn 30 1000 Days

the latter extension of the name code shows the total life in days. For example, the cases

with 3000 mean that the total life considered for the case is 3000 days; if the case name

has a further extension of -BHP, then it is for a constant BHP fixed at its bound of 750 psi

in our cases. We also have the simplest case named as the Case-2-7000-BHP-TP. In this

specific case, the extension, TP indicates that we fix all the production time fractions at

their upper bound of unity, which means that we do not shut off the production wells. The

reason to consider this case will be clear to the reader later.

For all cases, the order of the design variables inside the design vector is consistent

with the ordering given in Eq. 2.60.

Case-2-7000-BHP-TP is designed to see the importance of shutoff. For this specific

case, the design variable vector consists of only well-controls of the injection wells. Therefore,

the number of design variables is calculated regardless of how many cycles are considered for

the production wells as follows:

Nu = NINi,c. (7.1)

For Case-1-3000, Case-1-7000, Case-1-3000-BHP, and Case-1-7000-BHP, we use
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Table 7.6: Cases considered for the optimization applications of well shutoff problem.

Cases Nc Fixed BHP
(psi)

Total life
(Days)

Number
of design
variables

Case-1-3000 10 NA 3000 160
Case-1-7000 10 NA 7000 160
Case-1-3000-BHP 10 750 3000 120
Case-1-7000-BHP 10 750 7000 120
Case-2-3000 1 NA 3000 48
Case-2-7000 1 NA 7000 48
Case-2-3000-BHP 1 750 3000 44
Case-2-7000-BHP 1 750 7000 44
Case-2-7000-BHP-TP 1 750 7000 40
Case-3-3000 5 NA 3000 100

Np = 20 in the simplex-based gradient ascent optimization method. For other cases, we

take Np = 10. The reason for choosing different number of perturbations is due to changing

the size of design variable vector for each case. However, only for the cases Case-2-3000 and

Case-2-7000, we also consider the finite-difference method to compare their results with the

simplex method.

In the following subsections, we present the optimization results for the different

cases and their analyses. We also check the well-block pressure of production wells and the

pressure distribution of the reservoir at the end of the waterflooding with the optimum design

variables. Only for the cases Case-1-3000 and Case-2-3000, we also perform the iterative-

sampling-refinement optimization procedure in addition to the simplex optimization methods

to compare efficiency and accuracy of two different optimization methods.

7.1.2 Case-1-3000

As mentioned above, the number of design variables for this case is 160. The number

of perturbations is chosen to be 20 for the simplex gradient estimation. The initial guess

is ū0 = 0.5 · 1Nu . However, to satisfy linear equality constraints (Eq. 2.64), we modify the

values of cycle lengths in the initial design vector. Fig. 7.3 shows the NPV values generated

as a function of iterations of the simplex optimization method. The maximum value of NPV
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obtained is 9.9 million $. Fig. 7.4 shows the optimum design variables for Case-1-3000. Even

Figure 7.3: NPV vs. iterations obtained by using the simplex optimization method for Case-1-3000.

though we started with 10 possible shutoff initial time periods for each of the production

wells, we see that in most cases, the production wells make less than 10 shutoffs.

Since, in this case, we have a relatively high number of design variables, it is highly

possible to converge different local optimums with different initial guesses due to the increase

of the number of local optimum points of the NPV surface as well as the low accuracy of the

gradient approximation. Therefore, we considered different initial guesses for this case and

repeated the optimization procedure. The initial guess for the normalized design variable is

the same as above except here we replaced values of production time fractions with 1 (instead

of 0.5), which means that initially, we do not have any shutoff periods. Fig. 7.5 shows the

NPV values generated as a function of iterations of the simplex optimization method for this

initial guess. The maximum value of NPV obtained is 10.6 million $, which is 700 thousand

$ higher than that of the Case-1-3000 with the first initial guess. However, it required more

iterations to converge. Fig. 7.6 shows the optimum design variables for Case-1-3000 with

the second initial guess. Even though we started with the initial guess where all production

time fractions of all the production wells are equal to 1, which means we do not have any

shutoffs initially, the optimization result shows that wells PW2 and PW4 have a single, very

short shutoff period and PW1 has two short shutoff periods. Comparing Figs. 7.4 and 7.6,

we see that optimum BHP values do not fluctuate for the optimization results of Case-1-3000

with the second initial guess.
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Figure 7.4: Optimum well controls for the simplex optimization method for Case-1-3000.

As mentioned before, for this case, we also perform the iterative-sampling-refinement

optimization method. We considered two ML models for this optimization method: the LS-

SVR and GPR. To check the effect of the training size on optimization results, we trained and

tested models with 3 different training and test sizes. Fig. 7.7 shows training results of the

LS-SVR and GPR trained with different sizes of training data. We have to mention that the

hyperparameters of the LS-SVR and GPR models are obtained by hyperparameter optimiza-
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Figure 7.5: NPV vs. iterations obtained by using the simplex optimization method for Case-1-3000.

tion. As we increase the training size, the accuracy of both the LS-SVR- and GPR- based

proxy models increases as well. Then, using these models as an initial model, we performed

iterative-sampling-refinement optimization. Fig. 7.8 shows the NPV vs iterations obtained

by the LS-SVR- and GPR-based iterative-sampling-refinement optimization methods. For

the LS-SVR-based iterative-sampling-refinement optimization method, as the accuracy of

the initial proxy increases, it converges to higher maximum NPV values. However, it is

interesting to note that the number of iteration required for convergence increases as the

accuracy of the initial proxy increases. The reason for this is because the model covers more

points, and thus it has more local optimums. As it has more local optimums, it is possible

that the method slightly converges to a different local optimum at each iteration. However,

this kind of behavior of LS-SVR helps us to find a better local optimum at each iteration.

We can see from Fig. 7.8 that for the models, trained with a higher number of training

data points, after a certain number of iterations, it converges to a higher optimum and

keeps increasing. From the least accurate to the most accurate initial LS-SVR-based proxy

models, the maximum values of the NPV achieved after the optimization are 10.81, 11.17,

and 11.74 million $. For the GPR-based iterative-sampling-refinement optimization method

we observe that as the accuracy of the initial proxy model increases, the maximum NPV

obtained after the optimization increases. However, the relationship between the accuracy

of the initial GPR-based proxy and the number of iterations required for the convergence

is not linear and different from that of the LS-SVR. From the least accurate to the most
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Figure 7.6: Optimum well controls for the simplex optimization method for Case-1-3000 for second
initial guess.

accurate initial GPR-based proxy models, the maximum values of the NPV achieved after

the optimization are 10.38, 10.85, and 11.19 million $. So the LS-SVR with 140 training

data points gave the highest NPV which is 11.74 million $. This NPV value is higher than

the NPV value obtained with the simplex optimization method using the first and second

initial guesses, which are 1.84 million $ and 1.14 million $, respectively. In Fig. 7.9, we see

the optimum design variables obtained using LS-SVR-based iterative-sampling-refinement
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Figure 7.7: Test of the LS-SVR (plots a-70 training, 30 test, b-100 training, 50 test and c-140 training,
70 test) and GPR (plots d -70 training, 30 test, e-100 training, 50 test and f -140 training, 70 test) proxy
models for Case-1-3000.

trained with 140 training data points. The results of production wells show that when we

used the LS-SVR-based iterative-sampling-refinement optimization method, we obtain al-

most all the BHPs at their lower bound, 750 psi, and we have very few numbers of shutoff

periods, and each of these shut off periods are very short. This result is totally different

from the result obtained using the simplex optimization method on this case (Case-1-3000)

with the first initial guess (Fig. 7.4), at which we achieved 1.84 million $ less NPV than the

NPV obtained based on this optimum design variables. This makes sense if we check the

optimum design variables obtained using the simplex optimization method on Case-1-3000

using a second initial guess (Fig. 7.6). These optimum values are similar to those in Fig.

7.9. We can observe that as BHPs approach closer to their lower bounds and as shutoff time

diminishes, we achieve higher values of NPV for the case where the total life of production
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Figure 7.8: NPV vs. iterations obtained using the LS-SVR (plots a-70 training, 30 test, b-100 training,
50 test and c-140 training, 70 test), GPR (plots d -70 training, 30 test, e-100 training, 50 test and f -140
training, 70 test) optimization methods for Case-1-3000.

is 3000 days. This conclusion will make more sense when we look at the optimization result

of Case-2-3000 (Fig. 7.20). These results show that with the iterative-sampling-refinement

optimization method, we achieved more than 10% higher NPV than that obtained by the

simplex method.

We observe that the response surface of the LS-SVR vs iteration shows much more

oscillations (see NPV from LS-SVR in Fig. 7.8) compared to the response surface of the

real model (see NPV from the simulator in Fig. 7.8), which is referred to as NPV calculated

using simulator directly. The oscillations are because the LS-SVR model changes its shape

more sharply due to the changes of the hyperparameters at every iteration. Therefore, we

think that fixing hyperparameters to reasonable values can decrease the number of iterations

required for convergence of the optimization method due to the fewer oscillations of the LS-

SVR-based proxy model. The value of the regularization term is highly important due to

the fact that as its value gets smaller, we assume higher noise in our real NPV values coming

from the simulator. This in turn does not allow the algorithm to converge due to the high

relative difference between real NPV (obtained from the simulator) and NPV predicted by
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Figure 7.9: Optimum well controls for the LS-SVR-based iterative-sampling-refinement optimization
method for Case-1-3000, where initial LS-SVR is trained using 140 training data.

the LS-SVR at a given iteration. We should remember most of the training data points

are sampled from all over the response surface, therefore the LS-SVR attempts to match

all the training data points fairly equally. When we say fairly equally, it means that it

assumes approximately the same data mismatch for each point including the optimum point

we found. Therefore, the prediction of NPV at the optimum point could be less or higher

than the actual value of NPV obtained from the simulator. If we check Fig 7.8, for almost
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at every iteration, the value of NPV obtained from the simulator is exactly the same at each

iteration. This means that most probably at every iteration we obtain the same optimum

design variables. However, for the LS-SVR model to match that optimum point takes many

iterations. This also explains why we need more iterations to converge when we start with a

model trained with the higher number of training data points. It is because, as we increase

the number of training data points, the proxy model honors all the data points with a similar

data mismatch. We observed that the value of the regularization term becomes smaller as

we increase the number of training points. This means that the LS-SVR model trained

with a higher number of training data assumes a higher data mismatch than the model

trained with fewer training data points. Another hyperparameter is the bandwidth (see

Section 4.1.3). It affects the smoothness of the response surface of the LS-SVR. However,

there is a benefit of the LS-SVR not matching optimum data point immediately (due to

the regularization term to be low) and change its surface at each iteration (mainly due to

bandwidth hyperparameter) so that we may find a higher optimum point. To support this

explanation, we used the same training sizes to train LS-SVR, but at this time with fixed

hyperparameters. Fig. 7.10 shows NPV vs iteration of the iterative-sampling-refinement

optimization where LS-SVR proxy model was trained using the hyperparameters obtained

through hyperparameter optimization and LS-SVR trained using fixed hyperparameters (we

call it LS-SVR-fix ). As a rule of thumb for σ2
bw we fix it to Nu/4 = 160/4 = 40. For

the regularization term, γ, we can use anything more than 100, because when we set the

regularization term to more than 100 we ignore the data mismatch between real NPV (from

the simulator) and NPV prediction with LS-SVR. We also wanted to know what happens if

we fix γ only and let σ2
bw be part of hyperparameter optimization. We called this strategy

LS-SVR-fix-gamma. In Fig. 7.10, we compare LS-SVR-fix, LS-SVR-fix-gamma, and for

different training sizes. To compare LS-SVR-fix, LS-SVR-fix-gamma with LS-SVR we can

compare the Figs. 7.8 and 7.10. These results confirm our explanation above. As we stated,

when we fix both hyperparameters we expect the model to not modify the response surface

dramatically as it was in the case when the model is trained with the hyperparameters
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Figure 7.10: NPV vs. iterations obtained using the LS-SVR-fix (plots a-70 training, 30 test, b-100
training, 50 test and c-140 training, 70 test), LS-SVR-fix-gamma (plots d -70 training, 30 test, e-100
training, 50 test and f -140 training, 70 test) optimization methods for Case-1-3000.

obtained from hyperparameter optimization at each iteration. Therefore, it converges faster.

However, they converge to the lower NPV values than the NPV obtained when we use the LS-

SVR model. When we use the LS-SVR-fix-gamma approach, we always converge to higher

NPV values than those of LS-SVR and LS-SVR-fix even though it requires more iterations.

We should note that we did not compare the training accuracy results of LS-SVR-fix and

LS-SVR-fix-gamma since they were approximately the same as the LS-SVR.

7.1.3 Case-1-7000.

In this case, we extend the life of the production life-cycle to 7000 days. Again this

case has 160 design variables. Therefore, the number of perturbations is chosen to be 20.

We use the same normalized initial guess as in Case-1-3000. Fig. 7.11 shows the NPV as a

function of iterations, generated by the simplex optimization method. As can be seen, the

maximum NPV obtained at the end of 28 iterations is 9.7 million $. Fig. 7.12 shows the

optimum design variables obtained by maximizing the NPV for Case-1-7000. Again similar

to Case-1-3000, the production wells have a number of shutoffs of less than 10. NPV of this
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Figure 7.11: NPV vs. iterations obtained by using the simplex optimization method for Case-1-7000.

case is a little bit less than Case-1-3000. To investigate this we performed optimization for

Case-2-7000-BHP-TP to check if we can get higher NPV when we force all production wells

to produce all the life of production in the subsection Case-2-7000-BHP-TP. In our opinion,

it is due to the injection cost of the injection wells. However, we will discuss this more in

that subsection based on the result we obtained for Case-2-7000-BHP-TP.

7.1.4 Case-1-3000-BHP.

Here the BHPs of all production wells are fixed at each cycle over the control times

steps and hence are not treated as design variables in optimization. Therefore, this case has

120 design variables which consist of all production well shutoff time intervals and injection

rates at injection wells. The number of perturbations is chosen to be 20 for this case as well.

The initial guess of the design vector is ū0 = 0.5 · 1Nu . However, to satisfy linear equality

constraints (Eq. 2.64), we modify cycle length values in the initial design vector. Fig. 7.13

shows the NPV values obtained at each iteration of the simplex optimization method. The

maximum NPV obtained for this case is 11 million $, which is 1 million $ more than the

Case-1-3000. Although we would expect to obtain a lower NPV for this case as compared to

the case where we treated production BHPs as optimization parameters in addition to shutoff

time intervals at the producers, we think that this may have occurred due to the inaccurate

computation of the stochastic simplex gradient for the case where BHPs are treated as

optimization parameters. As is known, the reduction in the number of design variables is
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Figure 7.12: Optimum design variables for the simplex optimization method for Case-1-7000.

quite important when using stochastic approximate gradient-based optimization methods

because the quality of the gradient may deteriorate for increasing numbers of optimization

parameters. For the iterations close to convergence we changed the initial step size from 1

to 0.25, and doing that further increased the NPV from 10 million $ in Case-1-3000 (Fig.

7.14). However, we stopped it before it converged due to the computational time. If we

compare Fig. 7.14 with Fig. 7.3 we see that how NPV keeps increasing when we decrease
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the initial backtracking step size. It goes to a higher local optimum with a very small number

of iterations.

Figure 7.13: NPV vs. iterations obtained by using the simplex optimization method for Case-1-3000-
BHP.

Figure 7.14: NPV vs. iterations obtained by using the simplex optimization method for Case-1-3000
modifying initial backtracking step size to 0.25.

Fig. 7.15 shows optimum design variables of the Case-1-3000-BHP. Here, we observe

similar results as to the number shutoff intervals to the Case-1-3000. In most cases, the

production wells have a total number of shutoff times or intervals less than 10. We also

inspect oil production rates at the maximum value of NPV achieved (Fig. 7.16). Multiple

shutoffs of the production wells results in increasing reservoir pressure. We can observe how

flow rate increases after every shutoff from the oil rate plots of each production well (Fig.

7.16).

7.1.5 Case-1-7000-BHP
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Figure 7.15: Optimum design variables for the simplex optimization method for Case-1-3000-BHP.

Now, we extend the life-cycle to 7000 days. Fig. 7.17 shows the NPV as a function

of each iteration of the simplex optimization method. As can be seen, the maximum NPV

obtained at the end of 21 iterations is 10.7 million $, which is about 1 million $ more than that

obtained for Case-1-7000. This is again because we have fewer design variables compared to

Case-1-7000 and most likely we have a more accurate stochastic simplex gradient computed

for Case-1-7000-BHP which drives the algorithm to a higher NPV. Fig. 7.18 shows optimum
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Figure 7.16: Oil rate history at production wells at maximum of NPV achieved at 11 million USD (see
Fig. 7.13) at optimum point for Case-1-3000-BHP.

design variables obtained at the maximum value of NPV achieved for Case-1-7000-BHP.

7.1.6 Case-2-3000

This case has 48 design variables (Table 7.6). Recall that in this case, we consider

the entire total life-cycle of 3000 days as a single cycle, and hence we have one shutoff

time period to be optimized by maximizing the NPV given by Eq. 1. As the number of

design variables is small as compared to the previous cases, we also consider computing

gradient by the method of finite-difference in comparison with gradient computed by the

stochastic simplex method to investigate the effect of gradient computations by two different

methods on the optimization algorithm. The number of perturbations is chosen to be 10 for

the simplex gradient estimation. The initial guess for the design vector is ū0 = 0.5 · 1Nu .

Fig. 7.19 shows the NPV values obtained at each iteration of the simplex method and the

finite-difference method. The maximum NPV values obtained for the simplex and finite-
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Figure 7.17: NPV vs. iterations obtained by using the simplex optimization method for Case-1-7000-
BHP.

difference optimization methods are 11.8 and 11.9 million $, respectively. Even though the

maximum NPV values for both optimization methods are close to each other, the optimum

design variables obtained for the two methods are slightly different (Fig. 7.20). For this

case, the optimum production time fractions computed by the finite-difference method for

all production wells are 1. This means the production wells do not shut off for the entire

life-cycle of 3000 days. Clearly, the optimum injection rates obtained for the two methods

are totally different.

For this case, we also perform the iterative-sampling-refinement optimization method

as we did for Case-1-3000. We considered two ML models for this optimization method: the

LS-SVR and GPR. To check the effect of the training size on optimization results, we trained

and tested models with 2 different training and test sizes. Fig. 7.21 shows training results

of the LS-SVR and GPR trained with different sizes of training data. We must mention

that hyperparameters of the LS-SVR and GPR models are obtained from hyperparameter

optimization. As we increase the training size accuracy of both the LS-SVR- and GPR-

based proxy model increases as well. Fig. 7.22 shows NPV results obtained by the LS-SVR-

and GPR-based iterative-sampling-refinement optimization methods. For both LS-SVR and

GPR-based iterative-sampling-refinement optimization methods as the accuracy of the initial

proxy does not change the results of the NPV that much. However, the number of iteration

requires for convergence increases as the accuracy of the initial proxy increases. NPVs

achieved for both models were the same and equal to 11.9 million $, which is exactly the
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Figure 7.18: Optimum design variables for the simplex optimization method for Case-1-7000-BHP.

same maximum NPV obtained for this case using finite-difference optimization method,

and 100 thousand $ more than that obtained using the simplex optimization method. We

show only the optimum water injection rates obtained using the LS-SVR- and GPR-based

iterative-sampling-refinement optimization method (Fig. 7.23) since other optimum design

variables are the same as the results obtained using the FD optimization method (Fig. 7.20).
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Figure 7.19: NPV vs. iterations obtained by using the simplex and finite-difference optimization methods
for Case-2-3000.

7.1.7 Case-2-7000

Here, we increase the total life-cycle of the production to 7000 days. The number of

perturbations used is again 10 for the simplex gradient estimation and the initial guess of

the vector of the design variables is ū0 = 0.5 ·1Nu . Fig. 7.24 shows the NPV versus iteration

for both the simplex and the finite-difference methods. The maximum NPV values of the

simplex and finite-difference optimization methods are 10.9 and 11 million $, respectively.

Similar to Case-2-3000, we observe differences between the optimal design variables for the

two different methods (Fig. 7.25). Both optimization methods show that production wells

shut off prior to the end of the production life. The reason for the case where the life-cycle

is 3000 days achieves a slightly higher NPV than the case where the life-cycle is 7000 days

may be due to the increased cost of the injection wells with the increasing production-life.

Besides the reservoir volume is not large enough for the production life-cycle of 7000 days.

In Fig. 7.26, we see the oil production rate history of each production well at the maximized

value of NPV by the finite-difference optimization method. Since production well PW4 is

in the productive region, where the permeability is higher than other regions (Fig. 7.2), its

production rate is higher than those of the other production wells and hence continues to

produce without shutoff its shutoff until the end of the life of the production.

7.1.8 Case-2-3000-BHP

Here, the production life-cycle is 3000 days, and there is only one shutoff time interval.
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Figure 7.20: Optimum design variables for the simplex and finite-difference optimization methods for
Case-2-3000.

Besides, we fix BHPs of all production wells. Therefore, the number of design variables is 44,

which is equal to all design variables except production BHPs. The number of perturbations

for the simplex method is chosen to be 10 for this case. The initial guess of the vector of

design variables is ū0 = 0.5 · 1Nu . Fig. 7.27 shows the results obtained for NPV of the

simplex optimization method. The maximum value of NPV obtained is 11.9 million $, which

is 100 thousand $ more than that for Case-2-3000. As explained earlier, this may be due
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Figure 7.21: Test of the LS-SVR (plots a-40 training, 20 test and b-60 training, 30 test) and GPR
(plots c-40 training, 20 test and d -60 training, 30 test) proxy models for Case-2-3000.

to more accurate computation of the gradient used in the simplex method when we have

fewer design variables than Case-2-3000. Fig. 7.28 shows the optimum design variables

obtained for Case-2-3000-BHP. All the production wells shut off at the end of the life of the

production.

7.1.9 Case-2-7000-BHP

Here, we extend the total life of production to 7000 days to see if we can observe

shutoff times at some of the production wells. We fixed BHPs of all production wells at the
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Figure 7.22: NPV vs. iterations obtained using the LS-SVR (plots a-40 training, 20 test and b-60
training, 30 test) and GPR (plots c-40 training, 20 test and d -60 training, 30 test) optimization methods
for Case-2-3000.

lower bound. The number of design variables is 44. The number of perturbations for the

simplex method is 10 for this case as well. The initial guess for the vector of design variables

is ū0 = 0.5·1Nu . Fig. 7.29 shows NPV versus iterations obtained by the simplex optimization

method. The maximum NPV obtained is 11 million $, which is 100 thousand $ more than

that for Case-2-7000. Fig. 7.30 shows optimum design variables of the Case-2-7000-BHP.

The production wells PW1 and PW2 shut off earlier than the production wells PW3 and

PW4. We also inspect oil production rate histories of each production well to see after what

rate it is worth to shut off the well (Fig. 7.31).

7.1.10 Case-2-7000-BHP-TP

In Case-2-7000, we found that the optimum shutoff times obtained by the simplex

method showed that production wells do shut off after a certain period of production, while
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Figure 7.23: Optimum water injection rates for the LS-SVR-based iterative-sampling-refinement opti-
mization method for Case-2-3000, where initial LS-SVR is trained using 40 training data.

Figure 7.24: NPV vs. iterations obtained by using the simplex and finite-difference optimization methods
for Case-2-7000.

the finite-difference method showed that except the production well PW4, which is in the

productive area, all other wells shut off. The optimum NPV results of this case showed a

lower NPV value than the cases where life is 3000 days (Case-2-3000-BHP and Case-2-3000).

Therefore, we want to check if we force all production wells to produce till the end of the

life of the production to see if we will get a higher NPV. Therefore, for this case, we fix the

production time fraction of each production well to its upper bound, 1, which means that we

do not shut off the production wells. In this case, BHPs of the production wells are also fixed

to the lower bound, 750 psi. Therefore, the only design variables left are the well controls

of injection wells. The number of design variables is 40. The number of perturbations is

chosen to be 10 for this case as well. The initial guess is again ū0 = 0.5 · 1Nu . Fig. 7.32

shows NPV vs. iterations for the simplex optimization method. The maximum NPV value
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Figure 7.25: Optimum design variables for the simplex and the finite-difference optimization methods
for Case-2-7000.

is 10.6 million $, which is 300 thousand $ less than that for Case-2-7000 and 400 thousand $

less than that for Case-2-7000-BHP. This result shows the importance of the shutoff of the

production wells; that is, fixing production time fraction, not allowing them to be part of

optimization results in lower maximum NPV. Therefore, having the production time fraction

be part of the design variables is important. Fig. 7.33 shows optimum design variables of

Case-2-7000-BHP-TP, which are only the injection rates at each injection control step.
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Figure 7.26: Optimum oil production rate histories calculated by using the the finite-difference opti-
mization method for Case-2-7000.

Figure 7.27: NPV vs. iterations obtained by using the simplex optimization method for Case-2-3000-
BHP.

7.1.11 Case-3-3000

In this last case, we investigate the effect of the choice of the number of cycles for

production wells on the maximum NPV results. In the cases above we looked into 1 cycle

cases and 10 cycle cases. The optimization results of Case-1-3000 (Fig. 7.3) and Case-2-3000
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Figure 7.28: Optimum design variables for the simplex optimization method for Case-2-3000-BHP.

(Fig. 7.19) showed that we achieved higher NPV when we considered 1 cycle. In this case,

we considered 5 cycles for production wells. The number of control time steps for injection

wells is the same as other cases and equal to 20. The life of the production life-cycle is 3000

days. The total number of design variables is 100. The initial guess is again ū0 = 0.5 · 1Nu .

Fig. 7.34 shows NPV vs. iterations for the simplex optimization method. The maximum

NPV value is 11.3 million $, which is 500 thousand $ less than that for Case-2-3000 and 1.4
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Figure 7.29: NPV vs. iterations obtained by using the simplex optimization method for Case-2-7000-
BHP.

million $ higher than that for Case-1-3000. This result shows that, for this reservoir model

and for 3000 days of the production period, as we increase the number of cycles for the

production wells we achieve less maximum NPV as a result of optimization. The reason is

that the number of design variables is large in this optimization case. As we know, the size

of the design vector affects the optimization results because the accuracy of the approximate

gradient becomes poor as the number of design variables increases. The results also show

that the number of iterations required for the optimization algorithm to converge is not a

function of the number of cycles for production wells (or it is the same thing saying that

it is not a function of the number of design variables). Fig. 7.35 shows optimum design

variables of Case-3-3000. All of the production wells have the number of shutoffs less than 5,

especially production well PW4 has only 2 shutoffs. This result is consistent with the result

of Case-1-3000 (Fig. 7.4), at which we observed that the production well PW4 has the least

shutoffs. The optimum BHP results and shutoff periods are very similar to Case-2-3000.

Therefore, the maximum NPV obtained for this case is close to that of Case-2-3000, and we

achieved a higher maximum NPV than that of Case-1-3000.

Table 7.7 shows the number of simulations required for the optimization of each case as

well as maximum NPVs. Even though the FD method required fewer optimization iterations

than the simplex method, the number of simulations required for the optimization of FD

methods was higher than that of the simplex method for both Case-2-3000 and Case-2-7000.

The reason for this difference is that the FD method requires more simulation runs for the
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Figure 7.30: Optimum design variables for the simplex optimization method for Case-2-7000-BHP.

calculation of an approximate gradient. When we compare the cases having 10 and 5 cycles

with the cases having a single cycle, we see that the number of simulations required for the

optimization is much higher for the cases having 10 cycles. However, the maximum NPV

found by the cases of a single cycle is slightly higher than the cases of 10 cycles. Therefore,

for the type of reservoir and well configuration chosen for these cases, designing the problem

with multiple cycles has more disadvantages than advantages over the problem with a single
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Figure 7.31: Oil production rate histories at the maximum NPV achieved for Case-2-7000-BHP.

Figure 7.32: NPV vs. iterations obtained by using the simplex optimization method for Case-2-7000-
BHP-TP.

cycle.

For the iterative-sampling-refinement optimization methods for Case-1-3000, we chose

the best model which was LS-SVR trained with 140 training data points, and we referred to

it as LS-SVR(140), and for Case-2-3000 we chose the LS-SVR model trained with 40 training

data points and referred to it as LS-SVR(40) in the Table 7.7. As we can see from the results,
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Figure 7.33: Optimum design variables for the simplex optimization method for Case-2-7000-BHP-TP.

Figure 7.34: NPV vs. iterations obtained by using the simplex optimization method for Case-3-3000.

Table 7.7: Number of simulations required for optimization in the well shutoff problem.

Cases Optimization
method

Number of
iterations

Number of
simulations

NPV, mil-
lion $

Case-1-3000 Simplex 29 625 10
Case-1-3000 LS-SVR(140) 73 213 11.74
Case-1-7000 Simplex 29 623 9.7
Case-1-3000-BHP Simplex 20 426 11
Case-1-7000-BHP Simplex 21 442 10.7
Case-2-3000 Simplex 32 393 11.8
Case-2-3000 LS-SVR(40) 14 54 11.8
Case-2-7000 Simplex 19 192 10.9
Case-2-3000 FD 18 888 11.9
Case-2-7000 FD 19 979 11
Case-2-3000-BHP Simplex 10 121 11.9
Case-2-7000-BHP Simplex 9 117 11
Case-2-7000-BHP-TP Simplex 17 193 10.6
Case-3-3000 Simplex 56 1,177 11.3

for Case-1-3000 iterative-sampling-refinement optimization is approximately 3 times more

computationally efficient and achieved 17% higher NPV. For Case-2-3000, with iterative-

214



0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

B
H

P,
 p

si

�me, Days

PW1

(a)

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

B
H

P,
 p

si

�me, Days

PW2

(b)

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

B
H

P,
 p

si

�me, Days

PW3

(c)

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

B
H

P,
 p

si
�me, Days

PW4

(d)

0

2

4

6

8

10

0 500 1000 1500 2000 2500 3000W
a

te
r 

in
je

c�

o
n

 r
a

te
, 

S
T

B
/D

a
y

�me, Days

IW1

(e)

0

2

4

6

8

10

0 500 1000 1500 2000 2500 3000W
a

te
r 

in
je

c�

o
n

 r
a

te
, 

S
T

B
/D

a
y

�me, Days

IW2

(f)

Figure 7.35: Optimum design variables for the simplex optimization method for Case-3-3000.

sampling-refinement optimization, we achieved 7 times more computational efficiency and

0.8% higher NPV than the simplex optimization method.

7.1.12 Pressure Responses

As noted before, Case-1-3000 and Case-2-3000 yield slightly different maximum values

of NPV. Case-1-3000, where we considered 10 cycles for each production well, yield a lower

local optimum than Case-2-3000. However, these local optimums are not far from each other.

We observe similar pressure distribution of the reservoir at the end of the production life at

optimum design values obtained for Case-1-3000 and Case-2-3000 (Fig. 7.36).

215



C
a

se
-1

-3
0

0
0

C
a

se
-2

-3
0

0
0

, 
si

m
p

le
x

Pressure, psi

Figure 7.36: Pressure distribution of the reservoir at the end of the production life at optimum design
values obtained for Case-1-3000 and Case-2-3000.

We also compared the well-block pressures of each production well vs time at the

maximized values of NPV for both cases (Fig. 7.37). Both Case-1-3000 and Case-2-3000
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Figure 7.37: well-block pressures of production wells at optimum design variables obtained Case-1-3000
and Case-2-3000.
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show similar reservoir pressure responses and well-block pressures at the maximum NPV

values.
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CHAPTER 8

CONCLUSIONS

In this study, we presented novel applications of the LS-SVR- and GPR-based iterative-

sampling-refinement optimization methods to CO2 HnP process in unconventional reservoirs,

CO2 WAG problem in conventional oil reservoirs (channelized reservoir in our research), and

well shutoff problem where we investigated waterflooding process in tight oil reservoir in-

cluding well shutoff option. Note that only in the well shutoff problem, the NPV formulation

includes OPEX for production wells. In this chapter, we summarize our conclusions based

on our results for each production optimization case. In Section 8.1, we discuss conclusions

of HnP problem; in Section 8.2, for WAG problem; in Section 8.3, for well shutoff problem.

8.1 Conclusions for the Huff-and-Puff Problem

The following conclusions can be drawn from this study which focused on the pro-

duction optimization of the miscible CO2 huff-and-puff (HnP) process applied to an uncon-

ventional oil formation by using the LS-SVR- and GPR-based iterative-sampling-refinement

optimization methods:

• Robust and deterministic life-cycle NPV of a single-well HnP process for a complex

reservoir model, including geomechanics, molecular diffusion, natural fractures, etc.,

can be approximated well using the LS-SVR and GPR proxy models.

• The GPR and LS-SVR proxy models do not provide any superiority over each other in

the optimization of NPV, except that GPR provides an assessment of uncertainty in

the prediction model and the predicted value of NPV. It was found that as the number

of inputs (or features) increases, the uncertainty in the NPV maximized by the GPR

increases.
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• The size of training data has a significant effect on optimization results. MAE ≤0.10

and R2 ≥0.8 together are good indicators for choosing an appropriate initial LS-SVR

or GPR proxy model to be used in the iterative-sampling-refinement optimization

procedure.

• The LS-SVR- and GPR-based iterative-sampling-refinement optimization methods are

at least 3 times more computationally efficient than a simplex gradient method using

the high fidelity numerical simulator for the cases of both deterministic and robust

optimization.

• Including the length of the cycle as a design variable makes NPV much rougher than

including other design variables, and thus it requires more training data to achieve

more accurate models.

• Including the length of the cycle as a design variable does not improve NPV for the

reservoir model cases considered in this paper. However, we believe that this conclusion

cannot be generalized and may be dependent on the reservoir model and production

history before the HnP process.

8.2 Conclusions for the WAG Problem

• The WAG problem can be well approximated by LS-SVR- and GPR-based proxy mod-

els.

• However, in the cases where the ICVs are included as design variables, more training

data points are needed to get an accurate LS-SVR or GPR proxy model to be used in

the iterative-optimization method.

• Choosing upper and lower bounds of BHPs high can lead to the generation of poor

training data which causes poor optimization results of the iterative-sampling-refinement

optimization method.
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• To solve this issue, we found that either lower down the bounds of production BHPs or

choose flow rate as design variables instead of production BHPs. One other alternative

is to fix production BHPs (which means BHPs are not design variables anymore).

• Using flow rate as a design variable instead of BHP at production wells improves

optimization results of the LS-SVR- and GPR-based iterative-sampling-refinement op-

timization methods.

• We can optimize cycle lengths of production and injection wells, and gas injection time

fractions.

• However, for the reservoir configuration considered in this study, we found that includ-

ing cycle lengths did not improve maximum NPV

• Training GPR for the cases where a large size of design variable vector and for large

training size with the Bayesian model selection requires very high computational time.

• To improve computational efficiency for training GPR, we recommend fixing the kernel

function to the rational quadratic kernel and perform hyperparameter optimization

only on hyperparameters of the kernel function.

• The rational quadratic kernel was found to be the most appealing kernel function found

as a result of the Bayesian model selection method in this study.

• In general, for most of the production optimization cases of the WAG problem, the

LS-SVR- and GPR-based iterative sampling-refinement optimization methods require

less computational time than the StoSAG optimization method.

• However, for some of the production optimization cases of the WAG problem, where the

size of the design variable is large and the size of training data is large, the GPR-based

iterative-sampling-refinement optimization method was not more efficient. Therefore,

for those optimization cases, we recommend one using the LS-SVR-based iterative-

sampling-refinement optimization method.
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8.3 Conclusions for the Well Shutoff Problem

• The well shutoff optimization problem can be handled by using the gradient-based

optimization methods introducing a production time fraction as the design variable for

each cycle.

• Having multiple cycles for production wells and making the cycle length unknown in

addition to other design variables increase the number of design variables and make

optimization problems to find a slightly lower local optimum. We think that this may

be a result of inaccurate computation of gradients in the stochastic simplex method.

• However, for the cases having multiple cycles, lowering the initial backtracking step

size close to the convergence helps us to get higher local optimums with smaller steps,

but this requires additional computational time.

• Fixing production BHPs to their lower bound helps us to find slightly higher local

optimums due to less number of design variables.

• For the single-cycle cases, when the life of the production is 3000 days, we do not

observe production well shutoff, but this is case-specific.

• However, increasing the life of production to 7000 days for single-cycle cases causes

production wells to shut off before the end of the production life.

• Not shutting off production wells for the case where life is 7000 days resulted in 500

thousand $ less NPV than the optimum found for this case, at which all production

wells need to shut down before the end of production life.

• The value of the maximum NPV for the cases where the life of production is 3000 days

is slightly more than that for the cases where the life of production is 7000 days.

• Reservoir pressure and well block pressure responses of the case with 1 cycle and the

case with 10 cycles at the optimum design variables of the cases have similarities, which

explains why we obtain close to the maximum NPV values for both cases.
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• Finally, without making generalizations for all reservoir types and for all EOR methods,

for this specific reservoir type and production scenario we found that using multiple

shutoffs and making cycle length as unknown is not beneficial: it results in slightly

lower maximum NPV compared to single shutoff cases; it requires more computational

time than the single shutoff cases.

• The cases with 10 cycles where the number of design variables is large are sensitive to

the initial guess of the simplex optimization method due to the increase in the number

of local optimum points and inaccuracy of the gradient approximation with the simplex

method.

• For the cases having 10 cycles and 1 cycle, iterative-sampling-refinement optimization

is approximately 3 and 7 times more computationally efficient, respectively.

• For the case having 10 cycles, with iterative-sampling-refinement optimization, we

obtained 17% higher NPV than that with the simplex optimization method.

• Using fixed hyperparameters for the LS-SVR-based iterative-sampling-refinement op-

timization method requires fewer iterations than that when we use hyperparameter

optimization at each iteration.

8.4 General Conclusions

Based on the optimization results of the HnP, WAG, and well shutoff problems, we

can make the following general conclusions:

• LS-SVR- and GPR-based optimization are more efficient than high-fidelity simulator-

based optimization.

• LS-SVR and GPR proxies give accurate optimum results provided that initial proxies

are sufficiently accurate.

• For the small-scale optimization problems considered in this study where the number

of design variables is not large, using the GPR-based iterative-sampling-refinement
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optimization is as efficient as using the LS-SVR-based iterative-sampling-refinement

optimization.

• For the large-scale optimization problems considered in this study, LS-SVR is preferred

over GPR due to its computational efficiency. Training GPR for large design size of

design variable vector and for large training size using Bayesian model selection requires

very high computational time.

• The uncertainty quantification feature of GPR seems not to be so important for the

production optimization problems.

• To improve computational efficiency for training GPR we fix kernel to rational quadratic

kernel and perform hyperparameter optimization only on hyperparameters of the kernel

function.

• The rational quadratic kernel was found to be the most appealing kernel function as a

result of Bayesian model selection in this study.

223



BIBLIOGRAPHY

Al-Khalifa, M. T., A. T. Mishkhes, K. N. Baruah, N. M. Al-Otaibi, et al., Smart well

completion utilization to optimize production in mrc well-a case study, in SPE Saudi

Arabia Section Technical Symposium and Exhibition, Society of Petroleum Engineers, 2013.

Al-Muailu, H., M. Al-Suwailem, S. Aldawsari, et al., Evaluating flow contributions and

enhancing the design of smart well completions, in SPE Middle East Oil and Gas Show

and Conference, Society of Petroleum Engineers, 2013.

Alfarge, D., M. Wei, B. Bai, A. Almansour, et al., Effect of molecular-diffusion mechanisim

on co2 huff-n-puff process in shale-oil reservoirs, in SPE Kingdom of Saudi Arabia Annual

Technical Symposium and Exhibition, Society of Petroleum Engineers. SPE-188003-MS.

https://doi.org/10.2118/188003-MS, 2017.

Alharthy, N., T. W. Teklu, H. Kazemi, R. M. Graves, S. B. Hawthorne, J. Braunberger,

B. Kurtoglu, et al., Enhanced oil recovery in liquid-rich shale reservoirs: laboratory

to field, SPE Reservoir Evaluation & Engineering, 21(01), 137–159. SPE–175,034–PA.

https://doi.org/10.2118/175,034–PA, 2018.

Almasov, A., M. Onur, and A. C. Reynolds, Production optimization of the CO2 huff and

puff process in unconventional oil reservoirs using ls-svr and gpr based machine learning

proxies. unpublished tuprep research report., in TUPREP Annual Board Meeting 2020.,

Research Report No. 36, 2020a.

Almasov, A., M. Onur, and A. C. Reynolds, Production optimization of the CO2 huff-

n-puff process in an unconventional reservoir using a machine learning based proxy, in

SPE Improved Oil Recovery Conference, Society of Petroleum Engineers. SPE-200360-MS.

https://doi.org/10.2118/200360-MS, 2020b.

224

https://doi.org/10.2118/188003-MS
https://onepetro.org/REE/article/21/01/137/207,390/Enhanced--Oil--Recovery--in--Liquid--Rich--Shale
https://doi.org/10.2118/200360-MS


Alsyed, S. and K. Yateem, Testing methodology for smart wells completion toward attain-

ing optimal production rate setting for maximum hydrocarbon recovery, in IPTC 2013:

International Petroleum Technology Conference, pp. cp–350, European Association of Geo-

scientists & Engineers, 2013.

Artun, E., T. Ertekin, R. Watson, and M. Al-Wadhahi, Development of universal proxy

models for screening and optimization of cyclic pressure pulsing in naturally fractured

reservoirs, Journal of Natural Gas Science and Engineering, 3(6), 667–686. IPTC–13,663–

MS. https://doi.org/10.3997/2214–4609–pdb.151.iptc13,663, 2011.

Bahagio, D. N. T., Ensemble Optimization of CO2 WAG EOR, Master’s thesis, Delft Uni-

versity of Technology, the Netherlands. http://resolver.tudelft.nl/uuid:3b5ea1f5-f415-4c5e-

8254-1b95b212125b, 2013.

Bender, S., M. Yilmaz, et al., Full-field simulation and optimization study of mature iwag

injection in a heavy oil carbonate reservoir, in SPE Improved Oil Recovery Symposium,

Society of Petroleum Engineers, 2014.

Berger, J. O., Statistical decision theory and Bayesian analysis, Springer Science & Business

Media, 2013.

Bird, R. B., W. E. Stewart, and E. N. Lightfoot, Transport phenomena, John Wiley & Sons,

2007.

Bohacs, K., Q. Passey, M. Rudnicki, W. Esch, and O. Lazar, The spectrum of fine-grained

reservoirs from shale gas to shale oil/tight liquids: essential attributes, key controls, prac-

tical characterization, in IPTC 2013: International Petroleum Technology Conference, pp.

cp–350, European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-

4609-pdb.350.iptc16676, 2013.

Bortz, D. M. and C. T. Kelley, The simplex gradient and noisy optimization problems, in

Computational methods for optimal design and control, pp. 77–90, Springer, 1998.

225

https://onepetro.org/REE/article/21/01/137/207,390/Enhanced--Oil--Recovery--in--Liquid--Rich--Shale
http://resolver.tudelft.nl/uuid:3b5ea1f5-f415-4c5e-8254-1b95b212125b
http://resolver.tudelft.nl/uuid:3b5ea1f5-f415-4c5e-8254-1b95b212125b
https://doi.org/10.3997/2214-4609-pdb.350.iptc16676
https://doi.org/10.3997/2214-4609-pdb.350.iptc16676


Calisgan, T., E. Ozkan, T. Firincioglu, H. Sarak, C. Ozgen, et al., Impact of pore confine-

ment on production behavior and gor profiles of unconventional reservoirs, in SPE Annual

Technical Conference and Exhibition, Society of Petroleum Engineers. SPE-187316-MS.

https://doi.org/10.2118/187316-MS, 2017.

Capolei, A., E. Suwartadi, B. Foss, and J. B. Jørgensen, A mean–variance objective for

robust production optimization in uncertain geological scenarios, Journal of Petroleum

Science and Engineering, 125, 23–37, 2015.

Caruana, R., Multitask learning, Machine learning, 28(1), 41–75, 1997.

Cawley, G. C. and N. L. Talbot, Preventing over-fitting during model selection via bayesian

regularisation of the hyper-parameters., Journal of Machine Learning Research, 8(4), 2007.

Chan, K. S., R. Masoudi, H. Karkooti, R. Shaedin, and M. B. Othman, Production inte-

grated smart completion benchmark for field re-development, in IPTC 2014: International

Petroleum Technology Conference, pp. cp–395, European Association of Geoscientists &

Engineers, 2014.

Chang, Y., Z. Bouzarkouna, and D. Devegowda, Multi-objective optimization for rapid

and robust optimal oilfield development under geological uncertainty, Computational Geo-

sciences, 19(4), 933–950, 2015.

Chen, B., R.-M. Fonseca, O. Leeuwenburgh, and A. C. Reynolds, Minimizing the risk in the

robust life-cycle production optimization using stochastic simplex approximate gradient,

Journal of Petroleum Science and Engineering, 153, 331–344, 2017.

Chen, B. and A. C. Reynolds, Optimal control of icv’s and well operating conditions for the

water-alternating-gas injection process, Journal of Petroleum Science and Engineering,

149, 623–640. https://doi.org/10.1016/j.petrol.2016.11.004, 2017.

Chen, B. and A. C. Reynolds, CO2 water-alternating-gas injection for enhanced oil recovery:

226

https://doi.org/10.2118/187316-MS
https://doi.org/10.1016/j.petrol.2016.11.004


Optimal well controls and half-cycle lengths, Computers & Chemical Engineering, 113,

44–56. https://doi.org/10.1016/j.compchemeng.2018.03.006, 2018.

Chen, B., A. C. Reynolds, et al., Ensemble-based optimization of the wag injection process,

in SPE Reservoir Simulation Symposium, Society of Petroleum Engineers, 2015.

Chen, C., Adjoint-gradient-based production optimization with the augmented Lagrangian

method, Ph.D. thesis, University of Tulsa, 2011.

Chen, Y. and D. S. Oliver, Ensemble-based closed-loop optimization applied to brugge field,

SPE Reservoir Evaluation & Engineering, 13(01), 56–71, 2010.

Chen, Y., D. S. Oliver, D. Zhang, et al., Efficient ensemble-based closed-

loop production optimization, SPE Journal, 14(04), 634–645. SPE–112,873–PA.

https://doi.org/10.2118/112,873–PA, 2009.

Christensen, J. R., E. H. Stenby, A. Skauge, et al., Review of wag field experience, in Inter-

national petroleum conference and exhibition of Mexico, Society of Petroleum Engineers.

SPE-71203-PA. https://doi.org/10.2118/71203-PA , 1998.

Clark, A. J., Determination of recovery factor in the bakken formation, mountrail county,

nd, in SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers.

SPE-133719-STU. https://doi.org/10.2118/133719-STU, 2009.

Conn, A. R., K. Scheinberg, and L. N. Vicente, Introduction to derivative-free optimization,

SIAM, 2009.

Crone, S. F., J. Guajardo, and R. Weber, The impact of preprocessing on support vec-

tor regression and neural networks in time series prediction., in DMIN, pp. 37–44,

https://doi.org/10.1.1.86.6266, 2006.

Custódio, A. L. and L. N. Vicente, Using sampling and simplex derivatives in pattern search

methods, SIAM Journal on Optimization, 18(2), 537–555, 2007.

227

https://doi.org/10.1016/j.compchemeng.2018.03.006
https://onepetro.org/SJ/article/14/04/634/191,929/Efficient--Ensemble--Based--Closed--Loop--Production
 https://doi.org/10.2118/71203-PA 
https://doi.org/10.2118/133719-STU
https://doi.org/10.1.1.86.6266


De Brabanter, K., P. Karsmakers, F. Ojeda, C. Alzate, J. De Brabanter, K. Pelckmans,

B. De Moor, J. Vandewalle, and J. A. Suykens, LS-SVMlab toolbox user’s guide: version

1.7, Katholieke Universiteit Leuven, 2010.

Do, S. T. and A. C. Reynolds, Theoretical connections between optimization algo-

rithms based on an approximate gradient, Computational Geosciences, 17(6), 959–973.

https://doi.org/DOI:10.1007/s10,596–013–9368–9, 2013.

Dongarra, J. and F. Sullivan, The top 10 algorithms (guest editors’ intruduction), Comput.

Sci. Eng, 2, 22–23, 2000.

Dossary, F. M., S. A. Dawsari, and R. S. Anazi, Production gain and optimization through

the implementation of smart well completion technology in saudi aramco, case study, in

SPE Intelligent Energy International, OnePetro, 2012.

Drucker, H., C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, Support vector re-

gression machines, in Advances in neural information processing systems, pp. 155–161,

1997.

Eaton, M. L., Multivariate statistics: a vector space approach., JOHN WILEY & SONS,

INC., 605 THIRD AVE., NEW YORK, NY 10158, USA, 1983, 512, 1983.

Feng, T., O. Leeuwenburgh, C. Hewson, and R. Hanea, Joint optimization of field develop-

ment and water-alternating-gas recovery strategies, in IOR 2017-19th European Sympo-

sium on Improved Oil Recovery, vol. 2017, pp. 1–12, European Association of Geoscientists

& Engineers, 2017.

Fick, A., Ueber diffusion, Annalen der Physik, 170(1), 59–86, 1855.

Firincioglu, T., E. Ozkan, C. Ozgen, et al., Thermodynamics of multiphase flow in unconven-

tional liquids-rich reservoirs, in SPE Annual Technical Conference and Exhibition, Society

of Petroleum Engineers. SPE-159869-MS. https://doi.org/10.2118/159869-MS, 2012.

228

https://doi.org/DOI:10.1007/s10,596--013--9368--9
https://doi.org/10.2118/159869-MS


Fonseca, R., O. Leeuwenburgh, E. D. Rossa, P. M. Van den Hof, J.-D. Jansen, et al.,

Ensemble-based multi-objective optimization of on-off control devices under geological

uncertainty, in SPE Reservoir Simulation Symposium, Society of Petroleum Engineers,

2015a.

Fonseca, R. M., B. Chen, J. D. Jansen, and A. Reynolds, A stochastic simplex approximate

gradient (stosag) for optimization under uncertainty, International Journal for Numerical

Methods in Engineering, 109(13), 1756–1776. https://doi.org/10.1002/nme.5342, 2017.

Fonseca, R. M., S. Kahrobaei, L. Van Gastel, O. Leeuwenburgh, J. D. Jansen, et al., Quan-

tification of the impact of ensemble size on the quality of an ensemble gradient using princi-

ples of hypothesis testing, in SPE Reservoir Simulation Symposium, Society of Petroleum

Engineers. SPE-173236-MS.https://doi.org/SPE-173236-MS, 2015b.

Fonseca, R. M., O. Leeuwenburgh, E. Della Rossa, P. M. Van den Hof, J. D. Jansen, et al.,

Ensemble-based multiobjective optimization of on/off control devices under geological un-

certainty, SPE Reservoir Evaluation & Engineering, 18(04), 554–563. SPE–173,268–MS.

https://doi.org/SPE–173,268–MS, 2015c.

Fonseca, R. M., O. Leeuwenburgh, P. Van den Hof, and J. D. Jansen, Improving

the ensemble-optimization method through covariance-matrix adaptation, SPE Journal,

20(01), 155–168. SPE–163,657–PA. https://doi.org/10.2118/163,657–PA, 2015d.

Forouzanfar, F., E. Della Rossa, R. Russo, and A. C. Reynolds, Life-cycle production op-

timization of an oil field with an adjoint-based gradient approach, Journal of Petroleum

Science and Engineering, 112, 351–358, 2013.

Forouzanfar, F., G. Li, A. C. Reynolds, et al., A two-stage well placement optimization

method based on adjoint gradient, in SPE annual technical conference and exhibition, So-

ciety of Petroleum Engineers. SPE-135304-MS. https://doi.org/10.2118/135304-MS, 2010.

Forrester, A., A. Sobester, and A. Keane, Engineering design via surrogate modelling: a

practical guide, John Wiley & Sons, 2008.

229

https://doi.org/10.1002/nme.5342
https://doi.org/SPE-173236-MS
https://doi.org/SPE--173,268--MS
https://onepetro.org/SJ/article/20/01/155/206,379/Improving--the--Ensemble--Optimization--Method--Through
https://doi.org/10.2118/135304-MS


Forrester, A. I. and A. J. Keane, Recent advances in surrogate-based optimization, Progress

in aerospace sciences, 45(1-3), 50–79. https://doi.org/10.1016/j.paerosci.2008.11.001,

2009.

Fragoso, A., K. Selvan, R. Aguilera, et al., An investigation on the feasibility of combined

refracturing of horizontal wells and huff and puff gas injection for improving oil recovery

from shale petroleum reservoirs, in SPE Improved Oil Recovery Conference, Society of

Petroleum Engineers. SPE-190284-MS. https://doi.org/10.2118/190284-MS, 2018.

Gala, D., M. Sharma, et al., Compositional and geomechanical effects in huff-n-puff gas injec-

tion ior in tight oil reservoirs, in SPE Annual Technical Conference and Exhibition, Society

of Petroleum Engineers. SPE-191488-MS. https://doi.org/10.2118/191488-MS, 2018.

Gamadi, T., J. Sheng, M. Soliman, H. Menouar, M. Watson, H. Emadibaladehi, et al.,

An experimental study of cyclic co2 injection to improve shale oil recovery, in SPE

improved oil recovery symposium, Society of Petroleum Engineers. SPE-169142-MS.

https://doi.org/10.2118/169142-MS, 2014.

Ganjdanesh, R., W. Yu, M. X. Fiallos Torres, K. Sepehrnoori, E. Kerr, R. Ambrose, et al.,

Huff-n-puff gas injection for enhanced condensate recovery in eagle ford, in SPE Annual

Technical Conference and Exhibition, Society of Petroleum Engineers. SPE-195996-MS.

https://doi.org/10.2118/195996-MS, 2019.

GEM, C.-C. M. G., Compositional and unconventional reservoir simulator, 2016.

GEM, C.-C. M. G., Compositional and unconventional reservoir simulator, 2020.

Ghaderi, S. M., C. R. Clarkson, Y. Chen, et al., Optimization of wag process for coupled co2

eor-storage in tight oil formations: an experimental design approach, in SPE Canadian

Unconventional Resources Conference, Society of Petroleum Engineers, 2012.

Glasserman, P. and Y.-C. Ho, Gradient estimation via perturbation analysis, vol. 116,

Springer Science & Business Media, 1991.

230

https://doi.org/10.1016/j.paerosci.2008.11.001
https://doi.org/10.2118/190284-MS
https://doi.org/10.2118/191488-MS
https://doi.org/10.2118/169142-MS
https://doi.org/10.2118/195996-MS


Golub, G. H., L. VAN, and M. C. CF, Baltimore, md, 1989.

Gordan, M., A. Georgakis, O. Tsatos, G. Oltean, and L. Miclea, Computational complexity

reduction of the support vector machine classifiers for image analysis tasks through the use

of the discrete cosine transform, in 2006 IEEE International Conference on Automation,

Quality and Testing, Robotics, vol. 2, pp. 350–355. 10.1109/AQTR.2006.254,658, 2006.

Gosset, R., G. Heyen, and B. Kalitventzeff, An efficient algorithm to solve cubic equations

of state, Fluid Phase Equilibria, 25(1), 51–64, 1986.

Gramacy, R. B., Surrogates: Gaussian Process Modeling, Design, and Optimization for the

Applied Sciences, CRC Press, 2020.

Guo, Z. and A. C. Reynolds, Robust life-cycle production optimization with a support-

vector-regression proxy, SPE Journal. SPE-191378-PA. https://doi.org/10.2118/191378-

PA, 2018.

Hamdi, H., C. R. Clarkson, A. Esmail, M. Costa Sousa, et al., A bayesian approach

for optimizing the huff-n-puff gas injection performance in shale reservoirs under para-

metric uncertainty: A duvernay shale example, in SPE Europec featured at 81st

EAGE Conference and Exhibition, Society of PetrolFeum Engineers. SPE-195438-MS.

https://doi.org/10.2118/195438-MS, 2019.

Hewson, C., O. Leeuwenburgh, et al., Co2 water-alternating-gas flooding optimization

of the chigwell viking i pool in the western canadian sedimentary basin, in SPE

Reservoir Simulation Conference, Society of Petroleum Engineers. SPE-182597-MS.

https://doi.org/10.2118/182597-MS, 2017.

Hoffman, B. T. et al., Huff-n-puff gas injection pilot projects in the eagle ford, in SPE Canada

Unconventional Resources Conference, Society of Petroleum Engineers. SPE-189816-MS.

https://doi.org/10.2118/189816-MS, 2018.

IMEX, C.-C. M. G., Black oil and unconventional reservoir simulator, 2020.

231

10.1109/AQTR.2006.254,658
https://doi.org/10.2118/191378-PA
https://doi.org/10.2118/191378-PA
https://doi.org/10.2118/195438-MS
https://doi.org/10.2118/182597-MS
https://doi.org/10.2118/189816-MS


Isebor, O. J., D. Echeverría Ciaurri, L. J. Durlofsky, et al., Generalized field-development

optimization with derivative-free procedures, SPE Journal, 19(05), 891–908, 2014.

Israelachvili, J. N., Intermolecular and surface forces, Academic press, 2011.

James, G., D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning,

vol. 112, Springer, 2013.

Jansen, J. D., Adjoint-based optimization of multi-phase flow through porous media–a re-

view, Computers & Fluids, 46(1), 40–51, 2011.

Jansen, J.-D., R. Brouwer, and S. G. Douma, Closed loop reservoir management, in SPE

reservoir simulation symposium, OnePetro, 2009.

Jarrell, P. M., C. E. Fox, M. H. Stein, and S. L. Webb, Practical aspects of CO2 flooding,

vol. 22, Society of Petroleum Engineers Richardson, TX, 2002.

Jia, B., J.-S. Tsau, R. Barati, et al., Role of molecular diffusion in heterogeneous shale

reservoirs during co2 huff-n-puff, in SPE Europec featured at 79th EAGE Conference and

Exhibition, Society of Petroleum Engineers, 2017.

Jin, H. and S. A. Sonnenberg, Source rock potential of the Bakken shales in the Willis-

ton Basin, North Dakota and Montana, Ph.D. thesis, Colorado School of Mines Golden,

Colorado, 2014.

Job, G. and F. Herrmann, Chemical potential—a quantity in search of recognition, European

journal of physics, 27(2), 353, 2006.

Johns, R. T., L. Bermudez, H. Parakh, et al., Wag optimization for gas floods above the mme,

in SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 2003.

Joslin, K., A. Abraham, T. Thaker, V. Pathak, A. Kumar, et al., Viability of eor pro-

cesses in the bakken under geological and economic uncertainty, in SPE Canada Un-

conventional Resources Conference, Society of Petroleum Engineers. SPE-189779-MS.

https://doi.org/10.2118/189779-MS, 2018.

232

https://doi.org/10.2118/189779-MS


Kanfar, M., C. Clarkson, et al., Factors affecting huff-n-puff efficiency in hydraulically-

fractured tight reservoirs, in SPE Unconventional Resources Conference, Society of

Petroleum Engineers, 2017.

Kantzas, A., J. Bryan, and S. Taheri, Fundamentals of fluid flow in porous media, Pore size

distribution, 2012.

Kelley, C. T., Detection and remediation of stagnation in the nelder–mead algorithm using

a sufficient decrease condition, SIAM journal on optimization, 10(1), 43–55, 1999.

Kraaijevanger, J., P. Egberts, J. Valstar, H. Buurman, et al., Optimal waterflood design

using the adjoint method, in SPE Reservoir Simulation Symposium, Society of Petroleum

Engineers, 2007.

Lake, L. W., R. Johns, B. Rossen, and G. Pope, Fundamentals of Enhanced Oil Recovery,

Society of Petroleum Engineers, Texas, USA, 2014.

Liu, H., Y.-S. Ong, X. Shen, and J. Cai, When gaussian process meets big data: A re-

view of scalable gps, IEEE Transactions on Neural Networks and Learning Systems.

https://doi.org/10.1109/TNNLS.2019.2957109, 2020.

Liu, Z. and A. C. Reynolds, Gradient-enhanced support vector regression for robust life-cycle

production optimization with nonlinear-state constraints, SPE Journal, pp. 1–24, 2020.

Lorentzen, R. J., A. Berg, G. Nævdal, E. H. Vefring, et al., A new approach for dynamic

optimization of water flooding problems, in Intelligent Energy Conference and Exhibition,

Society of Petroleum Engineers, 2006.

Lu, R., F. Forouzanfar, A. C. Reynolds, et al., Bi-objective optimization of well placement

and controls using stosag, in SPE Reservoir Simulation Conference, Society of Petroleum

Engineers, 2017.

Lu, R. and A. C. Reynolds, Joint optimization of well locations, types, drilling order, and

controls given a set of potential drilling paths, SPE Journal, 25(03), 1285–1306, 2020.

233

https://doi.org/10.1109/TNNLS.2019.2957109


Luenberger, D. G., Y. Ye, et al., Linear and nonlinear programming, vol. 2, Springer, 1984.

Ma, Y. and A. Jamili, Using simplified local density/peng-robinson equation of state to

study the effects of confinement in shale formations on phase behavior, in SPE Un-

conventional Resources Conference, Society of Petroleum Engineers. SPE-168986-MS.

https://doi.org/10.2118/168986-MS, 2014.

McKay, M. D., R. J. Beckman, and W. J. Conover, A comparison of three methods for

selecting values of input variables in the analysis of output from a computer code, Tech-

nometrics, 42(1), 55–61, https://doi.org/10.1080/00401,706.1979.10489,755, 2000.

Muirhead, R. J., Aspects of multivariate statistical theory, vol. 197, John Wiley & Sons,

2009.

Naroso, G., J. P. Hofland, et al., How smart completion can maximize oil production and

recovery factor in stacked-marginal reservoirs, in Abu Dhabi International Petroleum Ex-

hibition and Conference, Society of Petroleum Engineers, 2010.

Naus, M., N. Dolle, J.-D. Jansen, et al., Optimization of commingled production using in-

finitely variable inflow control valves, in SPE Annual Technical Conference and Exhibition,

Society of Petroleum Engineers, 2004.

Nojabaei, B., R. T. Johns, L. Chu, et al., Effect of capillary pressure on phase behavior in

tight rocks and shales, SPE Reservoir Evaluation & Engineering, 16(03), 281–289, 2013.

Nwachukwu, A., H. Jeong, A. Sun, M. Pyrcz, L. W. Lake, et al., Machine learning-based

optimization of well locations and wag parameters under geologic uncertainty, in SPE

improved oil recovery conference, Society of Petroleum Engineers, 2018.

Nwaozo, J. E., Dynamic optimization of a water flood reservoir, Ph.D. thesis, University of

Oklahoma Norman, OK, 2006.

Orozco, D., A. Fragoso, K. Selvan, G. Noble, R. Aguilera, et al., Eagle ford huff ‘n’puff

gas-injection pilot: Comparison of reservoir-simulation, material balance, and real per-

234

https://doi.org/10.2118/168986-MS
https://doi.org/10.1080/00401,706.1979.10489,755


formance of the pilot well, SPE Reservoir Evaluation & Engineering. SPE-191575-PA.

https://doi.org/10.2118/191575-PA, 2019.

Orr, F. M. et al., Theory of gas injection processes, vol. 5, Tie-Line Publications Copenhagen,

2007.

Pankaj, P., H. Mukisa, I. Solovyeva, H. Xue, et al., Boosting oil recovery in naturally

fractured shale using co2 huff-n-puff, in SPE Argentina Exploration and Production of

Unconventional Resources Symposium, Society of Petroleum Engineers. SPE-191823-MS.

https://doi.org/10.2118/191823-MS, 2018.

Pari, M. N. and A. H. Kabir, Viability study of implementing smart/intelligent completion

in commingled wells in an australian offshore oil field, in SPE Digital Energy Conference

and Exhibition, OnePetro, https://doi.org/10.2118/122654-MS, 2009.

Peng, D.-Y. and D. B. Robinson, A new two-constant equation of state, Industrial & Engi-

neering Chemistry Fundamentals, 15(1), 59–64, 1976.

Queipo, N. V., R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K. Tucker,

Surrogate-based analysis and optimization, Progress in aerospace sciences, 41(1), 1–28.

doi:10.1016/j.paerosci.2005.02.001, 2005.

Quinonero-Candela, J., C. E. Rasmussen, and C. K. Williams, Approximation methods for

gaussian process regression, in Large-scale kernel machines, pp. 203–223, MIT Press, 2007.

Raniolo, S., L. Dovera, A. Cominelli, C. Callegaro, and F. Masserano, History match and

polymer injection optimization in a mature field using the ensemble kalman filter, in

IOR 2013-17th European Symposium on Improved Oil Recovery, pp. cp–342, European

Association of Geoscientists & Engineers, 2013.

Sarma, P., L. J. Durlofsky, K. Aziz, and W. H. Chen, Efficient real-time reservoir man-

agement using adjoint-based optimal control and model updating, Computational Geo-

sciences, 10(1), 3–36, 2006.

235

https://doi.org/10.2118/191575-PA
https://doi.org/10.2118/191823-MS
https://doi.org/10.2118/122654-MS
doi:10.1016/j.paerosci.2005.02.001


Saunders, C., A. Gammerman, and V. Vovk, Ridge regression learning algorithm in dual

variables, 15th International Conference on Machine Learning, ICML ’98, 1998.

Seeger, M., Gaussian processes for machine learning, International journal of neural systems,

14(02), 69–106, 2004.

Song, C., D. Yang, et al., Performance evaluation of co2 huff-n-puff processes in tight oil

formations, in SPE Unconventional Resources Conference Canada, Society of Petroleum

Engineers. SPE-167217-MS. https://doi.org/10.2118/167217-MS, 2013.

Stone, R. E. and C. A. Tovey, The simplex and projective scaling algorithms as iteratively

reweighted least squares methods, SIAM review, 33(2), 220–237, 1991.

Sudaryanto, B. and Y. C. Yortsos, Optimization of fluid front dynamics in porous me-

dia using rate control. i. equal mobility fluids, Physics of Fluids, 12(7), 1656–1670.

https://doi.org/10.1063/1.870,417, 2000.

Sun, J., A. Zou, E. Sotelo, and D. Schechter, Numerical simulation of co2 huff-n-puff in

complex fracture networks of unconventional liquid reservoirs, Journal of Natural Gas

Science and Engineering, 31, 481–492. https://doi.org/10.1016/j.jngse.2016.03.032, 2016.

Suykens, J. A., J. De Brabanter, L. Lukas, and J. Vandewalle, Weighted least squares support

vector machines: robustness and sparse approximation, Neurocomputing, 48(1-4), 85–105,

2002.

Suykens, J. A. and J. Vandewalle, Least squares support vector machine classifiers, Neural

processing letters, 9(3), 293–300. https://doi.org/10.1023/A:1018628609,742, 1999.

Tabatabaei Nejad, S. A., A. A. V. Aleagha, S. Salari, et al., Estimating optimum well spacing

in a middle east onshoreoil field using a genetic algorithm optimization approach, in SPE

Middle East Oil and Gas Show and Conference, Society of Petroleum Engineers, 2007.

236

https://doi.org/10.2118/167217-MS
https://doi.org/10.1063/1.870,417
https://doi.org/10.1016/j.jngse.2016.03.032
https://doi.org/10.1023/A:1018628609,742


Tavakkolian, M., F. Jalali, M. Emadi, et al., Production optimization using genetic algo-

rithm approach, in Nigeria Annual International Conference and Exhibition, Society of

Petroleum Engineers, 2004.

The MathWorks, I., Gaussian process regression, 2020.

Todd, H. B., J. G. Evans, et al., Improved oil recovery ior pilot projects in the bakken

formation, in SPE Low Perm Symposium, Society of Petroleum Engineers. SPE-180270-

MS. https://doi.org/10.2118/180270-MS, 2016.

Tovar, F. D., M. A. Barrufet, and D. S. Schechter, Gas injection for eor in organic rich

shale. part i: Operational philosophy, in SPE improved oil recovery conference, Society of

Petroleum Engineers. SPE-190323-MS. https://doi.org/10.2118/190323-MS, 2018a.

Tovar, F. D., M. A. Barrufet, and D. S. Schechter, Gas injection for eor in organic

rich shales. part ii: Mechanisms of recovery, in Unconventional Resources Technology

Conference, Houston, Texas, 23-25 July 2018, pp. 2953–2973, Society of Petroleum

Engineers, Society of Exploration Geophysicists, American Association of Petroleum.

https://doi.org/10.15530/urtec-2018-2903026, 2018b.

van Essen, G., M. Zandvliet, P. Van den Hof, O. Bosgra, and J.-D. Jansen, Robust wa-

terflooding optimization of multiple geological scenarios, Spe Journal, 14(01), 202–210,

2009.

Vapnik, V., The support vector method of function estimation, in Nonlinear Modeling, pp.

55–85. https://doi.org/10.1007/978–1–4615–5703–6–3, Springer, 1998.

Vapnik, V., I. Guyon, and T. Hastie, Support vector machines, Mach. Learn, 20(3), 273–297.

https://doi.org/10.1007/978–0–387–30,162–4–415, 1995.

Vetterling, W. T., W. T. Vetterling, W. H. Press, W. H. Press, S. A. Teukolsky, B. P.

Flannery, and B. P. Flannery, Numerical Recipes: Example Book C, Cambridge University

Press, 1992.

237

https://doi.org/10.2118/180270-MS
https://doi.org/10.2118/190323-MS
https://doi.org/10.15530/urtec-2018-2903026
https://doi.org/10.1007/978--1--4615--5703--6--3
https://doi.org/10.1007/978--0--387--30,162--4--415


von Mises, R., Mathematical theory of probability and statistics, Academic Press, 1964.

Wahba, G., Spline models for observational data, SIAM, 1990.

Wang, L., W. Yu, et al., Gas huff and puff process in eagle ford shale: Recovery mecha-

nism study and optimization, in SPE Oklahoma City Oil and Gas Symposium, Society of

Petroleum Engineers. SPE-195185-MS. https://doi.org/10.2118/195185-MS, 2019.

Wang, Y., J. Hou, Z. Song, D. Yuan, J. Zhang, T. Zhao, et al., A case study on simulation

of in-situ co2 huff-‘n’-puff process, SPE Reservoir Evaluation & Engineering, 21(01), 109–

121. CMTC–486,365–MS. https://doi.org/10.7122/486,365–MS, 2018.

Williams, C. K., Prediction with gaussian processes: From linear regression to linear predic-

tion and beyond, in Learning in graphical models, pp. 599–621, Springer, 1998.

Williams, C. K. and C. E. Rasmussen, Gaussian processes for machine learning, vol. 2, MIT

press Cambridge, MA, 2006.

WINPROP, C., Winprop user’s manual, Calgary, Alberta, Canada, 2004.

Wright, S. and J. Nocedal, Numerical optimization, Springer Science, 35(67-68), 7, 1999.

Yu, W., H. Lashgari, K. Sepehrnoori, et al., Simulation study of co2 huff-n-

puff process in bakken tight oil reservoirs, in SPE Western North American and

Rocky Mountain Joint Meeting, Society of Petroleum Engineers. SPE-169575-MS.

https://doi.org/10.2118/169575-MS, 2014.

Yu, W., Y. Zhang, A. Varavei, K. Sepehrnoori, T. Zhang, K. Wu, J. Miao, et al., Compo-

sitional simulation of co2 huff’n’puff in eagle ford tight oil reservoirs with co 2 molecular

diffusion, nanopore confinement, and complex natural fractures, SPE Reservoir Evaluation

& Engineering. SPE-190325-PA. https://doi.org/10.2118/190325-PA, 2019.

Yu, Y., L. Li, J. J. Sheng, et al., Further discuss the roles of soaking time and pressure deple-

tion rate in gas huff-n-puff process in fractured liquid-rich shale reservoirs, in SPE Annual

238

https://doi.org/10.2118/195185-MS
https://doi.org/10.7122/486,365--MS
https://doi.org/10.2118/169575-MS
https://doi.org/10.2118/190325-PA


Technical Conference and Exhibition, Society of Petroleum Engineers. SPE-181471-MS.

https://doi.org/10.2118/181471-MS, 2016.

Zhou, D., M. Yan, W. M. Calvin, et al., Optimization of a mature co2 flood-from contin-

uous injection to wag, in SPE Improved Oil Recovery Symposium, Society of Petroleum

Engineers, 2012.

Zhu, G.-S. and R. D. Reitz, A model for high-pressure vaporization of droplets of complex

liquid mixtures using continuous thermodynamics, International Journal of Heat and Mass

Transfer, 45(3), 495–507, 2002.

239

https://doi.org/10.2118/181471-MS


APPENDIX A

COMPARISON OF THE NPV WITH CONTROL TIME STEP AND

SIMULATION TIME STEP

To check if both NPV equations (Eqs. 2.5 and 2.10) yield the same result, let us look

at the following example case (Table A.1). We will not get numeric values in comparison

Table A.1: Design variables and time step values in example case.

Nc 2
∆tn for n=1,2 600
∆̂t

n

p for n=1,2 0.5
∆̂t

n

i for n=1,2 0.25
Nn
i for n=1,2 3

Nn
p for n=1,2 3

but we want to end up with the same equation using both Eqs. 2.5 and 2.10. As one can

calculate the values for the time steps will be:

δ∆n
i,j = 100 Days, for j = 1, 2, 3 and n = 1, 2, and δ∆n

p,j = 50 Days, for j = 1, 2, 3 and

n = 1, 2.

First, let us calculate tnp,j and tni,j values for n = 1, 2 and j = 1, 2, 3:

t1p,1 =
∑1

l=1 ∆tl−1 +
∑1

k=1(∆tl · (1− ∆̂t
l

p) + δ∆tlp,k) = ∆t0 + (∆t1 · (1− ∆̂t
1

p) + δ∆t1p,1) =

0 + (600 · (1− 0.5) + 100) = 400 Days,

t1p,2 =
∑1

l=1 ∆tl−1 +
∑2

k=1(∆tl · (1− ∆̂t
l

p) + δ∆tlp,k) =

∆t0 + (∆t1 · (1− ∆̂t
1

p) + δ∆t1p,1 + δ∆t1p,2) = 0 + (600 · (1− 0.5) + 100 + 100) = 500 Days,

t1p,3 =
∑1

l=1 ∆tl−1 +
∑3

k=1(∆tl · (1− ∆̂t
l

p) + δ∆tlp,k) =

∆t0 + (∆t1 · (1− ∆̂t
1

p) + δ∆t1p,1 + δ∆t1p,2 + δ∆t1p,3)
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= 0 + (600 · (1− 0.5) + 100 + 100 + 100) = 600 Days,

t2p,1 =
∑2

l=1 ∆tl−1 +
∑1

k=1(∆tl · (1− ∆̂t
l

p) + δ∆tlp,k) =

∆t0 + ∆t1 + (∆t2 · (1− ∆̂t
2

p) + δ∆t2p,1) = 0 + 600 + (600 · (1− 0.5) + 100) = 1000 Days,

t2p,2 =
∑2

l=1 ∆tl−1 +
∑2

k=1(∆tl · (1− ∆̂t
l

p) + δ∆tlp,k) =

∆t0 +∆t1 +(∆t2 · (1− ∆̂t
2

p)+ δ∆t2p,1 + δ∆t2p,2) = 0+ 600+ (600 · (1−0.5)+100+100) = 1100

Days,

t2p,3 =
∑2

l=1 ∆tl−1 +
∑3

k=1(∆tl · (1− ∆̂t
l

p) + δ∆tlp,k) = ∆t0 + ∆t1 + (∆t2 · (1− ∆̂t
2

p) +

δ∆t2p,1 + δ∆t2p,2 + δ∆t2p,3) = 0 + 600 + (600 · (1− 0.5) + 100 + 100 + 100) = 1200 Days.

t1i,1 =
∑1

l=1 ∆tl−1 +
∑1

k=1 δ∆t
l
i,k = ∆t0 + δ∆t1i,1 = 0 + 50 = 50 Days,

t1i,2 =
∑1

l=1 ∆tl−1 +
∑2

k=1 δ∆t
l
i,k = ∆t0 + δ∆t1i,1 + δ∆t1i,2 = 0 + 50 + 50 = 100 Days,

t1i,3 =
∑1

l=1 ∆tl−1 +
∑3

k=1 δ∆t
l
i,k = ∆t0 + δ∆t1i,1 + δ∆t1i,2 + δ∆t1i,3 = 0 + 50 + 50 + 50 = 150

Days,

t2i,1 =
∑2

l=1 ∆tl−1 +
∑1

k=1 δ∆t
l
i,k = ∆t0 + ∆t1 + δ∆t2i,1 = 0 + 600 + 50 = 650 Days,

t2i,2 =
∑2

l=1 ∆tl−1 +
∑2

k=1 δ∆t
l
i,k = ∆t0 + ∆t1 + δ∆t2i,1 + δ∆t2i,2 = 0 + 600 + 50 + 50 = 700

Days,

t2i,3 =
∑2

l=1 ∆tl−1 +
∑3

k=1 δ∆t
l
i,k = ∆t0 + ∆t1 + δ∆t2i,1 + δ∆t2i,2 + δ∆t2i,3 =

0 + 600 + 50 + 50 + 50 = 750 Days.

Now, let us write down NPV with the Eq. 2.12

J(u) =
∑2

n=1

∑Nn
p

j=1

δ∆tnp,j

(1 + b)
tn
p,j
365

(rno q̄
n
o,j − cCO2,pq̄

n
CO2,p,j

)−
∑Nn

i
j=1

δ∆tni,j

(1 + b)
tn
i,j
365

(cCO2,iq̄
n
CO2,i,j

)

 =

∑N1
p

j=1

δ∆t1p,j

(1 + b)
t1
p,j
365

(roq̄
1
o,j − cCO2,pq̄

1
CO2,p,j

)−
∑N1

i
j=1

δ∆t1i,j

(1 + b)
t1
i,j
365

(cCO2,iq̄
1
CO2,i,j

)

+

241



∑N2
p

j=1

δ∆t2p,j

(1 + b)
t2
p,j
365

(roq̄
2
o,j − cCO2,pq̄

2
CO2,p,j

)−
∑N2

i
j=1

δ∆t2i,j

(1 + b)
t2
i,j
365

(cCO2,iq̄
2
CO2,i,j

)

 =

∑3
j=1

δ∆t1p,j

(1 + b)
t1
p,j
365

(roq̄
1
o,j − cCO2,pq̄

1
CO2,p,j

)−
∑3

j=1

δ∆t1i,j

(1 + b)
t1
i,j
365

(cCO2,iq̄
1
CO2,i,j

)

+

∑3
j=1

δ∆t2p,j

(1 + b)
t2
p,j
365

(roq̄
2
o,j − cCO2,pq̄

2
CO2,p,j

)−
∑3

j=1

δ∆t2i,j

(1 + b)
t2
i,j
365

(cCO2,iq̄
2
CO2,i,j

)



=

 δ∆t1p,1

(1 + b)
t1p,1
365

(roq̄
1
o,1 − cCO2,pq̄

1
CO2,p,1

)

+

 δ∆t1p,2

(1 + b)
t1p,2
365

(roq̄
1
o,2 − cCO2,pq̄

1
CO2,p,2

)



+

 δ∆t1p,3

(1 + b)
t1p,3
365

(roq̄
1
o,3 − cCO2,pq̄

1
CO2,p,3

)



−

 δ∆t1i,1

(1 + b)
t1
i,1
365

(cCO2,iq̄
1
CO2,i,1

)

−
 δ∆t1i,2

(1 + b)
t1
i,2
365

(cCO2,iq̄
1
CO2,i,2

)

−
 δ∆t1i,3

(1 + b)
t1
i,3
365

(cCO2,iq̄
1
CO2,i,3

)


+ δ∆t2p,1

(1 + b)
t2p,1
365

(roq̄
2
o,1 − cCO2,pq̄

2
CO2,p,1

)

+

 δ∆t2p,2

(1 + b)
t2p,2
365

(roq̄
2
o,2 − cCO2,pq̄

2
CO2,p,2

)



+

 δ∆t2p,3

(1 + b)
t2p,3
365

(roq̄
2
o,3 − cCO2,pq̄

2
CO2,p,3

)



−

 δ∆t2i,1

(1 + b)
t2
i,1
365

(cCO2,iq̄
2
CO2,i,1

)

−
 δ∆t2i,2

(1 + b)
t2
i,2
365

(cCO2,iq̄
2
CO2,i,2

)

−
 δ∆t2i,3

(1 + b)
t2
i,3
365

(cCO2,iq̄
2
CO2,i,3

)



=

(
100

(1 + b)
400
365

(roq̄
1
o,1 − cCO2,pq̄

1
CO2,p,1

)

)
+

(
100

(1 + b)
500
365

(roq̄
1
o,2 − cCO2,pq̄

1
CO2,p,2

)

)

+

(
100

(1 + b)
600
365

(roq̄
1
o,3 − cCO2,pq̄

1
CO2,p,3

)

)

−

(
50

(1 + b)
50
365

(cCO2,iq̄
1
CO2,i,1

)

)
−

(
50

(1 + b)
100
365

(cCO2,iq̄
1
CO2,i,2

)

)
−

(
50

(1 + b)
150
365

(cCO2,iq̄
1
CO2,i,3

)

)
+
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(
100

(1 + b)
1000
365

(roq̄
2
o,1 − cCO2,pq̄

2
CO2,p,1

)

)
+

(
100

(1 + b)
1100
365

(roq̄
2
o,2 − cCO2,pq̄

2
CO2,p,2

)

)

+

(
100

(1 + b)
1200
365

(roq̄
2
o,3 − cCO2,pq̄

2
CO2,p,3

)

)

−

(
50

(1 + b)
650
365

(cCO2,iq̄
2
CO2,i,1

)

)
−

(
50

(1 + b)
700
365

(cCO2,iq̄
2
CO2,i,2

)

)
−

(
50

(1 + b)
750
365

(cCO2,iq̄
2
CO2,i,3

)

)

Let us rewrite the result in the increasing order of cumulative time:

−

(
50

(1 + b)
50
365

(cCO2,iq̄
1
CO2,i,1

)

)
−

(
50

(1 + b)
100
365

(cCO2,iq̄
1
CO2,i,2

)

)
−

(
50

(1 + b)
150
365

(cCO2,iq̄
1
CO2,i,3

)

)
+

(
100

(1 + b)
400
365

(roq̄
1
o,1 − cCO2,pq̄

1
CO2,p,1

)

)
+

(
100

(1 + b)
500
365

(roq̄
1
o,2 − cCO2,pq̄

1
CO2,p,2

)

)

+

(
100

(1 + b)
600
365

(roq̄
1
o,3 − cCO2,pq̄

1
CO2,p,3

)

)

−

(
50

(1 + b)
650
365

(cCO2,iq̄
2
CO2,i,1

)

)
−

(
50

(1 + b)
700
365

(cCO2,iq̄
2
CO2,i,2

)

)
−

(
50

(1 + b)
750
365

(cCO2,iq̄
2
CO2,i,3

)

)
+

(
100

(1 + b)
1000
365

(roq̄
2
o,1 − cCO2,pq̄

2
CO2,p,1

)

)
+

(
100

(1 + b)
1100
365

(roq̄
2
o,2 − cCO2,pq̄

2
CO2,p,2

)

)

+

(
100

(1 + b)
1200
365

(roq̄
2
o,3 − cCO2,pq̄

2
CO2,p,3

)

)

Now let us perform the same computation using the Eq. 2.10. For this purpose, let

us first define a set of the simulation time steps so that it matches with our previous time

steps. Except here we also include the soaking period. To do less computation, we include

the whole soaking period as one of the simulation time steps, which is 150 Days:

∆tk ∈ {50, 50, 50, 150, 100, 100, 100, 50, 50, 50, 150, 100, 100, 100}. Thus, Ns=14.

J(u) =
∑Ns

k=1

∆tk

(1 + b)
tk

365

(roq̄
k
o − cCO2,pq̄

k
CO2,p

− cCO2,iq̄
k
CO2,i

)

We re-write this equation to make it resemble the Eq. 2.12 so we can compare them easily:

∑Ns

k=1

[
∆tk

(1 + b)
tk

365

(roq̄
k
o − cCO2,pq̄

k
CO2,p

)− ∆tk

(1 + b)
tk

365

(cCO2,iq̄
k
CO2,i

)

]
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=
∆t1

(1 + b)
t1

365

(roq̄
1
o − cCO2,pq̄

1
CO2,p

)− ∆t1

(1 + b)
t1

365

(cCO2,iq̄
1
CO2,i

)+

∆t2

(1 + b)
t2

365

(roq̄
2
o − cCO2,pq̄

2
CO2,p

)− ∆t2

(1 + b)
t2

365

(cCO2,iq̄
2
CO2,i

)+

∆t3

(1 + b)
t3

365

(roq̄
3
o − cCO2,pq̄

3
CO2,p

)− ∆t3

(1 + b)
t3

365

(cCO2,iq̄
3
CO2,i

)+

∆t4

(1 + b)
t4

365

(roq̄
4
o − cCO2,pq̄

4
CO2,p

)− ∆t4

(1 + b)
t4

365

(cCO2,iq̄
4
CO2,i

)+

∆t5

(1 + b)
t5

365

(roq̄
5
o − cCO2,pq̄

5
CO2,p

)− ∆t5

(1 + b)
t5

365

(cCO2,iq̄
5
CO2,i

)+

∆t6

(1 + b)
t6

365

(roq̄
6
o − cCO2,pq̄

6
CO2,p

)− ∆t6

(1 + b)
t6

365

(cCO2,iq̄
6
CO2,i

)+

∆t7

(1 + b)
t7

365

(roq̄
7
o − cCO2,pq̄

7
CO2,p

)− ∆t7

(1 + b)
t7

365

(cCO2,iq̄
7
CO2,i

)+

∆t8

(1 + b)
t8

365

(roq̄
8
o − cCO2,pq̄

8
CO2,p

)− ∆t8

(1 + b)
t8

365

(cCO2,iq̄
8
CO2,i

)+

∆t9

(1 + b)
t9

365

(roq̄
9
o − cCO2,pq̄

9
CO2,p

)− ∆t9

(1 + b)
t9

365

(cCO2,iq̄
9
CO2,i

)+

∆t10

(1 + b)
t10
365

(roq̄
10
o − cCO2,pq̄

10
CO2,p

)− ∆t10

(1 + b)
t10
365

(cCO2,iq̄
10
CO2,i

)+

∆t11

(1 + b)
t11
365

(roq̄
11
o − cCO2,pq̄

11
CO2,p

)− ∆t11

(1 + b)
t11
365

(cCO2,iq̄
11
CO2,i

)+

∆t12

(1 + b)
t12
365

(roq̄
12
o − cCO2,pq̄

12
CO2,p

)− ∆t12

(1 + b)
t12
365

(cCO2,iq̄
12
CO2,i

)+

∆t13

(1 + b)
t13
365

(roq̄
13
o − cCO2,pq̄

13
CO2,p

)− ∆t13

(1 + b)
t13
365

(cCO2,iq̄
13
CO2,i

)+

∆t14

(1 + b)
t14
365

(roq̄
14
o − cCO2,pq̄

14
CO2,p

)− ∆t14

(1 + b)
t14
365

(cCO2,iq̄
14
CO2,i

)

Let us put the values of cumulative simulation time and simulation time step values

in, considering also that during production and soaking period injection rate will be zero,

and during injection and soaking period production rate will be zero:
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=
50

(1 + b)
50
365

(ro0− cCO2,p0)− 50

(1 + b)
50
365

(cCO2,iq̄
1
CO2,i

)+

50

(1 + b)
100
365

(ro0− cCO2,p0)− 50

(1 + b)
100
365

(cCO2,iq̄
2
CO2,i

)+

50

(1 + b)
150
365

(ro0− cCO2,p0)− 50

(1 + b)
150
365

(cCO2,iq̄
3
CO2,i

)+

150

(1 + b)
300
365

(ro0− cCO2,p0)− 150

(1 + b)
300
365

(cCO2,i0)+

100

(1 + b)
400
365

(roq̄
5
o − cCO2,pq̄

5
CO2,p

)− 100

(1 + b)
400
365

(cCO2,i0)+

100

(1 + b)
500
365

(roq̄
6
o − cCO2,pq̄

6
CO2,p

)− 100

(1 + b)
500
365

(cCO2,i0)+

100

(1 + b)
600
365

(roq̄
7
o − cCO2,pq̄

7
CO2,p

)− 100

(1 + b)
600
365

(cCO2,i0)+

50

(1 + b)
650
365

(ro0− cCO2,p0)− 50

(1 + b)
650
365

(cCO2,iq̄
8
CO2,i

)+

50

(1 + b)
700
365

(ro0− cCO2,p0)− 50

(1 + b)
700
365

(cCO2,iq̄
9
CO2,i

)+

50

(1 + b)
750
365

(ro0− cCO2,p0)− 50

(1 + b)
750
365

(cCO2,iq̄
10
CO2,i

)+

150

(1 + b)
900
365

(ro0− cCO2,p0)− 150

(1 + b)
900
365

(cCO2,i0)+

100

(1 + b)
1000
365

(roq̄
12
o − cCO2,pq̄

12
CO2,p

)− 100

(1 + b)
1000
365

(cCO2,i0)+

100

(1 + b)
1100
365

(roq̄
13
o − cCO2,pq̄

13
CO2,p

)− 100

(1 + b)
1100
365

(cCO2,i0)+

100

(1 + b)
1200
365

(roq̄
14
o − cCO2,pq̄

14
CO2,p

)− 100

(1 + b)
1200
365

(cCO2,i0)

Let’s eliminate the zero terms and see what is left for us:

= − 50

(1 + b)
50
365

(cCO2,iq̄
1
CO2,i

)+
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− 50

(1 + b)
100
365

(cCO2,iq̄
2
CO2,i

)+

− 50

(1 + b)
150
365

(cCO2,iq̄
3
CO2,i

)+

100

(1 + b)
400
365

(roq̄
5
o − cCO2,pq̄

5
CO2,p

)+

100

(1 + b)
500
365

(roq̄
6
o − cCO2,pq̄

6
CO2,p

)+

100

(1 + b)
600
365

(roq̄
7
o − cCO2,pq̄

7
CO2,p

)+

− 50

(1 + b)
650
365

(cCO2,iq̄
8
CO2,i

)+

− 50

(1 + b)
700
365

(cCO2,iq̄
9
CO2,i

)+

− 50

(1 + b)
750
365

(cCO2,iq̄
10
CO2,i

)+

100

(1 + b)
1000
365

(roq̄
12
o − cCO2,pq̄

12
CO2,p

)+

100

(1 + b)
1100
365

(roq̄
13
o − cCO2,pq̄

13
CO2,p

)+

100

(1 + b)
1200
365

(roq̄
14
o − cCO2,pq̄

14
CO2,p

)

This is the same result as the one where we used time steps (control time steps) instead of

simulation time steps.
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APPENDIX B

TRAINING PROCEDURE OF LS-SVR

Training procedure of LS-SVR is the solution of the following optimization problem:

L(w, b, e;α) = O(w, e)−
Ntr∑
k=1

αk[w
Tφ(ūk) + b+ ek − J̄o,k]. (B.1)

The optimal solution of Eq. B.1 is obtained by solving ∇L = 0, where ∇ is the gradient

vector having partial derivatives with respect to w, αk, ek, for k = 1, 2, ...,Ntr, and b, which

yields the following linear system of equations (Cawley and Talbot, 2007):



∇wL = 0 −→ w =
Ntr∑
k=1

αkφ(ūk),

∂L

∂b
= 0 −→

Ntr∑
k=1

αk = 0,

∂L

∂ek
= 0 −→ αk = γek, k = 1 : Ntr,

∂L

∂αk
= 0 −→ wTφ(ūk) + b+ ek − Jo,k, k = 1 : Ntr.

(B.2a)

(B.2b)

(B.2c)

(B.2d)

Substituting Eq. B.2a into Eq. B.2d gives us

Jo,k =
Ntr∑
l=1

αkφ(ūl)
Tφ(ūk) + b+ ek. (B.3)

Deriving ek
αk
γ

from Eq. B.2c, and putting it in Eq. B.3, we can write it in a vector-matrix

multiplication form as

jo =

(
Ω +

1

γ
I

)
α + 1Ntrb, (B.4)

where Ω is Ntr ×Ntr matrix with entries of Ωk,l = φ(ūl)
Tφ(ūk); jo = [Jo,1, Jo,2, . . . , Jo,Ntr ]

T ;

and α = [α1, α2, . . . , αNtr ]
T . We can further combine Eq. B.2b and B.4 to obtain both
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equations in a single vector-matrix multiplication form

 0 1TNtr

1Ntr Ω +
1

γ
I


 b
α

 =

0

jo

 . (B.5)

By multiplying Eq. B.4 by 1TNtr

(
Ω +

1

γ
I

)−1

, and knowing that 1TNtr
α = 0, we can find b as

b =

1TNtr

(
Ω +

1

γ
I

)−1

jo

1TNtr

(
Ω +

1

γ
I

)−1

1Ntr

. (B.6)

Similarly, we can solve Eq. B.2b for α

α =

(
Ω +

1

γ
I

)−1

jo − b
(

Ω +
1

γ
I

)−1

1Ntr . (B.7)

Actually, one can find both b and α, simultaneously, by solving Eq. B.2c. From Eqs.

B.6 and B.7, we can see that computational complexity of training procedure has relationship

with the size of the data as O(N3
tr) for the Cholesky decomposition. As can be seen from

Eqs. B.6 and B.7, to be able to calculate b and α, we need to know entries of the matrix

Ω, which are kernel function evaluated between two data points, and γ. Kernel function

has unknown parameter (or parameters). In our case, where radial basis function is used as

kernel function (Eq. 4.9), that unknown parameter is σ2
bw. These two unknown parameters

(σ2
bw and γ) can be found using hyperparameter optimization method, which is discussed in

Section 4.1.3.
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APPENDIX C

DERIVATIONS OF GPR

In this appendix, we provide some essential derivations of GPR. In the first section,

derivations of conditional mean and conditional covariance of prediction points given obser-

vations are provided. In the second section, we discuss the details of the Bayesian model

selection process in GPR.

C.1 Derivations Of Mean And Covariance Of Conditional Multivariate

Gaussian Distribution Of Prediction Points Given Observations

It is a special property of multivariate Gaussian distribution that conditioning on

observed values of a subset of variables leads to conditional distribution for the unobserved

variables. This conditional distribution is also Gaussian. We will see that the expectation of

conditional distribution is linear in observations, but the covariance matrix does not depend

on the observed values. Using this property, we can derive the distribution of the predictions

for the GPR model since it is basically a conditional distribution conditioned to observed

data.

A combination of prediction points and observation points in one random vector

(where each point is a random variable) is given as

jΣ =

j∗

jo

 . (C.8)

with mean

µΣ =

µp
µ

 , (C.9)
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where µp and µ are mean of predictive points (j∗) and mean of observed points (jo), respec-

tively; and Nt ×Nt symmetric covariance matrix KΣ, where Nt = Ntr +Npr, as

KΣ = cov


j∗

jo

 ,
j∗

jo


 =

 Kp Kp,o

Ko,p Ko

 , (C.10)

where Kp is the Npr×Npr covariance matrix of j∗, Ko the Ntr×Ntr covariance matrix of jo,

and Ko,p (=KT
p,o) is the Ntr ×Npr cross-covariance matrix of jo and j∗.

If the matrix KΣ is positive definite, we can write the joint multivariate Gaussian

distribution as

p(j∗, jo) =
1

(2π)Nt/2
√
detKΣ

exp

−1

2


j∗ − µp

jo − µ


T

(KΣ)−1

j∗ − µp

jo − µ



 , (C.11)

where the marginal PDF of Ntr dimensional jo random vector (also known as marginal

likelihood or evidence) is

p(jo) =
1

(2π)Ntr/2
√
detKo

exp

[
−1

2

{
[jo − µ]TK−1

o [jo − µ]
}]

. (C.12)

Then, we can write an equation for conditional PDF of j∗ given jo as

p(j∗|jo) =
p(j
∗, jo)

p(jo)
(C.13)

To simplify the calculations for further derivations, we assume that µ = µp = 0 and they

will be re-inserted back to our results. Substituting Eqs.C.11 and C.12 into Eq. C.13 we get

p(j∗|jo) =c exp

−1

2

j∗

jo


T

(KΣ)−1

j∗

jo

+
1

2
jTo K−1

o jo


=c exp

{
−1

2
Q(j∗, jo)

} , (C.14)
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where c is constant we get as

c = (2π)(Ntr−Nt)/2

√
detKo√
detKΣ

(C.15)

Using the matrix inversion lemmas (Vetterling et al., 1992), we can write the inverse of the

matrix KΣ as follows:

(KΣ)−1 =

 Kp Kp,o

Ko,p Ko


−1

=

A11 A12

A21 A22


=

 [Kp −Kp,oK
−1
o Ko,p]

−1, −[Kp −Kp,oK
−1
o Ko,p]

−1Kp,oK
−1
o

−[Ko −Ko,pK
−1
p Kp,o]

−1Ko,pK
−1
p , [Ko −Ko,pK

−1
p Kp,o]

−1


(C.16)

where, A11,A12,A21,A22 are defined as above to make our further derivation look tidy.

Using Eq. C.16 in Eq. C.14, we can expand the term Q(j∗, jo) as

Q(jo, j
∗) =(j∗)TA11j

∗ + (j∗)TA12jo + jTo A21j
∗ + jTo A22jo − jTo K−1

o jo

=((j∗)T − jTo BT )A11(j∗ −Bjo) + Q̃(jo)

=(j∗)TA11j
∗ − (j∗)TA11Bjo − jTo BTA11j

∗ + jTo BTA11Bjo + Q̃(jo)

, (C.17)

where matrix B is defined, which is unknown, as mathematical trick. Quadratic function,

Q̃(jo) = jTo K−1
o jo, can be excluded as a multiplier of exponent since summation at the

exponent is multiplication. What we are left with is just the following equality from Eq.

C.17

(j∗)TA11j
∗ + (j∗)TA12jo + jTo A21j

∗ + jTo A22jo =

(j∗)TA11j
∗ − (j∗)TA11Bjo − jTo BTA11j

∗ + jTo BTA11Bjo

(C.18)
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From the equality, we see that −A11B = A12. Solving this for B

B =−A−1
11 A12 = −([Kp −Kp,oK

−1
o Ko,p]

−1)−1 − [Kp −Kp,oK
−1
o Ko,p]

−1Kp,oK
−1
o

=Kp,oK
−1
o .

(C.19)

From Eq. C.17, which represents the conditional PDF of prediction points, j∗, given ob-

servations, jo, it is obvious that A11 is the inverse of covariance matrix of the prediction

points given observations, cov(j∗, j∗|jo), which is denoted in our research as K∗. Then, from

Eq.C.16, knowing A11, we can write

K∗ = Kp −Kp,oK
−1
o Ko,p. (C.20)

Also, from Eq. C.17, the term Bjo is the expectation of prediction points given observations,

E[j∗|jo], which is denoted in our research as µ∗. Then, knowing B from Eq. C.19, we write

µ∗ = Kp,oK
−1
o jo. (C.21)

However, reinstalling the means of observations, µ, and predictions, µp, we can rewrite Eq.

C.21 as

µ∗ = µp + Kp,oK
−1
o (jo − µ). (C.22)

In our research, µp = µ1Npr , and µ = µ1Ntr , where µ is just a constant to be determined

through hyperparameter optimization (von Mises, 1964; Muirhead, 2009; Eaton, 1983).

One can also get the same results for conditional covariance of predictions given

observed data (Eq. C.20), and for conditional expectation of predictions given observed

data (Eq. C.22), using the Bayes’ rule to get PDF for joint distribution of function space at

observed points (j(Uo), where Uo is the matrix of observed points, each column of which is

one observation point; for simplicity we will denote it as j) and function space at prediction

points (j∗ = j(U∗)) given observed data points (jo), p(j, j∗|jo), and integrating it with respect
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to j to get p(j∗|jo):

p(j, j∗|jo) =
p(jo|j)p(j, j∗)

p(jo)
, (C.23)

p(j∗|jo) =

∫
p(j, j∗|jo)dj =

1

p(jo)

∫
p(jo|j)p(j, j∗)dj, (C.24)

where p(j, j∗) and p(jo|j) are given as follows:

p(j, j∗) = N


 µ

µp

 ,
 K Ko,p

Kp,o Kp


 , (C.25)

and

p(jo|j) = N(j, σ2
nI), (C.26)

where K is Ntr × Ntr covariance matrix of the function space at observed points, and I

is Ntr × Ntr dimensional unit matrix. Note that observation data (jo) are different than

the function evaluated at observed points (j). Actually, the integration with respect to j is

because we want to get rid of j since we do not know what is the function space evaluated

at the observed points. However, we know observation data, jo. The term σ2
n in Eq. C.26 is

variance of the noise in the data.

The integration term at the right-hand side of the Eq. C.24 gives us joint PDF of

prediction points and observation points, p(j∗, jo). Since, both factors in that integral (p(jo|j)

and p(j, j∗)) are Gaussian, the integral can be evaluated in closed form to give

p(jo, j
∗) = N


 µ

µp

 ,
K + σ2

nI Ko,p

Kp,o Kp


 . (C.27)

If we define K + σ2
nI = Ko, we see that Eq. C.27 is exactly the same as Eq. C.11.

Normalizing constant in Eq. C.24, p(jo), can be found similarly

p(jo) =

∫
p(jo|j)p(j)dj. (C.28)
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Again, since both factors in the integral in Eq. C.28 are Gaussian, the integral can be

evaluated in closed form to get

p(jo) = N(µ,K + σ2
nI), (C.29)

which is exactly the same Eq. C.12, defining K + σ2
nI = Ko. The rest of the derivation

follows from Eq. C.13 to Eq. C.22.

C.2 Bayesian Model Selection in GPR

Here we discuss Bayesian model selection in general and its application to GPR.

Any model can be specified hierarchically. At the first level are the parameters of the model,

which is denoted as w also known as weights. Since the Gaussian process is a non-parametric

model, we do not have weights; instead, we have function space directly. As we know the

uncertainty on the weights induces uncertainty to the function space. All the derivations of

the GPR, its training procedure shown above, can also be derived using the weight space

view. For the derivations using the weight space view of GPR, please check Section 2.1 of

the book Williams and Rasmussen (2006). At the second level, we have hyperparameters,

which affect the distribution of the weights at the first level. And at the third level, model

structures stay. It is a discrete set of models Hi. Therefore, the probability assigned them

is to discrete probability.

As can be seen from the name of the section this model selection uses the Bayes rule

to go from the first level to the last level of the hierarchy. For the purpose of not confusing

the reader, we will use the function space view since all our derivations stand for this view.

The first level posterior over the function space is given as

p(j|jo,U, θ,Hi) =
p(jo|U, j,Hi)p(j|θ,Hi)

p(jo|U, θ,Hi)
, (C.30)

where the first two probability distributions at the numerator is called likelihood distribution

of data given function space, and prior distribution of the function space before seeing the
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data, respectively. The term at the denominator is independent of the function space and

called the marginal likelihood or evidence

p(jo|U, θ,Hi) =

∫
p(jo|U, j,Hi)p(j|θ,Hi)dj (C.31)

For the second level, posterior is given for hyperparameters, which controls probability

distribution over function space, (j|θ,Hi), and given as

p(θ|jo,U,Hi) =
p(jo|U, θ,Hi)p(θ|Hi)

p(jo|U,Hi)
, (C.32)

where the second term at the nominator is a prior distribution over hyperparameters. The

term at the denominator is normalizing constant and given by

p(jo|U,Hi) =

∫
p(jo|U, θ,Hi)p(θ|Hi)dθ. (C.33)

At the first level, which is the top level of the hierarchy, we have posterior over the model

(type of kernel function in our case), which controls probability distribution over hyperpa-

rameters, p(θ|Hi), and given by

p(Hi|jo,U) =
p(jo|U,Hi)p(Hi)

p(jo|U)
, (C.34)

where the normalizing constant is the marginal distribution of data, which is discrete

p(jo|U =

Nmodel∑
i

p(jo|U,Hi)p(Hi), (C.35)

where Nmodel is the number of models (number of possible kernel functions in our case). Since

it is hard to analytically track these integrals, one may have to use integral approximation

techniques such as the Markov chain Monte Carlo (MCMC) method. Instead of evaluating

the integral in Eq. C.33, it is preferable to maximize marginal likelihood (Eq. C.31) with
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respect to θ. For the prior distribution over model is chosen to be uniform distribution,

which means we do not prefer any model to others.

Marginal likelihood (Eq. C.31) has the specific property that shows the trade-off

between model fit and model complexity automatically. Therefore, we mainly focus on Eq.

C.31 for model selection. To apply model selection process to GPR process we, therefore,

apply Eq. C.30 and Eq. C.31 for the first level inference. The posterior distribution given by

C.30 is predictive distribution, and we derived it in Appendix C.1. Its mean and covariance

are given by Eq. C.22 and Eq. C.20, respectively. Marginal likelihood for GPR is given in

Eq. C.12. However, we will rewrite it in the logarithmic form, assuming zero mean for the

convenience of the derivations, as

log p(jo|U,θ) = −1

2
jTo K−1

o jo −
1

2
log |Ko| −

Ntr

2
log 2π. (C.36)

Taking the derivation of Eq. C.36 with respect to hyperparameters (θ), we maximize the log

marginal likelihood.

In the case we have multiple data sets, we simply optimize summation of log marginal

likelihoods with respect to hyperparameters, which is known asmulti-task learning (Caruana,

1997).
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–Seneca
“Luck is where opportunity meets preparation.”
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